xref: /freebsd/sys/netinet/tcp_subr.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 static int	tcp_tcbhashsize = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164 
165 static int	do_tcpdrain = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167      "Enable tcp_drain routine for extra help when low on mbufs");
168 
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170     &tcbinfo.ipi_count, 0, "Number of active PCBs");
171 
172 static int	icmp_may_rst = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 
176 static int	tcp_isn_reseed_interval = 0;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179 
180 static uma_zone_t tcptw_zone;
181 static int	maxtcptw;
182 
183 static int
184 tcptw_auto_size(void)
185 {
186 	int halfrange;
187 
188 	/*
189 	 * Max out at half the ephemeral port range so that TIME_WAIT
190 	 * sockets don't tie up too many ephemeral ports.
191 	 */
192 	if (ipport_lastauto > ipport_firstauto)
193 		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
194 	else
195 		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
196 	/* Protect against goofy port ranges smaller than 32. */
197 	return (imin(imax(halfrange, 32), maxsockets / 5));
198 }
199 
200 static int
201 sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
202 {
203 	int error, new;
204 
205 	if (maxtcptw == 0)
206 		new = tcptw_auto_size();
207 	else
208 		new = maxtcptw;
209 	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
210 	if (error == 0 && req->newptr)
211 		if (new >= 32) {
212 			maxtcptw = new;
213 			uma_zone_set_max(tcptw_zone, maxtcptw);
214 		}
215 	return (error);
216 }
217 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
218     &maxtcptw, 0, sysctl_maxtcptw, "IU",
219     "Maximum number of compressed TCP TIME_WAIT entries");
220 
221 static int	nolocaltimewait = 0;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
223     &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
224 			 "for local connections");
225 
226 /*
227  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
228  * 1024 exists only for debugging.  A good production default would be
229  * something like 6100.
230  */
231 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
232     "TCP inflight data limiting");
233 
234 static int	tcp_inflight_enable = 1;
235 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
236     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
237 
238 static int	tcp_inflight_debug = 0;
239 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
240     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
241 
242 static int	tcp_inflight_rttthresh;
243 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
244     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
245     "RTT threshold below which inflight will deactivate itself");
246 
247 static int	tcp_inflight_min = 6144;
248 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
249     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
250 
251 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
252 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
253     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
254 
255 static int	tcp_inflight_stab = 20;
256 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
257     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
258 
259 uma_zone_t sack_hole_zone;
260 
261 static struct inpcb *tcp_notify(struct inpcb *, int);
262 static void	tcp_isn_tick(void *);
263 
264 /*
265  * Target size of TCP PCB hash tables. Must be a power of two.
266  *
267  * Note that this can be overridden by the kernel environment
268  * variable net.inet.tcp.tcbhashsize
269  */
270 #ifndef TCBHASHSIZE
271 #define TCBHASHSIZE	512
272 #endif
273 
274 /*
275  * XXX
276  * Callouts should be moved into struct tcp directly.  They are currently
277  * separate because the tcpcb structure is exported to userland for sysctl
278  * parsing purposes, which do not know about callouts.
279  */
280 struct	tcpcb_mem {
281 	struct	tcpcb tcb;
282 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
283 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
284 };
285 
286 static uma_zone_t tcpcb_zone;
287 struct callout isn_callout;
288 static struct mtx isn_mtx;
289 
290 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
291 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
292 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
293 
294 /*
295  * TCP initialization.
296  */
297 static void
298 tcp_zone_change(void *tag)
299 {
300 
301 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
302 	uma_zone_set_max(tcpcb_zone, maxsockets);
303 	if (maxtcptw == 0)
304 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
305 }
306 
307 static int
308 tcp_inpcb_init(void *mem, int size, int flags)
309 {
310 	struct inpcb *inp = (struct inpcb *) mem;
311 	INP_LOCK_INIT(inp, "inp", "tcpinp");
312 	return (0);
313 }
314 
315 void
316 tcp_init(void)
317 {
318 	int hashsize = TCBHASHSIZE;
319 
320 	tcp_delacktime = TCPTV_DELACK;
321 	tcp_keepinit = TCPTV_KEEP_INIT;
322 	tcp_keepidle = TCPTV_KEEP_IDLE;
323 	tcp_keepintvl = TCPTV_KEEPINTVL;
324 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
325 	tcp_msl = TCPTV_MSL;
326 	tcp_rexmit_min = TCPTV_MIN;
327 	tcp_rexmit_slop = TCPTV_CPU_VAR;
328 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
329 
330 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
331 	LIST_INIT(&tcb);
332 	tcbinfo.listhead = &tcb;
333 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
334 	if (!powerof2(hashsize)) {
335 		printf("WARNING: TCB hash size not a power of 2\n");
336 		hashsize = 512; /* safe default */
337 	}
338 	tcp_tcbhashsize = hashsize;
339 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
340 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
341 					&tcbinfo.porthashmask);
342 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
343 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
344 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
345 #ifdef INET6
346 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
347 #else /* INET6 */
348 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
349 #endif /* INET6 */
350 	if (max_protohdr < TCP_MINPROTOHDR)
351 		max_protohdr = TCP_MINPROTOHDR;
352 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
353 		panic("tcp_init");
354 #undef TCP_MINPROTOHDR
355 	/*
356 	 * These have to be type stable for the benefit of the timers.
357 	 */
358 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
359 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
360 	uma_zone_set_max(tcpcb_zone, maxsockets);
361 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
362 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
363 	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
364 	if (maxtcptw == 0)
365 		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
366 	else
367 		uma_zone_set_max(tcptw_zone, maxtcptw);
368 	tcp_timer_init();
369 	syncache_init();
370 	tcp_hc_init();
371 	tcp_reass_init();
372 	ISN_LOCK_INIT();
373 	callout_init(&isn_callout, CALLOUT_MPSAFE);
374 	tcp_isn_tick(NULL);
375 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
376 		SHUTDOWN_PRI_DEFAULT);
377 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
378 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
379 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
380 		EVENTHANDLER_PRI_ANY);
381 }
382 
383 void
384 tcp_fini(void *xtp)
385 {
386 
387 	callout_stop(&isn_callout);
388 }
389 
390 /*
391  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
392  * tcp_template used to store this data in mbufs, but we now recopy it out
393  * of the tcpcb each time to conserve mbufs.
394  */
395 void
396 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
397 {
398 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
399 
400 	INP_LOCK_ASSERT(inp);
401 
402 #ifdef INET6
403 	if ((inp->inp_vflag & INP_IPV6) != 0) {
404 		struct ip6_hdr *ip6;
405 
406 		ip6 = (struct ip6_hdr *)ip_ptr;
407 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
408 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
409 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
410 			(IPV6_VERSION & IPV6_VERSION_MASK);
411 		ip6->ip6_nxt = IPPROTO_TCP;
412 		ip6->ip6_plen = sizeof(struct tcphdr);
413 		ip6->ip6_src = inp->in6p_laddr;
414 		ip6->ip6_dst = inp->in6p_faddr;
415 	} else
416 #endif
417 	{
418 		struct ip *ip;
419 
420 		ip = (struct ip *)ip_ptr;
421 		ip->ip_v = IPVERSION;
422 		ip->ip_hl = 5;
423 		ip->ip_tos = inp->inp_ip_tos;
424 		ip->ip_len = 0;
425 		ip->ip_id = 0;
426 		ip->ip_off = 0;
427 		ip->ip_ttl = inp->inp_ip_ttl;
428 		ip->ip_sum = 0;
429 		ip->ip_p = IPPROTO_TCP;
430 		ip->ip_src = inp->inp_laddr;
431 		ip->ip_dst = inp->inp_faddr;
432 	}
433 	th->th_sport = inp->inp_lport;
434 	th->th_dport = inp->inp_fport;
435 	th->th_seq = 0;
436 	th->th_ack = 0;
437 	th->th_x2 = 0;
438 	th->th_off = 5;
439 	th->th_flags = 0;
440 	th->th_win = 0;
441 	th->th_urp = 0;
442 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
443 }
444 
445 /*
446  * Create template to be used to send tcp packets on a connection.
447  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
448  * use for this function is in keepalives, which use tcp_respond.
449  */
450 struct tcptemp *
451 tcpip_maketemplate(struct inpcb *inp)
452 {
453 	struct mbuf *m;
454 	struct tcptemp *n;
455 
456 	m = m_get(M_DONTWAIT, MT_DATA);
457 	if (m == NULL)
458 		return (0);
459 	m->m_len = sizeof(struct tcptemp);
460 	n = mtod(m, struct tcptemp *);
461 
462 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
463 	return (n);
464 }
465 
466 /*
467  * Send a single message to the TCP at address specified by
468  * the given TCP/IP header.  If m == NULL, then we make a copy
469  * of the tcpiphdr at ti and send directly to the addressed host.
470  * This is used to force keep alive messages out using the TCP
471  * template for a connection.  If flags are given then we send
472  * a message back to the TCP which originated the * segment ti,
473  * and discard the mbuf containing it and any other attached mbufs.
474  *
475  * In any case the ack and sequence number of the transmitted
476  * segment are as specified by the parameters.
