xref: /freebsd/sys/netinet/tcp_subr.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_pcb.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/tcp_syncache.h>
88 #ifdef INET6
89 #include <netinet6/tcp6_var.h>
90 #endif
91 #include <netinet/tcpip.h>
92 #ifdef TCPDEBUG
93 #include <netinet/tcp_debug.h>
94 #endif
95 #ifdef INET6
96 #include <netinet6/ip6protosw.h>
97 #endif
98 #ifdef TCP_OFFLOAD
99 #include <netinet/tcp_offload.h>
100 #endif
101 
102 #ifdef IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #include <sys/syslog.h>
110 #endif /*IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 #include <security/mac/mac_framework.h>
116 
117 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
118 #ifdef INET6
119 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
120 #endif
121 
122 static int
123 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
124 {
125 	int error, new;
126 
127 	new = V_tcp_mssdflt;
128 	error = sysctl_handle_int(oidp, &new, 0, req);
129 	if (error == 0 && req->newptr) {
130 		if (new < TCP_MINMSS)
131 			error = EINVAL;
132 		else
133 			V_tcp_mssdflt = new;
134 	}
135 	return (error);
136 }
137 
138 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
139     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
140     &sysctl_net_inet_tcp_mss_check, "I",
141     "Default TCP Maximum Segment Size");
142 
143 #ifdef INET6
144 static int
145 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
146 {
147 	int error, new;
148 
149 	new = V_tcp_v6mssdflt;
150 	error = sysctl_handle_int(oidp, &new, 0, req);
151 	if (error == 0 && req->newptr) {
152 		if (new < TCP_MINMSS)
153 			error = EINVAL;
154 		else
155 			V_tcp_v6mssdflt = new;
156 	}
157 	return (error);
158 }
159 
160 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
161     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
162     &sysctl_net_inet_tcp_mss_v6_check, "I",
163    "Default TCP Maximum Segment Size for IPv6");
164 #endif /* INET6 */
165 
166 /*
167  * Minimum MSS we accept and use. This prevents DoS attacks where
168  * we are forced to a ridiculous low MSS like 20 and send hundreds
169  * of packets instead of one. The effect scales with the available
170  * bandwidth and quickly saturates the CPU and network interface
171  * with packet generation and sending. Set to zero to disable MINMSS
172  * checking. This setting prevents us from sending too small packets.
173  */
174 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
175 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
176      &VNET_NAME(tcp_minmss), 0,
177     "Minmum TCP Maximum Segment Size");
178 
179 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
180 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_rfc1323), 0,
182     "Enable rfc1323 (high performance TCP) extensions");
183 
184 static int	tcp_log_debug = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
186     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
187 
188 static int	tcp_tcbhashsize = 0;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
190     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
191 
192 static int	do_tcpdrain = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
194     "Enable tcp_drain routine for extra help when low on mbufs");
195 
196 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
198 
199 static VNET_DEFINE(int, icmp_may_rst) = 1;
200 #define	V_icmp_may_rst			VNET(icmp_may_rst)
201 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
202     &VNET_NAME(icmp_may_rst), 0,
203     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
204 
205 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
206 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
207 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
208     &VNET_NAME(tcp_isn_reseed_interval), 0,
209     "Seconds between reseeding of ISN secret");
210 
211 static int	tcp_soreceive_stream = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
213     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
214 
215 #ifdef TCP_SIGNATURE
216 static int	tcp_sig_checksigs = 1;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
218     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
219 #endif
220 
221 VNET_DEFINE(uma_zone_t, sack_hole_zone);
222 #define	V_sack_hole_zone		VNET(sack_hole_zone)
223 
224 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
225 
226 static struct inpcb *tcp_notify(struct inpcb *, int);
227 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
228 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
229 		    void *ip4hdr, const void *ip6hdr);
230 
231 /*
232  * Target size of TCP PCB hash tables. Must be a power of two.
233  *
234  * Note that this can be overridden by the kernel environment
235  * variable net.inet.tcp.tcbhashsize
236  */
237 #ifndef TCBHASHSIZE
238 #define TCBHASHSIZE	512
239 #endif
240 
241 /*
242  * XXX
243  * Callouts should be moved into struct tcp directly.  They are currently
244  * separate because the tcpcb structure is exported to userland for sysctl
245  * parsing purposes, which do not know about callouts.
246  */
247 struct tcpcb_mem {
248 	struct	tcpcb		tcb;
249 	struct	tcp_timer	tt;
250 	struct	cc_var		ccv;
251 	struct	osd		osd;
252 };
253 
254 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
255 #define	V_tcpcb_zone			VNET(tcpcb_zone)
256 
257 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
258 static struct mtx isn_mtx;
259 
260 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
261 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
262 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
263 
264 /*
265  * TCP initialization.
266  */
267 static void
268 tcp_zone_change(void *tag)
269 {
270 
271 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
272 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
273 	tcp_tw_zone_change();
274 }
275 
276 static int
277 tcp_inpcb_init(void *mem, int size, int flags)
278 {
279 	struct inpcb *inp = mem;
280 
281 	INP_LOCK_INIT(inp, "inp", "tcpinp");
282 	return (0);
283 }
284 
285 void
286 tcp_init(void)
287 {
288 	int hashsize;
289 
290 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
291 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
292 		printf("%s: WARNING: unable to register helper hook\n", __func__);
293 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
294 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
295 		printf("%s: WARNING: unable to register helper hook\n", __func__);
296 
297 	hashsize = TCBHASHSIZE;
298 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
299 	if (!powerof2(hashsize)) {
300 		printf("WARNING: TCB hash size not a power of 2\n");
301 		hashsize = 512; /* safe default */
302 	}
303 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
304 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
305 	    IPI_HASHFIELDS_4TUPLE);
306 
307 	/*
308 	 * These have to be type stable for the benefit of the timers.
309 	 */
310 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
311 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
313 
314 	tcp_tw_init();
315 	syncache_init();
316 	tcp_hc_init();
317 	tcp_reass_init();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
320 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
321 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
322 
323 	/* Skip initialization of globals for non-default instances. */
324 	if (!IS_DEFAULT_VNET(curvnet))
325 		return;
326 
327 	/* XXX virtualize those bellow? */
328 	tcp_delacktime = TCPTV_DELACK;
329 	tcp_keepinit = TCPTV_KEEP_INIT;
330 	tcp_keepidle = TCPTV_KEEP_IDLE;
331 	tcp_keepintvl = TCPTV_KEEPINTVL;
332 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
333 	tcp_msl = TCPTV_MSL;
334 	tcp_rexmit_min = TCPTV_MIN;
335 	if (tcp_rexmit_min < 1)
336 		tcp_rexmit_min = 1;
337 	tcp_rexmit_slop = TCPTV_CPU_VAR;
338 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
339 	tcp_tcbhashsize = hashsize;
340 
341 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
342 	if (tcp_soreceive_stream) {
343 #ifdef INET
344 		tcp_usrreqs.pru_soreceive = soreceive_stream;
345 #endif
346 #ifdef INET6
347 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
348 #endif /* INET6 */
349 	}
350 
351 #ifdef INET6
352 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
353 #else /* INET6 */
354 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
355 #endif /* INET6 */
356 	if (max_protohdr < TCP_MINPROTOHDR)
357 		max_protohdr = TCP_MINPROTOHDR;
358 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
359 		panic("tcp_init");
360 #undef TCP_MINPROTOHDR
361 
362 	ISN_LOCK_INIT();
363 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
364 		SHUTDOWN_PRI_DEFAULT);
365 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
366 		EVENTHANDLER_PRI_ANY);
367 }
368 
369 #ifdef VIMAGE
370 void
371 tcp_destroy(void)
372 {
373 
374 	tcp_reass_destroy();
375 	tcp_hc_destroy();
376 	syncache_destroy();
377 	tcp_tw_destroy();
378 	in_pcbinfo_destroy(&V_tcbinfo);
379 	uma_zdestroy(V_sack_hole_zone);
380 	uma_zdestroy(V_tcpcb_zone);
381 }
382 #endif
383 
384 void
385 tcp_fini(void *xtp)
386 {
387 
388 }
389 
390 /*
391  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
392  * tcp_template used to store this data in mbufs, but we now recopy it out
393  * of the tcpcb each time to conserve mbufs.
