xref: /freebsd/sys/netinet/tcp_subr.c (revision abac203368a6069d3d557a71a60a843707694d65)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h>
78 #include <netinet/ip_var.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/scope6_var.h>
84 #include <netinet6/nd6.h>
85 #endif
86 
87 #ifdef TCP_RFC7413
88 #include <netinet/tcp_fastopen.h>
89 #endif
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcp_syncache.h>
96 #include <netinet/tcp_cc.h>
97 #ifdef INET6
98 #include <netinet6/tcp6_var.h>
99 #endif
100 #include <netinet/tcpip.h>
101 #ifdef TCPPCAP
102 #include <netinet/tcp_pcap.h>
103 #endif
104 #ifdef TCPDEBUG
105 #include <netinet/tcp_debug.h>
106 #endif
107 #ifdef INET6
108 #include <netinet6/ip6protosw.h>
109 #endif
110 #ifdef TCP_OFFLOAD
111 #include <netinet/tcp_offload.h>
112 #endif
113 
114 #ifdef IPSEC
115 #include <netipsec/ipsec.h>
116 #include <netipsec/xform.h>
117 #ifdef INET6
118 #include <netipsec/ipsec6.h>
119 #endif
120 #include <netipsec/key.h>
121 #include <sys/syslog.h>
122 #endif /*IPSEC*/
123 
124 #include <machine/in_cksum.h>
125 #include <sys/md5.h>
126 
127 #include <security/mac/mac_framework.h>
128 
129 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
130 #ifdef INET6
131 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
132 #endif
133 
134 struct rwlock tcp_function_lock;
135 
136 static int
137 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
138 {
139 	int error, new;
140 
141 	new = V_tcp_mssdflt;
142 	error = sysctl_handle_int(oidp, &new, 0, req);
143 	if (error == 0 && req->newptr) {
144 		if (new < TCP_MINMSS)
145 			error = EINVAL;
146 		else
147 			V_tcp_mssdflt = new;
148 	}
149 	return (error);
150 }
151 
152 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
153     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
154     &sysctl_net_inet_tcp_mss_check, "I",
155     "Default TCP Maximum Segment Size");
156 
157 #ifdef INET6
158 static int
159 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
160 {
161 	int error, new;
162 
163 	new = V_tcp_v6mssdflt;
164 	error = sysctl_handle_int(oidp, &new, 0, req);
165 	if (error == 0 && req->newptr) {
166 		if (new < TCP_MINMSS)
167 			error = EINVAL;
168 		else
169 			V_tcp_v6mssdflt = new;
170 	}
171 	return (error);
172 }
173 
174 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
175     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
176     &sysctl_net_inet_tcp_mss_v6_check, "I",
177    "Default TCP Maximum Segment Size for IPv6");
178 #endif /* INET6 */
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
190      &VNET_NAME(tcp_minmss), 0,
191     "Minimum TCP Maximum Segment Size");
192 
193 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
195     &VNET_NAME(tcp_do_rfc1323), 0,
196     "Enable rfc1323 (high performance TCP) extensions");
197 
198 static int	tcp_log_debug = 0;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
200     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
201 
202 static int	tcp_tcbhashsize;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
204     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
205 
206 static int	do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208     "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
211     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
212 
213 static VNET_DEFINE(int, icmp_may_rst) = 1;
214 #define	V_icmp_may_rst			VNET(icmp_may_rst)
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
216     &VNET_NAME(icmp_may_rst), 0,
217     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
218 
219 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
220 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_isn_reseed_interval), 0,
223     "Seconds between reseeding of ISN secret");
224 
225 static int	tcp_soreceive_stream;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
227     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
228 
229 #ifdef TCP_SIGNATURE
230 static int	tcp_sig_checksigs = 1;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
232     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
233 #endif
234 
235 VNET_DEFINE(uma_zone_t, sack_hole_zone);
236 #define	V_sack_hole_zone		VNET(sack_hole_zone)
237 
238 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
239 
240 static struct inpcb *tcp_notify(struct inpcb *, int);
241 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
242 static void tcp_mtudisc(struct inpcb *, int);
243 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
244 		    void *ip4hdr, const void *ip6hdr);
245 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
246 
247 
248 static struct tcp_function_block tcp_def_funcblk = {
249 	"default",
250 	tcp_output,
251 	tcp_do_segment,
252 	tcp_default_ctloutput,
253 	NULL,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	0,
261 	0
262 };
263 
264 struct tcp_funchead t_functions;
265 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
266 
267 static struct tcp_function_block *
268 find_tcp_functions_locked(struct tcp_function_set *fs)
269 {
270 	struct tcp_function *f;
271 	struct tcp_function_block *blk=NULL;
272 
273 	TAILQ_FOREACH(f, &t_functions, tf_next) {
274 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
275 			blk = f->tf_fb;
276 			break;
277 		}
278 	}
279 	return(blk);
280 }
281 
282 static struct tcp_function_block *
283 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
284 {
285 	struct tcp_function_block *rblk=NULL;
286 	struct tcp_function *f;
287 
288 	TAILQ_FOREACH(f, &t_functions, tf_next) {
289 		if (f->tf_fb == blk) {
290 			rblk = blk;
291 			if (s) {
292 				*s = f;
293 			}
294 			break;
295 		}
296 	}
297 	return (rblk);
298 }
299 
300 struct tcp_function_block *
301 find_and_ref_tcp_functions(struct tcp_function_set *fs)
302 {
303 	struct tcp_function_block *blk;
304 
305 	rw_rlock(&tcp_function_lock);
306 	blk = find_tcp_functions_locked(fs);
307 	if (blk)
308 		refcount_acquire(&blk->tfb_refcnt);
309 	rw_runlock(&tcp_function_lock);
310 	return(blk);
311 }
312 
313 struct tcp_function_block *
314 find_and_ref_tcp_fb(struct tcp_function_block *blk)
315 {
316 	struct tcp_function_block *rblk;
317 
318 	rw_rlock(&tcp_function_lock);
319 	rblk = find_tcp_fb_locked(blk, NULL);
320 	if (rblk)
321 		refcount_acquire(&rblk->tfb_refcnt);
322 	rw_runlock(&tcp_function_lock);
323 	return(rblk);
324 }
325 
326 
327 static int
328 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
329 {
330 	int error=ENOENT;
331 	struct tcp_function_set fs;
332 	struct tcp_function_block *blk;
333 
334 	memset(&fs, 0, sizeof(fs));
335 	rw_rlock(&tcp_function_lock);
336 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
337 	if (blk) {
338 		/* Found him */
339 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
340 		fs.pcbcnt = blk->tfb_refcnt;
341 	}
342 	rw_runlock(&tcp_function_lock);
343 	error = sysctl_handle_string(oidp, fs.function_set_name,
344 				     sizeof(fs.function_set_name), req);
345 
346 	/* Check for error or no change */
347 	if (error != 0 || req->newptr == NULL)
348 		return(error);
349 
350 	rw_wlock(&tcp_function_lock);
351 	blk = find_tcp_functions_locked(&fs);
352 	if ((blk == NULL) ||
353 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
354 		error = ENOENT;
355 		goto done;
356 	}
357 	tcp_func_set_ptr = blk;
358 done:
359 	rw_wunlock(&tcp_function_lock);
360 	return (error);
361 }
362 
363 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
364 	    CTLTYPE_STRING | CTLFLAG_RW,
365 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
366 	    "Set/get the default TCP functions");
367 
368 static int
369 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
370 {
371 	int error, cnt, linesz;
372 	struct tcp_function *f;
373 	char *buffer, *cp;
374 	size_t bufsz, outsz;
375 
376 	cnt = 0;
377 	rw_rlock(&tcp_function_lock);
378 	TAILQ_FOREACH(f, &t_functions, tf_next) {
379 		cnt++;
380 	}
381 	rw_runlock(&tcp_function_lock);
382 
383 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
384 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
385 
386 	error = 0;
387 	cp = buffer;
388 
389 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
390 	cp += linesz;
391 	bufsz -= linesz;
392 	outsz = linesz;
393 
394 	rw_rlock(&tcp_function_lock);
395 	TAILQ_FOREACH(f, &t_functions, tf_next) {
396 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
397 		    f->tf_fb->tfb_tcp_block_name,
398 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
399 		    f->tf_fb->tfb_refcnt);
400 		if (linesz >= bufsz) {
401 			error = EOVERFLOW;
402 			break;
403 		}
404 		cp += linesz;
405 		bufsz -= linesz;
406 		outsz += linesz;
407 	}
408 	rw_runlock(&tcp_function_lock);
409 	if (error == 0)
410 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
411 	free(buffer, M_TEMP);
412 	return (error);
413 }
414 
415 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
416 	    CTLTYPE_STRING|CTLFLAG_RD,
417 	    NULL, 0, sysctl_net_inet_list_available, "A",
418 	    "list available TCP Function sets");
419 
420 /*
421  * Target size of TCP PCB hash tables. Must be a power of two.
422  *
423  * Note that this can be overridden by the kernel environment
424  * variable net.inet.tcp.tcbhashsize
425  */
426 #ifndef TCBHASHSIZE
427 #define TCBHASHSIZE	0
428 #endif
429 
430 /*
431  * XXX
432  * Callouts should be moved into struct tcp directly.  They are currently
433  * separate because the tcpcb structure is exported to userland for sysctl
434  * parsing purposes, which do not know about callouts.
435  */
436 struct tcpcb_mem {
437 	struct	tcpcb		tcb;
438 	struct	tcp_timer	tt;
439 	struct	cc_var		ccv;
440 	struct	osd		osd;
441 };
442 
443 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
444 #define	V_tcpcb_zone			VNET(tcpcb_zone)
445 
446 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
447 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
448 
449 static struct mtx isn_mtx;
450 
451 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
452 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
453 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
454 
455 /*
456  * TCP initialization.
457  */
458 static void
459 tcp_zone_change(void *tag)
460 {
461 
462 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
463 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
464 	tcp_tw_zone_change();
465 }
466 
467 static int
468 tcp_inpcb_init(void *mem, int size, int flags)
469 {
470 	struct inpcb *inp = mem;
471 
472 	INP_LOCK_INIT(inp, "inp", "tcpinp");
473 	return (0);
474 }
475 
476 /*
477  * Take a value and get the next power of 2 that doesn't overflow.
478  * Used to size the tcp_inpcb hash buckets.
479  */
480 static int
481 maketcp_hashsize(int size)
482 {
483 	int hashsize;
484 
485 	/*
486 	 * auto tune.
487 	 * get the next power of 2 higher than maxsockets.
488 	 */
489 	hashsize = 1 << fls(size);
490 	/* catch overflow, and just go one power of 2 smaller */
491 	if (hashsize < size) {
492 		hashsize = 1 << (fls(size) - 1);
493 	}
494 	return (hashsize);
495 }
496 
497 int
498 register_tcp_functions(struct tcp_function_block *blk, int wait)
499 {
500 	struct tcp_function_block *lblk;
501 	struct tcp_function *n;
502 	struct tcp_function_set fs;
503 
504 	if ((blk->tfb_tcp_output == NULL) ||
505 	    (blk->tfb_tcp_do_segment == NULL) ||
506 	    (blk->tfb_tcp_ctloutput == NULL) ||
507 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
508 		/*
509 		 * These functions are required and you
510 		 * need a name.
