xref: /freebsd/sys/netinet/tcp_subr.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/vm_zone.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 #include <sys/md5.h>
102 
103 int 	tcp_mssdflt = TCP_MSS;
104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106 
107 #ifdef INET6
108 int	tcp_v6mssdflt = TCP6_MSS;
109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111 	"Default TCP Maximum Segment Size for IPv6");
112 #endif
113 
114 #if 0
115 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118 #endif
119 
120 static int	tcp_do_rfc1323 = 1;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123 
124 static int	tcp_do_rfc1644 = 0;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127 
128 static int	tcp_tcbhashsize = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131 
132 static int	do_tcpdrain = 1;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134      "Enable tcp_drain routine for extra help when low on mbufs");
135 
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137     &tcbinfo.ipi_count, 0, "Number of active PCBs");
138 
139 static int	icmp_may_rst = 1;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142 
143 static int	tcp_strict_rfc1948 = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145     &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146 
147 static int	tcp_isn_reseed_interval = 0;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150 
151 static void	tcp_cleartaocache __P((void));
152 static void	tcp_notify __P((struct inpcb *, int));
153 
154 /*
155  * Target size of TCP PCB hash tables. Must be a power of two.
156  *
157  * Note that this can be overridden by the kernel environment
158  * variable net.inet.tcp.tcbhashsize
159  */
160 #ifndef TCBHASHSIZE
161 #define TCBHASHSIZE	512
162 #endif
163 
164 /*
165  * This is the actual shape of what we allocate using the zone
166  * allocator.  Doing it this way allows us to protect both structures
167  * using the same generation count, and also eliminates the overhead
168  * of allocating tcpcbs separately.  By hiding the structure here,
169  * we avoid changing most of the rest of the code (although it needs
170  * to be changed, eventually, for greater efficiency).
171  */
172 #define	ALIGNMENT	32
173 #define	ALIGNM1		(ALIGNMENT - 1)
174 struct	inp_tp {
175 	union {
176 		struct	inpcb inp;
177 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178 	} inp_tp_u;
179 	struct	tcpcb tcb;
180 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181 	struct	callout inp_tp_delack;
182 };
183 #undef ALIGNMENT
184 #undef ALIGNM1
185 
186 /*
187  * Tcp initialization
188  */
189 void
190 tcp_init()
191 {
192 	int hashsize = TCBHASHSIZE;
193 
194 	tcp_ccgen = 1;
195 	tcp_cleartaocache();
196 
197 	tcp_delacktime = TCPTV_DELACK;
198 	tcp_keepinit = TCPTV_KEEP_INIT;
199 	tcp_keepidle = TCPTV_KEEP_IDLE;
200 	tcp_keepintvl = TCPTV_KEEPINTVL;
201 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202 	tcp_msl = TCPTV_MSL;
203 
204 	LIST_INIT(&tcb);
205 	tcbinfo.listhead = &tcb;
206 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207 	if (!powerof2(hashsize)) {
208 		printf("WARNING: TCB hash size not a power of 2\n");
209 		hashsize = 512; /* safe default */
210 	}
211 	tcp_tcbhashsize = hashsize;
212 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214 					&tcbinfo.porthashmask);
215 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
216 				 ZONE_INTERRUPT, 0);
217 #ifdef INET6
218 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219 #else /* INET6 */
220 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221 #endif /* INET6 */
222 	if (max_protohdr < TCP_MINPROTOHDR)
223 		max_protohdr = TCP_MINPROTOHDR;
224 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225 		panic("tcp_init");
226 #undef TCP_MINPROTOHDR
227 }
228 
229 /*
230  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
231  * tcp_template used to store this data in mbufs, but we now recopy it out
232  * of the tcpcb each time to conserve mbufs.
233  */
234 void
235 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
236 	struct tcpcb *tp;
237 	void *ip_ptr;
238 	void *tcp_ptr;
239 {
240 	struct inpcb *inp = tp->t_inpcb;
241 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
242 
243 #ifdef INET6
244 	if ((inp->inp_vflag & INP_IPV6) != 0) {
245 		struct ip6_hdr *ip6;
246 
247 		ip6 = (struct ip6_hdr *)ip_ptr;
248 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
249 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
250 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
251 			(IPV6_VERSION & IPV6_VERSION_MASK);
252 		ip6->ip6_nxt = IPPROTO_TCP;
253 		ip6->ip6_plen = sizeof(struct tcphdr);
254 		ip6->ip6_src = inp->in6p_laddr;
255 		ip6->ip6_dst = inp->in6p_faddr;
256 		tcp_hdr->th_sum = 0;
257 	} else
258 #endif
259 	{
260 	struct ip *ip = (struct ip *) ip_ptr;
261 
262 	ip->ip_vhl = IP_VHL_BORING;
263 	ip->ip_tos = 0;
264 	ip->ip_len = 0;
265 	ip->ip_id = 0;
266 	ip->ip_off = 0;
267 	ip->ip_ttl = 0;
268 	ip->ip_sum = 0;
269 	ip->ip_p = IPPROTO_TCP;
270 	ip->ip_src = inp->inp_laddr;
271 	ip->ip_dst = inp->inp_faddr;
272 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
273 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
274 	}
275 
276 	tcp_hdr->th_sport = inp->inp_lport;
277 	tcp_hdr->th_dport = inp->inp_fport;
278 	tcp_hdr->th_seq = 0;
279 	tcp_hdr->th_ack = 0;
280 	tcp_hdr->th_x2 = 0;
281 	tcp_hdr->th_off = 5;
282 	tcp_hdr->th_flags = 0;
283 	tcp_hdr->th_win = 0;
284 	tcp_hdr->th_urp = 0;
285 }
286 
287 /*
288  * Create template to be used to send tcp packets on a connection.
