1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <stddef.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kernel.h> 47 #include <sys/sysctl.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #ifdef INET6 51 #include <sys/domain.h> 52 #endif 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 58 #include <vm/vm_zone.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #define _IP_VHL 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #ifdef INET6 68 #include <netinet/ip6.h> 69 #endif 70 #include <netinet/in_pcb.h> 71 #ifdef INET6 72 #include <netinet6/in6_pcb.h> 73 #endif 74 #include <netinet/in_var.h> 75 #include <netinet/ip_var.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #endif 79 #include <netinet/tcp.h> 80 #include <netinet/tcp_fsm.h> 81 #include <netinet/tcp_seq.h> 82 #include <netinet/tcp_timer.h> 83 #include <netinet/tcp_var.h> 84 #ifdef INET6 85 #include <netinet6/tcp6_var.h> 86 #endif 87 #include <netinet/tcpip.h> 88 #ifdef TCPDEBUG 89 #include <netinet/tcp_debug.h> 90 #endif 91 #include <netinet6/ip6protosw.h> 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #ifdef INET6 96 #include <netinet6/ipsec6.h> 97 #endif 98 #endif /*IPSEC*/ 99 100 #include <machine/in_cksum.h> 101 102 int tcp_mssdflt = TCP_MSS; 103 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 104 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 105 106 #ifdef INET6 107 int tcp_v6mssdflt = TCP6_MSS; 108 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 109 CTLFLAG_RW, &tcp_v6mssdflt , 0, 110 "Default TCP Maximum Segment Size for IPv6"); 111 #endif 112 113 #if 0 114 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 115 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 116 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 117 #endif 118 119 static int tcp_do_rfc1323 = 1; 120 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 121 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 122 123 static int tcp_do_rfc1644 = 0; 124 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 125 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 126 127 static int tcp_tcbhashsize = 0; 128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 129 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 130 131 static int do_tcpdrain = 1; 132 SYSCTL_INT(_debug, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 133 "Enable non Net3 compliant tcp_drain"); 134 135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 136 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 137 138 static void tcp_cleartaocache __P((void)); 139 static void tcp_notify __P((struct inpcb *, int)); 140 141 /* 142 * Target size of TCP PCB hash tables. Must be a power of two. 143 * 144 * Note that this can be overridden by the kernel environment 145 * variable net.inet.tcp.tcbhashsize 146 */ 147 #ifndef TCBHASHSIZE 148 #define TCBHASHSIZE 512 149 #endif 150 151 /* 152 * This is the actual shape of what we allocate using the zone 153 * allocator. Doing it this way allows us to protect both structures 154 * using the same generation count, and also eliminates the overhead 155 * of allocating tcpcbs separately. By hiding the structure here, 156 * we avoid changing most of the rest of the code (although it needs 157 * to be changed, eventually, for greater efficiency). 158 */ 159 #define ALIGNMENT 32 160 #define ALIGNM1 (ALIGNMENT - 1) 161 struct inp_tp { 162 union { 163 struct inpcb inp; 164 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 165 } inp_tp_u; 166 struct tcpcb tcb; 167 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 168 struct callout inp_tp_delack; 169 }; 170 #undef ALIGNMENT 171 #undef ALIGNM1 172 173 /* 174 * Tcp initialization 175 */ 176 void 177 tcp_init() 178 { 179 int hashsize; 180 181 tcp_iss = random(); /* wrong, but better than a constant */ 182 tcp_ccgen = 1; 183 tcp_cleartaocache(); 184 185 tcp_delacktime = TCPTV_DELACK; 186 tcp_keepinit = TCPTV_KEEP_INIT; 187 tcp_keepidle = TCPTV_KEEP_IDLE; 188 tcp_keepintvl = TCPTV_KEEPINTVL; 189 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 190 tcp_msl = TCPTV_MSL; 191 192 LIST_INIT(&tcb); 193 tcbinfo.listhead = &tcb; 194 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize); 195 if (!powerof2(hashsize)) { 196 printf("WARNING: TCB hash size not a power of 2\n"); 197 hashsize = 512; /* safe default */ 198 } 199 tcp_tcbhashsize = hashsize; 200 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 201 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 202 &tcbinfo.porthashmask); 203 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets, 204 ZONE_INTERRUPT, 0); 205 #ifdef INET6 206 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 207 #else /* INET6 */ 208 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 209 #endif /* INET6 */ 210 if (max_protohdr < TCP_MINPROTOHDR) 211 max_protohdr = TCP_MINPROTOHDR; 212 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 213 panic("tcp_init"); 214 #undef TCP_MINPROTOHDR 215 } 216 217 /* 218 * Create template to be used to send tcp packets on a connection. 