xref: /freebsd/sys/netinet/tcp_subr.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 static int	tcp_tcbhashsize = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164 
165 static int	do_tcpdrain = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167      "Enable tcp_drain routine for extra help when low on mbufs");
168 
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170     &tcbinfo.ipi_count, 0, "Number of active PCBs");
171 
172 static int	icmp_may_rst = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 
176 static int	tcp_isn_reseed_interval = 0;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179 
180 /*
181  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182  * 1024 exists only for debugging.  A good production default would be
183  * something like 6100.
184  */
185 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186     "TCP inflight data limiting");
187 
188 static int	tcp_inflight_enable = 1;
189 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191 
192 static int	tcp_inflight_debug = 0;
193 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195 
196 static int	tcp_inflight_rttthresh;
197 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
198     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
199     "RTT threshold below which inflight will deactivate itself");
200 
201 static int	tcp_inflight_min = 6144;
202 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
203     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
204 
205 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
207     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
208 
209 static int	tcp_inflight_stab = 20;
210 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
211     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
212 
213 uma_zone_t sack_hole_zone;
214 
215 static struct inpcb *tcp_notify(struct inpcb *, int);
216 static void	tcp_discardcb(struct tcpcb *);
217 static void	tcp_isn_tick(void *);
218 
219 /*
220  * Target size of TCP PCB hash tables. Must be a power of two.
221  *
222  * Note that this can be overridden by the kernel environment
223  * variable net.inet.tcp.tcbhashsize
224  */
225 #ifndef TCBHASHSIZE
226 #define TCBHASHSIZE	512
227 #endif
228 
229 /*
230  * XXX
231  * Callouts should be moved into struct tcp directly.  They are currently
232  * separate because the tcpcb structure is exported to userland for sysctl
233  * parsing purposes, which do not know about callouts.
234  */
235 struct	tcpcb_mem {
236 	struct	tcpcb tcb;
237 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
238 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
239 };
240 
241 static uma_zone_t tcpcb_zone;
242 static uma_zone_t tcptw_zone;
243 struct callout isn_callout;
244 
245 /*
246  * Tcp initialization
247  */
248 void
249 tcp_init()
250 {
251 	int hashsize = TCBHASHSIZE;
252 
253 	tcp_delacktime = TCPTV_DELACK;
254 	tcp_keepinit = TCPTV_KEEP_INIT;
255 	tcp_keepidle = TCPTV_KEEP_IDLE;
256 	tcp_keepintvl = TCPTV_KEEPINTVL;
257 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
258 	tcp_msl = TCPTV_MSL;
259 	tcp_rexmit_min = TCPTV_MIN;
260 	tcp_rexmit_slop = TCPTV_CPU_VAR;
261 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
262 
263 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
264 	LIST_INIT(&tcb);
265 	tcbinfo.listhead = &tcb;
266 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
267 	if (!powerof2(hashsize)) {
268 		printf("WARNING: TCB hash size not a power of 2\n");
269 		hashsize = 512; /* safe default */
270 	}
271 	tcp_tcbhashsize = hashsize;
272 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
273 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
274 					&tcbinfo.porthashmask);
275 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
276 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
277 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
278 #ifdef INET6
279 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
280 #else /* INET6 */
281 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
282 #endif /* INET6 */
283 	if (max_protohdr < TCP_MINPROTOHDR)
284 		max_protohdr = TCP_MINPROTOHDR;
285 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
286 		panic("tcp_init");
287 #undef TCP_MINPROTOHDR
288 	/*
289 	 * These have to be type stable for the benefit of the timers.
290 	 */
291 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
292 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
293 	uma_zone_set_max(tcpcb_zone, maxsockets);
294 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
295 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
296 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
297 	tcp_timer_init();
298 	syncache_init();
299 	tcp_hc_init();
300 	tcp_reass_init();
301 	callout_init(&isn_callout, CALLOUT_MPSAFE);
302 	tcp_isn_tick(NULL);
303 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
304 		SHUTDOWN_PRI_DEFAULT);
305 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
306 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 }
308 
309 void
310 tcp_fini(xtp)
311 	void *xtp;
312 {
313 	callout_stop(&isn_callout);
314 
315 }
316 
317 /*
318  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
319  * tcp_template used to store this data in mbufs, but we now recopy it out
320  * of the tcpcb each time to conserve mbufs.
321  */
322 void
323 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
324 	struct inpcb *inp;
325 	void *ip_ptr;
326 	void *tcp_ptr;
327 {
328 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
329 
330 	INP_LOCK_ASSERT(inp);
331 
332 #ifdef INET6
333 	if ((inp->inp_vflag & INP_IPV6) != 0) {
334 		struct ip6_hdr *ip6;
335 
336 		ip6 = (struct ip6_hdr *)ip_ptr;
337 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
338 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
339 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
340 			(IPV6_VERSION & IPV6_VERSION_MASK);
341 		ip6->ip6_nxt = IPPROTO_TCP;
342 		ip6->ip6_plen = sizeof(struct tcphdr);
343 		ip6->ip6_src = inp->in6p_laddr;
344 		ip6->ip6_dst = inp->in6p_faddr;
345 	} else
346 #endif
347 	{
348 		struct ip *ip;
349 
350 		ip = (struct ip *)ip_ptr;
351 		ip->ip_v = IPVERSION;
352 		ip->ip_hl = 5;
353 		ip->ip_tos = inp->inp_ip_tos;
354 		ip->ip_len = 0;
355 		ip->ip_id = 0;
356 		ip->ip_off = 0;
357 		ip->ip_ttl = inp->inp_ip_ttl;
358 		ip->ip_sum = 0;
359 		ip->ip_p = IPPROTO_TCP;
360 		ip->ip_src = inp->inp_laddr;
361 		ip->ip_dst = inp->inp_faddr;
362 	}
363 	th->th_sport = inp->inp_lport;
364 	th->th_dport = inp->inp_fport;
365 	th->th_seq = 0;
366 	th->th_ack = 0;
367 	th->th_x2 = 0;
368 	th->th_off = 5;
369 	th->th_flags = 0;
370 	th->th_win = 0;
371 	th->th_urp = 0;
372 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
373 }
374 
375 /*
376  * Create template to be used to send tcp packets on a connection.
377  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
378  * use for this function is in keepalives, which use tcp_respond.
379  */
380 struct tcptemp *
381 tcpip_maketemplate(inp)
382 	struct inpcb *inp;
383 {
384 	struct mbuf *m;
385 	struct tcptemp *n;
386 
387 	m = m_get(M_DONTWAIT, MT_DATA);
388 	if (m == NULL)
389 		return (0);
390 	m->m_len = sizeof(struct tcptemp);
391 	n = mtod(m, struct tcptemp *);
392 
393 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
394 	return (n);
395 }
396 
397 /*
398  * Send a single message to the TCP at address specified by
399  * the given TCP/IP header.  If m == NULL, then we make a copy
400  * of the tcpiphdr at ti and send directly to the addressed host.
401  * This is used to force keep alive messages out using the TCP
402  * template for a connection.  If flags are given then we send
403  * a message back to the TCP which originated the * segment ti,
404  * and discard the mbuf containing it and any other attached mbufs.
405  *
406  * In any case the ack and sequence number of the transmitted
407  * segment are as specified by the parameters.
408  *
409  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
410  */
411 void
412 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
413 	struct tcpcb *tp;
414 	void *ipgen;
415 	register struct tcphdr *th;
416 	register struct mbuf *m;
417 	tcp_seq ack, seq;
418 	int flags;
419 {
420 	register int tlen;
421 	int win = 0;
422 	struct ip *ip;
423 	struct tcphdr *nth;
424 #ifdef INET6
425 	struct ip6_hdr *ip6;
426 	int isipv6;
427 #endif /* INET6 */
428 	int ipflags = 0;
429 	struct inpcb *inp;
430 
431 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
432 
433 #ifdef INET6
434 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
435 	ip6 = ipgen;
436 #endif /* INET6 */
437 	ip = ipgen;
438 
439 	if (tp != NULL) {
440 		inp = tp->t_inpcb;
441 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
442 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
443 		INP_LOCK_ASSERT(inp);
444 	} else
445 		inp = NULL;
446 
447 	if (tp != NULL) {
448 		if (!(flags & TH_RST)) {
449 			win = sbspace(&inp->inp_socket->so_rcv);
450 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
451 				win = (long)TCP_MAXWIN << tp->rcv_scale;
452 		}
453 	}
454 	if (m == NULL) {
455 		m = m_gethdr(M_DONTWAIT, MT_DATA);
456 		if (m == NULL)
457 			return;
458 		tlen = 0;
459 		m->m_data += max_linkhdr;
460 #ifdef INET6
461 		if (isipv6) {
462 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
463 			      sizeof(struct ip6_hdr));
464 			ip6 = mtod(m, struct ip6_hdr *);
465 			nth = (struct tcphdr *)(ip6 + 1);
466 		} else
467 #endif /* INET6 */
468 	      {
469 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
470 		ip = mtod(m, struct ip *);
471 		nth = (struct tcphdr *)(ip + 1);
472 	      }
473 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
474 		flags = TH_ACK;
475 	} else {
476 		m_freem(m->m_next);
477 		m->m_next = NULL;
478 		m->m_data = (caddr_t)ipgen;
479 		/* m_len is set later */
480 		tlen = 0;
481 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
482 #ifdef INET6
483 		if (isipv6) {
484 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
485 			nth = (struct tcphdr *)(ip6 + 1);
486 		} else
487 #endif /* INET6 */
488 	      {
489 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
490 		nth = (struct tcphdr *)(ip + 1);
491 	      }
492 		if (th != nth) {
493 			/*
494 			 * this is usually a case when an extension header
495 			 * exists between the IPv6 header and the
496 			 * TCP header.
