xref: /freebsd/sys/netinet/tcp_subr.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int	tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int	tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int	tcp_inflight_min = 6144;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 static int	tcp_inflight_stab = 20;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
178     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
179 
180 static void	tcp_cleartaocache(void);
181 static struct inpcb *tcp_notify(struct inpcb *, int);
182 static void	tcp_discardcb(struct tcpcb *);
183 
184 /*
185  * Target size of TCP PCB hash tables. Must be a power of two.
186  *
187  * Note that this can be overridden by the kernel environment
188  * variable net.inet.tcp.tcbhashsize
189  */
190 #ifndef TCBHASHSIZE
191 #define TCBHASHSIZE	512
192 #endif
193 
194 /*
195  * XXX
196  * Callouts should be moved into struct tcp directly.  They are currently
197  * separate becuase the tcpcb structure is exported to userland for sysctl
198  * parsing purposes, which do not know about callouts.
199  */
200 struct	tcpcb_mem {
201 	struct	tcpcb tcb;
202 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
203 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
204 };
205 
206 static uma_zone_t tcpcb_zone;
207 static uma_zone_t tcptw_zone;
208 
209 /*
210  * Tcp initialization
211  */
212 void
213 tcp_init()
214 {
215 	int hashsize = TCBHASHSIZE;
216 
217 	tcp_ccgen = 1;
218 	tcp_cleartaocache();
219 
220 	tcp_delacktime = TCPTV_DELACK;
221 	tcp_keepinit = TCPTV_KEEP_INIT;
222 	tcp_keepidle = TCPTV_KEEP_IDLE;
223 	tcp_keepintvl = TCPTV_KEEPINTVL;
224 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
225 	tcp_msl = TCPTV_MSL;
226 	tcp_rexmit_min = TCPTV_MIN;
227 	tcp_rexmit_slop = TCPTV_CPU_VAR;
228 
229 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
230 	LIST_INIT(&tcb);
231 	tcbinfo.listhead = &tcb;
232 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
233 	if (!powerof2(hashsize)) {
234 		printf("WARNING: TCB hash size not a power of 2\n");
235 		hashsize = 512; /* safe default */
236 	}
237 	tcp_tcbhashsize = hashsize;
238 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
239 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
240 					&tcbinfo.porthashmask);
241 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
242 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
243 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
244 #ifdef INET6
245 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
246 #else /* INET6 */
247 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
248 #endif /* INET6 */
249 	if (max_protohdr < TCP_MINPROTOHDR)
250 		max_protohdr = TCP_MINPROTOHDR;
251 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
252 		panic("tcp_init");
253 #undef TCP_MINPROTOHDR
254 	/*
255 	 * These have to be type stable for the benefit of the timers.
256 	 */
257 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
258 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259 	uma_zone_set_max(tcpcb_zone, maxsockets);
260 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
261 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262 	uma_zone_set_max(tcptw_zone, maxsockets);
263 	tcp_timer_init();
264 	syncache_init();
265 }
266 
267 /*
268  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
269  * tcp_template used to store this data in mbufs, but we now recopy it out
270  * of the tcpcb each time to conserve mbufs.
271  */
272 void
273 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
274 	struct inpcb *inp;
275 	void *ip_ptr;
276 	void *tcp_ptr;
277 {
278 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
279 
280 #ifdef INET6
281 	if ((inp->inp_vflag & INP_IPV6) != 0) {
282 		struct ip6_hdr *ip6;
283 
284 		ip6 = (struct ip6_hdr *)ip_ptr;
285 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
286 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
287 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
288 			(IPV6_VERSION & IPV6_VERSION_MASK);
289 		ip6->ip6_nxt = IPPROTO_TCP;
290 		ip6->ip6_plen = sizeof(struct tcphdr);
291 		ip6->ip6_src = inp->in6p_laddr;
292 		ip6->ip6_dst = inp->in6p_faddr;
293 	} else
294 #endif
295 	{
296 		struct ip *ip;
297 
298 		ip = (struct ip *)ip_ptr;
299 		ip->ip_v = IPVERSION;
300 		ip->ip_hl = 5;
301 		ip->ip_tos = inp->inp_ip_tos;
302 		ip->ip_len = 0;
303 		ip->ip_id = 0;
304 		ip->ip_off = 0;
305 		ip->ip_ttl = inp->inp_ip_ttl;
306 		ip->ip_sum = 0;
307 		ip->ip_p = IPPROTO_TCP;
308 		ip->ip_src = inp->inp_laddr;
309 		ip->ip_dst = inp->inp_faddr;
310 	}
311 	th->th_sport = inp->inp_lport;
312 	th->th_dport = inp->inp_fport;
313 	th->th_seq = 0;
314 	th->th_ack = 0;
315 	th->th_x2 = 0;
316 	th->th_off = 5;
317 	th->th_flags = 0;
318 	th->th_win = 0;
319 	th->th_urp = 0;
320 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
321 }
322 
323 /*
324  * Create template to be used to send tcp packets on a connection.
325  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
326  * use for this function is in keepalives, which use tcp_respond.
327  */
328 struct tcptemp *
329 tcpip_maketemplate(inp)
330 	struct inpcb *inp;
331 {
332 	struct mbuf *m;
333 	struct tcptemp *n;
334 
335 	m = m_get(M_DONTWAIT, MT_HEADER);
336 	if (m == NULL)
337 		return (0);
338 	m->m_len = sizeof(struct tcptemp);
339 	n = mtod(m, struct tcptemp *);
340 
341 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
342 	return (n);
343 }
344 
345 /*
346  * Send a single message to the TCP at address specified by
347  * the given TCP/IP header.  If m == 0, then we make a copy
348  * of the tcpiphdr at ti and send directly to the addressed host.
349  * This is used to force keep alive messages out using the TCP
350  * template for a connection.  If flags are given then we send
351  * a message back to the TCP which originated the * segment ti,
352  * and discard the mbuf containing it and any other attached mbufs.
353  *
354  * In any case the ack and sequence number of the transmitted
355  * segment are as specified by the parameters.
