1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ipsec.h" 36 #include "opt_kern_tls.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/arb.h> 41 #include <sys/callout.h> 42 #include <sys/eventhandler.h> 43 #ifdef TCP_HHOOK 44 #include <sys/hhook.h> 45 #endif 46 #include <sys/kernel.h> 47 #ifdef TCP_HHOOK 48 #include <sys/khelp.h> 49 #endif 50 #ifdef KERN_TLS 51 #include <sys/ktls.h> 52 #endif 53 #include <sys/qmath.h> 54 #include <sys/stats.h> 55 #include <sys/sysctl.h> 56 #include <sys/jail.h> 57 #include <sys/malloc.h> 58 #include <sys/refcount.h> 59 #include <sys/mbuf.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/protosw.h> 66 #include <sys/random.h> 67 68 #include <vm/uma.h> 69 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/if_private.h> 75 #include <net/vnet.h> 76 77 #include <netinet/in.h> 78 #include <netinet/in_fib.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_icmp.h> 85 #include <netinet/ip_var.h> 86 #ifdef INET6 87 #include <netinet/icmp6.h> 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_fib.h> 90 #include <netinet6/in6_pcb.h> 91 #include <netinet6/ip6_var.h> 92 #include <netinet6/scope6_var.h> 93 #include <netinet6/nd6.h> 94 #endif 95 96 #include <netinet/tcp.h> 97 #ifdef INVARIANTS 98 #define TCPSTATES 99 #endif 100 #include <netinet/tcp_fsm.h> 101 #include <netinet/tcp_seq.h> 102 #include <netinet/tcp_timer.h> 103 #include <netinet/tcp_var.h> 104 #include <netinet/tcp_ecn.h> 105 #include <netinet/tcp_log_buf.h> 106 #include <netinet/tcp_syncache.h> 107 #include <netinet/tcp_hpts.h> 108 #include <netinet/tcp_lro.h> 109 #include <netinet/cc/cc.h> 110 #include <netinet/tcpip.h> 111 #include <netinet/tcp_fastopen.h> 112 #include <netinet/tcp_accounting.h> 113 #ifdef TCPPCAP 114 #include <netinet/tcp_pcap.h> 115 #endif 116 #ifdef TCP_OFFLOAD 117 #include <netinet/tcp_offload.h> 118 #endif 119 #include <netinet/udp.h> 120 #include <netinet/udp_var.h> 121 #ifdef INET6 122 #include <netinet6/tcp6_var.h> 123 #endif 124 125 #include <netipsec/ipsec_support.h> 126 127 #include <machine/in_cksum.h> 128 #include <crypto/siphash/siphash.h> 129 130 #include <security/mac/mac_framework.h> 131 132 #ifdef INET6 133 static ip6proto_ctlinput_t tcp6_ctlinput; 134 static udp_tun_icmp_t tcp6_ctlinput_viaudp; 135 #endif 136 137 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 138 #ifdef INET6 139 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 140 #endif 141 142 uint32_t tcp_ack_war_time_window = 1000; 143 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow, 144 CTLFLAG_RW, 145 &tcp_ack_war_time_window, 1000, 146 "If the tcp_stack does ack-war prevention how many milliseconds are in its time window?"); 147 uint32_t tcp_ack_war_cnt = 5; 148 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, 149 CTLFLAG_RW, 150 &tcp_ack_war_cnt, 5, 151 "If the tcp_stack does ack-war prevention how many acks can be sent in its time window?"); 152 153 struct rwlock tcp_function_lock; 154 155 static int 156 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 157 { 158 int error, new; 159 160 new = V_tcp_mssdflt; 161 error = sysctl_handle_int(oidp, &new, 0, req); 162 if (error == 0 && req->newptr) { 163 if (new < TCP_MINMSS) 164 error = EINVAL; 165 else 166 V_tcp_mssdflt = new; 167 } 168 return (error); 169 } 170 171 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", 174 "Default TCP Maximum Segment Size"); 175 176 #ifdef INET6 177 static int 178 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 179 { 180 int error, new; 181 182 new = V_tcp_v6mssdflt; 183 error = sysctl_handle_int(oidp, &new, 0, req); 184 if (error == 0 && req->newptr) { 185 if (new < TCP_MINMSS) 186 error = EINVAL; 187 else 188 V_tcp_v6mssdflt = new; 189 } 190 return (error); 191 } 192 193 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", 196 "Default TCP Maximum Segment Size for IPv6"); 197 #endif /* INET6 */ 198 199 /* 200 * Minimum MSS we accept and use. This prevents DoS attacks where 201 * we are forced to a ridiculous low MSS like 20 and send hundreds 202 * of packets instead of one. The effect scales with the available 203 * bandwidth and quickly saturates the CPU and network interface 204 * with packet generation and sending. Set to zero to disable MINMSS 205 * checking. This setting prevents us from sending too small packets. 206 */ 207 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 209 &VNET_NAME(tcp_minmss), 0, 210 "Minimum TCP Maximum Segment Size"); 211 212 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 213 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 214 &VNET_NAME(tcp_do_rfc1323), 0, 215 "Enable rfc1323 (high performance TCP) extensions"); 216 217 /* 218 * As of June 2021, several TCP stacks violate RFC 7323 from September 2014. 219 * Some stacks negotiate TS, but never send them after connection setup. Some 220 * stacks negotiate TS, but don't send them when sending keep-alive segments. 221 * These include modern widely deployed TCP stacks. 222 * Therefore tolerating violations for now... 223 */ 224 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1; 225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW, 226 &VNET_NAME(tcp_tolerate_missing_ts), 0, 227 "Tolerate missing TCP timestamps"); 228 229 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1; 230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW, 231 &VNET_NAME(tcp_ts_offset_per_conn), 0, 232 "Initialize TCP timestamps per connection instead of per host pair"); 233 234 /* How many connections are pacing */ 235 static volatile uint32_t number_of_tcp_connections_pacing = 0; 236 static uint32_t shadow_num_connections = 0; 237 static counter_u64_t tcp_pacing_failures; 238 static counter_u64_t tcp_dgp_failures; 239 static uint32_t shadow_tcp_pacing_dgp = 0; 240 static volatile uint32_t number_of_dgp_connections = 0; 241 242 static int tcp_pacing_limit = 10000; 243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW, 244 &tcp_pacing_limit, 1000, 245 "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)"); 246 247 static int tcp_dgp_limit = -1; 248 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW, 249 &tcp_dgp_limit, -1, 250 "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)"); 251 252 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD, 253 &shadow_num_connections, 0, "Number of TCP connections being paced"); 254 255 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD, 256 &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit"); 257 258 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD, 259 &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit"); 260 261 static int tcp_log_debug = 0; 262 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 263 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 264 265 /* 266 * Target size of TCP PCB hash tables. Must be a power of two. 267 * 268 * Note that this can be overridden by the kernel environment 269 * variable net.inet.tcp.tcbhashsize 270 */ 271 #ifndef TCBHASHSIZE 272 #define TCBHASHSIZE 0 273 #endif 274 static int tcp_tcbhashsize = TCBHASHSIZE; 275 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 276 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 277 278 static int do_tcpdrain = 1; 279 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 280 "Enable tcp_drain routine for extra help when low on mbufs"); 281 282 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 283 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 284 285 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1; 286 #define V_icmp_may_rst VNET(icmp_may_rst) 287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 288 &VNET_NAME(icmp_may_rst), 0, 289 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 290 291 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0; 292 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 293 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 294 &VNET_NAME(tcp_isn_reseed_interval), 0, 295 "Seconds between reseeding of ISN secret"); 296 297 static int tcp_soreceive_stream; 298 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 299 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 300 301 VNET_DEFINE(uma_zone_t, sack_hole_zone); 302 #define V_sack_hole_zone VNET(sack_hole_zone) 303 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0; /* unlimited */ 304 static int 305 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS) 306 { 307 int error; 308 uint32_t new; 309 310 new = V_tcp_map_entries_limit; 311 error = sysctl_handle_int(oidp, &new, 0, req); 312 if (error == 0 && req->newptr) { 313 /* only allow "0" and value > minimum */ 314 if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT) 315 error = EINVAL; 316 else 317 V_tcp_map_entries_limit = new; 318 } 319 return (error); 320 } 321 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit, 322 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 323 &VNET_NAME(tcp_map_entries_limit), 0, 324 &sysctl_net_inet_tcp_map_limit_check, "IU", 325 "Total sendmap entries limit"); 326 327 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0; /* unlimited */ 328 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW, 329 &VNET_NAME(tcp_map_split_limit), 0, 330 "Total sendmap split entries limit"); 331 332 #ifdef TCP_HHOOK 333 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 334 #endif 335 336 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH 337 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]); 338 #define V_ts_offset_secret VNET(ts_offset_secret) 339 340 static int tcp_default_fb_init(struct tcpcb *tp, void **ptr); 341 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); 342 static int tcp_default_handoff_ok(struct tcpcb *tp); 343 static struct inpcb *tcp_notify(struct inpcb *, int); 344 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 345 static struct inpcb *tcp_mtudisc(struct inpcb *, int); 346 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int); 347 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 348 const void *ip4hdr, const void *ip6hdr); 349 static void tcp_default_switch_failed(struct tcpcb *tp); 350 static ipproto_ctlinput_t tcp_ctlinput; 351 static udp_tun_icmp_t tcp_ctlinput_viaudp; 352 353 static struct tcp_function_block tcp_def_funcblk = { 354 .tfb_tcp_block_name = "freebsd", 355 .tfb_tcp_output = tcp_default_output, 356 .tfb_tcp_do_segment = tcp_do_segment, 357 .tfb_tcp_ctloutput = tcp_default_ctloutput, 358 .tfb_tcp_handoff_ok = tcp_default_handoff_ok, 359 .tfb_tcp_fb_init = tcp_default_fb_init, 360 .tfb_tcp_fb_fini = tcp_default_fb_fini, 361 .tfb_switch_failed = tcp_default_switch_failed, 362 .tfb_flags = TCP_FUNC_DEFAULT_OK, 363 }; 364 365 static int tcp_fb_cnt = 0; 366 struct tcp_funchead t_functions; 367 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk; 368 #define V_tcp_func_set_ptr VNET(tcp_func_set_ptr) 369 370 void 371 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp) 372 { 373 TCPSTAT_INC(tcps_dsack_count); 374 tp->t_dsack_pack++; 375 if (tlp == 0) { 376 if (SEQ_GT(end, start)) { 377 tp->t_dsack_bytes += (end - start); 378 TCPSTAT_ADD(tcps_dsack_bytes, (end - start)); 379 } else { 380 tp->t_dsack_tlp_bytes += (start - end); 381 TCPSTAT_ADD(tcps_dsack_bytes, (start - end)); 382 } 383 } else { 384 if (SEQ_GT(end, start)) { 385 tp->t_dsack_bytes += (end - start); 386 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start)); 387 } else { 388 tp->t_dsack_tlp_bytes += (start - end); 389 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end)); 390 } 391 } 392 } 393 394 static struct tcp_function_block * 395 find_tcp_functions_locked(struct tcp_function_set *fs) 396 { 397 struct tcp_function *f; 398 struct tcp_function_block *blk = NULL; 399 400 rw_assert(&tcp_function_lock, RA_LOCKED); 401 TAILQ_FOREACH(f, &t_functions, tf_next) { 402 if (strcmp(f->tf_name, fs->function_set_name) == 0) { 403 blk = f->tf_fb; 404 break; 405 } 406 } 407 return (blk); 408 } 409 410 static struct tcp_function_block * 411 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 412 { 413 struct tcp_function_block *rblk = NULL; 414 struct tcp_function *f; 415 416 rw_assert(&tcp_function_lock, RA_LOCKED); 417 TAILQ_FOREACH(f, &t_functions, tf_next) { 418 if (f->tf_fb == blk) { 419 rblk = blk; 420 if (s) { 421 *s = f; 422 } 423 break; 424 } 425 } 426 return (rblk); 427 } 428 429 struct tcp_function_block * 430 find_and_ref_tcp_functions(struct tcp_function_set *fs) 431 { 432 struct tcp_function_block *blk; 433 434 rw_rlock(&tcp_function_lock); 435 blk = find_tcp_functions_locked(fs); 436 if (blk) 437 refcount_acquire(&blk->tfb_refcnt); 438 rw_runlock(&tcp_function_lock); 439 return (blk); 440 } 441 442 struct tcp_function_block * 443 find_and_ref_tcp_fb(struct tcp_function_block *blk) 444 { 445 struct tcp_function_block *rblk; 446 447 rw_rlock(&tcp_function_lock); 448 rblk = find_tcp_fb_locked(blk, NULL); 449 if (rblk) 450 refcount_acquire(&rblk->tfb_refcnt); 451 rw_runlock(&tcp_function_lock); 452 return (rblk); 453 } 454 455 /* Find a matching alias for the given tcp_function_block. */ 456 int 457 find_tcp_function_alias(struct tcp_function_block *blk, 458 struct tcp_function_set *fs) 459 { 460 struct tcp_function *f; 461 int found; 462 463 found = 0; 464 rw_rlock(&tcp_function_lock); 465 TAILQ_FOREACH(f, &t_functions, tf_next) { 466 if ((f->tf_fb == blk) && 467 (strncmp(f->tf_name, blk->tfb_tcp_block_name, 468 TCP_FUNCTION_NAME_LEN_MAX) != 0)) { 469 /* Matching function block with different name. */ 470 strncpy(fs->function_set_name, f->tf_name, 471 TCP_FUNCTION_NAME_LEN_MAX); 472 found = 1; 473 break; 474 } 475 } 476 /* Null terminate the string appropriately. */ 477 if (found) { 478 fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 479 } else { 480 fs->function_set_name[0] = '\0'; 481 } 482 rw_runlock(&tcp_function_lock); 483 return (found); 484 } 485 486 static struct tcp_function_block * 487 find_and_ref_tcp_default_fb(void) 488 { 489 struct tcp_function_block *rblk; 490 491 rw_rlock(&tcp_function_lock); 492 rblk = V_tcp_func_set_ptr; 493 refcount_acquire(&rblk->tfb_refcnt); 494 rw_runlock(&tcp_function_lock); 495 return (rblk); 496 } 497 498 void 499 tcp_switch_back_to_default(struct tcpcb *tp) 500 { 501 struct tcp_function_block *tfb; 502 void *ptr = NULL; 503 504 KASSERT(tp->t_fb != &tcp_def_funcblk, 505 ("%s: called by the built-in default stack", __func__)); 506 507 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 508 tp->t_fb->tfb_tcp_timer_stop_all(tp); 509 510 /* 511 * Now, we'll find a new function block to use. 512 * Start by trying the current user-selected 513 * default, unless this stack is the user-selected 514 * default. 515 */ 516 tfb = find_and_ref_tcp_default_fb(); 517 if (tfb == tp->t_fb) { 518 refcount_release(&tfb->tfb_refcnt); 519 tfb = NULL; 520 } 521 /* Does the stack accept this connection? */ 522 if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) { 523 refcount_release(&tfb->tfb_refcnt); 524 tfb = NULL; 525 } 526 /* Try to use that stack. */ 527 if (tfb != NULL) { 528 /* Initialize the new stack. If it succeeds, we are done. */ 529 if (tfb->tfb_tcp_fb_init == NULL || 530 (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) { 531 /* Release the old stack */ 532 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 533 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 534 refcount_release(&tp->t_fb->tfb_refcnt); 535 /* Now set in all the pointers */ 536 tp->t_fb = tfb; 537 tp->t_fb_ptr = ptr; 538 return; 539 } 540 /* 541 * Initialization failed. Release the reference count on 542 * the looked up default stack. 543 */ 544 refcount_release(&tfb->tfb_refcnt); 545 } 546 547 /* 548 * If that wasn't feasible, use the built-in default 549 * stack which is not allowed to reject anyone. 550 */ 551 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); 552 if (tfb == NULL) { 553 /* there always should be a default */ 554 panic("Can't refer to tcp_def_funcblk"); 555 } 556 if ((*tfb->tfb_tcp_handoff_ok)(tp)) { 557 /* The default stack cannot say no */ 558 panic("Default stack rejects a new session?"); 559 } 560 if (tfb->tfb_tcp_fb_init != NULL && 561 (*tfb->tfb_tcp_fb_init)(tp, &ptr)) { 562 /* The default stack cannot fail */ 563 panic("Default stack initialization failed"); 564 } 565 /* Now release the old stack */ 566 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 567 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 568 refcount_release(&tp->t_fb->tfb_refcnt); 569 /* And set in the pointers to the new */ 570 tp->t_fb = tfb; 571 tp->t_fb_ptr = ptr; 572 } 573 574 static bool 575 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, 576 const struct sockaddr *sa, void *ctx) 577 { 578 struct ip *iph; 579 #ifdef INET6 580 struct ip6_hdr *ip6; 581 #endif 582 struct udphdr *uh; 583 struct tcphdr *th; 584 int thlen; 585 uint16_t port; 586 587 TCPSTAT_INC(tcps_tunneled_pkts); 588 if ((m->m_flags & M_PKTHDR) == 0) { 589 /* Can't handle one that is not a pkt hdr */ 590 TCPSTAT_INC(tcps_tunneled_errs); 591 goto out; 592 } 593 thlen = sizeof(struct tcphdr); 594 if (m->m_len < off + sizeof(struct udphdr) + thlen && 595 (m = m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) { 596 TCPSTAT_INC(tcps_tunneled_errs); 597 goto out; 598 } 599 iph = mtod(m, struct ip *); 600 uh = (struct udphdr *)((caddr_t)iph + off); 601 th = (struct tcphdr *)(uh + 1); 602 thlen = th->th_off << 2; 603 if (m->m_len < off + sizeof(struct udphdr) + thlen) { 604 m = m_pullup(m, off + sizeof(struct udphdr) + thlen); 605 if (m == NULL) { 606 TCPSTAT_INC(tcps_tunneled_errs); 607 goto out; 608 } else { 609 iph = mtod(m, struct ip *); 610 uh = (struct udphdr *)((caddr_t)iph + off); 611 th = (struct tcphdr *)(uh + 1); 612 } 613 } 614 m->m_pkthdr.tcp_tun_port = port = uh->uh_sport; 615 bcopy(th, uh, m->m_len - off); 616 m->m_len -= sizeof(struct udphdr); 617 m->m_pkthdr.len -= sizeof(struct udphdr); 618 /* 619 * We use the same algorithm for 620 * both UDP and TCP for c-sum. So 621 * the code in tcp_input will skip 622 * the checksum. So we do nothing 623 * with the flag (m->m_pkthdr.csum_flags). 