477  *
478  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
479  */
480 void
481 tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
482     register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
483 {
484 	register int tlen;
485 	int win = 0;
486 	struct ip *ip;
487 	struct tcphdr *nth;
488 #ifdef INET6
489 	struct ip6_hdr *ip6;
490 	int isipv6;
491 #endif /* INET6 */
492 	int ipflags = 0;
493 	struct inpcb *inp;
494 
495 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
496 
497 #ifdef INET6
498 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
499 	ip6 = ipgen;
500 #endif /* INET6 */
501 	ip = ipgen;
502 
503 	if (tp != NULL) {
504 		inp = tp->t_inpcb;
505 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
506 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
507 		INP_LOCK_ASSERT(inp);
508 	} else
509 		inp = NULL;
510 
511 	if (tp != NULL) {
512 		if (!(flags & TH_RST)) {
513 			win = sbspace(&inp->inp_socket->so_rcv);
514 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
515 				win = (long)TCP_MAXWIN << tp->rcv_scale;
516 		}
517 	}
518 	if (m == NULL) {
519 		m = m_gethdr(M_DONTWAIT, MT_DATA);
520 		if (m == NULL)
521 			return;
522 		tlen = 0;
523 		m->m_data += max_linkhdr;
524 #ifdef INET6
525 		if (isipv6) {
526 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
527 			      sizeof(struct ip6_hdr));
528 			ip6 = mtod(m, struct ip6_hdr *);
529 			nth = (struct tcphdr *)(ip6 + 1);
530 		} else
531 #endif /* INET6 */
532 	      {
533 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
534 		ip = mtod(m, struct ip *);
535 		nth = (struct tcphdr *)(ip + 1);
536 	      }
537 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
538 		flags = TH_ACK;
539 	} else {
540 		m_freem(m->m_next);
541 		m->m_next = NULL;
542 		m->m_data = (caddr_t)ipgen;
543 		/* m_len is set later */
544 		tlen = 0;
545 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
546 #ifdef INET6
547 		if (isipv6) {
548 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
549 			nth = (struct tcphdr *)(ip6 + 1);
550 		} else
551 #endif /* INET6 */
552 	      {
553 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
554 		nth = (struct tcphdr *)(ip + 1);
555 	      }
556 		if (th != nth) {
557 			/*
558 			 * this is usually a case when an extension header
559 			 * exists between the IPv6 header and the
560 			 * TCP header.
561 			 */
562 			nth->th_sport = th->th_sport;
563 			nth->th_dport = th->th_dport;
564 		}
565 		xchg(nth->th_dport, nth->th_sport, n_short);
566 #undef xchg
567 	}
568 #ifdef INET6
569 	if (isipv6) {
570 		ip6->ip6_flow = 0;
571 		ip6->ip6_vfc = IPV6_VERSION;
572 		ip6->ip6_nxt = IPPROTO_TCP;
573 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
574 						tlen));
575 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
576 	} else
577 #endif
578 	{
579 		tlen += sizeof (struct tcpiphdr);
580 		ip->ip_len = tlen;
581 		ip->ip_ttl = ip_defttl;
582 		if (path_mtu_discovery)
583 			ip->ip_off |= IP_DF;
584 	}
585 	m->m_len = tlen;
586 	m->m_pkthdr.len = tlen;
587 	m->m_pkthdr.rcvif = NULL;
588 #ifdef MAC
589 	if (inp != NULL) {
590 		/*
591 		 * Packet is associated with a socket, so allow the
592 		 * label of the response to reflect the socket label.
593 		 */
594 		INP_LOCK_ASSERT(inp);
595 		mac_create_mbuf_from_inpcb(inp, m);
596 	} else {
597 		/*
598 		 * Packet is not associated with a socket, so possibly
599 		 * update the label in place.
600 		 */
601 		mac_reflect_mbuf_tcp(m);
602 	}
603 #endif
604 	nth->th_seq = htonl(seq);
605 	nth->th_ack = htonl(ack);
606 	nth->th_x2 = 0;
607 	nth->th_off = sizeof (struct tcphdr) >> 2;
608 	nth->th_flags = flags;
609 	if (tp != NULL)
610 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
611 	else
612 		nth->th_win = htons((u_short)win);
613 	nth->th_urp = 0;
614 #ifdef INET6
615 	if (isipv6) {
616 		nth->th_sum = 0;
617 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
618 					sizeof(struct ip6_hdr),
619 					tlen - sizeof(struct ip6_hdr));
620 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
621 		    NULL, NULL);
622 	} else
623 #endif /* INET6 */
624 	{
625 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
626 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
627 		m->m_pkthdr.csum_flags = CSUM_TCP;
628 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
629 	}
630 #ifdef TCPDEBUG
631 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
632 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
633 #endif
634 #ifdef INET6
635 	if (isipv6)
636 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
637 	else
638 #endif /* INET6 */
639 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
640 }
641 
642 /*
643  * Create a new TCP control block, making an
644  * empty reassembly queue and hooking it to the argument
645  * protocol control block.  The `inp' parameter must have
646  * come from the zone allocator set up in tcp_init().
647  */
648 struct tcpcb *
649 tcp_newtcpcb(struct inpcb *inp)
650 {
651 	struct tcpcb_mem *tm;
652 	struct tcpcb *tp;
653 #ifdef INET6
654 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
655 #endif /* INET6 */
656 
657 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
658 	if (tm == NULL)
659 		return (NULL);
660 	tp = &tm->tcb;
661 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
662 	tp->t_maxseg = tp->t_maxopd =
663 #ifdef INET6
664 		isipv6 ? tcp_v6mssdflt :
665 #endif /* INET6 */
666 		tcp_mssdflt;
667 
668 	/* Set up our timeouts. */
669 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
670 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
671 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
672 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
673 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
674 
675 	if (tcp_do_rfc1323)
676 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
677 	tp->sack_enable = tcp_do_sack;
678 	TAILQ_INIT(&tp->snd_holes);
679 	tp->t_inpcb = inp;	/* XXX */
680 	/*
681 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
682 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
683 	 * reasonable initial retransmit time.
684 	 */
685 	tp->t_srtt = TCPTV_SRTTBASE;
686 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
687 	tp->t_rttmin = tcp_rexmit_min;
688 	tp->t_rxtcur = TCPTV_RTOBASE;
689 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
690 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
691 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->t_rcvtime = ticks;
693 	tp->t_bw_rtttime = ticks;
694 	/*
695 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
696 	 * because the socket may be bound to an IPv6 wildcard address,
697 	 * which may match an IPv4-mapped IPv6 address.
698 	 */
699 	inp->inp_ip_ttl = ip_defttl;
700 	inp->inp_ppcb = tp;
701 	return (tp);		/* XXX */
702 }
703 
704 /*
705  * Drop a TCP connection, reporting
706  * the specified error.  If connection is synchronized,
707  * then send a RST to peer.
708  */
709 struct tcpcb *
710 tcp_drop(struct tcpcb *tp, int errno)
711 {
712 	struct socket *so = tp->t_inpcb->inp_socket;
713 
714 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
715 	INP_LOCK_ASSERT(tp->t_inpcb);
716 
717 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
718 		tp->t_state = TCPS_CLOSED;
719 		(void) tcp_output(tp);
720 		tcpstat.tcps_drops++;
721 	} else
722 		tcpstat.tcps_conndrops++;
723 	if (errno == ETIMEDOUT && tp->t_softerror)
724 		errno = tp->t_softerror;
725 	so->so_error = errno;
726 	return (tcp_close(tp));
727 }
728 
729 void
730 tcp_discardcb(struct tcpcb *tp)
731 {
732 	struct tseg_qent *q;
733 	struct inpcb *inp = tp->t_inpcb;
734 	struct socket *so = inp->inp_socket;
735 #ifdef INET6
736 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
737 #endif /* INET6 */
738 
739 	INP_LOCK_ASSERT(inp);
740 
741 	/*
742 	 * Make sure that all of our timers are stopped before we
743 	 * delete the PCB.
744 	 */
745 	callout_stop(tp->tt_rexmt);
746 	callout_stop(tp->tt_persist);
747 	callout_stop(tp->tt_keep);
748 	callout_stop(tp->tt_2msl);
749 	callout_stop(tp->tt_delack);
750 
751 	/*
752 	 * If we got enough samples through the srtt filter,
753 	 * save the rtt and rttvar in the routing entry.
754 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
755 	 * 4 samples is enough for the srtt filter to converge
756 	 * to within enough % of the correct value; fewer samples
757 	 * and we could save a bogus rtt. The danger is not high
758 	 * as tcp quickly recovers from everything.
759 	 * XXX: Works very well but needs some more statistics!
760 	 */
761 	if (tp->t_rttupdated >= 4) {
762 		struct hc_metrics_lite metrics;
763 		u_long ssthresh;
764 
765 		bzero(&metrics, sizeof(metrics));
766 		/*
767 		 * Update the ssthresh always when the conditions below
768 		 * are satisfied. This gives us better new start value
769 		 * for the congestion avoidance for new connections.
770 		 * ssthresh is only set if packet loss occured on a session.
771 		 *
772 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
773 		 * being torn down.  Ideally this code would not use 'so'.
774 		 */
775 		ssthresh = tp->snd_ssthresh;
776 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
777 			/*
778 			 * convert the limit from user data bytes to
779 			 * packets then to packet data bytes.
