xref: /freebsd/sys/netinet/tcp_subr.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_pcb.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/tcp_syncache.h>
88 #ifdef INET6
89 #include <netinet6/tcp6_var.h>
90 #endif
91 #include <netinet/tcpip.h>
92 #ifdef TCPDEBUG
93 #include <netinet/tcp_debug.h>
94 #endif
95 #ifdef INET6
96 #include <netinet6/ip6protosw.h>
97 #endif
98 #ifdef TCP_OFFLOAD
99 #include <netinet/tcp_offload.h>
100 #endif
101 
102 #ifdef IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #include <sys/syslog.h>
110 #endif /*IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 #include <security/mac/mac_framework.h>
116 
117 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
118 #ifdef INET6
119 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
120 #endif
121 
122 static int
123 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
124 {
125 	int error, new;
126 
127 	new = V_tcp_mssdflt;
128 	error = sysctl_handle_int(oidp, &new, 0, req);
129 	if (error == 0 && req->newptr) {
130 		if (new < TCP_MINMSS)
131 			error = EINVAL;
132 		else
133 			V_tcp_mssdflt = new;
134 	}
135 	return (error);
136 }
137 
138 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
139     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
140     &sysctl_net_inet_tcp_mss_check, "I",
141     "Default TCP Maximum Segment Size");
142 
143 #ifdef INET6
144 static int
145 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
146 {
147 	int error, new;
148 
149 	new = V_tcp_v6mssdflt;
150 	error = sysctl_handle_int(oidp, &new, 0, req);
151 	if (error == 0 && req->newptr) {
152 		if (new < TCP_MINMSS)
153 			error = EINVAL;
154 		else
155 			V_tcp_v6mssdflt = new;
156 	}
157 	return (error);
158 }
159 
160 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
161     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
162     &sysctl_net_inet_tcp_mss_v6_check, "I",
163    "Default TCP Maximum Segment Size for IPv6");
164 #endif /* INET6 */
165 
166 /*
167  * Minimum MSS we accept and use. This prevents DoS attacks where
168  * we are forced to a ridiculous low MSS like 20 and send hundreds
169  * of packets instead of one. The effect scales with the available
170  * bandwidth and quickly saturates the CPU and network interface
171  * with packet generation and sending. Set to zero to disable MINMSS
172  * checking. This setting prevents us from sending too small packets.
173  */
174 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
175 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
176      &VNET_NAME(tcp_minmss), 0,
177     "Minmum TCP Maximum Segment Size");
178 
179 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
180 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_rfc1323), 0,
182     "Enable rfc1323 (high performance TCP) extensions");
183 
184 static int	tcp_log_debug = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
186     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
187 
188 static int	tcp_tcbhashsize = 0;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
190     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
191 
192 static int	do_tcpdrain = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
194     "Enable tcp_drain routine for extra help when low on mbufs");
195 
196 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
198 
199 static VNET_DEFINE(int, icmp_may_rst) = 1;
200 #define	V_icmp_may_rst			VNET(icmp_may_rst)
201 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
202     &VNET_NAME(icmp_may_rst), 0,
203     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
204 
205 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
206 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
207 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
208     &VNET_NAME(tcp_isn_reseed_interval), 0,
209     "Seconds between reseeding of ISN secret");
210 
211 static int	tcp_soreceive_stream = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
213     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
214 
215 #ifdef TCP_SIGNATURE
216 static int	tcp_sig_checksigs = 1;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
218     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
219 #endif
220 
221 VNET_DEFINE(uma_zone_t, sack_hole_zone);
222 #define	V_sack_hole_zone		VNET(sack_hole_zone)
223 
224 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
225 
226 static struct inpcb *tcp_notify(struct inpcb *, int);
227 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
228 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
229 		    void *ip4hdr, const void *ip6hdr);
230 
231 /*
232  * Target size of TCP PCB hash tables. Must be a power of two.
233  *
234  * Note that this can be overridden by the kernel environment
235  * variable net.inet.tcp.tcbhashsize
236  */
237 #ifndef TCBHASHSIZE
238 #define TCBHASHSIZE	512
239 #endif
240 
241 /*
242  * XXX
243  * Callouts should be moved into struct tcp directly.  They are currently
244  * separate because the tcpcb structure is exported to userland for sysctl
245  * parsing purposes, which do not know about callouts.
246  */
247 struct tcpcb_mem {
248 	struct	tcpcb		tcb;
249 	struct	tcp_timer	tt;
250 	struct	cc_var		ccv;
251 	struct	osd		osd;
252 };
253 
254 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
255 #define	V_tcpcb_zone			VNET(tcpcb_zone)
256 
257 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
258 static struct mtx isn_mtx;
259 
260 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
261 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
262 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
263 
264 /*
265  * TCP initialization.
266  */
267 static void
268 tcp_zone_change(void *tag)
269 {
270 
271 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
272 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
273 	tcp_tw_zone_change();
274 }
275 
276 static int
277 tcp_inpcb_init(void *mem, int size, int flags)
278 {
279 	struct inpcb *inp = mem;
280 
281 	INP_LOCK_INIT(inp, "inp", "tcpinp");
282 	return (0);
283 }
284 
285 void
286 tcp_init(void)
287 {
288 	int hashsize;
289 
290 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
291 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
292 		printf("%s: WARNING: unable to register helper hook\n", __func__);
293 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
294 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
295 		printf("%s: WARNING: unable to register helper hook\n", __func__);
296 
297 	hashsize = TCBHASHSIZE;
298 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
299 	if (!powerof2(hashsize)) {
300 		printf("WARNING: TCB hash size not a power of 2\n");
301 		hashsize = 512; /* safe default */
302 	}
303 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
304 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
305 	    IPI_HASHFIELDS_4TUPLE);
306 
307 	/*
308 	 * These have to be type stable for the benefit of the timers.
309 	 */
310 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
311 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
313 
314 	tcp_tw_init();
315 	syncache_init();
316 	tcp_hc_init();
317 	tcp_reass_init();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
320 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
321 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
322 
323 	/* Skip initialization of globals for non-default instances. */
324 	if (!IS_DEFAULT_VNET(curvnet))
325 		return;
326 
327 	/* XXX virtualize those bellow? */
328 	tcp_delacktime = TCPTV_DELACK;
329 	tcp_keepinit = TCPTV_KEEP_INIT;
330 	tcp_keepidle = TCPTV_KEEP_IDLE;
331 	tcp_keepintvl = TCPTV_KEEPINTVL;
332 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
333 	tcp_msl = TCPTV_MSL;
334 	tcp_rexmit_min = TCPTV_MIN;
335 	if (tcp_rexmit_min < 1)
336 		tcp_rexmit_min = 1;
337 	tcp_rexmit_slop = TCPTV_CPU_VAR;
338 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
339 	tcp_tcbhashsize = hashsize;
340 
341 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
342 	if (tcp_soreceive_stream) {
343 #ifdef INET
344 		tcp_usrreqs.pru_soreceive = soreceive_stream;
345 #endif
346 #ifdef INET6
347 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
348 #endif /* INET6 */
349 	}
350 
351 #ifdef INET6
352 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
353 #else /* INET6 */
354 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
355 #endif /* INET6 */
356 	if (max_protohdr < TCP_MINPROTOHDR)
357 		max_protohdr = TCP_MINPROTOHDR;
358 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
359 		panic("tcp_init");
360 #undef TCP_MINPROTOHDR
361 
362 	ISN_LOCK_INIT();
363 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
364 		SHUTDOWN_PRI_DEFAULT);
365 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
366 		EVENTHANDLER_PRI_ANY);
367 }
368 
369 #ifdef VIMAGE
370 void
371 tcp_destroy(void)
372 {
373 
374 	tcp_reass_destroy();
375 	tcp_hc_destroy();
376 	syncache_destroy();
377 	tcp_tw_destroy();
378 	in_pcbinfo_destroy(&V_tcbinfo);
379 	uma_zdestroy(V_sack_hole_zone);
380 	uma_zdestroy(V_tcpcb_zone);
381 }
382 #endif
383 
384 void
385 tcp_fini(void *xtp)
386 {
387 
388 }
389 
390 /*
391  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
392  * tcp_template used to store this data in mbufs, but we now recopy it out
393  * of the tcpcb each time to conserve mbufs.