394  */
395 void
396 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
397 {
398 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
399 
400 	INP_WLOCK_ASSERT(inp);
401 
402 #ifdef INET6
403 	if ((inp->inp_vflag & INP_IPV6) != 0) {
404 		struct ip6_hdr *ip6;
405 
406 		ip6 = (struct ip6_hdr *)ip_ptr;
407 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
408 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
409 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
410 			(IPV6_VERSION & IPV6_VERSION_MASK);
411 		ip6->ip6_nxt = IPPROTO_TCP;
412 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
413 		ip6->ip6_src = inp->in6p_laddr;
414 		ip6->ip6_dst = inp->in6p_faddr;
415 	}
416 #endif /* INET6 */
417 #if defined(INET6) && defined(INET)
418 	else
419 #endif
420 #ifdef INET
421 	{
422 		struct ip *ip;
423 
424 		ip = (struct ip *)ip_ptr;
425 		ip->ip_v = IPVERSION;
426 		ip->ip_hl = 5;
427 		ip->ip_tos = inp->inp_ip_tos;
428 		ip->ip_len = 0;
429 		ip->ip_id = 0;
430 		ip->ip_off = 0;
431 		ip->ip_ttl = inp->inp_ip_ttl;
432 		ip->ip_sum = 0;
433 		ip->ip_p = IPPROTO_TCP;
434 		ip->ip_src = inp->inp_laddr;
435 		ip->ip_dst = inp->inp_faddr;
436 	}
437 #endif /* INET */
438 	th->th_sport = inp->inp_lport;
439 	th->th_dport = inp->inp_fport;
440 	th->th_seq = 0;
441 	th->th_ack = 0;
442 	th->th_x2 = 0;
443 	th->th_off = 5;
444 	th->th_flags = 0;
445 	th->th_win = 0;
446 	th->th_urp = 0;
447 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
448 }
449 
450 /*
451  * Create template to be used to send tcp packets on a connection.
452  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
453  * use for this function is in keepalives, which use tcp_respond.
454  */
455 struct tcptemp *
456 tcpip_maketemplate(struct inpcb *inp)
457 {
458 	struct tcptemp *t;
459 
460 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
461 	if (t == NULL)
462 		return (NULL);
463 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
464 	return (t);
465 }
466 
467 /*
468  * Send a single message to the TCP at address specified by
469  * the given TCP/IP header.  If m == NULL, then we make a copy
470  * of the tcpiphdr at ti and send directly to the addressed host.
471  * This is used to force keep alive messages out using the TCP
472  * template for a connection.  If flags are given then we send
473  * a message back to the TCP which originated the * segment ti,
474  * and discard the mbuf containing it and any other attached mbufs.
475  *
476  * In any case the ack and sequence number of the transmitted
477  * segment are as specified by the parameters.
478  *
479  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
480  */
481 void
482 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
483     tcp_seq ack, tcp_seq seq, int flags)
484 {
485 	int tlen;
486 	int win = 0;
487 	struct ip *ip;
488 	struct tcphdr *nth;
489 #ifdef INET6
490 	struct ip6_hdr *ip6;
491 	int isipv6;
492 #endif /* INET6 */
493 	int ipflags = 0;
494 	struct inpcb *inp;
495 
496 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
497 
498 #ifdef INET6
499 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
500 	ip6 = ipgen;
501 #endif /* INET6 */
502 	ip = ipgen;
503 
504 	if (tp != NULL) {
505 		inp = tp->t_inpcb;
506 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
507 		INP_WLOCK_ASSERT(inp);
508 	} else
509 		inp = NULL;
510 
511 	if (tp != NULL) {
512 		if (!(flags & TH_RST)) {
513 			win = sbspace(&inp->inp_socket->so_rcv);
514 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
515 				win = (long)TCP_MAXWIN << tp->rcv_scale;
516 		}
517 	}
518 	if (m == NULL) {
519 		m = m_gethdr(M_DONTWAIT, MT_DATA);
520 		if (m == NULL)
521 			return;
522 		tlen = 0;
523 		m->m_data += max_linkhdr;
524 #ifdef INET6
525 		if (isipv6) {
526 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
527 			      sizeof(struct ip6_hdr));
528 			ip6 = mtod(m, struct ip6_hdr *);
529 			nth = (struct tcphdr *)(ip6 + 1);
530 		} else
531 #endif /* INET6 */
532 	      {
533 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
534 		ip = mtod(m, struct ip *);
535 		nth = (struct tcphdr *)(ip + 1);
536 	      }
537 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
538 		flags = TH_ACK;
539 	} else {
540 		/*
541 		 *  reuse the mbuf.
542 		 * XXX MRT We inherrit the FIB, which is lucky.
543 		 */
544 		m_freem(m->m_next);
545 		m->m_next = NULL;
546 		m->m_data = (caddr_t)ipgen;
547 		m_addr_changed(m);
548 		/* m_len is set later */
549 		tlen = 0;
550 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
551 #ifdef INET6
552 		if (isipv6) {
553 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
554 			nth = (struct tcphdr *)(ip6 + 1);
555 		} else
556 #endif /* INET6 */
557 	      {
558 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
559 		nth = (struct tcphdr *)(ip + 1);
560 	      }
561 		if (th != nth) {
562 			/*
563 			 * this is usually a case when an extension header
564 			 * exists between the IPv6 header and the
565 			 * TCP header.
566 			 */
567 			nth->th_sport = th->th_sport;
568 			nth->th_dport = th->th_dport;
569 		}
570 		xchg(nth->th_dport, nth->th_sport, uint16_t);
571 #undef xchg
572 	}
573 #ifdef INET6
574 	if (isipv6) {
575 		ip6->ip6_flow = 0;
576 		ip6->ip6_vfc = IPV6_VERSION;
577 		ip6->ip6_nxt = IPPROTO_TCP;
578 		ip6->ip6_plen = 0;		/* Set in ip6_output(). */
579 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
580 	}
581 #endif
582 #if defined(INET) && defined(INET6)
583 	else
584 #endif
585 #ifdef INET
586 	{
587 		tlen += sizeof (struct tcpiphdr);
588 		ip->ip_len = tlen;
589 		ip->ip_ttl = V_ip_defttl;
590 		if (V_path_mtu_discovery)
591 			ip->ip_off |= IP_DF;
592 	}
593 #endif
594 	m->m_len = tlen;
595 	m->m_pkthdr.len = tlen;
596 	m->m_pkthdr.rcvif = NULL;
597 #ifdef MAC
598 	if (inp != NULL) {
599 		/*
600 		 * Packet is associated with a socket, so allow the
601 		 * label of the response to reflect the socket label.
602 		 */
603 		INP_WLOCK_ASSERT(inp);
604 		mac_inpcb_create_mbuf(inp, m);
605 	} else {
606 		/*
607 		 * Packet is not associated with a socket, so possibly
608 		 * update the label in place.
609 		 */
610 		mac_netinet_tcp_reply(m);
611 	}
612 #endif
613 	nth->th_seq = htonl(seq);
614 	nth->th_ack = htonl(ack);
615 	nth->th_x2 = 0;
616 	nth->th_off = sizeof (struct tcphdr) >> 2;
617 	nth->th_flags = flags;
618 	if (tp != NULL)
619 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
620 	else
621 		nth->th_win = htons((u_short)win);
622 	nth->th_urp = 0;
623 
624 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
625 #ifdef INET6
626 	if (isipv6) {
627 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
628 		nth->th_sum = in6_cksum_pseudo(ip6,
629 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
630 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
631 		    NULL, NULL);
632 	}
633 #endif /* INET6 */
634 #if defined(INET6) && defined(INET)
635 	else
636 #endif
637 #ifdef INET
638 	{
639 		m->m_pkthdr.csum_flags = CSUM_TCP;
640 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
641 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
642 	}
643 #endif /* INET */
644 #ifdef TCPDEBUG
645 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
646 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
647 #endif
648 #ifdef INET6
649 	if (isipv6)
650 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
651 #endif /* INET6 */
652 #if defined(INET) && defined(INET6)
653 	else
654 #endif
655 #ifdef INET
656 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
657 #endif
658 }
659 
660 /*
661  * Create a new TCP control block, making an
662  * empty reassembly queue and hooking it to the argument
663  * protocol control block.  The `inp' parameter must have
664  * come from the zone allocator set up in tcp_init().
665  */
666 struct tcpcb *
667 tcp_newtcpcb(struct inpcb *inp)
668 {
669 	struct tcpcb_mem *tm;
670 	struct tcpcb *tp;
671 #ifdef INET6
672 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
673 #endif /* INET6 */
674 
675 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
676 	if (tm == NULL)
677 		return (NULL);
678 	tp = &tm->tcb;
679 
680 	/* Initialise cc_var struct for this tcpcb. */
681 	tp->ccv = &tm->ccv;
682 	tp->ccv->type = IPPROTO_TCP;
683 	tp->ccv->ccvc.tcp = tp;
684 
685 	/*
686 	 * Use the current system default CC algorithm.
