xref: /freebsd/sys/netinet/tcp_subr.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int	tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int	tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int	tcp_inflight_min = 1024;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 
177 static void	tcp_cleartaocache(void);
178 static struct inpcb *tcp_notify(struct inpcb *, int);
179 
180 /*
181  * Target size of TCP PCB hash tables. Must be a power of two.
182  *
183  * Note that this can be overridden by the kernel environment
184  * variable net.inet.tcp.tcbhashsize
185  */
186 #ifndef TCBHASHSIZE
187 #define TCBHASHSIZE	512
188 #endif
189 
190 /*
191  * This is the actual shape of what we allocate using the zone
192  * allocator.  Doing it this way allows us to protect both structures
193  * using the same generation count, and also eliminates the overhead
194  * of allocating tcpcbs separately.  By hiding the structure here,
195  * we avoid changing most of the rest of the code (although it needs
196  * to be changed, eventually, for greater efficiency).
197  */
198 #define	ALIGNMENT	32
199 #define	ALIGNM1		(ALIGNMENT - 1)
200 struct	inp_tp {
201 	union {
202 		struct	inpcb inp;
203 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
204 	} inp_tp_u;
205 	struct	tcpcb tcb;
206 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
207 	struct	callout inp_tp_delack;
208 };
209 #undef ALIGNMENT
210 #undef ALIGNM1
211 
212 /*
213  * Tcp initialization
214  */
215 void
216 tcp_init()
217 {
218 	int hashsize = TCBHASHSIZE;
219 
220 	tcp_ccgen = 1;
221 	tcp_cleartaocache();
222 
223 	tcp_delacktime = TCPTV_DELACK;
224 	tcp_keepinit = TCPTV_KEEP_INIT;
225 	tcp_keepidle = TCPTV_KEEP_IDLE;
226 	tcp_keepintvl = TCPTV_KEEPINTVL;
227 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
228 	tcp_msl = TCPTV_MSL;
229 	tcp_rexmit_min = TCPTV_MIN;
230 	tcp_rexmit_slop = TCPTV_CPU_VAR;
231 
232 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
233 	LIST_INIT(&tcb);
234 	tcbinfo.listhead = &tcb;
235 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
236 	if (!powerof2(hashsize)) {
237 		printf("WARNING: TCB hash size not a power of 2\n");
238 		hashsize = 512; /* safe default */
239 	}
240 	tcp_tcbhashsize = hashsize;
241 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
242 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
243 					&tcbinfo.porthashmask);
244 	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
245 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
246 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
247 #ifdef INET6
248 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
249 #else /* INET6 */
250 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
251 #endif /* INET6 */
252 	if (max_protohdr < TCP_MINPROTOHDR)
253 		max_protohdr = TCP_MINPROTOHDR;
254 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
255 		panic("tcp_init");
256 #undef TCP_MINPROTOHDR
257 
258 	syncache_init();
259 }
260 
261 /*
262  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
263  * tcp_template used to store this data in mbufs, but we now recopy it out
264  * of the tcpcb each time to conserve mbufs.
265  */
266 void
267 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
268 	struct tcpcb *tp;
269 	void *ip_ptr;
270 	void *tcp_ptr;
271 {
272 	struct inpcb *inp = tp->t_inpcb;
273 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
274 
275 #ifdef INET6
276 	if ((inp->inp_vflag & INP_IPV6) != 0) {
277 		struct ip6_hdr *ip6;
278 
279 		ip6 = (struct ip6_hdr *)ip_ptr;
280 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
281 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
282 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
283 			(IPV6_VERSION & IPV6_VERSION_MASK);
284 		ip6->ip6_nxt = IPPROTO_TCP;
285 		ip6->ip6_plen = sizeof(struct tcphdr);
286 		ip6->ip6_src = inp->in6p_laddr;
287 		ip6->ip6_dst = inp->in6p_faddr;
288 		tcp_hdr->th_sum = 0;
289 	} else
290 #endif
291 	{
292 	struct ip *ip = (struct ip *) ip_ptr;
293 
294 	ip->ip_v = IPVERSION;
295 	ip->ip_hl = 5;
296 	ip->ip_tos = 0;
297 	ip->ip_len = 0;
298 	ip->ip_id = 0;
299 	ip->ip_off = 0;
300 	ip->ip_ttl = 0;
301 	ip->ip_sum = 0;
302 	ip->ip_p = IPPROTO_TCP;
303 	ip->ip_src = inp->inp_laddr;
304 	ip->ip_dst = inp->inp_faddr;
305 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
306 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
307 	}
308 
309 	tcp_hdr->th_sport = inp->inp_lport;
310 	tcp_hdr->th_dport = inp->inp_fport;
311 	tcp_hdr->th_seq = 0;
312 	tcp_hdr->th_ack = 0;
313 	tcp_hdr->th_x2 = 0;
314 	tcp_hdr->th_off = 5;
315 	tcp_hdr->th_flags = 0;
316 	tcp_hdr->th_win = 0;
317 	tcp_hdr->th_urp = 0;
318 }
319 
320 /*
321  * Create template to be used to send tcp packets on a connection.
322  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
323  * use for this function is in keepalives, which use tcp_respond.
324  */
325 struct tcptemp *
326 tcp_maketemplate(tp)
327 	struct tcpcb *tp;
328 {
329 	struct mbuf *m;
330 	struct tcptemp *n;
331 
332 	m = m_get(M_DONTWAIT, MT_HEADER);
333 	if (m == NULL)
334 		return (0);
335 	m->m_len = sizeof(struct tcptemp);
336 	n = mtod(m, struct tcptemp *);
337 
338 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
339 	return (n);
340 }
341 
342 /*
343  * Send a single message to the TCP at address specified by
344  * the given TCP/IP header.  If m == 0, then we make a copy
345  * of the tcpiphdr at ti and send directly to the addressed host.
346  * This is used to force keep alive messages out using the TCP
347  * template for a connection.  If flags are given then we send
348  * a message back to the TCP which originated the * segment ti,
349  * and discard the mbuf containing it and any other attached mbufs.
350  *
351  * In any case the ack and sequence number of the transmitted
352  * segment are as specified by the parameters.