624 */ 625 switch (iph->ip_v) { 626 #ifdef INET 627 case IPVERSION: 628 iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); 629 tcp_input_with_port(&m, &off, IPPROTO_TCP, port); 630 break; 631 #endif 632 #ifdef INET6 633 case IPV6_VERSION >> 4: 634 ip6 = mtod(m, struct ip6_hdr *); 635 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); 636 tcp6_input_with_port(&m, &off, IPPROTO_TCP, port); 637 break; 638 #endif 639 default: 640 goto out; 641 break; 642 } 643 return (true); 644 out: 645 m_freem(m); 646 647 return (true); 648 } 649 650 static int 651 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 652 { 653 int error = ENOENT; 654 struct tcp_function_set fs; 655 struct tcp_function_block *blk; 656 657 memset(&fs, 0, sizeof(fs)); 658 rw_rlock(&tcp_function_lock); 659 blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL); 660 if (blk) { 661 /* Found him */ 662 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 663 fs.pcbcnt = blk->tfb_refcnt; 664 } 665 rw_runlock(&tcp_function_lock); 666 error = sysctl_handle_string(oidp, fs.function_set_name, 667 sizeof(fs.function_set_name), req); 668 669 /* Check for error or no change */ 670 if (error != 0 || req->newptr == NULL) 671 return (error); 672 673 rw_wlock(&tcp_function_lock); 674 blk = find_tcp_functions_locked(&fs); 675 if ((blk == NULL) || 676 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 677 error = ENOENT; 678 goto done; 679 } 680 if ((blk->tfb_flags & TCP_FUNC_DEFAULT_OK) == 0) { 681 error = EINVAL; 682 goto done; 683 } 684 V_tcp_func_set_ptr = blk; 685 done: 686 rw_wunlock(&tcp_function_lock); 687 return (error); 688 } 689 690 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 691 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 692 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 693 "Set/get the default TCP functions"); 694 695 static int 696 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 697 { 698 int error, cnt, linesz; 699 struct tcp_function *f; 700 char *buffer, *cp; 701 size_t bufsz, outsz; 702 bool alias; 703 704 cnt = 0; 705 rw_rlock(&tcp_function_lock); 706 TAILQ_FOREACH(f, &t_functions, tf_next) { 707 cnt++; 708 } 709 rw_runlock(&tcp_function_lock); 710 711 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; 712 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 713 714 error = 0; 715 cp = buffer; 716 717 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', 718 "Alias", "PCB count"); 719 cp += linesz; 720 bufsz -= linesz; 721 outsz = linesz; 722 723 rw_rlock(&tcp_function_lock); 724 TAILQ_FOREACH(f, &t_functions, tf_next) { 725 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); 726 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", 727 f->tf_fb->tfb_tcp_block_name, 728 (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ', 729 alias ? f->tf_name : "-", 730 f->tf_fb->tfb_refcnt); 731 if (linesz >= bufsz) { 732 error = EOVERFLOW; 733 break; 734 } 735 cp += linesz; 736 bufsz -= linesz; 737 outsz += linesz; 738 } 739 rw_runlock(&tcp_function_lock); 740 if (error == 0) 741 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 742 free(buffer, M_TEMP); 743 return (error); 744 } 745 746 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 747 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 748 NULL, 0, sysctl_net_inet_list_available, "A", 749 "list available TCP Function sets"); 750 751 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT; 752 753 #ifdef INET 754 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL; 755 #define V_udp4_tun_socket VNET(udp4_tun_socket) 756 #endif 757 #ifdef INET6 758 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL; 759 #define V_udp6_tun_socket VNET(udp6_tun_socket) 760 #endif 761 762 static struct sx tcpoudp_lock; 763 764 static void 765 tcp_over_udp_stop(void) 766 { 767 768 sx_assert(&tcpoudp_lock, SA_XLOCKED); 769 770 #ifdef INET 771 if (V_udp4_tun_socket != NULL) { 772 soclose(V_udp4_tun_socket); 773 V_udp4_tun_socket = NULL; 774 } 775 #endif 776 #ifdef INET6 777 if (V_udp6_tun_socket != NULL) { 778 soclose(V_udp6_tun_socket); 779 V_udp6_tun_socket = NULL; 780 } 781 #endif 782 } 783 784 static int 785 tcp_over_udp_start(void) 786 { 787 uint16_t port; 788 int ret; 789 #ifdef INET 790 struct sockaddr_in sin; 791 #endif 792 #ifdef INET6 793 struct sockaddr_in6 sin6; 794 #endif 795 796 sx_assert(&tcpoudp_lock, SA_XLOCKED); 797 798 port = V_tcp_udp_tunneling_port; 799 if (ntohs(port) == 0) { 800 /* Must have a port set */ 801 return (EINVAL); 802 } 803 #ifdef INET 804 if (V_udp4_tun_socket != NULL) { 805 /* Already running -- must stop first */ 806 return (EALREADY); 807 } 808 #endif 809 #ifdef INET6 810 if (V_udp6_tun_socket != NULL) { 811 /* Already running -- must stop first */ 812 return (EALREADY); 813 } 814 #endif 815 #ifdef INET 816 if ((ret = socreate(PF_INET, &V_udp4_tun_socket, 817 SOCK_DGRAM, IPPROTO_UDP, 818 curthread->td_ucred, curthread))) { 819 tcp_over_udp_stop(); 820 return (ret); 821 } 822 /* Call the special UDP hook. */ 823 if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket, 824 tcp_recv_udp_tunneled_packet, 825 tcp_ctlinput_viaudp, 826 NULL))) { 827 tcp_over_udp_stop(); 828 return (ret); 829 } 830 /* Ok, we have a socket, bind it to the port. */ 831 memset(&sin, 0, sizeof(struct sockaddr_in)); 832 sin.sin_len = sizeof(struct sockaddr_in); 833 sin.sin_family = AF_INET; 834 sin.sin_port = htons(port); 835 if ((ret = sobind(V_udp4_tun_socket, 836 (struct sockaddr *)&sin, curthread))) { 837 tcp_over_udp_stop(); 838 return (ret); 839 } 840 #endif 841 #ifdef INET6 842 if ((ret = socreate(PF_INET6, &V_udp6_tun_socket, 843 SOCK_DGRAM, IPPROTO_UDP, 844 curthread->td_ucred, curthread))) { 845 tcp_over_udp_stop(); 846 return (ret); 847 } 848 /* Call the special UDP hook. */ 849 if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket, 850 tcp_recv_udp_tunneled_packet, 851 tcp6_ctlinput_viaudp, 852 NULL))) { 853 tcp_over_udp_stop(); 854 return (ret); 855 } 856 /* Ok, we have a socket, bind it to the port. */ 857 memset(&sin6, 0, sizeof(struct sockaddr_in6)); 858 sin6.sin6_len = sizeof(struct sockaddr_in6); 859 sin6.sin6_family = AF_INET6; 860 sin6.sin6_port = htons(port); 861 if ((ret = sobind(V_udp6_tun_socket, 862 (struct sockaddr *)&sin6, curthread))) { 863 tcp_over_udp_stop(); 864 return (ret); 865 } 866 #endif 867 return (0); 868 } 869 870 static int 871 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS) 872 { 873 int error; 874 uint32_t old, new; 875 876 old = V_tcp_udp_tunneling_port; 877 new = old; 878 error = sysctl_handle_int(oidp, &new, 0, req); 879 if ((error == 0) && 880 (req->newptr != NULL)) { 881 if ((new < TCP_TUNNELING_PORT_MIN) || 882 (new > TCP_TUNNELING_PORT_MAX)) { 883 error = EINVAL; 884 } else { 885 sx_xlock(&tcpoudp_lock); 886 V_tcp_udp_tunneling_port = new; 887 if (old != 0) { 888 tcp_over_udp_stop(); 889 } 890 if (new != 0) { 891 error = tcp_over_udp_start(); 892 if (error != 0) { 893 V_tcp_udp_tunneling_port = 0; 894 } 895 } 896 sx_xunlock(&tcpoudp_lock); 897 } 898 } 899 return (error); 900 } 901 902 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port, 903 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 904 &VNET_NAME(tcp_udp_tunneling_port), 905 0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU", 906 "Tunneling port for tcp over udp"); 907 908 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT; 909 910 static int 911 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS) 912 { 913 int error, new; 914 915 new = V_tcp_udp_tunneling_overhead; 916 error = sysctl_handle_int(oidp, &new, 0, req); 917 if (error == 0 && req->newptr) { 918 if ((new < TCP_TUNNELING_OVERHEAD_MIN) || 919 (new > TCP_TUNNELING_OVERHEAD_MAX)) 920 error = EINVAL; 921 else 922 V_tcp_udp_tunneling_overhead = new; 923 } 924 return (error); 925 } 926 927 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead, 928 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 929 &VNET_NAME(tcp_udp_tunneling_overhead), 930 0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU", 931 "MSS reduction when using tcp over udp"); 932 933 /* 934 * Exports one (struct tcp_function_info) for each alias/name. 935 */ 936 static int 937 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) 938 { 939 int cnt, error; 940 struct tcp_function *f; 941 struct tcp_function_info tfi; 942 943 /* 944 * We don't allow writes. 945 */ 946 if (req->newptr != NULL) 947 return (EINVAL); 948 949 /* 950 * Wire the old buffer so we can directly copy the functions to 951 * user space without dropping the lock. 952 */ 953 if (req->oldptr != NULL) { 954 error = sysctl_wire_old_buffer(req, 0); 955 if (error) 956 return (error); 957 } 958 959 /* 960 * Walk the list and copy out matching entries. If INVARIANTS 961 * is compiled in, also walk the list to verify the length of 962 * the list matches what we have recorded. 963 */ 964 rw_rlock(&tcp_function_lock); 965 966 cnt = 0; 967 #ifndef INVARIANTS 968 if (req->oldptr == NULL) { 969 cnt = tcp_fb_cnt; 970 goto skip_loop; 971 } 972 #endif 973 TAILQ_FOREACH(f, &t_functions, tf_next) { 974 #ifdef INVARIANTS 975 cnt++; 976 #endif 977 if (req->oldptr != NULL) { 978 bzero(&tfi, sizeof(tfi)); 979 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; 980 tfi.tfi_id = f->tf_fb->tfb_id; 981 (void)strlcpy(tfi.tfi_alias, f->tf_name, 982 sizeof(tfi.tfi_alias)); 983 (void)strlcpy(tfi.tfi_name, 984 f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name)); 985 error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); 986 /* 987 * Don't stop on error, as that is the 988 * mechanism we use to accumulate length 989 * information if the buffer was too short. 990 */ 991 } 992 } 993 KASSERT(cnt == tcp_fb_cnt, 994 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); 995 #ifndef INVARIANTS 996 skip_loop: 997 #endif 998 rw_runlock(&tcp_function_lock); 999 if (req->oldptr == NULL) 1000 error = SYSCTL_OUT(req, NULL, 1001 (cnt + 1) * sizeof(struct tcp_function_info)); 1002 1003 return (error); 1004 } 1005 1006 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, 1007 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, 1008 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", 1009 "List TCP function block name-to-ID mappings"); 1010 1011 /* 1012 * tfb_tcp_handoff_ok() function for the default stack. 1013 * Note that we'll basically try to take all comers. 1014 */ 1015 static int 1016 tcp_default_handoff_ok(struct tcpcb *tp) 1017 { 1018 1019 return (0); 1020 } 1021 1022 /* 1023 * tfb_tcp_fb_init() function for the default stack. 1024 * 1025 * This handles making sure we have appropriate timers set if you are 1026 * transitioning a socket that has some amount of setup done. 1027 * 1028 * The init() fuction from the default can *never* return non-zero i.e. 1029 * it is required to always succeed since it is the stack of last resort! 1030 */ 1031 static int 1032 tcp_default_fb_init(struct tcpcb *tp, void **ptr) 1033 { 1034 struct socket *so = tptosocket(tp); 1035 int rexmt; 1036 1037 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1038 /* We don't use the pointer */ 1039 *ptr = NULL; 1040 1041 KASSERT(tp->t_state < TCPS_TIME_WAIT, 1042 ("%s: connection %p in unexpected state %d", __func__, tp, 1043 tp->t_state)); 1044 1045 /* Make sure we get no interesting mbuf queuing behavior */ 1046 /* All mbuf queue/ack compress flags should be off */ 1047 tcp_lro_features_off(tp); 1048 1049 /* Cancel the GP measurement in progress */ 1050 tp->t_flags &= ~TF_GPUTINPROG; 1051 /* Validate the timers are not in usec, if they are convert */ 1052 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 1053 if ((tp->t_state == TCPS_SYN_SENT) || 1054 (tp->t_state == TCPS_SYN_RECEIVED)) 1055 rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift]; 1056 else 1057 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; 1058 if (tp->t_rxtshift == 0) 1059 tp->t_rxtcur = rexmt; 1060 else 1061 TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX); 1062 1063 /* 1064 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't 1065 * know what to do for unexpected states (which includes TIME_WAIT). 1066 */ 1067 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) 1068 return (0); 1069 1070 /* 1071 * Make sure some kind of transmission timer is set if there is 1072 * outstanding data. 1073 */ 1074 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || 1075 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || 1076 tcp_timer_active(tp, TT_PERSIST))) { 1077 /* 1078 * If the session has established and it looks like it should 1079 * be in the persist state, set the persist timer. Otherwise, 1080 * set the retransmit timer. 1081 */ 1082 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && 1083 (int32_t)(tp->snd_nxt - tp->snd_una) < 1084 (int32_t)sbavail(&so->so_snd)) 1085 tcp_setpersist(tp); 1086 else 1087 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp)); 1088 } 1089 1090 /* All non-embryonic sessions get a keepalive timer. */ 1091 if (!tcp_timer_active(tp, TT_KEEP)) 1092 tcp_timer_activate(tp, TT_KEEP, 1093 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : 1094 TP_KEEPINIT(tp)); 1095 1096 /* 1097 * Make sure critical variables are initialized 1098 * if transitioning while in Recovery. 1099 */ 1100 if IN_FASTRECOVERY(tp->t_flags) { 1101 if (tp->sackhint.recover_fs == 0) 1102 tp->sackhint.recover_fs = max(1, 1103 tp->snd_nxt - tp->snd_una); 1104 } 1105 1106 return (0); 1107 } 1108 1109 /* 1110 * tfb_tcp_fb_fini() function for the default stack. 1111 * 1112 * This changes state as necessary (or prudent) to prepare for another stack 1113 * to assume responsibility for the connection. 1114 */ 1115 static void 1116 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) 1117 { 1118 1119 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1120 1121 #ifdef TCP_BLACKBOX 1122 tcp_log_flowend(tp); 1123 #endif 1124 tp->t_acktime = 0; 1125 return; 1126 } 1127 1128 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 1129 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 1130 1131 static struct mtx isn_mtx; 1132 1133 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 1134 #define ISN_LOCK() mtx_lock(&isn_mtx) 1135 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 1136 1137 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash"); 1138 1139 /* 1140 * Take a value and get the next power of 2 that doesn't overflow. 1141 * Used to size the tcp_inpcb hash buckets. 1142 */ 1143 static int 1144 maketcp_hashsize(int size) 1145 { 1146 int hashsize; 1147 1148 /* 1149 * auto tune. 1150 * get the next power of 2 higher than maxsockets. 1151 */ 1152 hashsize = 1 << fls(size); 1153 /* catch overflow, and just go one power of 2 smaller */ 1154 if (hashsize < size) { 1155 hashsize = 1 << (fls(size) - 1); 1156 } 1157 return (hashsize); 1158 } 1159 1160 static volatile int next_tcp_stack_id = 1; 1161 1162 /* 1163 * Register a TCP function block with the name provided in the names 1164 * array. (Note that this function does NOT automatically register 1165 * blk->tfb_tcp_block_name as a stack name. Therefore, you should 1166 * explicitly include blk->tfb_tcp_block_name in the list of names if 1167 * you wish to register the stack with that name.) 1168 * 1169 * Either all name registrations will succeed or all will fail. If 1170 * a name registration fails, the function will update the num_names 1171 * argument to point to the array index of the name that encountered 1172 * the failure. 1173 * 1174 * Returns 0 on success, or an error code on failure. 1175 */ 1176 int 1177 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, 1178 const char *names[], int *num_names) 1179 { 1180 struct tcp_function *f[TCP_FUNCTION_NAME_NUM_MAX]; 1181 struct tcp_function_set fs; 1182 int error, i, num_registered; 1183 1184 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); 1185 KASSERT(*num_names > 0, 1186 ("%s: Called with non-positive length of name list", __func__)); 1187 KASSERT(rw_initialized(&tcp_function_lock), 1188 ("%s: called too early", __func__)); 1189 1190 if (*num_names > TCP_FUNCTION_NAME_NUM_MAX) { 1191 /* Too many names. */ 1192 *num_names = 0; 1193 return (E2BIG); 1194 } 1195 if ((blk->tfb_tcp_output == NULL) || 1196 (blk->tfb_tcp_do_segment == NULL) || 1197 (blk->tfb_tcp_ctloutput == NULL) || 1198 (blk->tfb_tcp_handoff_ok == NULL) || 1199 (strlen(blk->tfb_tcp_block_name) == 0)) { 1200 /* These functions are required and a name is needed. */ 1201 *num_names = 0; 1202 return (EINVAL); 1203 } 1204 1205 for (i = 0; i < *num_names; i++) { 1206 f[i] = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 1207 if (f[i] == NULL) { 1208 while (--i >= 0) 1209 free(f[i], M_TCPFUNCTIONS); 1210 *num_names = 0; 1211 return (ENOMEM); 1212 } 1213 } 1214 1215 num_registered = 0; 1216 rw_wlock(&tcp_function_lock); 1217 if (find_tcp_fb_locked(blk, NULL) != NULL) { 1218 /* A TCP function block can only be registered once. */ 1219 error = EALREADY; 1220 goto cleanup; 1221 } 1222 if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { 1223 error = EINVAL; 1224 goto cleanup; 1225 } 1226 refcount_init(&blk->tfb_refcnt, 0); 1227 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); 1228 for (i = 0; i < *num_names; i++) { 1229 (void)strlcpy(fs.function_set_name, names[i], 1230 sizeof(fs.function_set_name)); 1231 if (find_tcp_functions_locked(&fs) != NULL) { 1232 /* Duplicate name space not allowed */ 1233 error = EALREADY; 1234 goto cleanup; 1235 } 1236 f[i]->tf_fb = blk; 1237 (void)strlcpy(f[i]->tf_name, names[i], sizeof(f[i]->tf_name)); 1238 TAILQ_INSERT_TAIL(&t_functions, f[i], tf_next); 1239 tcp_fb_cnt++; 1240 num_registered++; 1241 } 1242 rw_wunlock(&tcp_function_lock); 1243 return (0); 1244 1245 cleanup: 1246 /* Remove the entries just added. */ 1247 for (i = 0; i < *num_names; i++) { 1248 if (i < num_registered) { 1249 TAILQ_REMOVE(&t_functions, f[i], tf_next); 1250 tcp_fb_cnt--; 1251 } 1252 f[i]->tf_fb = NULL; 1253 free(f[i], M_TCPFUNCTIONS); 1254 } 1255 rw_wunlock(&tcp_function_lock); 1256 *num_names = num_registered; 1257 return (error); 1258 } 1259 1260 /* 1261 * Register a TCP function block using the name provided in the name 1262 * argument. 