497 			 */
498 			nth->th_sport = th->th_sport;
499 			nth->th_dport = th->th_dport;
500 		}
501 		xchg(nth->th_dport, nth->th_sport, n_short);
502 #undef xchg
503 	}
504 #ifdef INET6
505 	if (isipv6) {
506 		ip6->ip6_flow = 0;
507 		ip6->ip6_vfc = IPV6_VERSION;
508 		ip6->ip6_nxt = IPPROTO_TCP;
509 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
510 						tlen));
511 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
512 	} else
513 #endif
514 	{
515 		tlen += sizeof (struct tcpiphdr);
516 		ip->ip_len = tlen;
517 		ip->ip_ttl = ip_defttl;
518 		if (path_mtu_discovery)
519 			ip->ip_off |= IP_DF;
520 	}
521 	m->m_len = tlen;
522 	m->m_pkthdr.len = tlen;
523 	m->m_pkthdr.rcvif = NULL;
524 #ifdef MAC
525 	if (inp != NULL) {
526 		/*
527 		 * Packet is associated with a socket, so allow the
528 		 * label of the response to reflect the socket label.
529 		 */
530 		INP_LOCK_ASSERT(inp);
531 		mac_create_mbuf_from_inpcb(inp, m);
532 	} else {
533 		/*
534 		 * Packet is not associated with a socket, so possibly
535 		 * update the label in place.
536 		 */
537 		mac_reflect_mbuf_tcp(m);
538 	}
539 #endif
540 	nth->th_seq = htonl(seq);
541 	nth->th_ack = htonl(ack);
542 	nth->th_x2 = 0;
543 	nth->th_off = sizeof (struct tcphdr) >> 2;
544 	nth->th_flags = flags;
545 	if (tp != NULL)
546 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
547 	else
548 		nth->th_win = htons((u_short)win);
549 	nth->th_urp = 0;
550 #ifdef INET6
551 	if (isipv6) {
552 		nth->th_sum = 0;
553 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
554 					sizeof(struct ip6_hdr),
555 					tlen - sizeof(struct ip6_hdr));
556 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
557 		    NULL, NULL);
558 	} else
559 #endif /* INET6 */
560 	{
561 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
562 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
563 		m->m_pkthdr.csum_flags = CSUM_TCP;
564 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
565 	}
566 #ifdef TCPDEBUG
567 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
568 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
569 #endif
570 #ifdef INET6
571 	if (isipv6)
572 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
573 	else
574 #endif /* INET6 */
575 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
576 }
577 
578 /*
579  * Create a new TCP control block, making an
580  * empty reassembly queue and hooking it to the argument
581  * protocol control block.  The `inp' parameter must have
582  * come from the zone allocator set up in tcp_init().
583  */
584 struct tcpcb *
585 tcp_newtcpcb(inp)
586 	struct inpcb *inp;
587 {
588 	struct tcpcb_mem *tm;
589 	struct tcpcb *tp;
590 #ifdef INET6
591 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
592 #endif /* INET6 */
593 
594 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
595 	if (tm == NULL)
596 		return (NULL);
597 	tp = &tm->tcb;
598 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
599 	tp->t_maxseg = tp->t_maxopd =
600 #ifdef INET6
601 		isipv6 ? tcp_v6mssdflt :
602 #endif /* INET6 */
603 		tcp_mssdflt;
604 
605 	/* Set up our timeouts. */
606 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
607 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
608 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
609 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
610 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
611 
612 	if (tcp_do_rfc1323)
613 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
614 	tp->sack_enable = tcp_do_sack;
615 	TAILQ_INIT(&tp->snd_holes);
616 	tp->t_inpcb = inp;	/* XXX */
617 	/*
618 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
619 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
620 	 * reasonable initial retransmit time.
621 	 */
622 	tp->t_srtt = TCPTV_SRTTBASE;
623 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
624 	tp->t_rttmin = tcp_rexmit_min;
625 	tp->t_rxtcur = TCPTV_RTOBASE;
626 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
627 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
628 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
629 	tp->t_rcvtime = ticks;
630 	tp->t_bw_rtttime = ticks;
631 	/*
632 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
633 	 * because the socket may be bound to an IPv6 wildcard address,
634 	 * which may match an IPv4-mapped IPv6 address.
635 	 */
636 	inp->inp_ip_ttl = ip_defttl;
637 	inp->inp_ppcb = (caddr_t)tp;
638 	return (tp);		/* XXX */
639 }
640 
641 /*
642  * Drop a TCP connection, reporting
643  * the specified error.  If connection is synchronized,
644  * then send a RST to peer.
645  */
646 struct tcpcb *
647 tcp_drop(tp, errno)
648 	register struct tcpcb *tp;
649 	int errno;
650 {
651 	struct socket *so = tp->t_inpcb->inp_socket;
652 
653 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
654 	INP_LOCK_ASSERT(tp->t_inpcb);
655 
656 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
657 		tp->t_state = TCPS_CLOSED;
658 		(void) tcp_output(tp);
659 		tcpstat.tcps_drops++;
660 	} else
661 		tcpstat.tcps_conndrops++;
662 	if (errno == ETIMEDOUT && tp->t_softerror)
663 		errno = tp->t_softerror;
664 	so->so_error = errno;
665 	return (tcp_close(tp));
666 }
667 
668 static void
669 tcp_discardcb(tp)
670 	struct tcpcb *tp;
671 {
672 	struct tseg_qent *q;
673 	struct inpcb *inp = tp->t_inpcb;
674 	struct socket *so = inp->inp_socket;
675 #ifdef INET6
676 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
677 #endif /* INET6 */
678 
679 	INP_LOCK_ASSERT(inp);
680 
681 	/*
682 	 * Make sure that all of our timers are stopped before we
683 	 * delete the PCB.
684 	 */
685 	callout_stop(tp->tt_rexmt);
686 	callout_stop(tp->tt_persist);
687 	callout_stop(tp->tt_keep);
688 	callout_stop(tp->tt_2msl);
689 	callout_stop(tp->tt_delack);
690 
691 	/*
692 	 * If we got enough samples through the srtt filter,
693 	 * save the rtt and rttvar in the routing entry.
694 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
695 	 * 4 samples is enough for the srtt filter to converge
696 	 * to within enough % of the correct value; fewer samples
697 	 * and we could save a bogus rtt. The danger is not high
698 	 * as tcp quickly recovers from everything.
699 	 * XXX: Works very well but needs some more statistics!
700 	 */
701 	if (tp->t_rttupdated >= 4) {
702 		struct hc_metrics_lite metrics;
703 		u_long ssthresh;
704 
705 		bzero(&metrics, sizeof(metrics));
706 		/*
707 		 * Update the ssthresh always when the conditions below
708 		 * are satisfied. This gives us better new start value
709 		 * for the congestion avoidance for new connections.
710 		 * ssthresh is only set if packet loss occured on a session.
711 		 */
712 		ssthresh = tp->snd_ssthresh;
713 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
714 			/*
715 			 * convert the limit from user data bytes to
716 			 * packets then to packet data bytes.
