xref: /freebsd/sys/netinet/tcp_subr.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_pcb.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/tcp_syncache.h>
88 #include <netinet/tcp_offload.h>
89 #ifdef INET6
90 #include <netinet6/tcp6_var.h>
91 #endif
92 #include <netinet/tcpip.h>
93 #ifdef TCPDEBUG
94 #include <netinet/tcp_debug.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/ip6protosw.h>
98 #endif
99 
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/xform.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/key.h>
107 #include <sys/syslog.h>
108 #endif /*IPSEC*/
109 
110 #include <machine/in_cksum.h>
111 #include <sys/md5.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
116 #ifdef INET6
117 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
118 #endif
119 
120 static int
121 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new;
124 
125 	new = V_tcp_mssdflt;
126 	error = sysctl_handle_int(oidp, &new, 0, req);
127 	if (error == 0 && req->newptr) {
128 		if (new < TCP_MINMSS)
129 			error = EINVAL;
130 		else
131 			V_tcp_mssdflt = new;
132 	}
133 	return (error);
134 }
135 
136 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
137     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
138     &sysctl_net_inet_tcp_mss_check, "I",
139     "Default TCP Maximum Segment Size");
140 
141 #ifdef INET6
142 static int
143 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new;
146 
147 	new = V_tcp_v6mssdflt;
148 	error = sysctl_handle_int(oidp, &new, 0, req);
149 	if (error == 0 && req->newptr) {
150 		if (new < TCP_MINMSS)
151 			error = EINVAL;
152 		else
153 			V_tcp_v6mssdflt = new;
154 	}
155 	return (error);
156 }
157 
158 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
159     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
160     &sysctl_net_inet_tcp_mss_v6_check, "I",
161    "Default TCP Maximum Segment Size for IPv6");
162 #endif /* INET6 */
163 
164 /*
165  * Minimum MSS we accept and use. This prevents DoS attacks where
166  * we are forced to a ridiculous low MSS like 20 and send hundreds
167  * of packets instead of one. The effect scales with the available
168  * bandwidth and quickly saturates the CPU and network interface
169  * with packet generation and sending. Set to zero to disable MINMSS
170  * checking. This setting prevents us from sending too small packets.
171  */
172 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
174      &VNET_NAME(tcp_minmss), 0,
175     "Minmum TCP Maximum Segment Size");
176 
177 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
178 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
179     &VNET_NAME(tcp_do_rfc1323), 0,
180     "Enable rfc1323 (high performance TCP) extensions");
181 
182 static int	tcp_log_debug = 0;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
184     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
185 
186 static int	tcp_tcbhashsize = 0;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
188     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
189 
190 static int	do_tcpdrain = 1;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
192     "Enable tcp_drain routine for extra help when low on mbufs");
193 
194 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
195     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
196 
197 static VNET_DEFINE(int, icmp_may_rst) = 1;
198 #define	V_icmp_may_rst			VNET(icmp_may_rst)
199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
200     &VNET_NAME(icmp_may_rst), 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
204 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
206     &VNET_NAME(tcp_isn_reseed_interval), 0,
207     "Seconds between reseeding of ISN secret");
208 
209 static int	tcp_soreceive_stream = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
211     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
212 
213 #ifdef TCP_SIGNATURE
214 static int	tcp_sig_checksigs = 1;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
216     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
217 #endif
218 
219 VNET_DEFINE(uma_zone_t, sack_hole_zone);
220 #define	V_sack_hole_zone		VNET(sack_hole_zone)
221 
222 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
223 
224 static struct inpcb *tcp_notify(struct inpcb *, int);
225 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
226 		    void *ip4hdr, const void *ip6hdr);
227 
228 /*
229  * Target size of TCP PCB hash tables. Must be a power of two.
230  *
231  * Note that this can be overridden by the kernel environment
232  * variable net.inet.tcp.tcbhashsize
233  */
234 #ifndef TCBHASHSIZE
235 #define TCBHASHSIZE	512
236 #endif
237 
238 /*
239  * XXX
240  * Callouts should be moved into struct tcp directly.  They are currently
241  * separate because the tcpcb structure is exported to userland for sysctl
242  * parsing purposes, which do not know about callouts.
243  */
244 struct tcpcb_mem {
245 	struct	tcpcb		tcb;
246 	struct	tcp_timer	tt;
247 	struct	cc_var		ccv;
248 	struct	osd		osd;
249 };
250 
251 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
252 #define	V_tcpcb_zone			VNET(tcpcb_zone)
253 
254 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
255 static struct mtx isn_mtx;
256 
257 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
258 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
259 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
260 
261 /*
262  * TCP initialization.
263  */
264 static void
265 tcp_zone_change(void *tag)
266 {
267 
268 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
269 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
270 	tcp_tw_zone_change();
271 }
272 
273 static int
274 tcp_inpcb_init(void *mem, int size, int flags)
275 {
276 	struct inpcb *inp = mem;
277 
278 	INP_LOCK_INIT(inp, "inp", "tcpinp");
279 	return (0);
280 }
281 
282 void
283 tcp_init(void)
284 {
285 	int hashsize;
286 
287 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
288 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
289 		printf("%s: WARNING: unable to register helper hook\n", __func__);
290 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
291 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
292 		printf("%s: WARNING: unable to register helper hook\n", __func__);
293 
294 	hashsize = TCBHASHSIZE;
295 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
296 	if (!powerof2(hashsize)) {
297 		printf("WARNING: TCB hash size not a power of 2\n");
298 		hashsize = 512; /* safe default */
299 	}
300 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
301 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
302 	    IPI_HASHFIELDS_4TUPLE);
303 
304 	/*
305 	 * These have to be type stable for the benefit of the timers.
306 	 */
307 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
308 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
310 
311 	tcp_tw_init();
312 	syncache_init();
313 	tcp_hc_init();
314 	tcp_reass_init();
315 
316 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
317 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
318 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
319 
320 	/* Skip initialization of globals for non-default instances. */
321 	if (!IS_DEFAULT_VNET(curvnet))
322 		return;
323 
324 	/* XXX virtualize those bellow? */
325 	tcp_delacktime = TCPTV_DELACK;
326 	tcp_keepinit = TCPTV_KEEP_INIT;
327 	tcp_keepidle = TCPTV_KEEP_IDLE;
328 	tcp_keepintvl = TCPTV_KEEPINTVL;
329 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
330 	tcp_msl = TCPTV_MSL;
331 	tcp_rexmit_min = TCPTV_MIN;
332 	if (tcp_rexmit_min < 1)
333 		tcp_rexmit_min = 1;
334 	tcp_rexmit_slop = TCPTV_CPU_VAR;
335 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
336 	tcp_tcbhashsize = hashsize;
337 
338 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
339 	if (tcp_soreceive_stream) {
340 #ifdef INET
341 		tcp_usrreqs.pru_soreceive = soreceive_stream;
342 #endif
343 #ifdef INET6
344 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
345 #endif /* INET6 */
346 	}
347 
348 #ifdef INET6
349 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
350 #else /* INET6 */
351 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
352 #endif /* INET6 */
353 	if (max_protohdr < TCP_MINPROTOHDR)
354 		max_protohdr = TCP_MINPROTOHDR;
355 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
356 		panic("tcp_init");
357 #undef TCP_MINPROTOHDR
358 
359 	ISN_LOCK_INIT();
360 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
361 		SHUTDOWN_PRI_DEFAULT);
362 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
363 		EVENTHANDLER_PRI_ANY);
364 }
365 
366 #ifdef VIMAGE
367 void
368 tcp_destroy(void)
369 {
370 
371 	tcp_reass_destroy();
372 	tcp_hc_destroy();
373 	syncache_destroy();
374 	tcp_tw_destroy();
375 	in_pcbinfo_destroy(&V_tcbinfo);
376 	uma_zdestroy(V_sack_hole_zone);
377 	uma_zdestroy(V_tcpcb_zone);
378 }
379 #endif
380 
381 void
382 tcp_fini(void *xtp)
383 {
384 
385 }
386 
387 /*
388  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
389  * tcp_template used to store this data in mbufs, but we now recopy it out
390  * of the tcpcb each time to conserve mbufs.