353  *
354  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
355  */
356 void
357 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
358 	struct tcpcb *tp;
359 	void *ipgen;
360 	register struct tcphdr *th;
361 	register struct mbuf *m;
362 	tcp_seq ack, seq;
363 	int flags;
364 {
365 	register int tlen;
366 	int win = 0;
367 	struct route *ro = 0;
368 	struct route sro;
369 	struct ip *ip;
370 	struct tcphdr *nth;
371 #ifdef INET6
372 	struct route_in6 *ro6 = 0;
373 	struct route_in6 sro6;
374 	struct ip6_hdr *ip6;
375 	int isipv6;
376 #endif /* INET6 */
377 	int ipflags = 0;
378 
379 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
380 
381 #ifdef INET6
382 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
383 	ip6 = ipgen;
384 #endif /* INET6 */
385 	ip = ipgen;
386 
387 	if (tp) {
388 		if (!(flags & TH_RST)) {
389 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
390 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
391 				win = (long)TCP_MAXWIN << tp->rcv_scale;
392 		}
393 #ifdef INET6
394 		if (isipv6)
395 			ro6 = &tp->t_inpcb->in6p_route;
396 		else
397 #endif /* INET6 */
398 		ro = &tp->t_inpcb->inp_route;
399 	} else {
400 #ifdef INET6
401 		if (isipv6) {
402 			ro6 = &sro6;
403 			bzero(ro6, sizeof *ro6);
404 		} else
405 #endif /* INET6 */
406 	      {
407 		ro = &sro;
408 		bzero(ro, sizeof *ro);
409 	      }
410 	}
411 	if (m == 0) {
412 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
413 		if (m == NULL)
414 			return;
415 		tlen = 0;
416 		m->m_data += max_linkhdr;
417 #ifdef INET6
418 		if (isipv6) {
419 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
420 			      sizeof(struct ip6_hdr));
421 			ip6 = mtod(m, struct ip6_hdr *);
422 			nth = (struct tcphdr *)(ip6 + 1);
423 		} else
424 #endif /* INET6 */
425 	      {
426 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
427 		ip = mtod(m, struct ip *);
428 		nth = (struct tcphdr *)(ip + 1);
429 	      }
430 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
431 		flags = TH_ACK;
432 	} else {
433 		m_freem(m->m_next);
434 		m->m_next = 0;
435 		m->m_data = (caddr_t)ipgen;
436 		/* m_len is set later */
437 		tlen = 0;
438 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
439 #ifdef INET6
440 		if (isipv6) {
441 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
442 			nth = (struct tcphdr *)(ip6 + 1);
443 		} else
444 #endif /* INET6 */
445 	      {
446 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
447 		nth = (struct tcphdr *)(ip + 1);
448 	      }
449 		if (th != nth) {
450 			/*
451 			 * this is usually a case when an extension header
452 			 * exists between the IPv6 header and the
453 			 * TCP header.
454 			 */
455 			nth->th_sport = th->th_sport;
456 			nth->th_dport = th->th_dport;
457 		}
458 		xchg(nth->th_dport, nth->th_sport, n_short);
459 #undef xchg
460 	}
461 #ifdef INET6
462 	if (isipv6) {
463 		ip6->ip6_flow = 0;
464 		ip6->ip6_vfc = IPV6_VERSION;
465 		ip6->ip6_nxt = IPPROTO_TCP;
466 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
467 						tlen));
468 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
469 	} else
470 #endif
471       {
472 	tlen += sizeof (struct tcpiphdr);
473 	ip->ip_len = tlen;
474 	ip->ip_ttl = ip_defttl;
475       }
476 	m->m_len = tlen;
477 	m->m_pkthdr.len = tlen;
478 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
479 #ifdef MAC
480 	if (tp != NULL) {
481 		/*
482 		 * Packet is associated with a socket, so allow the
483 		 * label of the response to reflect the socket label.
484 		 */
485 		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
486 	} else {
487 		/*
488 		 * XXXMAC: This will need to call a mac function that
489 		 * modifies the mbuf label in place for TCP datagrams
490 		 * not associated with a PCB.
491 		 */
492 	}
493 #endif
494 	nth->th_seq = htonl(seq);
495 	nth->th_ack = htonl(ack);
496 	nth->th_x2 = 0;
497 	nth->th_off = sizeof (struct tcphdr) >> 2;
498 	nth->th_flags = flags;
499 	if (tp)
500 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
501 	else
502 		nth->th_win = htons((u_short)win);
503 	nth->th_urp = 0;
504 #ifdef INET6
505 	if (isipv6) {
506 		nth->th_sum = 0;
507 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
508 					sizeof(struct ip6_hdr),
509 					tlen - sizeof(struct ip6_hdr));
510 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
511 					       ro6 && ro6->ro_rt ?
512 					       ro6->ro_rt->rt_ifp :
513 					       NULL);
514 	} else
515 #endif /* INET6 */
516       {
517         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
518 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
519         m->m_pkthdr.csum_flags = CSUM_TCP;
520         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
521       }
522 #ifdef TCPDEBUG
523 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
524 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
525 #endif
526 #ifdef INET6
527 	if (isipv6) {
528 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
529 			tp ? tp->t_inpcb : NULL);
530 		if (ro6 == &sro6 && ro6->ro_rt) {
531 			RTFREE(ro6->ro_rt);
532 			ro6->ro_rt = NULL;
533 		}
534 	} else
535 #endif /* INET6 */
536       {
537 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
538 	if (ro == &sro && ro->ro_rt) {
539 		RTFREE(ro->ro_rt);
540 		ro->ro_rt = NULL;
541 	}
542       }
543 }
544 
545 /*
546  * Create a new TCP control block, making an
547  * empty reassembly queue and hooking it to the argument
548  * protocol control block.  The `inp' parameter must have
549  * come from the zone allocator set up in tcp_init().
