xref: /freebsd/sys/netinet/tcp_subr.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_pcb.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/tcp_syncache.h>
88 #include <netinet/tcp_offload.h>
89 #ifdef INET6
90 #include <netinet6/tcp6_var.h>
91 #endif
92 #include <netinet/tcpip.h>
93 #ifdef TCPDEBUG
94 #include <netinet/tcp_debug.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/ip6protosw.h>
98 #endif
99 
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/xform.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/key.h>
107 #include <sys/syslog.h>
108 #endif /*IPSEC*/
109 
110 #include <machine/in_cksum.h>
111 #include <sys/md5.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
116 #ifdef INET6
117 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
118 #endif
119 
120 static int
121 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new;
124 
125 	new = V_tcp_mssdflt;
126 	error = sysctl_handle_int(oidp, &new, 0, req);
127 	if (error == 0 && req->newptr) {
128 		if (new < TCP_MINMSS)
129 			error = EINVAL;
130 		else
131 			V_tcp_mssdflt = new;
132 	}
133 	return (error);
134 }
135 
136 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
137     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
138     &sysctl_net_inet_tcp_mss_check, "I",
139     "Default TCP Maximum Segment Size");
140 
141 #ifdef INET6
142 static int
143 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new;
146 
147 	new = V_tcp_v6mssdflt;
148 	error = sysctl_handle_int(oidp, &new, 0, req);
149 	if (error == 0 && req->newptr) {
150 		if (new < TCP_MINMSS)
151 			error = EINVAL;
152 		else
153 			V_tcp_v6mssdflt = new;
154 	}
155 	return (error);
156 }
157 
158 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
159     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
160     &sysctl_net_inet_tcp_mss_v6_check, "I",
161    "Default TCP Maximum Segment Size for IPv6");
162 #endif /* INET6 */
163 
164 /*
165  * Minimum MSS we accept and use. This prevents DoS attacks where
166  * we are forced to a ridiculous low MSS like 20 and send hundreds
167  * of packets instead of one. The effect scales with the available
168  * bandwidth and quickly saturates the CPU and network interface
169  * with packet generation and sending. Set to zero to disable MINMSS
170  * checking. This setting prevents us from sending too small packets.
171  */
172 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
174      &VNET_NAME(tcp_minmss), 0,
175     "Minmum TCP Maximum Segment Size");
176 
177 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
178 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
179     &VNET_NAME(tcp_do_rfc1323), 0,
180     "Enable rfc1323 (high performance TCP) extensions");
181 
182 static int	tcp_log_debug = 0;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
184     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
185 
186 static int	tcp_tcbhashsize = 0;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
188     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
189 
190 static int	do_tcpdrain = 1;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
192     "Enable tcp_drain routine for extra help when low on mbufs");
193 
194 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
195     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
196 
197 static VNET_DEFINE(int, icmp_may_rst) = 1;
198 #define	V_icmp_may_rst			VNET(icmp_may_rst)
199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
200     &VNET_NAME(icmp_may_rst), 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
204 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
206     &VNET_NAME(tcp_isn_reseed_interval), 0,
207     "Seconds between reseeding of ISN secret");
208 
209 #ifdef TCP_SORECEIVE_STREAM
210 static int	tcp_soreceive_stream = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
212     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
213 #endif
214 
215 #ifdef TCP_SIGNATURE
216 static int	tcp_sig_checksigs = 1;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
218     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
219 #endif
220 
221 VNET_DEFINE(uma_zone_t, sack_hole_zone);
222 #define	V_sack_hole_zone		VNET(sack_hole_zone)
223 
224 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
225 
226 static struct inpcb *tcp_notify(struct inpcb *, int);
227 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
228 		    void *ip4hdr, const void *ip6hdr);
229 
230 /*
231  * Target size of TCP PCB hash tables. Must be a power of two.
232  *
233  * Note that this can be overridden by the kernel environment
234  * variable net.inet.tcp.tcbhashsize
235  */
236 #ifndef TCBHASHSIZE
237 #define TCBHASHSIZE	512
238 #endif
239 
240 /*
241  * XXX
242  * Callouts should be moved into struct tcp directly.  They are currently
243  * separate because the tcpcb structure is exported to userland for sysctl
244  * parsing purposes, which do not know about callouts.
245  */
246 struct tcpcb_mem {
247 	struct	tcpcb		tcb;
248 	struct	tcp_timer	tt;
249 	struct	cc_var		ccv;
250 	struct	osd		osd;
251 };
252 
253 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
254 #define	V_tcpcb_zone			VNET(tcpcb_zone)
255 
256 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
257 static struct mtx isn_mtx;
258 
259 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
260 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
261 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
262 
263 /*
264  * TCP initialization.
265  */
266 static void
267 tcp_zone_change(void *tag)
268 {
269 
270 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
271 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
272 	tcp_tw_zone_change();
273 }
274 
275 static int
276 tcp_inpcb_init(void *mem, int size, int flags)
277 {
278 	struct inpcb *inp = mem;
279 
280 	INP_LOCK_INIT(inp, "inp", "tcpinp");
281 	return (0);
282 }
283 
284 void
285 tcp_init(void)
286 {
287 	int hashsize;
288 
289 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
290 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
291 		printf("%s: WARNING: unable to register helper hook\n", __func__);
292 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
293 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
294 		printf("%s: WARNING: unable to register helper hook\n", __func__);
295 
296 	hashsize = TCBHASHSIZE;
297 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
298 	if (!powerof2(hashsize)) {
299 		printf("WARNING: TCB hash size not a power of 2\n");
300 		hashsize = 512; /* safe default */
301 	}
302 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
303 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE);
304 
305 	/*
306 	 * These have to be type stable for the benefit of the timers.
307 	 */
308 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
309 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
310 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
311 
312 	tcp_tw_init();
313 	syncache_init();
314 	tcp_hc_init();
315 	tcp_reass_init();
316 
317 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
318 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
319 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
320 
321 	/* Skip initialization of globals for non-default instances. */
322 	if (!IS_DEFAULT_VNET(curvnet))
323 		return;
324 
325 	/* XXX virtualize those bellow? */
326 	tcp_delacktime = TCPTV_DELACK;
327 	tcp_keepinit = TCPTV_KEEP_INIT;
328 	tcp_keepidle = TCPTV_KEEP_IDLE;
329 	tcp_keepintvl = TCPTV_KEEPINTVL;
330 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
331 	tcp_msl = TCPTV_MSL;
332 	tcp_rexmit_min = TCPTV_MIN;
333 	if (tcp_rexmit_min < 1)
334 		tcp_rexmit_min = 1;
335 	tcp_rexmit_slop = TCPTV_CPU_VAR;
336 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
337 	tcp_tcbhashsize = hashsize;
338 
339 #ifdef TCP_SORECEIVE_STREAM
340 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
341 	if (tcp_soreceive_stream) {
342 		tcp_usrreqs.pru_soreceive = soreceive_stream;
343 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
344 	}
345 #endif
346 
347 #ifdef INET6
348 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
349 #else /* INET6 */
350 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
351 #endif /* INET6 */
352 	if (max_protohdr < TCP_MINPROTOHDR)
353 		max_protohdr = TCP_MINPROTOHDR;
354 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
355 		panic("tcp_init");
356 #undef TCP_MINPROTOHDR
357 
358 	ISN_LOCK_INIT();
359 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
360 		SHUTDOWN_PRI_DEFAULT);
361 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
362 		EVENTHANDLER_PRI_ANY);
363 }
364 
365 #ifdef VIMAGE
366 void
367 tcp_destroy(void)
368 {
369 
370 	tcp_reass_destroy();
371 	tcp_hc_destroy();
372 	syncache_destroy();
373 	tcp_tw_destroy();
374 	in_pcbinfo_destroy(&V_tcbinfo);
375 	uma_zdestroy(V_sack_hole_zone);
376 	uma_zdestroy(V_tcpcb_zone);
377 }
378 #endif
379 
380 void
381 tcp_fini(void *xtp)
382 {
383 
384 }
385 
386 /*
387  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
388  * tcp_template used to store this data in mbufs, but we now recopy it out
389  * of the tcpcb each time to conserve mbufs.