717 			 */
718 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
719 			if (ssthresh < 2)
720 				ssthresh = 2;
721 			ssthresh *= (u_long)(tp->t_maxseg +
722 #ifdef INET6
723 				      (isipv6 ? sizeof (struct ip6_hdr) +
724 					       sizeof (struct tcphdr) :
725 #endif
726 				       sizeof (struct tcpiphdr)
727 #ifdef INET6
728 				       )
729 #endif
730 				      );
731 		} else
732 			ssthresh = 0;
733 		metrics.rmx_ssthresh = ssthresh;
734 
735 		metrics.rmx_rtt = tp->t_srtt;
736 		metrics.rmx_rttvar = tp->t_rttvar;
737 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
738 		metrics.rmx_bandwidth = tp->snd_bandwidth;
739 		metrics.rmx_cwnd = tp->snd_cwnd;
740 		metrics.rmx_sendpipe = 0;
741 		metrics.rmx_recvpipe = 0;
742 
743 		tcp_hc_update(&inp->inp_inc, &metrics);
744 	}
745 
746 	/* free the reassembly queue, if any */
747 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
748 		LIST_REMOVE(q, tqe_q);
749 		m_freem(q->tqe_m);
750 		uma_zfree(tcp_reass_zone, q);
751 		tp->t_segqlen--;
752 		tcp_reass_qsize--;
753 	}
754 	tcp_free_sackholes(tp);
755 	inp->inp_ppcb = NULL;
756 	tp->t_inpcb = NULL;
757 	uma_zfree(tcpcb_zone, tp);
758 	soisdisconnected(so);
759 }
760 
761 /*
762  * Close a TCP control block:
763  *    discard all space held by the tcp
764  *    discard internet protocol block
765  *    wake up any sleepers
766  */
767 struct tcpcb *
768 tcp_close(tp)
769 	struct tcpcb *tp;
770 {
771 	struct inpcb *inp = tp->t_inpcb;
772 #ifdef INET6
773 	struct socket *so = inp->inp_socket;
774 #endif
775 
776 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
777 	INP_LOCK_ASSERT(inp);
778 
779 	tcp_discardcb(tp);
780 #ifdef INET6
781 	if (INP_CHECK_SOCKAF(so, AF_INET6))
782 		in6_pcbdetach(inp);
783 	else
784 #endif
785 		in_pcbdetach(inp);
786 	tcpstat.tcps_closed++;
787 	return (NULL);
788 }
789 
790 void
791 tcp_drain()
792 {
793 	if (do_tcpdrain)
794 	{
795 		struct inpcb *inpb;
796 		struct tcpcb *tcpb;
797 		struct tseg_qent *te;
798 
799 	/*
800 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
801 	 * if there is one...
802 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
803 	 *      reassembly queue should be flushed, but in a situation
804 	 *	where we're really low on mbufs, this is potentially
805 	 *	usefull.
806 	 */
807 		INP_INFO_RLOCK(&tcbinfo);
808 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
809 			if (inpb->inp_vflag & INP_TIMEWAIT)
810 				continue;
811 			INP_LOCK(inpb);
812 			if ((tcpb = intotcpcb(inpb)) != NULL) {
813 				while ((te = LIST_FIRST(&tcpb->t_segq))
814 			            != NULL) {
815 					LIST_REMOVE(te, tqe_q);
816 					m_freem(te->tqe_m);
817 					uma_zfree(tcp_reass_zone, te);
818 					tcpb->t_segqlen--;
819 					tcp_reass_qsize--;
820 				}
821 				tcp_clean_sackreport(tcpb);
822 			}
823 			INP_UNLOCK(inpb);
824 		}
825 		INP_INFO_RUNLOCK(&tcbinfo);
826 	}
827 }
828 
829 /*
830  * Notify a tcp user of an asynchronous error;
831  * store error as soft error, but wake up user
832  * (for now, won't do anything until can select for soft error).
833  *
834  * Do not wake up user since there currently is no mechanism for
835  * reporting soft errors (yet - a kqueue filter may be added).
836  */
837 static struct inpcb *
838 tcp_notify(inp, error)
839 	struct inpcb *inp;
840 	int error;
841 {
842 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
843 
844 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
845 	INP_LOCK_ASSERT(inp);
846 
847 	/*
848 	 * Ignore some errors if we are hooked up.
849 	 * If connection hasn't completed, has retransmitted several times,
850 	 * and receives a second error, give up now.  This is better
851 	 * than waiting a long time to establish a connection that
852 	 * can never complete.
853 	 */
854 	if (tp->t_state == TCPS_ESTABLISHED &&
855 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
856 	     error == EHOSTDOWN)) {
857 		return (inp);
858 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
859 	    tp->t_softerror) {
860 		tcp_drop(tp, error);
861 		return (struct inpcb *)0;
862 	} else {
863 		tp->t_softerror = error;
864 		return (inp);
865 	}
866 #if 0
867 	wakeup( &so->so_timeo);
868 	sorwakeup(so);
869 	sowwakeup(so);
870 #endif
871 }
872 
873 static int
874 tcp_pcblist(SYSCTL_HANDLER_ARGS)
875 {
876 	int error, i, n;
877 	struct inpcb *inp, **inp_list;
878 	inp_gen_t gencnt;
879 	struct xinpgen xig;
880 
881 	/*
882 	 * The process of preparing the TCB list is too time-consuming and
883 	 * resource-intensive to repeat twice on every request.
884 	 */
885 	if (req->oldptr == NULL) {
886 		n = tcbinfo.ipi_count;
887 		req->oldidx = 2 * (sizeof xig)
888 			+ (n + n/8) * sizeof(struct xtcpcb);
889 		return (0);
890 	}
891 
892 	if (req->newptr != NULL)
893 		return (EPERM);
894 
895 	/*
896 	 * OK, now we're committed to doing something.
897 	 */
898 	INP_INFO_RLOCK(&tcbinfo);
899 	gencnt = tcbinfo.ipi_gencnt;
900 	n = tcbinfo.ipi_count;
901 	INP_INFO_RUNLOCK(&tcbinfo);
902 
903 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
904 		+ n * sizeof(struct xtcpcb));
905 	if (error != 0)
906 		return (error);
907 
908 	xig.xig_len = sizeof xig;
909 	xig.xig_count = n;
910 	xig.xig_gen = gencnt;
911 	xig.xig_sogen = so_gencnt;
912 	error = SYSCTL_OUT(req, &xig, sizeof xig);
913 	if (error)
914 		return (error);
915 
916 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
917 	if (inp_list == NULL)
918 		return (ENOMEM);
919 
920 	INP_INFO_RLOCK(&tcbinfo);
921 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
922 	     inp = LIST_NEXT(inp, inp_list)) {
923 		INP_LOCK(inp);
924 		if (inp->inp_gencnt <= gencnt) {
925 			/*
926 			 * XXX: This use of cr_cansee(), introduced with
927 			 * TCP state changes, is not quite right, but for
928 			 * now, better than nothing.
929 			 */
930 			if (inp->inp_vflag & INP_TIMEWAIT)
931 				error = cr_cansee(req->td->td_ucred,
932 				    intotw(inp)->tw_cred);
933 			else
934 				error = cr_canseesocket(req->td->td_ucred,
935 				    inp->inp_socket);
936 			if (error == 0)
937 				inp_list[i++] = inp;
938 		}
939 		INP_UNLOCK(inp);
940 	}
941 	INP_INFO_RUNLOCK(&tcbinfo);
942 	n = i;
943 
944 	error = 0;
945 	for (i = 0; i < n; i++) {
946 		inp = inp_list[i];
947 		if (inp->inp_gencnt <= gencnt) {
948 			struct xtcpcb xt;
949 			caddr_t inp_ppcb;
950 
951 			bzero(&xt, sizeof(xt));
952 			xt.xt_len = sizeof xt;
953 			/* XXX should avoid extra copy */
954 			bcopy(inp, &xt.xt_inp, sizeof *inp);
955 			inp_ppcb = inp->inp_ppcb;
956 			if (inp_ppcb == NULL)
957 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
958 			else if (inp->inp_vflag & INP_TIMEWAIT) {
959 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
960 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
961 			} else
962 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
963 			if (inp->inp_socket != NULL)
964 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
965 			else {
966 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
967 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
968 			}
969 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
970 			error = SYSCTL_OUT(req, &xt, sizeof xt);
971 		}
972 	}
973 	if (!error) {
974 		/*
975 		 * Give the user an updated idea of our state.
976 		 * If the generation differs from what we told
977 		 * her before, she knows that something happened
978 		 * while we were processing this request, and it
979 		 * might be necessary to retry.