780 			 */
781 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
782 			if (ssthresh < 2)
783 				ssthresh = 2;
784 			ssthresh *= (u_long)(tp->t_maxseg +
785 #ifdef INET6
786 				      (isipv6 ? sizeof (struct ip6_hdr) +
787 					       sizeof (struct tcphdr) :
788 #endif
789 				       sizeof (struct tcpiphdr)
790 #ifdef INET6
791 				       )
792 #endif
793 				      );
794 		} else
795 			ssthresh = 0;
796 		metrics.rmx_ssthresh = ssthresh;
797 
798 		metrics.rmx_rtt = tp->t_srtt;
799 		metrics.rmx_rttvar = tp->t_rttvar;
800 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
801 		metrics.rmx_bandwidth = tp->snd_bandwidth;
802 		metrics.rmx_cwnd = tp->snd_cwnd;
803 		metrics.rmx_sendpipe = 0;
804 		metrics.rmx_recvpipe = 0;
805 
806 		tcp_hc_update(&inp->inp_inc, &metrics);
807 	}
808 
809 	/* free the reassembly queue, if any */
810 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
811 		LIST_REMOVE(q, tqe_q);
812 		m_freem(q->tqe_m);
813 		uma_zfree(tcp_reass_zone, q);
814 		tp->t_segqlen--;
815 		tcp_reass_qsize--;
816 	}
817 	tcp_free_sackholes(tp);
818 	inp->inp_ppcb = NULL;
819 	tp->t_inpcb = NULL;
820 	uma_zfree(tcpcb_zone, tp);
821 }
822 
823 /*
824  * Attempt to close a TCP control block, marking it as dropped, and freeing
825  * the socket if we hold the only reference.
826  */
827 struct tcpcb *
828 tcp_close(struct tcpcb *tp)
829 {
830 	struct inpcb *inp = tp->t_inpcb;
831 	struct socket *so;
832 
833 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
834 	INP_LOCK_ASSERT(inp);
835 
836 	in_pcbdrop(inp);
837 	tcpstat.tcps_closed++;
838 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
839 	so = inp->inp_socket;
840 	soisdisconnected(so);
841 	if (inp->inp_vflag & INP_SOCKREF) {
842 		KASSERT(so->so_state & SS_PROTOREF,
843 		    ("tcp_close: !SS_PROTOREF"));
844 		inp->inp_vflag &= ~INP_SOCKREF;
845 		INP_UNLOCK(inp);
846 		ACCEPT_LOCK();
847 		SOCK_LOCK(so);
848 		so->so_state &= ~SS_PROTOREF;
849 		sofree(so);
850 		return (NULL);
851 	}
852 	return (tp);
853 }
854 
855 void
856 tcp_drain(void)
857 {
858 
859 	if (do_tcpdrain) {
860 		struct inpcb *inpb;
861 		struct tcpcb *tcpb;
862 		struct tseg_qent *te;
863 
864 	/*
865 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
866 	 * if there is one...
867 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
868 	 *      reassembly queue should be flushed, but in a situation
869 	 *	where we're really low on mbufs, this is potentially
870 	 *	usefull.
871 	 */
872 		INP_INFO_RLOCK(&tcbinfo);
873 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
874 			if (inpb->inp_vflag & INP_TIMEWAIT)
875 				continue;
876 			INP_LOCK(inpb);
877 			if ((tcpb = intotcpcb(inpb)) != NULL) {
878 				while ((te = LIST_FIRST(&tcpb->t_segq))
879 			            != NULL) {
880 					LIST_REMOVE(te, tqe_q);
881 					m_freem(te->tqe_m);
882 					uma_zfree(tcp_reass_zone, te);
883 					tcpb->t_segqlen--;
884 					tcp_reass_qsize--;
885 				}
886 				tcp_clean_sackreport(tcpb);
887 			}
888 			INP_UNLOCK(inpb);
889 		}
890 		INP_INFO_RUNLOCK(&tcbinfo);
891 	}
892 }
893 
894 /*
895  * Notify a tcp user of an asynchronous error;
896  * store error as soft error, but wake up user
897  * (for now, won't do anything until can select for soft error).
898  *
899  * Do not wake up user since there currently is no mechanism for
900  * reporting soft errors (yet - a kqueue filter may be added).
901  */
902 static struct inpcb *
903 tcp_notify(struct inpcb *inp, int error)
904 {
905 	struct tcpcb *tp;
906 
907 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
908 	INP_LOCK_ASSERT(inp);
909 
910 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
911 	    (inp->inp_vflag & INP_DROPPED))
912 		return (inp);
913 
914 	tp = intotcpcb(inp);
915 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
916 
917 	/*
918 	 * Ignore some errors if we are hooked up.
919 	 * If connection hasn't completed, has retransmitted several times,
920 	 * and receives a second error, give up now.  This is better
921 	 * than waiting a long time to establish a connection that
922 	 * can never complete.
923 	 */
924 	if (tp->t_state == TCPS_ESTABLISHED &&
925 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
926 	     error == EHOSTDOWN)) {
927 		return (inp);
928 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
929 	    tp->t_softerror) {
930 		tp = tcp_drop(tp, error);
931 		if (tp != NULL)
932 			return (inp);
933 		else
934 			return (NULL);
935 	} else {
936 		tp->t_softerror = error;
937 		return (inp);
938 	}
939 #if 0
940 	wakeup( &so->so_timeo);
941 	sorwakeup(so);
942 	sowwakeup(so);
943 #endif
944 }
945 
946 static int
947 tcp_pcblist(SYSCTL_HANDLER_ARGS)
948 {
949 	int error, i, n;
950 	struct inpcb *inp, **inp_list;
951 	inp_gen_t gencnt;
952 	struct xinpgen xig;
953 
954 	/*
955 	 * The process of preparing the TCB list is too time-consuming and
956 	 * resource-intensive to repeat twice on every request.
957 	 */
958 	if (req->oldptr == NULL) {
959 		n = tcbinfo.ipi_count;
960 		req->oldidx = 2 * (sizeof xig)
961 			+ (n + n/8) * sizeof(struct xtcpcb);
962 		return (0);
963 	}
964 
965 	if (req->newptr != NULL)
966 		return (EPERM);
967 
968 	/*
969 	 * OK, now we're committed to doing something.
970 	 */
971 	INP_INFO_RLOCK(&tcbinfo);
972 	gencnt = tcbinfo.ipi_gencnt;
973 	n = tcbinfo.ipi_count;
974 	INP_INFO_RUNLOCK(&tcbinfo);
975 
976 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
977 		+ n * sizeof(struct xtcpcb));
978 	if (error != 0)
979 		return (error);
980 
981 	xig.xig_len = sizeof xig;
982 	xig.xig_count = n;
983 	xig.xig_gen = gencnt;
984 	xig.xig_sogen = so_gencnt;
985 	error = SYSCTL_OUT(req, &xig, sizeof xig);
986 	if (error)
987 		return (error);
988 
989 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
990 	if (inp_list == NULL)
991 		return (ENOMEM);
992 
993 	INP_INFO_RLOCK(&tcbinfo);
994 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
995 	     inp = LIST_NEXT(inp, inp_list)) {
996 		INP_LOCK(inp);
997 		if (inp->inp_gencnt <= gencnt) {
998 			/*
999 			 * XXX: This use of cr_cansee(), introduced with
1000 			 * TCP state changes, is not quite right, but for
1001 			 * now, better than nothing.
1002 			 */
1003 			if (inp->inp_vflag & INP_TIMEWAIT) {
1004 				if (intotw(inp) != NULL)
1005 					error = cr_cansee(req->td->td_ucred,
1006 					    intotw(inp)->tw_cred);
1007 				else
1008 					error = EINVAL;	/* Skip this inp. */
1009 			} else
1010 				error = cr_canseesocket(req->td->td_ucred,
1011 				    inp->inp_socket);
1012 			if (error == 0)
1013 				inp_list[i++] = inp;
1014 		}
1015 		INP_UNLOCK(inp);
1016 	}
1017 	INP_INFO_RUNLOCK(&tcbinfo);
1018 	n = i;
1019 
1020 	error = 0;
1021 	for (i = 0; i < n; i++) {
1022 		inp = inp_list[i];
1023 		INP_LOCK(inp);
1024 		if (inp->inp_gencnt <= gencnt) {
1025 			struct xtcpcb xt;
1026 			void *inp_ppcb;
1027 
1028 			bzero(&xt, sizeof(xt));
1029 			xt.xt_len = sizeof xt;
1030 			/* XXX should avoid extra copy */
1031 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1032 			inp_ppcb = inp->inp_ppcb;
1033 			if (inp_ppcb == NULL)
1034 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1035 			else if (inp->inp_vflag & INP_TIMEWAIT) {
1036 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1037 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1038 			} else
1039 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1040 			if (inp->inp_socket != NULL)
1041 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1042 			else {
1043 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1044 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1045 			}
1046 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1047 			INP_UNLOCK(inp);
1048 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1049 		} else
1050 			INP_UNLOCK(inp);
1051 
1052 	}
1053 	if (!error) {
1054 		/*
1055 		 * Give the user an updated idea of our state.