394  */
395 void
396 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
397 {
398 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
399 
400 	INP_WLOCK_ASSERT(inp);
401 
402 #ifdef INET6
403 	if ((inp->inp_vflag & INP_IPV6) != 0) {
404 		struct ip6_hdr *ip6;
405 
406 		ip6 = (struct ip6_hdr *)ip_ptr;
407 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
408 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
409 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
410 			(IPV6_VERSION & IPV6_VERSION_MASK);
411 		ip6->ip6_nxt = IPPROTO_TCP;
412 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
413 		ip6->ip6_src = inp->in6p_laddr;
414 		ip6->ip6_dst = inp->in6p_faddr;
415 	}
416 #endif /* INET6 */
417 #if defined(INET6) && defined(INET)
418 	else
419 #endif
420 #ifdef INET
421 	{
422 		struct ip *ip;
423 
424 		ip = (struct ip *)ip_ptr;
425 		ip->ip_v = IPVERSION;
426 		ip->ip_hl = 5;
427 		ip->ip_tos = inp->inp_ip_tos;
428 		ip->ip_len = 0;
429 		ip->ip_id = 0;
430 		ip->ip_off = 0;
431 		ip->ip_ttl = inp->inp_ip_ttl;
432 		ip->ip_sum = 0;
433 		ip->ip_p = IPPROTO_TCP;
434 		ip->ip_src = inp->inp_laddr;
435 		ip->ip_dst = inp->inp_faddr;
436 	}
437 #endif /* INET */
438 	th->th_sport = inp->inp_lport;
439 	th->th_dport = inp->inp_fport;
440 	th->th_seq = 0;
441 	th->th_ack = 0;
442 	th->th_x2 = 0;
443 	th->th_off = 5;
444 	th->th_flags = 0;
445 	th->th_win = 0;
446 	th->th_urp = 0;
447 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
448 }
449 
450 /*
451  * Create template to be used to send tcp packets on a connection.
452  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
453  * use for this function is in keepalives, which use tcp_respond.
454  */
455 struct tcptemp *
456 tcpip_maketemplate(struct inpcb *inp)
457 {
458 	struct tcptemp *t;
459 
460 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
461 	if (t == NULL)
462 		return (NULL);
463 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
464 	return (t);
465 }
466 
467 /*
468  * Send a single message to the TCP at address specified by
469  * the given TCP/IP header.  If m == NULL, then we make a copy
470  * of the tcpiphdr at ti and send directly to the addressed host.
471  * This is used to force keep alive messages out using the TCP
472  * template for a connection.  If flags are given then we send
473  * a message back to the TCP which originated the * segment ti,
474  * and discard the mbuf containing it and any other attached mbufs.
475  *
476  * In any case the ack and sequence number of the transmitted
477  * segment are as specified by the parameters.
478  *
479  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
480  */
481 void
482 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
483     tcp_seq ack, tcp_seq seq, int flags)
484 {
485 	int tlen;
486 	int win = 0;
487 	struct ip *ip;
488 	struct tcphdr *nth;
489 #ifdef INET6
490 	struct ip6_hdr *ip6;
491 	int isipv6;
492 #endif /* INET6 */
493 	int ipflags = 0;
494 	struct inpcb *inp;
495 
496 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
497 
498 #ifdef INET6
499 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
500 	ip6 = ipgen;
501 #endif /* INET6 */
502 	ip = ipgen;
503 
504 	if (tp != NULL) {
505 		inp = tp->t_inpcb;
506 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
507 		INP_WLOCK_ASSERT(inp);
508 	} else
509 		inp = NULL;
510 
511 	if (tp != NULL) {
512 		if (!(flags & TH_RST)) {
513 			win = sbspace(&inp->inp_socket->so_rcv);
514 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
515 				win = (long)TCP_MAXWIN << tp->rcv_scale;
516 		}
517 	}
518 	if (m == NULL) {
519 		m = m_gethdr(M_DONTWAIT, MT_DATA);
520 		if (m == NULL)
521 			return;
522 		tlen = 0;
523 		m->m_data += max_linkhdr;
524 #ifdef INET6
525 		if (isipv6) {
526 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
527 			      sizeof(struct ip6_hdr));
528 			ip6 = mtod(m, struct ip6_hdr *);
529 			nth = (struct tcphdr *)(ip6 + 1);
530 		} else
531 #endif /* INET6 */
532 	      {
533 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
534 		ip = mtod(m, struct ip *);
535 		nth = (struct tcphdr *)(ip + 1);
536 	      }
537 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
538 		flags = TH_ACK;
539 	} else {
540 		/*
541 		 *  reuse the mbuf.
542 		 * XXX MRT We inherrit the FIB, which is lucky.
543 		 */
544 		m_freem(m->m_next);
545 		m->m_next = NULL;
546 		m->m_data = (caddr_t)ipgen;
547 		/* m_len is set later */
548 		tlen = 0;
549 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
550 #ifdef INET6
551 		if (isipv6) {
552 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
553 			nth = (struct tcphdr *)(ip6 + 1);
554 		} else
555 #endif /* INET6 */
556 	      {
557 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
558 		nth = (struct tcphdr *)(ip + 1);
559 	      }
560 		if (th != nth) {
561 			/*
562 			 * this is usually a case when an extension header
563 			 * exists between the IPv6 header and the
564 			 * TCP header.
565 			 */
566 			nth->th_sport = th->th_sport;
567 			nth->th_dport = th->th_dport;
568 		}
569 		xchg(nth->th_dport, nth->th_sport, uint16_t);
570 #undef xchg
571 	}
572 #ifdef INET6
573 	if (isipv6) {
574 		ip6->ip6_flow = 0;
575 		ip6->ip6_vfc = IPV6_VERSION;
576 		ip6->ip6_nxt = IPPROTO_TCP;
577 		ip6->ip6_plen = 0;		/* Set in ip6_output(). */
578 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
579 	}
580 #endif
581 #if defined(INET) && defined(INET6)
582 	else
583 #endif
584 #ifdef INET
585 	{
586 		tlen += sizeof (struct tcpiphdr);
587 		ip->ip_len = tlen;
588 		ip->ip_ttl = V_ip_defttl;
589 		if (V_path_mtu_discovery)
590 			ip->ip_off |= IP_DF;
591 	}
592 #endif
593 	m->m_len = tlen;
594 	m->m_pkthdr.len = tlen;
595 	m->m_pkthdr.rcvif = NULL;
596 #ifdef MAC
597 	if (inp != NULL) {
598 		/*
599 		 * Packet is associated with a socket, so allow the
600 		 * label of the response to reflect the socket label.
601 		 */
602 		INP_WLOCK_ASSERT(inp);
603 		mac_inpcb_create_mbuf(inp, m);
604 	} else {
605 		/*
606 		 * Packet is not associated with a socket, so possibly
607 		 * update the label in place.
608 		 */
609 		mac_netinet_tcp_reply(m);
610 	}
611 #endif
612 	nth->th_seq = htonl(seq);
613 	nth->th_ack = htonl(ack);
614 	nth->th_x2 = 0;
615 	nth->th_off = sizeof (struct tcphdr) >> 2;
616 	nth->th_flags = flags;
617 	if (tp != NULL)
618 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
619 	else
620 		nth->th_win = htons((u_short)win);
621 	nth->th_urp = 0;
622 
623 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
624 #ifdef INET6
625 	if (isipv6) {
626 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
627 		nth->th_sum = in6_cksum_pseudo(ip6,
628 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
629 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
630 		    NULL, NULL);
631 	}
632 #endif /* INET6 */
633 #if defined(INET6) && defined(INET)
634 	else
635 #endif
636 #ifdef INET
637 	{
638 		m->m_pkthdr.csum_flags = CSUM_TCP;
639 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
640 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
641 	}
642 #endif /* INET */
643 #ifdef TCPDEBUG
644 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
645 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
646 #endif
647 #ifdef INET6
648 	if (isipv6)
649 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
650 #endif /* INET6 */
651 #if defined(INET) && defined(INET6)
652 	else
653 #endif
654 #ifdef INET
655 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
656 #endif
657 }
658 
659 /*
660  * Create a new TCP control block, making an
661  * empty reassembly queue and hooking it to the argument
662  * protocol control block.  The `inp' parameter must have
663  * come from the zone allocator set up in tcp_init().
664  */
665 struct tcpcb *
666 tcp_newtcpcb(struct inpcb *inp)
667 {
668 	struct tcpcb_mem *tm;
669 	struct tcpcb *tp;
670 #ifdef INET6
671 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
672 #endif /* INET6 */
673 
674 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
675 	if (tm == NULL)
676 		return (NULL);
677 	tp = &tm->tcb;
678 
679 	/* Initialise cc_var struct for this tcpcb. */
680 	tp->ccv = &tm->ccv;
681 	tp->ccv->type = IPPROTO_TCP;
682 	tp->ccv->ccvc.tcp = tp;
683 
684 	/*
685 	 * Use the current system default CC algorithm.
