1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/hhook.h> 45 #include <sys/kernel.h> 46 #include <sys/khelp.h> 47 #include <sys/sysctl.h> 48 #include <sys/jail.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #ifdef INET6 52 #include <sys/domain.h> 53 #endif 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/protosw.h> 59 #include <sys/random.h> 60 61 #include <vm/uma.h> 62 63 #include <net/route.h> 64 #include <net/if.h> 65 #include <net/vnet.h> 66 67 #include <netinet/cc.h> 68 #include <netinet/in.h> 69 #include <netinet/in_pcb.h> 70 #include <netinet/in_systm.h> 71 #include <netinet/in_var.h> 72 #include <netinet/ip.h> 73 #include <netinet/ip_icmp.h> 74 #include <netinet/ip_var.h> 75 #ifdef INET6 76 #include <netinet/ip6.h> 77 #include <netinet6/in6_pcb.h> 78 #include <netinet6/ip6_var.h> 79 #include <netinet6/scope6_var.h> 80 #include <netinet6/nd6.h> 81 #endif 82 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/tcp_syncache.h> 88 #include <netinet/tcp_offload.h> 89 #ifdef INET6 90 #include <netinet6/tcp6_var.h> 91 #endif 92 #include <netinet/tcpip.h> 93 #ifdef TCPDEBUG 94 #include <netinet/tcp_debug.h> 95 #endif 96 #ifdef INET6 97 #include <netinet6/ip6protosw.h> 98 #endif 99 100 #ifdef IPSEC 101 #include <netipsec/ipsec.h> 102 #include <netipsec/xform.h> 103 #ifdef INET6 104 #include <netipsec/ipsec6.h> 105 #endif 106 #include <netipsec/key.h> 107 #include <sys/syslog.h> 108 #endif /*IPSEC*/ 109 110 #include <machine/in_cksum.h> 111 #include <sys/md5.h> 112 113 #include <security/mac/mac_framework.h> 114 115 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 116 #ifdef INET6 117 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 118 #endif 119 120 static int 121 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 122 { 123 int error, new; 124 125 new = V_tcp_mssdflt; 126 error = sysctl_handle_int(oidp, &new, 0, req); 127 if (error == 0 && req->newptr) { 128 if (new < TCP_MINMSS) 129 error = EINVAL; 130 else 131 V_tcp_mssdflt = new; 132 } 133 return (error); 134 } 135 136 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 137 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 138 &sysctl_net_inet_tcp_mss_check, "I", 139 "Default TCP Maximum Segment Size"); 140 141 #ifdef INET6 142 static int 143 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 144 { 145 int error, new; 146 147 new = V_tcp_v6mssdflt; 148 error = sysctl_handle_int(oidp, &new, 0, req); 149 if (error == 0 && req->newptr) { 150 if (new < TCP_MINMSS) 151 error = EINVAL; 152 else 153 V_tcp_v6mssdflt = new; 154 } 155 return (error); 156 } 157 158 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 159 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 160 &sysctl_net_inet_tcp_mss_v6_check, "I", 161 "Default TCP Maximum Segment Size for IPv6"); 162 #endif /* INET6 */ 163 164 /* 165 * Minimum MSS we accept and use. This prevents DoS attacks where 166 * we are forced to a ridiculous low MSS like 20 and send hundreds 167 * of packets instead of one. The effect scales with the available 168 * bandwidth and quickly saturates the CPU and network interface 169 * with packet generation and sending. Set to zero to disable MINMSS 170 * checking. This setting prevents us from sending too small packets. 171 */ 172 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW, 174 &VNET_NAME(tcp_minmss), 0, 175 "Minmum TCP Maximum Segment Size"); 176 177 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 178 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 179 &VNET_NAME(tcp_do_rfc1323), 0, 180 "Enable rfc1323 (high performance TCP) extensions"); 181 182 static int tcp_log_debug = 0; 183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 184 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 185 186 static int tcp_tcbhashsize = 0; 187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 188 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 189 190 static int do_tcpdrain = 1; 191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 