xref: /freebsd/sys/netinet/tcp_subr.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_kdtrace.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #ifdef INET6
53 #include <sys/domain.h>
54 #endif
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/sdt.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/protosw.h>
61 #include <sys/random.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/route.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/cc.h>
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h>
78 #include <netinet/ip_var.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/scope6_var.h>
84 #include <netinet6/nd6.h>
85 #endif
86 
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #include <netinet/tcpip.h>
96 #ifdef TCPDEBUG
97 #include <netinet/tcp_debug.h>
98 #endif
99 #ifdef INET6
100 #include <netinet6/ip6protosw.h>
101 #endif
102 #ifdef TCP_OFFLOAD
103 #include <netinet/tcp_offload.h>
104 #endif
105 
106 #ifdef IPSEC
107 #include <netipsec/ipsec.h>
108 #include <netipsec/xform.h>
109 #ifdef INET6
110 #include <netipsec/ipsec6.h>
111 #endif
112 #include <netipsec/key.h>
113 #include <sys/syslog.h>
114 #endif /*IPSEC*/
115 
116 #include <machine/in_cksum.h>
117 #include <sys/md5.h>
118 
119 #include <security/mac/mac_framework.h>
120 
121 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
122 #ifdef INET6
123 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
124 #endif
125 
126 static int
127 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
128 {
129 	int error, new;
130 
131 	new = V_tcp_mssdflt;
132 	error = sysctl_handle_int(oidp, &new, 0, req);
133 	if (error == 0 && req->newptr) {
134 		if (new < TCP_MINMSS)
135 			error = EINVAL;
136 		else
137 			V_tcp_mssdflt = new;
138 	}
139 	return (error);
140 }
141 
142 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
143     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
144     &sysctl_net_inet_tcp_mss_check, "I",
145     "Default TCP Maximum Segment Size");
146 
147 #ifdef INET6
148 static int
149 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error, new;
152 
153 	new = V_tcp_v6mssdflt;
154 	error = sysctl_handle_int(oidp, &new, 0, req);
155 	if (error == 0 && req->newptr) {
156 		if (new < TCP_MINMSS)
157 			error = EINVAL;
158 		else
159 			V_tcp_v6mssdflt = new;
160 	}
161 	return (error);
162 }
163 
164 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
165     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
166     &sysctl_net_inet_tcp_mss_v6_check, "I",
167    "Default TCP Maximum Segment Size for IPv6");
168 #endif /* INET6 */
169 
170 /*
171  * Minimum MSS we accept and use. This prevents DoS attacks where
172  * we are forced to a ridiculous low MSS like 20 and send hundreds
173  * of packets instead of one. The effect scales with the available
174  * bandwidth and quickly saturates the CPU and network interface
175  * with packet generation and sending. Set to zero to disable MINMSS
176  * checking. This setting prevents us from sending too small packets.
177  */
178 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
179 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
180      &VNET_NAME(tcp_minmss), 0,
181     "Minimum TCP Maximum Segment Size");
182 
183 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
184 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
185     &VNET_NAME(tcp_do_rfc1323), 0,
186     "Enable rfc1323 (high performance TCP) extensions");
187 
188 static int	tcp_log_debug = 0;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
190     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
191 
192 static int	tcp_tcbhashsize = 0;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
194     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
195 
196 static int	do_tcpdrain = 1;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
198     "Enable tcp_drain routine for extra help when low on mbufs");
199 
200 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
201     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
202 
203 static VNET_DEFINE(int, icmp_may_rst) = 1;
204 #define	V_icmp_may_rst			VNET(icmp_may_rst)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
206     &VNET_NAME(icmp_may_rst), 0,
207     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
208 
209 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
210 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
211 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
212     &VNET_NAME(tcp_isn_reseed_interval), 0,
213     "Seconds between reseeding of ISN secret");
214 
215 static int	tcp_soreceive_stream = 0;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
217     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
218 
219 #ifdef TCP_SIGNATURE
220 static int	tcp_sig_checksigs = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
222     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
223 #endif
224 
225 VNET_DEFINE(uma_zone_t, sack_hole_zone);
226 #define	V_sack_hole_zone		VNET(sack_hole_zone)
227 
228 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
229 
230 static struct inpcb *tcp_notify(struct inpcb *, int);
231 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
232 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
233 		    void *ip4hdr, const void *ip6hdr);
234 
235 /*
236  * Target size of TCP PCB hash tables. Must be a power of two.
237  *
238  * Note that this can be overridden by the kernel environment
239  * variable net.inet.tcp.tcbhashsize
240  */
241 #ifndef TCBHASHSIZE
242 #define TCBHASHSIZE	0
243 #endif
244 
245 /*
246  * XXX
247  * Callouts should be moved into struct tcp directly.  They are currently
248  * separate because the tcpcb structure is exported to userland for sysctl
249  * parsing purposes, which do not know about callouts.
250  */
251 struct tcpcb_mem {
252 	struct	tcpcb		tcb;
253 	struct	tcp_timer	tt;
254 	struct	cc_var		ccv;
255 	struct	osd		osd;
256 };
257 
258 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
259 #define	V_tcpcb_zone			VNET(tcpcb_zone)
260 
261 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
262 static struct mtx isn_mtx;
263 
264 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
265 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
266 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
267 
268 /*
269  * TCP initialization.
270  */
271 static void
272 tcp_zone_change(void *tag)
273 {
274 
275 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
276 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
277 	tcp_tw_zone_change();
278 }
279 
280 static int
281 tcp_inpcb_init(void *mem, int size, int flags)
282 {
283 	struct inpcb *inp = mem;
284 
285 	INP_LOCK_INIT(inp, "inp", "tcpinp");
286 	return (0);
287 }
288 
289 /*
290  * Take a value and get the next power of 2 that doesn't overflow.
291  * Used to size the tcp_inpcb hash buckets.
292  */
293 static int
294 maketcp_hashsize(int size)
295 {
296 	int hashsize;
297 
298 	/*
299 	 * auto tune.
300 	 * get the next power of 2 higher than maxsockets.
301 	 */
302 	hashsize = 1 << fls(size);
303 	/* catch overflow, and just go one power of 2 smaller */
304 	if (hashsize < size) {
305 		hashsize = 1 << (fls(size) - 1);
306 	}
307 	return (hashsize);
308 }
309 
310 void
311 tcp_init(void)
312 {
313 	const char *tcbhash_tuneable;
314 	int hashsize;
315 
316 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
317 
318 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
319 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
320 		printf("%s: WARNING: unable to register helper hook\n", __func__);
321 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
322 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
323 		printf("%s: WARNING: unable to register helper hook\n", __func__);
324 
325 	hashsize = TCBHASHSIZE;
326 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
327 	if (hashsize == 0) {
328 		/*
329 		 * Auto tune the hash size based on maxsockets.
330 		 * A perfect hash would have a 1:1 mapping
331 		 * (hashsize = maxsockets) however it's been
332 		 * suggested that O(2) average is better.
333 		 */
334 		hashsize = maketcp_hashsize(maxsockets / 4);
335 		/*
336 		 * Our historical default is 512,
337 		 * do not autotune lower than this.
338 		 */
339 		if (hashsize < 512)
340 			hashsize = 512;
341 		if (bootverbose)
342 			printf("%s: %s auto tuned to %d\n", __func__,
343 			    tcbhash_tuneable, hashsize);
344 	}
345 	/*
346 	 * We require a hashsize to be a power of two.
347 	 * Previously if it was not a power of two we would just reset it
348 	 * back to 512, which could be a nasty surprise if you did not notice
349 	 * the error message.
350 	 * Instead what we do is clip it to the closest power of two lower
351 	 * than the specified hash value.
352 	 */
353 	if (!powerof2(hashsize)) {
354 		int oldhashsize = hashsize;
355 
356 		hashsize = maketcp_hashsize(hashsize);
357 		/* prevent absurdly low value */
358 		if (hashsize < 16)
359 			hashsize = 16;
360 		printf("%s: WARNING: TCB hash size not a power of 2, "
361 		    "clipped from %d to %d.\n", __func__, oldhashsize,
362 		    hashsize);
363 	}
364 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
365 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
366 	    IPI_HASHFIELDS_4TUPLE);
367 
368 	/*
369 	 * These have to be type stable for the benefit of the timers.