356  *
357  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
358  */
359 void
360 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
361 	struct tcpcb *tp;
362 	void *ipgen;
363 	register struct tcphdr *th;
364 	register struct mbuf *m;
365 	tcp_seq ack, seq;
366 	int flags;
367 {
368 	register int tlen;
369 	int win = 0;
370 	struct route *ro = 0;
371 	struct route sro;
372 	struct ip *ip;
373 	struct tcphdr *nth;
374 #ifdef INET6
375 	struct route_in6 *ro6 = 0;
376 	struct route_in6 sro6;
377 	struct ip6_hdr *ip6;
378 	int isipv6;
379 #endif /* INET6 */
380 	int ipflags = 0;
381 
382 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
383 
384 #ifdef INET6
385 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
386 	ip6 = ipgen;
387 #endif /* INET6 */
388 	ip = ipgen;
389 
390 	if (tp) {
391 		if (!(flags & TH_RST)) {
392 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
393 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
394 				win = (long)TCP_MAXWIN << tp->rcv_scale;
395 		}
396 #ifdef INET6
397 		if (isipv6)
398 			ro6 = &tp->t_inpcb->in6p_route;
399 		else
400 #endif /* INET6 */
401 		ro = &tp->t_inpcb->inp_route;
402 	} else {
403 #ifdef INET6
404 		if (isipv6) {
405 			ro6 = &sro6;
406 			bzero(ro6, sizeof *ro6);
407 		} else
408 #endif /* INET6 */
409 	      {
410 		ro = &sro;
411 		bzero(ro, sizeof *ro);
412 	      }
413 	}
414 	if (m == 0) {
415 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
416 		if (m == NULL)
417 			return;
418 		tlen = 0;
419 		m->m_data += max_linkhdr;
420 #ifdef INET6
421 		if (isipv6) {
422 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
423 			      sizeof(struct ip6_hdr));
424 			ip6 = mtod(m, struct ip6_hdr *);
425 			nth = (struct tcphdr *)(ip6 + 1);
426 		} else
427 #endif /* INET6 */
428 	      {
429 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
430 		ip = mtod(m, struct ip *);
431 		nth = (struct tcphdr *)(ip + 1);
432 	      }
433 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
434 		flags = TH_ACK;
435 	} else {
436 		m_freem(m->m_next);
437 		m->m_next = 0;
438 		m->m_data = (caddr_t)ipgen;
439 		/* m_len is set later */
440 		tlen = 0;
441 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
442 #ifdef INET6
443 		if (isipv6) {
444 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
445 			nth = (struct tcphdr *)(ip6 + 1);
446 		} else
447 #endif /* INET6 */
448 	      {
449 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
450 		nth = (struct tcphdr *)(ip + 1);
451 	      }
452 		if (th != nth) {
453 			/*
454 			 * this is usually a case when an extension header
455 			 * exists between the IPv6 header and the
456 			 * TCP header.
457 			 */
458 			nth->th_sport = th->th_sport;
459 			nth->th_dport = th->th_dport;
460 		}
461 		xchg(nth->th_dport, nth->th_sport, n_short);
462 #undef xchg
463 	}
464 #ifdef INET6
465 	if (isipv6) {
466 		ip6->ip6_flow = 0;
467 		ip6->ip6_vfc = IPV6_VERSION;
468 		ip6->ip6_nxt = IPPROTO_TCP;
469 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
470 						tlen));
471 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
472 	} else
473 #endif
474       {
475 	tlen += sizeof (struct tcpiphdr);
476 	ip->ip_len = tlen;
477 	ip->ip_ttl = ip_defttl;
478       }
479 	m->m_len = tlen;
480 	m->m_pkthdr.len = tlen;
481 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
482 #ifdef MAC
483 	if (tp != NULL && tp->t_inpcb != NULL) {
484 		/*
485 		 * Packet is associated with a socket, so allow the
486 		 * label of the response to reflect the socket label.
487 		 */
488 		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
489 	} else {
490 		/*
491 		 * XXXMAC: This will need to call a mac function that
492 		 * modifies the mbuf label in place for TCP datagrams
493 		 * not associated with a PCB.
494 		 */
495 	}
496 #endif
497 	nth->th_seq = htonl(seq);
498 	nth->th_ack = htonl(ack);
499 	nth->th_x2 = 0;
500 	nth->th_off = sizeof (struct tcphdr) >> 2;
501 	nth->th_flags = flags;
502 	if (tp)
503 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
504 	else
505 		nth->th_win = htons((u_short)win);
506 	nth->th_urp = 0;
507 #ifdef INET6
508 	if (isipv6) {
509 		nth->th_sum = 0;
510 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
511 					sizeof(struct ip6_hdr),
512 					tlen - sizeof(struct ip6_hdr));
513 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
514 					       ro6 && ro6->ro_rt ?
515 					       ro6->ro_rt->rt_ifp :
516 					       NULL);
517 	} else
518 #endif /* INET6 */
519       {
520         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
521 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
522         m->m_pkthdr.csum_flags = CSUM_TCP;
523         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
524       }
525 #ifdef TCPDEBUG
526 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
527 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
528 #endif
529 #ifdef INET6
530 	if (isipv6) {
531 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
532 			tp ? tp->t_inpcb : NULL);
533 		if (ro6 == &sro6 && ro6->ro_rt) {
534 			RTFREE(ro6->ro_rt);
535 			ro6->ro_rt = NULL;
536 		}
537 	} else
538 #endif /* INET6 */
539       {
540 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
541 	if (ro == &sro && ro->ro_rt) {
542 		RTFREE(ro->ro_rt);
543 		ro->ro_rt = NULL;
544 	}
545       }
546 }
547 
548 /*
549  * Create a new TCP control block, making an
550  * empty reassembly queue and hooking it to the argument
551  * protocol control block.  The `inp' parameter must have
552  * come from the zone allocator set up in tcp_init().
553  */
554 struct tcpcb *
555 tcp_newtcpcb(inp)
556 	struct inpcb *inp;
557 {
558 	struct tcpcb_mem *tm;
559 	struct tcpcb *tp;
560 #ifdef INET6
561 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
562 #endif /* INET6 */
563 
564 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
565 	if (tm == NULL)
566 		return (NULL);
567 	tp = &tm->tcb;
568 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
569 	tp->t_maxseg = tp->t_maxopd =
570 #ifdef INET6
571 		isipv6 ? tcp_v6mssdflt :
572 #endif /* INET6 */
573 		tcp_mssdflt;
574 
575 	/* Set up our timeouts. */
576 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
577 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
578 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
579 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
580 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
581 
582 	if (tcp_do_rfc1323)
583 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
584 	if (tcp_do_rfc1644)
585 		tp->t_flags |= TF_REQ_CC;
586 	tp->t_inpcb = inp;	/* XXX */
587 	/*
588 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
589 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
590 	 * reasonable initial retransmit time.
591 	 */
592 	tp->t_srtt = TCPTV_SRTTBASE;
593 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
594 	tp->t_rttmin = tcp_rexmit_min;
595 	tp->t_rxtcur = TCPTV_RTOBASE;
596 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
599 	tp->t_rcvtime = ticks;
600 	tp->t_bw_rtttime = ticks;
601         /*
602 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
603 	 * because the socket may be bound to an IPv6 wildcard address,
604 	 * which may match an IPv4-mapped IPv6 address.
605 	 */
606 	inp->inp_ip_ttl = ip_defttl;
607 	inp->inp_ppcb = (caddr_t)tp;
608 	return (tp);		/* XXX */
609 }
610 
611 /*
612  * Drop a TCP connection, reporting
613  * the specified error.  If connection is synchronized,
614  * then send a RST to peer.
615  */
616 struct tcpcb *
617 tcp_drop(tp, errno)
618 	register struct tcpcb *tp;
619 	int errno;
620 {
621 	struct socket *so = tp->t_inpcb->inp_socket;
622 
623 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
624 		tp->t_state = TCPS_CLOSED;
625 		(void) tcp_output(tp);
626 		tcpstat.tcps_drops++;
627 	} else
628 		tcpstat.tcps_conndrops++;
629 	if (errno == ETIMEDOUT && tp->t_softerror)
630 		errno = tp->t_softerror;
631 	so->so_error = errno;
632 	return (tcp_close(tp));
633 }
634 
635 static void
636 tcp_discardcb(tp)
637 	struct tcpcb *tp;
638 {
639 	struct tseg_qent *q;
640 	struct inpcb *inp = tp->t_inpcb;
641 	struct socket *so = inp->inp_socket;
642 #ifdef INET6
643 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
644 #endif /* INET6 */
645 	struct rtentry *rt;
646 	int dosavessthresh;
647 
648 	/*
649 	 * Make sure that all of our timers are stopped before we
650 	 * delete the PCB.
