xref: /freebsd/sys/netinet/tcp_subr.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/protosw.h>
60 #include <sys/random.h>
61 
62 #include <vm/uma.h>
63 
64 #include <net/route.h>
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/cc.h>
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_icmp.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet6/in6_pcb.h>
81 #include <netinet6/ip6_var.h>
82 #include <netinet6/scope6_var.h>
83 #include <netinet6/nd6.h>
84 #endif
85 
86 #include <netinet/tcp_fsm.h>
87 #include <netinet/tcp_seq.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcp_syncache.h>
91 #ifdef INET6
92 #include <netinet6/tcp6_var.h>
93 #endif
94 #include <netinet/tcpip.h>
95 #ifdef TCPDEBUG
96 #include <netinet/tcp_debug.h>
97 #endif
98 #ifdef INET6
99 #include <netinet6/ip6protosw.h>
100 #endif
101 #ifdef TCP_OFFLOAD
102 #include <netinet/tcp_offload.h>
103 #endif
104 
105 #ifdef IPSEC
106 #include <netipsec/ipsec.h>
107 #include <netipsec/xform.h>
108 #ifdef INET6
109 #include <netipsec/ipsec6.h>
110 #endif
111 #include <netipsec/key.h>
112 #include <sys/syslog.h>
113 #endif /*IPSEC*/
114 
115 #include <machine/in_cksum.h>
116 #include <sys/md5.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
121 #ifdef INET6
122 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
123 #endif
124 
125 static int
126 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
127 {
128 	int error, new;
129 
130 	new = V_tcp_mssdflt;
131 	error = sysctl_handle_int(oidp, &new, 0, req);
132 	if (error == 0 && req->newptr) {
133 		if (new < TCP_MINMSS)
134 			error = EINVAL;
135 		else
136 			V_tcp_mssdflt = new;
137 	}
138 	return (error);
139 }
140 
141 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
142     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
143     &sysctl_net_inet_tcp_mss_check, "I",
144     "Default TCP Maximum Segment Size");
145 
146 #ifdef INET6
147 static int
148 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
149 {
150 	int error, new;
151 
152 	new = V_tcp_v6mssdflt;
153 	error = sysctl_handle_int(oidp, &new, 0, req);
154 	if (error == 0 && req->newptr) {
155 		if (new < TCP_MINMSS)
156 			error = EINVAL;
157 		else
158 			V_tcp_v6mssdflt = new;
159 	}
160 	return (error);
161 }
162 
163 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
164     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
165     &sysctl_net_inet_tcp_mss_v6_check, "I",
166    "Default TCP Maximum Segment Size for IPv6");
167 #endif /* INET6 */
168 
169 /*
170  * Minimum MSS we accept and use. This prevents DoS attacks where
171  * we are forced to a ridiculous low MSS like 20 and send hundreds
172  * of packets instead of one. The effect scales with the available
173  * bandwidth and quickly saturates the CPU and network interface
174  * with packet generation and sending. Set to zero to disable MINMSS
175  * checking. This setting prevents us from sending too small packets.
176  */
177 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
179      &VNET_NAME(tcp_minmss), 0,
180     "Minimum TCP Maximum Segment Size");
181 
182 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
183 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
184     &VNET_NAME(tcp_do_rfc1323), 0,
185     "Enable rfc1323 (high performance TCP) extensions");
186 
187 static int	tcp_log_debug = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
189     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
190 
191 static int	tcp_tcbhashsize;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
193     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
194 
195 static int	do_tcpdrain = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197     "Enable tcp_drain routine for extra help when low on mbufs");
198 
199 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
200     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
201 
202 static VNET_DEFINE(int, icmp_may_rst) = 1;
203 #define	V_icmp_may_rst			VNET(icmp_may_rst)
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
205     &VNET_NAME(icmp_may_rst), 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
209 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
211     &VNET_NAME(tcp_isn_reseed_interval), 0,
212     "Seconds between reseeding of ISN secret");
213 
214 static int	tcp_soreceive_stream;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
216     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
217 
218 #ifdef TCP_SIGNATURE
219 static int	tcp_sig_checksigs = 1;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
221     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
222 #endif
223 
224 VNET_DEFINE(uma_zone_t, sack_hole_zone);
225 #define	V_sack_hole_zone		VNET(sack_hole_zone)
226 
227 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
228 
229 static struct inpcb *tcp_notify(struct inpcb *, int);
230 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
231 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
232 		    void *ip4hdr, const void *ip6hdr);
233 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
234 
235 /*
236  * Target size of TCP PCB hash tables. Must be a power of two.
237  *
238  * Note that this can be overridden by the kernel environment
239  * variable net.inet.tcp.tcbhashsize
240  */
241 #ifndef TCBHASHSIZE
242 #define TCBHASHSIZE	0
243 #endif
244 
245 /*
246  * XXX
247  * Callouts should be moved into struct tcp directly.  They are currently
248  * separate because the tcpcb structure is exported to userland for sysctl
249  * parsing purposes, which do not know about callouts.
250  */
251 struct tcpcb_mem {
252 	struct	tcpcb		tcb;
253 	struct	tcp_timer	tt;
254 	struct	cc_var		ccv;
255 	struct	osd		osd;
256 };
257 
258 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
259 #define	V_tcpcb_zone			VNET(tcpcb_zone)
260 
261 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
262 static struct mtx isn_mtx;
263 
264 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
265 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
266 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
267 
268 /*
269  * TCP initialization.
270  */
271 static void
272 tcp_zone_change(void *tag)
273 {
274 
275 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
276 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
277 	tcp_tw_zone_change();
278 }
279 
280 static int
281 tcp_inpcb_init(void *mem, int size, int flags)
282 {
283 	struct inpcb *inp = mem;
284 
285 	INP_LOCK_INIT(inp, "inp", "tcpinp");
286 	return (0);
287 }
288 
289 /*
290  * Take a value and get the next power of 2 that doesn't overflow.
291  * Used to size the tcp_inpcb hash buckets.
292  */
293 static int
294 maketcp_hashsize(int size)
295 {
296 	int hashsize;
297 
298 	/*
299 	 * auto tune.
300 	 * get the next power of 2 higher than maxsockets.
301 	 */
302 	hashsize = 1 << fls(size);
303 	/* catch overflow, and just go one power of 2 smaller */
304 	if (hashsize < size) {
305 		hashsize = 1 << (fls(size) - 1);
306 	}
307 	return (hashsize);
308 }
309 
310 void
311 tcp_init(void)
312 {
313 	const char *tcbhash_tuneable;
314 	int hashsize;
315 
316 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
317 
318 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
319 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
320 		printf("%s: WARNING: unable to register helper hook\n", __func__);
321 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
322 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
323 		printf("%s: WARNING: unable to register helper hook\n", __func__);
324 
325 	hashsize = TCBHASHSIZE;
326 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
327 	if (hashsize == 0) {
328 		/*
329 		 * Auto tune the hash size based on maxsockets.
330 		 * A perfect hash would have a 1:1 mapping
331 		 * (hashsize = maxsockets) however it's been
332 		 * suggested that O(2) average is better.
333 		 */
334 		hashsize = maketcp_hashsize(maxsockets / 4);
335 		/*
336 		 * Our historical default is 512,
337 		 * do not autotune lower than this.
338 		 */
339 		if (hashsize < 512)
340 			hashsize = 512;
341 		if (bootverbose)
342 			printf("%s: %s auto tuned to %d\n", __func__,
343 			    tcbhash_tuneable, hashsize);
344 	}
345 	/*
346 	 * We require a hashsize to be a power of two.
347 	 * Previously if it was not a power of two we would just reset it
348 	 * back to 512, which could be a nasty surprise if you did not notice
349 	 * the error message.
350 	 * Instead what we do is clip it to the closest power of two lower
351 	 * than the specified hash value.
352 	 */
353 	if (!powerof2(hashsize)) {
354 		int oldhashsize = hashsize;
355 
356 		hashsize = maketcp_hashsize(hashsize);
357 		/* prevent absurdly low value */
358 		if (hashsize < 16)
359 			hashsize = 16;
360 		printf("%s: WARNING: TCB hash size not a power of 2, "
361 		    "clipped from %d to %d.\n", __func__, oldhashsize,
362 		    hashsize);
363 	}
364 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
365 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
366 	    IPI_HASHFIELDS_4TUPLE);
367 
368 	/*
369 	 * These have to be type stable for the benefit of the timers.