687 	 */
688 	CC_LIST_RLOCK();
689 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
690 	CC_ALGO(tp) = CC_DEFAULT();
691 	CC_LIST_RUNLOCK();
692 
693 	if (CC_ALGO(tp)->cb_init != NULL)
694 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
695 			uma_zfree(V_tcpcb_zone, tm);
696 			return (NULL);
697 		}
698 
699 	tp->osd = &tm->osd;
700 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
701 		uma_zfree(V_tcpcb_zone, tm);
702 		return (NULL);
703 	}
704 
705 #ifdef VIMAGE
706 	tp->t_vnet = inp->inp_vnet;
707 #endif
708 	tp->t_timers = &tm->tt;
709 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
710 	tp->t_maxseg = tp->t_maxopd =
711 #ifdef INET6
712 		isipv6 ? V_tcp_v6mssdflt :
713 #endif /* INET6 */
714 		V_tcp_mssdflt;
715 
716 	/* Set up our timeouts. */
717 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
718 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
719 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
720 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
721 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
722 
723 	if (V_tcp_do_rfc1323)
724 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
725 	if (V_tcp_do_sack)
726 		tp->t_flags |= TF_SACK_PERMIT;
727 	TAILQ_INIT(&tp->snd_holes);
728 	tp->t_inpcb = inp;	/* XXX */
729 	/*
730 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
731 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
732 	 * reasonable initial retransmit time.
733 	 */
734 	tp->t_srtt = TCPTV_SRTTBASE;
735 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
736 	tp->t_rttmin = tcp_rexmit_min;
737 	tp->t_rxtcur = TCPTV_RTOBASE;
738 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 	tp->t_rcvtime = ticks;
741 	/*
742 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
743 	 * because the socket may be bound to an IPv6 wildcard address,
744 	 * which may match an IPv4-mapped IPv6 address.
745 	 */
746 	inp->inp_ip_ttl = V_ip_defttl;
747 	inp->inp_ppcb = tp;
748 	return (tp);		/* XXX */
749 }
750 
751 /*
752  * Switch the congestion control algorithm back to NewReno for any active
753  * control blocks using an algorithm which is about to go away.
754  * This ensures the CC framework can allow the unload to proceed without leaving
755  * any dangling pointers which would trigger a panic.
756  * Returning non-zero would inform the CC framework that something went wrong
757  * and it would be unsafe to allow the unload to proceed. However, there is no
758  * way for this to occur with this implementation so we always return zero.
759  */
760 int
761 tcp_ccalgounload(struct cc_algo *unload_algo)
762 {
763 	struct cc_algo *tmpalgo;
764 	struct inpcb *inp;
765 	struct tcpcb *tp;
766 	VNET_ITERATOR_DECL(vnet_iter);
767 
768 	/*
769 	 * Check all active control blocks across all network stacks and change
770 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
771 	 * requires cleanup code to be run, call it.
772 	 */
773 	VNET_LIST_RLOCK();
774 	VNET_FOREACH(vnet_iter) {
775 		CURVNET_SET(vnet_iter);
776 		INP_INFO_RLOCK(&V_tcbinfo);
777 		/*
778 		 * New connections already part way through being initialised
779 		 * with the CC algo we're removing will not race with this code
780 		 * because the INP_INFO_WLOCK is held during initialisation. We
781 		 * therefore don't enter the loop below until the connection
782 		 * list has stabilised.
783 		 */
784 		LIST_FOREACH(inp, &V_tcb, inp_list) {
785 			INP_WLOCK(inp);
786 			/* Important to skip tcptw structs. */
787 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
788 			    (tp = intotcpcb(inp)) != NULL) {
789 				/*
790 				 * By holding INP_WLOCK here, we are assured
791 				 * that the connection is not currently
792 				 * executing inside the CC module's functions
793 				 * i.e. it is safe to make the switch back to
794 				 * NewReno.
795 				 */
796 				if (CC_ALGO(tp) == unload_algo) {
797 					tmpalgo = CC_ALGO(tp);
798 					/* NewReno does not require any init. */
799 					CC_ALGO(tp) = &newreno_cc_algo;
800 					if (tmpalgo->cb_destroy != NULL)
801 						tmpalgo->cb_destroy(tp->ccv);
802 				}
803 			}
804 			INP_WUNLOCK(inp);
805 		}
806 		INP_INFO_RUNLOCK(&V_tcbinfo);
807 		CURVNET_RESTORE();
808 	}
809 	VNET_LIST_RUNLOCK();
810 
811 	return (0);
812 }
813 
814 /*
815  * Drop a TCP connection, reporting
816  * the specified error.  If connection is synchronized,
817  * then send a RST to peer.
818  */
819 struct tcpcb *
820 tcp_drop(struct tcpcb *tp, int errno)
821 {
822 	struct socket *so = tp->t_inpcb->inp_socket;
823 
824 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
825 	INP_WLOCK_ASSERT(tp->t_inpcb);
826 
827 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
828 		tp->t_state = TCPS_CLOSED;
829 		(void) tcp_output(tp);
830 		TCPSTAT_INC(tcps_drops);
831 	} else
832 		TCPSTAT_INC(tcps_conndrops);
833 	if (errno == ETIMEDOUT && tp->t_softerror)
834 		errno = tp->t_softerror;
835 	so->so_error = errno;
836 	return (tcp_close(tp));
837 }
838 
839 void
840 tcp_discardcb(struct tcpcb *tp)
841 {
842 	struct inpcb *inp = tp->t_inpcb;
843 	struct socket *so = inp->inp_socket;
844 #ifdef INET6
845 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
846 #endif /* INET6 */
847 
848 	INP_WLOCK_ASSERT(inp);
849 
850 	/*
851 	 * Make sure that all of our timers are stopped before we delete the
852 	 * PCB.
853 	 *
854 	 * XXXRW: Really, we would like to use callout_drain() here in order
855 	 * to avoid races experienced in tcp_timer.c where a timer is already
856 	 * executing at this point.  However, we can't, both because we're
857 	 * running in a context where we can't sleep, and also because we
858 	 * hold locks required by the timers.  What we instead need to do is
859 	 * test to see if callout_drain() is required, and if so, defer some
860 	 * portion of the remainder of tcp_discardcb() to an asynchronous
861 	 * context that can callout_drain() and then continue.  Some care
862 	 * will be required to ensure that no further processing takes place
863 	 * on the tcpcb, even though it hasn't been freed (a flag?).
864 	 */
865 	callout_stop(&tp->t_timers->tt_rexmt);
866 	callout_stop(&tp->t_timers->tt_persist);
867 	callout_stop(&tp->t_timers->tt_keep);
868 	callout_stop(&tp->t_timers->tt_2msl);
869 	callout_stop(&tp->t_timers->tt_delack);
870 
871 	/*
872 	 * If we got enough samples through the srtt filter,
873 	 * save the rtt and rttvar in the routing entry.
874 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
875 	 * 4 samples is enough for the srtt filter to converge
876 	 * to within enough % of the correct value; fewer samples
877 	 * and we could save a bogus rtt. The danger is not high
878 	 * as tcp quickly recovers from everything.
879 	 * XXX: Works very well but needs some more statistics!
880 	 */
881 	if (tp->t_rttupdated >= 4) {
882 		struct hc_metrics_lite metrics;
883 		u_long ssthresh;
884 
885 		bzero(&metrics, sizeof(metrics));
886 		/*
887 		 * Update the ssthresh always when the conditions below
888 		 * are satisfied. This gives us better new start value
889 		 * for the congestion avoidance for new connections.
890 		 * ssthresh is only set if packet loss occured on a session.
891 		 *
892 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
893 		 * being torn down.  Ideally this code would not use 'so'.
894 		 */
895 		ssthresh = tp->snd_ssthresh;
896 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
897 			/*
898 			 * convert the limit from user data bytes to
899 			 * packets then to packet data bytes.
900 			 */
901 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
902 			if (ssthresh < 2)
903 				ssthresh = 2;
904 			ssthresh *= (u_long)(tp->t_maxseg +
905 #ifdef INET6
906 				      (isipv6 ? sizeof (struct ip6_hdr) +
907 					       sizeof (struct tcphdr) :
908 #endif
909 				       sizeof (struct tcpiphdr)
910 #ifdef INET6
911 				       )
912 #endif
913 				      );
914 		} else
915 			ssthresh = 0;
916 		metrics.rmx_ssthresh = ssthresh;
917 
918 		metrics.rmx_rtt = tp->t_srtt;
919 		metrics.rmx_rttvar = tp->t_rttvar;
920 		metrics.rmx_cwnd = tp->snd_cwnd;
921 		metrics.rmx_sendpipe = 0;
922 		metrics.rmx_recvpipe = 0;
923 
924 		tcp_hc_update(&inp->inp_inc, &metrics);
925 	}
926 
927 	/* free the reassembly queue, if any */
928 	tcp_reass_flush(tp);
929 
930 #ifdef TCP_OFFLOAD
931 	/* Disconnect offload device, if any. */
932 	if (tp->t_flags & TF_TOE)
933 		tcp_offload_detach(tp);
934 #endif
935 
936 	tcp_free_sackholes(tp);
937 
938 	/* Allow the CC algorithm to clean up after itself. */
939 	if (CC_ALGO(tp)->cb_destroy != NULL)
940 		CC_ALGO(tp)->cb_destroy(tp->ccv);
941 
942 	khelp_destroy_osd(tp->osd);
943 
944 	CC_ALGO(tp) = NULL;
945 	inp->inp_ppcb = NULL;
946 	tp->t_inpcb = NULL;
947 	uma_zfree(V_tcpcb_zone, tp);
948 }
949 
950 /*
951  * Attempt to close a TCP control block, marking it as dropped, and freeing
952  * the socket if we hold the only reference.
