1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/hhook.h> 45 #include <sys/kernel.h> 46 #include <sys/khelp.h> 47 #include <sys/sysctl.h> 48 #include <sys/jail.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #ifdef INET6 52 #include <sys/domain.h> 53 #endif 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/protosw.h> 60 #include <sys/random.h> 61 62 #include <vm/uma.h> 63 64 #include <net/route.h> 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/cc.h> 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_pcb.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/ip_icmp.h> 77 #include <netinet/ip_var.h> 78 #ifdef INET6 79 #include <netinet/ip6.h> 80 #include <netinet6/in6_pcb.h> 81 #include <netinet6/ip6_var.h> 82 #include <netinet6/scope6_var.h> 83 #include <netinet6/nd6.h> 84 #endif 85 86 #include <netinet/tcp_fsm.h> 87 #include <netinet/tcp_seq.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/tcp_syncache.h> 91 #ifdef INET6 92 #include <netinet6/tcp6_var.h> 93 #endif 94 #include <netinet/tcpip.h> 95 #ifdef TCPDEBUG 96 #include <netinet/tcp_debug.h> 97 #endif 98 #ifdef INET6 99 #include <netinet6/ip6protosw.h> 100 #endif 101 #ifdef TCP_OFFLOAD 102 #include <netinet/tcp_offload.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netipsec/ipsec.h> 107 #include <netipsec/xform.h> 108 #ifdef INET6 109 #include <netipsec/ipsec6.h> 110 #endif 111 #include <netipsec/key.h> 112 #include <sys/syslog.h> 113 #endif /*IPSEC*/ 114 115 #include <machine/in_cksum.h> 116 #include <sys/md5.h> 117 118 #include <security/mac/mac_framework.h> 119 120 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 121 #ifdef INET6 122 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 123 #endif 124 125 static int 126 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 127 { 128 int error, new; 129 130 new = V_tcp_mssdflt; 131 error = sysctl_handle_int(oidp, &new, 0, req); 132 if (error == 0 && req->newptr) { 133 if (new < TCP_MINMSS) 134 error = EINVAL; 135 else 136 V_tcp_mssdflt = new; 137 } 138 return (error); 139 } 140 141 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 142 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 143 &sysctl_net_inet_tcp_mss_check, "I", 144 "Default TCP Maximum Segment Size"); 145 146 #ifdef INET6 147 static int 148 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error, new; 151 152 new = V_tcp_v6mssdflt; 153 error = sysctl_handle_int(oidp, &new, 0, req); 154 if (error == 0 && req->newptr) { 155 if (new < TCP_MINMSS) 156 error = EINVAL; 157 else 158 V_tcp_v6mssdflt = new; 159 } 160 return (error); 161 } 162 163 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 164 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 165 &sysctl_net_inet_tcp_mss_v6_check, "I", 166 "Default TCP Maximum Segment Size for IPv6"); 167 #endif /* INET6 */ 168 169 /* 170 * Minimum MSS we accept and use. This prevents DoS attacks where 171 * we are forced to a ridiculous low MSS like 20 and send hundreds 172 * of packets instead of one. The effect scales with the available 173 * bandwidth and quickly saturates the CPU and network interface 174 * with packet generation and sending. Set to zero to disable MINMSS 175 * checking. This setting prevents us from sending too small packets. 176 */ 177 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 179 &VNET_NAME(tcp_minmss), 0, 180 "Minimum TCP Maximum Segment Size"); 181 182 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 183 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 184 &VNET_NAME(tcp_do_rfc1323), 0, 185 "Enable rfc1323 (high performance TCP) extensions"); 186 187 static int tcp_log_debug = 0; 188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 189 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 190 191 static int tcp_tcbhashsize; 192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 193 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 194 195 static int do_tcpdrain = 1; 196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 197 "Enable tcp_drain routine for extra help when low on mbufs"); 198 199 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 200 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 201 202 static VNET_DEFINE(int, icmp_may_rst) = 1; 203 #define V_icmp_may_rst VNET(icmp_may_rst) 204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 205 &VNET_NAME(icmp_may_rst), 0, 206 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 207 208 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 209 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 211 &VNET_NAME(tcp_isn_reseed_interval), 0, 212 "Seconds between reseeding of ISN secret"); 213 214 static int tcp_soreceive_stream; 215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 216 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 217 218 #ifdef TCP_SIGNATURE 219 static int tcp_sig_checksigs = 1; 220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 221 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 222 #endif 223 224 VNET_DEFINE(uma_zone_t, sack_hole_zone); 225 #define V_sack_hole_zone VNET(sack_hole_zone) 226 227 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 228 229 static struct inpcb *tcp_notify(struct inpcb *, int); 230 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 231 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 232 void *ip4hdr, const void *ip6hdr); 233 static void tcp_timer_discard(struct tcpcb *, uint32_t); 234 235 /* 236 * Target size of TCP PCB hash tables. Must be a power of two. 237 * 238 * Note that this can be overridden by the kernel environment 239 * variable net.inet.tcp.tcbhashsize 240 */ 241 #ifndef TCBHASHSIZE 242 #define TCBHASHSIZE 0 243 #endif 244 245 /* 246 * XXX 247 * Callouts should be moved into struct tcp directly. They are currently 248 * separate because the tcpcb structure is exported to userland for sysctl 249 * parsing purposes, which do not know about callouts. 250 */ 251 struct tcpcb_mem { 252 struct tcpcb tcb; 253 struct tcp_timer tt; 254 struct cc_var ccv; 255 struct osd osd; 256 }; 257 258 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 259 #define V_tcpcb_zone VNET(tcpcb_zone) 260 261 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 262 static struct mtx isn_mtx; 263 264 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 265 #define ISN_LOCK() mtx_lock(&isn_mtx) 266 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 267 268 /* 269 * TCP initialization. 270 */ 271 static void 272 tcp_zone_change(void *tag) 273 { 274 275 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 276 uma_zone_set_max(V_tcpcb_zone, maxsockets); 277 tcp_tw_zone_change(); 278 } 279 280 static int 281 tcp_inpcb_init(void *mem, int size, int flags) 282 { 283 struct inpcb *inp = mem; 284 285 INP_LOCK_INIT(inp, "inp", "tcpinp"); 286 return (0); 287 } 288 289 /* 290 * Take a value and get the next power of 2 that doesn't overflow. 291 * Used to size the tcp_inpcb hash buckets. 292 */ 293 static int 294 maketcp_hashsize(int size) 295 { 296 int hashsize; 297 298 /* 299 * auto tune. 300 * get the next power of 2 higher than maxsockets. 301 */ 302 hashsize = 1 << fls(size); 303 /* catch overflow, and just go one power of 2 smaller */ 304 if (hashsize < size) { 305 hashsize = 1 << (fls(size) - 1); 306 } 307 return (hashsize); 308 } 309 310 void 311 tcp_init(void) 312 { 313 const char *tcbhash_tuneable; 314 int hashsize; 315 316 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 317 318 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 319 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 320 printf("%s: WARNING: unable to register helper hook\n", __func__); 321 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 322 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 323 printf("%s: WARNING: unable to register helper hook\n", __func__); 324 325 hashsize = TCBHASHSIZE; 326 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 327 if (hashsize == 0) { 328 /* 329 * Auto tune the hash size based on maxsockets. 330 * A perfect hash would have a 1:1 mapping 331 * (hashsize = maxsockets) however it's been 332 * suggested that O(2) average is better. 333 */ 334 hashsize = maketcp_hashsize(maxsockets / 4); 335 /* 336 * Our historical default is 512, 337 * do not autotune lower than this. 338 */ 339 if (hashsize < 512) 340 hashsize = 512; 341 if (bootverbose) 342 printf("%s: %s auto tuned to %d\n", __func__, 343 tcbhash_tuneable, hashsize); 344 } 345 /* 346 * We require a hashsize to be a power of two. 347 * Previously if it was not a power of two we would just reset it 348 * back to 512, which could be a nasty surprise if you did not notice 349 * the error message. 350 * Instead what we do is clip it to the closest power of two lower 351 * than the specified hash value. 352 */ 353 if (!powerof2(hashsize)) { 354 int oldhashsize = hashsize; 355 356 hashsize = maketcp_hashsize(hashsize); 357 /* prevent absurdly low value */ 358 if (hashsize < 16) 359 hashsize = 16; 360 printf("%s: WARNING: TCB hash size not a power of 2, " 361 "clipped from %d to %d.