xref: /freebsd/sys/netinet/tcp_subr.c (revision 91c878a6935c5c2e99866eb267e5bc3028bf6d2f)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #ifdef INET6
49 #include <sys/domain.h>
50 #endif
51 #include <sys/proc.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/protosw.h>
55 #include <sys/random.h>
56 
57 #include <vm/uma.h>
58 
59 #include <net/route.h>
60 #include <net/if.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #ifdef INET6
66 #include <netinet/ip6.h>
67 #endif
68 #include <netinet/in_pcb.h>
69 #ifdef INET6
70 #include <netinet6/in6_pcb.h>
71 #endif
72 #include <netinet/in_var.h>
73 #include <netinet/ip_var.h>
74 #ifdef INET6
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/scope6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/ip_icmp.h>
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #include <netkey/key.h>
100 #endif /*IPSEC*/
101 
102 #ifdef FAST_IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #define	IPSEC
110 #endif /*FAST_IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 #include <security/mac/mac_framework.h>
116 
117 int	tcp_mssdflt = TCP_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
119     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
120 
121 #ifdef INET6
122 int	tcp_v6mssdflt = TCP6_MSS;
123 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
124 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
125 	"Default TCP Maximum Segment Size for IPv6");
126 #endif
127 
128 /*
129  * Minimum MSS we accept and use. This prevents DoS attacks where
130  * we are forced to a ridiculous low MSS like 20 and send hundreds
131  * of packets instead of one. The effect scales with the available
132  * bandwidth and quickly saturates the CPU and network interface
133  * with packet generation and sending. Set to zero to disable MINMSS
134  * checking. This setting prevents us from sending too small packets.
135  */
136 int	tcp_minmss = TCP_MINMSS;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
138     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
139 /*
140  * Number of TCP segments per second we accept from remote host
141  * before we start to calculate average segment size. If average
142  * segment size drops below the minimum TCP MSS we assume a DoS
143  * attack and reset+drop the connection. Care has to be taken not to
144  * set this value too small to not kill interactive type connections
145  * (telnet, SSH) which send many small packets.
146  */
147 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
149     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
150     "be under the MINMSS Size");
151 
152 #if 0
153 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
154 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
155     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
156 #endif
157 
158 int	tcp_do_rfc1323 = 1;
159 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
160     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
161 
162 static int	tcp_tcbhashsize = 0;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
164      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
165 
166 static int	do_tcpdrain = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
168      "Enable tcp_drain routine for extra help when low on mbufs");
169 
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
171     &tcbinfo.ipi_count, 0, "Number of active PCBs");
172 
173 static int	icmp_may_rst = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
175     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
176 
177 static int	tcp_isn_reseed_interval = 0;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
179     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
180 
181 static uma_zone_t tcptw_zone;
182 static int	maxtcptw;
183 
184 static int
185 tcptw_auto_size(void)
186 {
187 	int halfrange;
188 
189 	/*
190 	 * Max out at half the ephemeral port range so that TIME_WAIT
191 	 * sockets don't tie up too many ephemeral ports.
192 	 */
193 	if (ipport_lastauto > ipport_firstauto)
194 		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
195 	else
196 		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
197 	/* Protect against goofy port ranges smaller than 32. */
198 	return (imin(imax(halfrange, 32), maxsockets / 5));
199 }
200 
201 static int
202 sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, new;
205 
206 	if (maxtcptw == 0)
207 		new = tcptw_auto_size();
208 	else
209 		new = maxtcptw;
210 	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
211 	if (error == 0 && req->newptr)
212 		if (new >= 32) {
213 			maxtcptw = new;
214 			uma_zone_set_max(tcptw_zone, maxtcptw);
215 		}
216 	return (error);
217 }
218 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
219     &maxtcptw, 0, sysctl_maxtcptw, "IU",
220     "Maximum number of compressed TCP TIME_WAIT entries");
221 
222 static int	nolocaltimewait = 0;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
224     &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
225 			 "for local connections");
226 
227 /*
228  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
229  * 1024 exists only for debugging.  A good production default would be
230  * something like 6100.
231  */
232 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
233     "TCP inflight data limiting");
234 
235 static int	tcp_inflight_enable = 1;
236 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
237     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
238 
239 static int	tcp_inflight_debug = 0;
240 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
241     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
242 
243 static int	tcp_inflight_rttthresh;
244 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
245     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
246     "RTT threshold below which inflight will deactivate itself");
247 
248 static int	tcp_inflight_min = 6144;
249 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
250     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
251 
252 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
253 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
254     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
255 
256 static int	tcp_inflight_stab = 20;
257 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
258     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
259 
260 uma_zone_t sack_hole_zone;
261 
262 static struct inpcb *tcp_notify(struct inpcb *, int);
263 static void	tcp_isn_tick(void *);
264 
265 /*
266  * Target size of TCP PCB hash tables. Must be a power of two.
267  *
268  * Note that this can be overridden by the kernel environment
269  * variable net.inet.tcp.tcbhashsize
270  */
271 #ifndef TCBHASHSIZE
272 #define TCBHASHSIZE	512
273 #endif
274 
275 /*
276  * XXX
277  * Callouts should be moved into struct tcp directly.  They are currently
278  * separate because the tcpcb structure is exported to userland for sysctl
279  * parsing purposes, which do not know about callouts.
280  */
281 struct	tcpcb_mem {
282 	struct	tcpcb tcb;
283 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
284 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
285 };
286 
287 static uma_zone_t tcpcb_zone;
288 struct callout isn_callout;
289 static struct mtx isn_mtx;
290 
291 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
292 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
293 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
294 
295 /*
296  * TCP initialization.
297  */
298 static void
299 tcp_zone_change(void *tag)
300 {
301 
302 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
303 	uma_zone_set_max(tcpcb_zone, maxsockets);
304 	if (maxtcptw == 0)
305 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
306 }
307 
308 static int
309 tcp_inpcb_init(void *mem, int size, int flags)
310 {
311 	struct inpcb *inp = (struct inpcb *) mem;
312 	INP_LOCK_INIT(inp, "inp", "tcpinp");
313 	return (0);
314 }
315 
316 void
317 tcp_init(void)
318 {
319 	int hashsize = TCBHASHSIZE;
320 
321 	tcp_delacktime = TCPTV_DELACK;
322 	tcp_keepinit = TCPTV_KEEP_INIT;
323 	tcp_keepidle = TCPTV_KEEP_IDLE;
324 	tcp_keepintvl = TCPTV_KEEPINTVL;
325 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
326 	tcp_msl = TCPTV_MSL;
327 	tcp_rexmit_min = TCPTV_MIN;
328 	tcp_rexmit_slop = TCPTV_CPU_VAR;
329 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
330 
331 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
332 	LIST_INIT(&tcb);
333 	tcbinfo.listhead = &tcb;
334 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
335 	if (!powerof2(hashsize)) {
336 		printf("WARNING: TCB hash size not a power of 2\n");
337 		hashsize = 512; /* safe default */
338 	}
339 	tcp_tcbhashsize = hashsize;
340 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
341 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
342 					&tcbinfo.porthashmask);
343 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
344 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
345 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
346 #ifdef INET6
347 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
348 #else /* INET6 */
349 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
350 #endif /* INET6 */
351 	if (max_protohdr < TCP_MINPROTOHDR)
352 		max_protohdr = TCP_MINPROTOHDR;
353 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
354 		panic("tcp_init");
355 #undef TCP_MINPROTOHDR
356 	/*
357 	 * These have to be type stable for the benefit of the timers.
358 	 */
359 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
360 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
361 	uma_zone_set_max(tcpcb_zone, maxsockets);
362 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
363 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
364 	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
365 	if (maxtcptw == 0)
366 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
367 	else
368 		uma_zone_set_max(tcptw_zone, maxtcptw);
369 	tcp_timer_init();
370 	syncache_init();
371 	tcp_hc_init();
372 	tcp_reass_init();
373 	ISN_LOCK_INIT();
374 	callout_init(&isn_callout, CALLOUT_MPSAFE);
375 	tcp_isn_tick(NULL);
376 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
377 		SHUTDOWN_PRI_DEFAULT);
378 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
379 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
380 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
381 		EVENTHANDLER_PRI_ANY);
382 }
383 
384 void
385 tcp_fini(void *xtp)
386 {
387 
388 	callout_stop(&isn_callout);
389 }
390 
391 /*
392  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
393  * tcp_template used to store this data in mbufs, but we now recopy it out
394  * of the tcpcb each time to conserve mbufs.
395  */
396 void
397 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
398 {
399 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
400 
401 	INP_LOCK_ASSERT(inp);
402 
403 #ifdef INET6
404 	if ((inp->inp_vflag & INP_IPV6) != 0) {
405 		struct ip6_hdr *ip6;
406 
407 		ip6 = (struct ip6_hdr *)ip_ptr;
408 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
409 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
410 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
411 			(IPV6_VERSION & IPV6_VERSION_MASK);
412 		ip6->ip6_nxt = IPPROTO_TCP;
413 		ip6->ip6_plen = sizeof(struct tcphdr);
414 		ip6->ip6_src = inp->in6p_laddr;
415 		ip6->ip6_dst = inp->in6p_faddr;
416 	} else
417 #endif
418 	{
419 		struct ip *ip;
420 
421 		ip = (struct ip *)ip_ptr;
422 		ip->ip_v = IPVERSION;
423 		ip->ip_hl = 5;
424 		ip->ip_tos = inp->inp_ip_tos;
425 		ip->ip_len = 0;
426 		ip->ip_id = 0;
427 		ip->ip_off = 0;
428 		ip->ip_ttl = inp->inp_ip_ttl;
429 		ip->ip_sum = 0;
430 		ip->ip_p = IPPROTO_TCP;
431 		ip->ip_src = inp->inp_laddr;
432 		ip->ip_dst = inp->inp_faddr;
433 	}
434 	th->th_sport = inp->inp_lport;
435 	th->th_dport = inp->inp_fport;
436 	th->th_seq = 0;
437 	th->th_ack = 0;
438 	th->th_x2 = 0;
439 	th->th_off = 5;
440 	th->th_flags = 0;
441 	th->th_win = 0;
442 	th->th_urp = 0;
443 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
444 }
445 
446 /*
447  * Create template to be used to send tcp packets on a connection.