370 	 */
371 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
372 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
373 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
374 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
375 
376 	tcp_tw_init();
377 	syncache_init();
378 	tcp_hc_init();
379 
380 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
381 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
382 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
383 
384 	/* Skip initialization of globals for non-default instances. */
385 	if (!IS_DEFAULT_VNET(curvnet))
386 		return;
387 
388 	/* XXX virtualize those bellow? */
389 	tcp_delacktime = TCPTV_DELACK;
390 	tcp_keepinit = TCPTV_KEEP_INIT;
391 	tcp_keepidle = TCPTV_KEEP_IDLE;
392 	tcp_keepintvl = TCPTV_KEEPINTVL;
393 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
394 	tcp_msl = TCPTV_MSL;
395 	tcp_rexmit_min = TCPTV_MIN;
396 	if (tcp_rexmit_min < 1)
397 		tcp_rexmit_min = 1;
398 	tcp_rexmit_slop = TCPTV_CPU_VAR;
399 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
400 	tcp_tcbhashsize = hashsize;
401 
402 	if (tcp_soreceive_stream) {
403 #ifdef INET
404 		tcp_usrreqs.pru_soreceive = soreceive_stream;
405 #endif
406 #ifdef INET6
407 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
408 #endif /* INET6 */
409 	}
410 
411 #ifdef INET6
412 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
413 #else /* INET6 */
414 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
415 #endif /* INET6 */
416 	if (max_protohdr < TCP_MINPROTOHDR)
417 		max_protohdr = TCP_MINPROTOHDR;
418 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
419 		panic("tcp_init");
420 #undef TCP_MINPROTOHDR
421 
422 	ISN_LOCK_INIT();
423 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
424 		SHUTDOWN_PRI_DEFAULT);
425 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
426 		EVENTHANDLER_PRI_ANY);
427 }
428 
429 #ifdef VIMAGE
430 void
431 tcp_destroy(void)
432 {
433 	int error;
434 
435 	tcp_hc_destroy();
436 	syncache_destroy();
437 	tcp_tw_destroy();
438 	in_pcbinfo_destroy(&V_tcbinfo);
439 	uma_zdestroy(V_sack_hole_zone);
440 	uma_zdestroy(V_tcpcb_zone);
441 
442 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
443 	if (error != 0) {
444 		printf("%s: WARNING: unable to deregister helper hook "
445 		    "type=%d, id=%d: error %d returned\n", __func__,
446 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
447 	}
448 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
449 	if (error != 0) {
450 		printf("%s: WARNING: unable to deregister helper hook "
451 		    "type=%d, id=%d: error %d returned\n", __func__,
452 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
453 	}
454 }
455 #endif
456 
457 void
458 tcp_fini(void *xtp)
459 {
460 
461 }
462 
463 /*
464  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
465  * tcp_template used to store this data in mbufs, but we now recopy it out
466  * of the tcpcb each time to conserve mbufs.
467  */
468 void
469 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
470 {
471 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
472 
473 	INP_WLOCK_ASSERT(inp);
474 
475 #ifdef INET6
476 	if ((inp->inp_vflag & INP_IPV6) != 0) {
477 		struct ip6_hdr *ip6;
478 
479 		ip6 = (struct ip6_hdr *)ip_ptr;
480 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
481 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
482 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
483 			(IPV6_VERSION & IPV6_VERSION_MASK);
484 		ip6->ip6_nxt = IPPROTO_TCP;
485 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
486 		ip6->ip6_src = inp->in6p_laddr;
487 		ip6->ip6_dst = inp->in6p_faddr;
488 	}
489 #endif /* INET6 */
490 #if defined(INET6) && defined(INET)
491 	else
492 #endif
493 #ifdef INET
494 	{
495 		struct ip *ip;
496 
497 		ip = (struct ip *)ip_ptr;
498 		ip->ip_v = IPVERSION;
499 		ip->ip_hl = 5;
500 		ip->ip_tos = inp->inp_ip_tos;
501 		ip->ip_len = 0;
502 		ip->ip_id = 0;
503 		ip->ip_off = 0;
504 		ip->ip_ttl = inp->inp_ip_ttl;
505 		ip->ip_sum = 0;
506 		ip->ip_p = IPPROTO_TCP;
507 		ip->ip_src = inp->inp_laddr;
508 		ip->ip_dst = inp->inp_faddr;
509 	}
510 #endif /* INET */
511 	th->th_sport = inp->inp_lport;
512 	th->th_dport = inp->inp_fport;
513 	th->th_seq = 0;
514 	th->th_ack = 0;
515 	th->th_x2 = 0;
516 	th->th_off = 5;
517 	th->th_flags = 0;
518 	th->th_win = 0;
519 	th->th_urp = 0;
520 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
521 }
522 
523 /*
524  * Create template to be used to send tcp packets on a connection.
525  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
526  * use for this function is in keepalives, which use tcp_respond.
527  */
528 struct tcptemp *
529 tcpip_maketemplate(struct inpcb *inp)
530 {
531 	struct tcptemp *t;
532 
533 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
534 	if (t == NULL)
535 		return (NULL);
536 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
537 	return (t);
538 }
539 
540 /*
541  * Send a single message to the TCP at address specified by
542  * the given TCP/IP header.  If m == NULL, then we make a copy
543  * of the tcpiphdr at th and send directly to the addressed host.
544  * This is used to force keep alive messages out using the TCP
545  * template for a connection.  If flags are given then we send
546  * a message back to the TCP which originated the segment th,
547  * and discard the mbuf containing it and any other attached mbufs.
548  *
549  * In any case the ack and sequence number of the transmitted
550  * segment are as specified by the parameters.
551  *
552  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
553  */
554 void
555 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
556     tcp_seq ack, tcp_seq seq, int flags)
557 {
558 	int tlen;
559 	int win = 0;
560 	struct ip *ip;
561 	struct tcphdr *nth;
562 #ifdef INET6
563 	struct ip6_hdr *ip6;
564 	int isipv6;
565 #endif /* INET6 */
566 	int ipflags = 0;
567 	struct inpcb *inp;
568 
569 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
570 
571 #ifdef INET6
572 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
573 	ip6 = ipgen;
574 #endif /* INET6 */
575 	ip = ipgen;
576 
577 	if (tp != NULL) {
578 		inp = tp->t_inpcb;
579 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
580 		INP_WLOCK_ASSERT(inp);
581 	} else
582 		inp = NULL;
583 
584 	if (tp != NULL) {
585 		if (!(flags & TH_RST)) {
586 			win = sbspace(&inp->inp_socket->so_rcv);
587 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
588 				win = (long)TCP_MAXWIN << tp->rcv_scale;
589 		}
590 	}
591 	if (m == NULL) {
592 		m = m_gethdr(M_NOWAIT, MT_DATA);
593 		if (m == NULL)
594 			return;
595 		tlen = 0;
596 		m->m_data += max_linkhdr;
597 #ifdef INET6
598 		if (isipv6) {
599 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
600 			      sizeof(struct ip6_hdr));
601 			ip6 = mtod(m, struct ip6_hdr *);
602 			nth = (struct tcphdr *)(ip6 + 1);
603 		} else
604 #endif /* INET6 */
605 		{
606 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
607 			ip = mtod(m, struct ip *);
608 			nth = (struct tcphdr *)(ip + 1);
609 		}
610 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
611 		flags = TH_ACK;
612 	} else {
613 		/*
614 		 *  reuse the mbuf.
615 		 * XXX MRT We inherrit the FIB, which is lucky.
616 		 */
617 		m_freem(m->m_next);
618 		m->m_next = NULL;
619 		m->m_data = (caddr_t)ipgen;
620 		/* m_len is set later */
621 		tlen = 0;
622 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
623 #ifdef INET6
624 		if (isipv6) {
625 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
626 			nth = (struct tcphdr *)(ip6 + 1);
627 		} else
628 #endif /* INET6 */
629 		{
630 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
631 			nth = (struct tcphdr *)(ip + 1);
632 		}
633 		if (th != nth) {
634 			/*
635 			 * this is usually a case when an extension header
636 			 * exists between the IPv6 header and the
637 			 * TCP header.
638 			 */
639 			nth->th_sport = th->th_sport;
640 			nth->th_dport = th->th_dport;
641 		}
642 		xchg(nth->th_dport, nth->th_sport, uint16_t);
643 #undef xchg
644 	}
645 #ifdef INET6
646 	if (isipv6) {
647 		ip6->ip6_flow = 0;
648 		ip6->ip6_vfc = IPV6_VERSION;
649 		ip6->ip6_nxt = IPPROTO_TCP;
650 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
651 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
652 	}
653 #endif
654 #if defined(INET) && defined(INET6)
655 	else
656 #endif
657 #ifdef INET
658 	{
659 		tlen += sizeof (struct tcpiphdr);
660 		ip->ip_len = htons(tlen);
661 		ip->ip_ttl = V_ip_defttl;
662 		if (V_path_mtu_discovery)
663 			ip->ip_off |= htons(IP_DF);
664 	}
665 #endif
666 	m->m_len = tlen;
667 	m->m_pkthdr.len = tlen;
668 	m->m_pkthdr.rcvif = NULL;
669 #ifdef MAC
670 	if (inp != NULL) {
671 		/*
672 		 * Packet is associated with a socket, so allow the
673 		 * label of the response to reflect the socket label.
674 		 */
675 		INP_WLOCK_ASSERT(inp);
676 		mac_inpcb_create_mbuf(inp, m);
677 	} else {
678 		/*
679 		 * Packet is not associated with a socket, so possibly
680 		 * update the label in place.
681 		 */
682 		mac_netinet_tcp_reply(m);
683 	}
684 #endif
685 	nth->th_seq = htonl(seq);
686 	nth->th_ack = htonl(ack);
687 	nth->th_x2 = 0;
688 	nth->th_off = sizeof (struct tcphdr) >> 2;
689 	nth->th_flags = flags;
690 	if (tp != NULL)
691 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
692 	else
693 		nth->th_win = htons((u_short)win);
694 	nth->th_urp = 0;
695 
696 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
697 #ifdef INET6
698 	if (isipv6) {
699 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
700 		nth->th_sum = in6_cksum_pseudo(ip6,
701 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
702 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
703 		    NULL, NULL);
704 	}
705 #endif /* INET6 */
706 #if defined(INET6) && defined(INET)
707 	else
708 #endif
709 #ifdef INET
710 	{
711 		m->m_pkthdr.csum_flags = CSUM_TCP;
712 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
713 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
714 	}
715 #endif /* INET */
716 #ifdef TCPDEBUG
717 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
718 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
719 #endif
720 	if (flags & TH_RST)
721 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
722 		    tp, nth);
723 
724 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
725 #ifdef INET6
726 	if (isipv6)
727 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
728 #endif /* INET6 */
729 #if defined(INET) && defined(INET6)
730 	else
731 #endif
732 #ifdef INET
733 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
734 #endif
735 }
736 
737 /*
738  * Create a new TCP control block, making an
739  * empty reassembly queue and hooking it to the argument
740  * protocol control block.  The `inp' parameter must have
741  * come from the zone allocator set up in tcp_init().
