xref: /freebsd/sys/netinet/tcp_subr.c (revision c35b5d8372e4c4ec50e8653c2b51e6179a81769e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/icmp6.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_fib.h>
84 #include <netinet6/in6_pcb.h>
85 #include <netinet6/ip6_var.h>
86 #include <netinet6/scope6_var.h>
87 #include <netinet6/nd6.h>
88 #endif
89 
90 #ifdef TCP_RFC7413
91 #include <netinet/tcp_fastopen.h>
92 #endif
93 #include <netinet/tcp.h>
94 #include <netinet/tcp_fsm.h>
95 #include <netinet/tcp_seq.h>
96 #include <netinet/tcp_timer.h>
97 #include <netinet/tcp_var.h>
98 #include <netinet/tcp_syncache.h>
99 #include <netinet/cc/cc.h>
100 #ifdef INET6
101 #include <netinet6/tcp6_var.h>
102 #endif
103 #include <netinet/tcpip.h>
104 #ifdef TCPPCAP
105 #include <netinet/tcp_pcap.h>
106 #endif
107 #ifdef TCPDEBUG
108 #include <netinet/tcp_debug.h>
109 #endif
110 #ifdef INET6
111 #include <netinet6/ip6protosw.h>
112 #endif
113 #ifdef TCP_OFFLOAD
114 #include <netinet/tcp_offload.h>
115 #endif
116 
117 #ifdef IPSEC
118 #include <netipsec/ipsec.h>
119 #include <netipsec/xform.h>
120 #ifdef INET6
121 #include <netipsec/ipsec6.h>
122 #endif
123 #include <netipsec/key.h>
124 #include <sys/syslog.h>
125 #endif /*IPSEC*/
126 
127 #include <machine/in_cksum.h>
128 #include <sys/md5.h>
129 
130 #include <security/mac/mac_framework.h>
131 
132 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
133 #ifdef INET6
134 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
135 #endif
136 
137 struct rwlock tcp_function_lock;
138 
139 static int
140 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
141 {
142 	int error, new;
143 
144 	new = V_tcp_mssdflt;
145 	error = sysctl_handle_int(oidp, &new, 0, req);
146 	if (error == 0 && req->newptr) {
147 		if (new < TCP_MINMSS)
148 			error = EINVAL;
149 		else
150 			V_tcp_mssdflt = new;
151 	}
152 	return (error);
153 }
154 
155 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
156     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
157     &sysctl_net_inet_tcp_mss_check, "I",
158     "Default TCP Maximum Segment Size");
159 
160 #ifdef INET6
161 static int
162 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error, new;
165 
166 	new = V_tcp_v6mssdflt;
167 	error = sysctl_handle_int(oidp, &new, 0, req);
168 	if (error == 0 && req->newptr) {
169 		if (new < TCP_MINMSS)
170 			error = EINVAL;
171 		else
172 			V_tcp_v6mssdflt = new;
173 	}
174 	return (error);
175 }
176 
177 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
178     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
179     &sysctl_net_inet_tcp_mss_v6_check, "I",
180    "Default TCP Maximum Segment Size for IPv6");
181 #endif /* INET6 */
182 
183 /*
184  * Minimum MSS we accept and use. This prevents DoS attacks where
185  * we are forced to a ridiculous low MSS like 20 and send hundreds
186  * of packets instead of one. The effect scales with the available
187  * bandwidth and quickly saturates the CPU and network interface
188  * with packet generation and sending. Set to zero to disable MINMSS
189  * checking. This setting prevents us from sending too small packets.
190  */
191 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
193      &VNET_NAME(tcp_minmss), 0,
194     "Minimum TCP Maximum Segment Size");
195 
196 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
197 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
198     &VNET_NAME(tcp_do_rfc1323), 0,
199     "Enable rfc1323 (high performance TCP) extensions");
200 
201 static int	tcp_log_debug = 0;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
203     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
204 
205 static int	tcp_tcbhashsize;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
207     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
208 
209 static int	do_tcpdrain = 1;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
211     "Enable tcp_drain routine for extra help when low on mbufs");
212 
213 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
214     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
215 
216 static VNET_DEFINE(int, icmp_may_rst) = 1;
217 #define	V_icmp_may_rst			VNET(icmp_may_rst)
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
219     &VNET_NAME(icmp_may_rst), 0,
220     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
221 
222 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
223 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(tcp_isn_reseed_interval), 0,
226     "Seconds between reseeding of ISN secret");
227 
228 static int	tcp_soreceive_stream;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
230     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
231 
232 #ifdef TCP_SIGNATURE
233 static int	tcp_sig_checksigs = 1;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
235     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
236 #endif
237 
238 VNET_DEFINE(uma_zone_t, sack_hole_zone);
239 #define	V_sack_hole_zone		VNET(sack_hole_zone)
240 
241 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
242 
243 static struct inpcb *tcp_notify(struct inpcb *, int);
244 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
245 static void tcp_mtudisc(struct inpcb *, int);
246 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
247 		    void *ip4hdr, const void *ip6hdr);
248 
249 
250 static struct tcp_function_block tcp_def_funcblk = {
251 	"default",
252 	tcp_output,
253 	tcp_do_segment,
254 	tcp_default_ctloutput,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	NULL,
261 	0,
262 	0
263 };
264 
265 int t_functions_inited = 0;
266 struct tcp_funchead t_functions;
267 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
268 
269 static void
270 init_tcp_functions(void)
271 {
272 	if (t_functions_inited == 0) {
273 		TAILQ_INIT(&t_functions);
274 		rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
275 		t_functions_inited = 1;
276 	}
277 }
278 
279 static struct tcp_function_block *
280 find_tcp_functions_locked(struct tcp_function_set *fs)
281 {
282 	struct tcp_function *f;
283 	struct tcp_function_block *blk=NULL;
284 
285 	TAILQ_FOREACH(f, &t_functions, tf_next) {
286 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
287 			blk = f->tf_fb;
288 			break;
289 		}
290 	}
291 	return(blk);
292 }
293 
294 static struct tcp_function_block *
295 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
296 {
297 	struct tcp_function_block *rblk=NULL;
298 	struct tcp_function *f;
299 
300 	TAILQ_FOREACH(f, &t_functions, tf_next) {
301 		if (f->tf_fb == blk) {
302 			rblk = blk;
303 			if (s) {
304 				*s = f;
305 			}
306 			break;
307 		}
308 	}
309 	return (rblk);
310 }
311 
312 struct tcp_function_block *
313 find_and_ref_tcp_functions(struct tcp_function_set *fs)
314 {
315 	struct tcp_function_block *blk;
316 
317 	rw_rlock(&tcp_function_lock);
318 	blk = find_tcp_functions_locked(fs);
319 	if (blk)
320 		refcount_acquire(&blk->tfb_refcnt);
321 	rw_runlock(&tcp_function_lock);
322 	return(blk);
323 }
324 
325 struct tcp_function_block *
326 find_and_ref_tcp_fb(struct tcp_function_block *blk)
327 {
328 	struct tcp_function_block *rblk;
329 
330 	rw_rlock(&tcp_function_lock);
331 	rblk = find_tcp_fb_locked(blk, NULL);
332 	if (rblk)
333 		refcount_acquire(&rblk->tfb_refcnt);
334 	rw_runlock(&tcp_function_lock);
335 	return(rblk);
336 }
337 
338 
339 static int
340 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
341 {
342 	int error=ENOENT;
343 	struct tcp_function_set fs;
344 	struct tcp_function_block *blk;
345 
346 	memset(&fs, 0, sizeof(fs));
347 	rw_rlock(&tcp_function_lock);
348 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
349 	if (blk) {
350 		/* Found him */
351 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
352 		fs.pcbcnt = blk->tfb_refcnt;
353 	}
354 	rw_runlock(&tcp_function_lock);
355 	error = sysctl_handle_string(oidp, fs.function_set_name,
356 				     sizeof(fs.function_set_name), req);
357 
358 	/* Check for error or no change */
359 	if (error != 0 || req->newptr == NULL)
360 		return(error);
361 
362 	rw_wlock(&tcp_function_lock);
363 	blk = find_tcp_functions_locked(&fs);
364 	if ((blk == NULL) ||
365 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
366 		error = ENOENT;
367 		goto done;
368 	}
369 	tcp_func_set_ptr = blk;
370 done:
371 	rw_wunlock(&tcp_function_lock);
372 	return (error);
373 }
374 
375 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
376 	    CTLTYPE_STRING | CTLFLAG_RW,
377 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
378 	    "Set/get the default TCP functions");
379 
380 static int
381 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
382 {
383 	int error, cnt, linesz;
384 	struct tcp_function *f;
385 	char *buffer, *cp;
386 	size_t bufsz, outsz;
387 
388 	cnt = 0;
389 	rw_rlock(&tcp_function_lock);
390 	TAILQ_FOREACH(f, &t_functions, tf_next) {
391 		cnt++;
392 	}
393 	rw_runlock(&tcp_function_lock);
394 
395 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
396 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
397 
398 	error = 0;
399 	cp = buffer;
400 
401 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
402 	cp += linesz;
403 	bufsz -= linesz;
404 	outsz = linesz;
405 
406 	rw_rlock(&tcp_function_lock);
407 	TAILQ_FOREACH(f, &t_functions, tf_next) {
408 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
409 		    f->tf_fb->tfb_tcp_block_name,
410 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
411 		    f->tf_fb->tfb_refcnt);
412 		if (linesz >= bufsz) {
413 			error = EOVERFLOW;
414 			break;
415 		}
416 		cp += linesz;
417 		bufsz -= linesz;
418 		outsz += linesz;
419 	}
420 	rw_runlock(&tcp_function_lock);
421 	if (error == 0)
422 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
423 	free(buffer, M_TEMP);
424 	return (error);
425 }
426 
427 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
428 	    CTLTYPE_STRING|CTLFLAG_RD,
429 	    NULL, 0, sysctl_net_inet_list_available, "A",
430 	    "list available TCP Function sets");
431 
432 /*
433  * Target size of TCP PCB hash tables. Must be a power of two.
434  *
435  * Note that this can be overridden by the kernel environment
436  * variable net.inet.tcp.tcbhashsize
437  */
438 #ifndef TCBHASHSIZE
439 #define TCBHASHSIZE	0
440 #endif
441 
442 /*
443  * XXX
444  * Callouts should be moved into struct tcp directly.  They are currently
445  * separate because the tcpcb structure is exported to userland for sysctl
446  * parsing purposes, which do not know about callouts.
447  */
448 struct tcpcb_mem {
449 	struct	tcpcb		tcb;
450 	struct	tcp_timer	tt;
451 	struct	cc_var		ccv;
452 	struct	osd		osd;
453 };
454 
455 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
456 #define	V_tcpcb_zone			VNET(tcpcb_zone)
457 
458 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
459 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
460 
461 static struct mtx isn_mtx;
462 
463 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
464 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
465 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
466 
467 /*
468  * TCP initialization.
469  */
470 static void
471 tcp_zone_change(void *tag)
472 {
473 
474 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
475 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
476 	tcp_tw_zone_change();
477 }
478 
479 static int
480 tcp_inpcb_init(void *mem, int size, int flags)
481 {
482 	struct inpcb *inp = mem;
483 
484 	INP_LOCK_INIT(inp, "inp", "tcpinp");
485 	return (0);
486 }
487 
488 /*
489  * Take a value and get the next power of 2 that doesn't overflow.
490  * Used to size the tcp_inpcb hash buckets.
491  */
492 static int
493 maketcp_hashsize(int size)
494 {
495 	int hashsize;
496 
497 	/*
498 	 * auto tune.
499 	 * get the next power of 2 higher than maxsockets.
500 	 */
501 	hashsize = 1 << fls(size);
502 	/* catch overflow, and just go one power of 2 smaller */
503 	if (hashsize < size) {
504 		hashsize = 1 << (fls(size) - 1);
505 	}
506 	return (hashsize);
507 }
508 
509 int
510 register_tcp_functions(struct tcp_function_block *blk, int wait)
511 {
512 	struct tcp_function_block *lblk;
513 	struct tcp_function *n;
514 	struct tcp_function_set fs;
515 
516 	if (t_functions_inited == 0) {
517 		init_tcp_functions();
518 	}
519 	if ((blk->tfb_tcp_output == NULL) ||
520 	    (blk->tfb_tcp_do_segment == NULL) ||
521 	    (blk->tfb_tcp_ctloutput == NULL) ||
522 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
523 		/*
524 		 * These functions are required and you
525 		 * need a name.