391  */
392 void
393 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
394 {
395 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
396 
397 	INP_WLOCK_ASSERT(inp);
398 
399 #ifdef INET6
400 	if ((inp->inp_vflag & INP_IPV6) != 0) {
401 		struct ip6_hdr *ip6;
402 
403 		ip6 = (struct ip6_hdr *)ip_ptr;
404 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
405 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
406 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
407 			(IPV6_VERSION & IPV6_VERSION_MASK);
408 		ip6->ip6_nxt = IPPROTO_TCP;
409 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
410 		ip6->ip6_src = inp->in6p_laddr;
411 		ip6->ip6_dst = inp->in6p_faddr;
412 	}
413 #endif /* INET6 */
414 #if defined(INET6) && defined(INET)
415 	else
416 #endif
417 #ifdef INET
418 	{
419 		struct ip *ip;
420 
421 		ip = (struct ip *)ip_ptr;
422 		ip->ip_v = IPVERSION;
423 		ip->ip_hl = 5;
424 		ip->ip_tos = inp->inp_ip_tos;
425 		ip->ip_len = 0;
426 		ip->ip_id = 0;
427 		ip->ip_off = 0;
428 		ip->ip_ttl = inp->inp_ip_ttl;
429 		ip->ip_sum = 0;
430 		ip->ip_p = IPPROTO_TCP;
431 		ip->ip_src = inp->inp_laddr;
432 		ip->ip_dst = inp->inp_faddr;
433 	}
434 #endif /* INET */
435 	th->th_sport = inp->inp_lport;
436 	th->th_dport = inp->inp_fport;
437 	th->th_seq = 0;
438 	th->th_ack = 0;
439 	th->th_x2 = 0;
440 	th->th_off = 5;
441 	th->th_flags = 0;
442 	th->th_win = 0;
443 	th->th_urp = 0;
444 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
445 }
446 
447 /*
448  * Create template to be used to send tcp packets on a connection.
449  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
450  * use for this function is in keepalives, which use tcp_respond.
451  */
452 struct tcptemp *
453 tcpip_maketemplate(struct inpcb *inp)
454 {
455 	struct tcptemp *t;
456 
457 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
458 	if (t == NULL)
459 		return (NULL);
460 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
461 	return (t);
462 }
463 
464 /*
465  * Send a single message to the TCP at address specified by
466  * the given TCP/IP header.  If m == NULL, then we make a copy
467  * of the tcpiphdr at ti and send directly to the addressed host.
468  * This is used to force keep alive messages out using the TCP
469  * template for a connection.  If flags are given then we send
470  * a message back to the TCP which originated the * segment ti,
471  * and discard the mbuf containing it and any other attached mbufs.
472  *
473  * In any case the ack and sequence number of the transmitted
474  * segment are as specified by the parameters.
475  *
476  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
477  */
478 void
479 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
480     tcp_seq ack, tcp_seq seq, int flags)
481 {
482 	int tlen;
483 	int win = 0;
484 	struct ip *ip;
485 	struct tcphdr *nth;
486 #ifdef INET6
487 	struct ip6_hdr *ip6;
488 	int isipv6;
489 #endif /* INET6 */
490 	int ipflags = 0;
491 	struct inpcb *inp;
492 
493 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
494 
495 #ifdef INET6
496 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
497 	ip6 = ipgen;
498 #endif /* INET6 */
499 	ip = ipgen;
500 
501 	if (tp != NULL) {
502 		inp = tp->t_inpcb;
503 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
504 		INP_WLOCK_ASSERT(inp);
505 	} else
506 		inp = NULL;
507 
508 	if (tp != NULL) {
509 		if (!(flags & TH_RST)) {
510 			win = sbspace(&inp->inp_socket->so_rcv);
511 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
512 				win = (long)TCP_MAXWIN << tp->rcv_scale;
513 		}
514 	}
515 	if (m == NULL) {
516 		m = m_gethdr(M_DONTWAIT, MT_DATA);
517 		if (m == NULL)
518 			return;
519 		tlen = 0;
520 		m->m_data += max_linkhdr;
521 #ifdef INET6
522 		if (isipv6) {
523 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
524 			      sizeof(struct ip6_hdr));
525 			ip6 = mtod(m, struct ip6_hdr *);
526 			nth = (struct tcphdr *)(ip6 + 1);
527 		} else
528 #endif /* INET6 */
529 	      {
530 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
531 		ip = mtod(m, struct ip *);
532 		nth = (struct tcphdr *)(ip + 1);
533 	      }
534 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
535 		flags = TH_ACK;
536 	} else {
537 		/*
538 		 *  reuse the mbuf.
539 		 * XXX MRT We inherrit the FIB, which is lucky.
540 		 */
541 		m_freem(m->m_next);
542 		m->m_next = NULL;
543 		m->m_data = (caddr_t)ipgen;
544 		m_addr_changed(m);
545 		/* m_len is set later */
546 		tlen = 0;
547 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
548 #ifdef INET6
549 		if (isipv6) {
550 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
551 			nth = (struct tcphdr *)(ip6 + 1);
552 		} else
553 #endif /* INET6 */
554 	      {
555 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
556 		nth = (struct tcphdr *)(ip + 1);
557 	      }
558 		if (th != nth) {
559 			/*
560 			 * this is usually a case when an extension header
561 			 * exists between the IPv6 header and the
562 			 * TCP header.
563 			 */
564 			nth->th_sport = th->th_sport;
565 			nth->th_dport = th->th_dport;
566 		}
567 		xchg(nth->th_dport, nth->th_sport, uint16_t);
568 #undef xchg
569 	}
570 #ifdef INET6
571 	if (isipv6) {
572 		ip6->ip6_flow = 0;
573 		ip6->ip6_vfc = IPV6_VERSION;
574 		ip6->ip6_nxt = IPPROTO_TCP;
575 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
576 						tlen));
577 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
578 	}
579 #endif
580 #if defined(INET) && defined(INET6)
581 	else
582 #endif
583 #ifdef INET
584 	{
585 		tlen += sizeof (struct tcpiphdr);
586 		ip->ip_len = tlen;
587 		ip->ip_ttl = V_ip_defttl;
588 		if (V_path_mtu_discovery)
589 			ip->ip_off |= IP_DF;
590 	}
591 #endif
592 	m->m_len = tlen;
593 	m->m_pkthdr.len = tlen;
594 	m->m_pkthdr.rcvif = NULL;
595 #ifdef MAC
596 	if (inp != NULL) {
597 		/*
598 		 * Packet is associated with a socket, so allow the
599 		 * label of the response to reflect the socket label.
600 		 */
601 		INP_WLOCK_ASSERT(inp);
602 		mac_inpcb_create_mbuf(inp, m);
603 	} else {
604 		/*
605 		 * Packet is not associated with a socket, so possibly
606 		 * update the label in place.
607 		 */
608 		mac_netinet_tcp_reply(m);
609 	}
610 #endif
611 	nth->th_seq = htonl(seq);
612 	nth->th_ack = htonl(ack);
613 	nth->th_x2 = 0;
614 	nth->th_off = sizeof (struct tcphdr) >> 2;
615 	nth->th_flags = flags;
616 	if (tp != NULL)
617 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
618 	else
619 		nth->th_win = htons((u_short)win);
620 	nth->th_urp = 0;
621 #ifdef INET6
622 	if (isipv6) {
623 		nth->th_sum = 0;
624 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
625 					sizeof(struct ip6_hdr),
626 					tlen - sizeof(struct ip6_hdr));
627 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
628 		    NULL, NULL);
629 	}
630 #endif /* INET6 */
631 #if defined(INET6) && defined(INET)
632 	else
633 #endif
634 #ifdef INET
635 	{
636 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
637 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
638 		m->m_pkthdr.csum_flags = CSUM_TCP;
639 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
640 	}
641 #endif /* INET */
642 #ifdef TCPDEBUG
643 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
644 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
645 #endif
646 #ifdef INET6
647 	if (isipv6)
648 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
649 #endif /* INET6 */
650 #if defined(INET) && defined(INET6)
651 	else
652 #endif
653 #ifdef INET
654 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
655 #endif
656 }
657 
658 /*
659  * Create a new TCP control block, making an
660  * empty reassembly queue and hooking it to the argument
661  * protocol control block.  The `inp' parameter must have
662  * come from the zone allocator set up in tcp_init().
663  */
664 struct tcpcb *
665 tcp_newtcpcb(struct inpcb *inp)
666 {
667 	struct tcpcb_mem *tm;
668 	struct tcpcb *tp;
669 #ifdef INET6
670 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
671 #endif /* INET6 */
672 
673 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
674 	if (tm == NULL)
675 		return (NULL);
676 	tp = &tm->tcb;
677 
678 	/* Initialise cc_var struct for this tcpcb. */
679 	tp->ccv = &tm->ccv;
680 	tp->ccv->type = IPPROTO_TCP;
681 	tp->ccv->ccvc.tcp = tp;
682 
683 	/*
684 	 * Use the current system default CC algorithm.