448  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
449  * use for this function is in keepalives, which use tcp_respond.
450  */
451 struct tcptemp *
452 tcpip_maketemplate(struct inpcb *inp)
453 {
454 	struct mbuf *m;
455 	struct tcptemp *n;
456 
457 	m = m_get(M_DONTWAIT, MT_DATA);
458 	if (m == NULL)
459 		return (0);
460 	m->m_len = sizeof(struct tcptemp);
461 	n = mtod(m, struct tcptemp *);
462 
463 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
464 	return (n);
465 }
466 
467 /*
468  * Send a single message to the TCP at address specified by
469  * the given TCP/IP header.  If m == NULL, then we make a copy
470  * of the tcpiphdr at ti and send directly to the addressed host.
471  * This is used to force keep alive messages out using the TCP
472  * template for a connection.  If flags are given then we send
473  * a message back to the TCP which originated the * segment ti,
474  * and discard the mbuf containing it and any other attached mbufs.
475  *
476  * In any case the ack and sequence number of the transmitted
477  * segment are as specified by the parameters.
478  *
479  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
480  */
481 void
482 tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
483     register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
484 {
485 	register int tlen;
486 	int win = 0;
487 	struct ip *ip;
488 	struct tcphdr *nth;
489 #ifdef INET6
490 	struct ip6_hdr *ip6;
491 	int isipv6;
492 #endif /* INET6 */
493 	int ipflags = 0;
494 	struct inpcb *inp;
495 
496 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
497 
498 #ifdef INET6
499 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
500 	ip6 = ipgen;
501 #endif /* INET6 */
502 	ip = ipgen;
503 
504 	if (tp != NULL) {
505 		inp = tp->t_inpcb;
506 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
507 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
508 		INP_LOCK_ASSERT(inp);
509 	} else
510 		inp = NULL;
511 
512 	if (tp != NULL) {
513 		if (!(flags & TH_RST)) {
514 			win = sbspace(&inp->inp_socket->so_rcv);
515 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
516 				win = (long)TCP_MAXWIN << tp->rcv_scale;
517 		}
518 	}
519 	if (m == NULL) {
520 		m = m_gethdr(M_DONTWAIT, MT_DATA);
521 		if (m == NULL)
522 			return;
523 		tlen = 0;
524 		m->m_data += max_linkhdr;
525 #ifdef INET6
526 		if (isipv6) {
527 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
528 			      sizeof(struct ip6_hdr));
529 			ip6 = mtod(m, struct ip6_hdr *);
530 			nth = (struct tcphdr *)(ip6 + 1);
531 		} else
532 #endif /* INET6 */
533 	      {
534 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
535 		ip = mtod(m, struct ip *);
536 		nth = (struct tcphdr *)(ip + 1);
537 	      }
538 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
539 		flags = TH_ACK;
540 	} else {
541 		m_freem(m->m_next);
542 		m->m_next = NULL;
543 		m->m_data = (caddr_t)ipgen;
544 		/* m_len is set later */
545 		tlen = 0;
546 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
547 #ifdef INET6
548 		if (isipv6) {
549 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
550 			nth = (struct tcphdr *)(ip6 + 1);
551 		} else
552 #endif /* INET6 */
553 	      {
554 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
555 		nth = (struct tcphdr *)(ip + 1);
556 	      }
557 		if (th != nth) {
558 			/*
559 			 * this is usually a case when an extension header
560 			 * exists between the IPv6 header and the
561 			 * TCP header.
562 			 */
563 			nth->th_sport = th->th_sport;
564 			nth->th_dport = th->th_dport;
565 		}
566 		xchg(nth->th_dport, nth->th_sport, n_short);
567 #undef xchg
568 	}
569 #ifdef INET6
570 	if (isipv6) {
571 		ip6->ip6_flow = 0;
572 		ip6->ip6_vfc = IPV6_VERSION;
573 		ip6->ip6_nxt = IPPROTO_TCP;
574 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
575 						tlen));
576 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
577 	} else
578 #endif
579 	{
580 		tlen += sizeof (struct tcpiphdr);
581 		ip->ip_len = tlen;
582 		ip->ip_ttl = ip_defttl;
583 		if (path_mtu_discovery)
584 			ip->ip_off |= IP_DF;
585 	}
586 	m->m_len = tlen;
587 	m->m_pkthdr.len = tlen;
588 	m->m_pkthdr.rcvif = NULL;
589 #ifdef MAC
590 	if (inp != NULL) {
591 		/*
592 		 * Packet is associated with a socket, so allow the
593 		 * label of the response to reflect the socket label.
594 		 */
595 		INP_LOCK_ASSERT(inp);
596 		mac_create_mbuf_from_inpcb(inp, m);
597 	} else {
598 		/*
599 		 * Packet is not associated with a socket, so possibly
600 		 * update the label in place.
601 		 */
602 		mac_reflect_mbuf_tcp(m);
603 	}
604 #endif
605 	nth->th_seq = htonl(seq);
606 	nth->th_ack = htonl(ack);
607 	nth->th_x2 = 0;
608 	nth->th_off = sizeof (struct tcphdr) >> 2;
609 	nth->th_flags = flags;
610 	if (tp != NULL)
611 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
612 	else
613 		nth->th_win = htons((u_short)win);
614 	nth->th_urp = 0;
615 #ifdef INET6
616 	if (isipv6) {
617 		nth->th_sum = 0;
618 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
619 					sizeof(struct ip6_hdr),
620 					tlen - sizeof(struct ip6_hdr));
621 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
622 		    NULL, NULL);
623 	} else
624 #endif /* INET6 */
625 	{
626 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
627 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
628 		m->m_pkthdr.csum_flags = CSUM_TCP;
629 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
630 	}
631 #ifdef TCPDEBUG
632 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
633 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
634 #endif
635 #ifdef INET6
636 	if (isipv6)
637 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
638 	else
639 #endif /* INET6 */
640 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
641 }
642 
643 /*
644  * Create a new TCP control block, making an
645  * empty reassembly queue and hooking it to the argument
646  * protocol control block.  The `inp' parameter must have
647  * come from the zone allocator set up in tcp_init().
648  */
649 struct tcpcb *
650 tcp_newtcpcb(struct inpcb *inp)
651 {
652 	struct tcpcb_mem *tm;
653 	struct tcpcb *tp;
654 #ifdef INET6
655 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
656 #endif /* INET6 */
657 
658 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
659 	if (tm == NULL)
660 		return (NULL);
661 	tp = &tm->tcb;
662 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
663 	tp->t_maxseg = tp->t_maxopd =
664 #ifdef INET6
665 		isipv6 ? tcp_v6mssdflt :
666 #endif /* INET6 */
667 		tcp_mssdflt;
668 
669 	/* Set up our timeouts. */
670 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
671 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
672 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
673 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
674 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
675 
676 	if (tcp_do_rfc1323)
677 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
678 	tp->sack_enable = tcp_do_sack;
679 	TAILQ_INIT(&tp->snd_holes);
680 	tp->t_inpcb = inp;	/* XXX */
681 	/*
682 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
683 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
684 	 * reasonable initial retransmit time.
685 	 */
686 	tp->t_srtt = TCPTV_SRTTBASE;
687 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
688 	tp->t_rttmin = tcp_rexmit_min;
689 	tp->t_rxtcur = TCPTV_RTOBASE;
690 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
691 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 	tp->t_rcvtime = ticks;
694 	tp->t_bw_rtttime = ticks;
695 	/*
696 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
697 	 * because the socket may be bound to an IPv6 wildcard address,
698 	 * which may match an IPv4-mapped IPv6 address.
699 	 */
700 	inp->inp_ip_ttl = ip_defttl;
701 	inp->inp_ppcb = tp;
702 	return (tp);		/* XXX */
703 }
704 
705 /*
706  * Drop a TCP connection, reporting
707  * the specified error.  If connection is synchronized,
708  * then send a RST to peer.
709  */
710 struct tcpcb *
711 tcp_drop(struct tcpcb *tp, int errno)
712 {
713 	struct socket *so = tp->t_inpcb->inp_socket;
714 
715 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
716 	INP_LOCK_ASSERT(tp->t_inpcb);
717 
718 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
719 		tp->t_state = TCPS_CLOSED;
720 		(void) tcp_output(tp);
721 		tcpstat.tcps_drops++;
722 	} else
723 		tcpstat.tcps_conndrops++;
724 	if (errno == ETIMEDOUT && tp->t_softerror)
725 		errno = tp->t_softerror;
726 	so->so_error = errno;
727 	return (tcp_close(tp));
728 }
729 
730 void
731 tcp_discardcb(struct tcpcb *tp)
732 {
733 	struct tseg_qent *q;
734 	struct inpcb *inp = tp->t_inpcb;
735 	struct socket *so = inp->inp_socket;
736 #ifdef INET6
737 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
738 #endif /* INET6 */
739 
740 	INP_LOCK_ASSERT(inp);
741 
742 	/*
743 	 * Make sure that all of our timers are stopped before we
744 	 * delete the PCB.