192 "Enable tcp_drain routine for extra help when low on mbufs"); 193 194 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 195 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 196 197 static VNET_DEFINE(int, icmp_may_rst) = 1; 198 #define V_icmp_may_rst VNET(icmp_may_rst) 199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, 200 &VNET_NAME(icmp_may_rst), 0, 201 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 202 203 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 204 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 206 &VNET_NAME(tcp_isn_reseed_interval), 0, 207 "Seconds between reseeding of ISN secret"); 208 209 static int tcp_soreceive_stream = 0; 210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 211 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 212 213 #ifdef TCP_SIGNATURE 214 static int tcp_sig_checksigs = 1; 215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 216 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 217 #endif 218 219 VNET_DEFINE(uma_zone_t, sack_hole_zone); 220 #define V_sack_hole_zone VNET(sack_hole_zone) 221 222 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 223 224 static struct inpcb *tcp_notify(struct inpcb *, int); 225 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 226 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 227 void *ip4hdr, const void *ip6hdr); 228 229 /* 230 * Target size of TCP PCB hash tables. Must be a power of two. 231 * 232 * Note that this can be overridden by the kernel environment 233 * variable net.inet.tcp.tcbhashsize 234 */ 235 #ifndef TCBHASHSIZE 236 #define TCBHASHSIZE 512 237 #endif 238 239 /* 240 * XXX 241 * Callouts should be moved into struct tcp directly. They are currently 242 * separate because the tcpcb structure is exported to userland for sysctl 243 * parsing purposes, which do not know about callouts. 244 */ 245 struct tcpcb_mem { 246 struct tcpcb tcb; 247 struct tcp_timer tt; 248 struct cc_var ccv; 249 struct osd osd; 250 }; 251 252 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 253 #define V_tcpcb_zone VNET(tcpcb_zone) 254 255 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 256 static struct mtx isn_mtx; 257 258 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 259 #define ISN_LOCK() mtx_lock(&isn_mtx) 260 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 261 262 /* 263 * TCP initialization. 264 */ 265 static void 266 tcp_zone_change(void *tag) 267 { 268 269 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 270 uma_zone_set_max(V_tcpcb_zone, maxsockets); 271 tcp_tw_zone_change(); 272 } 273 274 static int 275 tcp_inpcb_init(void *mem, int size, int flags) 276 { 277 struct inpcb *inp = mem; 278 279 INP_LOCK_INIT(inp, "inp", "tcpinp"); 280 return (0); 281 } 282 283 void 284 tcp_init(void) 285 { 286 int hashsize; 287 288 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 289 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 290 printf("%s: WARNING: unable to register helper hook\n", __func__); 291 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 292 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 293 printf("%s: WARNING: unable to register helper hook\n", __func__); 294 295 hashsize = TCBHASHSIZE; 296 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 297 if (!powerof2(hashsize)) { 298 printf("WARNING: TCB hash size not a power of 2\n"); 299 hashsize = 512; /* safe default */ 300 } 301 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 302 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE, 303 IPI_HASHFIELDS_4TUPLE); 304 305 /* 306 * These have to be type stable for the benefit of the timers. 