1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/hhook.h> 45 #include <sys/kernel.h> 46 #include <sys/khelp.h> 47 #include <sys/sysctl.h> 48 #include <sys/jail.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #ifdef INET6 52 #include <sys/domain.h> 53 #endif 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/protosw.h> 59 #include <sys/random.h> 60 61 #include <vm/uma.h> 62 63 #include <net/route.h> 64 #include <net/if.h> 65 #include <net/vnet.h> 66 67 #include <netinet/cc.h> 68 #include <netinet/in.h> 69 #include <netinet/in_pcb.h> 70 #include <netinet/in_systm.h> 71 #include <netinet/in_var.h> 72 #include <netinet/ip.h> 73 #include <netinet/ip_icmp.h> 74 #include <netinet/ip_var.h> 75 #ifdef INET6 76 #include <netinet/ip6.h> 77 #include <netinet6/in6_pcb.h> 78 #include <netinet6/ip6_var.h> 79 #include <netinet6/scope6_var.h> 80 #include <netinet6/nd6.h> 81 #endif 82 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/tcp_syncache.h> 88 #ifdef INET6 89 #include <netinet6/tcp6_var.h> 90 #endif 91 #include <netinet/tcpip.h> 92 #ifdef TCPDEBUG 93 #include <netinet/tcp_debug.h> 94 #endif 95 #ifdef INET6 96 #include <netinet6/ip6protosw.h> 97 #endif 98 #ifdef TCP_OFFLOAD 99 #include <netinet/tcp_offload.h> 100 #endif 101 102 #ifdef IPSEC 103 #include <netipsec/ipsec.h> 104 #include <netipsec/xform.h> 105 #ifdef INET6 106 #include <netipsec/ipsec6.h> 107 #endif 108 #include <netipsec/key.h> 109 #include <sys/syslog.h> 110 #endif /*IPSEC*/ 111 112 #include <machine/in_cksum.h> 113 #include <sys/md5.h> 114 115 #include <security/mac/mac_framework.h> 116 117 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 118 #ifdef INET6 119 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 120 #endif 121 122 static int 123 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 124 { 125 int error, new; 126 127 new = V_tcp_mssdflt; 128 error = sysctl_handle_int(oidp, &new, 0, req); 129 if (error == 0 && req->newptr) { 130 if (new < TCP_MINMSS) 131 error = EINVAL; 132 else 133 V_tcp_mssdflt = new; 134 } 135 return (error); 136 } 137 138 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 139 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 140 &sysctl_net_inet_tcp_mss_check, "I", 141 "Default TCP Maximum Segment Size"); 142 143 #ifdef INET6 144 static int 145 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 146 { 147 int error, new; 148 149 new = V_tcp_v6mssdflt; 150 error = sysctl_handle_int(oidp, &new, 0, req); 151 if (error == 0 && req->newptr) { 152 if (new < TCP_MINMSS) 153 error = EINVAL; 154 else 155 V_tcp_v6mssdflt = new; 156 } 157 return (error); 158 } 159 160 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 161 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 162 &sysctl_net_inet_tcp_mss_v6_check, "I", 163 "Default TCP Maximum Segment Size for IPv6"); 164 #endif /* INET6 */ 165 166 /* 167 * Minimum MSS we accept and use. This prevents DoS attacks where 168 * we are forced to a ridiculous low MSS like 20 and send hundreds 169 * of packets instead of one. The effect scales with the available 170 * bandwidth and quickly saturates the CPU and network interface 171 * with packet generation and sending. Set to zero to disable MINMSS 172 * checking. This setting prevents us from sending too small packets. 173 */ 174 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 175 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW, 176 &VNET_NAME(tcp_minmss), 0, 177 "Minmum TCP Maximum Segment Size"); 178 179 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 180 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 181 &VNET_NAME(tcp_do_rfc1323), 0, 182 "Enable rfc1323 (high performance TCP) extensions"); 183 184 static int tcp_log_debug = 0; 185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 186 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 187 188 static int tcp_tcbhashsize = 0; 189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 190 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 191 192 static int do_tcpdrain = 1; 193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 194 "Enable tcp_drain routine for extra help when low on mbufs"); 195 196 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 197 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 198 199 static VNET_DEFINE(int, icmp_may_rst) = 1; 200 #define V_icmp_may_rst VNET(icmp_may_rst) 201 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, 202 &VNET_NAME(icmp_may_rst), 0, 203 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 204 205 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 206 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 207 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 208 &VNET_NAME(tcp_isn_reseed_interval), 0, 209 "Seconds between reseeding of ISN secret"); 210 211 static int tcp_soreceive_stream = 0; 212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 213 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 214 215 #ifdef TCP_SIGNATURE 216 static int tcp_sig_checksigs = 1; 217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 218 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 219 #endif 220 221 VNET_DEFINE(uma_zone_t, sack_hole_zone); 222 #define V_sack_hole_zone VNET(sack_hole_zone) 223 224 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 225 226 static struct inpcb *tcp_notify(struct inpcb *, int); 227 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 228 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 229 void *ip4hdr, const void *ip6hdr); 230 231 /* 232 * Target size of TCP PCB hash tables. Must be a power of two. 233 * 234 * Note that this can be overridden by the kernel environment 235 * variable net.inet.tcp.tcbhashsize 236 */ 237 #ifndef TCBHASHSIZE 238 #define TCBHASHSIZE 512 239 #endif 240 241 /* 242 * XXX 243 * Callouts should be moved into struct tcp directly. They are currently 244 * separate because the tcpcb structure is exported to userland for sysctl 245 * parsing purposes, which do not know about callouts. 246 */ 247 struct tcpcb_mem { 248 struct tcpcb tcb; 249 struct tcp_timer tt; 250 struct cc_var ccv; 251 struct osd osd; 252 }; 253 254 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 255 #define V_tcpcb_zone VNET(tcpcb_zone) 256 257 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 258 static struct mtx isn_mtx; 259 260 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 261 #define ISN_LOCK() mtx_lock(&isn_mtx) 262 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 263 264 /* 265 * TCP initialization. 266 */ 267 static void 268 tcp_zone_change(void *tag) 269 { 270 271 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 272 uma_zone_set_max(V_tcpcb_zone, maxsockets); 273 tcp_tw_zone_change(); 274 } 275 276 static int 277 tcp_inpcb_init(void *mem, int size, int flags) 278 { 279 struct inpcb *inp = mem; 280 281 INP_LOCK_INIT(inp, "inp", "tcpinp"); 282 return (0); 283 } 284 285 void 286 tcp_init(void) 287 { 288 int hashsize; 289 290 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 291 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 292 printf("%s: WARNING: unable to register helper hook\n", __func__); 293 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 294 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 295 printf("%s: WARNING: unable to register helper hook\n", __func__); 296 297 hashsize = TCBHASHSIZE; 298 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 299 if (!powerof2(hashsize)) { 300 printf("WARNING: TCB hash size not a power of 2\n"); 301 hashsize = 512; /* safe default */ 302 } 303 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 304 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE, 305 IPI_HASHFIELDS_4TUPLE); 306 307 /* 308 * These have to be type stable for the benefit of the timers. 