651 	 */
652 	callout_stop(tp->tt_rexmt);
653 	callout_stop(tp->tt_persist);
654 	callout_stop(tp->tt_keep);
655 	callout_stop(tp->tt_2msl);
656 	callout_stop(tp->tt_delack);
657 
658 	/*
659 	 * If we got enough samples through the srtt filter,
660 	 * save the rtt and rttvar in the routing entry.
661 	 * 'Enough' is arbitrarily defined as the 16 samples.
662 	 * 16 samples is enough for the srtt filter to converge
663 	 * to within 5% of the correct value; fewer samples and
664 	 * we could save a very bogus rtt.
665 	 *
666 	 * Don't update the default route's characteristics and don't
667 	 * update anything that the user "locked".
668 	 */
669 	if (tp->t_rttupdated >= 16) {
670 		register u_long i = 0;
671 #ifdef INET6
672 		if (isipv6) {
673 			struct sockaddr_in6 *sin6;
674 
675 			if ((rt = inp->in6p_route.ro_rt) == NULL)
676 				goto no_valid_rt;
677 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
678 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
679 				goto no_valid_rt;
680 		}
681 		else
682 #endif /* INET6 */
683 		if ((rt = inp->inp_route.ro_rt) == NULL ||
684 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
685 		    == INADDR_ANY)
686 			goto no_valid_rt;
687 
688 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
689 			i = tp->t_srtt *
690 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
691 			if (rt->rt_rmx.rmx_rtt && i)
692 				/*
693 				 * filter this update to half the old & half
694 				 * the new values, converting scale.
695 				 * See route.h and tcp_var.h for a
696 				 * description of the scaling constants.
697 				 */
698 				rt->rt_rmx.rmx_rtt =
699 				    (rt->rt_rmx.rmx_rtt + i) / 2;
700 			else
701 				rt->rt_rmx.rmx_rtt = i;
702 			tcpstat.tcps_cachedrtt++;
703 		}
704 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
705 			i = tp->t_rttvar *
706 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
707 			if (rt->rt_rmx.rmx_rttvar && i)
708 				rt->rt_rmx.rmx_rttvar =
709 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
710 			else
711 				rt->rt_rmx.rmx_rttvar = i;
712 			tcpstat.tcps_cachedrttvar++;
713 		}
714 		/*
715 		 * The old comment here said:
716 		 * update the pipelimit (ssthresh) if it has been updated
717 		 * already or if a pipesize was specified & the threshhold
718 		 * got below half the pipesize.  I.e., wait for bad news
719 		 * before we start updating, then update on both good
720 		 * and bad news.
721 		 *
722 		 * But we want to save the ssthresh even if no pipesize is
723 		 * specified explicitly in the route, because such
724 		 * connections still have an implicit pipesize specified
725 		 * by the global tcp_sendspace.  In the absence of a reliable
726 		 * way to calculate the pipesize, it will have to do.
727 		 */
728 		i = tp->snd_ssthresh;
729 		if (rt->rt_rmx.rmx_sendpipe != 0)
730 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
731 		else
732 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
733 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
734 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
735 		    || dosavessthresh) {
736 			/*
737 			 * convert the limit from user data bytes to
738 			 * packets then to packet data bytes.
739 			 */
740 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
741 			if (i < 2)
742 				i = 2;
743 			i *= (u_long)(tp->t_maxseg +
744 #ifdef INET6
745 				      (isipv6 ? sizeof (struct ip6_hdr) +
746 					       sizeof (struct tcphdr) :
747 #endif
748 				       sizeof (struct tcpiphdr)
749 #ifdef INET6
750 				       )
751 #endif
752 				      );
753 			if (rt->rt_rmx.rmx_ssthresh)
754 				rt->rt_rmx.rmx_ssthresh =
755 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
756 			else
757 				rt->rt_rmx.rmx_ssthresh = i;
758 			tcpstat.tcps_cachedssthresh++;
759 		}
760 	}
761     no_valid_rt:
762 	/* free the reassembly queue, if any */
763 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
764 		LIST_REMOVE(q, tqe_q);
765 		m_freem(q->tqe_m);
766 		FREE(q, M_TSEGQ);
767 	}
768 	inp->inp_ppcb = NULL;
769 	tp->t_inpcb = NULL;
770 	uma_zfree(tcpcb_zone, tp);
771 	soisdisconnected(so);
772 }
773 
774 /*
775  * Close a TCP control block:
776  *    discard all space held by the tcp
777  *    discard internet protocol block
778  *    wake up any sleepers
779  */
780 struct tcpcb *
781 tcp_close(tp)
782 	struct tcpcb *tp;
783 {
784 	struct inpcb *inp = tp->t_inpcb;
785 #ifdef INET6
786 	struct socket *so = inp->inp_socket;
787 #endif
788 
789 	tcp_discardcb(tp);
790 #ifdef INET6
791 	if (INP_CHECK_SOCKAF(so, AF_INET6))
792 		in6_pcbdetach(inp);
793 	else
794 #endif
795 		in_pcbdetach(inp);
796 	tcpstat.tcps_closed++;
797 	return ((struct tcpcb *)0);
798 }
799 
800 void
801 tcp_drain()
802 {
803 	if (do_tcpdrain)
804 	{
805 		struct inpcb *inpb;
806 		struct tcpcb *tcpb;
807 		struct tseg_qent *te;
808 
809 	/*
810 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
811 	 * if there is one...
812 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
813 	 *      reassembly queue should be flushed, but in a situation
814 	 * 	where we're really low on mbufs, this is potentially
815 	 *  	usefull.
816 	 */
817 		INP_INFO_RLOCK(&tcbinfo);
818 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
819 			if (inpb->inp_vflag & INP_TIMEWAIT)
820 				continue;
821 			INP_LOCK(inpb);
822 			if ((tcpb = intotcpcb(inpb))) {
823 				while ((te = LIST_FIRST(&tcpb->t_segq))
824 			            != NULL) {
825 					LIST_REMOVE(te, tqe_q);
826 					m_freem(te->tqe_m);
827 					FREE(te, M_TSEGQ);
828 				}
829 			}
830 			INP_UNLOCK(inpb);
831 		}
832 		INP_INFO_RUNLOCK(&tcbinfo);
833 	}
834 }
835 
836 /*
837  * Notify a tcp user of an asynchronous error;
838  * store error as soft error, but wake up user
839  * (for now, won't do anything until can select for soft error).
840  *
841  * Do not wake up user since there currently is no mechanism for
842  * reporting soft errors (yet - a kqueue filter may be added).
843  */
844 static struct inpcb *
845 tcp_notify(inp, error)
846 	struct inpcb *inp;
847 	int error;
848 {
849 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
850 
851 	/*
852 	 * Ignore some errors if we are hooked up.