745 	 */
746 	callout_stop(tp->tt_rexmt);
747 	callout_stop(tp->tt_persist);
748 	callout_stop(tp->tt_keep);
749 	callout_stop(tp->tt_2msl);
750 	callout_stop(tp->tt_delack);
751 
752 	/*
753 	 * If we got enough samples through the srtt filter,
754 	 * save the rtt and rttvar in the routing entry.
755 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
756 	 * 4 samples is enough for the srtt filter to converge
757 	 * to within enough % of the correct value; fewer samples
758 	 * and we could save a bogus rtt. The danger is not high
759 	 * as tcp quickly recovers from everything.
760 	 * XXX: Works very well but needs some more statistics!
761 	 */
762 	if (tp->t_rttupdated >= 4) {
763 		struct hc_metrics_lite metrics;
764 		u_long ssthresh;
765 
766 		bzero(&metrics, sizeof(metrics));
767 		/*
768 		 * Update the ssthresh always when the conditions below
769 		 * are satisfied. This gives us better new start value
770 		 * for the congestion avoidance for new connections.
771 		 * ssthresh is only set if packet loss occured on a session.
772 		 *
773 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
774 		 * being torn down.  Ideally this code would not use 'so'.
775 		 */
776 		ssthresh = tp->snd_ssthresh;
777 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
778 			/*
779 			 * convert the limit from user data bytes to
780 			 * packets then to packet data bytes.
781 			 */
782 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
783 			if (ssthresh < 2)
784 				ssthresh = 2;
785 			ssthresh *= (u_long)(tp->t_maxseg +
786 #ifdef INET6
787 				      (isipv6 ? sizeof (struct ip6_hdr) +
788 					       sizeof (struct tcphdr) :
789 #endif
790 				       sizeof (struct tcpiphdr)
791 #ifdef INET6
792 				       )
793 #endif
794 				      );
795 		} else
796 			ssthresh = 0;
797 		metrics.rmx_ssthresh = ssthresh;
798 
799 		metrics.rmx_rtt = tp->t_srtt;
800 		metrics.rmx_rttvar = tp->t_rttvar;
801 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
802 		metrics.rmx_bandwidth = tp->snd_bandwidth;
803 		metrics.rmx_cwnd = tp->snd_cwnd;
804 		metrics.rmx_sendpipe = 0;
805 		metrics.rmx_recvpipe = 0;
806 
807 		tcp_hc_update(&inp->inp_inc, &metrics);
808 	}
809 
810 	/* free the reassembly queue, if any */
811 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
812 		LIST_REMOVE(q, tqe_q);
813 		m_freem(q->tqe_m);
814 		uma_zfree(tcp_reass_zone, q);
815 		tp->t_segqlen--;
816 		tcp_reass_qsize--;
817 	}
818 	tcp_free_sackholes(tp);
819 	inp->inp_ppcb = NULL;
820 	tp->t_inpcb = NULL;
821 	uma_zfree(tcpcb_zone, tp);
822 }
823 
824 /*
825  * Attempt to close a TCP control block, marking it as dropped, and freeing
826  * the socket if we hold the only reference.
827  */
828 struct tcpcb *
829 tcp_close(struct tcpcb *tp)
830 {
831 	struct inpcb *inp = tp->t_inpcb;
832 	struct socket *so;
833 
834 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
835 	INP_LOCK_ASSERT(inp);
836 
837 	in_pcbdrop(inp);
838 	tcpstat.tcps_closed++;
839 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
840 	so = inp->inp_socket;
841 	soisdisconnected(so);
842 	if (inp->inp_vflag & INP_SOCKREF) {
843 		KASSERT(so->so_state & SS_PROTOREF,
844 		    ("tcp_close: !SS_PROTOREF"));
845 		inp->inp_vflag &= ~INP_SOCKREF;
846 		INP_UNLOCK(inp);
847 		ACCEPT_LOCK();
848 		SOCK_LOCK(so);
849 		so->so_state &= ~SS_PROTOREF;
850 		sofree(so);
851 		return (NULL);
852 	}
853 	return (tp);
854 }
855 
856 void
857 tcp_drain(void)
858 {
859 
860 	if (do_tcpdrain) {
861 		struct inpcb *inpb;
862 		struct tcpcb *tcpb;
863 		struct tseg_qent *te;
864 
865 	/*
866 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
867 	 * if there is one...
868 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
869 	 *      reassembly queue should be flushed, but in a situation
870 	 *	where we're really low on mbufs, this is potentially
871 	 *	usefull.
872 	 */
873 		INP_INFO_RLOCK(&tcbinfo);
874 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
875 			if (inpb->inp_vflag & INP_TIMEWAIT)
876 				continue;
877 			INP_LOCK(inpb);
878 			if ((tcpb = intotcpcb(inpb)) != NULL) {
879 				while ((te = LIST_FIRST(&tcpb->t_segq))
880 			            != NULL) {
881 					LIST_REMOVE(te, tqe_q);
882 					m_freem(te->tqe_m);
883 					uma_zfree(tcp_reass_zone, te);
884 					tcpb->t_segqlen--;
885 					tcp_reass_qsize--;
886 				}
887 				tcp_clean_sackreport(tcpb);
888 			}
889 			INP_UNLOCK(inpb);
890 		}
891 		INP_INFO_RUNLOCK(&tcbinfo);
892 	}
893 }
894 
895 /*
896  * Notify a tcp user of an asynchronous error;
897  * store error as soft error, but wake up user
898  * (for now, won't do anything until can select for soft error).
899  *
900  * Do not wake up user since there currently is no mechanism for
901  * reporting soft errors (yet - a kqueue filter may be added).
902  */
903 static struct inpcb *
904 tcp_notify(struct inpcb *inp, int error)
905 {
906 	struct tcpcb *tp;
907 
908 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
909 	INP_LOCK_ASSERT(inp);
910 
911 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
912 	    (inp->inp_vflag & INP_DROPPED))
913 		return (inp);
914 
915 	tp = intotcpcb(inp);
916 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
917 
918 	/*
919 	 * Ignore some errors if we are hooked up.
920 	 * If connection hasn't completed, has retransmitted several times,
921 	 * and receives a second error, give up now.  This is better
922 	 * than waiting a long time to establish a connection that
923 	 * can never complete.
924 	 */
925 	if (tp->t_state == TCPS_ESTABLISHED &&
926 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
927 	     error == EHOSTDOWN)) {
928 		return (inp);
929 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
930 	    tp->t_softerror) {
931 		tp = tcp_drop(tp, error);
932 		if (tp != NULL)
933 			return (inp);
934 		else
935 			return (NULL);
936 	} else {
937 		tp->t_softerror = error;
938 		return (inp);
939 	}
940 #if 0
941 	wakeup( &so->so_timeo);
942 	sorwakeup(so);
943 	sowwakeup(so);
944 #endif
945 }
946 
947 static int
948 tcp_pcblist(SYSCTL_HANDLER_ARGS)
949 {
950 	int error, i, n;
951 	struct inpcb *inp, **inp_list;
952 	inp_gen_t gencnt;
953 	struct xinpgen xig;
954 
955 	/*
956 	 * The process of preparing the TCB list is too time-consuming and
957 	 * resource-intensive to repeat twice on every request.
958 	 */
959 	if (req->oldptr == NULL) {
960 		n = tcbinfo.ipi_count;
961 		req->oldidx = 2 * (sizeof xig)
962 			+ (n + n/8) * sizeof(struct xtcpcb);
963 		return (0);
964 	}
965 
966 	if (req->newptr != NULL)
967 		return (EPERM);
968 
969 	/*
970 	 * OK, now we're committed to doing something.
971 	 */
972 	INP_INFO_RLOCK(&tcbinfo);
973 	gencnt = tcbinfo.ipi_gencnt;
974 	n = tcbinfo.ipi_count;
975 	INP_INFO_RUNLOCK(&tcbinfo);
976 
977 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
978 		+ n * sizeof(struct xtcpcb));
979 	if (error != 0)
980 		return (error);
981 
982 	xig.xig_len = sizeof xig;
983 	xig.xig_count = n;
984 	xig.xig_gen = gencnt;
985 	xig.xig_sogen = so_gencnt;
986 	error = SYSCTL_OUT(req, &xig, sizeof xig);
987 	if (error)
988 		return (error);
989 
990 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
991 	if (inp_list == NULL)
992 		return (ENOMEM);
993 
994 	INP_INFO_RLOCK(&tcbinfo);
995 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
996 	     inp = LIST_NEXT(inp, inp_list)) {
997 		INP_LOCK(inp);
998 		if (inp->inp_gencnt <= gencnt) {
999 			/*
1000 			 * XXX: This use of cr_cansee(), introduced with
1001 			 * TCP state changes, is not quite right, but for
1002 			 * now, better than nothing.
