xref: /freebsd/sys/netinet/tcp_subr.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/jail.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/uma.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/ip_icmp.h>
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_seq.h>
86 #include <netinet/tcp_timer.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/tcp_syncache.h>
89 #include <netinet/tcp_offload.h>
90 #ifdef INET6
91 #include <netinet6/tcp6_var.h>
92 #endif
93 #include <netinet/tcpip.h>
94 #ifdef TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <netinet6/ip6protosw.h>
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/xform.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/key.h>
106 #include <sys/syslog.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
115 #ifdef INET6
116 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
117 #endif
118 
119 static int
120 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
121 {
122 	int error, new;
123 
124 	new = V_tcp_mssdflt;
125 	error = sysctl_handle_int(oidp, &new, 0, req);
126 	if (error == 0 && req->newptr) {
127 		if (new < TCP_MINMSS)
128 			error = EINVAL;
129 		else
130 			V_tcp_mssdflt = new;
131 	}
132 	return (error);
133 }
134 
135 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
136     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
137     &sysctl_net_inet_tcp_mss_check, "I",
138     "Default TCP Maximum Segment Size");
139 
140 #ifdef INET6
141 static int
142 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
143 {
144 	int error, new;
145 
146 	new = V_tcp_v6mssdflt;
147 	error = sysctl_handle_int(oidp, &new, 0, req);
148 	if (error == 0 && req->newptr) {
149 		if (new < TCP_MINMSS)
150 			error = EINVAL;
151 		else
152 			V_tcp_v6mssdflt = new;
153 	}
154 	return (error);
155 }
156 
157 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
158     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
159     &sysctl_net_inet_tcp_mss_v6_check, "I",
160    "Default TCP Maximum Segment Size for IPv6");
161 #endif
162 
163 /*
164  * Minimum MSS we accept and use. This prevents DoS attacks where
165  * we are forced to a ridiculous low MSS like 20 and send hundreds
166  * of packets instead of one. The effect scales with the available
167  * bandwidth and quickly saturates the CPU and network interface
168  * with packet generation and sending. Set to zero to disable MINMSS
169  * checking. This setting prevents us from sending too small packets.
170  */
171 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
172 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
173      &VNET_NAME(tcp_minmss), 0,
174     "Minmum TCP Maximum Segment Size");
175 
176 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
177 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
178     &VNET_NAME(tcp_do_rfc1323), 0,
179     "Enable rfc1323 (high performance TCP) extensions");
180 
181 static int	tcp_log_debug = 0;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
183     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
184 
185 static int	tcp_tcbhashsize = 0;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
187     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
188 
189 static int	do_tcpdrain = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
191     "Enable tcp_drain routine for extra help when low on mbufs");
192 
193 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
194     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
195 
196 static VNET_DEFINE(int, icmp_may_rst) = 1;
197 #define	V_icmp_may_rst			VNET(icmp_may_rst)
198 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
199     &VNET_NAME(icmp_may_rst), 0,
200     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
201 
202 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
203 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
204 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205     &VNET_NAME(tcp_isn_reseed_interval), 0,
206     "Seconds between reseeding of ISN secret");
207 
208 #ifdef TCP_SORECEIVE_STREAM
209 static int	tcp_soreceive_stream = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
211     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
212 #endif
213 
214 VNET_DEFINE(uma_zone_t, sack_hole_zone);
215 #define	V_sack_hole_zone		VNET(sack_hole_zone)
216 
217 static struct inpcb *tcp_notify(struct inpcb *, int);
218 static void	tcp_isn_tick(void *);
219 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
220 		    void *ip4hdr, const void *ip6hdr);
221 
222 /*
223  * Target size of TCP PCB hash tables. Must be a power of two.
224  *
225  * Note that this can be overridden by the kernel environment
226  * variable net.inet.tcp.tcbhashsize
227  */
228 #ifndef TCBHASHSIZE
229 #define TCBHASHSIZE	512
230 #endif
231 
232 /*
233  * XXX
234  * Callouts should be moved into struct tcp directly.  They are currently
235  * separate because the tcpcb structure is exported to userland for sysctl
236  * parsing purposes, which do not know about callouts.
237  */
238 struct tcpcb_mem {
239 	struct	tcpcb		tcb;
240 	struct	tcp_timer	tt;
241 };
242 
243 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
244 #define	V_tcpcb_zone			VNET(tcpcb_zone)
245 
246 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
247 struct callout isn_callout;
248 static struct mtx isn_mtx;
249 
250 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
251 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
252 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
253 
254 /*
255  * TCP initialization.
256  */
257 static void
258 tcp_zone_change(void *tag)
259 {
260 
261 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
262 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
263 	tcp_tw_zone_change();
264 }
265 
266 static int
267 tcp_inpcb_init(void *mem, int size, int flags)
268 {
269 	struct inpcb *inp = mem;
270 
271 	INP_LOCK_INIT(inp, "inp", "tcpinp");
272 	return (0);
273 }
274 
275 void
276 tcp_init(void)
277 {
278 	int hashsize;
279 
280 	hashsize = TCBHASHSIZE;
281 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
282 	if (!powerof2(hashsize)) {
283 		printf("WARNING: TCB hash size not a power of 2\n");
284 		hashsize = 512; /* safe default */
285 	}
286 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
287 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE);
288 
289 	/*
290 	 * These have to be type stable for the benefit of the timers.
291 	 */
292 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
293 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
294 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
295 
296 	tcp_tw_init();
297 	syncache_init();
298 	tcp_hc_init();
299 	tcp_reass_init();
300 
301 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
302 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
303 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
304 
305 	/* Skip initialization of globals for non-default instances. */
306 	if (!IS_DEFAULT_VNET(curvnet))
307 		return;
308 
309 	/* XXX virtualize those bellow? */
310 	tcp_delacktime = TCPTV_DELACK;
311 	tcp_keepinit = TCPTV_KEEP_INIT;
312 	tcp_keepidle = TCPTV_KEEP_IDLE;
313 	tcp_keepintvl = TCPTV_KEEPINTVL;
314 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
315 	tcp_msl = TCPTV_MSL;
316 	tcp_rexmit_min = TCPTV_MIN;
317 	if (tcp_rexmit_min < 1)
318 		tcp_rexmit_min = 1;
319 	tcp_rexmit_slop = TCPTV_CPU_VAR;
320 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
321 	tcp_tcbhashsize = hashsize;
322 
323 #ifdef TCP_SORECEIVE_STREAM
324 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
325 	if (tcp_soreceive_stream) {
326 		tcp_usrreqs.pru_soreceive = soreceive_stream;
327 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
328 	}
329 #endif
330 
331 #ifdef INET6
332 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
333 #else /* INET6 */
334 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
335 #endif /* INET6 */
336 	if (max_protohdr < TCP_MINPROTOHDR)
337 		max_protohdr = TCP_MINPROTOHDR;
338 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
339 		panic("tcp_init");
340 #undef TCP_MINPROTOHDR
341 
342 	ISN_LOCK_INIT();
343 	callout_init(&isn_callout, CALLOUT_MPSAFE);
344 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
345 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
346 		SHUTDOWN_PRI_DEFAULT);
347 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
348 		EVENTHANDLER_PRI_ANY);
349 }
350 
351 #ifdef VIMAGE
352 void
353 tcp_destroy(void)
354 {
355 
356 	tcp_reass_destroy();
357 	tcp_hc_destroy();
358 	syncache_destroy();
359 	tcp_tw_destroy();
360 	in_pcbinfo_destroy(&V_tcbinfo);
361 	uma_zdestroy(V_sack_hole_zone);
362 	uma_zdestroy(V_tcpcb_zone);
363 }
364 #endif
365 
366 void
367 tcp_fini(void *xtp)
368 {
369 
370 	callout_stop(&isn_callout);
371 }
372 
373 /*
374  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
375  * tcp_template used to store this data in mbufs, but we now recopy it out
376  * of the tcpcb each time to conserve mbufs.