526 		 */
527 		return (EINVAL);
528 	}
529 	if (blk->tfb_tcp_timer_stop_all ||
530 	    blk->tfb_tcp_timer_activate ||
531 	    blk->tfb_tcp_timer_active ||
532 	    blk->tfb_tcp_timer_stop) {
533 		/*
534 		 * If you define one timer function you
535 		 * must have them all.
536 		 */
537 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
538 		    (blk->tfb_tcp_timer_activate == NULL) ||
539 		    (blk->tfb_tcp_timer_active == NULL) ||
540 		    (blk->tfb_tcp_timer_stop == NULL)) {
541 			return (EINVAL);
542 		}
543 	}
544 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
545 	if (n == NULL) {
546 		return (ENOMEM);
547 	}
548 	n->tf_fb = blk;
549 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
550 	rw_wlock(&tcp_function_lock);
551 	lblk = find_tcp_functions_locked(&fs);
552 	if (lblk) {
553 		/* Duplicate name space not allowed */
554 		rw_wunlock(&tcp_function_lock);
555 		free(n, M_TCPFUNCTIONS);
556 		return (EALREADY);
557 	}
558 	refcount_init(&blk->tfb_refcnt, 0);
559 	blk->tfb_flags = 0;
560 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
561 	rw_wunlock(&tcp_function_lock);
562 	return(0);
563 }
564 
565 int
566 deregister_tcp_functions(struct tcp_function_block *blk)
567 {
568 	struct tcp_function_block *lblk;
569 	struct tcp_function *f;
570 	int error=ENOENT;
571 
572 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
573 		/* You can't un-register the default */
574 		return (EPERM);
575 	}
576 	rw_wlock(&tcp_function_lock);
577 	if (blk == tcp_func_set_ptr) {
578 		/* You can't free the current default */
579 		rw_wunlock(&tcp_function_lock);
580 		return (EBUSY);
581 	}
582 	if (blk->tfb_refcnt) {
583 		/* Still tcb attached, mark it. */
584 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
585 		rw_wunlock(&tcp_function_lock);
586 		return (EBUSY);
587 	}
588 	lblk = find_tcp_fb_locked(blk, &f);
589 	if (lblk) {
590 		/* Found */
591 		TAILQ_REMOVE(&t_functions, f, tf_next);
592 		f->tf_fb = NULL;
593 		free(f, M_TCPFUNCTIONS);
594 		error = 0;
595 	}
596 	rw_wunlock(&tcp_function_lock);
597 	return (error);
598 }
599 
600 void
601 tcp_init(void)
602 {
603 	const char *tcbhash_tuneable;
604 	int hashsize;
605 
606 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
607 
608 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
609 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
610 		printf("%s: WARNING: unable to register helper hook\n", __func__);
611 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
612 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
613 		printf("%s: WARNING: unable to register helper hook\n", __func__);
614 	hashsize = TCBHASHSIZE;
615 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
616 	if (hashsize == 0) {
617 		/*
618 		 * Auto tune the hash size based on maxsockets.
619 		 * A perfect hash would have a 1:1 mapping
620 		 * (hashsize = maxsockets) however it's been
621 		 * suggested that O(2) average is better.
622 		 */
623 		hashsize = maketcp_hashsize(maxsockets / 4);
624 		/*
625 		 * Our historical default is 512,
626 		 * do not autotune lower than this.
627 		 */
628 		if (hashsize < 512)
629 			hashsize = 512;
630 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
631 			printf("%s: %s auto tuned to %d\n", __func__,
632 			    tcbhash_tuneable, hashsize);
633 	}
634 	/*
635 	 * We require a hashsize to be a power of two.
636 	 * Previously if it was not a power of two we would just reset it
637 	 * back to 512, which could be a nasty surprise if you did not notice
638 	 * the error message.
639 	 * Instead what we do is clip it to the closest power of two lower
640 	 * than the specified hash value.
641 	 */
642 	if (!powerof2(hashsize)) {
643 		int oldhashsize = hashsize;
644 
645 		hashsize = maketcp_hashsize(hashsize);
646 		/* prevent absurdly low value */
647 		if (hashsize < 16)
648 			hashsize = 16;
649 		printf("%s: WARNING: TCB hash size not a power of 2, "
650 		    "clipped from %d to %d.\n", __func__, oldhashsize,
651 		    hashsize);
652 	}
653 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
654 	    "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE);
655 
656 	/*
657 	 * These have to be type stable for the benefit of the timers.
658 	 */
659 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
660 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
661 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
662 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
663 
664 	tcp_tw_init();
665 	syncache_init();
666 	tcp_hc_init();
667 
668 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
669 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
670 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
671 
672 	/* Skip initialization of globals for non-default instances. */
673 	if (!IS_DEFAULT_VNET(curvnet))
674 		return;
675 
676 	tcp_reass_global_init();
677 
678 	/* XXX virtualize those bellow? */
679 	tcp_delacktime = TCPTV_DELACK;
680 	tcp_keepinit = TCPTV_KEEP_INIT;
681 	tcp_keepidle = TCPTV_KEEP_IDLE;
682 	tcp_keepintvl = TCPTV_KEEPINTVL;
683 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
684 	tcp_msl = TCPTV_MSL;
685 	tcp_rexmit_min = TCPTV_MIN;
686 	if (tcp_rexmit_min < 1)
687 		tcp_rexmit_min = 1;
688 	tcp_persmin = TCPTV_PERSMIN;
689 	tcp_persmax = TCPTV_PERSMAX;
690 	tcp_rexmit_slop = TCPTV_CPU_VAR;
691 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
692 	tcp_tcbhashsize = hashsize;
693 	/* Setup the tcp function block list */
694 	init_tcp_functions();
695 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
696 
697 	if (tcp_soreceive_stream) {
698 #ifdef INET
699 		tcp_usrreqs.pru_soreceive = soreceive_stream;
700 #endif
701 #ifdef INET6
702 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
703 #endif /* INET6 */
704 	}
705 
706 #ifdef INET6
707 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
708 #else /* INET6 */
709 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
710 #endif /* INET6 */
711 	if (max_protohdr < TCP_MINPROTOHDR)
712 		max_protohdr = TCP_MINPROTOHDR;
713 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
714 		panic("tcp_init");
715 #undef TCP_MINPROTOHDR
716 
717 	ISN_LOCK_INIT();
718 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
719 		SHUTDOWN_PRI_DEFAULT);
720 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
721 		EVENTHANDLER_PRI_ANY);
722 #ifdef TCPPCAP
723 	tcp_pcap_init();
724 #endif
725 
726 #ifdef TCP_RFC7413
727 	tcp_fastopen_init();
728 #endif
729 }
730 
731 #ifdef VIMAGE
732 static void
733 tcp_destroy(void *unused __unused)
734 {
735 	int error, n;
736 
737 	/*
738 	 * All our processes are gone, all our sockets should be cleaned
739 	 * up, which means, we should be past the tcp_discardcb() calls.
740 	 * Sleep to let all tcpcb timers really disappear and cleanup.
741 	 */
742 	for (;;) {
743 		INP_LIST_RLOCK(&V_tcbinfo);
744 		n = V_tcbinfo.ipi_count;
745 		INP_LIST_RUNLOCK(&V_tcbinfo);
746 		if (n == 0)
747 			break;
748 		pause("tcpdes", hz / 10);
749 	}
750 	tcp_hc_destroy();
751 	syncache_destroy();
752 	tcp_tw_destroy();
753 	in_pcbinfo_destroy(&V_tcbinfo);
754 	/* tcp_discardcb() clears the sack_holes up. */
755 	uma_zdestroy(V_sack_hole_zone);
756 	uma_zdestroy(V_tcpcb_zone);
757 
758 #ifdef TCP_RFC7413
759 	/*
760 	 * Cannot free the zone until all tcpcbs are released as we attach
761 	 * the allocations to them.
762 	 */
763 	tcp_fastopen_destroy();
764 #endif
765 
766 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
767 	if (error != 0) {
768 		printf("%s: WARNING: unable to deregister helper hook "
769 		    "type=%d, id=%d: error %d returned\n", __func__,
770 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
771 	}
772 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
773 	if (error != 0) {
774 		printf("%s: WARNING: unable to deregister helper hook "
775 		    "type=%d, id=%d: error %d returned\n", __func__,
776 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
777 	}
778 }
779 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
780 #endif
781 
782 void
783 tcp_fini(void *xtp)
784 {
785 
786 }
787 
788 /*
789  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
790  * tcp_template used to store this data in mbufs, but we now recopy it out
791  * of the tcpcb each time to conserve mbufs.
792  */
793 void
794 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
795 {
796 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
797 
798 	INP_WLOCK_ASSERT(inp);
799 
800 #ifdef INET6
801 	if ((inp->inp_vflag & INP_IPV6) != 0) {
802 		struct ip6_hdr *ip6;
803 
804 		ip6 = (struct ip6_hdr *)ip_ptr;
805 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
806 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
807 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
808 			(IPV6_VERSION & IPV6_VERSION_MASK);
809 		ip6->ip6_nxt = IPPROTO_TCP;
810 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
811 		ip6->ip6_src = inp->in6p_laddr;
812 		ip6->ip6_dst = inp->in6p_faddr;
813 	}
814 #endif /* INET6 */
815 #if defined(INET6) && defined(INET)
816 	else
817 #endif
818 #ifdef INET
819 	{
820 		struct ip *ip;
821 
822 		ip = (struct ip *)ip_ptr;
823 		ip->ip_v = IPVERSION;
824 		ip->ip_hl = 5;
825 		ip->ip_tos = inp->inp_ip_tos;
826 		ip->ip_len = 0;
827 		ip->ip_id = 0;
828 		ip->ip_off = 0;
829 		ip->ip_ttl = inp->inp_ip_ttl;
830 		ip->ip_sum = 0;
831 		ip->ip_p = IPPROTO_TCP;
832 		ip->ip_src = inp->inp_laddr;
833 		ip->ip_dst = inp->inp_faddr;
834 	}
835 #endif /* INET */
836 	th->th_sport = inp->inp_lport;
837 	th->th_dport = inp->inp_fport;
838 	th->th_seq = 0;
839 	th->th_ack = 0;
840 	th->th_x2 = 0;
841 	th->th_off = 5;
842 	th->th_flags = 0;
843 	th->th_win = 0;
844 	th->th_urp = 0;
845 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
846 }
847 
848 /*
849  * Create template to be used to send tcp packets on a connection.
850  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
851  * use for this function is in keepalives, which use tcp_respond.
852  */
853 struct tcptemp *
854 tcpip_maketemplate(struct inpcb *inp)
855 {
856 	struct tcptemp *t;
857 
858 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
859 	if (t == NULL)
860 		return (NULL);
861 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
862 	return (t);
863 }
864 
865 /*
866  * Send a single message to the TCP at address specified by
867  * the given TCP/IP header.  If m == NULL, then we make a copy
868  * of the tcpiphdr at th and send directly to the addressed host.
869  * This is used to force keep alive messages out using the TCP
870  * template for a connection.  If flags are given then we send
871  * a message back to the TCP which originated the segment th,
872  * and discard the mbuf containing it and any other attached mbufs.
873  *
874  * In any case the ack and sequence number of the transmitted
875  * segment are as specified by the parameters.
