1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/kernel.h> 45 #include <sys/sysctl.h> 46 #include <sys/jail.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/random.h> 58 59 #include <vm/uma.h> 60 61 #include <net/route.h> 62 #include <net/if.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #endif 71 #include <netinet/in_pcb.h> 72 #ifdef INET6 73 #include <netinet6/in6_pcb.h> 74 #endif 75 #include <netinet/in_var.h> 76 #include <netinet/ip_var.h> 77 #ifdef INET6 78 #include <netinet6/ip6_var.h> 79 #include <netinet6/scope6_var.h> 80 #include <netinet6/nd6.h> 81 #endif 82 #include <netinet/ip_icmp.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/tcp_syncache.h> 89 #include <netinet/tcp_offload.h> 90 #ifdef INET6 91 #include <netinet6/tcp6_var.h> 92 #endif 93 #include <netinet/tcpip.h> 94 #ifdef TCPDEBUG 95 #include <netinet/tcp_debug.h> 96 #endif 97 #include <netinet6/ip6protosw.h> 98 99 #ifdef IPSEC 100 #include <netipsec/ipsec.h> 101 #include <netipsec/xform.h> 102 #ifdef INET6 103 #include <netipsec/ipsec6.h> 104 #endif 105 #include <netipsec/key.h> 106 #include <sys/syslog.h> 107 #endif /*IPSEC*/ 108 109 #include <machine/in_cksum.h> 110 #include <sys/md5.h> 111 112 #include <security/mac/mac_framework.h> 113 114 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 115 #ifdef INET6 116 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 117 #endif 118 119 static int 120 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 121 { 122 int error, new; 123 124 new = V_tcp_mssdflt; 125 error = sysctl_handle_int(oidp, &new, 0, req); 126 if (error == 0 && req->newptr) { 127 if (new < TCP_MINMSS) 128 error = EINVAL; 129 else 130 V_tcp_mssdflt = new; 131 } 132 return (error); 133 } 134 135 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 136 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 137 &sysctl_net_inet_tcp_mss_check, "I", 138 "Default TCP Maximum Segment Size"); 139 140 #ifdef INET6 141 static int 142 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 143 { 144 int error, new; 145 146 new = V_tcp_v6mssdflt; 147 error = sysctl_handle_int(oidp, &new, 0, req); 148 if (error == 0 && req->newptr) { 149 if (new < TCP_MINMSS) 150 error = EINVAL; 151 else 152 V_tcp_v6mssdflt = new; 153 } 154 return (error); 155 } 156 157 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 158 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 159 &sysctl_net_inet_tcp_mss_v6_check, "I", 160 "Default TCP Maximum Segment Size for IPv6"); 161 #endif 162 163 /* 164 * Minimum MSS we accept and use. This prevents DoS attacks where 165 * we are forced to a ridiculous low MSS like 20 and send hundreds 166 * of packets instead of one. The effect scales with the available 167 * bandwidth and quickly saturates the CPU and network interface 168 * with packet generation and sending. Set to zero to disable MINMSS 169 * checking. This setting prevents us from sending too small packets. 170 */ 171 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 172 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW, 173 &VNET_NAME(tcp_minmss), 0, 174 "Minmum TCP Maximum Segment Size"); 175 176 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 177 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 178 &VNET_NAME(tcp_do_rfc1323), 0, 179 "Enable rfc1323 (high performance TCP) extensions"); 180 181 static int tcp_log_debug = 0; 182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 183 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 184 185 static int tcp_tcbhashsize = 0; 186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 187 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 188 189 static int do_tcpdrain = 1; 190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 191 "Enable tcp_drain routine for extra help when low on mbufs"); 192 193 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 194 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 195 196 static VNET_DEFINE(int, icmp_may_rst) = 1; 197 #define V_icmp_may_rst VNET(icmp_may_rst) 198 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, 199 &VNET_NAME(icmp_may_rst), 0, 200 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 201 202 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 203 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 204 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 205 &VNET_NAME(tcp_isn_reseed_interval), 0, 206 "Seconds between reseeding of ISN secret"); 207 208 #ifdef TCP_SORECEIVE_STREAM 209 static int tcp_soreceive_stream = 0; 210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 211 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 212 #endif 213 214 VNET_DEFINE(uma_zone_t, sack_hole_zone); 215 #define V_sack_hole_zone VNET(sack_hole_zone) 216 217 static struct inpcb *tcp_notify(struct inpcb *, int); 218 static void tcp_isn_tick(void *); 219 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 220 void *ip4hdr, const void *ip6hdr); 221 222 /* 223 * Target size of TCP PCB hash tables. Must be a power of two. 224 * 225 * Note that this can be overridden by the kernel environment 226 * variable net.inet.tcp.tcbhashsize 227 */ 228 #ifndef TCBHASHSIZE 229 #define TCBHASHSIZE 512 230 #endif 231 232 /* 233 * XXX 234 * Callouts should be moved into struct tcp directly. They are currently 235 * separate because the tcpcb structure is exported to userland for sysctl 236 * parsing purposes, which do not know about callouts. 237 */ 238 struct tcpcb_mem { 239 struct tcpcb tcb; 240 struct tcp_timer tt; 241 }; 242 243 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 244 #define V_tcpcb_zone VNET(tcpcb_zone) 245 246 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 247 struct callout isn_callout; 248 static struct mtx isn_mtx; 249 250 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 251 #define ISN_LOCK() mtx_lock(&isn_mtx) 252 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 253 254 /* 255 * TCP initialization. 256 */ 257 static void 258 tcp_zone_change(void *tag) 259 { 260 261 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 262 uma_zone_set_max(V_tcpcb_zone, maxsockets); 263 tcp_tw_zone_change(); 264 } 265 266 static int 267 tcp_inpcb_init(void *mem, int size, int flags) 268 { 269 struct inpcb *inp = mem; 270 271 INP_LOCK_INIT(inp, "inp", "tcpinp"); 272 return (0); 273 } 274 275 void 276 tcp_init(void) 277 { 278 int hashsize; 279 280 hashsize = TCBHASHSIZE; 281 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 282 if (!powerof2(hashsize)) { 283 printf("WARNING: TCB hash size not a power of 2\n"); 284 hashsize = 512; /* safe default */ 285 } 286 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 287 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE); 288 289 /* 290 * These have to be type stable for the benefit of the timers. 