377  */
378 void
379 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
380 {
381 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
382 
383 	INP_WLOCK_ASSERT(inp);
384 
385 #ifdef INET6
386 	if ((inp->inp_vflag & INP_IPV6) != 0) {
387 		struct ip6_hdr *ip6;
388 
389 		ip6 = (struct ip6_hdr *)ip_ptr;
390 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
391 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
392 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
393 			(IPV6_VERSION & IPV6_VERSION_MASK);
394 		ip6->ip6_nxt = IPPROTO_TCP;
395 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
396 		ip6->ip6_src = inp->in6p_laddr;
397 		ip6->ip6_dst = inp->in6p_faddr;
398 	} else
399 #endif
400 	{
401 		struct ip *ip;
402 
403 		ip = (struct ip *)ip_ptr;
404 		ip->ip_v = IPVERSION;
405 		ip->ip_hl = 5;
406 		ip->ip_tos = inp->inp_ip_tos;
407 		ip->ip_len = 0;
408 		ip->ip_id = 0;
409 		ip->ip_off = 0;
410 		ip->ip_ttl = inp->inp_ip_ttl;
411 		ip->ip_sum = 0;
412 		ip->ip_p = IPPROTO_TCP;
413 		ip->ip_src = inp->inp_laddr;
414 		ip->ip_dst = inp->inp_faddr;
415 	}
416 	th->th_sport = inp->inp_lport;
417 	th->th_dport = inp->inp_fport;
418 	th->th_seq = 0;
419 	th->th_ack = 0;
420 	th->th_x2 = 0;
421 	th->th_off = 5;
422 	th->th_flags = 0;
423 	th->th_win = 0;
424 	th->th_urp = 0;
425 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
426 }
427 
428 /*
429  * Create template to be used to send tcp packets on a connection.
430  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
431  * use for this function is in keepalives, which use tcp_respond.
432  */
433 struct tcptemp *
434 tcpip_maketemplate(struct inpcb *inp)
435 {
436 	struct tcptemp *t;
437 
438 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
439 	if (t == NULL)
440 		return (NULL);
441 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
442 	return (t);
443 }
444 
445 /*
446  * Send a single message to the TCP at address specified by
447  * the given TCP/IP header.  If m == NULL, then we make a copy
448  * of the tcpiphdr at ti and send directly to the addressed host.
449  * This is used to force keep alive messages out using the TCP
450  * template for a connection.  If flags are given then we send
451  * a message back to the TCP which originated the * segment ti,
452  * and discard the mbuf containing it and any other attached mbufs.
453  *
454  * In any case the ack and sequence number of the transmitted
455  * segment are as specified by the parameters.
456  *
457  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
458  */
459 void
460 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
461     tcp_seq ack, tcp_seq seq, int flags)
462 {
463 	int tlen;
464 	int win = 0;
465 	struct ip *ip;
466 	struct tcphdr *nth;
467 #ifdef INET6
468 	struct ip6_hdr *ip6;
469 	int isipv6;
470 #endif /* INET6 */
471 	int ipflags = 0;
472 	struct inpcb *inp;
473 
474 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
475 
476 #ifdef INET6
477 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
478 	ip6 = ipgen;
479 #endif /* INET6 */
480 	ip = ipgen;
481 
482 	if (tp != NULL) {
483 		inp = tp->t_inpcb;
484 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
485 		INP_WLOCK_ASSERT(inp);
486 	} else
487 		inp = NULL;
488 
489 	if (tp != NULL) {
490 		if (!(flags & TH_RST)) {
491 			win = sbspace(&inp->inp_socket->so_rcv);
492 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
493 				win = (long)TCP_MAXWIN << tp->rcv_scale;
494 		}
495 	}
496 	if (m == NULL) {
497 		m = m_gethdr(M_DONTWAIT, MT_DATA);
498 		if (m == NULL)
499 			return;
500 		tlen = 0;
501 		m->m_data += max_linkhdr;
502 #ifdef INET6
503 		if (isipv6) {
504 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
505 			      sizeof(struct ip6_hdr));
506 			ip6 = mtod(m, struct ip6_hdr *);
507 			nth = (struct tcphdr *)(ip6 + 1);
508 		} else
509 #endif /* INET6 */
510 	      {
511 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
512 		ip = mtod(m, struct ip *);
513 		nth = (struct tcphdr *)(ip + 1);
514 	      }
515 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
516 		flags = TH_ACK;
517 	} else {
518 		/*
519 		 *  reuse the mbuf.
520 		 * XXX MRT We inherrit the FIB, which is lucky.
521 		 */
522 		m_freem(m->m_next);
523 		m->m_next = NULL;
524 		m->m_data = (caddr_t)ipgen;
525 		/* m_len is set later */
526 		tlen = 0;
527 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
528 #ifdef INET6
529 		if (isipv6) {
530 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
531 			nth = (struct tcphdr *)(ip6 + 1);
532 		} else
533 #endif /* INET6 */
534 	      {
535 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
536 		nth = (struct tcphdr *)(ip + 1);
537 	      }
538 		if (th != nth) {
539 			/*
540 			 * this is usually a case when an extension header
541 			 * exists between the IPv6 header and the
542 			 * TCP header.
543 			 */
544 			nth->th_sport = th->th_sport;
545 			nth->th_dport = th->th_dport;
546 		}
547 		xchg(nth->th_dport, nth->th_sport, uint16_t);
548 #undef xchg
549 	}
550 #ifdef INET6
551 	if (isipv6) {
552 		ip6->ip6_flow = 0;
553 		ip6->ip6_vfc = IPV6_VERSION;
554 		ip6->ip6_nxt = IPPROTO_TCP;
555 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
556 						tlen));
557 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
558 	} else
559 #endif
560 	{
561 		tlen += sizeof (struct tcpiphdr);
562 		ip->ip_len = tlen;
563 		ip->ip_ttl = V_ip_defttl;
564 		if (V_path_mtu_discovery)
565 			ip->ip_off |= IP_DF;
566 	}
567 	m->m_len = tlen;
568 	m->m_pkthdr.len = tlen;
569 	m->m_pkthdr.rcvif = NULL;
570 #ifdef MAC
571 	if (inp != NULL) {
572 		/*
573 		 * Packet is associated with a socket, so allow the
574 		 * label of the response to reflect the socket label.
575 		 */
576 		INP_WLOCK_ASSERT(inp);
577 		mac_inpcb_create_mbuf(inp, m);
578 	} else {
579 		/*
580 		 * Packet is not associated with a socket, so possibly
581 		 * update the label in place.
582 		 */
583 		mac_netinet_tcp_reply(m);
584 	}
585 #endif
586 	nth->th_seq = htonl(seq);
587 	nth->th_ack = htonl(ack);
588 	nth->th_x2 = 0;
589 	nth->th_off = sizeof (struct tcphdr) >> 2;
590 	nth->th_flags = flags;
591 	if (tp != NULL)
592 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
593 	else
594 		nth->th_win = htons((u_short)win);
595 	nth->th_urp = 0;
596 #ifdef INET6
597 	if (isipv6) {
598 		nth->th_sum = 0;
599 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
600 					sizeof(struct ip6_hdr),
601 					tlen - sizeof(struct ip6_hdr));
602 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
603 		    NULL, NULL);
604 	} else
605 #endif /* INET6 */
606 	{
607 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
608 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
609 		m->m_pkthdr.csum_flags = CSUM_TCP;
610 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
611 	}
612 #ifdef TCPDEBUG
613 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
614 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
615 #endif
616 #ifdef INET6
617 	if (isipv6)
618 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
619 	else
620 #endif /* INET6 */
621 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
622 }
623 
624 /*
625  * Create a new TCP control block, making an
626  * empty reassembly queue and hooking it to the argument
627  * protocol control block.  The `inp' parameter must have
628  * come from the zone allocator set up in tcp_init().