370 	 */
371 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
372 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
373 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
374 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
375 
376 	tcp_tw_init();
377 	syncache_init();
378 	tcp_hc_init();
379 	tcp_reass_init();
380 
381 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
382 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
383 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
384 
385 	/* Skip initialization of globals for non-default instances. */
386 	if (!IS_DEFAULT_VNET(curvnet))
387 		return;
388 
389 	/* XXX virtualize those bellow? */
390 	tcp_delacktime = TCPTV_DELACK;
391 	tcp_keepinit = TCPTV_KEEP_INIT;
392 	tcp_keepidle = TCPTV_KEEP_IDLE;
393 	tcp_keepintvl = TCPTV_KEEPINTVL;
394 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
395 	tcp_msl = TCPTV_MSL;
396 	tcp_rexmit_min = TCPTV_MIN;
397 	if (tcp_rexmit_min < 1)
398 		tcp_rexmit_min = 1;
399 	tcp_rexmit_slop = TCPTV_CPU_VAR;
400 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
401 	tcp_tcbhashsize = hashsize;
402 
403 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
404 	if (tcp_soreceive_stream) {
405 #ifdef INET
406 		tcp_usrreqs.pru_soreceive = soreceive_stream;
407 #endif
408 #ifdef INET6
409 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
410 #endif /* INET6 */
411 	}
412 
413 #ifdef INET6
414 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
415 #else /* INET6 */
416 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
417 #endif /* INET6 */
418 	if (max_protohdr < TCP_MINPROTOHDR)
419 		max_protohdr = TCP_MINPROTOHDR;
420 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
421 		panic("tcp_init");
422 #undef TCP_MINPROTOHDR
423 
424 	ISN_LOCK_INIT();
425 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
426 		SHUTDOWN_PRI_DEFAULT);
427 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
428 		EVENTHANDLER_PRI_ANY);
429 }
430 
431 #ifdef VIMAGE
432 void
433 tcp_destroy(void)
434 {
435 	int error;
436 
437 	tcp_reass_destroy();
438 	tcp_hc_destroy();
439 	syncache_destroy();
440 	tcp_tw_destroy();
441 	in_pcbinfo_destroy(&V_tcbinfo);
442 	uma_zdestroy(V_sack_hole_zone);
443 	uma_zdestroy(V_tcpcb_zone);
444 
445 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
446 	if (error != 0) {
447 		printf("%s: WARNING: unable to deregister helper hook "
448 		    "type=%d, id=%d: error %d returned\n", __func__,
449 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
450 	}
451 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
452 	if (error != 0) {
453 		printf("%s: WARNING: unable to deregister helper hook "
454 		    "type=%d, id=%d: error %d returned\n", __func__,
455 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
456 	}
457 }
458 #endif
459 
460 void
461 tcp_fini(void *xtp)
462 {
463 
464 }
465 
466 /*
467  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
468  * tcp_template used to store this data in mbufs, but we now recopy it out
469  * of the tcpcb each time to conserve mbufs.
470  */
471 void
472 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
473 {
474 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
475 
476 	INP_WLOCK_ASSERT(inp);
477 
478 #ifdef INET6
479 	if ((inp->inp_vflag & INP_IPV6) != 0) {
480 		struct ip6_hdr *ip6;
481 
482 		ip6 = (struct ip6_hdr *)ip_ptr;
483 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
484 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
485 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
486 			(IPV6_VERSION & IPV6_VERSION_MASK);
487 		ip6->ip6_nxt = IPPROTO_TCP;
488 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
489 		ip6->ip6_src = inp->in6p_laddr;
490 		ip6->ip6_dst = inp->in6p_faddr;
491 	}
492 #endif /* INET6 */
493 #if defined(INET6) && defined(INET)
494 	else
495 #endif
496 #ifdef INET
497 	{
498 		struct ip *ip;
499 
500 		ip = (struct ip *)ip_ptr;
501 		ip->ip_v = IPVERSION;
502 		ip->ip_hl = 5;
503 		ip->ip_tos = inp->inp_ip_tos;
504 		ip->ip_len = 0;
505 		ip->ip_id = 0;
506 		ip->ip_off = 0;
507 		ip->ip_ttl = inp->inp_ip_ttl;
508 		ip->ip_sum = 0;
509 		ip->ip_p = IPPROTO_TCP;
510 		ip->ip_src = inp->inp_laddr;
511 		ip->ip_dst = inp->inp_faddr;
512 	}
513 #endif /* INET */
514 	th->th_sport = inp->inp_lport;
515 	th->th_dport = inp->inp_fport;
516 	th->th_seq = 0;
517 	th->th_ack = 0;
518 	th->th_x2 = 0;
519 	th->th_off = 5;
520 	th->th_flags = 0;
521 	th->th_win = 0;
522 	th->th_urp = 0;
523 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
524 }
525 
526 /*
527  * Create template to be used to send tcp packets on a connection.
528  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
529  * use for this function is in keepalives, which use tcp_respond.
530  */
531 struct tcptemp *
532 tcpip_maketemplate(struct inpcb *inp)
533 {
534 	struct tcptemp *t;
535 
536 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
537 	if (t == NULL)
538 		return (NULL);
539 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
540 	return (t);
541 }
542 
543 /*
544  * Send a single message to the TCP at address specified by
545  * the given TCP/IP header.  If m == NULL, then we make a copy
546  * of the tcpiphdr at ti and send directly to the addressed host.
547  * This is used to force keep alive messages out using the TCP
548  * template for a connection.  If flags are given then we send
549  * a message back to the TCP which originated the * segment ti,
550  * and discard the mbuf containing it and any other attached mbufs.
551  *
552  * In any case the ack and sequence number of the transmitted
553  * segment are as specified by the parameters.
554  *
555  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
556  */
557 void
558 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
559     tcp_seq ack, tcp_seq seq, int flags)
560 {
561 	int tlen;
562 	int win = 0;
563 	struct ip *ip;
564 	struct tcphdr *nth;
565 #ifdef INET6
566 	struct ip6_hdr *ip6;
567 	int isipv6;
568 #endif /* INET6 */
569 	int ipflags = 0;
570 	struct inpcb *inp;
571 
572 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
573 
574 #ifdef INET6
575 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
576 	ip6 = ipgen;
577 #endif /* INET6 */
578 	ip = ipgen;
579 
580 	if (tp != NULL) {
581 		inp = tp->t_inpcb;
582 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
583 		INP_WLOCK_ASSERT(inp);
584 	} else
585 		inp = NULL;
586 
587 	if (tp != NULL) {
588 		if (!(flags & TH_RST)) {
589 			win = sbspace(&inp->inp_socket->so_rcv);
590 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
591 				win = (long)TCP_MAXWIN << tp->rcv_scale;
592 		}
593 	}
594 	if (m == NULL) {
595 		m = m_gethdr(M_NOWAIT, MT_DATA);
596 		if (m == NULL)
597 			return;
598 		tlen = 0;
599 		m->m_data += max_linkhdr;
600 #ifdef INET6
601 		if (isipv6) {
602 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
603 			      sizeof(struct ip6_hdr));
604 			ip6 = mtod(m, struct ip6_hdr *);
605 			nth = (struct tcphdr *)(ip6 + 1);
606 		} else
607 #endif /* INET6 */
608 		{
609 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
610 			ip = mtod(m, struct ip *);
611 			nth = (struct tcphdr *)(ip + 1);
612 		}
613 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
614 		flags = TH_ACK;
615 	} else {
616 		/*
617 		 *  reuse the mbuf.
618 		 * XXX MRT We inherrit the FIB, which is lucky.
619 		 */
620 		m_freem(m->m_next);
621 		m->m_next = NULL;
622 		m->m_data = (caddr_t)ipgen;
623 		/* m_len is set later */
624 		tlen = 0;
625 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
626 #ifdef INET6
627 		if (isipv6) {
628 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
629 			nth = (struct tcphdr *)(ip6 + 1);
630 		} else
631 #endif /* INET6 */
632 		{
633 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
634 			nth = (struct tcphdr *)(ip + 1);
635 		}
636 		if (th != nth) {
637 			/*
638 			 * this is usually a case when an extension header
639 			 * exists between the IPv6 header and the
640 			 * TCP header.
641 			 */
642 			nth->th_sport = th->th_sport;
643 			nth->th_dport = th->th_dport;
644 		}
645 		xchg(nth->th_dport, nth->th_sport, uint16_t);
646 #undef xchg
647 	}
648 #ifdef INET6
649 	if (isipv6) {
650 		ip6->ip6_flow = 0;
651 		ip6->ip6_vfc = IPV6_VERSION;
652 		ip6->ip6_nxt = IPPROTO_TCP;
653 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
654 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
655 	}
656 #endif
657 #if defined(INET) && defined(INET6)
658 	else
659 #endif
660 #ifdef INET
661 	{
662 		tlen += sizeof (struct tcpiphdr);
663 		ip->ip_len = htons(tlen);
664 		ip->ip_ttl = V_ip_defttl;
665 		if (V_path_mtu_discovery)
666 			ip->ip_off |= htons(IP_DF);
667 	}
668 #endif
669 	m->m_len = tlen;
670 	m->m_pkthdr.len = tlen;
671 	m->m_pkthdr.rcvif = NULL;
672 #ifdef MAC
673 	if (inp != NULL) {
674 		/*
675 		 * Packet is associated with a socket, so allow the
676 		 * label of the response to reflect the socket label.
677 		 */
678 		INP_WLOCK_ASSERT(inp);
679 		mac_inpcb_create_mbuf(inp, m);
680 	} else {
681 		/*
682 		 * Packet is not associated with a socket, so possibly
683 		 * update the label in place.
