1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_kern_tls.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/arb.h> 45 #include <sys/callout.h> 46 #include <sys/eventhandler.h> 47 #ifdef TCP_HHOOK 48 #include <sys/hhook.h> 49 #endif 50 #include <sys/kernel.h> 51 #ifdef TCP_HHOOK 52 #include <sys/khelp.h> 53 #endif 54 #ifdef KERN_TLS 55 #include <sys/ktls.h> 56 #endif 57 #include <sys/qmath.h> 58 #include <sys/stats.h> 59 #include <sys/sysctl.h> 60 #include <sys/jail.h> 61 #include <sys/malloc.h> 62 #include <sys/refcount.h> 63 #include <sys/mbuf.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/sdt.h> 67 #include <sys/socket.h> 68 #include <sys/socketvar.h> 69 #include <sys/protosw.h> 70 #include <sys/random.h> 71 72 #include <vm/uma.h> 73 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_private.h> 79 #include <net/vnet.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/in_kdtrace.h> 84 #include <netinet/in_pcb.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/in_var.h> 87 #include <netinet/ip.h> 88 #include <netinet/ip_icmp.h> 89 #include <netinet/ip_var.h> 90 #ifdef INET6 91 #include <netinet/icmp6.h> 92 #include <netinet/ip6.h> 93 #include <netinet6/in6_fib.h> 94 #include <netinet6/in6_pcb.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet6/nd6.h> 98 #endif 99 100 #include <netinet/tcp.h> 101 #ifdef INVARIANTS 102 #define TCPSTATES 103 #endif 104 #include <netinet/tcp_fsm.h> 105 #include <netinet/tcp_seq.h> 106 #include <netinet/tcp_timer.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet/tcp_ecn.h> 109 #include <netinet/tcp_log_buf.h> 110 #include <netinet/tcp_syncache.h> 111 #include <netinet/tcp_hpts.h> 112 #include <netinet/tcp_lro.h> 113 #include <netinet/cc/cc.h> 114 #include <netinet/tcpip.h> 115 #include <netinet/tcp_fastopen.h> 116 #include <netinet/tcp_accounting.h> 117 #ifdef TCPPCAP 118 #include <netinet/tcp_pcap.h> 119 #endif 120 #ifdef TCP_OFFLOAD 121 #include <netinet/tcp_offload.h> 122 #endif 123 #include <netinet/udp.h> 124 #include <netinet/udp_var.h> 125 #ifdef INET6 126 #include <netinet6/tcp6_var.h> 127 #endif 128 129 #include <netipsec/ipsec_support.h> 130 131 #include <machine/in_cksum.h> 132 #include <crypto/siphash/siphash.h> 133 134 #include <security/mac/mac_framework.h> 135 136 #ifdef INET6 137 static ip6proto_ctlinput_t tcp6_ctlinput; 138 static udp_tun_icmp_t tcp6_ctlinput_viaudp; 139 #endif 140 141 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 142 #ifdef INET6 143 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 144 #endif 145 146 #ifdef TCP_SAD_DETECTION 147 /* Sack attack detection thresholds and such */ 148 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack_attack, 149 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 150 "Sack Attack detection thresholds"); 151 int32_t tcp_force_detection = 0; 152 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, force_detection, 153 CTLFLAG_RW, 154 &tcp_force_detection, 0, 155 "Do we force detection even if the INP has it off?"); 156 int32_t tcp_sad_limit = 10000; 157 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, limit, 158 CTLFLAG_RW, 159 &tcp_sad_limit, 10000, 160 "If SaD is enabled, what is the limit to sendmap entries (0 = unlimited)?"); 161 int32_t tcp_sack_to_ack_thresh = 700; /* 70 % */ 162 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sack_to_ack_thresh, 163 CTLFLAG_RW, 164 &tcp_sack_to_ack_thresh, 700, 165 "Percentage of sacks to acks we must see above (10.1 percent is 101)?"); 166 int32_t tcp_sack_to_move_thresh = 600; /* 60 % */ 167 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, move_thresh, 168 CTLFLAG_RW, 169 &tcp_sack_to_move_thresh, 600, 170 "Percentage of sack moves we must see above (10.1 percent is 101)"); 171 int32_t tcp_restoral_thresh = 450; /* 45 % (sack:2:ack -25%) (mv:ratio -15%) **/ 172 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, restore_thresh, 173 CTLFLAG_RW, 174 &tcp_restoral_thresh, 450, 175 "Percentage of sack to ack percentage we must see below to restore(10.1 percent is 101)"); 176 int32_t tcp_sad_decay_val = 800; 177 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, decay_per, 178 CTLFLAG_RW, 179 &tcp_sad_decay_val, 800, 180 "The decay percentage (10.1 percent equals 101 )"); 181 int32_t tcp_map_minimum = 500; 182 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, nummaps, 183 CTLFLAG_RW, 184 &tcp_map_minimum, 500, 185 "Number of Map enteries before we start detection"); 186 int32_t tcp_sad_pacing_interval = 2000; 187 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_pacing_int, 188 CTLFLAG_RW, 189 &tcp_sad_pacing_interval, 2000, 190 "What is the minimum pacing interval for a classified attacker?"); 191 192 int32_t tcp_sad_low_pps = 100; 193 SYSCTL_INT(_net_inet_tcp_sack_attack, OID_AUTO, sad_low_pps, 194 CTLFLAG_RW, 195 &tcp_sad_low_pps, 100, 196 "What is the input pps that below which we do not decay?"); 197 #endif 198 uint32_t tcp_ack_war_time_window = 1000; 199 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow, 200 CTLFLAG_RW, 201 &tcp_ack_war_time_window, 1000, 202 "If the tcp_stack does ack-war prevention how many milliseconds are in its time window?"); 203 uint32_t tcp_ack_war_cnt = 5; 204 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, 205 CTLFLAG_RW, 206 &tcp_ack_war_cnt, 5, 207 "If the tcp_stack does ack-war prevention how many acks can be sent in its time window?"); 208 209 struct rwlock tcp_function_lock; 210 211 static int 212 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 213 { 214 int error, new; 215 216 new = V_tcp_mssdflt; 217 error = sysctl_handle_int(oidp, &new, 0, req); 218 if (error == 0 && req->newptr) { 219 if (new < TCP_MINMSS) 220 error = EINVAL; 221 else 222 V_tcp_mssdflt = new; 223 } 224 return (error); 225 } 226 227 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 228 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 229 &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", 230 "Default TCP Maximum Segment Size"); 231 232 #ifdef INET6 233 static int 234 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 235 { 236 int error, new; 237 238 new = V_tcp_v6mssdflt; 239 error = sysctl_handle_int(oidp, &new, 0, req); 240 if (error == 0 && req->newptr) { 241 if (new < TCP_MINMSS) 242 error = EINVAL; 243 else 244 V_tcp_v6mssdflt = new; 245 } 246 return (error); 247 } 248 249 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 250 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 251 &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", 252 "Default TCP Maximum Segment Size for IPv6"); 253 #endif /* INET6 */ 254 255 /* 256 * Minimum MSS we accept and use. This prevents DoS attacks where 257 * we are forced to a ridiculous low MSS like 20 and send hundreds 258 * of packets instead of one. The effect scales with the available 259 * bandwidth and quickly saturates the CPU and network interface 260 * with packet generation and sending. Set to zero to disable MINMSS 261 * checking. This setting prevents us from sending too small packets. 262 */ 263 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 265 &VNET_NAME(tcp_minmss), 0, 266 "Minimum TCP Maximum Segment Size"); 267 268 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 269 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 270 &VNET_NAME(tcp_do_rfc1323), 0, 271 "Enable rfc1323 (high performance TCP) extensions"); 272 273 /* 274 * As of June 2021, several TCP stacks violate RFC 7323 from September 2014. 275 * Some stacks negotiate TS, but never send them after connection setup. Some 276 * stacks negotiate TS, but don't send them when sending keep-alive segments. 277 * These include modern widely deployed TCP stacks. 278 * Therefore tolerating violations for now... 279 */ 280 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1; 281 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW, 282 &VNET_NAME(tcp_tolerate_missing_ts), 0, 283 "Tolerate missing TCP timestamps"); 284 285 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1; 286 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW, 287 &VNET_NAME(tcp_ts_offset_per_conn), 0, 288 "Initialize TCP timestamps per connection instead of per host pair"); 289 290 /* How many connections are pacing */ 291 static volatile uint32_t number_of_tcp_connections_pacing = 0; 292 static uint32_t shadow_num_connections = 0; 293 static counter_u64_t tcp_pacing_failures; 294 295 static int tcp_pacing_limit = 10000; 296 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW, 297 &tcp_pacing_limit, 1000, 298 "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)"); 299 300 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD, 301 &shadow_num_connections, 0, "Number of TCP connections being paced"); 302 303 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD, 304 &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit"); 305 306 static int tcp_log_debug = 0; 307 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 308 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 309 310 static int tcp_tcbhashsize; 311 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 312 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 313 314 static int do_tcpdrain = 1; 315 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 316 "Enable tcp_drain routine for extra help when low on mbufs"); 317 318 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 319 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 320 321 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1; 322 #define V_icmp_may_rst VNET(icmp_may_rst) 323 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 324 &VNET_NAME(icmp_may_rst), 0, 325 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 326 327 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0; 328 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 329 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 330 &VNET_NAME(tcp_isn_reseed_interval), 0, 331 "Seconds between reseeding of ISN secret"); 332 333 static int tcp_soreceive_stream; 334 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 335 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 336 337 VNET_DEFINE(uma_zone_t, sack_hole_zone); 338 #define V_sack_hole_zone VNET(sack_hole_zone) 339 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0; /* unlimited */ 340 static int 341 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS) 342 { 343 int error; 344 uint32_t new; 345 346 new = V_tcp_map_entries_limit; 347 error = sysctl_handle_int(oidp, &new, 0, req); 348 if (error == 0 && req->newptr) { 349 /* only allow "0" and value > minimum */ 350 if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT) 351 error = EINVAL; 352 else 353 V_tcp_map_entries_limit = new; 354 } 355 return (error); 356 } 357 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit, 358 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 359 &VNET_NAME(tcp_map_entries_limit), 0, 360 &sysctl_net_inet_tcp_map_limit_check, "IU", 361 "Total sendmap entries limit"); 362 363 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0; /* unlimited */ 364 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW, 365 &VNET_NAME(tcp_map_split_limit), 0, 366 "Total sendmap split entries limit"); 367 368 #ifdef TCP_HHOOK 369 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 370 #endif 371 372 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH 373 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]); 374 #define V_ts_offset_secret VNET(ts_offset_secret) 375 376 static int tcp_default_fb_init(struct tcpcb *tp, void **ptr); 377 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); 378 static int tcp_default_handoff_ok(struct tcpcb *tp); 379 static struct inpcb *tcp_notify(struct inpcb *, int); 380 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 381 static struct inpcb *tcp_mtudisc(struct inpcb *, int); 382 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int); 383 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 384 const void *ip4hdr, const void *ip6hdr); 385 static void tcp_default_switch_failed(struct tcpcb *tp); 386 static ipproto_ctlinput_t tcp_ctlinput; 387 static udp_tun_icmp_t tcp_ctlinput_viaudp; 388 389 static struct tcp_function_block tcp_def_funcblk = { 390 .tfb_tcp_block_name = "freebsd", 391 .tfb_tcp_output = tcp_default_output, 392 .tfb_tcp_do_segment = tcp_do_segment, 393 .tfb_tcp_ctloutput = tcp_default_ctloutput, 394 .tfb_tcp_handoff_ok = tcp_default_handoff_ok, 395 .tfb_tcp_fb_init = tcp_default_fb_init, 396 .tfb_tcp_fb_fini = tcp_default_fb_fini, 397 .tfb_switch_failed = tcp_default_switch_failed, 398 }; 399 400 static int tcp_fb_cnt = 0; 401 struct tcp_funchead t_functions; 402 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk; 403 #define V_tcp_func_set_ptr VNET(tcp_func_set_ptr) 404 405 void 406 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp) 407 { 408 TCPSTAT_INC(tcps_dsack_count); 409 tp->t_dsack_pack++; 410 if (tlp == 0) { 411 if (SEQ_GT(end, start)) { 412 tp->t_dsack_bytes += (end - start); 413 TCPSTAT_ADD(tcps_dsack_bytes, (end - start)); 414 } else { 415 tp->t_dsack_tlp_bytes += (start - end); 416 TCPSTAT_ADD(tcps_dsack_bytes, (start - end)); 417 } 418 } else { 419 if (SEQ_GT(end, start)) { 420 tp->t_dsack_bytes += (end - start); 421 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start)); 422 } else { 423 tp->t_dsack_tlp_bytes += (start - end); 424 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end)); 425 } 426 } 427 } 428 429 static struct tcp_function_block * 430 find_tcp_functions_locked(struct tcp_function_set *fs) 431 { 432 struct tcp_function *f; 433 struct tcp_function_block *blk=NULL; 434 435 TAILQ_FOREACH(f, &t_functions, tf_next) { 436 if (strcmp(f->tf_name, fs->function_set_name) == 0) { 437 blk = f->tf_fb; 438 break; 439 } 440 } 441 return(blk); 442 } 443 444 static struct tcp_function_block * 445 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 446 { 447 struct tcp_function_block *rblk=NULL; 448 struct tcp_function *f; 449 450 TAILQ_FOREACH(f, &t_functions, tf_next) { 451 if (f->tf_fb == blk) { 452 rblk = blk; 453 if (s) { 454 *s = f; 455 } 456 break; 457 } 458 } 459 return (rblk); 460 } 461 462 struct tcp_function_block * 463 find_and_ref_tcp_functions(struct tcp_function_set *fs) 464 { 465 struct tcp_function_block *blk; 466 467 rw_rlock(&tcp_function_lock); 468 blk = find_tcp_functions_locked(fs); 469 if (blk) 470 refcount_acquire(&blk->tfb_refcnt); 471 rw_runlock(&tcp_function_lock); 472 return(blk); 473 } 474 475 struct tcp_function_block * 476 find_and_ref_tcp_fb(struct tcp_function_block *blk) 477 { 478 struct tcp_function_block *rblk; 479 480 rw_rlock(&tcp_function_lock); 481 rblk = find_tcp_fb_locked(blk, NULL); 482 if (rblk) 483 refcount_acquire(&rblk->tfb_refcnt); 484 rw_runlock(&tcp_function_lock); 485 return(rblk); 486 } 487 488 /* Find a matching alias for the given tcp_function_block. */ 489 int 490 find_tcp_function_alias(struct tcp_function_block *blk, 491 struct tcp_function_set *fs) 492 { 493 struct tcp_function *f; 494 int found; 495 496 found = 0; 497 rw_rlock(&tcp_function_lock); 498 TAILQ_FOREACH(f, &t_functions, tf_next) { 499 if ((f->tf_fb == blk) && 500 (strncmp(f->tf_name, blk->tfb_tcp_block_name, 501 TCP_FUNCTION_NAME_LEN_MAX) != 0)) { 502 /* Matching function block with different name. */ 503 strncpy(fs->function_set_name, f->tf_name, 504 TCP_FUNCTION_NAME_LEN_MAX); 505 found = 1; 506 break; 507 } 508 } 509 /* Null terminate the string appropriately. */ 510 if (found) { 511 fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 512 } else { 513 fs->function_set_name[0] = '\0'; 514 } 515 rw_runlock(&tcp_function_lock); 516 return (found); 517 } 518 519 static struct tcp_function_block * 520 find_and_ref_tcp_default_fb(void) 521 { 522 struct tcp_function_block *rblk; 523 524 rw_rlock(&tcp_function_lock); 525 rblk = V_tcp_func_set_ptr; 526 refcount_acquire(&rblk->tfb_refcnt); 527 rw_runlock(&tcp_function_lock); 528 return (rblk); 529 } 530 531 void 532 tcp_switch_back_to_default(struct tcpcb *tp) 533 { 534 struct tcp_function_block *tfb; 535 void *ptr = NULL; 536 537 KASSERT(tp->t_fb != &tcp_def_funcblk, 538 ("%s: called by the built-in default stack", __func__)); 539 540 /* 541 * Now, we'll find a new function block to use. 542 * Start by trying the current user-selected 543 * default, unless this stack is the user-selected 544 * default. 545 */ 546 tfb = find_and_ref_tcp_default_fb(); 547 if (tfb == tp->t_fb) { 548 refcount_release(&tfb->tfb_refcnt); 549 tfb = NULL; 550 } 551 /* Does the stack accept this connection? */ 552 if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL && 553 (*tfb->tfb_tcp_handoff_ok)(tp)) { 554 refcount_release(&tfb->tfb_refcnt); 555 tfb = NULL; 556 } 557 /* Try to use that stack. */ 558 if (tfb != NULL) { 559 /* Initialize the new stack. If it succeeds, we are done. */ 560 if (tfb->tfb_tcp_fb_init == NULL || 561 (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) { 562 /* Release the old stack */ 563 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 564 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 565 refcount_release(&tp->t_fb->tfb_refcnt); 566 /* Now set in all the pointers */ 567 tp->t_fb = tfb; 568 tp->t_fb_ptr = ptr; 569 return; 570 } 571 /* 572 * Initialization failed. Release the reference count on 573 * the looked up default stack. 