291 */ 292 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 293 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 294 uma_zone_set_max(V_tcpcb_zone, maxsockets); 295 296 tcp_tw_init(); 297 syncache_init(); 298 tcp_hc_init(); 299 tcp_reass_init(); 300 301 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 302 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 303 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 304 305 /* Skip initialization of globals for non-default instances. */ 306 if (!IS_DEFAULT_VNET(curvnet)) 307 return; 308 309 /* XXX virtualize those bellow? */ 310 tcp_delacktime = TCPTV_DELACK; 311 tcp_keepinit = TCPTV_KEEP_INIT; 312 tcp_keepidle = TCPTV_KEEP_IDLE; 313 tcp_keepintvl = TCPTV_KEEPINTVL; 314 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 315 tcp_msl = TCPTV_MSL; 316 tcp_rexmit_min = TCPTV_MIN; 317 if (tcp_rexmit_min < 1) 318 tcp_rexmit_min = 1; 319 tcp_rexmit_slop = TCPTV_CPU_VAR; 320 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 321 tcp_tcbhashsize = hashsize; 322 323 #ifdef TCP_SORECEIVE_STREAM 324 TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream); 325 if (tcp_soreceive_stream) { 326 tcp_usrreqs.pru_soreceive = soreceive_stream; 327 tcp6_usrreqs.pru_soreceive = soreceive_stream; 328 } 329 #endif 330 331 #ifdef INET6 332 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 333 #else /* INET6 */ 334 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 335 #endif /* INET6 */ 336 if (max_protohdr < TCP_MINPROTOHDR) 337 max_protohdr = TCP_MINPROTOHDR; 338 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 339 panic("tcp_init"); 340 #undef TCP_MINPROTOHDR 341 342 ISN_LOCK_INIT(); 343 callout_init(&isn_callout, CALLOUT_MPSAFE); 344 callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL); 345 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 346 SHUTDOWN_PRI_DEFAULT); 347 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 348 EVENTHANDLER_PRI_ANY); 349 } 350 351 #ifdef VIMAGE 352 void 353 tcp_destroy(void) 354 { 355 356 tcp_reass_destroy(); 357 tcp_hc_destroy(); 358 syncache_destroy(); 359 tcp_tw_destroy(); 360 in_pcbinfo_destroy(&V_tcbinfo); 361 uma_zdestroy(V_sack_hole_zone); 362 uma_zdestroy(V_tcpcb_zone); 363 } 364 #endif 365 366 void 367 tcp_fini(void *xtp) 368 { 369 370 callout_stop(&isn_callout); 371 } 372 373 /* 374 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 375 * tcp_template used to store this data in mbufs, but we now recopy it out 376 * of the tcpcb each time to conserve mbufs. 377 */ 378 void 379 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 380 { 381 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 382 383 INP_WLOCK_ASSERT(inp); 384 385 #ifdef INET6 386 if ((inp->inp_vflag & INP_IPV6) != 0) { 387 struct ip6_hdr *ip6; 388 389 ip6 = (struct ip6_hdr *)ip_ptr; 390 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 391 (inp->inp_flow & IPV6_FLOWINFO_MASK); 392 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 393 (IPV6_VERSION & IPV6_VERSION_MASK); 394 ip6->ip6_nxt = IPPROTO_TCP; 395 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 396 ip6->ip6_src = inp->in6p_laddr; 397 ip6->ip6_dst = inp->in6p_faddr; 398 } else 399 #endif 400 { 401 struct ip *ip; 402 403 ip = (struct ip *)ip_ptr; 404 ip->ip_v = IPVERSION; 405 ip->ip_hl = 5; 406 ip->ip_tos = inp->inp_ip_tos; 407 ip->ip_len = 0; 408 ip->ip_id = 0; 409 ip->ip_off = 0; 410 ip->ip_ttl = inp->inp_ip_ttl; 411 ip->ip_sum = 0; 412 ip->ip_p = IPPROTO_TCP; 413 ip->ip_src = inp->inp_laddr; 414 ip->ip_dst = inp->inp_faddr; 415 } 416 th->th_sport = inp->inp_lport; 417 th->th_dport = inp->inp_fport; 418 th->th_seq = 0; 419 th->th_ack = 0; 420 th->th_x2 = 0; 421 th->th_off = 5; 422 th->th_flags = 0; 423 th->th_win = 0; 424 th->th_urp = 0; 425 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 426 } 427 428 /* 429 * Create template to be used to send tcp packets on a connection. 430 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 431 * use for this function is in keepalives, which use tcp_respond. 432 */ 433 struct tcptemp * 434 tcpip_maketemplate(struct inpcb *inp) 435 { 436 struct tcptemp *t; 437 438 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 439 if (t == NULL) 440 return (NULL); 441 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 442 return (t); 443 } 444 445 /* 446 * Send a single message to the TCP at address specified by 447 * the given TCP/IP header. If m == NULL, then we make a copy 448 * of the tcpiphdr at ti and send directly to the addressed host. 449 * This is used to force keep alive messages out using the TCP 450 * template for a connection. If flags are given then we send 451 * a message back to the TCP which originated the * segment ti, 452 * and discard the mbuf containing it and any other attached mbufs. 453 * 454 * In any case the ack and sequence number of the transmitted 455 * segment are as specified by the parameters. 456 * 457 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 458 */ 459 void 460 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 461 tcp_seq ack, tcp_seq seq, int flags) 462 { 463 int tlen; 464 int win = 0; 465 struct ip *ip; 466 struct tcphdr *nth; 467 #ifdef INET6 468 struct ip6_hdr *ip6; 469 int isipv6; 470 #endif /* INET6 */ 471 int ipflags = 0; 472 struct inpcb *inp; 473 474 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 475 476 #ifdef INET6 477 isipv6 = ((struct ip *)ipgen)->ip_v == 6; 478 ip6 = ipgen; 479 #endif /* INET6 */ 480 ip = ipgen; 481 482 if (tp != NULL) { 483 inp = tp->t_inpcb; 484 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 485 INP_WLOCK_ASSERT(inp); 486 } else 487 inp = NULL; 488 489 if (tp != NULL) { 490 if (!(flags & TH_RST)) { 491 win = sbspace(&inp->inp_socket->so_rcv); 492 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 493 win = (long)TCP_MAXWIN << tp->rcv_scale; 494 } 495 } 496 if (m == NULL) { 497 m = m_gethdr(M_DONTWAIT, MT_DATA); 498 if (m == NULL) 499 return; 500 tlen = 0; 501 m->m_data += max_linkhdr; 502 #ifdef INET6 503 if (isipv6) { 504 bcopy((caddr_t)ip6, mtod(m, caddr_t), 505 sizeof(struct ip6_hdr)); 506 ip6 = mtod(m, struct ip6_hdr *); 507 nth = (struct tcphdr *)(ip6 + 1); 508 } else 509 #endif /* INET6 */ 510 { 511 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 512 ip = mtod(m, struct ip *); 513 nth = (struct tcphdr *)(ip + 1); 514 } 515 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 516 flags = TH_ACK; 517 } else { 518 /* 519 * reuse the mbuf. 520 * XXX MRT We inherrit the FIB, which is lucky. 521 */ 522 m_freem(m->m_next); 523 m->m_next = NULL; 524 m->m_data = (caddr_t)ipgen; 525 /* m_len is set later */ 526 tlen = 0; 527 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 528 #ifdef INET6 529 if (isipv6) { 530 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 531 nth = (struct tcphdr *)(ip6 + 1); 532 } else 533 #endif /* INET6 */ 534 { 535 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 536 nth = (struct tcphdr *)(ip + 1); 537 } 538 if (th != nth) { 539 /* 540 * this is usually a case when an extension header 541 * exists between the IPv6 header and the 542 * TCP header. 543 */ 544 nth->th_sport = th->th_sport; 545 nth->th_dport = th->th_dport; 546 } 547 xchg(nth->th_dport, nth->th_sport, uint16_t); 548 #undef xchg 549 } 550 #ifdef INET6 551 if (isipv6) { 552 ip6->ip6_flow = 0; 553 ip6->ip6_vfc = IPV6_VERSION; 554 ip6->ip6_nxt = IPPROTO_TCP; 555 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 556 tlen)); 557 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 558 } else 559 #endif 560 { 561 tlen += sizeof (struct tcpiphdr); 562 ip->ip_len = tlen; 563 ip->ip_ttl = V_ip_defttl; 564 if (V_path_mtu_discovery) 565 ip->ip_off |= IP_DF; 566 } 567 m->m_len = tlen; 568 m->m_pkthdr.len = tlen; 569 m->m_pkthdr.rcvif = NULL; 570 #ifdef MAC 571 if (inp != NULL) { 572 /* 573 * Packet is associated with a socket, so allow the 574 * label of the response to reflect the socket label. 575 */ 576 INP_WLOCK_ASSERT(inp); 577 mac_inpcb_create_mbuf(inp, m); 578 } else { 579 /* 580 * Packet is not associated with a socket, so possibly 581 * update the label in place. 