684 		 */
685 		mac_netinet_tcp_reply(m);
686 	}
687 #endif
688 	nth->th_seq = htonl(seq);
689 	nth->th_ack = htonl(ack);
690 	nth->th_x2 = 0;
691 	nth->th_off = sizeof (struct tcphdr) >> 2;
692 	nth->th_flags = flags;
693 	if (tp != NULL)
694 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
695 	else
696 		nth->th_win = htons((u_short)win);
697 	nth->th_urp = 0;
698 
699 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
700 #ifdef INET6
701 	if (isipv6) {
702 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
703 		nth->th_sum = in6_cksum_pseudo(ip6,
704 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
705 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
706 		    NULL, NULL);
707 	}
708 #endif /* INET6 */
709 #if defined(INET6) && defined(INET)
710 	else
711 #endif
712 #ifdef INET
713 	{
714 		m->m_pkthdr.csum_flags = CSUM_TCP;
715 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
716 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
717 	}
718 #endif /* INET */
719 #ifdef TCPDEBUG
720 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
721 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
722 #endif
723 	if (flags & TH_RST)
724 		TCP_PROBE5(accept_refused, NULL, NULL, m->m_data, tp, nth);
725 
726 	TCP_PROBE5(send, NULL, tp, m->m_data, tp, nth);
727 #ifdef INET6
728 	if (isipv6)
729 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
730 #endif /* INET6 */
731 #if defined(INET) && defined(INET6)
732 	else
733 #endif
734 #ifdef INET
735 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
736 #endif
737 }
738 
739 /*
740  * Create a new TCP control block, making an
741  * empty reassembly queue and hooking it to the argument
742  * protocol control block.  The `inp' parameter must have
743  * come from the zone allocator set up in tcp_init().
744  */
745 struct tcpcb *
746 tcp_newtcpcb(struct inpcb *inp)
747 {
748 	struct tcpcb_mem *tm;
749 	struct tcpcb *tp;
750 #ifdef INET6
751 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
752 #endif /* INET6 */
753 
754 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
755 	if (tm == NULL)
756 		return (NULL);
757 	tp = &tm->tcb;
758 
759 	/* Initialise cc_var struct for this tcpcb. */
760 	tp->ccv = &tm->ccv;
761 	tp->ccv->type = IPPROTO_TCP;
762 	tp->ccv->ccvc.tcp = tp;
763 
764 	/*
765 	 * Use the current system default CC algorithm.
766 	 */
767 	CC_LIST_RLOCK();
768 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
769 	CC_ALGO(tp) = CC_DEFAULT();
770 	CC_LIST_RUNLOCK();
771 
772 	if (CC_ALGO(tp)->cb_init != NULL)
773 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
774 			uma_zfree(V_tcpcb_zone, tm);
775 			return (NULL);
776 		}
777 
778 	tp->osd = &tm->osd;
779 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
780 		uma_zfree(V_tcpcb_zone, tm);
781 		return (NULL);
782 	}
783 
784 #ifdef VIMAGE
785 	tp->t_vnet = inp->inp_vnet;
786 #endif
787 	tp->t_timers = &tm->tt;
788 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
789 	tp->t_maxseg = tp->t_maxopd =
790 #ifdef INET6
791 		isipv6 ? V_tcp_v6mssdflt :
792 #endif /* INET6 */
793 		V_tcp_mssdflt;
794 
795 	/* Set up our timeouts. */
796 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
797 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
798 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
799 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
800 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
801 
802 	if (V_tcp_do_rfc1323)
803 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
804 	if (V_tcp_do_sack)
805 		tp->t_flags |= TF_SACK_PERMIT;
806 	TAILQ_INIT(&tp->snd_holes);
807 	tp->t_inpcb = inp;	/* XXX */
808 	/*
809 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
810 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
811 	 * reasonable initial retransmit time.
812 	 */
813 	tp->t_srtt = TCPTV_SRTTBASE;
814 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
815 	tp->t_rttmin = tcp_rexmit_min;
816 	tp->t_rxtcur = TCPTV_RTOBASE;
817 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
818 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
819 	tp->t_rcvtime = ticks;
820 	/*
821 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
822 	 * because the socket may be bound to an IPv6 wildcard address,
823 	 * which may match an IPv4-mapped IPv6 address.
824 	 */
825 	inp->inp_ip_ttl = V_ip_defttl;
826 	inp->inp_ppcb = tp;
827 	return (tp);		/* XXX */
828 }
829 
830 /*
831  * Switch the congestion control algorithm back to NewReno for any active
832  * control blocks using an algorithm which is about to go away.
833  * This ensures the CC framework can allow the unload to proceed without leaving
834  * any dangling pointers which would trigger a panic.
835  * Returning non-zero would inform the CC framework that something went wrong
836  * and it would be unsafe to allow the unload to proceed. However, there is no
837  * way for this to occur with this implementation so we always return zero.
838  */
839 int
840 tcp_ccalgounload(struct cc_algo *unload_algo)
841 {
842 	struct cc_algo *tmpalgo;
843 	struct inpcb *inp;
844 	struct tcpcb *tp;
845 	VNET_ITERATOR_DECL(vnet_iter);
846 
847 	/*
848 	 * Check all active control blocks across all network stacks and change
849 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
850 	 * requires cleanup code to be run, call it.
851 	 */
852 	VNET_LIST_RLOCK();
853 	VNET_FOREACH(vnet_iter) {
854 		CURVNET_SET(vnet_iter);
855 		INP_INFO_RLOCK(&V_tcbinfo);
856 		/*
857 		 * New connections already part way through being initialised
858 		 * with the CC algo we're removing will not race with this code
859 		 * because the INP_INFO_WLOCK is held during initialisation. We
860 		 * therefore don't enter the loop below until the connection
861 		 * list has stabilised.
862 		 */
863 		LIST_FOREACH(inp, &V_tcb, inp_list) {
864 			INP_WLOCK(inp);
865 			/* Important to skip tcptw structs. */
866 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
867 			    (tp = intotcpcb(inp)) != NULL) {
868 				/*
869 				 * By holding INP_WLOCK here, we are assured
870 				 * that the connection is not currently
871 				 * executing inside the CC module's functions
872 				 * i.e. it is safe to make the switch back to
873 				 * NewReno.
874 				 */
875 				if (CC_ALGO(tp) == unload_algo) {
876 					tmpalgo = CC_ALGO(tp);
877 					/* NewReno does not require any init. */
878 					CC_ALGO(tp) = &newreno_cc_algo;
879 					if (tmpalgo->cb_destroy != NULL)
880 						tmpalgo->cb_destroy(tp->ccv);
881 				}
882 			}
883 			INP_WUNLOCK(inp);
884 		}
885 		INP_INFO_RUNLOCK(&V_tcbinfo);
886 		CURVNET_RESTORE();
887 	}
888 	VNET_LIST_RUNLOCK();
889 
890 	return (0);
891 }
892 
893 /*
894  * Drop a TCP connection, reporting
895  * the specified error.  If connection is synchronized,
896  * then send a RST to peer.
897  */
898 struct tcpcb *
899 tcp_drop(struct tcpcb *tp, int errno)
900 {
901 	struct socket *so = tp->t_inpcb->inp_socket;
902 
903 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
904 	INP_WLOCK_ASSERT(tp->t_inpcb);
905 
906 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
907 		tcp_state_change(tp, TCPS_CLOSED);
908 		(void) tcp_output(tp);
909 		TCPSTAT_INC(tcps_drops);
910 	} else
911 		TCPSTAT_INC(tcps_conndrops);
912 	if (errno == ETIMEDOUT && tp->t_softerror)
913 		errno = tp->t_softerror;
914 	so->so_error = errno;
915 	return (tcp_close(tp));
916 }
917 
918 void
919 tcp_discardcb(struct tcpcb *tp)
920 {
921 	struct inpcb *inp = tp->t_inpcb;
922 	struct socket *so = inp->inp_socket;
923 #ifdef INET6
924 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
925 #endif /* INET6 */
926 
927 	INP_WLOCK_ASSERT(inp);
928 
929 	/*
930 	 * Make sure that all of our timers are stopped before we delete the
931 	 * PCB.
932 	 *
933 	 * XXXRW: Really, we would like to use callout_drain() here in order
934 	 * to avoid races experienced in tcp_timer.c where a timer is already
935 	 * executing at this point.  However, we can't, both because we're
936 	 * running in a context where we can't sleep, and also because we
937 	 * hold locks required by the timers.  What we instead need to do is
938 	 * test to see if callout_drain() is required, and if so, defer some
939 	 * portion of the remainder of tcp_discardcb() to an asynchronous
940 	 * context that can callout_drain() and then continue.  Some care
941 	 * will be required to ensure that no further processing takes place
942 	 * on the tcpcb, even though it hasn't been freed (a flag?).
943 	 */
944 	callout_stop(&tp->t_timers->tt_rexmt);
945 	callout_stop(&tp->t_timers->tt_persist);
946 	callout_stop(&tp->t_timers->tt_keep);
947 	callout_stop(&tp->t_timers->tt_2msl);
948 	callout_stop(&tp->t_timers->tt_delack);
949 
950 	/*
951 	 * If we got enough samples through the srtt filter,
952 	 * save the rtt and rttvar in the routing entry.
953 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
954 	 * 4 samples is enough for the srtt filter to converge
955 	 * to within enough % of the correct value; fewer samples
956 	 * and we could save a bogus rtt. The danger is not high
957 	 * as tcp quickly recovers from everything.
958 	 * XXX: Works very well but needs some more statistics!
959 	 */
960 	if (tp->t_rttupdated >= 4) {
961 		struct hc_metrics_lite metrics;
962 		u_long ssthresh;
963 
964 		bzero(&metrics, sizeof(metrics));
965 		/*
966 		 * Update the ssthresh always when the conditions below
967 		 * are satisfied. This gives us better new start value
968 		 * for the congestion avoidance for new connections.