686 	 */
687 	CC_LIST_RLOCK();
688 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
689 	CC_ALGO(tp) = CC_DEFAULT();
690 	CC_LIST_RUNLOCK();
691 
692 	if (CC_ALGO(tp)->cb_init != NULL)
693 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
694 			uma_zfree(V_tcpcb_zone, tm);
695 			return (NULL);
696 		}
697 
698 	tp->osd = &tm->osd;
699 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
700 		uma_zfree(V_tcpcb_zone, tm);
701 		return (NULL);
702 	}
703 
704 #ifdef VIMAGE
705 	tp->t_vnet = inp->inp_vnet;
706 #endif
707 	tp->t_timers = &tm->tt;
708 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
709 	tp->t_maxseg = tp->t_maxopd =
710 #ifdef INET6
711 		isipv6 ? V_tcp_v6mssdflt :
712 #endif /* INET6 */
713 		V_tcp_mssdflt;
714 
715 	/* Set up our timeouts. */
716 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
717 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
718 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
719 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
720 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
721 
722 	if (V_tcp_do_rfc1323)
723 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
724 	if (V_tcp_do_sack)
725 		tp->t_flags |= TF_SACK_PERMIT;
726 	TAILQ_INIT(&tp->snd_holes);
727 	tp->t_inpcb = inp;	/* XXX */
728 	/*
729 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
730 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
731 	 * reasonable initial retransmit time.
732 	 */
733 	tp->t_srtt = TCPTV_SRTTBASE;
734 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735 	tp->t_rttmin = tcp_rexmit_min;
736 	tp->t_rxtcur = TCPTV_RTOBASE;
737 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->t_rcvtime = ticks;
740 	/*
741 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
742 	 * because the socket may be bound to an IPv6 wildcard address,
743 	 * which may match an IPv4-mapped IPv6 address.
744 	 */
745 	inp->inp_ip_ttl = V_ip_defttl;
746 	inp->inp_ppcb = tp;
747 	return (tp);		/* XXX */
748 }
749 
750 /*
751  * Switch the congestion control algorithm back to NewReno for any active
752  * control blocks using an algorithm which is about to go away.
753  * This ensures the CC framework can allow the unload to proceed without leaving
754  * any dangling pointers which would trigger a panic.
755  * Returning non-zero would inform the CC framework that something went wrong
756  * and it would be unsafe to allow the unload to proceed. However, there is no
757  * way for this to occur with this implementation so we always return zero.
758  */
759 int
760 tcp_ccalgounload(struct cc_algo *unload_algo)
761 {
762 	struct cc_algo *tmpalgo;
763 	struct inpcb *inp;
764 	struct tcpcb *tp;
765 	VNET_ITERATOR_DECL(vnet_iter);
766 
767 	/*
768 	 * Check all active control blocks across all network stacks and change
769 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
770 	 * requires cleanup code to be run, call it.
771 	 */
772 	VNET_LIST_RLOCK();
773 	VNET_FOREACH(vnet_iter) {
774 		CURVNET_SET(vnet_iter);
775 		INP_INFO_RLOCK(&V_tcbinfo);
776 		/*
777 		 * New connections already part way through being initialised
778 		 * with the CC algo we're removing will not race with this code
779 		 * because the INP_INFO_WLOCK is held during initialisation. We
780 		 * therefore don't enter the loop below until the connection
781 		 * list has stabilised.
782 		 */
783 		LIST_FOREACH(inp, &V_tcb, inp_list) {
784 			INP_WLOCK(inp);
785 			/* Important to skip tcptw structs. */
786 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
787 			    (tp = intotcpcb(inp)) != NULL) {
788 				/*
789 				 * By holding INP_WLOCK here, we are assured
790 				 * that the connection is not currently
791 				 * executing inside the CC module's functions
792 				 * i.e. it is safe to make the switch back to
793 				 * NewReno.
794 				 */
795 				if (CC_ALGO(tp) == unload_algo) {
796 					tmpalgo = CC_ALGO(tp);
797 					/* NewReno does not require any init. */
798 					CC_ALGO(tp) = &newreno_cc_algo;
799 					if (tmpalgo->cb_destroy != NULL)
800 						tmpalgo->cb_destroy(tp->ccv);
801 				}
802 			}
803 			INP_WUNLOCK(inp);
804 		}
805 		INP_INFO_RUNLOCK(&V_tcbinfo);
806 		CURVNET_RESTORE();
807 	}
808 	VNET_LIST_RUNLOCK();
809 
810 	return (0);
811 }
812 
813 /*
814  * Drop a TCP connection, reporting
815  * the specified error.  If connection is synchronized,
816  * then send a RST to peer.
817  */
818 struct tcpcb *
819 tcp_drop(struct tcpcb *tp, int errno)
820 {
821 	struct socket *so = tp->t_inpcb->inp_socket;
822 
823 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
824 	INP_WLOCK_ASSERT(tp->t_inpcb);
825 
826 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
827 		tp->t_state = TCPS_CLOSED;
828 		(void) tcp_output(tp);
829 		TCPSTAT_INC(tcps_drops);
830 	} else
831 		TCPSTAT_INC(tcps_conndrops);
832 	if (errno == ETIMEDOUT && tp->t_softerror)
833 		errno = tp->t_softerror;
834 	so->so_error = errno;
835 	return (tcp_close(tp));
836 }
837 
838 void
839 tcp_discardcb(struct tcpcb *tp)
840 {
841 	struct inpcb *inp = tp->t_inpcb;
842 	struct socket *so = inp->inp_socket;
843 #ifdef INET6
844 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
845 #endif /* INET6 */
846 
847 	INP_WLOCK_ASSERT(inp);
848 
849 	/*
850 	 * Make sure that all of our timers are stopped before we delete the
851 	 * PCB.
852 	 *
853 	 * XXXRW: Really, we would like to use callout_drain() here in order
854 	 * to avoid races experienced in tcp_timer.c where a timer is already
855 	 * executing at this point.  However, we can't, both because we're
856 	 * running in a context where we can't sleep, and also because we
857 	 * hold locks required by the timers.  What we instead need to do is
858 	 * test to see if callout_drain() is required, and if so, defer some
859 	 * portion of the remainder of tcp_discardcb() to an asynchronous
860 	 * context that can callout_drain() and then continue.  Some care
861 	 * will be required to ensure that no further processing takes place
862 	 * on the tcpcb, even though it hasn't been freed (a flag?).
863 	 */
864 	callout_stop(&tp->t_timers->tt_rexmt);
865 	callout_stop(&tp->t_timers->tt_persist);
866 	callout_stop(&tp->t_timers->tt_keep);
867 	callout_stop(&tp->t_timers->tt_2msl);
868 	callout_stop(&tp->t_timers->tt_delack);
869 
870 	/*
871 	 * If we got enough samples through the srtt filter,
872 	 * save the rtt and rttvar in the routing entry.
873 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
874 	 * 4 samples is enough for the srtt filter to converge
875 	 * to within enough % of the correct value; fewer samples
876 	 * and we could save a bogus rtt. The danger is not high
877 	 * as tcp quickly recovers from everything.
878 	 * XXX: Works very well but needs some more statistics!
879 	 */
880 	if (tp->t_rttupdated >= 4) {
881 		struct hc_metrics_lite metrics;
882 		u_long ssthresh;
883 
884 		bzero(&metrics, sizeof(metrics));
885 		/*
886 		 * Update the ssthresh always when the conditions below
887 		 * are satisfied. This gives us better new start value
888 		 * for the congestion avoidance for new connections.
889 		 * ssthresh is only set if packet loss occured on a session.
890 		 *
891 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
892 		 * being torn down.  Ideally this code would not use 'so'.
893 		 */
894 		ssthresh = tp->snd_ssthresh;
895 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
896 			/*
897 			 * convert the limit from user data bytes to
898 			 * packets then to packet data bytes.
899 			 */
900 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
901 			if (ssthresh < 2)
902 				ssthresh = 2;
903 			ssthresh *= (u_long)(tp->t_maxseg +
904 #ifdef INET6
905 				      (isipv6 ? sizeof (struct ip6_hdr) +
906 					       sizeof (struct tcphdr) :
907 #endif
908 				       sizeof (struct tcpiphdr)
909 #ifdef INET6
910 				       )
911 #endif
912 				      );
913 		} else
914 			ssthresh = 0;
915 		metrics.rmx_ssthresh = ssthresh;
916 
917 		metrics.rmx_rtt = tp->t_srtt;
918 		metrics.rmx_rttvar = tp->t_rttvar;
919 		metrics.rmx_cwnd = tp->snd_cwnd;
920 		metrics.rmx_sendpipe = 0;
921 		metrics.rmx_recvpipe = 0;
922 
923 		tcp_hc_update(&inp->inp_inc, &metrics);
924 	}
925 
926 	/* free the reassembly queue, if any */
927 	tcp_reass_flush(tp);
928 
929 #ifdef TCP_OFFLOAD
930 	/* Disconnect offload device, if any. */
931 	if (tp->t_flags & TF_TOE)
932 		tcp_offload_detach(tp);
933 #endif
934 
935 	tcp_free_sackholes(tp);
936 
937 	/* Allow the CC algorithm to clean up after itself. */
938 	if (CC_ALGO(tp)->cb_destroy != NULL)
939 		CC_ALGO(tp)->cb_destroy(tp->ccv);
940 
941 	khelp_destroy_osd(tp->osd);
942 
943 	CC_ALGO(tp) = NULL;
944 	inp->inp_ppcb = NULL;
945 	tp->t_inpcb = NULL;
946 	uma_zfree(V_tcpcb_zone, tp);
947 }
948 
949 /*
950  * Attempt to close a TCP control block, marking it as dropped, and freeing
951  * the socket if we hold the only reference.