\n", __func__, oldhashsize, 362 hashsize); 363 } 364 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 365 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE, 366 IPI_HASHFIELDS_4TUPLE); 367 368 /* 369 * These have to be type stable for the benefit of the timers. 370 */ 371 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 372 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 373 uma_zone_set_max(V_tcpcb_zone, maxsockets); 374 uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); 375 376 tcp_tw_init(); 377 syncache_init(); 378 tcp_hc_init(); 379 380 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 381 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 382 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 383 384 /* Skip initialization of globals for non-default instances. */ 385 if (!IS_DEFAULT_VNET(curvnet)) 386 return; 387 388 /* XXX virtualize those bellow? */ 389 tcp_delacktime = TCPTV_DELACK; 390 tcp_keepinit = TCPTV_KEEP_INIT; 391 tcp_keepidle = TCPTV_KEEP_IDLE; 392 tcp_keepintvl = TCPTV_KEEPINTVL; 393 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 394 tcp_msl = TCPTV_MSL; 395 tcp_rexmit_min = TCPTV_MIN; 396 if (tcp_rexmit_min < 1) 397 tcp_rexmit_min = 1; 398 tcp_rexmit_slop = TCPTV_CPU_VAR; 399 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 400 tcp_tcbhashsize = hashsize; 401 402 if (tcp_soreceive_stream) { 403 #ifdef INET 404 tcp_usrreqs.pru_soreceive = soreceive_stream; 405 #endif 406 #ifdef INET6 407 tcp6_usrreqs.pru_soreceive = soreceive_stream; 408 #endif /* INET6 */ 409 } 410 411 #ifdef INET6 412 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 413 #else /* INET6 */ 414 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 415 #endif /* INET6 */ 416 if (max_protohdr < TCP_MINPROTOHDR) 417 max_protohdr = TCP_MINPROTOHDR; 418 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 419 panic("tcp_init"); 420 #undef TCP_MINPROTOHDR 421 422 ISN_LOCK_INIT(); 423 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 424 SHUTDOWN_PRI_DEFAULT); 425 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 426 EVENTHANDLER_PRI_ANY); 427 } 428 429 #ifdef VIMAGE 430 void 431 tcp_destroy(void) 432 { 433 int error; 434 435 tcp_hc_destroy(); 436 syncache_destroy(); 437 tcp_tw_destroy(); 438 in_pcbinfo_destroy(&V_tcbinfo); 439 uma_zdestroy(V_sack_hole_zone); 440 uma_zdestroy(V_tcpcb_zone); 441 442 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 443 if (error != 0) { 444 printf("%s: WARNING: unable to deregister helper hook " 445 "type=%d, id=%d: error %d returned\n", __func__, 446 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 447 } 448 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 449 if (error != 0) { 450 printf("%s: WARNING: unable to deregister helper hook " 451 "type=%d, id=%d: error %d returned\n", __func__, 452 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 453 } 454 } 455 #endif 456 457 void 458 tcp_fini(void *xtp) 459 { 460 461 } 462 463 /* 464 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 465 * tcp_template used to store this data in mbufs, but we now recopy it out 466 * of the tcpcb each time to conserve mbufs. 467 */ 468 void 469 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 470 { 471 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 472 473 INP_WLOCK_ASSERT(inp); 474 475 #ifdef INET6 476 if ((inp->inp_vflag & INP_IPV6) != 0) { 477 struct ip6_hdr *ip6; 478 479 ip6 = (struct ip6_hdr *)ip_ptr; 480 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 481 (inp->inp_flow & IPV6_FLOWINFO_MASK); 482 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 483 (IPV6_VERSION & IPV6_VERSION_MASK); 484 ip6->ip6_nxt = IPPROTO_TCP; 485 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 486 ip6->ip6_src = inp->in6p_laddr; 487 ip6->ip6_dst = inp->in6p_faddr; 488 } 489 #endif /* INET6 */ 490 #if defined(INET6) && defined(INET) 491 else 492 #endif 493 #ifdef INET 494 { 495 struct ip *ip; 496 497 ip = (struct ip *)ip_ptr; 498 ip->ip_v = IPVERSION; 499 ip->ip_hl = 5; 500 ip->ip_tos = inp->inp_ip_tos; 501 ip->ip_len = 0; 502 ip->ip_id = 0; 503 ip->ip_off = 0; 504 ip->ip_ttl = inp->inp_ip_ttl; 505 ip->ip_sum = 0; 506 ip->ip_p = IPPROTO_TCP; 507 ip->ip_src = inp->inp_laddr; 508 ip->ip_dst = inp->inp_faddr; 509 } 510 #endif /* INET */ 511 th->th_sport = inp->inp_lport; 512 th->th_dport = inp->inp_fport; 513 th->th_seq = 0; 514 th->th_ack = 0; 515 th->th_x2 = 0; 516 th->th_off = 5; 517 th->th_flags = 0; 518 th->th_win = 0; 519 th->th_urp = 0; 520 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 521 } 522 523 /* 524 * Create template to be used to send tcp packets on a connection. 525 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 526 * use for this function is in keepalives, which use tcp_respond. 527 */ 528 struct tcptemp * 529 tcpip_maketemplate(struct inpcb *inp) 530 { 531 struct tcptemp *t; 532 533 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 534 if (t == NULL) 535 return (NULL); 536 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 537 return (t); 538 } 539 540 /* 541 * Send a single message to the TCP at address specified by 542 * the given TCP/IP header. If m == NULL, then we make a copy 543 * of the tcpiphdr at th and send directly to the addressed host. 544 * This is used to force keep alive messages out using the TCP 545 * template for a connection. If flags are given then we send 546 * a message back to the TCP which originated the segment th, 547 * and discard the mbuf containing it and any other attached mbufs. 548 * 549 * In any case the ack and sequence number of the transmitted 550 * segment are as specified by the parameters. 551 * 552 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 553 */ 554 void 555 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 556 tcp_seq ack, tcp_seq seq, int flags) 557 { 558 int tlen; 559 int win = 0; 560 struct ip *ip; 561 struct tcphdr *nth; 562 #ifdef INET6 563 struct ip6_hdr *ip6; 564 int isipv6; 565 #endif /* INET6 */ 566 int ipflags = 0; 567 struct inpcb *inp; 568 569 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 570 571 #ifdef INET6 572 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 573 ip6 = ipgen; 574 #endif /* INET6 */ 575 ip = ipgen; 576 577 if (tp != NULL) { 578 inp = tp->t_inpcb; 579 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 580 INP_WLOCK_ASSERT(inp); 581 } else 582 inp = NULL; 583 584 if (tp != NULL) { 585 if (!(flags & TH_RST)) { 586 win = sbspace(&inp->inp_socket->so_rcv); 587 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 588 win = (long)TCP_MAXWIN << tp->rcv_scale; 589 } 590 } 591 if (m == NULL) { 592 m = m_gethdr(M_NOWAIT, MT_DATA); 593 if (m == NULL) 594 return; 595 tlen = 0; 596 m->m_data += max_linkhdr; 597 #ifdef INET6 598 if (isipv6) { 599 bcopy((caddr_t)ip6, mtod(m, caddr_t), 600 sizeof(struct ip6_hdr)); 601 ip6 = mtod(m, struct ip6_hdr *); 602 nth = (struct tcphdr *)(ip6 + 1); 603 } else 604 #endif /* INET6 */ 605 { 606 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 607 ip = mtod(m, struct ip *); 608 nth = (struct tcphdr *)(ip + 1); 609 } 610 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 611 flags = TH_ACK; 612 } else { 613 /* 614 * reuse the mbuf. 615 * XXX MRT We inherrit the FIB, which is lucky. 616 */ 617 m_freem(m->m_next); 618 m->m_next = NULL; 619 m->m_data = (caddr_t)ipgen; 620 /* m_len is set later */ 621 tlen = 0; 622 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 623 #ifdef INET6 624 if (isipv6) { 625 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 626 nth = (struct tcphdr *)(ip6 + 1); 627 } else 628 #endif /* INET6 */ 629 { 630 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 631 nth = (struct tcphdr *)(ip + 1); 632 } 633 if (th != nth) { 634 /* 635 * this is usually a case when an extension header 636 * exists between the IPv6 header and the 637 * TCP header. 638 */ 639 nth->th_sport = th->th_sport; 640 nth->th_dport = th->th_dport; 641 } 642 xchg(nth->th_dport, nth->th_sport, uint16_t); 643 #undef xchg 644 } 645 #ifdef INET6 646 if (isipv6) { 647 ip6->ip6_flow = 0; 648 ip6->ip6_vfc = IPV6_VERSION; 649 ip6->ip6_nxt = IPPROTO_TCP; 650 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 651 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 652 } 653 #endif 654 #if defined(INET) && defined(INET6) 655 else 656 #endif 657 #ifdef INET 658 { 659 tlen += sizeof (struct tcpiphdr); 660 ip->ip_len = htons(tlen); 661 ip->ip_ttl = V_ip_defttl; 662 if (V_path_mtu_discovery) 663 ip->ip_off |= htons(IP_DF); 664 } 665 #endif 666 m->m_len = tlen; 667 m->m_pkthdr.len = tlen; 668 m->m_pkthdr.rcvif = NULL; 669 #ifdef MAC 670 if (inp != NULL) { 671 /* 672 * Packet is associated with a socket, so allow the 673 * label of the response to reflect the socket label. 674 */ 675 INP_WLOCK_ASSERT(inp); 676 mac_inpcb_create_mbuf(inp, m); 677 } else { 678 /* 679 * Packet is not associated with a socket, so possibly 680 * update the label in place. 