582 */ 583 mac_netinet_tcp_reply(m); 584 } 585 #endif 586 nth->th_seq = htonl(seq); 587 nth->th_ack = htonl(ack); 588 nth->th_x2 = 0; 589 nth->th_off = sizeof (struct tcphdr) >> 2; 590 nth->th_flags = flags; 591 if (tp != NULL) 592 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 593 else 594 nth->th_win = htons((u_short)win); 595 nth->th_urp = 0; 596 #ifdef INET6 597 if (isipv6) { 598 nth->th_sum = 0; 599 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 600 sizeof(struct ip6_hdr), 601 tlen - sizeof(struct ip6_hdr)); 602 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 603 NULL, NULL); 604 } else 605 #endif /* INET6 */ 606 { 607 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 608 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 609 m->m_pkthdr.csum_flags = CSUM_TCP; 610 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 611 } 612 #ifdef TCPDEBUG 613 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 614 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 615 #endif 616 #ifdef INET6 617 if (isipv6) 618 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 619 else 620 #endif /* INET6 */ 621 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 622 } 623 624 /* 625 * Create a new TCP control block, making an 626 * empty reassembly queue and hooking it to the argument 627 * protocol control block. The `inp' parameter must have 628 * come from the zone allocator set up in tcp_init(). 629 */ 630 struct tcpcb * 631 tcp_newtcpcb(struct inpcb *inp) 632 { 633 struct tcpcb_mem *tm; 634 struct tcpcb *tp; 635 #ifdef INET6 636 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 637 #endif /* INET6 */ 638 639 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 640 if (tm == NULL) 641 return (NULL); 642 tp = &tm->tcb; 643 #ifdef VIMAGE 644 tp->t_vnet = inp->inp_vnet; 645 #endif 646 tp->t_timers = &tm->tt; 647 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 648 tp->t_maxseg = tp->t_maxopd = 649 #ifdef INET6 650 isipv6 ? V_tcp_v6mssdflt : 651 #endif /* INET6 */ 652 V_tcp_mssdflt; 653 654 /* Set up our timeouts. */ 655 callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE); 656 callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE); 657 callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE); 658 callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE); 659 callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE); 660 661 if (V_tcp_do_rfc1323) 662 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 663 if (V_tcp_do_sack) 664 tp->t_flags |= TF_SACK_PERMIT; 665 TAILQ_INIT(&tp->snd_holes); 666 tp->t_inpcb = inp; /* XXX */ 667 /* 668 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 669 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 670 * reasonable initial retransmit time. 671 */ 672 tp->t_srtt = TCPTV_SRTTBASE; 673 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 674 tp->t_rttmin = tcp_rexmit_min; 675 tp->t_rxtcur = TCPTV_RTOBASE; 676 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 677 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 678 tp->t_rcvtime = ticks; 679 /* 680 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 681 * because the socket may be bound to an IPv6 wildcard address, 682 * which may match an IPv4-mapped IPv6 address. 683 */ 684 inp->inp_ip_ttl = V_ip_defttl; 685 inp->inp_ppcb = tp; 686 return (tp); /* XXX */ 687 } 688 689 /* 690 * Drop a TCP connection, reporting 691 * the specified error. If connection is synchronized, 692 * then send a RST to peer. 693 */ 694 struct tcpcb * 695 tcp_drop(struct tcpcb *tp, int errno) 696 { 697 struct socket *so = tp->t_inpcb->inp_socket; 698 699 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 700 INP_WLOCK_ASSERT(tp->t_inpcb); 701 702 if (TCPS_HAVERCVDSYN(tp->t_state)) { 703 tp->t_state = TCPS_CLOSED; 704 (void) tcp_output_reset(tp); 705 TCPSTAT_INC(tcps_drops); 706 } else 707 TCPSTAT_INC(tcps_conndrops); 708 if (errno == ETIMEDOUT && tp->t_softerror) 709 errno = tp->t_softerror; 710 so->so_error = errno; 711 return (tcp_close(tp)); 712 } 713 714 void 715 tcp_discardcb(struct tcpcb *tp) 716 { 717 struct inpcb *inp = tp->t_inpcb; 718 struct socket *so = inp->inp_socket; 719 #ifdef INET6 720 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 721 #endif /* INET6 */ 722 723 INP_WLOCK_ASSERT(inp); 724 725 /* 726 * Make sure that all of our timers are stopped before we delete the 727 * PCB. 728 * 729 * XXXRW: Really, we would like to use callout_drain() here in order 730 * to avoid races experienced in tcp_timer.c where a timer is already 731 * executing at this point. However, we can't, both because we're 732 * running in a context where we can't sleep, and also because we 733 * hold locks required by the timers. What we instead need to do is 734 * test to see if callout_drain() is required, and if so, defer some 735 * portion of the remainder of tcp_discardcb() to an asynchronous 736 * context that can callout_drain() and then continue. Some care 737 * will be required to ensure that no further processing takes place 738 * on the tcpcb, even though it hasn't been freed (a flag?). 739 */ 740 callout_stop(&tp->t_timers->tt_rexmt); 741 callout_stop(&tp->t_timers->tt_persist); 742 callout_stop(&tp->t_timers->tt_keep); 743 callout_stop(&tp->t_timers->tt_2msl); 744 callout_stop(&tp->t_timers->tt_delack); 745 746 /* 747 * If we got enough samples through the srtt filter, 748 * save the rtt and rttvar in the routing entry. 749 * 'Enough' is arbitrarily defined as 4 rtt samples. 750 * 4 samples is enough for the srtt filter to converge 751 * to within enough % of the correct value; fewer samples 752 * and we could save a bogus rtt. The danger is not high 753 * as tcp quickly recovers from everything. 754 * XXX: Works very well but needs some more statistics! 755 */ 756 if (tp->t_rttupdated >= 4) { 757 struct hc_metrics_lite metrics; 758 u_long ssthresh; 759 760 bzero(&metrics, sizeof(metrics)); 761 /* 762 * Update the ssthresh always when the conditions below 763 * are satisfied. This gives us better new start value 764 * for the congestion avoidance for new connections. 765 * ssthresh is only set if packet loss occured on a session. 766 * 767 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 768 * being torn down. Ideally this code would not use 'so'. 769 */ 770 ssthresh = tp->snd_ssthresh; 771 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 772 /* 773 * convert the limit from user data bytes to 774 * packets then to packet data bytes. 775 */ 776 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 777 if (ssthresh < 2) 778 ssthresh = 2; 779 ssthresh *= (u_long)(tp->t_maxseg + 780 #ifdef INET6 781 (isipv6 ? sizeof (struct ip6_hdr) + 782 sizeof (struct tcphdr) : 783 #endif 784 sizeof (struct tcpiphdr) 785 #ifdef INET6 786 ) 787 #endif 788 ); 789 } else 790 ssthresh = 0; 791 metrics.rmx_ssthresh = ssthresh; 792 793 metrics.rmx_rtt = tp->t_srtt; 794 metrics.rmx_rttvar = tp->t_rttvar; 795 metrics.rmx_cwnd = tp->snd_cwnd; 796 metrics.rmx_sendpipe = 0; 797 metrics.rmx_recvpipe = 0; 798 799 tcp_hc_update(&inp->inp_inc, &metrics); 800 } 801 802 /* free the reassembly queue, if any */ 803 tcp_reass_flush(tp); 804 /* Disconnect offload device, if any. */ 805 tcp_offload_detach(tp); 806 807 tcp_free_sackholes(tp); 808 inp->inp_ppcb = NULL; 809 tp->t_inpcb = NULL; 810 uma_zfree(V_tcpcb_zone, tp); 811 } 812 813 /* 814 * Attempt to close a TCP control block, marking it as dropped, and freeing 815 * the socket if we hold the only reference. 