1056 		 * If the generation differs from what we told
1057 		 * her before, she knows that something happened
1058 		 * while we were processing this request, and it
1059 		 * might be necessary to retry.
1060 		 */
1061 		INP_INFO_RLOCK(&tcbinfo);
1062 		xig.xig_gen = tcbinfo.ipi_gencnt;
1063 		xig.xig_sogen = so_gencnt;
1064 		xig.xig_count = tcbinfo.ipi_count;
1065 		INP_INFO_RUNLOCK(&tcbinfo);
1066 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1067 	}
1068 	free(inp_list, M_TEMP);
1069 	return (error);
1070 }
1071 
1072 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1073 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1074 
1075 static int
1076 tcp_getcred(SYSCTL_HANDLER_ARGS)
1077 {
1078 	struct xucred xuc;
1079 	struct sockaddr_in addrs[2];
1080 	struct inpcb *inp;
1081 	int error;
1082 
1083 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1084 	if (error)
1085 		return (error);
1086 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1087 	if (error)
1088 		return (error);
1089 	INP_INFO_RLOCK(&tcbinfo);
1090 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1091 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1092 	if (inp == NULL) {
1093 		error = ENOENT;
1094 		goto outunlocked;
1095 	}
1096 	INP_LOCK(inp);
1097 	if (inp->inp_socket == NULL) {
1098 		error = ENOENT;
1099 		goto out;
1100 	}
1101 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1102 	if (error)
1103 		goto out;
1104 	cru2x(inp->inp_socket->so_cred, &xuc);
1105 out:
1106 	INP_UNLOCK(inp);
1107 outunlocked:
1108 	INP_INFO_RUNLOCK(&tcbinfo);
1109 	if (error == 0)
1110 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1111 	return (error);
1112 }
1113 
1114 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1115     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1116     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1117 
1118 #ifdef INET6
1119 static int
1120 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1121 {
1122 	struct xucred xuc;
1123 	struct sockaddr_in6 addrs[2];
1124 	struct inpcb *inp;
1125 	int error, mapped = 0;
1126 
1127 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1128 	if (error)
1129 		return (error);
1130 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1131 	if (error)
1132 		return (error);
1133 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1134 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1135 		return (error);
1136 	}
1137 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1138 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1139 			mapped = 1;
1140 		else
1141 			return (EINVAL);
1142 	}
1143 
1144 	INP_INFO_RLOCK(&tcbinfo);
1145 	if (mapped == 1)
1146 		inp = in_pcblookup_hash(&tcbinfo,
1147 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1148 			addrs[1].sin6_port,
1149 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1150 			addrs[0].sin6_port,
1151 			0, NULL);
1152 	else
1153 		inp = in6_pcblookup_hash(&tcbinfo,
1154 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1155 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1156 	if (inp == NULL) {
1157 		error = ENOENT;
1158 		goto outunlocked;
1159 	}
1160 	INP_LOCK(inp);
1161 	if (inp->inp_socket == NULL) {
1162 		error = ENOENT;
1163 		goto out;
1164 	}
1165 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1166 	if (error)
1167 		goto out;
1168 	cru2x(inp->inp_socket->so_cred, &xuc);
1169 out:
1170 	INP_UNLOCK(inp);
1171 outunlocked:
1172 	INP_INFO_RUNLOCK(&tcbinfo);
1173 	if (error == 0)
1174 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1175 	return (error);
1176 }
1177 
1178 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1179     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1180     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1181 #endif
1182 
1183 
1184 void
1185 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1186 {
1187 	struct ip *ip = vip;
1188 	struct tcphdr *th;
1189 	struct in_addr faddr;
1190 	struct inpcb *inp;
1191 	struct tcpcb *tp;
1192 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1193 	struct icmp *icp;
1194 	struct in_conninfo inc;
1195 	tcp_seq icmp_tcp_seq;
1196 	int mtu;
1197 
1198 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1199 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1200 		return;
1201 
1202 	if (cmd == PRC_MSGSIZE)
1203 		notify = tcp_mtudisc;
1204 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1205 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1206 		notify = tcp_drop_syn_sent;
1207 	/*
1208 	 * Redirects don't need to be handled up here.
1209 	 */
1210 	else if (PRC_IS_REDIRECT(cmd))
1211 		return;
1212 	/*
1213 	 * Source quench is depreciated.
1214 	 */
1215 	else if (cmd == PRC_QUENCH)
1216 		return;
1217 	/*
1218 	 * Hostdead is ugly because it goes linearly through all PCBs.
1219 	 * XXX: We never get this from ICMP, otherwise it makes an
1220 	 * excellent DoS attack on machines with many connections.
1221 	 */
1222 	else if (cmd == PRC_HOSTDEAD)
1223 		ip = NULL;
1224 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1225 		return;
1226 	if (ip != NULL) {
1227 		icp = (struct icmp *)((caddr_t)ip
1228 				      - offsetof(struct icmp, icmp_ip));
1229 		th = (struct tcphdr *)((caddr_t)ip
1230 				       + (ip->ip_hl << 2));
1231 		INP_INFO_WLOCK(&tcbinfo);
1232 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1233 		    ip->ip_src, th->th_sport, 0, NULL);
1234 		if (inp != NULL)  {
1235 			INP_LOCK(inp);
1236 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1237 			    !(inp->inp_vflag & INP_DROPPED) &&
1238 			    !(inp->inp_socket == NULL)) {
1239 				icmp_tcp_seq = htonl(th->th_seq);
1240 				tp = intotcpcb(inp);
1241 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1242 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1243 					if (cmd == PRC_MSGSIZE) {
1244 					    /*
1245 					     * MTU discovery:
1246 					     * If we got a needfrag set the MTU
1247 					     * in the route to the suggested new
1248 					     * value (if given) and then notify.
1249 					     */
1250 					    bzero(&inc, sizeof(inc));
1251 					    inc.inc_flags = 0;	/* IPv4 */
1252 					    inc.inc_faddr = faddr;
1253 
1254 					    mtu = ntohs(icp->icmp_nextmtu);
1255 					    /*
1256 					     * If no alternative MTU was
1257 					     * proposed, try the next smaller
1258 					     * one.  ip->ip_len has already
1259 					     * been swapped in icmp_input().
1260 					     */
1261 					    if (!mtu)
1262 						mtu = ip_next_mtu(ip->ip_len,
1263 						 1);
1264 					    if (mtu < max(296, (tcp_minmss)
1265 						 + sizeof(struct tcpiphdr)))
1266 						mtu = 0;
1267 					    if (!mtu)
1268 						mtu = tcp_mssdflt
1269 						 + sizeof(struct tcpiphdr);
1270 					    /*
1271 					     * Only cache the the MTU if it
1272 					     * is smaller than the interface
1273 					     * or route MTU.  tcp_mtudisc()
1274 					     * will do right thing by itself.
1275 					     */
1276 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1277 						tcp_hc_updatemtu(&inc, mtu);
1278 					}
1279 
1280 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1281 				}
1282 			}
1283 			if (inp != NULL)
1284 				INP_UNLOCK(inp);
1285 		} else {
1286 			inc.inc_fport = th->th_dport;
1287 			inc.inc_lport = th->th_sport;
1288 			inc.inc_faddr = faddr;
1289 			inc.inc_laddr = ip->ip_src;
1290 #ifdef INET6
1291 			inc.inc_isipv6 = 0;
1292 #endif
1293 			syncache_unreach(&inc, th);
1294 		}
1295 		INP_INFO_WUNLOCK(&tcbinfo);
1296 	} else
1297 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1298 }
1299 
1300 #ifdef INET6
1301 void
1302 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1303 {
1304 	struct tcphdr th;
1305 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1306 	struct ip6_hdr *ip6;
1307 	struct mbuf *m;
1308 	struct ip6ctlparam *ip6cp = NULL;
1309 	const struct sockaddr_in6 *sa6_src = NULL;
1310 	int off;
1311 	struct tcp_portonly {
1312 		u_int16_t th_sport;
1313 		u_int16_t th_dport;
1314 	} *thp;
1315 
1316 	if (sa->sa_family != AF_INET6 ||
1317 	    sa->sa_len != sizeof(struct sockaddr_in6))
1318 		return;
1319 
1320 	if (cmd == PRC_MSGSIZE)
1321 		notify = tcp_mtudisc;
1322 	else if (!PRC_IS_REDIRECT(cmd) &&
1323 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1324 		return;
1325 	/* Source quench is depreciated. */
1326 	else if (cmd == PRC_QUENCH)
1327 		return;
1328 
1329 	/* if the parameter is from icmp6, decode it. */
1330 	if (d != NULL) {
1331 		ip6cp = (struct ip6ctlparam *)d;
1332 		m = ip6cp->ip6c_m;
1333 		ip6 = ip6cp->ip6c_ip6;
1334 		off = ip6cp->ip6c_off;
1335 		sa6_src = ip6cp->ip6c_src;
1336 	} else {
1337 		m = NULL;
1338 		ip6 = NULL;
1339 		off = 0;	/* fool gcc */
1340 		sa6_src = &sa6_any;
1341 	}
1342 
1343 	if (ip6 != NULL) {
1344 		struct in_conninfo inc;
1345 		/*
1346 		 * XXX: We assume that when IPV6 is non NULL,
1347 		 * M and OFF are valid.