574 */ 575 refcount_release(&tfb->tfb_refcnt); 576 } 577 578 /* 579 * If that wasn't feasible, use the built-in default 580 * stack which is not allowed to reject anyone. 581 */ 582 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); 583 if (tfb == NULL) { 584 /* there always should be a default */ 585 panic("Can't refer to tcp_def_funcblk"); 586 } 587 if (tfb->tfb_tcp_handoff_ok != NULL) { 588 if ((*tfb->tfb_tcp_handoff_ok) (tp)) { 589 /* The default stack cannot say no */ 590 panic("Default stack rejects a new session?"); 591 } 592 } 593 if (tfb->tfb_tcp_fb_init != NULL && 594 (*tfb->tfb_tcp_fb_init)(tp, &ptr)) { 595 /* The default stack cannot fail */ 596 panic("Default stack initialization failed"); 597 } 598 /* Now release the old stack */ 599 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 600 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 601 refcount_release(&tp->t_fb->tfb_refcnt); 602 /* And set in the pointers to the new */ 603 tp->t_fb = tfb; 604 tp->t_fb_ptr = ptr; 605 } 606 607 static bool 608 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, 609 const struct sockaddr *sa, void *ctx) 610 { 611 struct ip *iph; 612 #ifdef INET6 613 struct ip6_hdr *ip6; 614 #endif 615 struct udphdr *uh; 616 struct tcphdr *th; 617 int thlen; 618 uint16_t port; 619 620 TCPSTAT_INC(tcps_tunneled_pkts); 621 if ((m->m_flags & M_PKTHDR) == 0) { 622 /* Can't handle one that is not a pkt hdr */ 623 TCPSTAT_INC(tcps_tunneled_errs); 624 goto out; 625 } 626 thlen = sizeof(struct tcphdr); 627 if (m->m_len < off + sizeof(struct udphdr) + thlen && 628 (m = m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) { 629 TCPSTAT_INC(tcps_tunneled_errs); 630 goto out; 631 } 632 iph = mtod(m, struct ip *); 633 uh = (struct udphdr *)((caddr_t)iph + off); 634 th = (struct tcphdr *)(uh + 1); 635 thlen = th->th_off << 2; 636 if (m->m_len < off + sizeof(struct udphdr) + thlen) { 637 m = m_pullup(m, off + sizeof(struct udphdr) + thlen); 638 if (m == NULL) { 639 TCPSTAT_INC(tcps_tunneled_errs); 640 goto out; 641 } else { 642 iph = mtod(m, struct ip *); 643 uh = (struct udphdr *)((caddr_t)iph + off); 644 th = (struct tcphdr *)(uh + 1); 645 } 646 } 647 m->m_pkthdr.tcp_tun_port = port = uh->uh_sport; 648 bcopy(th, uh, m->m_len - off); 649 m->m_len -= sizeof(struct udphdr); 650 m->m_pkthdr.len -= sizeof(struct udphdr); 651 /* 652 * We use the same algorithm for 653 * both UDP and TCP for c-sum. So 654 * the code in tcp_input will skip 655 * the checksum. So we do nothing 656 * with the flag (m->m_pkthdr.csum_flags). 657 */ 658 switch (iph->ip_v) { 659 #ifdef INET 660 case IPVERSION: 661 iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); 662 tcp_input_with_port(&m, &off, IPPROTO_TCP, port); 663 break; 664 #endif 665 #ifdef INET6 666 case IPV6_VERSION >> 4: 667 ip6 = mtod(m, struct ip6_hdr *); 668 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); 669 tcp6_input_with_port(&m, &off, IPPROTO_TCP, port); 670 break; 671 #endif 672 default: 673 goto out; 674 break; 675 } 676 return (true); 677 out: 678 m_freem(m); 679 680 return (true); 681 } 682 683 static int 684 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 685 { 686 int error=ENOENT; 687 struct tcp_function_set fs; 688 struct tcp_function_block *blk; 689 690 memset(&fs, 0, sizeof(fs)); 691 rw_rlock(&tcp_function_lock); 692 blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL); 693 if (blk) { 694 /* Found him */ 695 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 696 fs.pcbcnt = blk->tfb_refcnt; 697 } 698 rw_runlock(&tcp_function_lock); 699 error = sysctl_handle_string(oidp, fs.function_set_name, 700 sizeof(fs.function_set_name), req); 701 702 /* Check for error or no change */ 703 if (error != 0 || req->newptr == NULL) 704 return(error); 705 706 rw_wlock(&tcp_function_lock); 707 blk = find_tcp_functions_locked(&fs); 708 if ((blk == NULL) || 709 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 710 error = ENOENT; 711 goto done; 712 } 713 V_tcp_func_set_ptr = blk; 714 done: 715 rw_wunlock(&tcp_function_lock); 716 return (error); 717 } 718 719 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 720 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 721 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 722 "Set/get the default TCP functions"); 723 724 static int 725 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 726 { 727 int error, cnt, linesz; 728 struct tcp_function *f; 729 char *buffer, *cp; 730 size_t bufsz, outsz; 731 bool alias; 732 733 cnt = 0; 734 rw_rlock(&tcp_function_lock); 735 TAILQ_FOREACH(f, &t_functions, tf_next) { 736 cnt++; 737 } 738 rw_runlock(&tcp_function_lock); 739 740 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; 741 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 742 743 error = 0; 744 cp = buffer; 745 746 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', 747 "Alias", "PCB count"); 748 cp += linesz; 749 bufsz -= linesz; 750 outsz = linesz; 751 752 rw_rlock(&tcp_function_lock); 753 TAILQ_FOREACH(f, &t_functions, tf_next) { 754 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); 755 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", 756 f->tf_fb->tfb_tcp_block_name, 757 (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ', 758 alias ? f->tf_name : "-", 759 f->tf_fb->tfb_refcnt); 760 if (linesz >= bufsz) { 761 error = EOVERFLOW; 762 break; 763 } 764 cp += linesz; 765 bufsz -= linesz; 766 outsz += linesz; 767 } 768 rw_runlock(&tcp_function_lock); 769 if (error == 0) 770 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 771 free(buffer, M_TEMP); 772 return (error); 773 } 774 775 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 776 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 777 NULL, 0, sysctl_net_inet_list_available, "A", 778 "list available TCP Function sets"); 779 780 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT; 781 782 #ifdef INET 783 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL; 784 #define V_udp4_tun_socket VNET(udp4_tun_socket) 785 #endif 786 #ifdef INET6 787 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL; 788 #define V_udp6_tun_socket VNET(udp6_tun_socket) 789 #endif 790 791 static struct sx tcpoudp_lock; 792 793 static void 794 tcp_over_udp_stop(void) 795 { 796 797 sx_assert(&tcpoudp_lock, SA_XLOCKED); 798 799 #ifdef INET 800 if (V_udp4_tun_socket != NULL) { 801 soclose(V_udp4_tun_socket); 802 V_udp4_tun_socket = NULL; 803 } 804 #endif 805 #ifdef INET6 806 if (V_udp6_tun_socket != NULL) { 807 soclose(V_udp6_tun_socket); 808 V_udp6_tun_socket = NULL; 809 } 810 #endif 811 } 812 813 static int 814 tcp_over_udp_start(void) 815 { 816 uint16_t port; 817 int ret; 818 #ifdef INET 819 struct sockaddr_in sin; 820 #endif 821 #ifdef INET6 822 struct sockaddr_in6 sin6; 823 #endif 824 825 sx_assert(&tcpoudp_lock, SA_XLOCKED); 826 827 port = V_tcp_udp_tunneling_port; 828 if (ntohs(port) == 0) { 829 /* Must have a port set */ 830 return (EINVAL); 831 } 832 #ifdef INET 833 if (V_udp4_tun_socket != NULL) { 834 /* Already running -- must stop first */ 835 return (EALREADY); 836 } 837 #endif 838 #ifdef INET6 839 if (V_udp6_tun_socket != NULL) { 840 /* Already running -- must stop first */ 841 return (EALREADY); 842 } 843 #endif 844 #ifdef INET 845 if ((ret = socreate(PF_INET, &V_udp4_tun_socket, 846 SOCK_DGRAM, IPPROTO_UDP, 847 curthread->td_ucred, curthread))) { 848 tcp_over_udp_stop(); 849 return (ret); 850 } 851 /* Call the special UDP hook. */ 852 if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket, 853 tcp_recv_udp_tunneled_packet, 854 tcp_ctlinput_viaudp, 855 NULL))) { 856 tcp_over_udp_stop(); 857 return (ret); 858 } 859 /* Ok, we have a socket, bind it to the port. */ 860 memset(&sin, 0, sizeof(struct sockaddr_in)); 861 sin.sin_len = sizeof(struct sockaddr_in); 862 sin.sin_family = AF_INET; 863 sin.sin_port = htons(port); 864 if ((ret = sobind(V_udp4_tun_socket, 865 (struct sockaddr *)&sin, curthread))) { 866 tcp_over_udp_stop(); 867 return (ret); 868 } 869 #endif 870 #ifdef INET6 871 if ((ret = socreate(PF_INET6, &V_udp6_tun_socket, 872 SOCK_DGRAM, IPPROTO_UDP, 873 curthread->td_ucred, curthread))) { 874 tcp_over_udp_stop(); 875 return (ret); 876 } 877 /* Call the special UDP hook. */ 878 if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket, 879 tcp_recv_udp_tunneled_packet, 880 tcp6_ctlinput_viaudp, 881 NULL))) { 882 tcp_over_udp_stop(); 883 return (ret); 884 } 885 /* Ok, we have a socket, bind it to the port. */ 886 memset(&sin6, 0, sizeof(struct sockaddr_in6)); 887 sin6.sin6_len = sizeof(struct sockaddr_in6); 888 sin6.sin6_family = AF_INET6; 889 sin6.sin6_port = htons(port); 890 if ((ret = sobind(V_udp6_tun_socket, 891 (struct sockaddr *)&sin6, curthread))) { 892 tcp_over_udp_stop(); 893 return (ret); 894 } 895 #endif 896 return (0); 897 } 898 899 static int 900 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS) 901 { 902 int error; 903 uint32_t old, new; 904 905 old = V_tcp_udp_tunneling_port; 906 new = old; 907 error = sysctl_handle_int(oidp, &new, 0, req); 908 if ((error == 0) && 909 (req->newptr != NULL)) { 910 if ((new < TCP_TUNNELING_PORT_MIN) || 911 (new > TCP_TUNNELING_PORT_MAX)) { 912 error = EINVAL; 913 } else { 914 sx_xlock(&tcpoudp_lock); 915 V_tcp_udp_tunneling_port = new; 916 if (old != 0) { 917 tcp_over_udp_stop(); 918 } 919 if (new != 0) { 920 error = tcp_over_udp_start(); 921 if (error != 0) { 922 V_tcp_udp_tunneling_port = 0; 923 } 924 } 925 sx_xunlock(&tcpoudp_lock); 926 } 927 } 928 return (error); 929 } 930 931 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port, 932 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 933 &VNET_NAME(tcp_udp_tunneling_port), 934 0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU", 935 "Tunneling port for tcp over udp"); 936 937 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT; 938 939 static int 940 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS) 941 { 942 int error, new; 943 944 new = V_tcp_udp_tunneling_overhead; 945 error = sysctl_handle_int(oidp, &new, 0, req); 946 if (error == 0 && req->newptr) { 947 if ((new < TCP_TUNNELING_OVERHEAD_MIN) || 948 (new > TCP_TUNNELING_OVERHEAD_MAX)) 949 error = EINVAL; 950 else 951 V_tcp_udp_tunneling_overhead = new; 952 } 953 return (error); 954 } 955 956 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead, 957 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 958 &VNET_NAME(tcp_udp_tunneling_overhead), 959 0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU", 960 "MSS reduction when using tcp over udp"); 961 962 /* 963 * Exports one (struct tcp_function_info) for each alias/name. 964 */ 965 static int 966 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) 967 { 968 int cnt, error; 969 struct tcp_function *f; 970 struct tcp_function_info tfi; 971 972 /* 973 * We don't allow writes. 974 */ 975 if (req->newptr != NULL) 976 return (EINVAL); 977 978 /* 979 * Wire the old buffer so we can directly copy the functions to 980 * user space without dropping the lock. 981 */ 982 if (req->oldptr != NULL) { 983 error = sysctl_wire_old_buffer(req, 0); 984 if (error) 985 return (error); 986 } 987 988 /* 989 * Walk the list and copy out matching entries. If INVARIANTS 990 * is compiled in, also walk the list to verify the length of 991 * the list matches what we have recorded. 992 */ 993 rw_rlock(&tcp_function_lock); 994 995 cnt = 0; 996 #ifndef INVARIANTS 997 if (req->oldptr == NULL) { 998 cnt = tcp_fb_cnt; 999 goto skip_loop; 1000 } 1001 #endif 1002 TAILQ_FOREACH(f, &t_functions, tf_next) { 1003 #ifdef INVARIANTS 1004 cnt++; 1005 #endif 1006 if (req->oldptr != NULL) { 1007 bzero(&tfi, sizeof(tfi)); 1008 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; 1009 tfi.tfi_id = f->tf_fb->tfb_id; 1010 (void)strlcpy(tfi.tfi_alias, f->tf_name, 1011 sizeof(tfi.tfi_alias)); 1012 (void)strlcpy(tfi.tfi_name, 1013 f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name)); 1014 error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); 1015 /* 1016 * Don't stop on error, as that is the 1017 * mechanism we use to accumulate length 1018 * information if the buffer was too short. 1019 */ 1020 } 1021 } 1022 KASSERT(cnt == tcp_fb_cnt, 1023 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); 1024 #ifndef INVARIANTS 1025 skip_loop: 1026 #endif 1027 rw_runlock(&tcp_function_lock); 1028 if (req->oldptr == NULL) 1029 error = SYSCTL_OUT(req, NULL, 1030 (cnt + 1) * sizeof(struct tcp_function_info)); 1031 1032 return (error); 1033 } 1034 1035 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, 1036 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, 1037 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", 1038 "List TCP function block name-to-ID mappings"); 1039 1040 /* 1041 * tfb_tcp_handoff_ok() function for the default stack. 1042 * Note that we'll basically try to take all comers. 1043 */ 1044 static int 1045 tcp_default_handoff_ok(struct tcpcb *tp) 1046 { 1047 1048 return (0); 1049 } 1050 1051 /* 1052 * tfb_tcp_fb_init() function for the default stack. 1053 * 1054 * This handles making sure we have appropriate timers set if you are 1055 * transitioning a socket that has some amount of setup done. 1056 * 1057 * The init() fuction from the default can *never* return non-zero i.e. 1058 * it is required to always succeed since it is the stack of last resort! 1059 */ 1060 static int 1061 tcp_default_fb_init(struct tcpcb *tp, void **ptr) 1062 { 1063 struct socket *so = tptosocket(tp); 1064 int rexmt; 1065 1066 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1067 /* We don't use the pointer */ 1068 *ptr = NULL; 1069 1070 KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT, 1071 ("%s: connection %p in unexpected state %d", __func__, tp, 1072 tp->t_state)); 1073 1074 /* Make sure we get no interesting mbuf queuing behavior */ 1075 /* All mbuf queue/ack compress flags should be off */ 1076 tcp_lro_features_off(tp); 1077 1078 /* Cancel the GP measurement in progress */ 1079 tp->t_flags &= ~TF_GPUTINPROG; 1080 /* Validate the timers are not in usec, if they are convert */ 1081 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 1082 if ((tp->t_state == TCPS_SYN_SENT) || 1083 (tp->t_state == TCPS_SYN_RECEIVED)) 1084 rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift]; 1085 else 1086 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; 1087 if (tp->t_rxtshift == 0) 1088 tp->t_rxtcur = rexmt; 1089 else 1090 TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX); 1091 1092 /* 1093 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't 1094 * know what to do for unexpected states (which includes TIME_WAIT). 1095 */ 1096 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) 1097 return (0); 1098 1099 /* 1100 * Make sure some kind of transmission timer is set if there is 1101 * outstanding data. 1102 */ 1103 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || 1104 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || 1105 tcp_timer_active(tp, TT_PERSIST))) { 1106 /* 1107 * If the session has established and it looks like it should 1108 * be in the persist state, set the persist timer. Otherwise, 1109 * set the retransmit timer. 1110 */ 1111 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && 1112 (int32_t)(tp->snd_nxt - tp->snd_una) < 1113 (int32_t)sbavail(&so->so_snd)) 1114 tcp_setpersist(tp); 1115 else 1116 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp)); 1117 } 1118 1119 /* All non-embryonic sessions get a keepalive timer. */ 1120 if (!tcp_timer_active(tp, TT_KEEP)) 1121 tcp_timer_activate(tp, TT_KEEP, 1122 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : 1123 TP_KEEPINIT(tp)); 1124 1125 /* 1126 * Make sure critical variables are initialized 1127 * if transitioning while in Recovery. 1128 */ 1129 if IN_FASTRECOVERY(tp->t_flags) { 1130 if (tp->sackhint.recover_fs == 0) 1131 tp->sackhint.recover_fs = max(1, 1132 tp->snd_nxt - tp->snd_una); 1133 } 1134 1135 return (0); 1136 } 1137 1138 /* 1139 * tfb_tcp_fb_fini() function for the default stack. 1140 * 1141 * This changes state as necessary (or prudent) to prepare for another stack 1142 * to assume responsibility for the connection. 1143 */ 1144 static void 1145 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) 1146 { 1147 1148 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1149 1150 #ifdef TCP_BLACKBOX 1151 tcp_log_flowend(tp); 1152 #endif 1153 tp->t_acktime = 0; 1154 return; 1155 } 1156 1157 /* 1158 * Target size of TCP PCB hash tables. Must be a power of two. 1159 * 1160 * Note that this can be overridden by the kernel environment 1161 * variable net.inet.tcp.tcbhashsize 1162 */ 1163 #ifndef TCBHASHSIZE 1164 #define TCBHASHSIZE 0 1165 #endif 1166 1167 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 1168 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 1169 1170 static struct mtx isn_mtx; 1171 1172 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 1173 #define ISN_LOCK() mtx_lock(&isn_mtx) 1174 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 1175 1176 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash"); 1177 1178 /* 1179 * Take a value and get the next power of 2 that doesn't overflow. 