390  */
391 void
392 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
393 {
394 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
395 
396 	INP_WLOCK_ASSERT(inp);
397 
398 #ifdef INET6
399 	if ((inp->inp_vflag & INP_IPV6) != 0) {
400 		struct ip6_hdr *ip6;
401 
402 		ip6 = (struct ip6_hdr *)ip_ptr;
403 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
404 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
405 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
406 			(IPV6_VERSION & IPV6_VERSION_MASK);
407 		ip6->ip6_nxt = IPPROTO_TCP;
408 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
409 		ip6->ip6_src = inp->in6p_laddr;
410 		ip6->ip6_dst = inp->in6p_faddr;
411 	}
412 #endif /* INET6 */
413 #if defined(INET6) && defined(INET)
414 	else
415 #endif
416 #ifdef INET
417 	{
418 		struct ip *ip;
419 
420 		ip = (struct ip *)ip_ptr;
421 		ip->ip_v = IPVERSION;
422 		ip->ip_hl = 5;
423 		ip->ip_tos = inp->inp_ip_tos;
424 		ip->ip_len = 0;
425 		ip->ip_id = 0;
426 		ip->ip_off = 0;
427 		ip->ip_ttl = inp->inp_ip_ttl;
428 		ip->ip_sum = 0;
429 		ip->ip_p = IPPROTO_TCP;
430 		ip->ip_src = inp->inp_laddr;
431 		ip->ip_dst = inp->inp_faddr;
432 	}
433 #endif /* INET */
434 	th->th_sport = inp->inp_lport;
435 	th->th_dport = inp->inp_fport;
436 	th->th_seq = 0;
437 	th->th_ack = 0;
438 	th->th_x2 = 0;
439 	th->th_off = 5;
440 	th->th_flags = 0;
441 	th->th_win = 0;
442 	th->th_urp = 0;
443 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
444 }
445 
446 /*
447  * Create template to be used to send tcp packets on a connection.
448  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
449  * use for this function is in keepalives, which use tcp_respond.
450  */
451 struct tcptemp *
452 tcpip_maketemplate(struct inpcb *inp)
453 {
454 	struct tcptemp *t;
455 
456 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
457 	if (t == NULL)
458 		return (NULL);
459 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
460 	return (t);
461 }
462 
463 /*
464  * Send a single message to the TCP at address specified by
465  * the given TCP/IP header.  If m == NULL, then we make a copy
466  * of the tcpiphdr at ti and send directly to the addressed host.
467  * This is used to force keep alive messages out using the TCP
468  * template for a connection.  If flags are given then we send
469  * a message back to the TCP which originated the * segment ti,
470  * and discard the mbuf containing it and any other attached mbufs.
471  *
472  * In any case the ack and sequence number of the transmitted
473  * segment are as specified by the parameters.
474  *
475  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
476  */
477 void
478 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
479     tcp_seq ack, tcp_seq seq, int flags)
480 {
481 	int tlen;
482 	int win = 0;
483 	struct ip *ip;
484 	struct tcphdr *nth;
485 #ifdef INET6
486 	struct ip6_hdr *ip6;
487 	int isipv6;
488 #endif /* INET6 */
489 	int ipflags = 0;
490 	struct inpcb *inp;
491 
492 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
493 
494 #ifdef INET6
495 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
496 	ip6 = ipgen;
497 #endif /* INET6 */
498 	ip = ipgen;
499 
500 	if (tp != NULL) {
501 		inp = tp->t_inpcb;
502 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
503 		INP_WLOCK_ASSERT(inp);
504 	} else
505 		inp = NULL;
506 
507 	if (tp != NULL) {
508 		if (!(flags & TH_RST)) {
509 			win = sbspace(&inp->inp_socket->so_rcv);
510 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
511 				win = (long)TCP_MAXWIN << tp->rcv_scale;
512 		}
513 	}
514 	if (m == NULL) {
515 		m = m_gethdr(M_DONTWAIT, MT_DATA);
516 		if (m == NULL)
517 			return;
518 		tlen = 0;
519 		m->m_data += max_linkhdr;
520 #ifdef INET6
521 		if (isipv6) {
522 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
523 			      sizeof(struct ip6_hdr));
524 			ip6 = mtod(m, struct ip6_hdr *);
525 			nth = (struct tcphdr *)(ip6 + 1);
526 		} else
527 #endif /* INET6 */
528 	      {
529 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
530 		ip = mtod(m, struct ip *);
531 		nth = (struct tcphdr *)(ip + 1);
532 	      }
533 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
534 		flags = TH_ACK;
535 	} else {
536 		/*
537 		 *  reuse the mbuf.
538 		 * XXX MRT We inherrit the FIB, which is lucky.
539 		 */
540 		m_freem(m->m_next);
541 		m->m_next = NULL;
542 		m->m_data = (caddr_t)ipgen;
543 		/* m_len is set later */
544 		tlen = 0;
545 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
546 #ifdef INET6
547 		if (isipv6) {
548 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
549 			nth = (struct tcphdr *)(ip6 + 1);
550 		} else
551 #endif /* INET6 */
552 	      {
553 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
554 		nth = (struct tcphdr *)(ip + 1);
555 	      }
556 		if (th != nth) {
557 			/*
558 			 * this is usually a case when an extension header
559 			 * exists between the IPv6 header and the
560 			 * TCP header.
561 			 */
562 			nth->th_sport = th->th_sport;
563 			nth->th_dport = th->th_dport;
564 		}
565 		xchg(nth->th_dport, nth->th_sport, uint16_t);
566 #undef xchg
567 	}
568 #ifdef INET6
569 	if (isipv6) {
570 		ip6->ip6_flow = 0;
571 		ip6->ip6_vfc = IPV6_VERSION;
572 		ip6->ip6_nxt = IPPROTO_TCP;
573 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
574 						tlen));
575 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
576 	}
577 #endif
578 #if defined(INET) && defined(INET6)
579 	else
580 #endif
581 #ifdef INET
582 	{
583 		tlen += sizeof (struct tcpiphdr);
584 		ip->ip_len = tlen;
585 		ip->ip_ttl = V_ip_defttl;
586 		if (V_path_mtu_discovery)
587 			ip->ip_off |= IP_DF;
588 	}
589 #endif
590 	m->m_len = tlen;
591 	m->m_pkthdr.len = tlen;
592 	m->m_pkthdr.rcvif = NULL;
593 #ifdef MAC
594 	if (inp != NULL) {
595 		/*
596 		 * Packet is associated with a socket, so allow the
597 		 * label of the response to reflect the socket label.
598 		 */
599 		INP_WLOCK_ASSERT(inp);
600 		mac_inpcb_create_mbuf(inp, m);
601 	} else {
602 		/*
603 		 * Packet is not associated with a socket, so possibly
604 		 * update the label in place.
605 		 */
606 		mac_netinet_tcp_reply(m);
607 	}
608 #endif
609 	nth->th_seq = htonl(seq);
610 	nth->th_ack = htonl(ack);
611 	nth->th_x2 = 0;
612 	nth->th_off = sizeof (struct tcphdr) >> 2;
613 	nth->th_flags = flags;
614 	if (tp != NULL)
615 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
616 	else
617 		nth->th_win = htons((u_short)win);
618 	nth->th_urp = 0;
619 #ifdef INET6
620 	if (isipv6) {
621 		nth->th_sum = 0;
622 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
623 					sizeof(struct ip6_hdr),
624 					tlen - sizeof(struct ip6_hdr));
625 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
626 		    NULL, NULL);
627 	}
628 #endif /* INET6 */
629 #if defined(INET6) && defined(INET)
630 	else
631 #endif
632 #ifdef INET
633 	{
634 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
635 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
636 		m->m_pkthdr.csum_flags = CSUM_TCP;
637 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
638 	}
639 #endif /* INET */
640 #ifdef TCPDEBUG
641 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
642 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
643 #endif
644 #ifdef INET6
645 	if (isipv6)
646 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
647 #endif /* INET6 */
648 #if defined(INET) && defined(INET6)
649 	else
650 #endif
651 #ifdef INET
652 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
653 #endif
654 }
655 
656 /*
657  * Create a new TCP control block, making an
658  * empty reassembly queue and hooking it to the argument
659  * protocol control block.  The `inp' parameter must have
660  * come from the zone allocator set up in tcp_init().
661  */
662 struct tcpcb *
663 tcp_newtcpcb(struct inpcb *inp)
664 {
665 	struct tcpcb_mem *tm;
666 	struct tcpcb *tp;
667 #ifdef INET6
668 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669 #endif /* INET6 */
670 
671 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
672 	if (tm == NULL)
673 		return (NULL);
674 	tp = &tm->tcb;
675 
676 	/* Initialise cc_var struct for this tcpcb. */
677 	tp->ccv = &tm->ccv;
678 	tp->ccv->type = IPPROTO_TCP;
679 	tp->ccv->ccvc.tcp = tp;
680 
681 	/*
682 	 * Use the current system default CC algorithm.