742  */
743 struct tcpcb *
744 tcp_newtcpcb(struct inpcb *inp)
745 {
746 	struct tcpcb_mem *tm;
747 	struct tcpcb *tp;
748 #ifdef INET6
749 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
750 #endif /* INET6 */
751 
752 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
753 	if (tm == NULL)
754 		return (NULL);
755 	tp = &tm->tcb;
756 
757 	/* Initialise cc_var struct for this tcpcb. */
758 	tp->ccv = &tm->ccv;
759 	tp->ccv->type = IPPROTO_TCP;
760 	tp->ccv->ccvc.tcp = tp;
761 
762 	/*
763 	 * Use the current system default CC algorithm.
764 	 */
765 	CC_LIST_RLOCK();
766 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
767 	CC_ALGO(tp) = CC_DEFAULT();
768 	CC_LIST_RUNLOCK();
769 
770 	if (CC_ALGO(tp)->cb_init != NULL)
771 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
772 			uma_zfree(V_tcpcb_zone, tm);
773 			return (NULL);
774 		}
775 
776 	tp->osd = &tm->osd;
777 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
778 		uma_zfree(V_tcpcb_zone, tm);
779 		return (NULL);
780 	}
781 
782 #ifdef VIMAGE
783 	tp->t_vnet = inp->inp_vnet;
784 #endif
785 	tp->t_timers = &tm->tt;
786 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
787 	tp->t_maxseg = tp->t_maxopd =
788 #ifdef INET6
789 		isipv6 ? V_tcp_v6mssdflt :
790 #endif /* INET6 */
791 		V_tcp_mssdflt;
792 
793 	/* Set up our timeouts. */
794 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
795 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
796 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
797 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
798 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
799 
800 	if (V_tcp_do_rfc1323)
801 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
802 	if (V_tcp_do_sack)
803 		tp->t_flags |= TF_SACK_PERMIT;
804 	TAILQ_INIT(&tp->snd_holes);
805 	/*
806 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
807 	 * is called.
808 	 */
809 	in_pcbref(inp);	/* Reference for tcpcb */
810 	tp->t_inpcb = inp;
811 
812 	/*
813 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
814 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
815 	 * reasonable initial retransmit time.
816 	 */
817 	tp->t_srtt = TCPTV_SRTTBASE;
818 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
819 	tp->t_rttmin = tcp_rexmit_min;
820 	tp->t_rxtcur = TCPTV_RTOBASE;
821 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
822 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
823 	tp->t_rcvtime = ticks;
824 	/*
825 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
826 	 * because the socket may be bound to an IPv6 wildcard address,
827 	 * which may match an IPv4-mapped IPv6 address.
828 	 */
829 	inp->inp_ip_ttl = V_ip_defttl;
830 	inp->inp_ppcb = tp;
831 	return (tp);		/* XXX */
832 }
833 
834 /*
835  * Switch the congestion control algorithm back to NewReno for any active
836  * control blocks using an algorithm which is about to go away.
837  * This ensures the CC framework can allow the unload to proceed without leaving
838  * any dangling pointers which would trigger a panic.
839  * Returning non-zero would inform the CC framework that something went wrong
840  * and it would be unsafe to allow the unload to proceed. However, there is no
841  * way for this to occur with this implementation so we always return zero.
842  */
843 int
844 tcp_ccalgounload(struct cc_algo *unload_algo)
845 {
846 	struct cc_algo *tmpalgo;
847 	struct inpcb *inp;
848 	struct tcpcb *tp;
849 	VNET_ITERATOR_DECL(vnet_iter);
850 
851 	/*
852 	 * Check all active control blocks across all network stacks and change
853 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
854 	 * requires cleanup code to be run, call it.
855 	 */
856 	VNET_LIST_RLOCK();
857 	VNET_FOREACH(vnet_iter) {
858 		CURVNET_SET(vnet_iter);
859 		INP_INFO_RLOCK(&V_tcbinfo);
860 		/*
861 		 * New connections already part way through being initialised
862 		 * with the CC algo we're removing will not race with this code
863 		 * because the INP_INFO_WLOCK is held during initialisation. We
864 		 * therefore don't enter the loop below until the connection
865 		 * list has stabilised.
866 		 */
867 		LIST_FOREACH(inp, &V_tcb, inp_list) {
868 			INP_WLOCK(inp);
869 			/* Important to skip tcptw structs. */
870 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
871 			    (tp = intotcpcb(inp)) != NULL) {
872 				/*
873 				 * By holding INP_WLOCK here, we are assured
874 				 * that the connection is not currently
875 				 * executing inside the CC module's functions
876 				 * i.e. it is safe to make the switch back to
877 				 * NewReno.
878 				 */
879 				if (CC_ALGO(tp) == unload_algo) {
880 					tmpalgo = CC_ALGO(tp);
881 					/* NewReno does not require any init. */
882 					CC_ALGO(tp) = &newreno_cc_algo;
883 					if (tmpalgo->cb_destroy != NULL)
884 						tmpalgo->cb_destroy(tp->ccv);
885 				}
886 			}
887 			INP_WUNLOCK(inp);
888 		}
889 		INP_INFO_RUNLOCK(&V_tcbinfo);
890 		CURVNET_RESTORE();
891 	}
892 	VNET_LIST_RUNLOCK();
893 
894 	return (0);
895 }
896 
897 /*
898  * Drop a TCP connection, reporting
899  * the specified error.  If connection is synchronized,
900  * then send a RST to peer.
901  */
902 struct tcpcb *
903 tcp_drop(struct tcpcb *tp, int errno)
904 {
905 	struct socket *so = tp->t_inpcb->inp_socket;
906 
907 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
908 	INP_WLOCK_ASSERT(tp->t_inpcb);
909 
910 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
911 		tcp_state_change(tp, TCPS_CLOSED);
912 		(void) tcp_output(tp);
913 		TCPSTAT_INC(tcps_drops);
914 	} else
915 		TCPSTAT_INC(tcps_conndrops);
916 	if (errno == ETIMEDOUT && tp->t_softerror)
917 		errno = tp->t_softerror;
918 	so->so_error = errno;
919 	return (tcp_close(tp));
920 }
921 
922 void
923 tcp_discardcb(struct tcpcb *tp)
924 {
925 	struct inpcb *inp = tp->t_inpcb;
926 	struct socket *so = inp->inp_socket;
927 #ifdef INET6
928 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
929 #endif /* INET6 */
930 	int released;
931 
932 	INP_WLOCK_ASSERT(inp);
933 
934 	/*
935 	 * Make sure that all of our timers are stopped before we delete the
936 	 * PCB.
937 	 *
938 	 * If stopping a timer fails, we schedule a discard function in same
939 	 * callout, and the last discard function called will take care of
940 	 * deleting the tcpcb.
941 	 */
942 	tcp_timer_stop(tp, TT_REXMT);
943 	tcp_timer_stop(tp, TT_PERSIST);
944 	tcp_timer_stop(tp, TT_KEEP);
945 	tcp_timer_stop(tp, TT_2MSL);
946 	tcp_timer_stop(tp, TT_DELACK);
947 
948 	/*
949 	 * If we got enough samples through the srtt filter,
950 	 * save the rtt and rttvar in the routing entry.
951 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
952 	 * 4 samples is enough for the srtt filter to converge
953 	 * to within enough % of the correct value; fewer samples
954 	 * and we could save a bogus rtt. The danger is not high
955 	 * as tcp quickly recovers from everything.
956 	 * XXX: Works very well but needs some more statistics!
957 	 */
958 	if (tp->t_rttupdated >= 4) {
959 		struct hc_metrics_lite metrics;
960 		u_long ssthresh;
961 
962 		bzero(&metrics, sizeof(metrics));
963 		/*
964 		 * Update the ssthresh always when the conditions below
965 		 * are satisfied. This gives us better new start value
966 		 * for the congestion avoidance for new connections.
967 		 * ssthresh is only set if packet loss occured on a session.
968 		 *
969 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
970 		 * being torn down.  Ideally this code would not use 'so'.
971 		 */
972 		ssthresh = tp->snd_ssthresh;
973 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
974 			/*
975 			 * convert the limit from user data bytes to
976 			 * packets then to packet data bytes.