681 */ 682 mac_netinet_tcp_reply(m); 683 } 684 #endif 685 nth->th_seq = htonl(seq); 686 nth->th_ack = htonl(ack); 687 nth->th_x2 = 0; 688 nth->th_off = sizeof (struct tcphdr) >> 2; 689 nth->th_flags = flags; 690 if (tp != NULL) 691 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 692 else 693 nth->th_win = htons((u_short)win); 694 nth->th_urp = 0; 695 696 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 697 #ifdef INET6 698 if (isipv6) { 699 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 700 nth->th_sum = in6_cksum_pseudo(ip6, 701 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 702 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 703 NULL, NULL); 704 } 705 #endif /* INET6 */ 706 #if defined(INET6) && defined(INET) 707 else 708 #endif 709 #ifdef INET 710 { 711 m->m_pkthdr.csum_flags = CSUM_TCP; 712 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 713 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 714 } 715 #endif /* INET */ 716 #ifdef TCPDEBUG 717 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 718 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 719 #endif 720 if (flags & TH_RST) 721 TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *), 722 tp, nth); 723 724 TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth); 725 #ifdef INET6 726 if (isipv6) 727 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 728 #endif /* INET6 */ 729 #if defined(INET) && defined(INET6) 730 else 731 #endif 732 #ifdef INET 733 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 734 #endif 735 } 736 737 /* 738 * Create a new TCP control block, making an 739 * empty reassembly queue and hooking it to the argument 740 * protocol control block. The `inp' parameter must have 741 * come from the zone allocator set up in tcp_init(). 742 */ 743 struct tcpcb * 744 tcp_newtcpcb(struct inpcb *inp) 745 { 746 struct tcpcb_mem *tm; 747 struct tcpcb *tp; 748 #ifdef INET6 749 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 750 #endif /* INET6 */ 751 752 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 753 if (tm == NULL) 754 return (NULL); 755 tp = &tm->tcb; 756 757 /* Initialise cc_var struct for this tcpcb. */ 758 tp->ccv = &tm->ccv; 759 tp->ccv->type = IPPROTO_TCP; 760 tp->ccv->ccvc.tcp = tp; 761 762 /* 763 * Use the current system default CC algorithm. 764 */ 765 CC_LIST_RLOCK(); 766 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 767 CC_ALGO(tp) = CC_DEFAULT(); 768 CC_LIST_RUNLOCK(); 769 770 if (CC_ALGO(tp)->cb_init != NULL) 771 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 772 uma_zfree(V_tcpcb_zone, tm); 773 return (NULL); 774 } 775 776 tp->osd = &tm->osd; 777 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 778 uma_zfree(V_tcpcb_zone, tm); 779 return (NULL); 780 } 781 782 #ifdef VIMAGE 783 tp->t_vnet = inp->inp_vnet; 784 #endif 785 tp->t_timers = &tm->tt; 786 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 787 tp->t_maxseg = tp->t_maxopd = 788 #ifdef INET6 789 isipv6 ? V_tcp_v6mssdflt : 790 #endif /* INET6 */ 791 V_tcp_mssdflt; 792 793 /* Set up our timeouts. */ 794 callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE); 795 callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE); 796 callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE); 797 callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE); 798 callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE); 799 800 if (V_tcp_do_rfc1323) 801 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 802 if (V_tcp_do_sack) 803 tp->t_flags |= TF_SACK_PERMIT; 804 TAILQ_INIT(&tp->snd_holes); 805 /* 806 * The tcpcb will hold a reference on its inpcb until tcp_discardcb() 807 * is called. 808 */ 809 in_pcbref(inp); /* Reference for tcpcb */ 810 tp->t_inpcb = inp; 811 812 /* 813 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 814 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 815 * reasonable initial retransmit time. 816 */ 817 tp->t_srtt = TCPTV_SRTTBASE; 818 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 819 tp->t_rttmin = tcp_rexmit_min; 820 tp->t_rxtcur = TCPTV_RTOBASE; 821 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 822 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 823 tp->t_rcvtime = ticks; 824 /* 825 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 826 * because the socket may be bound to an IPv6 wildcard address, 827 * which may match an IPv4-mapped IPv6 address. 828 */ 829 inp->inp_ip_ttl = V_ip_defttl; 830 inp->inp_ppcb = tp; 831 return (tp); /* XXX */ 832 } 833 834 /* 835 * Switch the congestion control algorithm back to NewReno for any active 836 * control blocks using an algorithm which is about to go away. 837 * This ensures the CC framework can allow the unload to proceed without leaving 838 * any dangling pointers which would trigger a panic. 839 * Returning non-zero would inform the CC framework that something went wrong 840 * and it would be unsafe to allow the unload to proceed. However, there is no 841 * way for this to occur with this implementation so we always return zero. 842 */ 843 int 844 tcp_ccalgounload(struct cc_algo *unload_algo) 845 { 846 struct cc_algo *tmpalgo; 847 struct inpcb *inp; 848 struct tcpcb *tp; 849 VNET_ITERATOR_DECL(vnet_iter); 850 851 /* 852 * Check all active control blocks across all network stacks and change 853 * any that are using "unload_algo" back to NewReno. If "unload_algo" 854 * requires cleanup code to be run, call it. 855 */ 856 VNET_LIST_RLOCK(); 857 VNET_FOREACH(vnet_iter) { 858 CURVNET_SET(vnet_iter); 859 INP_INFO_RLOCK(&V_tcbinfo); 860 /* 861 * New connections already part way through being initialised 862 * with the CC algo we're removing will not race with this code 863 * because the INP_INFO_WLOCK is held during initialisation. We 864 * therefore don't enter the loop below until the connection 865 * list has stabilised. 866 */ 867 LIST_FOREACH(inp, &V_tcb, inp_list) { 868 INP_WLOCK(inp); 869 /* Important to skip tcptw structs. */ 870 if (!(inp->inp_flags & INP_TIMEWAIT) && 871 (tp = intotcpcb(inp)) != NULL) { 872 /* 873 * By holding INP_WLOCK here, we are assured 874 * that the connection is not currently 875 * executing inside the CC module's functions 876 * i.e. it is safe to make the switch back to 877 * NewReno. 878 */ 879 if (CC_ALGO(tp) == unload_algo) { 880 tmpalgo = CC_ALGO(tp); 881 /* NewReno does not require any init. */ 882 CC_ALGO(tp) = &newreno_cc_algo; 883 if (tmpalgo->cb_destroy != NULL) 884 tmpalgo->cb_destroy(tp->ccv); 885 } 886 } 887 INP_WUNLOCK(inp); 888 } 889 INP_INFO_RUNLOCK(&V_tcbinfo); 890 CURVNET_RESTORE(); 891 } 892 VNET_LIST_RUNLOCK(); 893 894 return (0); 895 } 896 897 /* 898 * Drop a TCP connection, reporting 899 * the specified error. If connection is synchronized, 900 * then send a RST to peer. 901 */ 902 struct tcpcb * 903 tcp_drop(struct tcpcb *tp, int errno) 904 { 905 struct socket *so = tp->t_inpcb->inp_socket; 906 907 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 908 INP_WLOCK_ASSERT(tp->t_inpcb); 909 910 if (TCPS_HAVERCVDSYN(tp->t_state)) { 911 tcp_state_change(tp, TCPS_CLOSED); 912 (void) tcp_output(tp); 913 TCPSTAT_INC(tcps_drops); 914 } else 915 TCPSTAT_INC(tcps_conndrops); 916 if (errno == ETIMEDOUT && tp->t_softerror) 917 errno = tp->t_softerror; 918 so->so_error = errno; 919 return (tcp_close(tp)); 920 } 921 922 void 923 tcp_discardcb(struct tcpcb *tp) 924 { 925 struct inpcb *inp = tp->t_inpcb; 926 struct socket *so = inp->inp_socket; 927 #ifdef INET6 928 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 929 #endif /* INET6 */ 930 int released; 931 932 INP_WLOCK_ASSERT(inp); 933 934 /* 935 * Make sure that all of our timers are stopped before we delete the 936 * PCB. 937 * 938 * If stopping a timer fails, we schedule a discard function in same 939 * callout, and the last discard function called will take care of 940 * deleting the tcpcb. 941 */ 942 tcp_timer_stop(tp, TT_REXMT); 943 tcp_timer_stop(tp, TT_PERSIST); 944 tcp_timer_stop(tp, TT_KEEP); 945 tcp_timer_stop(tp, TT_2MSL); 946 tcp_timer_stop(tp, TT_DELACK); 947 948 /* 949 * If we got enough samples through the srtt filter, 950 * save the rtt and rttvar in the routing entry. 951 * 'Enough' is arbitrarily defined as 4 rtt samples. 952 * 4 samples is enough for the srtt filter to converge 953 * to within enough % of the correct value; fewer samples 954 * and we could save a bogus rtt. The danger is not high 955 * as tcp quickly recovers from everything. 956 * XXX: Works very well but needs some more statistics! 957 */ 958 if (tp->t_rttupdated >= 4) { 959 struct hc_metrics_lite metrics; 960 u_long ssthresh; 961 962 bzero(&metrics, sizeof(metrics)); 963 /* 964 * Update the ssthresh always when the conditions below 965 * are satisfied. This gives us better new start value 966 * for the congestion avoidance for new connections. 967 * ssthresh is only set if packet loss occured on a session. 968 * 969 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 970 * being torn down. Ideally this code would not use 'so'. 971 */ 972 ssthresh = tp->snd_ssthresh; 973 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 974 /* 975 * convert the limit from user data bytes to 976 * packets then to packet data bytes. 