1263 * 1264 * Returns 0 on success, or an error code on failure. 1265 */ 1266 int 1267 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, 1268 int wait) 1269 { 1270 const char *name_list[1]; 1271 int num_names, rv; 1272 1273 num_names = 1; 1274 if (name != NULL) 1275 name_list[0] = name; 1276 else 1277 name_list[0] = blk->tfb_tcp_block_name; 1278 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); 1279 return (rv); 1280 } 1281 1282 /* 1283 * Register a TCP function block using the name defined in 1284 * blk->tfb_tcp_block_name. 1285 * 1286 * Returns 0 on success, or an error code on failure. 1287 */ 1288 int 1289 register_tcp_functions(struct tcp_function_block *blk, int wait) 1290 { 1291 1292 return (register_tcp_functions_as_name(blk, NULL, wait)); 1293 } 1294 1295 /* 1296 * Deregister all names associated with a function block. This 1297 * functionally removes the function block from use within the system. 1298 * 1299 * When called with a true quiesce argument, mark the function block 1300 * as being removed so no more stacks will use it and determine 1301 * whether the removal would succeed. 1302 * 1303 * When called with a false quiesce argument, actually attempt the 1304 * removal. 1305 * 1306 * When called with a force argument, attempt to switch all TCBs to 1307 * use the default stack instead of returning EBUSY. 1308 * 1309 * Returns 0 on success (or if the removal would succeed), or an error 1310 * code on failure. 1311 */ 1312 int 1313 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, 1314 bool force) 1315 { 1316 struct tcp_function *f; 1317 VNET_ITERATOR_DECL(vnet_iter); 1318 1319 if (blk == &tcp_def_funcblk) { 1320 /* You can't un-register the default */ 1321 return (EPERM); 1322 } 1323 rw_wlock(&tcp_function_lock); 1324 VNET_LIST_RLOCK_NOSLEEP(); 1325 VNET_FOREACH(vnet_iter) { 1326 CURVNET_SET(vnet_iter); 1327 if (blk == V_tcp_func_set_ptr) { 1328 /* You can't free the current default in some vnet. */ 1329 CURVNET_RESTORE(); 1330 VNET_LIST_RUNLOCK_NOSLEEP(); 1331 rw_wunlock(&tcp_function_lock); 1332 return (EBUSY); 1333 } 1334 CURVNET_RESTORE(); 1335 } 1336 VNET_LIST_RUNLOCK_NOSLEEP(); 1337 /* Mark the block so no more stacks can use it. */ 1338 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 1339 /* 1340 * If TCBs are still attached to the stack, attempt to switch them 1341 * to the default stack. 1342 */ 1343 if (force && blk->tfb_refcnt) { 1344 struct inpcb *inp; 1345 struct tcpcb *tp; 1346 VNET_ITERATOR_DECL(vnet_iter); 1347 1348 rw_wunlock(&tcp_function_lock); 1349 1350 VNET_LIST_RLOCK(); 1351 VNET_FOREACH(vnet_iter) { 1352 CURVNET_SET(vnet_iter); 1353 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1354 INPLOOKUP_WLOCKPCB); 1355 1356 while ((inp = inp_next(&inpi)) != NULL) { 1357 tp = intotcpcb(inp); 1358 if (tp == NULL || tp->t_fb != blk) 1359 continue; 1360 tcp_switch_back_to_default(tp); 1361 } 1362 CURVNET_RESTORE(); 1363 } 1364 VNET_LIST_RUNLOCK(); 1365 1366 rw_wlock(&tcp_function_lock); 1367 } 1368 if (blk->tfb_refcnt) { 1369 /* TCBs still attached. */ 1370 rw_wunlock(&tcp_function_lock); 1371 return (EBUSY); 1372 } 1373 if (quiesce) { 1374 /* Skip removal. */ 1375 rw_wunlock(&tcp_function_lock); 1376 return (0); 1377 } 1378 /* Remove any function names that map to this function block. */ 1379 while (find_tcp_fb_locked(blk, &f) != NULL) { 1380 TAILQ_REMOVE(&t_functions, f, tf_next); 1381 tcp_fb_cnt--; 1382 f->tf_fb = NULL; 1383 free(f, M_TCPFUNCTIONS); 1384 } 1385 rw_wunlock(&tcp_function_lock); 1386 return (0); 1387 } 1388 1389 static void 1390 tcp_drain(void) 1391 { 1392 struct epoch_tracker et; 1393 VNET_ITERATOR_DECL(vnet_iter); 1394 1395 if (!do_tcpdrain) 1396 return; 1397 1398 NET_EPOCH_ENTER(et); 1399 VNET_LIST_RLOCK_NOSLEEP(); 1400 VNET_FOREACH(vnet_iter) { 1401 CURVNET_SET(vnet_iter); 1402 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1403 INPLOOKUP_WLOCKPCB); 1404 struct inpcb *inpb; 1405 struct tcpcb *tcpb; 1406 1407 /* 1408 * Walk the tcpbs, if existing, and flush the reassembly queue, 1409 * if there is one... 1410 * XXX: The "Net/3" implementation doesn't imply that the TCP 1411 * reassembly queue should be flushed, but in a situation 1412 * where we're really low on mbufs, this is potentially 1413 * useful. 1414 */ 1415 while ((inpb = inp_next(&inpi)) != NULL) { 1416 if ((tcpb = intotcpcb(inpb)) != NULL) { 1417 tcp_reass_flush(tcpb); 1418 tcp_clean_sackreport(tcpb); 1419 #ifdef TCP_BLACKBOX 1420 tcp_log_drain(tcpb); 1421 #endif 1422 #ifdef TCPPCAP 1423 if (tcp_pcap_aggressive_free) { 1424 /* Free the TCP PCAP queues. */ 1425 tcp_pcap_drain(&(tcpb->t_inpkts)); 1426 tcp_pcap_drain(&(tcpb->t_outpkts)); 1427 } 1428 #endif 1429 } 1430 } 1431 CURVNET_RESTORE(); 1432 } 1433 VNET_LIST_RUNLOCK_NOSLEEP(); 1434 NET_EPOCH_EXIT(et); 1435 } 1436 1437 static void 1438 tcp_vnet_init(void *arg __unused) 1439 { 1440 1441 #ifdef TCP_HHOOK 1442 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 1443 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1444 printf("%s: WARNING: unable to register helper hook\n", __func__); 1445 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 1446 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1447 printf("%s: WARNING: unable to register helper hook\n", __func__); 1448 #endif 1449 #ifdef STATS 1450 if (tcp_stats_init()) 1451 printf("%s: WARNING: unable to initialise TCP stats\n", 1452 __func__); 1453 #endif 1454 in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize, 1455 tcp_tcbhashsize); 1456 1457 syncache_init(); 1458 tcp_hc_init(); 1459 1460 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 1461 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 1462 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1463 1464 tcp_fastopen_init(); 1465 1466 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); 1467 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); 1468 1469 V_tcp_msl = TCPTV_MSL; 1470 } 1471 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 1472 tcp_vnet_init, NULL); 1473 1474 static void 1475 tcp_init(void *arg __unused) 1476 { 1477 int hashsize; 1478 1479 tcp_reass_global_init(); 1480 1481 /* XXX virtualize those below? */ 1482 tcp_delacktime = TCPTV_DELACK; 1483 tcp_keepinit = TCPTV_KEEP_INIT; 1484 tcp_keepidle = TCPTV_KEEP_IDLE; 1485 tcp_keepintvl = TCPTV_KEEPINTVL; 1486 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 1487 tcp_rexmit_initial = TCPTV_RTOBASE; 1488 if (tcp_rexmit_initial < 1) 1489 tcp_rexmit_initial = 1; 1490 tcp_rexmit_min = TCPTV_MIN; 1491 if (tcp_rexmit_min < 1) 1492 tcp_rexmit_min = 1; 1493 tcp_persmin = TCPTV_PERSMIN; 1494 tcp_persmax = TCPTV_PERSMAX; 1495 tcp_rexmit_slop = TCPTV_CPU_VAR; 1496 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 1497 1498 /* Setup the tcp function block list */ 1499 TAILQ_INIT(&t_functions); 1500 rw_init(&tcp_function_lock, "tcp_func_lock"); 1501 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 1502 sx_init(&tcpoudp_lock, "TCP over UDP configuration"); 1503 #ifdef TCP_BLACKBOX 1504 /* Initialize the TCP logging data. */ 1505 tcp_log_init(); 1506 #endif 1507 arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0); 1508 1509 if (tcp_soreceive_stream) { 1510 #ifdef INET 1511 tcp_protosw.pr_soreceive = soreceive_stream; 1512 #endif 1513 #ifdef INET6 1514 tcp6_protosw.pr_soreceive = soreceive_stream; 1515 #endif /* INET6 */ 1516 } 1517 1518 #ifdef INET6 1519 max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); 1520 #else /* INET6 */ 1521 max_protohdr_grow(sizeof(struct tcpiphdr)); 1522 #endif /* INET6 */ 1523 1524 ISN_LOCK_INIT(); 1525 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 1526 SHUTDOWN_PRI_DEFAULT); 1527 EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1528 EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1529 1530 tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK); 1531 tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK); 1532 tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK); 1533 tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK); 1534 tcp_extra_mbuf = counter_u64_alloc(M_WAITOK); 1535 tcp_would_have_but = counter_u64_alloc(M_WAITOK); 1536 tcp_comp_total = counter_u64_alloc(M_WAITOK); 1537 tcp_uncomp_total = counter_u64_alloc(M_WAITOK); 1538 tcp_bad_csums = counter_u64_alloc(M_WAITOK); 1539 tcp_pacing_failures = counter_u64_alloc(M_WAITOK); 1540 tcp_dgp_failures = counter_u64_alloc(M_WAITOK); 1541 #ifdef TCPPCAP 1542 tcp_pcap_init(); 1543 #endif 1544 1545 hashsize = tcp_tcbhashsize; 1546 if (hashsize == 0) { 1547 /* 1548 * Auto tune the hash size based on maxsockets. 1549 * A perfect hash would have a 1:1 mapping 1550 * (hashsize = maxsockets) however it's been 1551 * suggested that O(2) average is better. 1552 */ 1553 hashsize = maketcp_hashsize(maxsockets / 4); 1554 /* 1555 * Our historical default is 512, 1556 * do not autotune lower than this. 1557 */ 1558 if (hashsize < 512) 1559 hashsize = 512; 1560 if (bootverbose) 1561 printf("%s: %s auto tuned to %d\n", __func__, 1562 "net.inet.tcp.tcbhashsize", hashsize); 1563 } 1564 /* 1565 * We require a hashsize to be a power of two. 1566 * Previously if it was not a power of two we would just reset it 1567 * back to 512, which could be a nasty surprise if you did not notice 1568 * the error message. 1569 * Instead what we do is clip it to the closest power of two lower 1570 * than the specified hash value. 1571 */ 1572 if (!powerof2(hashsize)) { 1573 int oldhashsize = hashsize; 1574 1575 hashsize = maketcp_hashsize(hashsize); 1576 /* prevent absurdly low value */ 1577 if (hashsize < 16) 1578 hashsize = 16; 1579 printf("%s: WARNING: TCB hash size not a power of 2, " 1580 "clipped from %d to %d.\n", __func__, oldhashsize, 1581 hashsize); 1582 } 1583 tcp_tcbhashsize = hashsize; 1584 1585 #ifdef INET 1586 IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput); 1587 #endif 1588 #ifdef INET6 1589 IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput); 1590 #endif 1591 } 1592 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL); 1593 1594 #ifdef VIMAGE 1595 static void 1596 tcp_destroy(void *unused __unused) 1597 { 1598 int n; 1599 #ifdef TCP_HHOOK 1600 int error; 1601 #endif 1602 1603 /* 1604 * All our processes are gone, all our sockets should be cleaned 1605 * up, which means, we should be past the tcp_discardcb() calls. 1606 * Sleep to let all tcpcb timers really disappear and cleanup. 1607 */ 1608 for (;;) { 1609 INP_INFO_WLOCK(&V_tcbinfo); 1610 n = V_tcbinfo.ipi_count; 1611 INP_INFO_WUNLOCK(&V_tcbinfo); 1612 if (n == 0) 1613 break; 1614 pause("tcpdes", hz / 10); 1615 } 1616 tcp_hc_destroy(); 1617 syncache_destroy(); 1618 in_pcbinfo_destroy(&V_tcbinfo); 1619 /* tcp_discardcb() clears the sack_holes up. */ 1620 uma_zdestroy(V_sack_hole_zone); 1621 1622 /* 1623 * Cannot free the zone until all tcpcbs are released as we attach 1624 * the allocations to them. 1625 */ 1626 tcp_fastopen_destroy(); 1627 1628 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); 1629 VNET_PCPUSTAT_FREE(tcpstat); 1630 1631 #ifdef TCP_HHOOK 1632 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 1633 if (error != 0) { 1634 printf("%s: WARNING: unable to deregister helper hook " 1635 "type=%d, id=%d: error %d returned\n", __func__, 1636 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 1637 } 1638 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 1639 if (error != 0) { 1640 printf("%s: WARNING: unable to deregister helper hook " 1641 "type=%d, id=%d: error %d returned\n", __func__, 1642 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 1643 } 1644 #endif 1645 } 1646 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 1647 #endif 1648 1649 void 1650 tcp_fini(void *xtp) 1651 { 1652 1653 } 1654 1655 /* 1656 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 1657 * tcp_template used to store this data in mbufs, but we now recopy it out 1658 * of the tcpcb each time to conserve mbufs. 1659 */ 1660 void 1661 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr) 1662 { 1663 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 1664 1665 INP_WLOCK_ASSERT(inp); 1666 1667 #ifdef INET6 1668 if ((inp->inp_vflag & INP_IPV6) != 0) { 1669 struct ip6_hdr *ip6; 1670 1671 ip6 = (struct ip6_hdr *)ip_ptr; 1672 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 1673 (inp->inp_flow & IPV6_FLOWINFO_MASK); 1674 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 1675 (IPV6_VERSION & IPV6_VERSION_MASK); 1676 if (port == 0) 1677 ip6->ip6_nxt = IPPROTO_TCP; 1678 else 1679 ip6->ip6_nxt = IPPROTO_UDP; 1680 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1681 ip6->ip6_src = inp->in6p_laddr; 1682 ip6->ip6_dst = inp->in6p_faddr; 1683 } 1684 #endif /* INET6 */ 1685 #if defined(INET6) && defined(INET) 1686 else 1687 #endif 1688 #ifdef INET 1689 { 1690 struct ip *ip; 1691 1692 ip = (struct ip *)ip_ptr; 1693 ip->ip_v = IPVERSION; 1694 ip->ip_hl = 5; 1695 ip->ip_tos = inp->inp_ip_tos; 1696 ip->ip_len = 0; 1697 ip->ip_id = 0; 1698 ip->ip_off = 0; 1699 ip->ip_ttl = inp->inp_ip_ttl; 1700 ip->ip_sum = 0; 1701 if (port == 0) 1702 ip->ip_p = IPPROTO_TCP; 1703 else 1704 ip->ip_p = IPPROTO_UDP; 1705 ip->ip_src = inp->inp_laddr; 1706 ip->ip_dst = inp->inp_faddr; 1707 } 1708 #endif /* INET */ 1709 th->th_sport = inp->inp_lport; 1710 th->th_dport = inp->inp_fport; 1711 th->th_seq = 0; 1712 th->th_ack = 0; 1713 th->th_off = 5; 1714 tcp_set_flags(th, 0); 1715 th->th_win = 0; 1716 th->th_urp = 0; 1717 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 1718 } 1719 1720 /* 1721 * Create template to be used to send tcp packets on a connection. 1722 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 1723 * use for this function is in keepalives, which use tcp_respond. 1724 */ 1725 struct tcptemp * 1726 tcpip_maketemplate(struct inpcb *inp) 1727 { 1728 struct tcptemp *t; 1729 1730 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 1731 if (t == NULL) 1732 return (NULL); 1733 tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t); 1734 return (t); 1735 } 1736 1737 /* 1738 * Send a single message to the TCP at address specified by 1739 * the given TCP/IP header. If m == NULL, then we make a copy 1740 * of the tcpiphdr at th and send directly to the addressed host. 1741 * This is used to force keep alive messages out using the TCP 1742 * template for a connection. If flags are given then we send 1743 * a message back to the TCP which originated the segment th, 1744 * and discard the mbuf containing it and any other attached mbufs. 1745 * 1746 * In any case the ack and sequence number of the transmitted 1747 * segment are as specified by the parameters. 1748 * 1749 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 1750 */ 1751 1752 void 1753 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 1754 tcp_seq ack, tcp_seq seq, uint16_t flags) 1755 { 1756 struct tcpopt to; 1757 struct inpcb *inp; 1758 struct ip *ip; 1759 struct mbuf *optm; 1760 struct udphdr *uh = NULL; 1761 struct tcphdr *nth; 1762 struct tcp_log_buffer *lgb; 1763 u_char *optp; 1764 #ifdef INET6 1765 struct ip6_hdr *ip6; 1766 int isipv6; 1767 #endif /* INET6 */ 1768 int optlen, tlen, win, ulen; 1769 int ect = 0; 1770 bool incl_opts; 1771 uint16_t port; 1772 int output_ret; 1773 #ifdef INVARIANTS 1774 int thflags = tcp_get_flags(th); 1775 #endif 1776 1777 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 1778 NET_EPOCH_ASSERT(); 1779 1780 #ifdef INET6 1781 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 1782 ip6 = ipgen; 1783 #endif /* INET6 */ 1784 ip = ipgen; 1785 1786 if (tp != NULL) { 1787 inp = tptoinpcb(tp); 1788 INP_LOCK_ASSERT(inp); 1789 } else 1790 inp = NULL; 1791 1792 if (m != NULL) { 1793 #ifdef INET6 1794 if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP)) 1795 port = m->m_pkthdr.tcp_tun_port; 1796 else 1797 #endif 1798 if (ip && (ip->ip_p == IPPROTO_UDP)) 1799 port = m->m_pkthdr.tcp_tun_port; 1800 else 1801 port = 0; 1802 } else 1803 port = tp->t_port; 1804 1805 incl_opts = false; 1806 win = 0; 1807 if (tp != NULL) { 1808 if (!