307 */ 308 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 309 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 310 uma_zone_set_max(V_tcpcb_zone, maxsockets); 311 312 tcp_tw_init(); 313 syncache_init(); 314 tcp_hc_init(); 315 tcp_reass_init(); 316 317 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 318 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 319 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 320 321 /* Skip initialization of globals for non-default instances. */ 322 if (!IS_DEFAULT_VNET(curvnet)) 323 return; 324 325 /* XXX virtualize those bellow? */ 326 tcp_delacktime = TCPTV_DELACK; 327 tcp_keepinit = TCPTV_KEEP_INIT; 328 tcp_keepidle = TCPTV_KEEP_IDLE; 329 tcp_keepintvl = TCPTV_KEEPINTVL; 330 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 331 tcp_msl = TCPTV_MSL; 332 tcp_rexmit_min = TCPTV_MIN; 333 if (tcp_rexmit_min < 1) 334 tcp_rexmit_min = 1; 335 tcp_rexmit_slop = TCPTV_CPU_VAR; 336 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 337 tcp_tcbhashsize = hashsize; 338 339 TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream); 340 if (tcp_soreceive_stream) { 341 #ifdef INET 342 tcp_usrreqs.pru_soreceive = soreceive_stream; 343 #endif 344 #ifdef INET6 345 tcp6_usrreqs.pru_soreceive = soreceive_stream; 346 #endif /* INET6 */ 347 } 348 349 #ifdef INET6 350 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 351 #else /* INET6 */ 352 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 353 #endif /* INET6 */ 354 if (max_protohdr < TCP_MINPROTOHDR) 355 max_protohdr = TCP_MINPROTOHDR; 356 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 357 panic("tcp_init"); 358 #undef TCP_MINPROTOHDR 359 360 ISN_LOCK_INIT(); 361 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 362 SHUTDOWN_PRI_DEFAULT); 363 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 364 EVENTHANDLER_PRI_ANY); 365 } 366 367 #ifdef VIMAGE 368 void 369 tcp_destroy(void) 370 { 371 372 tcp_reass_destroy(); 373 tcp_hc_destroy(); 374 syncache_destroy(); 375 tcp_tw_destroy(); 376 in_pcbinfo_destroy(&V_tcbinfo); 377 uma_zdestroy(V_sack_hole_zone); 378 uma_zdestroy(V_tcpcb_zone); 379 } 380 #endif 381 382 void 383 tcp_fini(void *xtp) 384 { 385 386 } 387 388 /* 389 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 390 * tcp_template used to store this data in mbufs, but we now recopy it out 391 * of the tcpcb each time to conserve mbufs. 392 */ 393 void 394 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 395 { 396 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 397 398 INP_WLOCK_ASSERT(inp); 399 400 #ifdef INET6 401 if ((inp->inp_vflag & INP_IPV6) != 0) { 402 struct ip6_hdr *ip6; 403 404 ip6 = (struct ip6_hdr *)ip_ptr; 405 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 406 (inp->inp_flow & IPV6_FLOWINFO_MASK); 407 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 408 (IPV6_VERSION & IPV6_VERSION_MASK); 409 ip6->ip6_nxt = IPPROTO_TCP; 410 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 411 ip6->ip6_src = inp->in6p_laddr; 412 ip6->ip6_dst = inp->in6p_faddr; 413 } 414 #endif /* INET6 */ 415 #if defined(INET6) && defined(INET) 416 else 417 #endif 418 #ifdef INET 419 { 420 struct ip *ip; 421 422 ip = (struct ip *)ip_ptr; 423 ip->ip_v = IPVERSION; 424 ip->ip_hl = 5; 425 ip->ip_tos = inp->inp_ip_tos; 426 ip->ip_len = 0; 427 ip->ip_id = 0; 428 ip->ip_off = 0; 429 ip->ip_ttl = inp->inp_ip_ttl; 430 ip->ip_sum = 0; 431 ip->ip_p = IPPROTO_TCP; 432 ip->ip_src = inp->inp_laddr; 433 ip->ip_dst = inp->inp_faddr; 434 } 435 #endif /* INET */ 436 th->th_sport = inp->inp_lport; 437 th->th_dport = inp->inp_fport; 438 th->th_seq = 0; 439 th->th_ack = 0; 440 th->th_x2 = 0; 441 th->th_off = 5; 442 th->th_flags = 0; 443 th->th_win = 0; 444 th->th_urp = 0; 445 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 446 } 447 448 /* 449 * Create template to be used to send tcp packets on a connection. 450 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 451 * use for this function is in keepalives, which use tcp_respond. 