629  */
630 struct tcpcb *
631 tcp_newtcpcb(struct inpcb *inp)
632 {
633 	struct tcpcb_mem *tm;
634 	struct tcpcb *tp;
635 #ifdef INET6
636 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
637 #endif /* INET6 */
638 
639 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
640 	if (tm == NULL)
641 		return (NULL);
642 	tp = &tm->tcb;
643 #ifdef VIMAGE
644 	tp->t_vnet = inp->inp_vnet;
645 #endif
646 	tp->t_timers = &tm->tt;
647 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
648 	tp->t_maxseg = tp->t_maxopd =
649 #ifdef INET6
650 		isipv6 ? V_tcp_v6mssdflt :
651 #endif /* INET6 */
652 		V_tcp_mssdflt;
653 
654 	/* Set up our timeouts. */
655 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
656 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
657 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
658 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
659 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
660 
661 	if (V_tcp_do_rfc1323)
662 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
663 	if (V_tcp_do_sack)
664 		tp->t_flags |= TF_SACK_PERMIT;
665 	TAILQ_INIT(&tp->snd_holes);
666 	tp->t_inpcb = inp;	/* XXX */
667 	/*
668 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
669 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
670 	 * reasonable initial retransmit time.
671 	 */
672 	tp->t_srtt = TCPTV_SRTTBASE;
673 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
674 	tp->t_rttmin = tcp_rexmit_min;
675 	tp->t_rxtcur = TCPTV_RTOBASE;
676 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
677 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
678 	tp->t_rcvtime = ticks;
679 	/*
680 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
681 	 * because the socket may be bound to an IPv6 wildcard address,
682 	 * which may match an IPv4-mapped IPv6 address.
683 	 */
684 	inp->inp_ip_ttl = V_ip_defttl;
685 	inp->inp_ppcb = tp;
686 	return (tp);		/* XXX */
687 }
688 
689 /*
690  * Drop a TCP connection, reporting
691  * the specified error.  If connection is synchronized,
692  * then send a RST to peer.
693  */
694 struct tcpcb *
695 tcp_drop(struct tcpcb *tp, int errno)
696 {
697 	struct socket *so = tp->t_inpcb->inp_socket;
698 
699 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
700 	INP_WLOCK_ASSERT(tp->t_inpcb);
701 
702 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
703 		tp->t_state = TCPS_CLOSED;
704 		(void) tcp_output_reset(tp);
705 		TCPSTAT_INC(tcps_drops);
706 	} else
707 		TCPSTAT_INC(tcps_conndrops);
708 	if (errno == ETIMEDOUT && tp->t_softerror)
709 		errno = tp->t_softerror;
710 	so->so_error = errno;
711 	return (tcp_close(tp));
712 }
713 
714 void
715 tcp_discardcb(struct tcpcb *tp)
716 {
717 	struct inpcb *inp = tp->t_inpcb;
718 	struct socket *so = inp->inp_socket;
719 #ifdef INET6
720 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
721 #endif /* INET6 */
722 
723 	INP_WLOCK_ASSERT(inp);
724 
725 	/*
726 	 * Make sure that all of our timers are stopped before we delete the
727 	 * PCB.
728 	 *
729 	 * XXXRW: Really, we would like to use callout_drain() here in order
730 	 * to avoid races experienced in tcp_timer.c where a timer is already
731 	 * executing at this point.  However, we can't, both because we're
732 	 * running in a context where we can't sleep, and also because we
733 	 * hold locks required by the timers.  What we instead need to do is
734 	 * test to see if callout_drain() is required, and if so, defer some
735 	 * portion of the remainder of tcp_discardcb() to an asynchronous
736 	 * context that can callout_drain() and then continue.  Some care
737 	 * will be required to ensure that no further processing takes place
738 	 * on the tcpcb, even though it hasn't been freed (a flag?).
739 	 */
740 	callout_stop(&tp->t_timers->tt_rexmt);
741 	callout_stop(&tp->t_timers->tt_persist);
742 	callout_stop(&tp->t_timers->tt_keep);
743 	callout_stop(&tp->t_timers->tt_2msl);
744 	callout_stop(&tp->t_timers->tt_delack);
745 
746 	/*
747 	 * If we got enough samples through the srtt filter,
748 	 * save the rtt and rttvar in the routing entry.
749 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
750 	 * 4 samples is enough for the srtt filter to converge
751 	 * to within enough % of the correct value; fewer samples
752 	 * and we could save a bogus rtt. The danger is not high
753 	 * as tcp quickly recovers from everything.
754 	 * XXX: Works very well but needs some more statistics!
755 	 */
756 	if (tp->t_rttupdated >= 4) {
757 		struct hc_metrics_lite metrics;
758 		u_long ssthresh;
759 
760 		bzero(&metrics, sizeof(metrics));
761 		/*
762 		 * Update the ssthresh always when the conditions below
763 		 * are satisfied. This gives us better new start value
764 		 * for the congestion avoidance for new connections.
765 		 * ssthresh is only set if packet loss occured on a session.
766 		 *
767 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
768 		 * being torn down.  Ideally this code would not use 'so'.
769 		 */
770 		ssthresh = tp->snd_ssthresh;
771 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
772 			/*
773 			 * convert the limit from user data bytes to
774 			 * packets then to packet data bytes.
775 			 */
776 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
777 			if (ssthresh < 2)
778 				ssthresh = 2;
779 			ssthresh *= (u_long)(tp->t_maxseg +
780 #ifdef INET6
781 				      (isipv6 ? sizeof (struct ip6_hdr) +
782 					       sizeof (struct tcphdr) :
783 #endif
784 				       sizeof (struct tcpiphdr)
785 #ifdef INET6
786 				       )
787 #endif
788 				      );
789 		} else
790 			ssthresh = 0;
791 		metrics.rmx_ssthresh = ssthresh;
792 
793 		metrics.rmx_rtt = tp->t_srtt;
794 		metrics.rmx_rttvar = tp->t_rttvar;
795 		metrics.rmx_cwnd = tp->snd_cwnd;
796 		metrics.rmx_sendpipe = 0;
797 		metrics.rmx_recvpipe = 0;
798 
799 		tcp_hc_update(&inp->inp_inc, &metrics);
800 	}
801 
802 	/* free the reassembly queue, if any */
803 	tcp_reass_flush(tp);
804 	/* Disconnect offload device, if any. */
805 	tcp_offload_detach(tp);
806 
807 	tcp_free_sackholes(tp);
808 	inp->inp_ppcb = NULL;
809 	tp->t_inpcb = NULL;
810 	uma_zfree(V_tcpcb_zone, tp);
811 }
812 
813 /*
814  * Attempt to close a TCP control block, marking it as dropped, and freeing
815  * the socket if we hold the only reference.
816  */
817 struct tcpcb *
818 tcp_close(struct tcpcb *tp)
819 {
820 	struct inpcb *inp = tp->t_inpcb;
821 	struct socket *so;
822 
823 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
824 	INP_WLOCK_ASSERT(inp);
825 
826 	/* Notify any offload devices of listener close */
827 	if (tp->t_state == TCPS_LISTEN)
828 		tcp_offload_listen_close(tp);
829 	in_pcbdrop(inp);
830 	TCPSTAT_INC(tcps_closed);
831 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
832 	so = inp->inp_socket;
833 	soisdisconnected(so);
834 	if (inp->inp_flags & INP_SOCKREF) {
835 		KASSERT(so->so_state & SS_PROTOREF,
836 		    ("tcp_close: !SS_PROTOREF"));
837 		inp->inp_flags &= ~INP_SOCKREF;
838 		INP_WUNLOCK(inp);
839 		ACCEPT_LOCK();
840 		SOCK_LOCK(so);
841 		so->so_state &= ~SS_PROTOREF;
842 		sofree(so);
843 		return (NULL);
844 	}
845 	return (tp);
846 }
847 
848 void
849 tcp_drain(void)
850 {
851 	VNET_ITERATOR_DECL(vnet_iter);
852 
853 	if (!do_tcpdrain)
854 		return;
855 
856 	VNET_LIST_RLOCK_NOSLEEP();
857 	VNET_FOREACH(vnet_iter) {
858 		CURVNET_SET(vnet_iter);
859 		struct inpcb *inpb;
860 		struct tcpcb *tcpb;
861 
862 	/*
863 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
864 	 * if there is one...
865 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
866 	 *      reassembly queue should be flushed, but in a situation
867 	 *	where we're really low on mbufs, this is potentially
868 	 *	usefull.