952  */
953 struct tcpcb *
954 tcp_close(struct tcpcb *tp)
955 {
956 	struct inpcb *inp = tp->t_inpcb;
957 	struct socket *so;
958 
959 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
960 	INP_WLOCK_ASSERT(inp);
961 
962 #ifdef TCP_OFFLOAD
963 	if (tp->t_state == TCPS_LISTEN)
964 		tcp_offload_listen_stop(tp);
965 #endif
966 	in_pcbdrop(inp);
967 	TCPSTAT_INC(tcps_closed);
968 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
969 	so = inp->inp_socket;
970 	soisdisconnected(so);
971 	if (inp->inp_flags & INP_SOCKREF) {
972 		KASSERT(so->so_state & SS_PROTOREF,
973 		    ("tcp_close: !SS_PROTOREF"));
974 		inp->inp_flags &= ~INP_SOCKREF;
975 		INP_WUNLOCK(inp);
976 		ACCEPT_LOCK();
977 		SOCK_LOCK(so);
978 		so->so_state &= ~SS_PROTOREF;
979 		sofree(so);
980 		return (NULL);
981 	}
982 	return (tp);
983 }
984 
985 void
986 tcp_drain(void)
987 {
988 	VNET_ITERATOR_DECL(vnet_iter);
989 
990 	if (!do_tcpdrain)
991 		return;
992 
993 	VNET_LIST_RLOCK_NOSLEEP();
994 	VNET_FOREACH(vnet_iter) {
995 		CURVNET_SET(vnet_iter);
996 		struct inpcb *inpb;
997 		struct tcpcb *tcpb;
998 
999 	/*
1000 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1001 	 * if there is one...
1002 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1003 	 *      reassembly queue should be flushed, but in a situation
1004 	 *	where we're really low on mbufs, this is potentially
1005 	 *	usefull.
1006 	 */
1007 		INP_INFO_RLOCK(&V_tcbinfo);
1008 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1009 			if (inpb->inp_flags & INP_TIMEWAIT)
1010 				continue;
1011 			INP_WLOCK(inpb);
1012 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1013 				tcp_reass_flush(tcpb);
1014 				tcp_clean_sackreport(tcpb);
1015 			}
1016 			INP_WUNLOCK(inpb);
1017 		}
1018 		INP_INFO_RUNLOCK(&V_tcbinfo);
1019 		CURVNET_RESTORE();
1020 	}
1021 	VNET_LIST_RUNLOCK_NOSLEEP();
1022 }
1023 
1024 /*
1025  * Notify a tcp user of an asynchronous error;
1026  * store error as soft error, but wake up user
1027  * (for now, won't do anything until can select for soft error).
1028  *
1029  * Do not wake up user since there currently is no mechanism for
1030  * reporting soft errors (yet - a kqueue filter may be added).
1031  */
1032 static struct inpcb *
1033 tcp_notify(struct inpcb *inp, int error)
1034 {
1035 	struct tcpcb *tp;
1036 
1037 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1038 	INP_WLOCK_ASSERT(inp);
1039 
1040 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1041 	    (inp->inp_flags & INP_DROPPED))
1042 		return (inp);
1043 
1044 	tp = intotcpcb(inp);
1045 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1046 
1047 	/*
1048 	 * Ignore some errors if we are hooked up.
1049 	 * If connection hasn't completed, has retransmitted several times,
1050 	 * and receives a second error, give up now.  This is better
1051 	 * than waiting a long time to establish a connection that
1052 	 * can never complete.
1053 	 */
1054 	if (tp->t_state == TCPS_ESTABLISHED &&
1055 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1056 	     error == EHOSTDOWN)) {
1057 		return (inp);
1058 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1059 	    tp->t_softerror) {
1060 		tp = tcp_drop(tp, error);
1061 		if (tp != NULL)
1062 			return (inp);
1063 		else
1064 			return (NULL);
1065 	} else {
1066 		tp->t_softerror = error;
1067 		return (inp);
1068 	}
1069 #if 0
1070 	wakeup( &so->so_timeo);
1071 	sorwakeup(so);
1072 	sowwakeup(so);
1073 #endif
1074 }
1075 
1076 static int
1077 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1078 {
1079 	int error, i, m, n, pcb_count;
1080 	struct inpcb *inp, **inp_list;
1081 	inp_gen_t gencnt;
1082 	struct xinpgen xig;
1083 
1084 	/*
1085 	 * The process of preparing the TCB list is too time-consuming and
1086 	 * resource-intensive to repeat twice on every request.
1087 	 */
1088 	if (req->oldptr == NULL) {
1089 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1090 		n += imax(n / 8, 10);
1091 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1092 		return (0);
1093 	}
1094 
1095 	if (req->newptr != NULL)
1096 		return (EPERM);
1097 
1098 	/*
1099 	 * OK, now we're committed to doing something.
1100 	 */
1101 	INP_INFO_RLOCK(&V_tcbinfo);
1102 	gencnt = V_tcbinfo.ipi_gencnt;
1103 	n = V_tcbinfo.ipi_count;
1104 	INP_INFO_RUNLOCK(&V_tcbinfo);
1105 
1106 	m = syncache_pcbcount();
1107 
1108 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1109 		+ (n + m) * sizeof(struct xtcpcb));
1110 	if (error != 0)
1111 		return (error);
1112 
1113 	xig.xig_len = sizeof xig;
1114 	xig.xig_count = n + m;
1115 	xig.xig_gen = gencnt;
1116 	xig.xig_sogen = so_gencnt;
1117 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1118 	if (error)
1119 		return (error);
1120 
1121 	error = syncache_pcblist(req, m, &pcb_count);
1122 	if (error)
1123 		return (error);
1124 
1125 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1126 	if (inp_list == NULL)
1127 		return (ENOMEM);
1128 
1129 	INP_INFO_RLOCK(&V_tcbinfo);
1130 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1131 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1132 		INP_WLOCK(inp);
1133 		if (inp->inp_gencnt <= gencnt) {
1134 			/*
1135 			 * XXX: This use of cr_cansee(), introduced with
1136 			 * TCP state changes, is not quite right, but for
1137 			 * now, better than nothing.
1138 			 */
1139 			if (inp->inp_flags & INP_TIMEWAIT) {
1140 				if (intotw(inp) != NULL)
1141 					error = cr_cansee(req->td->td_ucred,
1142 					    intotw(inp)->tw_cred);
1143 				else
1144 					error = EINVAL;	/* Skip this inp. */
1145 			} else
1146 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1147 			if (error == 0) {
1148 				in_pcbref(inp);
1149 				inp_list[i++] = inp;
1150 			}
1151 		}
1152 		INP_WUNLOCK(inp);
1153 	}
1154 	INP_INFO_RUNLOCK(&V_tcbinfo);
1155 	n = i;
1156 
1157 	error = 0;
1158 	for (i = 0; i < n; i++) {
1159 		inp = inp_list[i];
1160 		INP_RLOCK(inp);
1161 		if (inp->inp_gencnt <= gencnt) {
1162 			struct xtcpcb xt;
1163 			void *inp_ppcb;
1164 
1165 			bzero(&xt, sizeof(xt));
1166 			xt.xt_len = sizeof xt;
1167 			/* XXX should avoid extra copy */
1168 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1169 			inp_ppcb = inp->inp_ppcb;
1170 			if (inp_ppcb == NULL)
1171 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1172 			else if (inp->inp_flags & INP_TIMEWAIT) {
1173 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1174 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1175 			} else {
1176 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1177 				if (xt.xt_tp.t_timers)
1178 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1179 			}
1180 			if (inp->inp_socket != NULL)
1181 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1182 			else {
1183 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1184 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1185 			}
1186 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1187 			INP_RUNLOCK(inp);
1188 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1189 		} else
1190 			INP_RUNLOCK(inp);
1191 	}
1192 	INP_INFO_WLOCK(&V_tcbinfo);
1193 	for (i = 0; i < n; i++) {
1194 		inp = inp_list[i];
1195 		INP_RLOCK(inp);
1196 		if (!in_pcbrele_rlocked(inp))
1197 			INP_RUNLOCK(inp);
1198 	}
1199 	INP_INFO_WUNLOCK(&V_tcbinfo);
1200 
1201 	if (!error) {
1202 		/*
1203 		 * Give the user an updated idea of our state.