969 		 * ssthresh is only set if packet loss occured on a session.
970 		 *
971 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
972 		 * being torn down.  Ideally this code would not use 'so'.
973 		 */
974 		ssthresh = tp->snd_ssthresh;
975 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
976 			/*
977 			 * convert the limit from user data bytes to
978 			 * packets then to packet data bytes.
979 			 */
980 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
981 			if (ssthresh < 2)
982 				ssthresh = 2;
983 			ssthresh *= (u_long)(tp->t_maxseg +
984 #ifdef INET6
985 			    (isipv6 ? sizeof (struct ip6_hdr) +
986 				sizeof (struct tcphdr) :
987 #endif
988 				sizeof (struct tcpiphdr)
989 #ifdef INET6
990 			    )
991 #endif
992 			    );
993 		} else
994 			ssthresh = 0;
995 		metrics.rmx_ssthresh = ssthresh;
996 
997 		metrics.rmx_rtt = tp->t_srtt;
998 		metrics.rmx_rttvar = tp->t_rttvar;
999 		metrics.rmx_cwnd = tp->snd_cwnd;
1000 		metrics.rmx_sendpipe = 0;
1001 		metrics.rmx_recvpipe = 0;
1002 
1003 		tcp_hc_update(&inp->inp_inc, &metrics);
1004 	}
1005 
1006 	/* free the reassembly queue, if any */
1007 	tcp_reass_flush(tp);
1008 
1009 #ifdef TCP_OFFLOAD
1010 	/* Disconnect offload device, if any. */
1011 	if (tp->t_flags & TF_TOE)
1012 		tcp_offload_detach(tp);
1013 #endif
1014 
1015 	tcp_free_sackholes(tp);
1016 
1017 	/* Allow the CC algorithm to clean up after itself. */
1018 	if (CC_ALGO(tp)->cb_destroy != NULL)
1019 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1020 
1021 	khelp_destroy_osd(tp->osd);
1022 
1023 	CC_ALGO(tp) = NULL;
1024 	inp->inp_ppcb = NULL;
1025 	tp->t_inpcb = NULL;
1026 	uma_zfree(V_tcpcb_zone, tp);
1027 }
1028 
1029 /*
1030  * Attempt to close a TCP control block, marking it as dropped, and freeing
1031  * the socket if we hold the only reference.
1032  */
1033 struct tcpcb *
1034 tcp_close(struct tcpcb *tp)
1035 {
1036 	struct inpcb *inp = tp->t_inpcb;
1037 	struct socket *so;
1038 
1039 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1040 	INP_WLOCK_ASSERT(inp);
1041 
1042 #ifdef TCP_OFFLOAD
1043 	if (tp->t_state == TCPS_LISTEN)
1044 		tcp_offload_listen_stop(tp);
1045 #endif
1046 	in_pcbdrop(inp);
1047 	TCPSTAT_INC(tcps_closed);
1048 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1049 	so = inp->inp_socket;
1050 	soisdisconnected(so);
1051 	if (inp->inp_flags & INP_SOCKREF) {
1052 		KASSERT(so->so_state & SS_PROTOREF,
1053 		    ("tcp_close: !SS_PROTOREF"));
1054 		inp->inp_flags &= ~INP_SOCKREF;
1055 		INP_WUNLOCK(inp);
1056 		ACCEPT_LOCK();
1057 		SOCK_LOCK(so);
1058 		so->so_state &= ~SS_PROTOREF;
1059 		sofree(so);
1060 		return (NULL);
1061 	}
1062 	return (tp);
1063 }
1064 
1065 void
1066 tcp_drain(void)
1067 {
1068 	VNET_ITERATOR_DECL(vnet_iter);
1069 
1070 	if (!do_tcpdrain)
1071 		return;
1072 
1073 	VNET_LIST_RLOCK_NOSLEEP();
1074 	VNET_FOREACH(vnet_iter) {
1075 		CURVNET_SET(vnet_iter);
1076 		struct inpcb *inpb;
1077 		struct tcpcb *tcpb;
1078 
1079 	/*
1080 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1081 	 * if there is one...
1082 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1083 	 *      reassembly queue should be flushed, but in a situation
1084 	 *	where we're really low on mbufs, this is potentially
1085 	 *	useful.
1086 	 */
1087 		INP_INFO_RLOCK(&V_tcbinfo);
1088 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1089 			if (inpb->inp_flags & INP_TIMEWAIT)
1090 				continue;
1091 			INP_WLOCK(inpb);
1092 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1093 				tcp_reass_flush(tcpb);
1094 				tcp_clean_sackreport(tcpb);
1095 			}
1096 			INP_WUNLOCK(inpb);
1097 		}
1098 		INP_INFO_RUNLOCK(&V_tcbinfo);
1099 		CURVNET_RESTORE();
1100 	}
1101 	VNET_LIST_RUNLOCK_NOSLEEP();
1102 }
1103 
1104 /*
1105  * Notify a tcp user of an asynchronous error;
1106  * store error as soft error, but wake up user
1107  * (for now, won't do anything until can select for soft error).
1108  *
1109  * Do not wake up user since there currently is no mechanism for
1110  * reporting soft errors (yet - a kqueue filter may be added).
1111  */
1112 static struct inpcb *
1113 tcp_notify(struct inpcb *inp, int error)
1114 {
1115 	struct tcpcb *tp;
1116 
1117 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1118 	INP_WLOCK_ASSERT(inp);
1119 
1120 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1121 	    (inp->inp_flags & INP_DROPPED))
1122 		return (inp);
1123 
1124 	tp = intotcpcb(inp);
1125 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1126 
1127 	/*
1128 	 * Ignore some errors if we are hooked up.
1129 	 * If connection hasn't completed, has retransmitted several times,
1130 	 * and receives a second error, give up now.  This is better
1131 	 * than waiting a long time to establish a connection that
1132 	 * can never complete.
1133 	 */
1134 	if (tp->t_state == TCPS_ESTABLISHED &&
1135 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1136 	     error == EHOSTDOWN)) {
1137 		return (inp);
1138 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1139 	    tp->t_softerror) {
1140 		tp = tcp_drop(tp, error);
1141 		if (tp != NULL)
1142 			return (inp);
1143 		else
1144 			return (NULL);
1145 	} else {
1146 		tp->t_softerror = error;
1147 		return (inp);
1148 	}
1149 #if 0
1150 	wakeup( &so->so_timeo);
1151 	sorwakeup(so);
1152 	sowwakeup(so);
1153 #endif
1154 }
1155 
1156 static int
1157 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1158 {
1159 	int error, i, m, n, pcb_count;
1160 	struct inpcb *inp, **inp_list;
1161 	inp_gen_t gencnt;
1162 	struct xinpgen xig;
1163 
1164 	/*
1165 	 * The process of preparing the TCB list is too time-consuming and
1166 	 * resource-intensive to repeat twice on every request.
1167 	 */
1168 	if (req->oldptr == NULL) {
1169 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1170 		n += imax(n / 8, 10);
1171 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1172 		return (0);
1173 	}
1174 
1175 	if (req->newptr != NULL)
1176 		return (EPERM);
1177 
1178 	/*
1179 	 * OK, now we're committed to doing something.
1180 	 */
1181 	INP_INFO_RLOCK(&V_tcbinfo);
1182 	gencnt = V_tcbinfo.ipi_gencnt;
1183 	n = V_tcbinfo.ipi_count;
1184 	INP_INFO_RUNLOCK(&V_tcbinfo);
1185 
1186 	m = syncache_pcbcount();
1187 
1188 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1189 		+ (n + m) * sizeof(struct xtcpcb));
1190 	if (error != 0)
1191 		return (error);
1192 
1193 	xig.xig_len = sizeof xig;
1194 	xig.xig_count = n + m;
1195 	xig.xig_gen = gencnt;
1196 	xig.xig_sogen = so_gencnt;
1197 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1198 	if (error)
1199 		return (error);
1200 
1201 	error = syncache_pcblist(req, m, &pcb_count);
1202 	if (error)
1203 		return (error);
1204 
1205 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1206 	if (inp_list == NULL)
1207 		return (ENOMEM);
1208 
1209 	INP_INFO_RLOCK(&V_tcbinfo);
1210 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1211 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1212 		INP_WLOCK(inp);
1213 		if (inp->inp_gencnt <= gencnt) {
1214 			/*
1215 			 * XXX: This use of cr_cansee(), introduced with
1216 			 * TCP state changes, is not quite right, but for
1217 			 * now, better than nothing.
