xref: /freebsd/sys/netinet/tcp_subr.c (revision ae83180158c4c937f170e31eff311b18c0286a93)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #define _IP_VHL
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 #include <netinet/in_pcb.h>
73 #ifdef INET6
74 #include <netinet6/in6_pcb.h>
75 #endif
76 #include <netinet/in_var.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #endif
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #endif /*IPSEC*/
101 
102 #include <machine/in_cksum.h>
103 #include <sys/md5.h>
104 
105 int 	tcp_mssdflt = TCP_MSS;
106 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
107     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
108 
109 #ifdef INET6
110 int	tcp_v6mssdflt = TCP6_MSS;
111 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
112 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
113 	"Default TCP Maximum Segment Size for IPv6");
114 #endif
115 
116 #if 0
117 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
119     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
120 #endif
121 
122 int	tcp_do_rfc1323 = 1;
123 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
124     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
125 
126 int	tcp_do_rfc1644 = 0;
127 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
128     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
129 
130 static int	tcp_tcbhashsize = 0;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
132      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
133 
134 static int	do_tcpdrain = 1;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
136      "Enable tcp_drain routine for extra help when low on mbufs");
137 
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
139     &tcbinfo.ipi_count, 0, "Number of active PCBs");
140 
141 static int	icmp_may_rst = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
143     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
144 
145 static int	tcp_isn_reseed_interval = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
147     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
148 
149 static void	tcp_cleartaocache(void);
150 static struct inpcb *tcp_notify(struct inpcb *, int);
151 
152 /*
153  * Target size of TCP PCB hash tables. Must be a power of two.
154  *
155  * Note that this can be overridden by the kernel environment
156  * variable net.inet.tcp.tcbhashsize
157  */
158 #ifndef TCBHASHSIZE
159 #define TCBHASHSIZE	512
160 #endif
161 
162 /*
163  * This is the actual shape of what we allocate using the zone
164  * allocator.  Doing it this way allows us to protect both structures
165  * using the same generation count, and also eliminates the overhead
166  * of allocating tcpcbs separately.  By hiding the structure here,
167  * we avoid changing most of the rest of the code (although it needs
168  * to be changed, eventually, for greater efficiency).
169  */
170 #define	ALIGNMENT	32
171 #define	ALIGNM1		(ALIGNMENT - 1)
172 struct	inp_tp {
173 	union {
174 		struct	inpcb inp;
175 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
176 	} inp_tp_u;
177 	struct	tcpcb tcb;
178 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
179 	struct	callout inp_tp_delack;
180 };
181 #undef ALIGNMENT
182 #undef ALIGNM1
183 
184 /*
185  * Tcp initialization
186  */
187 void
188 tcp_init()
189 {
190 	int hashsize = TCBHASHSIZE;
191 
192 	tcp_ccgen = 1;
193 	tcp_cleartaocache();
194 
195 	tcp_delacktime = TCPTV_DELACK;
196 	tcp_keepinit = TCPTV_KEEP_INIT;
197 	tcp_keepidle = TCPTV_KEEP_IDLE;
198 	tcp_keepintvl = TCPTV_KEEPINTVL;
199 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
200 	tcp_msl = TCPTV_MSL;
201 	tcp_rexmit_min = TCPTV_MIN;
202 	tcp_rexmit_slop = TCPTV_CPU_VAR;
203 
204 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
205 	LIST_INIT(&tcb);
206 	tcbinfo.listhead = &tcb;
207 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
208 	if (!powerof2(hashsize)) {
209 		printf("WARNING: TCB hash size not a power of 2\n");
210 		hashsize = 512; /* safe default */
211 	}
212 	tcp_tcbhashsize = hashsize;
213 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
214 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
215 					&tcbinfo.porthashmask);
216 	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
217 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
218 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
219 #ifdef INET6
220 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
221 #else /* INET6 */
222 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
223 #endif /* INET6 */
224 	if (max_protohdr < TCP_MINPROTOHDR)
225 		max_protohdr = TCP_MINPROTOHDR;
226 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
227 		panic("tcp_init");
228 #undef TCP_MINPROTOHDR
229 
230 	syncache_init();
231 }
232 
233 /*
234  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
235  * tcp_template used to store this data in mbufs, but we now recopy it out
236  * of the tcpcb each time to conserve mbufs.
237  */
238 void
239 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
240 	struct tcpcb *tp;
241 	void *ip_ptr;
242 	void *tcp_ptr;
243 {
244 	struct inpcb *inp = tp->t_inpcb;
245 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
246 
247 #ifdef INET6
248 	if ((inp->inp_vflag & INP_IPV6) != 0) {
249 		struct ip6_hdr *ip6;
250 
251 		ip6 = (struct ip6_hdr *)ip_ptr;
252 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
253 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
254 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
255 			(IPV6_VERSION & IPV6_VERSION_MASK);
256 		ip6->ip6_nxt = IPPROTO_TCP;
257 		ip6->ip6_plen = sizeof(struct tcphdr);
258 		ip6->ip6_src = inp->in6p_laddr;
259 		ip6->ip6_dst = inp->in6p_faddr;
260 		tcp_hdr->th_sum = 0;
261 	} else
262 #endif
263 	{
264 	struct ip *ip = (struct ip *) ip_ptr;
265 
266 	ip->ip_vhl = IP_VHL_BORING;
267 	ip->ip_tos = 0;
268 	ip->ip_len = 0;
269 	ip->ip_id = 0;
270 	ip->ip_off = 0;
271 	ip->ip_ttl = 0;
272 	ip->ip_sum = 0;
273 	ip->ip_p = IPPROTO_TCP;
274 	ip->ip_src = inp->inp_laddr;
275 	ip->ip_dst = inp->inp_faddr;
276 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
277 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
278 	}
279 
280 	tcp_hdr->th_sport = inp->inp_lport;
281 	tcp_hdr->th_dport = inp->inp_fport;
282 	tcp_hdr->th_seq = 0;
283 	tcp_hdr->th_ack = 0;
284 	tcp_hdr->th_x2 = 0;
285 	tcp_hdr->th_off = 5;
286 	tcp_hdr->th_flags = 0;
287 	tcp_hdr->th_win = 0;
288 	tcp_hdr->th_urp = 0;
289 }
290 
291 /*
292  * Create template to be used to send tcp packets on a connection.