683 	 */
684 	CC_LIST_RLOCK();
685 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
686 	CC_ALGO(tp) = CC_DEFAULT();
687 	CC_LIST_RUNLOCK();
688 
689 	if (CC_ALGO(tp)->cb_init != NULL)
690 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
691 			uma_zfree(V_tcpcb_zone, tm);
692 			return (NULL);
693 		}
694 
695 	tp->osd = &tm->osd;
696 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
697 		uma_zfree(V_tcpcb_zone, tm);
698 		return (NULL);
699 	}
700 
701 #ifdef VIMAGE
702 	tp->t_vnet = inp->inp_vnet;
703 #endif
704 	tp->t_timers = &tm->tt;
705 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
706 	tp->t_maxseg = tp->t_maxopd =
707 #ifdef INET6
708 		isipv6 ? V_tcp_v6mssdflt :
709 #endif /* INET6 */
710 		V_tcp_mssdflt;
711 
712 	/* Set up our timeouts. */
713 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
714 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
715 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
716 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
717 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
718 
719 	if (V_tcp_do_rfc1323)
720 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
721 	if (V_tcp_do_sack)
722 		tp->t_flags |= TF_SACK_PERMIT;
723 	TAILQ_INIT(&tp->snd_holes);
724 	tp->t_inpcb = inp;	/* XXX */
725 	/*
726 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
727 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
728 	 * reasonable initial retransmit time.
729 	 */
730 	tp->t_srtt = TCPTV_SRTTBASE;
731 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
732 	tp->t_rttmin = tcp_rexmit_min;
733 	tp->t_rxtcur = TCPTV_RTOBASE;
734 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
735 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
736 	tp->t_rcvtime = ticks;
737 	/*
738 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
739 	 * because the socket may be bound to an IPv6 wildcard address,
740 	 * which may match an IPv4-mapped IPv6 address.
741 	 */
742 	inp->inp_ip_ttl = V_ip_defttl;
743 	inp->inp_ppcb = tp;
744 	return (tp);		/* XXX */
745 }
746 
747 /*
748  * Switch the congestion control algorithm back to NewReno for any active
749  * control blocks using an algorithm which is about to go away.
750  * This ensures the CC framework can allow the unload to proceed without leaving
751  * any dangling pointers which would trigger a panic.
752  * Returning non-zero would inform the CC framework that something went wrong
753  * and it would be unsafe to allow the unload to proceed. However, there is no
754  * way for this to occur with this implementation so we always return zero.
755  */
756 int
757 tcp_ccalgounload(struct cc_algo *unload_algo)
758 {
759 	struct cc_algo *tmpalgo;
760 	struct inpcb *inp;
761 	struct tcpcb *tp;
762 	VNET_ITERATOR_DECL(vnet_iter);
763 
764 	/*
765 	 * Check all active control blocks across all network stacks and change
766 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
767 	 * requires cleanup code to be run, call it.
768 	 */
769 	VNET_LIST_RLOCK();
770 	VNET_FOREACH(vnet_iter) {
771 		CURVNET_SET(vnet_iter);
772 		INP_INFO_RLOCK(&V_tcbinfo);
773 		/*
774 		 * New connections already part way through being initialised
775 		 * with the CC algo we're removing will not race with this code
776 		 * because the INP_INFO_WLOCK is held during initialisation. We
777 		 * therefore don't enter the loop below until the connection
778 		 * list has stabilised.
779 		 */
780 		LIST_FOREACH(inp, &V_tcb, inp_list) {
781 			INP_WLOCK(inp);
782 			/* Important to skip tcptw structs. */
783 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
784 			    (tp = intotcpcb(inp)) != NULL) {
785 				/*
786 				 * By holding INP_WLOCK here, we are assured
787 				 * that the connection is not currently
788 				 * executing inside the CC module's functions
789 				 * i.e. it is safe to make the switch back to
790 				 * NewReno.
791 				 */
792 				if (CC_ALGO(tp) == unload_algo) {
793 					tmpalgo = CC_ALGO(tp);
794 					/* NewReno does not require any init. */
795 					CC_ALGO(tp) = &newreno_cc_algo;
796 					if (tmpalgo->cb_destroy != NULL)
797 						tmpalgo->cb_destroy(tp->ccv);
798 				}
799 			}
800 			INP_WUNLOCK(inp);
801 		}
802 		INP_INFO_RUNLOCK(&V_tcbinfo);
803 		CURVNET_RESTORE();
804 	}
805 	VNET_LIST_RUNLOCK();
806 
807 	return (0);
808 }
809 
810 /*
811  * Drop a TCP connection, reporting
812  * the specified error.  If connection is synchronized,
813  * then send a RST to peer.
814  */
815 struct tcpcb *
816 tcp_drop(struct tcpcb *tp, int errno)
817 {
818 	struct socket *so = tp->t_inpcb->inp_socket;
819 
820 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
821 	INP_WLOCK_ASSERT(tp->t_inpcb);
822 
823 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
824 		tp->t_state = TCPS_CLOSED;
825 		(void) tcp_output_reset(tp);
826 		TCPSTAT_INC(tcps_drops);
827 	} else
828 		TCPSTAT_INC(tcps_conndrops);
829 	if (errno == ETIMEDOUT && tp->t_softerror)
830 		errno = tp->t_softerror;
831 	so->so_error = errno;
832 	return (tcp_close(tp));
833 }
834 
835 void
836 tcp_discardcb(struct tcpcb *tp)
837 {
838 	struct inpcb *inp = tp->t_inpcb;
839 	struct socket *so = inp->inp_socket;
840 #ifdef INET6
841 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
842 #endif /* INET6 */
843 
844 	INP_WLOCK_ASSERT(inp);
845 
846 	/*
847 	 * Make sure that all of our timers are stopped before we delete the
848 	 * PCB.
849 	 *
850 	 * XXXRW: Really, we would like to use callout_drain() here in order
851 	 * to avoid races experienced in tcp_timer.c where a timer is already
852 	 * executing at this point.  However, we can't, both because we're
853 	 * running in a context where we can't sleep, and also because we
854 	 * hold locks required by the timers.  What we instead need to do is
855 	 * test to see if callout_drain() is required, and if so, defer some
856 	 * portion of the remainder of tcp_discardcb() to an asynchronous
857 	 * context that can callout_drain() and then continue.  Some care
858 	 * will be required to ensure that no further processing takes place
859 	 * on the tcpcb, even though it hasn't been freed (a flag?).
860 	 */
861 	callout_stop(&tp->t_timers->tt_rexmt);
862 	callout_stop(&tp->t_timers->tt_persist);
863 	callout_stop(&tp->t_timers->tt_keep);
864 	callout_stop(&tp->t_timers->tt_2msl);
865 	callout_stop(&tp->t_timers->tt_delack);
866 
867 	/*
868 	 * If we got enough samples through the srtt filter,
869 	 * save the rtt and rttvar in the routing entry.
870 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
871 	 * 4 samples is enough for the srtt filter to converge
872 	 * to within enough % of the correct value; fewer samples
873 	 * and we could save a bogus rtt. The danger is not high
874 	 * as tcp quickly recovers from everything.
875 	 * XXX: Works very well but needs some more statistics!
876 	 */
877 	if (tp->t_rttupdated >= 4) {
878 		struct hc_metrics_lite metrics;
879 		u_long ssthresh;
880 
881 		bzero(&metrics, sizeof(metrics));
882 		/*
883 		 * Update the ssthresh always when the conditions below
884 		 * are satisfied. This gives us better new start value
885 		 * for the congestion avoidance for new connections.
886 		 * ssthresh is only set if packet loss occured on a session.
887 		 *
888 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
889 		 * being torn down.  Ideally this code would not use 'so'.
890 		 */
891 		ssthresh = tp->snd_ssthresh;
892 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
893 			/*
894 			 * convert the limit from user data bytes to
895 			 * packets then to packet data bytes.
896 			 */
897 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
898 			if (ssthresh < 2)
899 				ssthresh = 2;
900 			ssthresh *= (u_long)(tp->t_maxseg +
901 #ifdef INET6
902 				      (isipv6 ? sizeof (struct ip6_hdr) +
903 					       sizeof (struct tcphdr) :
904 #endif
905 				       sizeof (struct tcpiphdr)
906 #ifdef INET6
907 				       )
908 #endif
909 				      );
910 		} else
911 			ssthresh = 0;
912 		metrics.rmx_ssthresh = ssthresh;
913 
914 		metrics.rmx_rtt = tp->t_srtt;
915 		metrics.rmx_rttvar = tp->t_rttvar;
916 		metrics.rmx_cwnd = tp->snd_cwnd;
917 		metrics.rmx_sendpipe = 0;
918 		metrics.rmx_recvpipe = 0;
919 
920 		tcp_hc_update(&inp->inp_inc, &metrics);
921 	}
922 
923 	/* free the reassembly queue, if any */
924 	tcp_reass_flush(tp);
925 	/* Disconnect offload device, if any. */
926 	tcp_offload_detach(tp);
927 
928 	tcp_free_sackholes(tp);
929 
930 	/* Allow the CC algorithm to clean up after itself. */
931 	if (CC_ALGO(tp)->cb_destroy != NULL)
932 		CC_ALGO(tp)->cb_destroy(tp->ccv);
933 
934 	khelp_destroy_osd(tp->osd);
935 
936 	CC_ALGO(tp) = NULL;
937 	inp->inp_ppcb = NULL;
938 	tp->t_inpcb = NULL;
939 	uma_zfree(V_tcpcb_zone, tp);
940 }
941 
942 /*
943  * Attempt to close a TCP control block, marking it as dropped, and freeing
944  * the socket if we hold the only reference.