289  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
290  * use for this function is in keepalives, which use tcp_respond.
291  */
292 struct tcptemp *
293 tcp_maketemplate(tp)
294 	struct tcpcb *tp;
295 {
296 	struct mbuf *m;
297 	struct tcptemp *n;
298 
299 	m = m_get(M_DONTWAIT, MT_HEADER);
300 	if (m == NULL)
301 		return (0);
302 	m->m_len = sizeof(struct tcptemp);
303 	n = mtod(m, struct tcptemp *);
304 
305 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
306 	return (n);
307 }
308 
309 /*
310  * Send a single message to the TCP at address specified by
311  * the given TCP/IP header.  If m == 0, then we make a copy
312  * of the tcpiphdr at ti and send directly to the addressed host.
313  * This is used to force keep alive messages out using the TCP
314  * template for a connection.  If flags are given then we send
315  * a message back to the TCP which originated the * segment ti,
316  * and discard the mbuf containing it and any other attached mbufs.
317  *
318  * In any case the ack and sequence number of the transmitted
319  * segment are as specified by the parameters.
320  *
321  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
322  */
323 void
324 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
325 	struct tcpcb *tp;
326 	void *ipgen;
327 	register struct tcphdr *th;
328 	register struct mbuf *m;
329 	tcp_seq ack, seq;
330 	int flags;
331 {
332 	register int tlen;
333 	int win = 0;
334 	struct route *ro = 0;
335 	struct route sro;
336 	struct ip *ip;
337 	struct tcphdr *nth;
338 #ifdef INET6
339 	struct route_in6 *ro6 = 0;
340 	struct route_in6 sro6;
341 	struct ip6_hdr *ip6;
342 	int isipv6;
343 #endif /* INET6 */
344 	int ipflags = 0;
345 
346 #ifdef INET6
347 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
348 	ip6 = ipgen;
349 #endif /* INET6 */
350 	ip = ipgen;
351 
352 	if (tp) {
353 		if (!(flags & TH_RST)) {
354 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
355 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
356 				win = (long)TCP_MAXWIN << tp->rcv_scale;
357 		}
358 #ifdef INET6
359 		if (isipv6)
360 			ro6 = &tp->t_inpcb->in6p_route;
361 		else
362 #endif /* INET6 */
363 		ro = &tp->t_inpcb->inp_route;
364 	} else {
365 #ifdef INET6
366 		if (isipv6) {
367 			ro6 = &sro6;
368 			bzero(ro6, sizeof *ro6);
369 		} else
370 #endif /* INET6 */
371 	      {
372 		ro = &sro;
373 		bzero(ro, sizeof *ro);
374 	      }
375 	}
376 	if (m == 0) {
377 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
378 		if (m == NULL)
379 			return;
380 		tlen = 0;
381 		m->m_data += max_linkhdr;
382 #ifdef INET6
383 		if (isipv6) {
384 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
385 			      sizeof(struct ip6_hdr));
386 			ip6 = mtod(m, struct ip6_hdr *);
387 			nth = (struct tcphdr *)(ip6 + 1);
388 		} else
389 #endif /* INET6 */
390 	      {
391 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
392 		ip = mtod(m, struct ip *);
393 		nth = (struct tcphdr *)(ip + 1);
394 	      }
395 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
396 		flags = TH_ACK;
397 	} else {
398 		m_freem(m->m_next);
399 		m->m_next = 0;
400 		m->m_data = (caddr_t)ipgen;
401 		/* m_len is set later */
402 		tlen = 0;
403 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
404 #ifdef INET6
405 		if (isipv6) {
406 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
407 			nth = (struct tcphdr *)(ip6 + 1);
408 		} else
409 #endif /* INET6 */
410 	      {
411 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
412 		nth = (struct tcphdr *)(ip + 1);
413 	      }
414 		if (th != nth) {
415 			/*
416 			 * this is usually a case when an extension header
417 			 * exists between the IPv6 header and the
418 			 * TCP header.
419 			 */
420 			nth->th_sport = th->th_sport;
421 			nth->th_dport = th->th_dport;
422 		}
423 		xchg(nth->th_dport, nth->th_sport, n_short);
424 #undef xchg
425 	}
426 #ifdef INET6
427 	if (isipv6) {
428 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
429 						tlen));
430 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
431 	} else
432 #endif
433       {
434 	tlen += sizeof (struct tcpiphdr);
435 	ip->ip_len = tlen;
436 	ip->ip_ttl = ip_defttl;
437       }
438 	m->m_len = tlen;
439 	m->m_pkthdr.len = tlen;
440 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
441 	nth->th_seq = htonl(seq);
442 	nth->th_ack = htonl(ack);
443 	nth->th_x2 = 0;
444 	nth->th_off = sizeof (struct tcphdr) >> 2;
445 	nth->th_flags = flags;
446 	if (tp)
447 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
448 	else
449 		nth->th_win = htons((u_short)win);
450 	nth->th_urp = 0;
451 #ifdef INET6
452 	if (isipv6) {
453 		nth->th_sum = 0;
454 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
455 					sizeof(struct ip6_hdr),
456 					tlen - sizeof(struct ip6_hdr));
457 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
458 					       ro6 && ro6->ro_rt ?