977 */ 978 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 979 if (ssthresh < 2) 980 ssthresh = 2; 981 ssthresh *= (u_long)(tp->t_maxseg + 982 #ifdef INET6 983 (isipv6 ? sizeof (struct ip6_hdr) + 984 sizeof (struct tcphdr) : 985 #endif 986 sizeof (struct tcpiphdr) 987 #ifdef INET6 988 ) 989 #endif 990 ); 991 } else 992 ssthresh = 0; 993 metrics.rmx_ssthresh = ssthresh; 994 995 metrics.rmx_rtt = tp->t_srtt; 996 metrics.rmx_rttvar = tp->t_rttvar; 997 metrics.rmx_cwnd = tp->snd_cwnd; 998 metrics.rmx_sendpipe = 0; 999 metrics.rmx_recvpipe = 0; 1000 1001 tcp_hc_update(&inp->inp_inc, &metrics); 1002 } 1003 1004 /* free the reassembly queue, if any */ 1005 tcp_reass_flush(tp); 1006 1007 #ifdef TCP_OFFLOAD 1008 /* Disconnect offload device, if any. */ 1009 if (tp->t_flags & TF_TOE) 1010 tcp_offload_detach(tp); 1011 #endif 1012 1013 tcp_free_sackholes(tp); 1014 1015 /* Allow the CC algorithm to clean up after itself. */ 1016 if (CC_ALGO(tp)->cb_destroy != NULL) 1017 CC_ALGO(tp)->cb_destroy(tp->ccv); 1018 1019 khelp_destroy_osd(tp->osd); 1020 1021 CC_ALGO(tp) = NULL; 1022 inp->inp_ppcb = NULL; 1023 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1024 /* We own the last reference on tcpcb, let's free it. */ 1025 tp->t_inpcb = NULL; 1026 uma_zfree(V_tcpcb_zone, tp); 1027 released = in_pcbrele_wlocked(inp); 1028 KASSERT(!released, ("%s: inp %p should not have been released " 1029 "here", __func__, inp)); 1030 } 1031 } 1032 1033 void 1034 tcp_timer_2msl_discard(void *xtp) 1035 { 1036 1037 tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL); 1038 } 1039 1040 void 1041 tcp_timer_keep_discard(void *xtp) 1042 { 1043 1044 tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP); 1045 } 1046 1047 void 1048 tcp_timer_persist_discard(void *xtp) 1049 { 1050 1051 tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST); 1052 } 1053 1054 void 1055 tcp_timer_rexmt_discard(void *xtp) 1056 { 1057 1058 tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT); 1059 } 1060 1061 void 1062 tcp_timer_delack_discard(void *xtp) 1063 { 1064 1065 tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK); 1066 } 1067 1068 void 1069 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type) 1070 { 1071 struct inpcb *inp; 1072 1073 CURVNET_SET(tp->t_vnet); 1074 INP_INFO_WLOCK(&V_tcbinfo); 1075 inp = tp->t_inpcb; 1076 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", 1077 __func__, tp)); 1078 INP_WLOCK(inp); 1079 KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, 1080 ("%s: tcpcb has to be stopped here", __func__)); 1081 KASSERT((tp->t_timers->tt_flags & timer_type) != 0, 1082 ("%s: discard callout should be running", __func__)); 1083 tp->t_timers->tt_flags &= ~timer_type; 1084 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1085 /* We own the last reference on this tcpcb, let's free it. */ 1086 tp->t_inpcb = NULL; 1087 uma_zfree(V_tcpcb_zone, tp); 1088 if (in_pcbrele_wlocked(inp)) { 1089 INP_INFO_WUNLOCK(&V_tcbinfo); 1090 CURVNET_RESTORE(); 1091 return; 1092 } 1093 } 1094 INP_WUNLOCK(inp); 1095 INP_INFO_WUNLOCK(&V_tcbinfo); 1096 CURVNET_RESTORE(); 1097 } 1098 1099 /* 1100 * Attempt to close a TCP control block, marking it as dropped, and freeing 1101 * the socket if we hold the only reference. 1102 */ 1103 struct tcpcb * 1104 tcp_close(struct tcpcb *tp) 1105 { 1106 struct inpcb *inp = tp->t_inpcb; 1107 struct socket *so; 1108 1109 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1110 INP_WLOCK_ASSERT(inp); 1111 1112 #ifdef TCP_OFFLOAD 1113 if (tp->t_state == TCPS_LISTEN) 1114 tcp_offload_listen_stop(tp); 1115 #endif 1116 in_pcbdrop(inp); 1117 TCPSTAT_INC(tcps_closed); 1118 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 1119 so = inp->inp_socket; 1120 soisdisconnected(so); 1121 if (inp->inp_flags & INP_SOCKREF) { 1122 KASSERT(so->so_state & SS_PROTOREF, 1123 ("tcp_close: !SS_PROTOREF")); 1124 inp->inp_flags &= ~INP_SOCKREF; 1125 INP_WUNLOCK(inp); 1126 ACCEPT_LOCK(); 1127 SOCK_LOCK(so); 1128 so->so_state &= ~SS_PROTOREF; 1129 sofree(so); 1130 return (NULL); 1131 } 1132 return (tp); 1133 } 1134 1135 void 1136 tcp_drain(void) 1137 { 1138 VNET_ITERATOR_DECL(vnet_iter); 1139 1140 if (!do_tcpdrain) 1141 return; 1142 1143 VNET_LIST_RLOCK_NOSLEEP(); 1144 VNET_FOREACH(vnet_iter) { 1145 CURVNET_SET(vnet_iter); 1146 struct inpcb *inpb; 1147 struct tcpcb *tcpb; 1148 1149 /* 1150 * Walk the tcpbs, if existing, and flush the reassembly queue, 1151 * if there is one... 1152 * XXX: The "Net/3" implementation doesn't imply that the TCP 1153 * reassembly queue should be flushed, but in a situation 1154 * where we're really low on mbufs, this is potentially 1155 * useful. 1156 */ 1157 INP_INFO_RLOCK(&V_tcbinfo); 1158 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1159 if (inpb->inp_flags & INP_TIMEWAIT) 1160 continue; 1161 INP_WLOCK(inpb); 1162 if ((tcpb = intotcpcb(inpb)) != NULL) { 1163 tcp_reass_flush(tcpb); 1164 tcp_clean_sackreport(tcpb); 1165 } 1166 INP_WUNLOCK(inpb); 1167 } 1168 INP_INFO_RUNLOCK(&V_tcbinfo); 1169 CURVNET_RESTORE(); 1170 } 1171 VNET_LIST_RUNLOCK_NOSLEEP(); 1172 } 1173 1174 /* 1175 * Notify a tcp user of an asynchronous error; 1176 * store error as soft error, but wake up user 1177 * (for now, won't do anything until can select for soft error). 1178 * 1179 * Do not wake up user since there currently is no mechanism for 1180 * reporting soft errors (yet - a kqueue filter may be added). 1181 */ 1182 static struct inpcb * 1183 tcp_notify(struct inpcb *inp, int error) 1184 { 1185 struct tcpcb *tp; 1186 1187 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1188 INP_WLOCK_ASSERT(inp); 1189 1190 if ((inp->inp_flags & INP_TIMEWAIT) || 1191 (inp->inp_flags & INP_DROPPED)) 1192 return (inp); 1193 1194 tp = intotcpcb(inp); 1195 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1196 1197 /* 1198 * Ignore some errors if we are hooked up. 1199 * If connection hasn't completed, has retransmitted several times, 1200 * and receives a second error, give up now. This is better 1201 * than waiting a long time to establish a connection that 1202 * can never complete. 1203 */ 1204 if (tp->t_state == TCPS_ESTABLISHED && 1205 (error == EHOSTUNREACH || error == ENETUNREACH || 1206 error == EHOSTDOWN)) { 1207 return (inp); 1208 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1209 tp->t_softerror) { 1210 tp = tcp_drop(tp, error); 1211 if (tp != NULL) 1212 return (inp); 1213 else 1214 return (NULL); 1215 } else { 1216 tp->t_softerror = error; 1217 return (inp); 1218 } 1219 #if 0 1220 wakeup( &so->so_timeo); 1221 sorwakeup(so); 1222 sowwakeup(so); 1223 #endif 1224 } 1225 1226 static int 1227 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1228 { 1229 int error, i, m, n, pcb_count; 1230 struct inpcb *inp, **inp_list; 1231 inp_gen_t gencnt; 1232 struct xinpgen xig; 1233 1234 /* 1235 * The process of preparing the TCB list is too time-consuming and 1236 * resource-intensive to repeat twice on every request. 1237 */ 1238 if (req->oldptr == NULL) { 1239 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 1240 n += imax(n / 8, 10); 1241 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1242 return (0); 1243 } 1244 1245 if (req->newptr != NULL) 1246 return (EPERM); 1247 1248 /* 1249 * OK, now we're committed to doing something. 1250 */ 1251 INP_INFO_RLOCK(&V_tcbinfo); 1252 gencnt = V_tcbinfo.ipi_gencnt; 1253 n = V_tcbinfo.ipi_count; 1254 INP_INFO_RUNLOCK(&V_tcbinfo); 1255 1256 m = syncache_pcbcount(); 1257 1258 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1259 + (n + m) * sizeof(struct xtcpcb)); 1260 if (error != 0) 1261 return (error); 1262 1263 xig.xig_len = sizeof xig; 1264 xig.xig_count = n + m; 1265 xig.xig_gen = gencnt; 1266 xig.xig_sogen = so_gencnt; 1267 error = SYSCTL_OUT(req, &xig, sizeof xig); 1268 if (error) 1269 return (error); 1270 1271 error = syncache_pcblist(req, m, &pcb_count); 1272 if (error) 1273 return (error); 1274 1275 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1276 if (inp_list == NULL) 1277 return (ENOMEM); 1278 1279 INP_INFO_RLOCK(&V_tcbinfo); 1280 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1281 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1282 INP_WLOCK(inp); 1283 if (inp->inp_gencnt <= gencnt) { 1284 /* 1285 * XXX: This use of cr_cansee(), introduced with 1286 * TCP state changes, is not quite right, but for 1287 * now, better than nothing. 