1003 			 */
1004 			if (inp->inp_vflag & INP_TIMEWAIT) {
1005 				if (intotw(inp) != NULL)
1006 					error = cr_cansee(req->td->td_ucred,
1007 					    intotw(inp)->tw_cred);
1008 				else
1009 					error = EINVAL;	/* Skip this inp. */
1010 			} else
1011 				error = cr_canseesocket(req->td->td_ucred,
1012 				    inp->inp_socket);
1013 			if (error == 0)
1014 				inp_list[i++] = inp;
1015 		}
1016 		INP_UNLOCK(inp);
1017 	}
1018 	INP_INFO_RUNLOCK(&tcbinfo);
1019 	n = i;
1020 
1021 	error = 0;
1022 	for (i = 0; i < n; i++) {
1023 		inp = inp_list[i];
1024 		INP_LOCK(inp);
1025 		if (inp->inp_gencnt <= gencnt) {
1026 			struct xtcpcb xt;
1027 			void *inp_ppcb;
1028 
1029 			bzero(&xt, sizeof(xt));
1030 			xt.xt_len = sizeof xt;
1031 			/* XXX should avoid extra copy */
1032 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1033 			inp_ppcb = inp->inp_ppcb;
1034 			if (inp_ppcb == NULL)
1035 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1036 			else if (inp->inp_vflag & INP_TIMEWAIT) {
1037 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1038 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1039 			} else
1040 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1041 			if (inp->inp_socket != NULL)
1042 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1043 			else {
1044 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1045 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1046 			}
1047 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1048 			INP_UNLOCK(inp);
1049 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1050 		} else
1051 			INP_UNLOCK(inp);
1052 
1053 	}
1054 	if (!error) {
1055 		/*
1056 		 * Give the user an updated idea of our state.
1057 		 * If the generation differs from what we told
1058 		 * her before, she knows that something happened
1059 		 * while we were processing this request, and it
1060 		 * might be necessary to retry.
1061 		 */
1062 		INP_INFO_RLOCK(&tcbinfo);
1063 		xig.xig_gen = tcbinfo.ipi_gencnt;
1064 		xig.xig_sogen = so_gencnt;
1065 		xig.xig_count = tcbinfo.ipi_count;
1066 		INP_INFO_RUNLOCK(&tcbinfo);
1067 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1068 	}
1069 	free(inp_list, M_TEMP);
1070 	return (error);
1071 }
1072 
1073 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1074 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1075 
1076 static int
1077 tcp_getcred(SYSCTL_HANDLER_ARGS)
1078 {
1079 	struct xucred xuc;
1080 	struct sockaddr_in addrs[2];
1081 	struct inpcb *inp;
1082 	int error;
1083 
1084 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1085 	if (error)
1086 		return (error);
1087 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1088 	if (error)
1089 		return (error);
1090 	INP_INFO_RLOCK(&tcbinfo);
1091 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1092 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1093 	if (inp == NULL) {
1094 		error = ENOENT;
1095 		goto outunlocked;
1096 	}
1097 	INP_LOCK(inp);
1098 	if (inp->inp_socket == NULL) {
1099 		error = ENOENT;
1100 		goto out;
1101 	}
1102 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1103 	if (error)
1104 		goto out;
1105 	cru2x(inp->inp_socket->so_cred, &xuc);
1106 out:
1107 	INP_UNLOCK(inp);
1108 outunlocked:
1109 	INP_INFO_RUNLOCK(&tcbinfo);
1110 	if (error == 0)
1111 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1112 	return (error);
1113 }
1114 
1115 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1116     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1117     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1118 
1119 #ifdef INET6
1120 static int
1121 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1122 {
1123 	struct xucred xuc;
1124 	struct sockaddr_in6 addrs[2];
1125 	struct inpcb *inp;
1126 	int error, mapped = 0;
1127 
1128 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1129 	if (error)
1130 		return (error);
1131 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1132 	if (error)
1133 		return (error);
1134 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1135 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1136 		return (error);
1137 	}
1138 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1139 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1140 			mapped = 1;
1141 		else
1142 			return (EINVAL);
1143 	}
1144 
1145 	INP_INFO_RLOCK(&tcbinfo);
1146 	if (mapped == 1)
1147 		inp = in_pcblookup_hash(&tcbinfo,
1148 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1149 			addrs[1].sin6_port,
1150 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1151 			addrs[0].sin6_port,
1152 			0, NULL);
1153 	else
1154 		inp = in6_pcblookup_hash(&tcbinfo,
1155 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1156 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1157 	if (inp == NULL) {
1158 		error = ENOENT;
1159 		goto outunlocked;
1160 	}
1161 	INP_LOCK(inp);
1162 	if (inp->inp_socket == NULL) {
1163 		error = ENOENT;
1164 		goto out;
1165 	}
1166 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1167 	if (error)
1168 		goto out;
1169 	cru2x(inp->inp_socket->so_cred, &xuc);
1170 out:
1171 	INP_UNLOCK(inp);
1172 outunlocked:
1173 	INP_INFO_RUNLOCK(&tcbinfo);
1174 	if (error == 0)
1175 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1176 	return (error);
1177 }
1178 
1179 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1180     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1181     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1182 #endif
1183 
1184 
1185 void
1186 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1187 {
1188 	struct ip *ip = vip;
1189 	struct tcphdr *th;
1190 	struct in_addr faddr;
1191 	struct inpcb *inp;
1192 	struct tcpcb *tp;
1193 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1194 	struct icmp *icp;
1195 	struct in_conninfo inc;
1196 	tcp_seq icmp_tcp_seq;
1197 	int mtu;
1198 
1199 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1200 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1201 		return;
1202 
1203 	if (cmd == PRC_MSGSIZE)
1204 		notify = tcp_mtudisc;
1205 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1206 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1207 		notify = tcp_drop_syn_sent;
1208 	/*
1209 	 * Redirects don't need to be handled up here.
1210 	 */
1211 	else if (PRC_IS_REDIRECT(cmd))
1212 		return;
1213 	/*
1214 	 * Source quench is depreciated.
1215 	 */
1216 	else if (cmd == PRC_QUENCH)
1217 		return;
1218 	/*
1219 	 * Hostdead is ugly because it goes linearly through all PCBs.
1220 	 * XXX: We never get this from ICMP, otherwise it makes an
1221 	 * excellent DoS attack on machines with many connections.
1222 	 */
1223 	else if (cmd == PRC_HOSTDEAD)
1224 		ip = NULL;
1225 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1226 		return;
1227 	if (ip != NULL) {
1228 		icp = (struct icmp *)((caddr_t)ip
1229 				      - offsetof(struct icmp, icmp_ip));
1230 		th = (struct tcphdr *)((caddr_t)ip
1231 				       + (ip->ip_hl << 2));
1232 		INP_INFO_WLOCK(&tcbinfo);
1233 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1234 		    ip->ip_src, th->th_sport, 0, NULL);
1235 		if (inp != NULL)  {
1236 			INP_LOCK(inp);
1237 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1238 			    !(inp->inp_vflag & INP_DROPPED) &&
1239 			    !(inp->inp_socket == NULL)) {
1240 				icmp_tcp_seq = htonl(th->th_seq);
1241 				tp = intotcpcb(inp);
1242 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1243 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1244 					if (cmd == PRC_MSGSIZE) {
1245 					    /*
1246 					     * MTU discovery:
1247 					     * If we got a needfrag set the MTU
1248 					     * in the route to the suggested new
1249 					     * value (if given) and then notify.
1250 					     */
1251 					    bzero(&inc, sizeof(inc));
1252 					    inc.inc_flags = 0;	/* IPv4 */
1253 					    inc.inc_faddr = faddr;
1254 
1255 					    mtu = ntohs(icp->icmp_nextmtu);
1256 					    /*
1257 					     * If no alternative MTU was
1258 					     * proposed, try the next smaller
1259 					     * one.  ip->ip_len has already
1260 					     * been swapped in icmp_input().
1261 					     */
1262 					    if (!mtu)
1263 						mtu = ip_next_mtu(ip->ip_len,
1264 						 1);
1265 					    if (mtu < max(296, (tcp_minmss)
1266 						 + sizeof(struct tcpiphdr)))
1267 						mtu = 0;
1268 					    if (!mtu)
1269 						mtu = tcp_mssdflt
1270 						 + sizeof(struct tcpiphdr);
1271 					    /*
1272 					     * Only cache the the MTU if it
1273 					     * is smaller than the interface
1274 					     * or route MTU.  tcp_mtudisc()
1275 					     * will do right thing by itself.
1276 					     */
1277 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1278 						tcp_hc_updatemtu(&inc, mtu);
1279 					}
1280 
1281 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1282 				}
1283 			}
1284 			if (inp != NULL)
1285 				INP_UNLOCK(inp);
1286 		} else {
1287 			inc.inc_fport = th->th_dport;
1288 			inc.inc_lport = th->th_sport;
1289 			inc.inc_faddr = faddr;
1290 			inc.inc_laddr = ip->ip_src;
1291 #ifdef INET6
1292 			inc.inc_isipv6 = 0;
1293 #endif
1294 			syncache_unreach(&inc, th);
1295 		}
1296 		INP_INFO_WUNLOCK(&tcbinfo);
1297 	} else
1298 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1299 }
1300 
1301 #ifdef INET6
1302 void
1303 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1304 {
1305 	struct tcphdr th;
1306 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1307 	struct ip6_hdr *ip6;
1308 	struct mbuf *m;
1309 	struct ip6ctlparam *ip6cp = NULL;
1310 	const struct sockaddr_in6 *sa6_src = NULL;
1311 	int off;
1312 	struct tcp_portonly {
1313 		u_int16_t th_sport;
1314 		u_int16_t th_dport;
1315 	} *thp;
1316 
1317 	if (sa->sa_family != AF_INET6 ||
1318 	    sa->sa_len != sizeof(struct sockaddr_in6))
1319 		return;
1320 
1321 	if (cmd == PRC_MSGSIZE)
1322 		notify = tcp_mtudisc;
1323 	else if (!PRC_IS_REDIRECT(cmd) &&
1324 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1325 		return;
1326 	/* Source quench is depreciated. */
1327 	else if (cmd == PRC_QUENCH)
1328 		return;
1329 
1330 	/* if the parameter is from icmp6, decode it. */
1331 	if (d != NULL) {
1332 		ip6cp = (struct ip6ctlparam *)d;
1333 		m = ip6cp->ip6c_m;
1334 		ip6 = ip6cp->ip6c_ip6;
1335 		off = ip6cp->ip6c_off;
1336 		sa6_src = ip6cp->ip6c_src;
1337 	} else {
1338 		m = NULL;
1339 		ip6 = NULL;
1340 		off = 0;	/* fool gcc */
1341 		sa6_src = &sa6_any;
1342 	}
1343 
1344 	if (ip6 != NULL) {
1345 		struct in_conninfo inc;
1346 		/*
1347 		 * XXX: We assume that when IPV6 is non NULL,
1348 		 * M and OFF are valid.