459 					       ro6->ro_rt->rt_ifp :
460 					       NULL);
461 	} else
462 #endif /* INET6 */
463       {
464         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
465 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
466         m->m_pkthdr.csum_flags = CSUM_TCP;
467         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
468       }
469 #ifdef TCPDEBUG
470 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
471 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
472 #endif
473 #ifdef IPSEC
474 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
475 		m_freem(m);
476 		return;
477 	}
478 #endif
479 #ifdef INET6
480 	if (isipv6) {
481 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
482 		if (ro6 == &sro6 && ro6->ro_rt) {
483 			RTFREE(ro6->ro_rt);
484 			ro6->ro_rt = NULL;
485 		}
486 	} else
487 #endif /* INET6 */
488       {
489 	(void) ip_output(m, NULL, ro, ipflags, NULL);
490 	if (ro == &sro && ro->ro_rt) {
491 		RTFREE(ro->ro_rt);
492 		ro->ro_rt = NULL;
493 	}
494       }
495 }
496 
497 /*
498  * Create a new TCP control block, making an
499  * empty reassembly queue and hooking it to the argument
500  * protocol control block.  The `inp' parameter must have
501  * come from the zone allocator set up in tcp_init().
502  */
503 struct tcpcb *
504 tcp_newtcpcb(inp)
505 	struct inpcb *inp;
506 {
507 	struct inp_tp *it;
508 	register struct tcpcb *tp;
509 #ifdef INET6
510 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
511 #endif /* INET6 */
512 
513 	it = (struct inp_tp *)inp;
514 	tp = &it->tcb;
515 	bzero((char *) tp, sizeof(struct tcpcb));
516 	LIST_INIT(&tp->t_segq);
517 	tp->t_maxseg = tp->t_maxopd =
518 #ifdef INET6
519 		isipv6 ? tcp_v6mssdflt :
520 #endif /* INET6 */
521 		tcp_mssdflt;
522 
523 	/* Set up our timeouts. */
524 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
525 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
526 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
527 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
528 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
529 
530 	if (tcp_do_rfc1323)
531 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
532 	if (tcp_do_rfc1644)
533 		tp->t_flags |= TF_REQ_CC;
534 	tp->t_inpcb = inp;	/* XXX */
535 	/*
536 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
537 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
538 	 * reasonable initial retransmit time.
539 	 */
540 	tp->t_srtt = TCPTV_SRTTBASE;
541 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
542 	tp->t_rttmin = TCPTV_MIN;
543 	tp->t_rxtcur = TCPTV_RTOBASE;
544 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
545 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
546 	tp->t_rcvtime = ticks;
547         /*
548 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
549 	 * because the socket may be bound to an IPv6 wildcard address,
550 	 * which may match an IPv4-mapped IPv6 address.
551 	 */
552 	inp->inp_ip_ttl = ip_defttl;
553 	inp->inp_ppcb = (caddr_t)tp;
554 	return (tp);		/* XXX */
555 }
556 
557 /*
558  * Drop a TCP connection, reporting
559  * the specified error.  If connection is synchronized,
560  * then send a RST to peer.
561  */
562 struct tcpcb *
563 tcp_drop(tp, errno)
564 	register struct tcpcb *tp;
565 	int errno;
566 {
567 	struct socket *so = tp->t_inpcb->inp_socket;
568 
569 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
570 		tp->t_state = TCPS_CLOSED;
571 		(void) tcp_output(tp);
572 		tcpstat.tcps_drops++;
573 	} else
574 		tcpstat.tcps_conndrops++;
575 	if (errno == ETIMEDOUT && tp->t_softerror)
576 		errno = tp->t_softerror;
577 	so->so_error = errno;
578 	return (tcp_close(tp));
579 }
580 
581 /*
582  * Close a TCP control block:
583  *	discard all space held by the tcp
584  *	discard internet protocol block
585  *	wake up any sleepers
586  */
587 struct tcpcb *
588 tcp_close(tp)
589 	register struct tcpcb *tp;
590 {
591 	register struct tseg_qent *q;
592 	struct inpcb *inp = tp->t_inpcb;
593 	struct socket *so = inp->inp_socket;
594 #ifdef INET6
595 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
596 #endif /* INET6 */
597 	register struct rtentry *rt;
598 	int dosavessthresh;
599 
600 	/*
601 	 * Make sure that all of our timers are stopped before we
602 	 * delete the PCB.
603 	 */
604 	callout_stop(tp->tt_rexmt);
605 	callout_stop(tp->tt_persist);
606 	callout_stop(tp->tt_keep);
607 	callout_stop(tp->tt_2msl);
608 	callout_stop(tp->tt_delack);
609 
610 	/*
611 	 * If we got enough samples through the srtt filter,
612 	 * save the rtt and rttvar in the routing entry.
613 	 * 'Enough' is arbitrarily defined as the 16 samples.
614 	 * 16 samples is enough for the srtt filter to converge
615 	 * to within 5% of the correct value; fewer samples and
616 	 * we could save a very bogus rtt.
617 	 *
618 	 * Don't update the default route's characteristics and don't
619 	 * update anything that the user "locked".