980 		 */
981 		INP_INFO_RLOCK(&tcbinfo);
982 		xig.xig_gen = tcbinfo.ipi_gencnt;
983 		xig.xig_sogen = so_gencnt;
984 		xig.xig_count = tcbinfo.ipi_count;
985 		INP_INFO_RUNLOCK(&tcbinfo);
986 		error = SYSCTL_OUT(req, &xig, sizeof xig);
987 	}
988 	free(inp_list, M_TEMP);
989 	return (error);
990 }
991 
992 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
993 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
994 
995 static int
996 tcp_getcred(SYSCTL_HANDLER_ARGS)
997 {
998 	struct xucred xuc;
999 	struct sockaddr_in addrs[2];
1000 	struct inpcb *inp;
1001 	int error;
1002 
1003 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1004 	if (error)
1005 		return (error);
1006 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1007 	if (error)
1008 		return (error);
1009 	INP_INFO_RLOCK(&tcbinfo);
1010 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1011 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1012 	if (inp == NULL) {
1013 		error = ENOENT;
1014 		goto outunlocked;
1015 	}
1016 	INP_LOCK(inp);
1017 	if (inp->inp_socket == NULL) {
1018 		error = ENOENT;
1019 		goto out;
1020 	}
1021 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1022 	if (error)
1023 		goto out;
1024 	cru2x(inp->inp_socket->so_cred, &xuc);
1025 out:
1026 	INP_UNLOCK(inp);
1027 outunlocked:
1028 	INP_INFO_RUNLOCK(&tcbinfo);
1029 	if (error == 0)
1030 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1031 	return (error);
1032 }
1033 
1034 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1035     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1036     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1037 
1038 #ifdef INET6
1039 static int
1040 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1041 {
1042 	struct xucred xuc;
1043 	struct sockaddr_in6 addrs[2];
1044 	struct inpcb *inp;
1045 	int error, mapped = 0;
1046 
1047 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1048 	if (error)
1049 		return (error);
1050 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1051 	if (error)
1052 		return (error);
1053 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1054 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1055 		return (error);
1056 	}
1057 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1058 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1059 			mapped = 1;
1060 		else
1061 			return (EINVAL);
1062 	}
1063 
1064 	INP_INFO_RLOCK(&tcbinfo);
1065 	if (mapped == 1)
1066 		inp = in_pcblookup_hash(&tcbinfo,
1067 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1068 			addrs[1].sin6_port,
1069 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1070 			addrs[0].sin6_port,
1071 			0, NULL);
1072 	else
1073 		inp = in6_pcblookup_hash(&tcbinfo,
1074 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1075 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1076 	if (inp == NULL) {
1077 		error = ENOENT;
1078 		goto outunlocked;
1079 	}
1080 	INP_LOCK(inp);
1081 	if (inp->inp_socket == NULL) {
1082 		error = ENOENT;
1083 		goto out;
1084 	}
1085 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1086 	if (error)
1087 		goto out;
1088 	cru2x(inp->inp_socket->so_cred, &xuc);
1089 out:
1090 	INP_UNLOCK(inp);
1091 outunlocked:
1092 	INP_INFO_RUNLOCK(&tcbinfo);
1093 	if (error == 0)
1094 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095 	return (error);
1096 }
1097 
1098 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1099     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1101 #endif
1102 
1103 
1104 void
1105 tcp_ctlinput(cmd, sa, vip)
1106 	int cmd;
1107 	struct sockaddr *sa;
1108 	void *vip;
1109 {
1110 	struct ip *ip = vip;
1111 	struct tcphdr *th;
1112 	struct in_addr faddr;
1113 	struct inpcb *inp;
1114 	struct tcpcb *tp;
1115 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1116 	struct icmp *icp;
1117 	struct in_conninfo inc;
1118 	tcp_seq icmp_tcp_seq;
1119 	int mtu;
1120 
1121 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1122 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1123 		return;
1124 
1125 	if (cmd == PRC_MSGSIZE)
1126 		notify = tcp_mtudisc;
1127 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1128 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1129 		notify = tcp_drop_syn_sent;
1130 	/*
1131 	 * Redirects don't need to be handled up here.
1132 	 */
1133 	else if (PRC_IS_REDIRECT(cmd))
1134 		return;
1135 	/*
1136 	 * Source quench is depreciated.
1137 	 */
1138 	else if (cmd == PRC_QUENCH)
1139 		return;
1140 	/*
1141 	 * Hostdead is ugly because it goes linearly through all PCBs.
1142 	 * XXX: We never get this from ICMP, otherwise it makes an
1143 	 * excellent DoS attack on machines with many connections.
1144 	 */
1145 	else if (cmd == PRC_HOSTDEAD)
1146 		ip = NULL;
1147 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1148 		return;
1149 	if (ip != NULL) {
1150 		icp = (struct icmp *)((caddr_t)ip
1151 				      - offsetof(struct icmp, icmp_ip));
1152 		th = (struct tcphdr *)((caddr_t)ip
1153 				       + (ip->ip_hl << 2));
1154 		INP_INFO_WLOCK(&tcbinfo);
1155 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1156 		    ip->ip_src, th->th_sport, 0, NULL);
1157 		if (inp != NULL)  {
1158 			INP_LOCK(inp);
1159 			if (inp->inp_socket != NULL) {
1160 				icmp_tcp_seq = htonl(th->th_seq);
1161 				tp = intotcpcb(inp);
1162 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1163 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1164 					if (cmd == PRC_MSGSIZE) {
1165 					    /*
1166 					     * MTU discovery:
1167 					     * If we got a needfrag set the MTU
1168 					     * in the route to the suggested new
1169 					     * value (if given) and then notify.
1170 					     */
1171 					    bzero(&inc, sizeof(inc));
1172 					    inc.inc_flags = 0;	/* IPv4 */
1173 					    inc.inc_faddr = faddr;
1174 
1175 					    mtu = ntohs(icp->icmp_nextmtu);
1176 					    /*
1177 					     * If no alternative MTU was
1178 					     * proposed, try the next smaller
1179 					     * one.  ip->ip_len has already
1180 					     * been swapped in icmp_input().
1181 					     */
1182 					    if (!mtu)
1183 						mtu = ip_next_mtu(ip->ip_len,
1184 						 1);
1185 					    if (mtu < max(296, (tcp_minmss)
1186 						 + sizeof(struct tcpiphdr)))
1187 						mtu = 0;
1188 					    if (!mtu)
1189 						mtu = tcp_mssdflt
1190 						 + sizeof(struct tcpiphdr);
1191 					    /*
1192 					     * Only cache the the MTU if it
1193 					     * is smaller than the interface
1194 					     * or route MTU.  tcp_mtudisc()
1195 					     * will do right thing by itself.
1196 					     */
1197 					    if (mtu <= tcp_maxmtu(&inc))
1198 						tcp_hc_updatemtu(&inc, mtu);
1199 					}
1200 
1201 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1202 				}
1203 			}
1204 			if (inp != NULL)
1205 				INP_UNLOCK(inp);
1206 		} else {
1207 			inc.inc_fport = th->th_dport;
1208 			inc.inc_lport = th->th_sport;
1209 			inc.inc_faddr = faddr;
1210 			inc.inc_laddr = ip->ip_src;
1211 #ifdef INET6
1212 			inc.inc_isipv6 = 0;
1213 #endif
1214 			syncache_unreach(&inc, th);
1215 		}
1216 		INP_INFO_WUNLOCK(&tcbinfo);
1217 	} else
1218 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1219 }
1220 
1221 #ifdef INET6
1222 void
1223 tcp6_ctlinput(cmd, sa, d)
1224 	int cmd;
1225 	struct sockaddr *sa;
1226 	void *d;
1227 {
1228 	struct tcphdr th;
1229 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1230 	struct ip6_hdr *ip6;
1231 	struct mbuf *m;
1232 	struct ip6ctlparam *ip6cp = NULL;
1233 	const struct sockaddr_in6 *sa6_src = NULL;
1234 	int off;
1235 	struct tcp_portonly {
1236 		u_int16_t th_sport;
1237 		u_int16_t th_dport;
1238 	} *thp;
1239 
1240 	if (sa->sa_family != AF_INET6 ||
1241 	    sa->sa_len != sizeof(struct sockaddr_in6))
1242 		return;
1243 
1244 	if (cmd == PRC_MSGSIZE)
1245 		notify = tcp_mtudisc;
1246 	else if (!PRC_IS_REDIRECT(cmd) &&
1247 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1248 		return;
1249 	/* Source quench is depreciated. */
1250 	else if (cmd == PRC_QUENCH)
1251 		return;
1252 
1253 	/* if the parameter is from icmp6, decode it. */
1254 	if (d != NULL) {
1255 		ip6cp = (struct ip6ctlparam *)d;
1256 		m = ip6cp->ip6c_m;
1257 		ip6 = ip6cp->ip6c_ip6;
1258 		off = ip6cp->ip6c_off;
1259 		sa6_src = ip6cp->ip6c_src;
1260 	} else {
1261 		m = NULL;
1262 		ip6 = NULL;
1263 		off = 0;	/* fool gcc */
1264 		sa6_src = &sa6_any;
1265 	}
1266 
1267 	if (ip6 != NULL) {
1268 		struct in_conninfo inc;
1269 		/*
1270 		 * XXX: We assume that when IPV6 is non NULL,
1271 		 * M and OFF are valid.