853 	 * If connection hasn't completed, has retransmitted several times,
854 	 * and receives a second error, give up now.  This is better
855 	 * than waiting a long time to establish a connection that
856 	 * can never complete.
857 	 */
858 	if (tp->t_state == TCPS_ESTABLISHED &&
859 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
860 	     error == EHOSTDOWN)) {
861 		return inp;
862 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
863 	    tp->t_softerror) {
864 		tcp_drop(tp, error);
865 		return (struct inpcb *)0;
866 	} else {
867 		tp->t_softerror = error;
868 		return inp;
869 	}
870 #if 0
871 	wakeup( &so->so_timeo);
872 	sorwakeup(so);
873 	sowwakeup(so);
874 #endif
875 }
876 
877 static int
878 tcp_pcblist(SYSCTL_HANDLER_ARGS)
879 {
880 	int error, i, n, s;
881 	struct inpcb *inp, **inp_list;
882 	inp_gen_t gencnt;
883 	struct xinpgen xig;
884 
885 	/*
886 	 * The process of preparing the TCB list is too time-consuming and
887 	 * resource-intensive to repeat twice on every request.
888 	 */
889 	if (req->oldptr == 0) {
890 		n = tcbinfo.ipi_count;
891 		req->oldidx = 2 * (sizeof xig)
892 			+ (n + n/8) * sizeof(struct xtcpcb);
893 		return 0;
894 	}
895 
896 	if (req->newptr != 0)
897 		return EPERM;
898 
899 	/*
900 	 * OK, now we're committed to doing something.
901 	 */
902 	s = splnet();
903 	INP_INFO_RLOCK(&tcbinfo);
904 	gencnt = tcbinfo.ipi_gencnt;
905 	n = tcbinfo.ipi_count;
906 	INP_INFO_RUNLOCK(&tcbinfo);
907 	splx(s);
908 
909 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
910 		+ n * sizeof(struct xtcpcb));
911 
912 	xig.xig_len = sizeof xig;
913 	xig.xig_count = n;
914 	xig.xig_gen = gencnt;
915 	xig.xig_sogen = so_gencnt;
916 	error = SYSCTL_OUT(req, &xig, sizeof xig);
917 	if (error)
918 		return error;
919 
920 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
921 	if (inp_list == 0)
922 		return ENOMEM;
923 
924 	s = splnet();
925 	INP_INFO_RLOCK(&tcbinfo);
926 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
927 	     inp = LIST_NEXT(inp, inp_list)) {
928 		INP_LOCK(inp);
929 		if (inp->inp_gencnt <= gencnt &&
930 		    (((inp->inp_vflag & INP_TIMEWAIT) &&
931 		    cr_cansee(req->td->td_ucred, intotw(inp)->tw_cred) == 0) ||
932 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0))
933 			inp_list[i++] = inp;
934 		INP_UNLOCK(inp);
935 	}
936 	INP_INFO_RUNLOCK(&tcbinfo);
937 	splx(s);
938 	n = i;
939 
940 	error = 0;
941 	for (i = 0; i < n; i++) {
942 		inp = inp_list[i];
943 		if (inp->inp_gencnt <= gencnt) {
944 			struct xtcpcb xt;
945 			caddr_t inp_ppcb;
946 			xt.xt_len = sizeof xt;
947 			/* XXX should avoid extra copy */
948 			bcopy(inp, &xt.xt_inp, sizeof *inp);
949 			inp_ppcb = inp->inp_ppcb;
950 			if (inp_ppcb == NULL)
951 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952 			else if (inp->inp_vflag & INP_TIMEWAIT) {
953 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
954 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
955 			} else
956 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
957 			if (inp->inp_socket)
958 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
959 			else {
960 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
961 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
962 			}
963 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
964 			error = SYSCTL_OUT(req, &xt, sizeof xt);
965 		}
966 	}
967 	if (!error) {
968 		/*
969 		 * Give the user an updated idea of our state.
970 		 * If the generation differs from what we told
971 		 * her before, she knows that something happened
972 		 * while we were processing this request, and it
973 		 * might be necessary to retry.
974 		 */
975 		s = splnet();
976 		INP_INFO_RLOCK(&tcbinfo);
977 		xig.xig_gen = tcbinfo.ipi_gencnt;
978 		xig.xig_sogen = so_gencnt;
979 		xig.xig_count = tcbinfo.ipi_count;
980 		INP_INFO_RUNLOCK(&tcbinfo);
981 		splx(s);
982 		error = SYSCTL_OUT(req, &xig, sizeof xig);
983 	}
984 	free(inp_list, M_TEMP);
985 	return error;
986 }
987 
988 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
989 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
990 
991 static int
992 tcp_getcred(SYSCTL_HANDLER_ARGS)
993 {
994 	struct xucred xuc;
995 	struct sockaddr_in addrs[2];
996 	struct inpcb *inp;
997 	int error, s;
998 
999 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1000 	if (error)
1001 		return (error);
1002 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1003 	if (error)
1004 		return (error);
1005 	s = splnet();
1006 	INP_INFO_RLOCK(&tcbinfo);
1007 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1008 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1009 	if (inp == NULL) {
1010 		error = ENOENT;
1011 		goto outunlocked;
1012 	}
1013 	INP_LOCK(inp);
1014 	if (inp->inp_socket == NULL) {
1015 		error = ENOENT;
1016 		goto out;
1017 	}
1018 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1019 	if (error)
1020 		goto out;
1021 	cru2x(inp->inp_socket->so_cred, &xuc);
1022 out:
1023 	INP_UNLOCK(inp);
1024 outunlocked:
1025 	INP_INFO_RUNLOCK(&tcbinfo);
1026 	splx(s);
1027 	if (error == 0)
1028 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1029 	return (error);
1030 }
1031 
1032 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1033     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1034     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1035 
1036 #ifdef INET6
1037 static int
1038 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1039 {
1040 	struct xucred xuc;
1041 	struct sockaddr_in6 addrs[2];
1042 	struct inpcb *inp;
1043 	int error, s, mapped = 0;
1044 
1045 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1046 	if (error)
1047 		return (error);
1048 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1049 	if (error)
1050 		return (error);
1051 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1052 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1053 			mapped = 1;
1054 		else
1055 			return (EINVAL);
1056 	}
1057 	s = splnet();
1058 	INP_INFO_RLOCK(&tcbinfo);
1059 	if (mapped == 1)
1060 		inp = in_pcblookup_hash(&tcbinfo,
1061 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1062 			addrs[1].sin6_port,
1063 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1064 			addrs[0].sin6_port,
1065 			0, NULL);
1066 	else
1067 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1068 				 addrs[1].sin6_port,
1069 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1070 				 0, NULL);
1071 	if (inp == NULL) {
1072 		error = ENOENT;
1073 		goto outunlocked;
1074 	}
1075 	INP_LOCK(inp);
1076 	if (inp->inp_socket == NULL) {
1077 		error = ENOENT;
1078 		goto out;
1079 	}
1080 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1081 	if (error)
1082 		goto out;
1083 	cru2x(inp->inp_socket->so_cred, &xuc);
1084 out:
1085 	INP_UNLOCK(inp);
1086 outunlocked:
1087 	INP_INFO_RUNLOCK(&tcbinfo);
1088 	splx(s);
1089 	if (error == 0)
1090 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1091 	return (error);
1092 }
1093 