620 	 */
621 	if (tp->t_rttupdated >= 16) {
622 		register u_long i = 0;
623 #ifdef INET6
624 		if (isipv6) {
625 			struct sockaddr_in6 *sin6;
626 
627 			if ((rt = inp->in6p_route.ro_rt) == NULL)
628 				goto no_valid_rt;
629 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
630 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
631 				goto no_valid_rt;
632 		}
633 		else
634 #endif /* INET6 */
635 		if ((rt = inp->inp_route.ro_rt) == NULL ||
636 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
637 		    == INADDR_ANY)
638 			goto no_valid_rt;
639 
640 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
641 			i = tp->t_srtt *
642 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
643 			if (rt->rt_rmx.rmx_rtt && i)
644 				/*
645 				 * filter this update to half the old & half
646 				 * the new values, converting scale.
647 				 * See route.h and tcp_var.h for a
648 				 * description of the scaling constants.
649 				 */
650 				rt->rt_rmx.rmx_rtt =
651 				    (rt->rt_rmx.rmx_rtt + i) / 2;
652 			else
653 				rt->rt_rmx.rmx_rtt = i;
654 			tcpstat.tcps_cachedrtt++;
655 		}
656 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
657 			i = tp->t_rttvar *
658 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
659 			if (rt->rt_rmx.rmx_rttvar && i)
660 				rt->rt_rmx.rmx_rttvar =
661 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
662 			else
663 				rt->rt_rmx.rmx_rttvar = i;
664 			tcpstat.tcps_cachedrttvar++;
665 		}
666 		/*
667 		 * The old comment here said:
668 		 * update the pipelimit (ssthresh) if it has been updated
669 		 * already or if a pipesize was specified & the threshhold
670 		 * got below half the pipesize.  I.e., wait for bad news
671 		 * before we start updating, then update on both good
672 		 * and bad news.
673 		 *
674 		 * But we want to save the ssthresh even if no pipesize is
675 		 * specified explicitly in the route, because such
676 		 * connections still have an implicit pipesize specified
677 		 * by the global tcp_sendspace.  In the absence of a reliable
678 		 * way to calculate the pipesize, it will have to do.
679 		 */
680 		i = tp->snd_ssthresh;
681 		if (rt->rt_rmx.rmx_sendpipe != 0)
682 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
683 		else
684 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
685 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
686 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
687 		    || dosavessthresh) {
688 			/*
689 			 * convert the limit from user data bytes to
690 			 * packets then to packet data bytes.
691 			 */
692 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
693 			if (i < 2)
694 				i = 2;
695 			i *= (u_long)(tp->t_maxseg +
696 #ifdef INET6
697 				      (isipv6 ? sizeof (struct ip6_hdr) +
698 					       sizeof (struct tcphdr) :
699 #endif
700 				       sizeof (struct tcpiphdr)
701 #ifdef INET6
702 				       )
703 #endif
704 				      );
705 			if (rt->rt_rmx.rmx_ssthresh)
706 				rt->rt_rmx.rmx_ssthresh =
707 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
708 			else
709 				rt->rt_rmx.rmx_ssthresh = i;
710 			tcpstat.tcps_cachedssthresh++;
711 		}
712 	}
713 	rt = inp->inp_route.ro_rt;
714 	if (rt) {
715 		/*
716 		 * mark route for deletion if no information is
717 		 * cached.
718 		 */
719 		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
720 		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
721 			if (rt->rt_rmx.rmx_rtt == 0)
722 				rt->rt_flags |= RTF_DELCLONE;
723 		}
724 	}
725     no_valid_rt:
726 	/* free the reassembly queue, if any */
727 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
728 		LIST_REMOVE(q, tqe_q);
729 		m_freem(q->tqe_m);
730 		FREE(q, M_TSEGQ);
731 	}
732 	inp->inp_ppcb = NULL;
733 	soisdisconnected(so);
734 #ifdef INET6
735 	if (INP_CHECK_SOCKAF(so, AF_INET6))
736 		in6_pcbdetach(inp);
737 	else
738 #endif /* INET6 */
739 	in_pcbdetach(inp);
740 	tcpstat.tcps_closed++;
741 	return ((struct tcpcb *)0);
742 }
743 
744 void
745 tcp_drain()
746 {
747 	if (do_tcpdrain)
748 	{
749 		struct inpcb *inpb;
750 		struct tcpcb *tcpb;
751 		struct tseg_qent *te;
752 
753 	/*
754 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
755 	 * if there is one...
756 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
757 	 *      reassembly queue should be flushed, but in a situation
758 	 * 	where we're really low on mbufs, this is potentially
759 	 *  	usefull.
760 	 */
761 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
762 			if ((tcpb = intotcpcb(inpb))) {
763 				while ((te = LIST_FIRST(&tcpb->t_segq))
764 			            != NULL) {
765 					LIST_REMOVE(te, tqe_q);
766 					m_freem(te->tqe_m);
767 					FREE(te, M_TSEGQ);
768 				}
769 			}
770 		}
771 	}
772 }
773 
774 /*
775  * Notify a tcp user of an asynchronous error;
776  * store error as soft error, but wake up user
777  * (for now, won't do anything until can select for soft error).
778  *
779  * Do not wake up user since there currently is no mechanism for
780  * reporting soft errors (yet - a kqueue filter may be added).
781  */
782 static void
783 tcp_notify(inp, error)
784 	struct inpcb *inp;
785 	int error;
786 {
787 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
788 
789 	/*
790 	 * Ignore some errors if we are hooked up.
791 	 * If connection hasn't completed, has retransmitted several times,
792 	 * and receives a second error, give up now.  This is better
793 	 * than waiting a long time to establish a connection that
794 	 * can never complete.