1180 * Used to size the tcp_inpcb hash buckets. 1181 */ 1182 static int 1183 maketcp_hashsize(int size) 1184 { 1185 int hashsize; 1186 1187 /* 1188 * auto tune. 1189 * get the next power of 2 higher than maxsockets. 1190 */ 1191 hashsize = 1 << fls(size); 1192 /* catch overflow, and just go one power of 2 smaller */ 1193 if (hashsize < size) { 1194 hashsize = 1 << (fls(size) - 1); 1195 } 1196 return (hashsize); 1197 } 1198 1199 static volatile int next_tcp_stack_id = 1; 1200 1201 /* 1202 * Register a TCP function block with the name provided in the names 1203 * array. (Note that this function does NOT automatically register 1204 * blk->tfb_tcp_block_name as a stack name. Therefore, you should 1205 * explicitly include blk->tfb_tcp_block_name in the list of names if 1206 * you wish to register the stack with that name.) 1207 * 1208 * Either all name registrations will succeed or all will fail. If 1209 * a name registration fails, the function will update the num_names 1210 * argument to point to the array index of the name that encountered 1211 * the failure. 1212 * 1213 * Returns 0 on success, or an error code on failure. 1214 */ 1215 int 1216 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, 1217 const char *names[], int *num_names) 1218 { 1219 struct tcp_function *n; 1220 struct tcp_function_set fs; 1221 int error, i; 1222 1223 KASSERT(names != NULL && *num_names > 0, 1224 ("%s: Called with 0-length name list", __func__)); 1225 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); 1226 KASSERT(rw_initialized(&tcp_function_lock), 1227 ("%s: called too early", __func__)); 1228 1229 if ((blk->tfb_tcp_output == NULL) || 1230 (blk->tfb_tcp_do_segment == NULL) || 1231 (blk->tfb_tcp_ctloutput == NULL) || 1232 (strlen(blk->tfb_tcp_block_name) == 0)) { 1233 /* 1234 * These functions are required and you 1235 * need a name. 1236 */ 1237 *num_names = 0; 1238 return (EINVAL); 1239 } 1240 1241 if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { 1242 *num_names = 0; 1243 return (EINVAL); 1244 } 1245 1246 refcount_init(&blk->tfb_refcnt, 0); 1247 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); 1248 for (i = 0; i < *num_names; i++) { 1249 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 1250 if (n == NULL) { 1251 error = ENOMEM; 1252 goto cleanup; 1253 } 1254 n->tf_fb = blk; 1255 1256 (void)strlcpy(fs.function_set_name, names[i], 1257 sizeof(fs.function_set_name)); 1258 rw_wlock(&tcp_function_lock); 1259 if (find_tcp_functions_locked(&fs) != NULL) { 1260 /* Duplicate name space not allowed */ 1261 rw_wunlock(&tcp_function_lock); 1262 free(n, M_TCPFUNCTIONS); 1263 error = EALREADY; 1264 goto cleanup; 1265 } 1266 (void)strlcpy(n->tf_name, names[i], sizeof(n->tf_name)); 1267 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 1268 tcp_fb_cnt++; 1269 rw_wunlock(&tcp_function_lock); 1270 } 1271 return(0); 1272 1273 cleanup: 1274 /* 1275 * Deregister the names we just added. Because registration failed 1276 * for names[i], we don't need to deregister that name. 1277 */ 1278 *num_names = i; 1279 rw_wlock(&tcp_function_lock); 1280 while (--i >= 0) { 1281 TAILQ_FOREACH(n, &t_functions, tf_next) { 1282 if (!strncmp(n->tf_name, names[i], 1283 TCP_FUNCTION_NAME_LEN_MAX)) { 1284 TAILQ_REMOVE(&t_functions, n, tf_next); 1285 tcp_fb_cnt--; 1286 n->tf_fb = NULL; 1287 free(n, M_TCPFUNCTIONS); 1288 break; 1289 } 1290 } 1291 } 1292 rw_wunlock(&tcp_function_lock); 1293 return (error); 1294 } 1295 1296 /* 1297 * Register a TCP function block using the name provided in the name 1298 * argument. 1299 * 1300 * Returns 0 on success, or an error code on failure. 1301 */ 1302 int 1303 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, 1304 int wait) 1305 { 1306 const char *name_list[1]; 1307 int num_names, rv; 1308 1309 num_names = 1; 1310 if (name != NULL) 1311 name_list[0] = name; 1312 else 1313 name_list[0] = blk->tfb_tcp_block_name; 1314 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); 1315 return (rv); 1316 } 1317 1318 /* 1319 * Register a TCP function block using the name defined in 1320 * blk->tfb_tcp_block_name. 1321 * 1322 * Returns 0 on success, or an error code on failure. 1323 */ 1324 int 1325 register_tcp_functions(struct tcp_function_block *blk, int wait) 1326 { 1327 1328 return (register_tcp_functions_as_name(blk, NULL, wait)); 1329 } 1330 1331 /* 1332 * Deregister all names associated with a function block. This 1333 * functionally removes the function block from use within the system. 1334 * 1335 * When called with a true quiesce argument, mark the function block 1336 * as being removed so no more stacks will use it and determine 1337 * whether the removal would succeed. 1338 * 1339 * When called with a false quiesce argument, actually attempt the 1340 * removal. 1341 * 1342 * When called with a force argument, attempt to switch all TCBs to 1343 * use the default stack instead of returning EBUSY. 1344 * 1345 * Returns 0 on success (or if the removal would succeed), or an error 1346 * code on failure. 1347 */ 1348 int 1349 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, 1350 bool force) 1351 { 1352 struct tcp_function *f; 1353 VNET_ITERATOR_DECL(vnet_iter); 1354 1355 if (blk == &tcp_def_funcblk) { 1356 /* You can't un-register the default */ 1357 return (EPERM); 1358 } 1359 rw_wlock(&tcp_function_lock); 1360 VNET_LIST_RLOCK_NOSLEEP(); 1361 VNET_FOREACH(vnet_iter) { 1362 CURVNET_SET(vnet_iter); 1363 if (blk == V_tcp_func_set_ptr) { 1364 /* You can't free the current default in some vnet. */ 1365 CURVNET_RESTORE(); 1366 VNET_LIST_RUNLOCK_NOSLEEP(); 1367 rw_wunlock(&tcp_function_lock); 1368 return (EBUSY); 1369 } 1370 CURVNET_RESTORE(); 1371 } 1372 VNET_LIST_RUNLOCK_NOSLEEP(); 1373 /* Mark the block so no more stacks can use it. */ 1374 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 1375 /* 1376 * If TCBs are still attached to the stack, attempt to switch them 1377 * to the default stack. 1378 */ 1379 if (force && blk->tfb_refcnt) { 1380 struct inpcb *inp; 1381 struct tcpcb *tp; 1382 VNET_ITERATOR_DECL(vnet_iter); 1383 1384 rw_wunlock(&tcp_function_lock); 1385 1386 VNET_LIST_RLOCK(); 1387 VNET_FOREACH(vnet_iter) { 1388 CURVNET_SET(vnet_iter); 1389 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1390 INPLOOKUP_WLOCKPCB); 1391 1392 while ((inp = inp_next(&inpi)) != NULL) { 1393 tp = intotcpcb(inp); 1394 if (tp == NULL || tp->t_fb != blk) 1395 continue; 1396 tcp_switch_back_to_default(tp); 1397 } 1398 CURVNET_RESTORE(); 1399 } 1400 VNET_LIST_RUNLOCK(); 1401 1402 rw_wlock(&tcp_function_lock); 1403 } 1404 if (blk->tfb_refcnt) { 1405 /* TCBs still attached. */ 1406 rw_wunlock(&tcp_function_lock); 1407 return (EBUSY); 1408 } 1409 if (quiesce) { 1410 /* Skip removal. */ 1411 rw_wunlock(&tcp_function_lock); 1412 return (0); 1413 } 1414 /* Remove any function names that map to this function block. */ 1415 while (find_tcp_fb_locked(blk, &f) != NULL) { 1416 TAILQ_REMOVE(&t_functions, f, tf_next); 1417 tcp_fb_cnt--; 1418 f->tf_fb = NULL; 1419 free(f, M_TCPFUNCTIONS); 1420 } 1421 rw_wunlock(&tcp_function_lock); 1422 return (0); 1423 } 1424 1425 static void 1426 tcp_drain(void) 1427 { 1428 struct epoch_tracker et; 1429 VNET_ITERATOR_DECL(vnet_iter); 1430 1431 if (!do_tcpdrain) 1432 return; 1433 1434 NET_EPOCH_ENTER(et); 1435 VNET_LIST_RLOCK_NOSLEEP(); 1436 VNET_FOREACH(vnet_iter) { 1437 CURVNET_SET(vnet_iter); 1438 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1439 INPLOOKUP_WLOCKPCB); 1440 struct inpcb *inpb; 1441 struct tcpcb *tcpb; 1442 1443 /* 1444 * Walk the tcpbs, if existing, and flush the reassembly queue, 1445 * if there is one... 1446 * XXX: The "Net/3" implementation doesn't imply that the TCP 1447 * reassembly queue should be flushed, but in a situation 1448 * where we're really low on mbufs, this is potentially 1449 * useful. 1450 */ 1451 while ((inpb = inp_next(&inpi)) != NULL) { 1452 if ((tcpb = intotcpcb(inpb)) != NULL) { 1453 tcp_reass_flush(tcpb); 1454 tcp_clean_sackreport(tcpb); 1455 #ifdef TCP_BLACKBOX 1456 tcp_log_drain(tcpb); 1457 #endif 1458 #ifdef TCPPCAP 1459 if (tcp_pcap_aggressive_free) { 1460 /* Free the TCP PCAP queues. */ 1461 tcp_pcap_drain(&(tcpb->t_inpkts)); 1462 tcp_pcap_drain(&(tcpb->t_outpkts)); 1463 } 1464 #endif 1465 } 1466 } 1467 CURVNET_RESTORE(); 1468 } 1469 VNET_LIST_RUNLOCK_NOSLEEP(); 1470 NET_EPOCH_EXIT(et); 1471 } 1472 1473 static void 1474 tcp_vnet_init(void *arg __unused) 1475 { 1476 1477 #ifdef TCP_HHOOK 1478 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 1479 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1480 printf("%s: WARNING: unable to register helper hook\n", __func__); 1481 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 1482 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1483 printf("%s: WARNING: unable to register helper hook\n", __func__); 1484 #endif 1485 #ifdef STATS 1486 if (tcp_stats_init()) 1487 printf("%s: WARNING: unable to initialise TCP stats\n", 1488 __func__); 1489 #endif 1490 in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize, 1491 tcp_tcbhashsize); 1492 1493 syncache_init(); 1494 tcp_hc_init(); 1495 1496 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 1497 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 1498 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1499 1500 tcp_fastopen_init(); 1501 1502 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); 1503 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); 1504 1505 V_tcp_msl = TCPTV_MSL; 1506 } 1507 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 1508 tcp_vnet_init, NULL); 1509 1510 static void 1511 tcp_init(void *arg __unused) 1512 { 1513 const char *tcbhash_tuneable; 1514 int hashsize; 1515 1516 tcp_reass_global_init(); 1517 1518 /* XXX virtualize those below? */ 1519 tcp_delacktime = TCPTV_DELACK; 1520 tcp_keepinit = TCPTV_KEEP_INIT; 1521 tcp_keepidle = TCPTV_KEEP_IDLE; 1522 tcp_keepintvl = TCPTV_KEEPINTVL; 1523 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 1524 tcp_rexmit_initial = TCPTV_RTOBASE; 1525 if (tcp_rexmit_initial < 1) 1526 tcp_rexmit_initial = 1; 1527 tcp_rexmit_min = TCPTV_MIN; 1528 if (tcp_rexmit_min < 1) 1529 tcp_rexmit_min = 1; 1530 tcp_persmin = TCPTV_PERSMIN; 1531 tcp_persmax = TCPTV_PERSMAX; 1532 tcp_rexmit_slop = TCPTV_CPU_VAR; 1533 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 1534 1535 /* Setup the tcp function block list */ 1536 TAILQ_INIT(&t_functions); 1537 rw_init(&tcp_function_lock, "tcp_func_lock"); 1538 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 1539 sx_init(&tcpoudp_lock, "TCP over UDP configuration"); 1540 #ifdef TCP_BLACKBOX 1541 /* Initialize the TCP logging data. */ 1542 tcp_log_init(); 1543 #endif 1544 arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0); 1545 1546 if (tcp_soreceive_stream) { 1547 #ifdef INET 1548 tcp_protosw.pr_soreceive = soreceive_stream; 1549 #endif 1550 #ifdef INET6 1551 tcp6_protosw.pr_soreceive = soreceive_stream; 1552 #endif /* INET6 */ 1553 } 1554 1555 #ifdef INET6 1556 max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); 1557 #else /* INET6 */ 1558 max_protohdr_grow(sizeof(struct tcpiphdr)); 1559 #endif /* INET6 */ 1560 1561 ISN_LOCK_INIT(); 1562 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 1563 SHUTDOWN_PRI_DEFAULT); 1564 EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1565 EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1566 1567 tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK); 1568 tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK); 1569 tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK); 1570 tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK); 1571 tcp_extra_mbuf = counter_u64_alloc(M_WAITOK); 1572 tcp_would_have_but = counter_u64_alloc(M_WAITOK); 1573 tcp_comp_total = counter_u64_alloc(M_WAITOK); 1574 tcp_uncomp_total = counter_u64_alloc(M_WAITOK); 1575 tcp_bad_csums = counter_u64_alloc(M_WAITOK); 1576 tcp_pacing_failures = counter_u64_alloc(M_WAITOK); 1577 #ifdef TCPPCAP 1578 tcp_pcap_init(); 1579 #endif 1580 1581 hashsize = TCBHASHSIZE; 1582 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 1583 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 1584 if (hashsize == 0) { 1585 /* 1586 * Auto tune the hash size based on maxsockets. 1587 * A perfect hash would have a 1:1 mapping 1588 * (hashsize = maxsockets) however it's been 1589 * suggested that O(2) average is better. 1590 */ 1591 hashsize = maketcp_hashsize(maxsockets / 4); 1592 /* 1593 * Our historical default is 512, 1594 * do not autotune lower than this. 1595 */ 1596 if (hashsize < 512) 1597 hashsize = 512; 1598 if (bootverbose) 1599 printf("%s: %s auto tuned to %d\n", __func__, 1600 tcbhash_tuneable, hashsize); 1601 } 1602 /* 1603 * We require a hashsize to be a power of two. 1604 * Previously if it was not a power of two we would just reset it 1605 * back to 512, which could be a nasty surprise if you did not notice 1606 * the error message. 1607 * Instead what we do is clip it to the closest power of two lower 1608 * than the specified hash value. 1609 */ 1610 if (!powerof2(hashsize)) { 1611 int oldhashsize = hashsize; 1612 1613 hashsize = maketcp_hashsize(hashsize); 1614 /* prevent absurdly low value */ 1615 if (hashsize < 16) 1616 hashsize = 16; 1617 printf("%s: WARNING: TCB hash size not a power of 2, " 1618 "clipped from %d to %d.\n", __func__, oldhashsize, 1619 hashsize); 1620 } 1621 tcp_tcbhashsize = hashsize; 1622 1623 #ifdef INET 1624 IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput); 1625 #endif 1626 #ifdef INET6 1627 IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput); 1628 #endif 1629 } 1630 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL); 1631 1632 #ifdef VIMAGE 1633 static void 1634 tcp_destroy(void *unused __unused) 1635 { 1636 int n; 1637 #ifdef TCP_HHOOK 1638 int error; 1639 #endif 1640 1641 /* 1642 * All our processes are gone, all our sockets should be cleaned 1643 * up, which means, we should be past the tcp_discardcb() calls. 1644 * Sleep to let all tcpcb timers really disappear and cleanup. 1645 */ 1646 for (;;) { 1647 INP_INFO_WLOCK(&V_tcbinfo); 1648 n = V_tcbinfo.ipi_count; 1649 INP_INFO_WUNLOCK(&V_tcbinfo); 1650 if (n == 0) 1651 break; 1652 pause("tcpdes", hz / 10); 1653 } 1654 tcp_hc_destroy(); 1655 syncache_destroy(); 1656 in_pcbinfo_destroy(&V_tcbinfo); 1657 /* tcp_discardcb() clears the sack_holes up. */ 1658 uma_zdestroy(V_sack_hole_zone); 1659 1660 /* 1661 * Cannot free the zone until all tcpcbs are released as we attach 1662 * the allocations to them. 1663 */ 1664 tcp_fastopen_destroy(); 1665 1666 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); 1667 VNET_PCPUSTAT_FREE(tcpstat); 1668 1669 #ifdef TCP_HHOOK 1670 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 1671 if (error != 0) { 1672 printf("%s: WARNING: unable to deregister helper hook " 1673 "type=%d, id=%d: error %d returned\n", __func__, 1674 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 1675 } 1676 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 1677 if (error != 0) { 1678 printf("%s: WARNING: unable to deregister helper hook " 1679 "type=%d, id=%d: error %d returned\n", __func__, 1680 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 1681 } 1682 #endif 1683 } 1684 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 1685 #endif 1686 1687 void 1688 tcp_fini(void *xtp) 1689 { 1690 1691 } 1692 1693 /* 1694 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 1695 * tcp_template used to store this data in mbufs, but we now recopy it out 1696 * of the tcpcb each time to conserve mbufs. 1697 */ 1698 void 1699 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr) 1700 { 1701 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 1702 1703 INP_WLOCK_ASSERT(inp); 1704 1705 #ifdef INET6 1706 if ((inp->inp_vflag & INP_IPV6) != 0) { 1707 struct ip6_hdr *ip6; 1708 1709 ip6 = (struct ip6_hdr *)ip_ptr; 1710 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 1711 (inp->inp_flow & IPV6_FLOWINFO_MASK); 1712 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 1713 (IPV6_VERSION & IPV6_VERSION_MASK); 1714 if (port == 0) 1715 ip6->ip6_nxt = IPPROTO_TCP; 1716 else 1717 ip6->ip6_nxt = IPPROTO_UDP; 1718 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1719 ip6->ip6_src = inp->in6p_laddr; 1720 ip6->ip6_dst = inp->in6p_faddr; 1721 } 1722 #endif /* INET6 */ 1723 #if defined(INET6) && defined(INET) 1724 else 1725 #endif 1726 #ifdef INET 1727 { 1728 struct ip *ip; 1729 1730 ip = (struct ip *)ip_ptr; 1731 ip->ip_v = IPVERSION; 1732 ip->ip_hl = 5; 1733 ip->ip_tos = inp->inp_ip_tos; 1734 ip->ip_len = 0; 1735 ip->ip_id = 0; 1736 ip->ip_off = 0; 1737 ip->ip_ttl = inp->inp_ip_ttl; 1738 ip->ip_sum = 0; 1739 if (port == 0) 1740 ip->ip_p = IPPROTO_TCP; 1741 else 1742 ip->ip_p = IPPROTO_UDP; 1743 ip->ip_src = inp->inp_laddr; 1744 ip->ip_dst = inp->inp_faddr; 1745 } 1746 #endif /* INET */ 1747 th->th_sport = inp->inp_lport; 1748 th->th_dport = inp->inp_fport; 1749 th->th_seq = 0; 1750 th->th_ack = 0; 1751 th->th_off = 5; 1752 tcp_set_flags(th, 0); 1753 th->th_win = 0; 1754 th->th_urp = 0; 1755 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 1756 } 1757 1758 /* 1759 * Create template to be used to send tcp packets on a connection. 