876  *
877  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
878  */
879 void
880 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
881     tcp_seq ack, tcp_seq seq, int flags)
882 {
883 	struct tcpopt to;
884 	struct inpcb *inp;
885 	struct ip *ip;
886 	struct mbuf *optm;
887 	struct tcphdr *nth;
888 	u_char *optp;
889 #ifdef INET6
890 	struct ip6_hdr *ip6;
891 	int isipv6;
892 #endif /* INET6 */
893 	int optlen, tlen, win;
894 	bool incl_opts;
895 
896 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
897 
898 #ifdef INET6
899 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
900 	ip6 = ipgen;
901 #endif /* INET6 */
902 	ip = ipgen;
903 
904 	if (tp != NULL) {
905 		inp = tp->t_inpcb;
906 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
907 		INP_WLOCK_ASSERT(inp);
908 	} else
909 		inp = NULL;
910 
911 	incl_opts = false;
912 	win = 0;
913 	if (tp != NULL) {
914 		if (!(flags & TH_RST)) {
915 			win = sbspace(&inp->inp_socket->so_rcv);
916 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
917 				win = (long)TCP_MAXWIN << tp->rcv_scale;
918 		}
919 		if ((tp->t_flags & TF_NOOPT) == 0)
920 			incl_opts = true;
921 	}
922 	if (m == NULL) {
923 		m = m_gethdr(M_NOWAIT, MT_DATA);
924 		if (m == NULL)
925 			return;
926 		m->m_data += max_linkhdr;
927 #ifdef INET6
928 		if (isipv6) {
929 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
930 			      sizeof(struct ip6_hdr));
931 			ip6 = mtod(m, struct ip6_hdr *);
932 			nth = (struct tcphdr *)(ip6 + 1);
933 		} else
934 #endif /* INET6 */
935 		{
936 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
937 			ip = mtod(m, struct ip *);
938 			nth = (struct tcphdr *)(ip + 1);
939 		}
940 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
941 		flags = TH_ACK;
942 	} else if (!M_WRITABLE(m)) {
943 		struct mbuf *n;
944 
945 		/* Can't reuse 'm', allocate a new mbuf. */
946 		n = m_gethdr(M_NOWAIT, MT_DATA);
947 		if (n == NULL) {
948 			m_freem(m);
949 			return;
950 		}
951 
952 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
953 			m_freem(m);
954 			m_freem(n);
955 			return;
956 		}
957 
958 		n->m_data += max_linkhdr;
959 		/* m_len is set later */
960 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
961 #ifdef INET6
962 		if (isipv6) {
963 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
964 			      sizeof(struct ip6_hdr));
965 			ip6 = mtod(n, struct ip6_hdr *);
966 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
967 			nth = (struct tcphdr *)(ip6 + 1);
968 		} else
969 #endif /* INET6 */
970 		{
971 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
972 			ip = mtod(n, struct ip *);
973 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
974 			nth = (struct tcphdr *)(ip + 1);
975 		}
976 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
977 		xchg(nth->th_dport, nth->th_sport, uint16_t);
978 		th = nth;
979 		m_freem(m);
980 		m = n;
981 	} else {
982 		/*
983 		 *  reuse the mbuf.
984 		 * XXX MRT We inherit the FIB, which is lucky.
985 		 */
986 		m_freem(m->m_next);
987 		m->m_next = NULL;
988 		m->m_data = (caddr_t)ipgen;
989 		/* m_len is set later */
990 #ifdef INET6
991 		if (isipv6) {
992 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
993 			nth = (struct tcphdr *)(ip6 + 1);
994 		} else
995 #endif /* INET6 */
996 		{
997 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
998 			nth = (struct tcphdr *)(ip + 1);
999 		}
1000 		if (th != nth) {
1001 			/*
1002 			 * this is usually a case when an extension header
1003 			 * exists between the IPv6 header and the
1004 			 * TCP header.
1005 			 */
1006 			nth->th_sport = th->th_sport;
1007 			nth->th_dport = th->th_dport;
1008 		}
1009 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1010 #undef xchg
1011 	}
1012 	tlen = 0;
1013 #ifdef INET6
1014 	if (isipv6)
1015 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1016 #endif
1017 #if defined(INET) && defined(INET6)
1018 	else
1019 #endif
1020 #ifdef INET
1021 		tlen = sizeof (struct tcpiphdr);
1022 #endif
1023 #ifdef INVARIANTS
1024 	m->m_len = 0;
1025 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1026 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1027 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1028 #endif
1029 	m->m_len = tlen;
1030 	to.to_flags = 0;
1031 	if (incl_opts) {
1032 		/* Make sure we have room. */
1033 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1034 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1035 			if (m->m_next) {
1036 				optp = mtod(m->m_next, u_char *);
1037 				optm = m->m_next;
1038 			} else
1039 				incl_opts = false;
1040 		} else {
1041 			optp = (u_char *) (nth + 1);
1042 			optm = m;
1043 		}
1044 	}
1045 	if (incl_opts) {
1046 		/* Timestamps. */
1047 		if (tp->t_flags & TF_RCVD_TSTMP) {
1048 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1049 			to.to_tsecr = tp->ts_recent;
1050 			to.to_flags |= TOF_TS;
1051 		}
1052 #ifdef TCP_SIGNATURE
1053 		/* TCP-MD5 (RFC2385). */
1054 		if (tp->t_flags & TF_SIGNATURE)
1055 			to.to_flags |= TOF_SIGNATURE;
1056 #endif
1057 
1058 		/* Add the options. */
1059 		tlen += optlen = tcp_addoptions(&to, optp);
1060 
1061 		/* Update m_len in the correct mbuf. */
1062 		optm->m_len += optlen;
1063 	} else
1064 		optlen = 0;
1065 #ifdef INET6
1066 	if (isipv6) {
1067 		ip6->ip6_flow = 0;
1068 		ip6->ip6_vfc = IPV6_VERSION;
1069 		ip6->ip6_nxt = IPPROTO_TCP;
1070 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1071 	}
1072 #endif
1073 #if defined(INET) && defined(INET6)
1074 	else
1075 #endif
1076 #ifdef INET
1077 	{
1078 		ip->ip_len = htons(tlen);
1079 		ip->ip_ttl = V_ip_defttl;
1080 		if (V_path_mtu_discovery)
1081 			ip->ip_off |= htons(IP_DF);
1082 	}
1083 #endif
1084 	m->m_pkthdr.len = tlen;
1085 	m->m_pkthdr.rcvif = NULL;
1086 #ifdef MAC
1087 	if (inp != NULL) {
1088 		/*
1089 		 * Packet is associated with a socket, so allow the
1090 		 * label of the response to reflect the socket label.
1091 		 */
1092 		INP_WLOCK_ASSERT(inp);
1093 		mac_inpcb_create_mbuf(inp, m);
1094 	} else {
1095 		/*
1096 		 * Packet is not associated with a socket, so possibly
1097 		 * update the label in place.
1098 		 */
1099 		mac_netinet_tcp_reply(m);
1100 	}
1101 #endif
1102 	nth->th_seq = htonl(seq);
1103 	nth->th_ack = htonl(ack);
1104 	nth->th_x2 = 0;
1105 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
1106 	nth->th_flags = flags;
1107 	if (tp != NULL)
1108 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1109 	else
1110 		nth->th_win = htons((u_short)win);
1111 	nth->th_urp = 0;
1112 
1113 #ifdef TCP_SIGNATURE
1114 	if (to.to_flags & TOF_SIGNATURE) {
1115 		tcp_signature_compute(m, 0, 0, optlen, to.to_signature,
1116 		    IPSEC_DIR_OUTBOUND);
1117 	}
1118 #endif
1119 
1120 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1121 #ifdef INET6
1122 	if (isipv6) {
1123 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1124 		nth->th_sum = in6_cksum_pseudo(ip6,
1125 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1126 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1127 		    NULL, NULL);
1128 	}
1129 #endif /* INET6 */
1130 #if defined(INET6) && defined(INET)
1131 	else
1132 #endif
1133 #ifdef INET
1134 	{
1135 		m->m_pkthdr.csum_flags = CSUM_TCP;
1136 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1137 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1138 	}
1139 #endif /* INET */
1140 #ifdef TCPDEBUG
1141 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1142 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1143 #endif
1144 	TCP_PROBE3(debug__output, tp, th, mtod(m, const char *));
1145 	if (flags & TH_RST)
1146 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1147 		    tp, nth);
1148 
1149 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1150 #ifdef INET6
1151 	if (isipv6)
1152 		(void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1153 #endif /* INET6 */
1154 #if defined(INET) && defined(INET6)
1155 	else
1156 #endif
1157 #ifdef INET
1158 		(void) ip_output(m, NULL, NULL, 0, NULL, inp);
1159 #endif
1160 }
1161 
1162 /*
1163  * Create a new TCP control block, making an
1164  * empty reassembly queue and hooking it to the argument
1165  * protocol control block.  The `inp' parameter must have
1166  * come from the zone allocator set up in tcp_init().
1167  */
1168 struct tcpcb *
1169 tcp_newtcpcb(struct inpcb *inp)
1170 {
1171 	struct tcpcb_mem *tm;
1172 	struct tcpcb *tp;
1173 #ifdef INET6
1174 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1175 #endif /* INET6 */
1176 
1177 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1178 	if (tm == NULL)
1179 		return (NULL);
1180 	tp = &tm->tcb;
1181 
1182 	/* Initialise cc_var struct for this tcpcb. */
1183 	tp->ccv = &tm->ccv;
1184 	tp->ccv->type = IPPROTO_TCP;
1185 	tp->ccv->ccvc.tcp = tp;
1186 	rw_rlock(&tcp_function_lock);
1187 	tp->t_fb = tcp_func_set_ptr;
1188 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1189 	rw_runlock(&tcp_function_lock);
1190 	/*
1191 	 * Use the current system default CC algorithm.
1192 	 */
1193 	CC_LIST_RLOCK();
1194 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1195 	CC_ALGO(tp) = CC_DEFAULT();
1196 	CC_LIST_RUNLOCK();
1197 
1198 	if (CC_ALGO(tp)->cb_init != NULL)
1199 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1200 			if (tp->t_fb->tfb_tcp_fb_fini)
1201 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1202 			refcount_release(&tp->t_fb->tfb_refcnt);
1203 			uma_zfree(V_tcpcb_zone, tm);
1204 			return (NULL);
1205 		}
1206 
1207 	tp->osd = &tm->osd;
1208 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1209 		if (tp->t_fb->tfb_tcp_fb_fini)
1210 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1211 		refcount_release(&tp->t_fb->tfb_refcnt);
1212 		uma_zfree(V_tcpcb_zone, tm);
1213 		return (NULL);
1214 	}
1215 
1216 #ifdef VIMAGE
1217 	tp->t_vnet = inp->inp_vnet;
1218 #endif
1219 	tp->t_timers = &tm->tt;
1220 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1221 	tp->t_maxseg =
1222 #ifdef INET6
1223 		isipv6 ? V_tcp_v6mssdflt :
1224 #endif /* INET6 */
1225 		V_tcp_mssdflt;
1226 
1227 	/* Set up our timeouts. */
1228 	callout_init(&tp->t_timers->tt_rexmt, 1);
1229 	callout_init(&tp->t_timers->tt_persist, 1);
1230 	callout_init(&tp->t_timers->tt_keep, 1);
1231 	callout_init(&tp->t_timers->tt_2msl, 1);
1232 	callout_init(&tp->t_timers->tt_delack, 1);
1233 
1234 	if (V_tcp_do_rfc1323)
1235 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1236 	if (V_tcp_do_sack)
1237 		tp->t_flags |= TF_SACK_PERMIT;
1238 	TAILQ_INIT(&tp->snd_holes);
1239 	/*
1240 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1241 	 * is called.
1242 	 */
1243 	in_pcbref(inp);	/* Reference for tcpcb */
1244 	tp->t_inpcb = inp;
1245 
1246 	/*
1247 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1248 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1249 	 * reasonable initial retransmit time.
1250 	 */
1251 	tp->t_srtt = TCPTV_SRTTBASE;
1252 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1253 	tp->t_rttmin = tcp_rexmit_min;
1254 	tp->t_rxtcur = TCPTV_RTOBASE;
1255 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1256 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1257 	tp->t_rcvtime = ticks;
1258 	/*
1259 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1260 	 * because the socket may be bound to an IPv6 wildcard address,
1261 	 * which may match an IPv4-mapped IPv6 address.
1262 	 */
1263 	inp->inp_ip_ttl = V_ip_defttl;
1264 	inp->inp_ppcb = tp;
1265 #ifdef TCPPCAP
1266 	/*
1267 	 * Init the TCP PCAP queues.