219 * Call after host entry created, allocates an mbuf and fills 220 * in a skeletal tcp/ip header, minimizing the amount of work 221 * necessary when the connection is used. 222 */ 223 struct tcptemp * 224 tcp_template(tp) 225 struct tcpcb *tp; 226 { 227 register struct inpcb *inp = tp->t_inpcb; 228 register struct mbuf *m; 229 register struct tcptemp *n; 230 231 if ((n = tp->t_template) == 0) { 232 m = m_get(M_DONTWAIT, MT_HEADER); 233 if (m == NULL) 234 return (0); 235 m->m_len = sizeof (struct tcptemp); 236 n = mtod(m, struct tcptemp *); 237 } 238 #ifdef INET6 239 if ((inp->inp_vflag & INP_IPV6) != 0) { 240 register struct ip6_hdr *ip6; 241 242 ip6 = (struct ip6_hdr *)n->tt_ipgen; 243 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 244 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 245 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 246 (IPV6_VERSION & IPV6_VERSION_MASK); 247 ip6->ip6_nxt = IPPROTO_TCP; 248 ip6->ip6_plen = sizeof(struct tcphdr); 249 ip6->ip6_src = inp->in6p_laddr; 250 ip6->ip6_dst = inp->in6p_faddr; 251 n->tt_t.th_sum = 0; 252 } else 253 #endif 254 { 255 struct ip *ip = (struct ip *)n->tt_ipgen; 256 257 bzero(ip, sizeof(struct ip)); /* XXX overkill? */ 258 ip->ip_vhl = IP_VHL_BORING; 259 ip->ip_p = IPPROTO_TCP; 260 ip->ip_src = inp->inp_laddr; 261 ip->ip_dst = inp->inp_faddr; 262 n->tt_t.th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 263 htons(sizeof(struct tcphdr) + IPPROTO_TCP)); 264 } 265 n->tt_t.th_sport = inp->inp_lport; 266 n->tt_t.th_dport = inp->inp_fport; 267 n->tt_t.th_seq = 0; 268 n->tt_t.th_ack = 0; 269 n->tt_t.th_x2 = 0; 270 n->tt_t.th_off = 5; 271 n->tt_t.th_flags = 0; 272 n->tt_t.th_win = 0; 273 n->tt_t.th_urp = 0; 274 return (n); 275 } 276 277 /* 278 * Send a single message to the TCP at address specified by 279 * the given TCP/IP header. If m == 0, then we make a copy 280 * of the tcpiphdr at ti and send directly to the addressed host. 281 * This is used to force keep alive messages out using the TCP 282 * template for a connection tp->t_template. If flags are given 283 * then we send a message back to the TCP which originated the 284 * segment ti, and discard the mbuf containing it and any other 285 * attached mbufs. 286 * 287 * In any case the ack and sequence number of the transmitted 288 * segment are as specified by the parameters. 289 * 290 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 291 */ 292 void 293 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 294 struct tcpcb *tp; 295 void *ipgen; 296 register struct tcphdr *th; 297 register struct mbuf *m; 298 tcp_seq ack, seq; 299 int flags; 300 { 301 register int tlen; 302 int win = 0; 303 struct route *ro = 0; 304 struct route sro; 305 struct ip *ip; 306 struct tcphdr *nth; 307 #ifdef INET6 308 struct route_in6 *ro6 = 0; 309 struct route_in6 sro6; 310 struct ip6_hdr *ip6; 311 int isipv6; 312 #endif /* INET6 */ 313 int ipflags = 0; 314 315 #ifdef INET6 316 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 317 ip6 = ipgen; 318 #endif /* INET6 */ 319 ip = ipgen; 320 321 if (tp) { 322 if (!(flags & TH_RST)) { 323 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 324 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 325 win = (long)TCP_MAXWIN << tp->rcv_scale; 326 } 327 #ifdef INET6 328 if (isipv6) 329 ro6 = &tp->t_inpcb->in6p_route; 330 else 331 #endif /* INET6 */ 332 ro = &tp->t_inpcb->inp_route; 333 } else { 334 #ifdef INET6 335 if (isipv6) { 336 ro6 = &sro6; 337 bzero(ro6, sizeof *ro6); 338 } else 339 #endif /* INET6 */ 340 { 341 ro = &sro; 342 bzero(ro, sizeof *ro); 343 } 344 } 345 if (m == 0) { 346 m = m_gethdr(M_DONTWAIT, MT_HEADER); 347 if (m == NULL) 348 return; 349 #ifdef TCP_COMPAT_42 350 tlen = 1; 351 #else 352 tlen = 0; 353 #endif 354 m->m_data += max_linkhdr; 355 #ifdef INET6 356 if (isipv6) { 357 bcopy((caddr_t)ip6, mtod(m, caddr_t), 358 sizeof(struct ip6_hdr)); 359 ip6 = mtod(m, struct ip6_hdr *); 360 nth = (struct tcphdr *)(ip6 + 1); 361 } else 362 #endif /* INET6 */ 363 { 364 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 365 ip = mtod(m, struct ip *); 366 nth = (struct tcphdr *)(ip + 1); 367 } 368 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 369 flags = TH_ACK; 370 } else { 371 m_freem(m->m_next); 372 m->m_next = 0; 373 m->m_data = (caddr_t)ipgen; 374 /* m_len is set later */ 375 tlen = 0; 376 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 377 #ifdef INET6 378 if (isipv6) { 379 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 380 nth = (struct tcphdr *)(ip6 + 1); 381 } else 382 #endif /* INET6 */ 383 { 384 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 385 nth = (struct tcphdr *)(ip + 1); 386 } 387 if (th != nth) { 388 /* 389 * this is usually a case when an extension header 390 * exists between the IPv6 header and the 391 * TCP header. 392 */ 393 nth->th_sport = th->th_sport; 394 nth->th_dport = th->th_dport; 395 } 396 xchg(nth->th_dport, nth->th_sport, n_short); 397 #undef xchg 398 } 399 #ifdef INET6 400 if (isipv6) { 401 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 402 tlen)); 403 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 404 } else 405 #endif 406 { 407 tlen += sizeof (struct tcpiphdr); 408 ip->ip_len = tlen; 409 ip->ip_ttl = ip_defttl; 410 } 411 m->m_len = tlen; 412 m->m_pkthdr.len = tlen; 413 m->m_pkthdr.rcvif = (struct ifnet *) 0; 414 nth->th_seq = htonl(seq); 415 nth->th_ack = htonl(ack); 416 nth->th_x2 = 0; 417 nth->th_off = sizeof (struct tcphdr) >> 2; 418 nth->th_flags = flags; 419 if (tp) 420 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 421 else 422 nth->th_win = htons((u_short)win); 423 nth->th_urp = 0; 424 #ifdef INET6 425 if (isipv6) { 426 nth->th_sum = 0; 427 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 428 sizeof(struct ip6_hdr), 429 tlen - sizeof(struct ip6_hdr)); 430 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 431 ro6 && ro6->ro_rt ? 432 ro6->ro_rt->rt_ifp : 433 NULL); 434 } else 435 #endif /* INET6 */ 436 { 437 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 438 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 439 m->m_pkthdr.csum_flags = CSUM_TCP; 440 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 441 } 442 #ifdef TCPDEBUG 443 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 444 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 445 #endif 446 #ifdef IPSEC 447 ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL); 448 #endif 449 #ifdef INET6 450 if (isipv6) { 451 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 452 if (ro6 == &sro6 && ro6->ro_rt) { 453 RTFREE(ro6->ro_rt); 454 ro6->ro_rt = NULL; 455 } 456 } else 457 #endif /* INET6 */ 458 { 459 (void) ip_output(m, NULL, ro, ipflags, NULL); 460 if (ro == &sro && ro->ro_rt) { 461 RTFREE(ro->ro_rt); 462 ro->ro_rt = NULL; 463 } 464 } 465 } 466 467 /* 468 * Create a new TCP control block, making an 469 * empty reassembly queue and hooking it to the argument 470 * protocol control block. The `inp' parameter must have 471 * come from the zone allocator set up in tcp_init(). 472 */ 473 struct tcpcb * 474 tcp_newtcpcb(inp) 475 struct inpcb *inp; 476 { 477 struct inp_tp *it; 478 register struct tcpcb *tp; 479 #ifdef INET6 480 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 481 #endif /* INET6 */ 482 483 it = (struct inp_tp *)inp; 484 tp = &it->tcb; 485 bzero((char *) tp, sizeof(struct tcpcb)); 486 LIST_INIT(&tp->t_segq); 487 tp->t_maxseg = tp->t_maxopd = 488 #ifdef INET6 489 isipv6 ? tcp_v6mssdflt : 490 #endif /* INET6 */ 491 tcp_mssdflt; 492 493 /* Set up our timeouts. */ 494 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt); 495 callout_init(tp->tt_persist = &it->inp_tp_persist); 496 callout_init(tp->tt_keep = &it->inp_tp_keep); 497 callout_init(tp->tt_2msl = &it->inp_tp_2msl); 498 callout_init(tp->tt_delack = &it->inp_tp_delack); 499 500 if (tcp_do_rfc1323) 501 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 502 if (tcp_do_rfc1644) 503 tp->t_flags |= TF_REQ_CC; 504 tp->t_inpcb = inp; /* XXX */ 505 /* 506 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 507 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 508 * reasonable initial retransmit time. 509 */ 510 tp->t_srtt = TCPTV_SRTTBASE; 511 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 512 tp->t_rttmin = TCPTV_MIN; 513 tp->t_rxtcur = TCPTV_RTOBASE; 514 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 515 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 516 tp->t_rcvtime = ticks; 517 /* 518 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 519 * because the socket may be bound to an IPv6 wildcard address, 520 * which may match an IPv4-mapped IPv6 address. 