293  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
294  * use for this function is in keepalives, which use tcp_respond.
295  */
296 struct tcptemp *
297 tcp_maketemplate(tp)
298 	struct tcpcb *tp;
299 {
300 	struct mbuf *m;
301 	struct tcptemp *n;
302 
303 	m = m_get(M_DONTWAIT, MT_HEADER);
304 	if (m == NULL)
305 		return (0);
306 	m->m_len = sizeof(struct tcptemp);
307 	n = mtod(m, struct tcptemp *);
308 
309 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
310 	return (n);
311 }
312 
313 /*
314  * Send a single message to the TCP at address specified by
315  * the given TCP/IP header.  If m == 0, then we make a copy
316  * of the tcpiphdr at ti and send directly to the addressed host.
317  * This is used to force keep alive messages out using the TCP
318  * template for a connection.  If flags are given then we send
319  * a message back to the TCP which originated the * segment ti,
320  * and discard the mbuf containing it and any other attached mbufs.
321  *
322  * In any case the ack and sequence number of the transmitted
323  * segment are as specified by the parameters.
324  *
325  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
326  */
327 void
328 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
329 	struct tcpcb *tp;
330 	void *ipgen;
331 	register struct tcphdr *th;
332 	register struct mbuf *m;
333 	tcp_seq ack, seq;
334 	int flags;
335 {
336 	register int tlen;
337 	int win = 0;
338 	struct route *ro = 0;
339 	struct route sro;
340 	struct ip *ip;
341 	struct tcphdr *nth;
342 #ifdef INET6
343 	struct route_in6 *ro6 = 0;
344 	struct route_in6 sro6;
345 	struct ip6_hdr *ip6;
346 	int isipv6;
347 #endif /* INET6 */
348 	int ipflags = 0;
349 
350 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
351 
352 #ifdef INET6
353 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
354 	ip6 = ipgen;
355 #endif /* INET6 */
356 	ip = ipgen;
357 
358 	if (tp) {
359 		if (!(flags & TH_RST)) {
360 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
361 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
362 				win = (long)TCP_MAXWIN << tp->rcv_scale;
363 		}
364 #ifdef INET6
365 		if (isipv6)
366 			ro6 = &tp->t_inpcb->in6p_route;
367 		else
368 #endif /* INET6 */
369 		ro = &tp->t_inpcb->inp_route;
370 	} else {
371 #ifdef INET6
372 		if (isipv6) {
373 			ro6 = &sro6;
374 			bzero(ro6, sizeof *ro6);
375 		} else
376 #endif /* INET6 */
377 	      {
378 		ro = &sro;
379 		bzero(ro, sizeof *ro);
380 	      }
381 	}
382 	if (m == 0) {
383 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
384 		if (m == NULL)
385 			return;
386 		tlen = 0;
387 		m->m_data += max_linkhdr;
388 #ifdef INET6
389 		if (isipv6) {
390 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
391 			      sizeof(struct ip6_hdr));
392 			ip6 = mtod(m, struct ip6_hdr *);
393 			nth = (struct tcphdr *)(ip6 + 1);
394 		} else
395 #endif /* INET6 */
396 	      {
397 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
398 		ip = mtod(m, struct ip *);
399 		nth = (struct tcphdr *)(ip + 1);
400 	      }
401 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
402 		flags = TH_ACK;
403 	} else {
404 		m_freem(m->m_next);
405 		m->m_next = 0;
406 		m->m_data = (caddr_t)ipgen;
407 		/* m_len is set later */
408 		tlen = 0;
409 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
410 #ifdef INET6
411 		if (isipv6) {
412 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
413 			nth = (struct tcphdr *)(ip6 + 1);
414 		} else
415 #endif /* INET6 */
416 	      {
417 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
418 		nth = (struct tcphdr *)(ip + 1);
419 	      }
420 		if (th != nth) {
421 			/*
422 			 * this is usually a case when an extension header
423 			 * exists between the IPv6 header and the
424 			 * TCP header.
425 			 */
426 			nth->th_sport = th->th_sport;
427 			nth->th_dport = th->th_dport;
428 		}
429 		xchg(nth->th_dport, nth->th_sport, n_short);
430 #undef xchg
431 	}
432 #ifdef INET6
433 	if (isipv6) {
434 		ip6->ip6_flow = 0;
435 		ip6->ip6_vfc = IPV6_VERSION;
436 		ip6->ip6_nxt = IPPROTO_TCP;
437 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
438 						tlen));
439 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
440 	} else
441 #endif
442       {
443 	tlen += sizeof (struct tcpiphdr);
444 	ip->ip_len = tlen;
445 	ip->ip_ttl = ip_defttl;
446       }
447 	m->m_len = tlen;
448 	m->m_pkthdr.len = tlen;
449 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
450 #ifdef MAC
451 	if (tp != NULL) {
452 		/*
453 		 * Packet is associated with a socket, so allow the
454 		 * label of the response to reflect the socket label.
455 		 */
456 		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
457 	} else {
458 		/*
459 		 * XXXMAC: This will need to call a mac function that
460 		 * modifies the mbuf label in place for TCP datagrams
461 		 * not associated with a PCB.