1204 		 * If the generation differs from what we told
1205 		 * her before, she knows that something happened
1206 		 * while we were processing this request, and it
1207 		 * might be necessary to retry.
1208 		 */
1209 		INP_INFO_RLOCK(&V_tcbinfo);
1210 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1211 		xig.xig_sogen = so_gencnt;
1212 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1213 		INP_INFO_RUNLOCK(&V_tcbinfo);
1214 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1215 	}
1216 	free(inp_list, M_TEMP);
1217 	return (error);
1218 }
1219 
1220 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1221     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1222     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1223 
1224 #ifdef INET
1225 static int
1226 tcp_getcred(SYSCTL_HANDLER_ARGS)
1227 {
1228 	struct xucred xuc;
1229 	struct sockaddr_in addrs[2];
1230 	struct inpcb *inp;
1231 	int error;
1232 
1233 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1234 	if (error)
1235 		return (error);
1236 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1237 	if (error)
1238 		return (error);
1239 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1240 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1241 	if (inp != NULL) {
1242 		if (inp->inp_socket == NULL)
1243 			error = ENOENT;
1244 		if (error == 0)
1245 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1246 		if (error == 0)
1247 			cru2x(inp->inp_cred, &xuc);
1248 		INP_RUNLOCK(inp);
1249 	} else
1250 		error = ENOENT;
1251 	if (error == 0)
1252 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1253 	return (error);
1254 }
1255 
1256 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1257     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1258     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1259 #endif /* INET */
1260 
1261 #ifdef INET6
1262 static int
1263 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1264 {
1265 	struct xucred xuc;
1266 	struct sockaddr_in6 addrs[2];
1267 	struct inpcb *inp;
1268 	int error;
1269 #ifdef INET
1270 	int mapped = 0;
1271 #endif
1272 
1273 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1274 	if (error)
1275 		return (error);
1276 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1277 	if (error)
1278 		return (error);
1279 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1280 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1281 		return (error);
1282 	}
1283 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1284 #ifdef INET
1285 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1286 			mapped = 1;
1287 		else
1288 #endif
1289 			return (EINVAL);
1290 	}
1291 
1292 #ifdef INET
1293 	if (mapped == 1)
1294 		inp = in_pcblookup(&V_tcbinfo,
1295 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1296 			addrs[1].sin6_port,
1297 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1298 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1299 	else
1300 #endif
1301 		inp = in6_pcblookup(&V_tcbinfo,
1302 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1303 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1304 			INPLOOKUP_RLOCKPCB, NULL);
1305 	if (inp != NULL) {
1306 		if (inp->inp_socket == NULL)
1307 			error = ENOENT;
1308 		if (error == 0)
1309 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1310 		if (error == 0)
1311 			cru2x(inp->inp_cred, &xuc);
1312 		INP_RUNLOCK(inp);
1313 	} else
1314 		error = ENOENT;
1315 	if (error == 0)
1316 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1317 	return (error);
1318 }
1319 
1320 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1321     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1322     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1323 #endif /* INET6 */
1324 
1325 
1326 #ifdef INET
1327 void
1328 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1329 {
1330 	struct ip *ip = vip;
1331 	struct tcphdr *th;
1332 	struct in_addr faddr;
1333 	struct inpcb *inp;
1334 	struct tcpcb *tp;
1335 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1336 	struct icmp *icp;
1337 	struct in_conninfo inc;
1338 	tcp_seq icmp_tcp_seq;
1339 	int mtu;
1340 
1341 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1342 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1343 		return;
1344 
1345 	if (cmd == PRC_MSGSIZE)
1346 		notify = tcp_mtudisc_notify;
1347 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1348 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1349 		notify = tcp_drop_syn_sent;
1350 	/*
1351 	 * Redirects don't need to be handled up here.
1352 	 */
1353 	else if (PRC_IS_REDIRECT(cmd))
1354 		return;
1355 	/*
1356 	 * Source quench is depreciated.
1357 	 */
1358 	else if (cmd == PRC_QUENCH)
1359 		return;
1360 	/*
1361 	 * Hostdead is ugly because it goes linearly through all PCBs.
1362 	 * XXX: We never get this from ICMP, otherwise it makes an
1363 	 * excellent DoS attack on machines with many connections.
1364 	 */
1365 	else if (cmd == PRC_HOSTDEAD)
1366 		ip = NULL;
1367 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1368 		return;
1369 	if (ip != NULL) {
1370 		icp = (struct icmp *)((caddr_t)ip
1371 				      - offsetof(struct icmp, icmp_ip));
1372 		th = (struct tcphdr *)((caddr_t)ip
1373 				       + (ip->ip_hl << 2));
1374 		INP_INFO_WLOCK(&V_tcbinfo);
1375 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1376 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1377 		if (inp != NULL)  {
1378 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1379 			    !(inp->inp_flags & INP_DROPPED) &&
1380 			    !(inp->inp_socket == NULL)) {
1381 				icmp_tcp_seq = htonl(th->th_seq);
1382 				tp = intotcpcb(inp);
1383 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1384 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1385 					if (cmd == PRC_MSGSIZE) {
1386 					    /*
1387 					     * MTU discovery:
1388 					     * If we got a needfrag set the MTU
1389 					     * in the route to the suggested new
1390 					     * value (if given) and then notify.
1391 					     */
1392 					    bzero(&inc, sizeof(inc));
1393 					    inc.inc_faddr = faddr;
1394 					    inc.inc_fibnum =
1395 						inp->inp_inc.inc_fibnum;
1396 
1397 					    mtu = ntohs(icp->icmp_nextmtu);
1398 					    /*
1399 					     * If no alternative MTU was
1400 					     * proposed, try the next smaller
1401 					     * one.  ip->ip_len has already
1402 					     * been swapped in icmp_input().
1403 					     */
1404 					    if (!mtu)
1405 						mtu = ip_next_mtu(ip->ip_len,
1406 						 1);
1407 					    if (mtu < V_tcp_minmss
1408 						 + sizeof(struct tcpiphdr))
1409 						mtu = V_tcp_minmss
1410 						 + sizeof(struct tcpiphdr);
1411 					    /*
1412 					     * Only cache the MTU if it
1413 					     * is smaller than the interface
1414 					     * or route MTU.  tcp_mtudisc()
1415 					     * will do right thing by itself.
1416 					     */
1417 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1418 						tcp_hc_updatemtu(&inc, mtu);
1419 					    tcp_mtudisc(inp, mtu);
1420 					} else
1421 						inp = (*notify)(inp,
1422 						    inetctlerrmap[cmd]);
1423 				}
1424 			}
1425 			if (inp != NULL)
1426 				INP_WUNLOCK(inp);
1427 		} else {
1428 			bzero(&inc, sizeof(inc));
1429 			inc.inc_fport = th->th_dport;
1430 			inc.inc_lport = th->th_sport;
1431 			inc.inc_faddr = faddr;
1432 			inc.inc_laddr = ip->ip_src;
1433 			syncache_unreach(&inc, th);
1434 		}
1435 		INP_INFO_WUNLOCK(&V_tcbinfo);
1436 	} else
1437 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1438 }
1439 #endif /* INET */
1440 
1441 #ifdef INET6
1442 void
1443 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1444 {
1445 	struct tcphdr th;
1446 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1447 	struct ip6_hdr *ip6;
1448 	struct mbuf *m;
1449 	struct ip6ctlparam *ip6cp = NULL;
1450 	const struct sockaddr_in6 *sa6_src = NULL;
1451 	int off;
1452 	struct tcp_portonly {
1453 		u_int16_t th_sport;
1454 		u_int16_t th_dport;
1455 	} *thp;
1456 
1457 	if (sa->sa_family != AF_INET6 ||
1458 	    sa->sa_len != sizeof(struct sockaddr_in6))
1459 		return;
1460 
1461 	if (cmd == PRC_MSGSIZE)
1462 		notify = tcp_mtudisc_notify;
1463 	else if (!PRC_IS_REDIRECT(cmd) &&
1464 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1465 		return;
1466 	/* Source quench is depreciated. */
1467 	else if (cmd == PRC_QUENCH)
1468 		return;
1469 
1470 	/* if the parameter is from icmp6, decode it. */
1471 	if (d != NULL) {
1472 		ip6cp = (struct ip6ctlparam *)d;
1473 		m = ip6cp->ip6c_m;
1474 		ip6 = ip6cp->ip6c_ip6;
1475 		off = ip6cp->ip6c_off;
1476 		sa6_src = ip6cp->ip6c_src;
1477 	} else {
1478 		m = NULL;
1479 		ip6 = NULL;
1480 		off = 0;	/* fool gcc */
1481 		sa6_src = &sa6_any;
1482 	}
1483 
1484 	if (ip6 != NULL) {
1485 		struct in_conninfo inc;
1486 		/*
1487 		 * XXX: We assume that when IPV6 is non NULL,
1488 		 * M and OFF are valid.