521 */ 522 inp->inp_ip_ttl = ip_defttl; 523 inp->inp_ppcb = (caddr_t)tp; 524 return (tp); /* XXX */ 525 } 526 527 /* 528 * Drop a TCP connection, reporting 529 * the specified error. If connection is synchronized, 530 * then send a RST to peer. 531 */ 532 struct tcpcb * 533 tcp_drop(tp, errno) 534 register struct tcpcb *tp; 535 int errno; 536 { 537 struct socket *so = tp->t_inpcb->inp_socket; 538 539 if (TCPS_HAVERCVDSYN(tp->t_state)) { 540 tp->t_state = TCPS_CLOSED; 541 (void) tcp_output(tp); 542 tcpstat.tcps_drops++; 543 } else 544 tcpstat.tcps_conndrops++; 545 if (errno == ETIMEDOUT && tp->t_softerror) 546 errno = tp->t_softerror; 547 so->so_error = errno; 548 return (tcp_close(tp)); 549 } 550 551 /* 552 * Close a TCP control block: 553 * discard all space held by the tcp 554 * discard internet protocol block 555 * wake up any sleepers 556 */ 557 struct tcpcb * 558 tcp_close(tp) 559 register struct tcpcb *tp; 560 { 561 register struct tseg_qent *q; 562 struct inpcb *inp = tp->t_inpcb; 563 struct socket *so = inp->inp_socket; 564 #ifdef INET6 565 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 566 #endif /* INET6 */ 567 register struct rtentry *rt; 568 int dosavessthresh; 569 570 /* 571 * Make sure that all of our timers are stopped before we 572 * delete the PCB. 573 */ 574 callout_stop(tp->tt_rexmt); 575 callout_stop(tp->tt_persist); 576 callout_stop(tp->tt_keep); 577 callout_stop(tp->tt_2msl); 578 callout_stop(tp->tt_delack); 579 580 /* 581 * If we got enough samples through the srtt filter, 582 * save the rtt and rttvar in the routing entry. 583 * 'Enough' is arbitrarily defined as the 16 samples. 584 * 16 samples is enough for the srtt filter to converge 585 * to within 5% of the correct value; fewer samples and 586 * we could save a very bogus rtt. 587 * 588 * Don't update the default route's characteristics and don't 589 * update anything that the user "locked". 590 */ 591 if (tp->t_rttupdated >= 16) { 592 register u_long i = 0; 593 #ifdef INET6 594 if (isipv6) { 595 struct sockaddr_in6 *sin6; 596 597 if ((rt = inp->in6p_route.ro_rt) == NULL) 598 goto no_valid_rt; 599 sin6 = (struct sockaddr_in6 *)rt_key(rt); 600 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 601 goto no_valid_rt; 602 } 603 else 604 #endif /* INET6 */ 605 if ((rt = inp->inp_route.ro_rt) == NULL || 606 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 607 == INADDR_ANY) 608 goto no_valid_rt; 609 610 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 611 i = tp->t_srtt * 612 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 613 if (rt->rt_rmx.rmx_rtt && i) 614 /* 615 * filter this update to half the old & half 616 * the new values, converting scale. 617 * See route.h and tcp_var.h for a 618 * description of the scaling constants. 619 */ 620 rt->rt_rmx.rmx_rtt = 621 (rt->rt_rmx.rmx_rtt + i) / 2; 622 else 623 rt->rt_rmx.rmx_rtt = i; 624 tcpstat.tcps_cachedrtt++; 625 } 626 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 627 i = tp->t_rttvar * 628 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 629 if (rt->rt_rmx.rmx_rttvar && i) 630 rt->rt_rmx.rmx_rttvar = 631 (rt->rt_rmx.rmx_rttvar + i) / 2; 632 else 633 rt->rt_rmx.rmx_rttvar = i; 634 tcpstat.tcps_cachedrttvar++; 635 } 636 /* 637 * The old comment here said: 638 * update the pipelimit (ssthresh) if it has been updated 639 * already or if a pipesize was specified & the threshhold 640 * got below half the pipesize. I.e., wait for bad news 641 * before we start updating, then update on both good 642 * and bad news. 643 * 644 * But we want to save the ssthresh even if no pipesize is 645 * specified explicitly in the route, because such 646 * connections still have an implicit pipesize specified 647 * by the global tcp_sendspace. In the absence of a reliable 648 * way to calculate the pipesize, it will have to do. 649 */ 650 i = tp->snd_ssthresh; 651 if (rt->rt_rmx.rmx_sendpipe != 0) 652 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 653 else 654 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 655 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 656 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 657 || dosavessthresh) { 658 /* 659 * convert the limit from user data bytes to 660 * packets then to packet data bytes. 