1094 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1095     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1096     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1097 #endif
1098 
1099 
1100 void
1101 tcp_ctlinput(cmd, sa, vip)
1102 	int cmd;
1103 	struct sockaddr *sa;
1104 	void *vip;
1105 {
1106 	struct ip *ip = vip;
1107 	struct tcphdr *th;
1108 	struct in_addr faddr;
1109 	struct inpcb *inp;
1110 	struct tcpcb *tp;
1111 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1112 	tcp_seq icmp_seq;
1113 	int s;
1114 
1115 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1116 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1117 		return;
1118 
1119 	if (cmd == PRC_QUENCH)
1120 		notify = tcp_quench;
1121 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1122 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1123 		notify = tcp_drop_syn_sent;
1124 	else if (cmd == PRC_MSGSIZE)
1125 		notify = tcp_mtudisc;
1126 	else if (PRC_IS_REDIRECT(cmd)) {
1127 		ip = 0;
1128 		notify = in_rtchange;
1129 	} else if (cmd == PRC_HOSTDEAD)
1130 		ip = 0;
1131 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1132 		return;
1133 	if (ip) {
1134 		s = splnet();
1135 		th = (struct tcphdr *)((caddr_t)ip
1136 				       + (ip->ip_hl << 2));
1137 		INP_INFO_WLOCK(&tcbinfo);
1138 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1139 		    ip->ip_src, th->th_sport, 0, NULL);
1140 		if (inp != NULL)  {
1141 			INP_LOCK(inp);
1142 			if (inp->inp_socket != NULL) {
1143 				icmp_seq = htonl(th->th_seq);
1144 				tp = intotcpcb(inp);
1145 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1146 			    		SEQ_LT(icmp_seq, tp->snd_max))
1147 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1148 			}
1149 			if (inp)
1150 				INP_UNLOCK(inp);
1151 		} else {
1152 			struct in_conninfo inc;
1153 
1154 			inc.inc_fport = th->th_dport;
1155 			inc.inc_lport = th->th_sport;
1156 			inc.inc_faddr = faddr;
1157 			inc.inc_laddr = ip->ip_src;
1158 #ifdef INET6
1159 			inc.inc_isipv6 = 0;
1160 #endif
1161 			syncache_unreach(&inc, th);
1162 		}
1163 		INP_INFO_WUNLOCK(&tcbinfo);
1164 		splx(s);
1165 	} else
1166 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1167 }
1168 
1169 #ifdef INET6
1170 void
1171 tcp6_ctlinput(cmd, sa, d)
1172 	int cmd;
1173 	struct sockaddr *sa;
1174 	void *d;
1175 {
1176 	struct tcphdr th;
1177 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1178 	struct ip6_hdr *ip6;
1179 	struct mbuf *m;
1180 	struct ip6ctlparam *ip6cp = NULL;
1181 	const struct sockaddr_in6 *sa6_src = NULL;
1182 	int off;
1183 	struct tcp_portonly {
1184 		u_int16_t th_sport;
1185 		u_int16_t th_dport;
1186 	} *thp;
1187 
1188 	if (sa->sa_family != AF_INET6 ||
1189 	    sa->sa_len != sizeof(struct sockaddr_in6))
1190 		return;
1191 
1192 	if (cmd == PRC_QUENCH)
1193 		notify = tcp_quench;
1194 	else if (cmd == PRC_MSGSIZE)
1195 		notify = tcp_mtudisc;
1196 	else if (!PRC_IS_REDIRECT(cmd) &&
1197 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1198 		return;
1199 
1200 	/* if the parameter is from icmp6, decode it. */
1201 	if (d != NULL) {
1202 		ip6cp = (struct ip6ctlparam *)d;
1203 		m = ip6cp->ip6c_m;
1204 		ip6 = ip6cp->ip6c_ip6;
1205 		off = ip6cp->ip6c_off;
1206 		sa6_src = ip6cp->ip6c_src;
1207 	} else {
1208 		m = NULL;
1209 		ip6 = NULL;
1210 		off = 0;	/* fool gcc */
1211 		sa6_src = &sa6_any;
1212 	}
1213 
1214 	if (ip6) {
1215 		struct in_conninfo inc;
1216 		/*
1217 		 * XXX: We assume that when IPV6 is non NULL,
1218 		 * M and OFF are valid.
1219 		 */
1220 
1221 		/* check if we can safely examine src and dst ports */
1222 		if (m->m_pkthdr.len < off + sizeof(*thp))
1223 			return;
1224 
1225 		bzero(&th, sizeof(th));
1226 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1227 
1228 		in6_pcbnotify(&tcb, sa, th.th_dport,
1229 		    (struct sockaddr *)ip6cp->ip6c_src,
1230 		    th.th_sport, cmd, notify);
1231 
1232 		inc.inc_fport = th.th_dport;
1233 		inc.inc_lport = th.th_sport;
1234 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1235 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1236 		inc.inc_isipv6 = 1;
1237 		syncache_unreach(&inc, &th);
1238 	} else
1239 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1240 			      0, cmd, notify);
1241 }
1242 #endif /* INET6 */
1243 
1244 
1245 /*
1246  * Following is where TCP initial sequence number generation occurs.
1247  *
1248  * There are two places where we must use initial sequence numbers:
1249  * 1.  In SYN-ACK packets.
1250  * 2.  In SYN packets.
1251  *
1252  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1253  * tcp_syncache.c for details.
1254  *
1255  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1256  * depends on this property.  In addition, these ISNs should be
1257  * unguessable so as to prevent connection hijacking.  To satisfy
1258  * the requirements of this situation, the algorithm outlined in
1259  * RFC 1948 is used to generate sequence numbers.
1260  *
1261  * Implementation details:
1262  *
1263  * Time is based off the system timer, and is corrected so that it
1264  * increases by one megabyte per second.  This allows for proper
1265  * recycling on high speed LANs while still leaving over an hour
1266  * before rollover.
1267  *
1268  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1269  * between seeding of isn_secret.  This is normally set to zero,
1270  * as reseeding should not be necessary.
1271  *
1272  */
1273 
1274 #define ISN_BYTES_PER_SECOND 1048576
1275 
1276 u_char isn_secret[32];
1277 int isn_last_reseed;
1278 MD5_CTX isn_ctx;
1279 
1280 tcp_seq
1281 tcp_new_isn(tp)
1282 	struct tcpcb *tp;
1283 {
1284 	u_int32_t md5_buffer[4];
1285 	tcp_seq new_isn;
1286 
1287 	/* Seed if this is the first use, reseed if requested. */
1288 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1289 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1290 		< (u_int)ticks))) {
1291 		read_random(&isn_secret, sizeof(isn_secret));
1292 		isn_last_reseed = ticks;
1293 	}
1294 
1295 	/* Compute the md5 hash and return the ISN. */
1296 	MD5Init(&isn_ctx);
1297 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1298 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1299 #ifdef INET6
1300 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1301 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1302 			  sizeof(struct in6_addr));
1303 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1304 			  sizeof(struct in6_addr));
1305 	} else
1306 #endif
1307 	{
1308 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1309 			  sizeof(struct in_addr));
1310 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1311 			  sizeof(struct in_addr));
1312 	}
1313 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1314 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1315 	new_isn = (tcp_seq) md5_buffer[0];
1316 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1317 	return new_isn;
1318 }
1319 
1320 /*
1321  * When a source quench is received, close congestion window
1322  * to one segment.  We will gradually open it again as we proceed.