1272 		 */
1273 
1274 		/* check if we can safely examine src and dst ports */
1275 		if (m->m_pkthdr.len < off + sizeof(*thp))
1276 			return;
1277 
1278 		bzero(&th, sizeof(th));
1279 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1280 
1281 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1282 		    (struct sockaddr *)ip6cp->ip6c_src,
1283 		    th.th_sport, cmd, NULL, notify);
1284 
1285 		inc.inc_fport = th.th_dport;
1286 		inc.inc_lport = th.th_sport;
1287 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1288 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1289 		inc.inc_isipv6 = 1;
1290 		INP_INFO_WLOCK(&tcbinfo);
1291 		syncache_unreach(&inc, &th);
1292 		INP_INFO_WUNLOCK(&tcbinfo);
1293 	} else
1294 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1295 			      0, cmd, NULL, notify);
1296 }
1297 #endif /* INET6 */
1298 
1299 
1300 /*
1301  * Following is where TCP initial sequence number generation occurs.
1302  *
1303  * There are two places where we must use initial sequence numbers:
1304  * 1.  In SYN-ACK packets.
1305  * 2.  In SYN packets.
1306  *
1307  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1308  * tcp_syncache.c for details.
1309  *
1310  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1311  * depends on this property.  In addition, these ISNs should be
1312  * unguessable so as to prevent connection hijacking.  To satisfy
1313  * the requirements of this situation, the algorithm outlined in
1314  * RFC 1948 is used, with only small modifications.
1315  *
1316  * Implementation details:
1317  *
1318  * Time is based off the system timer, and is corrected so that it
1319  * increases by one megabyte per second.  This allows for proper
1320  * recycling on high speed LANs while still leaving over an hour
1321  * before rollover.
1322  *
1323  * As reading the *exact* system time is too expensive to be done
1324  * whenever setting up a TCP connection, we increment the time
1325  * offset in two ways.  First, a small random positive increment
1326  * is added to isn_offset for each connection that is set up.
1327  * Second, the function tcp_isn_tick fires once per clock tick
1328  * and increments isn_offset as necessary so that sequence numbers
1329  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1330  * random positive increments serve only to ensure that the same
1331  * exact sequence number is never sent out twice (as could otherwise
1332  * happen when a port is recycled in less than the system tick
1333  * interval.)
1334  *
1335  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1336  * between seeding of isn_secret.  This is normally set to zero,
1337  * as reseeding should not be necessary.
1338  *
1339  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1340  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1341  * general, this means holding an exclusive (write) lock.
1342  */
1343 
1344 #define ISN_BYTES_PER_SECOND 1048576
1345 #define ISN_STATIC_INCREMENT 4096
1346 #define ISN_RANDOM_INCREMENT (4096 - 1)
1347 
1348 static u_char isn_secret[32];
1349 static int isn_last_reseed;
1350 static u_int32_t isn_offset, isn_offset_old;
1351 static MD5_CTX isn_ctx;
1352 
1353 tcp_seq
1354 tcp_new_isn(tp)
1355 	struct tcpcb *tp;
1356 {
1357 	u_int32_t md5_buffer[4];
1358 	tcp_seq new_isn;
1359 
1360 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1361 	INP_LOCK_ASSERT(tp->t_inpcb);
1362 
1363 	/* Seed if this is the first use, reseed if requested. */
1364 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1365 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1366 		< (u_int)ticks))) {
1367 		read_random(&isn_secret, sizeof(isn_secret));
1368 		isn_last_reseed = ticks;
1369 	}
1370 
1371 	/* Compute the md5 hash and return the ISN. */
1372 	MD5Init(&isn_ctx);
1373 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1374 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1375 #ifdef INET6
1376 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1377 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1378 			  sizeof(struct in6_addr));
1379 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1380 			  sizeof(struct in6_addr));
1381 	} else
1382 #endif
1383 	{
1384 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1385 			  sizeof(struct in_addr));
1386 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1387 			  sizeof(struct in_addr));
1388 	}
1389 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1390 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1391 	new_isn = (tcp_seq) md5_buffer[0];
1392 	isn_offset += ISN_STATIC_INCREMENT +
1393 		(arc4random() & ISN_RANDOM_INCREMENT);
1394 	new_isn += isn_offset;
1395 	return (new_isn);
1396 }
1397 
1398 /*
1399  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1400  * to keep time flowing at a relatively constant rate.  If the random
1401  * increments have already pushed us past the projected offset, do nothing.
1402  */
1403 static void
1404 tcp_isn_tick(xtp)
1405 	void *xtp;
1406 {
1407 	u_int32_t projected_offset;
1408 
1409 	INP_INFO_WLOCK(&tcbinfo);
1410 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1411 
1412 	if (projected_offset > isn_offset)
1413 		isn_offset = projected_offset;
1414 
1415 	isn_offset_old = isn_offset;
1416 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1417 	INP_INFO_WUNLOCK(&tcbinfo);
1418 }
1419 
1420 /*
1421  * When a specific ICMP unreachable message is received and the
1422  * connection state is SYN-SENT, drop the connection.  This behavior
1423  * is controlled by the icmp_may_rst sysctl.
1424  */
1425 struct inpcb *
1426 tcp_drop_syn_sent(inp, errno)
1427 	struct inpcb *inp;
1428 	int errno;
1429 {
1430 	struct tcpcb *tp = intotcpcb(inp);
1431 
1432 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1433 	INP_LOCK_ASSERT(inp);
1434 
1435 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1436 		tcp_drop(tp, errno);
1437 		return (NULL);
1438 	}
1439 	return (inp);
1440 }
1441 
1442 /*
1443  * When `need fragmentation' ICMP is received, update our idea of the MSS
1444  * based on the new value in the route.  Also nudge TCP to send something,
1445  * since we know the packet we just sent was dropped.
1446  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1447  */
1448 struct inpcb *
1449 tcp_mtudisc(inp, errno)
1450 	struct inpcb *inp;
1451 	int errno;
1452 {
1453 	struct tcpcb *tp = intotcpcb(inp);
1454 	struct socket *so = inp->inp_socket;
1455 	u_int maxmtu;
1456 	u_int romtu;
1457 	int mss;
1458 #ifdef INET6
1459 	int isipv6;
1460 #endif /* INET6 */
1461 
1462 	INP_LOCK_ASSERT(inp);
1463 	if (tp != NULL) {
1464 #ifdef INET6
1465 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1466 #endif
1467 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1468 		romtu =
1469 #ifdef INET6
1470 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1471 #endif /* INET6 */
1472 		    tcp_maxmtu(&inp->inp_inc);
1473 		if (!maxmtu)
1474 			maxmtu = romtu;
1475 		else
1476 			maxmtu = min(maxmtu, romtu);
1477 		if (!maxmtu) {
1478 			tp->t_maxopd = tp->t_maxseg =
1479 #ifdef INET6
1480 				isipv6 ? tcp_v6mssdflt :
1481 #endif /* INET6 */
1482 				tcp_mssdflt;
1483 			return (inp);
1484 		}
1485 		mss = maxmtu -
1486 #ifdef INET6
1487 			(isipv6 ?
1488 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1489 #endif /* INET6 */
1490 			 sizeof(struct tcpiphdr)
1491 #ifdef INET6
1492 			 )
1493 #endif /* INET6 */
1494 			;
1495 
1496 		/*
1497 		 * XXX - The above conditional probably violates the TCP
1498 		 * spec.  The problem is that, since we don't know the
1499 		 * other end's MSS, we are supposed to use a conservative
1500 		 * default.  But, if we do that, then MTU discovery will
1501 		 * never actually take place, because the conservative
1502 		 * default is much less than the MTUs typically seen
1503 		 * on the Internet today.  For the moment, we'll sweep
1504 		 * this under the carpet.