661 */ 662 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 663 if (i < 2) 664 i = 2; 665 i *= (u_long)(tp->t_maxseg + 666 #ifdef INET6 667 (isipv6 ? sizeof (struct ip6_hdr) + 668 sizeof (struct tcphdr) : 669 #endif 670 sizeof (struct tcpiphdr) 671 #ifdef INET6 672 ) 673 #endif 674 ); 675 if (rt->rt_rmx.rmx_ssthresh) 676 rt->rt_rmx.rmx_ssthresh = 677 (rt->rt_rmx.rmx_ssthresh + i) / 2; 678 else 679 rt->rt_rmx.rmx_ssthresh = i; 680 tcpstat.tcps_cachedssthresh++; 681 } 682 } 683 no_valid_rt: 684 /* free the reassembly queue, if any */ 685 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 686 LIST_REMOVE(q, tqe_q); 687 m_freem(q->tqe_m); 688 FREE(q, M_TSEGQ); 689 } 690 if (tp->t_template) 691 (void) m_free(dtom(tp->t_template)); 692 inp->inp_ppcb = NULL; 693 soisdisconnected(so); 694 #ifdef INET6 695 if (INP_CHECK_SOCKAF(so, AF_INET6)) 696 in6_pcbdetach(inp); 697 else 698 #endif /* INET6 */ 699 in_pcbdetach(inp); 700 tcpstat.tcps_closed++; 701 return ((struct tcpcb *)0); 702 } 703 704 void 705 tcp_drain() 706 { 707 if (do_tcpdrain) 708 { 709 struct inpcb *inpb; 710 struct tcpcb *tcpb; 711 struct tseg_qent *te; 712 713 /* 714 * Walk the tcpbs, if existing, and flush the reassembly queue, 715 * if there is one... 716 * XXX: The "Net/3" implementation doesn't imply that the TCP 717 * reassembly queue should be flushed, but in a situation 718 * where we're really low on mbufs, this is potentially 719 * usefull. 720 */ 721 for (inpb = tcbinfo.listhead->lh_first; inpb; 722 inpb = inpb->inp_list.le_next) { 723 if ((tcpb = intotcpcb(inpb))) { 724 while ((te = LIST_FIRST(&tcpb->t_segq)) 725 != NULL) { 726 LIST_REMOVE(te, tqe_q); 727 m_freem(te->tqe_m); 728 FREE(te, M_TSEGQ); 729 } 730 } 731 } 732 733 } 734 } 735 736 /* 737 * Notify a tcp user of an asynchronous error; 738 * store error as soft error, but wake up user 739 * (for now, won't do anything until can select for soft error). 740 */ 741 static void 742 tcp_notify(inp, error) 743 struct inpcb *inp; 744 int error; 745 { 746 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 747 register struct socket *so = inp->inp_socket; 748 749 /* 750 * Ignore some errors if we are hooked up. 751 * If connection hasn't completed, has retransmitted several times, 752 * and receives a second error, give up now. This is better 753 * than waiting a long time to establish a connection that 754 * can never complete. 755 */ 756 if (tp->t_state == TCPS_ESTABLISHED && 757 (error == EHOSTUNREACH || error == ENETUNREACH || 758 error == EHOSTDOWN)) { 759 return; 760 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 761 tp->t_softerror) 762 so->so_error = error; 763 else 764 tp->t_softerror = error; 765 wakeup((caddr_t) &so->so_timeo); 766 sorwakeup(so); 767 sowwakeup(so); 768 } 769 770 static int 771 tcp_pcblist(SYSCTL_HANDLER_ARGS) 772 { 773 int error, i, n, s; 774 struct inpcb *inp, **inp_list; 775 inp_gen_t gencnt; 776 struct xinpgen xig; 777 778 /* 779 * The process of preparing the TCB list is too time-consuming and 780 * resource-intensive to repeat twice on every request. 781 */ 782 if (req->oldptr == 0) { 783 n = tcbinfo.ipi_count; 784 req->oldidx = 2 * (sizeof xig) 785 + (n + n/8) * sizeof(struct xtcpcb); 786 return 0; 787 } 788 789 if (req->newptr != 0) 790 return EPERM; 791 792 /* 793 * OK, now we're committed to doing something. 794 */ 795 s = splnet(); 796 gencnt = tcbinfo.ipi_gencnt; 797 n = tcbinfo.ipi_count; 798 splx(s); 799 800 xig.xig_len = sizeof xig; 801 xig.xig_count = n; 802 xig.xig_gen = gencnt; 803 xig.xig_sogen = so_gencnt; 804 error = SYSCTL_OUT(req, &xig, sizeof xig); 805 if (error) 806 return error; 807 808 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 809 if (inp_list == 0) 810 return ENOMEM; 811 812 s = splnet(); 813 for (inp = tcbinfo.listhead->lh_first, i = 0; inp && i < n; 814 inp = inp->inp_list.le_next) { 815 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp)) 816 inp_list[i++] = inp; 817 } 818 splx(s); 819 n = i; 820 821 error = 0; 822 for (i = 0; i < n; i++) { 823 inp = inp_list[i]; 824 if (inp->inp_gencnt <= gencnt) { 825 struct xtcpcb xt; 826 caddr_t inp_ppcb; 827 xt.xt_len = sizeof xt; 828 /* XXX should avoid extra copy */ 829 bcopy(inp, &xt.xt_inp, sizeof *inp); 830 inp_ppcb = inp->inp_ppcb; 831 if (inp_ppcb != NULL) 832 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 833 else 834 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 835 if (inp->inp_socket) 836 sotoxsocket(inp->inp_socket, &xt.xt_socket); 837 error = SYSCTL_OUT(req, &xt, sizeof xt); 838 } 839 } 840 if (!error) { 841 /* 842 * Give the user an updated idea of our state. 