1268 	 */
1269 	tcp_pcap_tcpcb_init(tp);
1270 #endif
1271 	if (tp->t_fb->tfb_tcp_fb_init) {
1272 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1273 	}
1274 	return (tp);		/* XXX */
1275 }
1276 
1277 /*
1278  * Switch the congestion control algorithm back to NewReno for any active
1279  * control blocks using an algorithm which is about to go away.
1280  * This ensures the CC framework can allow the unload to proceed without leaving
1281  * any dangling pointers which would trigger a panic.
1282  * Returning non-zero would inform the CC framework that something went wrong
1283  * and it would be unsafe to allow the unload to proceed. However, there is no
1284  * way for this to occur with this implementation so we always return zero.
1285  */
1286 int
1287 tcp_ccalgounload(struct cc_algo *unload_algo)
1288 {
1289 	struct cc_algo *tmpalgo;
1290 	struct inpcb *inp;
1291 	struct tcpcb *tp;
1292 	VNET_ITERATOR_DECL(vnet_iter);
1293 
1294 	/*
1295 	 * Check all active control blocks across all network stacks and change
1296 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1297 	 * requires cleanup code to be run, call it.
1298 	 */
1299 	VNET_LIST_RLOCK();
1300 	VNET_FOREACH(vnet_iter) {
1301 		CURVNET_SET(vnet_iter);
1302 		INP_INFO_WLOCK(&V_tcbinfo);
1303 		/*
1304 		 * New connections already part way through being initialised
1305 		 * with the CC algo we're removing will not race with this code
1306 		 * because the INP_INFO_WLOCK is held during initialisation. We
1307 		 * therefore don't enter the loop below until the connection
1308 		 * list has stabilised.
1309 		 */
1310 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1311 			INP_WLOCK(inp);
1312 			/* Important to skip tcptw structs. */
1313 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1314 			    (tp = intotcpcb(inp)) != NULL) {
1315 				/*
1316 				 * By holding INP_WLOCK here, we are assured
1317 				 * that the connection is not currently
1318 				 * executing inside the CC module's functions
1319 				 * i.e. it is safe to make the switch back to
1320 				 * NewReno.
1321 				 */
1322 				if (CC_ALGO(tp) == unload_algo) {
1323 					tmpalgo = CC_ALGO(tp);
1324 					/* NewReno does not require any init. */
1325 					CC_ALGO(tp) = &newreno_cc_algo;
1326 					if (tmpalgo->cb_destroy != NULL)
1327 						tmpalgo->cb_destroy(tp->ccv);
1328 				}
1329 			}
1330 			INP_WUNLOCK(inp);
1331 		}
1332 		INP_INFO_WUNLOCK(&V_tcbinfo);
1333 		CURVNET_RESTORE();
1334 	}
1335 	VNET_LIST_RUNLOCK();
1336 
1337 	return (0);
1338 }
1339 
1340 /*
1341  * Drop a TCP connection, reporting
1342  * the specified error.  If connection is synchronized,
1343  * then send a RST to peer.
1344  */
1345 struct tcpcb *
1346 tcp_drop(struct tcpcb *tp, int errno)
1347 {
1348 	struct socket *so = tp->t_inpcb->inp_socket;
1349 
1350 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1351 	INP_WLOCK_ASSERT(tp->t_inpcb);
1352 
1353 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1354 		tcp_state_change(tp, TCPS_CLOSED);
1355 		(void) tp->t_fb->tfb_tcp_output(tp);
1356 		TCPSTAT_INC(tcps_drops);
1357 	} else
1358 		TCPSTAT_INC(tcps_conndrops);
1359 	if (errno == ETIMEDOUT && tp->t_softerror)
1360 		errno = tp->t_softerror;
1361 	so->so_error = errno;
1362 	return (tcp_close(tp));
1363 }
1364 
1365 void
1366 tcp_discardcb(struct tcpcb *tp)
1367 {
1368 	struct inpcb *inp = tp->t_inpcb;
1369 	struct socket *so = inp->inp_socket;
1370 #ifdef INET6
1371 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1372 #endif /* INET6 */
1373 	int released;
1374 
1375 	INP_WLOCK_ASSERT(inp);
1376 
1377 	/*
1378 	 * Make sure that all of our timers are stopped before we delete the
1379 	 * PCB.
1380 	 *
1381 	 * If stopping a timer fails, we schedule a discard function in same
1382 	 * callout, and the last discard function called will take care of
1383 	 * deleting the tcpcb.
1384 	 */
1385 	tp->t_timers->tt_draincnt = 0;
1386 	tcp_timer_stop(tp, TT_REXMT);
1387 	tcp_timer_stop(tp, TT_PERSIST);
1388 	tcp_timer_stop(tp, TT_KEEP);
1389 	tcp_timer_stop(tp, TT_2MSL);
1390 	tcp_timer_stop(tp, TT_DELACK);
1391 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1392 		/*
1393 		 * Call the stop-all function of the methods,
1394 		 * this function should call the tcp_timer_stop()
1395 		 * method with each of the function specific timeouts.
1396 		 * That stop will be called via the tfb_tcp_timer_stop()
1397 		 * which should use the async drain function of the
1398 		 * callout system (see tcp_var.h).
1399 		 */
1400 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1401 	}
1402 
1403 	/*
1404 	 * If we got enough samples through the srtt filter,
1405 	 * save the rtt and rttvar in the routing entry.
1406 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1407 	 * 4 samples is enough for the srtt filter to converge
1408 	 * to within enough % of the correct value; fewer samples
1409 	 * and we could save a bogus rtt. The danger is not high
1410 	 * as tcp quickly recovers from everything.
1411 	 * XXX: Works very well but needs some more statistics!
1412 	 */
1413 	if (tp->t_rttupdated >= 4) {
1414 		struct hc_metrics_lite metrics;
1415 		u_long ssthresh;
1416 
1417 		bzero(&metrics, sizeof(metrics));
1418 		/*
1419 		 * Update the ssthresh always when the conditions below
1420 		 * are satisfied. This gives us better new start value
1421 		 * for the congestion avoidance for new connections.
1422 		 * ssthresh is only set if packet loss occurred on a session.
1423 		 *
1424 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1425 		 * being torn down.  Ideally this code would not use 'so'.
1426 		 */
1427 		ssthresh = tp->snd_ssthresh;
1428 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1429 			/*
1430 			 * convert the limit from user data bytes to
1431 			 * packets then to packet data bytes.
1432 			 */
1433 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1434 			if (ssthresh < 2)
1435 				ssthresh = 2;
1436 			ssthresh *= (u_long)(tp->t_maxseg +
1437 #ifdef INET6
1438 			    (isipv6 ? sizeof (struct ip6_hdr) +
1439 				sizeof (struct tcphdr) :
1440 #endif
1441 				sizeof (struct tcpiphdr)
1442 #ifdef INET6
1443 			    )
1444 #endif
1445 			    );
1446 		} else
1447 			ssthresh = 0;
1448 		metrics.rmx_ssthresh = ssthresh;
1449 
1450 		metrics.rmx_rtt = tp->t_srtt;
1451 		metrics.rmx_rttvar = tp->t_rttvar;
1452 		metrics.rmx_cwnd = tp->snd_cwnd;
1453 		metrics.rmx_sendpipe = 0;
1454 		metrics.rmx_recvpipe = 0;
1455 
1456 		tcp_hc_update(&inp->inp_inc, &metrics);
1457 	}
1458 
1459 	/* free the reassembly queue, if any */
1460 	tcp_reass_flush(tp);
1461 
1462 #ifdef TCP_OFFLOAD
1463 	/* Disconnect offload device, if any. */
1464 	if (tp->t_flags & TF_TOE)
1465 		tcp_offload_detach(tp);
1466 #endif
1467 
1468 	tcp_free_sackholes(tp);
1469 
1470 #ifdef TCPPCAP
1471 	/* Free the TCP PCAP queues. */
1472 	tcp_pcap_drain(&(tp->t_inpkts));
1473 	tcp_pcap_drain(&(tp->t_outpkts));
1474 #endif
1475 
1476 	/* Allow the CC algorithm to clean up after itself. */
1477 	if (CC_ALGO(tp)->cb_destroy != NULL)
1478 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1479 
1480 	khelp_destroy_osd(tp->osd);
1481 
1482 	CC_ALGO(tp) = NULL;
1483 	inp->inp_ppcb = NULL;
1484 	if (tp->t_timers->tt_draincnt == 0) {
1485 		/* We own the last reference on tcpcb, let's free it. */
1486 		if (tp->t_fb->tfb_tcp_fb_fini)
1487 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1488 		refcount_release(&tp->t_fb->tfb_refcnt);
1489 		tp->t_inpcb = NULL;
1490 		uma_zfree(V_tcpcb_zone, tp);
1491 		released = in_pcbrele_wlocked(inp);
1492 		KASSERT(!released, ("%s: inp %p should not have been released "
1493 			"here", __func__, inp));
1494 	}
1495 }
1496 
1497 void
1498 tcp_timer_discard(void *ptp)
1499 {
1500 	struct inpcb *inp;
1501 	struct tcpcb *tp;
1502 
1503 	tp = (struct tcpcb *)ptp;
1504 	CURVNET_SET(tp->t_vnet);
1505 	INP_INFO_RLOCK(&V_tcbinfo);
1506 	inp = tp->t_inpcb;
1507 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1508 		__func__, tp));
1509 	INP_WLOCK(inp);
1510 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1511 		("%s: tcpcb has to be stopped here", __func__));
1512 	tp->t_timers->tt_draincnt--;
1513 	if (tp->t_timers->tt_draincnt == 0) {
1514 		/* We own the last reference on this tcpcb, let's free it. */
1515 		if (tp->t_fb->tfb_tcp_fb_fini)
1516 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
1517 		refcount_release(&tp->t_fb->tfb_refcnt);
1518 		tp->t_inpcb = NULL;
1519 		uma_zfree(V_tcpcb_zone, tp);
1520 		if (in_pcbrele_wlocked(inp)) {
1521 			INP_INFO_RUNLOCK(&V_tcbinfo);
1522 			CURVNET_RESTORE();
1523 			return;
1524 		}
1525 	}
1526 	INP_WUNLOCK(inp);
1527 	INP_INFO_RUNLOCK(&V_tcbinfo);
1528 	CURVNET_RESTORE();
1529 }
1530 
1531 /*
1532  * Attempt to close a TCP control block, marking it as dropped, and freeing
1533  * the socket if we hold the only reference.
1534  */
1535 struct tcpcb *
1536 tcp_close(struct tcpcb *tp)
1537 {
1538 	struct inpcb *inp = tp->t_inpcb;
1539 	struct socket *so;
1540 
1541 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1542 	INP_WLOCK_ASSERT(inp);
1543 
1544 #ifdef TCP_OFFLOAD
1545 	if (tp->t_state == TCPS_LISTEN)
1546 		tcp_offload_listen_stop(tp);
1547 #endif
1548 #ifdef TCP_RFC7413
1549 	/*
1550 	 * This releases the TFO pending counter resource for TFO listen
1551 	 * sockets as well as passively-created TFO sockets that transition
1552 	 * from SYN_RECEIVED to CLOSED.
1553 	 */
1554 	if (tp->t_tfo_pending) {
1555 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1556 		tp->t_tfo_pending = NULL;
1557 	}
1558 #endif
1559 	in_pcbdrop(inp);
1560 	TCPSTAT_INC(tcps_closed);
1561 	TCPSTATES_DEC(tp->t_state);
1562 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1563 	so = inp->inp_socket;
1564 	soisdisconnected(so);
1565 	if (inp->inp_flags & INP_SOCKREF) {
1566 		KASSERT(so->so_state & SS_PROTOREF,
1567 		    ("tcp_close: !SS_PROTOREF"));
1568 		inp->inp_flags &= ~INP_SOCKREF;
1569 		INP_WUNLOCK(inp);
1570 		ACCEPT_LOCK();
1571 		SOCK_LOCK(so);
1572 		so->so_state &= ~SS_PROTOREF;
1573 		sofree(so);
1574 		return (NULL);
1575 	}
1576 	return (tp);
1577 }
1578 
1579 void
1580 tcp_drain(void)
1581 {
1582 	VNET_ITERATOR_DECL(vnet_iter);
1583 
1584 	if (!do_tcpdrain)
1585 		return;
1586 
1587 	VNET_LIST_RLOCK_NOSLEEP();
1588 	VNET_FOREACH(vnet_iter) {
1589 		CURVNET_SET(vnet_iter);
1590 		struct inpcb *inpb;
1591 		struct tcpcb *tcpb;
1592 
1593 	/*
1594 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1595 	 * if there is one...