1323  */
1324 struct inpcb *
1325 tcp_quench(inp, errno)
1326 	struct inpcb *inp;
1327 	int errno;
1328 {
1329 	struct tcpcb *tp = intotcpcb(inp);
1330 
1331 	if (tp)
1332 		tp->snd_cwnd = tp->t_maxseg;
1333 	return (inp);
1334 }
1335 
1336 /*
1337  * When a specific ICMP unreachable message is received and the
1338  * connection state is SYN-SENT, drop the connection.  This behavior
1339  * is controlled by the icmp_may_rst sysctl.
1340  */
1341 struct inpcb *
1342 tcp_drop_syn_sent(inp, errno)
1343 	struct inpcb *inp;
1344 	int errno;
1345 {
1346 	struct tcpcb *tp = intotcpcb(inp);
1347 
1348 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1349 		tcp_drop(tp, errno);
1350 		return (struct inpcb *)0;
1351 	}
1352 	return inp;
1353 }
1354 
1355 /*
1356  * When `need fragmentation' ICMP is received, update our idea of the MSS
1357  * based on the new value in the route.  Also nudge TCP to send something,
1358  * since we know the packet we just sent was dropped.
1359  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1360  */
1361 struct inpcb *
1362 tcp_mtudisc(inp, errno)
1363 	struct inpcb *inp;
1364 	int errno;
1365 {
1366 	struct tcpcb *tp = intotcpcb(inp);
1367 	struct rtentry *rt;
1368 	struct rmxp_tao *taop;
1369 	struct socket *so = inp->inp_socket;
1370 	int offered;
1371 	int mss;
1372 #ifdef INET6
1373 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1374 #endif /* INET6 */
1375 
1376 	if (tp) {
1377 #ifdef INET6
1378 		if (isipv6)
1379 			rt = tcp_rtlookup6(&inp->inp_inc);
1380 		else
1381 #endif /* INET6 */
1382 		rt = tcp_rtlookup(&inp->inp_inc);
1383 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1384 			tp->t_maxopd = tp->t_maxseg =
1385 #ifdef INET6
1386 				isipv6 ? tcp_v6mssdflt :
1387 #endif /* INET6 */
1388 				tcp_mssdflt;
1389 			return inp;
1390 		}
1391 		taop = rmx_taop(rt->rt_rmx);
1392 		offered = taop->tao_mssopt;
1393 		mss = rt->rt_rmx.rmx_mtu -
1394 #ifdef INET6
1395 			(isipv6 ?
1396 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1397 #endif /* INET6 */
1398 			 sizeof(struct tcpiphdr)
1399 #ifdef INET6
1400 			 )
1401 #endif /* INET6 */
1402 			;
1403 
1404 		if (offered)
1405 			mss = min(mss, offered);
1406 		/*
1407 		 * XXX - The above conditional probably violates the TCP
1408 		 * spec.  The problem is that, since we don't know the
1409 		 * other end's MSS, we are supposed to use a conservative
1410 		 * default.  But, if we do that, then MTU discovery will
1411 		 * never actually take place, because the conservative
1412 		 * default is much less than the MTUs typically seen
1413 		 * on the Internet today.  For the moment, we'll sweep
1414 		 * this under the carpet.
1415 		 *
1416 		 * The conservative default might not actually be a problem
1417 		 * if the only case this occurs is when sending an initial
1418 		 * SYN with options and data to a host we've never talked
1419 		 * to before.  Then, they will reply with an MSS value which
1420 		 * will get recorded and the new parameters should get
1421 		 * recomputed.  For Further Study.
1422 		 */
1423 		if (tp->t_maxopd <= mss)
1424 			return inp;
1425 		tp->t_maxopd = mss;
1426 
1427 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1428 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1429 			mss -= TCPOLEN_TSTAMP_APPA;
1430 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1431 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1432 			mss -= TCPOLEN_CC_APPA;
1433 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1434 		if (mss > MCLBYTES)
1435 			mss &= ~(MCLBYTES-1);
1436 #else
1437 		if (mss > MCLBYTES)
1438 			mss = mss / MCLBYTES * MCLBYTES;
1439 #endif
1440 		if (so->so_snd.sb_hiwat < mss)
1441 			mss = so->so_snd.sb_hiwat;
1442 
1443 		tp->t_maxseg = mss;
1444 
1445 		tcpstat.tcps_mturesent++;
1446 		tp->t_rtttime = 0;
1447 		tp->snd_nxt = tp->snd_una;
1448 		tcp_output(tp);
1449 	}
1450 	return inp;
1451 }
1452 
1453 /*
1454  * Look-up the routing entry to the peer of this inpcb.  If no route
1455  * is found and it cannot be allocated, then return NULL.  This routine
1456  * is called by TCP routines that access the rmx structure and by tcp_mss
1457  * to get the interface MTU.
1458  */
1459 struct rtentry *
1460 tcp_rtlookup(inc)
1461 	struct in_conninfo *inc;
1462 {
1463 	struct route *ro;
1464 	struct rtentry *rt;
1465 
1466 	ro = &inc->inc_route;
1467 	rt = ro->ro_rt;
1468 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1469 		/* No route yet, so try to acquire one */
1470 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1471 			ro->ro_dst.sa_family = AF_INET;
1472 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1473 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1474 			    inc->inc_faddr;
1475 			rtalloc(ro);
1476 			rt = ro->ro_rt;
1477 		}
1478 	}
1479 	return rt;
1480 }
1481 
1482 #ifdef INET6
1483 struct rtentry *
1484 tcp_rtlookup6(inc)
1485 	struct in_conninfo *inc;
1486 {
1487 	struct route_in6 *ro6;
1488 	struct rtentry *rt;
1489 
1490 	ro6 = &inc->inc6_route;
1491 	rt = ro6->ro_rt;
1492 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1493 		/* No route yet, so try to acquire one */
1494 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1495 			ro6->ro_dst.sin6_family = AF_INET6;
1496 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1497 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1498 			rtalloc((struct route *)ro6);
1499 			rt = ro6->ro_rt;
1500 		}
1501 	}
1502 	return rt;
1503 }
1504 #endif /* INET6 */
1505 
1506 #ifdef IPSEC
1507 /* compute ESP/AH header size for TCP, including outer IP header. */
1508 size_t
1509 ipsec_hdrsiz_tcp(tp)
1510 	struct tcpcb *tp;
1511 {
1512 	struct inpcb *inp;
1513 	struct mbuf *m;
1514 	size_t hdrsiz;
1515 	struct ip *ip;
1516 #ifdef INET6
1517 	struct ip6_hdr *ip6;
1518 #endif
1519 	struct tcphdr *th;
1520 
1521 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1522 		return 0;
1523 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1524 	if (!m)
1525 		return 0;
1526 
1527 #ifdef INET6
1528 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1529 		ip6 = mtod(m, struct ip6_hdr *);
1530 		th = (struct tcphdr *)(ip6 + 1);
1531 		m->m_pkthdr.len = m->m_len =
1532 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1533 		tcpip_fillheaders(inp, ip6, th);
1534 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1535 	} else
1536 #endif /* INET6 */
1537       {
1538 	ip = mtod(m, struct ip *);
1539 	th = (struct tcphdr *)(ip + 1);
1540 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1541 	tcpip_fillheaders(inp, ip, th);
1542 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1543       }
1544 
1545 	m_free(m);
1546 	return hdrsiz;
1547 }
1548 #endif /*IPSEC*/
1549 
1550 /*
1551  * Return a pointer to the cached information about the remote host.