309 */ 310 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 311 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 312 uma_zone_set_max(V_tcpcb_zone, maxsockets); 313 314 tcp_tw_init(); 315 syncache_init(); 316 tcp_hc_init(); 317 tcp_reass_init(); 318 319 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 320 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 321 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 322 323 /* Skip initialization of globals for non-default instances. */ 324 if (!IS_DEFAULT_VNET(curvnet)) 325 return; 326 327 /* XXX virtualize those bellow? */ 328 tcp_delacktime = TCPTV_DELACK; 329 tcp_keepinit = TCPTV_KEEP_INIT; 330 tcp_keepidle = TCPTV_KEEP_IDLE; 331 tcp_keepintvl = TCPTV_KEEPINTVL; 332 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 333 tcp_msl = TCPTV_MSL; 334 tcp_rexmit_min = TCPTV_MIN; 335 if (tcp_rexmit_min < 1) 336 tcp_rexmit_min = 1; 337 tcp_rexmit_slop = TCPTV_CPU_VAR; 338 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 339 tcp_tcbhashsize = hashsize; 340 341 TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream); 342 if (tcp_soreceive_stream) { 343 #ifdef INET 344 tcp_usrreqs.pru_soreceive = soreceive_stream; 345 #endif 346 #ifdef INET6 347 tcp6_usrreqs.pru_soreceive = soreceive_stream; 348 #endif /* INET6 */ 349 } 350 351 #ifdef INET6 352 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 353 #else /* INET6 */ 354 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 355 #endif /* INET6 */ 356 if (max_protohdr < TCP_MINPROTOHDR) 357 max_protohdr = TCP_MINPROTOHDR; 358 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 359 panic("tcp_init"); 360 #undef TCP_MINPROTOHDR 361 362 ISN_LOCK_INIT(); 363 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 364 SHUTDOWN_PRI_DEFAULT); 365 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 366 EVENTHANDLER_PRI_ANY); 367 } 368 369 #ifdef VIMAGE 370 void 371 tcp_destroy(void) 372 { 373 374 tcp_reass_destroy(); 375 tcp_hc_destroy(); 376 syncache_destroy(); 377 tcp_tw_destroy(); 378 in_pcbinfo_destroy(&V_tcbinfo); 379 uma_zdestroy(V_sack_hole_zone); 380 uma_zdestroy(V_tcpcb_zone); 381 } 382 #endif 383 384 void 385 tcp_fini(void *xtp) 386 { 387 388 } 389 390 /* 391 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 392 * tcp_template used to store this data in mbufs, but we now recopy it out 393 * of the tcpcb each time to conserve mbufs. 394 */ 395 void 396 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 397 { 398 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 399 400 INP_WLOCK_ASSERT(inp); 401 402 #ifdef INET6 403 if ((inp->inp_vflag & INP_IPV6) != 0) { 404 struct ip6_hdr *ip6; 405 406 ip6 = (struct ip6_hdr *)ip_ptr; 407 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 408 (inp->inp_flow & IPV6_FLOWINFO_MASK); 409 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 410 (IPV6_VERSION & IPV6_VERSION_MASK); 411 ip6->ip6_nxt = IPPROTO_TCP; 412 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 413 ip6->ip6_src = inp->in6p_laddr; 414 ip6->ip6_dst = inp->in6p_faddr; 415 } 416 #endif /* INET6 */ 417 #if defined(INET6) && defined(INET) 418 else 419 #endif 420 #ifdef INET 421 { 422 struct ip *ip; 423 424 ip = (struct ip *)ip_ptr; 425 ip->ip_v = IPVERSION; 426 ip->ip_hl = 5; 427 ip->ip_tos = inp->inp_ip_tos; 428 ip->ip_len = 0; 429 ip->ip_id = 0; 430 ip->ip_off = 0; 431 ip->ip_ttl = inp->inp_ip_ttl; 432 ip->ip_sum = 0; 433 ip->ip_p = IPPROTO_TCP; 434 ip->ip_src = inp->inp_laddr; 435 ip->ip_dst = inp->inp_faddr; 436 } 437 #endif /* INET */ 438 th->th_sport = inp->inp_lport; 439 th->th_dport = inp->inp_fport; 440 th->th_seq = 0; 441 th->th_ack = 0; 442 th->th_x2 = 0; 443 th->th_off = 5; 444 th->th_flags = 0; 445 th->th_win = 0; 446 th->th_urp = 0; 447 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 448 } 449 450 /* 451 * Create template to be used to send tcp packets on a connection. 452 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 453 * use for this function is in keepalives, which use tcp_respond. 454 */ 455 struct tcptemp * 456 tcpip_maketemplate(struct inpcb *inp) 457 { 458 struct tcptemp *t; 459 460 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 461 if (t == NULL) 462 return (NULL); 463 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 464 return (t); 465 } 466 467 /* 468 * Send a single message to the TCP at address specified by 469 * the given TCP/IP header. If m == NULL, then we make a copy 470 * of the tcpiphdr at ti and send directly to the addressed host. 471 * This is used to force keep alive messages out using the TCP 472 * template for a connection. If flags are given then we send 473 * a message back to the TCP which originated the * segment ti, 474 * and discard the mbuf containing it and any other attached mbufs. 475 * 476 * In any case the ack and sequence number of the transmitted 477 * segment are as specified by the parameters. 478 * 479 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 480 */ 481 void 482 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 483 tcp_seq ack, tcp_seq seq, int flags) 484 { 485 int tlen; 486 int win = 0; 487 struct ip *ip; 488 struct tcphdr *nth; 489 #ifdef INET6 490 struct ip6_hdr *ip6; 491 int isipv6; 492 #endif /* INET6 */ 493 int ipflags = 0; 494 struct inpcb *inp; 495 496 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 497 498 #ifdef INET6 499 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 500 ip6 = ipgen; 501 #endif /* INET6 */ 502 ip = ipgen; 503 504 if (tp != NULL) { 505 inp = tp->t_inpcb; 506 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 507 INP_WLOCK_ASSERT(inp); 508 } else 509 inp = NULL; 510 511 if (tp != NULL) { 512 if (!(flags & TH_RST)) { 513 win = sbspace(&inp->inp_socket->so_rcv); 514 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 515 win = (long)TCP_MAXWIN << tp->rcv_scale; 516 } 517 } 518 if (m == NULL) { 519 m = m_gethdr(M_DONTWAIT, MT_DATA); 520 if (m == NULL) 521 return; 522 tlen = 0; 523 m->m_data += max_linkhdr; 524 #ifdef INET6 525 if (isipv6) { 526 bcopy((caddr_t)ip6, mtod(m, caddr_t), 527 sizeof(struct ip6_hdr)); 528 ip6 = mtod(m, struct ip6_hdr *); 529 nth = (struct tcphdr *)(ip6 + 1); 530 } else 531 #endif /* INET6 */ 532 { 533 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 534 ip = mtod(m, struct ip *); 535 nth = (struct tcphdr *)(ip + 1); 536 } 537 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 538 flags = TH_ACK; 539 } else { 540 /* 541 * reuse the mbuf. 542 * XXX MRT We inherrit the FIB, which is lucky. 543 */ 544 m_freem(m->m_next); 545 m->m_next = NULL; 546 m->m_data = (caddr_t)ipgen; 547 /* m_len is set later */ 548 tlen = 0; 549 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 550 #ifdef INET6 551 if (isipv6) { 552 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 553 nth = (struct tcphdr *)(ip6 + 1); 554 } else 555 #endif /* INET6 */ 556 { 557 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 558 nth = (struct tcphdr *)(ip + 1); 559 } 560 if (th != nth) { 561 /* 562 * this is usually a case when an extension header 563 * exists between the IPv6 header and the 564 * TCP header. 565 */ 566 nth->th_sport = th->th_sport; 567 nth->th_dport = th->th_dport; 568 } 569 xchg(nth->th_dport, nth->th_sport, uint16_t); 570 #undef xchg 571 } 572 #ifdef INET6 573 if (isipv6) { 574 ip6->ip6_flow = 0; 575 ip6->ip6_vfc = IPV6_VERSION; 576 ip6->ip6_nxt = IPPROTO_TCP; 577 ip6->ip6_plen = 0; /* Set in ip6_output(). */ 578 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 579 } 580 #endif 581 #if defined(INET) && defined(INET6) 582 else 583 #endif 584 #ifdef INET 585 { 586 tlen += sizeof (struct tcpiphdr); 587 ip->ip_len = htons(tlen); 588 ip->ip_ttl = V_ip_defttl; 589 if (V_path_mtu_discovery) 590 ip->ip_off |= htons(IP_DF); 591 } 592 #endif 593 m->m_len = tlen; 594 m->m_pkthdr.len = tlen; 595 m->m_pkthdr.rcvif = NULL; 596 #ifdef MAC 597 if (inp != NULL) { 598 /* 599 * Packet is associated with a socket, so allow the 600 * label of the response to reflect the socket label. 601 */ 602 INP_WLOCK_ASSERT(inp); 603 mac_inpcb_create_mbuf(inp, m); 604 } else { 605 /* 606 * Packet is not associated with a socket, so possibly 607 * update the label in place. 608 */ 609 mac_netinet_tcp_reply(m); 610 } 611 #endif 612 nth->th_seq = htonl(seq); 613 nth->th_ack = htonl(ack); 614 nth->th_x2 = 0; 615 nth->th_off = sizeof (struct tcphdr) >> 2; 616 nth->th_flags = flags; 617 if (tp != NULL) 618 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 619 else 620 nth->th_win = htons((u_short)win); 621 nth->th_urp = 0; 622 623 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 624 #ifdef INET6 625 if (isipv6) { 626 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 627 nth->th_sum = in6_cksum_pseudo(ip6, 628 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 629 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 630 NULL, NULL); 631 } 632 #endif /* INET6 */ 633 #if defined(INET6) && defined(INET) 634 else 635 #endif 636 #ifdef INET 637 { 638 m->m_pkthdr.csum_flags = CSUM_TCP; 639 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 640 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 641 } 642 #endif /* INET */ 643 #ifdef TCPDEBUG 644 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 645 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 646 #endif 647 #ifdef INET6 648 if (isipv6) 649 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 650 #endif /* INET6 */ 651 #if defined(INET) && defined(INET6) 652 else 653 #endif 654 #ifdef INET 655 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 656 #endif 657 } 658 659 /* 660 * Create a new TCP control block, making an 661 * empty reassembly queue and hooking it to the argument 662 * protocol control block. The `inp' parameter must have 663 * come from the zone allocator set up in tcp_init(). 