1348 		 */
1349 
1350 		/* check if we can safely examine src and dst ports */
1351 		if (m->m_pkthdr.len < off + sizeof(*thp))
1352 			return;
1353 
1354 		bzero(&th, sizeof(th));
1355 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1356 
1357 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1358 		    (struct sockaddr *)ip6cp->ip6c_src,
1359 		    th.th_sport, cmd, NULL, notify);
1360 
1361 		inc.inc_fport = th.th_dport;
1362 		inc.inc_lport = th.th_sport;
1363 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1364 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1365 		inc.inc_isipv6 = 1;
1366 		INP_INFO_WLOCK(&tcbinfo);
1367 		syncache_unreach(&inc, &th);
1368 		INP_INFO_WUNLOCK(&tcbinfo);
1369 	} else
1370 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1371 			      0, cmd, NULL, notify);
1372 }
1373 #endif /* INET6 */
1374 
1375 
1376 /*
1377  * Following is where TCP initial sequence number generation occurs.
1378  *
1379  * There are two places where we must use initial sequence numbers:
1380  * 1.  In SYN-ACK packets.
1381  * 2.  In SYN packets.
1382  *
1383  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1384  * tcp_syncache.c for details.
1385  *
1386  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1387  * depends on this property.  In addition, these ISNs should be
1388  * unguessable so as to prevent connection hijacking.  To satisfy
1389  * the requirements of this situation, the algorithm outlined in
1390  * RFC 1948 is used, with only small modifications.
1391  *
1392  * Implementation details:
1393  *
1394  * Time is based off the system timer, and is corrected so that it
1395  * increases by one megabyte per second.  This allows for proper
1396  * recycling on high speed LANs while still leaving over an hour
1397  * before rollover.
1398  *
1399  * As reading the *exact* system time is too expensive to be done
1400  * whenever setting up a TCP connection, we increment the time
1401  * offset in two ways.  First, a small random positive increment
1402  * is added to isn_offset for each connection that is set up.
1403  * Second, the function tcp_isn_tick fires once per clock tick
1404  * and increments isn_offset as necessary so that sequence numbers
1405  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1406  * random positive increments serve only to ensure that the same
1407  * exact sequence number is never sent out twice (as could otherwise
1408  * happen when a port is recycled in less than the system tick
1409  * interval.)
1410  *
1411  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1412  * between seeding of isn_secret.  This is normally set to zero,
1413  * as reseeding should not be necessary.
1414  *
1415  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1416  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1417  * general, this means holding an exclusive (write) lock.
1418  */
1419 
1420 #define ISN_BYTES_PER_SECOND 1048576
1421 #define ISN_STATIC_INCREMENT 4096
1422 #define ISN_RANDOM_INCREMENT (4096 - 1)
1423 
1424 static u_char isn_secret[32];
1425 static int isn_last_reseed;
1426 static u_int32_t isn_offset, isn_offset_old;
1427 static MD5_CTX isn_ctx;
1428 
1429 tcp_seq
1430 tcp_new_isn(struct tcpcb *tp)
1431 {
1432 	u_int32_t md5_buffer[4];
1433 	tcp_seq new_isn;
1434 
1435 	INP_LOCK_ASSERT(tp->t_inpcb);
1436 
1437 	ISN_LOCK();
1438 	/* Seed if this is the first use, reseed if requested. */
1439 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1440 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1441 		< (u_int)ticks))) {
1442 		read_random(&isn_secret, sizeof(isn_secret));
1443 		isn_last_reseed = ticks;
1444 	}
1445 
1446 	/* Compute the md5 hash and return the ISN. */
1447 	MD5Init(&isn_ctx);
1448 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1449 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1450 #ifdef INET6
1451 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1452 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1453 			  sizeof(struct in6_addr));
1454 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1455 			  sizeof(struct in6_addr));
1456 	} else
1457 #endif
1458 	{
1459 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1460 			  sizeof(struct in_addr));
1461 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1462 			  sizeof(struct in_addr));
1463 	}
1464 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1465 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1466 	new_isn = (tcp_seq) md5_buffer[0];
1467 	isn_offset += ISN_STATIC_INCREMENT +
1468 		(arc4random() & ISN_RANDOM_INCREMENT);
1469 	new_isn += isn_offset;
1470 	ISN_UNLOCK();
1471 	return (new_isn);
1472 }
1473 
1474 /*
1475  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1476  * to keep time flowing at a relatively constant rate.  If the random
1477  * increments have already pushed us past the projected offset, do nothing.
1478  */
1479 static void
1480 tcp_isn_tick(void *xtp)
1481 {
1482 	u_int32_t projected_offset;
1483 
1484 	ISN_LOCK();
1485 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1486 
1487 	if (projected_offset > isn_offset)
1488 		isn_offset = projected_offset;
1489 
1490 	isn_offset_old = isn_offset;
1491 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1492 	ISN_UNLOCK();
1493 }
1494 
1495 /*
1496  * When a specific ICMP unreachable message is received and the
1497  * connection state is SYN-SENT, drop the connection.  This behavior
1498  * is controlled by the icmp_may_rst sysctl.
1499  */
1500 struct inpcb *
1501 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1502 {
1503 	struct tcpcb *tp;
1504 
1505 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1506 	INP_LOCK_ASSERT(inp);
1507 
1508 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1509 	    (inp->inp_vflag & INP_DROPPED))
1510 		return (inp);
1511 
1512 	tp = intotcpcb(inp);
1513 	if (tp->t_state != TCPS_SYN_SENT)
1514 		return (inp);
1515 
1516 	tp = tcp_drop(tp, errno);
1517 	if (tp != NULL)
1518 		return (inp);
1519 	else
1520 		return (NULL);
1521 }
1522 
1523 /*
1524  * When `need fragmentation' ICMP is received, update our idea of the MSS
1525  * based on the new value in the route.  Also nudge TCP to send something,
1526  * since we know the packet we just sent was dropped.
1527  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1528  */
1529 struct inpcb *
1530 tcp_mtudisc(struct inpcb *inp, int errno)
1531 {
1532 	struct tcpcb *tp;
1533 	struct socket *so = inp->inp_socket;
1534 	u_int maxmtu;
1535 	u_int romtu;
1536 	int mss;
1537 #ifdef INET6
1538 	int isipv6;
1539 #endif /* INET6 */
1540 
1541 	INP_LOCK_ASSERT(inp);
1542 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1543 	    (inp->inp_vflag & INP_DROPPED))
1544 		return (inp);
1545 
1546 	tp = intotcpcb(inp);
1547 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1548 
1549 #ifdef INET6
1550 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1551 #endif
1552 	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1553 	romtu =
1554 #ifdef INET6
1555 	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1556 #endif /* INET6 */
1557 	    tcp_maxmtu(&inp->inp_inc, NULL);
1558 	if (!maxmtu)
1559 		maxmtu = romtu;
1560 	else
1561 		maxmtu = min(maxmtu, romtu);
1562 	if (!maxmtu) {
1563 		tp->t_maxopd = tp->t_maxseg =
1564 #ifdef INET6
1565 			isipv6 ? tcp_v6mssdflt :
1566 #endif /* INET6 */
1567 			tcp_mssdflt;
1568 		return (inp);
1569 	}
1570 	mss = maxmtu -
1571 #ifdef INET6
1572 		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1573 #endif /* INET6 */
1574 		 sizeof(struct tcpiphdr)
1575 #ifdef INET6
1576 		 )
1577 #endif /* INET6 */
1578 		;
1579 
1580 	/*
1581 	 * XXX - The above conditional probably violates the TCP
1582 	 * spec.  The problem is that, since we don't know the
1583 	 * other end's MSS, we are supposed to use a conservative
1584 	 * default.  But, if we do that, then MTU discovery will
1585 	 * never actually take place, because the conservative
1586 	 * default is much less than the MTUs typically seen
1587 	 * on the Internet today.  For the moment, we'll sweep
1588 	 * this under the carpet.
1589 	 *
1590 	 * The conservative default might not actually be a problem
1591 	 * if the only case this occurs is when sending an initial
1592 	 * SYN with options and data to a host we've never talked
1593 	 * to before.  Then, they will reply with an MSS value which
1594 	 * will get recorded and the new parameters should get
1595 	 * recomputed.  For Further Study.
1596 	 */
1597 	if (tp->t_maxopd <= mss)
1598 		return (inp);
1599 	tp->t_maxopd = mss;
1600 
1601 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1602 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1603 		mss -= TCPOLEN_TSTAMP_APPA;
1604 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1605 	if (mss > MCLBYTES)
1606 		mss &= ~(MCLBYTES-1);
1607 #else
1608 	if (mss > MCLBYTES)
1609 		mss = mss / MCLBYTES * MCLBYTES;
1610 #endif
1611 	if (so->so_snd.sb_hiwat < mss)
1612 		mss = so->so_snd.sb_hiwat;
1613 
1614 	tp->t_maxseg = mss;
1615 
1616 	tcpstat.tcps_mturesent++;
1617 	tp->t_rtttime = 0;
1618 	tp->snd_nxt = tp->snd_una;
1619 	tcp_free_sackholes(tp);
1620 	tp->snd_recover = tp->snd_max;
1621 	if (tp->sack_enable)
1622 		EXIT_FASTRECOVERY(tp);
1623 	tcp_output(tp);
1624 	return (inp);
1625 }
1626 
1627 /*
1628  * Look-up the routing entry to the peer of this inpcb.  If no route
1629  * is found and it cannot be allocated, then return NULL.  This routine
1630  * is called by TCP routines that access the rmx structure and by tcp_mss
1631  * to get the interface MTU.