1760 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 1761 * use for this function is in keepalives, which use tcp_respond. 1762 */ 1763 struct tcptemp * 1764 tcpip_maketemplate(struct inpcb *inp) 1765 { 1766 struct tcptemp *t; 1767 1768 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 1769 if (t == NULL) 1770 return (NULL); 1771 tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t); 1772 return (t); 1773 } 1774 1775 /* 1776 * Send a single message to the TCP at address specified by 1777 * the given TCP/IP header. If m == NULL, then we make a copy 1778 * of the tcpiphdr at th and send directly to the addressed host. 1779 * This is used to force keep alive messages out using the TCP 1780 * template for a connection. If flags are given then we send 1781 * a message back to the TCP which originated the segment th, 1782 * and discard the mbuf containing it and any other attached mbufs. 1783 * 1784 * In any case the ack and sequence number of the transmitted 1785 * segment are as specified by the parameters. 1786 * 1787 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 1788 */ 1789 void 1790 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 1791 tcp_seq ack, tcp_seq seq, uint16_t flags) 1792 { 1793 struct tcpopt to; 1794 struct inpcb *inp; 1795 struct ip *ip; 1796 struct mbuf *optm; 1797 struct udphdr *uh = NULL; 1798 struct tcphdr *nth; 1799 struct tcp_log_buffer *lgb; 1800 u_char *optp; 1801 #ifdef INET6 1802 struct ip6_hdr *ip6; 1803 int isipv6; 1804 #endif /* INET6 */ 1805 int optlen, tlen, win, ulen; 1806 int ect = 0; 1807 bool incl_opts; 1808 uint16_t port; 1809 int output_ret; 1810 #ifdef INVARIANTS 1811 int thflags = tcp_get_flags(th); 1812 #endif 1813 1814 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 1815 NET_EPOCH_ASSERT(); 1816 1817 #ifdef INET6 1818 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 1819 ip6 = ipgen; 1820 #endif /* INET6 */ 1821 ip = ipgen; 1822 1823 if (tp != NULL) { 1824 inp = tptoinpcb(tp); 1825 INP_LOCK_ASSERT(inp); 1826 } else 1827 inp = NULL; 1828 1829 if (m != NULL) { 1830 #ifdef INET6 1831 if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP)) 1832 port = m->m_pkthdr.tcp_tun_port; 1833 else 1834 #endif 1835 if (ip && (ip->ip_p == IPPROTO_UDP)) 1836 port = m->m_pkthdr.tcp_tun_port; 1837 else 1838 port = 0; 1839 } else 1840 port = tp->t_port; 1841 1842 incl_opts = false; 1843 win = 0; 1844 if (tp != NULL) { 1845 if (!(flags & TH_RST)) { 1846 win = sbspace(&inp->inp_socket->so_rcv); 1847 if (win > TCP_MAXWIN << tp->rcv_scale) 1848 win = TCP_MAXWIN << tp->rcv_scale; 1849 } 1850 if ((tp->t_flags & TF_NOOPT) == 0) 1851 incl_opts = true; 1852 } 1853 if (m == NULL) { 1854 m = m_gethdr(M_NOWAIT, MT_DATA); 1855 if (m == NULL) 1856 return; 1857 m->m_data += max_linkhdr; 1858 #ifdef INET6 1859 if (isipv6) { 1860 bcopy((caddr_t)ip6, mtod(m, caddr_t), 1861 sizeof(struct ip6_hdr)); 1862 ip6 = mtod(m, struct ip6_hdr *); 1863 nth = (struct tcphdr *)(ip6 + 1); 1864 if (port) { 1865 /* Insert a UDP header */ 1866 uh = (struct udphdr *)nth; 1867 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1868 uh->uh_dport = port; 1869 nth = (struct tcphdr *)(uh + 1); 1870 } 1871 } else 1872 #endif /* INET6 */ 1873 { 1874 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1875 ip = mtod(m, struct ip *); 1876 nth = (struct tcphdr *)(ip + 1); 1877 if (port) { 1878 /* Insert a UDP header */ 1879 uh = (struct udphdr *)nth; 1880 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1881 uh->uh_dport = port; 1882 nth = (struct tcphdr *)(uh + 1); 1883 } 1884 } 1885 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1886 flags = TH_ACK; 1887 } else if ((!M_WRITABLE(m)) || (port != 0)) { 1888 struct mbuf *n; 1889 1890 /* Can't reuse 'm', allocate a new mbuf. */ 1891 n = m_gethdr(M_NOWAIT, MT_DATA); 1892 if (n == NULL) { 1893 m_freem(m); 1894 return; 1895 } 1896 1897 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 1898 m_freem(m); 1899 m_freem(n); 1900 return; 1901 } 1902 1903 n->m_data += max_linkhdr; 1904 /* m_len is set later */ 1905 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 1906 #ifdef INET6 1907 if (isipv6) { 1908 bcopy((caddr_t)ip6, mtod(n, caddr_t), 1909 sizeof(struct ip6_hdr)); 1910 ip6 = mtod(n, struct ip6_hdr *); 1911 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1912 nth = (struct tcphdr *)(ip6 + 1); 1913 if (port) { 1914 /* Insert a UDP header */ 1915 uh = (struct udphdr *)nth; 1916 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1917 uh->uh_dport = port; 1918 nth = (struct tcphdr *)(uh + 1); 1919 } 1920 } else 1921 #endif /* INET6 */ 1922 { 1923 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 1924 ip = mtod(n, struct ip *); 1925 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1926 nth = (struct tcphdr *)(ip + 1); 1927 if (port) { 1928 /* Insert a UDP header */ 1929 uh = (struct udphdr *)nth; 1930 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1931 uh->uh_dport = port; 1932 nth = (struct tcphdr *)(uh + 1); 1933 } 1934 } 1935 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1936 xchg(nth->th_dport, nth->th_sport, uint16_t); 1937 th = nth; 1938 m_freem(m); 1939 m = n; 1940 } else { 1941 /* 1942 * reuse the mbuf. 1943 * XXX MRT We inherit the FIB, which is lucky. 1944 */ 1945 m_freem(m->m_next); 1946 m->m_next = NULL; 1947 m->m_data = (caddr_t)ipgen; 1948 /* clear any receive flags for proper bpf timestamping */ 1949 m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO); 1950 /* m_len is set later */ 1951 #ifdef INET6 1952 if (isipv6) { 1953 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1954 nth = (struct tcphdr *)(ip6 + 1); 1955 } else 1956 #endif /* INET6 */ 1957 { 1958 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1959 nth = (struct tcphdr *)(ip + 1); 1960 } 1961 if (th != nth) { 1962 /* 1963 * this is usually a case when an extension header 1964 * exists between the IPv6 header and the 1965 * TCP header. 1966 */ 1967 nth->th_sport = th->th_sport; 1968 nth->th_dport = th->th_dport; 1969 } 1970 xchg(nth->th_dport, nth->th_sport, uint16_t); 1971 #undef xchg 1972 } 1973 tlen = 0; 1974 #ifdef INET6 1975 if (isipv6) 1976 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1977 #endif 1978 #if defined(INET) && defined(INET6) 1979 else 1980 #endif 1981 #ifdef INET 1982 tlen = sizeof (struct tcpiphdr); 1983 #endif 1984 if (port) 1985 tlen += sizeof (struct udphdr); 1986 #ifdef INVARIANTS 1987 m->m_len = 0; 1988 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1989 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1990 m, tlen, (long)M_TRAILINGSPACE(m))); 1991 #endif 1992 m->m_len = tlen; 1993 to.to_flags = 0; 1994 if (incl_opts) { 1995 ect = tcp_ecn_output_established(tp, &flags, 0, false); 1996 /* Make sure we have room. */ 1997 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1998 m->m_next = m_get(M_NOWAIT, MT_DATA); 1999 if (m->m_next) { 2000 optp = mtod(m->m_next, u_char *); 2001 optm = m->m_next; 2002 } else 2003 incl_opts = false; 2004 } else { 2005 optp = (u_char *) (nth + 1); 2006 optm = m; 2007 } 2008 } 2009 if (incl_opts) { 2010 /* Timestamps. */ 2011 if (tp->t_flags & TF_RCVD_TSTMP) { 2012 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 2013 to.to_tsecr = tp->ts_recent; 2014 to.to_flags |= TOF_TS; 2015 } 2016 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2017 /* TCP-MD5 (RFC2385). */ 2018 if (tp->t_flags & TF_SIGNATURE) 2019 to.to_flags |= TOF_SIGNATURE; 2020 #endif 2021 /* Add the options. */ 2022 tlen += optlen = tcp_addoptions(&to, optp); 2023 2024 /* Update m_len in the correct mbuf. */ 2025 optm->m_len += optlen; 2026 } else 2027 optlen = 0; 2028 #ifdef INET6 2029 if (isipv6) { 2030 if (uh) { 2031 ulen = tlen - sizeof(struct ip6_hdr); 2032 uh->uh_ulen = htons(ulen); 2033 } 2034 ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN); 2035 ip6->ip6_vfc = IPV6_VERSION; 2036 if (port) 2037 ip6->ip6_nxt = IPPROTO_UDP; 2038 else 2039 ip6->ip6_nxt = IPPROTO_TCP; 2040 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 2041 } 2042 #endif 2043 #if defined(INET) && defined(INET6) 2044 else 2045 #endif 2046 #ifdef INET 2047 { 2048 if (uh) { 2049 ulen = tlen - sizeof(struct ip); 2050 uh->uh_ulen = htons(ulen); 2051 } 2052 ip->ip_tos = ect; 2053 ip->ip_len = htons(tlen); 2054 ip->ip_ttl = V_ip_defttl; 2055 if (port) { 2056 ip->ip_p = IPPROTO_UDP; 2057 } else { 2058 ip->ip_p = IPPROTO_TCP; 2059 } 2060 if (V_path_mtu_discovery) 2061 ip->ip_off |= htons(IP_DF); 2062 } 2063 #endif 2064 m->m_pkthdr.len = tlen; 2065 m->m_pkthdr.rcvif = NULL; 2066 #ifdef MAC 2067 if (inp != NULL) { 2068 /* 2069 * Packet is associated with a socket, so allow the 2070 * label of the response to reflect the socket label. 2071 */ 2072 INP_LOCK_ASSERT(inp); 2073 mac_inpcb_create_mbuf(inp, m); 2074 } else { 2075 /* 2076 * Packet is not associated with a socket, so possibly 2077 * update the label in place. 2078 */ 2079 mac_netinet_tcp_reply(m); 2080 } 2081 #endif 2082 nth->th_seq = htonl(seq); 2083 nth->th_ack = htonl(ack); 2084 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 2085 tcp_set_flags(nth, flags); 2086 if (tp && (flags & TH_RST)) { 2087 /* Log the reset */ 2088 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 2089 } 2090 if (tp != NULL) 2091 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 2092 else 2093 nth->th_win = htons((u_short)win); 2094 nth->th_urp = 0; 2095 2096 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2097 if (to.to_flags & TOF_SIGNATURE) { 2098 if (!TCPMD5_ENABLED() || 2099 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { 2100 m_freem(m); 2101 return; 2102 } 2103 } 2104 #endif 2105 2106 #ifdef INET6 2107 if (isipv6) { 2108 if (port) { 2109 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 2110 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2111 uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 2112 nth->th_sum = 0; 2113 } else { 2114 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 2115 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2116 nth->th_sum = in6_cksum_pseudo(ip6, 2117 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 2118 } 2119 ip6->ip6_hlim = in6_selecthlim(inp, NULL); 2120 } 2121 #endif /* INET6 */ 2122 #if defined(INET6) && defined(INET) 2123 else 2124 #endif 2125 #ifdef INET 2126 { 2127 if (port) { 2128 uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2129 htons(ulen + IPPROTO_UDP)); 2130 m->m_pkthdr.csum_flags = CSUM_UDP; 2131 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2132 nth->th_sum = 0; 2133 } else { 2134 m->m_pkthdr.csum_flags = CSUM_TCP; 2135 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2136 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2137 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 2138 } 2139 } 2140 #endif /* INET */ 2141 TCP_PROBE3(debug__output, tp, th, m); 2142 if (flags & TH_RST) 2143 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); 2144 lgb = NULL; 2145 if ((tp != NULL) && tcp_bblogging_on(tp)) { 2146 if (INP_WLOCKED(inp)) { 2147 union tcp_log_stackspecific log; 2148 struct timeval tv; 2149 2150 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2151 log.u_bbr.inhpts = tcp_in_hpts(tp); 2152 log.u_bbr.flex8 = 4; 2153 log.u_bbr.pkts_out = tp->t_maxseg; 2154 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2155 log.u_bbr.delivered = 0; 2156 lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT, 2157 ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv); 2158 } else { 2159 /* 2160 * We can not log the packet, since we only own the 2161 * read lock, but a write lock is needed. The read lock 2162 * is not upgraded to a write lock, since only getting 2163 * the read lock was done intentionally to improve the 2164 * handling of SYN flooding attacks. 2165 * This happens only for pure SYN segments received in 2166 * the initial CLOSED state, or received in a more 2167 * advanced state than listen and the UDP encapsulation 2168 * port is unexpected. 2169 * The incoming SYN segments do not really belong to 2170 * the TCP connection and the handling does not change 2171 * the state of the TCP connection. Therefore, the 2172 * sending of the RST segments is not logged. Please 2173 * note that also the incoming SYN segments are not 2174 * logged. 2175 * 2176 * The following code ensures that the above description 2177 * is and stays correct. 2178 */ 2179 KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN && 2180 (tp->t_state == TCPS_CLOSED || 2181 (tp->t_state > TCPS_LISTEN && tp->t_port != port)), 2182 ("%s: Logging of TCP segment with flags 0x%b and " 2183 "UDP encapsulation port %u skipped in state %s", 2184 __func__, thflags, PRINT_TH_FLAGS, 2185 ntohs(port), tcpstates[tp->t_state])); 2186 } 2187 } 2188 2189 if (flags & TH_ACK) 2190 TCPSTAT_INC(tcps_sndacks); 2191 else if (flags & (TH_SYN|TH_FIN|TH_RST)) 2192 TCPSTAT_INC(tcps_sndctrl); 2193 TCPSTAT_INC(tcps_sndtotal); 2194 2195 #ifdef INET6 2196 if (isipv6) { 2197 TCP_PROBE5(send, NULL, tp, ip6, tp, nth); 2198 output_ret = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); 2199 } 2200 #endif /* INET6 */ 2201 #if defined(INET) && defined(INET6) 2202 else 2203 #endif 2204 #ifdef INET 2205 { 2206 TCP_PROBE5(send, NULL, tp, ip, tp, nth); 2207 output_ret = ip_output(m, NULL, NULL, 0, NULL, inp); 2208 } 2209 #endif 2210 if (lgb != NULL) 2211 lgb->tlb_errno = output_ret; 2212 } 2213 2214 /* 2215 * Create a new TCP control block, making an empty reassembly queue and hooking 2216 * it to the argument protocol control block. The `inp' parameter must have 2217 * come from the zone allocator set up by tcpcbstor declaration. 2218 */ 2219 struct tcpcb * 2220 tcp_newtcpcb(struct inpcb *inp) 2221 { 2222 struct tcpcb *tp = intotcpcb(inp); 2223 #ifdef INET6 2224 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2225 #endif /* INET6 */ 2226 2227 /* 2228 * Historically allocation was done with M_ZERO. There is a lot of 2229 * code that rely on that. For now take safe approach and zero whole 2230 * tcpcb. This definitely can be optimized. 2231 */ 2232 bzero(&tp->t_start_zero, t_zero_size); 2233 2234 /* Initialise cc_var struct for this tcpcb. */ 2235 tp->t_ccv.type = IPPROTO_TCP; 2236 tp->t_ccv.ccvc.tcp = tp; 2237 rw_rlock(&tcp_function_lock); 2238 tp->t_fb = V_tcp_func_set_ptr; 2239 refcount_acquire(&tp->t_fb->tfb_refcnt); 2240 rw_runlock(&tcp_function_lock); 2241 /* 2242 * Use the current system default CC algorithm. 2243 */ 2244 cc_attach(tp, CC_DEFAULT_ALGO()); 2245 2246 if (CC_ALGO(tp)->cb_init != NULL) 2247 if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) { 2248 cc_detach(tp); 2249 if (tp->t_fb->tfb_tcp_fb_fini) 2250 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2251 refcount_release(&tp->t_fb->tfb_refcnt); 2252 return (NULL); 2253 } 2254 2255 #ifdef TCP_HHOOK 2256 if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) { 2257 if (tp->t_fb->tfb_tcp_fb_fini) 2258 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2259 refcount_release(&tp->t_fb->tfb_refcnt); 2260 return (NULL); 2261 } 2262 #endif 2263 2264 TAILQ_INIT(&tp->t_segq); 2265 STAILQ_INIT(&tp->t_inqueue); 2266 tp->t_maxseg = 2267 #ifdef INET6 2268 isipv6 ? V_tcp_v6mssdflt : 2269 #endif /* INET6 */ 2270 V_tcp_mssdflt; 2271 2272 /* All mbuf queue/ack compress flags should be off */ 2273 tcp_lro_features_off(tp); 2274 2275 callout_init_rw(&tp->t_callout, &inp->inp_lock, CALLOUT_RETURNUNLOCKED); 2276 for (int i = 0; i < TT_N; i++) 2277 tp->t_timers[i] = SBT_MAX; 2278 2279 switch (V_tcp_do_rfc1323) { 2280 case 0: 2281 break; 2282 default: 2283 case 1: 2284 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 2285 break; 2286 case 2: 2287 tp->t_flags = TF_REQ_SCALE; 2288 break; 2289 case 3: 2290 tp->t_flags = TF_REQ_TSTMP; 2291 break; 2292 } 2293 if (V_tcp_do_sack) 2294 tp->t_flags |= TF_SACK_PERMIT; 2295 TAILQ_INIT(&tp->snd_holes); 2296 2297 /* 2298 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 2299 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 2300 * reasonable initial retransmit time. 2301 */ 2302 tp->t_srtt = TCPTV_SRTTBASE; 2303 tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 2304 tp->t_rttmin = tcp_rexmit_min; 2305 tp->t_rxtcur = tcp_rexmit_initial; 2306 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2307 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2308 tp->t_rcvtime = ticks; 2309 /* We always start with ticks granularity */ 2310 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 2311 /* 2312 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 2313 * because the socket may be bound to an IPv6 wildcard address, 2314 * which may match an IPv4-mapped IPv6 address. 2315 */ 2316 inp->inp_ip_ttl = V_ip_defttl; 2317 #ifdef TCPHPTS 2318 tcp_hpts_init(tp); 2319 #endif 2320 #ifdef TCPPCAP 2321 /* 2322 * Init the TCP PCAP queues. 