452 */ 453 struct tcptemp * 454 tcpip_maketemplate(struct inpcb *inp) 455 { 456 struct tcptemp *t; 457 458 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 459 if (t == NULL) 460 return (NULL); 461 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 462 return (t); 463 } 464 465 /* 466 * Send a single message to the TCP at address specified by 467 * the given TCP/IP header. If m == NULL, then we make a copy 468 * of the tcpiphdr at ti and send directly to the addressed host. 469 * This is used to force keep alive messages out using the TCP 470 * template for a connection. If flags are given then we send 471 * a message back to the TCP which originated the * segment ti, 472 * and discard the mbuf containing it and any other attached mbufs. 473 * 474 * In any case the ack and sequence number of the transmitted 475 * segment are as specified by the parameters. 476 * 477 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 478 */ 479 void 480 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 481 tcp_seq ack, tcp_seq seq, int flags) 482 { 483 int tlen; 484 int win = 0; 485 struct ip *ip; 486 struct tcphdr *nth; 487 #ifdef INET6 488 struct ip6_hdr *ip6; 489 int isipv6; 490 #endif /* INET6 */ 491 int ipflags = 0; 492 struct inpcb *inp; 493 494 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 495 496 #ifdef INET6 497 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 498 ip6 = ipgen; 499 #endif /* INET6 */ 500 ip = ipgen; 501 502 if (tp != NULL) { 503 inp = tp->t_inpcb; 504 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 505 INP_WLOCK_ASSERT(inp); 506 } else 507 inp = NULL; 508 509 if (tp != NULL) { 510 if (!(flags & TH_RST)) { 511 win = sbspace(&inp->inp_socket->so_rcv); 512 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 513 win = (long)TCP_MAXWIN << tp->rcv_scale; 514 } 515 } 516 if (m == NULL) { 517 m = m_gethdr(M_DONTWAIT, MT_DATA); 518 if (m == NULL) 519 return; 520 tlen = 0; 521 m->m_data += max_linkhdr; 522 #ifdef INET6 523 if (isipv6) { 524 bcopy((caddr_t)ip6, mtod(m, caddr_t), 525 sizeof(struct ip6_hdr)); 526 ip6 = mtod(m, struct ip6_hdr *); 527 nth = (struct tcphdr *)(ip6 + 1); 528 } else 529 #endif /* INET6 */ 530 { 531 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 532 ip = mtod(m, struct ip *); 533 nth = (struct tcphdr *)(ip + 1); 534 } 535 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 536 flags = TH_ACK; 537 } else { 538 /* 539 * reuse the mbuf. 540 * XXX MRT We inherrit the FIB, which is lucky. 541 */ 542 m_freem(m->m_next); 543 m->m_next = NULL; 544 m->m_data = (caddr_t)ipgen; 545 m_addr_changed(m); 546 /* m_len is set later */ 547 tlen = 0; 548 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 549 #ifdef INET6 550 if (isipv6) { 551 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 552 nth = (struct tcphdr *)(ip6 + 1); 553 } else 554 #endif /* INET6 */ 555 { 556 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 557 nth = (struct tcphdr *)(ip + 1); 558 } 559 if (th != nth) { 560 /* 561 * this is usually a case when an extension header 562 * exists between the IPv6 header and the 563 * TCP header. 564 */ 565 nth->th_sport = th->th_sport; 566 nth->th_dport = th->th_dport; 567 } 568 xchg(nth->th_dport, nth->th_sport, uint16_t); 569 #undef xchg 570 } 571 #ifdef INET6 572 if (isipv6) { 573 ip6->ip6_flow = 0; 574 ip6->ip6_vfc = IPV6_VERSION; 575 ip6->ip6_nxt = IPPROTO_TCP; 576 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 577 tlen)); 578 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 579 } 580 #endif 581 #if defined(INET) && defined(INET6) 582 else 583 #endif 584 #ifdef INET 585 { 586 tlen += sizeof (struct tcpiphdr); 587 ip->ip_len = tlen; 588 ip->ip_ttl = V_ip_defttl; 589 if (V_path_mtu_discovery) 590 ip->ip_off |= IP_DF; 591 } 592 #endif 593 m->m_len = tlen; 594 m->m_pkthdr.len = tlen; 595 m->m_pkthdr.rcvif = NULL; 596 #ifdef MAC 597 if (inp != NULL) { 598 /* 599 * Packet is associated with a socket, so allow the 600 * label of the response to reflect the socket label. 601 */ 602 INP_WLOCK_ASSERT(inp); 603 mac_inpcb_create_mbuf(inp, m); 604 } else { 605 /* 606 * Packet is not associated with a socket, so possibly 607 * update the label in place. 