1349 		 */
1350 
1351 		/* check if we can safely examine src and dst ports */
1352 		if (m->m_pkthdr.len < off + sizeof(*thp))
1353 			return;
1354 
1355 		bzero(&th, sizeof(th));
1356 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1357 
1358 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1359 		    (struct sockaddr *)ip6cp->ip6c_src,
1360 		    th.th_sport, cmd, NULL, notify);
1361 
1362 		inc.inc_fport = th.th_dport;
1363 		inc.inc_lport = th.th_sport;
1364 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1365 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1366 		inc.inc_isipv6 = 1;
1367 		INP_INFO_WLOCK(&tcbinfo);
1368 		syncache_unreach(&inc, &th);
1369 		INP_INFO_WUNLOCK(&tcbinfo);
1370 	} else
1371 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1372 			      0, cmd, NULL, notify);
1373 }
1374 #endif /* INET6 */
1375 
1376 
1377 /*
1378  * Following is where TCP initial sequence number generation occurs.
1379  *
1380  * There are two places where we must use initial sequence numbers:
1381  * 1.  In SYN-ACK packets.
1382  * 2.  In SYN packets.
1383  *
1384  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1385  * tcp_syncache.c for details.
1386  *
1387  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1388  * depends on this property.  In addition, these ISNs should be
1389  * unguessable so as to prevent connection hijacking.  To satisfy
1390  * the requirements of this situation, the algorithm outlined in
1391  * RFC 1948 is used, with only small modifications.
1392  *
1393  * Implementation details:
1394  *
1395  * Time is based off the system timer, and is corrected so that it
1396  * increases by one megabyte per second.  This allows for proper
1397  * recycling on high speed LANs while still leaving over an hour
1398  * before rollover.
1399  *
1400  * As reading the *exact* system time is too expensive to be done
1401  * whenever setting up a TCP connection, we increment the time
1402  * offset in two ways.  First, a small random positive increment
1403  * is added to isn_offset for each connection that is set up.
1404  * Second, the function tcp_isn_tick fires once per clock tick
1405  * and increments isn_offset as necessary so that sequence numbers
1406  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1407  * random positive increments serve only to ensure that the same
1408  * exact sequence number is never sent out twice (as could otherwise
1409  * happen when a port is recycled in less than the system tick
1410  * interval.)
1411  *
1412  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1413  * between seeding of isn_secret.  This is normally set to zero,
1414  * as reseeding should not be necessary.
1415  *
1416  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1417  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1418  * general, this means holding an exclusive (write) lock.
1419  */
1420 
1421 #define ISN_BYTES_PER_SECOND 1048576
1422 #define ISN_STATIC_INCREMENT 4096
1423 #define ISN_RANDOM_INCREMENT (4096 - 1)
1424 
1425 static u_char isn_secret[32];
1426 static int isn_last_reseed;
1427 static u_int32_t isn_offset, isn_offset_old;
1428 static MD5_CTX isn_ctx;
1429 
1430 tcp_seq
1431 tcp_new_isn(struct tcpcb *tp)
1432 {
1433 	u_int32_t md5_buffer[4];
1434 	tcp_seq new_isn;
1435 
1436 	INP_LOCK_ASSERT(tp->t_inpcb);
1437 
1438 	ISN_LOCK();
1439 	/* Seed if this is the first use, reseed if requested. */
1440 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1441 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1442 		< (u_int)ticks))) {
1443 		read_random(&isn_secret, sizeof(isn_secret));
1444 		isn_last_reseed = ticks;
1445 	}
1446 
1447 	/* Compute the md5 hash and return the ISN. */
1448 	MD5Init(&isn_ctx);
1449 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1450 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1451 #ifdef INET6
1452 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1453 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1454 			  sizeof(struct in6_addr));
1455 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1456 			  sizeof(struct in6_addr));
1457 	} else
1458 #endif
1459 	{
1460 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1461 			  sizeof(struct in_addr));
1462 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1463 			  sizeof(struct in_addr));
1464 	}
1465 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1466 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1467 	new_isn = (tcp_seq) md5_buffer[0];
1468 	isn_offset += ISN_STATIC_INCREMENT +
1469 		(arc4random() & ISN_RANDOM_INCREMENT);
1470 	new_isn += isn_offset;
1471 	ISN_UNLOCK();
1472 	return (new_isn);
1473 }
1474 
1475 /*
1476  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1477  * to keep time flowing at a relatively constant rate.  If the random
1478  * increments have already pushed us past the projected offset, do nothing.
1479  */
1480 static void
1481 tcp_isn_tick(void *xtp)
1482 {
1483 	u_int32_t projected_offset;
1484 
1485 	ISN_LOCK();
1486 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1487 
1488 	if (projected_offset > isn_offset)
1489 		isn_offset = projected_offset;
1490 
1491 	isn_offset_old = isn_offset;
1492 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1493 	ISN_UNLOCK();
1494 }
1495 
1496 /*
1497  * When a specific ICMP unreachable message is received and the
1498  * connection state is SYN-SENT, drop the connection.  This behavior
1499  * is controlled by the icmp_may_rst sysctl.
1500  */
1501 struct inpcb *
1502 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1503 {
1504 	struct tcpcb *tp;
1505 
1506 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1507 	INP_LOCK_ASSERT(inp);
1508 
1509 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1510 	    (inp->inp_vflag & INP_DROPPED))
1511 		return (inp);
1512 
1513 	tp = intotcpcb(inp);
1514 	if (tp->t_state != TCPS_SYN_SENT)
1515 		return (inp);
1516 
1517 	tp = tcp_drop(tp, errno);
1518 	if (tp != NULL)
1519 		return (inp);
1520 	else
1521 		return (NULL);
1522 }
1523 
1524 /*
1525  * When `need fragmentation' ICMP is received, update our idea of the MSS
1526  * based on the new value in the route.  Also nudge TCP to send something,
1527  * since we know the packet we just sent was dropped.
1528  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1529  */
1530 struct inpcb *
1531 tcp_mtudisc(struct inpcb *inp, int errno)
1532 {
1533 	struct tcpcb *tp;
1534 	struct socket *so = inp->inp_socket;
1535 	u_int maxmtu;
1536 	u_int romtu;
1537 	int mss;
1538 #ifdef INET6
1539 	int isipv6;
1540 #endif /* INET6 */
1541 
1542 	INP_LOCK_ASSERT(inp);
1543 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1544 	    (inp->inp_vflag & INP_DROPPED))
1545 		return (inp);
1546 
1547 	tp = intotcpcb(inp);
1548 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1549 
1550 #ifdef INET6
1551 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1552 #endif
1553 	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1554 	romtu =
1555 #ifdef INET6
1556 	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1557 #endif /* INET6 */
1558 	    tcp_maxmtu(&inp->inp_inc, NULL);
1559 	if (!maxmtu)
1560 		maxmtu = romtu;
1561 	else
1562 		maxmtu = min(maxmtu, romtu);
1563 	if (!maxmtu) {
1564 		tp->t_maxopd = tp->t_maxseg =
1565 #ifdef INET6
1566 			isipv6 ? tcp_v6mssdflt :
1567 #endif /* INET6 */
1568 			tcp_mssdflt;
1569 		return (inp);
1570 	}
1571 	mss = maxmtu -
1572 #ifdef INET6
1573 		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1574 #endif /* INET6 */
1575 		 sizeof(struct tcpiphdr)
1576 #ifdef INET6
1577 		 )
1578 #endif /* INET6 */
1579 		;
1580 
1581 	/*
1582 	 * XXX - The above conditional probably violates the TCP
1583 	 * spec.  The problem is that, since we don't know the
1584 	 * other end's MSS, we are supposed to use a conservative
1585 	 * default.  But, if we do that, then MTU discovery will
1586 	 * never actually take place, because the conservative
1587 	 * default is much less than the MTUs typically seen
1588 	 * on the Internet today.  For the moment, we'll sweep
1589 	 * this under the carpet.
1590 	 *
1591 	 * The conservative default might not actually be a problem
1592 	 * if the only case this occurs is when sending an initial
1593 	 * SYN with options and data to a host we've never talked
1594 	 * to before.  Then, they will reply with an MSS value which
1595 	 * will get recorded and the new parameters should get
1596 	 * recomputed.  For Further Study.