1596 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1597 	 *      reassembly queue should be flushed, but in a situation
1598 	 *	where we're really low on mbufs, this is potentially
1599 	 *	useful.
1600 	 */
1601 		INP_INFO_WLOCK(&V_tcbinfo);
1602 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1603 			if (inpb->inp_flags & INP_TIMEWAIT)
1604 				continue;
1605 			INP_WLOCK(inpb);
1606 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1607 				tcp_reass_flush(tcpb);
1608 				tcp_clean_sackreport(tcpb);
1609 #ifdef TCPPCAP
1610 				if (tcp_pcap_aggressive_free) {
1611 					/* Free the TCP PCAP queues. */
1612 					tcp_pcap_drain(&(tcpb->t_inpkts));
1613 					tcp_pcap_drain(&(tcpb->t_outpkts));
1614 				}
1615 #endif
1616 			}
1617 			INP_WUNLOCK(inpb);
1618 		}
1619 		INP_INFO_WUNLOCK(&V_tcbinfo);
1620 		CURVNET_RESTORE();
1621 	}
1622 	VNET_LIST_RUNLOCK_NOSLEEP();
1623 }
1624 
1625 /*
1626  * Notify a tcp user of an asynchronous error;
1627  * store error as soft error, but wake up user
1628  * (for now, won't do anything until can select for soft error).
1629  *
1630  * Do not wake up user since there currently is no mechanism for
1631  * reporting soft errors (yet - a kqueue filter may be added).
1632  */
1633 static struct inpcb *
1634 tcp_notify(struct inpcb *inp, int error)
1635 {
1636 	struct tcpcb *tp;
1637 
1638 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1639 	INP_WLOCK_ASSERT(inp);
1640 
1641 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1642 	    (inp->inp_flags & INP_DROPPED))
1643 		return (inp);
1644 
1645 	tp = intotcpcb(inp);
1646 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1647 
1648 	/*
1649 	 * Ignore some errors if we are hooked up.
1650 	 * If connection hasn't completed, has retransmitted several times,
1651 	 * and receives a second error, give up now.  This is better
1652 	 * than waiting a long time to establish a connection that
1653 	 * can never complete.
1654 	 */
1655 	if (tp->t_state == TCPS_ESTABLISHED &&
1656 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1657 	     error == EHOSTDOWN)) {
1658 		if (inp->inp_route.ro_rt) {
1659 			RTFREE(inp->inp_route.ro_rt);
1660 			inp->inp_route.ro_rt = (struct rtentry *)NULL;
1661 		}
1662 		return (inp);
1663 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1664 	    tp->t_softerror) {
1665 		tp = tcp_drop(tp, error);
1666 		if (tp != NULL)
1667 			return (inp);
1668 		else
1669 			return (NULL);
1670 	} else {
1671 		tp->t_softerror = error;
1672 		return (inp);
1673 	}
1674 #if 0
1675 	wakeup( &so->so_timeo);
1676 	sorwakeup(so);
1677 	sowwakeup(so);
1678 #endif
1679 }
1680 
1681 static int
1682 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1683 {
1684 	int error, i, m, n, pcb_count;
1685 	struct inpcb *inp, **inp_list;
1686 	inp_gen_t gencnt;
1687 	struct xinpgen xig;
1688 
1689 	/*
1690 	 * The process of preparing the TCB list is too time-consuming and
1691 	 * resource-intensive to repeat twice on every request.
1692 	 */
1693 	if (req->oldptr == NULL) {
1694 		n = V_tcbinfo.ipi_count +
1695 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
1696 		n += imax(n / 8, 10);
1697 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1698 		return (0);
1699 	}
1700 
1701 	if (req->newptr != NULL)
1702 		return (EPERM);
1703 
1704 	/*
1705 	 * OK, now we're committed to doing something.
1706 	 */
1707 	INP_LIST_RLOCK(&V_tcbinfo);
1708 	gencnt = V_tcbinfo.ipi_gencnt;
1709 	n = V_tcbinfo.ipi_count;
1710 	INP_LIST_RUNLOCK(&V_tcbinfo);
1711 
1712 	m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
1713 
1714 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1715 		+ (n + m) * sizeof(struct xtcpcb));
1716 	if (error != 0)
1717 		return (error);
1718 
1719 	xig.xig_len = sizeof xig;
1720 	xig.xig_count = n + m;
1721 	xig.xig_gen = gencnt;
1722 	xig.xig_sogen = so_gencnt;
1723 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1724 	if (error)
1725 		return (error);
1726 
1727 	error = syncache_pcblist(req, m, &pcb_count);
1728 	if (error)
1729 		return (error);
1730 
1731 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1732 
1733 	INP_INFO_WLOCK(&V_tcbinfo);
1734 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1735 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1736 		INP_WLOCK(inp);
1737 		if (inp->inp_gencnt <= gencnt) {
1738 			/*
1739 			 * XXX: This use of cr_cansee(), introduced with
1740 			 * TCP state changes, is not quite right, but for
1741 			 * now, better than nothing.
1742 			 */
1743 			if (inp->inp_flags & INP_TIMEWAIT) {
1744 				if (intotw(inp) != NULL)
1745 					error = cr_cansee(req->td->td_ucred,
1746 					    intotw(inp)->tw_cred);
1747 				else
1748 					error = EINVAL;	/* Skip this inp. */
1749 			} else
1750 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1751 			if (error == 0) {
1752 				in_pcbref(inp);
1753 				inp_list[i++] = inp;
1754 			}
1755 		}
1756 		INP_WUNLOCK(inp);
1757 	}
1758 	INP_INFO_WUNLOCK(&V_tcbinfo);
1759 	n = i;
1760 
1761 	error = 0;
1762 	for (i = 0; i < n; i++) {
1763 		inp = inp_list[i];
1764 		INP_RLOCK(inp);
1765 		if (inp->inp_gencnt <= gencnt) {
1766 			struct xtcpcb xt;
1767 			void *inp_ppcb;
1768 
1769 			bzero(&xt, sizeof(xt));
1770 			xt.xt_len = sizeof xt;
1771 			/* XXX should avoid extra copy */
1772 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1773 			inp_ppcb = inp->inp_ppcb;
1774 			if (inp_ppcb == NULL)
1775 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1776 			else if (inp->inp_flags & INP_TIMEWAIT) {
1777 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1778 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1779 			} else {
1780 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1781 				if (xt.xt_tp.t_timers)
1782 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1783 			}
1784 			if (inp->inp_socket != NULL)
1785 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1786 			else {
1787 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1788 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1789 			}
1790 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1791 			INP_RUNLOCK(inp);
1792 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1793 		} else
1794 			INP_RUNLOCK(inp);
1795 	}
1796 	INP_INFO_RLOCK(&V_tcbinfo);
1797 	for (i = 0; i < n; i++) {
1798 		inp = inp_list[i];
1799 		INP_RLOCK(inp);
1800 		if (!in_pcbrele_rlocked(inp))
1801 			INP_RUNLOCK(inp);
1802 	}
1803 	INP_INFO_RUNLOCK(&V_tcbinfo);
1804 
1805 	if (!error) {
1806 		/*
1807 		 * Give the user an updated idea of our state.
1808 		 * If the generation differs from what we told
1809 		 * her before, she knows that something happened
1810 		 * while we were processing this request, and it
1811 		 * might be necessary to retry.
1812 		 */
1813 		INP_LIST_RLOCK(&V_tcbinfo);
1814 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1815 		xig.xig_sogen = so_gencnt;
1816 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1817 		INP_LIST_RUNLOCK(&V_tcbinfo);
1818 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1819 	}
1820 	free(inp_list, M_TEMP);
1821 	return (error);
1822 }
1823 
1824 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1825     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1826     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1827 
1828 #ifdef INET
1829 static int
1830 tcp_getcred(SYSCTL_HANDLER_ARGS)
1831 {
1832 	struct xucred xuc;
1833 	struct sockaddr_in addrs[2];
1834 	struct inpcb *inp;
1835 	int error;
1836 
1837 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1838 	if (error)
1839 		return (error);
1840 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1841 	if (error)
1842 		return (error);
1843 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1844 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1845 	if (inp != NULL) {
1846 		if (inp->inp_socket == NULL)
1847 			error = ENOENT;
1848 		if (error == 0)
1849 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1850 		if (error == 0)
1851 			cru2x(inp->inp_cred, &xuc);
1852 		INP_RUNLOCK(inp);
1853 	} else
1854 		error = ENOENT;
1855 	if (error == 0)
1856 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1857 	return (error);
1858 }
1859 
1860 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1861     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1862     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1863 #endif /* INET */
1864 
1865 #ifdef INET6
1866 static int
1867 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1868 {
1869 	struct xucred xuc;
1870 	struct sockaddr_in6 addrs[2];
1871 	struct inpcb *inp;
1872 	int error;
1873 #ifdef INET
1874 	int mapped = 0;
1875 #endif
1876 
1877 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1878 	if (error)
1879 		return (error);
1880 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1881 	if (error)
1882 		return (error);
1883 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1884 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1885 		return (error);
1886 	}
1887 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1888 #ifdef INET
1889 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1890 			mapped = 1;
1891 		else
1892 #endif
1893 			return (EINVAL);
1894 	}
1895 
1896 #ifdef INET
1897 	if (mapped == 1)
1898 		inp = in_pcblookup(&V_tcbinfo,
1899 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1900 			addrs[1].sin6_port,
1901 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1902 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1903 	else
1904 #endif
1905 		inp = in6_pcblookup(&V_tcbinfo,
1906 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1907 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1908 			INPLOOKUP_RLOCKPCB, NULL);
1909 	if (inp != NULL) {
1910 		if (inp->inp_socket == NULL)
1911 			error = ENOENT;
1912 		if (error == 0)
1913 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1914 		if (error == 0)
1915 			cru2x(inp->inp_cred, &xuc);
1916 		INP_RUNLOCK(inp);
1917 	} else
1918 		error = ENOENT;
1919 	if (error == 0)
1920 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1921 	return (error);
1922 }
1923 
1924 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1925     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1926     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1927 #endif /* INET6 */
1928 
1929 
1930 #ifdef INET
1931 void
1932 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1933 {
1934 	struct ip *ip = vip;
1935 	struct tcphdr *th;
1936 	struct in_addr faddr;
1937 	struct inpcb *inp;
1938 	struct tcpcb *tp;
1939 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1940 	struct icmp *icp;
1941 	struct in_conninfo inc;
1942 	tcp_seq icmp_tcp_seq;
1943 	int mtu;
1944 
1945 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1946 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1947 		return;
1948 
1949 	if (cmd == PRC_MSGSIZE)
1950 		notify = tcp_mtudisc_notify;
1951 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1952 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1953 		notify = tcp_drop_syn_sent;
1954 
1955 	/*
1956 	 * Hostdead is ugly because it goes linearly through all PCBs.
1957 	 * XXX: We never get this from ICMP, otherwise it makes an
1958 	 * excellent DoS attack on machines with many connections.