945  */
946 struct tcpcb *
947 tcp_close(struct tcpcb *tp)
948 {
949 	struct inpcb *inp = tp->t_inpcb;
950 	struct socket *so;
951 
952 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
953 	INP_WLOCK_ASSERT(inp);
954 
955 	/* Notify any offload devices of listener close */
956 	if (tp->t_state == TCPS_LISTEN)
957 		tcp_offload_listen_close(tp);
958 	in_pcbdrop(inp);
959 	TCPSTAT_INC(tcps_closed);
960 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
961 	so = inp->inp_socket;
962 	soisdisconnected(so);
963 	if (inp->inp_flags & INP_SOCKREF) {
964 		KASSERT(so->so_state & SS_PROTOREF,
965 		    ("tcp_close: !SS_PROTOREF"));
966 		inp->inp_flags &= ~INP_SOCKREF;
967 		INP_WUNLOCK(inp);
968 		ACCEPT_LOCK();
969 		SOCK_LOCK(so);
970 		so->so_state &= ~SS_PROTOREF;
971 		sofree(so);
972 		return (NULL);
973 	}
974 	return (tp);
975 }
976 
977 void
978 tcp_drain(void)
979 {
980 	VNET_ITERATOR_DECL(vnet_iter);
981 
982 	if (!do_tcpdrain)
983 		return;
984 
985 	VNET_LIST_RLOCK_NOSLEEP();
986 	VNET_FOREACH(vnet_iter) {
987 		CURVNET_SET(vnet_iter);
988 		struct inpcb *inpb;
989 		struct tcpcb *tcpb;
990 
991 	/*
992 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
993 	 * if there is one...
994 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
995 	 *      reassembly queue should be flushed, but in a situation
996 	 *	where we're really low on mbufs, this is potentially
997 	 *	usefull.
998 	 */
999 		INP_INFO_RLOCK(&V_tcbinfo);
1000 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1001 			if (inpb->inp_flags & INP_TIMEWAIT)
1002 				continue;
1003 			INP_WLOCK(inpb);
1004 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1005 				tcp_reass_flush(tcpb);
1006 				tcp_clean_sackreport(tcpb);
1007 			}
1008 			INP_WUNLOCK(inpb);
1009 		}
1010 		INP_INFO_RUNLOCK(&V_tcbinfo);
1011 		CURVNET_RESTORE();
1012 	}
1013 	VNET_LIST_RUNLOCK_NOSLEEP();
1014 }
1015 
1016 /*
1017  * Notify a tcp user of an asynchronous error;
1018  * store error as soft error, but wake up user
1019  * (for now, won't do anything until can select for soft error).
1020  *
1021  * Do not wake up user since there currently is no mechanism for
1022  * reporting soft errors (yet - a kqueue filter may be added).
1023  */
1024 static struct inpcb *
1025 tcp_notify(struct inpcb *inp, int error)
1026 {
1027 	struct tcpcb *tp;
1028 
1029 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1030 	INP_WLOCK_ASSERT(inp);
1031 
1032 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1033 	    (inp->inp_flags & INP_DROPPED))
1034 		return (inp);
1035 
1036 	tp = intotcpcb(inp);
1037 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1038 
1039 	/*
1040 	 * Ignore some errors if we are hooked up.
1041 	 * If connection hasn't completed, has retransmitted several times,
1042 	 * and receives a second error, give up now.  This is better
1043 	 * than waiting a long time to establish a connection that
1044 	 * can never complete.
1045 	 */
1046 	if (tp->t_state == TCPS_ESTABLISHED &&
1047 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1048 	     error == EHOSTDOWN)) {
1049 		return (inp);
1050 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1051 	    tp->t_softerror) {
1052 		tp = tcp_drop(tp, error);
1053 		if (tp != NULL)
1054 			return (inp);
1055 		else
1056 			return (NULL);
1057 	} else {
1058 		tp->t_softerror = error;
1059 		return (inp);
1060 	}
1061 #if 0
1062 	wakeup( &so->so_timeo);
1063 	sorwakeup(so);
1064 	sowwakeup(so);
1065 #endif
1066 }
1067 
1068 static int
1069 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1070 {
1071 	int error, i, m, n, pcb_count;
1072 	struct inpcb *inp, **inp_list;
1073 	inp_gen_t gencnt;
1074 	struct xinpgen xig;
1075 
1076 	/*
1077 	 * The process of preparing the TCB list is too time-consuming and
1078 	 * resource-intensive to repeat twice on every request.
1079 	 */
1080 	if (req->oldptr == NULL) {
1081 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1082 		n += imax(n / 8, 10);
1083 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1084 		return (0);
1085 	}
1086 
1087 	if (req->newptr != NULL)
1088 		return (EPERM);
1089 
1090 	/*
1091 	 * OK, now we're committed to doing something.
1092 	 */
1093 	INP_INFO_RLOCK(&V_tcbinfo);
1094 	gencnt = V_tcbinfo.ipi_gencnt;
1095 	n = V_tcbinfo.ipi_count;
1096 	INP_INFO_RUNLOCK(&V_tcbinfo);
1097 
1098 	m = syncache_pcbcount();
1099 
1100 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1101 		+ (n + m) * sizeof(struct xtcpcb));
1102 	if (error != 0)
1103 		return (error);
1104 
1105 	xig.xig_len = sizeof xig;
1106 	xig.xig_count = n + m;
1107 	xig.xig_gen = gencnt;
1108 	xig.xig_sogen = so_gencnt;
1109 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1110 	if (error)
1111 		return (error);
1112 
1113 	error = syncache_pcblist(req, m, &pcb_count);
1114 	if (error)
1115 		return (error);
1116 
1117 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1118 	if (inp_list == NULL)
1119 		return (ENOMEM);
1120 
1121 	INP_INFO_RLOCK(&V_tcbinfo);
1122 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1123 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1124 		INP_WLOCK(inp);
1125 		if (inp->inp_gencnt <= gencnt) {
1126 			/*
1127 			 * XXX: This use of cr_cansee(), introduced with
1128 			 * TCP state changes, is not quite right, but for
1129 			 * now, better than nothing.
1130 			 */
1131 			if (inp->inp_flags & INP_TIMEWAIT) {
1132 				if (intotw(inp) != NULL)
1133 					error = cr_cansee(req->td->td_ucred,
1134 					    intotw(inp)->tw_cred);
1135 				else
1136 					error = EINVAL;	/* Skip this inp. */
1137 			} else
1138 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1139 			if (error == 0) {
1140 				in_pcbref(inp);
1141 				inp_list[i++] = inp;
1142 			}
1143 		}
1144 		INP_WUNLOCK(inp);
1145 	}
1146 	INP_INFO_RUNLOCK(&V_tcbinfo);
1147 	n = i;
1148 
1149 	error = 0;
1150 	for (i = 0; i < n; i++) {
1151 		inp = inp_list[i];
1152 		INP_RLOCK(inp);
1153 		if (inp->inp_gencnt <= gencnt) {
1154 			struct xtcpcb xt;
1155 			void *inp_ppcb;
1156 
1157 			bzero(&xt, sizeof(xt));
1158 			xt.xt_len = sizeof xt;
1159 			/* XXX should avoid extra copy */
1160 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1161 			inp_ppcb = inp->inp_ppcb;
1162 			if (inp_ppcb == NULL)
1163 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1164 			else if (inp->inp_flags & INP_TIMEWAIT) {
1165 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1166 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1167 			} else {
1168 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1169 				if (xt.xt_tp.t_timers)
1170 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1171 			}
1172 			if (inp->inp_socket != NULL)
1173 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1174 			else {
1175 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1176 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1177 			}
1178 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1179 			INP_RUNLOCK(inp);
1180 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1181 		} else
1182 			INP_RUNLOCK(inp);
1183 	}
1184 	INP_INFO_WLOCK(&V_tcbinfo);
1185 	for (i = 0; i < n; i++) {
1186 		inp = inp_list[i];
1187 		INP_RLOCK(inp);
1188 		if (!in_pcbrele_rlocked(inp))
1189 			INP_RUNLOCK(inp);
1190 	}
1191 	INP_INFO_WUNLOCK(&V_tcbinfo);
1192 
1193 	if (!error) {
1194 		/*
1195 		 * Give the user an updated idea of our state.