550  */
551 struct tcpcb *
552 tcp_newtcpcb(inp)
553 	struct inpcb *inp;
554 {
555 	struct inp_tp *it;
556 	register struct tcpcb *tp;
557 #ifdef INET6
558 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
559 #endif /* INET6 */
560 
561 	it = (struct inp_tp *)inp;
562 	tp = &it->tcb;
563 	bzero((char *) tp, sizeof(struct tcpcb));
564 	LIST_INIT(&tp->t_segq);
565 	tp->t_maxseg = tp->t_maxopd =
566 #ifdef INET6
567 		isipv6 ? tcp_v6mssdflt :
568 #endif /* INET6 */
569 		tcp_mssdflt;
570 
571 	/* Set up our timeouts. */
572 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
573 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
574 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
575 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
576 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
577 
578 	if (tcp_do_rfc1323)
579 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
580 	if (tcp_do_rfc1644)
581 		tp->t_flags |= TF_REQ_CC;
582 	tp->t_inpcb = inp;	/* XXX */
583 	/*
584 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
585 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
586 	 * reasonable initial retransmit time.
587 	 */
588 	tp->t_srtt = TCPTV_SRTTBASE;
589 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
590 	tp->t_rttmin = tcp_rexmit_min;
591 	tp->t_rxtcur = TCPTV_RTOBASE;
592 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
593 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
594 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
595 	tp->t_rcvtime = ticks;
596 	tp->t_bw_rtttime = ticks;
597         /*
598 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
599 	 * because the socket may be bound to an IPv6 wildcard address,
600 	 * which may match an IPv4-mapped IPv6 address.
601 	 */
602 	inp->inp_ip_ttl = ip_defttl;
603 	inp->inp_ppcb = (caddr_t)tp;
604 	return (tp);		/* XXX */
605 }
606 
607 /*
608  * Drop a TCP connection, reporting
609  * the specified error.  If connection is synchronized,
610  * then send a RST to peer.
611  */
612 struct tcpcb *
613 tcp_drop(tp, errno)
614 	register struct tcpcb *tp;
615 	int errno;
616 {
617 	struct socket *so = tp->t_inpcb->inp_socket;
618 
619 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
620 		tp->t_state = TCPS_CLOSED;
621 		(void) tcp_output(tp);
622 		tcpstat.tcps_drops++;
623 	} else
624 		tcpstat.tcps_conndrops++;
625 	if (errno == ETIMEDOUT && tp->t_softerror)
626 		errno = tp->t_softerror;
627 	so->so_error = errno;
628 	return (tcp_close(tp));
629 }
630 
631 /*
632  * Close a TCP control block:
633  *	discard all space held by the tcp
634  *	discard internet protocol block
635  *	wake up any sleepers
636  */
637 struct tcpcb *
638 tcp_close(tp)
639 	register struct tcpcb *tp;
640 {
641 	register struct tseg_qent *q;
642 	struct inpcb *inp = tp->t_inpcb;
643 	struct socket *so = inp->inp_socket;
644 #ifdef INET6
645 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
646 #endif /* INET6 */
647 	register struct rtentry *rt;
648 	int dosavessthresh;
649 
650 	/*
651 	 * Make sure that all of our timers are stopped before we
652 	 * delete the PCB.
653 	 */
654 	callout_stop(tp->tt_rexmt);
655 	callout_stop(tp->tt_persist);
656 	callout_stop(tp->tt_keep);
657 	callout_stop(tp->tt_2msl);
658 	callout_stop(tp->tt_delack);
659 
660 	/*
661 	 * If we got enough samples through the srtt filter,
662 	 * save the rtt and rttvar in the routing entry.
663 	 * 'Enough' is arbitrarily defined as the 16 samples.
664 	 * 16 samples is enough for the srtt filter to converge
665 	 * to within 5% of the correct value; fewer samples and
666 	 * we could save a very bogus rtt.
667 	 *
668 	 * Don't update the default route's characteristics and don't
669 	 * update anything that the user "locked".
670 	 */
671 	if (tp->t_rttupdated >= 16) {
672 		register u_long i = 0;
673 #ifdef INET6
674 		if (isipv6) {
675 			struct sockaddr_in6 *sin6;
676 
677 			if ((rt = inp->in6p_route.ro_rt) == NULL)
678 				goto no_valid_rt;
679 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
680 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
681 				goto no_valid_rt;
682 		}
683 		else
684 #endif /* INET6 */
685 		if ((rt = inp->inp_route.ro_rt) == NULL ||
686 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
687 		    == INADDR_ANY)
688 			goto no_valid_rt;
689 
690 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
691 			i = tp->t_srtt *
692 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
693 			if (rt->rt_rmx.rmx_rtt && i)
694 				/*
695 				 * filter this update to half the old & half
696 				 * the new values, converting scale.
697 				 * See route.h and tcp_var.h for a
698 				 * description of the scaling constants.
699 				 */
700 				rt->rt_rmx.rmx_rtt =
701 				    (rt->rt_rmx.rmx_rtt + i) / 2;
702 			else
703 				rt->rt_rmx.rmx_rtt = i;
704 			tcpstat.tcps_cachedrtt++;
705 		}
706 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
707 			i = tp->t_rttvar *
708 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
709 			if (rt->rt_rmx.rmx_rttvar && i)
710 				rt->rt_rmx.rmx_rttvar =
711 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
712 			else
713 				rt->rt_rmx.rmx_rttvar = i;
714 			tcpstat.tcps_cachedrttvar++;
715 		}
716 		/*
717 		 * The old comment here said:
718 		 * update the pipelimit (ssthresh) if it has been updated
719 		 * already or if a pipesize was specified & the threshhold
720 		 * got below half the pipesize.  I.e., wait for bad news
721 		 * before we start updating, then update on both good
722 		 * and bad news.
723 		 *
724 		 * But we want to save the ssthresh even if no pipesize is
725 		 * specified explicitly in the route, because such
726 		 * connections still have an implicit pipesize specified
727 		 * by the global tcp_sendspace.  In the absence of a reliable
728 		 * way to calculate the pipesize, it will have to do.
729 		 */
730 		i = tp->snd_ssthresh;
731 		if (rt->rt_rmx.rmx_sendpipe != 0)
732 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
733 		else
734 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
735 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
736 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
737 		    || dosavessthresh) {
738 			/*
739 			 * convert the limit from user data bytes to
740 			 * packets then to packet data bytes.