1959 	 */
1960 	else if (cmd == PRC_HOSTDEAD)
1961 		ip = NULL;
1962 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1963 		return;
1964 
1965 	if (ip == NULL) {
1966 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1967 		return;
1968 	}
1969 
1970 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1971 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1972 	INP_INFO_RLOCK(&V_tcbinfo);
1973 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1974 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1975 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
1976 		/* signal EHOSTDOWN, as it flushes the cached route */
1977 		inp = (*notify)(inp, EHOSTDOWN);
1978 		if (inp != NULL)
1979 			INP_WUNLOCK(inp);
1980 	} else if (inp != NULL)  {
1981 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1982 		    !(inp->inp_flags & INP_DROPPED) &&
1983 		    !(inp->inp_socket == NULL)) {
1984 			icmp_tcp_seq = ntohl(th->th_seq);
1985 			tp = intotcpcb(inp);
1986 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1987 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1988 				if (cmd == PRC_MSGSIZE) {
1989 					/*
1990 					 * MTU discovery:
1991 					 * If we got a needfrag set the MTU
1992 					 * in the route to the suggested new
1993 					 * value (if given) and then notify.
1994 					 */
1995 				    	mtu = ntohs(icp->icmp_nextmtu);
1996 					/*
1997 					 * If no alternative MTU was
1998 					 * proposed, try the next smaller
1999 					 * one.
2000 					 */
2001 					if (!mtu)
2002 						mtu = ip_next_mtu(
2003 						    ntohs(ip->ip_len), 1);
2004 					if (mtu < V_tcp_minmss +
2005 					    sizeof(struct tcpiphdr))
2006 						mtu = V_tcp_minmss +
2007 						    sizeof(struct tcpiphdr);
2008 					/*
2009 					 * Only process the offered MTU if it
2010 					 * is smaller than the current one.
2011 					 */
2012 					if (mtu < tp->t_maxseg +
2013 					    sizeof(struct tcpiphdr)) {
2014 						bzero(&inc, sizeof(inc));
2015 						inc.inc_faddr = faddr;
2016 						inc.inc_fibnum =
2017 						    inp->inp_inc.inc_fibnum;
2018 						tcp_hc_updatemtu(&inc, mtu);
2019 						tcp_mtudisc(inp, mtu);
2020 					}
2021 				} else
2022 					inp = (*notify)(inp,
2023 					    inetctlerrmap[cmd]);
2024 			}
2025 		}
2026 		if (inp != NULL)
2027 			INP_WUNLOCK(inp);
2028 	} else {
2029 		bzero(&inc, sizeof(inc));
2030 		inc.inc_fport = th->th_dport;
2031 		inc.inc_lport = th->th_sport;
2032 		inc.inc_faddr = faddr;
2033 		inc.inc_laddr = ip->ip_src;
2034 		syncache_unreach(&inc, th);
2035 	}
2036 	INP_INFO_RUNLOCK(&V_tcbinfo);
2037 }
2038 #endif /* INET */
2039 
2040 #ifdef INET6
2041 void
2042 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
2043 {
2044 	struct in6_addr *dst;
2045 	struct tcphdr *th;
2046 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2047 	struct ip6_hdr *ip6;
2048 	struct mbuf *m;
2049 	struct inpcb *inp;
2050 	struct tcpcb *tp;
2051 	struct icmp6_hdr *icmp6;
2052 	struct ip6ctlparam *ip6cp = NULL;
2053 	const struct sockaddr_in6 *sa6_src = NULL;
2054 	struct in_conninfo inc;
2055 	tcp_seq icmp_tcp_seq;
2056 	unsigned int mtu;
2057 	unsigned int off;
2058 
2059 
2060 	if (sa->sa_family != AF_INET6 ||
2061 	    sa->sa_len != sizeof(struct sockaddr_in6))
2062 		return;
2063 
2064 	/* if the parameter is from icmp6, decode it. */
2065 	if (d != NULL) {
2066 		ip6cp = (struct ip6ctlparam *)d;
2067 		icmp6 = ip6cp->ip6c_icmp6;
2068 		m = ip6cp->ip6c_m;
2069 		ip6 = ip6cp->ip6c_ip6;
2070 		off = ip6cp->ip6c_off;
2071 		sa6_src = ip6cp->ip6c_src;
2072 		dst = ip6cp->ip6c_finaldst;
2073 	} else {
2074 		m = NULL;
2075 		ip6 = NULL;
2076 		off = 0;	/* fool gcc */
2077 		sa6_src = &sa6_any;
2078 		dst = NULL;
2079 	}
2080 
2081 	if (cmd == PRC_MSGSIZE)
2082 		notify = tcp_mtudisc_notify;
2083 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
2084 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) &&
2085 		ip6 != NULL)
2086 		notify = tcp_drop_syn_sent;
2087 
2088 	/*
2089 	 * Hostdead is ugly because it goes linearly through all PCBs.
2090 	 * XXX: We never get this from ICMP, otherwise it makes an
2091 	 * excellent DoS attack on machines with many connections.
2092 	 */
2093 	else if (cmd == PRC_HOSTDEAD)
2094 		ip6 = NULL;
2095 	else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)
2096 		return;
2097 
2098 	if (ip6 == NULL) {
2099 		in6_pcbnotify(&V_tcbinfo, sa, 0,
2100 			      (const struct sockaddr *)sa6_src,
2101 			      0, cmd, NULL, notify);
2102 		return;
2103 	}
2104 
2105 	/* Check if we can safely get the ports from the tcp hdr */
2106 	if (m == NULL ||
2107 	    (m->m_pkthdr.len <
2108 		(int32_t) (off + offsetof(struct tcphdr, th_seq)))) {
2109 		return;
2110 	}
2111 
2112 	th = (struct tcphdr *) mtodo(ip6cp->ip6c_m, ip6cp->ip6c_off);
2113 	INP_INFO_RLOCK(&V_tcbinfo);
2114 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, th->th_dport,
2115 	    &ip6->ip6_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
2116 	if (inp != NULL && PRC_IS_REDIRECT(cmd)) {
2117 		/* signal EHOSTDOWN, as it flushes the cached route */
2118 		inp = (*notify)(inp, EHOSTDOWN);
2119 		if (inp != NULL)
2120 			INP_WUNLOCK(inp);
2121 	} else if (inp != NULL)  {
2122 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
2123 		    !(inp->inp_flags & INP_DROPPED) &&
2124 		    !(inp->inp_socket == NULL)) {
2125 			icmp_tcp_seq = ntohl(th->th_seq);
2126 			tp = intotcpcb(inp);
2127 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
2128 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
2129 				if (cmd == PRC_MSGSIZE) {
2130 					/*
2131 					 * MTU discovery:
2132 					 * If we got a needfrag set the MTU
2133 					 * in the route to the suggested new
2134 					 * value (if given) and then notify.
2135 					 */
2136 					mtu = ntohl(icmp6->icmp6_mtu);
2137 					/*
2138 					 * If no alternative MTU was
2139 					 * proposed, or the proposed
2140 					 * MTU was too small, set to
2141 					 * the min.
2142 					 */
2143 					if (mtu < IPV6_MMTU)
2144 						mtu = IPV6_MMTU - 8;
2145 
2146 
2147 					bzero(&inc, sizeof(inc));
2148 					inc.inc_fibnum = M_GETFIB(m);
2149 					inc.inc_flags |= INC_ISIPV6;
2150 					inc.inc6_faddr = *dst;
2151 					if (in6_setscope(&inc.inc6_faddr,
2152 						m->m_pkthdr.rcvif, NULL))
2153 						goto unlock_inp;
2154 
2155 					/*
2156 					 * Only process the offered MTU if it
2157 					 * is smaller than the current one.
2158 					 */
2159 					if (mtu < tp->t_maxseg +
2160 					    (sizeof (*th) + sizeof (*ip6))) {
2161 						tcp_hc_updatemtu(&inc, mtu);
2162 						tcp_mtudisc(inp, mtu);
2163 						ICMP6STAT_INC(icp6s_pmtuchg);
2164 					}
2165 				} else
2166 					inp = (*notify)(inp,
2167 					    inet6ctlerrmap[cmd]);
2168 			}
2169 		}
2170 unlock_inp:
2171 		if (inp != NULL)
2172 			INP_WUNLOCK(inp);
2173 	} else {
2174 		bzero(&inc, sizeof(inc));
2175 		inc.inc_fibnum = M_GETFIB(m);
2176 		inc.inc_flags |= INC_ISIPV6;
2177 		inc.inc_fport = th->th_dport;
2178 		inc.inc_lport = th->th_sport;
2179 		inc.inc6_faddr = *dst;
2180 		inc.inc6_laddr = ip6->ip6_src;
2181 		syncache_unreach(&inc, th);
2182 	}
2183 	INP_INFO_RUNLOCK(&V_tcbinfo);
2184 }
2185 #endif /* INET6 */
2186 
2187 
2188 /*
2189  * Following is where TCP initial sequence number generation occurs.
2190  *
2191  * There are two places where we must use initial sequence numbers:
2192  * 1.  In SYN-ACK packets.
2193  * 2.  In SYN packets.
2194  *
2195  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2196  * tcp_syncache.c for details.
2197  *
2198  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2199  * depends on this property.  In addition, these ISNs should be
2200  * unguessable so as to prevent connection hijacking.  To satisfy
2201  * the requirements of this situation, the algorithm outlined in
2202  * RFC 1948 is used, with only small modifications.
2203  *
2204  * Implementation details:
2205  *
2206  * Time is based off the system timer, and is corrected so that it
2207  * increases by one megabyte per second.  This allows for proper
2208  * recycling on high speed LANs while still leaving over an hour
2209  * before rollover.
2210  *
2211  * As reading the *exact* system time is too expensive to be done
2212  * whenever setting up a TCP connection, we increment the time
2213  * offset in two ways.  First, a small random positive increment
2214  * is added to isn_offset for each connection that is set up.
2215  * Second, the function tcp_isn_tick fires once per clock tick
2216  * and increments isn_offset as necessary so that sequence numbers
2217  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2218  * random positive increments serve only to ensure that the same
2219  * exact sequence number is never sent out twice (as could otherwise
2220  * happen when a port is recycled in less than the system tick
2221  * interval.)
2222  *
2223  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2224  * between seeding of isn_secret.  This is normally set to zero,
2225  * as reseeding should not be necessary.
2226  *
2227  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2228  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2229  * general, this means holding an exclusive (write) lock.
2230  */
2231 
2232 #define ISN_BYTES_PER_SECOND 1048576
2233 #define ISN_STATIC_INCREMENT 4096
2234 #define ISN_RANDOM_INCREMENT (4096 - 1)
2235 
2236 static VNET_DEFINE(u_char, isn_secret[32]);
2237 static VNET_DEFINE(int, isn_last);
2238 static VNET_DEFINE(int, isn_last_reseed);
2239 static VNET_DEFINE(u_int32_t, isn_offset);
2240 static VNET_DEFINE(u_int32_t, isn_offset_old);
2241 
2242 #define	V_isn_secret			VNET(isn_secret)
2243 #define	V_isn_last			VNET(isn_last)
2244 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2245 #define	V_isn_offset			VNET(isn_offset)
2246 #define	V_isn_offset_old		VNET(isn_offset_old)
2247 
2248 tcp_seq
2249 tcp_new_isn(struct tcpcb *tp)
2250 {
2251 	MD5_CTX isn_ctx;
2252 	u_int32_t md5_buffer[4];
2253 	tcp_seq new_isn;
2254 	u_int32_t projected_offset;
2255 
2256 	INP_WLOCK_ASSERT(tp->t_inpcb);
2257 
2258 	ISN_LOCK();
2259 	/* Seed if this is the first use, reseed if requested. */
2260 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2261 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2262 		< (u_int)ticks))) {
2263 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2264 		V_isn_last_reseed = ticks;
2265 	}
2266 
2267 	/* Compute the md5 hash and return the ISN. */
2268 	MD5Init(&isn_ctx);
2269 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2270 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2271 #ifdef INET6
2272 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2273 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2274 			  sizeof(struct in6_addr));
2275 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2276 			  sizeof(struct in6_addr));
2277 	} else
2278 #endif
2279 	{
2280 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2281 			  sizeof(struct in_addr));
2282 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2283 			  sizeof(struct in_addr));
2284 	}
2285 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2286 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2287 	new_isn = (tcp_seq) md5_buffer[0];
2288 	V_isn_offset += ISN_STATIC_INCREMENT +
2289 		(arc4random() & ISN_RANDOM_INCREMENT);
2290 	if (ticks != V_isn_last) {
2291 		projected_offset = V_isn_offset_old +
2292 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2293 		if (SEQ_GT(projected_offset, V_isn_offset))
2294 			V_isn_offset = projected_offset;
2295 		V_isn_offset_old = V_isn_offset;
2296 		V_isn_last = ticks;
2297 	}
2298 	new_isn += V_isn_offset;
2299 	ISN_UNLOCK();
2300 	return (new_isn);
2301 }
2302 
2303 /*
2304  * When a specific ICMP unreachable message is received and the
2305  * connection state is SYN-SENT, drop the connection.  This behavior
2306  * is controlled by the icmp_may_rst sysctl.