685 	 */
686 	CC_LIST_RLOCK();
687 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
688 	CC_ALGO(tp) = CC_DEFAULT();
689 	CC_LIST_RUNLOCK();
690 
691 	if (CC_ALGO(tp)->cb_init != NULL)
692 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
693 			uma_zfree(V_tcpcb_zone, tm);
694 			return (NULL);
695 		}
696 
697 	tp->osd = &tm->osd;
698 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
699 		uma_zfree(V_tcpcb_zone, tm);
700 		return (NULL);
701 	}
702 
703 #ifdef VIMAGE
704 	tp->t_vnet = inp->inp_vnet;
705 #endif
706 	tp->t_timers = &tm->tt;
707 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
708 	tp->t_maxseg = tp->t_maxopd =
709 #ifdef INET6
710 		isipv6 ? V_tcp_v6mssdflt :
711 #endif /* INET6 */
712 		V_tcp_mssdflt;
713 
714 	/* Set up our timeouts. */
715 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
716 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
717 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
718 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
719 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
720 
721 	if (V_tcp_do_rfc1323)
722 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
723 	if (V_tcp_do_sack)
724 		tp->t_flags |= TF_SACK_PERMIT;
725 	TAILQ_INIT(&tp->snd_holes);
726 	tp->t_inpcb = inp;	/* XXX */
727 	/*
728 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
729 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
730 	 * reasonable initial retransmit time.
731 	 */
732 	tp->t_srtt = TCPTV_SRTTBASE;
733 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
734 	tp->t_rttmin = tcp_rexmit_min;
735 	tp->t_rxtcur = TCPTV_RTOBASE;
736 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
737 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->t_rcvtime = ticks;
739 	/*
740 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
741 	 * because the socket may be bound to an IPv6 wildcard address,
742 	 * which may match an IPv4-mapped IPv6 address.
743 	 */
744 	inp->inp_ip_ttl = V_ip_defttl;
745 	inp->inp_ppcb = tp;
746 	return (tp);		/* XXX */
747 }
748 
749 /*
750  * Switch the congestion control algorithm back to NewReno for any active
751  * control blocks using an algorithm which is about to go away.
752  * This ensures the CC framework can allow the unload to proceed without leaving
753  * any dangling pointers which would trigger a panic.
754  * Returning non-zero would inform the CC framework that something went wrong
755  * and it would be unsafe to allow the unload to proceed. However, there is no
756  * way for this to occur with this implementation so we always return zero.
757  */
758 int
759 tcp_ccalgounload(struct cc_algo *unload_algo)
760 {
761 	struct cc_algo *tmpalgo;
762 	struct inpcb *inp;
763 	struct tcpcb *tp;
764 	VNET_ITERATOR_DECL(vnet_iter);
765 
766 	/*
767 	 * Check all active control blocks across all network stacks and change
768 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
769 	 * requires cleanup code to be run, call it.
770 	 */
771 	VNET_LIST_RLOCK();
772 	VNET_FOREACH(vnet_iter) {
773 		CURVNET_SET(vnet_iter);
774 		INP_INFO_RLOCK(&V_tcbinfo);
775 		/*
776 		 * New connections already part way through being initialised
777 		 * with the CC algo we're removing will not race with this code
778 		 * because the INP_INFO_WLOCK is held during initialisation. We
779 		 * therefore don't enter the loop below until the connection
780 		 * list has stabilised.
781 		 */
782 		LIST_FOREACH(inp, &V_tcb, inp_list) {
783 			INP_WLOCK(inp);
784 			/* Important to skip tcptw structs. */
785 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
786 			    (tp = intotcpcb(inp)) != NULL) {
787 				/*
788 				 * By holding INP_WLOCK here, we are assured
789 				 * that the connection is not currently
790 				 * executing inside the CC module's functions
791 				 * i.e. it is safe to make the switch back to
792 				 * NewReno.
793 				 */
794 				if (CC_ALGO(tp) == unload_algo) {
795 					tmpalgo = CC_ALGO(tp);
796 					/* NewReno does not require any init. */
797 					CC_ALGO(tp) = &newreno_cc_algo;
798 					if (tmpalgo->cb_destroy != NULL)
799 						tmpalgo->cb_destroy(tp->ccv);
800 				}
801 			}
802 			INP_WUNLOCK(inp);
803 		}
804 		INP_INFO_RUNLOCK(&V_tcbinfo);
805 		CURVNET_RESTORE();
806 	}
807 	VNET_LIST_RUNLOCK();
808 
809 	return (0);
810 }
811 
812 /*
813  * Drop a TCP connection, reporting
814  * the specified error.  If connection is synchronized,
815  * then send a RST to peer.
816  */
817 struct tcpcb *
818 tcp_drop(struct tcpcb *tp, int errno)
819 {
820 	struct socket *so = tp->t_inpcb->inp_socket;
821 
822 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
823 	INP_WLOCK_ASSERT(tp->t_inpcb);
824 
825 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
826 		tp->t_state = TCPS_CLOSED;
827 		(void) tcp_output_reset(tp);
828 		TCPSTAT_INC(tcps_drops);
829 	} else
830 		TCPSTAT_INC(tcps_conndrops);
831 	if (errno == ETIMEDOUT && tp->t_softerror)
832 		errno = tp->t_softerror;
833 	so->so_error = errno;
834 	return (tcp_close(tp));
835 }
836 
837 void
838 tcp_discardcb(struct tcpcb *tp)
839 {
840 	struct inpcb *inp = tp->t_inpcb;
841 	struct socket *so = inp->inp_socket;
842 #ifdef INET6
843 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
844 #endif /* INET6 */
845 
846 	INP_WLOCK_ASSERT(inp);
847 
848 	/*
849 	 * Make sure that all of our timers are stopped before we delete the
850 	 * PCB.
851 	 *
852 	 * XXXRW: Really, we would like to use callout_drain() here in order
853 	 * to avoid races experienced in tcp_timer.c where a timer is already
854 	 * executing at this point.  However, we can't, both because we're
855 	 * running in a context where we can't sleep, and also because we
856 	 * hold locks required by the timers.  What we instead need to do is
857 	 * test to see if callout_drain() is required, and if so, defer some
858 	 * portion of the remainder of tcp_discardcb() to an asynchronous
859 	 * context that can callout_drain() and then continue.  Some care
860 	 * will be required to ensure that no further processing takes place
861 	 * on the tcpcb, even though it hasn't been freed (a flag?).
862 	 */
863 	callout_stop(&tp->t_timers->tt_rexmt);
864 	callout_stop(&tp->t_timers->tt_persist);
865 	callout_stop(&tp->t_timers->tt_keep);
866 	callout_stop(&tp->t_timers->tt_2msl);
867 	callout_stop(&tp->t_timers->tt_delack);
868 
869 	/*
870 	 * If we got enough samples through the srtt filter,
871 	 * save the rtt and rttvar in the routing entry.
872 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
873 	 * 4 samples is enough for the srtt filter to converge
874 	 * to within enough % of the correct value; fewer samples
875 	 * and we could save a bogus rtt. The danger is not high
876 	 * as tcp quickly recovers from everything.
877 	 * XXX: Works very well but needs some more statistics!
878 	 */
879 	if (tp->t_rttupdated >= 4) {
880 		struct hc_metrics_lite metrics;
881 		u_long ssthresh;
882 
883 		bzero(&metrics, sizeof(metrics));
884 		/*
885 		 * Update the ssthresh always when the conditions below
886 		 * are satisfied. This gives us better new start value
887 		 * for the congestion avoidance for new connections.
888 		 * ssthresh is only set if packet loss occured on a session.
889 		 *
890 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
891 		 * being torn down.  Ideally this code would not use 'so'.
892 		 */
893 		ssthresh = tp->snd_ssthresh;
894 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
895 			/*
896 			 * convert the limit from user data bytes to
897 			 * packets then to packet data bytes.
898 			 */
899 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
900 			if (ssthresh < 2)
901 				ssthresh = 2;
902 			ssthresh *= (u_long)(tp->t_maxseg +
903 #ifdef INET6
904 				      (isipv6 ? sizeof (struct ip6_hdr) +
905 					       sizeof (struct tcphdr) :
906 #endif
907 				       sizeof (struct tcpiphdr)
908 #ifdef INET6
909 				       )
910 #endif
911 				      );
912 		} else
913 			ssthresh = 0;
914 		metrics.rmx_ssthresh = ssthresh;
915 
916 		metrics.rmx_rtt = tp->t_srtt;
917 		metrics.rmx_rttvar = tp->t_rttvar;
918 		metrics.rmx_cwnd = tp->snd_cwnd;
919 		metrics.rmx_sendpipe = 0;
920 		metrics.rmx_recvpipe = 0;
921 
922 		tcp_hc_update(&inp->inp_inc, &metrics);
923 	}
924 
925 	/* free the reassembly queue, if any */
926 	tcp_reass_flush(tp);
927 	/* Disconnect offload device, if any. */
928 	tcp_offload_detach(tp);
929 
930 	tcp_free_sackholes(tp);
931 
932 	/* Allow the CC algorithm to clean up after itself. */
933 	if (CC_ALGO(tp)->cb_destroy != NULL)
934 		CC_ALGO(tp)->cb_destroy(tp->ccv);
935 
936 	khelp_destroy_osd(tp->osd);
937 
938 	CC_ALGO(tp) = NULL;
939 	inp->inp_ppcb = NULL;
940 	tp->t_inpcb = NULL;
941 	uma_zfree(V_tcpcb_zone, tp);
942 }
943 
944 /*
945  * Attempt to close a TCP control block, marking it as dropped, and freeing
946  * the socket if we hold the only reference.