977 			 */
978 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
979 			if (ssthresh < 2)
980 				ssthresh = 2;
981 			ssthresh *= (u_long)(tp->t_maxseg +
982 #ifdef INET6
983 			    (isipv6 ? sizeof (struct ip6_hdr) +
984 				sizeof (struct tcphdr) :
985 #endif
986 				sizeof (struct tcpiphdr)
987 #ifdef INET6
988 			    )
989 #endif
990 			    );
991 		} else
992 			ssthresh = 0;
993 		metrics.rmx_ssthresh = ssthresh;
994 
995 		metrics.rmx_rtt = tp->t_srtt;
996 		metrics.rmx_rttvar = tp->t_rttvar;
997 		metrics.rmx_cwnd = tp->snd_cwnd;
998 		metrics.rmx_sendpipe = 0;
999 		metrics.rmx_recvpipe = 0;
1000 
1001 		tcp_hc_update(&inp->inp_inc, &metrics);
1002 	}
1003 
1004 	/* free the reassembly queue, if any */
1005 	tcp_reass_flush(tp);
1006 
1007 #ifdef TCP_OFFLOAD
1008 	/* Disconnect offload device, if any. */
1009 	if (tp->t_flags & TF_TOE)
1010 		tcp_offload_detach(tp);
1011 #endif
1012 
1013 	tcp_free_sackholes(tp);
1014 
1015 	/* Allow the CC algorithm to clean up after itself. */
1016 	if (CC_ALGO(tp)->cb_destroy != NULL)
1017 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1018 
1019 	khelp_destroy_osd(tp->osd);
1020 
1021 	CC_ALGO(tp) = NULL;
1022 	inp->inp_ppcb = NULL;
1023 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1024 		/* We own the last reference on tcpcb, let's free it. */
1025 		tp->t_inpcb = NULL;
1026 		uma_zfree(V_tcpcb_zone, tp);
1027 		released = in_pcbrele_wlocked(inp);
1028 		KASSERT(!released, ("%s: inp %p should not have been released "
1029 			"here", __func__, inp));
1030 	}
1031 }
1032 
1033 void
1034 tcp_timer_2msl_discard(void *xtp)
1035 {
1036 
1037 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1038 }
1039 
1040 void
1041 tcp_timer_keep_discard(void *xtp)
1042 {
1043 
1044 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1045 }
1046 
1047 void
1048 tcp_timer_persist_discard(void *xtp)
1049 {
1050 
1051 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1052 }
1053 
1054 void
1055 tcp_timer_rexmt_discard(void *xtp)
1056 {
1057 
1058 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1059 }
1060 
1061 void
1062 tcp_timer_delack_discard(void *xtp)
1063 {
1064 
1065 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1066 }
1067 
1068 void
1069 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1070 {
1071 	struct inpcb *inp;
1072 
1073 	CURVNET_SET(tp->t_vnet);
1074 	INP_INFO_WLOCK(&V_tcbinfo);
1075 	inp = tp->t_inpcb;
1076 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1077 		__func__, tp));
1078 	INP_WLOCK(inp);
1079 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1080 		("%s: tcpcb has to be stopped here", __func__));
1081 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1082 		("%s: discard callout should be running", __func__));
1083 	tp->t_timers->tt_flags &= ~timer_type;
1084 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1085 		/* We own the last reference on this tcpcb, let's free it. */
1086 		tp->t_inpcb = NULL;
1087 		uma_zfree(V_tcpcb_zone, tp);
1088 		if (in_pcbrele_wlocked(inp)) {
1089 			INP_INFO_WUNLOCK(&V_tcbinfo);
1090 			CURVNET_RESTORE();
1091 			return;
1092 		}
1093 	}
1094 	INP_WUNLOCK(inp);
1095 	INP_INFO_WUNLOCK(&V_tcbinfo);
1096 	CURVNET_RESTORE();
1097 }
1098 
1099 /*
1100  * Attempt to close a TCP control block, marking it as dropped, and freeing
1101  * the socket if we hold the only reference.
1102  */
1103 struct tcpcb *
1104 tcp_close(struct tcpcb *tp)
1105 {
1106 	struct inpcb *inp = tp->t_inpcb;
1107 	struct socket *so;
1108 
1109 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1110 	INP_WLOCK_ASSERT(inp);
1111 
1112 #ifdef TCP_OFFLOAD
1113 	if (tp->t_state == TCPS_LISTEN)
1114 		tcp_offload_listen_stop(tp);
1115 #endif
1116 	in_pcbdrop(inp);
1117 	TCPSTAT_INC(tcps_closed);
1118 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1119 	so = inp->inp_socket;
1120 	soisdisconnected(so);
1121 	if (inp->inp_flags & INP_SOCKREF) {
1122 		KASSERT(so->so_state & SS_PROTOREF,
1123 		    ("tcp_close: !SS_PROTOREF"));
1124 		inp->inp_flags &= ~INP_SOCKREF;
1125 		INP_WUNLOCK(inp);
1126 		ACCEPT_LOCK();
1127 		SOCK_LOCK(so);
1128 		so->so_state &= ~SS_PROTOREF;
1129 		sofree(so);
1130 		return (NULL);
1131 	}
1132 	return (tp);
1133 }
1134 
1135 void
1136 tcp_drain(void)
1137 {
1138 	VNET_ITERATOR_DECL(vnet_iter);
1139 
1140 	if (!do_tcpdrain)
1141 		return;
1142 
1143 	VNET_LIST_RLOCK_NOSLEEP();
1144 	VNET_FOREACH(vnet_iter) {
1145 		CURVNET_SET(vnet_iter);
1146 		struct inpcb *inpb;
1147 		struct tcpcb *tcpb;
1148 
1149 	/*
1150 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1151 	 * if there is one...
1152 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1153 	 *      reassembly queue should be flushed, but in a situation
1154 	 *	where we're really low on mbufs, this is potentially
1155 	 *	useful.
1156 	 */
1157 		INP_INFO_RLOCK(&V_tcbinfo);
1158 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1159 			if (inpb->inp_flags & INP_TIMEWAIT)
1160 				continue;
1161 			INP_WLOCK(inpb);
1162 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1163 				tcp_reass_flush(tcpb);
1164 				tcp_clean_sackreport(tcpb);
1165 			}
1166 			INP_WUNLOCK(inpb);
1167 		}
1168 		INP_INFO_RUNLOCK(&V_tcbinfo);
1169 		CURVNET_RESTORE();
1170 	}
1171 	VNET_LIST_RUNLOCK_NOSLEEP();
1172 }
1173 
1174 /*
1175  * Notify a tcp user of an asynchronous error;
1176  * store error as soft error, but wake up user
1177  * (for now, won't do anything until can select for soft error).
1178  *
1179  * Do not wake up user since there currently is no mechanism for
1180  * reporting soft errors (yet - a kqueue filter may be added).
1181  */
1182 static struct inpcb *
1183 tcp_notify(struct inpcb *inp, int error)
1184 {
1185 	struct tcpcb *tp;
1186 
1187 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1188 	INP_WLOCK_ASSERT(inp);
1189 
1190 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1191 	    (inp->inp_flags & INP_DROPPED))
1192 		return (inp);
1193 
1194 	tp = intotcpcb(inp);
1195 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1196 
1197 	/*
1198 	 * Ignore some errors if we are hooked up.
1199 	 * If connection hasn't completed, has retransmitted several times,
1200 	 * and receives a second error, give up now.  This is better
1201 	 * than waiting a long time to establish a connection that
1202 	 * can never complete.
1203 	 */
1204 	if (tp->t_state == TCPS_ESTABLISHED &&
1205 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1206 	     error == EHOSTDOWN)) {
1207 		return (inp);
1208 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1209 	    tp->t_softerror) {
1210 		tp = tcp_drop(tp, error);
1211 		if (tp != NULL)
1212 			return (inp);
1213 		else
1214 			return (NULL);
1215 	} else {
1216 		tp->t_softerror = error;
1217 		return (inp);
1218 	}
1219 #if 0
1220 	wakeup( &so->so_timeo);
1221 	sorwakeup(so);
1222 	sowwakeup(so);
1223 #endif
1224 }
1225 
1226 static int
1227 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1228 {
1229 	int error, i, m, n, pcb_count;
1230 	struct inpcb *inp, **inp_list;
1231 	inp_gen_t gencnt;
1232 	struct xinpgen xig;
1233 
1234 	/*
1235 	 * The process of preparing the TCB list is too time-consuming and
1236 	 * resource-intensive to repeat twice on every request.
1237 	 */
1238 	if (req->oldptr == NULL) {
1239 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1240 		n += imax(n / 8, 10);
1241 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1242 		return (0);
1243 	}
1244 
1245 	if (req->newptr != NULL)
1246 		return (EPERM);
1247 
1248 	/*
1249 	 * OK, now we're committed to doing something.
1250 	 */
1251 	INP_INFO_RLOCK(&V_tcbinfo);
1252 	gencnt = V_tcbinfo.ipi_gencnt;
1253 	n = V_tcbinfo.ipi_count;
1254 	INP_INFO_RUNLOCK(&V_tcbinfo);
1255 
1256 	m = syncache_pcbcount();
1257 
1258 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1259 		+ (n + m) * sizeof(struct xtcpcb));
1260 	if (error != 0)
1261 		return (error);
1262 
1263 	xig.xig_len = sizeof xig;
1264 	xig.xig_count = n + m;
1265 	xig.xig_gen = gencnt;
1266 	xig.xig_sogen = so_gencnt;
1267 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1268 	if (error)
1269 		return (error);
1270 
1271 	error = syncache_pcblist(req, m, &pcb_count);
1272 	if (error)
1273 		return (error);
1274 
1275 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1276 	if (inp_list == NULL)
1277 		return (ENOMEM);
1278 
1279 	INP_INFO_RLOCK(&V_tcbinfo);
1280 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1281 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1282 		INP_WLOCK(inp);
1283 		if (inp->inp_gencnt <= gencnt) {
1284 			/*
1285 			 * XXX: This use of cr_cansee(), introduced with
1286 			 * TCP state changes, is not quite right, but for
1287 			 * now, better than nothing.