2307  */
2308 struct inpcb *
2309 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2310 {
2311 	struct tcpcb *tp;
2312 
2313 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2314 	INP_WLOCK_ASSERT(inp);
2315 
2316 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2317 	    (inp->inp_flags & INP_DROPPED))
2318 		return (inp);
2319 
2320 	tp = intotcpcb(inp);
2321 	if (tp->t_state != TCPS_SYN_SENT)
2322 		return (inp);
2323 
2324 	tp = tcp_drop(tp, errno);
2325 	if (tp != NULL)
2326 		return (inp);
2327 	else
2328 		return (NULL);
2329 }
2330 
2331 /*
2332  * When `need fragmentation' ICMP is received, update our idea of the MSS
2333  * based on the new value. Also nudge TCP to send something, since we
2334  * know the packet we just sent was dropped.
2335  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2336  */
2337 static struct inpcb *
2338 tcp_mtudisc_notify(struct inpcb *inp, int error)
2339 {
2340 
2341 	tcp_mtudisc(inp, -1);
2342 	return (inp);
2343 }
2344 
2345 static void
2346 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2347 {
2348 	struct tcpcb *tp;
2349 	struct socket *so;
2350 
2351 	INP_WLOCK_ASSERT(inp);
2352 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2353 	    (inp->inp_flags & INP_DROPPED))
2354 		return;
2355 
2356 	tp = intotcpcb(inp);
2357 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2358 
2359 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2360 
2361 	so = inp->inp_socket;
2362 	SOCKBUF_LOCK(&so->so_snd);
2363 	/* If the mss is larger than the socket buffer, decrease the mss. */
2364 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2365 		tp->t_maxseg = so->so_snd.sb_hiwat;
2366 	SOCKBUF_UNLOCK(&so->so_snd);
2367 
2368 	TCPSTAT_INC(tcps_mturesent);
2369 	tp->t_rtttime = 0;
2370 	tp->snd_nxt = tp->snd_una;
2371 	tcp_free_sackholes(tp);
2372 	tp->snd_recover = tp->snd_max;
2373 	if (tp->t_flags & TF_SACK_PERMIT)
2374 		EXIT_FASTRECOVERY(tp->t_flags);
2375 	tp->t_fb->tfb_tcp_output(tp);
2376 }
2377 
2378 #ifdef INET
2379 /*
2380  * Look-up the routing entry to the peer of this inpcb.  If no route
2381  * is found and it cannot be allocated, then return 0.  This routine
2382  * is called by TCP routines that access the rmx structure and by
2383  * tcp_mss_update to get the peer/interface MTU.
2384  */
2385 u_long
2386 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2387 {
2388 	struct nhop4_extended nh4;
2389 	struct ifnet *ifp;
2390 	u_long maxmtu = 0;
2391 
2392 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2393 
2394 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2395 
2396 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2397 		    NHR_REF, 0, &nh4) != 0)
2398 			return (0);
2399 
2400 		ifp = nh4.nh_ifp;
2401 		maxmtu = nh4.nh_mtu;
2402 
2403 		/* Report additional interface capabilities. */
2404 		if (cap != NULL) {
2405 			if (ifp->if_capenable & IFCAP_TSO4 &&
2406 			    ifp->if_hwassist & CSUM_TSO) {
2407 				cap->ifcap |= CSUM_TSO;
2408 				cap->tsomax = ifp->if_hw_tsomax;
2409 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2410 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2411 			}
2412 		}
2413 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2414 	}
2415 	return (maxmtu);
2416 }
2417 #endif /* INET */
2418 
2419 #ifdef INET6
2420 u_long
2421 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2422 {
2423 	struct nhop6_extended nh6;
2424 	struct in6_addr dst6;
2425 	uint32_t scopeid;
2426 	struct ifnet *ifp;
2427 	u_long maxmtu = 0;
2428 
2429 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2430 
2431 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2432 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2433 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2434 		    0, &nh6) != 0)
2435 			return (0);
2436 
2437 		ifp = nh6.nh_ifp;
2438 		maxmtu = nh6.nh_mtu;
2439 
2440 		/* Report additional interface capabilities. */
2441 		if (cap != NULL) {
2442 			if (ifp->if_capenable & IFCAP_TSO6 &&
2443 			    ifp->if_hwassist & CSUM_TSO) {
2444 				cap->ifcap |= CSUM_TSO;
2445 				cap->tsomax = ifp->if_hw_tsomax;
2446 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2447 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2448 			}
2449 		}
2450 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2451 	}
2452 
2453 	return (maxmtu);
2454 }
2455 #endif /* INET6 */
2456 
2457 /*
2458  * Calculate effective SMSS per RFC5681 definition for a given TCP
2459  * connection at its current state, taking into account SACK and etc.
2460  */
2461 u_int
2462 tcp_maxseg(const struct tcpcb *tp)
2463 {
2464 	u_int optlen;
2465 
2466 	if (tp->t_flags & TF_NOOPT)
2467 		return (tp->t_maxseg);
2468 
2469 	/*
2470 	 * Here we have a simplified code from tcp_addoptions(),
2471 	 * without a proper loop, and having most of paddings hardcoded.
2472 	 * We might make mistakes with padding here in some edge cases,
2473 	 * but this is harmless, since result of tcp_maxseg() is used
2474 	 * only in cwnd and ssthresh estimations.
2475 	 */
2476 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2477 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2478 		if (tp->t_flags & TF_RCVD_TSTMP)
2479 			optlen = TCPOLEN_TSTAMP_APPA;
2480 		else
2481 			optlen = 0;
2482 #ifdef TCP_SIGNATURE
2483 		if (tp->t_flags & TF_SIGNATURE)
2484 			optlen += PAD(TCPOLEN_SIGNATURE);
2485 #endif
2486 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2487 			optlen += TCPOLEN_SACKHDR;
2488 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2489 			optlen = PAD(optlen);
2490 		}
2491 	} else {
2492 		if (tp->t_flags & TF_REQ_TSTMP)
2493 			optlen = TCPOLEN_TSTAMP_APPA;
2494 		else
2495 			optlen = PAD(TCPOLEN_MAXSEG);
2496 		if (tp->t_flags & TF_REQ_SCALE)
2497 			optlen += PAD(TCPOLEN_WINDOW);
2498 #ifdef TCP_SIGNATURE
2499 		if (tp->t_flags & TF_SIGNATURE)
2500 			optlen += PAD(TCPOLEN_SIGNATURE);
2501 #endif
2502 		if (tp->t_flags & TF_SACK_PERMIT)
2503 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2504 	}
2505 #undef PAD
2506 	optlen = min(optlen, TCP_MAXOLEN);
2507 	return (tp->t_maxseg - optlen);
2508 }
2509 
2510 #ifdef IPSEC
2511 /* compute ESP/AH header size for TCP, including outer IP header. */
2512 size_t
2513 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2514 {
2515 	struct inpcb *inp;
2516 	struct mbuf *m;
2517 	size_t hdrsiz;
2518 	struct ip *ip;
2519 #ifdef INET6
2520 	struct ip6_hdr *ip6;
2521 #endif
2522 	struct tcphdr *th;
2523 
2524 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2525 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2526 		return (0);
2527 	m = m_gethdr(M_NOWAIT, MT_DATA);
2528 	if (!m)
2529 		return (0);
2530 
2531 #ifdef INET6
2532 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2533 		ip6 = mtod(m, struct ip6_hdr *);
2534 		th = (struct tcphdr *)(ip6 + 1);
2535 		m->m_pkthdr.len = m->m_len =
2536 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2537 		tcpip_fillheaders(inp, ip6, th);
2538 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2539 	} else
2540 #endif /* INET6 */
2541 	{
2542 		ip = mtod(m, struct ip *);
2543 		th = (struct tcphdr *)(ip + 1);
2544 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2545 		tcpip_fillheaders(inp, ip, th);
2546 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2547 	}
2548 
2549 	m_free(m);
2550 	return (hdrsiz);
2551 }
2552 #endif /* IPSEC */
2553 
2554 #ifdef TCP_SIGNATURE
2555 /*
2556  * Callback function invoked by m_apply() to digest TCP segment data
2557  * contained within an mbuf chain.
2558  */
2559 static int
2560 tcp_signature_apply(void *fstate, void *data, u_int len)
2561 {
2562 
2563 	MD5Update(fstate, (u_char *)data, len);
2564 	return (0);
2565 }
2566 
2567 /*
2568  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2569  * search with the destination IP address, and a 'magic SPI' to be
2570  * determined by the application. This is hardcoded elsewhere to 1179
2571 */
2572 struct secasvar *
2573 tcp_get_sav(struct mbuf *m, u_int direction)
2574 {
2575 	union sockaddr_union dst;
2576 	struct secasvar *sav;
2577 	struct ip *ip;
2578 #ifdef INET6
2579 	struct ip6_hdr *ip6;
2580 	char ip6buf[INET6_ADDRSTRLEN];
2581 #endif
2582 
2583 	/* Extract the destination from the IP header in the mbuf. */
2584 	bzero(&dst, sizeof(union sockaddr_union));
2585 	ip = mtod(m, struct ip *);
2586 #ifdef INET6
2587 	ip6 = NULL;	/* Make the compiler happy. */
2588 #endif
2589 	switch (ip->ip_v) {
2590 #ifdef INET
2591 	case IPVERSION:
2592 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2593 		dst.sa.sa_family = AF_INET;
2594 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2595 		    ip->ip_src : ip->ip_dst;
2596 		break;
2597 #endif
2598 #ifdef INET6
2599 	case (IPV6_VERSION >> 4):
2600 		ip6 = mtod(m, struct ip6_hdr *);
2601 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2602 		dst.sa.sa_family = AF_INET6;
2603 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2604 		    ip6->ip6_src : ip6->ip6_dst;
2605 		break;
2606 #endif
2607 	default:
2608 		return (NULL);
2609 		/* NOTREACHED */
2610 		break;
2611 	}
2612 
2613 	/* Look up an SADB entry which matches the address of the peer. */
2614 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2615 	if (sav == NULL) {
2616 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2617 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2618 #ifdef INET6
2619 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2620 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2621 #endif
2622 			"(unsupported)"));
2623 	}
2624 
2625 	return (sav);
2626 }
2627 
2628 /*
2629  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2630  *
2631  * Parameters:
2632  * m		pointer to head of mbuf chain
2633  * len		length of TCP segment data, excluding options
2634  * optlen	length of TCP segment options
2635  * buf		pointer to storage for computed MD5 digest
2636  * sav		pointer to security assosiation
2637  *
2638  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2639  * When called from tcp_input(), we can be sure that th_sum has been
2640  * zeroed out and verified already.
2641  *
2642  * Releases reference to SADB key before return.
2643  *
2644  * Return 0 if successful, otherwise return -1.
2645  *
2646  */
2647 int
2648 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2649     u_char *buf, struct secasvar *sav)
2650 {
2651 #ifdef INET
2652 	struct ippseudo ippseudo;
2653 #endif
2654 	MD5_CTX ctx;
2655 	int doff;
2656 	struct ip *ip;
2657 #ifdef INET
2658 	struct ipovly *ipovly;
2659 #endif
2660 	struct tcphdr *th;
2661 #ifdef INET6
2662 	struct ip6_hdr *ip6;
2663 	struct in6_addr in6;
2664 	uint32_t plen;
2665 	uint16_t nhdr;
2666 #endif
2667 	u_short savecsum;
2668 
2669 	KASSERT(m != NULL, ("NULL mbuf chain"));
2670 	KASSERT(buf != NULL, ("NULL signature pointer"));
2671 
2672 	/* Extract the destination from the IP header in the mbuf. */
2673 	ip = mtod(m, struct ip *);
2674 #ifdef INET6
2675 	ip6 = NULL;	/* Make the compiler happy. */
2676 #endif
2677 
2678 	MD5Init(&ctx);
2679 	/*
2680 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2681 	 *
2682 	 * XXX The ippseudo header MUST be digested in network byte order,
2683 	 * or else we'll fail the regression test. Assume all fields we've
2684 	 * been doing arithmetic on have been in host byte order.