608 */ 609 mac_netinet_tcp_reply(m); 610 } 611 #endif 612 nth->th_seq = htonl(seq); 613 nth->th_ack = htonl(ack); 614 nth->th_x2 = 0; 615 nth->th_off = sizeof (struct tcphdr) >> 2; 616 nth->th_flags = flags; 617 if (tp != NULL) 618 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 619 else 620 nth->th_win = htons((u_short)win); 621 nth->th_urp = 0; 622 #ifdef INET6 623 if (isipv6) { 624 nth->th_sum = 0; 625 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 626 sizeof(struct ip6_hdr), 627 tlen - sizeof(struct ip6_hdr)); 628 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 629 NULL, NULL); 630 } 631 #endif /* INET6 */ 632 #if defined(INET6) && defined(INET) 633 else 634 #endif 635 #ifdef INET 636 { 637 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 638 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 639 m->m_pkthdr.csum_flags = CSUM_TCP; 640 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 641 } 642 #endif /* INET */ 643 #ifdef TCPDEBUG 644 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 645 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 646 #endif 647 #ifdef INET6 648 if (isipv6) 649 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 650 #endif /* INET6 */ 651 #if defined(INET) && defined(INET6) 652 else 653 #endif 654 #ifdef INET 655 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 656 #endif 657 } 658 659 /* 660 * Create a new TCP control block, making an 661 * empty reassembly queue and hooking it to the argument 662 * protocol control block. The `inp' parameter must have 663 * come from the zone allocator set up in tcp_init(). 664 */ 665 struct tcpcb * 666 tcp_newtcpcb(struct inpcb *inp) 667 { 668 struct tcpcb_mem *tm; 669 struct tcpcb *tp; 670 #ifdef INET6 671 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 672 #endif /* INET6 */ 673 674 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 675 if (tm == NULL) 676 return (NULL); 677 tp = &tm->tcb; 678 679 /* Initialise cc_var struct for this tcpcb. */ 680 tp->ccv = &tm->ccv; 681 tp->ccv->type = IPPROTO_TCP; 682 tp->ccv->ccvc.tcp = tp; 683 684 /* 685 * Use the current system default CC algorithm. 686 */ 687 CC_LIST_RLOCK(); 688 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 689 CC_ALGO(tp) = CC_DEFAULT(); 690 CC_LIST_RUNLOCK(); 691 692 if (CC_ALGO(tp)->cb_init != NULL) 693 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 694 uma_zfree(V_tcpcb_zone, tm); 695 return (NULL); 696 } 697 698 tp->osd = &tm->osd; 699 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 700 uma_zfree(V_tcpcb_zone, tm); 701 return (NULL); 702 } 703 704 #ifdef VIMAGE 705 tp->t_vnet = inp->inp_vnet; 706 #endif 707 tp->t_timers = &tm->tt; 708 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 709 tp->t_maxseg = tp->t_maxopd = 710 #ifdef INET6 711 isipv6 ? V_tcp_v6mssdflt : 712 #endif /* INET6 */ 713 V_tcp_mssdflt; 714 715 /* Set up our timeouts. */ 716 callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE); 717 callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE); 718 callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE); 719 callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE); 720 callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE); 721 722 if (V_tcp_do_rfc1323) 723 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 724 if (V_tcp_do_sack) 725 tp->t_flags |= TF_SACK_PERMIT; 726 TAILQ_INIT(&tp->snd_holes); 727 tp->t_inpcb = inp; /* XXX */ 728 /* 729 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 730 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 731 * reasonable initial retransmit time. 732 */ 733 tp->t_srtt = TCPTV_SRTTBASE; 734 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 735 tp->t_rttmin = tcp_rexmit_min; 736 tp->t_rxtcur = TCPTV_RTOBASE; 737 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 738 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 739 tp->t_rcvtime = ticks; 740 /* 741 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 742 * because the socket may be bound to an IPv6 wildcard address, 743 * which may match an IPv4-mapped IPv6 address. 