511 		 */
512 		return (EINVAL);
513 	}
514 	if (blk->tfb_tcp_timer_stop_all ||
515 	    blk->tfb_tcp_timers_left ||
516 	    blk->tfb_tcp_timer_activate ||
517 	    blk->tfb_tcp_timer_active ||
518 	    blk->tfb_tcp_timer_stop) {
519 		/*
520 		 * If you define one timer function you
521 		 * must have them all.
522 		 */
523 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
524 		    (blk->tfb_tcp_timers_left  == NULL) ||
525 		    (blk->tfb_tcp_timer_activate == NULL) ||
526 		    (blk->tfb_tcp_timer_active == NULL) ||
527 		    (blk->tfb_tcp_timer_stop == NULL)) {
528 			return (EINVAL);
529 		}
530 	}
531 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
532 	if (n == NULL) {
533 		return (ENOMEM);
534 	}
535 	n->tf_fb = blk;
536 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
537 	rw_wlock(&tcp_function_lock);
538 	lblk = find_tcp_functions_locked(&fs);
539 	if (lblk) {
540 		/* Duplicate name space not allowed */
541 		rw_wunlock(&tcp_function_lock);
542 		free(n, M_TCPFUNCTIONS);
543 		return (EALREADY);
544 	}
545 	refcount_init(&blk->tfb_refcnt, 0);
546 	blk->tfb_flags = 0;
547 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
548 	rw_wunlock(&tcp_function_lock);
549 	return(0);
550 }
551 
552 int
553 deregister_tcp_functions(struct tcp_function_block *blk)
554 {
555 	struct tcp_function_block *lblk;
556 	struct tcp_function *f;
557 	int error=ENOENT;
558 
559 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
560 		/* You can't un-register the default */
561 		return (EPERM);
562 	}
563 	rw_wlock(&tcp_function_lock);
564 	if (blk == tcp_func_set_ptr) {
565 		/* You can't free the current default */
566 		rw_wunlock(&tcp_function_lock);
567 		return (EBUSY);
568 	}
569 	if (blk->tfb_refcnt) {
570 		/* Still tcb attached, mark it. */
571 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
572 		rw_wunlock(&tcp_function_lock);
573 		return (EBUSY);
574 	}
575 	lblk = find_tcp_fb_locked(blk, &f);
576 	if (lblk) {
577 		/* Found */
578 		TAILQ_REMOVE(&t_functions, f, tf_next);
579 		f->tf_fb = NULL;
580 		free(f, M_TCPFUNCTIONS);
581 		error = 0;
582 	}
583 	rw_wunlock(&tcp_function_lock);
584 	return (error);
585 }
586 
587 void
588 tcp_init(void)
589 {
590 	const char *tcbhash_tuneable;
591 	int hashsize;
592 
593 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
594 
595 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
596 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
597 		printf("%s: WARNING: unable to register helper hook\n", __func__);
598 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
599 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
600 		printf("%s: WARNING: unable to register helper hook\n", __func__);
601 	hashsize = TCBHASHSIZE;
602 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
603 	if (hashsize == 0) {
604 		/*
605 		 * Auto tune the hash size based on maxsockets.
606 		 * A perfect hash would have a 1:1 mapping
607 		 * (hashsize = maxsockets) however it's been
608 		 * suggested that O(2) average is better.
609 		 */
610 		hashsize = maketcp_hashsize(maxsockets / 4);
611 		/*
612 		 * Our historical default is 512,
613 		 * do not autotune lower than this.
614 		 */
615 		if (hashsize < 512)
616 			hashsize = 512;
617 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
618 			printf("%s: %s auto tuned to %d\n", __func__,
619 			    tcbhash_tuneable, hashsize);
620 	}
621 	/*
622 	 * We require a hashsize to be a power of two.
623 	 * Previously if it was not a power of two we would just reset it
624 	 * back to 512, which could be a nasty surprise if you did not notice
625 	 * the error message.
626 	 * Instead what we do is clip it to the closest power of two lower
627 	 * than the specified hash value.
628 	 */
629 	if (!powerof2(hashsize)) {
630 		int oldhashsize = hashsize;
631 
632 		hashsize = maketcp_hashsize(hashsize);
633 		/* prevent absurdly low value */
634 		if (hashsize < 16)
635 			hashsize = 16;
636 		printf("%s: WARNING: TCB hash size not a power of 2, "
637 		    "clipped from %d to %d.\n", __func__, oldhashsize,
638 		    hashsize);
639 	}
640 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
641 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
642 	    IPI_HASHFIELDS_4TUPLE);
643 
644 	/*
645 	 * These have to be type stable for the benefit of the timers.
646 	 */
647 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
648 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
649 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
650 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
651 
652 	tcp_tw_init();
653 	syncache_init();
654 	tcp_hc_init();
655 
656 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
657 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
658 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
659 
660 	/* Skip initialization of globals for non-default instances. */
661 	if (!IS_DEFAULT_VNET(curvnet))
662 		return;
663 
664 	tcp_reass_global_init();
665 
666 	/* XXX virtualize those bellow? */
667 	tcp_delacktime = TCPTV_DELACK;
668 	tcp_keepinit = TCPTV_KEEP_INIT;
669 	tcp_keepidle = TCPTV_KEEP_IDLE;
670 	tcp_keepintvl = TCPTV_KEEPINTVL;
671 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
672 	tcp_msl = TCPTV_MSL;
673 	tcp_rexmit_min = TCPTV_MIN;
674 	if (tcp_rexmit_min < 1)
675 		tcp_rexmit_min = 1;
676 	tcp_rexmit_slop = TCPTV_CPU_VAR;
677 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
678 	tcp_tcbhashsize = hashsize;
679 	/* Setup the tcp function block list */
680 	TAILQ_INIT(&t_functions);
681 	rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
682 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
683 
684 	if (tcp_soreceive_stream) {
685 #ifdef INET
686 		tcp_usrreqs.pru_soreceive = soreceive_stream;
687 #endif
688 #ifdef INET6
689 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
690 #endif /* INET6 */
691 	}
692 
693 #ifdef INET6
694 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
695 #else /* INET6 */
696 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
697 #endif /* INET6 */
698 	if (max_protohdr < TCP_MINPROTOHDR)
699 		max_protohdr = TCP_MINPROTOHDR;
700 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
701 		panic("tcp_init");
702 #undef TCP_MINPROTOHDR
703 
704 	ISN_LOCK_INIT();
705 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
706 		SHUTDOWN_PRI_DEFAULT);
707 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
708 		EVENTHANDLER_PRI_ANY);
709 #ifdef TCPPCAP
710 	tcp_pcap_init();
711 #endif
712 
713 #ifdef TCP_RFC7413
714 	tcp_fastopen_init();
715 #endif
716 }
717 
718 #ifdef VIMAGE
719 void
720 tcp_destroy(void)
721 {
722 	int error;
723 
724 #ifdef TCP_RFC7413
725 	tcp_fastopen_destroy();
726 #endif
727 	tcp_hc_destroy();
728 	syncache_destroy();
729 	tcp_tw_destroy();
730 	in_pcbinfo_destroy(&V_tcbinfo);
731 	uma_zdestroy(V_sack_hole_zone);
732 	uma_zdestroy(V_tcpcb_zone);
733 
734 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
735 	if (error != 0) {
736 		printf("%s: WARNING: unable to deregister helper hook "
737 		    "type=%d, id=%d: error %d returned\n", __func__,
738 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
739 	}
740 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
741 	if (error != 0) {
742 		printf("%s: WARNING: unable to deregister helper hook "
743 		    "type=%d, id=%d: error %d returned\n", __func__,
744 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
745 	}
746 }
747 #endif
748 
749 void
750 tcp_fini(void *xtp)
751 {
752 
753 }
754 
755 /*
756  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
757  * tcp_template used to store this data in mbufs, but we now recopy it out
758  * of the tcpcb each time to conserve mbufs.
759  */
760 void
761 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
762 {
763 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
764 
765 	INP_WLOCK_ASSERT(inp);
766 
767 #ifdef INET6
768 	if ((inp->inp_vflag & INP_IPV6) != 0) {
769 		struct ip6_hdr *ip6;
770 
771 		ip6 = (struct ip6_hdr *)ip_ptr;
772 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
773 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
774 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
775 			(IPV6_VERSION & IPV6_VERSION_MASK);
776 		ip6->ip6_nxt = IPPROTO_TCP;
777 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
778 		ip6->ip6_src = inp->in6p_laddr;
779 		ip6->ip6_dst = inp->in6p_faddr;
780 	}
781 #endif /* INET6 */
782 #if defined(INET6) && defined(INET)
783 	else
784 #endif
785 #ifdef INET
786 	{
787 		struct ip *ip;
788 
789 		ip = (struct ip *)ip_ptr;
790 		ip->ip_v = IPVERSION;
791 		ip->ip_hl = 5;
792 		ip->ip_tos = inp->inp_ip_tos;
793 		ip->ip_len = 0;
794 		ip->ip_id = 0;
795 		ip->ip_off = 0;
796 		ip->ip_ttl = inp->inp_ip_ttl;
797 		ip->ip_sum = 0;
798 		ip->ip_p = IPPROTO_TCP;
799 		ip->ip_src = inp->inp_laddr;
800 		ip->ip_dst = inp->inp_faddr;
801 	}
802 #endif /* INET */
803 	th->th_sport = inp->inp_lport;
804 	th->th_dport = inp->inp_fport;
805 	th->th_seq = 0;
806 	th->th_ack = 0;
807 	th->th_x2 = 0;
808 	th->th_off = 5;
809 	th->th_flags = 0;
810 	th->th_win = 0;
811 	th->th_urp = 0;
812 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
813 }
814 
815 /*
816  * Create template to be used to send tcp packets on a connection.
817  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
818  * use for this function is in keepalives, which use tcp_respond.
819  */
820 struct tcptemp *
821 tcpip_maketemplate(struct inpcb *inp)
822 {
823 	struct tcptemp *t;
824 
825 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
826 	if (t == NULL)
827 		return (NULL);
828 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
829 	return (t);
830 }
831 
832 /*
833  * Send a single message to the TCP at address specified by
834  * the given TCP/IP header.  If m == NULL, then we make a copy
835  * of the tcpiphdr at th and send directly to the addressed host.
836  * This is used to force keep alive messages out using the TCP
837  * template for a connection.  If flags are given then we send
838  * a message back to the TCP which originated the segment th,
839  * and discard the mbuf containing it and any other attached mbufs.
840  *
841  * In any case the ack and sequence number of the transmitted
842  * segment are as specified by the parameters.