2323 */ 2324 tcp_pcap_tcpcb_init(tp); 2325 #endif 2326 #ifdef TCP_BLACKBOX 2327 /* Initialize the per-TCPCB log data. */ 2328 tcp_log_tcpcbinit(tp); 2329 #endif 2330 tp->t_pacing_rate = -1; 2331 if (tp->t_fb->tfb_tcp_fb_init) { 2332 if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) { 2333 refcount_release(&tp->t_fb->tfb_refcnt); 2334 return (NULL); 2335 } 2336 } 2337 #ifdef STATS 2338 if (V_tcp_perconn_stats_enable == 1) 2339 tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0); 2340 #endif 2341 if (V_tcp_do_lrd) 2342 tp->t_flags |= TF_LRD; 2343 2344 return (tp); 2345 } 2346 2347 /* 2348 * Drop a TCP connection, reporting 2349 * the specified error. If connection is synchronized, 2350 * then send a RST to peer. 2351 */ 2352 struct tcpcb * 2353 tcp_drop(struct tcpcb *tp, int errno) 2354 { 2355 struct socket *so = tptosocket(tp); 2356 2357 NET_EPOCH_ASSERT(); 2358 INP_WLOCK_ASSERT(tptoinpcb(tp)); 2359 2360 if (TCPS_HAVERCVDSYN(tp->t_state)) { 2361 tcp_state_change(tp, TCPS_CLOSED); 2362 /* Don't use tcp_output() here due to possible recursion. */ 2363 (void)tcp_output_nodrop(tp); 2364 TCPSTAT_INC(tcps_drops); 2365 } else 2366 TCPSTAT_INC(tcps_conndrops); 2367 if (errno == ETIMEDOUT && tp->t_softerror) 2368 errno = tp->t_softerror; 2369 so->so_error = errno; 2370 return (tcp_close(tp)); 2371 } 2372 2373 void 2374 tcp_discardcb(struct tcpcb *tp) 2375 { 2376 struct inpcb *inp = tptoinpcb(tp); 2377 struct socket *so = tptosocket(tp); 2378 struct mbuf *m; 2379 #ifdef INET6 2380 bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2381 #endif 2382 2383 INP_WLOCK_ASSERT(inp); 2384 2385 tcp_timer_stop(tp); 2386 if (tp->t_fb->tfb_tcp_timer_stop_all) { 2387 tp->t_fb->tfb_tcp_timer_stop_all(tp); 2388 } 2389 2390 /* free the reassembly queue, if any */ 2391 tcp_reass_flush(tp); 2392 2393 #ifdef TCP_OFFLOAD 2394 /* Disconnect offload device, if any. */ 2395 if (tp->t_flags & TF_TOE) 2396 tcp_offload_detach(tp); 2397 #endif 2398 2399 tcp_free_sackholes(tp); 2400 2401 #ifdef TCPPCAP 2402 /* Free the TCP PCAP queues. */ 2403 tcp_pcap_drain(&(tp->t_inpkts)); 2404 tcp_pcap_drain(&(tp->t_outpkts)); 2405 #endif 2406 2407 /* Allow the CC algorithm to clean up after itself. */ 2408 if (CC_ALGO(tp)->cb_destroy != NULL) 2409 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2410 CC_DATA(tp) = NULL; 2411 /* Detach from the CC algorithm */ 2412 cc_detach(tp); 2413 2414 #ifdef TCP_HHOOK 2415 khelp_destroy_osd(&tp->t_osd); 2416 #endif 2417 #ifdef STATS 2418 stats_blob_destroy(tp->t_stats); 2419 #endif 2420 2421 CC_ALGO(tp) = NULL; 2422 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) { 2423 struct mbuf *prev; 2424 2425 STAILQ_INIT(&tp->t_inqueue); 2426 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev) 2427 m_freem(m); 2428 } 2429 TCPSTATES_DEC(tp->t_state); 2430 2431 if (tp->t_fb->tfb_tcp_fb_fini) 2432 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2433 MPASS(!tcp_in_hpts(tp)); 2434 #ifdef TCP_BLACKBOX 2435 tcp_log_tcpcbfini(tp); 2436 #endif 2437 2438 /* 2439 * If we got enough samples through the srtt filter, 2440 * save the rtt and rttvar in the routing entry. 2441 * 'Enough' is arbitrarily defined as 4 rtt samples. 2442 * 4 samples is enough for the srtt filter to converge 2443 * to within enough % of the correct value; fewer samples 2444 * and we could save a bogus rtt. The danger is not high 2445 * as tcp quickly recovers from everything. 2446 * XXX: Works very well but needs some more statistics! 2447 * 2448 * XXXRRS: Updating must be after the stack fini() since 2449 * that may be converting some internal representation of 2450 * say srtt etc into the general one used by other stacks. 2451 * Lets also at least protect against the so being NULL 2452 * as RW stated below. 2453 */ 2454 if ((tp->t_rttupdated >= 4) && (so != NULL)) { 2455 struct hc_metrics_lite metrics; 2456 uint32_t ssthresh; 2457 2458 bzero(&metrics, sizeof(metrics)); 2459 /* 2460 * Update the ssthresh always when the conditions below 2461 * are satisfied. This gives us better new start value 2462 * for the congestion avoidance for new connections. 2463 * ssthresh is only set if packet loss occurred on a session. 2464 * 2465 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 2466 * being torn down. Ideally this code would not use 'so'. 2467 */ 2468 ssthresh = tp->snd_ssthresh; 2469 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 2470 /* 2471 * convert the limit from user data bytes to 2472 * packets then to packet data bytes. 2473 */ 2474 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 2475 if (ssthresh < 2) 2476 ssthresh = 2; 2477 ssthresh *= (tp->t_maxseg + 2478 #ifdef INET6 2479 (isipv6 ? sizeof (struct ip6_hdr) + 2480 sizeof (struct tcphdr) : 2481 #endif 2482 sizeof (struct tcpiphdr) 2483 #ifdef INET6 2484 ) 2485 #endif 2486 ); 2487 } else 2488 ssthresh = 0; 2489 metrics.rmx_ssthresh = ssthresh; 2490 2491 metrics.rmx_rtt = tp->t_srtt; 2492 metrics.rmx_rttvar = tp->t_rttvar; 2493 metrics.rmx_cwnd = tp->snd_cwnd; 2494 metrics.rmx_sendpipe = 0; 2495 metrics.rmx_recvpipe = 0; 2496 2497 tcp_hc_update(&inp->inp_inc, &metrics); 2498 } 2499 2500 refcount_release(&tp->t_fb->tfb_refcnt); 2501 } 2502 2503 /* 2504 * Attempt to close a TCP control block, marking it as dropped, and freeing 2505 * the socket if we hold the only reference. 2506 */ 2507 struct tcpcb * 2508 tcp_close(struct tcpcb *tp) 2509 { 2510 struct inpcb *inp = tptoinpcb(tp); 2511 struct socket *so = tptosocket(tp); 2512 2513 INP_WLOCK_ASSERT(inp); 2514 2515 #ifdef TCP_OFFLOAD 2516 if (tp->t_state == TCPS_LISTEN) 2517 tcp_offload_listen_stop(tp); 2518 #endif 2519 /* 2520 * This releases the TFO pending counter resource for TFO listen 2521 * sockets as well as passively-created TFO sockets that transition 2522 * from SYN_RECEIVED to CLOSED. 2523 */ 2524 if (tp->t_tfo_pending) { 2525 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2526 tp->t_tfo_pending = NULL; 2527 } 2528 #ifdef TCPHPTS 2529 tcp_hpts_remove(tp); 2530 #endif 2531 in_pcbdrop(inp); 2532 TCPSTAT_INC(tcps_closed); 2533 if (tp->t_state != TCPS_CLOSED) 2534 tcp_state_change(tp, TCPS_CLOSED); 2535 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 2536 soisdisconnected(so); 2537 if (inp->inp_flags & INP_SOCKREF) { 2538 inp->inp_flags &= ~INP_SOCKREF; 2539 INP_WUNLOCK(inp); 2540 sorele(so); 2541 return (NULL); 2542 } 2543 return (tp); 2544 } 2545 2546 /* 2547 * Notify a tcp user of an asynchronous error; 2548 * store error as soft error, but wake up user 2549 * (for now, won't do anything until can select for soft error). 2550 * 2551 * Do not wake up user since there currently is no mechanism for 2552 * reporting soft errors (yet - a kqueue filter may be added). 2553 */ 2554 static struct inpcb * 2555 tcp_notify(struct inpcb *inp, int error) 2556 { 2557 struct tcpcb *tp; 2558 2559 INP_WLOCK_ASSERT(inp); 2560 2561 tp = intotcpcb(inp); 2562 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 2563 2564 /* 2565 * Ignore some errors if we are hooked up. 2566 * If connection hasn't completed, has retransmitted several times, 2567 * and receives a second error, give up now. This is better 2568 * than waiting a long time to establish a connection that 2569 * can never complete. 2570 */ 2571 if (tp->t_state == TCPS_ESTABLISHED && 2572 (error == EHOSTUNREACH || error == ENETUNREACH || 2573 error == EHOSTDOWN)) { 2574 if (inp->inp_route.ro_nh) { 2575 NH_FREE(inp->inp_route.ro_nh); 2576 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 2577 } 2578 return (inp); 2579 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 2580 tp->t_softerror) { 2581 tp = tcp_drop(tp, error); 2582 if (tp != NULL) 2583 return (inp); 2584 else 2585 return (NULL); 2586 } else { 2587 tp->t_softerror = error; 2588 return (inp); 2589 } 2590 #if 0 2591 wakeup( &so->so_timeo); 2592 sorwakeup(so); 2593 sowwakeup(so); 2594 #endif 2595 } 2596 2597 static int 2598 tcp_pcblist(SYSCTL_HANDLER_ARGS) 2599 { 2600 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2601 INPLOOKUP_RLOCKPCB); 2602 struct xinpgen xig; 2603 struct inpcb *inp; 2604 int error; 2605 2606 if (req->newptr != NULL) 2607 return (EPERM); 2608 2609 if (req->oldptr == NULL) { 2610 int n; 2611 2612 n = V_tcbinfo.ipi_count + 2613 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2614 n += imax(n / 8, 10); 2615 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 2616 return (0); 2617 } 2618 2619 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 2620 return (error); 2621 2622 bzero(&xig, sizeof(xig)); 2623 xig.xig_len = sizeof xig; 2624 xig.xig_count = V_tcbinfo.ipi_count + 2625 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2626 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2627 xig.xig_sogen = so_gencnt; 2628 error = SYSCTL_OUT(req, &xig, sizeof xig); 2629 if (error) 2630 return (error); 2631 2632 error = syncache_pcblist(req); 2633 if (error) 2634 return (error); 2635 2636 while ((inp = inp_next(&inpi)) != NULL) { 2637 if (inp->inp_gencnt <= xig.xig_gen && 2638 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 2639 struct xtcpcb xt; 2640 2641 tcp_inptoxtp(inp, &xt); 2642 error = SYSCTL_OUT(req, &xt, sizeof xt); 2643 if (error) { 2644 INP_RUNLOCK(inp); 2645 break; 2646 } else 2647 continue; 2648 } 2649 } 2650 2651 if (!error) { 2652 /* 2653 * Give the user an updated idea of our state. 2654 * If the generation differs from what we told 2655 * her before, she knows that something happened 2656 * while we were processing this request, and it 2657 * might be necessary to retry. 2658 */ 2659 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2660 xig.xig_sogen = so_gencnt; 2661 xig.xig_count = V_tcbinfo.ipi_count + 2662 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2663 error = SYSCTL_OUT(req, &xig, sizeof xig); 2664 } 2665 2666 return (error); 2667 } 2668 2669 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 2670 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 2671 NULL, 0, tcp_pcblist, "S,xtcpcb", 2672 "List of active TCP connections"); 2673 2674 #ifdef INET 2675 static int 2676 tcp_getcred(SYSCTL_HANDLER_ARGS) 2677 { 2678 struct xucred xuc; 2679 struct sockaddr_in addrs[2]; 2680 struct epoch_tracker et; 2681 struct inpcb *inp; 2682 int error; 2683 2684 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2685 if (error) 2686 return (error); 2687 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2688 if (error) 2689 return (error); 2690 NET_EPOCH_ENTER(et); 2691 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 2692 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 2693 NET_EPOCH_EXIT(et); 2694 if (inp != NULL) { 2695 if (error == 0) 2696 error = cr_canseeinpcb(req->td->td_ucred, inp); 2697 if (error == 0) 2698 cru2x(inp->inp_cred, &xuc); 2699 INP_RUNLOCK(inp); 2700 } else 2701 error = ENOENT; 2702 if (error == 0) 2703 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2704 return (error); 2705 } 2706 2707 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 2708 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2709 0, 0, tcp_getcred, "S,xucred", 2710 "Get the xucred of a TCP connection"); 2711 #endif /* INET */ 2712 2713 #ifdef INET6 2714 static int 2715 tcp6_getcred(SYSCTL_HANDLER_ARGS) 2716 { 2717 struct epoch_tracker et; 2718 struct xucred xuc; 2719 struct sockaddr_in6 addrs[2]; 2720 struct inpcb *inp; 2721 int error; 2722 #ifdef INET 2723 int mapped = 0; 2724 #endif 2725 2726 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2727 if (error) 2728 return (error); 2729 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2730 if (error) 2731 return (error); 2732 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 2733 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 2734 return (error); 2735 } 2736 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 2737 #ifdef INET 2738 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 2739 mapped = 1; 2740 else 2741 #endif 2742 return (EINVAL); 2743 } 2744 2745 NET_EPOCH_ENTER(et); 2746 #ifdef INET 2747 if (mapped == 1) 2748 inp = in_pcblookup(&V_tcbinfo, 2749 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 2750 addrs[1].sin6_port, 2751 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 2752 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 2753 else 2754 #endif 2755 inp = in6_pcblookup(&V_tcbinfo, 2756 &addrs[1].sin6_addr, addrs[1].sin6_port, 2757 &addrs[0].sin6_addr, addrs[0].sin6_port, 2758 INPLOOKUP_RLOCKPCB, NULL); 2759 NET_EPOCH_EXIT(et); 2760 if (inp != NULL) { 2761 if (error == 0) 2762 error = cr_canseeinpcb(req->td->td_ucred, inp); 2763 if (error == 0) 2764 cru2x(inp->inp_cred, &xuc); 2765 INP_RUNLOCK(inp); 2766 } else 2767 error = ENOENT; 2768 if (error == 0) 2769 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2770 return (error); 2771 } 2772 2773 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 2774 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2775 0, 0, tcp6_getcred, "S,xucred", 2776 "Get the xucred of a TCP6 connection"); 2777 #endif /* INET6 */ 2778 2779 #ifdef INET 2780 /* Path MTU to try next when a fragmentation-needed message is received. */ 2781 static inline int 2782 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip) 2783 { 2784 int mtu = ntohs(icp->icmp_nextmtu); 2785 2786 /* If no alternative MTU was proposed, try the next smaller one. */ 2787 if (!mtu) 2788 mtu = ip_next_mtu(ntohs(ip->ip_len), 1); 2789 if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) 2790 mtu = V_tcp_minmss + sizeof(struct tcpiphdr); 2791 2792 return (mtu); 2793 } 2794 2795 static void 2796 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port) 2797 { 2798 struct ip *ip; 2799 struct tcphdr *th; 2800 struct inpcb *inp; 2801 struct tcpcb *tp; 2802 struct inpcb *(*notify)(struct inpcb *, int); 2803 struct in_conninfo inc; 2804 tcp_seq icmp_tcp_seq; 2805 int errno, mtu; 2806 2807 errno = icmp_errmap(icp); 2808 switch (errno) { 2809 case 0: 2810 return; 2811 case EMSGSIZE: 2812 notify = tcp_mtudisc_notify; 2813 break; 2814 case ECONNREFUSED: 2815 if (V_icmp_may_rst) 2816 notify = tcp_drop_syn_sent; 2817 else 2818 notify = tcp_notify; 2819 break; 2820 case EHOSTUNREACH: 2821 if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED) 2822 notify = tcp_drop_syn_sent; 2823 else 2824 notify = tcp_notify; 2825 break; 2826 default: 2827 notify = tcp_notify; 2828 } 2829 2830 ip = &icp->icmp_ip; 2831 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 2832 icmp_tcp_seq = th->th_seq; 2833 inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src, 2834 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 2835 if (inp != NULL) { 2836 tp = intotcpcb(inp); 2837 #ifdef TCP_OFFLOAD 2838 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 2839 /* 2840 * MTU discovery for offloaded connections. Let 2841 * the TOE driver verify seq# and process it. 2842 */ 2843 mtu = tcp_next_pmtu(icp, ip); 2844 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 2845 goto out; 2846 } 2847 #endif 2848 if (tp->t_port != port) 2849 goto out; 2850 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2851 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2852 if (errno == EMSGSIZE) { 2853 /* 2854 * MTU discovery: we got a needfrag and 2855 * will potentially try a lower MTU. 2856 */ 2857 mtu = tcp_next_pmtu(icp, ip); 2858 2859 /* 2860 * Only process the offered MTU if it 2861 * is smaller than the current one. 2862 */ 2863 if (mtu < tp->t_maxseg + 2864 sizeof(struct tcpiphdr)) { 2865 bzero(&inc, sizeof(inc)); 2866 inc.inc_faddr = ip->ip_dst; 2867 inc.inc_fibnum = 2868 inp->inp_inc.inc_fibnum; 2869 tcp_hc_updatemtu(&inc, mtu); 2870 inp = tcp_mtudisc(inp, mtu); 2871 } 2872 } else 2873 inp = (*notify)(inp, errno); 2874 } 2875 } else { 2876 bzero(&inc, sizeof(inc)); 2877 inc.inc_fport = th->th_dport; 2878 inc.inc_lport = th->th_sport; 2879 inc.inc_faddr = ip->ip_dst; 2880 inc.inc_laddr = ip->ip_src; 2881 syncache_unreach(&inc, icmp_tcp_seq, port); 2882 } 2883 out: 2884 if (inp != NULL) 2885 INP_WUNLOCK(inp); 2886 } 2887 2888 static void 2889 tcp_ctlinput(struct icmp *icmp) 2890 { 2891 tcp_ctlinput_with_port(icmp, htons(0)); 2892 } 2893 2894 static void 2895 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param) 2896 { 2897 /* Its a tunneled TCP over UDP icmp */ 2898 struct icmp *icmp = param.icmp; 2899 struct ip *outer_ip, *inner_ip; 2900 struct udphdr *udp; 2901 struct tcphdr *th, ttemp; 2902 int i_hlen, o_len; 2903 uint16_t port; 2904 2905 outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); 2906 inner_ip = &icmp->icmp_ip; 2907 i_hlen = inner_ip->ip_hl << 2; 2908 o_len = ntohs(outer_ip->ip_len); 2909 if (o_len < 2910 (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) { 2911 /* Not enough data present */ 2912 return; 2913 } 2914 /* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */ 2915 udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen); 2916 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 2917 return; 2918 } 2919 port = udp->uh_dport; 2920 th = (struct tcphdr *)(udp + 1); 2921 memcpy(&ttemp, th, sizeof(struct tcphdr)); 2922 memcpy(udp, &ttemp, sizeof(struct tcphdr)); 2923 /* Now adjust down the size of the outer IP header */ 2924 o_len -= sizeof(struct udphdr); 2925 outer_ip->ip_len = htons(o_len); 2926 /* Now call in to the normal handling code */ 2927 tcp_ctlinput_with_port(icmp, port); 2928 } 2929 #endif /* INET */ 2930 2931 #ifdef INET6 2932 static inline int 2933 tcp6_next_pmtu(const struct icmp6_hdr *icmp6) 2934 { 2935 int mtu = ntohl(icmp6->icmp6_mtu); 2936 