2685 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2686 	 * tcp_output(), the underlying ip_len member has not yet been set.
2687 	 */
2688 	switch (ip->ip_v) {
2689 #ifdef INET
2690 	case IPVERSION:
2691 		ipovly = (struct ipovly *)ip;
2692 		ippseudo.ippseudo_src = ipovly->ih_src;
2693 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2694 		ippseudo.ippseudo_pad = 0;
2695 		ippseudo.ippseudo_p = IPPROTO_TCP;
2696 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2697 		    optlen);
2698 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2699 
2700 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2701 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2702 		break;
2703 #endif
2704 #ifdef INET6
2705 	/*
2706 	 * RFC 2385, 2.0  Proposal
2707 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2708 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2709 	 * extended next header value (to form 32 bits), and 32-bit segment
2710 	 * length.
2711 	 * Note: Upper-Layer Packet Length comes before Next Header.
2712 	 */
2713 	case (IPV6_VERSION >> 4):
2714 		in6 = ip6->ip6_src;
2715 		in6_clearscope(&in6);
2716 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2717 		in6 = ip6->ip6_dst;
2718 		in6_clearscope(&in6);
2719 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2720 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2721 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2722 		nhdr = 0;
2723 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2724 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2725 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2726 		nhdr = IPPROTO_TCP;
2727 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2728 
2729 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2730 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2731 		break;
2732 #endif
2733 	default:
2734 		KEY_FREESAV(&sav);
2735 		return (-1);
2736 		/* NOTREACHED */
2737 		break;
2738 	}
2739 
2740 
2741 	/*
2742 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2743 	 * The TCP checksum must be set to zero.
2744 	 */
2745 	savecsum = th->th_sum;
2746 	th->th_sum = 0;
2747 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2748 	th->th_sum = savecsum;
2749 
2750 	/*
2751 	 * Step 3: Update MD5 hash with TCP segment data.
2752 	 *         Use m_apply() to avoid an early m_pullup().
2753 	 */
2754 	if (len > 0)
2755 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2756 
2757 	/*
2758 	 * Step 4: Update MD5 hash with shared secret.
2759 	 */
2760 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2761 	MD5Final(buf, &ctx);
2762 
2763 	key_sa_recordxfer(sav, m);
2764 	KEY_FREESAV(&sav);
2765 	return (0);
2766 }
2767 
2768 /*
2769  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2770  *
2771  * Return 0 if successful, otherwise return -1.
2772  */
2773 int
2774 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2775     u_char *buf, u_int direction)
2776 {
2777 	struct secasvar *sav;
2778 
2779 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2780 		return (-1);
2781 
2782 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2783 }
2784 
2785 /*
2786  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2787  *
2788  * Parameters:
2789  * m		pointer to head of mbuf chain
2790  * len		length of TCP segment data, excluding options
2791  * optlen	length of TCP segment options
2792  * buf		pointer to storage for computed MD5 digest
2793  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2794  *
2795  * Return 1 if successful, otherwise return 0.
2796  */
2797 int
2798 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2799     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2800 {
2801 	char tmpdigest[TCP_SIGLEN];
2802 
2803 	if (tcp_sig_checksigs == 0)
2804 		return (1);
2805 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2806 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2807 
2808 			/*
2809 			 * If this socket is not expecting signature but
2810 			 * the segment contains signature just fail.
2811 			 */
2812 			TCPSTAT_INC(tcps_sig_err_sigopt);
2813 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2814 			return (0);
2815 		}
2816 
2817 		/* Signature is not expected, and not present in segment. */
2818 		return (1);
2819 	}
2820 
2821 	/*
2822 	 * If this socket is expecting signature but the segment does not
2823 	 * contain any just fail.
2824 	 */
2825 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2826 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2827 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2828 		return (0);
2829 	}
2830 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2831 	    IPSEC_DIR_INBOUND) == -1) {
2832 		TCPSTAT_INC(tcps_sig_err_buildsig);
2833 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2834 		return (0);
2835 	}
2836 
2837 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2838 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2839 		return (0);
2840 	}
2841 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2842 	return (1);
2843 }
2844 #endif /* TCP_SIGNATURE */
2845 
2846 static int
2847 sysctl_drop(SYSCTL_HANDLER_ARGS)
2848 {
2849 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2850 	struct sockaddr_storage addrs[2];
2851 	struct inpcb *inp;
2852 	struct tcpcb *tp;
2853 	struct tcptw *tw;
2854 	struct sockaddr_in *fin, *lin;
2855 #ifdef INET6
2856 	struct sockaddr_in6 *fin6, *lin6;
2857 #endif
2858 	int error;
2859 
2860 	inp = NULL;
2861 	fin = lin = NULL;
2862 #ifdef INET6
2863 	fin6 = lin6 = NULL;
2864 #endif
2865 	error = 0;
2866 
2867 	if (req->oldptr != NULL || req->oldlen != 0)
2868 		return (EINVAL);
2869 	if (req->newptr == NULL)
2870 		return (EPERM);
2871 	if (req->newlen < sizeof(addrs))
2872 		return (ENOMEM);
2873 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2874 	if (error)
2875 		return (error);
2876 
2877 	switch (addrs[0].ss_family) {
2878 #ifdef INET6
2879 	case AF_INET6:
2880 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2881 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2882 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2883 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2884 			return (EINVAL);
2885 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2886 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2887 				return (EINVAL);
2888 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2889 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2890 			fin = (struct sockaddr_in *)&addrs[0];
2891 			lin = (struct sockaddr_in *)&addrs[1];
2892 			break;
2893 		}
2894 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2895 		if (error)
2896 			return (error);
2897 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2898 		if (error)
2899 			return (error);
2900 		break;
2901 #endif
2902 #ifdef INET
2903 	case AF_INET:
2904 		fin = (struct sockaddr_in *)&addrs[0];
2905 		lin = (struct sockaddr_in *)&addrs[1];
2906 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2907 		    lin->sin_len != sizeof(struct sockaddr_in))
2908 			return (EINVAL);
2909 		break;
2910 #endif
2911 	default:
2912 		return (EINVAL);
2913 	}
2914 	INP_INFO_RLOCK(&V_tcbinfo);
2915 	switch (addrs[0].ss_family) {
2916 #ifdef INET6
2917 	case AF_INET6:
2918 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2919 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2920 		    INPLOOKUP_WLOCKPCB, NULL);
2921 		break;
2922 #endif
2923 #ifdef INET
2924 	case AF_INET:
2925 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2926 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2927 		break;
2928 #endif
2929 	}
2930 	if (inp != NULL) {
2931 		if (inp->inp_flags & INP_TIMEWAIT) {
2932 			/*
2933 			 * XXXRW: There currently exists a state where an
2934 			 * inpcb is present, but its timewait state has been
2935 			 * discarded.  For now, don't allow dropping of this
2936 			 * type of inpcb.
2937 			 */
2938 			tw = intotw(inp);
2939 			if (tw != NULL)
2940 				tcp_twclose(tw, 0);
2941 			else
2942 				INP_WUNLOCK(inp);
2943 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2944 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2945 			tp = intotcpcb(inp);
2946 			tp = tcp_drop(tp, ECONNABORTED);
2947 			if (tp != NULL)
2948 				INP_WUNLOCK(inp);
2949 		} else
2950 			INP_WUNLOCK(inp);
2951 	} else
2952 		error = ESRCH;
2953 	INP_INFO_RUNLOCK(&V_tcbinfo);
2954 	return (error);
2955 }
2956 
2957 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2958     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2959     0, sysctl_drop, "", "Drop TCP connection");
2960 
2961 /*
2962  * Generate a standardized TCP log line for use throughout the
2963  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2964  * allow use in the interrupt context.
2965  *
2966  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2967  * NB: The function may return NULL if memory allocation failed.
2968  *
2969  * Due to header inclusion and ordering limitations the struct ip
2970  * and ip6_hdr pointers have to be passed as void pointers.
2971  */
2972 char *
2973 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2974     const void *ip6hdr)
2975 {
2976 
2977 	/* Is logging enabled? */
2978 	if (tcp_log_in_vain == 0)
2979 		return (NULL);
2980 
2981 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2982 }
2983 
2984 char *
2985 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2986     const void *ip6hdr)
2987 {
2988 
2989 	/* Is logging enabled? */
2990 	if (tcp_log_debug == 0)
2991 		return (NULL);
2992 
2993 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2994 }
2995 
2996 static char *
2997 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2998     const void *ip6hdr)
2999 {
3000 	char *s, *sp;
3001 	size_t size;
3002 	struct ip *ip;
3003 #ifdef INET6
3004 	const struct ip6_hdr *ip6;
3005 
3006 	ip6 = (const struct ip6_hdr *)ip6hdr;
3007 #endif /* INET6 */
3008 	ip = (struct ip *)ip4hdr;
3009 
3010 	/*
3011 	 * The log line looks like this:
3012 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
3013 	 */
3014 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
3015 	    sizeof(PRINT_TH_FLAGS) + 1 +
3016 #ifdef INET6
3017 	    2 * INET6_ADDRSTRLEN;
3018 #else
3019 	    2 * INET_ADDRSTRLEN;
3020 #endif /* INET6 */
3021 
3022 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
3023 	if (s == NULL)
3024 		return (NULL);
3025 
3026 	strcat(s, "TCP: [");
3027 	sp = s + strlen(s);
3028 
3029 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
3030 		inet_ntoa_r(inc->inc_faddr, sp);
3031 		sp = s + strlen(s);
3032 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3033 		sp = s + strlen(s);
3034 		inet_ntoa_r(inc->inc_laddr, sp);
3035 		sp = s + strlen(s);
3036 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3037 #ifdef INET6
3038 	} else if (inc) {
3039 		ip6_sprintf(sp, &inc->inc6_faddr);
3040 		sp = s + strlen(s);
3041 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
3042 		sp = s + strlen(s);
3043 		ip6_sprintf(sp, &inc->inc6_laddr);
3044 		sp = s + strlen(s);
3045 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
3046 	} else if (ip6 && th) {
3047 		ip6_sprintf(sp, &ip6->ip6_src);
3048 		sp = s + strlen(s);
3049 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3050 		sp = s + strlen(s);
3051 		ip6_sprintf(sp, &ip6->ip6_dst);
3052 		sp = s + strlen(s);
3053 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3054 #endif /* INET6 */
3055 #ifdef INET
3056 	} else if (ip && th) {
3057 		inet_ntoa_r(ip->ip_src, sp);
3058 		sp = s + strlen(s);
3059 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
3060 		sp = s + strlen(s);
3061 		inet_ntoa_r(ip->ip_dst, sp);
3062 		sp = s + strlen(s);
3063 		sprintf(sp, "]:%i", ntohs(th->th_dport));
3064 #endif /* INET */
3065 	} else {
3066 		free(s, M_TCPLOG);
3067 		return (NULL);
3068 	}
3069 	sp = s + strlen(s);
3070 	if (th)
3071 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
3072 	if (*(s + size - 1) != '\0')
3073 		panic("%s: string too long", __func__);
3074 	return (s);
3075 }
3076 
3077 /*
3078  * A subroutine which makes it easy to track TCP state changes with DTrace.
3079  * This function shouldn't be called for t_state initializations that don't
3080  * correspond to actual TCP state transitions.
3081  */
3082 void
3083 tcp_state_change(struct tcpcb *tp, int newstate)
3084 {
3085 #if defined(KDTRACE_HOOKS)
3086 	int pstate = tp->t_state;
3087 #endif
3088 
3089 	TCPSTATES_DEC(tp->t_state);
3090 	TCPSTATES_INC(newstate);
3091 	tp->t_state = newstate;
3092 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
3093 }
3094