843  *
844  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
845  */
846 void
847 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
848     tcp_seq ack, tcp_seq seq, int flags)
849 {
850 	int tlen;
851 	int win = 0;
852 	struct ip *ip;
853 	struct tcphdr *nth;
854 #ifdef INET6
855 	struct ip6_hdr *ip6;
856 	int isipv6;
857 #endif /* INET6 */
858 	int ipflags = 0;
859 	struct inpcb *inp;
860 
861 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
862 
863 #ifdef INET6
864 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
865 	ip6 = ipgen;
866 #endif /* INET6 */
867 	ip = ipgen;
868 
869 	if (tp != NULL) {
870 		inp = tp->t_inpcb;
871 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
872 		INP_WLOCK_ASSERT(inp);
873 	} else
874 		inp = NULL;
875 
876 	if (tp != NULL) {
877 		if (!(flags & TH_RST)) {
878 			win = sbspace(&inp->inp_socket->so_rcv);
879 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
880 				win = (long)TCP_MAXWIN << tp->rcv_scale;
881 		}
882 	}
883 	if (m == NULL) {
884 		m = m_gethdr(M_NOWAIT, MT_DATA);
885 		if (m == NULL)
886 			return;
887 		tlen = 0;
888 		m->m_data += max_linkhdr;
889 #ifdef INET6
890 		if (isipv6) {
891 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
892 			      sizeof(struct ip6_hdr));
893 			ip6 = mtod(m, struct ip6_hdr *);
894 			nth = (struct tcphdr *)(ip6 + 1);
895 		} else
896 #endif /* INET6 */
897 		{
898 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
899 			ip = mtod(m, struct ip *);
900 			nth = (struct tcphdr *)(ip + 1);
901 		}
902 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
903 		flags = TH_ACK;
904 	} else {
905 		/*
906 		 *  reuse the mbuf.
907 		 * XXX MRT We inherrit the FIB, which is lucky.
908 		 */
909 		m_freem(m->m_next);
910 		m->m_next = NULL;
911 		m->m_data = (caddr_t)ipgen;
912 		/* m_len is set later */
913 		tlen = 0;
914 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
915 #ifdef INET6
916 		if (isipv6) {
917 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
918 			nth = (struct tcphdr *)(ip6 + 1);
919 		} else
920 #endif /* INET6 */
921 		{
922 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
923 			nth = (struct tcphdr *)(ip + 1);
924 		}
925 		if (th != nth) {
926 			/*
927 			 * this is usually a case when an extension header
928 			 * exists between the IPv6 header and the
929 			 * TCP header.
930 			 */
931 			nth->th_sport = th->th_sport;
932 			nth->th_dport = th->th_dport;
933 		}
934 		xchg(nth->th_dport, nth->th_sport, uint16_t);
935 #undef xchg
936 	}
937 #ifdef INET6
938 	if (isipv6) {
939 		ip6->ip6_flow = 0;
940 		ip6->ip6_vfc = IPV6_VERSION;
941 		ip6->ip6_nxt = IPPROTO_TCP;
942 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
943 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
944 	}
945 #endif
946 #if defined(INET) && defined(INET6)
947 	else
948 #endif
949 #ifdef INET
950 	{
951 		tlen += sizeof (struct tcpiphdr);
952 		ip->ip_len = htons(tlen);
953 		ip->ip_ttl = V_ip_defttl;
954 		if (V_path_mtu_discovery)
955 			ip->ip_off |= htons(IP_DF);
956 	}
957 #endif
958 	m->m_len = tlen;
959 	m->m_pkthdr.len = tlen;
960 	m->m_pkthdr.rcvif = NULL;
961 #ifdef MAC
962 	if (inp != NULL) {
963 		/*
964 		 * Packet is associated with a socket, so allow the
965 		 * label of the response to reflect the socket label.
966 		 */
967 		INP_WLOCK_ASSERT(inp);
968 		mac_inpcb_create_mbuf(inp, m);
969 	} else {
970 		/*
971 		 * Packet is not associated with a socket, so possibly
972 		 * update the label in place.
973 		 */
974 		mac_netinet_tcp_reply(m);
975 	}
976 #endif
977 	nth->th_seq = htonl(seq);
978 	nth->th_ack = htonl(ack);
979 	nth->th_x2 = 0;
980 	nth->th_off = sizeof (struct tcphdr) >> 2;
981 	nth->th_flags = flags;
982 	if (tp != NULL)
983 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
984 	else
985 		nth->th_win = htons((u_short)win);
986 	nth->th_urp = 0;
987 
988 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
989 #ifdef INET6
990 	if (isipv6) {
991 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
992 		nth->th_sum = in6_cksum_pseudo(ip6,
993 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
994 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
995 		    NULL, NULL);
996 	}
997 #endif /* INET6 */
998 #if defined(INET6) && defined(INET)
999 	else
1000 #endif
1001 #ifdef INET
1002 	{
1003 		m->m_pkthdr.csum_flags = CSUM_TCP;
1004 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1005 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1006 	}
1007 #endif /* INET */
1008 #ifdef TCPDEBUG
1009 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1010 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1011 #endif
1012 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1013 	if (flags & TH_RST)
1014 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1015 		    tp, nth);
1016 
1017 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1018 #ifdef INET6
1019 	if (isipv6)
1020 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
1021 #endif /* INET6 */
1022 #if defined(INET) && defined(INET6)
1023 	else
1024 #endif
1025 #ifdef INET
1026 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
1027 #endif
1028 }
1029 
1030 /*
1031  * Create a new TCP control block, making an
1032  * empty reassembly queue and hooking it to the argument
1033  * protocol control block.  The `inp' parameter must have
1034  * come from the zone allocator set up in tcp_init().
1035  */
1036 struct tcpcb *
1037 tcp_newtcpcb(struct inpcb *inp)
1038 {
1039 	struct tcpcb_mem *tm;
1040 	struct tcpcb *tp;
1041 #ifdef INET6
1042 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1043 #endif /* INET6 */
1044 
1045 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1046 	if (tm == NULL)
1047 		return (NULL);
1048 	tp = &tm->tcb;
1049 
1050 	/* Initialise cc_var struct for this tcpcb. */
1051 	tp->ccv = &tm->ccv;
1052 	tp->ccv->type = IPPROTO_TCP;
1053 	tp->ccv->ccvc.tcp = tp;
1054 	rw_rlock(&tcp_function_lock);
1055 	tp->t_fb = tcp_func_set_ptr;
1056 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1057 	rw_runlock(&tcp_function_lock);
1058 	if (tp->t_fb->tfb_tcp_fb_init) {
1059 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1060 	}
1061 	/*
1062 	 * Use the current system default CC algorithm.
1063 	 */
1064 	CC_LIST_RLOCK();
1065 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1066 	CC_ALGO(tp) = CC_DEFAULT();
1067 	CC_LIST_RUNLOCK();
1068 
1069 	if (CC_ALGO(tp)->cb_init != NULL)
1070 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1071 			if (tp->t_fb->tfb_tcp_fb_fini)
1072 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1073 			refcount_release(&tp->t_fb->tfb_refcnt);
1074 			uma_zfree(V_tcpcb_zone, tm);
1075 			return (NULL);
1076 		}
1077 
1078 	tp->osd = &tm->osd;
1079 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1080 		if (tp->t_fb->tfb_tcp_fb_fini)
1081 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1082 		refcount_release(&tp->t_fb->tfb_refcnt);
1083 		uma_zfree(V_tcpcb_zone, tm);
1084 		return (NULL);
1085 	}
1086 
1087 #ifdef VIMAGE
1088 	tp->t_vnet = inp->inp_vnet;
1089 #endif
1090 	tp->t_timers = &tm->tt;
1091 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1092 	tp->t_maxseg =
1093 #ifdef INET6
1094 		isipv6 ? V_tcp_v6mssdflt :
1095 #endif /* INET6 */
1096 		V_tcp_mssdflt;
1097 
1098 	/* Set up our timeouts. */
1099 	callout_init(&tp->t_timers->tt_rexmt, 1);
1100 	callout_init(&tp->t_timers->tt_persist, 1);
1101 	callout_init(&tp->t_timers->tt_keep, 1);
1102 	callout_init(&tp->t_timers->tt_2msl, 1);
1103 	callout_init(&tp->t_timers->tt_delack, 1);
1104 
1105 	if (V_tcp_do_rfc1323)
1106 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1107 	if (V_tcp_do_sack)
1108 		tp->t_flags |= TF_SACK_PERMIT;
1109 	TAILQ_INIT(&tp->snd_holes);
1110 	/*
1111 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1112 	 * is called.
1113 	 */
1114 	in_pcbref(inp);	/* Reference for tcpcb */
1115 	tp->t_inpcb = inp;
1116 
1117 	/*
1118 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1119 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1120 	 * reasonable initial retransmit time.
1121 	 */
1122 	tp->t_srtt = TCPTV_SRTTBASE;
1123 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1124 	tp->t_rttmin = tcp_rexmit_min;
1125 	tp->t_rxtcur = TCPTV_RTOBASE;
1126 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1127 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1128 	tp->t_rcvtime = ticks;
1129 	/*
1130 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1131 	 * because the socket may be bound to an IPv6 wildcard address,
1132 	 * which may match an IPv4-mapped IPv6 address.
1133 	 */
1134 	inp->inp_ip_ttl = V_ip_defttl;
1135 	inp->inp_ppcb = tp;
1136 #ifdef TCPPCAP
1137 	/*
1138 	 * Init the TCP PCAP queues.
1139 	 */
1140 	tcp_pcap_tcpcb_init(tp);
1141 #endif
1142 	return (tp);		/* XXX */
1143 }
1144 
1145 /*
1146  * Switch the congestion control algorithm back to NewReno for any active
1147  * control blocks using an algorithm which is about to go away.
1148  * This ensures the CC framework can allow the unload to proceed without leaving
1149  * any dangling pointers which would trigger a panic.
1150  * Returning non-zero would inform the CC framework that something went wrong
1151  * and it would be unsafe to allow the unload to proceed. However, there is no
1152  * way for this to occur with this implementation so we always return zero.
1153  */
1154 int
1155 tcp_ccalgounload(struct cc_algo *unload_algo)
1156 {
1157 	struct cc_algo *tmpalgo;
1158 	struct inpcb *inp;
1159 	struct tcpcb *tp;
1160 	VNET_ITERATOR_DECL(vnet_iter);
1161 
1162 	/*
1163 	 * Check all active control blocks across all network stacks and change
1164 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1165 	 * requires cleanup code to be run, call it.
1166 	 */
1167 	VNET_LIST_RLOCK();
1168 	VNET_FOREACH(vnet_iter) {
1169 		CURVNET_SET(vnet_iter);
1170 		INP_INFO_WLOCK(&V_tcbinfo);
1171 		/*
1172 		 * New connections already part way through being initialised
1173 		 * with the CC algo we're removing will not race with this code
1174 		 * because the INP_INFO_WLOCK is held during initialisation. We
1175 		 * therefore don't enter the loop below until the connection
1176 		 * list has stabilised.
1177 		 */
1178 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1179 			INP_WLOCK(inp);
1180 			/* Important to skip tcptw structs. */
1181 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1182 			    (tp = intotcpcb(inp)) != NULL) {
1183 				/*
1184 				 * By holding INP_WLOCK here, we are assured
1185 				 * that the connection is not currently
1186 				 * executing inside the CC module's functions
1187 				 * i.e. it is safe to make the switch back to
1188 				 * NewReno.