2937 /* 2938 * If no alternative MTU was proposed, or the proposed MTU was too 2939 * small, set to the min. 2940 */ 2941 if (mtu < IPV6_MMTU) 2942 mtu = IPV6_MMTU - 8; /* XXXNP: what is the adjustment for? */ 2943 return (mtu); 2944 } 2945 2946 static void 2947 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port) 2948 { 2949 struct in6_addr *dst; 2950 struct inpcb *(*notify)(struct inpcb *, int); 2951 struct ip6_hdr *ip6; 2952 struct mbuf *m; 2953 struct inpcb *inp; 2954 struct tcpcb *tp; 2955 struct icmp6_hdr *icmp6; 2956 struct in_conninfo inc; 2957 struct tcp_ports { 2958 uint16_t th_sport; 2959 uint16_t th_dport; 2960 } t_ports; 2961 tcp_seq icmp_tcp_seq; 2962 unsigned int mtu; 2963 unsigned int off; 2964 int errno; 2965 2966 icmp6 = ip6cp->ip6c_icmp6; 2967 m = ip6cp->ip6c_m; 2968 ip6 = ip6cp->ip6c_ip6; 2969 off = ip6cp->ip6c_off; 2970 dst = &ip6cp->ip6c_finaldst->sin6_addr; 2971 2972 errno = icmp6_errmap(icmp6); 2973 switch (errno) { 2974 case 0: 2975 return; 2976 case EMSGSIZE: 2977 notify = tcp_mtudisc_notify; 2978 break; 2979 case ECONNREFUSED: 2980 if (V_icmp_may_rst) 2981 notify = tcp_drop_syn_sent; 2982 else 2983 notify = tcp_notify; 2984 break; 2985 case EHOSTUNREACH: 2986 /* 2987 * There are only four ICMPs that may reset connection: 2988 * - administratively prohibited 2989 * - port unreachable 2990 * - time exceeded in transit 2991 * - unknown next header 2992 */ 2993 if (V_icmp_may_rst && 2994 ((icmp6->icmp6_type == ICMP6_DST_UNREACH && 2995 (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN || 2996 icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) || 2997 (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED && 2998 icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) || 2999 (icmp6->icmp6_type == ICMP6_PARAM_PROB && 3000 icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER))) 3001 notify = tcp_drop_syn_sent; 3002 else 3003 notify = tcp_notify; 3004 break; 3005 default: 3006 notify = tcp_notify; 3007 } 3008 3009 /* Check if we can safely get the ports from the tcp hdr */ 3010 if (m == NULL || 3011 (m->m_pkthdr.len < 3012 (int32_t) (off + sizeof(struct tcp_ports)))) { 3013 return; 3014 } 3015 bzero(&t_ports, sizeof(struct tcp_ports)); 3016 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); 3017 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, 3018 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); 3019 off += sizeof(struct tcp_ports); 3020 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { 3021 goto out; 3022 } 3023 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); 3024 if (inp != NULL) { 3025 tp = intotcpcb(inp); 3026 #ifdef TCP_OFFLOAD 3027 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 3028 /* MTU discovery for offloaded connections. */ 3029 mtu = tcp6_next_pmtu(icmp6); 3030 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 3031 goto out; 3032 } 3033 #endif 3034 if (tp->t_port != port) 3035 goto out; 3036 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 3037 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 3038 if (errno == EMSGSIZE) { 3039 /* 3040 * MTU discovery: 3041 * If we got a needfrag set the MTU 3042 * in the route to the suggested new 3043 * value (if given) and then notify. 3044 */ 3045 mtu = tcp6_next_pmtu(icmp6); 3046 3047 bzero(&inc, sizeof(inc)); 3048 inc.inc_fibnum = M_GETFIB(m); 3049 inc.inc_flags |= INC_ISIPV6; 3050 inc.inc6_faddr = *dst; 3051 if (in6_setscope(&inc.inc6_faddr, 3052 m->m_pkthdr.rcvif, NULL)) 3053 goto out; 3054 /* 3055 * Only process the offered MTU if it 3056 * is smaller than the current one. 3057 */ 3058 if (mtu < tp->t_maxseg + 3059 sizeof (struct tcphdr) + 3060 sizeof (struct ip6_hdr)) { 3061 tcp_hc_updatemtu(&inc, mtu); 3062 tcp_mtudisc(inp, mtu); 3063 ICMP6STAT_INC(icp6s_pmtuchg); 3064 } 3065 } else 3066 inp = (*notify)(inp, errno); 3067 } 3068 } else { 3069 bzero(&inc, sizeof(inc)); 3070 inc.inc_fibnum = M_GETFIB(m); 3071 inc.inc_flags |= INC_ISIPV6; 3072 inc.inc_fport = t_ports.th_dport; 3073 inc.inc_lport = t_ports.th_sport; 3074 inc.inc6_faddr = *dst; 3075 inc.inc6_laddr = ip6->ip6_src; 3076 syncache_unreach(&inc, icmp_tcp_seq, port); 3077 } 3078 out: 3079 if (inp != NULL) 3080 INP_WUNLOCK(inp); 3081 } 3082 3083 static void 3084 tcp6_ctlinput(struct ip6ctlparam *ctl) 3085 { 3086 tcp6_ctlinput_with_port(ctl, htons(0)); 3087 } 3088 3089 static void 3090 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param) 3091 { 3092 struct ip6ctlparam *ip6cp = param.ip6cp; 3093 struct mbuf *m; 3094 struct udphdr *udp; 3095 uint16_t port; 3096 3097 m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL); 3098 if (m == NULL) { 3099 return; 3100 } 3101 udp = mtod(m, struct udphdr *); 3102 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 3103 return; 3104 } 3105 port = udp->uh_dport; 3106 m_adj(m, sizeof(struct udphdr)); 3107 if ((m->m_flags & M_PKTHDR) == 0) { 3108 ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr); 3109 } 3110 /* Now call in to the normal handling code */ 3111 tcp6_ctlinput_with_port(ip6cp, port); 3112 } 3113 3114 #endif /* INET6 */ 3115 3116 static uint32_t 3117 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len) 3118 { 3119 SIPHASH_CTX ctx; 3120 uint32_t hash[2]; 3121 3122 KASSERT(len >= SIPHASH_KEY_LENGTH, 3123 ("%s: keylen %u too short ", __func__, len)); 3124 SipHash24_Init(&ctx); 3125 SipHash_SetKey(&ctx, (uint8_t *)key); 3126 SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t)); 3127 SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t)); 3128 switch (inc->inc_flags & INC_ISIPV6) { 3129 #ifdef INET 3130 case 0: 3131 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr)); 3132 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr)); 3133 break; 3134 #endif 3135 #ifdef INET6 3136 case INC_ISIPV6: 3137 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr)); 3138 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr)); 3139 break; 3140 #endif 3141 } 3142 SipHash_Final((uint8_t *)hash, &ctx); 3143 3144 return (hash[0] ^ hash[1]); 3145 } 3146 3147 uint32_t 3148 tcp_new_ts_offset(struct in_conninfo *inc) 3149 { 3150 struct in_conninfo inc_store, *local_inc; 3151 3152 if (!V_tcp_ts_offset_per_conn) { 3153 memcpy(&inc_store, inc, sizeof(struct in_conninfo)); 3154 inc_store.inc_lport = 0; 3155 inc_store.inc_fport = 0; 3156 local_inc = &inc_store; 3157 } else { 3158 local_inc = inc; 3159 } 3160 return (tcp_keyed_hash(local_inc, V_ts_offset_secret, 3161 sizeof(V_ts_offset_secret))); 3162 } 3163 3164 /* 3165 * Following is where TCP initial sequence number generation occurs. 3166 * 3167 * There are two places where we must use initial sequence numbers: 3168 * 1. In SYN-ACK packets. 3169 * 2. In SYN packets. 3170 * 3171 * All ISNs for SYN-ACK packets are generated by the syncache. See 3172 * tcp_syncache.c for details. 3173 * 3174 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 3175 * depends on this property. In addition, these ISNs should be 3176 * unguessable so as to prevent connection hijacking. To satisfy 3177 * the requirements of this situation, the algorithm outlined in 3178 * RFC 1948 is used, with only small modifications. 3179 * 3180 * Implementation details: 3181 * 3182 * Time is based off the system timer, and is corrected so that it 3183 * increases by one megabyte per second. This allows for proper 3184 * recycling on high speed LANs while still leaving over an hour 3185 * before rollover. 3186 * 3187 * As reading the *exact* system time is too expensive to be done 3188 * whenever setting up a TCP connection, we increment the time 3189 * offset in two ways. First, a small random positive increment 3190 * is added to isn_offset for each connection that is set up. 3191 * Second, the function tcp_isn_tick fires once per clock tick 3192 * and increments isn_offset as necessary so that sequence numbers 3193 * are incremented at approximately ISN_BYTES_PER_SECOND. The 3194 * random positive increments serve only to ensure that the same 3195 * exact sequence number is never sent out twice (as could otherwise 3196 * happen when a port is recycled in less than the system tick 3197 * interval.) 3198 * 3199 * net.inet.tcp.isn_reseed_interval controls the number of seconds 3200 * between seeding of isn_secret. This is normally set to zero, 3201 * as reseeding should not be necessary. 3202 * 3203 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 3204 * isn_offset_old, and isn_ctx is performed using the ISN lock. In 3205 * general, this means holding an exclusive (write) lock. 3206 */ 3207 3208 #define ISN_BYTES_PER_SECOND 1048576 3209 #define ISN_STATIC_INCREMENT 4096 3210 #define ISN_RANDOM_INCREMENT (4096 - 1) 3211 #define ISN_SECRET_LENGTH SIPHASH_KEY_LENGTH 3212 3213 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]); 3214 VNET_DEFINE_STATIC(int, isn_last); 3215 VNET_DEFINE_STATIC(int, isn_last_reseed); 3216 VNET_DEFINE_STATIC(u_int32_t, isn_offset); 3217 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old); 3218 3219 #define V_isn_secret VNET(isn_secret) 3220 #define V_isn_last VNET(isn_last) 3221 #define V_isn_last_reseed VNET(isn_last_reseed) 3222 #define V_isn_offset VNET(isn_offset) 3223 #define V_isn_offset_old VNET(isn_offset_old) 3224 3225 tcp_seq 3226 tcp_new_isn(struct in_conninfo *inc) 3227 { 3228 tcp_seq new_isn; 3229 u_int32_t projected_offset; 3230 3231 ISN_LOCK(); 3232 /* Seed if this is the first use, reseed if requested. */ 3233 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 3234 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 3235 < (u_int)ticks))) { 3236 arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0); 3237 V_isn_last_reseed = ticks; 3238 } 3239 3240 /* Compute the hash and return the ISN. */ 3241 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret, 3242 sizeof(V_isn_secret)); 3243 V_isn_offset += ISN_STATIC_INCREMENT + 3244 (arc4random() & ISN_RANDOM_INCREMENT); 3245 if (ticks != V_isn_last) { 3246 projected_offset = V_isn_offset_old + 3247 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 3248 if (SEQ_GT(projected_offset, V_isn_offset)) 3249 V_isn_offset = projected_offset; 3250 V_isn_offset_old = V_isn_offset; 3251 V_isn_last = ticks; 3252 } 3253 new_isn += V_isn_offset; 3254 ISN_UNLOCK(); 3255 return (new_isn); 3256 } 3257 3258 /* 3259 * When a specific ICMP unreachable message is received and the 3260 * connection state is SYN-SENT, drop the connection. This behavior 3261 * is controlled by the icmp_may_rst sysctl. 3262 */ 3263 static struct inpcb * 3264 tcp_drop_syn_sent(struct inpcb *inp, int errno) 3265 { 3266 struct tcpcb *tp; 3267 3268 NET_EPOCH_ASSERT(); 3269 INP_WLOCK_ASSERT(inp); 3270 3271 tp = intotcpcb(inp); 3272 if (tp->t_state != TCPS_SYN_SENT) 3273 return (inp); 3274 3275 if (IS_FASTOPEN(tp->t_flags)) 3276 tcp_fastopen_disable_path(tp); 3277 3278 tp = tcp_drop(tp, errno); 3279 if (tp != NULL) 3280 return (inp); 3281 else 3282 return (NULL); 3283 } 3284 3285 /* 3286 * When `need fragmentation' ICMP is received, update our idea of the MSS 3287 * based on the new value. Also nudge TCP to send something, since we 3288 * know the packet we just sent was dropped. 3289 * This duplicates some code in the tcp_mss() function in tcp_input.c. 3290 */ 3291 static struct inpcb * 3292 tcp_mtudisc_notify(struct inpcb *inp, int error) 3293 { 3294 3295 return (tcp_mtudisc(inp, -1)); 3296 } 3297 3298 static struct inpcb * 3299 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 3300 { 3301 struct tcpcb *tp; 3302 struct socket *so; 3303 3304 INP_WLOCK_ASSERT(inp); 3305 3306 tp = intotcpcb(inp); 3307 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 3308 3309 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 3310 3311 so = inp->inp_socket; 3312 SOCKBUF_LOCK(&so->so_snd); 3313 /* If the mss is larger than the socket buffer, decrease the mss. */ 3314 if (so->so_snd.sb_hiwat < tp->t_maxseg) 3315 tp->t_maxseg = so->so_snd.sb_hiwat; 3316 SOCKBUF_UNLOCK(&so->so_snd); 3317 3318 TCPSTAT_INC(tcps_mturesent); 3319 tp->t_rtttime = 0; 3320 tp->snd_nxt = tp->snd_una; 3321 tcp_free_sackholes(tp); 3322 tp->snd_recover = tp->snd_max; 3323 if (tp->t_flags & TF_SACK_PERMIT) 3324 EXIT_FASTRECOVERY(tp->t_flags); 3325 if (tp->t_fb->tfb_tcp_mtu_chg != NULL) { 3326 /* 3327 * Conceptually the snd_nxt setting 3328 * and freeing sack holes should 3329 * be done by the default stacks 3330 * own tfb_tcp_mtu_chg(). 3331 */ 3332 tp->t_fb->tfb_tcp_mtu_chg(tp); 3333 } 3334 if (tcp_output(tp) < 0) 3335 return (NULL); 3336 else 3337 return (inp); 3338 } 3339 3340 #ifdef INET 3341 /* 3342 * Look-up the routing entry to the peer of this inpcb. If no route 3343 * is found and it cannot be allocated, then return 0. This routine 3344 * is called by TCP routines that access the rmx structure and by 3345 * tcp_mss_update to get the peer/interface MTU. 3346 */ 3347 uint32_t 3348 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 3349 { 3350 struct nhop_object *nh; 3351 struct ifnet *ifp; 3352 uint32_t maxmtu = 0; 3353 3354 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 3355 3356 if (inc->inc_faddr.s_addr != INADDR_ANY) { 3357 nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0); 3358 if (nh == NULL) 3359 return (0); 3360 3361 ifp = nh->nh_ifp; 3362 maxmtu = nh->nh_mtu; 3363 3364 /* Report additional interface capabilities. */ 3365 if (cap != NULL) { 3366 if (ifp->if_capenable & IFCAP_TSO4 && 3367 ifp->if_hwassist & CSUM_TSO) { 3368 cap->ifcap |= CSUM_TSO; 3369 cap->tsomax = ifp->if_hw_tsomax; 3370 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3371 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3372 } 3373 } 3374 } 3375 return (maxmtu); 3376 } 3377 #endif /* INET */ 3378 3379 #ifdef INET6 3380 uint32_t 3381 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 3382 { 3383 struct nhop_object *nh; 3384 struct in6_addr dst6; 3385 uint32_t scopeid; 3386 struct ifnet *ifp; 3387 uint32_t maxmtu = 0; 3388 3389 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 3390 3391 if (inc->inc_flags & INC_IPV6MINMTU) 3392 return (IPV6_MMTU); 3393 3394 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 3395 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 3396 nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0); 3397 if (nh == NULL) 3398 return (0); 3399 3400 ifp = nh->nh_ifp; 3401 maxmtu = nh->nh_mtu; 3402 3403 /* Report additional interface capabilities. */ 3404 if (cap != NULL) { 3405 if (ifp->if_capenable & IFCAP_TSO6 && 3406 ifp->if_hwassist & CSUM_TSO) { 3407 cap->ifcap |= CSUM_TSO; 3408 cap->tsomax = ifp->if_hw_tsomax; 3409 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3410 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3411 } 3412 } 3413 } 3414 3415 return (maxmtu); 3416 } 3417 3418 /* 3419 * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack. 3420 * 3421 * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag. 3422 * The right place to do that is ip6_setpktopt() that has just been 3423 * executed. By the way it just filled ip6po_minmtu for us. 3424 */ 3425 void 3426 tcp6_use_min_mtu(struct tcpcb *tp) 3427 { 3428 struct inpcb *inp = tptoinpcb(tp); 3429 3430 INP_WLOCK_ASSERT(inp); 3431 /* 3432 * In case of the IPV6_USE_MIN_MTU socket 3433 * option, the INC_IPV6MINMTU flag to announce 3434 * a corresponding MSS during the initial 3435 * handshake. If the TCP connection is not in 3436 * the front states, just reduce the MSS being 3437 * used. This avoids the sending of TCP 3438 * segments which will be fragmented at the 3439 * IPv6 layer. 3440 */ 3441 inp->inp_inc.inc_flags |= INC_IPV6MINMTU; 3442 if ((tp->t_state >= TCPS_SYN_SENT) && 3443 (inp->inp_inc.inc_flags & INC_ISIPV6)) { 3444 struct ip6_pktopts *opt; 3445 3446 opt = inp->in6p_outputopts; 3447 if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL && 3448 tp->t_maxseg > TCP6_MSS) 3449 tp->t_maxseg = TCP6_MSS; 3450 } 3451 } 3452 #endif /* INET6 */ 3453 3454 /* 3455 * Calculate effective SMSS per RFC5681 definition for a given TCP 3456 * connection at its current state, taking into account SACK and etc. 3457 */ 3458 u_int 3459 tcp_maxseg(const struct tcpcb *tp) 3460 { 3461 u_int optlen; 3462 3463 if (tp->t_flags & TF_NOOPT) 3464 return (tp->t_maxseg); 3465 3466 /* 3467 * Here we have a simplified code from tcp_addoptions(), 3468 * without a proper loop, and having most of paddings hardcoded. 3469 * We might make mistakes with padding here in some edge cases, 3470 * but this is harmless, since result of tcp_maxseg() is used 3471 * only in cwnd and ssthresh estimations. 