1505 		 *
1506 		 * The conservative default might not actually be a problem
1507 		 * if the only case this occurs is when sending an initial
1508 		 * SYN with options and data to a host we've never talked
1509 		 * to before.  Then, they will reply with an MSS value which
1510 		 * will get recorded and the new parameters should get
1511 		 * recomputed.  For Further Study.
1512 		 */
1513 		if (tp->t_maxopd <= mss)
1514 			return (inp);
1515 		tp->t_maxopd = mss;
1516 
1517 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1518 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1519 			mss -= TCPOLEN_TSTAMP_APPA;
1520 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1521 		if (mss > MCLBYTES)
1522 			mss &= ~(MCLBYTES-1);
1523 #else
1524 		if (mss > MCLBYTES)
1525 			mss = mss / MCLBYTES * MCLBYTES;
1526 #endif
1527 		if (so->so_snd.sb_hiwat < mss)
1528 			mss = so->so_snd.sb_hiwat;
1529 
1530 		tp->t_maxseg = mss;
1531 
1532 		tcpstat.tcps_mturesent++;
1533 		tp->t_rtttime = 0;
1534 		tp->snd_nxt = tp->snd_una;
1535 		tcp_output(tp);
1536 	}
1537 	return (inp);
1538 }
1539 
1540 /*
1541  * Look-up the routing entry to the peer of this inpcb.  If no route
1542  * is found and it cannot be allocated, then return NULL.  This routine
1543  * is called by TCP routines that access the rmx structure and by tcp_mss
1544  * to get the interface MTU.
1545  */
1546 u_long
1547 tcp_maxmtu(inc)
1548 	struct in_conninfo *inc;
1549 {
1550 	struct route sro;
1551 	struct sockaddr_in *dst;
1552 	struct ifnet *ifp;
1553 	u_long maxmtu = 0;
1554 
1555 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1556 
1557 	bzero(&sro, sizeof(sro));
1558 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1559 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1560 		dst->sin_family = AF_INET;
1561 		dst->sin_len = sizeof(*dst);
1562 		dst->sin_addr = inc->inc_faddr;
1563 		rtalloc_ign(&sro, RTF_CLONING);
1564 	}
1565 	if (sro.ro_rt != NULL) {
1566 		ifp = sro.ro_rt->rt_ifp;
1567 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1568 			maxmtu = ifp->if_mtu;
1569 		else
1570 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1571 		RTFREE(sro.ro_rt);
1572 	}
1573 	return (maxmtu);
1574 }
1575 
1576 #ifdef INET6
1577 u_long
1578 tcp_maxmtu6(inc)
1579 	struct in_conninfo *inc;
1580 {
1581 	struct route_in6 sro6;
1582 	struct ifnet *ifp;
1583 	u_long maxmtu = 0;
1584 
1585 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1586 
1587 	bzero(&sro6, sizeof(sro6));
1588 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1589 		sro6.ro_dst.sin6_family = AF_INET6;
1590 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1591 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1592 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1593 	}
1594 	if (sro6.ro_rt != NULL) {
1595 		ifp = sro6.ro_rt->rt_ifp;
1596 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1597 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1598 		else
1599 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1600 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1601 		RTFREE(sro6.ro_rt);
1602 	}
1603 
1604 	return (maxmtu);
1605 }
1606 #endif /* INET6 */
1607 
1608 #ifdef IPSEC
1609 /* compute ESP/AH header size for TCP, including outer IP header. */
1610 size_t
1611 ipsec_hdrsiz_tcp(tp)
1612 	struct tcpcb *tp;
1613 {
1614 	struct inpcb *inp;
1615 	struct mbuf *m;
1616 	size_t hdrsiz;
1617 	struct ip *ip;
1618 #ifdef INET6
1619 	struct ip6_hdr *ip6;
1620 #endif
1621 	struct tcphdr *th;
1622 
1623 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1624 		return (0);
1625 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1626 	if (!m)
1627 		return (0);
1628 
1629 #ifdef INET6
1630 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1631 		ip6 = mtod(m, struct ip6_hdr *);
1632 		th = (struct tcphdr *)(ip6 + 1);
1633 		m->m_pkthdr.len = m->m_len =
1634 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1635 		tcpip_fillheaders(inp, ip6, th);
1636 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1637 	} else
1638 #endif /* INET6 */
1639 	{
1640 		ip = mtod(m, struct ip *);
1641 		th = (struct tcphdr *)(ip + 1);
1642 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1643 		tcpip_fillheaders(inp, ip, th);
1644 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1645 	}
1646 
1647 	m_free(m);
1648 	return (hdrsiz);
1649 }
1650 #endif /*IPSEC*/
1651 
1652 /*
1653  * Move a TCP connection into TIME_WAIT state.
1654  *    tcbinfo is locked.
1655  *    inp is locked, and is unlocked before returning.
1656  */
1657 void
1658 tcp_twstart(tp)
1659 	struct tcpcb *tp;
1660 {
1661 	struct tcptw *tw;
1662 	struct inpcb *inp;
1663 	int tw_time, acknow;
1664 	struct socket *so;
1665 
1666 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1667 	INP_LOCK_ASSERT(tp->t_inpcb);
1668 
1669 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1670 	if (tw == NULL) {
1671 		tw = tcp_timer_2msl_tw(1);
1672 		if (tw == NULL) {
1673 			tcp_close(tp);
1674 			return;
1675 		}
1676 	}
1677 	inp = tp->t_inpcb;
1678 	tw->tw_inpcb = inp;
1679 
1680 	/*
1681 	 * Recover last window size sent.
1682 	 */
1683 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1684 
1685 	/*
1686 	 * Set t_recent if timestamps are used on the connection.
1687 	 */
1688 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1689 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1690 		tw->t_recent = tp->ts_recent;
1691 	else
1692 		tw->t_recent = 0;
1693 
1694 	tw->snd_nxt = tp->snd_nxt;
1695 	tw->rcv_nxt = tp->rcv_nxt;
1696 	tw->iss     = tp->iss;
1697 	tw->irs     = tp->irs;
1698 	tw->t_starttime = tp->t_starttime;
1699 	tw->tw_time = 0;
1700 
1701 /* XXX
1702  * If this code will
1703  * be used for fin-wait-2 state also, then we may need
1704  * a ts_recent from the last segment.
1705  */
1706 	tw_time = 2 * tcp_msl;
1707 	acknow = tp->t_flags & TF_ACKNOW;
1708 	tcp_discardcb(tp);
1709 	so = inp->inp_socket;
1710 	ACCEPT_LOCK();
1711 	SOCK_LOCK(so);
1712 	so->so_pcb = NULL;
1713 	tw->tw_cred = crhold(so->so_cred);
1714 	tw->tw_so_options = so->so_options;
1715 	sotryfree(so);
1716 	inp->inp_socket = NULL;
1717 	if (acknow)
1718 		tcp_twrespond(tw, TH_ACK);
1719 	inp->inp_ppcb = (caddr_t)tw;
1720 	inp->inp_vflag |= INP_TIMEWAIT;
1721 	tcp_timer_2msl_reset(tw, tw_time);
1722 	INP_UNLOCK(inp);
1723 }
1724 
1725 /*
1726  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1727  * the actual rate is slightly higher due to the addition of
1728  * random positive increments.
1729  *
1730  * Most other new OSes use semi-randomized ISN values, so we
1731  * do not need to worry about them.
1732  */
1733 #define MS_ISN_BYTES_PER_SECOND		250000
1734 
1735 /*
1736  * Determine if the ISN we will generate has advanced beyond the last
1737  * sequence number used by the previous connection.  If so, indicate
1738  * that it is safe to recycle this tw socket by returning 1.
1739  *
1740  * XXXRW: This function should assert the inpcb lock as it does multiple
1741  * non-atomic reads from the tcptw, but is currently called without it from
1742  * in_pcb.c:in_pcblookup_local().