462 		 */
463 	}
464 #endif
465 	nth->th_seq = htonl(seq);
466 	nth->th_ack = htonl(ack);
467 	nth->th_x2 = 0;
468 	nth->th_off = sizeof (struct tcphdr) >> 2;
469 	nth->th_flags = flags;
470 	if (tp)
471 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
472 	else
473 		nth->th_win = htons((u_short)win);
474 	nth->th_urp = 0;
475 #ifdef INET6
476 	if (isipv6) {
477 		nth->th_sum = 0;
478 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
479 					sizeof(struct ip6_hdr),
480 					tlen - sizeof(struct ip6_hdr));
481 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
482 					       ro6 && ro6->ro_rt ?
483 					       ro6->ro_rt->rt_ifp :
484 					       NULL);
485 	} else
486 #endif /* INET6 */
487       {
488         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
489 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
490         m->m_pkthdr.csum_flags = CSUM_TCP;
491         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
492       }
493 #ifdef TCPDEBUG
494 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
495 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
496 #endif
497 #ifdef IPSEC
498 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
499 		m_freem(m);
500 		return;
501 	}
502 #endif
503 #ifdef INET6
504 	if (isipv6) {
505 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
506 		if (ro6 == &sro6 && ro6->ro_rt) {
507 			RTFREE(ro6->ro_rt);
508 			ro6->ro_rt = NULL;
509 		}
510 	} else
511 #endif /* INET6 */
512       {
513 	(void) ip_output(m, NULL, ro, ipflags, NULL);
514 	if (ro == &sro && ro->ro_rt) {
515 		RTFREE(ro->ro_rt);
516 		ro->ro_rt = NULL;
517 	}
518       }
519 }
520 
521 /*
522  * Create a new TCP control block, making an
523  * empty reassembly queue and hooking it to the argument
524  * protocol control block.  The `inp' parameter must have
525  * come from the zone allocator set up in tcp_init().
526  */
527 struct tcpcb *
528 tcp_newtcpcb(inp)
529 	struct inpcb *inp;
530 {
531 	struct inp_tp *it;
532 	register struct tcpcb *tp;
533 #ifdef INET6
534 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
535 #endif /* INET6 */
536 
537 	it = (struct inp_tp *)inp;
538 	tp = &it->tcb;
539 	bzero((char *) tp, sizeof(struct tcpcb));
540 	LIST_INIT(&tp->t_segq);
541 	tp->t_maxseg = tp->t_maxopd =
542 #ifdef INET6
543 		isipv6 ? tcp_v6mssdflt :
544 #endif /* INET6 */
545 		tcp_mssdflt;
546 
547 	/* Set up our timeouts. */
548 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
549 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
550 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
551 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
552 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
553 
554 	if (tcp_do_rfc1323)
555 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
556 	if (tcp_do_rfc1644)
557 		tp->t_flags |= TF_REQ_CC;
558 	tp->t_inpcb = inp;	/* XXX */
559 	/*
560 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
561 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
562 	 * reasonable initial retransmit time.
563 	 */
564 	tp->t_srtt = TCPTV_SRTTBASE;
565 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
566 	tp->t_rttmin = tcp_rexmit_min;
567 	tp->t_rxtcur = TCPTV_RTOBASE;
568 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
569 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
570 	tp->t_rcvtime = ticks;
571         /*
572 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
573 	 * because the socket may be bound to an IPv6 wildcard address,
574 	 * which may match an IPv4-mapped IPv6 address.
575 	 */
576 	inp->inp_ip_ttl = ip_defttl;
577 	inp->inp_ppcb = (caddr_t)tp;
578 	return (tp);		/* XXX */
579 }
580 
581 /*
582  * Drop a TCP connection, reporting
583  * the specified error.  If connection is synchronized,
584  * then send a RST to peer.
585  */
586 struct tcpcb *
587 tcp_drop(tp, errno)
588 	register struct tcpcb *tp;
589 	int errno;
590 {
591 	struct socket *so = tp->t_inpcb->inp_socket;
592 
593 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
594 		tp->t_state = TCPS_CLOSED;
595 		(void) tcp_output(tp);
596 		tcpstat.tcps_drops++;
597 	} else
598 		tcpstat.tcps_conndrops++;
599 	if (errno == ETIMEDOUT && tp->t_softerror)
600 		errno = tp->t_softerror;
601 	so->so_error = errno;
602 	return (tcp_close(tp));
603 }
604 
605 /*
606  * Close a TCP control block:
607  *	discard all space held by the tcp
608  *	discard internet protocol block
609  *	wake up any sleepers
610  */
611 struct tcpcb *
612 tcp_close(tp)
613 	register struct tcpcb *tp;
614 {
615 	register struct tseg_qent *q;
616 	struct inpcb *inp = tp->t_inpcb;
617 	struct socket *so = inp->inp_socket;
618 #ifdef INET6
619 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
620 #endif /* INET6 */
621 	register struct rtentry *rt;
622 	int dosavessthresh;
623 
624 	/*
625 	 * Make sure that all of our timers are stopped before we
626 	 * delete the PCB.
627 	 */
628 	callout_stop(tp->tt_rexmt);
629 	callout_stop(tp->tt_persist);
630 	callout_stop(tp->tt_keep);
631 	callout_stop(tp->tt_2msl);
632 	callout_stop(tp->tt_delack);
633 
634 	/*
635 	 * If we got enough samples through the srtt filter,
636 	 * save the rtt and rttvar in the routing entry.
637 	 * 'Enough' is arbitrarily defined as the 16 samples.
638 	 * 16 samples is enough for the srtt filter to converge
639 	 * to within 5% of the correct value; fewer samples and
640 	 * we could save a very bogus rtt.