1288 */ 1289 if (inp->inp_flags & INP_TIMEWAIT) { 1290 if (intotw(inp) != NULL) 1291 error = cr_cansee(req->td->td_ucred, 1292 intotw(inp)->tw_cred); 1293 else 1294 error = EINVAL; /* Skip this inp. */ 1295 } else 1296 error = cr_canseeinpcb(req->td->td_ucred, inp); 1297 if (error == 0) { 1298 in_pcbref(inp); 1299 inp_list[i++] = inp; 1300 } 1301 } 1302 INP_WUNLOCK(inp); 1303 } 1304 INP_INFO_RUNLOCK(&V_tcbinfo); 1305 n = i; 1306 1307 error = 0; 1308 for (i = 0; i < n; i++) { 1309 inp = inp_list[i]; 1310 INP_RLOCK(inp); 1311 if (inp->inp_gencnt <= gencnt) { 1312 struct xtcpcb xt; 1313 void *inp_ppcb; 1314 1315 bzero(&xt, sizeof(xt)); 1316 xt.xt_len = sizeof xt; 1317 /* XXX should avoid extra copy */ 1318 bcopy(inp, &xt.xt_inp, sizeof *inp); 1319 inp_ppcb = inp->inp_ppcb; 1320 if (inp_ppcb == NULL) 1321 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1322 else if (inp->inp_flags & INP_TIMEWAIT) { 1323 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1324 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1325 } else { 1326 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1327 if (xt.xt_tp.t_timers) 1328 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1329 } 1330 if (inp->inp_socket != NULL) 1331 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1332 else { 1333 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1334 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1335 } 1336 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1337 INP_RUNLOCK(inp); 1338 error = SYSCTL_OUT(req, &xt, sizeof xt); 1339 } else 1340 INP_RUNLOCK(inp); 1341 } 1342 INP_INFO_WLOCK(&V_tcbinfo); 1343 for (i = 0; i < n; i++) { 1344 inp = inp_list[i]; 1345 INP_RLOCK(inp); 1346 if (!in_pcbrele_rlocked(inp)) 1347 INP_RUNLOCK(inp); 1348 } 1349 INP_INFO_WUNLOCK(&V_tcbinfo); 1350 1351 if (!error) { 1352 /* 1353 * Give the user an updated idea of our state. 1354 * If the generation differs from what we told 1355 * her before, she knows that something happened 1356 * while we were processing this request, and it 1357 * might be necessary to retry. 1358 */ 1359 INP_INFO_RLOCK(&V_tcbinfo); 1360 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1361 xig.xig_sogen = so_gencnt; 1362 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1363 INP_INFO_RUNLOCK(&V_tcbinfo); 1364 error = SYSCTL_OUT(req, &xig, sizeof xig); 1365 } 1366 free(inp_list, M_TEMP); 1367 return (error); 1368 } 1369 1370 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1371 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1372 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1373 1374 #ifdef INET 1375 static int 1376 tcp_getcred(SYSCTL_HANDLER_ARGS) 1377 { 1378 struct xucred xuc; 1379 struct sockaddr_in addrs[2]; 1380 struct inpcb *inp; 1381 int error; 1382 1383 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1384 if (error) 1385 return (error); 1386 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1387 if (error) 1388 return (error); 1389 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1390 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1391 if (inp != NULL) { 1392 if (inp->inp_socket == NULL) 1393 error = ENOENT; 1394 if (error == 0) 1395 error = cr_canseeinpcb(req->td->td_ucred, inp); 1396 if (error == 0) 1397 cru2x(inp->inp_cred, &xuc); 1398 INP_RUNLOCK(inp); 1399 } else 1400 error = ENOENT; 1401 if (error == 0) 1402 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1403 return (error); 1404 } 1405 1406 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1407 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1408 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1409 #endif /* INET */ 1410 1411 #ifdef INET6 1412 static int 1413 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1414 { 1415 struct xucred xuc; 1416 struct sockaddr_in6 addrs[2]; 1417 struct inpcb *inp; 1418 int error; 1419 #ifdef INET 1420 int mapped = 0; 1421 #endif 1422 1423 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1424 if (error) 1425 return (error); 1426 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1427 if (error) 1428 return (error); 1429 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1430 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1431 return (error); 1432 } 1433 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1434 #ifdef INET 1435 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1436 mapped = 1; 1437 else 1438 #endif 1439 return (EINVAL); 1440 } 1441 1442 #ifdef INET 1443 if (mapped == 1) 1444 inp = in_pcblookup(&V_tcbinfo, 1445 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1446 addrs[1].sin6_port, 1447 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1448 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1449 else 1450 #endif 1451 inp = in6_pcblookup(&V_tcbinfo, 1452 &addrs[1].sin6_addr, addrs[1].sin6_port, 1453 &addrs[0].sin6_addr, addrs[0].sin6_port, 1454 INPLOOKUP_RLOCKPCB, NULL); 1455 if (inp != NULL) { 1456 if (inp->inp_socket == NULL) 1457 error = ENOENT; 1458 if (error == 0) 1459 error = cr_canseeinpcb(req->td->td_ucred, inp); 1460 if (error == 0) 1461 cru2x(inp->inp_cred, &xuc); 1462 INP_RUNLOCK(inp); 1463 } else 1464 error = ENOENT; 1465 if (error == 0) 1466 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1467 return (error); 1468 } 1469 1470 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1471 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1472 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1473 #endif /* INET6 */ 1474 1475 1476 #ifdef INET 1477 void 1478 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1479 { 1480 struct ip *ip = vip; 1481 struct tcphdr *th; 1482 struct in_addr faddr; 1483 struct inpcb *inp; 1484 struct tcpcb *tp; 1485 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1486 struct icmp *icp; 1487 struct in_conninfo inc; 1488 tcp_seq icmp_tcp_seq; 1489 int mtu; 1490 1491 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1492 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1493 return; 1494 1495 if (cmd == PRC_MSGSIZE) 1496 notify = tcp_mtudisc_notify; 1497 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1498 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1499 notify = tcp_drop_syn_sent; 1500 /* 1501 * Redirects don't need to be handled up here. 1502 */ 1503 else if (PRC_IS_REDIRECT(cmd)) 1504 return; 1505 /* 1506 * Hostdead is ugly because it goes linearly through all PCBs. 1507 * XXX: We never get this from ICMP, otherwise it makes an 1508 * excellent DoS attack on machines with many connections. 1509 */ 1510 else if (cmd == PRC_HOSTDEAD) 1511 ip = NULL; 1512 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1513 return; 1514 if (ip != NULL) { 1515 icp = (struct icmp *)((caddr_t)ip 1516 - offsetof(struct icmp, icmp_ip)); 1517 th = (struct tcphdr *)((caddr_t)ip 1518 + (ip->ip_hl << 2)); 1519 INP_INFO_WLOCK(&V_tcbinfo); 1520 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, 1521 ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1522 if (inp != NULL) { 1523 if (!(inp->inp_flags & INP_TIMEWAIT) && 1524 !(inp->inp_flags & INP_DROPPED) && 1525 !(inp->inp_socket == NULL)) { 1526 icmp_tcp_seq = htonl(th->th_seq); 1527 tp = intotcpcb(inp); 1528 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1529 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1530 if (cmd == PRC_MSGSIZE) { 1531 /* 1532 * MTU discovery: 1533 * If we got a needfrag set the MTU 1534 * in the route to the suggested new 1535 * value (if given) and then notify. 1536 */ 1537 bzero(&inc, sizeof(inc)); 1538 inc.inc_faddr = faddr; 1539 inc.inc_fibnum = 1540 inp->inp_inc.inc_fibnum; 1541 1542 mtu = ntohs(icp->icmp_nextmtu); 1543 /* 1544 * If no alternative MTU was 1545 * proposed, try the next smaller 1546 * one. 1547 */ 1548 if (!mtu) 1549 mtu = ip_next_mtu( 1550 ntohs(ip->ip_len), 1); 1551 if (mtu < V_tcp_minmss 1552 + sizeof(struct tcpiphdr)) 1553 mtu = V_tcp_minmss 1554 + sizeof(struct tcpiphdr); 1555 /* 1556 * Only cache the MTU if it 1557 * is smaller than the interface 1558 * or route MTU. tcp_mtudisc() 1559 * will do right thing by itself. 1560 */ 1561 if (mtu <= tcp_maxmtu(&inc, NULL)) 1562 tcp_hc_updatemtu(&inc, mtu); 1563 tcp_mtudisc(inp, mtu); 1564 } else 1565 inp = (*notify)(inp, 1566 inetctlerrmap[cmd]); 1567 } 1568 } 1569 if (inp != NULL) 1570 INP_WUNLOCK(inp); 1571 } else { 1572 bzero(&inc, sizeof(inc)); 1573 inc.inc_fport = th->th_dport; 1574 inc.inc_lport = th->th_sport; 1575 inc.inc_faddr = faddr; 1576 inc.inc_laddr = ip->ip_src; 1577 syncache_unreach(&inc, th); 1578 } 1579 INP_INFO_WUNLOCK(&V_tcbinfo); 1580 } else 1581 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1582 } 1583 #endif /* INET */ 1584 1585 #ifdef INET6 1586 void 1587 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1588 { 1589 struct tcphdr th; 1590 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1591 struct ip6_hdr *ip6; 1592 struct mbuf *m; 1593 struct ip6ctlparam *ip6cp = NULL; 1594 const struct sockaddr_in6 *sa6_src = NULL; 1595 int off; 1596 struct tcp_portonly { 1597 u_int16_t th_sport; 1598 u_int16_t th_dport; 1599 } *thp; 1600 1601 if (sa->sa_family != AF_INET6 || 1602 sa->sa_len != sizeof(struct sockaddr_in6)) 1603 return; 1604 1605 if (cmd == PRC_MSGSIZE) 1606 notify = tcp_mtudisc_notify; 1607 else if (!PRC_IS_REDIRECT(cmd) && 1608 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1609 return; 1610 1611 /* if the parameter is from icmp6, decode it. */ 1612 if (d != NULL) { 1613 ip6cp = (struct ip6ctlparam *)d; 1614 m = ip6cp->ip6c_m; 1615 ip6 = ip6cp->ip6c_ip6; 1616 off = ip6cp->ip6c_off; 1617 sa6_src = ip6cp->ip6c_src; 1618 } else { 1619 m = NULL; 1620 ip6 = NULL; 1621 off = 0; /* fool gcc */ 1622 sa6_src = &sa6_any; 1623 } 1624 1625 if (ip6 != NULL) { 1626 struct in_conninfo inc; 1627 /* 1628 * XXX: We assume that when IPV6 is non NULL, 1629 * M and OFF are valid. 