1189 				 */
1190 				if (CC_ALGO(tp) == unload_algo) {
1191 					tmpalgo = CC_ALGO(tp);
1192 					/* NewReno does not require any init. */
1193 					CC_ALGO(tp) = &newreno_cc_algo;
1194 					if (tmpalgo->cb_destroy != NULL)
1195 						tmpalgo->cb_destroy(tp->ccv);
1196 				}
1197 			}
1198 			INP_WUNLOCK(inp);
1199 		}
1200 		INP_INFO_WUNLOCK(&V_tcbinfo);
1201 		CURVNET_RESTORE();
1202 	}
1203 	VNET_LIST_RUNLOCK();
1204 
1205 	return (0);
1206 }
1207 
1208 /*
1209  * Drop a TCP connection, reporting
1210  * the specified error.  If connection is synchronized,
1211  * then send a RST to peer.
1212  */
1213 struct tcpcb *
1214 tcp_drop(struct tcpcb *tp, int errno)
1215 {
1216 	struct socket *so = tp->t_inpcb->inp_socket;
1217 
1218 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1219 	INP_WLOCK_ASSERT(tp->t_inpcb);
1220 
1221 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1222 		tcp_state_change(tp, TCPS_CLOSED);
1223 		(void) tp->t_fb->tfb_tcp_output(tp);
1224 		TCPSTAT_INC(tcps_drops);
1225 	} else
1226 		TCPSTAT_INC(tcps_conndrops);
1227 	if (errno == ETIMEDOUT && tp->t_softerror)
1228 		errno = tp->t_softerror;
1229 	so->so_error = errno;
1230 	return (tcp_close(tp));
1231 }
1232 
1233 void
1234 tcp_discardcb(struct tcpcb *tp)
1235 {
1236 	struct inpcb *inp = tp->t_inpcb;
1237 	struct socket *so = inp->inp_socket;
1238 #ifdef INET6
1239 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1240 #endif /* INET6 */
1241 	int released;
1242 
1243 	INP_WLOCK_ASSERT(inp);
1244 
1245 	/*
1246 	 * Make sure that all of our timers are stopped before we delete the
1247 	 * PCB.
1248 	 *
1249 	 * If stopping a timer fails, we schedule a discard function in same
1250 	 * callout, and the last discard function called will take care of
1251 	 * deleting the tcpcb.
1252 	 */
1253 	tcp_timer_stop(tp, TT_REXMT);
1254 	tcp_timer_stop(tp, TT_PERSIST);
1255 	tcp_timer_stop(tp, TT_KEEP);
1256 	tcp_timer_stop(tp, TT_2MSL);
1257 	tcp_timer_stop(tp, TT_DELACK);
1258 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1259 		/* Call the stop-all function of the methods */
1260 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1261 	}
1262 
1263 	/*
1264 	 * If we got enough samples through the srtt filter,
1265 	 * save the rtt and rttvar in the routing entry.
1266 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1267 	 * 4 samples is enough for the srtt filter to converge
1268 	 * to within enough % of the correct value; fewer samples
1269 	 * and we could save a bogus rtt. The danger is not high
1270 	 * as tcp quickly recovers from everything.
1271 	 * XXX: Works very well but needs some more statistics!
1272 	 */
1273 	if (tp->t_rttupdated >= 4) {
1274 		struct hc_metrics_lite metrics;
1275 		u_long ssthresh;
1276 
1277 		bzero(&metrics, sizeof(metrics));
1278 		/*
1279 		 * Update the ssthresh always when the conditions below
1280 		 * are satisfied. This gives us better new start value
1281 		 * for the congestion avoidance for new connections.
1282 		 * ssthresh is only set if packet loss occured on a session.
1283 		 *
1284 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1285 		 * being torn down.  Ideally this code would not use 'so'.
1286 		 */
1287 		ssthresh = tp->snd_ssthresh;
1288 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1289 			/*
1290 			 * convert the limit from user data bytes to
1291 			 * packets then to packet data bytes.
1292 			 */
1293 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1294 			if (ssthresh < 2)
1295 				ssthresh = 2;
1296 			ssthresh *= (u_long)(tp->t_maxseg +
1297 #ifdef INET6
1298 			    (isipv6 ? sizeof (struct ip6_hdr) +
1299 				sizeof (struct tcphdr) :
1300 #endif
1301 				sizeof (struct tcpiphdr)
1302 #ifdef INET6
1303 			    )
1304 #endif
1305 			    );
1306 		} else
1307 			ssthresh = 0;
1308 		metrics.rmx_ssthresh = ssthresh;
1309 
1310 		metrics.rmx_rtt = tp->t_srtt;
1311 		metrics.rmx_rttvar = tp->t_rttvar;
1312 		metrics.rmx_cwnd = tp->snd_cwnd;
1313 		metrics.rmx_sendpipe = 0;
1314 		metrics.rmx_recvpipe = 0;
1315 
1316 		tcp_hc_update(&inp->inp_inc, &metrics);
1317 	}
1318 
1319 	/* free the reassembly queue, if any */
1320 	tcp_reass_flush(tp);
1321 
1322 #ifdef TCP_OFFLOAD
1323 	/* Disconnect offload device, if any. */
1324 	if (tp->t_flags & TF_TOE)
1325 		tcp_offload_detach(tp);
1326 #endif
1327 
1328 	tcp_free_sackholes(tp);
1329 
1330 #ifdef TCPPCAP
1331 	/* Free the TCP PCAP queues. */
1332 	tcp_pcap_drain(&(tp->t_inpkts));
1333 	tcp_pcap_drain(&(tp->t_outpkts));
1334 #endif
1335 
1336 	/* Allow the CC algorithm to clean up after itself. */
1337 	if (CC_ALGO(tp)->cb_destroy != NULL)
1338 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1339 
1340 	khelp_destroy_osd(tp->osd);
1341 
1342 	CC_ALGO(tp) = NULL;
1343 	inp->inp_ppcb = NULL;
1344 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1345 		/* We own the last reference on tcpcb, let's free it. */
1346 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1347 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1348 			    /* Some fb timers left running! */
1349 			    return;
1350 		}
1351 		if (tp->t_fb->tfb_tcp_fb_fini)
1352 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1353 		refcount_release(&tp->t_fb->tfb_refcnt);
1354 		tp->t_inpcb = NULL;
1355 		uma_zfree(V_tcpcb_zone, tp);
1356 		released = in_pcbrele_wlocked(inp);
1357 		KASSERT(!released, ("%s: inp %p should not have been released "
1358 			"here", __func__, inp));
1359 	}
1360 }
1361 
1362 void
1363 tcp_timer_2msl_discard(void *xtp)
1364 {
1365 
1366 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1367 }
1368 
1369 void
1370 tcp_timer_keep_discard(void *xtp)
1371 {
1372 
1373 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1374 }
1375 
1376 void
1377 tcp_timer_persist_discard(void *xtp)
1378 {
1379 
1380 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1381 }
1382 
1383 void
1384 tcp_timer_rexmt_discard(void *xtp)
1385 {
1386 
1387 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1388 }
1389 
1390 void
1391 tcp_timer_delack_discard(void *xtp)
1392 {
1393 
1394 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1395 }
1396 
1397 void
1398 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1399 {
1400 	struct inpcb *inp;
1401 
1402 	CURVNET_SET(tp->t_vnet);
1403 	INP_INFO_RLOCK(&V_tcbinfo);
1404 	inp = tp->t_inpcb;
1405 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1406 		__func__, tp));
1407 	INP_WLOCK(inp);
1408 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1409 		("%s: tcpcb has to be stopped here", __func__));
1410 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1411 		("%s: discard callout should be running", __func__));
1412 	tp->t_timers->tt_flags &= ~timer_type;
1413 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1414 		/* We own the last reference on this tcpcb, let's free it. */
1415 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1416 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1417 			    /* Some fb timers left running! */
1418 			    goto leave;
1419 		}
1420 		if (tp->t_fb->tfb_tcp_fb_fini)
1421 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1422 		refcount_release(&tp->t_fb->tfb_refcnt);
1423 		tp->t_inpcb = NULL;
1424 		uma_zfree(V_tcpcb_zone, tp);
1425 		if (in_pcbrele_wlocked(inp)) {
1426 			INP_INFO_RUNLOCK(&V_tcbinfo);
1427 			CURVNET_RESTORE();
1428 			return;
1429 		}
1430 	}
1431 leave:
1432 	INP_WUNLOCK(inp);
1433 	INP_INFO_RUNLOCK(&V_tcbinfo);
1434 	CURVNET_RESTORE();
1435 }
1436 
1437 /*
1438  * Attempt to close a TCP control block, marking it as dropped, and freeing
1439  * the socket if we hold the only reference.
1440  */
1441 struct tcpcb *
1442 tcp_close(struct tcpcb *tp)
1443 {
1444 	struct inpcb *inp = tp->t_inpcb;
1445 	struct socket *so;
1446 
1447 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1448 	INP_WLOCK_ASSERT(inp);
1449 
1450 #ifdef TCP_OFFLOAD
1451 	if (tp->t_state == TCPS_LISTEN)
1452 		tcp_offload_listen_stop(tp);
1453 #endif
1454 #ifdef TCP_RFC7413
1455 	/*
1456 	 * This releases the TFO pending counter resource for TFO listen
1457 	 * sockets as well as passively-created TFO sockets that transition
1458 	 * from SYN_RECEIVED to CLOSED.
1459 	 */
1460 	if (tp->t_tfo_pending) {
1461 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1462 		tp->t_tfo_pending = NULL;
1463 	}
1464 #endif
1465 	in_pcbdrop(inp);
1466 	TCPSTAT_INC(tcps_closed);
1467 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1468 	so = inp->inp_socket;
1469 	soisdisconnected(so);
1470 	if (inp->inp_flags & INP_SOCKREF) {
1471 		KASSERT(so->so_state & SS_PROTOREF,
1472 		    ("tcp_close: !SS_PROTOREF"));
1473 		inp->inp_flags &= ~INP_SOCKREF;
1474 		INP_WUNLOCK(inp);
1475 		ACCEPT_LOCK();
1476 		SOCK_LOCK(so);
1477 		so->so_state &= ~SS_PROTOREF;
1478 		sofree(so);
1479 		return (NULL);
1480 	}
1481 	return (tp);
1482 }
1483 
1484 void
1485 tcp_drain(void)
1486 {
1487 	VNET_ITERATOR_DECL(vnet_iter);
1488 
1489 	if (!do_tcpdrain)
1490 		return;
1491 
1492 	VNET_LIST_RLOCK_NOSLEEP();
1493 	VNET_FOREACH(vnet_iter) {
1494 		CURVNET_SET(vnet_iter);
1495 		struct inpcb *inpb;
1496 		struct tcpcb *tcpb;
1497 
1498 	/*
1499 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1500 	 * if there is one...
1501 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1502 	 *      reassembly queue should be flushed, but in a situation
1503 	 *	where we're really low on mbufs, this is potentially
1504 	 *	useful.