664 */ 665 struct tcpcb * 666 tcp_newtcpcb(struct inpcb *inp) 667 { 668 struct tcpcb_mem *tm; 669 struct tcpcb *tp; 670 #ifdef INET6 671 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 672 #endif /* INET6 */ 673 674 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 675 if (tm == NULL) 676 return (NULL); 677 tp = &tm->tcb; 678 679 /* Initialise cc_var struct for this tcpcb. */ 680 tp->ccv = &tm->ccv; 681 tp->ccv->type = IPPROTO_TCP; 682 tp->ccv->ccvc.tcp = tp; 683 684 /* 685 * Use the current system default CC algorithm. 686 */ 687 CC_LIST_RLOCK(); 688 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 689 CC_ALGO(tp) = CC_DEFAULT(); 690 CC_LIST_RUNLOCK(); 691 692 if (CC_ALGO(tp)->cb_init != NULL) 693 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 694 uma_zfree(V_tcpcb_zone, tm); 695 return (NULL); 696 } 697 698 tp->osd = &tm->osd; 699 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 700 uma_zfree(V_tcpcb_zone, tm); 701 return (NULL); 702 } 703 704 #ifdef VIMAGE 705 tp->t_vnet = inp->inp_vnet; 706 #endif 707 tp->t_timers = &tm->tt; 708 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 709 tp->t_maxseg = tp->t_maxopd = 710 #ifdef INET6 711 isipv6 ? V_tcp_v6mssdflt : 712 #endif /* INET6 */ 713 V_tcp_mssdflt; 714 715 /* Set up our timeouts. */ 716 callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE); 717 callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE); 718 callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE); 719 callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE); 720 callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE); 721 722 if (V_tcp_do_rfc1323) 723 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 724 if (V_tcp_do_sack) 725 tp->t_flags |= TF_SACK_PERMIT; 726 TAILQ_INIT(&tp->snd_holes); 727 tp->t_inpcb = inp; /* XXX */ 728 /* 729 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 730 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 731 * reasonable initial retransmit time. 732 */ 733 tp->t_srtt = TCPTV_SRTTBASE; 734 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 735 tp->t_rttmin = tcp_rexmit_min; 736 tp->t_rxtcur = TCPTV_RTOBASE; 737 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 738 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 739 tp->t_rcvtime = ticks; 740 /* 741 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 742 * because the socket may be bound to an IPv6 wildcard address, 743 * which may match an IPv4-mapped IPv6 address. 744 */ 745 inp->inp_ip_ttl = V_ip_defttl; 746 inp->inp_ppcb = tp; 747 return (tp); /* XXX */ 748 } 749 750 /* 751 * Switch the congestion control algorithm back to NewReno for any active 752 * control blocks using an algorithm which is about to go away. 753 * This ensures the CC framework can allow the unload to proceed without leaving 754 * any dangling pointers which would trigger a panic. 755 * Returning non-zero would inform the CC framework that something went wrong 756 * and it would be unsafe to allow the unload to proceed. However, there is no 757 * way for this to occur with this implementation so we always return zero. 758 */ 759 int 760 tcp_ccalgounload(struct cc_algo *unload_algo) 761 { 762 struct cc_algo *tmpalgo; 763 struct inpcb *inp; 764 struct tcpcb *tp; 765 VNET_ITERATOR_DECL(vnet_iter); 766 767 /* 768 * Check all active control blocks across all network stacks and change 769 * any that are using "unload_algo" back to NewReno. If "unload_algo" 770 * requires cleanup code to be run, call it. 771 */ 772 VNET_LIST_RLOCK(); 773 VNET_FOREACH(vnet_iter) { 774 CURVNET_SET(vnet_iter); 775 INP_INFO_RLOCK(&V_tcbinfo); 776 /* 777 * New connections already part way through being initialised 778 * with the CC algo we're removing will not race with this code 779 * because the INP_INFO_WLOCK is held during initialisation. We 780 * therefore don't enter the loop below until the connection 781 * list has stabilised. 782 */ 783 LIST_FOREACH(inp, &V_tcb, inp_list) { 784 INP_WLOCK(inp); 785 /* Important to skip tcptw structs. */ 786 if (!(inp->inp_flags & INP_TIMEWAIT) && 787 (tp = intotcpcb(inp)) != NULL) { 788 /* 789 * By holding INP_WLOCK here, we are assured 790 * that the connection is not currently 791 * executing inside the CC module's functions 792 * i.e. it is safe to make the switch back to 793 * NewReno. 794 */ 795 if (CC_ALGO(tp) == unload_algo) { 796 tmpalgo = CC_ALGO(tp); 797 /* NewReno does not require any init. */ 798 CC_ALGO(tp) = &newreno_cc_algo; 799 if (tmpalgo->cb_destroy != NULL) 800 tmpalgo->cb_destroy(tp->ccv); 801 } 802 } 803 INP_WUNLOCK(inp); 804 } 805 INP_INFO_RUNLOCK(&V_tcbinfo); 806 CURVNET_RESTORE(); 807 } 808 VNET_LIST_RUNLOCK(); 809 810 return (0); 811 } 812 813 /* 814 * Drop a TCP connection, reporting 815 * the specified error. If connection is synchronized, 816 * then send a RST to peer. 817 */ 818 struct tcpcb * 819 tcp_drop(struct tcpcb *tp, int errno) 820 { 821 struct socket *so = tp->t_inpcb->inp_socket; 822 823 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 824 INP_WLOCK_ASSERT(tp->t_inpcb); 825 826 if (TCPS_HAVERCVDSYN(tp->t_state)) { 827 tp->t_state = TCPS_CLOSED; 828 (void) tcp_output(tp); 829 TCPSTAT_INC(tcps_drops); 830 } else 831 TCPSTAT_INC(tcps_conndrops); 832 if (errno == ETIMEDOUT && tp->t_softerror) 833 errno = tp->t_softerror; 834 so->so_error = errno; 835 return (tcp_close(tp)); 836 } 837 838 void 839 tcp_discardcb(struct tcpcb *tp) 840 { 841 struct inpcb *inp = tp->t_inpcb; 842 struct socket *so = inp->inp_socket; 843 #ifdef INET6 844 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 845 #endif /* INET6 */ 846 847 INP_WLOCK_ASSERT(inp); 848 849 /* 850 * Make sure that all of our timers are stopped before we delete the 851 * PCB. 852 * 853 * XXXRW: Really, we would like to use callout_drain() here in order 854 * to avoid races experienced in tcp_timer.c where a timer is already 855 * executing at this point. However, we can't, both because we're 856 * running in a context where we can't sleep, and also because we 857 * hold locks required by the timers. What we instead need to do is 858 * test to see if callout_drain() is required, and if so, defer some 859 * portion of the remainder of tcp_discardcb() to an asynchronous 860 * context that can callout_drain() and then continue. Some care 861 * will be required to ensure that no further processing takes place 862 * on the tcpcb, even though it hasn't been freed (a flag?). 863 */ 864 callout_stop(&tp->t_timers->tt_rexmt); 865 callout_stop(&tp->t_timers->tt_persist); 866 callout_stop(&tp->t_timers->tt_keep); 867 callout_stop(&tp->t_timers->tt_2msl); 868 callout_stop(&tp->t_timers->tt_delack); 869 870 /* 871 * If we got enough samples through the srtt filter, 872 * save the rtt and rttvar in the routing entry. 873 * 'Enough' is arbitrarily defined as 4 rtt samples. 874 * 4 samples is enough for the srtt filter to converge 875 * to within enough % of the correct value; fewer samples 876 * and we could save a bogus rtt. The danger is not high 877 * as tcp quickly recovers from everything. 878 * XXX: Works very well but needs some more statistics! 879 */ 880 if (tp->t_rttupdated >= 4) { 881 struct hc_metrics_lite metrics; 882 u_long ssthresh; 883 884 bzero(&metrics, sizeof(metrics)); 885 /* 886 * Update the ssthresh always when the conditions below 887 * are satisfied. This gives us better new start value 888 * for the congestion avoidance for new connections. 889 * ssthresh is only set if packet loss occured on a session. 890 * 891 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 892 * being torn down. Ideally this code would not use 'so'. 