1597 	 */
1598 	if (tp->t_maxopd <= mss)
1599 		return (inp);
1600 	tp->t_maxopd = mss;
1601 
1602 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1603 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1604 		mss -= TCPOLEN_TSTAMP_APPA;
1605 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1606 	if (mss > MCLBYTES)
1607 		mss &= ~(MCLBYTES-1);
1608 #else
1609 	if (mss > MCLBYTES)
1610 		mss = mss / MCLBYTES * MCLBYTES;
1611 #endif
1612 	if (so->so_snd.sb_hiwat < mss)
1613 		mss = so->so_snd.sb_hiwat;
1614 
1615 	tp->t_maxseg = mss;
1616 
1617 	tcpstat.tcps_mturesent++;
1618 	tp->t_rtttime = 0;
1619 	tp->snd_nxt = tp->snd_una;
1620 	tcp_free_sackholes(tp);
1621 	tp->snd_recover = tp->snd_max;
1622 	if (tp->sack_enable)
1623 		EXIT_FASTRECOVERY(tp);
1624 	tcp_output(tp);
1625 	return (inp);
1626 }
1627 
1628 /*
1629  * Look-up the routing entry to the peer of this inpcb.  If no route
1630  * is found and it cannot be allocated, then return NULL.  This routine
1631  * is called by TCP routines that access the rmx structure and by tcp_mss
1632  * to get the interface MTU.
1633  */
1634 u_long
1635 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1636 {
1637 	struct route sro;
1638 	struct sockaddr_in *dst;
1639 	struct ifnet *ifp;
1640 	u_long maxmtu = 0;
1641 
1642 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1643 
1644 	bzero(&sro, sizeof(sro));
1645 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1646 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1647 		dst->sin_family = AF_INET;
1648 		dst->sin_len = sizeof(*dst);
1649 		dst->sin_addr = inc->inc_faddr;
1650 		rtalloc_ign(&sro, RTF_CLONING);
1651 	}
1652 	if (sro.ro_rt != NULL) {
1653 		ifp = sro.ro_rt->rt_ifp;
1654 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1655 			maxmtu = ifp->if_mtu;
1656 		else
1657 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1658 
1659 		/* Report additional interface capabilities. */
1660 		if (flags != NULL) {
1661 			if (ifp->if_capenable & IFCAP_TSO4 &&
1662 			    ifp->if_hwassist & CSUM_TSO)
1663 				*flags |= CSUM_TSO;
1664 		}
1665 		RTFREE(sro.ro_rt);
1666 	}
1667 	return (maxmtu);
1668 }
1669 
1670 #ifdef INET6
1671 u_long
1672 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1673 {
1674 	struct route_in6 sro6;
1675 	struct ifnet *ifp;
1676 	u_long maxmtu = 0;
1677 
1678 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1679 
1680 	bzero(&sro6, sizeof(sro6));
1681 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1682 		sro6.ro_dst.sin6_family = AF_INET6;
1683 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1684 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1685 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1686 	}
1687 	if (sro6.ro_rt != NULL) {
1688 		ifp = sro6.ro_rt->rt_ifp;
1689 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1690 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1691 		else
1692 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1693 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1694 
1695 		/* Report additional interface capabilities. */
1696 		if (flags != NULL) {
1697 			if (ifp->if_capenable & IFCAP_TSO6 &&
1698 			    ifp->if_hwassist & CSUM_TSO)
1699 				*flags |= CSUM_TSO;
1700 		}
1701 		RTFREE(sro6.ro_rt);
1702 	}
1703 
1704 	return (maxmtu);
1705 }
1706 #endif /* INET6 */
1707 
1708 #ifdef IPSEC
1709 /* compute ESP/AH header size for TCP, including outer IP header. */
1710 size_t
1711 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1712 {
1713 	struct inpcb *inp;
1714 	struct mbuf *m;
1715 	size_t hdrsiz;
1716 	struct ip *ip;
1717 #ifdef INET6
1718 	struct ip6_hdr *ip6;
1719 #endif
1720 	struct tcphdr *th;
1721 
1722 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1723 		return (0);
1724 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1725 	if (!m)
1726 		return (0);
1727 
1728 #ifdef INET6
1729 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1730 		ip6 = mtod(m, struct ip6_hdr *);
1731 		th = (struct tcphdr *)(ip6 + 1);
1732 		m->m_pkthdr.len = m->m_len =
1733 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1734 		tcpip_fillheaders(inp, ip6, th);
1735 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1736 	} else
1737 #endif /* INET6 */
1738 	{
1739 		ip = mtod(m, struct ip *);
1740 		th = (struct tcphdr *)(ip + 1);
1741 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1742 		tcpip_fillheaders(inp, ip, th);
1743 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1744 	}
1745 
1746 	m_free(m);
1747 	return (hdrsiz);
1748 }
1749 #endif /*IPSEC*/
1750 
1751 /*
1752  * Move a TCP connection into TIME_WAIT state.
1753  *    tcbinfo is locked.
1754  *    inp is locked, and is unlocked before returning.
1755  */
1756 void
1757 tcp_twstart(struct tcpcb *tp)
1758 {
1759 	struct tcptw *tw;
1760 	struct inpcb *inp = tp->t_inpcb;
1761 	int acknow;
1762 	struct socket *so;
1763 
1764 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1765 	INP_LOCK_ASSERT(inp);
1766 
1767 	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1768 		tp = tcp_close(tp);
1769 		if (tp != NULL)
1770 			INP_UNLOCK(inp);
1771 		return;
1772 	}
1773 
1774 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1775 	if (tw == NULL) {
1776 		tw = tcp_timer_2msl_tw(1);
1777 		if (tw == NULL) {
1778 			tp = tcp_close(tp);
1779 			if (tp != NULL)
1780 				INP_UNLOCK(inp);
1781 			return;
1782 		}
1783 	}
1784 	tw->tw_inpcb = inp;
1785 
1786 	/*
1787 	 * Recover last window size sent.
1788 	 */
1789 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1790 
1791 	/*
1792 	 * Set t_recent if timestamps are used on the connection.
1793 	 */
1794 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1795 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1796 		tw->t_recent = tp->ts_recent;
1797 	else
1798 		tw->t_recent = 0;
1799 
1800 	tw->snd_nxt = tp->snd_nxt;
1801 	tw->rcv_nxt = tp->rcv_nxt;
1802 	tw->iss     = tp->iss;
1803 	tw->irs     = tp->irs;
1804 	tw->t_starttime = tp->t_starttime;
1805 	tw->tw_time = 0;
1806 
1807 /* XXX
1808  * If this code will
1809  * be used for fin-wait-2 state also, then we may need
1810  * a ts_recent from the last segment.
1811  */
1812 	acknow = tp->t_flags & TF_ACKNOW;
1813 
1814 	/*
1815 	 * First, discard tcpcb state, which includes stopping its timers and
1816 	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1817 	 * that work is now done in the caller.
1818 	 *
1819 	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1820 	 * and might not be needed here any longer.
1821 	 */
1822 	tcp_discardcb(tp);
1823 	so = inp->inp_socket;
1824 	soisdisconnected(so);
1825 	SOCK_LOCK(so);
1826 	tw->tw_cred = crhold(so->so_cred);
1827 	tw->tw_so_options = so->so_options;
1828 	SOCK_UNLOCK(so);
1829 	if (acknow)
1830 		tcp_twrespond(tw, TH_ACK);
1831 	inp->inp_ppcb = tw;
1832 	inp->inp_vflag |= INP_TIMEWAIT;
1833 	tcp_timer_2msl_reset(tw, 0);
1834 
1835 	/*
1836 	 * If the inpcb owns the sole reference to the socket, then we can
1837 	 * detach and free the socket as it is not needed in time wait.
1838 	 */
1839 	if (inp->inp_vflag & INP_SOCKREF) {
1840 		KASSERT(so->so_state & SS_PROTOREF,
1841 		    ("tcp_twstart: !SS_PROTOREF"));
1842 		inp->inp_vflag &= ~INP_SOCKREF;
1843 		INP_UNLOCK(inp);
1844 		ACCEPT_LOCK();
1845 		SOCK_LOCK(so);
1846 		so->so_state &= ~SS_PROTOREF;
1847 		sofree(so);
1848 	} else
1849 		INP_UNLOCK(inp);
1850 }
1851 
1852 #if 0
1853 /*
1854  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1855  * the actual rate is slightly higher due to the addition of
1856  * random positive increments.
1857  *
1858  * Most other new OSes use semi-randomized ISN values, so we
1859  * do not need to worry about them.
1860  */
1861 #define MS_ISN_BYTES_PER_SECOND		250000
1862 
1863 /*
1864  * Determine if the ISN we will generate has advanced beyond the last
1865  * sequence number used by the previous connection.  If so, indicate
1866  * that it is safe to recycle this tw socket by returning 1.
1867  */
1868 int
1869 tcp_twrecycleable(struct tcptw *tw)
1870 {
1871 	tcp_seq new_iss = tw->iss;
1872 	tcp_seq new_irs = tw->irs;
1873 
1874 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1875 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1876 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1877 
1878 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1879 		return (1);
1880 	else
1881 		return (0);
1882 }
1883 #endif
1884 
1885 void
1886 tcp_twclose(struct tcptw *tw, int reuse)
1887 {
1888 	struct socket *so;
1889 	struct inpcb *inp;
1890 
1891 	/*
1892 	 * At this point, we are in one of two situations:
1893 	 *
1894 	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1895 	 *     all state.