1743  */
1744 int
1745 tcp_twrecycleable(struct tcptw *tw)
1746 {
1747 	tcp_seq new_iss = tw->iss;
1748 	tcp_seq new_irs = tw->irs;
1749 
1750 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1751 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1752 
1753 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1754 		return (1);
1755 	else
1756 		return (0);
1757 }
1758 
1759 struct tcptw *
1760 tcp_twclose(struct tcptw *tw, int reuse)
1761 {
1762 	struct inpcb *inp;
1763 
1764 	inp = tw->tw_inpcb;
1765 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1766 	INP_LOCK_ASSERT(inp);
1767 
1768 	tw->tw_inpcb = NULL;
1769 	tcp_timer_2msl_stop(tw);
1770 	inp->inp_ppcb = NULL;
1771 #ifdef INET6
1772 	if (inp->inp_vflag & INP_IPV6PROTO)
1773 		in6_pcbdetach(inp);
1774 	else
1775 #endif
1776 		in_pcbdetach(inp);
1777 	tcpstat.tcps_closed++;
1778 	crfree(tw->tw_cred);
1779 	tw->tw_cred = NULL;
1780 	if (reuse)
1781 		return (tw);
1782 	uma_zfree(tcptw_zone, tw);
1783 	return (NULL);
1784 }
1785 
1786 int
1787 tcp_twrespond(struct tcptw *tw, int flags)
1788 {
1789 	struct inpcb *inp = tw->tw_inpcb;
1790 	struct tcphdr *th;
1791 	struct mbuf *m;
1792 	struct ip *ip = NULL;
1793 	u_int8_t *optp;
1794 	u_int hdrlen, optlen;
1795 	int error;
1796 #ifdef INET6
1797 	struct ip6_hdr *ip6 = NULL;
1798 	int isipv6 = inp->inp_inc.inc_isipv6;
1799 #endif
1800 
1801 	INP_LOCK_ASSERT(inp);
1802 
1803 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1804 	if (m == NULL)
1805 		return (ENOBUFS);
1806 	m->m_data += max_linkhdr;
1807 
1808 #ifdef MAC
1809 	mac_create_mbuf_from_inpcb(inp, m);
1810 #endif
1811 
1812 #ifdef INET6
1813 	if (isipv6) {
1814 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1815 		ip6 = mtod(m, struct ip6_hdr *);
1816 		th = (struct tcphdr *)(ip6 + 1);
1817 		tcpip_fillheaders(inp, ip6, th);
1818 	} else
1819 #endif
1820 	{
1821 		hdrlen = sizeof(struct tcpiphdr);
1822 		ip = mtod(m, struct ip *);
1823 		th = (struct tcphdr *)(ip + 1);
1824 		tcpip_fillheaders(inp, ip, th);
1825 	}
1826 	optp = (u_int8_t *)(th + 1);
1827 
1828 	/*
1829 	 * Send a timestamp and echo-reply if both our side and our peer
1830 	 * have sent timestamps in our SYN's and this is not a RST.
1831 	 */
1832 	if (tw->t_recent && flags == TH_ACK) {
1833 		u_int32_t *lp = (u_int32_t *)optp;
1834 
1835 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1836 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1837 		*lp++ = htonl(ticks);
1838 		*lp   = htonl(tw->t_recent);
1839 		optp += TCPOLEN_TSTAMP_APPA;
1840 	}
1841 
1842 	optlen = optp - (u_int8_t *)(th + 1);
1843 
1844 	m->m_len = hdrlen + optlen;
1845 	m->m_pkthdr.len = m->m_len;
1846 
1847 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1848 
1849 	th->th_seq = htonl(tw->snd_nxt);
1850 	th->th_ack = htonl(tw->rcv_nxt);
1851 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1852 	th->th_flags = flags;
1853 	th->th_win = htons(tw->last_win);
1854 
1855 #ifdef INET6
1856 	if (isipv6) {
1857 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1858 		    sizeof(struct tcphdr) + optlen);
1859 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1860 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1861 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1862 	} else
1863 #endif
1864 	{
1865 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1866 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1867 		m->m_pkthdr.csum_flags = CSUM_TCP;
1868 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1869 		ip->ip_len = m->m_pkthdr.len;
1870 		if (path_mtu_discovery)
1871 			ip->ip_off |= IP_DF;
1872 		error = ip_output(m, inp->inp_options, NULL,
1873 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1874 		    NULL, inp);
1875 	}
1876 	if (flags & TH_ACK)
1877 		tcpstat.tcps_sndacks++;
1878 	else
1879 		tcpstat.tcps_sndctrl++;
1880 	tcpstat.tcps_sndtotal++;
1881 	return (error);
1882 }
1883 
1884 /*
1885  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1886  *
1887  * This code attempts to calculate the bandwidth-delay product as a
1888  * means of determining the optimal window size to maximize bandwidth,
1889  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1890  * routers.  This code also does a fairly good job keeping RTTs in check
1891  * across slow links like modems.  We implement an algorithm which is very
1892  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1893  * transmitter side of a TCP connection and so only effects the transmit
1894  * side of the connection.
1895  *
1896  * BACKGROUND:  TCP makes no provision for the management of buffer space
1897  * at the end points or at the intermediate routers and switches.  A TCP
1898  * stream, whether using NewReno or not, will eventually buffer as
1899  * many packets as it is able and the only reason this typically works is
1900  * due to the fairly small default buffers made available for a connection
1901  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1902  * scaling it is now fairly easy for even a single TCP connection to blow-out
1903  * all available buffer space not only on the local interface, but on
1904  * intermediate routers and switches as well.  NewReno makes a misguided
1905  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1906  * then backing off, then steadily increasing the window again until another
1907  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1908  * is only made worse as network loads increase and the idea of intentionally
1909  * blowing out network buffers is, frankly, a terrible way to manage network
1910  * resources.
1911  *
1912  * It is far better to limit the transmit window prior to the failure
1913  * condition being achieved.  There are two general ways to do this:  First
1914  * you can 'scan' through different transmit window sizes and locate the
1915  * point where the RTT stops increasing, indicating that you have filled the
1916  * pipe, then scan backwards until you note that RTT stops decreasing, then
1917  * repeat ad-infinitum.  This method works in principle but has severe
1918  * implementation issues due to RTT variances, timer granularity, and
1919  * instability in the algorithm which can lead to many false positives and
1920  * create oscillations as well as interact badly with other TCP streams
1921  * implementing the same algorithm.
1922  *
1923  * The second method is to limit the window to the bandwidth delay product
1924  * of the link.  This is the method we implement.  RTT variances and our
1925  * own manipulation of the congestion window, bwnd, can potentially
1926  * destabilize the algorithm.  For this reason we have to stabilize the
1927  * elements used to calculate the window.  We do this by using the minimum
1928  * observed RTT, the long term average of the observed bandwidth, and
1929  * by adding two segments worth of slop.  It isn't perfect but it is able
1930  * to react to changing conditions and gives us a very stable basis on
1931  * which to extend the algorithm.
1932  */
1933 void
1934 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1935 {
1936 	u_long bw;
1937 	u_long bwnd;
1938 	int save_ticks;
1939 
1940 	INP_LOCK_ASSERT(tp->t_inpcb);
1941 
1942 	/*
1943 	 * If inflight_enable is disabled in the middle of a tcp connection,
1944 	 * make sure snd_bwnd is effectively disabled.
1945 	 */
1946 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
1947 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1948 		tp->snd_bandwidth = 0;
1949 		return;
1950 	}
1951 
1952 	/*
1953 	 * Figure out the bandwidth.  Due to the tick granularity this
1954 	 * is a very rough number and it MUST be averaged over a fairly
1955 	 * long period of time.  XXX we need to take into account a link
1956 	 * that is not using all available bandwidth, but for now our
1957 	 * slop will ramp us up if this case occurs and the bandwidth later
1958 	 * increases.
1959 	 *
1960 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1961 	 * effectively reset t_bw_rtttime for this case.
1962 	 */
1963 	save_ticks = ticks;
1964 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1965 		return;
1966 
1967 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1968 	    (save_ticks - tp->t_bw_rtttime);
1969 	tp->t_bw_rtttime = save_ticks;
1970 	tp->t_bw_rtseq = ack_seq;
1971 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1972 		return;
1973 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1974 
1975 	tp->snd_bandwidth = bw;
1976 
1977 	/*
1978 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1979 	 * segments.  The additional slop puts us squarely in the sweet
1980 	 * spot and also handles the bandwidth run-up case and stabilization.
1981 	 * Without the slop we could be locking ourselves into a lower
1982 	 * bandwidth.
1983 	 *
1984 	 * Situations Handled:
1985 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1986 	 *	    high speed LANs, allowing larger TCP buffers to be
1987 	 *	    specified, and also does a good job preventing
1988 	 *	    over-queueing of packets over choke points like modems
1989 	 *	    (at least for the transmit side).
1990 	 *
1991 	 *	(2) Is able to handle changing network loads (bandwidth
1992 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1993 	 *	    increases).
1994 	 *
1995 	 *	(3) Theoretically should stabilize in the face of multiple
1996 	 *	    connections implementing the same algorithm (this may need
1997 	 *	    a little work).