953  */
954 struct tcpcb *
955 tcp_close(struct tcpcb *tp)
956 {
957 	struct inpcb *inp = tp->t_inpcb;
958 	struct socket *so;
959 
960 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
961 	INP_WLOCK_ASSERT(inp);
962 
963 #ifdef TCP_OFFLOAD
964 	if (tp->t_state == TCPS_LISTEN)
965 		tcp_offload_listen_stop(tp);
966 #endif
967 	in_pcbdrop(inp);
968 	TCPSTAT_INC(tcps_closed);
969 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
970 	so = inp->inp_socket;
971 	soisdisconnected(so);
972 	if (inp->inp_flags & INP_SOCKREF) {
973 		KASSERT(so->so_state & SS_PROTOREF,
974 		    ("tcp_close: !SS_PROTOREF"));
975 		inp->inp_flags &= ~INP_SOCKREF;
976 		INP_WUNLOCK(inp);
977 		ACCEPT_LOCK();
978 		SOCK_LOCK(so);
979 		so->so_state &= ~SS_PROTOREF;
980 		sofree(so);
981 		return (NULL);
982 	}
983 	return (tp);
984 }
985 
986 void
987 tcp_drain(void)
988 {
989 	VNET_ITERATOR_DECL(vnet_iter);
990 
991 	if (!do_tcpdrain)
992 		return;
993 
994 	VNET_LIST_RLOCK_NOSLEEP();
995 	VNET_FOREACH(vnet_iter) {
996 		CURVNET_SET(vnet_iter);
997 		struct inpcb *inpb;
998 		struct tcpcb *tcpb;
999 
1000 	/*
1001 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1002 	 * if there is one...
1003 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1004 	 *      reassembly queue should be flushed, but in a situation
1005 	 *	where we're really low on mbufs, this is potentially
1006 	 *	usefull.
1007 	 */
1008 		INP_INFO_RLOCK(&V_tcbinfo);
1009 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1010 			if (inpb->inp_flags & INP_TIMEWAIT)
1011 				continue;
1012 			INP_WLOCK(inpb);
1013 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1014 				tcp_reass_flush(tcpb);
1015 				tcp_clean_sackreport(tcpb);
1016 			}
1017 			INP_WUNLOCK(inpb);
1018 		}
1019 		INP_INFO_RUNLOCK(&V_tcbinfo);
1020 		CURVNET_RESTORE();
1021 	}
1022 	VNET_LIST_RUNLOCK_NOSLEEP();
1023 }
1024 
1025 /*
1026  * Notify a tcp user of an asynchronous error;
1027  * store error as soft error, but wake up user
1028  * (for now, won't do anything until can select for soft error).
1029  *
1030  * Do not wake up user since there currently is no mechanism for
1031  * reporting soft errors (yet - a kqueue filter may be added).
1032  */
1033 static struct inpcb *
1034 tcp_notify(struct inpcb *inp, int error)
1035 {
1036 	struct tcpcb *tp;
1037 
1038 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1039 	INP_WLOCK_ASSERT(inp);
1040 
1041 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1042 	    (inp->inp_flags & INP_DROPPED))
1043 		return (inp);
1044 
1045 	tp = intotcpcb(inp);
1046 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1047 
1048 	/*
1049 	 * Ignore some errors if we are hooked up.
1050 	 * If connection hasn't completed, has retransmitted several times,
1051 	 * and receives a second error, give up now.  This is better
1052 	 * than waiting a long time to establish a connection that
1053 	 * can never complete.
1054 	 */
1055 	if (tp->t_state == TCPS_ESTABLISHED &&
1056 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1057 	     error == EHOSTDOWN)) {
1058 		return (inp);
1059 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1060 	    tp->t_softerror) {
1061 		tp = tcp_drop(tp, error);
1062 		if (tp != NULL)
1063 			return (inp);
1064 		else
1065 			return (NULL);
1066 	} else {
1067 		tp->t_softerror = error;
1068 		return (inp);
1069 	}
1070 #if 0
1071 	wakeup( &so->so_timeo);
1072 	sorwakeup(so);
1073 	sowwakeup(so);
1074 #endif
1075 }
1076 
1077 static int
1078 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1079 {
1080 	int error, i, m, n, pcb_count;
1081 	struct inpcb *inp, **inp_list;
1082 	inp_gen_t gencnt;
1083 	struct xinpgen xig;
1084 
1085 	/*
1086 	 * The process of preparing the TCB list is too time-consuming and
1087 	 * resource-intensive to repeat twice on every request.
1088 	 */
1089 	if (req->oldptr == NULL) {
1090 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1091 		n += imax(n / 8, 10);
1092 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1093 		return (0);
1094 	}
1095 
1096 	if (req->newptr != NULL)
1097 		return (EPERM);
1098 
1099 	/*
1100 	 * OK, now we're committed to doing something.
1101 	 */
1102 	INP_INFO_RLOCK(&V_tcbinfo);
1103 	gencnt = V_tcbinfo.ipi_gencnt;
1104 	n = V_tcbinfo.ipi_count;
1105 	INP_INFO_RUNLOCK(&V_tcbinfo);
1106 
1107 	m = syncache_pcbcount();
1108 
1109 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1110 		+ (n + m) * sizeof(struct xtcpcb));
1111 	if (error != 0)
1112 		return (error);
1113 
1114 	xig.xig_len = sizeof xig;
1115 	xig.xig_count = n + m;
1116 	xig.xig_gen = gencnt;
1117 	xig.xig_sogen = so_gencnt;
1118 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1119 	if (error)
1120 		return (error);
1121 
1122 	error = syncache_pcblist(req, m, &pcb_count);
1123 	if (error)
1124 		return (error);
1125 
1126 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1127 	if (inp_list == NULL)
1128 		return (ENOMEM);
1129 
1130 	INP_INFO_RLOCK(&V_tcbinfo);
1131 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1132 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1133 		INP_WLOCK(inp);
1134 		if (inp->inp_gencnt <= gencnt) {
1135 			/*
1136 			 * XXX: This use of cr_cansee(), introduced with
1137 			 * TCP state changes, is not quite right, but for
1138 			 * now, better than nothing.
1139 			 */
1140 			if (inp->inp_flags & INP_TIMEWAIT) {
1141 				if (intotw(inp) != NULL)
1142 					error = cr_cansee(req->td->td_ucred,
1143 					    intotw(inp)->tw_cred);
1144 				else
1145 					error = EINVAL;	/* Skip this inp. */
1146 			} else
1147 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1148 			if (error == 0) {
1149 				in_pcbref(inp);
1150 				inp_list[i++] = inp;
1151 			}
1152 		}
1153 		INP_WUNLOCK(inp);
1154 	}
1155 	INP_INFO_RUNLOCK(&V_tcbinfo);
1156 	n = i;
1157 
1158 	error = 0;
1159 	for (i = 0; i < n; i++) {
1160 		inp = inp_list[i];
1161 		INP_RLOCK(inp);
1162 		if (inp->inp_gencnt <= gencnt) {
1163 			struct xtcpcb xt;
1164 			void *inp_ppcb;
1165 
1166 			bzero(&xt, sizeof(xt));
1167 			xt.xt_len = sizeof xt;
1168 			/* XXX should avoid extra copy */
1169 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1170 			inp_ppcb = inp->inp_ppcb;
1171 			if (inp_ppcb == NULL)
1172 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1173 			else if (inp->inp_flags & INP_TIMEWAIT) {
1174 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1175 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1176 			} else {
1177 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1178 				if (xt.xt_tp.t_timers)
1179 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1180 			}
1181 			if (inp->inp_socket != NULL)
1182 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1183 			else {
1184 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1185 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1186 			}
1187 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1188 			INP_RUNLOCK(inp);
1189 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1190 		} else
1191 			INP_RUNLOCK(inp);
1192 	}
1193 	INP_INFO_WLOCK(&V_tcbinfo);
1194 	for (i = 0; i < n; i++) {
1195 		inp = inp_list[i];
1196 		INP_RLOCK(inp);
1197 		if (!in_pcbrele_rlocked(inp))
1198 			INP_RUNLOCK(inp);
1199 	}
1200 	INP_INFO_WUNLOCK(&V_tcbinfo);
1201 
1202 	if (!error) {
1203 		/*
1204 		 * Give the user an updated idea of our state.