1218 			 */
1219 			if (inp->inp_flags & INP_TIMEWAIT) {
1220 				if (intotw(inp) != NULL)
1221 					error = cr_cansee(req->td->td_ucred,
1222 					    intotw(inp)->tw_cred);
1223 				else
1224 					error = EINVAL;	/* Skip this inp. */
1225 			} else
1226 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1227 			if (error == 0) {
1228 				in_pcbref(inp);
1229 				inp_list[i++] = inp;
1230 			}
1231 		}
1232 		INP_WUNLOCK(inp);
1233 	}
1234 	INP_INFO_RUNLOCK(&V_tcbinfo);
1235 	n = i;
1236 
1237 	error = 0;
1238 	for (i = 0; i < n; i++) {
1239 		inp = inp_list[i];
1240 		INP_RLOCK(inp);
1241 		if (inp->inp_gencnt <= gencnt) {
1242 			struct xtcpcb xt;
1243 			void *inp_ppcb;
1244 
1245 			bzero(&xt, sizeof(xt));
1246 			xt.xt_len = sizeof xt;
1247 			/* XXX should avoid extra copy */
1248 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1249 			inp_ppcb = inp->inp_ppcb;
1250 			if (inp_ppcb == NULL)
1251 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1252 			else if (inp->inp_flags & INP_TIMEWAIT) {
1253 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1254 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1255 			} else {
1256 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1257 				if (xt.xt_tp.t_timers)
1258 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1259 			}
1260 			if (inp->inp_socket != NULL)
1261 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1262 			else {
1263 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1264 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1265 			}
1266 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1267 			INP_RUNLOCK(inp);
1268 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1269 		} else
1270 			INP_RUNLOCK(inp);
1271 	}
1272 	INP_INFO_WLOCK(&V_tcbinfo);
1273 	for (i = 0; i < n; i++) {
1274 		inp = inp_list[i];
1275 		INP_RLOCK(inp);
1276 		if (!in_pcbrele_rlocked(inp))
1277 			INP_RUNLOCK(inp);
1278 	}
1279 	INP_INFO_WUNLOCK(&V_tcbinfo);
1280 
1281 	if (!error) {
1282 		/*
1283 		 * Give the user an updated idea of our state.
1284 		 * If the generation differs from what we told
1285 		 * her before, she knows that something happened
1286 		 * while we were processing this request, and it
1287 		 * might be necessary to retry.
1288 		 */
1289 		INP_INFO_RLOCK(&V_tcbinfo);
1290 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1291 		xig.xig_sogen = so_gencnt;
1292 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1293 		INP_INFO_RUNLOCK(&V_tcbinfo);
1294 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1295 	}
1296 	free(inp_list, M_TEMP);
1297 	return (error);
1298 }
1299 
1300 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1301     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1302     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1303 
1304 #ifdef INET
1305 static int
1306 tcp_getcred(SYSCTL_HANDLER_ARGS)
1307 {
1308 	struct xucred xuc;
1309 	struct sockaddr_in addrs[2];
1310 	struct inpcb *inp;
1311 	int error;
1312 
1313 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1314 	if (error)
1315 		return (error);
1316 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1317 	if (error)
1318 		return (error);
1319 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1320 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1321 	if (inp != NULL) {
1322 		if (inp->inp_socket == NULL)
1323 			error = ENOENT;
1324 		if (error == 0)
1325 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1326 		if (error == 0)
1327 			cru2x(inp->inp_cred, &xuc);
1328 		INP_RUNLOCK(inp);
1329 	} else
1330 		error = ENOENT;
1331 	if (error == 0)
1332 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1333 	return (error);
1334 }
1335 
1336 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1337     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1338     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1339 #endif /* INET */
1340 
1341 #ifdef INET6
1342 static int
1343 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1344 {
1345 	struct xucred xuc;
1346 	struct sockaddr_in6 addrs[2];
1347 	struct inpcb *inp;
1348 	int error;
1349 #ifdef INET
1350 	int mapped = 0;
1351 #endif
1352 
1353 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1354 	if (error)
1355 		return (error);
1356 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1357 	if (error)
1358 		return (error);
1359 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1360 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1361 		return (error);
1362 	}
1363 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1364 #ifdef INET
1365 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1366 			mapped = 1;
1367 		else
1368 #endif
1369 			return (EINVAL);
1370 	}
1371 
1372 #ifdef INET
1373 	if (mapped == 1)
1374 		inp = in_pcblookup(&V_tcbinfo,
1375 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1376 			addrs[1].sin6_port,
1377 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1378 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1379 	else
1380 #endif
1381 		inp = in6_pcblookup(&V_tcbinfo,
1382 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1383 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1384 			INPLOOKUP_RLOCKPCB, NULL);
1385 	if (inp != NULL) {
1386 		if (inp->inp_socket == NULL)
1387 			error = ENOENT;
1388 		if (error == 0)
1389 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1390 		if (error == 0)
1391 			cru2x(inp->inp_cred, &xuc);
1392 		INP_RUNLOCK(inp);
1393 	} else
1394 		error = ENOENT;
1395 	if (error == 0)
1396 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1397 	return (error);
1398 }
1399 
1400 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1401     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1402     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1403 #endif /* INET6 */
1404 
1405 
1406 #ifdef INET
1407 void
1408 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1409 {
1410 	struct ip *ip = vip;
1411 	struct tcphdr *th;
1412 	struct in_addr faddr;
1413 	struct inpcb *inp;
1414 	struct tcpcb *tp;
1415 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1416 	struct icmp *icp;
1417 	struct in_conninfo inc;
1418 	tcp_seq icmp_tcp_seq;
1419 	int mtu;
1420 
1421 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1422 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1423 		return;
1424 
1425 	if (cmd == PRC_MSGSIZE)
1426 		notify = tcp_mtudisc_notify;
1427 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1428 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1429 		notify = tcp_drop_syn_sent;
1430 	/*
1431 	 * Redirects don't need to be handled up here.
1432 	 */
1433 	else if (PRC_IS_REDIRECT(cmd))
1434 		return;
1435 	/*
1436 	 * Source quench is depreciated.
1437 	 */
1438 	else if (cmd == PRC_QUENCH)
1439 		return;
1440 	/*
1441 	 * Hostdead is ugly because it goes linearly through all PCBs.
1442 	 * XXX: We never get this from ICMP, otherwise it makes an
1443 	 * excellent DoS attack on machines with many connections.
1444 	 */
1445 	else if (cmd == PRC_HOSTDEAD)
1446 		ip = NULL;
1447 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1448 		return;
1449 	if (ip != NULL) {
1450 		icp = (struct icmp *)((caddr_t)ip
1451 				      - offsetof(struct icmp, icmp_ip));
1452 		th = (struct tcphdr *)((caddr_t)ip
1453 				       + (ip->ip_hl << 2));
1454 		INP_INFO_WLOCK(&V_tcbinfo);
1455 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1456 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1457 		if (inp != NULL)  {
1458 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1459 			    !(inp->inp_flags & INP_DROPPED) &&
1460 			    !(inp->inp_socket == NULL)) {
1461 				icmp_tcp_seq = htonl(th->th_seq);
1462 				tp = intotcpcb(inp);
1463 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1464 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1465 					if (cmd == PRC_MSGSIZE) {
1466 					    /*
1467 					     * MTU discovery:
1468 					     * If we got a needfrag set the MTU
1469 					     * in the route to the suggested new
1470 					     * value (if given) and then notify.
1471 					     */
1472 					    bzero(&inc, sizeof(inc));
1473 					    inc.inc_faddr = faddr;
1474 					    inc.inc_fibnum =
1475 						inp->inp_inc.inc_fibnum;
1476 
1477 					    mtu = ntohs(icp->icmp_nextmtu);
1478 					    /*
1479 					     * If no alternative MTU was
1480 					     * proposed, try the next smaller
1481 					     * one.
1482 					     */
1483 					    if (!mtu)
1484 						mtu = ip_next_mtu(
1485 						 ntohs(ip->ip_len), 1);
1486 					    if (mtu < V_tcp_minmss
1487 						 + sizeof(struct tcpiphdr))
1488 						mtu = V_tcp_minmss
1489 						 + sizeof(struct tcpiphdr);
1490 					    /*
1491 					     * Only cache the MTU if it
1492 					     * is smaller than the interface
1493 					     * or route MTU.  tcp_mtudisc()
1494 					     * will do right thing by itself.
1495 					     */
1496 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1497 						tcp_hc_updatemtu(&inc, mtu);
1498 					    tcp_mtudisc(inp, mtu);
1499 					} else
1500 						inp = (*notify)(inp,
1501 						    inetctlerrmap[cmd]);
1502 				}
1503 			}
1504 			if (inp != NULL)
1505 				INP_WUNLOCK(inp);
1506 		} else {
1507 			bzero(&inc, sizeof(inc));
1508 			inc.inc_fport = th->th_dport;
1509 			inc.inc_lport = th->th_sport;
1510 			inc.inc_faddr = faddr;
1511 			inc.inc_laddr = ip->ip_src;
1512 			syncache_unreach(&inc, th);
1513 		}
1514 		INP_INFO_WUNLOCK(&V_tcbinfo);
1515 	} else
1516 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1517 }
1518 #endif /* INET */
1519 
1520 #ifdef INET6
1521 void
1522 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1523 {
1524 	struct tcphdr th;
1525 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1526 	struct ip6_hdr *ip6;
1527 	struct mbuf *m;
1528 	struct ip6ctlparam *ip6cp = NULL;
1529 	const struct sockaddr_in6 *sa6_src = NULL;
1530 	int off;
1531 	struct tcp_portonly {
1532 		u_int16_t th_sport;
1533 		u_int16_t th_dport;
1534 	} *thp;
1535 
1536 	if (sa->sa_family != AF_INET6 ||
1537 	    sa->sa_len != sizeof(struct sockaddr_in6))
1538 		return;
1539 
1540 	if (cmd == PRC_MSGSIZE)
1541 		notify = tcp_mtudisc_notify;
1542 	else if (!PRC_IS_REDIRECT(cmd) &&
1543 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1544 		return;
1545 	/* Source quench is depreciated. */
1546 	else if (cmd == PRC_QUENCH)
1547 		return;
1548 
1549 	/* if the parameter is from icmp6, decode it. */
1550 	if (d != NULL) {
1551 		ip6cp = (struct ip6ctlparam *)d;
1552 		m = ip6cp->ip6c_m;
1553 		ip6 = ip6cp->ip6c_ip6;
1554 		off = ip6cp->ip6c_off;
1555 		sa6_src = ip6cp->ip6c_src;
1556 	} else {
1557 		m = NULL;
1558 		ip6 = NULL;
1559 		off = 0;	/* fool gcc */
1560 		sa6_src = &sa6_any;
1561 	}
1562 
1563 	if (ip6 != NULL) {
1564 		struct in_conninfo inc;
1565 		/*
1566 		 * XXX: We assume that when IPV6 is non NULL,
1567 		 * M and OFF are valid.