3472 */ 3473 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3474 if (tp->t_flags & TF_RCVD_TSTMP) 3475 optlen = TCPOLEN_TSTAMP_APPA; 3476 else 3477 optlen = 0; 3478 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3479 if (tp->t_flags & TF_SIGNATURE) 3480 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3481 #endif 3482 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 3483 optlen += TCPOLEN_SACKHDR; 3484 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 3485 optlen = PADTCPOLEN(optlen); 3486 } 3487 } else { 3488 if (tp->t_flags & TF_REQ_TSTMP) 3489 optlen = TCPOLEN_TSTAMP_APPA; 3490 else 3491 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3492 if (tp->t_flags & TF_REQ_SCALE) 3493 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3494 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3495 if (tp->t_flags & TF_SIGNATURE) 3496 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3497 #endif 3498 if (tp->t_flags & TF_SACK_PERMIT) 3499 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3500 } 3501 #undef PAD 3502 optlen = min(optlen, TCP_MAXOLEN); 3503 return (tp->t_maxseg - optlen); 3504 } 3505 3506 3507 u_int 3508 tcp_fixed_maxseg(const struct tcpcb *tp) 3509 { 3510 int optlen; 3511 3512 if (tp->t_flags & TF_NOOPT) 3513 return (tp->t_maxseg); 3514 3515 /* 3516 * Here we have a simplified code from tcp_addoptions(), 3517 * without a proper loop, and having most of paddings hardcoded. 3518 * We only consider fixed options that we would send every 3519 * time I.e. SACK is not considered. This is important 3520 * for cc modules to figure out what the modulo of the 3521 * cwnd should be. 3522 */ 3523 #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) 3524 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3525 if (tp->t_flags & TF_RCVD_TSTMP) 3526 optlen = TCPOLEN_TSTAMP_APPA; 3527 else 3528 optlen = 0; 3529 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3530 if (tp->t_flags & TF_SIGNATURE) 3531 optlen += PAD(TCPOLEN_SIGNATURE); 3532 #endif 3533 } else { 3534 if (tp->t_flags & TF_REQ_TSTMP) 3535 optlen = TCPOLEN_TSTAMP_APPA; 3536 else 3537 optlen = PAD(TCPOLEN_MAXSEG); 3538 if (tp->t_flags & TF_REQ_SCALE) 3539 optlen += PAD(TCPOLEN_WINDOW); 3540 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3541 if (tp->t_flags & TF_SIGNATURE) 3542 optlen += PAD(TCPOLEN_SIGNATURE); 3543 #endif 3544 if (tp->t_flags & TF_SACK_PERMIT) 3545 optlen += PAD(TCPOLEN_SACK_PERMITTED); 3546 } 3547 #undef PAD 3548 optlen = min(optlen, TCP_MAXOLEN); 3549 return (tp->t_maxseg - optlen); 3550 } 3551 3552 3553 3554 static int 3555 sysctl_drop(SYSCTL_HANDLER_ARGS) 3556 { 3557 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3558 struct sockaddr_storage addrs[2]; 3559 struct inpcb *inp; 3560 struct tcpcb *tp; 3561 #ifdef INET 3562 struct sockaddr_in *fin = NULL, *lin = NULL; 3563 #endif 3564 struct epoch_tracker et; 3565 #ifdef INET6 3566 struct sockaddr_in6 *fin6, *lin6; 3567 #endif 3568 int error; 3569 3570 inp = NULL; 3571 #ifdef INET6 3572 fin6 = lin6 = NULL; 3573 #endif 3574 error = 0; 3575 3576 if (req->oldptr != NULL || req->oldlen != 0) 3577 return (EINVAL); 3578 if (req->newptr == NULL) 3579 return (EPERM); 3580 if (req->newlen < sizeof(addrs)) 3581 return (ENOMEM); 3582 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3583 if (error) 3584 return (error); 3585 3586 switch (addrs[0].ss_family) { 3587 #ifdef INET6 3588 case AF_INET6: 3589 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3590 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3591 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3592 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3593 return (EINVAL); 3594 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3595 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3596 return (EINVAL); 3597 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3598 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3599 #ifdef INET 3600 fin = (struct sockaddr_in *)&addrs[0]; 3601 lin = (struct sockaddr_in *)&addrs[1]; 3602 #endif 3603 break; 3604 } 3605 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3606 if (error) 3607 return (error); 3608 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3609 if (error) 3610 return (error); 3611 break; 3612 #endif 3613 #ifdef INET 3614 case AF_INET: 3615 fin = (struct sockaddr_in *)&addrs[0]; 3616 lin = (struct sockaddr_in *)&addrs[1]; 3617 if (fin->sin_len != sizeof(struct sockaddr_in) || 3618 lin->sin_len != sizeof(struct sockaddr_in)) 3619 return (EINVAL); 3620 break; 3621 #endif 3622 default: 3623 return (EINVAL); 3624 } 3625 NET_EPOCH_ENTER(et); 3626 switch (addrs[0].ss_family) { 3627 #ifdef INET6 3628 case AF_INET6: 3629 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3630 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3631 INPLOOKUP_WLOCKPCB, NULL); 3632 break; 3633 #endif 3634 #ifdef INET 3635 case AF_INET: 3636 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3637 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3638 break; 3639 #endif 3640 } 3641 if (inp != NULL) { 3642 if (!SOLISTENING(inp->inp_socket)) { 3643 tp = intotcpcb(inp); 3644 tp = tcp_drop(tp, ECONNABORTED); 3645 if (tp != NULL) 3646 INP_WUNLOCK(inp); 3647 } else 3648 INP_WUNLOCK(inp); 3649 } else 3650 error = ESRCH; 3651 NET_EPOCH_EXIT(et); 3652 return (error); 3653 } 3654 3655 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 3656 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3657 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "", 3658 "Drop TCP connection"); 3659 3660 static int 3661 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS) 3662 { 3663 return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo, 3664 &tcp_ctloutput_set)); 3665 } 3666 3667 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt, 3668 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3669 CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "", 3670 "Set socket option for TCP endpoint"); 3671 3672 #ifdef KERN_TLS 3673 static int 3674 sysctl_switch_tls(SYSCTL_HANDLER_ARGS) 3675 { 3676 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3677 struct sockaddr_storage addrs[2]; 3678 struct inpcb *inp; 3679 #ifdef INET 3680 struct sockaddr_in *fin = NULL, *lin = NULL; 3681 #endif 3682 struct epoch_tracker et; 3683 #ifdef INET6 3684 struct sockaddr_in6 *fin6, *lin6; 3685 #endif 3686 int error; 3687 3688 inp = NULL; 3689 #ifdef INET6 3690 fin6 = lin6 = NULL; 3691 #endif 3692 error = 0; 3693 3694 if (req->oldptr != NULL || req->oldlen != 0) 3695 return (EINVAL); 3696 if (req->newptr == NULL) 3697 return (EPERM); 3698 if (req->newlen < sizeof(addrs)) 3699 return (ENOMEM); 3700 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3701 if (error) 3702 return (error); 3703 3704 switch (addrs[0].ss_family) { 3705 #ifdef INET6 3706 case AF_INET6: 3707 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3708 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3709 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3710 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3711 return (EINVAL); 3712 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3713 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3714 return (EINVAL); 3715 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3716 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3717 #ifdef INET 3718 fin = (struct sockaddr_in *)&addrs[0]; 3719 lin = (struct sockaddr_in *)&addrs[1]; 3720 #endif 3721 break; 3722 } 3723 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3724 if (error) 3725 return (error); 3726 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3727 if (error) 3728 return (error); 3729 break; 3730 #endif 3731 #ifdef INET 3732 case AF_INET: 3733 fin = (struct sockaddr_in *)&addrs[0]; 3734 lin = (struct sockaddr_in *)&addrs[1]; 3735 if (fin->sin_len != sizeof(struct sockaddr_in) || 3736 lin->sin_len != sizeof(struct sockaddr_in)) 3737 return (EINVAL); 3738 break; 3739 #endif 3740 default: 3741 return (EINVAL); 3742 } 3743 NET_EPOCH_ENTER(et); 3744 switch (addrs[0].ss_family) { 3745 #ifdef INET6 3746 case AF_INET6: 3747 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3748 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3749 INPLOOKUP_WLOCKPCB, NULL); 3750 break; 3751 #endif 3752 #ifdef INET 3753 case AF_INET: 3754 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3755 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3756 break; 3757 #endif 3758 } 3759 NET_EPOCH_EXIT(et); 3760 if (inp != NULL) { 3761 struct socket *so; 3762 3763 so = inp->inp_socket; 3764 soref(so); 3765 error = ktls_set_tx_mode(so, 3766 arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET); 3767 INP_WUNLOCK(inp); 3768 sorele(so); 3769 } else 3770 error = ESRCH; 3771 return (error); 3772 } 3773 3774 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls, 3775 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3776 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "", 3777 "Switch TCP connection to SW TLS"); 3778 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls, 3779 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3780 CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "", 3781 "Switch TCP connection to ifnet TLS"); 3782 #endif 3783 3784 /* 3785 * Generate a standardized TCP log line for use throughout the 3786 * tcp subsystem. Memory allocation is done with M_NOWAIT to 3787 * allow use in the interrupt context. 3788 * 3789 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 3790 * NB: The function may return NULL if memory allocation failed. 3791 * 3792 * Due to header inclusion and ordering limitations the struct ip 3793 * and ip6_hdr pointers have to be passed as void pointers. 3794 */ 3795 char * 3796 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3797 const void *ip6hdr) 3798 { 3799 3800 /* Is logging enabled? */ 3801 if (V_tcp_log_in_vain == 0) 3802 return (NULL); 3803 3804 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3805 } 3806 3807 char * 3808 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3809 const void *ip6hdr) 3810 { 3811 3812 /* Is logging enabled? */ 3813 if (tcp_log_debug == 0) 3814 return (NULL); 3815 3816 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3817 } 3818 3819 static char * 3820 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3821 const void *ip6hdr) 3822 { 3823 char *s, *sp; 3824 size_t size; 3825 #ifdef INET 3826 const struct ip *ip = (const struct ip *)ip4hdr; 3827 #endif 3828 #ifdef INET6 3829 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr; 3830 #endif /* INET6 */ 3831 3832 /* 3833 * The log line looks like this: 3834 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 3835 */ 3836 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 3837 sizeof(PRINT_TH_FLAGS) + 1 + 3838 #ifdef INET6 3839 2 * INET6_ADDRSTRLEN; 3840 #else 3841 2 * INET_ADDRSTRLEN; 3842 #endif /* INET6 */ 3843 3844 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 3845 if (s == NULL) 3846 return (NULL); 3847 3848 strcat(s, "TCP: ["); 3849 sp = s + strlen(s); 3850 3851 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 3852 inet_ntoa_r(inc->inc_faddr, sp); 3853 sp = s + strlen(s); 3854 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3855 sp = s + strlen(s); 3856 inet_ntoa_r(inc->inc_laddr, sp); 3857 sp = s + strlen(s); 3858 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3859 #ifdef INET6 3860 } else if (inc) { 3861 ip6_sprintf(sp, &inc->inc6_faddr); 3862 sp = s + strlen(s); 3863 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3864 sp = s + strlen(s); 3865 ip6_sprintf(sp, &inc->inc6_laddr); 3866 sp = s + strlen(s); 3867 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3868 } else if (ip6 && th) { 3869 ip6_sprintf(sp, &ip6->ip6_src); 3870 sp = s + strlen(s); 3871 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3872 sp = s + strlen(s); 3873 ip6_sprintf(sp, &ip6->ip6_dst); 3874 sp = s + strlen(s); 3875 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3876 #endif /* INET6 */ 3877 #ifdef INET 3878 } else if (ip && th) { 3879 inet_ntoa_r(ip->ip_src, sp); 3880 sp = s + strlen(s); 3881 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3882 sp = s + strlen(s); 3883 inet_ntoa_r(ip->ip_dst, sp); 3884 sp = s + strlen(s); 3885 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3886 #endif /* INET */ 3887 } else { 3888 free(s, M_TCPLOG); 3889 return (NULL); 3890 } 3891 sp = s + strlen(s); 3892 if (th) 3893 sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS); 3894 if (*(s + size - 1) != '\0') 3895 panic("%s: string too long", __func__); 3896 return (s); 3897 } 3898 3899 /* 3900 * A subroutine which makes it easy to track TCP state changes with DTrace. 3901 * This function shouldn't be called for t_state initializations that don't 3902 * correspond to actual TCP state transitions. 3903 */ 3904 void 3905 tcp_state_change(struct tcpcb *tp, int newstate) 3906 { 3907 #if defined(KDTRACE_HOOKS) 3908 int pstate = tp->t_state; 3909 #endif 3910 3911 TCPSTATES_DEC(tp->t_state); 3912 TCPSTATES_INC(newstate); 3913 tp->t_state = newstate; 3914 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3915 } 3916 3917 /* 3918 * Create an external-format (``xtcpcb'') structure using the information in 3919 * the kernel-format tcpcb structure pointed to by tp. This is done to 3920 * reduce the spew of irrelevant information over this interface, to isolate 3921 * user code from changes in the kernel structure, and potentially to provide 3922 * information-hiding if we decide that some of this information should be 3923 * hidden from users. 3924 */ 3925 void 3926 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) 3927 { 3928 struct tcpcb *tp = intotcpcb(inp); 3929 sbintime_t now; 3930 3931 bzero(xt, sizeof(*xt)); 3932 xt->t_state = tp->t_state; 3933 xt->t_logstate = tcp_get_bblog_state(tp); 3934 xt->t_flags = tp->t_flags; 3935 xt->t_sndzerowin = tp->t_sndzerowin; 3936 xt->t_sndrexmitpack = tp->t_sndrexmitpack; 3937 xt->t_rcvoopack = tp->t_rcvoopack; 3938 xt->t_rcv_wnd = tp->rcv_wnd; 3939 xt->t_snd_wnd = tp->snd_wnd; 3940 xt->t_snd_cwnd = tp->snd_cwnd; 3941 xt->t_snd_ssthresh = tp->snd_ssthresh; 3942 xt->t_dsack_bytes = tp->t_dsack_bytes; 3943 xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes; 3944 xt->t_dsack_pack = tp->t_dsack_pack; 3945 xt->t_maxseg = tp->t_maxseg; 3946 xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 + 3947 (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0; 3948 3949 now = getsbinuptime(); 3950 #define COPYTIMER(which,where) do { \ 3951 if (tp->t_timers[which] != SBT_MAX) \ 3952 xt->where = (tp->t_timers[which] - now) / SBT_1MS; \ 3953 else \ 3954 xt->where = 0; \ 3955 } while (0) 3956 COPYTIMER(TT_DELACK, tt_delack); 3957 COPYTIMER(TT_REXMT, tt_rexmt); 3958 COPYTIMER(TT_PERSIST, tt_persist); 3959 COPYTIMER(TT_KEEP, tt_keep); 3960 COPYTIMER(TT_2MSL, tt_2msl); 3961 #undef COPYTIMER 3962 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; 3963 3964 xt->xt_encaps_port = tp->t_port; 3965 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, 3966 TCP_FUNCTION_NAME_LEN_MAX); 3967 bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX); 3968 #ifdef TCP_BLACKBOX 3969 (void)tcp_log_get_id(tp, xt->xt_logid); 3970 #endif 3971 3972 xt->xt_len = sizeof(struct xtcpcb); 3973 in_pcbtoxinpcb(inp, &xt->xt_inp); 3974 /* 3975 * TCP doesn't use inp_ppcb pointer, we embed inpcb into tcpcb. 3976 * Fixup the pointer that in_pcbtoxinpcb() has set. When printing 3977 * TCP netstat(1) used to use this pointer, so this fixup needs to 3978 * stay for stable/14. 3979 */ 3980 xt->xt_inp.inp_ppcb = (uintptr_t)tp; 3981 } 3982 3983 void 3984 tcp_log_end_status(struct tcpcb *tp, uint8_t status) 3985 { 3986 uint32_t bit, i; 3987 3988 if ((tp == NULL) || 3989 (status > TCP_EI_STATUS_MAX_VALUE) || 3990 (status == 0)) { 3991 /* Invalid */ 3992 return; 3993 } 3994 if (status > (sizeof(uint32_t) * 8)) { 3995 /* Should this be a KASSERT? */ 3996 return; 3997 } 3998 bit = 1U << (status - 1); 3999 if (bit & tp->t_end_info_status) { 4000 /* already logged */ 4001 return; 4002 } 4003 for (i = 0; i < TCP_END_BYTE_INFO; i++) { 4004 if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) { 4005 tp->t_end_info_bytes[i] = status; 4006 tp->t_end_info_status |= bit; 4007 break; 4008 } 4009 } 4010 } 4011 4012 int 4013 tcp_can_enable_pacing(void) 4014 { 4015 4016 if ((tcp_pacing_limit == -1) || 4017 (tcp_pacing_limit > number_of_tcp_connections_pacing)) { 4018 atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1); 4019 shadow_num_connections = number_of_tcp_connections_pacing; 4020 return (1); 4021 } else { 4022 counter_u64_add(tcp_pacing_failures, 1); 4023 return (0); 4024 } 4025 } 4026 4027 static uint8_t tcp_pacing_warning = 0; 4028 4029 void 4030 tcp_decrement_paced_conn(void) 4031 { 4032 uint32_t ret; 4033 4034 ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1); 4035 shadow_num_connections = number_of_tcp_connections_pacing; 4036 KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?")); 4037 if (ret == 0) { 4038 if (tcp_pacing_limit != -1) { 4039 printf("Warning all pacing is now disabled, count decrements invalidly!\n"); 4040 tcp_pacing_limit = 0; 4041 } else if (tcp_pacing_warning == 0) { 4042 printf("Warning pacing count is invalid, invalid decrement\n"); 4043 tcp_pacing_warning = 1; 4044 } 4045 } 4046 } 4047 4048 static void 4049 tcp_default_switch_failed(struct tcpcb *tp) 4050 { 4051 /* 4052 * If a switch fails we only need to 4053 * care about two things: 4054 * a) The t_flags2 4055 * and 4056 * b) The timer granularity. 