1196 		 * If the generation differs from what we told
1197 		 * her before, she knows that something happened
1198 		 * while we were processing this request, and it
1199 		 * might be necessary to retry.
1200 		 */
1201 		INP_INFO_RLOCK(&V_tcbinfo);
1202 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1203 		xig.xig_sogen = so_gencnt;
1204 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1205 		INP_INFO_RUNLOCK(&V_tcbinfo);
1206 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1207 	}
1208 	free(inp_list, M_TEMP);
1209 	return (error);
1210 }
1211 
1212 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1213     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1214     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1215 
1216 #ifdef INET
1217 static int
1218 tcp_getcred(SYSCTL_HANDLER_ARGS)
1219 {
1220 	struct xucred xuc;
1221 	struct sockaddr_in addrs[2];
1222 	struct inpcb *inp;
1223 	int error;
1224 
1225 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1226 	if (error)
1227 		return (error);
1228 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1229 	if (error)
1230 		return (error);
1231 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1232 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1233 	if (inp != NULL) {
1234 		if (inp->inp_socket == NULL)
1235 			error = ENOENT;
1236 		if (error == 0)
1237 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1238 		if (error == 0)
1239 			cru2x(inp->inp_cred, &xuc);
1240 		INP_RUNLOCK(inp);
1241 	} else
1242 		error = ENOENT;
1243 	if (error == 0)
1244 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1245 	return (error);
1246 }
1247 
1248 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1249     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1250     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1251 #endif /* INET */
1252 
1253 #ifdef INET6
1254 static int
1255 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1256 {
1257 	struct xucred xuc;
1258 	struct sockaddr_in6 addrs[2];
1259 	struct inpcb *inp;
1260 	int error;
1261 #ifdef INET
1262 	int mapped = 0;
1263 #endif
1264 
1265 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1266 	if (error)
1267 		return (error);
1268 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1269 	if (error)
1270 		return (error);
1271 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1272 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1273 		return (error);
1274 	}
1275 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1276 #ifdef INET
1277 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1278 			mapped = 1;
1279 		else
1280 #endif
1281 			return (EINVAL);
1282 	}
1283 
1284 #ifdef INET
1285 	if (mapped == 1)
1286 		inp = in_pcblookup(&V_tcbinfo,
1287 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1288 			addrs[1].sin6_port,
1289 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1290 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1291 	else
1292 #endif
1293 		inp = in6_pcblookup(&V_tcbinfo,
1294 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1295 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1296 			INPLOOKUP_RLOCKPCB, NULL);
1297 	if (inp != NULL) {
1298 		if (inp->inp_socket == NULL)
1299 			error = ENOENT;
1300 		if (error == 0)
1301 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1302 		if (error == 0)
1303 			cru2x(inp->inp_cred, &xuc);
1304 		INP_RUNLOCK(inp);
1305 	} else
1306 		error = ENOENT;
1307 	if (error == 0)
1308 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1309 	return (error);
1310 }
1311 
1312 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1313     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1314     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1315 #endif /* INET6 */
1316 
1317 
1318 #ifdef INET
1319 void
1320 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1321 {
1322 	struct ip *ip = vip;
1323 	struct tcphdr *th;
1324 	struct in_addr faddr;
1325 	struct inpcb *inp;
1326 	struct tcpcb *tp;
1327 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1328 	struct icmp *icp;
1329 	struct in_conninfo inc;
1330 	tcp_seq icmp_tcp_seq;
1331 	int mtu;
1332 
1333 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1334 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1335 		return;
1336 
1337 	if (cmd == PRC_MSGSIZE)
1338 		notify = tcp_mtudisc;
1339 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1340 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1341 		notify = tcp_drop_syn_sent;
1342 	/*
1343 	 * Redirects don't need to be handled up here.
1344 	 */
1345 	else if (PRC_IS_REDIRECT(cmd))
1346 		return;
1347 	/*
1348 	 * Source quench is depreciated.
1349 	 */
1350 	else if (cmd == PRC_QUENCH)
1351 		return;
1352 	/*
1353 	 * Hostdead is ugly because it goes linearly through all PCBs.
1354 	 * XXX: We never get this from ICMP, otherwise it makes an
1355 	 * excellent DoS attack on machines with many connections.
1356 	 */
1357 	else if (cmd == PRC_HOSTDEAD)
1358 		ip = NULL;
1359 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1360 		return;
1361 	if (ip != NULL) {
1362 		icp = (struct icmp *)((caddr_t)ip
1363 				      - offsetof(struct icmp, icmp_ip));
1364 		th = (struct tcphdr *)((caddr_t)ip
1365 				       + (ip->ip_hl << 2));
1366 		INP_INFO_WLOCK(&V_tcbinfo);
1367 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1368 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1369 		if (inp != NULL)  {
1370 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1371 			    !(inp->inp_flags & INP_DROPPED) &&
1372 			    !(inp->inp_socket == NULL)) {
1373 				icmp_tcp_seq = htonl(th->th_seq);
1374 				tp = intotcpcb(inp);
1375 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1376 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1377 					if (cmd == PRC_MSGSIZE) {
1378 					    /*
1379 					     * MTU discovery:
1380 					     * If we got a needfrag set the MTU
1381 					     * in the route to the suggested new
1382 					     * value (if given) and then notify.
1383 					     */
1384 					    bzero(&inc, sizeof(inc));
1385 					    inc.inc_faddr = faddr;
1386 					    inc.inc_fibnum =
1387 						inp->inp_inc.inc_fibnum;
1388 
1389 					    mtu = ntohs(icp->icmp_nextmtu);
1390 					    /*
1391 					     * If no alternative MTU was
1392 					     * proposed, try the next smaller
1393 					     * one.  ip->ip_len has already
1394 					     * been swapped in icmp_input().
1395 					     */
1396 					    if (!mtu)
1397 						mtu = ip_next_mtu(ip->ip_len,
1398 						 1);
1399 					    if (mtu < V_tcp_minmss
1400 						 + sizeof(struct tcpiphdr))
1401 						mtu = V_tcp_minmss
1402 						 + sizeof(struct tcpiphdr);
1403 					    /*
1404 					     * Only cache the MTU if it
1405 					     * is smaller than the interface
1406 					     * or route MTU.  tcp_mtudisc()
1407 					     * will do right thing by itself.
1408 					     */
1409 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1410 						tcp_hc_updatemtu(&inc, mtu);
1411 					}
1412 
1413 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1414 				}
1415 			}
1416 			if (inp != NULL)
1417 				INP_WUNLOCK(inp);
1418 		} else {
1419 			bzero(&inc, sizeof(inc));
1420 			inc.inc_fport = th->th_dport;
1421 			inc.inc_lport = th->th_sport;
1422 			inc.inc_faddr = faddr;
1423 			inc.inc_laddr = ip->ip_src;
1424 			syncache_unreach(&inc, th);
1425 		}
1426 		INP_INFO_WUNLOCK(&V_tcbinfo);
1427 	} else
1428 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1429 }
1430 #endif /* INET */
1431 
1432 #ifdef INET6
1433 void
1434 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1435 {
1436 	struct tcphdr th;
1437 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1438 	struct ip6_hdr *ip6;
1439 	struct mbuf *m;
1440 	struct ip6ctlparam *ip6cp = NULL;
1441 	const struct sockaddr_in6 *sa6_src = NULL;
1442 	int off;
1443 	struct tcp_portonly {
1444 		u_int16_t th_sport;
1445 		u_int16_t th_dport;
1446 	} *thp;
1447 
1448 	if (sa->sa_family != AF_INET6 ||
1449 	    sa->sa_len != sizeof(struct sockaddr_in6))
1450 		return;
1451 
1452 	if (cmd == PRC_MSGSIZE)
1453 		notify = tcp_mtudisc;
1454 	else if (!PRC_IS_REDIRECT(cmd) &&
1455 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1456 		return;
1457 	/* Source quench is depreciated. */
1458 	else if (cmd == PRC_QUENCH)
1459 		return;
1460 
1461 	/* if the parameter is from icmp6, decode it. */
1462 	if (d != NULL) {
1463 		ip6cp = (struct ip6ctlparam *)d;
1464 		m = ip6cp->ip6c_m;
1465 		ip6 = ip6cp->ip6c_ip6;
1466 		off = ip6cp->ip6c_off;
1467 		sa6_src = ip6cp->ip6c_src;
1468 	} else {
1469 		m = NULL;
1470 		ip6 = NULL;
1471 		off = 0;	/* fool gcc */
1472 		sa6_src = &sa6_any;
1473 	}
1474 
1475 	if (ip6 != NULL) {
1476 		struct in_conninfo inc;
1477 		/*
1478 		 * XXX: We assume that when IPV6 is non NULL,
1479 		 * M and OFF are valid.