947  */
948 struct tcpcb *
949 tcp_close(struct tcpcb *tp)
950 {
951 	struct inpcb *inp = tp->t_inpcb;
952 	struct socket *so;
953 
954 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
955 	INP_WLOCK_ASSERT(inp);
956 
957 	/* Notify any offload devices of listener close */
958 	if (tp->t_state == TCPS_LISTEN)
959 		tcp_offload_listen_close(tp);
960 	in_pcbdrop(inp);
961 	TCPSTAT_INC(tcps_closed);
962 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
963 	so = inp->inp_socket;
964 	soisdisconnected(so);
965 	if (inp->inp_flags & INP_SOCKREF) {
966 		KASSERT(so->so_state & SS_PROTOREF,
967 		    ("tcp_close: !SS_PROTOREF"));
968 		inp->inp_flags &= ~INP_SOCKREF;
969 		INP_WUNLOCK(inp);
970 		ACCEPT_LOCK();
971 		SOCK_LOCK(so);
972 		so->so_state &= ~SS_PROTOREF;
973 		sofree(so);
974 		return (NULL);
975 	}
976 	return (tp);
977 }
978 
979 void
980 tcp_drain(void)
981 {
982 	VNET_ITERATOR_DECL(vnet_iter);
983 
984 	if (!do_tcpdrain)
985 		return;
986 
987 	VNET_LIST_RLOCK_NOSLEEP();
988 	VNET_FOREACH(vnet_iter) {
989 		CURVNET_SET(vnet_iter);
990 		struct inpcb *inpb;
991 		struct tcpcb *tcpb;
992 
993 	/*
994 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
995 	 * if there is one...
996 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
997 	 *      reassembly queue should be flushed, but in a situation
998 	 *	where we're really low on mbufs, this is potentially
999 	 *	usefull.
1000 	 */
1001 		INP_INFO_RLOCK(&V_tcbinfo);
1002 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1003 			if (inpb->inp_flags & INP_TIMEWAIT)
1004 				continue;
1005 			INP_WLOCK(inpb);
1006 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1007 				tcp_reass_flush(tcpb);
1008 				tcp_clean_sackreport(tcpb);
1009 			}
1010 			INP_WUNLOCK(inpb);
1011 		}
1012 		INP_INFO_RUNLOCK(&V_tcbinfo);
1013 		CURVNET_RESTORE();
1014 	}
1015 	VNET_LIST_RUNLOCK_NOSLEEP();
1016 }
1017 
1018 /*
1019  * Notify a tcp user of an asynchronous error;
1020  * store error as soft error, but wake up user
1021  * (for now, won't do anything until can select for soft error).
1022  *
1023  * Do not wake up user since there currently is no mechanism for
1024  * reporting soft errors (yet - a kqueue filter may be added).
1025  */
1026 static struct inpcb *
1027 tcp_notify(struct inpcb *inp, int error)
1028 {
1029 	struct tcpcb *tp;
1030 
1031 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1032 	INP_WLOCK_ASSERT(inp);
1033 
1034 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1035 	    (inp->inp_flags & INP_DROPPED))
1036 		return (inp);
1037 
1038 	tp = intotcpcb(inp);
1039 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1040 
1041 	/*
1042 	 * Ignore some errors if we are hooked up.
1043 	 * If connection hasn't completed, has retransmitted several times,
1044 	 * and receives a second error, give up now.  This is better
1045 	 * than waiting a long time to establish a connection that
1046 	 * can never complete.
1047 	 */
1048 	if (tp->t_state == TCPS_ESTABLISHED &&
1049 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1050 	     error == EHOSTDOWN)) {
1051 		return (inp);
1052 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1053 	    tp->t_softerror) {
1054 		tp = tcp_drop(tp, error);
1055 		if (tp != NULL)
1056 			return (inp);
1057 		else
1058 			return (NULL);
1059 	} else {
1060 		tp->t_softerror = error;
1061 		return (inp);
1062 	}
1063 #if 0
1064 	wakeup( &so->so_timeo);
1065 	sorwakeup(so);
1066 	sowwakeup(so);
1067 #endif
1068 }
1069 
1070 static int
1071 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1072 {
1073 	int error, i, m, n, pcb_count;
1074 	struct inpcb *inp, **inp_list;
1075 	inp_gen_t gencnt;
1076 	struct xinpgen xig;
1077 
1078 	/*
1079 	 * The process of preparing the TCB list is too time-consuming and
1080 	 * resource-intensive to repeat twice on every request.
1081 	 */
1082 	if (req->oldptr == NULL) {
1083 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1084 		n += imax(n / 8, 10);
1085 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1086 		return (0);
1087 	}
1088 
1089 	if (req->newptr != NULL)
1090 		return (EPERM);
1091 
1092 	/*
1093 	 * OK, now we're committed to doing something.
1094 	 */
1095 	INP_INFO_RLOCK(&V_tcbinfo);
1096 	gencnt = V_tcbinfo.ipi_gencnt;
1097 	n = V_tcbinfo.ipi_count;
1098 	INP_INFO_RUNLOCK(&V_tcbinfo);
1099 
1100 	m = syncache_pcbcount();
1101 
1102 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1103 		+ (n + m) * sizeof(struct xtcpcb));
1104 	if (error != 0)
1105 		return (error);
1106 
1107 	xig.xig_len = sizeof xig;
1108 	xig.xig_count = n + m;
1109 	xig.xig_gen = gencnt;
1110 	xig.xig_sogen = so_gencnt;
1111 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1112 	if (error)
1113 		return (error);
1114 
1115 	error = syncache_pcblist(req, m, &pcb_count);
1116 	if (error)
1117 		return (error);
1118 
1119 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1120 	if (inp_list == NULL)
1121 		return (ENOMEM);
1122 
1123 	INP_INFO_RLOCK(&V_tcbinfo);
1124 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1125 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1126 		INP_WLOCK(inp);
1127 		if (inp->inp_gencnt <= gencnt) {
1128 			/*
1129 			 * XXX: This use of cr_cansee(), introduced with
1130 			 * TCP state changes, is not quite right, but for
1131 			 * now, better than nothing.
1132 			 */
1133 			if (inp->inp_flags & INP_TIMEWAIT) {
1134 				if (intotw(inp) != NULL)
1135 					error = cr_cansee(req->td->td_ucred,
1136 					    intotw(inp)->tw_cred);
1137 				else
1138 					error = EINVAL;	/* Skip this inp. */
1139 			} else
1140 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1141 			if (error == 0) {
1142 				in_pcbref(inp);
1143 				inp_list[i++] = inp;
1144 			}
1145 		}
1146 		INP_WUNLOCK(inp);
1147 	}
1148 	INP_INFO_RUNLOCK(&V_tcbinfo);
1149 	n = i;
1150 
1151 	error = 0;
1152 	for (i = 0; i < n; i++) {
1153 		inp = inp_list[i];
1154 		INP_RLOCK(inp);
1155 		if (inp->inp_gencnt <= gencnt) {
1156 			struct xtcpcb xt;
1157 			void *inp_ppcb;
1158 
1159 			bzero(&xt, sizeof(xt));
1160 			xt.xt_len = sizeof xt;
1161 			/* XXX should avoid extra copy */
1162 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1163 			inp_ppcb = inp->inp_ppcb;
1164 			if (inp_ppcb == NULL)
1165 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1166 			else if (inp->inp_flags & INP_TIMEWAIT) {
1167 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1168 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1169 			} else {
1170 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1171 				if (xt.xt_tp.t_timers)
1172 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1173 			}
1174 			if (inp->inp_socket != NULL)
1175 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1176 			else {
1177 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1178 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1179 			}
1180 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1181 			INP_RUNLOCK(inp);
1182 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1183 		} else
1184 			INP_RUNLOCK(inp);
1185 	}
1186 	INP_INFO_WLOCK(&V_tcbinfo);
1187 	for (i = 0; i < n; i++) {
1188 		inp = inp_list[i];
1189 		INP_RLOCK(inp);
1190 		if (!in_pcbrele_rlocked(inp))
1191 			INP_RUNLOCK(inp);
1192 	}
1193 	INP_INFO_WUNLOCK(&V_tcbinfo);
1194 
1195 	if (!error) {
1196 		/*
1197 		 * Give the user an updated idea of our state.