4057 * Timeouts, at least for now, don't use the 4058 * old callout system in the other stacks so 4059 * those are hopefully safe. 4060 */ 4061 tcp_lro_features_off(tp); 4062 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 4063 } 4064 4065 #ifdef TCP_ACCOUNTING 4066 int 4067 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss) 4068 { 4069 if (SEQ_LT(th->th_ack, tp->snd_una)) { 4070 /* Do we have a SACK? */ 4071 if (to->to_flags & TOF_SACK) { 4072 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4073 tp->tcp_cnt_counters[ACK_SACK]++; 4074 } 4075 return (ACK_SACK); 4076 } else { 4077 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4078 tp->tcp_cnt_counters[ACK_BEHIND]++; 4079 } 4080 return (ACK_BEHIND); 4081 } 4082 } else if (th->th_ack == tp->snd_una) { 4083 /* Do we have a SACK? */ 4084 if (to->to_flags & TOF_SACK) { 4085 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4086 tp->tcp_cnt_counters[ACK_SACK]++; 4087 } 4088 return (ACK_SACK); 4089 } else if (tiwin != tp->snd_wnd) { 4090 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4091 tp->tcp_cnt_counters[ACK_RWND]++; 4092 } 4093 return (ACK_RWND); 4094 } else { 4095 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4096 tp->tcp_cnt_counters[ACK_DUPACK]++; 4097 } 4098 return (ACK_DUPACK); 4099 } 4100 } else { 4101 if (!SEQ_GT(th->th_ack, tp->snd_max)) { 4102 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4103 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss); 4104 } 4105 } 4106 if (to->to_flags & TOF_SACK) { 4107 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4108 tp->tcp_cnt_counters[ACK_CUMACK_SACK]++; 4109 } 4110 return (ACK_CUMACK_SACK); 4111 } else { 4112 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4113 tp->tcp_cnt_counters[ACK_CUMACK]++; 4114 } 4115 return (ACK_CUMACK); 4116 } 4117 } 4118 } 4119 #endif 4120 4121 void 4122 tcp_change_time_units(struct tcpcb *tp, int granularity) 4123 { 4124 if (tp->t_tmr_granularity == granularity) { 4125 /* We are there */ 4126 return; 4127 } 4128 if (granularity == TCP_TMR_GRANULARITY_USEC) { 4129 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS), 4130 ("Granularity is not TICKS its %u in tp:%p", 4131 tp->t_tmr_granularity, tp)); 4132 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 4133 if (tp->t_srtt > 1) { 4134 uint32_t val, frac; 4135 4136 val = tp->t_srtt >> TCP_RTT_SHIFT; 4137 frac = tp->t_srtt & 0x1f; 4138 tp->t_srtt = TICKS_2_USEC(val); 4139 /* 4140 * frac is the fractional part of the srtt (if any) 4141 * but its in ticks and every bit represents 4142 * 1/32nd of a hz. 4143 */ 4144 if (frac) { 4145 if (hz == 1000) { 4146 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4147 } else { 4148 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4149 } 4150 tp->t_srtt += frac; 4151 } 4152 } 4153 if (tp->t_rttvar) { 4154 uint32_t val, frac; 4155 4156 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 4157 frac = tp->t_rttvar & 0x1f; 4158 tp->t_rttvar = TICKS_2_USEC(val); 4159 /* 4160 * frac is the fractional part of the srtt (if any) 4161 * but its in ticks and every bit represents 4162 * 1/32nd of a hz. 4163 */ 4164 if (frac) { 4165 if (hz == 1000) { 4166 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4167 } else { 4168 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4169 } 4170 tp->t_rttvar += frac; 4171 } 4172 } 4173 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC; 4174 } else if (granularity == TCP_TMR_GRANULARITY_TICKS) { 4175 /* Convert back to ticks, with */ 4176 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC), 4177 ("Granularity is not USEC its %u in tp:%p", 4178 tp->t_tmr_granularity, tp)); 4179 if (tp->t_srtt > 1) { 4180 uint32_t val, frac; 4181 4182 val = USEC_2_TICKS(tp->t_srtt); 4183 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 4184 tp->t_srtt = val << TCP_RTT_SHIFT; 4185 /* 4186 * frac is the fractional part here is left 4187 * over from converting to hz and shifting. 4188 * We need to convert this to the 5 bit 4189 * remainder. 4190 */ 4191 if (frac) { 4192 if (hz == 1000) { 4193 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4194 } else { 4195 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4196 } 4197 tp->t_srtt += frac; 4198 } 4199 } 4200 if (tp->t_rttvar) { 4201 uint32_t val, frac; 4202 4203 val = USEC_2_TICKS(tp->t_rttvar); 4204 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 4205 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 4206 /* 4207 * frac is the fractional part here is left 4208 * over from converting to hz and shifting. 4209 * We need to convert this to the 5 bit 4210 * remainder. 4211 */ 4212 if (frac) { 4213 if (hz == 1000) { 4214 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4215 } else { 4216 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4217 } 4218 tp->t_rttvar += frac; 4219 } 4220 } 4221 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 4222 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 4223 } 4224 #ifdef INVARIANTS 4225 else { 4226 panic("Unknown granularity:%d tp:%p", 4227 granularity, tp); 4228 } 4229 #endif 4230 } 4231 4232 void 4233 tcp_handle_orphaned_packets(struct tcpcb *tp) 4234 { 4235 struct mbuf *save, *m, *prev; 4236 /* 4237 * Called when a stack switch is occuring from the fini() 4238 * of the old stack. We assue the init() as already been 4239 * run of the new stack and it has set the t_flags2 to 4240 * what it supports. This function will then deal with any 4241 * differences i.e. cleanup packets that maybe queued that 4242 * the newstack does not support. 4243 */ 4244 4245 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 4246 return; 4247 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 && 4248 !STAILQ_EMPTY(&tp->t_inqueue)) { 4249 /* 4250 * It is unsafe to process the packets since a 4251 * reset may be lurking in them (its rare but it 4252 * can occur). If we were to find a RST, then we 4253 * would end up dropping the connection and the 4254 * INP lock, so when we return the caller (tcp_usrreq) 4255 * will blow up when it trys to unlock the inp. 4256 * This new stack does not do any fancy LRO features 4257 * so all we can do is toss the packets. 4258 */ 4259 m = STAILQ_FIRST(&tp->t_inqueue); 4260 STAILQ_INIT(&tp->t_inqueue); 4261 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) 4262 m_freem(m); 4263 } else { 4264 /* 4265 * Here we have a stack that does mbuf queuing but 4266 * does not support compressed ack's. We must 4267 * walk all the mbufs and discard any compressed acks. 4268 */ 4269 STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) { 4270 if (m->m_flags & M_ACKCMP) { 4271 if (m == STAILQ_FIRST(&tp->t_inqueue)) 4272 STAILQ_REMOVE_HEAD(&tp->t_inqueue, 4273 m_stailqpkt); 4274 else 4275 STAILQ_REMOVE_AFTER(&tp->t_inqueue, 4276 prev, m_stailqpkt); 4277 m_freem(m); 4278 } else 4279 prev = m; 4280 } 4281 } 4282 } 4283 4284 #ifdef TCP_REQUEST_TRK 4285 uint32_t 4286 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes) 4287 { 4288 #ifdef KERN_TLS 4289 struct ktls_session *tls; 4290 uint32_t rec_oh, records; 4291 4292 tls = so->so_snd.sb_tls_info; 4293 if (tls == NULL) 4294 return (0); 4295 4296 rec_oh = tls->params.tls_hlen + tls->params.tls_tlen; 4297 records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len); 4298 return (records * rec_oh); 4299 #else 4300 return (0); 4301 #endif 4302 } 4303 4304 extern uint32_t tcp_stale_entry_time; 4305 uint32_t tcp_stale_entry_time = 250000; 4306 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW, 4307 &tcp_stale_entry_time, 250000, "Time that a http entry without a sendfile ages out"); 4308 4309 void 4310 tcp_http_log_req_info(struct tcpcb *tp, struct http_sendfile_track *http, 4311 uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes) 4312 { 4313 if (tcp_bblogging_on(tp)) { 4314 union tcp_log_stackspecific log; 4315 struct timeval tv; 4316 4317 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4318 #ifdef TCPHPTS 4319 log.u_bbr.inhpts = tcp_in_hpts(tptoinpcb(tp)); 4320 #endif 4321 log.u_bbr.flex8 = val; 4322 log.u_bbr.rttProp = http->timestamp; 4323 log.u_bbr.delRate = http->start; 4324 log.u_bbr.cur_del_rate = http->end; 4325 log.u_bbr.flex1 = http->start_seq; 4326 log.u_bbr.flex2 = http->end_seq; 4327 log.u_bbr.flex3 = http->flags; 4328 log.u_bbr.flex4 = ((http->localtime >> 32) & 0x00000000ffffffff); 4329 log.u_bbr.flex5 = (http->localtime & 0x00000000ffffffff); 4330 log.u_bbr.flex7 = slot; 4331 log.u_bbr.bw_inuse = offset; 4332 /* nbytes = flex6 | epoch */ 4333 log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff); 4334 log.u_bbr.epoch = (nbytes & 0x00000000ffffffff); 4335 /* cspr = lt_epoch | pkts_out */ 4336 log.u_bbr.lt_epoch = ((http->cspr >> 32) & 0x00000000ffffffff); 4337 log.u_bbr.pkts_out |= (http->cspr & 0x00000000ffffffff); 4338 log.u_bbr.applimited = tp->t_http_closed; 4339 log.u_bbr.applimited <<= 8; 4340 log.u_bbr.applimited |= tp->t_http_open; 4341 log.u_bbr.applimited <<= 8; 4342 log.u_bbr.applimited |= tp->t_http_req; 4343 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4344 TCP_LOG_EVENTP(tp, NULL, 4345 &tptosocket(tp)->so_rcv, 4346 &tptosocket(tp)->so_snd, 4347 TCP_LOG_HTTP_T, 0, 4348 0, &log, false, &tv); 4349 } 4350 } 4351 4352 void 4353 tcp_http_free_a_slot(struct tcpcb *tp, struct http_sendfile_track *ent) 4354 { 4355 if (tp->t_http_req > 0) 4356 tp->t_http_req--; 4357 if (ent->flags & TCP_HTTP_TRACK_FLG_OPEN) { 4358 if (tp->t_http_open > 0) 4359 tp->t_http_open--; 4360 } else { 4361 if (tp->t_http_closed > 0) 4362 tp->t_http_closed--; 4363 } 4364 ent->flags = TCP_HTTP_TRACK_FLG_EMPTY; 4365 } 4366 4367 static void 4368 tcp_http_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest) 4369 { 4370 struct http_sendfile_track *ent; 4371 uint64_t time_delta, oldest_delta; 4372 int i, oldest, oldest_set = 0, cnt_rm = 0; 4373 4374 for(i = 0; i < MAX_TCP_HTTP_REQ; i++) { 4375 ent = &tp->t_http_info[i]; 4376 if (ent->flags != TCP_HTTP_TRACK_FLG_USED) { 4377 /* 4378 * We only care about closed end ranges 4379 * that are allocated and have no sendfile 4380 * ever touching them. They would be in 4381 * state USED. 4382 */ 4383 continue; 4384 } 4385 if (ts >= ent->localtime) 4386 time_delta = ts - ent->localtime; 4387 else 4388 time_delta = 0; 4389 if (time_delta && 4390 ((oldest_delta < time_delta) || (oldest_set == 0))) { 4391 oldest_set = 1; 4392 oldest = i; 4393 oldest_delta = time_delta; 4394 } 4395 if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) { 4396 /* 4397 * No sendfile in a our time-limit 4398 * time to purge it. 4399 */ 4400 cnt_rm++; 4401 tcp_http_log_req_info(tp, &tp->t_http_info[i], i, TCP_HTTP_REQ_LOG_STALE, 4402 time_delta, 0); 4403 tcp_http_free_a_slot(tp, ent); 4404 } 4405 } 4406 if ((cnt_rm == 0) && rm_oldest && oldest_set) { 4407 ent = &tp->t_http_info[oldest]; 4408 tcp_http_log_req_info(tp, &tp->t_http_info[i], i, TCP_HTTP_REQ_LOG_STALE, 4409 oldest_delta, 1); 4410 tcp_http_free_a_slot(tp, ent); 4411 } 4412 } 4413 4414 int 4415 tcp_http_check_for_comp(struct tcpcb *tp, tcp_seq ack_point) 4416 { 4417 int i, ret=0; 4418 struct http_sendfile_track *ent; 4419 4420 /* Clean up any old closed end requests that are now completed */ 4421 if (tp->t_http_req == 0) 4422 return(0); 4423 if (tp->t_http_closed == 0) 4424 return(0); 4425 for(i = 0; i < MAX_TCP_HTTP_REQ; i++) { 4426 ent = &tp->t_http_info[i]; 4427 /* Skip empty ones */ 4428 if (ent->flags == TCP_HTTP_TRACK_FLG_EMPTY) 4429 continue; 4430 /* Skip open ones */ 4431 if (ent->flags & TCP_HTTP_TRACK_FLG_OPEN) 4432 continue; 4433 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4434 /* We are past it -- free it */ 4435 tcp_http_log_req_info(tp, ent, 4436 i, TCP_HTTP_REQ_LOG_FREED, 0, 0); 4437 tcp_http_free_a_slot(tp, ent); 4438 ret++; 4439 } 4440 } 4441 return (ret); 4442 } 4443 4444 int 4445 tcp_http_is_entry_comp(struct tcpcb *tp, struct http_sendfile_track *ent, tcp_seq ack_point) 4446 { 4447 if (tp->t_http_req == 0) 4448 return(-1); 4449 if (tp->t_http_closed == 0) 4450 return(-1); 4451 if (ent->flags == TCP_HTTP_TRACK_FLG_EMPTY) 4452 return(-1); 4453 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4454 return (1); 4455 } 4456 return (0); 4457 } 4458 4459 struct http_sendfile_track * 4460 tcp_http_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip) 4461 { 4462 /* 4463 * Given an ack point (th_ack) walk through our entries and 4464 * return the first one found that th_ack goes past the 4465 * end_seq. 4466 */ 4467 struct http_sendfile_track *ent; 4468 int i; 4469 4470 if (tp->t_http_req == 0) { 4471 /* none open */ 4472 return (NULL); 4473 } 4474 for(i = 0; i < MAX_TCP_HTTP_REQ; i++) { 4475 ent = &tp->t_http_info[i]; 4476 if (ent->flags == TCP_HTTP_TRACK_FLG_EMPTY) 4477 continue; 4478 if ((ent->flags & TCP_HTTP_TRACK_FLG_OPEN) == 0) { 4479 if (SEQ_GEQ(th_ack, ent->end_seq)) { 4480 *ip = i; 4481 return (ent); 4482 } 4483 } 4484 } 4485 return (NULL); 4486 } 4487 4488 struct http_sendfile_track * 4489 tcp_http_find_req_for_seq(struct tcpcb *tp, tcp_seq seq) 4490 { 4491 struct http_sendfile_track *ent; 4492 int i; 4493 4494 if (tp->t_http_req == 0) { 4495 /* none open */ 4496 return (NULL); 4497 } 4498 for(i = 0; i < MAX_TCP_HTTP_REQ; i++) { 4499 ent = &tp->t_http_info[i]; 4500 tcp_http_log_req_info(tp, ent, i, TCP_HTTP_REQ_LOG_SEARCH, 4501 (uint64_t)seq, 0); 4502 if (ent->flags == TCP_HTTP_TRACK_FLG_EMPTY) { 4503 continue; 4504 } 4505 if (ent->flags & TCP_HTTP_TRACK_FLG_OPEN) { 4506 /* 4507 * An open end request only needs to 4508 * match the beginning seq or be 4509 * all we have (once we keep going on 4510 * a open end request we may have a seq 4511 * wrap). 4512 */ 4513 if ((SEQ_GEQ(seq, ent->start_seq)) || 4514 (tp->t_http_closed == 0)) 4515 return (ent); 4516 } else { 4517 /* 4518 * For this one we need to 4519 * be a bit more careful if its 4520 * completed at least. 4521 */ 4522 if ((SEQ_GEQ(seq, ent->start_seq)) && 4523 (SEQ_LT(seq, ent->end_seq))) { 4524 return (ent); 4525 } 4526 } 4527 } 4528 return (NULL); 4529 } 4530 4531 /* Should this be in its own file tcp_http.c ? */ 4532 struct http_sendfile_track * 4533 tcp_http_alloc_req_full(struct tcpcb *tp, struct http_req *req, uint64_t ts, int rec_dups) 4534 { 4535 struct http_sendfile_track *fil; 4536 int i, allocated; 4537 4538 /* In case the stack does not check for completions do so now */ 4539 tcp_http_check_for_comp(tp, tp->snd_una); 4540 /* Check for stale entries */ 4541 if (tp->t_http_req) 4542 tcp_http_check_for_stale_entries(tp, ts, 4543 (tp->t_http_req >= MAX_TCP_HTTP_REQ)); 4544 /* Check to see if this is a duplicate of one not started */ 4545 if (tp->t_http_req) { 4546 for(i = 0, allocated = 0; i < MAX_TCP_HTTP_REQ; i++) { 4547 fil = &tp->t_http_info[i]; 4548 if (fil->flags != TCP_HTTP_TRACK_FLG_USED) 4549 continue; 4550 if ((fil->timestamp == req->timestamp) && 4551 (fil->start == req->start) && 4552 ((fil->flags & TCP_HTTP_TRACK_FLG_OPEN) || 4553 (fil->end == req->end))) { 4554 /* 4555 * We already have this request 4556 * and it has not been started with sendfile. 4557 * This probably means the user was returned 4558 * a 4xx of some sort and its going to age 4559 * out, lets not duplicate it. 4560 */ 4561 return(fil); 4562 } 4563 } 4564 } 4565 /* Ok if there is no room at the inn we are in trouble */ 4566 if (tp->t_http_req >= MAX_TCP_HTTP_REQ) { 4567 tcp_trace_point(tp, TCP_TP_HTTP_LOG_FAIL); 4568 for(i = 0; i < MAX_TCP_HTTP_REQ; i++) { 4569 tcp_http_log_req_info(tp, &tp->t_http_info[i], 4570 i, TCP_HTTP_REQ_LOG_ALLOCFAIL, 0, 0); 4571 } 4572 return (NULL); 4573 } 4574 for(i = 0, allocated = 0; i < MAX_TCP_HTTP_REQ; i++) { 4575 fil = &tp->t_http_info[i]; 4576 if (fil->flags == TCP_HTTP_TRACK_FLG_EMPTY) { 4577 allocated = 1; 4578 fil->flags = TCP_HTTP_TRACK_FLG_USED; 4579 fil->timestamp = req->timestamp; 4580 fil->localtime = ts; 4581 fil->start = req->start; 4582 if (req->flags & TCP_LOG_HTTPD_RANGE_END) { 4583 fil->end = req->end; 4584 } else { 4585 fil->end = 0; 4586 fil->flags |= TCP_HTTP_TRACK_FLG_OPEN; 4587 } 4588 /* 4589 * We can set the min boundaries to the TCP Sequence space, 4590 * but it might be found to be further up when sendfile 4591 * actually runs on this range (if it ever does). 4592 */ 4593 fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc; 4594 fil->start_seq = tp->snd_una + 4595 tptosocket(tp)->so_snd.sb_ccc; 4596 fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start))); 4597 if (tptosocket(tp)->so_snd.sb_tls_info) { 4598 /* 4599 * This session is doing TLS. Take a swag guess 4600 * at the overhead. 4601 */ 4602 fil->end_seq += tcp_estimate_tls_overhead( 4603 tptosocket(tp), (fil->end - fil->start)); 4604 } 4605 tp->t_http_req++; 4606 if (fil->flags & TCP_HTTP_TRACK_FLG_OPEN) 4607 tp->t_http_open++; 4608 else 4609 tp->t_http_closed++; 4610 tcp_http_log_req_info(tp, fil, i, 4611 TCP_HTTP_REQ_LOG_NEW, 0, 0); 4612 break; 4613 } else 4614 fil = NULL; 4615 } 4616 return (fil); 4617 } 4618 4619 void 4620 tcp_http_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts) 4621 { 4622 (void)tcp_http_alloc_req_full(tp, &user->http_req, ts, 1); 4623 } 4624 #endif 4625 4626 void 4627 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err) 4628 { 4629 if (tcp_bblogging_on(tp)) { 4630 struct tcp_log_buffer *l; 4631 4632 l = tcp_log_event(tp, NULL, 4633 &tptosocket(tp)->so_rcv, 4634 &tptosocket(tp)->so_snd, 4635 TCP_LOG_SOCKET_OPT, 4636 err, 0, NULL, 1, 4637 NULL, NULL, 0, NULL); 4638 if (l) { 4639 l->tlb_flex1 = option_num; 4640 l->tlb_flex2 = option_val; 4641 } 4642 } 4643 } 4644