1505 	 */
1506 		INP_INFO_WLOCK(&V_tcbinfo);
1507 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1508 			if (inpb->inp_flags & INP_TIMEWAIT)
1509 				continue;
1510 			INP_WLOCK(inpb);
1511 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1512 				tcp_reass_flush(tcpb);
1513 				tcp_clean_sackreport(tcpb);
1514 			}
1515 			INP_WUNLOCK(inpb);
1516 		}
1517 		INP_INFO_WUNLOCK(&V_tcbinfo);
1518 		CURVNET_RESTORE();
1519 	}
1520 	VNET_LIST_RUNLOCK_NOSLEEP();
1521 }
1522 
1523 /*
1524  * Notify a tcp user of an asynchronous error;
1525  * store error as soft error, but wake up user
1526  * (for now, won't do anything until can select for soft error).
1527  *
1528  * Do not wake up user since there currently is no mechanism for
1529  * reporting soft errors (yet - a kqueue filter may be added).
1530  */
1531 static struct inpcb *
1532 tcp_notify(struct inpcb *inp, int error)
1533 {
1534 	struct tcpcb *tp;
1535 
1536 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1537 	INP_WLOCK_ASSERT(inp);
1538 
1539 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1540 	    (inp->inp_flags & INP_DROPPED))
1541 		return (inp);
1542 
1543 	tp = intotcpcb(inp);
1544 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1545 
1546 	/*
1547 	 * Ignore some errors if we are hooked up.
1548 	 * If connection hasn't completed, has retransmitted several times,
1549 	 * and receives a second error, give up now.  This is better
1550 	 * than waiting a long time to establish a connection that
1551 	 * can never complete.
1552 	 */
1553 	if (tp->t_state == TCPS_ESTABLISHED &&
1554 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1555 	     error == EHOSTDOWN)) {
1556 		return (inp);
1557 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1558 	    tp->t_softerror) {
1559 		tp = tcp_drop(tp, error);
1560 		if (tp != NULL)
1561 			return (inp);
1562 		else
1563 			return (NULL);
1564 	} else {
1565 		tp->t_softerror = error;
1566 		return (inp);
1567 	}
1568 #if 0
1569 	wakeup( &so->so_timeo);
1570 	sorwakeup(so);
1571 	sowwakeup(so);
1572 #endif
1573 }
1574 
1575 static int
1576 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1577 {
1578 	int error, i, m, n, pcb_count;
1579 	struct inpcb *inp, **inp_list;
1580 	inp_gen_t gencnt;
1581 	struct xinpgen xig;
1582 
1583 	/*
1584 	 * The process of preparing the TCB list is too time-consuming and
1585 	 * resource-intensive to repeat twice on every request.
1586 	 */
1587 	if (req->oldptr == NULL) {
1588 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1589 		n += imax(n / 8, 10);
1590 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1591 		return (0);
1592 	}
1593 
1594 	if (req->newptr != NULL)
1595 		return (EPERM);
1596 
1597 	/*
1598 	 * OK, now we're committed to doing something.
1599 	 */
1600 	INP_LIST_RLOCK(&V_tcbinfo);
1601 	gencnt = V_tcbinfo.ipi_gencnt;
1602 	n = V_tcbinfo.ipi_count;
1603 	INP_LIST_RUNLOCK(&V_tcbinfo);
1604 
1605 	m = syncache_pcbcount();
1606 
1607 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1608 		+ (n + m) * sizeof(struct xtcpcb));
1609 	if (error != 0)
1610 		return (error);
1611 
1612 	xig.xig_len = sizeof xig;
1613 	xig.xig_count = n + m;
1614 	xig.xig_gen = gencnt;
1615 	xig.xig_sogen = so_gencnt;
1616 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1617 	if (error)
1618 		return (error);
1619 
1620 	error = syncache_pcblist(req, m, &pcb_count);
1621 	if (error)
1622 		return (error);
1623 
1624 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1625 	if (inp_list == NULL)
1626 		return (ENOMEM);
1627 
1628 	INP_INFO_WLOCK(&V_tcbinfo);
1629 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1630 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1631 		INP_WLOCK(inp);
1632 		if (inp->inp_gencnt <= gencnt) {
1633 			/*
1634 			 * XXX: This use of cr_cansee(), introduced with
1635 			 * TCP state changes, is not quite right, but for
1636 			 * now, better than nothing.
1637 			 */
1638 			if (inp->inp_flags & INP_TIMEWAIT) {
1639 				if (intotw(inp) != NULL)
1640 					error = cr_cansee(req->td->td_ucred,
1641 					    intotw(inp)->tw_cred);
1642 				else
1643 					error = EINVAL;	/* Skip this inp. */
1644 			} else
1645 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1646 			if (error == 0) {
1647 				in_pcbref(inp);
1648 				inp_list[i++] = inp;
1649 			}
1650 		}
1651 		INP_WUNLOCK(inp);
1652 	}
1653 	INP_INFO_WUNLOCK(&V_tcbinfo);
1654 	n = i;
1655 
1656 	error = 0;
1657 	for (i = 0; i < n; i++) {
1658 		inp = inp_list[i];
1659 		INP_RLOCK(inp);
1660 		if (inp->inp_gencnt <= gencnt) {
1661 			struct xtcpcb xt;
1662 			void *inp_ppcb;
1663 
1664 			bzero(&xt, sizeof(xt));
1665 			xt.xt_len = sizeof xt;
1666 			/* XXX should avoid extra copy */
1667 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1668 			inp_ppcb = inp->inp_ppcb;
1669 			if (inp_ppcb == NULL)
1670 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1671 			else if (inp->inp_flags & INP_TIMEWAIT) {
1672 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1673 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1674 			} else {
1675 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1676 				if (xt.xt_tp.t_timers)
1677 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1678 			}
1679 			if (inp->inp_socket != NULL)
1680 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1681 			else {
1682 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1683 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1684 			}
1685 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1686 			INP_RUNLOCK(inp);
1687 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1688 		} else
1689 			INP_RUNLOCK(inp);
1690 	}
1691 	INP_INFO_RLOCK(&V_tcbinfo);
1692 	for (i = 0; i < n; i++) {
1693 		inp = inp_list[i];
1694 		INP_RLOCK(inp);
1695 		if (!in_pcbrele_rlocked(inp))
1696 			INP_RUNLOCK(inp);
1697 	}
1698 	INP_INFO_RUNLOCK(&V_tcbinfo);
1699 
1700 	if (!error) {
1701 		/*
1702 		 * Give the user an updated idea of our state.
1703 		 * If the generation differs from what we told
1704 		 * her before, she knows that something happened
1705 		 * while we were processing this request, and it
1706 		 * might be necessary to retry.
1707 		 */
1708 		INP_LIST_RLOCK(&V_tcbinfo);
1709 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1710 		xig.xig_sogen = so_gencnt;
1711 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1712 		INP_LIST_RUNLOCK(&V_tcbinfo);
1713 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1714 	}
1715 	free(inp_list, M_TEMP);
1716 	return (error);
1717 }
1718 
1719 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1720     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1721     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1722 
1723 #ifdef INET
1724 static int
1725 tcp_getcred(SYSCTL_HANDLER_ARGS)
1726 {
1727 	struct xucred xuc;
1728 	struct sockaddr_in addrs[2];
1729 	struct inpcb *inp;
1730 	int error;
1731 
1732 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1733 	if (error)
1734 		return (error);
1735 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1736 	if (error)
1737 		return (error);
1738 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1739 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1740 	if (inp != NULL) {
1741 		if (inp->inp_socket == NULL)
1742 			error = ENOENT;
1743 		if (error == 0)
1744 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1745 		if (error == 0)
1746 			cru2x(inp->inp_cred, &xuc);
1747 		INP_RUNLOCK(inp);
1748 	} else
1749 		error = ENOENT;
1750 	if (error == 0)
1751 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1752 	return (error);
1753 }
1754 
1755 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1756     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1757     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1758 #endif /* INET */
1759 
1760 #ifdef INET6
1761 static int
1762 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1763 {
1764 	struct xucred xuc;
1765 	struct sockaddr_in6 addrs[2];
1766 	struct inpcb *inp;
1767 	int error;
1768 #ifdef INET
1769 	int mapped = 0;
1770 #endif
1771 
1772 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1773 	if (error)
1774 		return (error);
1775 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1776 	if (error)
1777 		return (error);
1778 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1779 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1780 		return (error);
1781 	}
1782 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1783 #ifdef INET
1784 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1785 			mapped = 1;
1786 		else
1787 #endif
1788 			return (EINVAL);
1789 	}
1790 
1791 #ifdef INET
1792 	if (mapped == 1)
1793 		inp = in_pcblookup(&V_tcbinfo,
1794 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1795 			addrs[1].sin6_port,
1796 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1797 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1798 	else
1799 #endif
1800 		inp = in6_pcblookup(&V_tcbinfo,
1801 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1802 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1803 			INPLOOKUP_RLOCKPCB, NULL);
1804 	if (inp != NULL) {
1805 		if (inp->inp_socket == NULL)
1806 			error = ENOENT;
1807 		if (error == 0)
1808 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1809 		if (error == 0)
1810 			cru2x(inp->inp_cred, &xuc);
1811 		INP_RUNLOCK(inp);
1812 	} else
1813 		error = ENOENT;
1814 	if (error == 0)
1815 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1816 	return (error);
1817 }
1818 
1819 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1820     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1821     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1822 #endif /* INET6 */
1823 
1824 
1825 #ifdef INET
1826 void
1827 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1828 {
1829 	struct ip *ip = vip;
1830 	struct tcphdr *th;
1831 	struct in_addr faddr;
1832 	struct inpcb *inp;
1833 	struct tcpcb *tp;
1834 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1835 	struct icmp *icp;
1836 	struct in_conninfo inc;
1837 	tcp_seq icmp_tcp_seq;
1838 	int mtu;
1839 
1840 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1841 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1842 		return;
1843 
1844 	if (cmd == PRC_MSGSIZE)
1845 		notify = tcp_mtudisc_notify;
1846 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1847 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1848 		notify = tcp_drop_syn_sent;
1849 	/*
1850 	 * Redirects don't need to be handled up here.
1851 	 */
1852 	else if (PRC_IS_REDIRECT(cmd))
1853 		return;
1854 	/*
1855 	 * Hostdead is ugly because it goes linearly through all PCBs.
1856 	 * XXX: We never get this from ICMP, otherwise it makes an
1857 	 * excellent DoS attack on machines with many connections.
1858 	 */
1859 	else if (cmd == PRC_HOSTDEAD)
1860 		ip = NULL;
1861 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1862 		return;
1863 
1864 	if (ip == NULL) {
1865 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1866 		return;
1867 	}
1868 
1869 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1870 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1871 	INP_INFO_RLOCK(&V_tcbinfo);
1872 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1873 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1874 	if (inp != NULL)  {
1875 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1876 		    !(inp->inp_flags & INP_DROPPED) &&
1877 		    !(inp->inp_socket == NULL)) {
1878 			icmp_tcp_seq = ntohl(th->th_seq);
1879 			tp = intotcpcb(inp);
1880 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1881 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1882 				if (cmd == PRC_MSGSIZE) {
1883 					/*
1884 					 * MTU discovery:
1885 					 * If we got a needfrag set the MTU
1886 					 * in the route to the suggested new
1887 					 * value (if given) and then notify.