1205 		 * If the generation differs from what we told
1206 		 * her before, she knows that something happened
1207 		 * while we were processing this request, and it
1208 		 * might be necessary to retry.
1209 		 */
1210 		INP_INFO_RLOCK(&V_tcbinfo);
1211 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1212 		xig.xig_sogen = so_gencnt;
1213 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1214 		INP_INFO_RUNLOCK(&V_tcbinfo);
1215 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1216 	}
1217 	free(inp_list, M_TEMP);
1218 	return (error);
1219 }
1220 
1221 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1222     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1223     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1224 
1225 #ifdef INET
1226 static int
1227 tcp_getcred(SYSCTL_HANDLER_ARGS)
1228 {
1229 	struct xucred xuc;
1230 	struct sockaddr_in addrs[2];
1231 	struct inpcb *inp;
1232 	int error;
1233 
1234 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1235 	if (error)
1236 		return (error);
1237 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1238 	if (error)
1239 		return (error);
1240 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1241 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1242 	if (inp != NULL) {
1243 		if (inp->inp_socket == NULL)
1244 			error = ENOENT;
1245 		if (error == 0)
1246 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1247 		if (error == 0)
1248 			cru2x(inp->inp_cred, &xuc);
1249 		INP_RUNLOCK(inp);
1250 	} else
1251 		error = ENOENT;
1252 	if (error == 0)
1253 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1254 	return (error);
1255 }
1256 
1257 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1258     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1259     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1260 #endif /* INET */
1261 
1262 #ifdef INET6
1263 static int
1264 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1265 {
1266 	struct xucred xuc;
1267 	struct sockaddr_in6 addrs[2];
1268 	struct inpcb *inp;
1269 	int error;
1270 #ifdef INET
1271 	int mapped = 0;
1272 #endif
1273 
1274 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1275 	if (error)
1276 		return (error);
1277 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1278 	if (error)
1279 		return (error);
1280 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1281 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1282 		return (error);
1283 	}
1284 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1285 #ifdef INET
1286 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1287 			mapped = 1;
1288 		else
1289 #endif
1290 			return (EINVAL);
1291 	}
1292 
1293 #ifdef INET
1294 	if (mapped == 1)
1295 		inp = in_pcblookup(&V_tcbinfo,
1296 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1297 			addrs[1].sin6_port,
1298 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1299 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1300 	else
1301 #endif
1302 		inp = in6_pcblookup(&V_tcbinfo,
1303 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1304 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1305 			INPLOOKUP_RLOCKPCB, NULL);
1306 	if (inp != NULL) {
1307 		if (inp->inp_socket == NULL)
1308 			error = ENOENT;
1309 		if (error == 0)
1310 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1311 		if (error == 0)
1312 			cru2x(inp->inp_cred, &xuc);
1313 		INP_RUNLOCK(inp);
1314 	} else
1315 		error = ENOENT;
1316 	if (error == 0)
1317 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1318 	return (error);
1319 }
1320 
1321 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1322     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1323     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1324 #endif /* INET6 */
1325 
1326 
1327 #ifdef INET
1328 void
1329 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1330 {
1331 	struct ip *ip = vip;
1332 	struct tcphdr *th;
1333 	struct in_addr faddr;
1334 	struct inpcb *inp;
1335 	struct tcpcb *tp;
1336 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1337 	struct icmp *icp;
1338 	struct in_conninfo inc;
1339 	tcp_seq icmp_tcp_seq;
1340 	int mtu;
1341 
1342 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1343 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1344 		return;
1345 
1346 	if (cmd == PRC_MSGSIZE)
1347 		notify = tcp_mtudisc_notify;
1348 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1349 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1350 		notify = tcp_drop_syn_sent;
1351 	/*
1352 	 * Redirects don't need to be handled up here.
1353 	 */
1354 	else if (PRC_IS_REDIRECT(cmd))
1355 		return;
1356 	/*
1357 	 * Source quench is depreciated.
1358 	 */
1359 	else if (cmd == PRC_QUENCH)
1360 		return;
1361 	/*
1362 	 * Hostdead is ugly because it goes linearly through all PCBs.
1363 	 * XXX: We never get this from ICMP, otherwise it makes an
1364 	 * excellent DoS attack on machines with many connections.
1365 	 */
1366 	else if (cmd == PRC_HOSTDEAD)
1367 		ip = NULL;
1368 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1369 		return;
1370 	if (ip != NULL) {
1371 		icp = (struct icmp *)((caddr_t)ip
1372 				      - offsetof(struct icmp, icmp_ip));
1373 		th = (struct tcphdr *)((caddr_t)ip
1374 				       + (ip->ip_hl << 2));
1375 		INP_INFO_WLOCK(&V_tcbinfo);
1376 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1377 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1378 		if (inp != NULL)  {
1379 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1380 			    !(inp->inp_flags & INP_DROPPED) &&
1381 			    !(inp->inp_socket == NULL)) {
1382 				icmp_tcp_seq = htonl(th->th_seq);
1383 				tp = intotcpcb(inp);
1384 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1385 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1386 					if (cmd == PRC_MSGSIZE) {
1387 					    /*
1388 					     * MTU discovery:
1389 					     * If we got a needfrag set the MTU
1390 					     * in the route to the suggested new
1391 					     * value (if given) and then notify.
1392 					     */
1393 					    bzero(&inc, sizeof(inc));
1394 					    inc.inc_faddr = faddr;
1395 					    inc.inc_fibnum =
1396 						inp->inp_inc.inc_fibnum;
1397 
1398 					    mtu = ntohs(icp->icmp_nextmtu);
1399 					    /*
1400 					     * If no alternative MTU was
1401 					     * proposed, try the next smaller
1402 					     * one.  ip->ip_len has already
1403 					     * been swapped in icmp_input().
1404 					     */
1405 					    if (!mtu)
1406 						mtu = ip_next_mtu(ip->ip_len,
1407 						 1);
1408 					    if (mtu < V_tcp_minmss
1409 						 + sizeof(struct tcpiphdr))
1410 						mtu = V_tcp_minmss
1411 						 + sizeof(struct tcpiphdr);
1412 					    /*
1413 					     * Only cache the MTU if it
1414 					     * is smaller than the interface
1415 					     * or route MTU.  tcp_mtudisc()
1416 					     * will do right thing by itself.
1417 					     */
1418 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1419 						tcp_hc_updatemtu(&inc, mtu);
1420 					    tcp_mtudisc(inp, mtu);
1421 					} else
1422 						inp = (*notify)(inp,
1423 						    inetctlerrmap[cmd]);
1424 				}
1425 			}
1426 			if (inp != NULL)
1427 				INP_WUNLOCK(inp);
1428 		} else {
1429 			bzero(&inc, sizeof(inc));
1430 			inc.inc_fport = th->th_dport;
1431 			inc.inc_lport = th->th_sport;
1432 			inc.inc_faddr = faddr;
1433 			inc.inc_laddr = ip->ip_src;
1434 			syncache_unreach(&inc, th);
1435 		}
1436 		INP_INFO_WUNLOCK(&V_tcbinfo);
1437 	} else
1438 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1439 }
1440 #endif /* INET */
1441 
1442 #ifdef INET6
1443 void
1444 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1445 {
1446 	struct tcphdr th;
1447 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1448 	struct ip6_hdr *ip6;
1449 	struct mbuf *m;
1450 	struct ip6ctlparam *ip6cp = NULL;
1451 	const struct sockaddr_in6 *sa6_src = NULL;
1452 	int off;
1453 	struct tcp_portonly {
1454 		u_int16_t th_sport;
1455 		u_int16_t th_dport;
1456 	} *thp;
1457 
1458 	if (sa->sa_family != AF_INET6 ||
1459 	    sa->sa_len != sizeof(struct sockaddr_in6))
1460 		return;
1461 
1462 	if (cmd == PRC_MSGSIZE)
1463 		notify = tcp_mtudisc_notify;
1464 	else if (!PRC_IS_REDIRECT(cmd) &&
1465 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1466 		return;
1467 	/* Source quench is depreciated. */
1468 	else if (cmd == PRC_QUENCH)
1469 		return;
1470 
1471 	/* if the parameter is from icmp6, decode it. */
1472 	if (d != NULL) {
1473 		ip6cp = (struct ip6ctlparam *)d;
1474 		m = ip6cp->ip6c_m;
1475 		ip6 = ip6cp->ip6c_ip6;
1476 		off = ip6cp->ip6c_off;
1477 		sa6_src = ip6cp->ip6c_src;
1478 	} else {
1479 		m = NULL;
1480 		ip6 = NULL;
1481 		off = 0;	/* fool gcc */
1482 		sa6_src = &sa6_any;
1483 	}
1484 
1485 	if (ip6 != NULL) {
1486 		struct in_conninfo inc;
1487 		/*
1488 		 * XXX: We assume that when IPV6 is non NULL,
1489 		 * M and OFF are valid.