741 			 */
742 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
743 			if (i < 2)
744 				i = 2;
745 			i *= (u_long)(tp->t_maxseg +
746 #ifdef INET6
747 				      (isipv6 ? sizeof (struct ip6_hdr) +
748 					       sizeof (struct tcphdr) :
749 #endif
750 				       sizeof (struct tcpiphdr)
751 #ifdef INET6
752 				       )
753 #endif
754 				      );
755 			if (rt->rt_rmx.rmx_ssthresh)
756 				rt->rt_rmx.rmx_ssthresh =
757 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
758 			else
759 				rt->rt_rmx.rmx_ssthresh = i;
760 			tcpstat.tcps_cachedssthresh++;
761 		}
762 	}
763     no_valid_rt:
764 	/* free the reassembly queue, if any */
765 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
766 		LIST_REMOVE(q, tqe_q);
767 		m_freem(q->tqe_m);
768 		FREE(q, M_TSEGQ);
769 	}
770 	inp->inp_ppcb = NULL;
771 	soisdisconnected(so);
772 #ifdef INET6
773 	if (INP_CHECK_SOCKAF(so, AF_INET6))
774 		in6_pcbdetach(inp);
775 	else
776 #endif /* INET6 */
777 	in_pcbdetach(inp);
778 	tcpstat.tcps_closed++;
779 	return ((struct tcpcb *)0);
780 }
781 
782 void
783 tcp_drain()
784 {
785 	if (do_tcpdrain)
786 	{
787 		struct inpcb *inpb;
788 		struct tcpcb *tcpb;
789 		struct tseg_qent *te;
790 
791 	/*
792 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
793 	 * if there is one...
794 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
795 	 *      reassembly queue should be flushed, but in a situation
796 	 * 	where we're really low on mbufs, this is potentially
797 	 *  	usefull.
798 	 */
799 		INP_INFO_RLOCK(&tcbinfo);
800 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
801 			INP_LOCK(inpb);
802 			if ((tcpb = intotcpcb(inpb))) {
803 				while ((te = LIST_FIRST(&tcpb->t_segq))
804 			            != NULL) {
805 					LIST_REMOVE(te, tqe_q);
806 					m_freem(te->tqe_m);
807 					FREE(te, M_TSEGQ);
808 				}
809 			}
810 			INP_UNLOCK(inpb);
811 		}
812 		INP_INFO_RUNLOCK(&tcbinfo);
813 	}
814 }
815 
816 /*
817  * Notify a tcp user of an asynchronous error;
818  * store error as soft error, but wake up user
819  * (for now, won't do anything until can select for soft error).
820  *
821  * Do not wake up user since there currently is no mechanism for
822  * reporting soft errors (yet - a kqueue filter may be added).
823  */
824 static struct inpcb *
825 tcp_notify(inp, error)
826 	struct inpcb *inp;
827 	int error;
828 {
829 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
830 
831 	/*
832 	 * Ignore some errors if we are hooked up.
833 	 * If connection hasn't completed, has retransmitted several times,
834 	 * and receives a second error, give up now.  This is better
835 	 * than waiting a long time to establish a connection that
836 	 * can never complete.
837 	 */
838 	if (tp->t_state == TCPS_ESTABLISHED &&
839 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
840 	      error == EHOSTDOWN)) {
841 		return inp;
842 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
843 	    tp->t_softerror) {
844 		tcp_drop(tp, error);
845 		return (struct inpcb *)0;
846 	} else {
847 		tp->t_softerror = error;
848 		return inp;
849 	}
850 #if 0
851 	wakeup((caddr_t) &so->so_timeo);
852 	sorwakeup(so);
853 	sowwakeup(so);
854 #endif
855 }
856 
857 static int
858 tcp_pcblist(SYSCTL_HANDLER_ARGS)
859 {
860 	int error, i, n, s;
861 	struct inpcb *inp, **inp_list;
862 	inp_gen_t gencnt;
863 	struct xinpgen xig;
864 
865 	/*
866 	 * The process of preparing the TCB list is too time-consuming and
867 	 * resource-intensive to repeat twice on every request.
868 	 */
869 	if (req->oldptr == 0) {
870 		n = tcbinfo.ipi_count;
871 		req->oldidx = 2 * (sizeof xig)
872 			+ (n + n/8) * sizeof(struct xtcpcb);
873 		return 0;
874 	}
875 
876 	if (req->newptr != 0)
877 		return EPERM;
878 
879 	/*
880 	 * OK, now we're committed to doing something.
881 	 */
882 	s = splnet();
883 	INP_INFO_RLOCK(&tcbinfo);
884 	gencnt = tcbinfo.ipi_gencnt;
885 	n = tcbinfo.ipi_count;
886 	INP_INFO_RUNLOCK(&tcbinfo);
887 	splx(s);
888 
889 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
890 		+ n * sizeof(struct xtcpcb));
891 
892 	xig.xig_len = sizeof xig;
893 	xig.xig_count = n;
894 	xig.xig_gen = gencnt;
895 	xig.xig_sogen = so_gencnt;
896 	error = SYSCTL_OUT(req, &xig, sizeof xig);
897 	if (error)
898 		return error;
899 
900 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
901 	if (inp_list == 0)
902 		return ENOMEM;
903 
904 	s = splnet();
905 	INP_INFO_RLOCK(&tcbinfo);
906 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
907 	     inp = LIST_NEXT(inp, inp_list)) {
908 		INP_LOCK(inp);
909 		if (inp->inp_gencnt <= gencnt &&
910 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
911 			inp_list[i++] = inp;
912 		INP_UNLOCK(inp);
913 	}
914 	INP_INFO_RUNLOCK(&tcbinfo);
915 	splx(s);
916 	n = i;
917 
918 	error = 0;
919 	for (i = 0; i < n; i++) {
920 		inp = inp_list[i];
921 		INP_LOCK(inp);
922 		if (inp->inp_gencnt <= gencnt) {
923 			struct xtcpcb xt;
924 			caddr_t inp_ppcb;
925 			xt.xt_len = sizeof xt;
926 			/* XXX should avoid extra copy */
927 			bcopy(inp, &xt.xt_inp, sizeof *inp);
928 			inp_ppcb = inp->inp_ppcb;
929 			if (inp_ppcb != NULL)
930 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
931 			else
932 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
933 			if (inp->inp_socket)
934 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
935 			error = SYSCTL_OUT(req, &xt, sizeof xt);
936 		}
937 		INP_UNLOCK(inp);
938 	}
939 	if (!error) {
940 		/*
941 		 * Give the user an updated idea of our state.