869 	 */
870 		INP_INFO_RLOCK(&V_tcbinfo);
871 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
872 			if (inpb->inp_flags & INP_TIMEWAIT)
873 				continue;
874 			INP_WLOCK(inpb);
875 			if ((tcpb = intotcpcb(inpb)) != NULL) {
876 				tcp_reass_flush(tcpb);
877 				tcp_clean_sackreport(tcpb);
878 			}
879 			INP_WUNLOCK(inpb);
880 		}
881 		INP_INFO_RUNLOCK(&V_tcbinfo);
882 		CURVNET_RESTORE();
883 	}
884 	VNET_LIST_RUNLOCK_NOSLEEP();
885 }
886 
887 /*
888  * Notify a tcp user of an asynchronous error;
889  * store error as soft error, but wake up user
890  * (for now, won't do anything until can select for soft error).
891  *
892  * Do not wake up user since there currently is no mechanism for
893  * reporting soft errors (yet - a kqueue filter may be added).
894  */
895 static struct inpcb *
896 tcp_notify(struct inpcb *inp, int error)
897 {
898 	struct tcpcb *tp;
899 
900 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
901 	INP_WLOCK_ASSERT(inp);
902 
903 	if ((inp->inp_flags & INP_TIMEWAIT) ||
904 	    (inp->inp_flags & INP_DROPPED))
905 		return (inp);
906 
907 	tp = intotcpcb(inp);
908 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
909 
910 	/*
911 	 * Ignore some errors if we are hooked up.
912 	 * If connection hasn't completed, has retransmitted several times,
913 	 * and receives a second error, give up now.  This is better
914 	 * than waiting a long time to establish a connection that
915 	 * can never complete.
916 	 */
917 	if (tp->t_state == TCPS_ESTABLISHED &&
918 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
919 	     error == EHOSTDOWN)) {
920 		return (inp);
921 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
922 	    tp->t_softerror) {
923 		tp = tcp_drop(tp, error);
924 		if (tp != NULL)
925 			return (inp);
926 		else
927 			return (NULL);
928 	} else {
929 		tp->t_softerror = error;
930 		return (inp);
931 	}
932 #if 0
933 	wakeup( &so->so_timeo);
934 	sorwakeup(so);
935 	sowwakeup(so);
936 #endif
937 }
938 
939 static int
940 tcp_pcblist(SYSCTL_HANDLER_ARGS)
941 {
942 	int error, i, m, n, pcb_count;
943 	struct inpcb *inp, **inp_list;
944 	inp_gen_t gencnt;
945 	struct xinpgen xig;
946 
947 	/*
948 	 * The process of preparing the TCB list is too time-consuming and
949 	 * resource-intensive to repeat twice on every request.
950 	 */
951 	if (req->oldptr == NULL) {
952 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
953 		n += imax(n / 8, 10);
954 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
955 		return (0);
956 	}
957 
958 	if (req->newptr != NULL)
959 		return (EPERM);
960 
961 	/*
962 	 * OK, now we're committed to doing something.
963 	 */
964 	INP_INFO_RLOCK(&V_tcbinfo);
965 	gencnt = V_tcbinfo.ipi_gencnt;
966 	n = V_tcbinfo.ipi_count;
967 	INP_INFO_RUNLOCK(&V_tcbinfo);
968 
969 	m = syncache_pcbcount();
970 
971 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
972 		+ (n + m) * sizeof(struct xtcpcb));
973 	if (error != 0)
974 		return (error);
975 
976 	xig.xig_len = sizeof xig;
977 	xig.xig_count = n + m;
978 	xig.xig_gen = gencnt;
979 	xig.xig_sogen = so_gencnt;
980 	error = SYSCTL_OUT(req, &xig, sizeof xig);
981 	if (error)
982 		return (error);
983 
984 	error = syncache_pcblist(req, m, &pcb_count);
985 	if (error)
986 		return (error);
987 
988 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
989 	if (inp_list == NULL)
990 		return (ENOMEM);
991 
992 	INP_INFO_RLOCK(&V_tcbinfo);
993 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
994 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
995 		INP_WLOCK(inp);
996 		if (inp->inp_gencnt <= gencnt) {
997 			/*
998 			 * XXX: This use of cr_cansee(), introduced with
999 			 * TCP state changes, is not quite right, but for
1000 			 * now, better than nothing.
1001 			 */
1002 			if (inp->inp_flags & INP_TIMEWAIT) {
1003 				if (intotw(inp) != NULL)
1004 					error = cr_cansee(req->td->td_ucred,
1005 					    intotw(inp)->tw_cred);
1006 				else
1007 					error = EINVAL;	/* Skip this inp. */
1008 			} else
1009 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1010 			if (error == 0) {
1011 				in_pcbref(inp);
1012 				inp_list[i++] = inp;
1013 			}
1014 		}
1015 		INP_WUNLOCK(inp);
1016 	}
1017 	INP_INFO_RUNLOCK(&V_tcbinfo);
1018 	n = i;
1019 
1020 	error = 0;
1021 	for (i = 0; i < n; i++) {
1022 		inp = inp_list[i];
1023 		INP_RLOCK(inp);
1024 		if (inp->inp_gencnt <= gencnt) {
1025 			struct xtcpcb xt;
1026 			void *inp_ppcb;
1027 
1028 			bzero(&xt, sizeof(xt));
1029 			xt.xt_len = sizeof xt;
1030 			/* XXX should avoid extra copy */
1031 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1032 			inp_ppcb = inp->inp_ppcb;
1033 			if (inp_ppcb == NULL)
1034 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1035 			else if (inp->inp_flags & INP_TIMEWAIT) {
1036 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1037 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1038 			} else {
1039 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1040 				if (xt.xt_tp.t_timers)
1041 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1042 			}
1043 			if (inp->inp_socket != NULL)
1044 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1045 			else {
1046 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1047 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1048 			}
1049 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1050 			INP_RUNLOCK(inp);
1051 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1052 		} else
1053 			INP_RUNLOCK(inp);
1054 	}
1055 	INP_INFO_WLOCK(&V_tcbinfo);
1056 	for (i = 0; i < n; i++) {
1057 		inp = inp_list[i];
1058 		INP_WLOCK(inp);
1059 		if (!in_pcbrele(inp))
1060 			INP_WUNLOCK(inp);
1061 	}
1062 	INP_INFO_WUNLOCK(&V_tcbinfo);
1063 
1064 	if (!error) {
1065 		/*
1066 		 * Give the user an updated idea of our state.
1067 		 * If the generation differs from what we told
1068 		 * her before, she knows that something happened
1069 		 * while we were processing this request, and it
1070 		 * might be necessary to retry.