1632  */
1633 u_long
1634 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1635 {
1636 	struct route sro;
1637 	struct sockaddr_in *dst;
1638 	struct ifnet *ifp;
1639 	u_long maxmtu = 0;
1640 
1641 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1642 
1643 	bzero(&sro, sizeof(sro));
1644 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1645 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1646 		dst->sin_family = AF_INET;
1647 		dst->sin_len = sizeof(*dst);
1648 		dst->sin_addr = inc->inc_faddr;
1649 		rtalloc_ign(&sro, RTF_CLONING);
1650 	}
1651 	if (sro.ro_rt != NULL) {
1652 		ifp = sro.ro_rt->rt_ifp;
1653 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1654 			maxmtu = ifp->if_mtu;
1655 		else
1656 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1657 
1658 		/* Report additional interface capabilities. */
1659 		if (flags != NULL) {
1660 			if (ifp->if_capenable & IFCAP_TSO4 &&
1661 			    ifp->if_hwassist & CSUM_TSO)
1662 				*flags |= CSUM_TSO;
1663 		}
1664 		RTFREE(sro.ro_rt);
1665 	}
1666 	return (maxmtu);
1667 }
1668 
1669 #ifdef INET6
1670 u_long
1671 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1672 {
1673 	struct route_in6 sro6;
1674 	struct ifnet *ifp;
1675 	u_long maxmtu = 0;
1676 
1677 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1678 
1679 	bzero(&sro6, sizeof(sro6));
1680 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1681 		sro6.ro_dst.sin6_family = AF_INET6;
1682 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1683 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1684 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1685 	}
1686 	if (sro6.ro_rt != NULL) {
1687 		ifp = sro6.ro_rt->rt_ifp;
1688 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1689 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1690 		else
1691 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1692 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1693 
1694 		/* Report additional interface capabilities. */
1695 		if (flags != NULL) {
1696 			if (ifp->if_capenable & IFCAP_TSO6 &&
1697 			    ifp->if_hwassist & CSUM_TSO)
1698 				*flags |= CSUM_TSO;
1699 		}
1700 		RTFREE(sro6.ro_rt);
1701 	}
1702 
1703 	return (maxmtu);
1704 }
1705 #endif /* INET6 */
1706 
1707 #ifdef IPSEC
1708 /* compute ESP/AH header size for TCP, including outer IP header. */
1709 size_t
1710 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1711 {
1712 	struct inpcb *inp;
1713 	struct mbuf *m;
1714 	size_t hdrsiz;
1715 	struct ip *ip;
1716 #ifdef INET6
1717 	struct ip6_hdr *ip6;
1718 #endif
1719 	struct tcphdr *th;
1720 
1721 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1722 		return (0);
1723 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1724 	if (!m)
1725 		return (0);
1726 
1727 #ifdef INET6
1728 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1729 		ip6 = mtod(m, struct ip6_hdr *);
1730 		th = (struct tcphdr *)(ip6 + 1);
1731 		m->m_pkthdr.len = m->m_len =
1732 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1733 		tcpip_fillheaders(inp, ip6, th);
1734 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1735 	} else
1736 #endif /* INET6 */
1737 	{
1738 		ip = mtod(m, struct ip *);
1739 		th = (struct tcphdr *)(ip + 1);
1740 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1741 		tcpip_fillheaders(inp, ip, th);
1742 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1743 	}
1744 
1745 	m_free(m);
1746 	return (hdrsiz);
1747 }
1748 #endif /*IPSEC*/
1749 
1750 /*
1751  * Move a TCP connection into TIME_WAIT state.
1752  *    tcbinfo is locked.
1753  *    inp is locked, and is unlocked before returning.
1754  */
1755 void
1756 tcp_twstart(struct tcpcb *tp)
1757 {
1758 	struct tcptw *tw;
1759 	struct inpcb *inp = tp->t_inpcb;
1760 	int acknow;
1761 	struct socket *so;
1762 
1763 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1764 	INP_LOCK_ASSERT(inp);
1765 
1766 	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1767 		tp = tcp_close(tp);
1768 		if (tp != NULL)
1769 			INP_UNLOCK(inp);
1770 		return;
1771 	}
1772 
1773 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1774 	if (tw == NULL) {
1775 		tw = tcp_timer_2msl_tw(1);
1776 		if (tw == NULL) {
1777 			tp = tcp_close(tp);
1778 			if (tp != NULL)
1779 				INP_UNLOCK(inp);
1780 			return;
1781 		}
1782 	}
1783 	tw->tw_inpcb = inp;
1784 
1785 	/*
1786 	 * Recover last window size sent.
1787 	 */
1788 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1789 
1790 	/*
1791 	 * Set t_recent if timestamps are used on the connection.
1792 	 */
1793 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1794 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1795 		tw->t_recent = tp->ts_recent;
1796 	else
1797 		tw->t_recent = 0;
1798 
1799 	tw->snd_nxt = tp->snd_nxt;
1800 	tw->rcv_nxt = tp->rcv_nxt;
1801 	tw->iss     = tp->iss;
1802 	tw->irs     = tp->irs;
1803 	tw->t_starttime = tp->t_starttime;
1804 	tw->tw_time = 0;
1805 
1806 /* XXX
1807  * If this code will
1808  * be used for fin-wait-2 state also, then we may need
1809  * a ts_recent from the last segment.
1810  */
1811 	acknow = tp->t_flags & TF_ACKNOW;
1812 
1813 	/*
1814 	 * First, discard tcpcb state, which includes stopping its timers and
1815 	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1816 	 * that work is now done in the caller.
1817 	 *
1818 	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1819 	 * and might not be needed here any longer.
1820 	 */
1821 	tcp_discardcb(tp);
1822 	so = inp->inp_socket;
1823 	soisdisconnected(so);
1824 	SOCK_LOCK(so);
1825 	tw->tw_cred = crhold(so->so_cred);
1826 	tw->tw_so_options = so->so_options;
1827 	SOCK_UNLOCK(so);
1828 	if (acknow)
1829 		tcp_twrespond(tw, TH_ACK);
1830 	inp->inp_ppcb = tw;
1831 	inp->inp_vflag |= INP_TIMEWAIT;
1832 	tcp_timer_2msl_reset(tw, 0);
1833 
1834 	/*
1835 	 * If the inpcb owns the sole reference to the socket, then we can
1836 	 * detach and free the socket as it is not needed in time wait.
1837 	 */
1838 	if (inp->inp_vflag & INP_SOCKREF) {
1839 		KASSERT(so->so_state & SS_PROTOREF,
1840 		    ("tcp_twstart: !SS_PROTOREF"));
1841 		inp->inp_vflag &= ~INP_SOCKREF;
1842 		INP_UNLOCK(inp);
1843 		ACCEPT_LOCK();
1844 		SOCK_LOCK(so);
1845 		so->so_state &= ~SS_PROTOREF;
1846 		sofree(so);
1847 	} else
1848 		INP_UNLOCK(inp);
1849 }
1850 
1851 #if 0
1852 /*
1853  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1854  * the actual rate is slightly higher due to the addition of
1855  * random positive increments.
1856  *
1857  * Most other new OSes use semi-randomized ISN values, so we
1858  * do not need to worry about them.
1859  */
1860 #define MS_ISN_BYTES_PER_SECOND		250000
1861 
1862 /*
1863  * Determine if the ISN we will generate has advanced beyond the last
1864  * sequence number used by the previous connection.  If so, indicate
1865  * that it is safe to recycle this tw socket by returning 1.
1866  */
1867 int
1868 tcp_twrecycleable(struct tcptw *tw)
1869 {
1870 	tcp_seq new_iss = tw->iss;
1871 	tcp_seq new_irs = tw->irs;
1872 
1873 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1874 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1875 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1876 
1877 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1878 		return (1);
1879 	else
1880 		return (0);
1881 }
1882 #endif
1883 
1884 void
1885 tcp_twclose(struct tcptw *tw, int reuse)
1886 {
1887 	struct socket *so;
1888 	struct inpcb *inp;
1889 
1890 	/*
1891 	 * At this point, we are in one of two situations:
1892 	 *
1893 	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1894 	 *     all state.
1895 	 *
1896 	 * (2) We have a socket -- if we own a reference, release it and
1897 	 *     notify the socket layer.
1898 	 */
1899 	inp = tw->tw_inpcb;
1900 	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1901 	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1902 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1903 	INP_LOCK_ASSERT(inp);
1904 
1905 	tw->tw_inpcb = NULL;
1906 	tcp_timer_2msl_stop(tw);
1907 	inp->inp_ppcb = NULL;
1908 	in_pcbdrop(inp);
1909 
1910 	so = inp->inp_socket;
1911 	if (so != NULL) {
1912 		/*
1913 		 * If there's a socket, handle two cases: first, we own a
1914 		 * strong reference, which we will now release, or we don't
1915 		 * in which case another reference exists (XXXRW: think
1916 		 * about this more), and we don't need to take action.