942 		 * If the generation differs from what we told
943 		 * her before, she knows that something happened
944 		 * while we were processing this request, and it
945 		 * might be necessary to retry.
946 		 */
947 		s = splnet();
948 		INP_INFO_RLOCK(&tcbinfo);
949 		xig.xig_gen = tcbinfo.ipi_gencnt;
950 		xig.xig_sogen = so_gencnt;
951 		xig.xig_count = tcbinfo.ipi_count;
952 		INP_INFO_RUNLOCK(&tcbinfo);
953 		splx(s);
954 		error = SYSCTL_OUT(req, &xig, sizeof xig);
955 	}
956 	free(inp_list, M_TEMP);
957 	return error;
958 }
959 
960 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
961 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
962 
963 static int
964 tcp_getcred(SYSCTL_HANDLER_ARGS)
965 {
966 	struct xucred xuc;
967 	struct sockaddr_in addrs[2];
968 	struct inpcb *inp;
969 	int error, s;
970 
971 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
972 	if (error)
973 		return (error);
974 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
975 	if (error)
976 		return (error);
977 	s = splnet();
978 	INP_INFO_RLOCK(&tcbinfo);
979 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
980 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
981 	if (inp == NULL) {
982 		error = ENOENT;
983 		goto outunlocked;
984 	}
985 	INP_LOCK(inp);
986 	if (inp->inp_socket == NULL) {
987 		error = ENOENT;
988 		goto out;
989 	}
990 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
991 	if (error)
992 		goto out;
993 	cru2x(inp->inp_socket->so_cred, &xuc);
994 out:
995 	INP_UNLOCK(inp);
996 outunlocked:
997 	INP_INFO_RUNLOCK(&tcbinfo);
998 	splx(s);
999 	if (error == 0)
1000 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1001 	return (error);
1002 }
1003 
1004 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1005     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1006     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1007 
1008 #ifdef INET6
1009 static int
1010 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1011 {
1012 	struct xucred xuc;
1013 	struct sockaddr_in6 addrs[2];
1014 	struct inpcb *inp;
1015 	int error, s, mapped = 0;
1016 
1017 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1018 	if (error)
1019 		return (error);
1020 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1021 	if (error)
1022 		return (error);
1023 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1024 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1025 			mapped = 1;
1026 		else
1027 			return (EINVAL);
1028 	}
1029 	s = splnet();
1030 	INP_INFO_RLOCK(&tcbinfo);
1031 	if (mapped == 1)
1032 		inp = in_pcblookup_hash(&tcbinfo,
1033 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1034 			addrs[1].sin6_port,
1035 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1036 			addrs[0].sin6_port,
1037 			0, NULL);
1038 	else
1039 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1040 				 addrs[1].sin6_port,
1041 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1042 				 0, NULL);
1043 	if (inp == NULL) {
1044 		error = ENOENT;
1045 		goto outunlocked;
1046 	}
1047 	INP_LOCK(inp);
1048 	if (inp->inp_socket == NULL) {
1049 		error = ENOENT;
1050 		goto out;
1051 	}
1052 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1053 	if (error)
1054 		goto out;
1055 	cru2x(inp->inp_socket->so_cred, &xuc);
1056 out:
1057 	INP_UNLOCK(inp);
1058 outunlocked:
1059 	INP_INFO_RUNLOCK(&tcbinfo);
1060 	splx(s);
1061 	if (error == 0)
1062 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1063 	return (error);
1064 }
1065 
1066 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1067     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1068     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1069 #endif
1070 
1071 
1072 void
1073 tcp_ctlinput(cmd, sa, vip)
1074 	int cmd;
1075 	struct sockaddr *sa;
1076 	void *vip;
1077 {
1078 	struct ip *ip = vip;
1079 	struct tcphdr *th;
1080 	struct in_addr faddr;
1081 	struct inpcb *inp;
1082 	struct tcpcb *tp;
1083 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1084 	tcp_seq icmp_seq;
1085 	int s;
1086 
1087 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1088 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1089 		return;
1090 
1091 	if (cmd == PRC_QUENCH)
1092 		notify = tcp_quench;
1093 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1094 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1095 		notify = tcp_drop_syn_sent;
1096 	else if (cmd == PRC_MSGSIZE)
1097 		notify = tcp_mtudisc;
1098 	else if (PRC_IS_REDIRECT(cmd)) {
1099 		ip = 0;
1100 		notify = in_rtchange;
1101 	} else if (cmd == PRC_HOSTDEAD)
1102 		ip = 0;
1103 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1104 		return;
1105 	if (ip) {
1106 		s = splnet();
1107 		th = (struct tcphdr *)((caddr_t)ip
1108 				       + (ip->ip_hl << 2));
1109 		INP_INFO_WLOCK(&tcbinfo);
1110 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1111 		    ip->ip_src, th->th_sport, 0, NULL);
1112 		if (inp != NULL)  {
1113 			INP_LOCK(inp);
1114 			if (inp->inp_socket != NULL) {
1115 				icmp_seq = htonl(th->th_seq);
1116 				tp = intotcpcb(inp);
1117 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1118 			    		SEQ_LT(icmp_seq, tp->snd_max))
1119 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1120 			}
1121 			if (inp)
1122 				INP_UNLOCK(inp);
1123 		} else {
1124 			struct in_conninfo inc;
1125 
1126 			inc.inc_fport = th->th_dport;
1127 			inc.inc_lport = th->th_sport;
1128 			inc.inc_faddr = faddr;
1129 			inc.inc_laddr = ip->ip_src;
1130 #ifdef INET6
1131 			inc.inc_isipv6 = 0;
1132 #endif
1133 			syncache_unreach(&inc, th);
1134 		}
1135 		INP_INFO_WUNLOCK(&tcbinfo);
1136 		splx(s);
1137 	} else
1138 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1139 }
1140 
1141 #ifdef INET6
1142 void
1143 tcp6_ctlinput(cmd, sa, d)
1144 	int cmd;
1145 	struct sockaddr *sa;
1146 	void *d;
1147 {
1148 	struct tcphdr th;
1149 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1150 	struct ip6_hdr *ip6;
1151 	struct mbuf *m;
1152 	struct ip6ctlparam *ip6cp = NULL;
1153 	const struct sockaddr_in6 *sa6_src = NULL;
1154 	int off;
1155 	struct tcp_portonly {
1156 		u_int16_t th_sport;
1157 		u_int16_t th_dport;
1158 	} *thp;
1159 
1160 	if (sa->sa_family != AF_INET6 ||
1161 	    sa->sa_len != sizeof(struct sockaddr_in6))
1162 		return;
1163 
1164 	if (cmd == PRC_QUENCH)
1165 		notify = tcp_quench;
1166 	else if (cmd == PRC_MSGSIZE)
1167 		notify = tcp_mtudisc;
1168 	else if (!PRC_IS_REDIRECT(cmd) &&
1169 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1170 		return;
1171 
1172 	/* if the parameter is from icmp6, decode it. */
1173 	if (d != NULL) {
1174 		ip6cp = (struct ip6ctlparam *)d;
1175 		m = ip6cp->ip6c_m;
1176 		ip6 = ip6cp->ip6c_ip6;
1177 		off = ip6cp->ip6c_off;
1178 		sa6_src = ip6cp->ip6c_src;
1179 	} else {
1180 		m = NULL;
1181 		ip6 = NULL;
1182 		off = 0;	/* fool gcc */
1183 		sa6_src = &sa6_any;
1184 	}
1185 
1186 	if (ip6) {
1187 		struct in_conninfo inc;
1188 		/*
1189 		 * XXX: We assume that when IPV6 is non NULL,
1190 		 * M and OFF are valid.