1888 					 */
1889 				    	mtu = ntohs(icp->icmp_nextmtu);
1890 					/*
1891 					 * If no alternative MTU was
1892 					 * proposed, try the next smaller
1893 					 * one.
1894 					 */
1895 					if (!mtu)
1896 						mtu = ip_next_mtu(
1897 						    ntohs(ip->ip_len), 1);
1898 					if (mtu < V_tcp_minmss +
1899 					    sizeof(struct tcpiphdr))
1900 						mtu = V_tcp_minmss +
1901 						    sizeof(struct tcpiphdr);
1902 					/*
1903 					 * Only process the offered MTU if it
1904 					 * is smaller than the current one.
1905 					 */
1906 					if (mtu < tp->t_maxseg +
1907 					    sizeof(struct tcpiphdr)) {
1908 						bzero(&inc, sizeof(inc));
1909 						inc.inc_faddr = faddr;
1910 						inc.inc_fibnum =
1911 						    inp->inp_inc.inc_fibnum;
1912 						tcp_hc_updatemtu(&inc, mtu);
1913 						tcp_mtudisc(inp, mtu);
1914 					}
1915 				} else
1916 					inp = (*notify)(inp,
1917 					    inetctlerrmap[cmd]);
1918 			}
1919 		}
1920 		if (inp != NULL)
1921 			INP_WUNLOCK(inp);
1922 	} else {
1923 		bzero(&inc, sizeof(inc));
1924 		inc.inc_fport = th->th_dport;
1925 		inc.inc_lport = th->th_sport;
1926 		inc.inc_faddr = faddr;
1927 		inc.inc_laddr = ip->ip_src;
1928 		syncache_unreach(&inc, th);
1929 	}
1930 	INP_INFO_RUNLOCK(&V_tcbinfo);
1931 }
1932 #endif /* INET */
1933 
1934 #ifdef INET6
1935 void
1936 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1937 {
1938 	struct tcphdr th;
1939 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1940 	struct ip6_hdr *ip6;
1941 	struct mbuf *m;
1942 	struct ip6ctlparam *ip6cp = NULL;
1943 	const struct sockaddr_in6 *sa6_src = NULL;
1944 	int off;
1945 	struct tcp_portonly {
1946 		u_int16_t th_sport;
1947 		u_int16_t th_dport;
1948 	} *thp;
1949 
1950 	if (sa->sa_family != AF_INET6 ||
1951 	    sa->sa_len != sizeof(struct sockaddr_in6))
1952 		return;
1953 
1954 	if (cmd == PRC_MSGSIZE)
1955 		notify = tcp_mtudisc_notify;
1956 	else if (!PRC_IS_REDIRECT(cmd) &&
1957 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1958 		return;
1959 
1960 	/* if the parameter is from icmp6, decode it. */
1961 	if (d != NULL) {
1962 		ip6cp = (struct ip6ctlparam *)d;
1963 		m = ip6cp->ip6c_m;
1964 		ip6 = ip6cp->ip6c_ip6;
1965 		off = ip6cp->ip6c_off;
1966 		sa6_src = ip6cp->ip6c_src;
1967 	} else {
1968 		m = NULL;
1969 		ip6 = NULL;
1970 		off = 0;	/* fool gcc */
1971 		sa6_src = &sa6_any;
1972 	}
1973 
1974 	if (ip6 != NULL) {
1975 		struct in_conninfo inc;
1976 		/*
1977 		 * XXX: We assume that when IPV6 is non NULL,
1978 		 * M and OFF are valid.
1979 		 */
1980 
1981 		/* check if we can safely examine src and dst ports */
1982 		if (m->m_pkthdr.len < off + sizeof(*thp))
1983 			return;
1984 
1985 		bzero(&th, sizeof(th));
1986 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1987 
1988 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1989 		    (struct sockaddr *)ip6cp->ip6c_src,
1990 		    th.th_sport, cmd, NULL, notify);
1991 
1992 		bzero(&inc, sizeof(inc));
1993 		inc.inc_fport = th.th_dport;
1994 		inc.inc_lport = th.th_sport;
1995 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1996 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1997 		inc.inc_flags |= INC_ISIPV6;
1998 		INP_INFO_RLOCK(&V_tcbinfo);
1999 		syncache_unreach(&inc, &th);
2000 		INP_INFO_RUNLOCK(&V_tcbinfo);
2001 	} else
2002 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2003 			      0, cmd, NULL, notify);
2004 }
2005 #endif /* INET6 */
2006 
2007 
2008 /*
2009  * Following is where TCP initial sequence number generation occurs.
2010  *
2011  * There are two places where we must use initial sequence numbers:
2012  * 1.  In SYN-ACK packets.
2013  * 2.  In SYN packets.
2014  *
2015  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2016  * tcp_syncache.c for details.
2017  *
2018  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2019  * depends on this property.  In addition, these ISNs should be
2020  * unguessable so as to prevent connection hijacking.  To satisfy
2021  * the requirements of this situation, the algorithm outlined in
2022  * RFC 1948 is used, with only small modifications.
2023  *
2024  * Implementation details:
2025  *
2026  * Time is based off the system timer, and is corrected so that it
2027  * increases by one megabyte per second.  This allows for proper
2028  * recycling on high speed LANs while still leaving over an hour
2029  * before rollover.
2030  *
2031  * As reading the *exact* system time is too expensive to be done
2032  * whenever setting up a TCP connection, we increment the time
2033  * offset in two ways.  First, a small random positive increment
2034  * is added to isn_offset for each connection that is set up.
2035  * Second, the function tcp_isn_tick fires once per clock tick
2036  * and increments isn_offset as necessary so that sequence numbers
2037  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2038  * random positive increments serve only to ensure that the same
2039  * exact sequence number is never sent out twice (as could otherwise
2040  * happen when a port is recycled in less than the system tick
2041  * interval.)
2042  *
2043  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2044  * between seeding of isn_secret.  This is normally set to zero,
2045  * as reseeding should not be necessary.
2046  *
2047  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2048  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2049  * general, this means holding an exclusive (write) lock.
2050  */
2051 
2052 #define ISN_BYTES_PER_SECOND 1048576
2053 #define ISN_STATIC_INCREMENT 4096
2054 #define ISN_RANDOM_INCREMENT (4096 - 1)
2055 
2056 static VNET_DEFINE(u_char, isn_secret[32]);
2057 static VNET_DEFINE(int, isn_last);
2058 static VNET_DEFINE(int, isn_last_reseed);
2059 static VNET_DEFINE(u_int32_t, isn_offset);
2060 static VNET_DEFINE(u_int32_t, isn_offset_old);
2061 
2062 #define	V_isn_secret			VNET(isn_secret)
2063 #define	V_isn_last			VNET(isn_last)
2064 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2065 #define	V_isn_offset			VNET(isn_offset)
2066 #define	V_isn_offset_old		VNET(isn_offset_old)
2067 
2068 tcp_seq
2069 tcp_new_isn(struct tcpcb *tp)
2070 {
2071 	MD5_CTX isn_ctx;
2072 	u_int32_t md5_buffer[4];
2073 	tcp_seq new_isn;
2074 	u_int32_t projected_offset;
2075 
2076 	INP_WLOCK_ASSERT(tp->t_inpcb);
2077 
2078 	ISN_LOCK();
2079 	/* Seed if this is the first use, reseed if requested. */
2080 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2081 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2082 		< (u_int)ticks))) {
2083 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2084 		V_isn_last_reseed = ticks;
2085 	}
2086 
2087 	/* Compute the md5 hash and return the ISN. */
2088 	MD5Init(&isn_ctx);
2089 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2090 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2091 #ifdef INET6
2092 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2093 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2094 			  sizeof(struct in6_addr));
2095 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2096 			  sizeof(struct in6_addr));
2097 	} else
2098 #endif
2099 	{
2100 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2101 			  sizeof(struct in_addr));
2102 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2103 			  sizeof(struct in_addr));
2104 	}
2105 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2106 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2107 	new_isn = (tcp_seq) md5_buffer[0];
2108 	V_isn_offset += ISN_STATIC_INCREMENT +
2109 		(arc4random() & ISN_RANDOM_INCREMENT);
2110 	if (ticks != V_isn_last) {
2111 		projected_offset = V_isn_offset_old +
2112 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2113 		if (SEQ_GT(projected_offset, V_isn_offset))
2114 			V_isn_offset = projected_offset;
2115 		V_isn_offset_old = V_isn_offset;
2116 		V_isn_last = ticks;
2117 	}
2118 	new_isn += V_isn_offset;
2119 	ISN_UNLOCK();
2120 	return (new_isn);
2121 }
2122 
2123 /*
2124  * When a specific ICMP unreachable message is received and the
2125  * connection state is SYN-SENT, drop the connection.  This behavior
2126  * is controlled by the icmp_may_rst sysctl.
2127  */
2128 struct inpcb *
2129 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2130 {
2131 	struct tcpcb *tp;
2132 
2133 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2134 	INP_WLOCK_ASSERT(inp);
2135 
2136 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2137 	    (inp->inp_flags & INP_DROPPED))
2138 		return (inp);
2139 
2140 	tp = intotcpcb(inp);
2141 	if (tp->t_state != TCPS_SYN_SENT)
2142 		return (inp);
2143 
2144 	tp = tcp_drop(tp, errno);
2145 	if (tp != NULL)
2146 		return (inp);
2147 	else
2148 		return (NULL);
2149 }
2150 
2151 /*
2152  * When `need fragmentation' ICMP is received, update our idea of the MSS
2153  * based on the new value. Also nudge TCP to send something, since we
2154  * know the packet we just sent was dropped.
2155  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2156  */
2157 static struct inpcb *
2158 tcp_mtudisc_notify(struct inpcb *inp, int error)
2159 {
2160 
2161 	tcp_mtudisc(inp, -1);
2162 	return (inp);
2163 }
2164 
2165 static void
2166 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2167 {
2168 	struct tcpcb *tp;
2169 	struct socket *so;
2170 
2171 	INP_WLOCK_ASSERT(inp);
2172 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2173 	    (inp->inp_flags & INP_DROPPED))
2174 		return;
2175 
2176 	tp = intotcpcb(inp);
2177 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2178 
2179 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2180 
2181 	so = inp->inp_socket;
2182 	SOCKBUF_LOCK(&so->so_snd);
2183 	/* If the mss is larger than the socket buffer, decrease the mss. */
2184 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2185 		tp->t_maxseg = so->so_snd.sb_hiwat;
2186 	SOCKBUF_UNLOCK(&so->so_snd);
2187 
2188 	TCPSTAT_INC(tcps_mturesent);
2189 	tp->t_rtttime = 0;
2190 	tp->snd_nxt = tp->snd_una;
2191 	tcp_free_sackholes(tp);
2192 	tp->snd_recover = tp->snd_max;
2193 	if (tp->t_flags & TF_SACK_PERMIT)
2194 		EXIT_FASTRECOVERY(tp->t_flags);
2195 	tp->t_fb->tfb_tcp_output(tp);
2196 }
2197 
2198 #ifdef INET
2199 /*
2200  * Look-up the routing entry to the peer of this inpcb.  If no route
2201  * is found and it cannot be allocated, then return 0.  This routine
2202  * is called by TCP routines that access the rmx structure and by
2203  * tcp_mss_update to get the peer/interface MTU.