816 */ 817 struct tcpcb * 818 tcp_close(struct tcpcb *tp) 819 { 820 struct inpcb *inp = tp->t_inpcb; 821 struct socket *so; 822 823 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 824 INP_WLOCK_ASSERT(inp); 825 826 /* Notify any offload devices of listener close */ 827 if (tp->t_state == TCPS_LISTEN) 828 tcp_offload_listen_close(tp); 829 in_pcbdrop(inp); 830 TCPSTAT_INC(tcps_closed); 831 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 832 so = inp->inp_socket; 833 soisdisconnected(so); 834 if (inp->inp_flags & INP_SOCKREF) { 835 KASSERT(so->so_state & SS_PROTOREF, 836 ("tcp_close: !SS_PROTOREF")); 837 inp->inp_flags &= ~INP_SOCKREF; 838 INP_WUNLOCK(inp); 839 ACCEPT_LOCK(); 840 SOCK_LOCK(so); 841 so->so_state &= ~SS_PROTOREF; 842 sofree(so); 843 return (NULL); 844 } 845 return (tp); 846 } 847 848 void 849 tcp_drain(void) 850 { 851 VNET_ITERATOR_DECL(vnet_iter); 852 853 if (!do_tcpdrain) 854 return; 855 856 VNET_LIST_RLOCK_NOSLEEP(); 857 VNET_FOREACH(vnet_iter) { 858 CURVNET_SET(vnet_iter); 859 struct inpcb *inpb; 860 struct tcpcb *tcpb; 861 862 /* 863 * Walk the tcpbs, if existing, and flush the reassembly queue, 864 * if there is one... 865 * XXX: The "Net/3" implementation doesn't imply that the TCP 866 * reassembly queue should be flushed, but in a situation 867 * where we're really low on mbufs, this is potentially 868 * usefull. 869 */ 870 INP_INFO_RLOCK(&V_tcbinfo); 871 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 872 if (inpb->inp_flags & INP_TIMEWAIT) 873 continue; 874 INP_WLOCK(inpb); 875 if ((tcpb = intotcpcb(inpb)) != NULL) { 876 tcp_reass_flush(tcpb); 877 tcp_clean_sackreport(tcpb); 878 } 879 INP_WUNLOCK(inpb); 880 } 881 INP_INFO_RUNLOCK(&V_tcbinfo); 882 CURVNET_RESTORE(); 883 } 884 VNET_LIST_RUNLOCK_NOSLEEP(); 885 } 886 887 /* 888 * Notify a tcp user of an asynchronous error; 889 * store error as soft error, but wake up user 890 * (for now, won't do anything until can select for soft error). 891 * 892 * Do not wake up user since there currently is no mechanism for 893 * reporting soft errors (yet - a kqueue filter may be added). 894 */ 895 static struct inpcb * 896 tcp_notify(struct inpcb *inp, int error) 897 { 898 struct tcpcb *tp; 899 900 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 901 INP_WLOCK_ASSERT(inp); 902 903 if ((inp->inp_flags & INP_TIMEWAIT) || 904 (inp->inp_flags & INP_DROPPED)) 905 return (inp); 906 907 tp = intotcpcb(inp); 908 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 909 910 /* 911 * Ignore some errors if we are hooked up. 912 * If connection hasn't completed, has retransmitted several times, 913 * and receives a second error, give up now. This is better 914 * than waiting a long time to establish a connection that 915 * can never complete. 916 */ 917 if (tp->t_state == TCPS_ESTABLISHED && 918 (error == EHOSTUNREACH || error == ENETUNREACH || 919 error == EHOSTDOWN)) { 920 return (inp); 921 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 922 tp->t_softerror) { 923 tp = tcp_drop(tp, error); 924 if (tp != NULL) 925 return (inp); 926 else 927 return (NULL); 928 } else { 929 tp->t_softerror = error; 930 return (inp); 931 } 932 #if 0 933 wakeup( &so->so_timeo); 934 sorwakeup(so); 935 sowwakeup(so); 936 #endif 937 } 938 939 static int 940 tcp_pcblist(SYSCTL_HANDLER_ARGS) 941 { 942 int error, i, m, n, pcb_count; 943 struct inpcb *inp, **inp_list; 944 inp_gen_t gencnt; 945 struct xinpgen xig; 946 947 /* 948 * The process of preparing the TCB list is too time-consuming and 949 * resource-intensive to repeat twice on every request. 950 */ 951 if (req->oldptr == NULL) { 952 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 953 n += imax(n / 8, 10); 954 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 955 return (0); 956 } 957 958 if (req->newptr != NULL) 959 return (EPERM); 960 961 /* 962 * OK, now we're committed to doing something. 963 */ 964 INP_INFO_RLOCK(&V_tcbinfo); 965 gencnt = V_tcbinfo.ipi_gencnt; 966 n = V_tcbinfo.ipi_count; 967 INP_INFO_RUNLOCK(&V_tcbinfo); 968 969 m = syncache_pcbcount(); 970 971 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 972 + (n + m) * sizeof(struct xtcpcb)); 973 if (error != 0) 974 return (error); 975 976 xig.xig_len = sizeof xig; 977 xig.xig_count = n + m; 978 xig.xig_gen = gencnt; 979 xig.xig_sogen = so_gencnt; 980 error = SYSCTL_OUT(req, &xig, sizeof xig); 981 if (error) 982 return (error); 983 984 error = syncache_pcblist(req, m, &pcb_count); 985 if (error) 986 return (error); 987 988 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 989 if (inp_list == NULL) 990 return (ENOMEM); 991 992 INP_INFO_RLOCK(&V_tcbinfo); 993 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 994 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 995 INP_WLOCK(inp); 996 if (inp->inp_gencnt <= gencnt) { 997 /* 998 * XXX: This use of cr_cansee(), introduced with 999 * TCP state changes, is not quite right, but for 1000 * now, better than nothing. 1001 */ 1002 if (inp->inp_flags & INP_TIMEWAIT) { 1003 if (intotw(inp) != NULL) 1004 error = cr_cansee(req->td->td_ucred, 1005 intotw(inp)->tw_cred); 1006 else 1007 error = EINVAL; /* Skip this inp. */ 1008 } else 1009 error = cr_canseeinpcb(req->td->td_ucred, inp); 1010 if (error == 0) { 1011 in_pcbref(inp); 1012 inp_list[i++] = inp; 1013 } 1014 } 1015 INP_WUNLOCK(inp); 1016 } 1017 INP_INFO_RUNLOCK(&V_tcbinfo); 1018 n = i; 1019 1020 error = 0; 1021 for (i = 0; i < n; i++) { 1022 inp = inp_list[i]; 1023 INP_RLOCK(inp); 1024 if (inp->inp_gencnt <= gencnt) { 1025 struct xtcpcb xt; 1026 void *inp_ppcb; 1027 1028 bzero(&xt, sizeof(xt)); 1029 xt.xt_len = sizeof xt; 1030 /* XXX should avoid extra copy */ 1031 bcopy(inp, &xt.xt_inp, sizeof *inp); 1032 inp_ppcb = inp->inp_ppcb; 1033 if (inp_ppcb == NULL) 1034 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1035 else if (inp->inp_flags & INP_TIMEWAIT) { 1036 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1037 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1038 } else { 1039 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1040 if (xt.xt_tp.t_timers) 1041 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1042 } 1043 if (inp->inp_socket != NULL) 1044 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1045 else { 1046 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1047 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1048 } 1049 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1050 INP_RUNLOCK(inp); 1051 error = SYSCTL_OUT(req, &xt, sizeof xt); 1052 } else 1053 INP_RUNLOCK(inp); 1054 } 1055 INP_INFO_WLOCK(&V_tcbinfo); 1056 for (i = 0; i < n; i++) { 1057 inp = inp_list[i]; 1058 INP_WLOCK(inp); 1059 if (!in_pcbrele(inp)) 1060 INP_WUNLOCK(inp); 1061 } 1062 INP_INFO_WUNLOCK(&V_tcbinfo); 1063 1064 if (!error) { 1065 /* 1066 * Give the user an updated idea of our state. 1067 * If the generation differs from what we told 1068 * her before, she knows that something happened 1069 * while we were processing this request, and it 1070 * might be necessary to retry. 1071 */ 1072 INP_INFO_RLOCK(&V_tcbinfo); 1073 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1074 xig.xig_sogen = so_gencnt; 1075 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1076 INP_INFO_RUNLOCK(&V_tcbinfo); 1077 error = SYSCTL_OUT(req, &xig, sizeof xig); 1078 } 1079 free(inp_list, M_TEMP); 1080 return (error); 1081 } 1082 1083 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 1084 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1085 1086 static int 1087 tcp_getcred(SYSCTL_HANDLER_ARGS) 1088 { 1089 struct xucred xuc; 1090 struct sockaddr_in addrs[2]; 1091 struct inpcb *inp; 1092 int error; 1093 1094 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1095 if (error) 1096 return (error); 1097 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1098 if (error) 1099 return (error); 1100 INP_INFO_RLOCK(&V_tcbinfo); 1101 inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr, 1102 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 1103 if (inp != NULL) { 1104 INP_RLOCK(inp); 1105 INP_INFO_RUNLOCK(&V_tcbinfo); 1106 if (inp->inp_socket == NULL) 1107 error = ENOENT; 1108 if (error == 0) 1109 error = cr_canseeinpcb(req->td->td_ucred, inp); 1110 if (error == 0) 1111 