1198 		 * If the generation differs from what we told
1199 		 * her before, she knows that something happened
1200 		 * while we were processing this request, and it
1201 		 * might be necessary to retry.
1202 		 */
1203 		INP_INFO_RLOCK(&V_tcbinfo);
1204 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1205 		xig.xig_sogen = so_gencnt;
1206 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1207 		INP_INFO_RUNLOCK(&V_tcbinfo);
1208 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1209 	}
1210 	free(inp_list, M_TEMP);
1211 	return (error);
1212 }
1213 
1214 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1215     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1216     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1217 
1218 #ifdef INET
1219 static int
1220 tcp_getcred(SYSCTL_HANDLER_ARGS)
1221 {
1222 	struct xucred xuc;
1223 	struct sockaddr_in addrs[2];
1224 	struct inpcb *inp;
1225 	int error;
1226 
1227 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1228 	if (error)
1229 		return (error);
1230 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1231 	if (error)
1232 		return (error);
1233 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1234 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1235 	if (inp != NULL) {
1236 		if (inp->inp_socket == NULL)
1237 			error = ENOENT;
1238 		if (error == 0)
1239 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1240 		if (error == 0)
1241 			cru2x(inp->inp_cred, &xuc);
1242 		INP_RUNLOCK(inp);
1243 	} else
1244 		error = ENOENT;
1245 	if (error == 0)
1246 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1247 	return (error);
1248 }
1249 
1250 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1251     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1252     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1253 #endif /* INET */
1254 
1255 #ifdef INET6
1256 static int
1257 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1258 {
1259 	struct xucred xuc;
1260 	struct sockaddr_in6 addrs[2];
1261 	struct inpcb *inp;
1262 	int error;
1263 #ifdef INET
1264 	int mapped = 0;
1265 #endif
1266 
1267 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1268 	if (error)
1269 		return (error);
1270 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1271 	if (error)
1272 		return (error);
1273 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1274 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1275 		return (error);
1276 	}
1277 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1278 #ifdef INET
1279 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1280 			mapped = 1;
1281 		else
1282 #endif
1283 			return (EINVAL);
1284 	}
1285 
1286 #ifdef INET
1287 	if (mapped == 1)
1288 		inp = in_pcblookup(&V_tcbinfo,
1289 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1290 			addrs[1].sin6_port,
1291 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1292 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1293 	else
1294 #endif
1295 		inp = in6_pcblookup(&V_tcbinfo,
1296 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1297 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1298 			INPLOOKUP_RLOCKPCB, NULL);
1299 	if (inp != NULL) {
1300 		if (inp->inp_socket == NULL)
1301 			error = ENOENT;
1302 		if (error == 0)
1303 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1304 		if (error == 0)
1305 			cru2x(inp->inp_cred, &xuc);
1306 		INP_RUNLOCK(inp);
1307 	} else
1308 		error = ENOENT;
1309 	if (error == 0)
1310 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1311 	return (error);
1312 }
1313 
1314 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1315     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1316     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1317 #endif /* INET6 */
1318 
1319 
1320 #ifdef INET
1321 void
1322 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1323 {
1324 	struct ip *ip = vip;
1325 	struct tcphdr *th;
1326 	struct in_addr faddr;
1327 	struct inpcb *inp;
1328 	struct tcpcb *tp;
1329 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1330 	struct icmp *icp;
1331 	struct in_conninfo inc;
1332 	tcp_seq icmp_tcp_seq;
1333 	int mtu;
1334 
1335 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1336 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1337 		return;
1338 
1339 	if (cmd == PRC_MSGSIZE)
1340 		notify = tcp_mtudisc;
1341 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1342 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1343 		notify = tcp_drop_syn_sent;
1344 	/*
1345 	 * Redirects don't need to be handled up here.
1346 	 */
1347 	else if (PRC_IS_REDIRECT(cmd))
1348 		return;
1349 	/*
1350 	 * Source quench is depreciated.
1351 	 */
1352 	else if (cmd == PRC_QUENCH)
1353 		return;
1354 	/*
1355 	 * Hostdead is ugly because it goes linearly through all PCBs.
1356 	 * XXX: We never get this from ICMP, otherwise it makes an
1357 	 * excellent DoS attack on machines with many connections.
1358 	 */
1359 	else if (cmd == PRC_HOSTDEAD)
1360 		ip = NULL;
1361 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1362 		return;
1363 	if (ip != NULL) {
1364 		icp = (struct icmp *)((caddr_t)ip
1365 				      - offsetof(struct icmp, icmp_ip));
1366 		th = (struct tcphdr *)((caddr_t)ip
1367 				       + (ip->ip_hl << 2));
1368 		INP_INFO_WLOCK(&V_tcbinfo);
1369 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1370 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1371 		if (inp != NULL)  {
1372 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1373 			    !(inp->inp_flags & INP_DROPPED) &&
1374 			    !(inp->inp_socket == NULL)) {
1375 				icmp_tcp_seq = htonl(th->th_seq);
1376 				tp = intotcpcb(inp);
1377 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1378 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1379 					if (cmd == PRC_MSGSIZE) {
1380 					    /*
1381 					     * MTU discovery:
1382 					     * If we got a needfrag set the MTU
1383 					     * in the route to the suggested new
1384 					     * value (if given) and then notify.
1385 					     */
1386 					    bzero(&inc, sizeof(inc));
1387 					    inc.inc_faddr = faddr;
1388 					    inc.inc_fibnum =
1389 						inp->inp_inc.inc_fibnum;
1390 
1391 					    mtu = ntohs(icp->icmp_nextmtu);
1392 					    /*
1393 					     * If no alternative MTU was
1394 					     * proposed, try the next smaller
1395 					     * one.  ip->ip_len has already
1396 					     * been swapped in icmp_input().
1397 					     */
1398 					    if (!mtu)
1399 						mtu = ip_next_mtu(ip->ip_len,
1400 						 1);
1401 					    if (mtu < V_tcp_minmss
1402 						 + sizeof(struct tcpiphdr))
1403 						mtu = V_tcp_minmss
1404 						 + sizeof(struct tcpiphdr);
1405 					    /*
1406 					     * Only cache the MTU if it
1407 					     * is smaller than the interface
1408 					     * or route MTU.  tcp_mtudisc()
1409 					     * will do right thing by itself.
1410 					     */
1411 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1412 						tcp_hc_updatemtu(&inc, mtu);
1413 					}
1414 
1415 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1416 				}
1417 			}
1418 			if (inp != NULL)
1419 				INP_WUNLOCK(inp);
1420 		} else {
1421 			bzero(&inc, sizeof(inc));
1422 			inc.inc_fport = th->th_dport;
1423 			inc.inc_lport = th->th_sport;
1424 			inc.inc_faddr = faddr;
1425 			inc.inc_laddr = ip->ip_src;
1426 			syncache_unreach(&inc, th);
1427 		}
1428 		INP_INFO_WUNLOCK(&V_tcbinfo);
1429 	} else
1430 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1431 }
1432 #endif /* INET */
1433 
1434 #ifdef INET6
1435 void
1436 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1437 {
1438 	struct tcphdr th;
1439 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1440 	struct ip6_hdr *ip6;
1441 	struct mbuf *m;
1442 	struct ip6ctlparam *ip6cp = NULL;
1443 	const struct sockaddr_in6 *sa6_src = NULL;
1444 	int off;
1445 	struct tcp_portonly {
1446 		u_int16_t th_sport;
1447 		u_int16_t th_dport;
1448 	} *thp;
1449 
1450 	if (sa->sa_family != AF_INET6 ||
1451 	    sa->sa_len != sizeof(struct sockaddr_in6))
1452 		return;
1453 
1454 	if (cmd == PRC_MSGSIZE)
1455 		notify = tcp_mtudisc;
1456 	else if (!PRC_IS_REDIRECT(cmd) &&
1457 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1458 		return;
1459 	/* Source quench is depreciated. */
1460 	else if (cmd == PRC_QUENCH)
1461 		return;
1462 
1463 	/* if the parameter is from icmp6, decode it. */
1464 	if (d != NULL) {
1465 		ip6cp = (struct ip6ctlparam *)d;
1466 		m = ip6cp->ip6c_m;
1467 		ip6 = ip6cp->ip6c_ip6;
1468 		off = ip6cp->ip6c_off;
1469 		sa6_src = ip6cp->ip6c_src;
1470 	} else {
1471 		m = NULL;
1472 		ip6 = NULL;
1473 		off = 0;	/* fool gcc */
1474 		sa6_src = &sa6_any;
1475 	}
1476 
1477 	if (ip6 != NULL) {
1478 		struct in_conninfo inc;
1479 		/*
1480 		 * XXX: We assume that when IPV6 is non NULL,
1481 		 * M and OFF are valid.