1489 		 */
1490 
1491 		/* check if we can safely examine src and dst ports */
1492 		if (m->m_pkthdr.len < off + sizeof(*thp))
1493 			return;
1494 
1495 		bzero(&th, sizeof(th));
1496 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1497 
1498 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1499 		    (struct sockaddr *)ip6cp->ip6c_src,
1500 		    th.th_sport, cmd, NULL, notify);
1501 
1502 		bzero(&inc, sizeof(inc));
1503 		inc.inc_fport = th.th_dport;
1504 		inc.inc_lport = th.th_sport;
1505 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1506 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1507 		inc.inc_flags |= INC_ISIPV6;
1508 		INP_INFO_WLOCK(&V_tcbinfo);
1509 		syncache_unreach(&inc, &th);
1510 		INP_INFO_WUNLOCK(&V_tcbinfo);
1511 	} else
1512 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1513 			      0, cmd, NULL, notify);
1514 }
1515 #endif /* INET6 */
1516 
1517 
1518 /*
1519  * Following is where TCP initial sequence number generation occurs.
1520  *
1521  * There are two places where we must use initial sequence numbers:
1522  * 1.  In SYN-ACK packets.
1523  * 2.  In SYN packets.
1524  *
1525  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1526  * tcp_syncache.c for details.
1527  *
1528  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1529  * depends on this property.  In addition, these ISNs should be
1530  * unguessable so as to prevent connection hijacking.  To satisfy
1531  * the requirements of this situation, the algorithm outlined in
1532  * RFC 1948 is used, with only small modifications.
1533  *
1534  * Implementation details:
1535  *
1536  * Time is based off the system timer, and is corrected so that it
1537  * increases by one megabyte per second.  This allows for proper
1538  * recycling on high speed LANs while still leaving over an hour
1539  * before rollover.
1540  *
1541  * As reading the *exact* system time is too expensive to be done
1542  * whenever setting up a TCP connection, we increment the time
1543  * offset in two ways.  First, a small random positive increment
1544  * is added to isn_offset for each connection that is set up.
1545  * Second, the function tcp_isn_tick fires once per clock tick
1546  * and increments isn_offset as necessary so that sequence numbers
1547  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1548  * random positive increments serve only to ensure that the same
1549  * exact sequence number is never sent out twice (as could otherwise
1550  * happen when a port is recycled in less than the system tick
1551  * interval.)
1552  *
1553  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1554  * between seeding of isn_secret.  This is normally set to zero,
1555  * as reseeding should not be necessary.
1556  *
1557  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1558  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1559  * general, this means holding an exclusive (write) lock.
1560  */
1561 
1562 #define ISN_BYTES_PER_SECOND 1048576
1563 #define ISN_STATIC_INCREMENT 4096
1564 #define ISN_RANDOM_INCREMENT (4096 - 1)
1565 
1566 static VNET_DEFINE(u_char, isn_secret[32]);
1567 static VNET_DEFINE(int, isn_last);
1568 static VNET_DEFINE(int, isn_last_reseed);
1569 static VNET_DEFINE(u_int32_t, isn_offset);
1570 static VNET_DEFINE(u_int32_t, isn_offset_old);
1571 
1572 #define	V_isn_secret			VNET(isn_secret)
1573 #define	V_isn_last			VNET(isn_last)
1574 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1575 #define	V_isn_offset			VNET(isn_offset)
1576 #define	V_isn_offset_old		VNET(isn_offset_old)
1577 
1578 tcp_seq
1579 tcp_new_isn(struct tcpcb *tp)
1580 {
1581 	MD5_CTX isn_ctx;
1582 	u_int32_t md5_buffer[4];
1583 	tcp_seq new_isn;
1584 	u_int32_t projected_offset;
1585 
1586 	INP_WLOCK_ASSERT(tp->t_inpcb);
1587 
1588 	ISN_LOCK();
1589 	/* Seed if this is the first use, reseed if requested. */
1590 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1591 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1592 		< (u_int)ticks))) {
1593 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1594 		V_isn_last_reseed = ticks;
1595 	}
1596 
1597 	/* Compute the md5 hash and return the ISN. */
1598 	MD5Init(&isn_ctx);
1599 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1600 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1601 #ifdef INET6
1602 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1603 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1604 			  sizeof(struct in6_addr));
1605 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1606 			  sizeof(struct in6_addr));
1607 	} else
1608 #endif
1609 	{
1610 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1611 			  sizeof(struct in_addr));
1612 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1613 			  sizeof(struct in_addr));
1614 	}
1615 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1616 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1617 	new_isn = (tcp_seq) md5_buffer[0];
1618 	V_isn_offset += ISN_STATIC_INCREMENT +
1619 		(arc4random() & ISN_RANDOM_INCREMENT);
1620 	if (ticks != V_isn_last) {
1621 		projected_offset = V_isn_offset_old +
1622 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1623 		if (SEQ_GT(projected_offset, V_isn_offset))
1624 			V_isn_offset = projected_offset;
1625 		V_isn_offset_old = V_isn_offset;
1626 		V_isn_last = ticks;
1627 	}
1628 	new_isn += V_isn_offset;
1629 	ISN_UNLOCK();
1630 	return (new_isn);
1631 }
1632 
1633 /*
1634  * When a specific ICMP unreachable message is received and the
1635  * connection state is SYN-SENT, drop the connection.  This behavior
1636  * is controlled by the icmp_may_rst sysctl.
1637  */
1638 struct inpcb *
1639 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1640 {
1641 	struct tcpcb *tp;
1642 
1643 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1644 	INP_WLOCK_ASSERT(inp);
1645 
1646 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1647 	    (inp->inp_flags & INP_DROPPED))
1648 		return (inp);
1649 
1650 	tp = intotcpcb(inp);
1651 	if (tp->t_state != TCPS_SYN_SENT)
1652 		return (inp);
1653 
1654 	tp = tcp_drop(tp, errno);
1655 	if (tp != NULL)
1656 		return (inp);
1657 	else
1658 		return (NULL);
1659 }
1660 
1661 /*
1662  * When `need fragmentation' ICMP is received, update our idea of the MSS
1663  * based on the new value. Also nudge TCP to send something, since we
1664  * know the packet we just sent was dropped.
1665  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1666  */
1667 static struct inpcb *
1668 tcp_mtudisc_notify(struct inpcb *inp, int error)
1669 {
1670 
1671 	return (tcp_mtudisc(inp, -1));
1672 }
1673 
1674 struct inpcb *
1675 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1676 {
1677 	struct tcpcb *tp;
1678 	struct socket *so;
1679 
1680 	INP_WLOCK_ASSERT(inp);
1681 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1682 	    (inp->inp_flags & INP_DROPPED))
1683 		return (inp);
1684 
1685 	tp = intotcpcb(inp);
1686 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1687 
1688 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1689 
1690 	so = inp->inp_socket;
1691 	SOCKBUF_LOCK(&so->so_snd);
1692 	/* If the mss is larger than the socket buffer, decrease the mss. */
1693 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1694 		tp->t_maxseg = so->so_snd.sb_hiwat;
1695 	SOCKBUF_UNLOCK(&so->so_snd);
1696 
1697 	TCPSTAT_INC(tcps_mturesent);
1698 	tp->t_rtttime = 0;
1699 	tp->snd_nxt = tp->snd_una;
1700 	tcp_free_sackholes(tp);
1701 	tp->snd_recover = tp->snd_max;
1702 	if (tp->t_flags & TF_SACK_PERMIT)
1703 		EXIT_FASTRECOVERY(tp->t_flags);
1704 	tcp_output(tp);
1705 	return (inp);
1706 }
1707 
1708 #ifdef INET
1709 /*
1710  * Look-up the routing entry to the peer of this inpcb.  If no route
1711  * is found and it cannot be allocated, then return 0.  This routine
1712  * is called by TCP routines that access the rmx structure and by
1713  * tcp_mss_update to get the peer/interface MTU.