795 	 */
796 	if (tp->t_state == TCPS_ESTABLISHED &&
797 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
798 	      error == EHOSTDOWN)) {
799 		return;
800 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
801 	    tp->t_softerror)
802 		tcp_drop(tp, error);
803 	else
804 		tp->t_softerror = error;
805 #if 0
806 	wakeup((caddr_t) &so->so_timeo);
807 	sorwakeup(so);
808 	sowwakeup(so);
809 #endif
810 }
811 
812 static int
813 tcp_pcblist(SYSCTL_HANDLER_ARGS)
814 {
815 	int error, i, n, s;
816 	struct inpcb *inp, **inp_list;
817 	inp_gen_t gencnt;
818 	struct xinpgen xig;
819 
820 	/*
821 	 * The process of preparing the TCB list is too time-consuming and
822 	 * resource-intensive to repeat twice on every request.
823 	 */
824 	if (req->oldptr == 0) {
825 		n = tcbinfo.ipi_count;
826 		req->oldidx = 2 * (sizeof xig)
827 			+ (n + n/8) * sizeof(struct xtcpcb);
828 		return 0;
829 	}
830 
831 	if (req->newptr != 0)
832 		return EPERM;
833 
834 	/*
835 	 * OK, now we're committed to doing something.
836 	 */
837 	s = splnet();
838 	gencnt = tcbinfo.ipi_gencnt;
839 	n = tcbinfo.ipi_count;
840 	splx(s);
841 
842 	xig.xig_len = sizeof xig;
843 	xig.xig_count = n;
844 	xig.xig_gen = gencnt;
845 	xig.xig_sogen = so_gencnt;
846 	error = SYSCTL_OUT(req, &xig, sizeof xig);
847 	if (error)
848 		return error;
849 
850 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
851 	if (inp_list == 0)
852 		return ENOMEM;
853 
854 	s = splnet();
855 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
856 	     inp = LIST_NEXT(inp, inp_list)) {
857 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
858 			inp_list[i++] = inp;
859 	}
860 	splx(s);
861 	n = i;
862 
863 	error = 0;
864 	for (i = 0; i < n; i++) {
865 		inp = inp_list[i];
866 		if (inp->inp_gencnt <= gencnt) {
867 			struct xtcpcb xt;
868 			caddr_t inp_ppcb;
869 			xt.xt_len = sizeof xt;
870 			/* XXX should avoid extra copy */
871 			bcopy(inp, &xt.xt_inp, sizeof *inp);
872 			inp_ppcb = inp->inp_ppcb;
873 			if (inp_ppcb != NULL)
874 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
875 			else
876 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
877 			if (inp->inp_socket)
878 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
879 			error = SYSCTL_OUT(req, &xt, sizeof xt);
880 		}
881 	}
882 	if (!error) {
883 		/*
884 		 * Give the user an updated idea of our state.
885 		 * If the generation differs from what we told
886 		 * her before, she knows that something happened
887 		 * while we were processing this request, and it
888 		 * might be necessary to retry.
889 		 */
890 		s = splnet();
891 		xig.xig_gen = tcbinfo.ipi_gencnt;
892 		xig.xig_sogen = so_gencnt;
893 		xig.xig_count = tcbinfo.ipi_count;
894 		splx(s);
895 		error = SYSCTL_OUT(req, &xig, sizeof xig);
896 	}
897 	free(inp_list, M_TEMP);
898 	return error;
899 }
900 
901 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
902 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
903 
904 static int
905 tcp_getcred(SYSCTL_HANDLER_ARGS)
906 {
907 	struct xucred xuc;
908 	struct sockaddr_in addrs[2];
909 	struct inpcb *inp;
910 	int error, s;
911 
912 	error = suser_xxx(0, req->p, PRISON_ROOT);
913 	if (error)
914 		return (error);
915 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
916 	if (error)
917 		return (error);
918 	s = splnet();
919 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
920 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
921 	if (inp == NULL || inp->inp_socket == NULL) {
922 		error = ENOENT;
923 		goto out;
924 	}
925 	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
926 	if (error)
927 		goto out;
928 	bzero(&xuc, sizeof(xuc));
929 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
930 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
931 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
932 	    sizeof(xuc.cr_groups));
933 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
934 out:
935 	splx(s);
936 	return (error);
937 }
938 
939 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
940     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
941     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
942 
943 #ifdef INET6
944 static int
945 tcp6_getcred(SYSCTL_HANDLER_ARGS)
946 {
947 	struct xucred xuc;
948 	struct sockaddr_in6 addrs[2];
949 	struct inpcb *inp;
950 	int error, s, mapped = 0;
951 
952 	error = suser_xxx(0, req->p, PRISON_ROOT);
953 	if (error)
954 		return (error);
955 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
956 	if (error)
957 		return (error);
958 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
959 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
960 			mapped = 1;
961 		else
962 			return (EINVAL);
963 	}
964 	s = splnet();
965 	if (mapped == 1)
966 		inp = in_pcblookup_hash(&tcbinfo,
967 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
968 			addrs[1].sin6_port,
969 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
970 			addrs[0].sin6_port,
971 			0, NULL);
972 	else
973 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
974 				 addrs[1].sin6_port,
975 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
976 				 0, NULL);