1630 */ 1631 1632 /* check if we can safely examine src and dst ports */ 1633 if (m->m_pkthdr.len < off + sizeof(*thp)) 1634 return; 1635 1636 bzero(&th, sizeof(th)); 1637 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1638 1639 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1640 (struct sockaddr *)ip6cp->ip6c_src, 1641 th.th_sport, cmd, NULL, notify); 1642 1643 bzero(&inc, sizeof(inc)); 1644 inc.inc_fport = th.th_dport; 1645 inc.inc_lport = th.th_sport; 1646 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1647 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1648 inc.inc_flags |= INC_ISIPV6; 1649 INP_INFO_WLOCK(&V_tcbinfo); 1650 syncache_unreach(&inc, &th); 1651 INP_INFO_WUNLOCK(&V_tcbinfo); 1652 } else 1653 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1654 0, cmd, NULL, notify); 1655 } 1656 #endif /* INET6 */ 1657 1658 1659 /* 1660 * Following is where TCP initial sequence number generation occurs. 1661 * 1662 * There are two places where we must use initial sequence numbers: 1663 * 1. In SYN-ACK packets. 1664 * 2. In SYN packets. 1665 * 1666 * All ISNs for SYN-ACK packets are generated by the syncache. See 1667 * tcp_syncache.c for details. 1668 * 1669 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1670 * depends on this property. In addition, these ISNs should be 1671 * unguessable so as to prevent connection hijacking. To satisfy 1672 * the requirements of this situation, the algorithm outlined in 1673 * RFC 1948 is used, with only small modifications. 1674 * 1675 * Implementation details: 1676 * 1677 * Time is based off the system timer, and is corrected so that it 1678 * increases by one megabyte per second. This allows for proper 1679 * recycling on high speed LANs while still leaving over an hour 1680 * before rollover. 1681 * 1682 * As reading the *exact* system time is too expensive to be done 1683 * whenever setting up a TCP connection, we increment the time 1684 * offset in two ways. First, a small random positive increment 1685 * is added to isn_offset for each connection that is set up. 1686 * Second, the function tcp_isn_tick fires once per clock tick 1687 * and increments isn_offset as necessary so that sequence numbers 1688 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1689 * random positive increments serve only to ensure that the same 1690 * exact sequence number is never sent out twice (as could otherwise 1691 * happen when a port is recycled in less than the system tick 1692 * interval.) 1693 * 1694 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1695 * between seeding of isn_secret. This is normally set to zero, 1696 * as reseeding should not be necessary. 1697 * 1698 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1699 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1700 * general, this means holding an exclusive (write) lock. 1701 */ 1702 1703 #define ISN_BYTES_PER_SECOND 1048576 1704 #define ISN_STATIC_INCREMENT 4096 1705 #define ISN_RANDOM_INCREMENT (4096 - 1) 1706 1707 static VNET_DEFINE(u_char, isn_secret[32]); 1708 static VNET_DEFINE(int, isn_last); 1709 static VNET_DEFINE(int, isn_last_reseed); 1710 static VNET_DEFINE(u_int32_t, isn_offset); 1711 static VNET_DEFINE(u_int32_t, isn_offset_old); 1712 1713 #define V_isn_secret VNET(isn_secret) 1714 #define V_isn_last VNET(isn_last) 1715 #define V_isn_last_reseed VNET(isn_last_reseed) 1716 #define V_isn_offset VNET(isn_offset) 1717 #define V_isn_offset_old VNET(isn_offset_old) 1718 1719 tcp_seq 1720 tcp_new_isn(struct tcpcb *tp) 1721 { 1722 MD5_CTX isn_ctx; 1723 u_int32_t md5_buffer[4]; 1724 tcp_seq new_isn; 1725 u_int32_t projected_offset; 1726 1727 INP_WLOCK_ASSERT(tp->t_inpcb); 1728 1729 ISN_LOCK(); 1730 /* Seed if this is the first use, reseed if requested. */ 1731 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 1732 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 1733 < (u_int)ticks))) { 1734 read_random(&V_isn_secret, sizeof(V_isn_secret)); 1735 V_isn_last_reseed = ticks; 1736 } 1737 1738 /* Compute the md5 hash and return the ISN. */ 1739 MD5Init(&isn_ctx); 1740 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1741 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1742 #ifdef INET6 1743 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1744 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1745 sizeof(struct in6_addr)); 1746 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1747 sizeof(struct in6_addr)); 1748 } else 1749 #endif 1750 { 1751 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1752 sizeof(struct in_addr)); 1753 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1754 sizeof(struct in_addr)); 1755 } 1756 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 1757 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1758 new_isn = (tcp_seq) md5_buffer[0]; 1759 V_isn_offset += ISN_STATIC_INCREMENT + 1760 (arc4random() & ISN_RANDOM_INCREMENT); 1761 if (ticks != V_isn_last) { 1762 projected_offset = V_isn_offset_old + 1763 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 1764 if (SEQ_GT(projected_offset, V_isn_offset)) 1765 V_isn_offset = projected_offset; 1766 V_isn_offset_old = V_isn_offset; 1767 V_isn_last = ticks; 1768 } 1769 new_isn += V_isn_offset; 1770 ISN_UNLOCK(); 1771 return (new_isn); 1772 } 1773 1774 /* 1775 * When a specific ICMP unreachable message is received and the 1776 * connection state is SYN-SENT, drop the connection. This behavior 1777 * is controlled by the icmp_may_rst sysctl. 1778 */ 1779 struct inpcb * 1780 tcp_drop_syn_sent(struct inpcb *inp, int errno) 1781 { 1782 struct tcpcb *tp; 1783 1784 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1785 INP_WLOCK_ASSERT(inp); 1786 1787 if ((inp->inp_flags & INP_TIMEWAIT) || 1788 (inp->inp_flags & INP_DROPPED)) 1789 return (inp); 1790 1791 tp = intotcpcb(inp); 1792 if (tp->t_state != TCPS_SYN_SENT) 1793 return (inp); 1794 1795 tp = tcp_drop(tp, errno); 1796 if (tp != NULL) 1797 return (inp); 1798 else 1799 return (NULL); 1800 } 1801 1802 /* 1803 * When `need fragmentation' ICMP is received, update our idea of the MSS 1804 * based on the new value. Also nudge TCP to send something, since we 1805 * know the packet we just sent was dropped. 1806 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1807 */ 1808 static struct inpcb * 1809 tcp_mtudisc_notify(struct inpcb *inp, int error) 1810 { 1811 1812 return (tcp_mtudisc(inp, -1)); 1813 } 1814 1815 struct inpcb * 1816 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 1817 { 1818 struct tcpcb *tp; 1819 struct socket *so; 1820 1821 INP_WLOCK_ASSERT(inp); 1822 if ((inp->inp_flags & INP_TIMEWAIT) || 1823 (inp->inp_flags & INP_DROPPED)) 1824 return (inp); 1825 1826 tp = intotcpcb(inp); 1827 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 1828 1829 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 1830 1831 so = inp->inp_socket; 1832 SOCKBUF_LOCK(&so->so_snd); 1833 /* If the mss is larger than the socket buffer, decrease the mss. */ 1834 if (so->so_snd.sb_hiwat < tp->t_maxseg) 1835 tp->t_maxseg = so->so_snd.sb_hiwat; 1836 SOCKBUF_UNLOCK(&so->so_snd); 1837 1838 TCPSTAT_INC(tcps_mturesent); 1839 tp->t_rtttime = 0; 1840 tp->snd_nxt = tp->snd_una; 1841 tcp_free_sackholes(tp); 1842 tp->snd_recover = tp->snd_max; 1843 if (tp->t_flags & TF_SACK_PERMIT) 1844 EXIT_FASTRECOVERY(tp->t_flags); 1845 tcp_output(tp); 1846 return (inp); 1847 } 1848 1849 #ifdef INET 1850 /* 1851 * Look-up the routing entry to the peer of this inpcb. If no route 1852 * is found and it cannot be allocated, then return 0. This routine 1853 * is called by TCP routines that access the rmx structure and by 1854 * tcp_mss_update to get the peer/interface MTU. 1855 */ 1856 u_long 1857 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 1858 { 1859 struct route sro; 1860 struct sockaddr_in *dst; 1861 struct ifnet *ifp; 1862 u_long maxmtu = 0; 1863 1864 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1865 1866 bzero(&sro, sizeof(sro)); 1867 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1868 dst = (struct sockaddr_in *)&sro.ro_dst; 1869 dst->sin_family = AF_INET; 1870 dst->sin_len = sizeof(*dst); 1871 dst->sin_addr = inc->inc_faddr; 1872 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 1873 } 1874 if (sro.ro_rt != NULL) { 1875 ifp = sro.ro_rt->rt_ifp; 1876 if (sro.ro_rt->rt_mtu == 0) 1877 maxmtu = ifp->if_mtu; 1878 else 1879 maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu); 1880 1881 /* Report additional interface capabilities. */ 1882 if (cap != NULL) { 1883 if (ifp->if_capenable & IFCAP_TSO4 && 1884 ifp->if_hwassist & CSUM_TSO) { 1885 cap->ifcap |= CSUM_TSO; 1886 cap->tsomax = ifp->if_hw_tsomax; 1887 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 1888 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 1889 } 1890 } 1891 RTFREE(sro.ro_rt); 1892 } 1893 return (maxmtu); 1894 } 1895 #endif /* INET */ 1896 1897 #ifdef INET6 1898 u_long 1899 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 