2204  */
2205 u_long
2206 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2207 {
2208 	struct route sro;
2209 	struct sockaddr_in *dst;
2210 	struct ifnet *ifp;
2211 	u_long maxmtu = 0;
2212 
2213 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2214 
2215 	bzero(&sro, sizeof(sro));
2216 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2217 	        dst = (struct sockaddr_in *)&sro.ro_dst;
2218 		dst->sin_family = AF_INET;
2219 		dst->sin_len = sizeof(*dst);
2220 		dst->sin_addr = inc->inc_faddr;
2221 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
2222 	}
2223 	if (sro.ro_rt != NULL) {
2224 		ifp = sro.ro_rt->rt_ifp;
2225 		if (sro.ro_rt->rt_mtu == 0)
2226 			maxmtu = ifp->if_mtu;
2227 		else
2228 			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
2229 
2230 		/* Report additional interface capabilities. */
2231 		if (cap != NULL) {
2232 			if (ifp->if_capenable & IFCAP_TSO4 &&
2233 			    ifp->if_hwassist & CSUM_TSO) {
2234 				cap->ifcap |= CSUM_TSO;
2235 				cap->tsomax = ifp->if_hw_tsomax;
2236 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2237 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2238 			}
2239 		}
2240 		RTFREE(sro.ro_rt);
2241 	}
2242 	return (maxmtu);
2243 }
2244 #endif /* INET */
2245 
2246 #ifdef INET6
2247 u_long
2248 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2249 {
2250 	struct route_in6 sro6;
2251 	struct ifnet *ifp;
2252 	u_long maxmtu = 0;
2253 
2254 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2255 
2256 	bzero(&sro6, sizeof(sro6));
2257 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2258 		sro6.ro_dst.sin6_family = AF_INET6;
2259 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
2260 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
2261 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
2262 	}
2263 	if (sro6.ro_rt != NULL) {
2264 		ifp = sro6.ro_rt->rt_ifp;
2265 		if (sro6.ro_rt->rt_mtu == 0)
2266 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
2267 		else
2268 			maxmtu = min(sro6.ro_rt->rt_mtu,
2269 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
2270 
2271 		/* Report additional interface capabilities. */
2272 		if (cap != NULL) {
2273 			if (ifp->if_capenable & IFCAP_TSO6 &&
2274 			    ifp->if_hwassist & CSUM_TSO) {
2275 				cap->ifcap |= CSUM_TSO;
2276 				cap->tsomax = ifp->if_hw_tsomax;
2277 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2278 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2279 			}
2280 		}
2281 		RTFREE(sro6.ro_rt);
2282 	}
2283 
2284 	return (maxmtu);
2285 }
2286 #endif /* INET6 */
2287 
2288 /*
2289  * Calculate effective SMSS per RFC5681 definition for a given TCP
2290  * connection at its current state, taking into account SACK and etc.
2291  */
2292 u_int
2293 tcp_maxseg(const struct tcpcb *tp)
2294 {
2295 	u_int optlen;
2296 
2297 	if (tp->t_flags & TF_NOOPT)
2298 		return (tp->t_maxseg);
2299 
2300 	/*
2301 	 * Here we have a simplified code from tcp_addoptions(),
2302 	 * without a proper loop, and having most of paddings hardcoded.
2303 	 * We might make mistakes with padding here in some edge cases,
2304 	 * but this is harmless, since result of tcp_maxseg() is used
2305 	 * only in cwnd and ssthresh estimations.
2306 	 */
2307 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2308 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2309 		if (tp->t_flags & TF_RCVD_TSTMP)
2310 			optlen = TCPOLEN_TSTAMP_APPA;
2311 		else
2312 			optlen = 0;
2313 #ifdef TCP_SIGNATURE
2314 		if (tp->t_flags & TF_SIGNATURE)
2315 			optlen += PAD(TCPOLEN_SIGNATURE);
2316 #endif
2317 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2318 			optlen += TCPOLEN_SACKHDR;
2319 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2320 			optlen = PAD(optlen);
2321 		}
2322 	} else {
2323 		if (tp->t_flags & TF_REQ_TSTMP)
2324 			optlen = TCPOLEN_TSTAMP_APPA;
2325 		else
2326 			optlen = PAD(TCPOLEN_MAXSEG);
2327 		if (tp->t_flags & TF_REQ_SCALE)
2328 			optlen += PAD(TCPOLEN_WINDOW);
2329 #ifdef TCP_SIGNATURE
2330 		if (tp->t_flags & TF_SIGNATURE)
2331 			optlen += PAD(TCPOLEN_SIGNATURE);
2332 #endif
2333 		if (tp->t_flags & TF_SACK_PERMIT)
2334 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2335 	}
2336 #undef PAD
2337 	optlen = min(optlen, TCP_MAXOLEN);
2338 	return (tp->t_maxseg - optlen);
2339 }
2340 
2341 #ifdef IPSEC
2342 /* compute ESP/AH header size for TCP, including outer IP header. */
2343 size_t
2344 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2345 {
2346 	struct inpcb *inp;
2347 	struct mbuf *m;
2348 	size_t hdrsiz;
2349 	struct ip *ip;
2350 #ifdef INET6
2351 	struct ip6_hdr *ip6;
2352 #endif
2353 	struct tcphdr *th;
2354 
2355 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2356 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2357 		return (0);
2358 	m = m_gethdr(M_NOWAIT, MT_DATA);
2359 	if (!m)
2360 		return (0);
2361 
2362 #ifdef INET6
2363 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2364 		ip6 = mtod(m, struct ip6_hdr *);
2365 		th = (struct tcphdr *)(ip6 + 1);
2366 		m->m_pkthdr.len = m->m_len =
2367 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2368 		tcpip_fillheaders(inp, ip6, th);
2369 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2370 	} else
2371 #endif /* INET6 */
2372 	{
2373 		ip = mtod(m, struct ip *);
2374 		th = (struct tcphdr *)(ip + 1);
2375 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2376 		tcpip_fillheaders(inp, ip, th);
2377 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2378 	}
2379 
2380 	m_free(m);
2381 	return (hdrsiz);
2382 }
2383 #endif /* IPSEC */
2384 
2385 #ifdef TCP_SIGNATURE
2386 /*
2387  * Callback function invoked by m_apply() to digest TCP segment data
2388  * contained within an mbuf chain.
2389  */
2390 static int
2391 tcp_signature_apply(void *fstate, void *data, u_int len)
2392 {
2393 
2394 	MD5Update(fstate, (u_char *)data, len);
2395 	return (0);
2396 }
2397 
2398 /*
2399  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2400  * search with the destination IP address, and a 'magic SPI' to be
2401  * determined by the application. This is hardcoded elsewhere to 1179
2402 */
2403 struct secasvar *
2404 tcp_get_sav(struct mbuf *m, u_int direction)
2405 {
2406 	union sockaddr_union dst;
2407 	struct secasvar *sav;
2408 	struct ip *ip;
2409 #ifdef INET6
2410 	struct ip6_hdr *ip6;
2411 	char ip6buf[INET6_ADDRSTRLEN];
2412 #endif
2413 
2414 	/* Extract the destination from the IP header in the mbuf. */
2415 	bzero(&dst, sizeof(union sockaddr_union));
2416 	ip = mtod(m, struct ip *);
2417 #ifdef INET6
2418 	ip6 = NULL;	/* Make the compiler happy. */
2419 #endif
2420 	switch (ip->ip_v) {
2421 #ifdef INET
2422 	case IPVERSION:
2423 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2424 		dst.sa.sa_family = AF_INET;
2425 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2426 		    ip->ip_src : ip->ip_dst;
2427 		break;
2428 #endif
2429 #ifdef INET6
2430 	case (IPV6_VERSION >> 4):
2431 		ip6 = mtod(m, struct ip6_hdr *);
2432 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2433 		dst.sa.sa_family = AF_INET6;
2434 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2435 		    ip6->ip6_src : ip6->ip6_dst;
2436 		break;
2437 #endif
2438 	default:
2439 		return (NULL);
2440 		/* NOTREACHED */
2441 		break;
2442 	}
2443 
2444 	/* Look up an SADB entry which matches the address of the peer. */
2445 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2446 	if (sav == NULL) {
2447 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2448 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2449 #ifdef INET6
2450 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2451 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2452 #endif
2453 			"(unsupported)"));
2454 	}
2455 
2456 	return (sav);
2457 }
2458 
2459 /*
2460  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2461  *
2462  * Parameters:
2463  * m		pointer to head of mbuf chain
2464  * len		length of TCP segment data, excluding options
2465  * optlen	length of TCP segment options
2466  * buf		pointer to storage for computed MD5 digest
2467  * sav		pointer to security assosiation
2468  *
2469  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2470  * When called from tcp_input(), we can be sure that th_sum has been
2471  * zeroed out and verified already.
2472  *
2473  * Releases reference to SADB key before return.
2474  *
2475  * Return 0 if successful, otherwise return -1.
2476  *
2477  */
2478 int
2479 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2480     u_char *buf, struct secasvar *sav)
2481 {
2482 #ifdef INET
2483 	struct ippseudo ippseudo;
2484 #endif
2485 	MD5_CTX ctx;
2486 	int doff;
2487 	struct ip *ip;
2488 #ifdef INET
2489 	struct ipovly *ipovly;
2490 #endif
2491 	struct tcphdr *th;
2492 #ifdef INET6
2493 	struct ip6_hdr *ip6;
2494 	struct in6_addr in6;
2495 	uint32_t plen;
2496 	uint16_t nhdr;
2497 #endif
2498 	u_short savecsum;
2499 
2500 	KASSERT(m != NULL, ("NULL mbuf chain"));
2501 	KASSERT(buf != NULL, ("NULL signature pointer"));
2502 
2503 	/* Extract the destination from the IP header in the mbuf. */
2504 	ip = mtod(m, struct ip *);
2505 #ifdef INET6
2506 	ip6 = NULL;	/* Make the compiler happy. */
2507 #endif
2508 
2509 	MD5Init(&ctx);
2510 	/*
2511 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2512 	 *
2513 	 * XXX The ippseudo header MUST be digested in network byte order,
2514 	 * or else we'll fail the regression test. Assume all fields we've
2515 	 * been doing arithmetic on have been in host byte order.
2516 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2517 	 * tcp_output(), the underlying ip_len member has not yet been set.