cru2x(inp->inp_cred, &xuc); 1112 INP_RUNLOCK(inp); 1113 } else { 1114 INP_INFO_RUNLOCK(&V_tcbinfo); 1115 error = ENOENT; 1116 } 1117 if (error == 0) 1118 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1119 return (error); 1120 } 1121 1122 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1123 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1124 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1125 1126 #ifdef INET6 1127 static int 1128 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1129 { 1130 struct xucred xuc; 1131 struct sockaddr_in6 addrs[2]; 1132 struct inpcb *inp; 1133 int error, mapped = 0; 1134 1135 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1136 if (error) 1137 return (error); 1138 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1139 if (error) 1140 return (error); 1141 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1142 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1143 return (error); 1144 } 1145 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1146 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1147 mapped = 1; 1148 else 1149 return (EINVAL); 1150 } 1151 1152 INP_INFO_RLOCK(&V_tcbinfo); 1153 if (mapped == 1) 1154 inp = in_pcblookup_hash(&V_tcbinfo, 1155 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1156 addrs[1].sin6_port, 1157 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1158 addrs[0].sin6_port, 1159 0, NULL); 1160 else 1161 inp = in6_pcblookup_hash(&V_tcbinfo, 1162 &addrs[1].sin6_addr, addrs[1].sin6_port, 1163 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL); 1164 if (inp != NULL) { 1165 INP_RLOCK(inp); 1166 INP_INFO_RUNLOCK(&V_tcbinfo); 1167 if (inp->inp_socket == NULL) 1168 error = ENOENT; 1169 if (error == 0) 1170 error = cr_canseeinpcb(req->td->td_ucred, inp); 1171 if (error == 0) 1172 cru2x(inp->inp_cred, &xuc); 1173 INP_RUNLOCK(inp); 1174 } else { 1175 INP_INFO_RUNLOCK(&V_tcbinfo); 1176 error = ENOENT; 1177 } 1178 if (error == 0) 1179 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1180 return (error); 1181 } 1182 1183 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1184 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1185 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1186 #endif 1187 1188 1189 void 1190 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1191 { 1192 struct ip *ip = vip; 1193 struct tcphdr *th; 1194 struct in_addr faddr; 1195 struct inpcb *inp; 1196 struct tcpcb *tp; 1197 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1198 struct icmp *icp; 1199 struct in_conninfo inc; 1200 tcp_seq icmp_tcp_seq; 1201 int mtu; 1202 1203 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1204 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1205 return; 1206 1207 if (cmd == PRC_MSGSIZE) 1208 notify = tcp_mtudisc; 1209 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1210 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1211 notify = tcp_drop_syn_sent; 1212 /* 1213 * Redirects don't need to be handled up here. 1214 */ 1215 else if (PRC_IS_REDIRECT(cmd)) 1216 return; 1217 /* 1218 * Source quench is depreciated. 1219 */ 1220 else if (cmd == PRC_QUENCH) 1221 return; 1222 /* 1223 * Hostdead is ugly because it goes linearly through all PCBs. 1224 * XXX: We never get this from ICMP, otherwise it makes an 1225 * excellent DoS attack on machines with many connections. 1226 */ 1227 else if (cmd == PRC_HOSTDEAD) 1228 ip = NULL; 1229 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1230 return; 1231 if (ip != NULL) { 1232 icp = (struct icmp *)((caddr_t)ip 1233 - offsetof(struct icmp, icmp_ip)); 1234 th = (struct tcphdr *)((caddr_t)ip 1235 + (ip->ip_hl << 2)); 1236 INP_INFO_WLOCK(&V_tcbinfo); 1237 inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport, 1238 ip->ip_src, th->th_sport, 0, NULL); 1239 if (inp != NULL) { 1240 INP_WLOCK(inp); 1241 if (!(inp->inp_flags & INP_TIMEWAIT) && 1242 !(inp->inp_flags & INP_DROPPED) && 1243 !(inp->inp_socket == NULL)) { 1244 icmp_tcp_seq = htonl(th->th_seq); 1245 tp = intotcpcb(inp); 1246 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1247 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1248 if (cmd == PRC_MSGSIZE) { 1249 /* 1250 * MTU discovery: 1251 * If we got a needfrag set the MTU 1252 * in the route to the suggested new 1253 * value (if given) and then notify. 1254 */ 1255 bzero(&inc, sizeof(inc)); 1256 inc.inc_faddr = faddr; 1257 inc.inc_fibnum = 1258 inp->inp_inc.inc_fibnum; 1259 1260 mtu = ntohs(icp->icmp_nextmtu); 1261 /* 1262 * If no alternative MTU was 1263 * proposed, try the next smaller 1264 * one. ip->ip_len has already 1265 * been swapped in icmp_input(). 1266 */ 1267 if (!mtu) 1268 mtu = ip_next_mtu(ip->ip_len, 1269 1); 1270 if (mtu < V_tcp_minmss 1271 + sizeof(struct tcpiphdr)) 1272 mtu = V_tcp_minmss 1273 + sizeof(struct tcpiphdr); 1274 /* 1275 * Only cache the the MTU if it 1276 * is smaller than the interface 1277 * or route MTU. tcp_mtudisc() 1278 * will do right thing by itself. 1279 */ 1280 if (mtu <= tcp_maxmtu(&inc, NULL)) 1281 tcp_hc_updatemtu(&inc, mtu); 1282 } 1283 1284 inp = (*notify)(inp, inetctlerrmap[cmd]); 1285 } 1286 } 1287 if (inp != NULL) 1288 INP_WUNLOCK(inp); 1289 } else { 1290 bzero(&inc, sizeof(inc)); 1291 inc.inc_fport = th->th_dport; 1292 inc.inc_lport = th->th_sport; 1293 inc.inc_faddr = faddr; 1294 inc.inc_laddr = ip->ip_src; 1295 syncache_unreach(&inc, th); 1296 } 1297 INP_INFO_WUNLOCK(&V_tcbinfo); 1298 } else 1299 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1300 } 1301 1302 #ifdef INET6 1303 void 1304 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1305 { 1306 struct tcphdr th; 1307 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1308 struct ip6_hdr *ip6; 1309 struct mbuf *m; 1310 struct ip6ctlparam *ip6cp = NULL; 1311 const struct sockaddr_in6 *sa6_src = NULL; 1312 int off; 1313 struct tcp_portonly { 1314 u_int16_t th_sport; 1315 u_int16_t th_dport; 1316 } *thp; 1317 1318 if (sa->sa_family != AF_INET6 || 1319 sa->sa_len != sizeof(struct sockaddr_in6)) 1320 return; 1321 1322 if (cmd == PRC_MSGSIZE) 1323 notify = tcp_mtudisc; 1324 else if (!PRC_IS_REDIRECT(cmd) && 1325 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1326 return; 1327 /* Source quench is depreciated. */ 1328 else if (cmd == PRC_QUENCH) 1329 return; 1330 1331 /* if the parameter is from icmp6, decode it. */ 1332 if (d != NULL) { 1333 ip6cp = (struct ip6ctlparam *)d; 1334 m = ip6cp->ip6c_m; 1335 ip6 = ip6cp->ip6c_ip6; 1336 off = ip6cp->ip6c_off; 1337 sa6_src = ip6cp->ip6c_src; 1338 } else { 1339 m = NULL; 1340 ip6 = NULL; 1341 off = 0; /* fool gcc */ 1342 sa6_src = &sa6_any; 1343 } 1344 1345 if (ip6 != NULL) { 1346 struct in_conninfo inc; 1347 /* 1348 * XXX: We assume that when IPV6 is non NULL, 1349 * M and OFF are valid. 1350 */ 1351 1352 /* check if we can safely examine src and dst ports */ 1353 if (m->m_pkthdr.len < off + sizeof(*thp)) 1354 return; 1355 1356 bzero(&th, sizeof(th)); 1357 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1358 1359 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1360 (struct sockaddr *)ip6cp->ip6c_src, 1361 th.th_sport, cmd, NULL, notify); 1362 1363 bzero(&inc, sizeof(inc)); 1364 inc.inc_fport = th.th_dport; 1365 inc.inc_lport = th.th_sport; 1366 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1367 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1368 inc.inc_flags |= INC_ISIPV6; 1369 INP_INFO_WLOCK(&V_tcbinfo); 1370 syncache_unreach(&inc, &th); 1371 INP_INFO_WUNLOCK(&V_tcbinfo); 1372 } else 1373 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1374 0, cmd, NULL, notify); 1375 } 1376 #endif /* INET6 */ 1377 1378 1379 /* 1380 * Following is where TCP initial sequence number generation occurs. 