1482 		 */
1483 
1484 		/* check if we can safely examine src and dst ports */
1485 		if (m->m_pkthdr.len < off + sizeof(*thp))
1486 			return;
1487 
1488 		bzero(&th, sizeof(th));
1489 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1490 
1491 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1492 		    (struct sockaddr *)ip6cp->ip6c_src,
1493 		    th.th_sport, cmd, NULL, notify);
1494 
1495 		bzero(&inc, sizeof(inc));
1496 		inc.inc_fport = th.th_dport;
1497 		inc.inc_lport = th.th_sport;
1498 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1499 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1500 		inc.inc_flags |= INC_ISIPV6;
1501 		INP_INFO_WLOCK(&V_tcbinfo);
1502 		syncache_unreach(&inc, &th);
1503 		INP_INFO_WUNLOCK(&V_tcbinfo);
1504 	} else
1505 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1506 			      0, cmd, NULL, notify);
1507 }
1508 #endif /* INET6 */
1509 
1510 
1511 /*
1512  * Following is where TCP initial sequence number generation occurs.
1513  *
1514  * There are two places where we must use initial sequence numbers:
1515  * 1.  In SYN-ACK packets.
1516  * 2.  In SYN packets.
1517  *
1518  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1519  * tcp_syncache.c for details.
1520  *
1521  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1522  * depends on this property.  In addition, these ISNs should be
1523  * unguessable so as to prevent connection hijacking.  To satisfy
1524  * the requirements of this situation, the algorithm outlined in
1525  * RFC 1948 is used, with only small modifications.
1526  *
1527  * Implementation details:
1528  *
1529  * Time is based off the system timer, and is corrected so that it
1530  * increases by one megabyte per second.  This allows for proper
1531  * recycling on high speed LANs while still leaving over an hour
1532  * before rollover.
1533  *
1534  * As reading the *exact* system time is too expensive to be done
1535  * whenever setting up a TCP connection, we increment the time
1536  * offset in two ways.  First, a small random positive increment
1537  * is added to isn_offset for each connection that is set up.
1538  * Second, the function tcp_isn_tick fires once per clock tick
1539  * and increments isn_offset as necessary so that sequence numbers
1540  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1541  * random positive increments serve only to ensure that the same
1542  * exact sequence number is never sent out twice (as could otherwise
1543  * happen when a port is recycled in less than the system tick
1544  * interval.)
1545  *
1546  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1547  * between seeding of isn_secret.  This is normally set to zero,
1548  * as reseeding should not be necessary.
1549  *
1550  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1551  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1552  * general, this means holding an exclusive (write) lock.
1553  */
1554 
1555 #define ISN_BYTES_PER_SECOND 1048576
1556 #define ISN_STATIC_INCREMENT 4096
1557 #define ISN_RANDOM_INCREMENT (4096 - 1)
1558 
1559 static VNET_DEFINE(u_char, isn_secret[32]);
1560 static VNET_DEFINE(int, isn_last);
1561 static VNET_DEFINE(int, isn_last_reseed);
1562 static VNET_DEFINE(u_int32_t, isn_offset);
1563 static VNET_DEFINE(u_int32_t, isn_offset_old);
1564 
1565 #define	V_isn_secret			VNET(isn_secret)
1566 #define	V_isn_last			VNET(isn_last)
1567 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1568 #define	V_isn_offset			VNET(isn_offset)
1569 #define	V_isn_offset_old		VNET(isn_offset_old)
1570 
1571 tcp_seq
1572 tcp_new_isn(struct tcpcb *tp)
1573 {
1574 	MD5_CTX isn_ctx;
1575 	u_int32_t md5_buffer[4];
1576 	tcp_seq new_isn;
1577 	u_int32_t projected_offset;
1578 
1579 	INP_WLOCK_ASSERT(tp->t_inpcb);
1580 
1581 	ISN_LOCK();
1582 	/* Seed if this is the first use, reseed if requested. */
1583 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1584 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1585 		< (u_int)ticks))) {
1586 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1587 		V_isn_last_reseed = ticks;
1588 	}
1589 
1590 	/* Compute the md5 hash and return the ISN. */
1591 	MD5Init(&isn_ctx);
1592 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1593 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1594 #ifdef INET6
1595 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1596 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1597 			  sizeof(struct in6_addr));
1598 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1599 			  sizeof(struct in6_addr));
1600 	} else
1601 #endif
1602 	{
1603 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1604 			  sizeof(struct in_addr));
1605 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1606 			  sizeof(struct in_addr));
1607 	}
1608 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1609 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1610 	new_isn = (tcp_seq) md5_buffer[0];
1611 	V_isn_offset += ISN_STATIC_INCREMENT +
1612 		(arc4random() & ISN_RANDOM_INCREMENT);
1613 	if (ticks != V_isn_last) {
1614 		projected_offset = V_isn_offset_old +
1615 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1616 		if (SEQ_GT(projected_offset, V_isn_offset))
1617 			V_isn_offset = projected_offset;
1618 		V_isn_offset_old = V_isn_offset;
1619 		V_isn_last = ticks;
1620 	}
1621 	new_isn += V_isn_offset;
1622 	ISN_UNLOCK();
1623 	return (new_isn);
1624 }
1625 
1626 /*
1627  * When a specific ICMP unreachable message is received and the
1628  * connection state is SYN-SENT, drop the connection.  This behavior
1629  * is controlled by the icmp_may_rst sysctl.
1630  */
1631 struct inpcb *
1632 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1633 {
1634 	struct tcpcb *tp;
1635 
1636 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1637 	INP_WLOCK_ASSERT(inp);
1638 
1639 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1640 	    (inp->inp_flags & INP_DROPPED))
1641 		return (inp);
1642 
1643 	tp = intotcpcb(inp);
1644 	if (tp->t_state != TCPS_SYN_SENT)
1645 		return (inp);
1646 
1647 	tp = tcp_drop(tp, errno);
1648 	if (tp != NULL)
1649 		return (inp);
1650 	else
1651 		return (NULL);
1652 }
1653 
1654 /*
1655  * When `need fragmentation' ICMP is received, update our idea of the MSS
1656  * based on the new value in the route.  Also nudge TCP to send something,
1657  * since we know the packet we just sent was dropped.
1658  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1659  */
1660 struct inpcb *
1661 tcp_mtudisc(struct inpcb *inp, int errno)
1662 {
1663 	struct tcpcb *tp;
1664 	struct socket *so;
1665 
1666 	INP_WLOCK_ASSERT(inp);
1667 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1668 	    (inp->inp_flags & INP_DROPPED))
1669 		return (inp);
1670 
1671 	tp = intotcpcb(inp);
1672 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1673 
1674 	tcp_mss_update(tp, -1, NULL, NULL);
1675 
1676 	so = inp->inp_socket;
1677 	SOCKBUF_LOCK(&so->so_snd);
1678 	/* If the mss is larger than the socket buffer, decrease the mss. */
1679 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1680 		tp->t_maxseg = so->so_snd.sb_hiwat;
1681 	SOCKBUF_UNLOCK(&so->so_snd);
1682 
1683 	TCPSTAT_INC(tcps_mturesent);
1684 	tp->t_rtttime = 0;
1685 	tp->snd_nxt = tp->snd_una;
1686 	tcp_free_sackholes(tp);
1687 	tp->snd_recover = tp->snd_max;
1688 	if (tp->t_flags & TF_SACK_PERMIT)
1689 		EXIT_FASTRECOVERY(tp->t_flags);
1690 	tcp_output_send(tp);
1691 	return (inp);
1692 }
1693 
1694 #ifdef INET
1695 /*
1696  * Look-up the routing entry to the peer of this inpcb.  If no route
1697  * is found and it cannot be allocated, then return 0.  This routine
1698  * is called by TCP routines that access the rmx structure and by
1699  * tcp_mss_update to get the peer/interface MTU.