1917 		 */
1918 		if (inp->inp_vflag & INP_SOCKREF) {
1919 			inp->inp_vflag &= ~INP_SOCKREF;
1920 			INP_UNLOCK(inp);
1921 			ACCEPT_LOCK();
1922 			SOCK_LOCK(so);
1923 			KASSERT(so->so_state & SS_PROTOREF,
1924 			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1925 			so->so_state &= ~SS_PROTOREF;
1926 			sofree(so);
1927 		} else {
1928 			/*
1929 			 * If we don't own the only reference, the socket and
1930 			 * inpcb need to be left around to be handled by
1931 			 * tcp_usr_detach() later.
1932 			 */
1933 			INP_UNLOCK(inp);
1934 		}
1935 	} else {
1936 #ifdef INET6
1937 		if (inp->inp_vflag & INP_IPV6PROTO)
1938 			in6_pcbfree(inp);
1939 		else
1940 #endif
1941 			in_pcbfree(inp);
1942 	}
1943 	tcpstat.tcps_closed++;
1944 	crfree(tw->tw_cred);
1945 	tw->tw_cred = NULL;
1946 	if (reuse)
1947 		return;
1948 	uma_zfree(tcptw_zone, tw);
1949 }
1950 
1951 int
1952 tcp_twrespond(struct tcptw *tw, int flags)
1953 {
1954 	struct inpcb *inp = tw->tw_inpcb;
1955 	struct tcphdr *th;
1956 	struct mbuf *m;
1957 	struct ip *ip = NULL;
1958 	u_int8_t *optp;
1959 	u_int hdrlen, optlen;
1960 	int error;
1961 #ifdef INET6
1962 	struct ip6_hdr *ip6 = NULL;
1963 	int isipv6 = inp->inp_inc.inc_isipv6;
1964 #endif
1965 
1966 	INP_LOCK_ASSERT(inp);
1967 
1968 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1969 	if (m == NULL)
1970 		return (ENOBUFS);
1971 	m->m_data += max_linkhdr;
1972 
1973 #ifdef MAC
1974 	mac_create_mbuf_from_inpcb(inp, m);
1975 #endif
1976 
1977 #ifdef INET6
1978 	if (isipv6) {
1979 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1980 		ip6 = mtod(m, struct ip6_hdr *);
1981 		th = (struct tcphdr *)(ip6 + 1);
1982 		tcpip_fillheaders(inp, ip6, th);
1983 	} else
1984 #endif
1985 	{
1986 		hdrlen = sizeof(struct tcpiphdr);
1987 		ip = mtod(m, struct ip *);
1988 		th = (struct tcphdr *)(ip + 1);
1989 		tcpip_fillheaders(inp, ip, th);
1990 	}
1991 	optp = (u_int8_t *)(th + 1);
1992 
1993 	/*
1994 	 * Send a timestamp and echo-reply if both our side and our peer
1995 	 * have sent timestamps in our SYN's and this is not a RST.
1996 	 */
1997 	if (tw->t_recent && flags == TH_ACK) {
1998 		u_int32_t *lp = (u_int32_t *)optp;
1999 
2000 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2001 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2002 		*lp++ = htonl(ticks);
2003 		*lp   = htonl(tw->t_recent);
2004 		optp += TCPOLEN_TSTAMP_APPA;
2005 	}
2006 
2007 	optlen = optp - (u_int8_t *)(th + 1);
2008 
2009 	m->m_len = hdrlen + optlen;
2010 	m->m_pkthdr.len = m->m_len;
2011 
2012 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2013 
2014 	th->th_seq = htonl(tw->snd_nxt);
2015 	th->th_ack = htonl(tw->rcv_nxt);
2016 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2017 	th->th_flags = flags;
2018 	th->th_win = htons(tw->last_win);
2019 
2020 #ifdef INET6
2021 	if (isipv6) {
2022 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2023 		    sizeof(struct tcphdr) + optlen);
2024 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2025 		error = ip6_output(m, inp->in6p_outputopts, NULL,
2026 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2027 	} else
2028 #endif
2029 	{
2030 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2031 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2032 		m->m_pkthdr.csum_flags = CSUM_TCP;
2033 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2034 		ip->ip_len = m->m_pkthdr.len;
2035 		if (path_mtu_discovery)
2036 			ip->ip_off |= IP_DF;
2037 		error = ip_output(m, inp->inp_options, NULL,
2038 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2039 		    NULL, inp);
2040 	}
2041 	if (flags & TH_ACK)
2042 		tcpstat.tcps_sndacks++;
2043 	else
2044 		tcpstat.tcps_sndctrl++;
2045 	tcpstat.tcps_sndtotal++;
2046 	return (error);
2047 }
2048 
2049 /*
2050  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2051  *
2052  * This code attempts to calculate the bandwidth-delay product as a
2053  * means of determining the optimal window size to maximize bandwidth,
2054  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2055  * routers.  This code also does a fairly good job keeping RTTs in check
2056  * across slow links like modems.  We implement an algorithm which is very
2057  * similar (but not meant to be) TCP/Vegas.  The code operates on the
2058  * transmitter side of a TCP connection and so only effects the transmit
2059  * side of the connection.
2060  *
2061  * BACKGROUND:  TCP makes no provision for the management of buffer space
2062  * at the end points or at the intermediate routers and switches.  A TCP
2063  * stream, whether using NewReno or not, will eventually buffer as
2064  * many packets as it is able and the only reason this typically works is
2065  * due to the fairly small default buffers made available for a connection
2066  * (typicaly 16K or 32K).  As machines use larger windows and/or window
2067  * scaling it is now fairly easy for even a single TCP connection to blow-out
2068  * all available buffer space not only on the local interface, but on
2069  * intermediate routers and switches as well.  NewReno makes a misguided
2070  * attempt to 'solve' this problem by waiting for an actual failure to occur,
2071  * then backing off, then steadily increasing the window again until another
2072  * failure occurs, ad-infinitum.  This results in terrible oscillation that
2073  * is only made worse as network loads increase and the idea of intentionally
2074  * blowing out network buffers is, frankly, a terrible way to manage network
2075  * resources.
2076  *
2077  * It is far better to limit the transmit window prior to the failure
2078  * condition being achieved.  There are two general ways to do this:  First
2079  * you can 'scan' through different transmit window sizes and locate the
2080  * point where the RTT stops increasing, indicating that you have filled the
2081  * pipe, then scan backwards until you note that RTT stops decreasing, then
2082  * repeat ad-infinitum.  This method works in principle but has severe
2083  * implementation issues due to RTT variances, timer granularity, and
2084  * instability in the algorithm which can lead to many false positives and
2085  * create oscillations as well as interact badly with other TCP streams
2086  * implementing the same algorithm.
2087  *
2088  * The second method is to limit the window to the bandwidth delay product
2089  * of the link.  This is the method we implement.  RTT variances and our
2090  * own manipulation of the congestion window, bwnd, can potentially
2091  * destabilize the algorithm.  For this reason we have to stabilize the
2092  * elements used to calculate the window.  We do this by using the minimum
2093  * observed RTT, the long term average of the observed bandwidth, and
2094  * by adding two segments worth of slop.  It isn't perfect but it is able
2095  * to react to changing conditions and gives us a very stable basis on
2096  * which to extend the algorithm.
2097  */
2098 void
2099 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2100 {
2101 	u_long bw;
2102 	u_long bwnd;
2103 	int save_ticks;
2104 
2105 	INP_LOCK_ASSERT(tp->t_inpcb);
2106 
2107 	/*
2108 	 * If inflight_enable is disabled in the middle of a tcp connection,
2109 	 * make sure snd_bwnd is effectively disabled.
2110 	 */
2111 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2112 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2113 		tp->snd_bandwidth = 0;
2114 		return;
2115 	}
2116 
2117 	/*
2118 	 * Figure out the bandwidth.  Due to the tick granularity this
2119 	 * is a very rough number and it MUST be averaged over a fairly
2120 	 * long period of time.  XXX we need to take into account a link
2121 	 * that is not using all available bandwidth, but for now our
2122 	 * slop will ramp us up if this case occurs and the bandwidth later
2123 	 * increases.
2124 	 *
2125 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2126 	 * effectively reset t_bw_rtttime for this case.
2127 	 */
2128 	save_ticks = ticks;
2129 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2130 		return;
2131 
2132 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2133 	    (save_ticks - tp->t_bw_rtttime);
2134 	tp->t_bw_rtttime = save_ticks;
2135 	tp->t_bw_rtseq = ack_seq;
2136 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2137 		return;
2138 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2139 
2140 	tp->snd_bandwidth = bw;
2141 
2142 	/*
2143 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2144 	 * segments.  The additional slop puts us squarely in the sweet
2145 	 * spot and also handles the bandwidth run-up case and stabilization.
2146 	 * Without the slop we could be locking ourselves into a lower
2147 	 * bandwidth.
2148 	 *
2149 	 * Situations Handled:
2150 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2151 	 *	    high speed LANs, allowing larger TCP buffers to be
2152 	 *	    specified, and also does a good job preventing
2153 	 *	    over-queueing of packets over choke points like modems
2154 	 *	    (at least for the transmit side).