2518 	 */
2519 	switch (ip->ip_v) {
2520 #ifdef INET
2521 	case IPVERSION:
2522 		ipovly = (struct ipovly *)ip;
2523 		ippseudo.ippseudo_src = ipovly->ih_src;
2524 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2525 		ippseudo.ippseudo_pad = 0;
2526 		ippseudo.ippseudo_p = IPPROTO_TCP;
2527 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2528 		    optlen);
2529 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2530 
2531 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2532 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2533 		break;
2534 #endif
2535 #ifdef INET6
2536 	/*
2537 	 * RFC 2385, 2.0  Proposal
2538 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2539 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2540 	 * extended next header value (to form 32 bits), and 32-bit segment
2541 	 * length.
2542 	 * Note: Upper-Layer Packet Length comes before Next Header.
2543 	 */
2544 	case (IPV6_VERSION >> 4):
2545 		in6 = ip6->ip6_src;
2546 		in6_clearscope(&in6);
2547 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2548 		in6 = ip6->ip6_dst;
2549 		in6_clearscope(&in6);
2550 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2551 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2552 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2553 		nhdr = 0;
2554 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2555 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2556 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2557 		nhdr = IPPROTO_TCP;
2558 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2559 
2560 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2561 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2562 		break;
2563 #endif
2564 	default:
2565 		KEY_FREESAV(&sav);
2566 		return (-1);
2567 		/* NOTREACHED */
2568 		break;
2569 	}
2570 
2571 
2572 	/*
2573 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2574 	 * The TCP checksum must be set to zero.
2575 	 */
2576 	savecsum = th->th_sum;
2577 	th->th_sum = 0;
2578 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2579 	th->th_sum = savecsum;
2580 
2581 	/*
2582 	 * Step 3: Update MD5 hash with TCP segment data.
2583 	 *         Use m_apply() to avoid an early m_pullup().
2584 	 */
2585 	if (len > 0)
2586 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2587 
2588 	/*
2589 	 * Step 4: Update MD5 hash with shared secret.
2590 	 */
2591 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2592 	MD5Final(buf, &ctx);
2593 
2594 	key_sa_recordxfer(sav, m);
2595 	KEY_FREESAV(&sav);
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2601  *
2602  * Return 0 if successful, otherwise return -1.
2603  */
2604 int
2605 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2606     u_char *buf, u_int direction)
2607 {
2608 	struct secasvar *sav;
2609 
2610 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2611 		return (-1);
2612 
2613 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2614 }
2615 
2616 /*
2617  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2618  *
2619  * Parameters:
2620  * m		pointer to head of mbuf chain
2621  * len		length of TCP segment data, excluding options
2622  * optlen	length of TCP segment options
2623  * buf		pointer to storage for computed MD5 digest
2624  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2625  *
2626  * Return 1 if successful, otherwise return 0.
2627  */
2628 int
2629 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2630     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2631 {
2632 	char tmpdigest[TCP_SIGLEN];
2633 
2634 	if (tcp_sig_checksigs == 0)
2635 		return (1);
2636 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2637 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2638 
2639 			/*
2640 			 * If this socket is not expecting signature but
2641 			 * the segment contains signature just fail.
2642 			 */
2643 			TCPSTAT_INC(tcps_sig_err_sigopt);
2644 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2645 			return (0);
2646 		}
2647 
2648 		/* Signature is not expected, and not present in segment. */
2649 		return (1);
2650 	}
2651 
2652 	/*
2653 	 * If this socket is expecting signature but the segment does not
2654 	 * contain any just fail.
2655 	 */
2656 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2657 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2658 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2659 		return (0);
2660 	}
2661 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2662 	    IPSEC_DIR_INBOUND) == -1) {
2663 		TCPSTAT_INC(tcps_sig_err_buildsig);
2664 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2665 		return (0);
2666 	}
2667 
2668 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2669 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2670 		return (0);
2671 	}
2672 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2673 	return (1);
2674 }
2675 #endif /* TCP_SIGNATURE */
2676 
2677 static int
2678 sysctl_drop(SYSCTL_HANDLER_ARGS)
2679 {
2680 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2681 	struct sockaddr_storage addrs[2];
2682 	struct inpcb *inp;
2683 	struct tcpcb *tp;
2684 	struct tcptw *tw;
2685 	struct sockaddr_in *fin, *lin;
2686 #ifdef INET6
2687 	struct sockaddr_in6 *fin6, *lin6;
2688 #endif
2689 	int error;
2690 
2691 	inp = NULL;
2692 	fin = lin = NULL;
2693 #ifdef INET6
2694 	fin6 = lin6 = NULL;
2695 #endif
2696 	error = 0;
2697 
2698 	if (req->oldptr != NULL || req->oldlen != 0)
2699 		return (EINVAL);
2700 	if (req->newptr == NULL)
2701 		return (EPERM);
2702 	if (req->newlen < sizeof(addrs))
2703 		return (ENOMEM);
2704 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2705 	if (error)
2706 		return (error);
2707 
2708 	switch (addrs[0].ss_family) {
2709 #ifdef INET6
2710 	case AF_INET6:
2711 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2712 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2713 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2714 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2715 			return (EINVAL);
2716 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2717 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2718 				return (EINVAL);
2719 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2720 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2721 			fin = (struct sockaddr_in *)&addrs[0];
2722 			lin = (struct sockaddr_in *)&addrs[1];
2723 			break;
2724 		}
2725 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2726 		if (error)
2727 			return (error);
2728 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2729 		if (error)
2730 			return (error);
2731 		break;
2732 #endif
2733 #ifdef INET
2734 	case AF_INET:
2735 		fin = (struct sockaddr_in *)&addrs[0];
2736 		lin = (struct sockaddr_in *)&addrs[1];
2737 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2738 		    lin->sin_len != sizeof(struct sockaddr_in))
2739 			return (EINVAL);
2740 		break;
2741 #endif
2742 	default:
2743 		return (EINVAL);
2744 	}
2745 	INP_INFO_RLOCK(&V_tcbinfo);
2746 	switch (addrs[0].ss_family) {
2747 #ifdef INET6
2748 	case AF_INET6:
2749 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2750 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2751 		    INPLOOKUP_WLOCKPCB, NULL);
2752 		break;
2753 #endif
2754 #ifdef INET
2755 	case AF_INET:
2756 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2757 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2758 		break;
2759 #endif
2760 	}
2761 	if (inp != NULL) {
2762 		if (inp->inp_flags & INP_TIMEWAIT) {
2763 			/*
2764 			 * XXXRW: There currently exists a state where an
2765 			 * inpcb is present, but its timewait state has been
2766 			 * discarded.  For now, don't allow dropping of this
2767 			 * type of inpcb.
2768 			 */
2769 			tw = intotw(inp);
2770 			if (tw != NULL)
2771 				tcp_twclose(tw, 0);
2772 			else
2773 				INP_WUNLOCK(inp);
2774 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2775 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2776 			tp = intotcpcb(inp);
2777 			tp = tcp_drop(tp, ECONNABORTED);
2778 			if (tp != NULL)
2779 				INP_WUNLOCK(inp);
2780 		} else
2781 			INP_WUNLOCK(inp);
2782 	} else
2783 		error = ESRCH;
2784 	INP_INFO_RUNLOCK(&V_tcbinfo);
2785 	return (error);
2786 }
2787 
2788 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2789     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2790     0, sysctl_drop, "", "Drop TCP connection");
2791 
2792 /*
2793  * Generate a standardized TCP log line for use throughout the
2794  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2795  * allow use in the interrupt context.
2796  *
2797  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2798  * NB: The function may return NULL if memory allocation failed.
2799  *
2800  * Due to header inclusion and ordering limitations the struct ip
2801  * and ip6_hdr pointers have to be passed as void pointers.
2802  */
2803 char *
2804 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2805     const void *ip6hdr)
2806 {
2807 
2808 	/* Is logging enabled? */
2809 	if (tcp_log_in_vain == 0)
2810 		return (NULL);
2811 
2812 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2813 }
2814 
2815 char *
2816 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2817     const void *ip6hdr)
2818 {
2819 
2820 	/* Is logging enabled? */
2821 	if (tcp_log_debug == 0)
2822 		return (NULL);
2823 
2824 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2825 }
2826 
2827 static char *
2828 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2829     const void *ip6hdr)
2830 {
2831 	char *s, *sp;
2832 	size_t size;
2833 	struct ip *ip;
2834 #ifdef INET6
2835 	const struct ip6_hdr *ip6;
2836 
2837 	ip6 = (const struct ip6_hdr *)ip6hdr;
2838 #endif /* INET6 */
2839 	ip = (struct ip *)ip4hdr;
2840 
2841 	/*
2842 	 * The log line looks like this:
2843 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2844 	 */
2845 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2846 	    sizeof(PRINT_TH_FLAGS) + 1 +
2847 #ifdef INET6
2848 	    2 * INET6_ADDRSTRLEN;
2849 #else
2850 	    2 * INET_ADDRSTRLEN;
2851 #endif /* INET6 */
2852 
2853 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2854 	if (s == NULL)
2855 		return (NULL);
2856 
2857 	strcat(s, "TCP: [");
2858 	sp = s + strlen(s);
2859 
2860 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2861 		inet_ntoa_r(inc->inc_faddr, sp);
2862 		sp = s + strlen(s);
2863 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2864 		sp = s + strlen(s);
2865 		inet_ntoa_r(inc->inc_laddr, sp);
2866 		sp = s + strlen(s);
2867 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2868 #ifdef INET6
2869 	} else if (inc) {
2870 		ip6_sprintf(sp, &inc->inc6_faddr);
2871 		sp = s + strlen(s);
2872 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2873 		sp = s + strlen(s);
2874 		ip6_sprintf(sp, &inc->inc6_laddr);
2875 		sp = s + strlen(s);
2876 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2877 	} else if (ip6 && th) {
2878 		ip6_sprintf(sp, &ip6->ip6_src);
2879 		sp = s + strlen(s);
2880 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2881 		sp = s + strlen(s);
2882 		ip6_sprintf(sp, &ip6->ip6_dst);
2883 		sp = s + strlen(s);
2884 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2885 #endif /* INET6 */
2886 #ifdef INET
2887 	} else if (ip && th) {
2888 		inet_ntoa_r(ip->ip_src, sp);
2889 		sp = s + strlen(s);
2890 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2891 		sp = s + strlen(s);
2892 		inet_ntoa_r(ip->ip_dst, sp);
2893 		sp = s + strlen(s);
2894 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2895 #endif /* INET */
2896 	} else {
2897 		free(s, M_TCPLOG);
2898 		return (NULL);
2899 	}
2900 	sp = s + strlen(s);
2901 	if (th)
2902 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2903 	if (*(s + size - 1) != '\0')
2904 		panic("%s: string too long", __func__);
2905 	return (s);
2906 }
2907 
2908 /*
2909  * A subroutine which makes it easy to track TCP state changes with DTrace.
2910  * This function shouldn't be called for t_state initializations that don't
2911  * correspond to actual TCP state transitions.
2912  */
2913 void
2914 tcp_state_change(struct tcpcb *tp, int newstate)
2915 {
2916 #if defined(KDTRACE_HOOKS)
2917 	int pstate = tp->t_state;
2918 #endif
2919 
2920 	tp->t_state = newstate;
2921 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2922 }
2923