893 */ 894 ssthresh = tp->snd_ssthresh; 895 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 896 /* 897 * convert the limit from user data bytes to 898 * packets then to packet data bytes. 899 */ 900 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 901 if (ssthresh < 2) 902 ssthresh = 2; 903 ssthresh *= (u_long)(tp->t_maxseg + 904 #ifdef INET6 905 (isipv6 ? sizeof (struct ip6_hdr) + 906 sizeof (struct tcphdr) : 907 #endif 908 sizeof (struct tcpiphdr) 909 #ifdef INET6 910 ) 911 #endif 912 ); 913 } else 914 ssthresh = 0; 915 metrics.rmx_ssthresh = ssthresh; 916 917 metrics.rmx_rtt = tp->t_srtt; 918 metrics.rmx_rttvar = tp->t_rttvar; 919 metrics.rmx_cwnd = tp->snd_cwnd; 920 metrics.rmx_sendpipe = 0; 921 metrics.rmx_recvpipe = 0; 922 923 tcp_hc_update(&inp->inp_inc, &metrics); 924 } 925 926 /* free the reassembly queue, if any */ 927 tcp_reass_flush(tp); 928 929 #ifdef TCP_OFFLOAD 930 /* Disconnect offload device, if any. */ 931 if (tp->t_flags & TF_TOE) 932 tcp_offload_detach(tp); 933 #endif 934 935 tcp_free_sackholes(tp); 936 937 /* Allow the CC algorithm to clean up after itself. */ 938 if (CC_ALGO(tp)->cb_destroy != NULL) 939 CC_ALGO(tp)->cb_destroy(tp->ccv); 940 941 khelp_destroy_osd(tp->osd); 942 943 CC_ALGO(tp) = NULL; 944 inp->inp_ppcb = NULL; 945 tp->t_inpcb = NULL; 946 uma_zfree(V_tcpcb_zone, tp); 947 } 948 949 /* 950 * Attempt to close a TCP control block, marking it as dropped, and freeing 951 * the socket if we hold the only reference. 952 */ 953 struct tcpcb * 954 tcp_close(struct tcpcb *tp) 955 { 956 struct inpcb *inp = tp->t_inpcb; 957 struct socket *so; 958 959 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 960 INP_WLOCK_ASSERT(inp); 961 962 #ifdef TCP_OFFLOAD 963 if (tp->t_state == TCPS_LISTEN) 964 tcp_offload_listen_stop(tp); 965 #endif 966 in_pcbdrop(inp); 967 TCPSTAT_INC(tcps_closed); 968 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 969 so = inp->inp_socket; 970 soisdisconnected(so); 971 if (inp->inp_flags & INP_SOCKREF) { 972 KASSERT(so->so_state & SS_PROTOREF, 973 ("tcp_close: !SS_PROTOREF")); 974 inp->inp_flags &= ~INP_SOCKREF; 975 INP_WUNLOCK(inp); 976 ACCEPT_LOCK(); 977 SOCK_LOCK(so); 978 so->so_state &= ~SS_PROTOREF; 979 sofree(so); 980 return (NULL); 981 } 982 return (tp); 983 } 984 985 void 986 tcp_drain(void) 987 { 988 VNET_ITERATOR_DECL(vnet_iter); 989 990 if (!do_tcpdrain) 991 return; 992 993 VNET_LIST_RLOCK_NOSLEEP(); 994 VNET_FOREACH(vnet_iter) { 995 CURVNET_SET(vnet_iter); 996 struct inpcb *inpb; 997 struct tcpcb *tcpb; 998 999 /* 1000 * Walk the tcpbs, if existing, and flush the reassembly queue, 1001 * if there is one... 1002 * XXX: The "Net/3" implementation doesn't imply that the TCP 1003 * reassembly queue should be flushed, but in a situation 1004 * where we're really low on mbufs, this is potentially 1005 * usefull. 1006 */ 1007 INP_INFO_RLOCK(&V_tcbinfo); 1008 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1009 if (inpb->inp_flags & INP_TIMEWAIT) 1010 continue; 1011 INP_WLOCK(inpb); 1012 if ((tcpb = intotcpcb(inpb)) != NULL) { 1013 tcp_reass_flush(tcpb); 1014 tcp_clean_sackreport(tcpb); 1015 } 1016 INP_WUNLOCK(inpb); 1017 } 1018 INP_INFO_RUNLOCK(&V_tcbinfo); 1019 CURVNET_RESTORE(); 1020 } 1021 VNET_LIST_RUNLOCK_NOSLEEP(); 1022 } 1023 1024 /* 1025 * Notify a tcp user of an asynchronous error; 1026 * store error as soft error, but wake up user 1027 * (for now, won't do anything until can select for soft error). 1028 * 1029 * Do not wake up user since there currently is no mechanism for 1030 * reporting soft errors (yet - a kqueue filter may be added). 1031 */ 1032 static struct inpcb * 1033 tcp_notify(struct inpcb *inp, int error) 1034 { 1035 struct tcpcb *tp; 1036 1037 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1038 INP_WLOCK_ASSERT(inp); 1039 1040 if ((inp->inp_flags & INP_TIMEWAIT) || 1041 (inp->inp_flags & INP_DROPPED)) 1042 return (inp); 1043 1044 tp = intotcpcb(inp); 1045 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1046 1047 /* 1048 * Ignore some errors if we are hooked up. 1049 * If connection hasn't completed, has retransmitted several times, 1050 * and receives a second error, give up now. This is better 1051 * than waiting a long time to establish a connection that 1052 * can never complete. 1053 */ 1054 if (tp->t_state == TCPS_ESTABLISHED && 1055 (error == EHOSTUNREACH || error == ENETUNREACH || 1056 error == EHOSTDOWN)) { 1057 return (inp); 1058 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1059 tp->t_softerror) { 1060 tp = tcp_drop(tp, error); 1061 if (tp != NULL) 1062 return (inp); 1063 else 1064 return (NULL); 1065 } else { 1066 tp->t_softerror = error; 1067 return (inp); 1068 } 1069 #if 0 1070 wakeup( &so->so_timeo); 1071 sorwakeup(so); 1072 sowwakeup(so); 1073 #endif 1074 } 1075 1076 static int 1077 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1078 { 1079 int error, i, m, n, pcb_count; 1080 struct inpcb *inp, **inp_list; 1081 inp_gen_t gencnt; 1082 struct xinpgen xig; 1083 1084 /* 1085 * The process of preparing the TCB list is too time-consuming and 1086 * resource-intensive to repeat twice on every request. 1087 */ 1088 if (req->oldptr == NULL) { 1089 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 1090 n += imax(n / 8, 10); 1091 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1092 return (0); 1093 } 1094 1095 if (req->newptr != NULL) 1096 return (EPERM); 1097 1098 /* 1099 * OK, now we're committed to doing something. 1100 */ 1101 INP_INFO_RLOCK(&V_tcbinfo); 1102 gencnt = V_tcbinfo.ipi_gencnt; 1103 n = V_tcbinfo.ipi_count; 1104 INP_INFO_RUNLOCK(&V_tcbinfo); 1105 1106 m = syncache_pcbcount(); 1107 1108 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1109 + (n + m) * sizeof(struct xtcpcb)); 1110 if (error != 0) 1111 return (error); 1112 1113 xig.xig_len = sizeof xig; 1114 xig.xig_count = n + m; 1115 xig.xig_gen = gencnt; 1116 xig.xig_sogen = so_gencnt; 1117 error = SYSCTL_OUT(req, &xig, sizeof xig); 1118 if (error) 1119 return (error); 1120 1121 error = syncache_pcblist(req, m, &pcb_count); 1122 if (error) 1123 return (error); 1124 1125 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1126 if (inp_list == NULL) 1127 return (ENOMEM); 1128 1129 INP_INFO_RLOCK(&V_tcbinfo); 1130 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1131 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1132 INP_WLOCK(inp); 1133 if (inp->inp_gencnt <= gencnt) { 1134 /* 1135 * XXX: This use of cr_cansee(), introduced with 1136 * TCP state changes, is not quite right, but for 1137 * now, better than nothing. 1138 */ 1139 if (inp->inp_flags & INP_TIMEWAIT) { 1140 if (intotw(inp) != NULL) 1141 error = cr_cansee(req->td->td_ucred, 1142 intotw(inp)->tw_cred); 1143 else 1144 error = EINVAL; /* Skip this inp. */ 1145 } else 1146 error = cr_canseeinpcb(req->td->td_ucred, inp); 1147 if (error == 0) { 1148 in_pcbref(inp); 1149 inp_list[i++] = inp; 1150 } 1151 } 1152 INP_WUNLOCK(inp); 1153 } 1154 INP_INFO_RUNLOCK(&V_tcbinfo); 1155 n = i; 1156 1157 error = 0; 1158 for (i = 0; i < n; i++) { 1159 inp = inp_list[i]; 1160 INP_RLOCK(inp); 1161 if (inp->inp_gencnt <= gencnt) { 1162 struct xtcpcb xt; 1163 void *inp_ppcb; 1164 1165 bzero(&xt, sizeof(xt)); 1166 xt.xt_len = sizeof xt; 1167 /* XXX should avoid extra copy */ 1168 bcopy(inp, &xt.xt_inp, sizeof *inp); 1169 inp_ppcb = inp->inp_ppcb; 1170 if (inp_ppcb == NULL) 1171 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1172 else if (inp->inp_flags & INP_TIMEWAIT) { 1173 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1174 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1175 } else { 1176 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1177 if (xt.xt_tp.t_timers) 1178 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1179 } 1180 if (inp->inp_socket != NULL) 1181 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1182 else { 1183 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1184 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1185 } 1186 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1187 INP_RUNLOCK(inp); 1188 error = SYSCTL_OUT(req, &xt, sizeof xt); 1189 } else 1190 INP_RUNLOCK(inp); 1191 } 1192 INP_INFO_WLOCK(&V_tcbinfo); 1193 for (i = 0; i < n; i++) { 1194 inp = inp_list[i]; 1195 INP_RLOCK(inp); 1196 if (!in_pcbrele_rlocked(inp)) 1197 INP_RUNLOCK(inp); 1198 } 1199 INP_INFO_WUNLOCK(&V_tcbinfo); 1200 1201 if (!error) { 1202 /* 1203 * Give the user an updated idea of our state. 