1700  */
1701 u_long
1702 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1703 {
1704 	struct route sro;
1705 	struct sockaddr_in *dst;
1706 	struct ifnet *ifp;
1707 	u_long maxmtu = 0;
1708 
1709 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1710 
1711 	bzero(&sro, sizeof(sro));
1712 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1713 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1714 		dst->sin_family = AF_INET;
1715 		dst->sin_len = sizeof(*dst);
1716 		dst->sin_addr = inc->inc_faddr;
1717 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1718 	}
1719 	if (sro.ro_rt != NULL) {
1720 		ifp = sro.ro_rt->rt_ifp;
1721 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1722 			maxmtu = ifp->if_mtu;
1723 		else
1724 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1725 
1726 		/* Report additional interface capabilities. */
1727 		if (flags != NULL) {
1728 			if (ifp->if_capenable & IFCAP_TSO4 &&
1729 			    ifp->if_hwassist & CSUM_TSO)
1730 				*flags |= CSUM_TSO;
1731 		}
1732 		RTFREE(sro.ro_rt);
1733 	}
1734 	return (maxmtu);
1735 }
1736 #endif /* INET */
1737 
1738 #ifdef INET6
1739 u_long
1740 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1741 {
1742 	struct route_in6 sro6;
1743 	struct ifnet *ifp;
1744 	u_long maxmtu = 0;
1745 
1746 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1747 
1748 	bzero(&sro6, sizeof(sro6));
1749 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1750 		sro6.ro_dst.sin6_family = AF_INET6;
1751 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1752 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1753 		rtalloc_ign((struct route *)&sro6, 0);
1754 	}
1755 	if (sro6.ro_rt != NULL) {
1756 		ifp = sro6.ro_rt->rt_ifp;
1757 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1758 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1759 		else
1760 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1761 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1762 
1763 		/* Report additional interface capabilities. */
1764 		if (flags != NULL) {
1765 			if (ifp->if_capenable & IFCAP_TSO6 &&
1766 			    ifp->if_hwassist & CSUM_TSO)
1767 				*flags |= CSUM_TSO;
1768 		}
1769 		RTFREE(sro6.ro_rt);
1770 	}
1771 
1772 	return (maxmtu);
1773 }
1774 #endif /* INET6 */
1775 
1776 #ifdef IPSEC
1777 /* compute ESP/AH header size for TCP, including outer IP header. */
1778 size_t
1779 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1780 {
1781 	struct inpcb *inp;
1782 	struct mbuf *m;
1783 	size_t hdrsiz;
1784 	struct ip *ip;
1785 #ifdef INET6
1786 	struct ip6_hdr *ip6;
1787 #endif
1788 	struct tcphdr *th;
1789 
1790 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1791 		return (0);
1792 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1793 	if (!m)
1794 		return (0);
1795 
1796 #ifdef INET6
1797 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1798 		ip6 = mtod(m, struct ip6_hdr *);
1799 		th = (struct tcphdr *)(ip6 + 1);
1800 		m->m_pkthdr.len = m->m_len =
1801 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1802 		tcpip_fillheaders(inp, ip6, th);
1803 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1804 	} else
1805 #endif /* INET6 */
1806 	{
1807 		ip = mtod(m, struct ip *);
1808 		th = (struct tcphdr *)(ip + 1);
1809 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1810 		tcpip_fillheaders(inp, ip, th);
1811 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1812 	}
1813 
1814 	m_free(m);
1815 	return (hdrsiz);
1816 }
1817 #endif /* IPSEC */
1818 
1819 #ifdef TCP_SIGNATURE
1820 /*
1821  * Callback function invoked by m_apply() to digest TCP segment data
1822  * contained within an mbuf chain.
1823  */
1824 static int
1825 tcp_signature_apply(void *fstate, void *data, u_int len)
1826 {
1827 
1828 	MD5Update(fstate, (u_char *)data, len);
1829 	return (0);
1830 }
1831 
1832 /*
1833  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1834  *
1835  * Parameters:
1836  * m		pointer to head of mbuf chain
1837  * _unused
1838  * len		length of TCP segment data, excluding options
1839  * optlen	length of TCP segment options
1840  * buf		pointer to storage for computed MD5 digest
1841  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1842  *
1843  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1844  * When called from tcp_input(), we can be sure that th_sum has been
1845  * zeroed out and verified already.
1846  *
1847  * Return 0 if successful, otherwise return -1.
1848  *
1849  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1850  * search with the destination IP address, and a 'magic SPI' to be
1851  * determined by the application. This is hardcoded elsewhere to 1179
1852  * right now. Another branch of this code exists which uses the SPD to
1853  * specify per-application flows but it is unstable.
1854  */
1855 int
1856 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1857     u_char *buf, u_int direction)
1858 {
1859 	union sockaddr_union dst;
1860 #ifdef INET
1861 	struct ippseudo ippseudo;
1862 #endif
1863 	MD5_CTX ctx;
1864 	int doff;
1865 	struct ip *ip;
1866 #ifdef INET
1867 	struct ipovly *ipovly;
1868 #endif
1869 	struct secasvar *sav;
1870 	struct tcphdr *th;
1871 #ifdef INET6
1872 	struct ip6_hdr *ip6;
1873 	struct in6_addr in6;
1874 	char ip6buf[INET6_ADDRSTRLEN];
1875 	uint32_t plen;
1876 	uint16_t nhdr;
1877 #endif
1878 	u_short savecsum;
1879 
1880 	KASSERT(m != NULL, ("NULL mbuf chain"));
1881 	KASSERT(buf != NULL, ("NULL signature pointer"));
1882 
1883 	/* Extract the destination from the IP header in the mbuf. */
1884 	bzero(&dst, sizeof(union sockaddr_union));
1885 	ip = mtod(m, struct ip *);
1886 #ifdef INET6
1887 	ip6 = NULL;	/* Make the compiler happy. */
1888 #endif
1889 	switch (ip->ip_v) {
1890 #ifdef INET
1891 	case IPVERSION:
1892 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1893 		dst.sa.sa_family = AF_INET;
1894 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1895 		    ip->ip_src : ip->ip_dst;
1896 		break;
1897 #endif
1898 #ifdef INET6
1899 	case (IPV6_VERSION >> 4):
1900 		ip6 = mtod(m, struct ip6_hdr *);
1901 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1902 		dst.sa.sa_family = AF_INET6;
1903 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1904 		    ip6->ip6_src : ip6->ip6_dst;
1905 		break;
1906 #endif
1907 	default:
1908 		return (EINVAL);
1909 		/* NOTREACHED */
1910 		break;
1911 	}
1912 
1913 	/* Look up an SADB entry which matches the address of the peer. */
1914 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1915 	if (sav == NULL) {
1916 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1917 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1918 #ifdef INET6
1919 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1920 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1921 #endif
1922 			"(unsupported)"));
1923 		return (EINVAL);
1924 	}
1925 
1926 	MD5Init(&ctx);
1927 	/*
1928 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1929 	 *
1930 	 * XXX The ippseudo header MUST be digested in network byte order,
1931 	 * or else we'll fail the regression test. Assume all fields we've
1932 	 * been doing arithmetic on have been in host byte order.
1933 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1934 	 * tcp_output(), the underlying ip_len member has not yet been set.
1935 	 */
1936 	switch (ip->ip_v) {
1937 #ifdef INET
1938 	case IPVERSION:
1939 		ipovly = (struct ipovly *)ip;
1940 		ippseudo.ippseudo_src = ipovly->ih_src;
1941 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1942 		ippseudo.ippseudo_pad = 0;
1943 		ippseudo.ippseudo_p = IPPROTO_TCP;
1944 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1945 		    optlen);
1946 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1947 
1948 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1949 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1950 		break;
1951 #endif
1952 #ifdef INET6
1953 	/*
1954 	 * RFC 2385, 2.0  Proposal
1955 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1956 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1957 	 * extended next header value (to form 32 bits), and 32-bit segment
1958 	 * length.
1959 	 * Note: Upper-Layer Packet Length comes before Next Header.
1960 	 */
1961 	case (IPV6_VERSION >> 4):
1962 		in6 = ip6->ip6_src;
1963 		in6_clearscope(&in6);
1964 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1965 		in6 = ip6->ip6_dst;
1966 		in6_clearscope(&in6);
1967 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1968 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1969 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1970 		nhdr = 0;
1971 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1972 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1973 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1974 		nhdr = IPPROTO_TCP;
1975 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1976 
1977 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1978 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1979 		break;
1980 #endif
1981 	default:
1982 		return (EINVAL);
1983 		/* NOTREACHED */
1984 		break;
1985 	}
1986 
1987 
1988 	/*
1989 	 * Step 2: Update MD5 hash with TCP header, excluding options.
1990 	 * The TCP checksum must be set to zero.
1991 	 */
1992 	savecsum = th->th_sum;
1993 	th->th_sum = 0;
1994 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1995 	th->th_sum = savecsum;
1996 
1997 	/*
1998 	 * Step 3: Update MD5 hash with TCP segment data.
1999 	 *         Use m_apply() to avoid an early m_pullup().
2000 	 */
2001 	if (len > 0)
2002 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2003 
2004 	/*
2005 	 * Step 4: Update MD5 hash with shared secret.