(flags & TH_RST)) { 1809 win = sbspace(&inp->inp_socket->so_rcv); 1810 if (win > TCP_MAXWIN << tp->rcv_scale) 1811 win = TCP_MAXWIN << tp->rcv_scale; 1812 } 1813 if ((tp->t_flags & TF_NOOPT) == 0) 1814 incl_opts = true; 1815 } 1816 if (m == NULL) { 1817 m = m_gethdr(M_NOWAIT, MT_DATA); 1818 if (m == NULL) 1819 return; 1820 m->m_data += max_linkhdr; 1821 #ifdef INET6 1822 if (isipv6) { 1823 bcopy((caddr_t)ip6, mtod(m, caddr_t), 1824 sizeof(struct ip6_hdr)); 1825 ip6 = mtod(m, struct ip6_hdr *); 1826 nth = (struct tcphdr *)(ip6 + 1); 1827 if (port) { 1828 /* Insert a UDP header */ 1829 uh = (struct udphdr *)nth; 1830 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1831 uh->uh_dport = port; 1832 nth = (struct tcphdr *)(uh + 1); 1833 } 1834 } else 1835 #endif /* INET6 */ 1836 { 1837 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1838 ip = mtod(m, struct ip *); 1839 nth = (struct tcphdr *)(ip + 1); 1840 if (port) { 1841 /* Insert a UDP header */ 1842 uh = (struct udphdr *)nth; 1843 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1844 uh->uh_dport = port; 1845 nth = (struct tcphdr *)(uh + 1); 1846 } 1847 } 1848 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1849 flags = TH_ACK; 1850 } else if ((!M_WRITABLE(m)) || (port != 0)) { 1851 struct mbuf *n; 1852 1853 /* Can't reuse 'm', allocate a new mbuf. */ 1854 n = m_gethdr(M_NOWAIT, MT_DATA); 1855 if (n == NULL) { 1856 m_freem(m); 1857 return; 1858 } 1859 1860 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 1861 m_freem(m); 1862 m_freem(n); 1863 return; 1864 } 1865 1866 n->m_data += max_linkhdr; 1867 /* m_len is set later */ 1868 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 1869 #ifdef INET6 1870 if (isipv6) { 1871 bcopy((caddr_t)ip6, mtod(n, caddr_t), 1872 sizeof(struct ip6_hdr)); 1873 ip6 = mtod(n, struct ip6_hdr *); 1874 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1875 nth = (struct tcphdr *)(ip6 + 1); 1876 if (port) { 1877 /* Insert a UDP header */ 1878 uh = (struct udphdr *)nth; 1879 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1880 uh->uh_dport = port; 1881 nth = (struct tcphdr *)(uh + 1); 1882 } 1883 } else 1884 #endif /* INET6 */ 1885 { 1886 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 1887 ip = mtod(n, struct ip *); 1888 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1889 nth = (struct tcphdr *)(ip + 1); 1890 if (port) { 1891 /* Insert a UDP header */ 1892 uh = (struct udphdr *)nth; 1893 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1894 uh->uh_dport = port; 1895 nth = (struct tcphdr *)(uh + 1); 1896 } 1897 } 1898 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1899 xchg(nth->th_dport, nth->th_sport, uint16_t); 1900 th = nth; 1901 m_freem(m); 1902 m = n; 1903 } else { 1904 /* 1905 * reuse the mbuf. 1906 * XXX MRT We inherit the FIB, which is lucky. 1907 */ 1908 m_freem(m->m_next); 1909 m->m_next = NULL; 1910 m->m_data = (caddr_t)ipgen; 1911 /* clear any receive flags for proper bpf timestamping */ 1912 m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO); 1913 /* m_len is set later */ 1914 #ifdef INET6 1915 if (isipv6) { 1916 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1917 nth = (struct tcphdr *)(ip6 + 1); 1918 } else 1919 #endif /* INET6 */ 1920 { 1921 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1922 nth = (struct tcphdr *)(ip + 1); 1923 } 1924 if (th != nth) { 1925 /* 1926 * this is usually a case when an extension header 1927 * exists between the IPv6 header and the 1928 * TCP header. 1929 */ 1930 nth->th_sport = th->th_sport; 1931 nth->th_dport = th->th_dport; 1932 } 1933 xchg(nth->th_dport, nth->th_sport, uint16_t); 1934 #undef xchg 1935 } 1936 tlen = 0; 1937 #ifdef INET6 1938 if (isipv6) 1939 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1940 #endif 1941 #if defined(INET) && defined(INET6) 1942 else 1943 #endif 1944 #ifdef INET 1945 tlen = sizeof (struct tcpiphdr); 1946 #endif 1947 if (port) 1948 tlen += sizeof (struct udphdr); 1949 #ifdef INVARIANTS 1950 m->m_len = 0; 1951 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1952 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1953 m, tlen, (long)M_TRAILINGSPACE(m))); 1954 #endif 1955 m->m_len = tlen; 1956 to.to_flags = 0; 1957 if (incl_opts) { 1958 ect = tcp_ecn_output_established(tp, &flags, 0, false); 1959 /* Make sure we have room. */ 1960 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1961 m->m_next = m_get(M_NOWAIT, MT_DATA); 1962 if (m->m_next) { 1963 optp = mtod(m->m_next, u_char *); 1964 optm = m->m_next; 1965 } else 1966 incl_opts = false; 1967 } else { 1968 optp = (u_char *) (nth + 1); 1969 optm = m; 1970 } 1971 } 1972 if (incl_opts) { 1973 /* Timestamps. */ 1974 if (tp->t_flags & TF_RCVD_TSTMP) { 1975 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 1976 to.to_tsecr = tp->ts_recent; 1977 to.to_flags |= TOF_TS; 1978 } 1979 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1980 /* TCP-MD5 (RFC2385). */ 1981 if (tp->t_flags & TF_SIGNATURE) 1982 to.to_flags |= TOF_SIGNATURE; 1983 #endif 1984 /* Add the options. */ 1985 tlen += optlen = tcp_addoptions(&to, optp); 1986 1987 /* Update m_len in the correct mbuf. */ 1988 optm->m_len += optlen; 1989 } else 1990 optlen = 0; 1991 #ifdef INET6 1992 if (isipv6) { 1993 if (uh) { 1994 ulen = tlen - sizeof(struct ip6_hdr); 1995 uh->uh_ulen = htons(ulen); 1996 } 1997 ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN); 1998 ip6->ip6_vfc = IPV6_VERSION; 1999 if (port) 2000 ip6->ip6_nxt = IPPROTO_UDP; 2001 else 2002 ip6->ip6_nxt = IPPROTO_TCP; 2003 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 2004 } 2005 #endif 2006 #if defined(INET) && defined(INET6) 2007 else 2008 #endif 2009 #ifdef INET 2010 { 2011 if (uh) { 2012 ulen = tlen - sizeof(struct ip); 2013 uh->uh_ulen = htons(ulen); 2014 } 2015 ip->ip_len = htons(tlen); 2016 if (inp != NULL) { 2017 ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK; 2018 ip->ip_ttl = inp->inp_ip_ttl; 2019 } else { 2020 ip->ip_tos = 0; 2021 ip->ip_ttl = V_ip_defttl; 2022 } 2023 ip->ip_tos |= ect; 2024 if (port) { 2025 ip->ip_p = IPPROTO_UDP; 2026 } else { 2027 ip->ip_p = IPPROTO_TCP; 2028 } 2029 if (V_path_mtu_discovery) 2030 ip->ip_off |= htons(IP_DF); 2031 } 2032 #endif 2033 m->m_pkthdr.len = tlen; 2034 m->m_pkthdr.rcvif = NULL; 2035 #ifdef MAC 2036 if (inp != NULL) { 2037 /* 2038 * Packet is associated with a socket, so allow the 2039 * label of the response to reflect the socket label. 2040 */ 2041 INP_LOCK_ASSERT(inp); 2042 mac_inpcb_create_mbuf(inp, m); 2043 } else { 2044 /* 2045 * Packet is not associated with a socket, so possibly 2046 * update the label in place. 2047 */ 2048 mac_netinet_tcp_reply(m); 2049 } 2050 #endif 2051 nth->th_seq = htonl(seq); 2052 nth->th_ack = htonl(ack); 2053 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 2054 tcp_set_flags(nth, flags); 2055 if (tp && (flags & TH_RST)) { 2056 /* Log the reset */ 2057 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 2058 } 2059 if (tp != NULL) 2060 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 2061 else 2062 nth->th_win = htons((u_short)win); 2063 nth->th_urp = 0; 2064 2065 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2066 if (to.to_flags & TOF_SIGNATURE) { 2067 if (!TCPMD5_ENABLED() || 2068 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { 2069 m_freem(m); 2070 return; 2071 } 2072 } 2073 #endif 2074 2075 #ifdef INET6 2076 if (isipv6) { 2077 if (port) { 2078 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 2079 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2080 uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 2081 nth->th_sum = 0; 2082 } else { 2083 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 2084 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2085 nth->th_sum = in6_cksum_pseudo(ip6, 2086 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 2087 } 2088 ip6->ip6_hlim = in6_selecthlim(inp, NULL); 2089 } 2090 #endif /* INET6 */ 2091 #if defined(INET6) && defined(INET) 2092 else 2093 #endif 2094 #ifdef INET 2095 { 2096 if (port) { 2097 uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2098 htons(ulen + IPPROTO_UDP)); 2099 m->m_pkthdr.csum_flags = CSUM_UDP; 2100 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2101 nth->th_sum = 0; 2102 } else { 2103 m->m_pkthdr.csum_flags = CSUM_TCP; 2104 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2105 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2106 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 2107 } 2108 } 2109 #endif /* INET */ 2110 TCP_PROBE3(debug__output, tp, th, m); 2111 if (flags & TH_RST) 2112 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); 2113 lgb = NULL; 2114 if ((tp != NULL) && tcp_bblogging_on(tp)) { 2115 if (INP_WLOCKED(inp)) { 2116 union tcp_log_stackspecific log; 2117 struct timeval tv; 2118 2119 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2120 log.u_bbr.inhpts = tcp_in_hpts(tp); 2121 log.u_bbr.flex8 = 4; 2122 log.u_bbr.pkts_out = tp->t_maxseg; 2123 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2124 log.u_bbr.delivered = 0; 2125 lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT, 2126 ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv); 2127 } else { 2128 /* 2129 * We can not log the packet, since we only own the 2130 * read lock, but a write lock is needed. The read lock 2131 * is not upgraded to a write lock, since only getting 2132 * the read lock was done intentionally to improve the 2133 * handling of SYN flooding attacks. 2134 * This happens only for pure SYN segments received in 2135 * the initial CLOSED state, or received in a more 2136 * advanced state than listen and the UDP encapsulation 2137 * port is unexpected. 2138 * The incoming SYN segments do not really belong to 2139 * the TCP connection and the handling does not change 2140 * the state of the TCP connection. Therefore, the 2141 * sending of the RST segments is not logged. Please 2142 * note that also the incoming SYN segments are not 2143 * logged. 2144 * 2145 * The following code ensures that the above description 2146 * is and stays correct. 2147 */ 2148 KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN && 2149 (tp->t_state == TCPS_CLOSED || 2150 (tp->t_state > TCPS_LISTEN && tp->t_port != port)), 2151 ("%s: Logging of TCP segment with flags 0x%b and " 2152 "UDP encapsulation port %u skipped in state %s", 2153 __func__, thflags, PRINT_TH_FLAGS, 2154 ntohs(port), tcpstates[tp->t_state])); 2155 } 2156 } 2157 2158 if (flags & TH_ACK) 2159 TCPSTAT_INC(tcps_sndacks); 2160 else if (flags & (TH_SYN|TH_FIN|TH_RST)) 2161 TCPSTAT_INC(tcps_sndctrl); 2162 TCPSTAT_INC(tcps_sndtotal); 2163 2164 #ifdef INET6 2165 if (isipv6) { 2166 TCP_PROBE5(send, NULL, tp, ip6, tp, nth); 2167 output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL, 2168 NULL, 0, NULL, NULL, inp); 2169 } 2170 #endif /* INET6 */ 2171 #if defined(INET) && defined(INET6) 2172 else 2173 #endif 2174 #ifdef INET 2175 { 2176 TCP_PROBE5(send, NULL, tp, ip, tp, nth); 2177 output_ret = ip_output(m, NULL, NULL, 0, NULL, inp); 2178 } 2179 #endif 2180 if (lgb != NULL) 2181 lgb->tlb_errno = output_ret; 2182 } 2183 2184 /* 2185 * Create a new TCP control block, making an empty reassembly queue and hooking 2186 * it to the argument protocol control block. The `inp' parameter must have 2187 * come from the zone allocator set up by tcpcbstor declaration. 2188 * The caller can provide a pointer to a tcpcb of the listener to inherit the 2189 * TCP function block from the listener. 2190 */ 2191 struct tcpcb * 2192 tcp_newtcpcb(struct inpcb *inp, struct tcpcb *listening_tcb) 2193 { 2194 struct tcpcb *tp = intotcpcb(inp); 2195 #ifdef INET6 2196 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2197 #endif /* INET6 */ 2198 2199 /* 2200 * Historically allocation was done with M_ZERO. There is a lot of 2201 * code that rely on that. For now take safe approach and zero whole 2202 * tcpcb. This definitely can be optimized. 2203 */ 2204 bzero(&tp->t_start_zero, t_zero_size); 2205 2206 /* Initialise cc_var struct for this tcpcb. */ 2207 tp->t_ccv.type = IPPROTO_TCP; 2208 tp->t_ccv.ccvc.tcp = tp; 2209 rw_rlock(&tcp_function_lock); 2210 if (listening_tcb != NULL) { 2211 INP_LOCK_ASSERT(tptoinpcb(listening_tcb)); 2212 KASSERT(listening_tcb->t_fb != NULL, 2213 ("tcp_newtcpcb: listening_tcb->t_fb is NULL")); 2214 if (listening_tcb->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) { 2215 rw_runlock(&tcp_function_lock); 2216 return (NULL); 2217 } 2218 tp->t_fb = listening_tcb->t_fb; 2219 } else { 2220 tp->t_fb = V_tcp_func_set_ptr; 2221 } 2222 refcount_acquire(&tp->t_fb->tfb_refcnt); 2223 KASSERT((tp->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) == 0, 2224 ("tcp_newtcpcb: using TFB being removed")); 2225 rw_runlock(&tcp_function_lock); 2226 /* 2227 * Use the current system default CC algorithm. 2228 */ 2229 cc_attach(tp, CC_DEFAULT_ALGO()); 2230 2231 if (CC_ALGO(tp)->cb_init != NULL) 2232 if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) { 2233 cc_detach(tp); 2234 if (tp->t_fb->tfb_tcp_fb_fini) 2235 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2236 refcount_release(&tp->t_fb->tfb_refcnt); 2237 return (NULL); 2238 } 2239 2240 #ifdef TCP_HHOOK 2241 if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) { 2242 if (CC_ALGO(tp)->cb_destroy != NULL) 2243 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2244 CC_DATA(tp) = NULL; 2245 cc_detach(tp); 2246 if (tp->t_fb->tfb_tcp_fb_fini) 2247 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2248 refcount_release(&tp->t_fb->tfb_refcnt); 2249 return (NULL); 2250 } 2251 #endif 2252 2253 TAILQ_INIT(&tp->t_segq); 2254 STAILQ_INIT(&tp->t_inqueue); 2255 tp->t_maxseg = 2256 #ifdef INET6 2257 isipv6 ? V_tcp_v6mssdflt : 2258 #endif /* INET6 */ 2259 V_tcp_mssdflt; 2260 2261 /* All mbuf queue/ack compress flags should be off */ 2262 tcp_lro_features_off(tp); 2263 2264 tp->t_hpts_cpu = HPTS_CPU_NONE; 2265 tp->t_lro_cpu = HPTS_CPU_NONE; 2266 2267 callout_init_rw(&tp->t_callout, &inp->inp_lock, CALLOUT_RETURNUNLOCKED); 2268 for (int i = 0; i < TT_N; i++) 2269 tp->t_timers[i] = SBT_MAX; 2270 2271 switch (V_tcp_do_rfc1323) { 2272 case 0: 2273 break; 2274 default: 2275 case 1: 2276 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 2277 break; 2278 case 2: 2279 tp->t_flags = TF_REQ_SCALE; 2280 break; 2281 case 3: 2282 tp->t_flags = TF_REQ_TSTMP; 2283 break; 2284 } 2285 if (V_tcp_do_sack) 2286 tp->t_flags |= TF_SACK_PERMIT; 2287 TAILQ_INIT(&tp->snd_holes); 2288 2289 /* 2290 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 2291 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 2292 * reasonable initial retransmit time. 2293 */ 2294 tp->t_srtt = TCPTV_SRTTBASE; 2295 tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 2296 tp->t_rttmin = tcp_rexmit_min; 2297 tp->t_rxtcur = tcp_rexmit_initial; 2298 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2299 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2300 tp->t_rcvtime = ticks; 2301 /* We always start with ticks granularity */ 2302 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 2303 /* 2304 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 2305 * because the socket may be bound to an IPv6 wildcard address, 2306 * which may match an IPv4-mapped IPv6 address. 2307 */ 2308 inp->inp_ip_ttl = V_ip_defttl; 2309 #ifdef TCPPCAP 2310 /* 2311 * Init the TCP PCAP queues. 2312 */ 2313 tcp_pcap_tcpcb_init(tp); 2314 #endif 2315 #ifdef TCP_BLACKBOX 2316 /* Initialize the per-TCPCB log data. */ 2317 tcp_log_tcpcbinit(tp); 2318 #endif 2319 tp->t_pacing_rate = -1; 2320 if (tp->t_fb->tfb_tcp_fb_init) { 2321 if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) { 2322 if (CC_ALGO(tp)->cb_destroy != NULL) 2323 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2324 CC_DATA(tp) = NULL; 2325 cc_detach(tp); 2326 #ifdef TCP_HHOOK 2327 khelp_destroy_osd(&tp->t_osd); 2328 #endif 2329 refcount_release(&tp->t_fb->tfb_refcnt); 2330 return (NULL); 2331 } 2332 } 2333 #ifdef STATS 2334 if (V_tcp_perconn_stats_enable == 1) 2335 tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0); 2336 #endif 2337 if (V_tcp_do_lrd) 2338 tp->t_flags |= TF_LRD; 2339 2340 return (tp); 2341 } 2342 2343 /* 2344 * Drop a TCP connection, reporting 2345 * the specified error. If connection is synchronized, 2346 * then send a RST to peer. 2347 */ 2348 struct tcpcb * 2349 tcp_drop(struct tcpcb *tp, int errno) 2350 { 2351 struct socket *so = tptosocket(tp); 2352 2353 NET_EPOCH_ASSERT(); 2354 INP_WLOCK_ASSERT(tptoinpcb(tp)); 2355 2356 if (TCPS_HAVERCVDSYN(tp->t_state)) { 2357 tcp_state_change(tp, TCPS_CLOSED); 2358 /* Don't use tcp_output() here due to possible recursion. */ 2359 (void)tcp_output_nodrop(tp); 2360 TCPSTAT_INC(tcps_drops); 2361 } else 2362 TCPSTAT_INC(tcps_conndrops); 2363 if (errno == ETIMEDOUT && tp->t_softerror) 2364 errno = tp->t_softerror; 2365 so->so_error = errno; 2366 return (tcp_close(tp)); 2367 } 2368 2369 void 2370 tcp_discardcb(struct tcpcb *tp) 2371 { 2372 struct inpcb *inp = tptoinpcb(tp); 2373 struct socket *so = tptosocket(tp); 2374 struct mbuf *m; 2375 #ifdef INET6 2376 bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2377 #endif 2378 2379 INP_WLOCK_ASSERT(inp); 2380 MPASS(!callout_active(&tp->t_callout)); 2381 MPASS(TAILQ_EMPTY(&tp->snd_holes)); 2382 2383 /* free the reassembly queue, if any */ 2384 tcp_reass_flush(tp); 2385 2386 #ifdef TCP_OFFLOAD 2387 /* Disconnect offload device, if any. */ 2388 if (tp->t_flags & TF_TOE) 2389 tcp_offload_detach(tp); 2390 #endif 2391 #ifdef TCPPCAP 2392 /* Free the TCP PCAP queues. */ 2393 tcp_pcap_drain(&(tp->t_inpkts)); 2394 tcp_pcap_drain(&(tp->t_outpkts)); 2395 #endif 2396 2397 /* Allow the CC algorithm to clean up after itself. */ 2398 if (CC_ALGO(tp)->cb_destroy != NULL) 2399 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2400 CC_DATA(tp) = NULL; 2401 /* Detach from the CC algorithm */ 2402 cc_detach(tp); 2403 2404 #ifdef TCP_HHOOK 2405 khelp_destroy_osd(&tp->t_osd); 2406 #endif 2407 #ifdef STATS 2408 stats_blob_destroy(tp->t_stats); 2409 #endif 2410 2411 CC_ALGO(tp) = NULL; 2412 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) { 2413 struct mbuf *prev; 2414 2415 STAILQ_INIT(&tp->t_inqueue); 2416 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev) 2417 m_freem(m); 2418 } 2419 TCPSTATES_DEC(tp->t_state); 2420 2421 if (tp->t_fb->tfb_tcp_fb_fini) 2422 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2423 MPASS(!tcp_in_hpts(tp)); 2424 #ifdef TCP_BLACKBOX 2425 tcp_log_tcpcbfini(tp); 2426 #endif 2427 2428 /* 2429 * If we got enough samples through the srtt filter, 2430 * save the rtt and rttvar in the routing entry. 