1191 		 */
1192 
1193 		/* check if we can safely examine src and dst ports */
1194 		if (m->m_pkthdr.len < off + sizeof(*thp))
1195 			return;
1196 
1197 		bzero(&th, sizeof(th));
1198 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1199 
1200 		in6_pcbnotify(&tcb, sa, th.th_dport,
1201 		    (struct sockaddr *)ip6cp->ip6c_src,
1202 		    th.th_sport, cmd, notify);
1203 
1204 		inc.inc_fport = th.th_dport;
1205 		inc.inc_lport = th.th_sport;
1206 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1207 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1208 		inc.inc_isipv6 = 1;
1209 		syncache_unreach(&inc, &th);
1210 	} else
1211 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1212 			      0, cmd, notify);
1213 }
1214 #endif /* INET6 */
1215 
1216 
1217 /*
1218  * Following is where TCP initial sequence number generation occurs.
1219  *
1220  * There are two places where we must use initial sequence numbers:
1221  * 1.  In SYN-ACK packets.
1222  * 2.  In SYN packets.
1223  *
1224  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1225  * tcp_syncache.c for details.
1226  *
1227  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1228  * depends on this property.  In addition, these ISNs should be
1229  * unguessable so as to prevent connection hijacking.  To satisfy
1230  * the requirements of this situation, the algorithm outlined in
1231  * RFC 1948 is used to generate sequence numbers.
1232  *
1233  * Implementation details:
1234  *
1235  * Time is based off the system timer, and is corrected so that it
1236  * increases by one megabyte per second.  This allows for proper
1237  * recycling on high speed LANs while still leaving over an hour
1238  * before rollover.
1239  *
1240  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1241  * between seeding of isn_secret.  This is normally set to zero,
1242  * as reseeding should not be necessary.
1243  *
1244  */
1245 
1246 #define ISN_BYTES_PER_SECOND 1048576
1247 
1248 u_char isn_secret[32];
1249 int isn_last_reseed;
1250 MD5_CTX isn_ctx;
1251 
1252 tcp_seq
1253 tcp_new_isn(tp)
1254 	struct tcpcb *tp;
1255 {
1256 	u_int32_t md5_buffer[4];
1257 	tcp_seq new_isn;
1258 
1259 	/* Seed if this is the first use, reseed if requested. */
1260 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1261 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1262 		< (u_int)ticks))) {
1263 		read_random(&isn_secret, sizeof(isn_secret));
1264 		isn_last_reseed = ticks;
1265 	}
1266 
1267 	/* Compute the md5 hash and return the ISN. */
1268 	MD5Init(&isn_ctx);
1269 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1270 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1271 #ifdef INET6
1272 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1273 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1274 			  sizeof(struct in6_addr));
1275 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1276 			  sizeof(struct in6_addr));
1277 	} else
1278 #endif
1279 	{
1280 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1281 			  sizeof(struct in_addr));
1282 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1283 			  sizeof(struct in_addr));
1284 	}
1285 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1286 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1287 	new_isn = (tcp_seq) md5_buffer[0];
1288 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1289 	return new_isn;
1290 }
1291 
1292 /*
1293  * When a source quench is received, close congestion window
1294  * to one segment.  We will gradually open it again as we proceed.
1295  */
1296 struct inpcb *
1297 tcp_quench(inp, errno)
1298 	struct inpcb *inp;
1299 	int errno;
1300 {
1301 	struct tcpcb *tp = intotcpcb(inp);
1302 
1303 	if (tp)
1304 		tp->snd_cwnd = tp->t_maxseg;
1305 	return (inp);
1306 }
1307 
1308 /*
1309  * When a specific ICMP unreachable message is received and the
1310  * connection state is SYN-SENT, drop the connection.  This behavior
1311  * is controlled by the icmp_may_rst sysctl.
1312  */
1313 struct inpcb *
1314 tcp_drop_syn_sent(inp, errno)
1315 	struct inpcb *inp;
1316 	int errno;
1317 {
1318 	struct tcpcb *tp = intotcpcb(inp);
1319 
1320 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1321 		tcp_drop(tp, errno);
1322 		return (struct inpcb *)0;
1323 	}
1324 	return inp;
1325 }
1326 
1327 /*
1328  * When `need fragmentation' ICMP is received, update our idea of the MSS
1329  * based on the new value in the route.  Also nudge TCP to send something,
1330  * since we know the packet we just sent was dropped.