1480 		 */
1481 
1482 		/* check if we can safely examine src and dst ports */
1483 		if (m->m_pkthdr.len < off + sizeof(*thp))
1484 			return;
1485 
1486 		bzero(&th, sizeof(th));
1487 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1488 
1489 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1490 		    (struct sockaddr *)ip6cp->ip6c_src,
1491 		    th.th_sport, cmd, NULL, notify);
1492 
1493 		bzero(&inc, sizeof(inc));
1494 		inc.inc_fport = th.th_dport;
1495 		inc.inc_lport = th.th_sport;
1496 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1497 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1498 		inc.inc_flags |= INC_ISIPV6;
1499 		INP_INFO_WLOCK(&V_tcbinfo);
1500 		syncache_unreach(&inc, &th);
1501 		INP_INFO_WUNLOCK(&V_tcbinfo);
1502 	} else
1503 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1504 			      0, cmd, NULL, notify);
1505 }
1506 #endif /* INET6 */
1507 
1508 
1509 /*
1510  * Following is where TCP initial sequence number generation occurs.
1511  *
1512  * There are two places where we must use initial sequence numbers:
1513  * 1.  In SYN-ACK packets.
1514  * 2.  In SYN packets.
1515  *
1516  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1517  * tcp_syncache.c for details.
1518  *
1519  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1520  * depends on this property.  In addition, these ISNs should be
1521  * unguessable so as to prevent connection hijacking.  To satisfy
1522  * the requirements of this situation, the algorithm outlined in
1523  * RFC 1948 is used, with only small modifications.
1524  *
1525  * Implementation details:
1526  *
1527  * Time is based off the system timer, and is corrected so that it
1528  * increases by one megabyte per second.  This allows for proper
1529  * recycling on high speed LANs while still leaving over an hour
1530  * before rollover.
1531  *
1532  * As reading the *exact* system time is too expensive to be done
1533  * whenever setting up a TCP connection, we increment the time
1534  * offset in two ways.  First, a small random positive increment
1535  * is added to isn_offset for each connection that is set up.
1536  * Second, the function tcp_isn_tick fires once per clock tick
1537  * and increments isn_offset as necessary so that sequence numbers
1538  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1539  * random positive increments serve only to ensure that the same
1540  * exact sequence number is never sent out twice (as could otherwise
1541  * happen when a port is recycled in less than the system tick
1542  * interval.)
1543  *
1544  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1545  * between seeding of isn_secret.  This is normally set to zero,
1546  * as reseeding should not be necessary.
1547  *
1548  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1549  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1550  * general, this means holding an exclusive (write) lock.
1551  */
1552 
1553 #define ISN_BYTES_PER_SECOND 1048576
1554 #define ISN_STATIC_INCREMENT 4096
1555 #define ISN_RANDOM_INCREMENT (4096 - 1)
1556 
1557 static VNET_DEFINE(u_char, isn_secret[32]);
1558 static VNET_DEFINE(int, isn_last);
1559 static VNET_DEFINE(int, isn_last_reseed);
1560 static VNET_DEFINE(u_int32_t, isn_offset);
1561 static VNET_DEFINE(u_int32_t, isn_offset_old);
1562 
1563 #define	V_isn_secret			VNET(isn_secret)
1564 #define	V_isn_last			VNET(isn_last)
1565 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1566 #define	V_isn_offset			VNET(isn_offset)
1567 #define	V_isn_offset_old		VNET(isn_offset_old)
1568 
1569 tcp_seq
1570 tcp_new_isn(struct tcpcb *tp)
1571 {
1572 	MD5_CTX isn_ctx;
1573 	u_int32_t md5_buffer[4];
1574 	tcp_seq new_isn;
1575 	u_int32_t projected_offset;
1576 
1577 	INP_WLOCK_ASSERT(tp->t_inpcb);
1578 
1579 	ISN_LOCK();
1580 	/* Seed if this is the first use, reseed if requested. */
1581 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1582 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1583 		< (u_int)ticks))) {
1584 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1585 		V_isn_last_reseed = ticks;
1586 	}
1587 
1588 	/* Compute the md5 hash and return the ISN. */
1589 	MD5Init(&isn_ctx);
1590 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1591 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1592 #ifdef INET6
1593 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1594 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1595 			  sizeof(struct in6_addr));
1596 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1597 			  sizeof(struct in6_addr));
1598 	} else
1599 #endif
1600 	{
1601 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1602 			  sizeof(struct in_addr));
1603 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1604 			  sizeof(struct in_addr));
1605 	}
1606 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1607 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1608 	new_isn = (tcp_seq) md5_buffer[0];
1609 	V_isn_offset += ISN_STATIC_INCREMENT +
1610 		(arc4random() & ISN_RANDOM_INCREMENT);
1611 	if (ticks != V_isn_last) {
1612 		projected_offset = V_isn_offset_old +
1613 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1614 		if (SEQ_GT(projected_offset, V_isn_offset))
1615 			V_isn_offset = projected_offset;
1616 		V_isn_offset_old = V_isn_offset;
1617 		V_isn_last = ticks;
1618 	}
1619 	new_isn += V_isn_offset;
1620 	ISN_UNLOCK();
1621 	return (new_isn);
1622 }
1623 
1624 /*
1625  * When a specific ICMP unreachable message is received and the
1626  * connection state is SYN-SENT, drop the connection.  This behavior
1627  * is controlled by the icmp_may_rst sysctl.
1628  */
1629 struct inpcb *
1630 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1631 {
1632 	struct tcpcb *tp;
1633 
1634 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1635 	INP_WLOCK_ASSERT(inp);
1636 
1637 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1638 	    (inp->inp_flags & INP_DROPPED))
1639 		return (inp);
1640 
1641 	tp = intotcpcb(inp);
1642 	if (tp->t_state != TCPS_SYN_SENT)
1643 		return (inp);
1644 
1645 	tp = tcp_drop(tp, errno);
1646 	if (tp != NULL)
1647 		return (inp);
1648 	else
1649 		return (NULL);
1650 }
1651 
1652 /*
1653  * When `need fragmentation' ICMP is received, update our idea of the MSS
1654  * based on the new value in the route.  Also nudge TCP to send something,
1655  * since we know the packet we just sent was dropped.
1656  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1657  */
1658 struct inpcb *
1659 tcp_mtudisc(struct inpcb *inp, int errno)
1660 {
1661 	struct tcpcb *tp;
1662 	struct socket *so;
1663 
1664 	INP_WLOCK_ASSERT(inp);
1665 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1666 	    (inp->inp_flags & INP_DROPPED))
1667 		return (inp);
1668 
1669 	tp = intotcpcb(inp);
1670 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1671 
1672 	tcp_mss_update(tp, -1, NULL, NULL);
1673 
1674 	so = inp->inp_socket;
1675 	SOCKBUF_LOCK(&so->so_snd);
1676 	/* If the mss is larger than the socket buffer, decrease the mss. */
1677 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1678 		tp->t_maxseg = so->so_snd.sb_hiwat;
1679 	SOCKBUF_UNLOCK(&so->so_snd);
1680 
1681 	TCPSTAT_INC(tcps_mturesent);
1682 	tp->t_rtttime = 0;
1683 	tp->snd_nxt = tp->snd_una;
1684 	tcp_free_sackholes(tp);
1685 	tp->snd_recover = tp->snd_max;
1686 	if (tp->t_flags & TF_SACK_PERMIT)
1687 		EXIT_FASTRECOVERY(tp->t_flags);
1688 	tcp_output_send(tp);
1689 	return (inp);
1690 }
1691 
1692 #ifdef INET
1693 /*
1694  * Look-up the routing entry to the peer of this inpcb.  If no route
1695  * is found and it cannot be allocated, then return 0.  This routine
1696  * is called by TCP routines that access the rmx structure and by
1697  * tcp_mss_update to get the peer/interface MTU.