1204 * If the generation differs from what we told 1205 * her before, she knows that something happened 1206 * while we were processing this request, and it 1207 * might be necessary to retry. 1208 */ 1209 INP_INFO_RLOCK(&V_tcbinfo); 1210 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1211 xig.xig_sogen = so_gencnt; 1212 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1213 INP_INFO_RUNLOCK(&V_tcbinfo); 1214 error = SYSCTL_OUT(req, &xig, sizeof xig); 1215 } 1216 free(inp_list, M_TEMP); 1217 return (error); 1218 } 1219 1220 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1221 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1222 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1223 1224 #ifdef INET 1225 static int 1226 tcp_getcred(SYSCTL_HANDLER_ARGS) 1227 { 1228 struct xucred xuc; 1229 struct sockaddr_in addrs[2]; 1230 struct inpcb *inp; 1231 int error; 1232 1233 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1234 if (error) 1235 return (error); 1236 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1237 if (error) 1238 return (error); 1239 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1240 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1241 if (inp != NULL) { 1242 if (inp->inp_socket == NULL) 1243 error = ENOENT; 1244 if (error == 0) 1245 error = cr_canseeinpcb(req->td->td_ucred, inp); 1246 if (error == 0) 1247 cru2x(inp->inp_cred, &xuc); 1248 INP_RUNLOCK(inp); 1249 } else 1250 error = ENOENT; 1251 if (error == 0) 1252 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1253 return (error); 1254 } 1255 1256 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1257 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1258 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1259 #endif /* INET */ 1260 1261 #ifdef INET6 1262 static int 1263 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1264 { 1265 struct xucred xuc; 1266 struct sockaddr_in6 addrs[2]; 1267 struct inpcb *inp; 1268 int error; 1269 #ifdef INET 1270 int mapped = 0; 1271 #endif 1272 1273 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1274 if (error) 1275 return (error); 1276 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1277 if (error) 1278 return (error); 1279 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1280 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1281 return (error); 1282 } 1283 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1284 #ifdef INET 1285 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1286 mapped = 1; 1287 else 1288 #endif 1289 return (EINVAL); 1290 } 1291 1292 #ifdef INET 1293 if (mapped == 1) 1294 inp = in_pcblookup(&V_tcbinfo, 1295 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1296 addrs[1].sin6_port, 1297 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1298 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1299 else 1300 #endif 1301 inp = in6_pcblookup(&V_tcbinfo, 1302 &addrs[1].sin6_addr, addrs[1].sin6_port, 1303 &addrs[0].sin6_addr, addrs[0].sin6_port, 1304 INPLOOKUP_RLOCKPCB, NULL); 1305 if (inp != NULL) { 1306 if (inp->inp_socket == NULL) 1307 error = ENOENT; 1308 if (error == 0) 1309 error = cr_canseeinpcb(req->td->td_ucred, inp); 1310 if (error == 0) 1311 cru2x(inp->inp_cred, &xuc); 1312 INP_RUNLOCK(inp); 1313 } else 1314 error = ENOENT; 1315 if (error == 0) 1316 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1317 return (error); 1318 } 1319 1320 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1321 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1322 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1323 #endif /* INET6 */ 1324 1325 1326 #ifdef INET 1327 void 1328 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1329 { 1330 struct ip *ip = vip; 1331 struct tcphdr *th; 1332 struct in_addr faddr; 1333 struct inpcb *inp; 1334 struct tcpcb *tp; 1335 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1336 struct icmp *icp; 1337 struct in_conninfo inc; 1338 tcp_seq icmp_tcp_seq; 1339 int mtu; 1340 1341 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1342 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1343 return; 1344 1345 if (cmd == PRC_MSGSIZE) 1346 notify = tcp_mtudisc_notify; 1347 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1348 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1349 notify = tcp_drop_syn_sent; 1350 /* 1351 * Redirects don't need to be handled up here. 1352 */ 1353 else if (PRC_IS_REDIRECT(cmd)) 1354 return; 1355 /* 1356 * Source quench is depreciated. 1357 */ 1358 else if (cmd == PRC_QUENCH) 1359 return; 1360 /* 1361 * Hostdead is ugly because it goes linearly through all PCBs. 1362 * XXX: We never get this from ICMP, otherwise it makes an 1363 * excellent DoS attack on machines with many connections. 1364 */ 1365 else if (cmd == PRC_HOSTDEAD) 1366 ip = NULL; 1367 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1368 return; 1369 if (ip != NULL) { 1370 icp = (struct icmp *)((caddr_t)ip 1371 - offsetof(struct icmp, icmp_ip)); 1372 th = (struct tcphdr *)((caddr_t)ip 1373 + (ip->ip_hl << 2)); 1374 INP_INFO_WLOCK(&V_tcbinfo); 1375 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, 1376 ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1377 if (inp != NULL) { 1378 if (!(inp->inp_flags & INP_TIMEWAIT) && 1379 !(inp->inp_flags & INP_DROPPED) && 1380 !(inp->inp_socket == NULL)) { 1381 icmp_tcp_seq = htonl(th->th_seq); 1382 tp = intotcpcb(inp); 1383 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1384 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1385 if (cmd == PRC_MSGSIZE) { 1386 /* 1387 * MTU discovery: 1388 * If we got a needfrag set the MTU 1389 * in the route to the suggested new 1390 * value (if given) and then notify. 1391 */ 1392 bzero(&inc, sizeof(inc)); 1393 inc.inc_faddr = faddr; 1394 inc.inc_fibnum = 1395 inp->inp_inc.inc_fibnum; 1396 1397 mtu = ntohs(icp->icmp_nextmtu); 1398 /* 1399 * If no alternative MTU was 1400 * proposed, try the next smaller 1401 * one. 1402 */ 1403 if (!mtu) 1404 mtu = ip_next_mtu( 1405 ntohs(ip->ip_len), 1); 1406 if (mtu < V_tcp_minmss 1407 + sizeof(struct tcpiphdr)) 1408 mtu = V_tcp_minmss 1409 + sizeof(struct tcpiphdr); 1410 /* 1411 * Only cache the MTU if it 1412 * is smaller than the interface 1413 * or route MTU. tcp_mtudisc() 1414 * will do right thing by itself. 1415 */ 1416 if (mtu <= tcp_maxmtu(&inc, NULL)) 1417 tcp_hc_updatemtu(&inc, mtu); 1418 tcp_mtudisc(inp, mtu); 1419 } else 1420 inp = (*notify)(inp, 1421 inetctlerrmap[cmd]); 1422 } 1423 } 1424 if (inp != NULL) 1425 INP_WUNLOCK(inp); 1426 } else { 1427 bzero(&inc, sizeof(inc)); 1428 inc.inc_fport = th->th_dport; 1429 inc.inc_lport = th->th_sport; 1430 inc.inc_faddr = faddr; 1431 inc.inc_laddr = ip->ip_src; 1432 syncache_unreach(&inc, th); 1433 } 1434 INP_INFO_WUNLOCK(&V_tcbinfo); 1435 } else 1436 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1437 } 1438 #endif /* INET */ 1439 1440 #ifdef INET6 1441 void 1442 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1443 { 1444 struct tcphdr th; 1445 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1446 struct ip6_hdr *ip6; 1447 struct mbuf *m; 1448 struct ip6ctlparam *ip6cp = NULL; 1449 const struct sockaddr_in6 *sa6_src = NULL; 1450 int off; 1451 struct tcp_portonly { 1452 u_int16_t th_sport; 1453 u_int16_t th_dport; 1454 } *thp; 1455 1456 if (sa->sa_family != AF_INET6 || 1457 sa->sa_len != sizeof(struct sockaddr_in6)) 1458 return; 1459 1460 if (cmd == PRC_MSGSIZE) 1461 notify = tcp_mtudisc_notify; 1462 else if (!PRC_IS_REDIRECT(cmd) && 1463 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1464 return; 1465 /* Source quench is depreciated. */ 1466 else if (cmd == PRC_QUENCH) 1467 return; 1468 1469 /* if the parameter is from icmp6, decode it. */ 1470 if (d != NULL) { 1471 ip6cp = (struct ip6ctlparam *)d; 1472 m = ip6cp->ip6c_m; 1473 ip6 = ip6cp->ip6c_ip6; 1474 off = ip6cp->ip6c_off; 1475 sa6_src = ip6cp->ip6c_src; 1476 } else { 1477 m = NULL; 1478 ip6 = NULL; 1479 off = 0; /* fool gcc */ 1480 sa6_src = &sa6_any; 1481 } 1482 1483 if (ip6 != NULL) { 1484 struct in_conninfo inc; 1485 /* 1486 * XXX: We assume that when IPV6 is non NULL, 1487 * M and OFF are valid. 