1071 		 */
1072 		INP_INFO_RLOCK(&V_tcbinfo);
1073 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1074 		xig.xig_sogen = so_gencnt;
1075 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1076 		INP_INFO_RUNLOCK(&V_tcbinfo);
1077 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1078 	}
1079 	free(inp_list, M_TEMP);
1080 	return (error);
1081 }
1082 
1083 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1084     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1085 
1086 static int
1087 tcp_getcred(SYSCTL_HANDLER_ARGS)
1088 {
1089 	struct xucred xuc;
1090 	struct sockaddr_in addrs[2];
1091 	struct inpcb *inp;
1092 	int error;
1093 
1094 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1095 	if (error)
1096 		return (error);
1097 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1098 	if (error)
1099 		return (error);
1100 	INP_INFO_RLOCK(&V_tcbinfo);
1101 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1102 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1103 	if (inp != NULL) {
1104 		INP_RLOCK(inp);
1105 		INP_INFO_RUNLOCK(&V_tcbinfo);
1106 		if (inp->inp_socket == NULL)
1107 			error = ENOENT;
1108 		if (error == 0)
1109 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1110 		if (error == 0)
1111 			cru2x(inp->inp_cred, &xuc);
1112 		INP_RUNLOCK(inp);
1113 	} else {
1114 		INP_INFO_RUNLOCK(&V_tcbinfo);
1115 		error = ENOENT;
1116 	}
1117 	if (error == 0)
1118 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1119 	return (error);
1120 }
1121 
1122 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1123     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1124     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1125 
1126 #ifdef INET6
1127 static int
1128 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1129 {
1130 	struct xucred xuc;
1131 	struct sockaddr_in6 addrs[2];
1132 	struct inpcb *inp;
1133 	int error, mapped = 0;
1134 
1135 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1136 	if (error)
1137 		return (error);
1138 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1139 	if (error)
1140 		return (error);
1141 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1142 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1143 		return (error);
1144 	}
1145 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1146 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1147 			mapped = 1;
1148 		else
1149 			return (EINVAL);
1150 	}
1151 
1152 	INP_INFO_RLOCK(&V_tcbinfo);
1153 	if (mapped == 1)
1154 		inp = in_pcblookup_hash(&V_tcbinfo,
1155 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1156 			addrs[1].sin6_port,
1157 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1158 			addrs[0].sin6_port,
1159 			0, NULL);
1160 	else
1161 		inp = in6_pcblookup_hash(&V_tcbinfo,
1162 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1163 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1164 	if (inp != NULL) {
1165 		INP_RLOCK(inp);
1166 		INP_INFO_RUNLOCK(&V_tcbinfo);
1167 		if (inp->inp_socket == NULL)
1168 			error = ENOENT;
1169 		if (error == 0)
1170 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1171 		if (error == 0)
1172 			cru2x(inp->inp_cred, &xuc);
1173 		INP_RUNLOCK(inp);
1174 	} else {
1175 		INP_INFO_RUNLOCK(&V_tcbinfo);
1176 		error = ENOENT;
1177 	}
1178 	if (error == 0)
1179 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1180 	return (error);
1181 }
1182 
1183 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1184     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1185     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1186 #endif
1187 
1188 
1189 void
1190 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1191 {
1192 	struct ip *ip = vip;
1193 	struct tcphdr *th;
1194 	struct in_addr faddr;
1195 	struct inpcb *inp;
1196 	struct tcpcb *tp;
1197 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1198 	struct icmp *icp;
1199 	struct in_conninfo inc;
1200 	tcp_seq icmp_tcp_seq;
1201 	int mtu;
1202 
1203 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1204 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1205 		return;
1206 
1207 	if (cmd == PRC_MSGSIZE)
1208 		notify = tcp_mtudisc;
1209 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1210 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1211 		notify = tcp_drop_syn_sent;
1212 	/*
1213 	 * Redirects don't need to be handled up here.
1214 	 */
1215 	else if (PRC_IS_REDIRECT(cmd))
1216 		return;
1217 	/*
1218 	 * Source quench is depreciated.
1219 	 */
1220 	else if (cmd == PRC_QUENCH)
1221 		return;
1222 	/*
1223 	 * Hostdead is ugly because it goes linearly through all PCBs.
1224 	 * XXX: We never get this from ICMP, otherwise it makes an
1225 	 * excellent DoS attack on machines with many connections.
1226 	 */
1227 	else if (cmd == PRC_HOSTDEAD)
1228 		ip = NULL;
1229 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1230 		return;
1231 	if (ip != NULL) {
1232 		icp = (struct icmp *)((caddr_t)ip
1233 				      - offsetof(struct icmp, icmp_ip));
1234 		th = (struct tcphdr *)((caddr_t)ip
1235 				       + (ip->ip_hl << 2));
1236 		INP_INFO_WLOCK(&V_tcbinfo);
1237 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1238 		    ip->ip_src, th->th_sport, 0, NULL);
1239 		if (inp != NULL)  {
1240 			INP_WLOCK(inp);
1241 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1242 			    !(inp->inp_flags & INP_DROPPED) &&
1243 			    !(inp->inp_socket == NULL)) {
1244 				icmp_tcp_seq = htonl(th->th_seq);
1245 				tp = intotcpcb(inp);
1246 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1247 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1248 					if (cmd == PRC_MSGSIZE) {
1249 					    /*
1250 					     * MTU discovery:
1251 					     * If we got a needfrag set the MTU
1252 					     * in the route to the suggested new
1253 					     * value (if given) and then notify.
1254 					     */
1255 					    bzero(&inc, sizeof(inc));
1256 					    inc.inc_faddr = faddr;
1257 					    inc.inc_fibnum =
1258 						inp->inp_inc.inc_fibnum;
1259 
1260 					    mtu = ntohs(icp->icmp_nextmtu);
1261 					    /*
1262 					     * If no alternative MTU was
1263 					     * proposed, try the next smaller
1264 					     * one.  ip->ip_len has already
1265 					     * been swapped in icmp_input().
1266 					     */
1267 					    if (!mtu)
1268 						mtu = ip_next_mtu(ip->ip_len,
1269 						 1);
1270 					    if (mtu < V_tcp_minmss
1271 						 + sizeof(struct tcpiphdr))
1272 						mtu = V_tcp_minmss
1273 						 + sizeof(struct tcpiphdr);
1274 					    /*
1275 					     * Only cache the the MTU if it
1276 					     * is smaller than the interface
1277 					     * or route MTU.  tcp_mtudisc()
1278 					     * will do right thing by itself.
1279 					     */
1280 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1281 						tcp_hc_updatemtu(&inc, mtu);
1282 					}
1283 
1284 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1285 				}
1286 			}
1287 			if (inp != NULL)
1288 				INP_WUNLOCK(inp);
1289 		} else {
1290 			bzero(&inc, sizeof(inc));
1291 			inc.inc_fport = th->th_dport;
1292 			inc.inc_lport = th->th_sport;
1293 			inc.inc_faddr = faddr;
1294 			inc.inc_laddr = ip->ip_src;
1295 			syncache_unreach(&inc, th);
1296 		}
1297 		INP_INFO_WUNLOCK(&V_tcbinfo);
1298 	} else
1299 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1300 }
1301 
1302 #ifdef INET6
1303 void
1304 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1305 {
1306 	struct tcphdr th;
1307 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1308 	struct ip6_hdr *ip6;
1309 	struct mbuf *m;
1310 	struct ip6ctlparam *ip6cp = NULL;
1311 	const struct sockaddr_in6 *sa6_src = NULL;
1312 	int off;
1313 	struct tcp_portonly {
1314 		u_int16_t th_sport;
1315 		u_int16_t th_dport;
1316 	} *thp;
1317 
1318 	if (sa->sa_family != AF_INET6 ||
1319 	    sa->sa_len != sizeof(struct sockaddr_in6))
1320 		return;
1321 
1322 	if (cmd == PRC_MSGSIZE)
1323 		notify = tcp_mtudisc;
1324 	else if (!PRC_IS_REDIRECT(cmd) &&
1325 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1326 		return;
1327 	/* Source quench is depreciated. */
1328 	else if (cmd == PRC_QUENCH)
1329 		return;
1330 
1331 	/* if the parameter is from icmp6, decode it. */
1332 	if (d != NULL) {
1333 		ip6cp = (struct ip6ctlparam *)d;
1334 		m = ip6cp->ip6c_m;
1335 		ip6 = ip6cp->ip6c_ip6;
1336 		off = ip6cp->ip6c_off;
1337 		sa6_src = ip6cp->ip6c_src;
1338 	} else {
1339 		m = NULL;
1340 		ip6 = NULL;
1341 		off = 0;	/* fool gcc */
1342 		sa6_src = &sa6_any;
1343 	}
1344 
1345 	if (ip6 != NULL) {
1346 		struct in_conninfo inc;
1347 		/*
1348 		 * XXX: We assume that when IPV6 is non NULL,
1349 		 * M and OFF are valid.