1896 	 *
1897 	 * (2) We have a socket -- if we own a reference, release it and
1898 	 *     notify the socket layer.
1899 	 */
1900 	inp = tw->tw_inpcb;
1901 	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1902 	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1903 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1904 	INP_LOCK_ASSERT(inp);
1905 
1906 	tw->tw_inpcb = NULL;
1907 	tcp_timer_2msl_stop(tw);
1908 	inp->inp_ppcb = NULL;
1909 	in_pcbdrop(inp);
1910 
1911 	so = inp->inp_socket;
1912 	if (so != NULL) {
1913 		/*
1914 		 * If there's a socket, handle two cases: first, we own a
1915 		 * strong reference, which we will now release, or we don't
1916 		 * in which case another reference exists (XXXRW: think
1917 		 * about this more), and we don't need to take action.
1918 		 */
1919 		if (inp->inp_vflag & INP_SOCKREF) {
1920 			inp->inp_vflag &= ~INP_SOCKREF;
1921 			INP_UNLOCK(inp);
1922 			ACCEPT_LOCK();
1923 			SOCK_LOCK(so);
1924 			KASSERT(so->so_state & SS_PROTOREF,
1925 			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1926 			so->so_state &= ~SS_PROTOREF;
1927 			sofree(so);
1928 		} else {
1929 			/*
1930 			 * If we don't own the only reference, the socket and
1931 			 * inpcb need to be left around to be handled by
1932 			 * tcp_usr_detach() later.
1933 			 */
1934 			INP_UNLOCK(inp);
1935 		}
1936 	} else {
1937 #ifdef INET6
1938 		if (inp->inp_vflag & INP_IPV6PROTO)
1939 			in6_pcbfree(inp);
1940 		else
1941 #endif
1942 			in_pcbfree(inp);
1943 	}
1944 	tcpstat.tcps_closed++;
1945 	crfree(tw->tw_cred);
1946 	tw->tw_cred = NULL;
1947 	if (reuse)
1948 		return;
1949 	uma_zfree(tcptw_zone, tw);
1950 }
1951 
1952 int
1953 tcp_twrespond(struct tcptw *tw, int flags)
1954 {
1955 	struct inpcb *inp = tw->tw_inpcb;
1956 	struct tcphdr *th;
1957 	struct mbuf *m;
1958 	struct ip *ip = NULL;
1959 	u_int8_t *optp;
1960 	u_int hdrlen, optlen;
1961 	int error;
1962 #ifdef INET6
1963 	struct ip6_hdr *ip6 = NULL;
1964 	int isipv6 = inp->inp_inc.inc_isipv6;
1965 #endif
1966 
1967 	INP_LOCK_ASSERT(inp);
1968 
1969 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1970 	if (m == NULL)
1971 		return (ENOBUFS);
1972 	m->m_data += max_linkhdr;
1973 
1974 #ifdef MAC
1975 	mac_create_mbuf_from_inpcb(inp, m);
1976 #endif
1977 
1978 #ifdef INET6
1979 	if (isipv6) {
1980 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1981 		ip6 = mtod(m, struct ip6_hdr *);
1982 		th = (struct tcphdr *)(ip6 + 1);
1983 		tcpip_fillheaders(inp, ip6, th);
1984 	} else
1985 #endif
1986 	{
1987 		hdrlen = sizeof(struct tcpiphdr);
1988 		ip = mtod(m, struct ip *);
1989 		th = (struct tcphdr *)(ip + 1);
1990 		tcpip_fillheaders(inp, ip, th);
1991 	}
1992 	optp = (u_int8_t *)(th + 1);
1993 
1994 	/*
1995 	 * Send a timestamp and echo-reply if both our side and our peer
1996 	 * have sent timestamps in our SYN's and this is not a RST.
1997 	 */
1998 	if (tw->t_recent && flags == TH_ACK) {
1999 		u_int32_t *lp = (u_int32_t *)optp;
2000 
2001 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2002 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2003 		*lp++ = htonl(ticks);
2004 		*lp   = htonl(tw->t_recent);
2005 		optp += TCPOLEN_TSTAMP_APPA;
2006 	}
2007 
2008 	optlen = optp - (u_int8_t *)(th + 1);
2009 
2010 	m->m_len = hdrlen + optlen;
2011 	m->m_pkthdr.len = m->m_len;
2012 
2013 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2014 
2015 	th->th_seq = htonl(tw->snd_nxt);
2016 	th->th_ack = htonl(tw->rcv_nxt);
2017 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2018 	th->th_flags = flags;
2019 	th->th_win = htons(tw->last_win);
2020 
2021 #ifdef INET6
2022 	if (isipv6) {
2023 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2024 		    sizeof(struct tcphdr) + optlen);
2025 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2026 		error = ip6_output(m, inp->in6p_outputopts, NULL,
2027 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2028 	} else
2029 #endif
2030 	{
2031 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2032 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2033 		m->m_pkthdr.csum_flags = CSUM_TCP;
2034 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2035 		ip->ip_len = m->m_pkthdr.len;
2036 		if (path_mtu_discovery)
2037 			ip->ip_off |= IP_DF;
2038 		error = ip_output(m, inp->inp_options, NULL,
2039 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2040 		    NULL, inp);
2041 	}
2042 	if (flags & TH_ACK)
2043 		tcpstat.tcps_sndacks++;
2044 	else
2045 		tcpstat.tcps_sndctrl++;
2046 	tcpstat.tcps_sndtotal++;
2047 	return (error);
2048 }
2049 
2050 /*
2051  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2052  *
2053  * This code attempts to calculate the bandwidth-delay product as a
2054  * means of determining the optimal window size to maximize bandwidth,
2055  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2056  * routers.  This code also does a fairly good job keeping RTTs in check
2057  * across slow links like modems.  We implement an algorithm which is very
2058  * similar (but not meant to be) TCP/Vegas.  The code operates on the
2059  * transmitter side of a TCP connection and so only effects the transmit
2060  * side of the connection.
2061  *
2062  * BACKGROUND:  TCP makes no provision for the management of buffer space
2063  * at the end points or at the intermediate routers and switches.  A TCP
2064  * stream, whether using NewReno or not, will eventually buffer as
2065  * many packets as it is able and the only reason this typically works is
2066  * due to the fairly small default buffers made available for a connection
2067  * (typicaly 16K or 32K).  As machines use larger windows and/or window
2068  * scaling it is now fairly easy for even a single TCP connection to blow-out
2069  * all available buffer space not only on the local interface, but on
2070  * intermediate routers and switches as well.  NewReno makes a misguided
2071  * attempt to 'solve' this problem by waiting for an actual failure to occur,
2072  * then backing off, then steadily increasing the window again until another
2073  * failure occurs, ad-infinitum.  This results in terrible oscillation that
2074  * is only made worse as network loads increase and the idea of intentionally
2075  * blowing out network buffers is, frankly, a terrible way to manage network
2076  * resources.
2077  *
2078  * It is far better to limit the transmit window prior to the failure
2079  * condition being achieved.  There are two general ways to do this:  First
2080  * you can 'scan' through different transmit window sizes and locate the
2081  * point where the RTT stops increasing, indicating that you have filled the
2082  * pipe, then scan backwards until you note that RTT stops decreasing, then
2083  * repeat ad-infinitum.  This method works in principle but has severe
2084  * implementation issues due to RTT variances, timer granularity, and
2085  * instability in the algorithm which can lead to many false positives and
2086  * create oscillations as well as interact badly with other TCP streams
2087  * implementing the same algorithm.
2088  *
2089  * The second method is to limit the window to the bandwidth delay product
2090  * of the link.  This is the method we implement.  RTT variances and our
2091  * own manipulation of the congestion window, bwnd, can potentially
2092  * destabilize the algorithm.  For this reason we have to stabilize the
2093  * elements used to calculate the window.  We do this by using the minimum
2094  * observed RTT, the long term average of the observed bandwidth, and
2095  * by adding two segments worth of slop.  It isn't perfect but it is able
2096  * to react to changing conditions and gives us a very stable basis on
2097  * which to extend the algorithm.
2098  */
2099 void
2100 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2101 {
2102 	u_long bw;
2103 	u_long bwnd;
2104 	int save_ticks;
2105 
2106 	INP_LOCK_ASSERT(tp->t_inpcb);
2107 
2108 	/*
2109 	 * If inflight_enable is disabled in the middle of a tcp connection,
2110 	 * make sure snd_bwnd is effectively disabled.
2111 	 */
2112 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2113 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2114 		tp->snd_bandwidth = 0;
2115 		return;
2116 	}
2117 
2118 	/*
2119 	 * Figure out the bandwidth.  Due to the tick granularity this
2120 	 * is a very rough number and it MUST be averaged over a fairly
2121 	 * long period of time.  XXX we need to take into account a link
2122 	 * that is not using all available bandwidth, but for now our
2123 	 * slop will ramp us up if this case occurs and the bandwidth later
2124 	 * increases.
2125 	 *
2126 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2127 	 * effectively reset t_bw_rtttime for this case.
2128 	 */
2129 	save_ticks = ticks;
2130 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2131 		return;
2132 
2133 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2134 	    (save_ticks - tp->t_bw_rtttime);
2135 	tp->t_bw_rtttime = save_ticks;
2136 	tp->t_bw_rtseq = ack_seq;
2137 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2138 		return;
2139 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2140 
2141 	tp->snd_bandwidth = bw;
2142 
2143 	/*
2144 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2145 	 * segments.  The additional slop puts us squarely in the sweet
2146 	 * spot and also handles the bandwidth run-up case and stabilization.