843 * If the generation differs from what we told 844 * her before, she knows that something happened 845 * while we were processing this request, and it 846 * might be necessary to retry. 847 */ 848 s = splnet(); 849 xig.xig_gen = tcbinfo.ipi_gencnt; 850 xig.xig_sogen = so_gencnt; 851 xig.xig_count = tcbinfo.ipi_count; 852 splx(s); 853 error = SYSCTL_OUT(req, &xig, sizeof xig); 854 } 855 free(inp_list, M_TEMP); 856 return error; 857 } 858 859 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 860 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 861 862 static int 863 tcp_getcred(SYSCTL_HANDLER_ARGS) 864 { 865 struct sockaddr_in addrs[2]; 866 struct inpcb *inp; 867 int error, s; 868 869 error = suser(req->p); 870 if (error) 871 return (error); 872 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 873 if (error) 874 return (error); 875 s = splnet(); 876 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 877 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 878 if (inp == NULL || inp->inp_socket == NULL) { 879 error = ENOENT; 880 goto out; 881 } 882 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred)); 883 out: 884 splx(s); 885 return (error); 886 } 887 888 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 889 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection"); 890 891 #ifdef INET6 892 static int 893 tcp6_getcred(SYSCTL_HANDLER_ARGS) 894 { 895 struct sockaddr_in6 addrs[2]; 896 struct inpcb *inp; 897 int error, s, mapped = 0; 898 899 error = suser(req->p); 900 if (error) 901 return (error); 902 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 903 if (error) 904 return (error); 905 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 906 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 907 mapped = 1; 908 else 909 return (EINVAL); 910 } 911 s = splnet(); 912 if (mapped == 1) 913 inp = in_pcblookup_hash(&tcbinfo, 914 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 915 addrs[1].sin6_port, 916 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 917 addrs[0].sin6_port, 918 0, NULL); 919 else 920 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 921 addrs[1].sin6_port, 922 &addrs[0].sin6_addr, addrs[0].sin6_port, 923 0, NULL); 924 if (inp == NULL || inp->inp_socket == NULL) { 925 error = ENOENT; 926 goto out; 927 } 928 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, 929 sizeof(struct ucred)); 930 out: 931 splx(s); 932 return (error); 933 } 934 935 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 936 0, 0, 937 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection"); 938 #endif 939 940 941 void 942 tcp_ctlinput(cmd, sa, vip) 943 int cmd; 944 struct sockaddr *sa; 945 void *vip; 946 { 947 register struct ip *ip = vip; 948 register struct tcphdr *th; 949 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 950 951 if (cmd == PRC_QUENCH) 952 notify = tcp_quench; 953 else if (cmd == PRC_MSGSIZE) 954 notify = tcp_mtudisc; 955 else if (!PRC_IS_REDIRECT(cmd) && 956 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)) 957 return; 958 if (ip) { 959 th = (struct tcphdr *)((caddr_t)ip 960 + (IP_VHL_HL(ip->ip_vhl) << 2)); 961 in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport, 962 cmd, notify); 963 } else 964 in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify); 965 } 966 967 #ifdef INET6 968 void 969 tcp6_ctlinput(cmd, sa, d) 970 int cmd; 971 struct sockaddr *sa; 972 void *d; 973 { 974 register struct tcphdr *thp; 975 struct tcphdr th; 976 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 977 struct sockaddr_in6 sa6; 978 struct ip6_hdr *ip6; 979 struct mbuf *m; 980 int off; 981 982 if (sa->sa_family != AF_INET6 || 983 sa->sa_len != sizeof(struct sockaddr_in6)) 984 return; 985 986 if (cmd == PRC_QUENCH) 987 notify = tcp_quench; 988 else if (cmd == PRC_MSGSIZE) 989 notify = tcp_mtudisc; 990 else if (!PRC_IS_REDIRECT(cmd) && 991 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 992 return; 993 994 /* if the parameter is from icmp6, decode it. */ 995 if (d != NULL) { 996 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d; 997 m = ip6cp->ip6c_m; 998 ip6 = ip6cp->ip6c_ip6; 999 off = ip6cp->ip6c_off; 1000 } else { 1001 m = NULL; 1002 ip6 = NULL; 1003 } 1004 1005 /* 1006 * Translate addresses into internal form. 1007 * Sa check if it is AF_INET6 is done at the top of this funciton. 