1490 		 */
1491 
1492 		/* check if we can safely examine src and dst ports */
1493 		if (m->m_pkthdr.len < off + sizeof(*thp))
1494 			return;
1495 
1496 		bzero(&th, sizeof(th));
1497 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1498 
1499 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1500 		    (struct sockaddr *)ip6cp->ip6c_src,
1501 		    th.th_sport, cmd, NULL, notify);
1502 
1503 		bzero(&inc, sizeof(inc));
1504 		inc.inc_fport = th.th_dport;
1505 		inc.inc_lport = th.th_sport;
1506 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1507 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1508 		inc.inc_flags |= INC_ISIPV6;
1509 		INP_INFO_WLOCK(&V_tcbinfo);
1510 		syncache_unreach(&inc, &th);
1511 		INP_INFO_WUNLOCK(&V_tcbinfo);
1512 	} else
1513 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1514 			      0, cmd, NULL, notify);
1515 }
1516 #endif /* INET6 */
1517 
1518 
1519 /*
1520  * Following is where TCP initial sequence number generation occurs.
1521  *
1522  * There are two places where we must use initial sequence numbers:
1523  * 1.  In SYN-ACK packets.
1524  * 2.  In SYN packets.
1525  *
1526  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1527  * tcp_syncache.c for details.
1528  *
1529  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1530  * depends on this property.  In addition, these ISNs should be
1531  * unguessable so as to prevent connection hijacking.  To satisfy
1532  * the requirements of this situation, the algorithm outlined in
1533  * RFC 1948 is used, with only small modifications.
1534  *
1535  * Implementation details:
1536  *
1537  * Time is based off the system timer, and is corrected so that it
1538  * increases by one megabyte per second.  This allows for proper
1539  * recycling on high speed LANs while still leaving over an hour
1540  * before rollover.
1541  *
1542  * As reading the *exact* system time is too expensive to be done
1543  * whenever setting up a TCP connection, we increment the time
1544  * offset in two ways.  First, a small random positive increment
1545  * is added to isn_offset for each connection that is set up.
1546  * Second, the function tcp_isn_tick fires once per clock tick
1547  * and increments isn_offset as necessary so that sequence numbers
1548  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1549  * random positive increments serve only to ensure that the same
1550  * exact sequence number is never sent out twice (as could otherwise
1551  * happen when a port is recycled in less than the system tick
1552  * interval.)
1553  *
1554  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1555  * between seeding of isn_secret.  This is normally set to zero,
1556  * as reseeding should not be necessary.
1557  *
1558  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1559  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1560  * general, this means holding an exclusive (write) lock.
1561  */
1562 
1563 #define ISN_BYTES_PER_SECOND 1048576
1564 #define ISN_STATIC_INCREMENT 4096
1565 #define ISN_RANDOM_INCREMENT (4096 - 1)
1566 
1567 static VNET_DEFINE(u_char, isn_secret[32]);
1568 static VNET_DEFINE(int, isn_last);
1569 static VNET_DEFINE(int, isn_last_reseed);
1570 static VNET_DEFINE(u_int32_t, isn_offset);
1571 static VNET_DEFINE(u_int32_t, isn_offset_old);
1572 
1573 #define	V_isn_secret			VNET(isn_secret)
1574 #define	V_isn_last			VNET(isn_last)
1575 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1576 #define	V_isn_offset			VNET(isn_offset)
1577 #define	V_isn_offset_old		VNET(isn_offset_old)
1578 
1579 tcp_seq
1580 tcp_new_isn(struct tcpcb *tp)
1581 {
1582 	MD5_CTX isn_ctx;
1583 	u_int32_t md5_buffer[4];
1584 	tcp_seq new_isn;
1585 	u_int32_t projected_offset;
1586 
1587 	INP_WLOCK_ASSERT(tp->t_inpcb);
1588 
1589 	ISN_LOCK();
1590 	/* Seed if this is the first use, reseed if requested. */
1591 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1592 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1593 		< (u_int)ticks))) {
1594 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1595 		V_isn_last_reseed = ticks;
1596 	}
1597 
1598 	/* Compute the md5 hash and return the ISN. */
1599 	MD5Init(&isn_ctx);
1600 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1601 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1602 #ifdef INET6
1603 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1604 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1605 			  sizeof(struct in6_addr));
1606 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1607 			  sizeof(struct in6_addr));
1608 	} else
1609 #endif
1610 	{
1611 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1612 			  sizeof(struct in_addr));
1613 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1614 			  sizeof(struct in_addr));
1615 	}
1616 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1617 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1618 	new_isn = (tcp_seq) md5_buffer[0];
1619 	V_isn_offset += ISN_STATIC_INCREMENT +
1620 		(arc4random() & ISN_RANDOM_INCREMENT);
1621 	if (ticks != V_isn_last) {
1622 		projected_offset = V_isn_offset_old +
1623 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1624 		if (SEQ_GT(projected_offset, V_isn_offset))
1625 			V_isn_offset = projected_offset;
1626 		V_isn_offset_old = V_isn_offset;
1627 		V_isn_last = ticks;
1628 	}
1629 	new_isn += V_isn_offset;
1630 	ISN_UNLOCK();
1631 	return (new_isn);
1632 }
1633 
1634 /*
1635  * When a specific ICMP unreachable message is received and the
1636  * connection state is SYN-SENT, drop the connection.  This behavior
1637  * is controlled by the icmp_may_rst sysctl.
1638  */
1639 struct inpcb *
1640 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1641 {
1642 	struct tcpcb *tp;
1643 
1644 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1645 	INP_WLOCK_ASSERT(inp);
1646 
1647 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1648 	    (inp->inp_flags & INP_DROPPED))
1649 		return (inp);
1650 
1651 	tp = intotcpcb(inp);
1652 	if (tp->t_state != TCPS_SYN_SENT)
1653 		return (inp);
1654 
1655 	tp = tcp_drop(tp, errno);
1656 	if (tp != NULL)
1657 		return (inp);
1658 	else
1659 		return (NULL);
1660 }
1661 
1662 /*
1663  * When `need fragmentation' ICMP is received, update our idea of the MSS
1664  * based on the new value. Also nudge TCP to send something, since we
1665  * know the packet we just sent was dropped.
1666  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1667  */
1668 static struct inpcb *
1669 tcp_mtudisc_notify(struct inpcb *inp, int error)
1670 {
1671 
1672 	return (tcp_mtudisc(inp, -1));
1673 }
1674 
1675 struct inpcb *
1676 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1677 {
1678 	struct tcpcb *tp;
1679 	struct socket *so;
1680 
1681 	INP_WLOCK_ASSERT(inp);
1682 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1683 	    (inp->inp_flags & INP_DROPPED))
1684 		return (inp);
1685 
1686 	tp = intotcpcb(inp);
1687 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1688 
1689 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1690 
1691 	so = inp->inp_socket;
1692 	SOCKBUF_LOCK(&so->so_snd);
1693 	/* If the mss is larger than the socket buffer, decrease the mss. */
1694 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1695 		tp->t_maxseg = so->so_snd.sb_hiwat;
1696 	SOCKBUF_UNLOCK(&so->so_snd);
1697 
1698 	TCPSTAT_INC(tcps_mturesent);
1699 	tp->t_rtttime = 0;
1700 	tp->snd_nxt = tp->snd_una;
1701 	tcp_free_sackholes(tp);
1702 	tp->snd_recover = tp->snd_max;
1703 	if (tp->t_flags & TF_SACK_PERMIT)
1704 		EXIT_FASTRECOVERY(tp->t_flags);
1705 	tcp_output(tp);
1706 	return (inp);
1707 }
1708 
1709 #ifdef INET
1710 /*
1711  * Look-up the routing entry to the peer of this inpcb.  If no route
1712  * is found and it cannot be allocated, then return 0.  This routine
1713  * is called by TCP routines that access the rmx structure and by
1714  * tcp_mss_update to get the peer/interface MTU.