977 	if (inp == NULL || inp->inp_socket == NULL) {
978 		error = ENOENT;
979 		goto out;
980 	}
981 	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
982 	if (error)
983 		goto out;
984 	bzero(&xuc, sizeof(xuc));
985 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
986 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
987 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
988 	    sizeof(xuc.cr_groups));
989 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
990 out:
991 	splx(s);
992 	return (error);
993 }
994 
995 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
996     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
997     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
998 #endif
999 
1000 
1001 void
1002 tcp_ctlinput(cmd, sa, vip)
1003 	int cmd;
1004 	struct sockaddr *sa;
1005 	void *vip;
1006 {
1007 	struct ip *ip = vip;
1008 	struct tcphdr *th;
1009 	struct in_addr faddr;
1010 	struct inpcb *inp;
1011 	struct tcpcb *tp;
1012 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1013 	tcp_seq icmp_seq;
1014 	int s;
1015 
1016 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1017 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1018 		return;
1019 
1020 	if (cmd == PRC_QUENCH)
1021 		notify = tcp_quench;
1022 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1023 		cmd == PRC_UNREACH_PORT) && ip)
1024 		notify = tcp_drop_syn_sent;
1025 	else if (cmd == PRC_MSGSIZE)
1026 		notify = tcp_mtudisc;
1027 	else if (PRC_IS_REDIRECT(cmd)) {
1028 		ip = 0;
1029 		notify = in_rtchange;
1030 	} else if (cmd == PRC_HOSTDEAD)
1031 		ip = 0;
1032 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1033 		return;
1034 	if (ip) {
1035 		s = splnet();
1036 		th = (struct tcphdr *)((caddr_t)ip
1037 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1038 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1039 		    ip->ip_src, th->th_sport, 0, NULL);
1040 		if (inp != NULL && inp->inp_socket != NULL) {
1041 			icmp_seq = htonl(th->th_seq);
1042 			tp = intotcpcb(inp);
1043 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1044 			    SEQ_LT(icmp_seq, tp->snd_max))
1045 				(*notify)(inp, inetctlerrmap[cmd]);
1046 		}
1047 		splx(s);
1048 	} else
1049 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1050 }
1051 
1052 #ifdef INET6
1053 void
1054 tcp6_ctlinput(cmd, sa, d)
1055 	int cmd;
1056 	struct sockaddr *sa;
1057 	void *d;
1058 {
1059 	struct tcphdr th;
1060 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1061 	struct ip6_hdr *ip6;
1062 	struct mbuf *m;
1063 	struct ip6ctlparam *ip6cp = NULL;
1064 	const struct sockaddr_in6 *sa6_src = NULL;
1065 	int off;
1066 	struct tcp_portonly {
1067 		u_int16_t th_sport;
1068 		u_int16_t th_dport;
1069 	} *thp;
1070 
1071 	if (sa->sa_family != AF_INET6 ||
1072 	    sa->sa_len != sizeof(struct sockaddr_in6))
1073 		return;
1074 
1075 	if (cmd == PRC_QUENCH)
1076 		notify = tcp_quench;
1077 	else if (cmd == PRC_MSGSIZE)
1078 		notify = tcp_mtudisc;
1079 	else if (!PRC_IS_REDIRECT(cmd) &&
1080 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1081 		return;
1082 
1083 	/* if the parameter is from icmp6, decode it. */
1084 	if (d != NULL) {
1085 		ip6cp = (struct ip6ctlparam *)d;
1086 		m = ip6cp->ip6c_m;
1087 		ip6 = ip6cp->ip6c_ip6;
1088 		off = ip6cp->ip6c_off;
1089 		sa6_src = ip6cp->ip6c_src;
1090 	} else {
1091 		m = NULL;
1092 		ip6 = NULL;
1093 		off = 0;	/* fool gcc */
1094 		sa6_src = &sa6_any;
1095 	}
1096 
1097 	if (ip6) {
1098 		/*
1099 		 * XXX: We assume that when IPV6 is non NULL,
1100 		 * M and OFF are valid.
1101 		 */
1102 
1103 		/* check if we can safely examine src and dst ports */
1104 		if (m->m_pkthdr.len < off + sizeof(*thp))
1105 			return;
1106 
1107 		bzero(&th, sizeof(th));
1108 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1109 
1110 		in6_pcbnotify(&tcb, sa, th.th_dport,
1111 		    (struct sockaddr *)ip6cp->ip6c_src,
1112 		    th.th_sport, cmd, notify);
1113 	} else
1114 		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1115 			      0, cmd, notify);
1116 }
1117 #endif /* INET6 */
1118 
1119 
1120 /*
1121  * Following is where TCP initial sequence number generation occurs.
1122  *
1123  * There are two places where we must use initial sequence numbers:
1124  * 1.  In SYN-ACK packets.
1125  * 2.  In SYN packets.
1126  *
1127  * The ISNs in SYN-ACK packets have no monotonicity requirement,
1128  * and should be as unpredictable as possible to avoid the possibility
1129  * of spoofing and/or connection hijacking.  To satisfy this
1130  * requirement, SYN-ACK ISNs are generated via the arc4random()
1131  * function.  If exact RFC 1948 compliance is requested via sysctl,
1132  * these ISNs will be generated just like those in SYN packets.
1133  *
1134  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1135  * depends on this property.  In addition, these ISNs should be
1136  * unguessable so as to prevent connection hijacking.  To satisfy
1137  * the requirements of this situation, the algorithm outlined in
1138  * RFC 1948 is used to generate sequence numbers.
1139  *
1140  * For more information on the theory of operation, please see
1141  * RFC 1948.