1288 			 */
1289 			if (inp->inp_flags & INP_TIMEWAIT) {
1290 				if (intotw(inp) != NULL)
1291 					error = cr_cansee(req->td->td_ucred,
1292 					    intotw(inp)->tw_cred);
1293 				else
1294 					error = EINVAL;	/* Skip this inp. */
1295 			} else
1296 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1297 			if (error == 0) {
1298 				in_pcbref(inp);
1299 				inp_list[i++] = inp;
1300 			}
1301 		}
1302 		INP_WUNLOCK(inp);
1303 	}
1304 	INP_INFO_RUNLOCK(&V_tcbinfo);
1305 	n = i;
1306 
1307 	error = 0;
1308 	for (i = 0; i < n; i++) {
1309 		inp = inp_list[i];
1310 		INP_RLOCK(inp);
1311 		if (inp->inp_gencnt <= gencnt) {
1312 			struct xtcpcb xt;
1313 			void *inp_ppcb;
1314 
1315 			bzero(&xt, sizeof(xt));
1316 			xt.xt_len = sizeof xt;
1317 			/* XXX should avoid extra copy */
1318 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1319 			inp_ppcb = inp->inp_ppcb;
1320 			if (inp_ppcb == NULL)
1321 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1322 			else if (inp->inp_flags & INP_TIMEWAIT) {
1323 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1324 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1325 			} else {
1326 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1327 				if (xt.xt_tp.t_timers)
1328 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1329 			}
1330 			if (inp->inp_socket != NULL)
1331 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1332 			else {
1333 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1334 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1335 			}
1336 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1337 			INP_RUNLOCK(inp);
1338 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1339 		} else
1340 			INP_RUNLOCK(inp);
1341 	}
1342 	INP_INFO_WLOCK(&V_tcbinfo);
1343 	for (i = 0; i < n; i++) {
1344 		inp = inp_list[i];
1345 		INP_RLOCK(inp);
1346 		if (!in_pcbrele_rlocked(inp))
1347 			INP_RUNLOCK(inp);
1348 	}
1349 	INP_INFO_WUNLOCK(&V_tcbinfo);
1350 
1351 	if (!error) {
1352 		/*
1353 		 * Give the user an updated idea of our state.
1354 		 * If the generation differs from what we told
1355 		 * her before, she knows that something happened
1356 		 * while we were processing this request, and it
1357 		 * might be necessary to retry.
1358 		 */
1359 		INP_INFO_RLOCK(&V_tcbinfo);
1360 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1361 		xig.xig_sogen = so_gencnt;
1362 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1363 		INP_INFO_RUNLOCK(&V_tcbinfo);
1364 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1365 	}
1366 	free(inp_list, M_TEMP);
1367 	return (error);
1368 }
1369 
1370 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1371     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1372     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1373 
1374 #ifdef INET
1375 static int
1376 tcp_getcred(SYSCTL_HANDLER_ARGS)
1377 {
1378 	struct xucred xuc;
1379 	struct sockaddr_in addrs[2];
1380 	struct inpcb *inp;
1381 	int error;
1382 
1383 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1384 	if (error)
1385 		return (error);
1386 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1387 	if (error)
1388 		return (error);
1389 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1390 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1391 	if (inp != NULL) {
1392 		if (inp->inp_socket == NULL)
1393 			error = ENOENT;
1394 		if (error == 0)
1395 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1396 		if (error == 0)
1397 			cru2x(inp->inp_cred, &xuc);
1398 		INP_RUNLOCK(inp);
1399 	} else
1400 		error = ENOENT;
1401 	if (error == 0)
1402 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1403 	return (error);
1404 }
1405 
1406 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1407     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1408     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1409 #endif /* INET */
1410 
1411 #ifdef INET6
1412 static int
1413 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1414 {
1415 	struct xucred xuc;
1416 	struct sockaddr_in6 addrs[2];
1417 	struct inpcb *inp;
1418 	int error;
1419 #ifdef INET
1420 	int mapped = 0;
1421 #endif
1422 
1423 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1424 	if (error)
1425 		return (error);
1426 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1427 	if (error)
1428 		return (error);
1429 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1430 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1431 		return (error);
1432 	}
1433 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1434 #ifdef INET
1435 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1436 			mapped = 1;
1437 		else
1438 #endif
1439 			return (EINVAL);
1440 	}
1441 
1442 #ifdef INET
1443 	if (mapped == 1)
1444 		inp = in_pcblookup(&V_tcbinfo,
1445 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1446 			addrs[1].sin6_port,
1447 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1448 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1449 	else
1450 #endif
1451 		inp = in6_pcblookup(&V_tcbinfo,
1452 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1453 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1454 			INPLOOKUP_RLOCKPCB, NULL);
1455 	if (inp != NULL) {
1456 		if (inp->inp_socket == NULL)
1457 			error = ENOENT;
1458 		if (error == 0)
1459 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1460 		if (error == 0)
1461 			cru2x(inp->inp_cred, &xuc);
1462 		INP_RUNLOCK(inp);
1463 	} else
1464 		error = ENOENT;
1465 	if (error == 0)
1466 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1467 	return (error);
1468 }
1469 
1470 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1471     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1472     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1473 #endif /* INET6 */
1474 
1475 
1476 #ifdef INET
1477 void
1478 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1479 {
1480 	struct ip *ip = vip;
1481 	struct tcphdr *th;
1482 	struct in_addr faddr;
1483 	struct inpcb *inp;
1484 	struct tcpcb *tp;
1485 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1486 	struct icmp *icp;
1487 	struct in_conninfo inc;
1488 	tcp_seq icmp_tcp_seq;
1489 	int mtu;
1490 
1491 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1492 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1493 		return;
1494 
1495 	if (cmd == PRC_MSGSIZE)
1496 		notify = tcp_mtudisc_notify;
1497 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1498 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1499 		notify = tcp_drop_syn_sent;
1500 	/*
1501 	 * Redirects don't need to be handled up here.
1502 	 */
1503 	else if (PRC_IS_REDIRECT(cmd))
1504 		return;
1505 	/*
1506 	 * Hostdead is ugly because it goes linearly through all PCBs.
1507 	 * XXX: We never get this from ICMP, otherwise it makes an
1508 	 * excellent DoS attack on machines with many connections.
1509 	 */
1510 	else if (cmd == PRC_HOSTDEAD)
1511 		ip = NULL;
1512 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1513 		return;
1514 	if (ip != NULL) {
1515 		icp = (struct icmp *)((caddr_t)ip
1516 				      - offsetof(struct icmp, icmp_ip));
1517 		th = (struct tcphdr *)((caddr_t)ip
1518 				       + (ip->ip_hl << 2));
1519 		INP_INFO_WLOCK(&V_tcbinfo);
1520 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1521 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1522 		if (inp != NULL)  {
1523 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1524 			    !(inp->inp_flags & INP_DROPPED) &&
1525 			    !(inp->inp_socket == NULL)) {
1526 				icmp_tcp_seq = htonl(th->th_seq);
1527 				tp = intotcpcb(inp);
1528 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1529 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1530 					if (cmd == PRC_MSGSIZE) {
1531 					    /*
1532 					     * MTU discovery:
1533 					     * If we got a needfrag set the MTU
1534 					     * in the route to the suggested new
1535 					     * value (if given) and then notify.
1536 					     */
1537 					    bzero(&inc, sizeof(inc));
1538 					    inc.inc_faddr = faddr;
1539 					    inc.inc_fibnum =
1540 						inp->inp_inc.inc_fibnum;
1541 
1542 					    mtu = ntohs(icp->icmp_nextmtu);
1543 					    /*
1544 					     * If no alternative MTU was
1545 					     * proposed, try the next smaller
1546 					     * one.
1547 					     */
1548 					    if (!mtu)
1549 						mtu = ip_next_mtu(
1550 						 ntohs(ip->ip_len), 1);
1551 					    if (mtu < V_tcp_minmss
1552 						 + sizeof(struct tcpiphdr))
1553 						mtu = V_tcp_minmss
1554 						 + sizeof(struct tcpiphdr);
1555 					    /*
1556 					     * Only cache the MTU if it
1557 					     * is smaller than the interface
1558 					     * or route MTU.  tcp_mtudisc()
1559 					     * will do right thing by itself.
1560 					     */
1561 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1562 						tcp_hc_updatemtu(&inc, mtu);
1563 					    tcp_mtudisc(inp, mtu);
1564 					} else
1565 						inp = (*notify)(inp,
1566 						    inetctlerrmap[cmd]);
1567 				}
1568 			}
1569 			if (inp != NULL)
1570 				INP_WUNLOCK(inp);
1571 		} else {
1572 			bzero(&inc, sizeof(inc));
1573 			inc.inc_fport = th->th_dport;
1574 			inc.inc_lport = th->th_sport;
1575 			inc.inc_faddr = faddr;
1576 			inc.inc_laddr = ip->ip_src;
1577 			syncache_unreach(&inc, th);
1578 		}
1579 		INP_INFO_WUNLOCK(&V_tcbinfo);
1580 	} else
1581 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1582 }
1583 #endif /* INET */
1584 
1585 #ifdef INET6
1586 void
1587 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1588 {
1589 	struct tcphdr th;
1590 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1591 	struct ip6_hdr *ip6;
1592 	struct mbuf *m;
1593 	struct ip6ctlparam *ip6cp = NULL;
1594 	const struct sockaddr_in6 *sa6_src = NULL;
1595 	int off;
1596 	struct tcp_portonly {
1597 		u_int16_t th_sport;
1598 		u_int16_t th_dport;
1599 	} *thp;
1600 
1601 	if (sa->sa_family != AF_INET6 ||
1602 	    sa->sa_len != sizeof(struct sockaddr_in6))
1603 		return;
1604 
1605 	if (cmd == PRC_MSGSIZE)
1606 		notify = tcp_mtudisc_notify;
1607 	else if (!PRC_IS_REDIRECT(cmd) &&
1608 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1609 		return;
1610 
1611 	/* if the parameter is from icmp6, decode it. */
1612 	if (d != NULL) {
1613 		ip6cp = (struct ip6ctlparam *)d;
1614 		m = ip6cp->ip6c_m;
1615 		ip6 = ip6cp->ip6c_ip6;
1616 		off = ip6cp->ip6c_off;
1617 		sa6_src = ip6cp->ip6c_src;
1618 	} else {
1619 		m = NULL;
1620 		ip6 = NULL;
1621 		off = 0;	/* fool gcc */
1622 		sa6_src = &sa6_any;
1623 	}
1624 
1625 	if (ip6 != NULL) {
1626 		struct in_conninfo inc;
1627 		/*
1628 		 * XXX: We assume that when IPV6 is non NULL,
1629 		 * M and OFF are valid.