744 */ 745 inp->inp_ip_ttl = V_ip_defttl; 746 inp->inp_ppcb = tp; 747 return (tp); /* XXX */ 748 } 749 750 /* 751 * Switch the congestion control algorithm back to NewReno for any active 752 * control blocks using an algorithm which is about to go away. 753 * This ensures the CC framework can allow the unload to proceed without leaving 754 * any dangling pointers which would trigger a panic. 755 * Returning non-zero would inform the CC framework that something went wrong 756 * and it would be unsafe to allow the unload to proceed. However, there is no 757 * way for this to occur with this implementation so we always return zero. 758 */ 759 int 760 tcp_ccalgounload(struct cc_algo *unload_algo) 761 { 762 struct cc_algo *tmpalgo; 763 struct inpcb *inp; 764 struct tcpcb *tp; 765 VNET_ITERATOR_DECL(vnet_iter); 766 767 /* 768 * Check all active control blocks across all network stacks and change 769 * any that are using "unload_algo" back to NewReno. If "unload_algo" 770 * requires cleanup code to be run, call it. 771 */ 772 VNET_LIST_RLOCK(); 773 VNET_FOREACH(vnet_iter) { 774 CURVNET_SET(vnet_iter); 775 INP_INFO_RLOCK(&V_tcbinfo); 776 /* 777 * New connections already part way through being initialised 778 * with the CC algo we're removing will not race with this code 779 * because the INP_INFO_WLOCK is held during initialisation. We 780 * therefore don't enter the loop below until the connection 781 * list has stabilised. 782 */ 783 LIST_FOREACH(inp, &V_tcb, inp_list) { 784 INP_WLOCK(inp); 785 /* Important to skip tcptw structs. */ 786 if (!(inp->inp_flags & INP_TIMEWAIT) && 787 (tp = intotcpcb(inp)) != NULL) { 788 /* 789 * By holding INP_WLOCK here, we are assured 790 * that the connection is not currently 791 * executing inside the CC module's functions 792 * i.e. it is safe to make the switch back to 793 * NewReno. 794 */ 795 if (CC_ALGO(tp) == unload_algo) { 796 tmpalgo = CC_ALGO(tp); 797 /* NewReno does not require any init. */ 798 CC_ALGO(tp) = &newreno_cc_algo; 799 if (tmpalgo->cb_destroy != NULL) 800 tmpalgo->cb_destroy(tp->ccv); 801 } 802 } 803 INP_WUNLOCK(inp); 804 } 805 INP_INFO_RUNLOCK(&V_tcbinfo); 806 CURVNET_RESTORE(); 807 } 808 VNET_LIST_RUNLOCK(); 809 810 return (0); 811 } 812 813 /* 814 * Drop a TCP connection, reporting 815 * the specified error. If connection is synchronized, 816 * then send a RST to peer. 817 */ 818 struct tcpcb * 819 tcp_drop(struct tcpcb *tp, int errno) 820 { 821 struct socket *so = tp->t_inpcb->inp_socket; 822 823 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 824 INP_WLOCK_ASSERT(tp->t_inpcb); 825 826 if (TCPS_HAVERCVDSYN(tp->t_state)) { 827 tp->t_state = TCPS_CLOSED; 828 (void) tcp_output_reset(tp); 829 TCPSTAT_INC(tcps_drops); 830 } else 831 TCPSTAT_INC(tcps_conndrops); 832 if (errno == ETIMEDOUT && tp->t_softerror) 833 errno = tp->t_softerror; 834 so->so_error = errno; 835 return (tcp_close(tp)); 836 } 837 838 void 839 tcp_discardcb(struct tcpcb *tp) 840 { 841 struct inpcb *inp = tp->t_inpcb; 842 struct socket *so = inp->inp_socket; 843 #ifdef INET6 844 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 845 #endif /* INET6 */ 846 847 INP_WLOCK_ASSERT(inp); 848 849 /* 850 * Make sure that all of our timers are stopped before we delete the 851 * PCB. 852 * 853 * XXXRW: Really, we would like to use callout_drain() here in order 854 * to avoid races experienced in tcp_timer.c where a timer is already 855 * executing at this point. However, we can't, both because we're 856 * running in a context where we can't sleep, and also because we 857 * hold locks required by the timers. What we instead need to do is 858 * test to see if callout_drain() is required, and if so, defer some 859 * portion of the remainder of tcp_discardcb() to an asynchronous 860 * context that can callout_drain() and then continue. Some care 861 * will be required to ensure that no further processing takes place 862 * on the tcpcb, even though it hasn't been freed (a flag?). 