1331  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1332  */
1333 struct inpcb *
1334 tcp_mtudisc(inp, errno)
1335 	struct inpcb *inp;
1336 	int errno;
1337 {
1338 	struct tcpcb *tp = intotcpcb(inp);
1339 	struct rtentry *rt;
1340 	struct rmxp_tao *taop;
1341 	struct socket *so = inp->inp_socket;
1342 	int offered;
1343 	int mss;
1344 #ifdef INET6
1345 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1346 #endif /* INET6 */
1347 
1348 	if (tp) {
1349 #ifdef INET6
1350 		if (isipv6)
1351 			rt = tcp_rtlookup6(&inp->inp_inc);
1352 		else
1353 #endif /* INET6 */
1354 		rt = tcp_rtlookup(&inp->inp_inc);
1355 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1356 			tp->t_maxopd = tp->t_maxseg =
1357 #ifdef INET6
1358 				isipv6 ? tcp_v6mssdflt :
1359 #endif /* INET6 */
1360 				tcp_mssdflt;
1361 			return inp;
1362 		}
1363 		taop = rmx_taop(rt->rt_rmx);
1364 		offered = taop->tao_mssopt;
1365 		mss = rt->rt_rmx.rmx_mtu -
1366 #ifdef INET6
1367 			(isipv6 ?
1368 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1369 #endif /* INET6 */
1370 			 sizeof(struct tcpiphdr)
1371 #ifdef INET6
1372 			 )
1373 #endif /* INET6 */
1374 			;
1375 
1376 		if (offered)
1377 			mss = min(mss, offered);
1378 		/*
1379 		 * XXX - The above conditional probably violates the TCP
1380 		 * spec.  The problem is that, since we don't know the
1381 		 * other end's MSS, we are supposed to use a conservative
1382 		 * default.  But, if we do that, then MTU discovery will
1383 		 * never actually take place, because the conservative
1384 		 * default is much less than the MTUs typically seen
1385 		 * on the Internet today.  For the moment, we'll sweep
1386 		 * this under the carpet.
1387 		 *
1388 		 * The conservative default might not actually be a problem
1389 		 * if the only case this occurs is when sending an initial
1390 		 * SYN with options and data to a host we've never talked
1391 		 * to before.  Then, they will reply with an MSS value which
1392 		 * will get recorded and the new parameters should get
1393 		 * recomputed.  For Further Study.
1394 		 */
1395 		if (tp->t_maxopd <= mss)
1396 			return inp;
1397 		tp->t_maxopd = mss;
1398 
1399 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1400 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1401 			mss -= TCPOLEN_TSTAMP_APPA;
1402 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1403 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1404 			mss -= TCPOLEN_CC_APPA;
1405 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1406 		if (mss > MCLBYTES)
1407 			mss &= ~(MCLBYTES-1);
1408 #else
1409 		if (mss > MCLBYTES)
1410 			mss = mss / MCLBYTES * MCLBYTES;
1411 #endif
1412 		if (so->so_snd.sb_hiwat < mss)
1413 			mss = so->so_snd.sb_hiwat;
1414 
1415 		tp->t_maxseg = mss;
1416 
1417 		tcpstat.tcps_mturesent++;
1418 		tp->t_rtttime = 0;
1419 		tp->snd_nxt = tp->snd_una;
1420 		tcp_output(tp);
1421 	}
1422 	return inp;
1423 }
1424 
1425 /*
1426  * Look-up the routing entry to the peer of this inpcb.  If no route
1427  * is found and it cannot be allocated the return NULL.  This routine
1428  * is called by TCP routines that access the rmx structure and by tcp_mss
1429  * to get the interface MTU.
1430  */
1431 struct rtentry *
1432 tcp_rtlookup(inc)
1433 	struct in_conninfo *inc;
1434 {
1435 	struct route *ro;
1436 	struct rtentry *rt;
1437 
1438 	ro = &inc->inc_route;
1439 	rt = ro->ro_rt;
1440 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1441 		/* No route yet, so try to acquire one */
1442 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1443 			ro->ro_dst.sa_family = AF_INET;
1444 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1445 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1446 			    inc->inc_faddr;
1447 			rtalloc(ro);
1448 			rt = ro->ro_rt;
1449 		}
1450 	}
1451 	return rt;
1452 }
1453 
1454 #ifdef INET6
1455 struct rtentry *
1456 tcp_rtlookup6(inc)
1457 	struct in_conninfo *inc;
1458 {
1459 	struct route_in6 *ro6;
1460 	struct rtentry *rt;
1461 
1462 	ro6 = &inc->inc6_route;
1463 	rt = ro6->ro_rt;
1464 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1465 		/* No route yet, so try to acquire one */
1466 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1467 			ro6->ro_dst.sin6_family = AF_INET6;
1468 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1469 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1470 			rtalloc((struct route *)ro6);
1471 			rt = ro6->ro_rt;
1472 		}
1473 	}
1474 	return rt;
1475 }
1476 #endif /* INET6 */
1477 
1478 #ifdef IPSEC
1479 /* compute ESP/AH header size for TCP, including outer IP header. */
1480 size_t
1481 ipsec_hdrsiz_tcp(tp)
1482 	struct tcpcb *tp;
1483 {
1484 	struct inpcb *inp;
1485 	struct mbuf *m;
1486 	size_t hdrsiz;
1487 	struct ip *ip;
1488 #ifdef INET6
1489 	struct ip6_hdr *ip6;
1490 #endif /* INET6 */
1491 	struct tcphdr *th;
1492 
1493 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1494 		return 0;
1495 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 	if (!m)
1497 		return 0;
1498 
1499 #ifdef INET6
1500 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1501 		ip6 = mtod(m, struct ip6_hdr *);
1502 		th = (struct tcphdr *)(ip6 + 1);
1503 		m->m_pkthdr.len = m->m_len =
1504 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1505 		tcp_fillheaders(tp, ip6, th);
1506 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1507 	} else
1508 #endif /* INET6 */
1509       {
1510 	ip = mtod(m, struct ip *);
1511 	th = (struct tcphdr *)(ip + 1);
1512 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1513 	tcp_fillheaders(tp, ip, th);
1514 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1515       }
1516 
1517 	m_free(m);
1518 	return hdrsiz;
1519 }
1520 #endif /*IPSEC*/
1521 
1522 /*
1523  * Return a pointer to the cached information about the remote host.
1524  * The cached information is stored in the protocol specific part of
1525  * the route metrics.