641 	 *
642 	 * Don't update the default route's characteristics and don't
643 	 * update anything that the user "locked".
644 	 */
645 	if (tp->t_rttupdated >= 16) {
646 		register u_long i = 0;
647 #ifdef INET6
648 		if (isipv6) {
649 			struct sockaddr_in6 *sin6;
650 
651 			if ((rt = inp->in6p_route.ro_rt) == NULL)
652 				goto no_valid_rt;
653 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
654 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
655 				goto no_valid_rt;
656 		}
657 		else
658 #endif /* INET6 */
659 		if ((rt = inp->inp_route.ro_rt) == NULL ||
660 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
661 		    == INADDR_ANY)
662 			goto no_valid_rt;
663 
664 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
665 			i = tp->t_srtt *
666 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
667 			if (rt->rt_rmx.rmx_rtt && i)
668 				/*
669 				 * filter this update to half the old & half
670 				 * the new values, converting scale.
671 				 * See route.h and tcp_var.h for a
672 				 * description of the scaling constants.
673 				 */
674 				rt->rt_rmx.rmx_rtt =
675 				    (rt->rt_rmx.rmx_rtt + i) / 2;
676 			else
677 				rt->rt_rmx.rmx_rtt = i;
678 			tcpstat.tcps_cachedrtt++;
679 		}
680 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
681 			i = tp->t_rttvar *
682 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
683 			if (rt->rt_rmx.rmx_rttvar && i)
684 				rt->rt_rmx.rmx_rttvar =
685 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
686 			else
687 				rt->rt_rmx.rmx_rttvar = i;
688 			tcpstat.tcps_cachedrttvar++;
689 		}
690 		/*
691 		 * The old comment here said:
692 		 * update the pipelimit (ssthresh) if it has been updated
693 		 * already or if a pipesize was specified & the threshhold
694 		 * got below half the pipesize.  I.e., wait for bad news
695 		 * before we start updating, then update on both good
696 		 * and bad news.
697 		 *
698 		 * But we want to save the ssthresh even if no pipesize is
699 		 * specified explicitly in the route, because such
700 		 * connections still have an implicit pipesize specified
701 		 * by the global tcp_sendspace.  In the absence of a reliable
702 		 * way to calculate the pipesize, it will have to do.
703 		 */
704 		i = tp->snd_ssthresh;
705 		if (rt->rt_rmx.rmx_sendpipe != 0)
706 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
707 		else
708 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
709 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
710 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
711 		    || dosavessthresh) {
712 			/*
713 			 * convert the limit from user data bytes to
714 			 * packets then to packet data bytes.
715 			 */
716 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
717 			if (i < 2)
718 				i = 2;
719 			i *= (u_long)(tp->t_maxseg +
720 #ifdef INET6
721 				      (isipv6 ? sizeof (struct ip6_hdr) +
722 					       sizeof (struct tcphdr) :
723 #endif
724 				       sizeof (struct tcpiphdr)
725 #ifdef INET6
726 				       )
727 #endif
728 				      );
729 			if (rt->rt_rmx.rmx_ssthresh)
730 				rt->rt_rmx.rmx_ssthresh =
731 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
732 			else
733 				rt->rt_rmx.rmx_ssthresh = i;
734 			tcpstat.tcps_cachedssthresh++;
735 		}
736 	}
737     no_valid_rt:
738 	/* free the reassembly queue, if any */
739 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
740 		LIST_REMOVE(q, tqe_q);
741 		m_freem(q->tqe_m);
742 		FREE(q, M_TSEGQ);
743 	}
744 	inp->inp_ppcb = NULL;
745 	soisdisconnected(so);
746 #ifdef INET6
747 	if (INP_CHECK_SOCKAF(so, AF_INET6))
748 		in6_pcbdetach(inp);
749 	else
750 #endif /* INET6 */
751 	in_pcbdetach(inp);
752 	tcpstat.tcps_closed++;
753 	return ((struct tcpcb *)0);
754 }
755 
756 void
757 tcp_drain()
758 {
759 	if (do_tcpdrain)
760 	{
761 		struct inpcb *inpb;
762 		struct tcpcb *tcpb;
763 		struct tseg_qent *te;
764 
765 	/*
766 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
767 	 * if there is one...
768 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
769 	 *      reassembly queue should be flushed, but in a situation
770 	 * 	where we're really low on mbufs, this is potentially
771 	 *  	usefull.
772 	 */
773 		INP_INFO_RLOCK(&tcbinfo);
774 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
775 			INP_LOCK(inpb);
776 			if ((tcpb = intotcpcb(inpb))) {
777 				while ((te = LIST_FIRST(&tcpb->t_segq))
778 			            != NULL) {
779 					LIST_REMOVE(te, tqe_q);
780 					m_freem(te->tqe_m);
781 					FREE(te, M_TSEGQ);
782 				}
783 			}
784 			INP_UNLOCK(inpb);
785 		}
786 		INP_INFO_RUNLOCK(&tcbinfo);
787 	}
788 }
789 
790 /*
791  * Notify a tcp user of an asynchronous error;
792  * store error as soft error, but wake up user
793  * (for now, won't do anything until can select for soft error).
794  *
795  * Do not wake up user since there currently is no mechanism for
796  * reporting soft errors (yet - a kqueue filter may be added).
797  */
798 static struct inpcb *
799 tcp_notify(inp, error)
800 	struct inpcb *inp;
801 	int error;
802 {
803 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
804 
805 	/*
806 	 * Ignore some errors if we are hooked up.
807 	 * If connection hasn't completed, has retransmitted several times,
808 	 * and receives a second error, give up now.  This is better
809 	 * than waiting a long time to establish a connection that
810 	 * can never complete.