1381 * 1382 * There are two places where we must use initial sequence numbers: 1383 * 1. In SYN-ACK packets. 1384 * 2. In SYN packets. 1385 * 1386 * All ISNs for SYN-ACK packets are generated by the syncache. See 1387 * tcp_syncache.c for details. 1388 * 1389 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1390 * depends on this property. In addition, these ISNs should be 1391 * unguessable so as to prevent connection hijacking. To satisfy 1392 * the requirements of this situation, the algorithm outlined in 1393 * RFC 1948 is used, with only small modifications. 1394 * 1395 * Implementation details: 1396 * 1397 * Time is based off the system timer, and is corrected so that it 1398 * increases by one megabyte per second. This allows for proper 1399 * recycling on high speed LANs while still leaving over an hour 1400 * before rollover. 1401 * 1402 * As reading the *exact* system time is too expensive to be done 1403 * whenever setting up a TCP connection, we increment the time 1404 * offset in two ways. First, a small random positive increment 1405 * is added to isn_offset for each connection that is set up. 1406 * Second, the function tcp_isn_tick fires once per clock tick 1407 * and increments isn_offset as necessary so that sequence numbers 1408 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1409 * random positive increments serve only to ensure that the same 1410 * exact sequence number is never sent out twice (as could otherwise 1411 * happen when a port is recycled in less than the system tick 1412 * interval.) 1413 * 1414 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1415 * between seeding of isn_secret. This is normally set to zero, 1416 * as reseeding should not be necessary. 1417 * 1418 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1419 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1420 * general, this means holding an exclusive (write) lock. 1421 */ 1422 1423 #define ISN_BYTES_PER_SECOND 1048576 1424 #define ISN_STATIC_INCREMENT 4096 1425 #define ISN_RANDOM_INCREMENT (4096 - 1) 1426 1427 static VNET_DEFINE(u_char, isn_secret[32]); 1428 static VNET_DEFINE(int, isn_last_reseed); 1429 static VNET_DEFINE(u_int32_t, isn_offset); 1430 static VNET_DEFINE(u_int32_t, isn_offset_old); 1431 1432 #define V_isn_secret VNET(isn_secret) 1433 #define V_isn_last_reseed VNET(isn_last_reseed) 1434 #define V_isn_offset VNET(isn_offset) 1435 #define V_isn_offset_old VNET(isn_offset_old) 1436 1437 tcp_seq 1438 tcp_new_isn(struct tcpcb *tp) 1439 { 1440 MD5_CTX isn_ctx; 1441 u_int32_t md5_buffer[4]; 1442 tcp_seq new_isn; 1443 1444 INP_WLOCK_ASSERT(tp->t_inpcb); 1445 1446 ISN_LOCK(); 1447 /* Seed if this is the first use, reseed if requested. */ 1448 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 1449 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 1450 < (u_int)ticks))) { 1451 read_random(&V_isn_secret, sizeof(V_isn_secret)); 1452 V_isn_last_reseed = ticks; 1453 } 1454 1455 /* Compute the md5 hash and return the ISN. */ 1456 MD5Init(&isn_ctx); 1457 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1458 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1459 #ifdef INET6 1460 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1461 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1462 sizeof(struct in6_addr)); 1463 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1464 sizeof(struct in6_addr)); 1465 } else 1466 #endif 1467 { 1468 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1469 sizeof(struct in_addr)); 1470 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1471 sizeof(struct in_addr)); 1472 } 1473 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 1474 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1475 new_isn = (tcp_seq) md5_buffer[0]; 1476 V_isn_offset += ISN_STATIC_INCREMENT + 1477 (arc4random() & ISN_RANDOM_INCREMENT); 1478 new_isn += V_isn_offset; 1479 ISN_UNLOCK(); 1480 return (new_isn); 1481 } 1482 1483 /* 1484 * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary 1485 * to keep time flowing at a relatively constant rate. If the random 1486 * increments have already pushed us past the projected offset, do nothing. 1487 */ 1488 static void 1489 tcp_isn_tick(void *xtp) 1490 { 1491 VNET_ITERATOR_DECL(vnet_iter); 1492 u_int32_t projected_offset; 1493 1494 VNET_LIST_RLOCK_NOSLEEP(); 1495 ISN_LOCK(); 1496 VNET_FOREACH(vnet_iter) { 1497 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */ 1498 projected_offset = 1499 V_isn_offset_old + ISN_BYTES_PER_SECOND / 100; 1500 1501 if (SEQ_GT(projected_offset, V_isn_offset)) 1502 V_isn_offset = projected_offset; 1503 1504 V_isn_offset_old = V_isn_offset; 1505 CURVNET_RESTORE(); 1506 } 1507 ISN_UNLOCK(); 1508 VNET_LIST_RUNLOCK_NOSLEEP(); 1509 callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL); 1510 } 1511 1512 /* 1513 * When a specific ICMP unreachable message is received and the 1514 * connection state is SYN-SENT, drop the connection. This behavior 1515 * is controlled by the icmp_may_rst sysctl. 1516 */ 1517 struct inpcb * 1518 tcp_drop_syn_sent(struct inpcb *inp, int errno) 1519 { 1520 struct tcpcb *tp; 1521 1522 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1523 INP_WLOCK_ASSERT(inp); 1524 1525 if ((inp->inp_flags & INP_TIMEWAIT) || 1526 (inp->inp_flags & INP_DROPPED)) 1527 return (inp); 1528 1529 tp = intotcpcb(inp); 1530 if (tp->t_state != TCPS_SYN_SENT) 1531 return (inp); 1532 1533 tp = tcp_drop(tp, errno); 1534 if (tp != NULL) 1535 return (inp); 1536 else 1537 return (NULL); 1538 } 1539 1540 /* 1541 * When `need fragmentation' ICMP is received, update our idea of the MSS 1542 * based on the new value in the route. Also nudge TCP to send something, 1543 * since we know the packet we just sent was dropped. 1544 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1545 */ 1546 struct inpcb * 1547 tcp_mtudisc(struct inpcb *inp, int errno) 1548 { 1549 struct tcpcb *tp; 1550 struct socket *so; 1551 1552 INP_WLOCK_ASSERT(inp); 1553 if ((inp->inp_flags & INP_TIMEWAIT) || 1554 (inp->inp_flags & INP_DROPPED)) 1555 return (inp); 1556 1557 tp = intotcpcb(inp); 1558 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 1559 1560 tcp_mss_update(tp, -1, NULL, NULL); 1561 1562 so = inp->inp_socket; 1563 SOCKBUF_LOCK(&so->so_snd); 1564 /* If the mss is larger than the socket buffer, decrease the mss. */ 1565 if (so->so_snd.sb_hiwat < tp->t_maxseg) 1566 tp->t_maxseg = so->so_snd.sb_hiwat; 1567 SOCKBUF_UNLOCK(&so->so_snd); 1568 1569 TCPSTAT_INC(tcps_mturesent); 1570 tp->t_rtttime = 0; 1571 tp->snd_nxt = tp->snd_una; 1572 tcp_free_sackholes(tp); 1573 tp->snd_recover = tp->snd_max; 1574 if (tp->t_flags & TF_SACK_PERMIT) 1575 EXIT_FASTRECOVERY(tp); 1576 tcp_output_send(tp); 1577 return (inp); 1578 } 1579 1580 /* 1581 * Look-up the routing entry to the peer of this inpcb. If no route 1582 * is found and it cannot be allocated, then return 0. This routine 1583 * is called by TCP routines that access the rmx structure and by 1584 * tcp_mss_update to get the peer/interface MTU. 1585 */ 1586 u_long 1587 tcp_maxmtu(struct in_conninfo *inc, int *flags) 1588 { 1589 struct route sro; 1590 struct sockaddr_in *dst; 1591 struct ifnet *ifp; 1592 u_long maxmtu = 0; 1593 1594 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1595 1596 bzero(&sro, sizeof(sro)); 1597 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1598 dst = (struct sockaddr_in *)&sro.ro_dst; 1599 dst->sin_family = AF_INET; 1600 dst->sin_len = sizeof(*dst); 1601 dst->sin_addr = inc->inc_faddr; 1602 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 1603 } 1604 if (sro.ro_rt != NULL) { 1605 ifp = sro.ro_rt->rt_ifp; 1606 if (sro.ro_rt->rt_rmx.rmx_mtu == 0) 1607 maxmtu = ifp->if_mtu; 1608 else 1609 maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu); 1610 1611 /* Report additional interface capabilities. */ 1612 if (flags != NULL) { 1613 if (ifp->if_capenable & IFCAP_TSO4 && 1614 ifp->if_hwassist & CSUM_TSO) 1615 *flags |= CSUM_TSO; 1616 } 1617 RTFREE(sro.ro_rt); 1618 } 1619 return (maxmtu); 1620 } 1621 1622 #ifdef INET6 1623 u_long 1624 tcp_maxmtu6(struct in_conninfo *inc, int *flags) 1625 { 1626 struct route_in6 sro6; 1627 struct ifnet *ifp; 1628 u_long maxmtu = 0; 1629 1630 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1631 1632 bzero(&sro6, sizeof(sro6)); 1633 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1634 sro6.ro_dst.sin6_family = AF_INET6; 1635 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1636 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1637 rtalloc_ign((struct route *)&sro6, 0); 1638 } 1639 if (sro6.ro_rt != NULL) { 1640 ifp = sro6.ro_rt->rt_ifp; 1641 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0) 1642 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1643 else 1644 maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu, 1645 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1646 1647 /* Report additional interface capabilities. */ 1648 if (flags != NULL) { 1649 if (ifp->if_capenable & IFCAP_TSO6 && 1650 ifp->if_hwassist & CSUM_TSO) 1651 *flags |= CSUM_TSO; 1652 } 1653 RTFREE(sro6.ro_rt); 1654 } 1655 1656 return (maxmtu); 1657 } 1658 #endif /* INET6 */ 1659 1660 #ifdef IPSEC 1661 /* compute ESP/AH header size for TCP, including outer IP header. */ 1662 size_t 1663 ipsec_hdrsiz_tcp(struct tcpcb *tp) 1664 { 1665 struct inpcb *inp; 1666 struct mbuf *m; 1667 size_t hdrsiz; 1668 struct ip *ip; 1669 #ifdef INET6 1670 struct ip6_hdr *ip6; 1671 #endif 1672 struct tcphdr *th; 1673 1674 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1675 return (0); 1676 MGETHDR(m, M_DONTWAIT, MT_DATA); 1677 if (!m) 1678 return (0); 1679 1680 #ifdef INET6 1681 if ((inp->inp_vflag & INP_IPV6) != 0) { 1682 ip6 = mtod(m, struct ip6_hdr *); 1683 th = (struct tcphdr *)(ip6 + 1); 1684 m->m_pkthdr.len = m->m_len = 1685 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1686 tcpip_fillheaders(inp, ip6, th); 1687 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1688 } else 1689 #endif /* INET6 */ 1690 { 1691 ip = mtod(m, struct ip *); 1692 th = (struct tcphdr *)(ip + 1); 1693 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1694 tcpip_fillheaders(inp, ip, th); 1695 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1696 } 1697 1698 m_free(m); 1699 return (hdrsiz); 1700 } 1701 #endif /* IPSEC */ 1702 1703 #ifdef TCP_SIGNATURE 1704 /* 1705 * Callback function invoked by m_apply() to digest TCP segment data 1706 * contained within an mbuf chain. 1707 */ 1708 static int 1709 tcp_signature_apply(void *fstate, void *data, u_int len) 1710 { 1711 1712 MD5Update(fstate, (u_char *)data, len); 1713 return (0); 1714 } 1715 1716 /* 1717 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 1718 * 1719 * Parameters: 1720 * m pointer to head of mbuf chain 1721 * _unused 1722 * len length of TCP segment data, excluding options 1723 * optlen length of TCP segment options 1724 * buf pointer to storage for computed MD5 digest 1725 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 1726 * 1727 * We do this over ip, tcphdr, segment data, and the key in the SADB. 1728 * When called from tcp_input(), we can be sure that th_sum has been 1729 * zeroed out and verified already. 1730 * 1731 * Return 0 if successful, otherwise return -1. 1732 * 1733 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 1734 * search with the destination IP address, and a 'magic SPI' to be 1735 * determined by the application. This is hardcoded elsewhere to 1179 1736 * right now. Another branch of this code exists which uses the SPD to 1737 * specify per-application flows but it is unstable. 1738 */ 1739 int 1740 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 1741 u_char *buf, u_int direction) 1742 { 1743 union sockaddr_union dst; 1744 struct ippseudo ippseudo; 1745 MD5_CTX ctx; 1746 int doff; 1747 struct ip *ip; 1748 struct ipovly *ipovly; 1749 struct secasvar *sav; 1750 struct tcphdr *th; 1751 #ifdef INET6 1752 struct ip6_hdr *ip6; 1753 struct in6_addr in6; 1754 char ip6buf[INET6_ADDRSTRLEN]; 1755 uint32_t plen; 1756 uint16_t nhdr; 1757 #endif 1758 u_short savecsum; 1759 1760 KASSERT(m != NULL, ("NULL mbuf chain")); 1761 KASSERT(buf != NULL, ("NULL signature pointer")); 1762 1763 /* Extract the destination from the IP header in the mbuf. */ 1764 bzero(&dst, sizeof(union sockaddr_union)); 1765 ip = mtod(m, struct ip *); 1766 #ifdef INET6 1767 ip6 = NULL; /* Make the compiler happy. */ 1768 #endif 1769 switch (ip->ip_v) { 1770 case IPVERSION: 1771 dst.sa.sa_len = sizeof(struct sockaddr_in); 1772 dst.sa.sa_family = AF_INET; 1773 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 1774 ip->ip_src : ip->ip_dst; 1775 break; 1776 #ifdef INET6 1777 case (IPV6_VERSION >> 4): 1778 ip6 = mtod(m, struct ip6_hdr *); 1779 dst.sa.sa_len = sizeof(struct sockaddr_in6); 1780 dst.sa.sa_family = AF_INET6; 1781 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 1782 ip6->ip6_src : ip6->ip6_dst; 1783 break; 1784 #endif 1785 default: 1786 return (EINVAL); 1787 /* NOTREACHED */ 1788 break; 1789 } 1790 1791 /* Look up an SADB entry which matches the address of the peer. */ 1792 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 1793 if (sav == NULL) { 1794 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 1795 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 1796 #ifdef INET6 1797 (ip->ip_v == (IPV6_VERSION >> 4)) ? 1798 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 1799 #endif 1800 "(unsupported)")); 1801 return (EINVAL); 1802 } 1803 1804 MD5Init(&ctx); 1805 /* 1806 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 1807 * 1808 * XXX The ippseudo header MUST be digested in network byte order, 1809 * or else we'll fail the regression test. Assume all fields we've 1810 * been doing arithmetic on have been in host byte order. 1811 * XXX One cannot depend on ipovly->ih_len here. When called from 1812 * tcp_output(), the underlying ip_len member has not yet been set. 1813 */ 1814 switch (ip->ip_v) { 1815 case IPVERSION: 1816 ipovly = (struct ipovly *)ip; 1817 ippseudo.ippseudo_src = ipovly->ih_src; 1818 ippseudo.ippseudo_dst = ipovly->ih_dst; 1819 ippseudo.ippseudo_pad = 0; 1820 ippseudo.ippseudo_p = IPPROTO_TCP; 1821 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 1822 optlen); 1823 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 1824 1825 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 1826 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 1827 break; 1828 #ifdef INET6 1829 /* 1830 * RFC 2385, 2.0 Proposal 1831 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 1832 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 1833 * extended next header value (to form 32 bits), and 32-bit segment 1834 * length. 1835 * Note: Upper-Layer Packet Length comes before Next Header. 1836 */ 1837 case (IPV6_VERSION >> 4): 1838 in6 = ip6->ip6_src; 1839 in6_clearscope(&in6); 1840 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1841 in6 = ip6->ip6_dst; 1842 in6_clearscope(&in6); 1843 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1844 plen = htonl(len + sizeof(struct tcphdr) + optlen); 1845 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 1846 nhdr = 0; 1847 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1848 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1849 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1850 nhdr = IPPROTO_TCP; 1851 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1852 1853 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 1854 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 1855 break; 1856 #endif 1857 default: 1858 return (EINVAL); 1859 /* NOTREACHED */ 1860 break; 1861 } 1862 1863 1864 /* 1865 * Step 2: Update MD5 hash with TCP header, excluding options. 