1488 */ 1489 1490 /* check if we can safely examine src and dst ports */ 1491 if (m->m_pkthdr.len < off + sizeof(*thp)) 1492 return; 1493 1494 bzero(&th, sizeof(th)); 1495 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1496 1497 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1498 (struct sockaddr *)ip6cp->ip6c_src, 1499 th.th_sport, cmd, NULL, notify); 1500 1501 bzero(&inc, sizeof(inc)); 1502 inc.inc_fport = th.th_dport; 1503 inc.inc_lport = th.th_sport; 1504 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1505 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1506 inc.inc_flags |= INC_ISIPV6; 1507 INP_INFO_WLOCK(&V_tcbinfo); 1508 syncache_unreach(&inc, &th); 1509 INP_INFO_WUNLOCK(&V_tcbinfo); 1510 } else 1511 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1512 0, cmd, NULL, notify); 1513 } 1514 #endif /* INET6 */ 1515 1516 1517 /* 1518 * Following is where TCP initial sequence number generation occurs. 1519 * 1520 * There are two places where we must use initial sequence numbers: 1521 * 1. In SYN-ACK packets. 1522 * 2. In SYN packets. 1523 * 1524 * All ISNs for SYN-ACK packets are generated by the syncache. See 1525 * tcp_syncache.c for details. 1526 * 1527 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1528 * depends on this property. In addition, these ISNs should be 1529 * unguessable so as to prevent connection hijacking. To satisfy 1530 * the requirements of this situation, the algorithm outlined in 1531 * RFC 1948 is used, with only small modifications. 1532 * 1533 * Implementation details: 1534 * 1535 * Time is based off the system timer, and is corrected so that it 1536 * increases by one megabyte per second. This allows for proper 1537 * recycling on high speed LANs while still leaving over an hour 1538 * before rollover. 1539 * 1540 * As reading the *exact* system time is too expensive to be done 1541 * whenever setting up a TCP connection, we increment the time 1542 * offset in two ways. First, a small random positive increment 1543 * is added to isn_offset for each connection that is set up. 1544 * Second, the function tcp_isn_tick fires once per clock tick 1545 * and increments isn_offset as necessary so that sequence numbers 1546 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1547 * random positive increments serve only to ensure that the same 1548 * exact sequence number is never sent out twice (as could otherwise 1549 * happen when a port is recycled in less than the system tick 1550 * interval.) 1551 * 1552 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1553 * between seeding of isn_secret. This is normally set to zero, 1554 * as reseeding should not be necessary. 1555 * 1556 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1557 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1558 * general, this means holding an exclusive (write) lock. 1559 */ 1560 1561 #define ISN_BYTES_PER_SECOND 1048576 1562 #define ISN_STATIC_INCREMENT 4096 1563 #define ISN_RANDOM_INCREMENT (4096 - 1) 1564 1565 static VNET_DEFINE(u_char, isn_secret[32]); 1566 static VNET_DEFINE(int, isn_last); 1567 static VNET_DEFINE(int, isn_last_reseed); 1568 static VNET_DEFINE(u_int32_t, isn_offset); 1569 static VNET_DEFINE(u_int32_t, isn_offset_old); 1570 1571 #define V_isn_secret VNET(isn_secret) 1572 #define V_isn_last VNET(isn_last) 1573 #define V_isn_last_reseed VNET(isn_last_reseed) 1574 #define V_isn_offset VNET(isn_offset) 1575 #define V_isn_offset_old VNET(isn_offset_old) 1576 1577 tcp_seq 1578 tcp_new_isn(struct tcpcb *tp) 1579 { 1580 MD5_CTX isn_ctx; 1581 u_int32_t md5_buffer[4]; 1582 tcp_seq new_isn; 1583 u_int32_t projected_offset; 1584 1585 INP_WLOCK_ASSERT(tp->t_inpcb); 1586 1587 ISN_LOCK(); 1588 /* Seed if this is the first use, reseed if requested. */ 1589 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 1590 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 1591 < (u_int)ticks))) { 1592 read_random(&V_isn_secret, sizeof(V_isn_secret)); 1593 V_isn_last_reseed = ticks; 1594 } 1595 1596 /* Compute the md5 hash and return the ISN. */ 1597 MD5Init(&isn_ctx); 1598 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1599 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1600 #ifdef INET6 1601 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1602 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1603 sizeof(struct in6_addr)); 1604 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1605 sizeof(struct in6_addr)); 1606 } else 1607 #endif 1608 { 1609 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1610 sizeof(struct in_addr)); 1611 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1612 sizeof(struct in_addr)); 1613 } 1614 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 1615 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1616 new_isn = (tcp_seq) md5_buffer[0]; 1617 V_isn_offset += ISN_STATIC_INCREMENT + 1618 (arc4random() & ISN_RANDOM_INCREMENT); 1619 if (ticks != V_isn_last) { 1620 projected_offset = V_isn_offset_old + 1621 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 1622 if (SEQ_GT(projected_offset, V_isn_offset)) 1623 V_isn_offset = projected_offset; 1624 V_isn_offset_old = V_isn_offset; 1625 V_isn_last = ticks; 1626 } 1627 new_isn += V_isn_offset; 1628 ISN_UNLOCK(); 1629 return (new_isn); 1630 } 1631 1632 /* 1633 * When a specific ICMP unreachable message is received and the 1634 * connection state is SYN-SENT, drop the connection. This behavior 1635 * is controlled by the icmp_may_rst sysctl. 1636 */ 1637 struct inpcb * 1638 tcp_drop_syn_sent(struct inpcb *inp, int errno) 1639 { 1640 struct tcpcb *tp; 1641 1642 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1643 INP_WLOCK_ASSERT(inp); 1644 1645 if ((inp->inp_flags & INP_TIMEWAIT) || 1646 (inp->inp_flags & INP_DROPPED)) 1647 return (inp); 1648 1649 tp = intotcpcb(inp); 1650 if (tp->t_state != TCPS_SYN_SENT) 1651 return (inp); 1652 1653 tp = tcp_drop(tp, errno); 1654 if (tp != NULL) 1655 return (inp); 1656 else 1657 return (NULL); 1658 } 1659 1660 /* 1661 * When `need fragmentation' ICMP is received, update our idea of the MSS 1662 * based on the new value. Also nudge TCP to send something, since we 1663 * know the packet we just sent was dropped. 1664 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1665 */ 1666 static struct inpcb * 1667 tcp_mtudisc_notify(struct inpcb *inp, int error) 1668 { 1669 1670 return (tcp_mtudisc(inp, -1)); 1671 } 1672 1673 struct inpcb * 1674 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 1675 { 1676 struct tcpcb *tp; 1677 struct socket *so; 1678 1679 INP_WLOCK_ASSERT(inp); 1680 if ((inp->inp_flags & INP_TIMEWAIT) || 1681 (inp->inp_flags & INP_DROPPED)) 1682 return (inp); 1683 1684 tp = intotcpcb(inp); 1685 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 1686 1687 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 1688 1689 so = inp->inp_socket; 1690 SOCKBUF_LOCK(&so->so_snd); 1691 /* If the mss is larger than the socket buffer, decrease the mss. */ 1692 if (so->so_snd.sb_hiwat < tp->t_maxseg) 1693 tp->t_maxseg = so->so_snd.sb_hiwat; 1694 SOCKBUF_UNLOCK(&so->so_snd); 1695 1696 TCPSTAT_INC(tcps_mturesent); 1697 tp->t_rtttime = 0; 1698 tp->snd_nxt = tp->snd_una; 1699 tcp_free_sackholes(tp); 1700 tp->snd_recover = tp->snd_max; 1701 if (tp->t_flags & TF_SACK_PERMIT) 1702 EXIT_FASTRECOVERY(tp->t_flags); 1703 tcp_output(tp); 1704 return (inp); 1705 } 1706 1707 #ifdef INET 1708 /* 1709 * Look-up the routing entry to the peer of this inpcb. If no route 1710 * is found and it cannot be allocated, then return 0. This routine 1711 * is called by TCP routines that access the rmx structure and by 1712 * tcp_mss_update to get the peer/interface MTU. 1713 */ 1714 u_long 1715 tcp_maxmtu(struct in_conninfo *inc, int *flags) 1716 { 1717 struct route sro; 1718 struct sockaddr_in *dst; 1719 struct ifnet *ifp; 1720 u_long maxmtu = 0; 1721 1722 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1723 1724 bzero(&sro, sizeof(sro)); 1725 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1726 dst = (struct sockaddr_in *)&sro.ro_dst; 1727 dst->sin_family = AF_INET; 1728 dst->sin_len = sizeof(*dst); 1729 dst->sin_addr = inc->inc_faddr; 1730 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 1731 } 1732 if (sro.ro_rt != NULL) { 1733 ifp = sro.ro_rt->rt_ifp; 1734 if (sro.ro_rt->rt_rmx.rmx_mtu == 0) 1735 maxmtu = ifp->if_mtu; 1736 else 1737 maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu); 1738 1739 /* Report additional interface capabilities. */ 1740 if (flags != NULL) { 1741 if (ifp->if_capenable & IFCAP_TSO4 && 1742 ifp->if_hwassist & CSUM_TSO) 1743 *flags |= CSUM_TSO; 1744 } 1745 RTFREE(sro.ro_rt); 1746 } 1747 return (maxmtu); 1748 } 1749 #endif /* INET */ 1750 1751 #ifdef INET6 1752 u_long 1753 