1350 		 */
1351 
1352 		/* check if we can safely examine src and dst ports */
1353 		if (m->m_pkthdr.len < off + sizeof(*thp))
1354 			return;
1355 
1356 		bzero(&th, sizeof(th));
1357 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1358 
1359 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1360 		    (struct sockaddr *)ip6cp->ip6c_src,
1361 		    th.th_sport, cmd, NULL, notify);
1362 
1363 		bzero(&inc, sizeof(inc));
1364 		inc.inc_fport = th.th_dport;
1365 		inc.inc_lport = th.th_sport;
1366 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1367 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1368 		inc.inc_flags |= INC_ISIPV6;
1369 		INP_INFO_WLOCK(&V_tcbinfo);
1370 		syncache_unreach(&inc, &th);
1371 		INP_INFO_WUNLOCK(&V_tcbinfo);
1372 	} else
1373 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1374 			      0, cmd, NULL, notify);
1375 }
1376 #endif /* INET6 */
1377 
1378 
1379 /*
1380  * Following is where TCP initial sequence number generation occurs.
1381  *
1382  * There are two places where we must use initial sequence numbers:
1383  * 1.  In SYN-ACK packets.
1384  * 2.  In SYN packets.
1385  *
1386  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1387  * tcp_syncache.c for details.
1388  *
1389  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1390  * depends on this property.  In addition, these ISNs should be
1391  * unguessable so as to prevent connection hijacking.  To satisfy
1392  * the requirements of this situation, the algorithm outlined in
1393  * RFC 1948 is used, with only small modifications.
1394  *
1395  * Implementation details:
1396  *
1397  * Time is based off the system timer, and is corrected so that it
1398  * increases by one megabyte per second.  This allows for proper
1399  * recycling on high speed LANs while still leaving over an hour
1400  * before rollover.
1401  *
1402  * As reading the *exact* system time is too expensive to be done
1403  * whenever setting up a TCP connection, we increment the time
1404  * offset in two ways.  First, a small random positive increment
1405  * is added to isn_offset for each connection that is set up.
1406  * Second, the function tcp_isn_tick fires once per clock tick
1407  * and increments isn_offset as necessary so that sequence numbers
1408  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1409  * random positive increments serve only to ensure that the same
1410  * exact sequence number is never sent out twice (as could otherwise
1411  * happen when a port is recycled in less than the system tick
1412  * interval.)
1413  *
1414  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1415  * between seeding of isn_secret.  This is normally set to zero,
1416  * as reseeding should not be necessary.
1417  *
1418  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1419  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1420  * general, this means holding an exclusive (write) lock.
1421  */
1422 
1423 #define ISN_BYTES_PER_SECOND 1048576
1424 #define ISN_STATIC_INCREMENT 4096
1425 #define ISN_RANDOM_INCREMENT (4096 - 1)
1426 
1427 static VNET_DEFINE(u_char, isn_secret[32]);
1428 static VNET_DEFINE(int, isn_last_reseed);
1429 static VNET_DEFINE(u_int32_t, isn_offset);
1430 static VNET_DEFINE(u_int32_t, isn_offset_old);
1431 
1432 #define	V_isn_secret			VNET(isn_secret)
1433 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1434 #define	V_isn_offset			VNET(isn_offset)
1435 #define	V_isn_offset_old		VNET(isn_offset_old)
1436 
1437 tcp_seq
1438 tcp_new_isn(struct tcpcb *tp)
1439 {
1440 	MD5_CTX isn_ctx;
1441 	u_int32_t md5_buffer[4];
1442 	tcp_seq new_isn;
1443 
1444 	INP_WLOCK_ASSERT(tp->t_inpcb);
1445 
1446 	ISN_LOCK();
1447 	/* Seed if this is the first use, reseed if requested. */
1448 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1449 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1450 		< (u_int)ticks))) {
1451 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1452 		V_isn_last_reseed = ticks;
1453 	}
1454 
1455 	/* Compute the md5 hash and return the ISN. */
1456 	MD5Init(&isn_ctx);
1457 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1458 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1459 #ifdef INET6
1460 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1461 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1462 			  sizeof(struct in6_addr));
1463 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1464 			  sizeof(struct in6_addr));
1465 	} else
1466 #endif
1467 	{
1468 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1469 			  sizeof(struct in_addr));
1470 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1471 			  sizeof(struct in_addr));
1472 	}
1473 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1474 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1475 	new_isn = (tcp_seq) md5_buffer[0];
1476 	V_isn_offset += ISN_STATIC_INCREMENT +
1477 		(arc4random() & ISN_RANDOM_INCREMENT);
1478 	new_isn += V_isn_offset;
1479 	ISN_UNLOCK();
1480 	return (new_isn);
1481 }
1482 
1483 /*
1484  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1485  * to keep time flowing at a relatively constant rate.  If the random
1486  * increments have already pushed us past the projected offset, do nothing.
1487  */
1488 static void
1489 tcp_isn_tick(void *xtp)
1490 {
1491 	VNET_ITERATOR_DECL(vnet_iter);
1492 	u_int32_t projected_offset;
1493 
1494 	VNET_LIST_RLOCK_NOSLEEP();
1495 	ISN_LOCK();
1496 	VNET_FOREACH(vnet_iter) {
1497 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1498 		projected_offset =
1499 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1500 
1501 		if (SEQ_GT(projected_offset, V_isn_offset))
1502 			V_isn_offset = projected_offset;
1503 
1504 		V_isn_offset_old = V_isn_offset;
1505 		CURVNET_RESTORE();
1506 	}
1507 	ISN_UNLOCK();
1508 	VNET_LIST_RUNLOCK_NOSLEEP();
1509 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1510 }
1511 
1512 /*
1513  * When a specific ICMP unreachable message is received and the
1514  * connection state is SYN-SENT, drop the connection.  This behavior
1515  * is controlled by the icmp_may_rst sysctl.
1516  */
1517 struct inpcb *
1518 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1519 {
1520 	struct tcpcb *tp;
1521 
1522 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1523 	INP_WLOCK_ASSERT(inp);
1524 
1525 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1526 	    (inp->inp_flags & INP_DROPPED))
1527 		return (inp);
1528 
1529 	tp = intotcpcb(inp);
1530 	if (tp->t_state != TCPS_SYN_SENT)
1531 		return (inp);
1532 
1533 	tp = tcp_drop(tp, errno);
1534 	if (tp != NULL)
1535 		return (inp);
1536 	else
1537 		return (NULL);
1538 }
1539 
1540 /*
1541  * When `need fragmentation' ICMP is received, update our idea of the MSS
1542  * based on the new value in the route.  Also nudge TCP to send something,
1543  * since we know the packet we just sent was dropped.
1544  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1545  */
1546 struct inpcb *
1547 tcp_mtudisc(struct inpcb *inp, int errno)
1548 {
1549 	struct tcpcb *tp;
1550 	struct socket *so;
1551 
1552 	INP_WLOCK_ASSERT(inp);
1553 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1554 	    (inp->inp_flags & INP_DROPPED))
1555 		return (inp);
1556 
1557 	tp = intotcpcb(inp);
1558 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1559 
1560 	tcp_mss_update(tp, -1, NULL, NULL);
1561 
1562 	so = inp->inp_socket;
1563 	SOCKBUF_LOCK(&so->so_snd);
1564 	/* If the mss is larger than the socket buffer, decrease the mss. */
1565 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1566 		tp->t_maxseg = so->so_snd.sb_hiwat;
1567 	SOCKBUF_UNLOCK(&so->so_snd);
1568 
1569 	TCPSTAT_INC(tcps_mturesent);
1570 	tp->t_rtttime = 0;
1571 	tp->snd_nxt = tp->snd_una;
1572 	tcp_free_sackholes(tp);
1573 	tp->snd_recover = tp->snd_max;
1574 	if (tp->t_flags & TF_SACK_PERMIT)
1575 		EXIT_FASTRECOVERY(tp);
1576 	tcp_output_send(tp);
1577 	return (inp);
1578 }
1579 
1580 /*
1581  * Look-up the routing entry to the peer of this inpcb.  If no route
1582  * is found and it cannot be allocated, then return 0.  This routine
1583  * is called by TCP routines that access the rmx structure and by
1584  * tcp_mss_update to get the peer/interface MTU.