1630 		 */
1631 
1632 		/* check if we can safely examine src and dst ports */
1633 		if (m->m_pkthdr.len < off + sizeof(*thp))
1634 			return;
1635 
1636 		bzero(&th, sizeof(th));
1637 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1638 
1639 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1640 		    (struct sockaddr *)ip6cp->ip6c_src,
1641 		    th.th_sport, cmd, NULL, notify);
1642 
1643 		bzero(&inc, sizeof(inc));
1644 		inc.inc_fport = th.th_dport;
1645 		inc.inc_lport = th.th_sport;
1646 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1647 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1648 		inc.inc_flags |= INC_ISIPV6;
1649 		INP_INFO_WLOCK(&V_tcbinfo);
1650 		syncache_unreach(&inc, &th);
1651 		INP_INFO_WUNLOCK(&V_tcbinfo);
1652 	} else
1653 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1654 			      0, cmd, NULL, notify);
1655 }
1656 #endif /* INET6 */
1657 
1658 
1659 /*
1660  * Following is where TCP initial sequence number generation occurs.
1661  *
1662  * There are two places where we must use initial sequence numbers:
1663  * 1.  In SYN-ACK packets.
1664  * 2.  In SYN packets.
1665  *
1666  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1667  * tcp_syncache.c for details.
1668  *
1669  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1670  * depends on this property.  In addition, these ISNs should be
1671  * unguessable so as to prevent connection hijacking.  To satisfy
1672  * the requirements of this situation, the algorithm outlined in
1673  * RFC 1948 is used, with only small modifications.
1674  *
1675  * Implementation details:
1676  *
1677  * Time is based off the system timer, and is corrected so that it
1678  * increases by one megabyte per second.  This allows for proper
1679  * recycling on high speed LANs while still leaving over an hour
1680  * before rollover.
1681  *
1682  * As reading the *exact* system time is too expensive to be done
1683  * whenever setting up a TCP connection, we increment the time
1684  * offset in two ways.  First, a small random positive increment
1685  * is added to isn_offset for each connection that is set up.
1686  * Second, the function tcp_isn_tick fires once per clock tick
1687  * and increments isn_offset as necessary so that sequence numbers
1688  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1689  * random positive increments serve only to ensure that the same
1690  * exact sequence number is never sent out twice (as could otherwise
1691  * happen when a port is recycled in less than the system tick
1692  * interval.)
1693  *
1694  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1695  * between seeding of isn_secret.  This is normally set to zero,
1696  * as reseeding should not be necessary.
1697  *
1698  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1699  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1700  * general, this means holding an exclusive (write) lock.
1701  */
1702 
1703 #define ISN_BYTES_PER_SECOND 1048576
1704 #define ISN_STATIC_INCREMENT 4096
1705 #define ISN_RANDOM_INCREMENT (4096 - 1)
1706 
1707 static VNET_DEFINE(u_char, isn_secret[32]);
1708 static VNET_DEFINE(int, isn_last);
1709 static VNET_DEFINE(int, isn_last_reseed);
1710 static VNET_DEFINE(u_int32_t, isn_offset);
1711 static VNET_DEFINE(u_int32_t, isn_offset_old);
1712 
1713 #define	V_isn_secret			VNET(isn_secret)
1714 #define	V_isn_last			VNET(isn_last)
1715 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1716 #define	V_isn_offset			VNET(isn_offset)
1717 #define	V_isn_offset_old		VNET(isn_offset_old)
1718 
1719 tcp_seq
1720 tcp_new_isn(struct tcpcb *tp)
1721 {
1722 	MD5_CTX isn_ctx;
1723 	u_int32_t md5_buffer[4];
1724 	tcp_seq new_isn;
1725 	u_int32_t projected_offset;
1726 
1727 	INP_WLOCK_ASSERT(tp->t_inpcb);
1728 
1729 	ISN_LOCK();
1730 	/* Seed if this is the first use, reseed if requested. */
1731 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1732 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1733 		< (u_int)ticks))) {
1734 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1735 		V_isn_last_reseed = ticks;
1736 	}
1737 
1738 	/* Compute the md5 hash and return the ISN. */
1739 	MD5Init(&isn_ctx);
1740 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1741 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1742 #ifdef INET6
1743 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1744 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1745 			  sizeof(struct in6_addr));
1746 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1747 			  sizeof(struct in6_addr));
1748 	} else
1749 #endif
1750 	{
1751 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1752 			  sizeof(struct in_addr));
1753 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1754 			  sizeof(struct in_addr));
1755 	}
1756 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1757 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1758 	new_isn = (tcp_seq) md5_buffer[0];
1759 	V_isn_offset += ISN_STATIC_INCREMENT +
1760 		(arc4random() & ISN_RANDOM_INCREMENT);
1761 	if (ticks != V_isn_last) {
1762 		projected_offset = V_isn_offset_old +
1763 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1764 		if (SEQ_GT(projected_offset, V_isn_offset))
1765 			V_isn_offset = projected_offset;
1766 		V_isn_offset_old = V_isn_offset;
1767 		V_isn_last = ticks;
1768 	}
1769 	new_isn += V_isn_offset;
1770 	ISN_UNLOCK();
1771 	return (new_isn);
1772 }
1773 
1774 /*
1775  * When a specific ICMP unreachable message is received and the
1776  * connection state is SYN-SENT, drop the connection.  This behavior
1777  * is controlled by the icmp_may_rst sysctl.
1778  */
1779 struct inpcb *
1780 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1781 {
1782 	struct tcpcb *tp;
1783 
1784 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1785 	INP_WLOCK_ASSERT(inp);
1786 
1787 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1788 	    (inp->inp_flags & INP_DROPPED))
1789 		return (inp);
1790 
1791 	tp = intotcpcb(inp);
1792 	if (tp->t_state != TCPS_SYN_SENT)
1793 		return (inp);
1794 
1795 	tp = tcp_drop(tp, errno);
1796 	if (tp != NULL)
1797 		return (inp);
1798 	else
1799 		return (NULL);
1800 }
1801 
1802 /*
1803  * When `need fragmentation' ICMP is received, update our idea of the MSS
1804  * based on the new value. Also nudge TCP to send something, since we
1805  * know the packet we just sent was dropped.
1806  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1807  */
1808 static struct inpcb *
1809 tcp_mtudisc_notify(struct inpcb *inp, int error)
1810 {
1811 
1812 	return (tcp_mtudisc(inp, -1));
1813 }
1814 
1815 struct inpcb *
1816 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1817 {
1818 	struct tcpcb *tp;
1819 	struct socket *so;
1820 
1821 	INP_WLOCK_ASSERT(inp);
1822 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1823 	    (inp->inp_flags & INP_DROPPED))
1824 		return (inp);
1825 
1826 	tp = intotcpcb(inp);
1827 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1828 
1829 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1830 
1831 	so = inp->inp_socket;
1832 	SOCKBUF_LOCK(&so->so_snd);
1833 	/* If the mss is larger than the socket buffer, decrease the mss. */
1834 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1835 		tp->t_maxseg = so->so_snd.sb_hiwat;
1836 	SOCKBUF_UNLOCK(&so->so_snd);
1837 
1838 	TCPSTAT_INC(tcps_mturesent);
1839 	tp->t_rtttime = 0;
1840 	tp->snd_nxt = tp->snd_una;
1841 	tcp_free_sackholes(tp);
1842 	tp->snd_recover = tp->snd_max;
1843 	if (tp->t_flags & TF_SACK_PERMIT)
1844 		EXIT_FASTRECOVERY(tp->t_flags);
1845 	tcp_output(tp);
1846 	return (inp);
1847 }
1848 
1849 #ifdef INET
1850 /*
1851  * Look-up the routing entry to the peer of this inpcb.  If no route
1852  * is found and it cannot be allocated, then return 0.  This routine
1853  * is called by TCP routines that access the rmx structure and by
1854  * tcp_mss_update to get the peer/interface MTU.