811 	 */
812 	if (tp->t_state == TCPS_ESTABLISHED &&
813 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
814 	      error == EHOSTDOWN)) {
815 		return inp;
816 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
817 	    tp->t_softerror) {
818 		tcp_drop(tp, error);
819 		return (struct inpcb *)0;
820 	} else {
821 		tp->t_softerror = error;
822 		return inp;
823 	}
824 #if 0
825 	wakeup((caddr_t) &so->so_timeo);
826 	sorwakeup(so);
827 	sowwakeup(so);
828 #endif
829 }
830 
831 static int
832 tcp_pcblist(SYSCTL_HANDLER_ARGS)
833 {
834 	int error, i, n, s;
835 	struct inpcb *inp, **inp_list;
836 	inp_gen_t gencnt;
837 	struct xinpgen xig;
838 
839 	/*
840 	 * The process of preparing the TCB list is too time-consuming and
841 	 * resource-intensive to repeat twice on every request.
842 	 */
843 	if (req->oldptr == 0) {
844 		n = tcbinfo.ipi_count;
845 		req->oldidx = 2 * (sizeof xig)
846 			+ (n + n/8) * sizeof(struct xtcpcb);
847 		return 0;
848 	}
849 
850 	if (req->newptr != 0)
851 		return EPERM;
852 
853 	/*
854 	 * OK, now we're committed to doing something.
855 	 */
856 	s = splnet();
857 	INP_INFO_RLOCK(&tcbinfo);
858 	gencnt = tcbinfo.ipi_gencnt;
859 	n = tcbinfo.ipi_count;
860 	INP_INFO_RUNLOCK(&tcbinfo);
861 	splx(s);
862 
863 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
864 		+ n * sizeof(struct xtcpcb));
865 
866 	xig.xig_len = sizeof xig;
867 	xig.xig_count = n;
868 	xig.xig_gen = gencnt;
869 	xig.xig_sogen = so_gencnt;
870 	error = SYSCTL_OUT(req, &xig, sizeof xig);
871 	if (error)
872 		return error;
873 
874 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
875 	if (inp_list == 0)
876 		return ENOMEM;
877 
878 	s = splnet();
879 	INP_INFO_RLOCK(&tcbinfo);
880 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
881 	     inp = LIST_NEXT(inp, inp_list)) {
882 		INP_LOCK(inp);
883 		if (inp->inp_gencnt <= gencnt &&
884 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
885 			inp_list[i++] = inp;
886 		INP_UNLOCK(inp);
887 	}
888 	INP_INFO_RUNLOCK(&tcbinfo);
889 	splx(s);
890 	n = i;
891 
892 	error = 0;
893 	for (i = 0; i < n; i++) {
894 		inp = inp_list[i];
895 		INP_LOCK(inp);
896 		if (inp->inp_gencnt <= gencnt) {
897 			struct xtcpcb xt;
898 			caddr_t inp_ppcb;
899 			xt.xt_len = sizeof xt;
900 			/* XXX should avoid extra copy */
901 			bcopy(inp, &xt.xt_inp, sizeof *inp);
902 			inp_ppcb = inp->inp_ppcb;
903 			if (inp_ppcb != NULL)
904 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
905 			else
906 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
907 			if (inp->inp_socket)
908 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
909 			error = SYSCTL_OUT(req, &xt, sizeof xt);
910 		}
911 		INP_UNLOCK(inp);
912 	}
913 	if (!error) {
914 		/*
915 		 * Give the user an updated idea of our state.
916 		 * If the generation differs from what we told
917 		 * her before, she knows that something happened
918 		 * while we were processing this request, and it
919 		 * might be necessary to retry.
920 		 */
921 		s = splnet();
922 		INP_INFO_RLOCK(&tcbinfo);
923 		xig.xig_gen = tcbinfo.ipi_gencnt;
924 		xig.xig_sogen = so_gencnt;
925 		xig.xig_count = tcbinfo.ipi_count;
926 		INP_INFO_RUNLOCK(&tcbinfo);
927 		splx(s);
928 		error = SYSCTL_OUT(req, &xig, sizeof xig);
929 	}
930 	free(inp_list, M_TEMP);
931 	return error;
932 }
933 
934 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
935 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
936 
937 static int
938 tcp_getcred(SYSCTL_HANDLER_ARGS)
939 {
940 	struct xucred xuc;
941 	struct sockaddr_in addrs[2];
942 	struct inpcb *inp;
943 	int error, s;
944 
945 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
946 	if (error)
947 		return (error);
948 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
949 	if (error)
950 		return (error);
951 	s = splnet();
952 	INP_INFO_RLOCK(&tcbinfo);
953 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
954 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
955 	if (inp == NULL) {
956 		error = ENOENT;
957 		goto outunlocked;
958 	}
959 	INP_LOCK(inp);
960 	if (inp->inp_socket == NULL) {
961 		error = ENOENT;
962 		goto out;
963 	}
964 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
965 	if (error)
966 		goto out;
967 	cru2x(inp->inp_socket->so_cred, &xuc);
968 out:
969 	INP_UNLOCK(inp);
970 outunlocked:
971 	INP_INFO_RUNLOCK(&tcbinfo);
972 	splx(s);
973 	if (error == 0)
974 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
975 	return (error);
976 }
977 
978 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
979     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
980     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
981 
982 #ifdef INET6
983 static int
984 tcp6_getcred(SYSCTL_HANDLER_ARGS)
985 {
986 	struct xucred xuc;
987 	struct sockaddr_in6 addrs[2];
988 	struct inpcb *inp;
989 	int error, s, mapped = 0;
990 
991 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