1585  */
1586 u_long
1587 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1588 {
1589 	struct route sro;
1590 	struct sockaddr_in *dst;
1591 	struct ifnet *ifp;
1592 	u_long maxmtu = 0;
1593 
1594 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1595 
1596 	bzero(&sro, sizeof(sro));
1597 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1598 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1599 		dst->sin_family = AF_INET;
1600 		dst->sin_len = sizeof(*dst);
1601 		dst->sin_addr = inc->inc_faddr;
1602 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1603 	}
1604 	if (sro.ro_rt != NULL) {
1605 		ifp = sro.ro_rt->rt_ifp;
1606 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1607 			maxmtu = ifp->if_mtu;
1608 		else
1609 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1610 
1611 		/* Report additional interface capabilities. */
1612 		if (flags != NULL) {
1613 			if (ifp->if_capenable & IFCAP_TSO4 &&
1614 			    ifp->if_hwassist & CSUM_TSO)
1615 				*flags |= CSUM_TSO;
1616 		}
1617 		RTFREE(sro.ro_rt);
1618 	}
1619 	return (maxmtu);
1620 }
1621 
1622 #ifdef INET6
1623 u_long
1624 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1625 {
1626 	struct route_in6 sro6;
1627 	struct ifnet *ifp;
1628 	u_long maxmtu = 0;
1629 
1630 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1631 
1632 	bzero(&sro6, sizeof(sro6));
1633 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1634 		sro6.ro_dst.sin6_family = AF_INET6;
1635 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1636 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1637 		rtalloc_ign((struct route *)&sro6, 0);
1638 	}
1639 	if (sro6.ro_rt != NULL) {
1640 		ifp = sro6.ro_rt->rt_ifp;
1641 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1642 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1643 		else
1644 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1645 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1646 
1647 		/* Report additional interface capabilities. */
1648 		if (flags != NULL) {
1649 			if (ifp->if_capenable & IFCAP_TSO6 &&
1650 			    ifp->if_hwassist & CSUM_TSO)
1651 				*flags |= CSUM_TSO;
1652 		}
1653 		RTFREE(sro6.ro_rt);
1654 	}
1655 
1656 	return (maxmtu);
1657 }
1658 #endif /* INET6 */
1659 
1660 #ifdef IPSEC
1661 /* compute ESP/AH header size for TCP, including outer IP header. */
1662 size_t
1663 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1664 {
1665 	struct inpcb *inp;
1666 	struct mbuf *m;
1667 	size_t hdrsiz;
1668 	struct ip *ip;
1669 #ifdef INET6
1670 	struct ip6_hdr *ip6;
1671 #endif
1672 	struct tcphdr *th;
1673 
1674 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1675 		return (0);
1676 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1677 	if (!m)
1678 		return (0);
1679 
1680 #ifdef INET6
1681 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1682 		ip6 = mtod(m, struct ip6_hdr *);
1683 		th = (struct tcphdr *)(ip6 + 1);
1684 		m->m_pkthdr.len = m->m_len =
1685 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1686 		tcpip_fillheaders(inp, ip6, th);
1687 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1688 	} else
1689 #endif /* INET6 */
1690 	{
1691 		ip = mtod(m, struct ip *);
1692 		th = (struct tcphdr *)(ip + 1);
1693 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1694 		tcpip_fillheaders(inp, ip, th);
1695 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1696 	}
1697 
1698 	m_free(m);
1699 	return (hdrsiz);
1700 }
1701 #endif /* IPSEC */
1702 
1703 #ifdef TCP_SIGNATURE
1704 /*
1705  * Callback function invoked by m_apply() to digest TCP segment data
1706  * contained within an mbuf chain.
1707  */
1708 static int
1709 tcp_signature_apply(void *fstate, void *data, u_int len)
1710 {
1711 
1712 	MD5Update(fstate, (u_char *)data, len);
1713 	return (0);
1714 }
1715 
1716 /*
1717  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1718  *
1719  * Parameters:
1720  * m		pointer to head of mbuf chain
1721  * _unused
1722  * len		length of TCP segment data, excluding options
1723  * optlen	length of TCP segment options
1724  * buf		pointer to storage for computed MD5 digest
1725  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1726  *
1727  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1728  * When called from tcp_input(), we can be sure that th_sum has been
1729  * zeroed out and verified already.
1730  *
1731  * Return 0 if successful, otherwise return -1.
1732  *
1733  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1734  * search with the destination IP address, and a 'magic SPI' to be
1735  * determined by the application. This is hardcoded elsewhere to 1179
1736  * right now. Another branch of this code exists which uses the SPD to
1737  * specify per-application flows but it is unstable.
1738  */
1739 int
1740 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1741     u_char *buf, u_int direction)
1742 {
1743 	union sockaddr_union dst;
1744 	struct ippseudo ippseudo;
1745 	MD5_CTX ctx;
1746 	int doff;
1747 	struct ip *ip;
1748 	struct ipovly *ipovly;
1749 	struct secasvar *sav;
1750 	struct tcphdr *th;
1751 #ifdef INET6
1752 	struct ip6_hdr *ip6;
1753 	struct in6_addr in6;
1754 	char ip6buf[INET6_ADDRSTRLEN];
1755 	uint32_t plen;
1756 	uint16_t nhdr;
1757 #endif
1758 	u_short savecsum;
1759 
1760 	KASSERT(m != NULL, ("NULL mbuf chain"));
1761 	KASSERT(buf != NULL, ("NULL signature pointer"));
1762 
1763 	/* Extract the destination from the IP header in the mbuf. */
1764 	bzero(&dst, sizeof(union sockaddr_union));
1765 	ip = mtod(m, struct ip *);
1766 #ifdef INET6
1767 	ip6 = NULL;	/* Make the compiler happy. */
1768 #endif
1769 	switch (ip->ip_v) {
1770 	case IPVERSION:
1771 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1772 		dst.sa.sa_family = AF_INET;
1773 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1774 		    ip->ip_src : ip->ip_dst;
1775 		break;
1776 #ifdef INET6
1777 	case (IPV6_VERSION >> 4):
1778 		ip6 = mtod(m, struct ip6_hdr *);
1779 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1780 		dst.sa.sa_family = AF_INET6;
1781 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1782 		    ip6->ip6_src : ip6->ip6_dst;
1783 		break;
1784 #endif
1785 	default:
1786 		return (EINVAL);
1787 		/* NOTREACHED */
1788 		break;
1789 	}
1790 
1791 	/* Look up an SADB entry which matches the address of the peer. */
1792 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1793 	if (sav == NULL) {
1794 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1795 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1796 #ifdef INET6
1797 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1798 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1799 #endif
1800 			"(unsupported)"));
1801 		return (EINVAL);
1802 	}
1803 
1804 	MD5Init(&ctx);
1805 	/*
1806 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1807 	 *
1808 	 * XXX The ippseudo header MUST be digested in network byte order,
1809 	 * or else we'll fail the regression test. Assume all fields we've
1810 	 * been doing arithmetic on have been in host byte order.
1811 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1812 	 * tcp_output(), the underlying ip_len member has not yet been set.
1813 	 */
1814 	switch (ip->ip_v) {
1815 	case IPVERSION:
1816 		ipovly = (struct ipovly *)ip;
1817 		ippseudo.ippseudo_src = ipovly->ih_src;
1818 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1819 		ippseudo.ippseudo_pad = 0;
1820 		ippseudo.ippseudo_p = IPPROTO_TCP;
1821 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1822 		    optlen);
1823 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1824 
1825 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1826 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1827 		break;
1828 #ifdef INET6
1829 	/*
1830 	 * RFC 2385, 2.0  Proposal
1831 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1832 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1833 	 * extended next header value (to form 32 bits), and 32-bit segment
1834 	 * length.
1835 	 * Note: Upper-Layer Packet Length comes before Next Header.
1836 	 */
1837 	case (IPV6_VERSION >> 4):
1838 		in6 = ip6->ip6_src;
1839 		in6_clearscope(&in6);
1840 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1841 		in6 = ip6->ip6_dst;
1842 		in6_clearscope(&in6);
1843 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1844 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1845 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1846 		nhdr = 0;
1847 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1848 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1849 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1850 		nhdr = IPPROTO_TCP;
1851 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1852 
1853 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1854 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1855 		break;
1856 #endif
1857 	default:
1858 		return (EINVAL);
1859 		/* NOTREACHED */
1860 		break;
1861 	}
1862 
1863 
1864 	/*
1865 	 * Step 2: Update MD5 hash with TCP header, excluding options.