1900 { 1901 struct route_in6 sro6; 1902 struct ifnet *ifp; 1903 u_long maxmtu = 0; 1904 1905 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1906 1907 bzero(&sro6, sizeof(sro6)); 1908 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1909 sro6.ro_dst.sin6_family = AF_INET6; 1910 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1911 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1912 in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum); 1913 } 1914 if (sro6.ro_rt != NULL) { 1915 ifp = sro6.ro_rt->rt_ifp; 1916 if (sro6.ro_rt->rt_mtu == 0) 1917 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1918 else 1919 maxmtu = min(sro6.ro_rt->rt_mtu, 1920 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1921 1922 /* Report additional interface capabilities. */ 1923 if (cap != NULL) { 1924 if (ifp->if_capenable & IFCAP_TSO6 && 1925 ifp->if_hwassist & CSUM_TSO) { 1926 cap->ifcap |= CSUM_TSO; 1927 cap->tsomax = ifp->if_hw_tsomax; 1928 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 1929 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 1930 } 1931 } 1932 RTFREE(sro6.ro_rt); 1933 } 1934 1935 return (maxmtu); 1936 } 1937 #endif /* INET6 */ 1938 1939 #ifdef IPSEC 1940 /* compute ESP/AH header size for TCP, including outer IP header. */ 1941 size_t 1942 ipsec_hdrsiz_tcp(struct tcpcb *tp) 1943 { 1944 struct inpcb *inp; 1945 struct mbuf *m; 1946 size_t hdrsiz; 1947 struct ip *ip; 1948 #ifdef INET6 1949 struct ip6_hdr *ip6; 1950 #endif 1951 struct tcphdr *th; 1952 1953 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1954 return (0); 1955 m = m_gethdr(M_NOWAIT, MT_DATA); 1956 if (!m) 1957 return (0); 1958 1959 #ifdef INET6 1960 if ((inp->inp_vflag & INP_IPV6) != 0) { 1961 ip6 = mtod(m, struct ip6_hdr *); 1962 th = (struct tcphdr *)(ip6 + 1); 1963 m->m_pkthdr.len = m->m_len = 1964 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1965 tcpip_fillheaders(inp, ip6, th); 1966 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1967 } else 1968 #endif /* INET6 */ 1969 { 1970 ip = mtod(m, struct ip *); 1971 th = (struct tcphdr *)(ip + 1); 1972 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1973 tcpip_fillheaders(inp, ip, th); 1974 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1975 } 1976 1977 m_free(m); 1978 return (hdrsiz); 1979 } 1980 #endif /* IPSEC */ 1981 1982 #ifdef TCP_SIGNATURE 1983 /* 1984 * Callback function invoked by m_apply() to digest TCP segment data 1985 * contained within an mbuf chain. 1986 */ 1987 static int 1988 tcp_signature_apply(void *fstate, void *data, u_int len) 1989 { 1990 1991 MD5Update(fstate, (u_char *)data, len); 1992 return (0); 1993 } 1994 1995 /* 1996 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 1997 * search with the destination IP address, and a 'magic SPI' to be 1998 * determined by the application. This is hardcoded elsewhere to 1179 1999 */ 2000 struct secasvar * 2001 tcp_get_sav(struct mbuf *m, u_int direction) 2002 { 2003 union sockaddr_union dst; 2004 struct secasvar *sav; 2005 struct ip *ip; 2006 #ifdef INET6 2007 struct ip6_hdr *ip6; 2008 char ip6buf[INET6_ADDRSTRLEN]; 2009 #endif 2010 2011 /* Extract the destination from the IP header in the mbuf. */ 2012 bzero(&dst, sizeof(union sockaddr_union)); 2013 ip = mtod(m, struct ip *); 2014 #ifdef INET6 2015 ip6 = NULL; /* Make the compiler happy. */ 2016 #endif 2017 switch (ip->ip_v) { 2018 #ifdef INET 2019 case IPVERSION: 2020 dst.sa.sa_len = sizeof(struct sockaddr_in); 2021 dst.sa.sa_family = AF_INET; 2022 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2023 ip->ip_src : ip->ip_dst; 2024 break; 2025 #endif 2026 #ifdef INET6 2027 case (IPV6_VERSION >> 4): 2028 ip6 = mtod(m, struct ip6_hdr *); 2029 dst.sa.sa_len = sizeof(struct sockaddr_in6); 2030 dst.sa.sa_family = AF_INET6; 2031 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 2032 ip6->ip6_src : ip6->ip6_dst; 2033 break; 2034 #endif 2035 default: 2036 return (NULL); 2037 /* NOTREACHED */ 2038 break; 2039 } 2040 2041 /* Look up an SADB entry which matches the address of the peer. */ 2042 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2043 if (sav == NULL) { 2044 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 2045 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 2046 #ifdef INET6 2047 (ip->ip_v == (IPV6_VERSION >> 4)) ? 2048 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 2049 #endif 2050 "(unsupported)")); 2051 } 2052 2053 return (sav); 2054 } 2055 2056 /* 2057 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2058 * 2059 * Parameters: 2060 * m pointer to head of mbuf chain 2061 * len length of TCP segment data, excluding options 2062 * optlen length of TCP segment options 2063 * buf pointer to storage for computed MD5 digest 2064 * sav pointer to security assosiation 2065 * 2066 * We do this over ip, tcphdr, segment data, and the key in the SADB. 2067 * When called from tcp_input(), we can be sure that th_sum has been 2068 * zeroed out and verified already. 2069 * 2070 * Releases reference to SADB key before return. 2071 * 2072 * Return 0 if successful, otherwise return -1. 2073 * 2074 */ 2075 int 2076 tcp_signature_do_compute(struct mbuf *m, int len, int optlen, 2077 u_char *buf, struct secasvar *sav) 2078 { 2079 #ifdef INET 2080 struct ippseudo ippseudo; 2081 #endif 2082 MD5_CTX ctx; 2083 int doff; 2084 struct ip *ip; 2085 #ifdef INET 2086 struct ipovly *ipovly; 2087 #endif 2088 struct tcphdr *th; 2089 #ifdef INET6 2090 struct ip6_hdr *ip6; 2091 struct in6_addr in6; 2092 uint32_t plen; 2093 uint16_t nhdr; 2094 #endif 2095 u_short savecsum; 2096 2097 KASSERT(m != NULL, ("NULL mbuf chain")); 2098 KASSERT(buf != NULL, ("NULL signature pointer")); 2099 2100 /* Extract the destination from the IP header in the mbuf. */ 2101 ip = mtod(m, struct ip *); 2102 #ifdef INET6 2103 ip6 = NULL; /* Make the compiler happy. */ 2104 #endif 2105 2106 MD5Init(&ctx); 2107 /* 2108 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 2109 * 2110 * XXX The ippseudo header MUST be digested in network byte order, 2111 * or else we'll fail the regression test. Assume all fields we've 2112 * been doing arithmetic on have been in host byte order. 2113 * XXX One cannot depend on ipovly->ih_len here. When called from 2114 * tcp_output(), the underlying ip_len member has not yet been set. 2115 */ 2116 switch (ip->ip_v) { 2117 #ifdef INET 2118 case IPVERSION: 2119 ipovly = (struct ipovly *)ip; 2120 ippseudo.ippseudo_src = ipovly->ih_src; 2121 ippseudo.ippseudo_dst = ipovly->ih_dst; 2122 ippseudo.ippseudo_pad = 0; 2123 ippseudo.ippseudo_p = IPPROTO_TCP; 2124 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 2125 optlen); 2126 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2127 2128 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 2129 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 2130 break; 2131 #endif 2132 #ifdef INET6 2133 /* 2134 * RFC 2385, 2.0 Proposal 2135 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 2136 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 2137 * extended next header value (to form 32 bits), and 32-bit segment 2138 * length. 2139 * Note: Upper-Layer Packet Length comes before Next Header. 2140 */ 2141 case (IPV6_VERSION >> 4): 2142 in6 = ip6->ip6_src; 2143 in6_clearscope(&in6); 2144 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2145 in6 = ip6->ip6_dst; 2146 in6_clearscope(&in6); 2147 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2148 plen = htonl(len + sizeof(struct tcphdr) + optlen); 2149 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 2150 nhdr = 0; 2151 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2152 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2153 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2154 nhdr = IPPROTO_TCP; 2155 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2156 2157 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 2158 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 2159 break; 2160 #endif 2161 default: 2162 KEY_FREESAV(&sav); 2163 return (-1); 2164 /* NOTREACHED */ 2165 break; 2166 } 2167 2168 2169 /* 2170 * Step 2: Update MD5 hash with TCP header, excluding options. 2171 * The TCP checksum must be set to zero. 2172 */ 2173 savecsum = th->th_sum; 2174 th->th_sum = 0; 2175 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2176 th->th_sum = savecsum; 2177 2178 /* 2179 * Step 3: Update MD5 hash with TCP segment data. 2180 * Use m_apply() to avoid an early m_pullup(). 2181 */ 2182 if (len > 0) 2183 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2184 2185 /* 2186 * Step 4: Update MD5 hash with shared secret. 2187 */ 2188 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2189 MD5Final(buf, &ctx); 2190 2191 key_sa_recordxfer(sav, m); 2192 KEY_FREESAV(&sav); 2193 return (0); 2194 } 2195 2196 /* 2197 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2198 * 2199 * Return 0 if successful, otherwise return -1. 