2431 * 'Enough' is arbitrarily defined as 4 rtt samples. 2432 * 4 samples is enough for the srtt filter to converge 2433 * to within enough % of the correct value; fewer samples 2434 * and we could save a bogus rtt. The danger is not high 2435 * as tcp quickly recovers from everything. 2436 * XXX: Works very well but needs some more statistics! 2437 * 2438 * XXXRRS: Updating must be after the stack fini() since 2439 * that may be converting some internal representation of 2440 * say srtt etc into the general one used by other stacks. 2441 * Lets also at least protect against the so being NULL 2442 * as RW stated below. 2443 */ 2444 if ((tp->t_rttupdated >= 4) && (so != NULL)) { 2445 struct hc_metrics_lite metrics; 2446 uint32_t ssthresh; 2447 2448 bzero(&metrics, sizeof(metrics)); 2449 /* 2450 * Update the ssthresh always when the conditions below 2451 * are satisfied. This gives us better new start value 2452 * for the congestion avoidance for new connections. 2453 * ssthresh is only set if packet loss occurred on a session. 2454 * 2455 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 2456 * being torn down. Ideally this code would not use 'so'. 2457 */ 2458 ssthresh = tp->snd_ssthresh; 2459 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 2460 /* 2461 * convert the limit from user data bytes to 2462 * packets then to packet data bytes. 2463 */ 2464 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 2465 if (ssthresh < 2) 2466 ssthresh = 2; 2467 ssthresh *= (tp->t_maxseg + 2468 #ifdef INET6 2469 (isipv6 ? sizeof (struct ip6_hdr) + 2470 sizeof (struct tcphdr) : 2471 #endif 2472 sizeof (struct tcpiphdr) 2473 #ifdef INET6 2474 ) 2475 #endif 2476 ); 2477 } else 2478 ssthresh = 0; 2479 metrics.rmx_ssthresh = ssthresh; 2480 2481 metrics.rmx_rtt = tp->t_srtt; 2482 metrics.rmx_rttvar = tp->t_rttvar; 2483 metrics.rmx_cwnd = tp->snd_cwnd; 2484 metrics.rmx_sendpipe = 0; 2485 metrics.rmx_recvpipe = 0; 2486 2487 tcp_hc_update(&inp->inp_inc, &metrics); 2488 } 2489 2490 refcount_release(&tp->t_fb->tfb_refcnt); 2491 } 2492 2493 /* 2494 * Attempt to close a TCP control block, marking it as dropped, and freeing 2495 * the socket if we hold the only reference. 2496 */ 2497 struct tcpcb * 2498 tcp_close(struct tcpcb *tp) 2499 { 2500 struct inpcb *inp = tptoinpcb(tp); 2501 struct socket *so = tptosocket(tp); 2502 2503 INP_WLOCK_ASSERT(inp); 2504 2505 #ifdef TCP_OFFLOAD 2506 if (tp->t_state == TCPS_LISTEN) 2507 tcp_offload_listen_stop(tp); 2508 #endif 2509 /* 2510 * This releases the TFO pending counter resource for TFO listen 2511 * sockets as well as passively-created TFO sockets that transition 2512 * from SYN_RECEIVED to CLOSED. 2513 */ 2514 if (tp->t_tfo_pending) { 2515 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2516 tp->t_tfo_pending = NULL; 2517 } 2518 tcp_timer_stop(tp); 2519 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 2520 tp->t_fb->tfb_tcp_timer_stop_all(tp); 2521 in_pcbdrop(inp); 2522 TCPSTAT_INC(tcps_closed); 2523 if (tp->t_state != TCPS_CLOSED) 2524 tcp_state_change(tp, TCPS_CLOSED); 2525 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 2526 tcp_free_sackholes(tp); 2527 soisdisconnected(so); 2528 if (inp->inp_flags & INP_SOCKREF) { 2529 inp->inp_flags &= ~INP_SOCKREF; 2530 INP_WUNLOCK(inp); 2531 sorele(so); 2532 return (NULL); 2533 } 2534 return (tp); 2535 } 2536 2537 /* 2538 * Notify a tcp user of an asynchronous error; 2539 * store error as soft error, but wake up user 2540 * (for now, won't do anything until can select for soft error). 2541 * 2542 * Do not wake up user since there currently is no mechanism for 2543 * reporting soft errors (yet - a kqueue filter may be added). 2544 */ 2545 static struct inpcb * 2546 tcp_notify(struct inpcb *inp, int error) 2547 { 2548 struct tcpcb *tp; 2549 2550 INP_WLOCK_ASSERT(inp); 2551 2552 tp = intotcpcb(inp); 2553 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 2554 2555 /* 2556 * Ignore some errors if we are hooked up. 2557 * If connection hasn't completed, has retransmitted several times, 2558 * and receives a second error, give up now. This is better 2559 * than waiting a long time to establish a connection that 2560 * can never complete. 2561 */ 2562 if (tp->t_state == TCPS_ESTABLISHED && 2563 (error == EHOSTUNREACH || error == ENETUNREACH || 2564 error == EHOSTDOWN)) { 2565 if (inp->inp_route.ro_nh) { 2566 NH_FREE(inp->inp_route.ro_nh); 2567 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 2568 } 2569 return (inp); 2570 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 2571 tp->t_softerror) { 2572 tp = tcp_drop(tp, error); 2573 if (tp != NULL) 2574 return (inp); 2575 else 2576 return (NULL); 2577 } else { 2578 tp->t_softerror = error; 2579 return (inp); 2580 } 2581 #if 0 2582 wakeup( &so->so_timeo); 2583 sorwakeup(so); 2584 sowwakeup(so); 2585 #endif 2586 } 2587 2588 static int 2589 tcp_pcblist(SYSCTL_HANDLER_ARGS) 2590 { 2591 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2592 INPLOOKUP_RLOCKPCB); 2593 struct xinpgen xig; 2594 struct inpcb *inp; 2595 int error; 2596 2597 if (req->newptr != NULL) 2598 return (EPERM); 2599 2600 if (req->oldptr == NULL) { 2601 int n; 2602 2603 n = V_tcbinfo.ipi_count + 2604 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2605 n += imax(n / 8, 10); 2606 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 2607 return (0); 2608 } 2609 2610 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 2611 return (error); 2612 2613 bzero(&xig, sizeof(xig)); 2614 xig.xig_len = sizeof xig; 2615 xig.xig_count = V_tcbinfo.ipi_count + 2616 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2617 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2618 xig.xig_sogen = so_gencnt; 2619 error = SYSCTL_OUT(req, &xig, sizeof xig); 2620 if (error) 2621 return (error); 2622 2623 error = syncache_pcblist(req); 2624 if (error) 2625 return (error); 2626 2627 while ((inp = inp_next(&inpi)) != NULL) { 2628 if (inp->inp_gencnt <= xig.xig_gen && 2629 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 2630 struct xtcpcb xt; 2631 2632 tcp_inptoxtp(inp, &xt); 2633 error = SYSCTL_OUT(req, &xt, sizeof xt); 2634 if (error) { 2635 INP_RUNLOCK(inp); 2636 break; 2637 } else 2638 continue; 2639 } 2640 } 2641 2642 if (!error) { 2643 /* 2644 * Give the user an updated idea of our state. 2645 * If the generation differs from what we told 2646 * her before, she knows that something happened 2647 * while we were processing this request, and it 2648 * might be necessary to retry. 2649 */ 2650 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2651 xig.xig_sogen = so_gencnt; 2652 xig.xig_count = V_tcbinfo.ipi_count + 2653 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2654 error = SYSCTL_OUT(req, &xig, sizeof xig); 2655 } 2656 2657 return (error); 2658 } 2659 2660 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 2661 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 2662 NULL, 0, tcp_pcblist, "S,xtcpcb", 2663 "List of active TCP connections"); 2664 2665 #ifdef INET 2666 static int 2667 tcp_getcred(SYSCTL_HANDLER_ARGS) 2668 { 2669 struct xucred xuc; 2670 struct sockaddr_in addrs[2]; 2671 struct epoch_tracker et; 2672 struct inpcb *inp; 2673 int error; 2674 2675 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2676 if (error) 2677 return (error); 2678 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2679 if (error) 2680 return (error); 2681 NET_EPOCH_ENTER(et); 2682 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 2683 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 2684 NET_EPOCH_EXIT(et); 2685 if (inp != NULL) { 2686 if (error == 0) 2687 error = cr_canseeinpcb(req->td->td_ucred, inp); 2688 if (error == 0) 2689 cru2x(inp->inp_cred, &xuc); 2690 INP_RUNLOCK(inp); 2691 } else 2692 error = ENOENT; 2693 if (error == 0) 2694 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2695 return (error); 2696 } 2697 2698 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 2699 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2700 0, 0, tcp_getcred, "S,xucred", 2701 "Get the xucred of a TCP connection"); 2702 #endif /* INET */ 2703 2704 #ifdef INET6 2705 static int 2706 tcp6_getcred(SYSCTL_HANDLER_ARGS) 2707 { 2708 struct epoch_tracker et; 2709 struct xucred xuc; 2710 struct sockaddr_in6 addrs[2]; 2711 struct inpcb *inp; 2712 int error; 2713 #ifdef INET 2714 int mapped = 0; 2715 #endif 2716 2717 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2718 if (error) 2719 return (error); 2720 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2721 if (error) 2722 return (error); 2723 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 2724 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 2725 return (error); 2726 } 2727 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 2728 #ifdef INET 2729 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 2730 mapped = 1; 2731 else 2732 #endif 2733 return (EINVAL); 2734 } 2735 2736 NET_EPOCH_ENTER(et); 2737 #ifdef INET 2738 if (mapped == 1) 2739 inp = in_pcblookup(&V_tcbinfo, 2740 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 2741 addrs[1].sin6_port, 2742 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 2743 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 2744 else 2745 #endif 2746 inp = in6_pcblookup(&V_tcbinfo, 2747 &addrs[1].sin6_addr, addrs[1].sin6_port, 2748 &addrs[0].sin6_addr, addrs[0].sin6_port, 2749 INPLOOKUP_RLOCKPCB, NULL); 2750 NET_EPOCH_EXIT(et); 2751 if (inp != NULL) { 2752 if (error == 0) 2753 error = cr_canseeinpcb(req->td->td_ucred, inp); 2754 if (error == 0) 2755 cru2x(inp->inp_cred, &xuc); 2756 INP_RUNLOCK(inp); 2757 } else 2758 error = ENOENT; 2759 if (error == 0) 2760 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2761 return (error); 2762 } 2763 2764 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 2765 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2766 0, 0, tcp6_getcred, "S,xucred", 2767 "Get the xucred of a TCP6 connection"); 2768 #endif /* INET6 */ 2769 2770 #ifdef INET 2771 /* Path MTU to try next when a fragmentation-needed message is received. */ 2772 static inline int 2773 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip) 2774 { 2775 int mtu = ntohs(icp->icmp_nextmtu); 2776 2777 /* If no alternative MTU was proposed, try the next smaller one. */ 2778 if (!mtu) 2779 mtu = ip_next_mtu(ntohs(ip->ip_len), 1); 2780 if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) 2781 mtu = V_tcp_minmss + sizeof(struct tcpiphdr); 2782 2783 return (mtu); 2784 } 2785 2786 static void 2787 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port) 2788 { 2789 struct ip *ip; 2790 struct tcphdr *th; 2791 struct inpcb *inp; 2792 struct tcpcb *tp; 2793 struct inpcb *(*notify)(struct inpcb *, int); 2794 struct in_conninfo inc; 2795 tcp_seq icmp_tcp_seq; 2796 int errno, mtu; 2797 2798 errno = icmp_errmap(icp); 2799 switch (errno) { 2800 case 0: 2801 return; 2802 case EMSGSIZE: 2803 notify = tcp_mtudisc_notify; 2804 break; 2805 case ECONNREFUSED: 2806 if (V_icmp_may_rst) 2807 notify = tcp_drop_syn_sent; 2808 else 2809 notify = tcp_notify; 2810 break; 2811 case EHOSTUNREACH: 2812 if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED) 2813 notify = tcp_drop_syn_sent; 2814 else 2815 notify = tcp_notify; 2816 break; 2817 default: 2818 notify = tcp_notify; 2819 } 2820 2821 ip = &icp->icmp_ip; 2822 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 2823 icmp_tcp_seq = th->th_seq; 2824 inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src, 2825 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 2826 if (inp != NULL) { 2827 tp = intotcpcb(inp); 2828 #ifdef TCP_OFFLOAD 2829 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 2830 /* 2831 * MTU discovery for offloaded connections. Let 2832 * the TOE driver verify seq# and process it. 2833 */ 2834 mtu = tcp_next_pmtu(icp, ip); 2835 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 2836 goto out; 2837 } 2838 #endif 2839 if (tp->t_port != port) 2840 goto out; 2841 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2842 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2843 if (errno == EMSGSIZE) { 2844 /* 2845 * MTU discovery: we got a needfrag and 2846 * will potentially try a lower MTU. 2847 */ 2848 mtu = tcp_next_pmtu(icp, ip); 2849 2850 /* 2851 * Only process the offered MTU if it 2852 * is smaller than the current one. 2853 */ 2854 if (mtu < tp->t_maxseg + 2855 sizeof(struct tcpiphdr)) { 2856 bzero(&inc, sizeof(inc)); 2857 inc.inc_faddr = ip->ip_dst; 2858 inc.inc_fibnum = 2859 inp->inp_inc.inc_fibnum; 2860 tcp_hc_updatemtu(&inc, mtu); 2861 inp = tcp_mtudisc(inp, mtu); 2862 } 2863 } else 2864 inp = (*notify)(inp, errno); 2865 } 2866 } else { 2867 bzero(&inc, sizeof(inc)); 2868 inc.inc_fport = th->th_dport; 2869 inc.inc_lport = th->th_sport; 2870 inc.inc_faddr = ip->ip_dst; 2871 inc.inc_laddr = ip->ip_src; 2872 syncache_unreach(&inc, icmp_tcp_seq, port); 2873 } 2874 out: 2875 if (inp != NULL) 2876 INP_WUNLOCK(inp); 2877 } 2878 2879 static void 2880 tcp_ctlinput(struct icmp *icmp) 2881 { 2882 tcp_ctlinput_with_port(icmp, htons(0)); 2883 } 2884 2885 static void 2886 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param) 2887 { 2888 /* Its a tunneled TCP over UDP icmp */ 2889 struct icmp *icmp = param.icmp; 2890 struct ip *outer_ip, *inner_ip; 2891 struct udphdr *udp; 2892 struct tcphdr *th, ttemp; 2893 int i_hlen, o_len; 2894 uint16_t port; 2895 2896 outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); 2897 inner_ip = &icmp->icmp_ip; 2898 i_hlen = inner_ip->ip_hl << 2; 2899 o_len = ntohs(outer_ip->ip_len); 2900 if (o_len < 2901 (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) { 2902 /* Not enough data present */ 2903 return; 2904 } 2905 /* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */ 2906 udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen); 2907 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 2908 return; 2909 } 2910 port = udp->uh_dport; 2911 th = (struct tcphdr *)(udp + 1); 2912 memcpy(&ttemp, th, sizeof(struct tcphdr)); 2913 memcpy(udp, &ttemp, sizeof(struct tcphdr)); 2914 /* Now adjust down the size of the outer IP header */ 2915 o_len -= sizeof(struct udphdr); 2916 outer_ip->ip_len = htons(o_len); 2917 /* Now call in to the normal handling code */ 2918 tcp_ctlinput_with_port(icmp, port); 2919 } 2920 #endif /* INET */ 2921 2922 #ifdef INET6 2923 static inline int 2924 tcp6_next_pmtu(const struct icmp6_hdr *icmp6) 2925 { 2926 int mtu = ntohl(icmp6->icmp6_mtu); 2927 2928 /* 2929 * If no alternative MTU was proposed, or the proposed MTU was too 2930 * small, set to the min. 2931 */ 2932 if (mtu < IPV6_MMTU) 2933 mtu = IPV6_MMTU - 8; /* XXXNP: what is the adjustment for? */ 2934 return (mtu); 2935 } 2936 2937 static void 2938 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port) 2939 { 2940 struct in6_addr *dst; 2941 struct inpcb *(*notify)(struct inpcb *, int); 2942 struct ip6_hdr *ip6; 2943 struct mbuf *m; 2944 struct inpcb *inp; 2945 struct tcpcb *tp; 2946 struct icmp6_hdr *icmp6; 2947 struct in_conninfo inc; 2948 struct tcp_ports { 2949 uint16_t th_sport; 2950 uint16_t th_dport; 2951 } t_ports; 2952 tcp_seq icmp_tcp_seq; 2953 unsigned int mtu; 2954 unsigned int off; 2955 int errno; 2956 2957 icmp6 = ip6cp->ip6c_icmp6; 2958 m = ip6cp->ip6c_m; 2959 ip6 = ip6cp->ip6c_ip6; 2960 off = ip6cp->ip6c_off; 2961 dst = &ip6cp->ip6c_finaldst->sin6_addr; 2962 2963 errno = icmp6_errmap(icmp6); 2964 switch (errno) { 2965 case 0: 2966 return; 2967 case EMSGSIZE: 2968 notify = tcp_mtudisc_notify; 2969 break; 2970 case ECONNREFUSED: 2971 if (V_icmp_may_rst) 2972 notify = tcp_drop_syn_sent; 2973 else 2974 notify = tcp_notify; 2975 break; 2976 case EHOSTUNREACH: 2977 /* 2978 * There are only four ICMPs that may reset connection: 2979 * - administratively prohibited 2980 * - port unreachable 2981 * - time exceeded in transit 2982 * - unknown next header 2983 */ 2984 if (V_icmp_may_rst && 2985 ((icmp6->icmp6_type == ICMP6_DST_UNREACH && 2986 (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN || 2987 icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) || 2988 (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED && 2989 icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) || 2990 (icmp6->icmp6_type == ICMP6_PARAM_PROB && 2991 icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER))) 2992 notify = tcp_drop_syn_sent; 2993 else 2994 notify = tcp_notify; 2995 break; 2996 default: 2997 notify = tcp_notify; 2998 } 2999 3000 /* Check if we can safely get the ports from the tcp hdr */ 3001 if (m == NULL || 3002 (m->m_pkthdr.len < 3003 (int32_t) (off + sizeof(struct tcp_ports)))) { 3004 return; 3005 } 3006 bzero(&t_ports, sizeof(struct tcp_ports)); 3007 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); 3008 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, 3009 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); 3010 off += sizeof(struct tcp_ports); 3011 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { 3012 goto out; 3013 } 3014 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); 3015 if (inp != NULL) { 3016 tp = intotcpcb(inp); 3017 #ifdef TCP_OFFLOAD 3018 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 3019 /* MTU discovery for offloaded connections. */ 3020 mtu = tcp6_next_pmtu(icmp6); 3021 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 3022 goto out; 3023 } 3024 #endif 3025 if (tp->t_port != port) 3026 goto out; 3027 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 3028 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 3029 if (errno == EMSGSIZE) { 3030 /* 3031 * MTU discovery: 3032 * If we got a needfrag set the MTU 3033 * in the route to the suggested new 3034 * value (if given) and then notify. 