2147 	 * Without the slop we could be locking ourselves into a lower
2148 	 * bandwidth.
2149 	 *
2150 	 * Situations Handled:
2151 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2152 	 *	    high speed LANs, allowing larger TCP buffers to be
2153 	 *	    specified, and also does a good job preventing
2154 	 *	    over-queueing of packets over choke points like modems
2155 	 *	    (at least for the transmit side).
2156 	 *
2157 	 *	(2) Is able to handle changing network loads (bandwidth
2158 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2159 	 *	    increases).
2160 	 *
2161 	 *	(3) Theoretically should stabilize in the face of multiple
2162 	 *	    connections implementing the same algorithm (this may need
2163 	 *	    a little work).
2164 	 *
2165 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2166 	 *	    be adjusted with a sysctl but typically only needs to be
2167 	 *	    on very slow connections.  A value no smaller then 5
2168 	 *	    should be used, but only reduce this default if you have
2169 	 *	    no other choice.
2170 	 */
2171 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2172 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2173 #undef USERTT
2174 
2175 	if (tcp_inflight_debug > 0) {
2176 		static int ltime;
2177 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2178 			ltime = ticks;
2179 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2180 			    tp,
2181 			    bw,
2182 			    tp->t_rttbest,
2183 			    tp->t_srtt,
2184 			    bwnd
2185 			);
2186 		}
2187 	}
2188 	if ((long)bwnd < tcp_inflight_min)
2189 		bwnd = tcp_inflight_min;
2190 	if (bwnd > tcp_inflight_max)
2191 		bwnd = tcp_inflight_max;
2192 	if ((long)bwnd < tp->t_maxseg * 2)
2193 		bwnd = tp->t_maxseg * 2;
2194 	tp->snd_bwnd = bwnd;
2195 }
2196 
2197 #ifdef TCP_SIGNATURE
2198 /*
2199  * Callback function invoked by m_apply() to digest TCP segment data
2200  * contained within an mbuf chain.
2201  */
2202 static int
2203 tcp_signature_apply(void *fstate, void *data, u_int len)
2204 {
2205 
2206 	MD5Update(fstate, (u_char *)data, len);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2212  *
2213  * Parameters:
2214  * m		pointer to head of mbuf chain
2215  * off0		offset to TCP header within the mbuf chain
2216  * len		length of TCP segment data, excluding options
2217  * optlen	length of TCP segment options
2218  * buf		pointer to storage for computed MD5 digest
2219  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2220  *
2221  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2222  * When called from tcp_input(), we can be sure that th_sum has been
2223  * zeroed out and verified already.
2224  *
2225  * This function is for IPv4 use only. Calling this function with an
2226  * IPv6 packet in the mbuf chain will yield undefined results.
2227  *
2228  * Return 0 if successful, otherwise return -1.
2229  *
2230  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2231  * search with the destination IP address, and a 'magic SPI' to be
2232  * determined by the application. This is hardcoded elsewhere to 1179
2233  * right now. Another branch of this code exists which uses the SPD to
2234  * specify per-application flows but it is unstable.
2235  */
2236 int
2237 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2238     u_char *buf, u_int direction)
2239 {
2240 	union sockaddr_union dst;
2241 	struct ippseudo ippseudo;
2242 	MD5_CTX ctx;
2243 	int doff;
2244 	struct ip *ip;
2245 	struct ipovly *ipovly;
2246 	struct secasvar *sav;
2247 	struct tcphdr *th;
2248 	u_short savecsum;
2249 
2250 	KASSERT(m != NULL, ("NULL mbuf chain"));
2251 	KASSERT(buf != NULL, ("NULL signature pointer"));
2252 
2253 	/* Extract the destination from the IP header in the mbuf. */
2254 	ip = mtod(m, struct ip *);
2255 	bzero(&dst, sizeof(union sockaddr_union));
2256 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2257 	dst.sa.sa_family = AF_INET;
2258 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2259 	    ip->ip_src : ip->ip_dst;
2260 
2261 	/* Look up an SADB entry which matches the address of the peer. */
2262 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2263 	if (sav == NULL) {
2264 		printf("%s: SADB lookup failed for %s\n", __func__,
2265 		    inet_ntoa(dst.sin.sin_addr));
2266 		return (EINVAL);
2267 	}
2268 
2269 	MD5Init(&ctx);
2270 	ipovly = (struct ipovly *)ip;
2271 	th = (struct tcphdr *)((u_char *)ip + off0);
2272 	doff = off0 + sizeof(struct tcphdr) + optlen;
2273 
2274 	/*
2275 	 * Step 1: Update MD5 hash with IP pseudo-header.
2276 	 *
2277 	 * XXX The ippseudo header MUST be digested in network byte order,
2278 	 * or else we'll fail the regression test. Assume all fields we've
2279 	 * been doing arithmetic on have been in host byte order.
2280 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2281 	 * tcp_output(), the underlying ip_len member has not yet been set.
2282 	 */
2283 	ippseudo.ippseudo_src = ipovly->ih_src;
2284 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2285 	ippseudo.ippseudo_pad = 0;
2286 	ippseudo.ippseudo_p = IPPROTO_TCP;
2287 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2288 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2289 
2290 	/*
2291 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2292 	 * The TCP checksum must be set to zero.
2293 	 */
2294 	savecsum = th->th_sum;
2295 	th->th_sum = 0;
2296 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2297 	th->th_sum = savecsum;
2298 
2299 	/*
2300 	 * Step 3: Update MD5 hash with TCP segment data.
2301 	 *         Use m_apply() to avoid an early m_pullup().
2302 	 */
2303 	if (len > 0)
2304 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2305 
2306 	/*
2307 	 * Step 4: Update MD5 hash with shared secret.
2308 	 */
2309 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2310 	MD5Final(buf, &ctx);
2311 
2312 	key_sa_recordxfer(sav, m);
2313 	KEY_FREESAV(&sav);
2314 	return (0);
2315 }
2316 #endif /* TCP_SIGNATURE */
2317 
2318 static int
2319 sysctl_drop(SYSCTL_HANDLER_ARGS)
2320 {
2321 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2322 	struct sockaddr_storage addrs[2];
2323 	struct inpcb *inp;
2324 	struct tcpcb *tp;
2325 	struct tcptw *tw;
2326 	struct sockaddr_in *fin, *lin;
2327 #ifdef INET6
2328 	struct sockaddr_in6 *fin6, *lin6;
2329 	struct in6_addr f6, l6;
2330 #endif
2331 	int error;
2332 
2333 	inp = NULL;
2334 	fin = lin = NULL;
2335 #ifdef INET6
2336 	fin6 = lin6 = NULL;
2337 #endif
2338 	error = 0;
2339 
2340 	if (req->oldptr != NULL || req->oldlen != 0)
2341 		return (EINVAL);
2342 	if (req->newptr == NULL)
2343 		return (EPERM);
2344 	if (req->newlen < sizeof(addrs))
2345 		return (ENOMEM);
2346 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2347 	if (error)
2348 		return (error);
2349 
2350 	switch (addrs[0].ss_family) {
2351 #ifdef INET6
2352 	case AF_INET6:
2353 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2354 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2355 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2356 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2357 			return (EINVAL);
2358 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2359 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2360 				return (EINVAL);
2361 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2362 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2363 			fin = (struct sockaddr_in *)&addrs[0];
2364 			lin = (struct sockaddr_in *)&addrs[1];
2365 			break;
2366 		}
2367 		error = sa6_embedscope(fin6, ip6_use_defzone);
2368 		if (error)
2369 			return (error);
2370 		error = sa6_embedscope(lin6, ip6_use_defzone);
2371 		if (error)
2372 			return (error);
2373 		break;
2374 #endif
2375 	case AF_INET:
2376 		fin = (struct sockaddr_in *)&addrs[0];
2377 		lin = (struct sockaddr_in *)&addrs[1];
2378 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2379 		    lin->sin_len != sizeof(struct sockaddr_in))
2380 			return (EINVAL);
2381 		break;
2382 	default:
2383 		return (EINVAL);
2384 	}
2385 	INP_INFO_WLOCK(&tcbinfo);
2386 	switch (addrs[0].ss_family) {
2387 #ifdef INET6
2388 	case AF_INET6:
2389 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2390 		    &l6, lin6->sin6_port, 0, NULL);
2391 		break;
2392 #endif
2393 	case AF_INET:
2394 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2395 		    lin->sin_addr, lin->sin_port, 0, NULL);
2396 		break;
2397 	}
2398 	if (inp != NULL) {
2399 		INP_LOCK(inp);
2400 		if (inp->inp_vflag & INP_TIMEWAIT) {
2401 			/*
2402 			 * XXXRW: There currently exists a state where an
2403 			 * inpcb is present, but its timewait state has been
2404 			 * discarded.  For now, don't allow dropping of this
2405 			 * type of inpcb.
2406 			 */
2407 			tw = intotw(inp);
2408 			if (tw != NULL)
2409 				tcp_twclose(tw, 0);
2410 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2411 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2412 			tp = intotcpcb(inp);
2413 			tcp_drop(tp, ECONNABORTED);
2414 		}
2415 		INP_UNLOCK(inp);
2416 	} else
2417 		error = ESRCH;
2418 	INP_INFO_WUNLOCK(&tcbinfo);
2419 	return (error);
2420 }
2421 
2422 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2423     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2424     0, sysctl_drop, "", "Drop TCP connection");
2425