1855  */
1856 u_long
1857 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1858 {
1859 	struct route sro;
1860 	struct sockaddr_in *dst;
1861 	struct ifnet *ifp;
1862 	u_long maxmtu = 0;
1863 
1864 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1865 
1866 	bzero(&sro, sizeof(sro));
1867 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1868 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1869 		dst->sin_family = AF_INET;
1870 		dst->sin_len = sizeof(*dst);
1871 		dst->sin_addr = inc->inc_faddr;
1872 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1873 	}
1874 	if (sro.ro_rt != NULL) {
1875 		ifp = sro.ro_rt->rt_ifp;
1876 		if (sro.ro_rt->rt_mtu == 0)
1877 			maxmtu = ifp->if_mtu;
1878 		else
1879 			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1880 
1881 		/* Report additional interface capabilities. */
1882 		if (cap != NULL) {
1883 			if (ifp->if_capenable & IFCAP_TSO4 &&
1884 			    ifp->if_hwassist & CSUM_TSO) {
1885 				cap->ifcap |= CSUM_TSO;
1886 				cap->tsomax = ifp->if_hw_tsomax;
1887 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1888 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1889 			}
1890 		}
1891 		RTFREE(sro.ro_rt);
1892 	}
1893 	return (maxmtu);
1894 }
1895 #endif /* INET */
1896 
1897 #ifdef INET6
1898 u_long
1899 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1900 {
1901 	struct route_in6 sro6;
1902 	struct ifnet *ifp;
1903 	u_long maxmtu = 0;
1904 
1905 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1906 
1907 	bzero(&sro6, sizeof(sro6));
1908 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1909 		sro6.ro_dst.sin6_family = AF_INET6;
1910 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1911 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1912 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1913 	}
1914 	if (sro6.ro_rt != NULL) {
1915 		ifp = sro6.ro_rt->rt_ifp;
1916 		if (sro6.ro_rt->rt_mtu == 0)
1917 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1918 		else
1919 			maxmtu = min(sro6.ro_rt->rt_mtu,
1920 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1921 
1922 		/* Report additional interface capabilities. */
1923 		if (cap != NULL) {
1924 			if (ifp->if_capenable & IFCAP_TSO6 &&
1925 			    ifp->if_hwassist & CSUM_TSO) {
1926 				cap->ifcap |= CSUM_TSO;
1927 				cap->tsomax = ifp->if_hw_tsomax;
1928 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1929 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1930 			}
1931 		}
1932 		RTFREE(sro6.ro_rt);
1933 	}
1934 
1935 	return (maxmtu);
1936 }
1937 #endif /* INET6 */
1938 
1939 #ifdef IPSEC
1940 /* compute ESP/AH header size for TCP, including outer IP header. */
1941 size_t
1942 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1943 {
1944 	struct inpcb *inp;
1945 	struct mbuf *m;
1946 	size_t hdrsiz;
1947 	struct ip *ip;
1948 #ifdef INET6
1949 	struct ip6_hdr *ip6;
1950 #endif
1951 	struct tcphdr *th;
1952 
1953 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1954 		return (0);
1955 	m = m_gethdr(M_NOWAIT, MT_DATA);
1956 	if (!m)
1957 		return (0);
1958 
1959 #ifdef INET6
1960 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1961 		ip6 = mtod(m, struct ip6_hdr *);
1962 		th = (struct tcphdr *)(ip6 + 1);
1963 		m->m_pkthdr.len = m->m_len =
1964 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1965 		tcpip_fillheaders(inp, ip6, th);
1966 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1967 	} else
1968 #endif /* INET6 */
1969 	{
1970 		ip = mtod(m, struct ip *);
1971 		th = (struct tcphdr *)(ip + 1);
1972 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1973 		tcpip_fillheaders(inp, ip, th);
1974 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1975 	}
1976 
1977 	m_free(m);
1978 	return (hdrsiz);
1979 }
1980 #endif /* IPSEC */
1981 
1982 #ifdef TCP_SIGNATURE
1983 /*
1984  * Callback function invoked by m_apply() to digest TCP segment data
1985  * contained within an mbuf chain.
1986  */
1987 static int
1988 tcp_signature_apply(void *fstate, void *data, u_int len)
1989 {
1990 
1991 	MD5Update(fstate, (u_char *)data, len);
1992 	return (0);
1993 }
1994 
1995 /*
1996  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1997  * search with the destination IP address, and a 'magic SPI' to be
1998  * determined by the application. This is hardcoded elsewhere to 1179
1999 */
2000 struct secasvar *
2001 tcp_get_sav(struct mbuf *m, u_int direction)
2002 {
2003 	union sockaddr_union dst;
2004 	struct secasvar *sav;
2005 	struct ip *ip;
2006 #ifdef INET6
2007 	struct ip6_hdr *ip6;
2008 	char ip6buf[INET6_ADDRSTRLEN];
2009 #endif
2010 
2011 	/* Extract the destination from the IP header in the mbuf. */
2012 	bzero(&dst, sizeof(union sockaddr_union));
2013 	ip = mtod(m, struct ip *);
2014 #ifdef INET6
2015 	ip6 = NULL;	/* Make the compiler happy. */
2016 #endif
2017 	switch (ip->ip_v) {
2018 #ifdef INET
2019 	case IPVERSION:
2020 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2021 		dst.sa.sa_family = AF_INET;
2022 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2023 		    ip->ip_src : ip->ip_dst;
2024 		break;
2025 #endif
2026 #ifdef INET6
2027 	case (IPV6_VERSION >> 4):
2028 		ip6 = mtod(m, struct ip6_hdr *);
2029 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2030 		dst.sa.sa_family = AF_INET6;
2031 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2032 		    ip6->ip6_src : ip6->ip6_dst;
2033 		break;
2034 #endif
2035 	default:
2036 		return (NULL);
2037 		/* NOTREACHED */
2038 		break;
2039 	}
2040 
2041 	/* Look up an SADB entry which matches the address of the peer. */
2042 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2043 	if (sav == NULL) {
2044 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2045 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2046 #ifdef INET6
2047 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2048 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2049 #endif
2050 			"(unsupported)"));
2051 	}
2052 
2053 	return (sav);
2054 }
2055 
2056 /*
2057  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2058  *
2059  * Parameters:
2060  * m		pointer to head of mbuf chain
2061  * len		length of TCP segment data, excluding options
2062  * optlen	length of TCP segment options
2063  * buf		pointer to storage for computed MD5 digest
2064  * sav		pointer to security assosiation
2065  *
2066  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2067  * When called from tcp_input(), we can be sure that th_sum has been
2068  * zeroed out and verified already.
2069  *
2070  * Releases reference to SADB key before return.
2071  *
2072  * Return 0 if successful, otherwise return -1.
2073  *
2074  */
2075 int
2076 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2077     u_char *buf, struct secasvar *sav)
2078 {
2079 #ifdef INET
2080 	struct ippseudo ippseudo;
2081 #endif
2082 	MD5_CTX ctx;
2083 	int doff;
2084 	struct ip *ip;
2085 #ifdef INET
2086 	struct ipovly *ipovly;
2087 #endif
2088 	struct tcphdr *th;
2089 #ifdef INET6
2090 	struct ip6_hdr *ip6;
2091 	struct in6_addr in6;
2092 	uint32_t plen;
2093 	uint16_t nhdr;
2094 #endif
2095 	u_short savecsum;
2096 
2097 	KASSERT(m != NULL, ("NULL mbuf chain"));
2098 	KASSERT(buf != NULL, ("NULL signature pointer"));
2099 
2100 	/* Extract the destination from the IP header in the mbuf. */
2101 	ip = mtod(m, struct ip *);
2102 #ifdef INET6
2103 	ip6 = NULL;	/* Make the compiler happy. */
2104 #endif
2105 
2106 	MD5Init(&ctx);
2107 	/*
2108 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2109 	 *
2110 	 * XXX The ippseudo header MUST be digested in network byte order,
2111 	 * or else we'll fail the regression test. Assume all fields we've
2112 	 * been doing arithmetic on have been in host byte order.
2113 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2114 	 * tcp_output(), the underlying ip_len member has not yet been set.
2115 	 */
2116 	switch (ip->ip_v) {
2117 #ifdef INET
2118 	case IPVERSION:
2119 		ipovly = (struct ipovly *)ip;
2120 		ippseudo.ippseudo_src = ipovly->ih_src;
2121 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2122 		ippseudo.ippseudo_pad = 0;
2123 		ippseudo.ippseudo_p = IPPROTO_TCP;
2124 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2125 		    optlen);
2126 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2127 
2128 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2129 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2130 		break;
2131 #endif
2132 #ifdef INET6
2133 	/*
2134 	 * RFC 2385, 2.0  Proposal
2135 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2136 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2137 	 * extended next header value (to form 32 bits), and 32-bit segment
2138 	 * length.
2139 	 * Note: Upper-Layer Packet Length comes before Next Header.
2140 	 */
2141 	case (IPV6_VERSION >> 4):
2142 		in6 = ip6->ip6_src;
2143 		in6_clearscope(&in6);
2144 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2145 		in6 = ip6->ip6_dst;
2146 		in6_clearscope(&in6);
2147 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2148 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2149 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2150 		nhdr = 0;
2151 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2152 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2153 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2154 		nhdr = IPPROTO_TCP;
2155 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2156 
2157 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2158 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2159 		break;
2160 #endif
2161 	default:
2162 		KEY_FREESAV(&sav);
2163 		return (-1);
2164 		/* NOTREACHED */
2165 		break;
2166 	}
2167 
2168 
2169 	/*
2170 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2171 	 * The TCP checksum must be set to zero.
2172 	 */
2173 	savecsum = th->th_sum;
2174 	th->th_sum = 0;
2175 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2176 	th->th_sum = savecsum;
2177 
2178 	/*
2179 	 * Step 3: Update MD5 hash with TCP segment data.
2180 	 *         Use m_apply() to avoid an early m_pullup().
2181 	 */
2182 	if (len > 0)
2183 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2184 
2185 	/*
2186 	 * Step 4: Update MD5 hash with shared secret.