992 	if (error)
993 		return (error);
994 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
995 	if (error)
996 		return (error);
997 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
998 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
999 			mapped = 1;
1000 		else
1001 			return (EINVAL);
1002 	}
1003 	s = splnet();
1004 	INP_INFO_RLOCK(&tcbinfo);
1005 	if (mapped == 1)
1006 		inp = in_pcblookup_hash(&tcbinfo,
1007 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1008 			addrs[1].sin6_port,
1009 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1010 			addrs[0].sin6_port,
1011 			0, NULL);
1012 	else
1013 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1014 				 addrs[1].sin6_port,
1015 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1016 				 0, NULL);
1017 	if (inp == NULL) {
1018 		error = ENOENT;
1019 		goto outunlocked;
1020 	}
1021 	INP_LOCK(inp);
1022 	if (inp->inp_socket == NULL) {
1023 		error = ENOENT;
1024 		goto out;
1025 	}
1026 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1027 	if (error)
1028 		goto out;
1029 	cru2x(inp->inp_socket->so_cred, &xuc);
1030 out:
1031 	INP_UNLOCK(inp);
1032 outunlocked:
1033 	INP_INFO_RUNLOCK(&tcbinfo);
1034 	splx(s);
1035 	if (error == 0)
1036 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1037 	return (error);
1038 }
1039 
1040 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1041     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1042     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1043 #endif
1044 
1045 
1046 void
1047 tcp_ctlinput(cmd, sa, vip)
1048 	int cmd;
1049 	struct sockaddr *sa;
1050 	void *vip;
1051 {
1052 	struct ip *ip = vip;
1053 	struct tcphdr *th;
1054 	struct in_addr faddr;
1055 	struct inpcb *inp;
1056 	struct tcpcb *tp;
1057 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1058 	tcp_seq icmp_seq;
1059 	int s;
1060 
1061 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1062 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1063 		return;
1064 
1065 	if (cmd == PRC_QUENCH)
1066 		notify = tcp_quench;
1067 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1068 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1069 		notify = tcp_drop_syn_sent;
1070 	else if (cmd == PRC_MSGSIZE)
1071 		notify = tcp_mtudisc;
1072 	else if (PRC_IS_REDIRECT(cmd)) {
1073 		ip = 0;
1074 		notify = in_rtchange;
1075 	} else if (cmd == PRC_HOSTDEAD)
1076 		ip = 0;
1077 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1078 		return;
1079 	if (ip) {
1080 		s = splnet();
1081 		th = (struct tcphdr *)((caddr_t)ip
1082 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1083 		INP_INFO_WLOCK(&tcbinfo);
1084 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1085 		    ip->ip_src, th->th_sport, 0, NULL);
1086 		if (inp != NULL)  {
1087 			INP_LOCK(inp);
1088 			if (inp->inp_socket != NULL) {
1089 				icmp_seq = htonl(th->th_seq);
1090 				tp = intotcpcb(inp);
1091 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1092 			    		SEQ_LT(icmp_seq, tp->snd_max))
1093 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1094 			}
1095 			if (inp)
1096 				INP_UNLOCK(inp);
1097 		} else {
1098 			struct in_conninfo inc;
1099 
1100 			inc.inc_fport = th->th_dport;
1101 			inc.inc_lport = th->th_sport;
1102 			inc.inc_faddr = faddr;
1103 			inc.inc_laddr = ip->ip_src;
1104 #ifdef INET6
1105 			inc.inc_isipv6 = 0;
1106 #endif
1107 			syncache_unreach(&inc, th);
1108 		}
1109 		INP_INFO_WUNLOCK(&tcbinfo);
1110 		splx(s);
1111 	} else
1112 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1113 }
1114 
1115 #ifdef INET6
1116 void
1117 tcp6_ctlinput(cmd, sa, d)
1118 	int cmd;
1119 	struct sockaddr *sa;
1120 	void *d;
1121 {
1122 	struct tcphdr th;
1123 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1124 	struct ip6_hdr *ip6;
1125 	struct mbuf *m;
1126 	struct ip6ctlparam *ip6cp = NULL;
1127 	const struct sockaddr_in6 *sa6_src = NULL;
1128 	int off;
1129 	struct tcp_portonly {
1130 		u_int16_t th_sport;
1131 		u_int16_t th_dport;
1132 	} *thp;
1133 
1134 	if (sa->sa_family != AF_INET6 ||
1135 	    sa->sa_len != sizeof(struct sockaddr_in6))
1136 		return;
1137 
1138 	if (cmd == PRC_QUENCH)
1139 		notify = tcp_quench;
1140 	else if (cmd == PRC_MSGSIZE)
1141 		notify = tcp_mtudisc;
1142 	else if (!PRC_IS_REDIRECT(cmd) &&
1143 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1144 		return;
1145 
1146 	/* if the parameter is from icmp6, decode it. */
1147 	if (d != NULL) {
1148 		ip6cp = (struct ip6ctlparam *)d;
1149 		m = ip6cp->ip6c_m;
1150 		ip6 = ip6cp->ip6c_ip6;
1151 		off = ip6cp->ip6c_off;
1152 		sa6_src = ip6cp->ip6c_src;
1153 	} else {
1154 		m = NULL;
1155 		ip6 = NULL;
1156 		off = 0;	/* fool gcc */
1157 		sa6_src = &sa6_any;
1158 	}
1159 
1160 	if (ip6) {
1161 		struct in_conninfo inc;
1162 		/*
1163 		 * XXX: We assume that when IPV6 is non NULL,
1164 		 * M and OFF are valid.