3035 */ 3036 mtu = tcp6_next_pmtu(icmp6); 3037 3038 bzero(&inc, sizeof(inc)); 3039 inc.inc_fibnum = M_GETFIB(m); 3040 inc.inc_flags |= INC_ISIPV6; 3041 inc.inc6_faddr = *dst; 3042 if (in6_setscope(&inc.inc6_faddr, 3043 m->m_pkthdr.rcvif, NULL)) 3044 goto out; 3045 /* 3046 * Only process the offered MTU if it 3047 * is smaller than the current one. 3048 */ 3049 if (mtu < tp->t_maxseg + 3050 sizeof (struct tcphdr) + 3051 sizeof (struct ip6_hdr)) { 3052 tcp_hc_updatemtu(&inc, mtu); 3053 tcp_mtudisc(inp, mtu); 3054 ICMP6STAT_INC(icp6s_pmtuchg); 3055 } 3056 } else 3057 inp = (*notify)(inp, errno); 3058 } 3059 } else { 3060 bzero(&inc, sizeof(inc)); 3061 inc.inc_fibnum = M_GETFIB(m); 3062 inc.inc_flags |= INC_ISIPV6; 3063 inc.inc_fport = t_ports.th_dport; 3064 inc.inc_lport = t_ports.th_sport; 3065 inc.inc6_faddr = *dst; 3066 inc.inc6_laddr = ip6->ip6_src; 3067 syncache_unreach(&inc, icmp_tcp_seq, port); 3068 } 3069 out: 3070 if (inp != NULL) 3071 INP_WUNLOCK(inp); 3072 } 3073 3074 static void 3075 tcp6_ctlinput(struct ip6ctlparam *ctl) 3076 { 3077 tcp6_ctlinput_with_port(ctl, htons(0)); 3078 } 3079 3080 static void 3081 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param) 3082 { 3083 struct ip6ctlparam *ip6cp = param.ip6cp; 3084 struct mbuf *m; 3085 struct udphdr *udp; 3086 uint16_t port; 3087 3088 m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL); 3089 if (m == NULL) { 3090 return; 3091 } 3092 udp = mtod(m, struct udphdr *); 3093 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 3094 return; 3095 } 3096 port = udp->uh_dport; 3097 m_adj(m, sizeof(struct udphdr)); 3098 if ((m->m_flags & M_PKTHDR) == 0) { 3099 ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr); 3100 } 3101 /* Now call in to the normal handling code */ 3102 tcp6_ctlinput_with_port(ip6cp, port); 3103 } 3104 3105 #endif /* INET6 */ 3106 3107 static uint32_t 3108 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len) 3109 { 3110 SIPHASH_CTX ctx; 3111 uint32_t hash[2]; 3112 3113 KASSERT(len >= SIPHASH_KEY_LENGTH, 3114 ("%s: keylen %u too short ", __func__, len)); 3115 SipHash24_Init(&ctx); 3116 SipHash_SetKey(&ctx, (uint8_t *)key); 3117 SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t)); 3118 SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t)); 3119 switch (inc->inc_flags & INC_ISIPV6) { 3120 #ifdef INET 3121 case 0: 3122 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr)); 3123 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr)); 3124 break; 3125 #endif 3126 #ifdef INET6 3127 case INC_ISIPV6: 3128 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr)); 3129 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr)); 3130 break; 3131 #endif 3132 } 3133 SipHash_Final((uint8_t *)hash, &ctx); 3134 3135 return (hash[0] ^ hash[1]); 3136 } 3137 3138 uint32_t 3139 tcp_new_ts_offset(struct in_conninfo *inc) 3140 { 3141 struct in_conninfo inc_store, *local_inc; 3142 3143 if (!V_tcp_ts_offset_per_conn) { 3144 memcpy(&inc_store, inc, sizeof(struct in_conninfo)); 3145 inc_store.inc_lport = 0; 3146 inc_store.inc_fport = 0; 3147 local_inc = &inc_store; 3148 } else { 3149 local_inc = inc; 3150 } 3151 return (tcp_keyed_hash(local_inc, V_ts_offset_secret, 3152 sizeof(V_ts_offset_secret))); 3153 } 3154 3155 /* 3156 * Following is where TCP initial sequence number generation occurs. 3157 * 3158 * There are two places where we must use initial sequence numbers: 3159 * 1. In SYN-ACK packets. 3160 * 2. In SYN packets. 3161 * 3162 * All ISNs for SYN-ACK packets are generated by the syncache. See 3163 * tcp_syncache.c for details. 3164 * 3165 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 3166 * depends on this property. In addition, these ISNs should be 3167 * unguessable so as to prevent connection hijacking. To satisfy 3168 * the requirements of this situation, the algorithm outlined in 3169 * RFC 1948 is used, with only small modifications. 3170 * 3171 * Implementation details: 3172 * 3173 * Time is based off the system timer, and is corrected so that it 3174 * increases by one megabyte per second. This allows for proper 3175 * recycling on high speed LANs while still leaving over an hour 3176 * before rollover. 3177 * 3178 * As reading the *exact* system time is too expensive to be done 3179 * whenever setting up a TCP connection, we increment the time 3180 * offset in two ways. First, a small random positive increment 3181 * is added to isn_offset for each connection that is set up. 3182 * Second, the function tcp_isn_tick fires once per clock tick 3183 * and increments isn_offset as necessary so that sequence numbers 3184 * are incremented at approximately ISN_BYTES_PER_SECOND. The 3185 * random positive increments serve only to ensure that the same 3186 * exact sequence number is never sent out twice (as could otherwise 3187 * happen when a port is recycled in less than the system tick 3188 * interval.) 3189 * 3190 * net.inet.tcp.isn_reseed_interval controls the number of seconds 3191 * between seeding of isn_secret. This is normally set to zero, 3192 * as reseeding should not be necessary. 3193 * 3194 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 3195 * isn_offset_old, and isn_ctx is performed using the ISN lock. In 3196 * general, this means holding an exclusive (write) lock. 3197 */ 3198 3199 #define ISN_BYTES_PER_SECOND 1048576 3200 #define ISN_STATIC_INCREMENT 4096 3201 #define ISN_RANDOM_INCREMENT (4096 - 1) 3202 #define ISN_SECRET_LENGTH SIPHASH_KEY_LENGTH 3203 3204 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]); 3205 VNET_DEFINE_STATIC(int, isn_last); 3206 VNET_DEFINE_STATIC(int, isn_last_reseed); 3207 VNET_DEFINE_STATIC(u_int32_t, isn_offset); 3208 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old); 3209 3210 #define V_isn_secret VNET(isn_secret) 3211 #define V_isn_last VNET(isn_last) 3212 #define V_isn_last_reseed VNET(isn_last_reseed) 3213 #define V_isn_offset VNET(isn_offset) 3214 #define V_isn_offset_old VNET(isn_offset_old) 3215 3216 tcp_seq 3217 tcp_new_isn(struct in_conninfo *inc) 3218 { 3219 tcp_seq new_isn; 3220 u_int32_t projected_offset; 3221 3222 ISN_LOCK(); 3223 /* Seed if this is the first use, reseed if requested. */ 3224 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 3225 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 3226 < (u_int)ticks))) { 3227 arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0); 3228 V_isn_last_reseed = ticks; 3229 } 3230 3231 /* Compute the hash and return the ISN. */ 3232 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret, 3233 sizeof(V_isn_secret)); 3234 V_isn_offset += ISN_STATIC_INCREMENT + 3235 (arc4random() & ISN_RANDOM_INCREMENT); 3236 if (ticks != V_isn_last) { 3237 projected_offset = V_isn_offset_old + 3238 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 3239 if (SEQ_GT(projected_offset, V_isn_offset)) 3240 V_isn_offset = projected_offset; 3241 V_isn_offset_old = V_isn_offset; 3242 V_isn_last = ticks; 3243 } 3244 new_isn += V_isn_offset; 3245 ISN_UNLOCK(); 3246 return (new_isn); 3247 } 3248 3249 /* 3250 * When a specific ICMP unreachable message is received and the 3251 * connection state is SYN-SENT, drop the connection. This behavior 3252 * is controlled by the icmp_may_rst sysctl. 3253 */ 3254 static struct inpcb * 3255 tcp_drop_syn_sent(struct inpcb *inp, int errno) 3256 { 3257 struct tcpcb *tp; 3258 3259 NET_EPOCH_ASSERT(); 3260 INP_WLOCK_ASSERT(inp); 3261 3262 tp = intotcpcb(inp); 3263 if (tp->t_state != TCPS_SYN_SENT) 3264 return (inp); 3265 3266 if (tp->t_flags & TF_FASTOPEN) 3267 tcp_fastopen_disable_path(tp); 3268 3269 tp = tcp_drop(tp, errno); 3270 if (tp != NULL) 3271 return (inp); 3272 else 3273 return (NULL); 3274 } 3275 3276 /* 3277 * When `need fragmentation' ICMP is received, update our idea of the MSS 3278 * based on the new value. Also nudge TCP to send something, since we 3279 * know the packet we just sent was dropped. 3280 * This duplicates some code in the tcp_mss() function in tcp_input.c. 3281 */ 3282 static struct inpcb * 3283 tcp_mtudisc_notify(struct inpcb *inp, int error) 3284 { 3285 3286 return (tcp_mtudisc(inp, -1)); 3287 } 3288 3289 static struct inpcb * 3290 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 3291 { 3292 struct tcpcb *tp; 3293 struct socket *so; 3294 3295 INP_WLOCK_ASSERT(inp); 3296 3297 tp = intotcpcb(inp); 3298 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 3299 3300 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 3301 3302 so = inp->inp_socket; 3303 SOCKBUF_LOCK(&so->so_snd); 3304 /* If the mss is larger than the socket buffer, decrease the mss. */ 3305 if (so->so_snd.sb_hiwat < tp->t_maxseg) { 3306 tp->t_maxseg = so->so_snd.sb_hiwat; 3307 if (tp->t_maxseg < V_tcp_mssdflt) { 3308 /* 3309 * The MSS is so small we should not process incoming 3310 * SACK's since we are subject to attack in such a 3311 * case. 3312 */ 3313 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3314 } else { 3315 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3316 } 3317 } 3318 SOCKBUF_UNLOCK(&so->so_snd); 3319 3320 TCPSTAT_INC(tcps_mturesent); 3321 tp->t_rtttime = 0; 3322 tp->snd_nxt = tp->snd_una; 3323 tcp_free_sackholes(tp); 3324 tp->snd_recover = tp->snd_max; 3325 if (tp->t_flags & TF_SACK_PERMIT) 3326 EXIT_FASTRECOVERY(tp->t_flags); 3327 if (tp->t_fb->tfb_tcp_mtu_chg != NULL) { 3328 /* 3329 * Conceptually the snd_nxt setting 3330 * and freeing sack holes should 3331 * be done by the default stacks 3332 * own tfb_tcp_mtu_chg(). 3333 */ 3334 tp->t_fb->tfb_tcp_mtu_chg(tp); 3335 } 3336 if (tcp_output(tp) < 0) 3337 return (NULL); 3338 else 3339 return (inp); 3340 } 3341 3342 #ifdef INET 3343 /* 3344 * Look-up the routing entry to the peer of this inpcb. If no route 3345 * is found and it cannot be allocated, then return 0. This routine 3346 * is called by TCP routines that access the rmx structure and by 3347 * tcp_mss_update to get the peer/interface MTU. 3348 */ 3349 uint32_t 3350 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 3351 { 3352 struct nhop_object *nh; 3353 struct ifnet *ifp; 3354 uint32_t maxmtu = 0; 3355 3356 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 3357 3358 if (inc->inc_faddr.s_addr != INADDR_ANY) { 3359 nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0); 3360 if (nh == NULL) 3361 return (0); 3362 3363 ifp = nh->nh_ifp; 3364 maxmtu = nh->nh_mtu; 3365 3366 /* Report additional interface capabilities. */ 3367 if (cap != NULL) { 3368 if (ifp->if_capenable & IFCAP_TSO4 && 3369 ifp->if_hwassist & CSUM_TSO) { 3370 cap->ifcap |= CSUM_TSO; 3371 cap->tsomax = ifp->if_hw_tsomax; 3372 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3373 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3374 /* XXXKIB IFCAP2_IPSEC_OFFLOAD_TSO */ 3375 cap->ipsec_tso = (ifp->if_capenable2 & 3376 IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD)) != 0; 3377 } 3378 } 3379 } 3380 return (maxmtu); 3381 } 3382 #endif /* INET */ 3383 3384 #ifdef INET6 3385 uint32_t 3386 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 3387 { 3388 struct nhop_object *nh; 3389 struct in6_addr dst6; 3390 uint32_t scopeid; 3391 struct ifnet *ifp; 3392 uint32_t maxmtu = 0; 3393 3394 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 3395 3396 if (inc->inc_flags & INC_IPV6MINMTU) 3397 return (IPV6_MMTU); 3398 3399 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 3400 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 3401 nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0); 3402 if (nh == NULL) 3403 return (0); 3404 3405 ifp = nh->nh_ifp; 3406 maxmtu = nh->nh_mtu; 3407 3408 /* Report additional interface capabilities. */ 3409 if (cap != NULL) { 3410 if (ifp->if_capenable & IFCAP_TSO6 && 3411 ifp->if_hwassist & CSUM_TSO) { 3412 cap->ifcap |= CSUM_TSO; 3413 cap->tsomax = ifp->if_hw_tsomax; 3414 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3415 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3416 cap->ipsec_tso = false; /* XXXKIB */ 3417 } 3418 } 3419 } 3420 3421 return (maxmtu); 3422 } 3423 3424 /* 3425 * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack. 3426 * 3427 * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag. 3428 * The right place to do that is ip6_setpktopt() that has just been 3429 * executed. By the way it just filled ip6po_minmtu for us. 3430 */ 3431 void 3432 tcp6_use_min_mtu(struct tcpcb *tp) 3433 { 3434 struct inpcb *inp = tptoinpcb(tp); 3435 3436 INP_WLOCK_ASSERT(inp); 3437 /* 3438 * In case of the IPV6_USE_MIN_MTU socket 3439 * option, the INC_IPV6MINMTU flag to announce 3440 * a corresponding MSS during the initial 3441 * handshake. If the TCP connection is not in 3442 * the front states, just reduce the MSS being 3443 * used. This avoids the sending of TCP 3444 * segments which will be fragmented at the 3445 * IPv6 layer. 3446 */ 3447 inp->inp_inc.inc_flags |= INC_IPV6MINMTU; 3448 if ((tp->t_state >= TCPS_SYN_SENT) && 3449 (inp->inp_inc.inc_flags & INC_ISIPV6)) { 3450 struct ip6_pktopts *opt; 3451 3452 opt = inp->in6p_outputopts; 3453 if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL && 3454 tp->t_maxseg > TCP6_MSS) { 3455 tp->t_maxseg = TCP6_MSS; 3456 if (tp->t_maxseg < V_tcp_mssdflt) { 3457 /* 3458 * The MSS is so small we should not process incoming 3459 * SACK's since we are subject to attack in such a 3460 * case. 3461 */ 3462 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3463 } else { 3464 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3465 } 3466 } 3467 } 3468 } 3469 #endif /* INET6 */ 3470 3471 /* 3472 * Calculate effective SMSS per RFC5681 definition for a given TCP 3473 * connection at its current state, taking into account SACK and etc. 3474 */ 3475 u_int 3476 tcp_maxseg(const struct tcpcb *tp) 3477 { 3478 u_int optlen; 3479 3480 if (tp->t_flags & TF_NOOPT) 3481 return (tp->t_maxseg); 3482 3483 /* 3484 * Here we have a simplified code from tcp_addoptions(), 3485 * without a proper loop, and having most of paddings hardcoded. 3486 * We might make mistakes with padding here in some edge cases, 3487 * but this is harmless, since result of tcp_maxseg() is used 3488 * only in cwnd and ssthresh estimations. 3489 */ 3490 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3491 if (tp->t_flags & TF_RCVD_TSTMP) 3492 optlen = TCPOLEN_TSTAMP_APPA; 3493 else 3494 optlen = 0; 3495 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3496 if (tp->t_flags & TF_SIGNATURE) 3497 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3498 #endif 3499 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 3500 optlen += TCPOLEN_SACKHDR; 3501 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 3502 optlen = PADTCPOLEN(optlen); 3503 } 3504 } else { 3505 if (tp->t_flags & TF_REQ_TSTMP) 3506 optlen = TCPOLEN_TSTAMP_APPA; 3507 else 3508 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3509 if (tp->t_flags & TF_REQ_SCALE) 3510 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3511 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3512 if (tp->t_flags & TF_SIGNATURE) 3513 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3514 #endif 3515 if (tp->t_flags & TF_SACK_PERMIT) 3516 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3517 } 3518 optlen = min(optlen, TCP_MAXOLEN); 3519 return (tp->t_maxseg - optlen); 3520 } 3521 3522 3523 u_int 3524 tcp_fixed_maxseg(const struct tcpcb *tp) 3525 { 3526 int optlen; 3527 3528 if (tp->t_flags & TF_NOOPT) 3529 return (tp->t_maxseg); 3530 3531 /* 3532 * Here we have a simplified code from tcp_addoptions(), 3533 * without a proper loop, and having most of paddings hardcoded. 