2187 	 */
2188 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2189 	MD5Final(buf, &ctx);
2190 
2191 	key_sa_recordxfer(sav, m);
2192 	KEY_FREESAV(&sav);
2193 	return (0);
2194 }
2195 
2196 /*
2197  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2198  *
2199  * Return 0 if successful, otherwise return -1.
2200  */
2201 int
2202 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2203     u_char *buf, u_int direction)
2204 {
2205 	struct secasvar *sav;
2206 
2207 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2208 		return (-1);
2209 
2210 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2211 }
2212 
2213 /*
2214  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2215  *
2216  * Parameters:
2217  * m		pointer to head of mbuf chain
2218  * len		length of TCP segment data, excluding options
2219  * optlen	length of TCP segment options
2220  * buf		pointer to storage for computed MD5 digest
2221  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2222  *
2223  * Return 1 if successful, otherwise return 0.
2224  */
2225 int
2226 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2227     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2228 {
2229 	char tmpdigest[TCP_SIGLEN];
2230 
2231 	if (tcp_sig_checksigs == 0)
2232 		return (1);
2233 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2234 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2235 
2236 			/*
2237 			 * If this socket is not expecting signature but
2238 			 * the segment contains signature just fail.
2239 			 */
2240 			TCPSTAT_INC(tcps_sig_err_sigopt);
2241 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2242 			return (0);
2243 		}
2244 
2245 		/* Signature is not expected, and not present in segment. */
2246 		return (1);
2247 	}
2248 
2249 	/*
2250 	 * If this socket is expecting signature but the segment does not
2251 	 * contain any just fail.
2252 	 */
2253 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2254 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2255 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2256 		return (0);
2257 	}
2258 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2259 	    IPSEC_DIR_INBOUND) == -1) {
2260 		TCPSTAT_INC(tcps_sig_err_buildsig);
2261 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2262 		return (0);
2263 	}
2264 
2265 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2266 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2267 		return (0);
2268 	}
2269 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2270 	return (1);
2271 }
2272 #endif /* TCP_SIGNATURE */
2273 
2274 static int
2275 sysctl_drop(SYSCTL_HANDLER_ARGS)
2276 {
2277 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2278 	struct sockaddr_storage addrs[2];
2279 	struct inpcb *inp;
2280 	struct tcpcb *tp;
2281 	struct tcptw *tw;
2282 	struct sockaddr_in *fin, *lin;
2283 #ifdef INET6
2284 	struct sockaddr_in6 *fin6, *lin6;
2285 #endif
2286 	int error;
2287 
2288 	inp = NULL;
2289 	fin = lin = NULL;
2290 #ifdef INET6
2291 	fin6 = lin6 = NULL;
2292 #endif
2293 	error = 0;
2294 
2295 	if (req->oldptr != NULL || req->oldlen != 0)
2296 		return (EINVAL);
2297 	if (req->newptr == NULL)
2298 		return (EPERM);
2299 	if (req->newlen < sizeof(addrs))
2300 		return (ENOMEM);
2301 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2302 	if (error)
2303 		return (error);
2304 
2305 	switch (addrs[0].ss_family) {
2306 #ifdef INET6
2307 	case AF_INET6:
2308 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2309 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2310 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2311 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2312 			return (EINVAL);
2313 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2314 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2315 				return (EINVAL);
2316 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2317 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2318 			fin = (struct sockaddr_in *)&addrs[0];
2319 			lin = (struct sockaddr_in *)&addrs[1];
2320 			break;
2321 		}
2322 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2323 		if (error)
2324 			return (error);
2325 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2326 		if (error)
2327 			return (error);
2328 		break;
2329 #endif
2330 #ifdef INET
2331 	case AF_INET:
2332 		fin = (struct sockaddr_in *)&addrs[0];
2333 		lin = (struct sockaddr_in *)&addrs[1];
2334 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2335 		    lin->sin_len != sizeof(struct sockaddr_in))
2336 			return (EINVAL);
2337 		break;
2338 #endif
2339 	default:
2340 		return (EINVAL);
2341 	}
2342 	INP_INFO_WLOCK(&V_tcbinfo);
2343 	switch (addrs[0].ss_family) {
2344 #ifdef INET6
2345 	case AF_INET6:
2346 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2347 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2348 		    INPLOOKUP_WLOCKPCB, NULL);
2349 		break;
2350 #endif
2351 #ifdef INET
2352 	case AF_INET:
2353 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2354 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2355 		break;
2356 #endif
2357 	}
2358 	if (inp != NULL) {
2359 		if (inp->inp_flags & INP_TIMEWAIT) {
2360 			/*
2361 			 * XXXRW: There currently exists a state where an
2362 			 * inpcb is present, but its timewait state has been
2363 			 * discarded.  For now, don't allow dropping of this
2364 			 * type of inpcb.
2365 			 */
2366 			tw = intotw(inp);
2367 			if (tw != NULL)
2368 				tcp_twclose(tw, 0);
2369 			else
2370 				INP_WUNLOCK(inp);
2371 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2372 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2373 			tp = intotcpcb(inp);
2374 			tp = tcp_drop(tp, ECONNABORTED);
2375 			if (tp != NULL)
2376 				INP_WUNLOCK(inp);
2377 		} else
2378 			INP_WUNLOCK(inp);
2379 	} else
2380 		error = ESRCH;
2381 	INP_INFO_WUNLOCK(&V_tcbinfo);
2382 	return (error);
2383 }
2384 
2385 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2386     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2387     0, sysctl_drop, "", "Drop TCP connection");
2388 
2389 /*
2390  * Generate a standardized TCP log line for use throughout the
2391  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2392  * allow use in the interrupt context.
2393  *
2394  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2395  * NB: The function may return NULL if memory allocation failed.
2396  *
2397  * Due to header inclusion and ordering limitations the struct ip
2398  * and ip6_hdr pointers have to be passed as void pointers.
2399  */
2400 char *
2401 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2402     const void *ip6hdr)
2403 {
2404 
2405 	/* Is logging enabled? */
2406 	if (tcp_log_in_vain == 0)
2407 		return (NULL);
2408 
2409 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2410 }
2411 
2412 char *
2413 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2414     const void *ip6hdr)
2415 {
2416 
2417 	/* Is logging enabled? */
2418 	if (tcp_log_debug == 0)
2419 		return (NULL);
2420 
2421 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2422 }
2423 
2424 static char *
2425 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2426     const void *ip6hdr)
2427 {
2428 	char *s, *sp;
2429 	size_t size;
2430 	struct ip *ip;
2431 #ifdef INET6
2432 	const struct ip6_hdr *ip6;
2433 
2434 	ip6 = (const struct ip6_hdr *)ip6hdr;
2435 #endif /* INET6 */
2436 	ip = (struct ip *)ip4hdr;
2437 
2438 	/*
2439 	 * The log line looks like this:
2440 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2441 	 */
2442 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2443 	    sizeof(PRINT_TH_FLAGS) + 1 +
2444 #ifdef INET6
2445 	    2 * INET6_ADDRSTRLEN;
2446 #else
2447 	    2 * INET_ADDRSTRLEN;
2448 #endif /* INET6 */
2449 
2450 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2451 	if (s == NULL)
2452 		return (NULL);
2453 
2454 	strcat(s, "TCP: [");
2455 	sp = s + strlen(s);
2456 
2457 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2458 		inet_ntoa_r(inc->inc_faddr, sp);
2459 		sp = s + strlen(s);
2460 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2461 		sp = s + strlen(s);
2462 		inet_ntoa_r(inc->inc_laddr, sp);
2463 		sp = s + strlen(s);
2464 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2465 #ifdef INET6
2466 	} else if (inc) {
2467 		ip6_sprintf(sp, &inc->inc6_faddr);
2468 		sp = s + strlen(s);
2469 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2470 		sp = s + strlen(s);
2471 		ip6_sprintf(sp, &inc->inc6_laddr);
2472 		sp = s + strlen(s);
2473 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2474 	} else if (ip6 && th) {
2475 		ip6_sprintf(sp, &ip6->ip6_src);
2476 		sp = s + strlen(s);
2477 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2478 		sp = s + strlen(s);
2479 		ip6_sprintf(sp, &ip6->ip6_dst);
2480 		sp = s + strlen(s);
2481 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2482 #endif /* INET6 */
2483 #ifdef INET
2484 	} else if (ip && th) {
2485 		inet_ntoa_r(ip->ip_src, sp);
2486 		sp = s + strlen(s);
2487 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2488 		sp = s + strlen(s);
2489 		inet_ntoa_r(ip->ip_dst, sp);
2490 		sp = s + strlen(s);
2491 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2492 #endif /* INET */
2493 	} else {
2494 		free(s, M_TCPLOG);
2495 		return (NULL);
2496 	}
2497 	sp = s + strlen(s);
2498 	if (th)
2499 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2500 	if (*(s + size - 1) != '\0')
2501 		panic("%s: string too long", __func__);
2502 	return (s);
2503 }
2504 
2505 /*
2506  * A subroutine which makes it easy to track TCP state changes with DTrace.
2507  * This function shouldn't be called for t_state initializations that don't
2508  * correspond to actual TCP state transitions.
2509  */
2510 void
2511 tcp_state_change(struct tcpcb *tp, int newstate)
2512 {
2513 #if defined(KDTRACE_HOOKS)
2514 	int pstate = tp->t_state;
2515 #endif
2516 
2517 	tp->t_state = newstate;
2518 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2519 }
2520