1568 		 */
1569 
1570 		/* check if we can safely examine src and dst ports */
1571 		if (m->m_pkthdr.len < off + sizeof(*thp))
1572 			return;
1573 
1574 		bzero(&th, sizeof(th));
1575 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1576 
1577 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1578 		    (struct sockaddr *)ip6cp->ip6c_src,
1579 		    th.th_sport, cmd, NULL, notify);
1580 
1581 		bzero(&inc, sizeof(inc));
1582 		inc.inc_fport = th.th_dport;
1583 		inc.inc_lport = th.th_sport;
1584 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1585 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1586 		inc.inc_flags |= INC_ISIPV6;
1587 		INP_INFO_WLOCK(&V_tcbinfo);
1588 		syncache_unreach(&inc, &th);
1589 		INP_INFO_WUNLOCK(&V_tcbinfo);
1590 	} else
1591 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1592 			      0, cmd, NULL, notify);
1593 }
1594 #endif /* INET6 */
1595 
1596 
1597 /*
1598  * Following is where TCP initial sequence number generation occurs.
1599  *
1600  * There are two places where we must use initial sequence numbers:
1601  * 1.  In SYN-ACK packets.
1602  * 2.  In SYN packets.
1603  *
1604  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1605  * tcp_syncache.c for details.
1606  *
1607  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1608  * depends on this property.  In addition, these ISNs should be
1609  * unguessable so as to prevent connection hijacking.  To satisfy
1610  * the requirements of this situation, the algorithm outlined in
1611  * RFC 1948 is used, with only small modifications.
1612  *
1613  * Implementation details:
1614  *
1615  * Time is based off the system timer, and is corrected so that it
1616  * increases by one megabyte per second.  This allows for proper
1617  * recycling on high speed LANs while still leaving over an hour
1618  * before rollover.
1619  *
1620  * As reading the *exact* system time is too expensive to be done
1621  * whenever setting up a TCP connection, we increment the time
1622  * offset in two ways.  First, a small random positive increment
1623  * is added to isn_offset for each connection that is set up.
1624  * Second, the function tcp_isn_tick fires once per clock tick
1625  * and increments isn_offset as necessary so that sequence numbers
1626  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1627  * random positive increments serve only to ensure that the same
1628  * exact sequence number is never sent out twice (as could otherwise
1629  * happen when a port is recycled in less than the system tick
1630  * interval.)
1631  *
1632  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1633  * between seeding of isn_secret.  This is normally set to zero,
1634  * as reseeding should not be necessary.
1635  *
1636  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1637  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1638  * general, this means holding an exclusive (write) lock.
1639  */
1640 
1641 #define ISN_BYTES_PER_SECOND 1048576
1642 #define ISN_STATIC_INCREMENT 4096
1643 #define ISN_RANDOM_INCREMENT (4096 - 1)
1644 
1645 static VNET_DEFINE(u_char, isn_secret[32]);
1646 static VNET_DEFINE(int, isn_last);
1647 static VNET_DEFINE(int, isn_last_reseed);
1648 static VNET_DEFINE(u_int32_t, isn_offset);
1649 static VNET_DEFINE(u_int32_t, isn_offset_old);
1650 
1651 #define	V_isn_secret			VNET(isn_secret)
1652 #define	V_isn_last			VNET(isn_last)
1653 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1654 #define	V_isn_offset			VNET(isn_offset)
1655 #define	V_isn_offset_old		VNET(isn_offset_old)
1656 
1657 tcp_seq
1658 tcp_new_isn(struct tcpcb *tp)
1659 {
1660 	MD5_CTX isn_ctx;
1661 	u_int32_t md5_buffer[4];
1662 	tcp_seq new_isn;
1663 	u_int32_t projected_offset;
1664 
1665 	INP_WLOCK_ASSERT(tp->t_inpcb);
1666 
1667 	ISN_LOCK();
1668 	/* Seed if this is the first use, reseed if requested. */
1669 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1670 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1671 		< (u_int)ticks))) {
1672 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1673 		V_isn_last_reseed = ticks;
1674 	}
1675 
1676 	/* Compute the md5 hash and return the ISN. */
1677 	MD5Init(&isn_ctx);
1678 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1679 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1680 #ifdef INET6
1681 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1682 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1683 			  sizeof(struct in6_addr));
1684 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1685 			  sizeof(struct in6_addr));
1686 	} else
1687 #endif
1688 	{
1689 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1690 			  sizeof(struct in_addr));
1691 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1692 			  sizeof(struct in_addr));
1693 	}
1694 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1695 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1696 	new_isn = (tcp_seq) md5_buffer[0];
1697 	V_isn_offset += ISN_STATIC_INCREMENT +
1698 		(arc4random() & ISN_RANDOM_INCREMENT);
1699 	if (ticks != V_isn_last) {
1700 		projected_offset = V_isn_offset_old +
1701 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1702 		if (SEQ_GT(projected_offset, V_isn_offset))
1703 			V_isn_offset = projected_offset;
1704 		V_isn_offset_old = V_isn_offset;
1705 		V_isn_last = ticks;
1706 	}
1707 	new_isn += V_isn_offset;
1708 	ISN_UNLOCK();
1709 	return (new_isn);
1710 }
1711 
1712 /*
1713  * When a specific ICMP unreachable message is received and the
1714  * connection state is SYN-SENT, drop the connection.  This behavior
1715  * is controlled by the icmp_may_rst sysctl.
1716  */
1717 struct inpcb *
1718 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1719 {
1720 	struct tcpcb *tp;
1721 
1722 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1723 	INP_WLOCK_ASSERT(inp);
1724 
1725 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1726 	    (inp->inp_flags & INP_DROPPED))
1727 		return (inp);
1728 
1729 	tp = intotcpcb(inp);
1730 	if (tp->t_state != TCPS_SYN_SENT)
1731 		return (inp);
1732 
1733 	tp = tcp_drop(tp, errno);
1734 	if (tp != NULL)
1735 		return (inp);
1736 	else
1737 		return (NULL);
1738 }
1739 
1740 /*
1741  * When `need fragmentation' ICMP is received, update our idea of the MSS
1742  * based on the new value. Also nudge TCP to send something, since we
1743  * know the packet we just sent was dropped.
1744  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1745  */
1746 static struct inpcb *
1747 tcp_mtudisc_notify(struct inpcb *inp, int error)
1748 {
1749 
1750 	return (tcp_mtudisc(inp, -1));
1751 }
1752 
1753 struct inpcb *
1754 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1755 {
1756 	struct tcpcb *tp;
1757 	struct socket *so;
1758 
1759 	INP_WLOCK_ASSERT(inp);
1760 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1761 	    (inp->inp_flags & INP_DROPPED))
1762 		return (inp);
1763 
1764 	tp = intotcpcb(inp);
1765 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1766 
1767 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1768 
1769 	so = inp->inp_socket;
1770 	SOCKBUF_LOCK(&so->so_snd);
1771 	/* If the mss is larger than the socket buffer, decrease the mss. */
1772 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1773 		tp->t_maxseg = so->so_snd.sb_hiwat;
1774 	SOCKBUF_UNLOCK(&so->so_snd);
1775 
1776 	TCPSTAT_INC(tcps_mturesent);
1777 	tp->t_rtttime = 0;
1778 	tp->snd_nxt = tp->snd_una;
1779 	tcp_free_sackholes(tp);
1780 	tp->snd_recover = tp->snd_max;
1781 	if (tp->t_flags & TF_SACK_PERMIT)
1782 		EXIT_FASTRECOVERY(tp->t_flags);
1783 	tcp_output(tp);
1784 	return (inp);
1785 }
1786 
1787 #ifdef INET
1788 /*
1789  * Look-up the routing entry to the peer of this inpcb.  If no route
1790  * is found and it cannot be allocated, then return 0.  This routine
1791  * is called by TCP routines that access the rmx structure and by
1792  * tcp_mss_update to get the peer/interface MTU.