1698  */
1699 u_long
1700 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1701 {
1702 	struct route sro;
1703 	struct sockaddr_in *dst;
1704 	struct ifnet *ifp;
1705 	u_long maxmtu = 0;
1706 
1707 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1708 
1709 	bzero(&sro, sizeof(sro));
1710 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1711 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1712 		dst->sin_family = AF_INET;
1713 		dst->sin_len = sizeof(*dst);
1714 		dst->sin_addr = inc->inc_faddr;
1715 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1716 	}
1717 	if (sro.ro_rt != NULL) {
1718 		ifp = sro.ro_rt->rt_ifp;
1719 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1720 			maxmtu = ifp->if_mtu;
1721 		else
1722 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1723 
1724 		/* Report additional interface capabilities. */
1725 		if (flags != NULL) {
1726 			if (ifp->if_capenable & IFCAP_TSO4 &&
1727 			    ifp->if_hwassist & CSUM_TSO)
1728 				*flags |= CSUM_TSO;
1729 		}
1730 		RTFREE(sro.ro_rt);
1731 	}
1732 	return (maxmtu);
1733 }
1734 #endif /* INET */
1735 
1736 #ifdef INET6
1737 u_long
1738 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1739 {
1740 	struct route_in6 sro6;
1741 	struct ifnet *ifp;
1742 	u_long maxmtu = 0;
1743 
1744 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1745 
1746 	bzero(&sro6, sizeof(sro6));
1747 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1748 		sro6.ro_dst.sin6_family = AF_INET6;
1749 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1750 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1751 		rtalloc_ign((struct route *)&sro6, 0);
1752 	}
1753 	if (sro6.ro_rt != NULL) {
1754 		ifp = sro6.ro_rt->rt_ifp;
1755 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1756 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1757 		else
1758 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1759 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1760 
1761 		/* Report additional interface capabilities. */
1762 		if (flags != NULL) {
1763 			if (ifp->if_capenable & IFCAP_TSO6 &&
1764 			    ifp->if_hwassist & CSUM_TSO)
1765 				*flags |= CSUM_TSO;
1766 		}
1767 		RTFREE(sro6.ro_rt);
1768 	}
1769 
1770 	return (maxmtu);
1771 }
1772 #endif /* INET6 */
1773 
1774 #ifdef IPSEC
1775 /* compute ESP/AH header size for TCP, including outer IP header. */
1776 size_t
1777 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1778 {
1779 	struct inpcb *inp;
1780 	struct mbuf *m;
1781 	size_t hdrsiz;
1782 	struct ip *ip;
1783 #ifdef INET6
1784 	struct ip6_hdr *ip6;
1785 #endif
1786 	struct tcphdr *th;
1787 
1788 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1789 		return (0);
1790 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1791 	if (!m)
1792 		return (0);
1793 
1794 #ifdef INET6
1795 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1796 		ip6 = mtod(m, struct ip6_hdr *);
1797 		th = (struct tcphdr *)(ip6 + 1);
1798 		m->m_pkthdr.len = m->m_len =
1799 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1800 		tcpip_fillheaders(inp, ip6, th);
1801 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1802 	} else
1803 #endif /* INET6 */
1804 	{
1805 		ip = mtod(m, struct ip *);
1806 		th = (struct tcphdr *)(ip + 1);
1807 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1808 		tcpip_fillheaders(inp, ip, th);
1809 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1810 	}
1811 
1812 	m_free(m);
1813 	return (hdrsiz);
1814 }
1815 #endif /* IPSEC */
1816 
1817 #ifdef TCP_SIGNATURE
1818 /*
1819  * Callback function invoked by m_apply() to digest TCP segment data
1820  * contained within an mbuf chain.
1821  */
1822 static int
1823 tcp_signature_apply(void *fstate, void *data, u_int len)
1824 {
1825 
1826 	MD5Update(fstate, (u_char *)data, len);
1827 	return (0);
1828 }
1829 
1830 /*
1831  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1832  *
1833  * Parameters:
1834  * m		pointer to head of mbuf chain
1835  * _unused
1836  * len		length of TCP segment data, excluding options
1837  * optlen	length of TCP segment options
1838  * buf		pointer to storage for computed MD5 digest
1839  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1840  *
1841  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1842  * When called from tcp_input(), we can be sure that th_sum has been
1843  * zeroed out and verified already.
1844  *
1845  * Return 0 if successful, otherwise return -1.
1846  *
1847  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1848  * search with the destination IP address, and a 'magic SPI' to be
1849  * determined by the application. This is hardcoded elsewhere to 1179
1850  * right now. Another branch of this code exists which uses the SPD to
1851  * specify per-application flows but it is unstable.
1852  */
1853 int
1854 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1855     u_char *buf, u_int direction)
1856 {
1857 	union sockaddr_union dst;
1858 #ifdef INET
1859 	struct ippseudo ippseudo;
1860 #endif
1861 	MD5_CTX ctx;
1862 	int doff;
1863 	struct ip *ip;
1864 #ifdef INET
1865 	struct ipovly *ipovly;
1866 #endif
1867 	struct secasvar *sav;
1868 	struct tcphdr *th;
1869 #ifdef INET6
1870 	struct ip6_hdr *ip6;
1871 	struct in6_addr in6;
1872 	char ip6buf[INET6_ADDRSTRLEN];
1873 	uint32_t plen;
1874 	uint16_t nhdr;
1875 #endif
1876 	u_short savecsum;
1877 
1878 	KASSERT(m != NULL, ("NULL mbuf chain"));
1879 	KASSERT(buf != NULL, ("NULL signature pointer"));
1880 
1881 	/* Extract the destination from the IP header in the mbuf. */
1882 	bzero(&dst, sizeof(union sockaddr_union));
1883 	ip = mtod(m, struct ip *);
1884 #ifdef INET6
1885 	ip6 = NULL;	/* Make the compiler happy. */
1886 #endif
1887 	switch (ip->ip_v) {
1888 #ifdef INET
1889 	case IPVERSION:
1890 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1891 		dst.sa.sa_family = AF_INET;
1892 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1893 		    ip->ip_src : ip->ip_dst;
1894 		break;
1895 #endif
1896 #ifdef INET6
1897 	case (IPV6_VERSION >> 4):
1898 		ip6 = mtod(m, struct ip6_hdr *);
1899 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1900 		dst.sa.sa_family = AF_INET6;
1901 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1902 		    ip6->ip6_src : ip6->ip6_dst;
1903 		break;
1904 #endif
1905 	default:
1906 		return (EINVAL);
1907 		/* NOTREACHED */
1908 		break;
1909 	}
1910 
1911 	/* Look up an SADB entry which matches the address of the peer. */
1912 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1913 	if (sav == NULL) {
1914 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1915 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1916 #ifdef INET6
1917 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1918 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1919 #endif
1920 			"(unsupported)"));
1921 		return (EINVAL);
1922 	}
1923 
1924 	MD5Init(&ctx);
1925 	/*
1926 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1927 	 *
1928 	 * XXX The ippseudo header MUST be digested in network byte order,
1929 	 * or else we'll fail the regression test. Assume all fields we've
1930 	 * been doing arithmetic on have been in host byte order.
1931 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1932 	 * tcp_output(), the underlying ip_len member has not yet been set.
1933 	 */
1934 	switch (ip->ip_v) {
1935 #ifdef INET
1936 	case IPVERSION:
1937 		ipovly = (struct ipovly *)ip;
1938 		ippseudo.ippseudo_src = ipovly->ih_src;
1939 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1940 		ippseudo.ippseudo_pad = 0;
1941 		ippseudo.ippseudo_p = IPPROTO_TCP;
1942 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1943 		    optlen);
1944 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1945 
1946 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1947 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1948 		break;
1949 #endif
1950 #ifdef INET6
1951 	/*
1952 	 * RFC 2385, 2.0  Proposal
1953 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1954 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1955 	 * extended next header value (to form 32 bits), and 32-bit segment
1956 	 * length.
1957 	 * Note: Upper-Layer Packet Length comes before Next Header.
1958 	 */
1959 	case (IPV6_VERSION >> 4):
1960 		in6 = ip6->ip6_src;
1961 		in6_clearscope(&in6);
1962 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1963 		in6 = ip6->ip6_dst;
1964 		in6_clearscope(&in6);
1965 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1966 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1967 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1968 		nhdr = 0;
1969 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1970 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1971 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1972 		nhdr = IPPROTO_TCP;
1973 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1974 
1975 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1976 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1977 		break;
1978 #endif
1979 	default:
1980 		return (EINVAL);
1981 		/* NOTREACHED */
1982 		break;
1983 	}
1984 
1985 
1986 	/*
1987 	 * Step 2: Update MD5 hash with TCP header, excluding options.
1988 	 * The TCP checksum must be set to zero.
1989 	 */
1990 	savecsum = th->th_sum;
1991 	th->th_sum = 0;
1992 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1993 	th->th_sum = savecsum;
1994 
1995 	/*
1996 	 * Step 3: Update MD5 hash with TCP segment data.
1997 	 *         Use m_apply() to avoid an early m_pullup().
1998 	 */
1999 	if (len > 0)
2000 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2001 
2002 	/*
2003 	 * Step 4: Update MD5 hash with shared secret.