1715  */
1716 u_long
1717 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1718 {
1719 	struct route sro;
1720 	struct sockaddr_in *dst;
1721 	struct ifnet *ifp;
1722 	u_long maxmtu = 0;
1723 
1724 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1725 
1726 	bzero(&sro, sizeof(sro));
1727 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1728 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1729 		dst->sin_family = AF_INET;
1730 		dst->sin_len = sizeof(*dst);
1731 		dst->sin_addr = inc->inc_faddr;
1732 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1733 	}
1734 	if (sro.ro_rt != NULL) {
1735 		ifp = sro.ro_rt->rt_ifp;
1736 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1737 			maxmtu = ifp->if_mtu;
1738 		else
1739 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1740 
1741 		/* Report additional interface capabilities. */
1742 		if (flags != NULL) {
1743 			if (ifp->if_capenable & IFCAP_TSO4 &&
1744 			    ifp->if_hwassist & CSUM_TSO)
1745 				*flags |= CSUM_TSO;
1746 		}
1747 		RTFREE(sro.ro_rt);
1748 	}
1749 	return (maxmtu);
1750 }
1751 #endif /* INET */
1752 
1753 #ifdef INET6
1754 u_long
1755 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1756 {
1757 	struct route_in6 sro6;
1758 	struct ifnet *ifp;
1759 	u_long maxmtu = 0;
1760 
1761 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1762 
1763 	bzero(&sro6, sizeof(sro6));
1764 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1765 		sro6.ro_dst.sin6_family = AF_INET6;
1766 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1767 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1768 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1769 	}
1770 	if (sro6.ro_rt != NULL) {
1771 		ifp = sro6.ro_rt->rt_ifp;
1772 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1773 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1774 		else
1775 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1776 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1777 
1778 		/* Report additional interface capabilities. */
1779 		if (flags != NULL) {
1780 			if (ifp->if_capenable & IFCAP_TSO6 &&
1781 			    ifp->if_hwassist & CSUM_TSO)
1782 				*flags |= CSUM_TSO;
1783 		}
1784 		RTFREE(sro6.ro_rt);
1785 	}
1786 
1787 	return (maxmtu);
1788 }
1789 #endif /* INET6 */
1790 
1791 #ifdef IPSEC
1792 /* compute ESP/AH header size for TCP, including outer IP header. */
1793 size_t
1794 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1795 {
1796 	struct inpcb *inp;
1797 	struct mbuf *m;
1798 	size_t hdrsiz;
1799 	struct ip *ip;
1800 #ifdef INET6
1801 	struct ip6_hdr *ip6;
1802 #endif
1803 	struct tcphdr *th;
1804 
1805 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1806 		return (0);
1807 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1808 	if (!m)
1809 		return (0);
1810 
1811 #ifdef INET6
1812 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1813 		ip6 = mtod(m, struct ip6_hdr *);
1814 		th = (struct tcphdr *)(ip6 + 1);
1815 		m->m_pkthdr.len = m->m_len =
1816 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1817 		tcpip_fillheaders(inp, ip6, th);
1818 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1819 	} else
1820 #endif /* INET6 */
1821 	{
1822 		ip = mtod(m, struct ip *);
1823 		th = (struct tcphdr *)(ip + 1);
1824 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1825 		tcpip_fillheaders(inp, ip, th);
1826 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1827 	}
1828 
1829 	m_free(m);
1830 	return (hdrsiz);
1831 }
1832 #endif /* IPSEC */
1833 
1834 #ifdef TCP_SIGNATURE
1835 /*
1836  * Callback function invoked by m_apply() to digest TCP segment data
1837  * contained within an mbuf chain.
1838  */
1839 static int
1840 tcp_signature_apply(void *fstate, void *data, u_int len)
1841 {
1842 
1843 	MD5Update(fstate, (u_char *)data, len);
1844 	return (0);
1845 }
1846 
1847 /*
1848  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1849  *
1850  * Parameters:
1851  * m		pointer to head of mbuf chain
1852  * _unused
1853  * len		length of TCP segment data, excluding options
1854  * optlen	length of TCP segment options
1855  * buf		pointer to storage for computed MD5 digest
1856  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1857  *
1858  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1859  * When called from tcp_input(), we can be sure that th_sum has been
1860  * zeroed out and verified already.
1861  *
1862  * Return 0 if successful, otherwise return -1.
1863  *
1864  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1865  * search with the destination IP address, and a 'magic SPI' to be
1866  * determined by the application. This is hardcoded elsewhere to 1179
1867  * right now. Another branch of this code exists which uses the SPD to
1868  * specify per-application flows but it is unstable.
1869  */
1870 int
1871 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1872     u_char *buf, u_int direction)
1873 {
1874 	union sockaddr_union dst;
1875 #ifdef INET
1876 	struct ippseudo ippseudo;
1877 #endif
1878 	MD5_CTX ctx;
1879 	int doff;
1880 	struct ip *ip;
1881 #ifdef INET
1882 	struct ipovly *ipovly;
1883 #endif
1884 	struct secasvar *sav;
1885 	struct tcphdr *th;
1886 #ifdef INET6
1887 	struct ip6_hdr *ip6;
1888 	struct in6_addr in6;
1889 	char ip6buf[INET6_ADDRSTRLEN];
1890 	uint32_t plen;
1891 	uint16_t nhdr;
1892 #endif
1893 	u_short savecsum;
1894 
1895 	KASSERT(m != NULL, ("NULL mbuf chain"));
1896 	KASSERT(buf != NULL, ("NULL signature pointer"));
1897 
1898 	/* Extract the destination from the IP header in the mbuf. */
1899 	bzero(&dst, sizeof(union sockaddr_union));
1900 	ip = mtod(m, struct ip *);
1901 #ifdef INET6
1902 	ip6 = NULL;	/* Make the compiler happy. */
1903 #endif
1904 	switch (ip->ip_v) {
1905 #ifdef INET
1906 	case IPVERSION:
1907 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1908 		dst.sa.sa_family = AF_INET;
1909 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1910 		    ip->ip_src : ip->ip_dst;
1911 		break;
1912 #endif
1913 #ifdef INET6
1914 	case (IPV6_VERSION >> 4):
1915 		ip6 = mtod(m, struct ip6_hdr *);
1916 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1917 		dst.sa.sa_family = AF_INET6;
1918 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1919 		    ip6->ip6_src : ip6->ip6_dst;
1920 		break;
1921 #endif
1922 	default:
1923 		return (EINVAL);
1924 		/* NOTREACHED */
1925 		break;
1926 	}
1927 
1928 	/* Look up an SADB entry which matches the address of the peer. */
1929 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1930 	if (sav == NULL) {
1931 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1932 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1933 #ifdef INET6
1934 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1935 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1936 #endif
1937 			"(unsupported)"));
1938 		return (EINVAL);
1939 	}
1940 
1941 	MD5Init(&ctx);
1942 	/*
1943 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1944 	 *
1945 	 * XXX The ippseudo header MUST be digested in network byte order,
1946 	 * or else we'll fail the regression test. Assume all fields we've
1947 	 * been doing arithmetic on have been in host byte order.
1948 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1949 	 * tcp_output(), the underlying ip_len member has not yet been set.
1950 	 */
1951 	switch (ip->ip_v) {
1952 #ifdef INET
1953 	case IPVERSION:
1954 		ipovly = (struct ipovly *)ip;
1955 		ippseudo.ippseudo_src = ipovly->ih_src;
1956 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1957 		ippseudo.ippseudo_pad = 0;
1958 		ippseudo.ippseudo_p = IPPROTO_TCP;
1959 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1960 		    optlen);
1961 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1962 
1963 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1964 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1965 		break;
1966 #endif
1967 #ifdef INET6
1968 	/*
1969 	 * RFC 2385, 2.0  Proposal
1970 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1971 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1972 	 * extended next header value (to form 32 bits), and 32-bit segment
1973 	 * length.
1974 	 * Note: Upper-Layer Packet Length comes before Next Header.
1975 	 */
1976 	case (IPV6_VERSION >> 4):
1977 		in6 = ip6->ip6_src;
1978 		in6_clearscope(&in6);
1979 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1980 		in6 = ip6->ip6_dst;
1981 		in6_clearscope(&in6);
1982 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1983 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1984 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1985 		nhdr = 0;
1986 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1987 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1988 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1989 		nhdr = IPPROTO_TCP;
1990 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1991 
1992 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1993 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1994 		break;
1995 #endif
1996 	default:
1997 		return (EINVAL);
1998 		/* NOTREACHED */
1999 		break;
2000 	}
2001 
2002 
2003 	/*
2004 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2005 	 * The TCP checksum must be set to zero.
2006 	 */
2007 	savecsum = th->th_sum;
2008 	th->th_sum = 0;
2009 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2010 	th->th_sum = savecsum;
2011 
2012 	/*
2013 	 * Step 3: Update MD5 hash with TCP segment data.
2014 	 *         Use m_apply() to avoid an early m_pullup().