1552  * The cached information is stored in the protocol specific part of
1553  * the route metrics.
1554  */
1555 struct rmxp_tao *
1556 tcp_gettaocache(inc)
1557 	struct in_conninfo *inc;
1558 {
1559 	struct rtentry *rt;
1560 
1561 #ifdef INET6
1562 	if (inc->inc_isipv6)
1563 		rt = tcp_rtlookup6(inc);
1564 	else
1565 #endif /* INET6 */
1566 	rt = tcp_rtlookup(inc);
1567 
1568 	/* Make sure this is a host route and is up. */
1569 	if (rt == NULL ||
1570 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1571 		return NULL;
1572 
1573 	return rmx_taop(rt->rt_rmx);
1574 }
1575 
1576 /*
1577  * Clear all the TAO cache entries, called from tcp_init.
1578  *
1579  * XXX
1580  * This routine is just an empty one, because we assume that the routing
1581  * routing tables are initialized at the same time when TCP, so there is
1582  * nothing in the cache left over.
1583  */
1584 static void
1585 tcp_cleartaocache()
1586 {
1587 }
1588 
1589 /*
1590  * Move a TCP connection into TIME_WAIT state.
1591  *    tcbinfo is unlocked.
1592  *    inp is locked, and is unlocked before returning.
1593  */
1594 void
1595 tcp_twstart(tp)
1596 	struct tcpcb *tp;
1597 {
1598 	struct tcptw *tw;
1599 	struct inpcb *inp;
1600 	int tw_time, acknow;
1601 	struct socket *so;
1602 
1603 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1604 	if (tw == NULL) {
1605 		tw = tcp_timer_2msl_tw(1);
1606 		if (tw == NULL) {
1607 			tcp_close(tp);
1608 			return;
1609 		}
1610 	}
1611 	inp = tp->t_inpcb;
1612 	tw->tw_inpcb = inp;
1613 
1614 	/*
1615 	 * Recover last window size sent.
1616 	 */
1617 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1618 
1619 	/*
1620 	 * Set t_recent if timestamps are used on the connection.
1621 	 */
1622         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1623             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1624 		tw->t_recent = tp->ts_recent;
1625 	else
1626 		tw->t_recent = 0;
1627 
1628 	tw->snd_nxt = tp->snd_nxt;
1629 	tw->rcv_nxt = tp->rcv_nxt;
1630 	tw->cc_recv = tp->cc_recv;
1631 	tw->cc_send = tp->cc_send;
1632 	tw->t_starttime = tp->t_starttime;
1633 	tw->tw_time = 0;
1634 
1635 /* XXX
1636  * If this code will
1637  * be used for fin-wait-2 state also, then we may need
1638  * a ts_recent from the last segment.
1639  */
1640 	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1641 	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1642 		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1643 		/* For T/TCP client, force ACK now. */
1644 		acknow = 1;
1645 	} else {
1646 		tw_time = 2 * tcp_msl;
1647 		acknow = tp->t_flags & TF_ACKNOW;
1648 	}
1649 	tcp_discardcb(tp);
1650 	so = inp->inp_socket;
1651 	so->so_pcb = NULL;
1652 	tw->tw_cred = crhold(so->so_cred);
1653 	tw->tw_so_options = so->so_options;
1654 	sotryfree(so);
1655 	inp->inp_socket = NULL;
1656 	inp->inp_ppcb = (caddr_t)tw;
1657 	inp->inp_vflag |= INP_TIMEWAIT;
1658 	tcp_timer_2msl_reset(tw, tw_time);
1659 	if (acknow)
1660 		tcp_twrespond(tw, TH_ACK);
1661 	INP_UNLOCK(inp);
1662 }
1663 
1664 struct tcptw *
1665 tcp_twclose(struct tcptw *tw, int reuse)
1666 {
1667 	struct inpcb *inp;
1668 
1669 	inp = tw->tw_inpcb;
1670 	tw->tw_inpcb = NULL;
1671 	tcp_timer_2msl_stop(tw);
1672 	inp->inp_ppcb = NULL;
1673 #ifdef INET6
1674 	if (inp->inp_vflag & INP_IPV6PROTO)
1675 		in6_pcbdetach(inp);
1676 	else
1677 #endif
1678 		in_pcbdetach(inp);
1679 	tcpstat.tcps_closed++;
1680 	if (reuse)
1681 		return (tw);
1682 	uma_zfree(tcptw_zone, tw);
1683 	return (NULL);
1684 }
1685 
1686 int
1687 tcp_twrespond(struct tcptw *tw, int flags)
1688 {
1689 	struct inpcb *inp = tw->tw_inpcb;
1690 	struct tcphdr *th;
1691 	struct mbuf *m;
1692 	struct ip *ip = NULL;
1693 	u_int8_t *optp;
1694 	u_int hdrlen, optlen;
1695 	int error;
1696 #ifdef INET6
1697 	struct ip6_hdr *ip6 = NULL;
1698 	int isipv6 = inp->inp_inc.inc_isipv6;
1699 #endif
1700 
1701 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1702 	if (m == NULL)
1703 		return (ENOBUFS);
1704 	m->m_data += max_linkhdr;
1705 
1706 #ifdef INET6
1707 	if (isipv6) {
1708 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1709 		ip6 = mtod(m, struct ip6_hdr *);
1710 		th = (struct tcphdr *)(ip6 + 1);
1711 		tcpip_fillheaders(inp, ip6, th);
1712 	} else
1713 #endif
1714 	{
1715 		hdrlen = sizeof(struct tcpiphdr);
1716 		ip = mtod(m, struct ip *);
1717 		th = (struct tcphdr *)(ip + 1);
1718 		tcpip_fillheaders(inp, ip, th);
1719 	}
1720 	optp = (u_int8_t *)(th + 1);
1721 
1722  	/*
1723 	 * Send a timestamp and echo-reply if both our side and our peer
1724 	 * have sent timestamps in our SYN's and this is not a RST.
1725  	 */
1726 	if (tw->t_recent && flags == TH_ACK) {
1727 		u_int32_t *lp = (u_int32_t *)optp;
1728 
1729  		/* Form timestamp option as shown in appendix A of RFC 1323. */
1730  		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1731  		*lp++ = htonl(ticks);
1732  		*lp   = htonl(tw->t_recent);
1733  		optp += TCPOLEN_TSTAMP_APPA;
1734  	}
1735 
1736  	/*
1737 	 * Send `CC-family' options if needed, and it's not a RST.