1866 * The TCP checksum must be set to zero. 1867 */ 1868 savecsum = th->th_sum; 1869 th->th_sum = 0; 1870 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 1871 th->th_sum = savecsum; 1872 1873 /* 1874 * Step 3: Update MD5 hash with TCP segment data. 1875 * Use m_apply() to avoid an early m_pullup(). 1876 */ 1877 if (len > 0) 1878 m_apply(m, doff, len, tcp_signature_apply, &ctx); 1879 1880 /* 1881 * Step 4: Update MD5 hash with shared secret. 1882 */ 1883 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 1884 MD5Final(buf, &ctx); 1885 1886 key_sa_recordxfer(sav, m); 1887 KEY_FREESAV(&sav); 1888 return (0); 1889 } 1890 #endif /* TCP_SIGNATURE */ 1891 1892 static int 1893 sysctl_drop(SYSCTL_HANDLER_ARGS) 1894 { 1895 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 1896 struct sockaddr_storage addrs[2]; 1897 struct inpcb *inp; 1898 struct tcpcb *tp; 1899 struct tcptw *tw; 1900 struct sockaddr_in *fin, *lin; 1901 #ifdef INET6 1902 struct sockaddr_in6 *fin6, *lin6; 1903 #endif 1904 int error; 1905 1906 inp = NULL; 1907 fin = lin = NULL; 1908 #ifdef INET6 1909 fin6 = lin6 = NULL; 1910 #endif 1911 error = 0; 1912 1913 if (req->oldptr != NULL || req->oldlen != 0) 1914 return (EINVAL); 1915 if (req->newptr == NULL) 1916 return (EPERM); 1917 if (req->newlen < sizeof(addrs)) 1918 return (ENOMEM); 1919 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 1920 if (error) 1921 return (error); 1922 1923 switch (addrs[0].ss_family) { 1924 #ifdef INET6 1925 case AF_INET6: 1926 fin6 = (struct sockaddr_in6 *)&addrs[0]; 1927 lin6 = (struct sockaddr_in6 *)&addrs[1]; 1928 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 1929 lin6->sin6_len != sizeof(struct sockaddr_in6)) 1930 return (EINVAL); 1931 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 1932 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 1933 return (EINVAL); 1934 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 1935 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 1936 fin = (struct sockaddr_in *)&addrs[0]; 1937 lin = (struct sockaddr_in *)&addrs[1]; 1938 break; 1939 } 1940 error = sa6_embedscope(fin6, V_ip6_use_defzone); 1941 if (error) 1942 return (error); 1943 error = sa6_embedscope(lin6, V_ip6_use_defzone); 1944 if (error) 1945 return (error); 1946 break; 1947 #endif 1948 case AF_INET: 1949 fin = (struct sockaddr_in *)&addrs[0]; 1950 lin = (struct sockaddr_in *)&addrs[1]; 1951 if (fin->sin_len != sizeof(struct sockaddr_in) || 1952 lin->sin_len != sizeof(struct sockaddr_in)) 1953 return (EINVAL); 1954 break; 1955 default: 1956 return (EINVAL); 1957 } 1958 INP_INFO_WLOCK(&V_tcbinfo); 1959 switch (addrs[0].ss_family) { 1960 #ifdef INET6 1961 case AF_INET6: 1962 inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr, 1963 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0, 1964 NULL); 1965 break; 1966 #endif 1967 case AF_INET: 1968 inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr, 1969 fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL); 1970 break; 1971 } 1972 if (inp != NULL) { 1973 INP_WLOCK(inp); 1974 if (inp->inp_flags & INP_TIMEWAIT) { 1975 /* 1976 * XXXRW: There currently exists a state where an 1977 * inpcb is present, but its timewait state has been 1978 * discarded. For now, don't allow dropping of this 1979 * type of inpcb. 1980 */ 1981 tw = intotw(inp); 1982 if (tw != NULL) 1983 tcp_twclose(tw, 0); 1984 else 1985 INP_WUNLOCK(inp); 1986 } else if (!(inp->inp_flags & INP_DROPPED) && 1987 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 1988 tp = intotcpcb(inp); 1989 tp = tcp_drop(tp, ECONNABORTED); 1990 if (tp != NULL) 1991 INP_WUNLOCK(inp); 1992 } else 1993 INP_WUNLOCK(inp); 1994 } else 1995 error = ESRCH; 1996 INP_INFO_WUNLOCK(&V_tcbinfo); 1997 return (error); 1998 } 1999 2000 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2001 CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL, 2002 0, sysctl_drop, "", "Drop TCP connection"); 2003 2004 /* 2005 * Generate a standardized TCP log line for use throughout the 2006 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2007 * allow use in the interrupt context. 2008 * 2009 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2010 * NB: The function may return NULL if memory allocation failed. 2011 * 2012 * Due to header inclusion and ordering limitations the struct ip 2013 * and ip6_hdr pointers have to be passed as void pointers. 2014 */ 2015 char * 2016 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2017 const void *ip6hdr) 2018 { 2019 2020 /* Is logging enabled? */ 2021 if (tcp_log_in_vain == 0) 2022 return (NULL); 2023 2024 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2025 } 2026 2027 char * 2028 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2029 const void *ip6hdr) 2030 { 2031 2032 /* Is logging enabled? */ 2033 if (tcp_log_debug == 0) 2034 return (NULL); 2035 2036 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2037 } 2038 2039 static char * 2040 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2041 const void *ip6hdr) 2042 { 2043 char *s, *sp; 2044 size_t size; 2045 struct ip *ip; 2046 #ifdef INET6 2047 const struct ip6_hdr *ip6; 2048 2049 ip6 = (const struct ip6_hdr *)ip6hdr; 2050 #endif /* INET6 */ 2051 ip = (struct ip *)ip4hdr; 2052 2053 /* 2054 * The log line looks like this: 2055 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2056 */ 2057 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2058 sizeof(PRINT_TH_FLAGS) + 1 + 2059 #ifdef INET6 2060 2 * INET6_ADDRSTRLEN; 2061 #else 2062 2 * INET_ADDRSTRLEN; 2063 #endif /* INET6 */ 2064 2065 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2066 if (s == NULL) 2067 return (NULL); 2068 2069 strcat(s, "TCP: ["); 2070 sp = s + strlen(s); 2071 2072 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2073 inet_ntoa_r(inc->inc_faddr, sp); 2074 sp = s + strlen(s); 2075 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2076 sp = s + strlen(s); 2077 inet_ntoa_r(inc->inc_laddr, sp); 2078 sp = s + strlen(s); 2079 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2080 #ifdef INET6 2081 } else if (inc) { 2082 ip6_sprintf(sp, &inc->inc6_faddr); 2083 sp = s + strlen(s); 2084 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2085 sp = s + strlen(s); 2086 ip6_sprintf(sp, &inc->inc6_laddr); 2087 sp = s + strlen(s); 2088 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2089 } else if (ip6 && th) { 2090 ip6_sprintf(sp, &ip6->ip6_src); 2091 sp = s + strlen(s); 2092 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2093 sp = s + strlen(s); 2094 ip6_sprintf(sp, &ip6->ip6_dst); 2095 sp = s + strlen(s); 2096 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2097 #endif /* INET6 */ 2098 } else if (ip && th) { 2099 inet_ntoa_r(ip->ip_src, sp); 2100 sp = s + strlen(s); 2101 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2102 sp = s + strlen(s); 2103 inet_ntoa_r(ip->ip_dst, sp); 2104 sp = s + strlen(s); 2105 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2106 } else { 2107 free(s, M_TCPLOG); 2108 return (NULL); 2109 } 2110 sp = s + strlen(s); 2111 if (th) 2112 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2113 if (*(s + size - 1) != '\0') 2114 panic("%s: string too long", __func__); 2115 return (s); 2116 } 2117