2015 	 */
2016 	if (len > 0)
2017 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2018 
2019 	/*
2020 	 * Step 4: Update MD5 hash with shared secret.
2021 	 */
2022 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2023 	MD5Final(buf, &ctx);
2024 
2025 	key_sa_recordxfer(sav, m);
2026 	KEY_FREESAV(&sav);
2027 	return (0);
2028 }
2029 
2030 /*
2031  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2032  *
2033  * Parameters:
2034  * m		pointer to head of mbuf chain
2035  * len		length of TCP segment data, excluding options
2036  * optlen	length of TCP segment options
2037  * buf		pointer to storage for computed MD5 digest
2038  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2039  *
2040  * Return 1 if successful, otherwise return 0.
2041  */
2042 int
2043 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2044     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2045 {
2046 	char tmpdigest[TCP_SIGLEN];
2047 
2048 	if (tcp_sig_checksigs == 0)
2049 		return (1);
2050 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2051 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2052 
2053 			/*
2054 			 * If this socket is not expecting signature but
2055 			 * the segment contains signature just fail.
2056 			 */
2057 			TCPSTAT_INC(tcps_sig_err_sigopt);
2058 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2059 			return (0);
2060 		}
2061 
2062 		/* Signature is not expected, and not present in segment. */
2063 		return (1);
2064 	}
2065 
2066 	/*
2067 	 * If this socket is expecting signature but the segment does not
2068 	 * contain any just fail.
2069 	 */
2070 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2071 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2072 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2073 		return (0);
2074 	}
2075 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2076 	    IPSEC_DIR_INBOUND) == -1) {
2077 		TCPSTAT_INC(tcps_sig_err_buildsig);
2078 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2079 		return (0);
2080 	}
2081 
2082 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2083 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2084 		return (0);
2085 	}
2086 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2087 	return (1);
2088 }
2089 #endif /* TCP_SIGNATURE */
2090 
2091 static int
2092 sysctl_drop(SYSCTL_HANDLER_ARGS)
2093 {
2094 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2095 	struct sockaddr_storage addrs[2];
2096 	struct inpcb *inp;
2097 	struct tcpcb *tp;
2098 	struct tcptw *tw;
2099 	struct sockaddr_in *fin, *lin;
2100 #ifdef INET6
2101 	struct sockaddr_in6 *fin6, *lin6;
2102 #endif
2103 	int error;
2104 
2105 	inp = NULL;
2106 	fin = lin = NULL;
2107 #ifdef INET6
2108 	fin6 = lin6 = NULL;
2109 #endif
2110 	error = 0;
2111 
2112 	if (req->oldptr != NULL || req->oldlen != 0)
2113 		return (EINVAL);
2114 	if (req->newptr == NULL)
2115 		return (EPERM);
2116 	if (req->newlen < sizeof(addrs))
2117 		return (ENOMEM);
2118 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2119 	if (error)
2120 		return (error);
2121 
2122 	switch (addrs[0].ss_family) {
2123 #ifdef INET6
2124 	case AF_INET6:
2125 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2126 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2127 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2128 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2129 			return (EINVAL);
2130 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2131 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2132 				return (EINVAL);
2133 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2134 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2135 			fin = (struct sockaddr_in *)&addrs[0];
2136 			lin = (struct sockaddr_in *)&addrs[1];
2137 			break;
2138 		}
2139 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2140 		if (error)
2141 			return (error);
2142 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2143 		if (error)
2144 			return (error);
2145 		break;
2146 #endif
2147 #ifdef INET
2148 	case AF_INET:
2149 		fin = (struct sockaddr_in *)&addrs[0];
2150 		lin = (struct sockaddr_in *)&addrs[1];
2151 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2152 		    lin->sin_len != sizeof(struct sockaddr_in))
2153 			return (EINVAL);
2154 		break;
2155 #endif
2156 	default:
2157 		return (EINVAL);
2158 	}
2159 	INP_INFO_WLOCK(&V_tcbinfo);
2160 	switch (addrs[0].ss_family) {
2161 #ifdef INET6
2162 	case AF_INET6:
2163 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2164 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2165 		    INPLOOKUP_WLOCKPCB, NULL);
2166 		break;
2167 #endif
2168 #ifdef INET
2169 	case AF_INET:
2170 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2171 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2172 		break;
2173 #endif
2174 	}
2175 	if (inp != NULL) {
2176 		if (inp->inp_flags & INP_TIMEWAIT) {
2177 			/*
2178 			 * XXXRW: There currently exists a state where an
2179 			 * inpcb is present, but its timewait state has been
2180 			 * discarded.  For now, don't allow dropping of this
2181 			 * type of inpcb.
2182 			 */
2183 			tw = intotw(inp);
2184 			if (tw != NULL)
2185 				tcp_twclose(tw, 0);
2186 			else
2187 				INP_WUNLOCK(inp);
2188 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2189 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2190 			tp = intotcpcb(inp);
2191 			tp = tcp_drop(tp, ECONNABORTED);
2192 			if (tp != NULL)
2193 				INP_WUNLOCK(inp);
2194 		} else
2195 			INP_WUNLOCK(inp);
2196 	} else
2197 		error = ESRCH;
2198 	INP_INFO_WUNLOCK(&V_tcbinfo);
2199 	return (error);
2200 }
2201 
2202 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2203     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2204     0, sysctl_drop, "", "Drop TCP connection");
2205 
2206 /*
2207  * Generate a standardized TCP log line for use throughout the
2208  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2209  * allow use in the interrupt context.
2210  *
2211  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2212  * NB: The function may return NULL if memory allocation failed.
2213  *
2214  * Due to header inclusion and ordering limitations the struct ip
2215  * and ip6_hdr pointers have to be passed as void pointers.
2216  */
2217 char *
2218 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2219     const void *ip6hdr)
2220 {
2221 
2222 	/* Is logging enabled? */
2223 	if (tcp_log_in_vain == 0)
2224 		return (NULL);
2225 
2226 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2227 }
2228 
2229 char *
2230 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2231     const void *ip6hdr)
2232 {
2233 
2234 	/* Is logging enabled? */
2235 	if (tcp_log_debug == 0)
2236 		return (NULL);
2237 
2238 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2239 }
2240 
2241 static char *
2242 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2243     const void *ip6hdr)
2244 {
2245 	char *s, *sp;
2246 	size_t size;
2247 	struct ip *ip;
2248 #ifdef INET6
2249 	const struct ip6_hdr *ip6;
2250 
2251 	ip6 = (const struct ip6_hdr *)ip6hdr;
2252 #endif /* INET6 */
2253 	ip = (struct ip *)ip4hdr;
2254 
2255 	/*
2256 	 * The log line looks like this:
2257 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2258 	 */
2259 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2260 	    sizeof(PRINT_TH_FLAGS) + 1 +
2261 #ifdef INET6
2262 	    2 * INET6_ADDRSTRLEN;
2263 #else
2264 	    2 * INET_ADDRSTRLEN;
2265 #endif /* INET6 */
2266 
2267 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2268 	if (s == NULL)
2269 		return (NULL);
2270 
2271 	strcat(s, "TCP: [");
2272 	sp = s + strlen(s);
2273 
2274 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2275 		inet_ntoa_r(inc->inc_faddr, sp);
2276 		sp = s + strlen(s);
2277 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2278 		sp = s + strlen(s);
2279 		inet_ntoa_r(inc->inc_laddr, sp);
2280 		sp = s + strlen(s);
2281 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2282 #ifdef INET6
2283 	} else if (inc) {
2284 		ip6_sprintf(sp, &inc->inc6_faddr);
2285 		sp = s + strlen(s);
2286 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2287 		sp = s + strlen(s);
2288 		ip6_sprintf(sp, &inc->inc6_laddr);
2289 		sp = s + strlen(s);
2290 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2291 	} else if (ip6 && th) {
2292 		ip6_sprintf(sp, &ip6->ip6_src);
2293 		sp = s + strlen(s);
2294 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2295 		sp = s + strlen(s);
2296 		ip6_sprintf(sp, &ip6->ip6_dst);
2297 		sp = s + strlen(s);
2298 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2299 #endif /* INET6 */
2300 #ifdef INET
2301 	} else if (ip && th) {
2302 		inet_ntoa_r(ip->ip_src, sp);
2303 		sp = s + strlen(s);
2304 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2305 		sp = s + strlen(s);
2306 		inet_ntoa_r(ip->ip_dst, sp);
2307 		sp = s + strlen(s);
2308 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2309 #endif /* INET */
2310 	} else {
2311 		free(s, M_TCPLOG);
2312 		return (NULL);
2313 	}
2314 	sp = s + strlen(s);
2315 	if (th)
2316 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2317 	if (*(s + size - 1) != '\0')
2318 		panic("%s: string too long", __func__);
2319 	return (s);
2320 }
2321