1793  */
1794 u_long
1795 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1796 {
1797 	struct route sro;
1798 	struct sockaddr_in *dst;
1799 	struct ifnet *ifp;
1800 	u_long maxmtu = 0;
1801 
1802 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1803 
1804 	bzero(&sro, sizeof(sro));
1805 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1806 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1807 		dst->sin_family = AF_INET;
1808 		dst->sin_len = sizeof(*dst);
1809 		dst->sin_addr = inc->inc_faddr;
1810 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1811 	}
1812 	if (sro.ro_rt != NULL) {
1813 		ifp = sro.ro_rt->rt_ifp;
1814 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1815 			maxmtu = ifp->if_mtu;
1816 		else
1817 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1818 
1819 		/* Report additional interface capabilities. */
1820 		if (cap != NULL) {
1821 			if (ifp->if_capenable & IFCAP_TSO4 &&
1822 			    ifp->if_hwassist & CSUM_TSO)
1823 				cap->ifcap |= CSUM_TSO;
1824 				cap->tsomax = ifp->if_hw_tsomax;
1825 		}
1826 		RTFREE(sro.ro_rt);
1827 	}
1828 	return (maxmtu);
1829 }
1830 #endif /* INET */
1831 
1832 #ifdef INET6
1833 u_long
1834 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1835 {
1836 	struct route_in6 sro6;
1837 	struct ifnet *ifp;
1838 	u_long maxmtu = 0;
1839 
1840 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1841 
1842 	bzero(&sro6, sizeof(sro6));
1843 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1844 		sro6.ro_dst.sin6_family = AF_INET6;
1845 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1846 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1847 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1848 	}
1849 	if (sro6.ro_rt != NULL) {
1850 		ifp = sro6.ro_rt->rt_ifp;
1851 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1852 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1853 		else
1854 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1855 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1856 
1857 		/* Report additional interface capabilities. */
1858 		if (cap != NULL) {
1859 			if (ifp->if_capenable & IFCAP_TSO6 &&
1860 			    ifp->if_hwassist & CSUM_TSO)
1861 				cap->ifcap |= CSUM_TSO;
1862 				cap->tsomax = ifp->if_hw_tsomax;
1863 		}
1864 		RTFREE(sro6.ro_rt);
1865 	}
1866 
1867 	return (maxmtu);
1868 }
1869 #endif /* INET6 */
1870 
1871 #ifdef IPSEC
1872 /* compute ESP/AH header size for TCP, including outer IP header. */
1873 size_t
1874 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1875 {
1876 	struct inpcb *inp;
1877 	struct mbuf *m;
1878 	size_t hdrsiz;
1879 	struct ip *ip;
1880 #ifdef INET6
1881 	struct ip6_hdr *ip6;
1882 #endif
1883 	struct tcphdr *th;
1884 
1885 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1886 		return (0);
1887 	m = m_gethdr(M_NOWAIT, MT_DATA);
1888 	if (!m)
1889 		return (0);
1890 
1891 #ifdef INET6
1892 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1893 		ip6 = mtod(m, struct ip6_hdr *);
1894 		th = (struct tcphdr *)(ip6 + 1);
1895 		m->m_pkthdr.len = m->m_len =
1896 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1897 		tcpip_fillheaders(inp, ip6, th);
1898 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1899 	} else
1900 #endif /* INET6 */
1901 	{
1902 		ip = mtod(m, struct ip *);
1903 		th = (struct tcphdr *)(ip + 1);
1904 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1905 		tcpip_fillheaders(inp, ip, th);
1906 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1907 	}
1908 
1909 	m_free(m);
1910 	return (hdrsiz);
1911 }
1912 #endif /* IPSEC */
1913 
1914 #ifdef TCP_SIGNATURE
1915 /*
1916  * Callback function invoked by m_apply() to digest TCP segment data
1917  * contained within an mbuf chain.
1918  */
1919 static int
1920 tcp_signature_apply(void *fstate, void *data, u_int len)
1921 {
1922 
1923 	MD5Update(fstate, (u_char *)data, len);
1924 	return (0);
1925 }
1926 
1927 /*
1928  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1929  *
1930  * Parameters:
1931  * m		pointer to head of mbuf chain
1932  * _unused
1933  * len		length of TCP segment data, excluding options
1934  * optlen	length of TCP segment options
1935  * buf		pointer to storage for computed MD5 digest
1936  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1937  *
1938  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1939  * When called from tcp_input(), we can be sure that th_sum has been
1940  * zeroed out and verified already.
1941  *
1942  * Return 0 if successful, otherwise return -1.
1943  *
1944  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1945  * search with the destination IP address, and a 'magic SPI' to be
1946  * determined by the application. This is hardcoded elsewhere to 1179
1947  * right now. Another branch of this code exists which uses the SPD to
1948  * specify per-application flows but it is unstable.
1949  */
1950 int
1951 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1952     u_char *buf, u_int direction)
1953 {
1954 	union sockaddr_union dst;
1955 #ifdef INET
1956 	struct ippseudo ippseudo;
1957 #endif
1958 	MD5_CTX ctx;
1959 	int doff;
1960 	struct ip *ip;
1961 #ifdef INET
1962 	struct ipovly *ipovly;
1963 #endif
1964 	struct secasvar *sav;
1965 	struct tcphdr *th;
1966 #ifdef INET6
1967 	struct ip6_hdr *ip6;
1968 	struct in6_addr in6;
1969 	char ip6buf[INET6_ADDRSTRLEN];
1970 	uint32_t plen;
1971 	uint16_t nhdr;
1972 #endif
1973 	u_short savecsum;
1974 
1975 	KASSERT(m != NULL, ("NULL mbuf chain"));
1976 	KASSERT(buf != NULL, ("NULL signature pointer"));
1977 
1978 	/* Extract the destination from the IP header in the mbuf. */
1979 	bzero(&dst, sizeof(union sockaddr_union));
1980 	ip = mtod(m, struct ip *);
1981 #ifdef INET6
1982 	ip6 = NULL;	/* Make the compiler happy. */
1983 #endif
1984 	switch (ip->ip_v) {
1985 #ifdef INET
1986 	case IPVERSION:
1987 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1988 		dst.sa.sa_family = AF_INET;
1989 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1990 		    ip->ip_src : ip->ip_dst;
1991 		break;
1992 #endif
1993 #ifdef INET6
1994 	case (IPV6_VERSION >> 4):
1995 		ip6 = mtod(m, struct ip6_hdr *);
1996 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1997 		dst.sa.sa_family = AF_INET6;
1998 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1999 		    ip6->ip6_src : ip6->ip6_dst;
2000 		break;
2001 #endif
2002 	default:
2003 		return (EINVAL);
2004 		/* NOTREACHED */
2005 		break;
2006 	}
2007 
2008 	/* Look up an SADB entry which matches the address of the peer. */
2009 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2010 	if (sav == NULL) {
2011 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2012 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2013 #ifdef INET6
2014 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2015 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2016 #endif
2017 			"(unsupported)"));
2018 		return (EINVAL);
2019 	}
2020 
2021 	MD5Init(&ctx);
2022 	/*
2023 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2024 	 *
2025 	 * XXX The ippseudo header MUST be digested in network byte order,
2026 	 * or else we'll fail the regression test. Assume all fields we've
2027 	 * been doing arithmetic on have been in host byte order.
2028 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2029 	 * tcp_output(), the underlying ip_len member has not yet been set.
2030 	 */
2031 	switch (ip->ip_v) {
2032 #ifdef INET
2033 	case IPVERSION:
2034 		ipovly = (struct ipovly *)ip;
2035 		ippseudo.ippseudo_src = ipovly->ih_src;
2036 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2037 		ippseudo.ippseudo_pad = 0;
2038 		ippseudo.ippseudo_p = IPPROTO_TCP;
2039 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2040 		    optlen);
2041 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2042 
2043 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2044 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2045 		break;
2046 #endif
2047 #ifdef INET6
2048 	/*
2049 	 * RFC 2385, 2.0  Proposal
2050 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2051 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2052 	 * extended next header value (to form 32 bits), and 32-bit segment
2053 	 * length.
2054 	 * Note: Upper-Layer Packet Length comes before Next Header.
2055 	 */
2056 	case (IPV6_VERSION >> 4):
2057 		in6 = ip6->ip6_src;
2058 		in6_clearscope(&in6);
2059 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2060 		in6 = ip6->ip6_dst;
2061 		in6_clearscope(&in6);
2062 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2063 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2064 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2065 		nhdr = 0;
2066 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2067 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2068 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2069 		nhdr = IPPROTO_TCP;
2070 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2071 
2072 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2073 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2074 		break;
2075 #endif
2076 	default:
2077 		return (EINVAL);
2078 		/* NOTREACHED */
2079 		break;
2080 	}
2081 
2082 
2083 	/*
2084 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2085 	 * The TCP checksum must be set to zero.
2086 	 */
2087 	savecsum = th->th_sum;
2088 	th->th_sum = 0;
2089 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2090 	th->th_sum = savecsum;
2091 
2092 	/*
2093 	 * Step 3: Update MD5 hash with TCP segment data.
2094 	 *         Use m_apply() to avoid an early m_pullup().
2095 	 */
2096 	if (len > 0)
2097 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2098 
2099 	/*
2100 	 * Step 4: Update MD5 hash with shared secret.