1714  */
1715 u_long
1716 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1717 {
1718 	struct route sro;
1719 	struct sockaddr_in *dst;
1720 	struct ifnet *ifp;
1721 	u_long maxmtu = 0;
1722 
1723 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1724 
1725 	bzero(&sro, sizeof(sro));
1726 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1727 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1728 		dst->sin_family = AF_INET;
1729 		dst->sin_len = sizeof(*dst);
1730 		dst->sin_addr = inc->inc_faddr;
1731 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1732 	}
1733 	if (sro.ro_rt != NULL) {
1734 		ifp = sro.ro_rt->rt_ifp;
1735 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1736 			maxmtu = ifp->if_mtu;
1737 		else
1738 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1739 
1740 		/* Report additional interface capabilities. */
1741 		if (flags != NULL) {
1742 			if (ifp->if_capenable & IFCAP_TSO4 &&
1743 			    ifp->if_hwassist & CSUM_TSO)
1744 				*flags |= CSUM_TSO;
1745 		}
1746 		RTFREE(sro.ro_rt);
1747 	}
1748 	return (maxmtu);
1749 }
1750 #endif /* INET */
1751 
1752 #ifdef INET6
1753 u_long
1754 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1755 {
1756 	struct route_in6 sro6;
1757 	struct ifnet *ifp;
1758 	u_long maxmtu = 0;
1759 
1760 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1761 
1762 	bzero(&sro6, sizeof(sro6));
1763 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1764 		sro6.ro_dst.sin6_family = AF_INET6;
1765 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1766 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1767 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1768 	}
1769 	if (sro6.ro_rt != NULL) {
1770 		ifp = sro6.ro_rt->rt_ifp;
1771 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1772 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1773 		else
1774 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1775 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1776 
1777 		/* Report additional interface capabilities. */
1778 		if (flags != NULL) {
1779 			if (ifp->if_capenable & IFCAP_TSO6 &&
1780 			    ifp->if_hwassist & CSUM_TSO)
1781 				*flags |= CSUM_TSO;
1782 		}
1783 		RTFREE(sro6.ro_rt);
1784 	}
1785 
1786 	return (maxmtu);
1787 }
1788 #endif /* INET6 */
1789 
1790 #ifdef IPSEC
1791 /* compute ESP/AH header size for TCP, including outer IP header. */
1792 size_t
1793 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1794 {
1795 	struct inpcb *inp;
1796 	struct mbuf *m;
1797 	size_t hdrsiz;
1798 	struct ip *ip;
1799 #ifdef INET6
1800 	struct ip6_hdr *ip6;
1801 #endif
1802 	struct tcphdr *th;
1803 
1804 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1805 		return (0);
1806 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1807 	if (!m)
1808 		return (0);
1809 
1810 #ifdef INET6
1811 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1812 		ip6 = mtod(m, struct ip6_hdr *);
1813 		th = (struct tcphdr *)(ip6 + 1);
1814 		m->m_pkthdr.len = m->m_len =
1815 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1816 		tcpip_fillheaders(inp, ip6, th);
1817 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1818 	} else
1819 #endif /* INET6 */
1820 	{
1821 		ip = mtod(m, struct ip *);
1822 		th = (struct tcphdr *)(ip + 1);
1823 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1824 		tcpip_fillheaders(inp, ip, th);
1825 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1826 	}
1827 
1828 	m_free(m);
1829 	return (hdrsiz);
1830 }
1831 #endif /* IPSEC */
1832 
1833 #ifdef TCP_SIGNATURE
1834 /*
1835  * Callback function invoked by m_apply() to digest TCP segment data
1836  * contained within an mbuf chain.
1837  */
1838 static int
1839 tcp_signature_apply(void *fstate, void *data, u_int len)
1840 {
1841 
1842 	MD5Update(fstate, (u_char *)data, len);
1843 	return (0);
1844 }
1845 
1846 /*
1847  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1848  *
1849  * Parameters:
1850  * m		pointer to head of mbuf chain
1851  * _unused
1852  * len		length of TCP segment data, excluding options
1853  * optlen	length of TCP segment options
1854  * buf		pointer to storage for computed MD5 digest
1855  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1856  *
1857  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1858  * When called from tcp_input(), we can be sure that th_sum has been
1859  * zeroed out and verified already.
1860  *
1861  * Return 0 if successful, otherwise return -1.
1862  *
1863  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1864  * search with the destination IP address, and a 'magic SPI' to be
1865  * determined by the application. This is hardcoded elsewhere to 1179
1866  * right now. Another branch of this code exists which uses the SPD to
1867  * specify per-application flows but it is unstable.
1868  */
1869 int
1870 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1871     u_char *buf, u_int direction)
1872 {
1873 	union sockaddr_union dst;
1874 #ifdef INET
1875 	struct ippseudo ippseudo;
1876 #endif
1877 	MD5_CTX ctx;
1878 	int doff;
1879 	struct ip *ip;
1880 #ifdef INET
1881 	struct ipovly *ipovly;
1882 #endif
1883 	struct secasvar *sav;
1884 	struct tcphdr *th;
1885 #ifdef INET6
1886 	struct ip6_hdr *ip6;
1887 	struct in6_addr in6;
1888 	char ip6buf[INET6_ADDRSTRLEN];
1889 	uint32_t plen;
1890 	uint16_t nhdr;
1891 #endif
1892 	u_short savecsum;
1893 
1894 	KASSERT(m != NULL, ("NULL mbuf chain"));
1895 	KASSERT(buf != NULL, ("NULL signature pointer"));
1896 
1897 	/* Extract the destination from the IP header in the mbuf. */
1898 	bzero(&dst, sizeof(union sockaddr_union));
1899 	ip = mtod(m, struct ip *);
1900 #ifdef INET6
1901 	ip6 = NULL;	/* Make the compiler happy. */
1902 #endif
1903 	switch (ip->ip_v) {
1904 #ifdef INET
1905 	case IPVERSION:
1906 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1907 		dst.sa.sa_family = AF_INET;
1908 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1909 		    ip->ip_src : ip->ip_dst;
1910 		break;
1911 #endif
1912 #ifdef INET6
1913 	case (IPV6_VERSION >> 4):
1914 		ip6 = mtod(m, struct ip6_hdr *);
1915 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1916 		dst.sa.sa_family = AF_INET6;
1917 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1918 		    ip6->ip6_src : ip6->ip6_dst;
1919 		break;
1920 #endif
1921 	default:
1922 		return (EINVAL);
1923 		/* NOTREACHED */
1924 		break;
1925 	}
1926 
1927 	/* Look up an SADB entry which matches the address of the peer. */
1928 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1929 	if (sav == NULL) {
1930 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1931 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1932 #ifdef INET6
1933 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1934 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1935 #endif
1936 			"(unsupported)"));
1937 		return (EINVAL);
1938 	}
1939 
1940 	MD5Init(&ctx);
1941 	/*
1942 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1943 	 *
1944 	 * XXX The ippseudo header MUST be digested in network byte order,
1945 	 * or else we'll fail the regression test. Assume all fields we've
1946 	 * been doing arithmetic on have been in host byte order.
1947 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1948 	 * tcp_output(), the underlying ip_len member has not yet been set.
1949 	 */
1950 	switch (ip->ip_v) {
1951 #ifdef INET
1952 	case IPVERSION:
1953 		ipovly = (struct ipovly *)ip;
1954 		ippseudo.ippseudo_src = ipovly->ih_src;
1955 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1956 		ippseudo.ippseudo_pad = 0;
1957 		ippseudo.ippseudo_p = IPPROTO_TCP;
1958 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1959 		    optlen);
1960 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1961 
1962 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1963 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1964 		break;
1965 #endif
1966 #ifdef INET6
1967 	/*
1968 	 * RFC 2385, 2.0  Proposal
1969 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1970 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1971 	 * extended next header value (to form 32 bits), and 32-bit segment
1972 	 * length.
1973 	 * Note: Upper-Layer Packet Length comes before Next Header.
1974 	 */
1975 	case (IPV6_VERSION >> 4):
1976 		in6 = ip6->ip6_src;
1977 		in6_clearscope(&in6);
1978 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1979 		in6 = ip6->ip6_dst;
1980 		in6_clearscope(&in6);
1981 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1982 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1983 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1984 		nhdr = 0;
1985 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1986 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1987 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1988 		nhdr = IPPROTO_TCP;
1989 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1990 
1991 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1992 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1993 		break;
1994 #endif
1995 	default:
1996 		return (EINVAL);
1997 		/* NOTREACHED */
1998 		break;
1999 	}
2000 
2001 
2002 	/*
2003 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2004 	 * The TCP checksum must be set to zero.
2005 	 */
2006 	savecsum = th->th_sum;
2007 	th->th_sum = 0;
2008 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2009 	th->th_sum = savecsum;
2010 
2011 	/*
2012 	 * Step 3: Update MD5 hash with TCP segment data.
2013 	 *         Use m_apply() to avoid an early m_pullup().
2014 	 */
2015 	if (len > 0)
2016 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2017 
2018 	/*
2019 	 * Step 4: Update MD5 hash with shared secret.