1165 		 */
1166 
1167 		/* check if we can safely examine src and dst ports */
1168 		if (m->m_pkthdr.len < off + sizeof(*thp))
1169 			return;
1170 
1171 		bzero(&th, sizeof(th));
1172 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1173 
1174 		in6_pcbnotify(&tcb, sa, th.th_dport,
1175 		    (struct sockaddr *)ip6cp->ip6c_src,
1176 		    th.th_sport, cmd, notify);
1177 
1178 		inc.inc_fport = th.th_dport;
1179 		inc.inc_lport = th.th_sport;
1180 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1181 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1182 		inc.inc_isipv6 = 1;
1183 		syncache_unreach(&inc, &th);
1184 	} else
1185 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1186 			      0, cmd, notify);
1187 }
1188 #endif /* INET6 */
1189 
1190 
1191 /*
1192  * Following is where TCP initial sequence number generation occurs.
1193  *
1194  * There are two places where we must use initial sequence numbers:
1195  * 1.  In SYN-ACK packets.
1196  * 2.  In SYN packets.
1197  *
1198  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1199  * tcp_syncache.c for details.
1200  *
1201  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1202  * depends on this property.  In addition, these ISNs should be
1203  * unguessable so as to prevent connection hijacking.  To satisfy
1204  * the requirements of this situation, the algorithm outlined in
1205  * RFC 1948 is used to generate sequence numbers.
1206  *
1207  * Implementation details:
1208  *
1209  * Time is based off the system timer, and is corrected so that it
1210  * increases by one megabyte per second.  This allows for proper
1211  * recycling on high speed LANs while still leaving over an hour
1212  * before rollover.
1213  *
1214  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1215  * between seeding of isn_secret.  This is normally set to zero,
1216  * as reseeding should not be necessary.
1217  *
1218  */
1219 
1220 #define ISN_BYTES_PER_SECOND 1048576
1221 
1222 u_char isn_secret[32];
1223 int isn_last_reseed;
1224 MD5_CTX isn_ctx;
1225 
1226 tcp_seq
1227 tcp_new_isn(tp)
1228 	struct tcpcb *tp;
1229 {
1230 	u_int32_t md5_buffer[4];
1231 	tcp_seq new_isn;
1232 
1233 	/* Seed if this is the first use, reseed if requested. */
1234 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1235 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1236 		< (u_int)ticks))) {
1237 		read_random(&isn_secret, sizeof(isn_secret));
1238 		isn_last_reseed = ticks;
1239 	}
1240 
1241 	/* Compute the md5 hash and return the ISN. */
1242 	MD5Init(&isn_ctx);
1243 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1244 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1245 #ifdef INET6
1246 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1247 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1248 			  sizeof(struct in6_addr));
1249 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1250 			  sizeof(struct in6_addr));
1251 	} else
1252 #endif
1253 	{
1254 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1255 			  sizeof(struct in_addr));
1256 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1257 			  sizeof(struct in_addr));
1258 	}
1259 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1260 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1261 	new_isn = (tcp_seq) md5_buffer[0];
1262 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1263 	return new_isn;
1264 }
1265 
1266 /*
1267  * When a source quench is received, close congestion window
1268  * to one segment.  We will gradually open it again as we proceed.
1269  */
1270 struct inpcb *
1271 tcp_quench(inp, errno)
1272 	struct inpcb *inp;
1273 	int errno;
1274 {
1275 	struct tcpcb *tp = intotcpcb(inp);
1276 
1277 	if (tp)
1278 		tp->snd_cwnd = tp->t_maxseg;
1279 	return (inp);
1280 }
1281 
1282 /*
1283  * When a specific ICMP unreachable message is received and the
1284  * connection state is SYN-SENT, drop the connection.  This behavior
1285  * is controlled by the icmp_may_rst sysctl.
1286  */
1287 struct inpcb *
1288 tcp_drop_syn_sent(inp, errno)
1289 	struct inpcb *inp;
1290 	int errno;
1291 {
1292 	struct tcpcb *tp = intotcpcb(inp);
1293 
1294 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1295 		tcp_drop(tp, errno);
1296 		return (struct inpcb *)0;
1297 	}
1298 	return inp;
1299 }
1300 
1301 /*
1302  * When `need fragmentation' ICMP is received, update our idea of the MSS
1303  * based on the new value in the route.  Also nudge TCP to send something,
1304  * since we know the packet we just sent was dropped.
1305  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1306  */
1307 struct inpcb *
1308 tcp_mtudisc(inp, errno)
1309 	struct inpcb *inp;
1310 	int errno;
1311 {
1312 	struct tcpcb *tp = intotcpcb(inp);
1313 	struct rtentry *rt;
1314 	struct rmxp_tao *taop;
1315 	struct socket *so = inp->inp_socket;
1316 	int offered;
1317 	int mss;
1318 #ifdef INET6
1319 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1320 #endif /* INET6 */
1321 
1322 	if (tp) {
1323 #ifdef INET6
1324 		if (isipv6)
1325 			rt = tcp_rtlookup6(&inp->inp_inc);
1326 		else
1327 #endif /* INET6 */
1328 		rt = tcp_rtlookup(&inp->inp_inc);
1329 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1330 			tp->t_maxopd = tp->t_maxseg =
1331 #ifdef INET6
1332 				isipv6 ? tcp_v6mssdflt :
1333 #endif /* INET6 */
1334 				tcp_mssdflt;
1335 			return inp;
1336 		}
1337 		taop = rmx_taop(rt->rt_rmx);
1338 		offered = taop->tao_mssopt;
1339 		mss = rt->rt_rmx.rmx_mtu -
1340 #ifdef INET6
1341 			(isipv6 ?
1342 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1343 #endif /* INET6 */
1344 			 sizeof(struct tcpiphdr)
1345 #ifdef INET6
1346 			 )
1347 #endif /* INET6 */
1348 			;
1349 
1350 		if (offered)
1351 			mss = min(mss, offered);
1352 		/*
1353 		 * XXX - The above conditional probably violates the TCP
1354 		 * spec.  The problem is that, since we don't know the
1355 		 * other end's MSS, we are supposed to use a conservative
1356 		 * default.  But, if we do that, then MTU discovery will
1357 		 * never actually take place, because the conservative
1358 		 * default is much less than the MTUs typically seen
1359 		 * on the Internet today.  For the moment, we'll sweep
1360 		 * this under the carpet.