1526  */
1527 struct rmxp_tao *
1528 tcp_gettaocache(inc)
1529 	struct in_conninfo *inc;
1530 {
1531 	struct rtentry *rt;
1532 
1533 #ifdef INET6
1534 	if (inc->inc_isipv6)
1535 		rt = tcp_rtlookup6(inc);
1536 	else
1537 #endif /* INET6 */
1538 	rt = tcp_rtlookup(inc);
1539 
1540 	/* Make sure this is a host route and is up. */
1541 	if (rt == NULL ||
1542 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1543 		return NULL;
1544 
1545 	return rmx_taop(rt->rt_rmx);
1546 }
1547 
1548 /*
1549  * Clear all the TAO cache entries, called from tcp_init.
1550  *
1551  * XXX
1552  * This routine is just an empty one, because we assume that the routing
1553  * routing tables are initialized at the same time when TCP, so there is
1554  * nothing in the cache left over.
1555  */
1556 static void
1557 tcp_cleartaocache()
1558 {
1559 }
1560 
1561 /*
1562  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1563  *
1564  * This code attempts to calculate the bandwidth-delay product as a
1565  * means of determining the optimal window size to maximize bandwidth,
1566  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1567  * routers.  This code also does a fairly good job keeping RTTs in check
1568  * across slow links like modems.  We implement an algorithm which is very
1569  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1570  * transmitter side of a TCP connection and so only effects the transmit
1571  * side of the connection.
1572  *
1573  * BACKGROUND:  TCP makes no provision for the management of buffer space
1574  * at the end points or at the intermediate routers and switches.  A TCP
1575  * stream, whether using NewReno or not, will eventually buffer as
1576  * many packets as it is able and the only reason this typically works is
1577  * due to the fairly small default buffers made available for a connection
1578  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1579  * scaling it is now fairly easy for even a single TCP connection to blow-out
1580  * all available buffer space not only on the local interface, but on
1581  * intermediate routers and switches as well.  NewReno makes a misguided
1582  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1583  * then backing off, then steadily increasing the window again until another
1584  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1585  * is only made worse as network loads increase and the idea of intentionally
1586  * blowing out network buffers is, frankly, a terrible way to manage network
1587  * resources.
1588  *
1589  * It is far better to limit the transmit window prior to the failure
1590  * condition being achieved.  There are two general ways to do this:  First
1591  * you can 'scan' through different transmit window sizes and locate the
1592  * point where the RTT stops increasing, indicating that you have filled the
1593  * pipe, then scan backwards until you note that RTT stops decreasing, then
1594  * repeat ad-infinitum.  This method works in principle but has severe
1595  * implementation issues due to RTT variances, timer granularity, and
1596  * instability in the algorithm which can lead to many false positives and
1597  * create oscillations as well as interact badly with other TCP streams
1598  * implementing the same algorithm.
1599  *
1600  * The second method is to limit the window to the bandwidth delay product
1601  * of the link.  This is the method we implement.  RTT variances and our
1602  * own manipulation of the congestion window, bwnd, can potentially
1603  * destabilize the algorithm.  For this reason we have to stabilize the
1604  * elements used to calculate the window.  We do this by using the minimum
1605  * observed RTT, the long term average of the observed bandwidth, and
1606  * by adding two segments worth of slop.  It isn't perfect but it is able
1607  * to react to changing conditions and gives us a very stable basis on
1608  * which to extend the algorithm.
1609  */
1610 void
1611 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1612 {
1613 	u_long bw;
1614 	u_long bwnd;
1615 	int save_ticks;
1616 
1617 	/*
1618 	 * If inflight_enable is disabled in the middle of a tcp connection,
1619 	 * make sure snd_bwnd is effectively disabled.
1620 	 */
1621 	if (tcp_inflight_enable == 0) {
1622 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1623 		tp->snd_bandwidth = 0;
1624 		return;
1625 	}
1626 
1627 	/*
1628 	 * Figure out the bandwidth.  Due to the tick granularity this
1629 	 * is a very rough number and it MUST be averaged over a fairly
1630 	 * long period of time.  XXX we need to take into account a link
1631 	 * that is not using all available bandwidth, but for now our
1632 	 * slop will ramp us up if this case occurs and the bandwidth later
1633 	 * increases.
1634 	 *
1635 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1636 	 * effectively reset t_bw_rtttime for this case.
1637 	 */
1638 	save_ticks = ticks;
1639 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1640 		return;
1641 
1642 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1643 	    (save_ticks - tp->t_bw_rtttime);
1644 	tp->t_bw_rtttime = save_ticks;
1645 	tp->t_bw_rtseq = ack_seq;
1646 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1647 		return;
1648 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1649 
1650 	tp->snd_bandwidth = bw;
1651 
1652 	/*
1653 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1654 	 * segments.  The additional slop puts us squarely in the sweet
1655 	 * spot and also handles the bandwidth run-up case.  Without the
1656 	 * slop we could be locking ourselves into a lower bandwidth.
1657 	 *
1658 	 * Situations Handled:
1659 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1660 	 *	    high speed LANs, allowing larger TCP buffers to be
1661 	 *	    specified, and also does a good job preventing
1662 	 *	    over-queueing of packets over choke points like modems
1663 	 *	    (at least for the transmit side).
1664 	 *
1665 	 *	(2) Is able to handle changing network loads (bandwidth
1666 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1667 	 *	    increases).
1668 	 *
1669 	 *	(3) Theoretically should stabilize in the face of multiple
1670 	 *	    connections implementing the same algorithm (this may need
1671 	 *	    a little work).
1672 	 */
1673 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1674 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + 2 * tp->t_maxseg;
1675 #undef USERTT
1676 
1677 	if (tcp_inflight_debug > 0) {
1678 		static int ltime;
1679 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1680 			ltime = ticks;
1681 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1682 			    tp,
1683 			    bw,
1684 			    tp->t_rttbest,
1685 			    tp->t_srtt,
1686 			    bwnd
1687 			);
1688 		}
1689 	}
1690 	if ((long)bwnd < tcp_inflight_min)
1691 		bwnd = tcp_inflight_min;
1692 	if (bwnd > tcp_inflight_max)
1693 		bwnd = tcp_inflight_max;
1694 	if ((long)bwnd < tp->t_maxseg * 2)
1695 		bwnd = tp->t_maxseg * 2;
1696 	tp->snd_bwnd = bwnd;
1697 }
1698 
1699