2020 	 */
2021 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2022 	MD5Final(buf, &ctx);
2023 
2024 	key_sa_recordxfer(sav, m);
2025 	KEY_FREESAV(&sav);
2026 	return (0);
2027 }
2028 
2029 /*
2030  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2031  *
2032  * Parameters:
2033  * m		pointer to head of mbuf chain
2034  * len		length of TCP segment data, excluding options
2035  * optlen	length of TCP segment options
2036  * buf		pointer to storage for computed MD5 digest
2037  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2038  *
2039  * Return 1 if successful, otherwise return 0.
2040  */
2041 int
2042 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2043     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2044 {
2045 	char tmpdigest[TCP_SIGLEN];
2046 
2047 	if (tcp_sig_checksigs == 0)
2048 		return (1);
2049 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2050 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2051 
2052 			/*
2053 			 * If this socket is not expecting signature but
2054 			 * the segment contains signature just fail.
2055 			 */
2056 			TCPSTAT_INC(tcps_sig_err_sigopt);
2057 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2058 			return (0);
2059 		}
2060 
2061 		/* Signature is not expected, and not present in segment. */
2062 		return (1);
2063 	}
2064 
2065 	/*
2066 	 * If this socket is expecting signature but the segment does not
2067 	 * contain any just fail.
2068 	 */
2069 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2070 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2071 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2072 		return (0);
2073 	}
2074 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2075 	    IPSEC_DIR_INBOUND) == -1) {
2076 		TCPSTAT_INC(tcps_sig_err_buildsig);
2077 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2078 		return (0);
2079 	}
2080 
2081 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2082 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2083 		return (0);
2084 	}
2085 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2086 	return (1);
2087 }
2088 #endif /* TCP_SIGNATURE */
2089 
2090 static int
2091 sysctl_drop(SYSCTL_HANDLER_ARGS)
2092 {
2093 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2094 	struct sockaddr_storage addrs[2];
2095 	struct inpcb *inp;
2096 	struct tcpcb *tp;
2097 	struct tcptw *tw;
2098 	struct sockaddr_in *fin, *lin;
2099 #ifdef INET6
2100 	struct sockaddr_in6 *fin6, *lin6;
2101 #endif
2102 	int error;
2103 
2104 	inp = NULL;
2105 	fin = lin = NULL;
2106 #ifdef INET6
2107 	fin6 = lin6 = NULL;
2108 #endif
2109 	error = 0;
2110 
2111 	if (req->oldptr != NULL || req->oldlen != 0)
2112 		return (EINVAL);
2113 	if (req->newptr == NULL)
2114 		return (EPERM);
2115 	if (req->newlen < sizeof(addrs))
2116 		return (ENOMEM);
2117 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2118 	if (error)
2119 		return (error);
2120 
2121 	switch (addrs[0].ss_family) {
2122 #ifdef INET6
2123 	case AF_INET6:
2124 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2125 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2126 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2127 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2128 			return (EINVAL);
2129 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2130 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2131 				return (EINVAL);
2132 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2133 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2134 			fin = (struct sockaddr_in *)&addrs[0];
2135 			lin = (struct sockaddr_in *)&addrs[1];
2136 			break;
2137 		}
2138 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2139 		if (error)
2140 			return (error);
2141 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2142 		if (error)
2143 			return (error);
2144 		break;
2145 #endif
2146 #ifdef INET
2147 	case AF_INET:
2148 		fin = (struct sockaddr_in *)&addrs[0];
2149 		lin = (struct sockaddr_in *)&addrs[1];
2150 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2151 		    lin->sin_len != sizeof(struct sockaddr_in))
2152 			return (EINVAL);
2153 		break;
2154 #endif
2155 	default:
2156 		return (EINVAL);
2157 	}
2158 	INP_INFO_WLOCK(&V_tcbinfo);
2159 	switch (addrs[0].ss_family) {
2160 #ifdef INET6
2161 	case AF_INET6:
2162 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2163 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2164 		    INPLOOKUP_WLOCKPCB, NULL);
2165 		break;
2166 #endif
2167 #ifdef INET
2168 	case AF_INET:
2169 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2170 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2171 		break;
2172 #endif
2173 	}
2174 	if (inp != NULL) {
2175 		if (inp->inp_flags & INP_TIMEWAIT) {
2176 			/*
2177 			 * XXXRW: There currently exists a state where an
2178 			 * inpcb is present, but its timewait state has been
2179 			 * discarded.  For now, don't allow dropping of this
2180 			 * type of inpcb.
2181 			 */
2182 			tw = intotw(inp);
2183 			if (tw != NULL)
2184 				tcp_twclose(tw, 0);
2185 			else
2186 				INP_WUNLOCK(inp);
2187 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2188 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2189 			tp = intotcpcb(inp);
2190 			tp = tcp_drop(tp, ECONNABORTED);
2191 			if (tp != NULL)
2192 				INP_WUNLOCK(inp);
2193 		} else
2194 			INP_WUNLOCK(inp);
2195 	} else
2196 		error = ESRCH;
2197 	INP_INFO_WUNLOCK(&V_tcbinfo);
2198 	return (error);
2199 }
2200 
2201 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2202     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2203     0, sysctl_drop, "", "Drop TCP connection");
2204 
2205 /*
2206  * Generate a standardized TCP log line for use throughout the
2207  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2208  * allow use in the interrupt context.
2209  *
2210  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2211  * NB: The function may return NULL if memory allocation failed.
2212  *
2213  * Due to header inclusion and ordering limitations the struct ip
2214  * and ip6_hdr pointers have to be passed as void pointers.
2215  */
2216 char *
2217 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2218     const void *ip6hdr)
2219 {
2220 
2221 	/* Is logging enabled? */
2222 	if (tcp_log_in_vain == 0)
2223 		return (NULL);
2224 
2225 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2226 }
2227 
2228 char *
2229 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2230     const void *ip6hdr)
2231 {
2232 
2233 	/* Is logging enabled? */
2234 	if (tcp_log_debug == 0)
2235 		return (NULL);
2236 
2237 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2238 }
2239 
2240 static char *
2241 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2242     const void *ip6hdr)
2243 {
2244 	char *s, *sp;
2245 	size_t size;
2246 	struct ip *ip;
2247 #ifdef INET6
2248 	const struct ip6_hdr *ip6;
2249 
2250 	ip6 = (const struct ip6_hdr *)ip6hdr;
2251 #endif /* INET6 */
2252 	ip = (struct ip *)ip4hdr;
2253 
2254 	/*
2255 	 * The log line looks like this:
2256 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2257 	 */
2258 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2259 	    sizeof(PRINT_TH_FLAGS) + 1 +
2260 #ifdef INET6
2261 	    2 * INET6_ADDRSTRLEN;
2262 #else
2263 	    2 * INET_ADDRSTRLEN;
2264 #endif /* INET6 */
2265 
2266 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2267 	if (s == NULL)
2268 		return (NULL);
2269 
2270 	strcat(s, "TCP: [");
2271 	sp = s + strlen(s);
2272 
2273 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2274 		inet_ntoa_r(inc->inc_faddr, sp);
2275 		sp = s + strlen(s);
2276 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2277 		sp = s + strlen(s);
2278 		inet_ntoa_r(inc->inc_laddr, sp);
2279 		sp = s + strlen(s);
2280 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2281 #ifdef INET6
2282 	} else if (inc) {
2283 		ip6_sprintf(sp, &inc->inc6_faddr);
2284 		sp = s + strlen(s);
2285 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2286 		sp = s + strlen(s);
2287 		ip6_sprintf(sp, &inc->inc6_laddr);
2288 		sp = s + strlen(s);
2289 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2290 	} else if (ip6 && th) {
2291 		ip6_sprintf(sp, &ip6->ip6_src);
2292 		sp = s + strlen(s);
2293 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2294 		sp = s + strlen(s);
2295 		ip6_sprintf(sp, &ip6->ip6_dst);
2296 		sp = s + strlen(s);
2297 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2298 #endif /* INET6 */
2299 #ifdef INET
2300 	} else if (ip && th) {
2301 		inet_ntoa_r(ip->ip_src, sp);
2302 		sp = s + strlen(s);
2303 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2304 		sp = s + strlen(s);
2305 		inet_ntoa_r(ip->ip_dst, sp);
2306 		sp = s + strlen(s);
2307 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2308 #endif /* INET */
2309 	} else {
2310 		free(s, M_TCPLOG);
2311 		return (NULL);
2312 	}
2313 	sp = s + strlen(s);
2314 	if (th)
2315 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2316 	if (*(s + size - 1) != '\0')
2317 		panic("%s: string too long", __func__);
2318 	return (s);
2319 }
2320