2006 	 */
2007 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2008 	MD5Final(buf, &ctx);
2009 
2010 	key_sa_recordxfer(sav, m);
2011 	KEY_FREESAV(&sav);
2012 	return (0);
2013 }
2014 
2015 /*
2016  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2017  *
2018  * Parameters:
2019  * m		pointer to head of mbuf chain
2020  * len		length of TCP segment data, excluding options
2021  * optlen	length of TCP segment options
2022  * buf		pointer to storage for computed MD5 digest
2023  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2024  *
2025  * Return 1 if successful, otherwise return 0.
2026  */
2027 int
2028 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2029     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2030 {
2031 	char tmpdigest[TCP_SIGLEN];
2032 
2033 	if (tcp_sig_checksigs == 0)
2034 		return (1);
2035 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2036 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2037 
2038 			/*
2039 			 * If this socket is not expecting signature but
2040 			 * the segment contains signature just fail.
2041 			 */
2042 			TCPSTAT_INC(tcps_sig_err_sigopt);
2043 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2044 			return (0);
2045 		}
2046 
2047 		/* Signature is not expected, and not present in segment. */
2048 		return (1);
2049 	}
2050 
2051 	/*
2052 	 * If this socket is expecting signature but the segment does not
2053 	 * contain any just fail.
2054 	 */
2055 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2056 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2057 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2058 		return (0);
2059 	}
2060 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2061 	    IPSEC_DIR_INBOUND) == -1) {
2062 		TCPSTAT_INC(tcps_sig_err_buildsig);
2063 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2064 		return (0);
2065 	}
2066 
2067 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2068 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2069 		return (0);
2070 	}
2071 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2072 	return (1);
2073 }
2074 #endif /* TCP_SIGNATURE */
2075 
2076 static int
2077 sysctl_drop(SYSCTL_HANDLER_ARGS)
2078 {
2079 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2080 	struct sockaddr_storage addrs[2];
2081 	struct inpcb *inp;
2082 	struct tcpcb *tp;
2083 	struct tcptw *tw;
2084 	struct sockaddr_in *fin, *lin;
2085 #ifdef INET6
2086 	struct sockaddr_in6 *fin6, *lin6;
2087 #endif
2088 	int error;
2089 
2090 	inp = NULL;
2091 	fin = lin = NULL;
2092 #ifdef INET6
2093 	fin6 = lin6 = NULL;
2094 #endif
2095 	error = 0;
2096 
2097 	if (req->oldptr != NULL || req->oldlen != 0)
2098 		return (EINVAL);
2099 	if (req->newptr == NULL)
2100 		return (EPERM);
2101 	if (req->newlen < sizeof(addrs))
2102 		return (ENOMEM);
2103 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2104 	if (error)
2105 		return (error);
2106 
2107 	switch (addrs[0].ss_family) {
2108 #ifdef INET6
2109 	case AF_INET6:
2110 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2111 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2112 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2113 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2114 			return (EINVAL);
2115 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2116 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2117 				return (EINVAL);
2118 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2119 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2120 			fin = (struct sockaddr_in *)&addrs[0];
2121 			lin = (struct sockaddr_in *)&addrs[1];
2122 			break;
2123 		}
2124 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2125 		if (error)
2126 			return (error);
2127 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2128 		if (error)
2129 			return (error);
2130 		break;
2131 #endif
2132 #ifdef INET
2133 	case AF_INET:
2134 		fin = (struct sockaddr_in *)&addrs[0];
2135 		lin = (struct sockaddr_in *)&addrs[1];
2136 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2137 		    lin->sin_len != sizeof(struct sockaddr_in))
2138 			return (EINVAL);
2139 		break;
2140 #endif
2141 	default:
2142 		return (EINVAL);
2143 	}
2144 	INP_INFO_WLOCK(&V_tcbinfo);
2145 	switch (addrs[0].ss_family) {
2146 #ifdef INET6
2147 	case AF_INET6:
2148 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2149 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2150 		    INPLOOKUP_WLOCKPCB, NULL);
2151 		break;
2152 #endif
2153 #ifdef INET
2154 	case AF_INET:
2155 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2156 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2157 		break;
2158 #endif
2159 	}
2160 	if (inp != NULL) {
2161 		if (inp->inp_flags & INP_TIMEWAIT) {
2162 			/*
2163 			 * XXXRW: There currently exists a state where an
2164 			 * inpcb is present, but its timewait state has been
2165 			 * discarded.  For now, don't allow dropping of this
2166 			 * type of inpcb.
2167 			 */
2168 			tw = intotw(inp);
2169 			if (tw != NULL)
2170 				tcp_twclose(tw, 0);
2171 			else
2172 				INP_WUNLOCK(inp);
2173 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2174 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2175 			tp = intotcpcb(inp);
2176 			tp = tcp_drop(tp, ECONNABORTED);
2177 			if (tp != NULL)
2178 				INP_WUNLOCK(inp);
2179 		} else
2180 			INP_WUNLOCK(inp);
2181 	} else
2182 		error = ESRCH;
2183 	INP_INFO_WUNLOCK(&V_tcbinfo);
2184 	return (error);
2185 }
2186 
2187 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2188     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2189     0, sysctl_drop, "", "Drop TCP connection");
2190 
2191 /*
2192  * Generate a standardized TCP log line for use throughout the
2193  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2194  * allow use in the interrupt context.
2195  *
2196  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2197  * NB: The function may return NULL if memory allocation failed.
2198  *
2199  * Due to header inclusion and ordering limitations the struct ip
2200  * and ip6_hdr pointers have to be passed as void pointers.
2201  */
2202 char *
2203 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2204     const void *ip6hdr)
2205 {
2206 
2207 	/* Is logging enabled? */
2208 	if (tcp_log_in_vain == 0)
2209 		return (NULL);
2210 
2211 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2212 }
2213 
2214 char *
2215 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2216     const void *ip6hdr)
2217 {
2218 
2219 	/* Is logging enabled? */
2220 	if (tcp_log_debug == 0)
2221 		return (NULL);
2222 
2223 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2224 }
2225 
2226 static char *
2227 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2228     const void *ip6hdr)
2229 {
2230 	char *s, *sp;
2231 	size_t size;
2232 	struct ip *ip;
2233 #ifdef INET6
2234 	const struct ip6_hdr *ip6;
2235 
2236 	ip6 = (const struct ip6_hdr *)ip6hdr;
2237 #endif /* INET6 */
2238 	ip = (struct ip *)ip4hdr;
2239 
2240 	/*
2241 	 * The log line looks like this:
2242 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2243 	 */
2244 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2245 	    sizeof(PRINT_TH_FLAGS) + 1 +
2246 #ifdef INET6
2247 	    2 * INET6_ADDRSTRLEN;
2248 #else
2249 	    2 * INET_ADDRSTRLEN;
2250 #endif /* INET6 */
2251 
2252 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2253 	if (s == NULL)
2254 		return (NULL);
2255 
2256 	strcat(s, "TCP: [");
2257 	sp = s + strlen(s);
2258 
2259 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2260 		inet_ntoa_r(inc->inc_faddr, sp);
2261 		sp = s + strlen(s);
2262 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2263 		sp = s + strlen(s);
2264 		inet_ntoa_r(inc->inc_laddr, sp);
2265 		sp = s + strlen(s);
2266 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2267 #ifdef INET6
2268 	} else if (inc) {
2269 		ip6_sprintf(sp, &inc->inc6_faddr);
2270 		sp = s + strlen(s);
2271 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2272 		sp = s + strlen(s);
2273 		ip6_sprintf(sp, &inc->inc6_laddr);
2274 		sp = s + strlen(s);
2275 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2276 	} else if (ip6 && th) {
2277 		ip6_sprintf(sp, &ip6->ip6_src);
2278 		sp = s + strlen(s);
2279 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2280 		sp = s + strlen(s);
2281 		ip6_sprintf(sp, &ip6->ip6_dst);
2282 		sp = s + strlen(s);
2283 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2284 #endif /* INET6 */
2285 #ifdef INET
2286 	} else if (ip && th) {
2287 		inet_ntoa_r(ip->ip_src, sp);
2288 		sp = s + strlen(s);
2289 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2290 		sp = s + strlen(s);
2291 		inet_ntoa_r(ip->ip_dst, sp);
2292 		sp = s + strlen(s);
2293 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2294 #endif /* INET */
2295 	} else {
2296 		free(s, M_TCPLOG);
2297 		return (NULL);
2298 	}
2299 	sp = s + strlen(s);
2300 	if (th)
2301 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2302 	if (*(s + size - 1) != '\0')
2303 		panic("%s: string too long", __func__);
2304 	return (s);
2305 }
2306