2155 	 *
2156 	 *	(2) Is able to handle changing network loads (bandwidth
2157 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2158 	 *	    increases).
2159 	 *
2160 	 *	(3) Theoretically should stabilize in the face of multiple
2161 	 *	    connections implementing the same algorithm (this may need
2162 	 *	    a little work).
2163 	 *
2164 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2165 	 *	    be adjusted with a sysctl but typically only needs to be
2166 	 *	    on very slow connections.  A value no smaller then 5
2167 	 *	    should be used, but only reduce this default if you have
2168 	 *	    no other choice.
2169 	 */
2170 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2171 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2172 #undef USERTT
2173 
2174 	if (tcp_inflight_debug > 0) {
2175 		static int ltime;
2176 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2177 			ltime = ticks;
2178 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2179 			    tp,
2180 			    bw,
2181 			    tp->t_rttbest,
2182 			    tp->t_srtt,
2183 			    bwnd
2184 			);
2185 		}
2186 	}
2187 	if ((long)bwnd < tcp_inflight_min)
2188 		bwnd = tcp_inflight_min;
2189 	if (bwnd > tcp_inflight_max)
2190 		bwnd = tcp_inflight_max;
2191 	if ((long)bwnd < tp->t_maxseg * 2)
2192 		bwnd = tp->t_maxseg * 2;
2193 	tp->snd_bwnd = bwnd;
2194 }
2195 
2196 #ifdef TCP_SIGNATURE
2197 /*
2198  * Callback function invoked by m_apply() to digest TCP segment data
2199  * contained within an mbuf chain.
2200  */
2201 static int
2202 tcp_signature_apply(void *fstate, void *data, u_int len)
2203 {
2204 
2205 	MD5Update(fstate, (u_char *)data, len);
2206 	return (0);
2207 }
2208 
2209 /*
2210  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2211  *
2212  * Parameters:
2213  * m		pointer to head of mbuf chain
2214  * off0		offset to TCP header within the mbuf chain
2215  * len		length of TCP segment data, excluding options
2216  * optlen	length of TCP segment options
2217  * buf		pointer to storage for computed MD5 digest
2218  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2219  *
2220  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2221  * When called from tcp_input(), we can be sure that th_sum has been
2222  * zeroed out and verified already.
2223  *
2224  * This function is for IPv4 use only. Calling this function with an
2225  * IPv6 packet in the mbuf chain will yield undefined results.
2226  *
2227  * Return 0 if successful, otherwise return -1.
2228  *
2229  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2230  * search with the destination IP address, and a 'magic SPI' to be
2231  * determined by the application. This is hardcoded elsewhere to 1179
2232  * right now. Another branch of this code exists which uses the SPD to
2233  * specify per-application flows but it is unstable.
2234  */
2235 int
2236 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2237     u_char *buf, u_int direction)
2238 {
2239 	union sockaddr_union dst;
2240 	struct ippseudo ippseudo;
2241 	MD5_CTX ctx;
2242 	int doff;
2243 	struct ip *ip;
2244 	struct ipovly *ipovly;
2245 	struct secasvar *sav;
2246 	struct tcphdr *th;
2247 	u_short savecsum;
2248 
2249 	KASSERT(m != NULL, ("NULL mbuf chain"));
2250 	KASSERT(buf != NULL, ("NULL signature pointer"));
2251 
2252 	/* Extract the destination from the IP header in the mbuf. */
2253 	ip = mtod(m, struct ip *);
2254 	bzero(&dst, sizeof(union sockaddr_union));
2255 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2256 	dst.sa.sa_family = AF_INET;
2257 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2258 	    ip->ip_src : ip->ip_dst;
2259 
2260 	/* Look up an SADB entry which matches the address of the peer. */
2261 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2262 	if (sav == NULL) {
2263 		printf("%s: SADB lookup failed for %s\n", __func__,
2264 		    inet_ntoa(dst.sin.sin_addr));
2265 		return (EINVAL);
2266 	}
2267 
2268 	MD5Init(&ctx);
2269 	ipovly = (struct ipovly *)ip;
2270 	th = (struct tcphdr *)((u_char *)ip + off0);
2271 	doff = off0 + sizeof(struct tcphdr) + optlen;
2272 
2273 	/*
2274 	 * Step 1: Update MD5 hash with IP pseudo-header.
2275 	 *
2276 	 * XXX The ippseudo header MUST be digested in network byte order,
2277 	 * or else we'll fail the regression test. Assume all fields we've
2278 	 * been doing arithmetic on have been in host byte order.
2279 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2280 	 * tcp_output(), the underlying ip_len member has not yet been set.
2281 	 */
2282 	ippseudo.ippseudo_src = ipovly->ih_src;
2283 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2284 	ippseudo.ippseudo_pad = 0;
2285 	ippseudo.ippseudo_p = IPPROTO_TCP;
2286 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2287 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2288 
2289 	/*
2290 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2291 	 * The TCP checksum must be set to zero.
2292 	 */
2293 	savecsum = th->th_sum;
2294 	th->th_sum = 0;
2295 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2296 	th->th_sum = savecsum;
2297 
2298 	/*
2299 	 * Step 3: Update MD5 hash with TCP segment data.
2300 	 *         Use m_apply() to avoid an early m_pullup().
2301 	 */
2302 	if (len > 0)
2303 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2304 
2305 	/*
2306 	 * Step 4: Update MD5 hash with shared secret.
2307 	 */
2308 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2309 	MD5Final(buf, &ctx);
2310 
2311 	key_sa_recordxfer(sav, m);
2312 	KEY_FREESAV(&sav);
2313 	return (0);
2314 }
2315 #endif /* TCP_SIGNATURE */
2316 
2317 static int
2318 sysctl_drop(SYSCTL_HANDLER_ARGS)
2319 {
2320 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2321 	struct sockaddr_storage addrs[2];
2322 	struct inpcb *inp;
2323 	struct tcpcb *tp;
2324 	struct tcptw *tw;
2325 	struct sockaddr_in *fin, *lin;
2326 #ifdef INET6
2327 	struct sockaddr_in6 *fin6, *lin6;
2328 	struct in6_addr f6, l6;
2329 #endif
2330 	int error;
2331 
2332 	inp = NULL;
2333 	fin = lin = NULL;
2334 #ifdef INET6
2335 	fin6 = lin6 = NULL;
2336 #endif
2337 	error = 0;
2338 
2339 	if (req->oldptr != NULL || req->oldlen != 0)
2340 		return (EINVAL);
2341 	if (req->newptr == NULL)
2342 		return (EPERM);
2343 	if (req->newlen < sizeof(addrs))
2344 		return (ENOMEM);
2345 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2346 	if (error)
2347 		return (error);
2348 
2349 	switch (addrs[0].ss_family) {
2350 #ifdef INET6
2351 	case AF_INET6:
2352 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2353 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2354 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2355 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2356 			return (EINVAL);
2357 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2358 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2359 				return (EINVAL);
2360 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2361 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2362 			fin = (struct sockaddr_in *)&addrs[0];
2363 			lin = (struct sockaddr_in *)&addrs[1];
2364 			break;
2365 		}
2366 		error = sa6_embedscope(fin6, ip6_use_defzone);
2367 		if (error)
2368 			return (error);
2369 		error = sa6_embedscope(lin6, ip6_use_defzone);
2370 		if (error)
2371 			return (error);
2372 		break;
2373 #endif
2374 	case AF_INET:
2375 		fin = (struct sockaddr_in *)&addrs[0];
2376 		lin = (struct sockaddr_in *)&addrs[1];
2377 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2378 		    lin->sin_len != sizeof(struct sockaddr_in))
2379 			return (EINVAL);
2380 		break;
2381 	default:
2382 		return (EINVAL);
2383 	}
2384 	INP_INFO_WLOCK(&tcbinfo);
2385 	switch (addrs[0].ss_family) {
2386 #ifdef INET6
2387 	case AF_INET6:
2388 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2389 		    &l6, lin6->sin6_port, 0, NULL);
2390 		break;
2391 #endif
2392 	case AF_INET:
2393 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2394 		    lin->sin_addr, lin->sin_port, 0, NULL);
2395 		break;
2396 	}
2397 	if (inp != NULL) {
2398 		INP_LOCK(inp);
2399 		if (inp->inp_vflag & INP_TIMEWAIT) {
2400 			/*
2401 			 * XXXRW: There currently exists a state where an
2402 			 * inpcb is present, but its timewait state has been
2403 			 * discarded.  For now, don't allow dropping of this
2404 			 * type of inpcb.
2405 			 */
2406 			tw = intotw(inp);
2407 			if (tw != NULL)
2408 				tcp_twclose(tw, 0);
2409 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2410 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2411 			tp = intotcpcb(inp);
2412 			tcp_drop(tp, ECONNABORTED);
2413 		}
2414 		INP_UNLOCK(inp);
2415 	} else
2416 		error = ESRCH;
2417 	INP_INFO_WUNLOCK(&tcbinfo);
2418 	return (error);
2419 }
2420 
2421 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2422     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2423     0, sysctl_drop, "", "Drop TCP connection");
2424