1142  *
1143  * Implementation details:
1144  *
1145  * Time is based off the system timer, and is corrected so that it
1146  * increases by one megabyte per second.  This allows for proper
1147  * recycling on high speed LANs while still leaving over an hour
1148  * before rollover.
1149  *
1150  * Two sysctls control the generation of ISNs:
1151  *
1152  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1153  * between seeding of isn_secret.  This is normally set to zero,
1154  * as reseeding should not be necessary.
1155  *
1156  * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1157  * strictly.  When strict compliance is requested, reseeding is
1158  * disabled and SYN-ACKs will be generated in the same manner as
1159  * SYNs.  Strict mode is disabled by default.
1160  *
1161  */
1162 
1163 #define ISN_BYTES_PER_SECOND 1048576
1164 
1165 u_char isn_secret[32];
1166 int isn_last_reseed;
1167 MD5_CTX isn_ctx;
1168 
1169 tcp_seq
1170 tcp_new_isn(tp)
1171 	struct tcpcb *tp;
1172 {
1173 	u_int32_t md5_buffer[4];
1174 	tcp_seq new_isn;
1175 
1176 	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1177 	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1178 	   && tcp_strict_rfc1948 == 0)
1179 		return arc4random();
1180 
1181 	/* Seed if this is the first use, reseed if requested. */
1182 	if ((isn_last_reseed == 0) ||
1183 	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1184 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1185 		< (u_int)ticks))) {
1186 		read_random(&isn_secret, sizeof(isn_secret));
1187 		isn_last_reseed = ticks;
1188 	}
1189 
1190 	/* Compute the md5 hash and return the ISN. */
1191 	MD5Init(&isn_ctx);
1192 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1193 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1194 #ifdef INET6
1195 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1196 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1197 			  sizeof(struct in6_addr));
1198 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1199 			  sizeof(struct in6_addr));
1200 	} else
1201 #endif
1202 	{
1203 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1204 			  sizeof(struct in_addr));
1205 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1206 			  sizeof(struct in_addr));
1207 	}
1208 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1209 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1210 	new_isn = (tcp_seq) md5_buffer[0];
1211 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1212 	return new_isn;
1213 }
1214 
1215 /*
1216  * When a source quench is received, close congestion window
1217  * to one segment.  We will gradually open it again as we proceed.
1218  */
1219 void
1220 tcp_quench(inp, errno)
1221 	struct inpcb *inp;
1222 	int errno;
1223 {
1224 	struct tcpcb *tp = intotcpcb(inp);
1225 
1226 	if (tp)
1227 		tp->snd_cwnd = tp->t_maxseg;
1228 }
1229 
1230 /*
1231  * When a specific ICMP unreachable message is received and the
1232  * connection state is SYN-SENT, drop the connection.  This behavior
1233  * is controlled by the icmp_may_rst sysctl.
1234  */
1235 void
1236 tcp_drop_syn_sent(inp, errno)
1237 	struct inpcb *inp;
1238 	int errno;
1239 {
1240 	struct tcpcb *tp = intotcpcb(inp);
1241 
1242 	if (tp && tp->t_state == TCPS_SYN_SENT)
1243 		tcp_drop(tp, errno);
1244 }
1245 
1246 /*
1247  * When `need fragmentation' ICMP is received, update our idea of the MSS
1248  * based on the new value in the route.  Also nudge TCP to send something,
1249  * since we know the packet we just sent was dropped.
1250  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1251  */
1252 void
1253 tcp_mtudisc(inp, errno)
1254 	struct inpcb *inp;
1255 	int errno;
1256 {
1257 	struct tcpcb *tp = intotcpcb(inp);
1258 	struct rtentry *rt;
1259 	struct rmxp_tao *taop;
1260 	struct socket *so = inp->inp_socket;
1261 	int offered;
1262 	int mss;
1263 #ifdef INET6
1264 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1265 #endif /* INET6 */
1266 
1267 	if (tp) {
1268 #ifdef INET6
1269 		if (isipv6)
1270 			rt = tcp_rtlookup6(inp);
1271 		else
1272 #endif /* INET6 */
1273 		rt = tcp_rtlookup(inp);
1274 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1275 			tp->t_maxopd = tp->t_maxseg =
1276 #ifdef INET6
1277 				isipv6 ? tcp_v6mssdflt :
1278 #endif /* INET6 */
1279 				tcp_mssdflt;
1280 			return;
1281 		}
1282 		taop = rmx_taop(rt->rt_rmx);
1283 		offered = taop->tao_mssopt;
1284 		mss = rt->rt_rmx.rmx_mtu -
1285 #ifdef INET6
1286 			(isipv6 ?
1287 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1288 #endif /* INET6 */
1289 			 sizeof(struct tcpiphdr)
1290 #ifdef INET6
1291 			 )
1292 #endif /* INET6 */
1293 			;
1294 
1295 		if (offered)
1296 			mss = min(mss, offered);
1297 		/*
1298 		 * XXX - The above conditional probably violates the TCP
1299 		 * spec.  The problem is that, since we don't know the
1300 		 * other end's MSS, we are supposed to use a conservative
1301 		 * default.  But, if we do that, then MTU discovery will
1302 		 * never actually take place, because the conservative
1303 		 * default is much less than the MTUs typically seen
1304 		 * on the Internet today.  For the moment, we'll sweep
1305 		 * this under the carpet.
1306 		 *
1307 		 * The conservative default might not actually be a problem
1308 		 * if the only case this occurs is when sending an initial
1309 		 * SYN with options and data to a host we've never talked
1310 		 * to before.  Then, they will reply with an MSS value which
1311 		 * will get recorded and the new parameters should get
1312 		 * recomputed.  For Further Study.