3534 * We only consider fixed options that we would send every 3535 * time I.e. SACK is not considered. This is important 3536 * for cc modules to figure out what the modulo of the 3537 * cwnd should be. 3538 */ 3539 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3540 if (tp->t_flags & TF_RCVD_TSTMP) 3541 optlen = TCPOLEN_TSTAMP_APPA; 3542 else 3543 optlen = 0; 3544 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3545 if (tp->t_flags & TF_SIGNATURE) 3546 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3547 #endif 3548 } else { 3549 if (tp->t_flags & TF_REQ_TSTMP) 3550 optlen = TCPOLEN_TSTAMP_APPA; 3551 else 3552 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3553 if (tp->t_flags & TF_REQ_SCALE) 3554 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3555 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3556 if (tp->t_flags & TF_SIGNATURE) 3557 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3558 #endif 3559 if (tp->t_flags & TF_SACK_PERMIT) 3560 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3561 } 3562 optlen = min(optlen, TCP_MAXOLEN); 3563 return (tp->t_maxseg - optlen); 3564 } 3565 3566 3567 3568 static int 3569 sysctl_drop(SYSCTL_HANDLER_ARGS) 3570 { 3571 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3572 struct sockaddr_storage addrs[2]; 3573 struct inpcb *inp; 3574 struct tcpcb *tp; 3575 #ifdef INET 3576 struct sockaddr_in *fin = NULL, *lin = NULL; 3577 #endif 3578 struct epoch_tracker et; 3579 #ifdef INET6 3580 struct sockaddr_in6 *fin6, *lin6; 3581 #endif 3582 int error; 3583 3584 inp = NULL; 3585 #ifdef INET6 3586 fin6 = lin6 = NULL; 3587 #endif 3588 error = 0; 3589 3590 if (req->oldptr != NULL || req->oldlen != 0) 3591 return (EINVAL); 3592 if (req->newptr == NULL) 3593 return (EPERM); 3594 if (req->newlen < sizeof(addrs)) 3595 return (ENOMEM); 3596 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3597 if (error) 3598 return (error); 3599 3600 switch (addrs[0].ss_family) { 3601 #ifdef INET6 3602 case AF_INET6: 3603 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3604 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3605 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3606 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3607 return (EINVAL); 3608 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3609 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3610 return (EINVAL); 3611 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3612 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3613 #ifdef INET 3614 fin = (struct sockaddr_in *)&addrs[0]; 3615 lin = (struct sockaddr_in *)&addrs[1]; 3616 #endif 3617 break; 3618 } 3619 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3620 if (error) 3621 return (error); 3622 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3623 if (error) 3624 return (error); 3625 break; 3626 #endif 3627 #ifdef INET 3628 case AF_INET: 3629 fin = (struct sockaddr_in *)&addrs[0]; 3630 lin = (struct sockaddr_in *)&addrs[1]; 3631 if (fin->sin_len != sizeof(struct sockaddr_in) || 3632 lin->sin_len != sizeof(struct sockaddr_in)) 3633 return (EINVAL); 3634 break; 3635 #endif 3636 default: 3637 return (EINVAL); 3638 } 3639 NET_EPOCH_ENTER(et); 3640 switch (addrs[0].ss_family) { 3641 #ifdef INET6 3642 case AF_INET6: 3643 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3644 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3645 INPLOOKUP_WLOCKPCB, NULL); 3646 break; 3647 #endif 3648 #ifdef INET 3649 case AF_INET: 3650 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3651 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3652 break; 3653 #endif 3654 } 3655 if (inp != NULL) { 3656 if (!SOLISTENING(inp->inp_socket)) { 3657 tp = intotcpcb(inp); 3658 tp = tcp_drop(tp, ECONNABORTED); 3659 if (tp != NULL) 3660 INP_WUNLOCK(inp); 3661 } else 3662 INP_WUNLOCK(inp); 3663 } else 3664 error = ESRCH; 3665 NET_EPOCH_EXIT(et); 3666 return (error); 3667 } 3668 3669 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 3670 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3671 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "", 3672 "Drop TCP connection"); 3673 3674 static int 3675 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS) 3676 { 3677 return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo, 3678 &tcp_ctloutput_set)); 3679 } 3680 3681 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt, 3682 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3683 CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "", 3684 "Set socket option for TCP endpoint"); 3685 3686 #ifdef KERN_TLS 3687 static int 3688 sysctl_switch_tls(SYSCTL_HANDLER_ARGS) 3689 { 3690 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3691 struct sockaddr_storage addrs[2]; 3692 struct inpcb *inp; 3693 #ifdef INET 3694 struct sockaddr_in *fin = NULL, *lin = NULL; 3695 #endif 3696 struct epoch_tracker et; 3697 #ifdef INET6 3698 struct sockaddr_in6 *fin6, *lin6; 3699 #endif 3700 int error; 3701 3702 inp = NULL; 3703 #ifdef INET6 3704 fin6 = lin6 = NULL; 3705 #endif 3706 error = 0; 3707 3708 if (req->oldptr != NULL || req->oldlen != 0) 3709 return (EINVAL); 3710 if (req->newptr == NULL) 3711 return (EPERM); 3712 if (req->newlen < sizeof(addrs)) 3713 return (ENOMEM); 3714 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3715 if (error) 3716 return (error); 3717 3718 switch (addrs[0].ss_family) { 3719 #ifdef INET6 3720 case AF_INET6: 3721 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3722 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3723 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3724 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3725 return (EINVAL); 3726 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3727 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3728 return (EINVAL); 3729 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3730 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3731 #ifdef INET 3732 fin = (struct sockaddr_in *)&addrs[0]; 3733 lin = (struct sockaddr_in *)&addrs[1]; 3734 #endif 3735 break; 3736 } 3737 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3738 if (error) 3739 return (error); 3740 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3741 if (error) 3742 return (error); 3743 break; 3744 #endif 3745 #ifdef INET 3746 case AF_INET: 3747 fin = (struct sockaddr_in *)&addrs[0]; 3748 lin = (struct sockaddr_in *)&addrs[1]; 3749 if (fin->sin_len != sizeof(struct sockaddr_in) || 3750 lin->sin_len != sizeof(struct sockaddr_in)) 3751 return (EINVAL); 3752 break; 3753 #endif 3754 default: 3755 return (EINVAL); 3756 } 3757 NET_EPOCH_ENTER(et); 3758 switch (addrs[0].ss_family) { 3759 #ifdef INET6 3760 case AF_INET6: 3761 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3762 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3763 INPLOOKUP_WLOCKPCB, NULL); 3764 break; 3765 #endif 3766 #ifdef INET 3767 case AF_INET: 3768 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3769 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3770 break; 3771 #endif 3772 } 3773 NET_EPOCH_EXIT(et); 3774 if (inp != NULL) { 3775 struct socket *so; 3776 3777 so = inp->inp_socket; 3778 soref(so); 3779 error = ktls_set_tx_mode(so, 3780 arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET); 3781 INP_WUNLOCK(inp); 3782 sorele(so); 3783 } else 3784 error = ESRCH; 3785 return (error); 3786 } 3787 3788 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls, 3789 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3790 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "", 3791 "Switch TCP connection to SW TLS"); 3792 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls, 3793 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3794 CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "", 3795 "Switch TCP connection to ifnet TLS"); 3796 #endif 3797 3798 /* 3799 * Generate a standardized TCP log line for use throughout the 3800 * tcp subsystem. Memory allocation is done with M_NOWAIT to 3801 * allow use in the interrupt context. 3802 * 3803 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 3804 * NB: The function may return NULL if memory allocation failed. 3805 * 3806 * Due to header inclusion and ordering limitations the struct ip 3807 * and ip6_hdr pointers have to be passed as void pointers. 3808 */ 3809 char * 3810 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3811 const void *ip6hdr) 3812 { 3813 3814 /* Is logging enabled? */ 3815 if (V_tcp_log_in_vain == 0) 3816 return (NULL); 3817 3818 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3819 } 3820 3821 char * 3822 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3823 const void *ip6hdr) 3824 { 3825 3826 /* Is logging enabled? */ 3827 if (tcp_log_debug == 0) 3828 return (NULL); 3829 3830 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3831 } 3832 3833 static char * 3834 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3835 const void *ip6hdr) 3836 { 3837 char *s, *sp; 3838 size_t size; 3839 #ifdef INET 3840 const struct ip *ip = (const struct ip *)ip4hdr; 3841 #endif 3842 #ifdef INET6 3843 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr; 3844 #endif /* INET6 */ 3845 3846 /* 3847 * The log line looks like this: 3848 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 3849 */ 3850 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 3851 sizeof(PRINT_TH_FLAGS) + 1 + 3852 #ifdef INET6 3853 2 * INET6_ADDRSTRLEN; 3854 #else 3855 2 * INET_ADDRSTRLEN; 3856 #endif /* INET6 */ 3857 3858 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 3859 if (s == NULL) 3860 return (NULL); 3861 3862 strcat(s, "TCP: ["); 3863 sp = s + strlen(s); 3864 3865 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 3866 inet_ntoa_r(inc->inc_faddr, sp); 3867 sp = s + strlen(s); 3868 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3869 sp = s + strlen(s); 3870 inet_ntoa_r(inc->inc_laddr, sp); 3871 sp = s + strlen(s); 3872 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3873 #ifdef INET6 3874 } else if (inc) { 3875 ip6_sprintf(sp, &inc->inc6_faddr); 3876 sp = s + strlen(s); 3877 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3878 sp = s + strlen(s); 3879 ip6_sprintf(sp, &inc->inc6_laddr); 3880 sp = s + strlen(s); 3881 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3882 } else if (ip6 && th) { 3883 ip6_sprintf(sp, &ip6->ip6_src); 3884 sp = s + strlen(s); 3885 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3886 sp = s + strlen(s); 3887 ip6_sprintf(sp, &ip6->ip6_dst); 3888 sp = s + strlen(s); 3889 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3890 #endif /* INET6 */ 3891 #ifdef INET 3892 } else if (ip && th) { 3893 inet_ntoa_r(ip->ip_src, sp); 3894 sp = s + strlen(s); 3895 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3896 sp = s + strlen(s); 3897 inet_ntoa_r(ip->ip_dst, sp); 3898 sp = s + strlen(s); 3899 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3900 #endif /* INET */ 3901 } else { 3902 free(s, M_TCPLOG); 3903 return (NULL); 3904 } 3905 sp = s + strlen(s); 3906 if (th) 3907 sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS); 3908 if (*(s + size - 1) != '\0') 3909 panic("%s: string too long", __func__); 3910 return (s); 3911 } 3912 3913 /* 3914 * A subroutine which makes it easy to track TCP state changes with DTrace. 3915 * This function shouldn't be called for t_state initializations that don't 3916 * correspond to actual TCP state transitions. 3917 */ 3918 void 3919 tcp_state_change(struct tcpcb *tp, int newstate) 3920 { 3921 #if defined(KDTRACE_HOOKS) 3922 int pstate = tp->t_state; 3923 #endif 3924 3925 TCPSTATES_DEC(tp->t_state); 3926 TCPSTATES_INC(newstate); 3927 tp->t_state = newstate; 3928 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3929 } 3930 3931 /* 3932 * Create an external-format (``xtcpcb'') structure using the information in 3933 * the kernel-format tcpcb structure pointed to by tp. This is done to 3934 * reduce the spew of irrelevant information over this interface, to isolate 3935 * user code from changes in the kernel structure, and potentially to provide 3936 * information-hiding if we decide that some of this information should be 3937 * hidden from users. 3938 */ 3939 void 3940 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) 3941 { 3942 struct tcpcb *tp = intotcpcb(inp); 3943 sbintime_t now; 3944 3945 bzero(xt, sizeof(*xt)); 3946 xt->t_state = tp->t_state; 3947 xt->t_logstate = tcp_get_bblog_state(tp); 3948 xt->t_flags = tp->t_flags; 3949 xt->t_sndzerowin = tp->t_sndzerowin; 3950 xt->t_sndrexmitpack = tp->t_sndrexmitpack; 3951 xt->t_rcvoopack = tp->t_rcvoopack; 3952 xt->t_rcv_wnd = tp->rcv_wnd; 3953 xt->t_snd_wnd = tp->snd_wnd; 3954 xt->t_snd_cwnd = tp->snd_cwnd; 3955 xt->t_snd_ssthresh = tp->snd_ssthresh; 3956 xt->t_dsack_bytes = tp->t_dsack_bytes; 3957 xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes; 3958 xt->t_dsack_pack = tp->t_dsack_pack; 3959 xt->t_maxseg = tp->t_maxseg; 3960 xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 + 3961 (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0; 3962 3963 now = getsbinuptime(); 3964 #define COPYTIMER(which,where) do { \ 3965 if (tp->t_timers[which] != SBT_MAX) \ 3966 xt->where = (tp->t_timers[which] - now) / SBT_1MS; \ 3967 else \ 3968 xt->where = 0; \ 3969 } while (0) 3970 COPYTIMER(TT_DELACK, tt_delack); 3971 COPYTIMER(TT_REXMT, tt_rexmt); 3972 COPYTIMER(TT_PERSIST, tt_persist); 3973 COPYTIMER(TT_KEEP, tt_keep); 3974 COPYTIMER(TT_2MSL, tt_2msl); 3975 #undef COPYTIMER 3976 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; 3977 3978 xt->xt_encaps_port = tp->t_port; 3979 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, 3980 TCP_FUNCTION_NAME_LEN_MAX); 3981 bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX); 3982 #ifdef TCP_BLACKBOX 3983 (void)tcp_log_get_id(tp, xt->xt_logid); 3984 #endif 3985 3986 xt->xt_len = sizeof(struct xtcpcb); 3987 in_pcbtoxinpcb(inp, &xt->xt_inp); 3988 } 3989 3990 void 3991 tcp_log_end_status(struct tcpcb *tp, uint8_t status) 3992 { 3993 uint32_t bit, i; 3994 3995 if ((tp == NULL) || 3996 (status > TCP_EI_STATUS_MAX_VALUE) || 3997 (status == 0)) { 3998 /* Invalid */ 3999 return; 4000 } 4001 if (status > (sizeof(uint32_t) * 8)) { 4002 /* Should this be a KASSERT? */ 4003 return; 4004 } 4005 bit = 1U << (status - 1); 4006 if (bit & tp->t_end_info_status) { 4007 /* already logged */ 4008 return; 4009 } 4010 for (i = 0; i < TCP_END_BYTE_INFO; i++) { 4011 if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) { 4012 tp->t_end_info_bytes[i] = status; 4013 tp->t_end_info_status |= bit; 4014 break; 4015 } 4016 } 4017 } 4018 4019 int 4020 tcp_can_enable_pacing(void) 4021 { 4022 4023 if ((tcp_pacing_limit == -1) || 4024 (tcp_pacing_limit > number_of_tcp_connections_pacing)) { 4025 atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1); 4026 shadow_num_connections = number_of_tcp_connections_pacing; 4027 return (1); 4028 } else { 4029 counter_u64_add(tcp_pacing_failures, 1); 4030 return (0); 4031 } 4032 } 4033 4034 int 4035 tcp_incr_dgp_pacing_cnt(void) 4036 { 4037 if ((tcp_dgp_limit == -1) || 4038 (tcp_dgp_limit > number_of_dgp_connections)) { 4039 atomic_fetchadd_int(&number_of_dgp_connections, 1); 4040 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4041 return (1); 4042 } else { 4043 counter_u64_add(tcp_dgp_failures, 1); 4044 return (0); 4045 } 4046 } 4047 4048 static uint8_t tcp_dgp_warning = 0; 4049 4050 void 4051 tcp_dec_dgp_pacing_cnt(void) 4052 { 4053 uint32_t ret; 4054 4055 ret = atomic_fetchadd_int(&number_of_dgp_connections, -1); 4056 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4057 KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?")); 4058 if (ret == 0) { 4059 if (tcp_dgp_limit != -1) { 4060 printf("Warning all DGP is now disabled, count decrements invalidly!\n"); 4061 tcp_dgp_limit = 0; 4062 tcp_dgp_warning = 1; 4063 } else if (tcp_dgp_warning == 0) { 4064 printf("Warning DGP pacing is invalid, invalid decrement\n"); 4065 tcp_dgp_warning = 1; 4066 } 4067 } 4068 4069 } 4070 4071 static uint8_t tcp_pacing_warning = 0; 4072 4073 void 4074 tcp_decrement_paced_conn(void) 4075 { 4076 uint32_t ret; 4077 4078 ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1); 4079 shadow_num_connections = number_of_tcp_connections_pacing; 4080 KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?")); 4081 if (ret == 0) { 4082 if (tcp_pacing_limit != -1) { 4083 printf("Warning all pacing is now disabled, count decrements invalidly!\n"); 4084 tcp_pacing_limit = 0; 4085 } else if (tcp_pacing_warning == 0) { 4086 printf("Warning pacing count is invalid, invalid decrement\n"); 4087 tcp_pacing_warning = 1; 4088 } 4089 } 4090 } 4091 4092 static void 4093 tcp_default_switch_failed(struct tcpcb *tp) 4094 { 4095 /* 4096 * If a switch fails we only need to 4097 * care about two things: 4098 * a) The t_flags2 4099 * and 4100 * b) The timer granularity. 