1008 */ 1009 sa6 = *(struct sockaddr_in6 *)sa; 1010 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL && 1011 m->m_pkthdr.rcvif != NULL) 1012 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1013 1014 if (ip6) { 1015 /* 1016 * XXX: We assume that when IPV6 is non NULL, 1017 * M and OFF are valid. 1018 */ 1019 struct in6_addr s; 1020 1021 /* translate addresses into internal form */ 1022 memcpy(&s, &ip6->ip6_src, sizeof(s)); 1023 if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL && 1024 m->m_pkthdr.rcvif != NULL) 1025 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1026 1027 if (m->m_len < off + sizeof(*thp)) { 1028 /* 1029 * this should be rare case 1030 * because now MINCLSIZE is "(MHLEN + 1)", 1031 * so we compromise on this copy... 1032 */ 1033 m_copydata(m, off, sizeof(th), (caddr_t)&th); 1034 thp = &th; 1035 } else 1036 thp = (struct tcphdr *)(mtod(m, caddr_t) + off); 1037 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport, 1038 &s, thp->th_sport, cmd, notify); 1039 } else 1040 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr, 1041 0, cmd, notify); 1042 } 1043 #endif /* INET6 */ 1044 1045 /* 1046 * When a source quench is received, close congestion window 1047 * to one segment. We will gradually open it again as we proceed. 1048 */ 1049 void 1050 tcp_quench(inp, errno) 1051 struct inpcb *inp; 1052 int errno; 1053 { 1054 struct tcpcb *tp = intotcpcb(inp); 1055 1056 if (tp) 1057 tp->snd_cwnd = tp->t_maxseg; 1058 } 1059 1060 /* 1061 * When `need fragmentation' ICMP is received, update our idea of the MSS 1062 * based on the new value in the route. Also nudge TCP to send something, 1063 * since we know the packet we just sent was dropped. 1064 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1065 */ 1066 void 1067 tcp_mtudisc(inp, errno) 1068 struct inpcb *inp; 1069 int errno; 1070 { 1071 struct tcpcb *tp = intotcpcb(inp); 1072 struct rtentry *rt; 1073 struct rmxp_tao *taop; 1074 struct socket *so = inp->inp_socket; 1075 int offered; 1076 int mss; 1077 #ifdef INET6 1078 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1079 #endif /* INET6 */ 1080 1081 if (tp) { 1082 #ifdef INET6 1083 if (isipv6) 1084 rt = tcp_rtlookup6(inp); 1085 else 1086 #endif /* INET6 */ 1087 rt = tcp_rtlookup(inp); 1088 if (!rt || !rt->rt_rmx.rmx_mtu) { 1089 tp->t_maxopd = tp->t_maxseg = 1090 #ifdef INET6 1091 isipv6 ? tcp_v6mssdflt : 1092 #endif /* INET6 */ 1093 tcp_mssdflt; 1094 return; 1095 } 1096 taop = rmx_taop(rt->rt_rmx); 1097 offered = taop->tao_mssopt; 1098 mss = rt->rt_rmx.rmx_mtu - 1099 #ifdef INET6 1100 (isipv6 ? 1101 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1102 #endif /* INET6 */ 1103 sizeof(struct tcpiphdr) 1104 #ifdef INET6 1105 ) 1106 #endif /* INET6 */ 1107 ; 1108 1109 if (offered) 1110 mss = min(mss, offered); 1111 /* 1112 * XXX - The above conditional probably violates the TCP 1113 * spec. The problem is that, since we don't know the 1114 * other end's MSS, we are supposed to use a conservative 1115 * default. But, if we do that, then MTU discovery will 1116 * never actually take place, because the conservative 1117 * default is much less than the MTUs typically seen 1118 * on the Internet today. For the moment, we'll sweep 1119 * this under the carpet. 1120 * 1121 * The conservative default might not actually be a problem 1122 * if the only case this occurs is when sending an initial 1123 * SYN with options and data to a host we've never talked 1124 * to before. Then, they will reply with an MSS value which 1125 * will get recorded and the new parameters should get 1126 * recomputed. For Further Study. 