tcp_maxmtu6(struct in_conninfo *inc, int *flags) 1754 { 1755 struct route_in6 sro6; 1756 struct ifnet *ifp; 1757 u_long maxmtu = 0; 1758 1759 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1760 1761 bzero(&sro6, sizeof(sro6)); 1762 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1763 sro6.ro_dst.sin6_family = AF_INET6; 1764 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1765 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1766 in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum); 1767 } 1768 if (sro6.ro_rt != NULL) { 1769 ifp = sro6.ro_rt->rt_ifp; 1770 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0) 1771 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1772 else 1773 maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu, 1774 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1775 1776 /* Report additional interface capabilities. */ 1777 if (flags != NULL) { 1778 if (ifp->if_capenable & IFCAP_TSO6 && 1779 ifp->if_hwassist & CSUM_TSO) 1780 *flags |= CSUM_TSO; 1781 } 1782 RTFREE(sro6.ro_rt); 1783 } 1784 1785 return (maxmtu); 1786 } 1787 #endif /* INET6 */ 1788 1789 #ifdef IPSEC 1790 /* compute ESP/AH header size for TCP, including outer IP header. */ 1791 size_t 1792 ipsec_hdrsiz_tcp(struct tcpcb *tp) 1793 { 1794 struct inpcb *inp; 1795 struct mbuf *m; 1796 size_t hdrsiz; 1797 struct ip *ip; 1798 #ifdef INET6 1799 struct ip6_hdr *ip6; 1800 #endif 1801 struct tcphdr *th; 1802 1803 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1804 return (0); 1805 MGETHDR(m, M_DONTWAIT, MT_DATA); 1806 if (!m) 1807 return (0); 1808 1809 #ifdef INET6 1810 if ((inp->inp_vflag & INP_IPV6) != 0) { 1811 ip6 = mtod(m, struct ip6_hdr *); 1812 th = (struct tcphdr *)(ip6 + 1); 1813 m->m_pkthdr.len = m->m_len = 1814 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1815 tcpip_fillheaders(inp, ip6, th); 1816 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1817 } else 1818 #endif /* INET6 */ 1819 { 1820 ip = mtod(m, struct ip *); 1821 th = (struct tcphdr *)(ip + 1); 1822 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1823 tcpip_fillheaders(inp, ip, th); 1824 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1825 } 1826 1827 m_free(m); 1828 return (hdrsiz); 1829 } 1830 #endif /* IPSEC */ 1831 1832 #ifdef TCP_SIGNATURE 1833 /* 1834 * Callback function invoked by m_apply() to digest TCP segment data 1835 * contained within an mbuf chain. 1836 */ 1837 static int 1838 tcp_signature_apply(void *fstate, void *data, u_int len) 1839 { 1840 1841 MD5Update(fstate, (u_char *)data, len); 1842 return (0); 1843 } 1844 1845 /* 1846 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 1847 * 1848 * Parameters: 1849 * m pointer to head of mbuf chain 1850 * _unused 1851 * len length of TCP segment data, excluding options 1852 * optlen length of TCP segment options 1853 * buf pointer to storage for computed MD5 digest 1854 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 1855 * 1856 * We do this over ip, tcphdr, segment data, and the key in the SADB. 1857 * When called from tcp_input(), we can be sure that th_sum has been 1858 * zeroed out and verified already. 1859 * 1860 * Return 0 if successful, otherwise return -1. 1861 * 1862 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 1863 * search with the destination IP address, and a 'magic SPI' to be 1864 * determined by the application. This is hardcoded elsewhere to 1179 1865 * right now. Another branch of this code exists which uses the SPD to 1866 * specify per-application flows but it is unstable. 1867 */ 1868 int 1869 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 1870 u_char *buf, u_int direction) 1871 { 1872 union sockaddr_union dst; 1873 #ifdef INET 1874 struct ippseudo ippseudo; 1875 #endif 1876 MD5_CTX ctx; 1877 int doff; 1878 struct ip *ip; 1879 #ifdef INET 1880 struct ipovly *ipovly; 1881 #endif 1882 struct secasvar *sav; 1883 struct tcphdr *th; 1884 #ifdef INET6 1885 struct ip6_hdr *ip6; 1886 struct in6_addr in6; 1887 char ip6buf[INET6_ADDRSTRLEN]; 1888 uint32_t plen; 1889 uint16_t nhdr; 1890 #endif 1891 u_short savecsum; 1892 1893 KASSERT(m != NULL, ("NULL mbuf chain")); 1894 KASSERT(buf != NULL, ("NULL signature pointer")); 1895 1896 /* Extract the destination from the IP header in the mbuf. */ 1897 bzero(&dst, sizeof(union sockaddr_union)); 1898 ip = mtod(m, struct ip *); 1899 #ifdef INET6 1900 ip6 = NULL; /* Make the compiler happy. */ 1901 #endif 1902 switch (ip->ip_v) { 1903 #ifdef INET 1904 case IPVERSION: 1905 dst.sa.sa_len = sizeof(struct sockaddr_in); 1906 dst.sa.sa_family = AF_INET; 1907 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 1908 ip->ip_src : ip->ip_dst; 1909 break; 1910 #endif 1911 #ifdef INET6 1912 case (IPV6_VERSION >> 4): 1913 ip6 = mtod(m, struct ip6_hdr *); 1914 dst.sa.sa_len = sizeof(struct sockaddr_in6); 1915 dst.sa.sa_family = AF_INET6; 1916 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 1917 ip6->ip6_src : ip6->ip6_dst; 1918 break; 1919 #endif 1920 default: 1921 return (EINVAL); 1922 /* NOTREACHED */ 1923 break; 1924 } 1925 1926 /* Look up an SADB entry which matches the address of the peer. */ 1927 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 1928 if (sav == NULL) { 1929 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 1930 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 1931 #ifdef INET6 1932 (ip->ip_v == (IPV6_VERSION >> 4)) ? 1933 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 1934 #endif 1935 "(unsupported)")); 1936 return (EINVAL); 1937 } 1938 1939 MD5Init(&ctx); 1940 /* 1941 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 1942 * 1943 * XXX The ippseudo header MUST be digested in network byte order, 1944 * or else we'll fail the regression test. Assume all fields we've 1945 * been doing arithmetic on have been in host byte order. 1946 * XXX One cannot depend on ipovly->ih_len here. When called from 1947 * tcp_output(), the underlying ip_len member has not yet been set. 1948 */ 1949 switch (ip->ip_v) { 1950 #ifdef INET 1951 case IPVERSION: 1952 ipovly = (struct ipovly *)ip; 1953 ippseudo.ippseudo_src = ipovly->ih_src; 1954 ippseudo.ippseudo_dst = ipovly->ih_dst; 1955 ippseudo.ippseudo_pad = 0; 1956 ippseudo.ippseudo_p = IPPROTO_TCP; 1957 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 1958 optlen); 1959 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 1960 1961 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 1962 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 1963 break; 1964 #endif 1965 #ifdef INET6 1966 /* 1967 * RFC 2385, 2.0 Proposal 1968 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 1969 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 1970 * extended next header value (to form 32 bits), and 32-bit segment 1971 * length. 1972 * Note: Upper-Layer Packet Length comes before Next Header. 1973 */ 1974 case (IPV6_VERSION >> 4): 1975 in6 = ip6->ip6_src; 1976 in6_clearscope(&in6); 1977 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1978 in6 = ip6->ip6_dst; 1979 in6_clearscope(&in6); 1980 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1981 plen = htonl(len + sizeof(struct tcphdr) + optlen); 1982 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 1983 nhdr = 0; 1984 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1985 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1986 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1987 nhdr = IPPROTO_TCP; 1988 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1989 1990 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 1991 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 1992 break; 1993 #endif 1994 default: 1995 return (EINVAL); 1996 /* NOTREACHED */ 1997 break; 1998 } 1999 2000 2001 /* 2002 * Step 2: Update MD5 hash with TCP header, excluding options. 2003 * The TCP checksum must be set to zero. 2004 */ 2005 savecsum = th->th_sum; 2006 th->th_sum = 0; 2007 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2008 th->th_sum = savecsum; 2009 2010 /* 2011 * Step 3: Update MD5 hash with TCP segment data. 2012 * Use m_apply() to avoid an early m_pullup(). 2013 */ 2014 if (len > 0) 2015 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2016 2017 /* 2018 * Step 4: Update MD5 hash with shared secret. 