4101 * Timeouts, at least for now, don't use the 4102 * old callout system in the other stacks so 4103 * those are hopefully safe. 4104 */ 4105 tcp_lro_features_off(tp); 4106 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 4107 } 4108 4109 #ifdef TCP_ACCOUNTING 4110 int 4111 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss) 4112 { 4113 if (SEQ_LT(th->th_ack, tp->snd_una)) { 4114 /* Do we have a SACK? */ 4115 if (to->to_flags & TOF_SACK) { 4116 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4117 tp->tcp_cnt_counters[ACK_SACK]++; 4118 } 4119 return (ACK_SACK); 4120 } else { 4121 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4122 tp->tcp_cnt_counters[ACK_BEHIND]++; 4123 } 4124 return (ACK_BEHIND); 4125 } 4126 } else if (th->th_ack == tp->snd_una) { 4127 /* Do we have a SACK? */ 4128 if (to->to_flags & TOF_SACK) { 4129 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4130 tp->tcp_cnt_counters[ACK_SACK]++; 4131 } 4132 return (ACK_SACK); 4133 } else if (tiwin != tp->snd_wnd) { 4134 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4135 tp->tcp_cnt_counters[ACK_RWND]++; 4136 } 4137 return (ACK_RWND); 4138 } else { 4139 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4140 tp->tcp_cnt_counters[ACK_DUPACK]++; 4141 } 4142 return (ACK_DUPACK); 4143 } 4144 } else { 4145 if (!SEQ_GT(th->th_ack, tp->snd_max)) { 4146 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4147 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss); 4148 } 4149 } 4150 if (to->to_flags & TOF_SACK) { 4151 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4152 tp->tcp_cnt_counters[ACK_CUMACK_SACK]++; 4153 } 4154 return (ACK_CUMACK_SACK); 4155 } else { 4156 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4157 tp->tcp_cnt_counters[ACK_CUMACK]++; 4158 } 4159 return (ACK_CUMACK); 4160 } 4161 } 4162 } 4163 #endif 4164 4165 void 4166 tcp_change_time_units(struct tcpcb *tp, int granularity) 4167 { 4168 if (tp->t_tmr_granularity == granularity) { 4169 /* We are there */ 4170 return; 4171 } 4172 if (granularity == TCP_TMR_GRANULARITY_USEC) { 4173 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS), 4174 ("Granularity is not TICKS its %u in tp:%p", 4175 tp->t_tmr_granularity, tp)); 4176 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 4177 if (tp->t_srtt > 1) { 4178 uint32_t val, frac; 4179 4180 val = tp->t_srtt >> TCP_RTT_SHIFT; 4181 frac = tp->t_srtt & 0x1f; 4182 tp->t_srtt = TICKS_2_USEC(val); 4183 /* 4184 * frac is the fractional part of the srtt (if any) 4185 * but its in ticks and every bit represents 4186 * 1/32nd of a hz. 4187 */ 4188 if (frac) { 4189 if (hz == 1000) { 4190 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4191 } else { 4192 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4193 } 4194 tp->t_srtt += frac; 4195 } 4196 } 4197 if (tp->t_rttvar) { 4198 uint32_t val, frac; 4199 4200 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 4201 frac = tp->t_rttvar & 0x1f; 4202 tp->t_rttvar = TICKS_2_USEC(val); 4203 /* 4204 * frac is the fractional part of the srtt (if any) 4205 * but its in ticks and every bit represents 4206 * 1/32nd of a hz. 4207 */ 4208 if (frac) { 4209 if (hz == 1000) { 4210 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4211 } else { 4212 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4213 } 4214 tp->t_rttvar += frac; 4215 } 4216 } 4217 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC; 4218 } else if (granularity == TCP_TMR_GRANULARITY_TICKS) { 4219 /* Convert back to ticks, with */ 4220 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC), 4221 ("Granularity is not USEC its %u in tp:%p", 4222 tp->t_tmr_granularity, tp)); 4223 if (tp->t_srtt > 1) { 4224 uint32_t val, frac; 4225 4226 val = USEC_2_TICKS(tp->t_srtt); 4227 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 4228 tp->t_srtt = val << TCP_RTT_SHIFT; 4229 /* 4230 * frac is the fractional part here is left 4231 * over from converting to hz and shifting. 4232 * We need to convert this to the 5 bit 4233 * remainder. 4234 */ 4235 if (frac) { 4236 if (hz == 1000) { 4237 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4238 } else { 4239 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4240 } 4241 tp->t_srtt += frac; 4242 } 4243 } 4244 if (tp->t_rttvar) { 4245 uint32_t val, frac; 4246 4247 val = USEC_2_TICKS(tp->t_rttvar); 4248 frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz); 4249 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 4250 /* 4251 * frac is the fractional part here is left 4252 * over from converting to hz and shifting. 4253 * We need to convert this to the 4 bit 4254 * remainder. 4255 */ 4256 if (frac) { 4257 if (hz == 1000) { 4258 frac = (((uint64_t)frac * (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4259 } else { 4260 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4261 } 4262 tp->t_rttvar += frac; 4263 } 4264 } 4265 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 4266 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 4267 } 4268 #ifdef INVARIANTS 4269 else { 4270 panic("Unknown granularity:%d tp:%p", 4271 granularity, tp); 4272 } 4273 #endif 4274 } 4275 4276 void 4277 tcp_handle_orphaned_packets(struct tcpcb *tp) 4278 { 4279 struct mbuf *save, *m, *prev; 4280 /* 4281 * Called when a stack switch is occuring from the fini() 4282 * of the old stack. We assue the init() as already been 4283 * run of the new stack and it has set the t_flags2 to 4284 * what it supports. This function will then deal with any 4285 * differences i.e. cleanup packets that maybe queued that 4286 * the newstack does not support. 4287 */ 4288 4289 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 4290 return; 4291 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 && 4292 !STAILQ_EMPTY(&tp->t_inqueue)) { 4293 /* 4294 * It is unsafe to process the packets since a 4295 * reset may be lurking in them (its rare but it 4296 * can occur). If we were to find a RST, then we 4297 * would end up dropping the connection and the 4298 * INP lock, so when we return the caller (tcp_usrreq) 4299 * will blow up when it trys to unlock the inp. 4300 * This new stack does not do any fancy LRO features 4301 * so all we can do is toss the packets. 4302 */ 4303 m = STAILQ_FIRST(&tp->t_inqueue); 4304 STAILQ_INIT(&tp->t_inqueue); 4305 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) 4306 m_freem(m); 4307 } else { 4308 /* 4309 * Here we have a stack that does mbuf queuing but 4310 * does not support compressed ack's. We must 4311 * walk all the mbufs and discard any compressed acks. 4312 */ 4313 STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) { 4314 if (m->m_flags & M_ACKCMP) { 4315 if (m == STAILQ_FIRST(&tp->t_inqueue)) 4316 STAILQ_REMOVE_HEAD(&tp->t_inqueue, 4317 m_stailqpkt); 4318 else 4319 STAILQ_REMOVE_AFTER(&tp->t_inqueue, 4320 prev, m_stailqpkt); 4321 m_freem(m); 4322 } else 4323 prev = m; 4324 } 4325 } 4326 } 4327 4328 #ifdef TCP_REQUEST_TRK 4329 uint32_t 4330 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes) 4331 { 4332 #ifdef KERN_TLS 4333 struct ktls_session *tls; 4334 uint32_t rec_oh, records; 4335 4336 tls = so->so_snd.sb_tls_info; 4337 if (tls == NULL) 4338 return (0); 4339 4340 rec_oh = tls->params.tls_hlen + tls->params.tls_tlen; 4341 records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len); 4342 return (records * rec_oh); 4343 #else 4344 return (0); 4345 #endif 4346 } 4347 4348 extern uint32_t tcp_stale_entry_time; 4349 uint32_t tcp_stale_entry_time = 250000; 4350 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW, 4351 &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out"); 4352 4353 void 4354 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req, 4355 uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes) 4356 { 4357 if (tcp_bblogging_on(tp)) { 4358 union tcp_log_stackspecific log; 4359 struct timeval tv; 4360 4361 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4362 log.u_bbr.inhpts = tcp_in_hpts(tp); 4363 log.u_bbr.flex8 = val; 4364 log.u_bbr.rttProp = req->timestamp; 4365 log.u_bbr.delRate = req->start; 4366 log.u_bbr.cur_del_rate = req->end; 4367 log.u_bbr.flex1 = req->start_seq; 4368 log.u_bbr.flex2 = req->end_seq; 4369 log.u_bbr.flex3 = req->flags; 4370 log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff); 4371 log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff); 4372 log.u_bbr.flex7 = slot; 4373 log.u_bbr.bw_inuse = offset; 4374 /* nbytes = flex6 | epoch */ 4375 log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff); 4376 log.u_bbr.epoch = (nbytes & 0x00000000ffffffff); 4377 /* cspr = lt_epoch | pkts_out */ 4378 log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff); 4379 log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff); 4380 log.u_bbr.applimited = tp->t_tcpreq_closed; 4381 log.u_bbr.applimited <<= 8; 4382 log.u_bbr.applimited |= tp->t_tcpreq_open; 4383 log.u_bbr.applimited <<= 8; 4384 log.u_bbr.applimited |= tp->t_tcpreq_req; 4385 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4386 TCP_LOG_EVENTP(tp, NULL, 4387 &tptosocket(tp)->so_rcv, 4388 &tptosocket(tp)->so_snd, 4389 TCP_LOG_REQ_T, 0, 4390 0, &log, false, &tv); 4391 } 4392 } 4393 4394 void 4395 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent) 4396 { 4397 if (tp->t_tcpreq_req > 0) 4398 tp->t_tcpreq_req--; 4399 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4400 if (tp->t_tcpreq_open > 0) 4401 tp->t_tcpreq_open--; 4402 } else { 4403 if (tp->t_tcpreq_closed > 0) 4404 tp->t_tcpreq_closed--; 4405 } 4406 ent->flags = TCP_TRK_TRACK_FLG_EMPTY; 4407 } 4408 4409 static void 4410 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest) 4411 { 4412 struct tcp_sendfile_track *ent; 4413 uint64_t time_delta, oldest_delta; 4414 int i, oldest, oldest_set = 0, cnt_rm = 0; 4415 4416 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4417 ent = &tp->t_tcpreq_info[i]; 4418 if (ent->flags != TCP_TRK_TRACK_FLG_USED) { 4419 /* 4420 * We only care about closed end ranges 4421 * that are allocated and have no sendfile 4422 * ever touching them. They would be in 4423 * state USED. 4424 */ 4425 continue; 4426 } 4427 if (ts >= ent->localtime) 4428 time_delta = ts - ent->localtime; 4429 else 4430 time_delta = 0; 4431 if (time_delta && 4432 ((oldest_delta < time_delta) || (oldest_set == 0))) { 4433 oldest_set = 1; 4434 oldest = i; 4435 oldest_delta = time_delta; 4436 } 4437 if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) { 4438 /* 4439 * No sendfile in a our time-limit 4440 * time to purge it. 4441 */ 4442 cnt_rm++; 4443 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4444 time_delta, 0); 4445 tcp_req_free_a_slot(tp, ent); 4446 } 4447 } 4448 if ((cnt_rm == 0) && rm_oldest && oldest_set) { 4449 ent = &tp->t_tcpreq_info[oldest]; 4450 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4451 oldest_delta, 1); 4452 tcp_req_free_a_slot(tp, ent); 4453 } 4454 } 4455 4456 int 4457 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point) 4458 { 4459 int i, ret = 0; 4460 struct tcp_sendfile_track *ent; 4461 4462 /* Clean up any old closed end requests that are now completed */ 4463 if (tp->t_tcpreq_req == 0) 4464 return (0); 4465 if (tp->t_tcpreq_closed == 0) 4466 return (0); 4467 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4468 ent = &tp->t_tcpreq_info[i]; 4469 /* Skip empty ones */ 4470 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4471 continue; 4472 /* Skip open ones */ 4473 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) 4474 continue; 4475 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4476 /* We are past it -- free it */ 4477 tcp_req_log_req_info(tp, ent, 4478 i, TCP_TRK_REQ_LOG_FREED, 0, 0); 4479 tcp_req_free_a_slot(tp, ent); 4480 ret++; 4481 } 4482 } 4483 return (ret); 4484 } 4485 4486 int 4487 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point) 4488 { 4489 if (tp->t_tcpreq_req == 0) 4490 return (-1); 4491 if (tp->t_tcpreq_closed == 0) 4492 return (-1); 4493 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4494 return (-1); 4495 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4496 return (1); 4497 } 4498 return (0); 4499 } 4500 4501 struct tcp_sendfile_track * 4502 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip) 4503 { 4504 /* 4505 * Given an ack point (th_ack) walk through our entries and 4506 * return the first one found that th_ack goes past the 4507 * end_seq. 4508 */ 4509 struct tcp_sendfile_track *ent; 4510 int i; 4511 4512 if (tp->t_tcpreq_req == 0) { 4513 /* none open */ 4514 return (NULL); 4515 } 4516 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4517 ent = &tp->t_tcpreq_info[i]; 4518 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4519 continue; 4520 if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) { 4521 if (SEQ_GEQ(th_ack, ent->end_seq)) { 4522 *ip = i; 4523 return (ent); 4524 } 4525 } 4526 } 4527 return (NULL); 4528 } 4529 4530 struct tcp_sendfile_track * 4531 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq) 4532 { 4533 struct tcp_sendfile_track *ent; 4534 int i; 4535 4536 if (tp->t_tcpreq_req == 0) { 4537 /* none open */ 4538 return (NULL); 4539 } 4540 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4541 ent = &tp->t_tcpreq_info[i]; 4542 tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH, 4543 (uint64_t)seq, 0); 4544 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4545 continue; 4546 } 4547 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4548 /* 4549 * An open end request only needs to 4550 * match the beginning seq or be 4551 * all we have (once we keep going on 4552 * a open end request we may have a seq 4553 * wrap). 4554 */ 4555 if ((SEQ_GEQ(seq, ent->start_seq)) || 4556 (tp->t_tcpreq_closed == 0)) 4557 return (ent); 4558 } else { 4559 /* 4560 * For this one we need to 4561 * be a bit more careful if its 4562 * completed at least. 4563 */ 4564 if ((SEQ_GEQ(seq, ent->start_seq)) && 4565 (SEQ_LT(seq, ent->end_seq))) { 4566 return (ent); 4567 } 4568 } 4569 } 4570 return (NULL); 4571 } 4572 4573 /* Should this be in its own file tcp_req.c ? */ 4574 struct tcp_sendfile_track * 4575 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups) 4576 { 4577 struct tcp_sendfile_track *fil; 4578 int i, allocated; 4579 4580 /* In case the stack does not check for completions do so now */ 4581 tcp_req_check_for_comp(tp, tp->snd_una); 4582 /* Check for stale entries */ 4583 if (tp->t_tcpreq_req) 4584 tcp_req_check_for_stale_entries(tp, ts, 4585 (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ)); 4586 /* Check to see if this is a duplicate of one not started */ 4587 if (tp->t_tcpreq_req) { 4588 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4589 fil = &tp->t_tcpreq_info[i]; 4590 if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0) 4591 continue; 4592 if ((fil->timestamp == req->timestamp) && 4593 (fil->start == req->start) && 4594 ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) || 4595 (fil->end == req->end))) { 4596 /* 4597 * We already have this request 4598 * and it has not been started with sendfile. 4599 * This probably means the user was returned 4600 * a 4xx of some sort and its going to age 4601 * out, lets not duplicate it. 4602 */ 4603 return (fil); 4604 } 4605 } 4606 } 4607 /* Ok if there is no room at the inn we are in trouble */ 4608 if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) { 4609 tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL); 4610 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4611 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], 4612 i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0); 4613 } 4614 return (NULL); 4615 } 4616 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4617 fil = &tp->t_tcpreq_info[i]; 4618 if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4619 allocated = 1; 4620 fil->flags = TCP_TRK_TRACK_FLG_USED; 4621 fil->timestamp = req->timestamp; 4622 fil->playout_ms = req->playout_ms; 4623 fil->localtime = ts; 4624 fil->start = req->start; 4625 if (req->flags & TCP_LOG_HTTPD_RANGE_END) { 4626 fil->end = req->end; 4627 } else { 4628 fil->end = 0; 4629 fil->flags |= TCP_TRK_TRACK_FLG_OPEN; 4630 } 4631 /* 4632 * We can set the min boundaries to the TCP Sequence space, 4633 * but it might be found to be further up when sendfile 4634 * actually runs on this range (if it ever does). 4635 */ 4636 fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc; 4637 fil->start_seq = tp->snd_una + 4638 tptosocket(tp)->so_snd.sb_ccc; 4639 if (req->flags & TCP_LOG_HTTPD_RANGE_END) 4640 fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start))); 4641 else 4642 fil->end_seq = 0; 4643 if (tptosocket(tp)->so_snd.sb_tls_info) { 4644 /* 4645 * This session is doing TLS. Take a swag guess 4646 * at the overhead. 4647 */ 4648 fil->end_seq += tcp_estimate_tls_overhead( 4649 tptosocket(tp), (fil->end - fil->start)); 4650 } 4651 tp->t_tcpreq_req++; 4652 if (fil->flags & TCP_TRK_TRACK_FLG_OPEN) 4653 tp->t_tcpreq_open++; 4654 else 4655 tp->t_tcpreq_closed++; 4656 tcp_req_log_req_info(tp, fil, i, 4657 TCP_TRK_REQ_LOG_NEW, 0, 0); 4658 break; 4659 } else 4660 fil = NULL; 4661 } 4662 return (fil); 4663 } 4664 4665 void 4666 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts) 4667 { 4668 (void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1); 4669 } 4670 #endif 4671 4672 void 4673 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err) 4674 { 4675 if (tcp_bblogging_on(tp)) { 4676 struct tcp_log_buffer *l; 4677 4678 l = tcp_log_event(tp, NULL, 4679 &tptosocket(tp)->so_rcv, 4680 &tptosocket(tp)->so_snd, 4681 TCP_LOG_SOCKET_OPT, 4682 err, 0, NULL, 1, 4683 NULL, NULL, 0, NULL); 4684 if (l) { 4685 l->tlb_flex1 = option_num; 4686 l->tlb_flex2 = option_val; 4687 } 4688 } 4689 } 4690 4691 uint32_t 4692 tcp_get_srtt(struct tcpcb *tp, int granularity) 4693 { 4694 uint32_t srtt; 4695 4696 KASSERT(granularity == TCP_TMR_GRANULARITY_USEC || 4697 granularity == TCP_TMR_GRANULARITY_TICKS, 4698 ("%s: called with unexpected granularity %d", __func__, 4699 granularity)); 4700 4701 srtt = tp->t_srtt; 4702 4703 /* 4704 * We only support two granularities. If the stored granularity 4705 * does not match the granularity requested by the caller, 4706 * convert the stored value to the requested unit of granularity. 4707 */ 4708 if (tp->t_tmr_granularity != granularity) { 4709 if (granularity == TCP_TMR_GRANULARITY_USEC) 4710 srtt = TICKS_2_USEC(srtt); 4711 else 4712 srtt = USEC_2_TICKS(srtt); 4713 } 4714 4715 /* 4716 * If the srtt is stored with ticks granularity, we need to 4717 * unshift to get the actual value. We do this after the 4718 * conversion above (if one was necessary) in order to maximize 4719 * precision. 4720 */ 4721 if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS) 4722 srtt = srtt >> TCP_RTT_SHIFT; 4723 4724 return (srtt); 4725 } 4726 4727 void 4728 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt, 4729 uint8_t is_tlp, bool hw_tls) 4730 { 4731 4732 if (is_tlp) { 4733 tp->t_sndtlppack++; 4734 tp->t_sndtlpbyte += len; 4735 } 4736 /* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */ 4737 if (is_rxt) 4738 tp->t_snd_rxt_bytes += len; 4739 else 4740 tp->t_sndbytes += len; 4741 4742 #ifdef KERN_TLS 4743 if (hw_tls && is_rxt && len != 0) { 4744 uint64_t rexmit_percent; 4745 4746 rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) / 4747 (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes)); 4748 if (rexmit_percent > ktls_ifnet_max_rexmit_pct) 4749 ktls_disable_ifnet(tp); 4750 } 4751 #endif 4752 } 4753