2004 	 */
2005 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2006 	MD5Final(buf, &ctx);
2007 
2008 	key_sa_recordxfer(sav, m);
2009 	KEY_FREESAV(&sav);
2010 	return (0);
2011 }
2012 
2013 /*
2014  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2015  *
2016  * Parameters:
2017  * m		pointer to head of mbuf chain
2018  * len		length of TCP segment data, excluding options
2019  * optlen	length of TCP segment options
2020  * buf		pointer to storage for computed MD5 digest
2021  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2022  *
2023  * Return 1 if successful, otherwise return 0.
2024  */
2025 int
2026 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2027     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2028 {
2029 	char tmpdigest[TCP_SIGLEN];
2030 
2031 	if (tcp_sig_checksigs == 0)
2032 		return (1);
2033 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2034 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2035 
2036 			/*
2037 			 * If this socket is not expecting signature but
2038 			 * the segment contains signature just fail.
2039 			 */
2040 			TCPSTAT_INC(tcps_sig_err_sigopt);
2041 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2042 			return (0);
2043 		}
2044 
2045 		/* Signature is not expected, and not present in segment. */
2046 		return (1);
2047 	}
2048 
2049 	/*
2050 	 * If this socket is expecting signature but the segment does not
2051 	 * contain any just fail.
2052 	 */
2053 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2054 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2055 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2056 		return (0);
2057 	}
2058 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2059 	    IPSEC_DIR_INBOUND) == -1) {
2060 		TCPSTAT_INC(tcps_sig_err_buildsig);
2061 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2062 		return (0);
2063 	}
2064 
2065 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2066 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2067 		return (0);
2068 	}
2069 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2070 	return (1);
2071 }
2072 #endif /* TCP_SIGNATURE */
2073 
2074 static int
2075 sysctl_drop(SYSCTL_HANDLER_ARGS)
2076 {
2077 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2078 	struct sockaddr_storage addrs[2];
2079 	struct inpcb *inp;
2080 	struct tcpcb *tp;
2081 	struct tcptw *tw;
2082 	struct sockaddr_in *fin, *lin;
2083 #ifdef INET6
2084 	struct sockaddr_in6 *fin6, *lin6;
2085 #endif
2086 	int error;
2087 
2088 	inp = NULL;
2089 	fin = lin = NULL;
2090 #ifdef INET6
2091 	fin6 = lin6 = NULL;
2092 #endif
2093 	error = 0;
2094 
2095 	if (req->oldptr != NULL || req->oldlen != 0)
2096 		return (EINVAL);
2097 	if (req->newptr == NULL)
2098 		return (EPERM);
2099 	if (req->newlen < sizeof(addrs))
2100 		return (ENOMEM);
2101 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2102 	if (error)
2103 		return (error);
2104 
2105 	switch (addrs[0].ss_family) {
2106 #ifdef INET6
2107 	case AF_INET6:
2108 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2109 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2110 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2111 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2112 			return (EINVAL);
2113 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2114 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2115 				return (EINVAL);
2116 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2117 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2118 			fin = (struct sockaddr_in *)&addrs[0];
2119 			lin = (struct sockaddr_in *)&addrs[1];
2120 			break;
2121 		}
2122 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2123 		if (error)
2124 			return (error);
2125 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2126 		if (error)
2127 			return (error);
2128 		break;
2129 #endif
2130 #ifdef INET
2131 	case AF_INET:
2132 		fin = (struct sockaddr_in *)&addrs[0];
2133 		lin = (struct sockaddr_in *)&addrs[1];
2134 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2135 		    lin->sin_len != sizeof(struct sockaddr_in))
2136 			return (EINVAL);
2137 		break;
2138 #endif
2139 	default:
2140 		return (EINVAL);
2141 	}
2142 	INP_INFO_WLOCK(&V_tcbinfo);
2143 	switch (addrs[0].ss_family) {
2144 #ifdef INET6
2145 	case AF_INET6:
2146 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2147 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2148 		    INPLOOKUP_WLOCKPCB, NULL);
2149 		break;
2150 #endif
2151 #ifdef INET
2152 	case AF_INET:
2153 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2154 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2155 		break;
2156 #endif
2157 	}
2158 	if (inp != NULL) {
2159 		if (inp->inp_flags & INP_TIMEWAIT) {
2160 			/*
2161 			 * XXXRW: There currently exists a state where an
2162 			 * inpcb is present, but its timewait state has been
2163 			 * discarded.  For now, don't allow dropping of this
2164 			 * type of inpcb.
2165 			 */
2166 			tw = intotw(inp);
2167 			if (tw != NULL)
2168 				tcp_twclose(tw, 0);
2169 			else
2170 				INP_WUNLOCK(inp);
2171 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2172 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2173 			tp = intotcpcb(inp);
2174 			tp = tcp_drop(tp, ECONNABORTED);
2175 			if (tp != NULL)
2176 				INP_WUNLOCK(inp);
2177 		} else
2178 			INP_WUNLOCK(inp);
2179 	} else
2180 		error = ESRCH;
2181 	INP_INFO_WUNLOCK(&V_tcbinfo);
2182 	return (error);
2183 }
2184 
2185 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2186     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2187     0, sysctl_drop, "", "Drop TCP connection");
2188 
2189 /*
2190  * Generate a standardized TCP log line for use throughout the
2191  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2192  * allow use in the interrupt context.
2193  *
2194  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2195  * NB: The function may return NULL if memory allocation failed.
2196  *
2197  * Due to header inclusion and ordering limitations the struct ip
2198  * and ip6_hdr pointers have to be passed as void pointers.
2199  */
2200 char *
2201 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2202     const void *ip6hdr)
2203 {
2204 
2205 	/* Is logging enabled? */
2206 	if (tcp_log_in_vain == 0)
2207 		return (NULL);
2208 
2209 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2210 }
2211 
2212 char *
2213 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2214     const void *ip6hdr)
2215 {
2216 
2217 	/* Is logging enabled? */
2218 	if (tcp_log_debug == 0)
2219 		return (NULL);
2220 
2221 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2222 }
2223 
2224 static char *
2225 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2226     const void *ip6hdr)
2227 {
2228 	char *s, *sp;
2229 	size_t size;
2230 	struct ip *ip;
2231 #ifdef INET6
2232 	const struct ip6_hdr *ip6;
2233 
2234 	ip6 = (const struct ip6_hdr *)ip6hdr;
2235 #endif /* INET6 */
2236 	ip = (struct ip *)ip4hdr;
2237 
2238 	/*
2239 	 * The log line looks like this:
2240 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2241 	 */
2242 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2243 	    sizeof(PRINT_TH_FLAGS) + 1 +
2244 #ifdef INET6
2245 	    2 * INET6_ADDRSTRLEN;
2246 #else
2247 	    2 * INET_ADDRSTRLEN;
2248 #endif /* INET6 */
2249 
2250 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2251 	if (s == NULL)
2252 		return (NULL);
2253 
2254 	strcat(s, "TCP: [");
2255 	sp = s + strlen(s);
2256 
2257 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2258 		inet_ntoa_r(inc->inc_faddr, sp);
2259 		sp = s + strlen(s);
2260 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2261 		sp = s + strlen(s);
2262 		inet_ntoa_r(inc->inc_laddr, sp);
2263 		sp = s + strlen(s);
2264 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2265 #ifdef INET6
2266 	} else if (inc) {
2267 		ip6_sprintf(sp, &inc->inc6_faddr);
2268 		sp = s + strlen(s);
2269 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2270 		sp = s + strlen(s);
2271 		ip6_sprintf(sp, &inc->inc6_laddr);
2272 		sp = s + strlen(s);
2273 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2274 	} else if (ip6 && th) {
2275 		ip6_sprintf(sp, &ip6->ip6_src);
2276 		sp = s + strlen(s);
2277 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2278 		sp = s + strlen(s);
2279 		ip6_sprintf(sp, &ip6->ip6_dst);
2280 		sp = s + strlen(s);
2281 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2282 #endif /* INET6 */
2283 #ifdef INET
2284 	} else if (ip && th) {
2285 		inet_ntoa_r(ip->ip_src, sp);
2286 		sp = s + strlen(s);
2287 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2288 		sp = s + strlen(s);
2289 		inet_ntoa_r(ip->ip_dst, sp);
2290 		sp = s + strlen(s);
2291 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2292 #endif /* INET */
2293 	} else {
2294 		free(s, M_TCPLOG);
2295 		return (NULL);
2296 	}
2297 	sp = s + strlen(s);
2298 	if (th)
2299 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2300 	if (*(s + size - 1) != '\0')
2301 		panic("%s: string too long", __func__);
2302 	return (s);
2303 }
2304