1998 	 *
1999 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2000 	 *	    be adjusted with a sysctl but typically only needs to be
2001 	 *	    on very slow connections.  A value no smaller then 5
2002 	 *	    should be used, but only reduce this default if you have
2003 	 *	    no other choice.
2004 	 */
2005 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2006 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2007 #undef USERTT
2008 
2009 	if (tcp_inflight_debug > 0) {
2010 		static int ltime;
2011 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2012 			ltime = ticks;
2013 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2014 			    tp,
2015 			    bw,
2016 			    tp->t_rttbest,
2017 			    tp->t_srtt,
2018 			    bwnd
2019 			);
2020 		}
2021 	}
2022 	if ((long)bwnd < tcp_inflight_min)
2023 		bwnd = tcp_inflight_min;
2024 	if (bwnd > tcp_inflight_max)
2025 		bwnd = tcp_inflight_max;
2026 	if ((long)bwnd < tp->t_maxseg * 2)
2027 		bwnd = tp->t_maxseg * 2;
2028 	tp->snd_bwnd = bwnd;
2029 }
2030 
2031 #ifdef TCP_SIGNATURE
2032 /*
2033  * Callback function invoked by m_apply() to digest TCP segment data
2034  * contained within an mbuf chain.
2035  */
2036 static int
2037 tcp_signature_apply(void *fstate, void *data, u_int len)
2038 {
2039 
2040 	MD5Update(fstate, (u_char *)data, len);
2041 	return (0);
2042 }
2043 
2044 /*
2045  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2046  *
2047  * Parameters:
2048  * m		pointer to head of mbuf chain
2049  * off0		offset to TCP header within the mbuf chain
2050  * len		length of TCP segment data, excluding options
2051  * optlen	length of TCP segment options
2052  * buf		pointer to storage for computed MD5 digest
2053  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2054  *
2055  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2056  * When called from tcp_input(), we can be sure that th_sum has been
2057  * zeroed out and verified already.
2058  *
2059  * This function is for IPv4 use only. Calling this function with an
2060  * IPv6 packet in the mbuf chain will yield undefined results.
2061  *
2062  * Return 0 if successful, otherwise return -1.
2063  *
2064  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2065  * search with the destination IP address, and a 'magic SPI' to be
2066  * determined by the application. This is hardcoded elsewhere to 1179
2067  * right now. Another branch of this code exists which uses the SPD to
2068  * specify per-application flows but it is unstable.
2069  */
2070 int
2071 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2072     u_char *buf, u_int direction)
2073 {
2074 	union sockaddr_union dst;
2075 	struct ippseudo ippseudo;
2076 	MD5_CTX ctx;
2077 	int doff;
2078 	struct ip *ip;
2079 	struct ipovly *ipovly;
2080 	struct secasvar *sav;
2081 	struct tcphdr *th;
2082 	u_short savecsum;
2083 
2084 	KASSERT(m != NULL, ("NULL mbuf chain"));
2085 	KASSERT(buf != NULL, ("NULL signature pointer"));
2086 
2087 	/* Extract the destination from the IP header in the mbuf. */
2088 	ip = mtod(m, struct ip *);
2089 	bzero(&dst, sizeof(union sockaddr_union));
2090 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2091 	dst.sa.sa_family = AF_INET;
2092 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2093 	    ip->ip_src : ip->ip_dst;
2094 
2095 	/* Look up an SADB entry which matches the address of the peer. */
2096 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2097 	if (sav == NULL) {
2098 		printf("%s: SADB lookup failed for %s\n", __func__,
2099 		    inet_ntoa(dst.sin.sin_addr));
2100 		return (EINVAL);
2101 	}
2102 
2103 	MD5Init(&ctx);
2104 	ipovly = (struct ipovly *)ip;
2105 	th = (struct tcphdr *)((u_char *)ip + off0);
2106 	doff = off0 + sizeof(struct tcphdr) + optlen;
2107 
2108 	/*
2109 	 * Step 1: Update MD5 hash with IP pseudo-header.
2110 	 *
2111 	 * XXX The ippseudo header MUST be digested in network byte order,
2112 	 * or else we'll fail the regression test. Assume all fields we've
2113 	 * been doing arithmetic on have been in host byte order.
2114 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2115 	 * tcp_output(), the underlying ip_len member has not yet been set.
2116 	 */
2117 	ippseudo.ippseudo_src = ipovly->ih_src;
2118 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2119 	ippseudo.ippseudo_pad = 0;
2120 	ippseudo.ippseudo_p = IPPROTO_TCP;
2121 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2122 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2123 
2124 	/*
2125 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2126 	 * The TCP checksum must be set to zero.
2127 	 */
2128 	savecsum = th->th_sum;
2129 	th->th_sum = 0;
2130 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2131 	th->th_sum = savecsum;
2132 
2133 	/*
2134 	 * Step 3: Update MD5 hash with TCP segment data.
2135 	 *         Use m_apply() to avoid an early m_pullup().
2136 	 */
2137 	if (len > 0)
2138 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2139 
2140 	/*
2141 	 * Step 4: Update MD5 hash with shared secret.
2142 	 */
2143 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2144 	MD5Final(buf, &ctx);
2145 
2146 	key_sa_recordxfer(sav, m);
2147 	KEY_FREESAV(&sav);
2148 	return (0);
2149 }
2150 #endif /* TCP_SIGNATURE */
2151 
2152 static int
2153 sysctl_drop(SYSCTL_HANDLER_ARGS)
2154 {
2155 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2156 	struct sockaddr_storage addrs[2];
2157 	struct inpcb *inp;
2158 	struct tcpcb *tp;
2159 	struct tcptw *tw;
2160 	struct sockaddr_in *fin, *lin;
2161 #ifdef INET6
2162 	struct sockaddr_in6 *fin6, *lin6;
2163 	struct in6_addr f6, l6;
2164 #endif
2165 	int error;
2166 
2167 	inp = NULL;
2168 	fin = lin = NULL;
2169 #ifdef INET6
2170 	fin6 = lin6 = NULL;
2171 #endif
2172 	error = 0;
2173 
2174 	if (req->oldptr != NULL || req->oldlen != 0)
2175 		return (EINVAL);
2176 	if (req->newptr == NULL)
2177 		return (EPERM);
2178 	if (req->newlen < sizeof(addrs))
2179 		return (ENOMEM);
2180 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2181 	if (error)
2182 		return (error);
2183 
2184 	switch (addrs[0].ss_family) {
2185 #ifdef INET6
2186 	case AF_INET6:
2187 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2188 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2189 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2190 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2191 			return (EINVAL);
2192 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2193 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2194 				return (EINVAL);
2195 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2196 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2197 			fin = (struct sockaddr_in *)&addrs[0];
2198 			lin = (struct sockaddr_in *)&addrs[1];
2199 			break;
2200 		}
2201 		error = sa6_embedscope(fin6, ip6_use_defzone);
2202 		if (error)
2203 			return (error);
2204 		error = sa6_embedscope(lin6, ip6_use_defzone);
2205 		if (error)
2206 			return (error);
2207 		break;
2208 #endif
2209 	case AF_INET:
2210 		fin = (struct sockaddr_in *)&addrs[0];
2211 		lin = (struct sockaddr_in *)&addrs[1];
2212 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2213 		    lin->sin_len != sizeof(struct sockaddr_in))
2214 			return (EINVAL);
2215 		break;
2216 	default:
2217 		return (EINVAL);
2218 	}
2219 	INP_INFO_WLOCK(&tcbinfo);
2220 	switch (addrs[0].ss_family) {
2221 #ifdef INET6
2222 	case AF_INET6:
2223 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2224 		    &l6, lin6->sin6_port, 0, NULL);
2225 		break;
2226 #endif
2227 	case AF_INET:
2228 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2229 		    lin->sin_addr, lin->sin_port, 0, NULL);
2230 		break;
2231 	}
2232 	if (inp != NULL) {
2233 		INP_LOCK(inp);
2234 		if ((tw = intotw(inp)) &&
2235 		    (inp->inp_vflag & INP_TIMEWAIT) != 0) {
2236 			(void) tcp_twclose(tw, 0);
2237 		} else if ((tp = intotcpcb(inp)) &&
2238 		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2239 			tp = tcp_drop(tp, ECONNABORTED);
2240 			if (tp != NULL)
2241 				INP_UNLOCK(inp);
2242 		} else
2243 			INP_UNLOCK(inp);
2244 	} else
2245 		error = ESRCH;
2246 	INP_INFO_WUNLOCK(&tcbinfo);
2247 	return (error);
2248 }
2249 
2250 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2251     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2252     0, sysctl_drop, "", "Drop TCP connection");
2253