2200 */ 2201 int 2202 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 2203 u_char *buf, u_int direction) 2204 { 2205 struct secasvar *sav; 2206 2207 if ((sav = tcp_get_sav(m, direction)) == NULL) 2208 return (-1); 2209 2210 return (tcp_signature_do_compute(m, len, optlen, buf, sav)); 2211 } 2212 2213 /* 2214 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2215 * 2216 * Parameters: 2217 * m pointer to head of mbuf chain 2218 * len length of TCP segment data, excluding options 2219 * optlen length of TCP segment options 2220 * buf pointer to storage for computed MD5 digest 2221 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2222 * 2223 * Return 1 if successful, otherwise return 0. 2224 */ 2225 int 2226 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2227 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2228 { 2229 char tmpdigest[TCP_SIGLEN]; 2230 2231 if (tcp_sig_checksigs == 0) 2232 return (1); 2233 if ((tcpbflag & TF_SIGNATURE) == 0) { 2234 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2235 2236 /* 2237 * If this socket is not expecting signature but 2238 * the segment contains signature just fail. 2239 */ 2240 TCPSTAT_INC(tcps_sig_err_sigopt); 2241 TCPSTAT_INC(tcps_sig_rcvbadsig); 2242 return (0); 2243 } 2244 2245 /* Signature is not expected, and not present in segment. */ 2246 return (1); 2247 } 2248 2249 /* 2250 * If this socket is expecting signature but the segment does not 2251 * contain any just fail. 2252 */ 2253 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2254 TCPSTAT_INC(tcps_sig_err_nosigopt); 2255 TCPSTAT_INC(tcps_sig_rcvbadsig); 2256 return (0); 2257 } 2258 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2259 IPSEC_DIR_INBOUND) == -1) { 2260 TCPSTAT_INC(tcps_sig_err_buildsig); 2261 TCPSTAT_INC(tcps_sig_rcvbadsig); 2262 return (0); 2263 } 2264 2265 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2266 TCPSTAT_INC(tcps_sig_rcvbadsig); 2267 return (0); 2268 } 2269 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2270 return (1); 2271 } 2272 #endif /* TCP_SIGNATURE */ 2273 2274 static int 2275 sysctl_drop(SYSCTL_HANDLER_ARGS) 2276 { 2277 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2278 struct sockaddr_storage addrs[2]; 2279 struct inpcb *inp; 2280 struct tcpcb *tp; 2281 struct tcptw *tw; 2282 struct sockaddr_in *fin, *lin; 2283 #ifdef INET6 2284 struct sockaddr_in6 *fin6, *lin6; 2285 #endif 2286 int error; 2287 2288 inp = NULL; 2289 fin = lin = NULL; 2290 #ifdef INET6 2291 fin6 = lin6 = NULL; 2292 #endif 2293 error = 0; 2294 2295 if (req->oldptr != NULL || req->oldlen != 0) 2296 return (EINVAL); 2297 if (req->newptr == NULL) 2298 return (EPERM); 2299 if (req->newlen < sizeof(addrs)) 2300 return (ENOMEM); 2301 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2302 if (error) 2303 return (error); 2304 2305 switch (addrs[0].ss_family) { 2306 #ifdef INET6 2307 case AF_INET6: 2308 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2309 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2310 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2311 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2312 return (EINVAL); 2313 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2314 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2315 return (EINVAL); 2316 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2317 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2318 fin = (struct sockaddr_in *)&addrs[0]; 2319 lin = (struct sockaddr_in *)&addrs[1]; 2320 break; 2321 } 2322 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2323 if (error) 2324 return (error); 2325 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2326 if (error) 2327 return (error); 2328 break; 2329 #endif 2330 #ifdef INET 2331 case AF_INET: 2332 fin = (struct sockaddr_in *)&addrs[0]; 2333 lin = (struct sockaddr_in *)&addrs[1]; 2334 if (fin->sin_len != sizeof(struct sockaddr_in) || 2335 lin->sin_len != sizeof(struct sockaddr_in)) 2336 return (EINVAL); 2337 break; 2338 #endif 2339 default: 2340 return (EINVAL); 2341 } 2342 INP_INFO_WLOCK(&V_tcbinfo); 2343 switch (addrs[0].ss_family) { 2344 #ifdef INET6 2345 case AF_INET6: 2346 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2347 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2348 INPLOOKUP_WLOCKPCB, NULL); 2349 break; 2350 #endif 2351 #ifdef INET 2352 case AF_INET: 2353 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2354 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2355 break; 2356 #endif 2357 } 2358 if (inp != NULL) { 2359 if (inp->inp_flags & INP_TIMEWAIT) { 2360 /* 2361 * XXXRW: There currently exists a state where an 2362 * inpcb is present, but its timewait state has been 2363 * discarded. For now, don't allow dropping of this 2364 * type of inpcb. 2365 */ 2366 tw = intotw(inp); 2367 if (tw != NULL) 2368 tcp_twclose(tw, 0); 2369 else 2370 INP_WUNLOCK(inp); 2371 } else if (!(inp->inp_flags & INP_DROPPED) && 2372 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2373 tp = intotcpcb(inp); 2374 tp = tcp_drop(tp, ECONNABORTED); 2375 if (tp != NULL) 2376 INP_WUNLOCK(inp); 2377 } else 2378 INP_WUNLOCK(inp); 2379 } else 2380 error = ESRCH; 2381 INP_INFO_WUNLOCK(&V_tcbinfo); 2382 return (error); 2383 } 2384 2385 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2386 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 2387 0, sysctl_drop, "", "Drop TCP connection"); 2388 2389 /* 2390 * Generate a standardized TCP log line for use throughout the 2391 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2392 * allow use in the interrupt context. 2393 * 2394 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2395 * NB: The function may return NULL if memory allocation failed. 2396 * 2397 * Due to header inclusion and ordering limitations the struct ip 2398 * and ip6_hdr pointers have to be passed as void pointers. 2399 */ 2400 char * 2401 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2402 const void *ip6hdr) 2403 { 2404 2405 /* Is logging enabled? */ 2406 if (tcp_log_in_vain == 0) 2407 return (NULL); 2408 2409 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2410 } 2411 2412 char * 2413 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2414 const void *ip6hdr) 2415 { 2416 2417 /* Is logging enabled? */ 2418 if (tcp_log_debug == 0) 2419 return (NULL); 2420 2421 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2422 } 2423 2424 static char * 2425 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2426 const void *ip6hdr) 2427 { 2428 char *s, *sp; 2429 size_t size; 2430 struct ip *ip; 2431 #ifdef INET6 2432 const struct ip6_hdr *ip6; 2433 2434 ip6 = (const struct ip6_hdr *)ip6hdr; 2435 #endif /* INET6 */ 2436 ip = (struct ip *)ip4hdr; 2437 2438 /* 2439 * The log line looks like this: 2440 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2441 */ 2442 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2443 sizeof(PRINT_TH_FLAGS) + 1 + 2444 #ifdef INET6 2445 2 * INET6_ADDRSTRLEN; 2446 #else 2447 2 * INET_ADDRSTRLEN; 2448 #endif /* INET6 */ 2449 2450 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2451 if (s == NULL) 2452 return (NULL); 2453 2454 strcat(s, "TCP: ["); 2455 sp = s + strlen(s); 2456 2457 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2458 inet_ntoa_r(inc->inc_faddr, sp); 2459 sp = s + strlen(s); 2460 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2461 sp = s + strlen(s); 2462 inet_ntoa_r(inc->inc_laddr, sp); 2463 sp = s + strlen(s); 2464 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2465 #ifdef INET6 2466 } else if (inc) { 2467 ip6_sprintf(sp, &inc->inc6_faddr); 2468 sp = s + strlen(s); 2469 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2470 sp = s + strlen(s); 2471 ip6_sprintf(sp, &inc->inc6_laddr); 2472 sp = s + strlen(s); 2473 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2474 } else if (ip6 && th) { 2475 ip6_sprintf(sp, &ip6->ip6_src); 2476 sp = s + strlen(s); 2477 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2478 sp = s + strlen(s); 2479 ip6_sprintf(sp, &ip6->ip6_dst); 2480 sp = s + strlen(s); 2481 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2482 #endif /* INET6 */ 2483 #ifdef INET 2484 } else if (ip && th) { 2485 inet_ntoa_r(ip->ip_src, sp); 2486 sp = s + strlen(s); 2487 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2488 sp = s + strlen(s); 2489 inet_ntoa_r(ip->ip_dst, sp); 2490 sp = s + strlen(s); 2491 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2492 #endif /* INET */ 2493 } else { 2494 free(s, M_TCPLOG); 2495 return (NULL); 2496 } 2497 sp = s + strlen(s); 2498 if (th) 2499 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2500 if (*(s + size - 1) != '\0') 2501 panic("%s: string too long", __func__); 2502 return (s); 2503 } 2504 2505 /* 2506 * A subroutine which makes it easy to track TCP state changes with DTrace. 2507 * This function shouldn't be called for t_state initializations that don't 2508 * correspond to actual TCP state transitions. 2509 */ 2510 void 2511 tcp_state_change(struct tcpcb *tp, int newstate) 2512 { 2513 #if defined(KDTRACE_HOOKS) 2514 int pstate = tp->t_state; 2515 #endif 2516 2517 tp->t_state = newstate; 2518 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 2519 } 2520