1127 */ 1128 if (tp->t_maxopd <= mss) 1129 return; 1130 tp->t_maxopd = mss; 1131 1132 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1133 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1134 mss -= TCPOLEN_TSTAMP_APPA; 1135 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1136 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1137 mss -= TCPOLEN_CC_APPA; 1138 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1139 if (mss > MCLBYTES) 1140 mss &= ~(MCLBYTES-1); 1141 #else 1142 if (mss > MCLBYTES) 1143 mss = mss / MCLBYTES * MCLBYTES; 1144 #endif 1145 if (so->so_snd.sb_hiwat < mss) 1146 mss = so->so_snd.sb_hiwat; 1147 1148 tp->t_maxseg = mss; 1149 1150 tcpstat.tcps_mturesent++; 1151 tp->t_rtttime = 0; 1152 tp->snd_nxt = tp->snd_una; 1153 tcp_output(tp); 1154 } 1155 } 1156 1157 /* 1158 * Look-up the routing entry to the peer of this inpcb. If no route 1159 * is found and it cannot be allocated the return NULL. This routine 1160 * is called by TCP routines that access the rmx structure and by tcp_mss 1161 * to get the interface MTU. 1162 */ 1163 struct rtentry * 1164 tcp_rtlookup(inp) 1165 struct inpcb *inp; 1166 { 1167 struct route *ro; 1168 struct rtentry *rt; 1169 1170 ro = &inp->inp_route; 1171 rt = ro->ro_rt; 1172 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1173 /* No route yet, so try to acquire one */ 1174 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1175 ro->ro_dst.sa_family = AF_INET; 1176 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1177 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1178 inp->inp_faddr; 1179 rtalloc(ro); 1180 rt = ro->ro_rt; 1181 } 1182 } 1183 return rt; 1184 } 1185 1186 #ifdef INET6 1187 struct rtentry * 1188 tcp_rtlookup6(inp) 1189 struct inpcb *inp; 1190 { 1191 struct route_in6 *ro6; 1192 struct rtentry *rt; 1193 1194 ro6 = &inp->in6p_route; 1195 rt = ro6->ro_rt; 1196 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1197 /* No route yet, so try to acquire one */ 1198 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { 1199 ro6->ro_dst.sin6_family = AF_INET6; 1200 ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst); 1201 ro6->ro_dst.sin6_addr = inp->in6p_faddr; 1202 rtalloc((struct route *)ro6); 1203 rt = ro6->ro_rt; 1204 } 1205 } 1206 return rt; 1207 } 1208 #endif /* INET6 */ 1209 1210 #ifdef IPSEC 1211 /* compute ESP/AH header size for TCP, including outer IP header. */ 1212 size_t 1213 ipsec_hdrsiz_tcp(tp) 1214 struct tcpcb *tp; 1215 { 1216 struct inpcb *inp; 1217 struct mbuf *m; 1218 size_t hdrsiz; 1219 struct ip *ip; 1220 #ifdef INET6 1221 struct ip6_hdr *ip6; 1222 #endif /* INET6 */ 1223 struct tcphdr *th; 1224 1225 if (!tp || !tp->t_template || !(inp = tp->t_inpcb)) 1226 return 0; 1227 MGETHDR(m, M_DONTWAIT, MT_DATA); 1228 if (!m) 1229 return 0; 1230 1231 #ifdef INET6 1232 if ((inp->inp_vflag & INP_IPV6) != 0) { 1233 ip6 = mtod(m, struct ip6_hdr *); 1234 th = (struct tcphdr *)(ip6 + 1); 1235 m->m_pkthdr.len = m->m_len = 1236 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1237 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6, 1238 sizeof(struct ip6_hdr)); 1239 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1240 sizeof(struct tcphdr)); 1241 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1242 } else 1243 #endif /* INET6 */ 1244 { 1245 ip = mtod(m, struct ip *); 1246 th = (struct tcphdr *)(ip + 1); 1247 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1248 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip, 1249 sizeof(struct ip)); 1250 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1251 sizeof(struct tcphdr)); 1252 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1253 } 1254 1255 m_free(m); 1256 return hdrsiz; 1257 } 1258 #endif /*IPSEC*/ 1259 1260 /* 1261 * Return a pointer to the cached information about the remote host. 1262 * The cached information is stored in the protocol specific part of 1263 * the route metrics. 1264 */ 1265 struct rmxp_tao * 1266 tcp_gettaocache(inp) 1267 struct inpcb *inp; 1268 { 1269 struct rtentry *rt; 1270 1271 #ifdef INET6 1272 if ((inp->inp_vflag & INP_IPV6) != 0) 1273 rt = tcp_rtlookup6(inp); 1274 else 1275 #endif /* INET6 */ 1276 rt = tcp_rtlookup(inp); 1277 1278 /* Make sure this is a host route and is up. */ 1279 if (rt == NULL || 1280 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1281 return NULL; 1282 1283 return rmx_taop(rt->rt_rmx); 1284 } 1285 1286 /* 1287 * Clear all the TAO cache entries, called from tcp_init. 1288 * 1289 * XXX 1290 * This routine is just an empty one, because we assume that the routing 1291 * routing tables are initialized at the same time when TCP, so there is 1292 * nothing in the cache left over. 1293 */ 1294 static void 1295 tcp_cleartaocache() 1296 { 1297 } 1298