1866 	 * The TCP checksum must be set to zero.
1867 	 */
1868 	savecsum = th->th_sum;
1869 	th->th_sum = 0;
1870 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1871 	th->th_sum = savecsum;
1872 
1873 	/*
1874 	 * Step 3: Update MD5 hash with TCP segment data.
1875 	 *         Use m_apply() to avoid an early m_pullup().
1876 	 */
1877 	if (len > 0)
1878 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
1879 
1880 	/*
1881 	 * Step 4: Update MD5 hash with shared secret.
1882 	 */
1883 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
1884 	MD5Final(buf, &ctx);
1885 
1886 	key_sa_recordxfer(sav, m);
1887 	KEY_FREESAV(&sav);
1888 	return (0);
1889 }
1890 #endif /* TCP_SIGNATURE */
1891 
1892 static int
1893 sysctl_drop(SYSCTL_HANDLER_ARGS)
1894 {
1895 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
1896 	struct sockaddr_storage addrs[2];
1897 	struct inpcb *inp;
1898 	struct tcpcb *tp;
1899 	struct tcptw *tw;
1900 	struct sockaddr_in *fin, *lin;
1901 #ifdef INET6
1902 	struct sockaddr_in6 *fin6, *lin6;
1903 #endif
1904 	int error;
1905 
1906 	inp = NULL;
1907 	fin = lin = NULL;
1908 #ifdef INET6
1909 	fin6 = lin6 = NULL;
1910 #endif
1911 	error = 0;
1912 
1913 	if (req->oldptr != NULL || req->oldlen != 0)
1914 		return (EINVAL);
1915 	if (req->newptr == NULL)
1916 		return (EPERM);
1917 	if (req->newlen < sizeof(addrs))
1918 		return (ENOMEM);
1919 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
1920 	if (error)
1921 		return (error);
1922 
1923 	switch (addrs[0].ss_family) {
1924 #ifdef INET6
1925 	case AF_INET6:
1926 		fin6 = (struct sockaddr_in6 *)&addrs[0];
1927 		lin6 = (struct sockaddr_in6 *)&addrs[1];
1928 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
1929 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
1930 			return (EINVAL);
1931 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
1932 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
1933 				return (EINVAL);
1934 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
1935 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
1936 			fin = (struct sockaddr_in *)&addrs[0];
1937 			lin = (struct sockaddr_in *)&addrs[1];
1938 			break;
1939 		}
1940 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
1941 		if (error)
1942 			return (error);
1943 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
1944 		if (error)
1945 			return (error);
1946 		break;
1947 #endif
1948 	case AF_INET:
1949 		fin = (struct sockaddr_in *)&addrs[0];
1950 		lin = (struct sockaddr_in *)&addrs[1];
1951 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
1952 		    lin->sin_len != sizeof(struct sockaddr_in))
1953 			return (EINVAL);
1954 		break;
1955 	default:
1956 		return (EINVAL);
1957 	}
1958 	INP_INFO_WLOCK(&V_tcbinfo);
1959 	switch (addrs[0].ss_family) {
1960 #ifdef INET6
1961 	case AF_INET6:
1962 		inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
1963 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
1964 		    NULL);
1965 		break;
1966 #endif
1967 	case AF_INET:
1968 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
1969 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
1970 		break;
1971 	}
1972 	if (inp != NULL) {
1973 		INP_WLOCK(inp);
1974 		if (inp->inp_flags & INP_TIMEWAIT) {
1975 			/*
1976 			 * XXXRW: There currently exists a state where an
1977 			 * inpcb is present, but its timewait state has been
1978 			 * discarded.  For now, don't allow dropping of this
1979 			 * type of inpcb.
1980 			 */
1981 			tw = intotw(inp);
1982 			if (tw != NULL)
1983 				tcp_twclose(tw, 0);
1984 			else
1985 				INP_WUNLOCK(inp);
1986 		} else if (!(inp->inp_flags & INP_DROPPED) &&
1987 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
1988 			tp = intotcpcb(inp);
1989 			tp = tcp_drop(tp, ECONNABORTED);
1990 			if (tp != NULL)
1991 				INP_WUNLOCK(inp);
1992 		} else
1993 			INP_WUNLOCK(inp);
1994 	} else
1995 		error = ESRCH;
1996 	INP_INFO_WUNLOCK(&V_tcbinfo);
1997 	return (error);
1998 }
1999 
2000 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2001     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2002     0, sysctl_drop, "", "Drop TCP connection");
2003 
2004 /*
2005  * Generate a standardized TCP log line for use throughout the
2006  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2007  * allow use in the interrupt context.
2008  *
2009  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2010  * NB: The function may return NULL if memory allocation failed.
2011  *
2012  * Due to header inclusion and ordering limitations the struct ip
2013  * and ip6_hdr pointers have to be passed as void pointers.
2014  */
2015 char *
2016 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2017     const void *ip6hdr)
2018 {
2019 
2020 	/* Is logging enabled? */
2021 	if (tcp_log_in_vain == 0)
2022 		return (NULL);
2023 
2024 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2025 }
2026 
2027 char *
2028 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2029     const void *ip6hdr)
2030 {
2031 
2032 	/* Is logging enabled? */
2033 	if (tcp_log_debug == 0)
2034 		return (NULL);
2035 
2036 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2037 }
2038 
2039 static char *
2040 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2041     const void *ip6hdr)
2042 {
2043 	char *s, *sp;
2044 	size_t size;
2045 	struct ip *ip;
2046 #ifdef INET6
2047 	const struct ip6_hdr *ip6;
2048 
2049 	ip6 = (const struct ip6_hdr *)ip6hdr;
2050 #endif /* INET6 */
2051 	ip = (struct ip *)ip4hdr;
2052 
2053 	/*
2054 	 * The log line looks like this:
2055 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2056 	 */
2057 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2058 	    sizeof(PRINT_TH_FLAGS) + 1 +
2059 #ifdef INET6
2060 	    2 * INET6_ADDRSTRLEN;
2061 #else
2062 	    2 * INET_ADDRSTRLEN;
2063 #endif /* INET6 */
2064 
2065 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2066 	if (s == NULL)
2067 		return (NULL);
2068 
2069 	strcat(s, "TCP: [");
2070 	sp = s + strlen(s);
2071 
2072 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2073 		inet_ntoa_r(inc->inc_faddr, sp);
2074 		sp = s + strlen(s);
2075 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2076 		sp = s + strlen(s);
2077 		inet_ntoa_r(inc->inc_laddr, sp);
2078 		sp = s + strlen(s);
2079 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2080 #ifdef INET6
2081 	} else if (inc) {
2082 		ip6_sprintf(sp, &inc->inc6_faddr);
2083 		sp = s + strlen(s);
2084 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2085 		sp = s + strlen(s);
2086 		ip6_sprintf(sp, &inc->inc6_laddr);
2087 		sp = s + strlen(s);
2088 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2089 	} else if (ip6 && th) {
2090 		ip6_sprintf(sp, &ip6->ip6_src);
2091 		sp = s + strlen(s);
2092 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2093 		sp = s + strlen(s);
2094 		ip6_sprintf(sp, &ip6->ip6_dst);
2095 		sp = s + strlen(s);
2096 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2097 #endif /* INET6 */
2098 	} else if (ip && th) {
2099 		inet_ntoa_r(ip->ip_src, sp);
2100 		sp = s + strlen(s);
2101 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2102 		sp = s + strlen(s);
2103 		inet_ntoa_r(ip->ip_dst, sp);
2104 		sp = s + strlen(s);
2105 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2106 	} else {
2107 		free(s, M_TCPLOG);
2108 		return (NULL);
2109 	}
2110 	sp = s + strlen(s);
2111 	if (th)
2112 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2113 	if (*(s + size - 1) != '\0')
2114 		panic("%s: string too long", __func__);
2115 	return (s);
2116 }
2117