1738  	 */
1739 	if (tw->cc_recv != 0 && flags == TH_ACK) {
1740 		u_int32_t *lp = (u_int32_t *)optp;
1741 
1742 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1743 		*lp   = htonl(tw->cc_send);
1744 		optp += TCPOLEN_CC_APPA;
1745  	}
1746 	optlen = optp - (u_int8_t *)(th + 1);
1747 
1748 	m->m_len = hdrlen + optlen;
1749 	m->m_pkthdr.len = m->m_len;
1750 
1751 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1752 
1753 	th->th_seq = htonl(tw->snd_nxt);
1754 	th->th_ack = htonl(tw->rcv_nxt);
1755 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1756 	th->th_flags = flags;
1757 	th->th_win = htons(tw->last_win);
1758 
1759 #ifdef INET6
1760 	if (isipv6) {
1761 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1762 		    sizeof(struct tcphdr) + optlen);
1763 		ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ?
1764 		    inp->in6p_route.ro_rt->rt_ifp : NULL);
1765 		error = ip6_output(m, inp->in6p_outputopts, &inp->in6p_route,
1766 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1767 	} else
1768 #endif
1769 	{
1770 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1771                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1772 		m->m_pkthdr.csum_flags = CSUM_TCP;
1773 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1774 		ip->ip_len = m->m_pkthdr.len;
1775 		error = ip_output(m, inp->inp_options, &inp->inp_route,
1776 		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1777 	}
1778 	if (flags & TH_ACK)
1779 		tcpstat.tcps_sndacks++;
1780 	else
1781 		tcpstat.tcps_sndctrl++;
1782 	tcpstat.tcps_sndtotal++;
1783 	return (error);
1784 }
1785 
1786 /*
1787  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1788  *
1789  * This code attempts to calculate the bandwidth-delay product as a
1790  * means of determining the optimal window size to maximize bandwidth,
1791  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1792  * routers.  This code also does a fairly good job keeping RTTs in check
1793  * across slow links like modems.  We implement an algorithm which is very
1794  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1795  * transmitter side of a TCP connection and so only effects the transmit
1796  * side of the connection.
1797  *
1798  * BACKGROUND:  TCP makes no provision for the management of buffer space
1799  * at the end points or at the intermediate routers and switches.  A TCP
1800  * stream, whether using NewReno or not, will eventually buffer as
1801  * many packets as it is able and the only reason this typically works is
1802  * due to the fairly small default buffers made available for a connection
1803  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1804  * scaling it is now fairly easy for even a single TCP connection to blow-out
1805  * all available buffer space not only on the local interface, but on
1806  * intermediate routers and switches as well.  NewReno makes a misguided
1807  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1808  * then backing off, then steadily increasing the window again until another
1809  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1810  * is only made worse as network loads increase and the idea of intentionally
1811  * blowing out network buffers is, frankly, a terrible way to manage network
1812  * resources.
1813  *
1814  * It is far better to limit the transmit window prior to the failure
1815  * condition being achieved.  There are two general ways to do this:  First
1816  * you can 'scan' through different transmit window sizes and locate the
1817  * point where the RTT stops increasing, indicating that you have filled the
1818  * pipe, then scan backwards until you note that RTT stops decreasing, then
1819  * repeat ad-infinitum.  This method works in principle but has severe
1820  * implementation issues due to RTT variances, timer granularity, and
1821  * instability in the algorithm which can lead to many false positives and
1822  * create oscillations as well as interact badly with other TCP streams
1823  * implementing the same algorithm.
1824  *
1825  * The second method is to limit the window to the bandwidth delay product
1826  * of the link.  This is the method we implement.  RTT variances and our
1827  * own manipulation of the congestion window, bwnd, can potentially
1828  * destabilize the algorithm.  For this reason we have to stabilize the
1829  * elements used to calculate the window.  We do this by using the minimum
1830  * observed RTT, the long term average of the observed bandwidth, and
1831  * by adding two segments worth of slop.  It isn't perfect but it is able
1832  * to react to changing conditions and gives us a very stable basis on
1833  * which to extend the algorithm.
1834  */
1835 void
1836 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1837 {
1838 	u_long bw;
1839 	u_long bwnd;
1840 	int save_ticks;
1841 
1842 	/*
1843 	 * If inflight_enable is disabled in the middle of a tcp connection,
1844 	 * make sure snd_bwnd is effectively disabled.
1845 	 */
1846 	if (tcp_inflight_enable == 0) {
1847 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1848 		tp->snd_bandwidth = 0;
1849 		return;
1850 	}
1851 
1852 	/*
1853 	 * Figure out the bandwidth.  Due to the tick granularity this
1854 	 * is a very rough number and it MUST be averaged over a fairly
1855 	 * long period of time.  XXX we need to take into account a link
1856 	 * that is not using all available bandwidth, but for now our
1857 	 * slop will ramp us up if this case occurs and the bandwidth later
1858 	 * increases.
1859 	 *
1860 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1861 	 * effectively reset t_bw_rtttime for this case.
1862 	 */
1863 	save_ticks = ticks;
1864 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1865 		return;
1866 
1867 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1868 	    (save_ticks - tp->t_bw_rtttime);
1869 	tp->t_bw_rtttime = save_ticks;
1870 	tp->t_bw_rtseq = ack_seq;
1871 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1872 		return;
1873 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1874 
1875 	tp->snd_bandwidth = bw;
1876 
1877 	/*
1878 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1879 	 * segments.  The additional slop puts us squarely in the sweet
1880 	 * spot and also handles the bandwidth run-up case and stabilization.
1881 	 * Without the slop we could be locking ourselves into a lower
1882 	 * bandwidth.
1883 	 *
1884 	 * Situations Handled:
1885 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1886 	 *	    high speed LANs, allowing larger TCP buffers to be
1887 	 *	    specified, and also does a good job preventing
1888 	 *	    over-queueing of packets over choke points like modems
1889 	 *	    (at least for the transmit side).
1890 	 *
1891 	 *	(2) Is able to handle changing network loads (bandwidth
1892 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1893 	 *	    increases).
1894 	 *
1895 	 *	(3) Theoretically should stabilize in the face of multiple
1896 	 *	    connections implementing the same algorithm (this may need
1897 	 *	    a little work).
1898 	 *
1899 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1900 	 *	    be adjusted with a sysctl but typically only needs to be
1901 	 *	    on very slow connections.  A value no smaller then 5
1902 	 *	    should be used, but only reduce this default if you have
1903 	 *	    no other choice.
1904 	 */
1905 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1906 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1907 #undef USERTT
1908 
1909 	if (tcp_inflight_debug > 0) {
1910 		static int ltime;
1911 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1912 			ltime = ticks;
1913 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1914 			    tp,
1915 			    bw,
1916 			    tp->t_rttbest,
1917 			    tp->t_srtt,
1918 			    bwnd
1919 			);
1920 		}
1921 	}
1922 	if ((long)bwnd < tcp_inflight_min)
1923 		bwnd = tcp_inflight_min;
1924 	if (bwnd > tcp_inflight_max)
1925 		bwnd = tcp_inflight_max;
1926 	if ((long)bwnd < tp->t_maxseg * 2)
1927 		bwnd = tp->t_maxseg * 2;
1928 	tp->snd_bwnd = bwnd;
1929 }
1930 
1931