2019 */ 2020 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2021 MD5Final(buf, &ctx); 2022 2023 key_sa_recordxfer(sav, m); 2024 KEY_FREESAV(&sav); 2025 return (0); 2026 } 2027 2028 /* 2029 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2030 * 2031 * Parameters: 2032 * m pointer to head of mbuf chain 2033 * len length of TCP segment data, excluding options 2034 * optlen length of TCP segment options 2035 * buf pointer to storage for computed MD5 digest 2036 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2037 * 2038 * Return 1 if successful, otherwise return 0. 2039 */ 2040 int 2041 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2042 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2043 { 2044 char tmpdigest[TCP_SIGLEN]; 2045 2046 if (tcp_sig_checksigs == 0) 2047 return (1); 2048 if ((tcpbflag & TF_SIGNATURE) == 0) { 2049 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2050 2051 /* 2052 * If this socket is not expecting signature but 2053 * the segment contains signature just fail. 2054 */ 2055 TCPSTAT_INC(tcps_sig_err_sigopt); 2056 TCPSTAT_INC(tcps_sig_rcvbadsig); 2057 return (0); 2058 } 2059 2060 /* Signature is not expected, and not present in segment. */ 2061 return (1); 2062 } 2063 2064 /* 2065 * If this socket is expecting signature but the segment does not 2066 * contain any just fail. 2067 */ 2068 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2069 TCPSTAT_INC(tcps_sig_err_nosigopt); 2070 TCPSTAT_INC(tcps_sig_rcvbadsig); 2071 return (0); 2072 } 2073 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2074 IPSEC_DIR_INBOUND) == -1) { 2075 TCPSTAT_INC(tcps_sig_err_buildsig); 2076 TCPSTAT_INC(tcps_sig_rcvbadsig); 2077 return (0); 2078 } 2079 2080 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2081 TCPSTAT_INC(tcps_sig_rcvbadsig); 2082 return (0); 2083 } 2084 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2085 return (1); 2086 } 2087 #endif /* TCP_SIGNATURE */ 2088 2089 static int 2090 sysctl_drop(SYSCTL_HANDLER_ARGS) 2091 { 2092 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2093 struct sockaddr_storage addrs[2]; 2094 struct inpcb *inp; 2095 struct tcpcb *tp; 2096 struct tcptw *tw; 2097 struct sockaddr_in *fin, *lin; 2098 #ifdef INET6 2099 struct sockaddr_in6 *fin6, *lin6; 2100 #endif 2101 int error; 2102 2103 inp = NULL; 2104 fin = lin = NULL; 2105 #ifdef INET6 2106 fin6 = lin6 = NULL; 2107 #endif 2108 error = 0; 2109 2110 if (req->oldptr != NULL || req->oldlen != 0) 2111 return (EINVAL); 2112 if (req->newptr == NULL) 2113 return (EPERM); 2114 if (req->newlen < sizeof(addrs)) 2115 return (ENOMEM); 2116 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2117 if (error) 2118 return (error); 2119 2120 switch (addrs[0].ss_family) { 2121 #ifdef INET6 2122 case AF_INET6: 2123 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2124 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2125 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2126 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2127 return (EINVAL); 2128 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2129 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2130 return (EINVAL); 2131 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2132 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2133 fin = (struct sockaddr_in *)&addrs[0]; 2134 lin = (struct sockaddr_in *)&addrs[1]; 2135 break; 2136 } 2137 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2138 if (error) 2139 return (error); 2140 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2141 if (error) 2142 return (error); 2143 break; 2144 #endif 2145 #ifdef INET 2146 case AF_INET: 2147 fin = (struct sockaddr_in *)&addrs[0]; 2148 lin = (struct sockaddr_in *)&addrs[1]; 2149 if (fin->sin_len != sizeof(struct sockaddr_in) || 2150 lin->sin_len != sizeof(struct sockaddr_in)) 2151 return (EINVAL); 2152 break; 2153 #endif 2154 default: 2155 return (EINVAL); 2156 } 2157 INP_INFO_WLOCK(&V_tcbinfo); 2158 switch (addrs[0].ss_family) { 2159 #ifdef INET6 2160 case AF_INET6: 2161 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2162 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2163 INPLOOKUP_WLOCKPCB, NULL); 2164 break; 2165 #endif 2166 #ifdef INET 2167 case AF_INET: 2168 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2169 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2170 break; 2171 #endif 2172 } 2173 if (inp != NULL) { 2174 if (inp->inp_flags & INP_TIMEWAIT) { 2175 /* 2176 * XXXRW: There currently exists a state where an 2177 * inpcb is present, but its timewait state has been 2178 * discarded. For now, don't allow dropping of this 2179 * type of inpcb. 2180 */ 2181 tw = intotw(inp); 2182 if (tw != NULL) 2183 tcp_twclose(tw, 0); 2184 else 2185 INP_WUNLOCK(inp); 2186 } else if (!(inp->inp_flags & INP_DROPPED) && 2187 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2188 tp = intotcpcb(inp); 2189 tp = tcp_drop(tp, ECONNABORTED); 2190 if (tp != NULL) 2191 INP_WUNLOCK(inp); 2192 } else 2193 INP_WUNLOCK(inp); 2194 } else 2195 error = ESRCH; 2196 INP_INFO_WUNLOCK(&V_tcbinfo); 2197 return (error); 2198 } 2199 2200 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2201 CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL, 2202 0, sysctl_drop, "", "Drop TCP connection"); 2203 2204 /* 2205 * Generate a standardized TCP log line for use throughout the 2206 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2207 * allow use in the interrupt context. 2208 * 2209 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2210 * NB: The function may return NULL if memory allocation failed. 2211 * 2212 * Due to header inclusion and ordering limitations the struct ip 2213 * and ip6_hdr pointers have to be passed as void pointers. 2214 */ 2215 char * 2216 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2217 const void *ip6hdr) 2218 { 2219 2220 /* Is logging enabled? */ 2221 if (tcp_log_in_vain == 0) 2222 return (NULL); 2223 2224 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2225 } 2226 2227 char * 2228 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2229 const void *ip6hdr) 2230 { 2231 2232 /* Is logging enabled? */ 2233 if (tcp_log_debug == 0) 2234 return (NULL); 2235 2236 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2237 } 2238 2239 static char * 2240 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2241 const void *ip6hdr) 2242 { 2243 char *s, *sp; 2244 size_t size; 2245 struct ip *ip; 2246 #ifdef INET6 2247 const struct ip6_hdr *ip6; 2248 2249 ip6 = (const struct ip6_hdr *)ip6hdr; 2250 #endif /* INET6 */ 2251 ip = (struct ip *)ip4hdr; 2252 2253 /* 2254 * The log line looks like this: 2255 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2256 */ 2257 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2258 sizeof(PRINT_TH_FLAGS) + 1 + 2259 #ifdef INET6 2260 2 * INET6_ADDRSTRLEN; 2261 #else 2262 2 * INET_ADDRSTRLEN; 2263 #endif /* INET6 */ 2264 2265 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2266 if (s == NULL) 2267 return (NULL); 2268 2269 strcat(s, "TCP: ["); 2270 sp = s + strlen(s); 2271 2272 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2273 inet_ntoa_r(inc->inc_faddr, sp); 2274 sp = s + strlen(s); 2275 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2276 sp = s + strlen(s); 2277 inet_ntoa_r(inc->inc_laddr, sp); 2278 sp = s + strlen(s); 2279 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2280 #ifdef INET6 2281 } else if (inc) { 2282 ip6_sprintf(sp, &inc->inc6_faddr); 2283 sp = s + strlen(s); 2284 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2285 sp = s + strlen(s); 2286 ip6_sprintf(sp, &inc->inc6_laddr); 2287 sp = s + strlen(s); 2288 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2289 } else if (ip6 && th) { 2290 ip6_sprintf(sp, &ip6->ip6_src); 2291 sp = s + strlen(s); 2292 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2293 sp = s + strlen(s); 2294 ip6_sprintf(sp, &ip6->ip6_dst); 2295 sp = s + strlen(s); 2296 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2297 #endif /* INET6 */ 2298 #ifdef INET 2299 } else if (ip && th) { 2300 inet_ntoa_r(ip->ip_src, sp); 2301 sp = s + strlen(s); 2302 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2303 sp = s + strlen(s); 2304 inet_ntoa_r(ip->ip_dst, sp); 2305 sp = s + strlen(s); 2306 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2307 #endif /* INET */ 2308 } else { 2309 free(s, M_TCPLOG); 2310 return (NULL); 2311 } 2312 sp = s + strlen(s); 2313 if (th) 2314 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2315 if (*(s + size - 1) != '\0') 2316 panic("%s: string too long", __func__); 2317 return (s); 2318 } 2319