2101 	 */
2102 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2103 	MD5Final(buf, &ctx);
2104 
2105 	key_sa_recordxfer(sav, m);
2106 	KEY_FREESAV(&sav);
2107 	return (0);
2108 }
2109 
2110 /*
2111  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2112  *
2113  * Parameters:
2114  * m		pointer to head of mbuf chain
2115  * len		length of TCP segment data, excluding options
2116  * optlen	length of TCP segment options
2117  * buf		pointer to storage for computed MD5 digest
2118  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2119  *
2120  * Return 1 if successful, otherwise return 0.
2121  */
2122 int
2123 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2124     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2125 {
2126 	char tmpdigest[TCP_SIGLEN];
2127 
2128 	if (tcp_sig_checksigs == 0)
2129 		return (1);
2130 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2131 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2132 
2133 			/*
2134 			 * If this socket is not expecting signature but
2135 			 * the segment contains signature just fail.
2136 			 */
2137 			TCPSTAT_INC(tcps_sig_err_sigopt);
2138 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2139 			return (0);
2140 		}
2141 
2142 		/* Signature is not expected, and not present in segment. */
2143 		return (1);
2144 	}
2145 
2146 	/*
2147 	 * If this socket is expecting signature but the segment does not
2148 	 * contain any just fail.
2149 	 */
2150 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2151 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2152 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2153 		return (0);
2154 	}
2155 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2156 	    IPSEC_DIR_INBOUND) == -1) {
2157 		TCPSTAT_INC(tcps_sig_err_buildsig);
2158 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2159 		return (0);
2160 	}
2161 
2162 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2163 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2164 		return (0);
2165 	}
2166 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2167 	return (1);
2168 }
2169 #endif /* TCP_SIGNATURE */
2170 
2171 static int
2172 sysctl_drop(SYSCTL_HANDLER_ARGS)
2173 {
2174 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2175 	struct sockaddr_storage addrs[2];
2176 	struct inpcb *inp;
2177 	struct tcpcb *tp;
2178 	struct tcptw *tw;
2179 	struct sockaddr_in *fin, *lin;
2180 #ifdef INET6
2181 	struct sockaddr_in6 *fin6, *lin6;
2182 #endif
2183 	int error;
2184 
2185 	inp = NULL;
2186 	fin = lin = NULL;
2187 #ifdef INET6
2188 	fin6 = lin6 = NULL;
2189 #endif
2190 	error = 0;
2191 
2192 	if (req->oldptr != NULL || req->oldlen != 0)
2193 		return (EINVAL);
2194 	if (req->newptr == NULL)
2195 		return (EPERM);
2196 	if (req->newlen < sizeof(addrs))
2197 		return (ENOMEM);
2198 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2199 	if (error)
2200 		return (error);
2201 
2202 	switch (addrs[0].ss_family) {
2203 #ifdef INET6
2204 	case AF_INET6:
2205 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2206 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2207 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2208 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2209 			return (EINVAL);
2210 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2211 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2212 				return (EINVAL);
2213 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2214 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2215 			fin = (struct sockaddr_in *)&addrs[0];
2216 			lin = (struct sockaddr_in *)&addrs[1];
2217 			break;
2218 		}
2219 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2220 		if (error)
2221 			return (error);
2222 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2223 		if (error)
2224 			return (error);
2225 		break;
2226 #endif
2227 #ifdef INET
2228 	case AF_INET:
2229 		fin = (struct sockaddr_in *)&addrs[0];
2230 		lin = (struct sockaddr_in *)&addrs[1];
2231 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2232 		    lin->sin_len != sizeof(struct sockaddr_in))
2233 			return (EINVAL);
2234 		break;
2235 #endif
2236 	default:
2237 		return (EINVAL);
2238 	}
2239 	INP_INFO_WLOCK(&V_tcbinfo);
2240 	switch (addrs[0].ss_family) {
2241 #ifdef INET6
2242 	case AF_INET6:
2243 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2244 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2245 		    INPLOOKUP_WLOCKPCB, NULL);
2246 		break;
2247 #endif
2248 #ifdef INET
2249 	case AF_INET:
2250 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2251 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2252 		break;
2253 #endif
2254 	}
2255 	if (inp != NULL) {
2256 		if (inp->inp_flags & INP_TIMEWAIT) {
2257 			/*
2258 			 * XXXRW: There currently exists a state where an
2259 			 * inpcb is present, but its timewait state has been
2260 			 * discarded.  For now, don't allow dropping of this
2261 			 * type of inpcb.
2262 			 */
2263 			tw = intotw(inp);
2264 			if (tw != NULL)
2265 				tcp_twclose(tw, 0);
2266 			else
2267 				INP_WUNLOCK(inp);
2268 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2269 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2270 			tp = intotcpcb(inp);
2271 			tp = tcp_drop(tp, ECONNABORTED);
2272 			if (tp != NULL)
2273 				INP_WUNLOCK(inp);
2274 		} else
2275 			INP_WUNLOCK(inp);
2276 	} else
2277 		error = ESRCH;
2278 	INP_INFO_WUNLOCK(&V_tcbinfo);
2279 	return (error);
2280 }
2281 
2282 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2283     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2284     0, sysctl_drop, "", "Drop TCP connection");
2285 
2286 /*
2287  * Generate a standardized TCP log line for use throughout the
2288  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2289  * allow use in the interrupt context.
2290  *
2291  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2292  * NB: The function may return NULL if memory allocation failed.
2293  *
2294  * Due to header inclusion and ordering limitations the struct ip
2295  * and ip6_hdr pointers have to be passed as void pointers.
2296  */
2297 char *
2298 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2299     const void *ip6hdr)
2300 {
2301 
2302 	/* Is logging enabled? */
2303 	if (tcp_log_in_vain == 0)
2304 		return (NULL);
2305 
2306 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2307 }
2308 
2309 char *
2310 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2311     const void *ip6hdr)
2312 {
2313 
2314 	/* Is logging enabled? */
2315 	if (tcp_log_debug == 0)
2316 		return (NULL);
2317 
2318 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2319 }
2320 
2321 static char *
2322 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2323     const void *ip6hdr)
2324 {
2325 	char *s, *sp;
2326 	size_t size;
2327 	struct ip *ip;
2328 #ifdef INET6
2329 	const struct ip6_hdr *ip6;
2330 
2331 	ip6 = (const struct ip6_hdr *)ip6hdr;
2332 #endif /* INET6 */
2333 	ip = (struct ip *)ip4hdr;
2334 
2335 	/*
2336 	 * The log line looks like this:
2337 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2338 	 */
2339 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2340 	    sizeof(PRINT_TH_FLAGS) + 1 +
2341 #ifdef INET6
2342 	    2 * INET6_ADDRSTRLEN;
2343 #else
2344 	    2 * INET_ADDRSTRLEN;
2345 #endif /* INET6 */
2346 
2347 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2348 	if (s == NULL)
2349 		return (NULL);
2350 
2351 	strcat(s, "TCP: [");
2352 	sp = s + strlen(s);
2353 
2354 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2355 		inet_ntoa_r(inc->inc_faddr, sp);
2356 		sp = s + strlen(s);
2357 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2358 		sp = s + strlen(s);
2359 		inet_ntoa_r(inc->inc_laddr, sp);
2360 		sp = s + strlen(s);
2361 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2362 #ifdef INET6
2363 	} else if (inc) {
2364 		ip6_sprintf(sp, &inc->inc6_faddr);
2365 		sp = s + strlen(s);
2366 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2367 		sp = s + strlen(s);
2368 		ip6_sprintf(sp, &inc->inc6_laddr);
2369 		sp = s + strlen(s);
2370 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2371 	} else if (ip6 && th) {
2372 		ip6_sprintf(sp, &ip6->ip6_src);
2373 		sp = s + strlen(s);
2374 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2375 		sp = s + strlen(s);
2376 		ip6_sprintf(sp, &ip6->ip6_dst);
2377 		sp = s + strlen(s);
2378 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2379 #endif /* INET6 */
2380 #ifdef INET
2381 	} else if (ip && th) {
2382 		inet_ntoa_r(ip->ip_src, sp);
2383 		sp = s + strlen(s);
2384 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2385 		sp = s + strlen(s);
2386 		inet_ntoa_r(ip->ip_dst, sp);
2387 		sp = s + strlen(s);
2388 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2389 #endif /* INET */
2390 	} else {
2391 		free(s, M_TCPLOG);
2392 		return (NULL);
2393 	}
2394 	sp = s + strlen(s);
2395 	if (th)
2396 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2397 	if (*(s + size - 1) != '\0')
2398 		panic("%s: string too long", __func__);
2399 	return (s);
2400 }
2401 
2402 /*
2403  * A subroutine which makes it easy to track TCP state changes with DTrace.
2404  * This function shouldn't be called for t_state initializations that don't
2405  * correspond to actual TCP state transitions.
2406  */
2407 void
2408 tcp_state_change(struct tcpcb *tp, int newstate)
2409 {
2410 #if defined(KDTRACE_HOOKS)
2411 	int pstate = tp->t_state;
2412 #endif
2413 
2414 	tp->t_state = newstate;
2415 	TCP_PROBE6(state_change, NULL, tp, NULL, tp, NULL, pstate);
2416 }
2417