1361 		 *
1362 		 * The conservative default might not actually be a problem
1363 		 * if the only case this occurs is when sending an initial
1364 		 * SYN with options and data to a host we've never talked
1365 		 * to before.  Then, they will reply with an MSS value which
1366 		 * will get recorded and the new parameters should get
1367 		 * recomputed.  For Further Study.
1368 		 */
1369 		if (tp->t_maxopd <= mss)
1370 			return inp;
1371 		tp->t_maxopd = mss;
1372 
1373 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1374 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1375 			mss -= TCPOLEN_TSTAMP_APPA;
1376 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1377 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1378 			mss -= TCPOLEN_CC_APPA;
1379 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1380 		if (mss > MCLBYTES)
1381 			mss &= ~(MCLBYTES-1);
1382 #else
1383 		if (mss > MCLBYTES)
1384 			mss = mss / MCLBYTES * MCLBYTES;
1385 #endif
1386 		if (so->so_snd.sb_hiwat < mss)
1387 			mss = so->so_snd.sb_hiwat;
1388 
1389 		tp->t_maxseg = mss;
1390 
1391 		tcpstat.tcps_mturesent++;
1392 		tp->t_rtttime = 0;
1393 		tp->snd_nxt = tp->snd_una;
1394 		tcp_output(tp);
1395 	}
1396 	return inp;
1397 }
1398 
1399 /*
1400  * Look-up the routing entry to the peer of this inpcb.  If no route
1401  * is found and it cannot be allocated the return NULL.  This routine
1402  * is called by TCP routines that access the rmx structure and by tcp_mss
1403  * to get the interface MTU.
1404  */
1405 struct rtentry *
1406 tcp_rtlookup(inc)
1407 	struct in_conninfo *inc;
1408 {
1409 	struct route *ro;
1410 	struct rtentry *rt;
1411 
1412 	ro = &inc->inc_route;
1413 	rt = ro->ro_rt;
1414 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1415 		/* No route yet, so try to acquire one */
1416 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1417 			ro->ro_dst.sa_family = AF_INET;
1418 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1419 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1420 			    inc->inc_faddr;
1421 			rtalloc(ro);
1422 			rt = ro->ro_rt;
1423 		}
1424 	}
1425 	return rt;
1426 }
1427 
1428 #ifdef INET6
1429 struct rtentry *
1430 tcp_rtlookup6(inc)
1431 	struct in_conninfo *inc;
1432 {
1433 	struct route_in6 *ro6;
1434 	struct rtentry *rt;
1435 
1436 	ro6 = &inc->inc6_route;
1437 	rt = ro6->ro_rt;
1438 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1439 		/* No route yet, so try to acquire one */
1440 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1441 			ro6->ro_dst.sin6_family = AF_INET6;
1442 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1443 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1444 			rtalloc((struct route *)ro6);
1445 			rt = ro6->ro_rt;
1446 		}
1447 	}
1448 	return rt;
1449 }
1450 #endif /* INET6 */
1451 
1452 #ifdef IPSEC
1453 /* compute ESP/AH header size for TCP, including outer IP header. */
1454 size_t
1455 ipsec_hdrsiz_tcp(tp)
1456 	struct tcpcb *tp;
1457 {
1458 	struct inpcb *inp;
1459 	struct mbuf *m;
1460 	size_t hdrsiz;
1461 	struct ip *ip;
1462 #ifdef INET6
1463 	struct ip6_hdr *ip6;
1464 #endif /* INET6 */
1465 	struct tcphdr *th;
1466 
1467 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1468 		return 0;
1469 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1470 	if (!m)
1471 		return 0;
1472 
1473 #ifdef INET6
1474 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1475 		ip6 = mtod(m, struct ip6_hdr *);
1476 		th = (struct tcphdr *)(ip6 + 1);
1477 		m->m_pkthdr.len = m->m_len =
1478 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1479 		tcp_fillheaders(tp, ip6, th);
1480 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1481 	} else
1482 #endif /* INET6 */
1483       {
1484 	ip = mtod(m, struct ip *);
1485 	th = (struct tcphdr *)(ip + 1);
1486 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1487 	tcp_fillheaders(tp, ip, th);
1488 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1489       }
1490 
1491 	m_free(m);
1492 	return hdrsiz;
1493 }
1494 #endif /*IPSEC*/
1495 
1496 /*
1497  * Return a pointer to the cached information about the remote host.
1498  * The cached information is stored in the protocol specific part of
1499  * the route metrics.
1500  */
1501 struct rmxp_tao *
1502 tcp_gettaocache(inc)
1503 	struct in_conninfo *inc;
1504 {
1505 	struct rtentry *rt;
1506 
1507 #ifdef INET6
1508 	if (inc->inc_isipv6)
1509 		rt = tcp_rtlookup6(inc);
1510 	else
1511 #endif /* INET6 */
1512 	rt = tcp_rtlookup(inc);
1513 
1514 	/* Make sure this is a host route and is up. */
1515 	if (rt == NULL ||
1516 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1517 		return NULL;
1518 
1519 	return rmx_taop(rt->rt_rmx);
1520 }
1521 
1522 /*
1523  * Clear all the TAO cache entries, called from tcp_init.
1524  *
1525  * XXX
1526  * This routine is just an empty one, because we assume that the routing
1527  * routing tables are initialized at the same time when TCP, so there is
1528  * nothing in the cache left over.
1529  */
1530 static void
1531 tcp_cleartaocache()
1532 {
1533 }
1534