1313 		 */
1314 		if (tp->t_maxopd <= mss)
1315 			return;
1316 		tp->t_maxopd = mss;
1317 
1318 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1319 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1320 			mss -= TCPOLEN_TSTAMP_APPA;
1321 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1322 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1323 			mss -= TCPOLEN_CC_APPA;
1324 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1325 		if (mss > MCLBYTES)
1326 			mss &= ~(MCLBYTES-1);
1327 #else
1328 		if (mss > MCLBYTES)
1329 			mss = mss / MCLBYTES * MCLBYTES;
1330 #endif
1331 		if (so->so_snd.sb_hiwat < mss)
1332 			mss = so->so_snd.sb_hiwat;
1333 
1334 		tp->t_maxseg = mss;
1335 
1336 		tcpstat.tcps_mturesent++;
1337 		tp->t_rtttime = 0;
1338 		tp->snd_nxt = tp->snd_una;
1339 		tcp_output(tp);
1340 	}
1341 }
1342 
1343 /*
1344  * Look-up the routing entry to the peer of this inpcb.  If no route
1345  * is found and it cannot be allocated the return NULL.  This routine
1346  * is called by TCP routines that access the rmx structure and by tcp_mss
1347  * to get the interface MTU.
1348  */
1349 struct rtentry *
1350 tcp_rtlookup(inp)
1351 	struct inpcb *inp;
1352 {
1353 	struct route *ro;
1354 	struct rtentry *rt;
1355 
1356 	ro = &inp->inp_route;
1357 	rt = ro->ro_rt;
1358 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1359 		/* No route yet, so try to acquire one */
1360 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1361 			ro->ro_dst.sa_family = AF_INET;
1362 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1363 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1364 				inp->inp_faddr;
1365 			rtalloc(ro);
1366 			rt = ro->ro_rt;
1367 		}
1368 	}
1369 	return rt;
1370 }
1371 
1372 #ifdef INET6
1373 struct rtentry *
1374 tcp_rtlookup6(inp)
1375 	struct inpcb *inp;
1376 {
1377 	struct route_in6 *ro6;
1378 	struct rtentry *rt;
1379 
1380 	ro6 = &inp->in6p_route;
1381 	rt = ro6->ro_rt;
1382 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1383 		/* No route yet, so try to acquire one */
1384 		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1385 			struct sockaddr_in6 *dst6;
1386 
1387 			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1388 			dst6->sin6_family = AF_INET6;
1389 			dst6->sin6_len = sizeof(*dst6);
1390 			dst6->sin6_addr = inp->in6p_faddr;
1391 			rtalloc((struct route *)ro6);
1392 			rt = ro6->ro_rt;
1393 		}
1394 	}
1395 	return rt;
1396 }
1397 #endif /* INET6 */
1398 
1399 #ifdef IPSEC
1400 /* compute ESP/AH header size for TCP, including outer IP header. */
1401 size_t
1402 ipsec_hdrsiz_tcp(tp)
1403 	struct tcpcb *tp;
1404 {
1405 	struct inpcb *inp;
1406 	struct mbuf *m;
1407 	size_t hdrsiz;
1408 	struct ip *ip;
1409 #ifdef INET6
1410 	struct ip6_hdr *ip6;
1411 #endif /* INET6 */
1412 	struct tcphdr *th;
1413 
1414 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1415 		return 0;
1416 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1417 	if (!m)
1418 		return 0;
1419 
1420 #ifdef INET6
1421 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1422 		ip6 = mtod(m, struct ip6_hdr *);
1423 		th = (struct tcphdr *)(ip6 + 1);
1424 		m->m_pkthdr.len = m->m_len =
1425 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1426 		tcp_fillheaders(tp, ip6, th);
1427 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1428 	} else
1429 #endif /* INET6 */
1430       {
1431 	ip = mtod(m, struct ip *);
1432 	th = (struct tcphdr *)(ip + 1);
1433 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1434 	tcp_fillheaders(tp, ip, th);
1435 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1436       }
1437 
1438 	m_free(m);
1439 	return hdrsiz;
1440 }
1441 #endif /*IPSEC*/
1442 
1443 /*
1444  * Return a pointer to the cached information about the remote host.
1445  * The cached information is stored in the protocol specific part of
1446  * the route metrics.
1447  */
1448 struct rmxp_tao *
1449 tcp_gettaocache(inp)
1450 	struct inpcb *inp;
1451 {
1452 	struct rtentry *rt;
1453 
1454 #ifdef INET6
1455 	if ((inp->inp_vflag & INP_IPV6) != 0)
1456 		rt = tcp_rtlookup6(inp);
1457 	else
1458 #endif /* INET6 */
1459 	rt = tcp_rtlookup(inp);
1460 
1461 	/* Make sure this is a host route and is up. */
1462 	if (rt == NULL ||
1463 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1464 		return NULL;
1465 
1466 	return rmx_taop(rt->rt_rmx);
1467 }
1468 
1469 /*
1470  * Clear all the TAO cache entries, called from tcp_init.
1471  *
1472  * XXX
1473  * This routine is just an empty one, because we assume that the routing
1474  * routing tables are initialized at the same time when TCP, so there is
1475  * nothing in the cache left over.
1476  */
1477 static void
1478 tcp_cleartaocache()
1479 {
1480 }
1481