863 */ 864 callout_stop(&tp->t_timers->tt_rexmt); 865 callout_stop(&tp->t_timers->tt_persist); 866 callout_stop(&tp->t_timers->tt_keep); 867 callout_stop(&tp->t_timers->tt_2msl); 868 callout_stop(&tp->t_timers->tt_delack); 869 870 /* 871 * If we got enough samples through the srtt filter, 872 * save the rtt and rttvar in the routing entry. 873 * 'Enough' is arbitrarily defined as 4 rtt samples. 874 * 4 samples is enough for the srtt filter to converge 875 * to within enough % of the correct value; fewer samples 876 * and we could save a bogus rtt. The danger is not high 877 * as tcp quickly recovers from everything. 878 * XXX: Works very well but needs some more statistics! 879 */ 880 if (tp->t_rttupdated >= 4) { 881 struct hc_metrics_lite metrics; 882 u_long ssthresh; 883 884 bzero(&metrics, sizeof(metrics)); 885 /* 886 * Update the ssthresh always when the conditions below 887 * are satisfied. This gives us better new start value 888 * for the congestion avoidance for new connections. 889 * ssthresh is only set if packet loss occured on a session. 890 * 891 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 892 * being torn down. Ideally this code would not use 'so'. 893 */ 894 ssthresh = tp->snd_ssthresh; 895 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 896 /* 897 * convert the limit from user data bytes to 898 * packets then to packet data bytes. 899 */ 900 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 901 if (ssthresh < 2) 902 ssthresh = 2; 903 ssthresh *= (u_long)(tp->t_maxseg + 904 #ifdef INET6 905 (isipv6 ? sizeof (struct ip6_hdr) + 906 sizeof (struct tcphdr) : 907 #endif 908 sizeof (struct tcpiphdr) 909 #ifdef INET6 910 ) 911 #endif 912 ); 913 } else 914 ssthresh = 0; 915 metrics.rmx_ssthresh = ssthresh; 916 917 metrics.rmx_rtt = tp->t_srtt; 918 metrics.rmx_rttvar = tp->t_rttvar; 919 metrics.rmx_cwnd = tp->snd_cwnd; 920 metrics.rmx_sendpipe = 0; 921 metrics.rmx_recvpipe = 0; 922 923 tcp_hc_update(&inp->inp_inc, &metrics); 924 } 925 926 /* free the reassembly queue, if any */ 927 tcp_reass_flush(tp); 928 /* Disconnect offload device, if any. */ 929 tcp_offload_detach(tp); 930 931 tcp_free_sackholes(tp); 932 933 /* Allow the CC algorithm to clean up after itself. */ 934 if (CC_ALGO(tp)->cb_destroy != NULL) 935 CC_ALGO(tp)->cb_destroy(tp->ccv); 936 937 khelp_destroy_osd(tp->osd); 938 939 CC_ALGO(tp) = NULL; 940 inp->inp_ppcb = NULL; 941 tp->t_inpcb = NULL; 942 uma_zfree(V_tcpcb_zone, tp); 943 } 944 945 /* 946 * Attempt to close a TCP control block, marking it as dropped, and freeing 947 * the socket if we hold the only reference. 948 */ 949 struct tcpcb * 950 tcp_close(struct tcpcb *tp) 951 { 952 struct inpcb *inp = tp->t_inpcb; 953 struct socket *so; 954 955 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 956 INP_WLOCK_ASSERT(inp); 957 958 /* Notify any offload devices of listener close */ 959 if (tp->t_state == TCPS_LISTEN) 960 tcp_offload_listen_close(tp); 961 in_pcbdrop(inp); 962 TCPSTAT_INC(tcps_closed); 963 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 964 so = inp->inp_socket; 965 soisdisconnected(so); 966 if (inp->inp_flags & INP_SOCKREF) { 967 KASSERT(so->so_state & SS_PROTOREF, 968 ("tcp_close: !SS_PROTOREF")); 969 inp->inp_flags &= ~INP_SOCKREF; 970 INP_WUNLOCK(inp); 971 ACCEPT_LOCK(); 972 SOCK_LOCK(so); 973 so->so_state &= ~SS_PROTOREF; 974 sofree(so); 975 return (NULL); 976 } 977 return (tp); 978 } 979 980 void 981 tcp_drain(void) 982 { 983 VNET_ITERATOR_DECL(vnet_iter); 984 985 if (!do_tcpdrain) 986 return; 987 988 VNET_LIST_RLOCK_NOSLEEP(); 989 VNET_FOREACH(vnet_iter) { 990 CURVNET_SET(vnet_iter); 991 struct inpcb *inpb; 992 struct tcpcb *tcpb; 993 994 /* 995 * Walk the tcpbs, if existing, and flush the reassembly queue, 996 * if there is one... 997 * XXX: The "Net/3" implementation doesn't imply that the TCP 998 * reassembly queue should be flushed, but in a situation 999 * where we're really low on mbufs, this is potentially 1000 * usefull. 1001 */ 1002 INP_INFO_RLOCK(&V_tcbinfo); 1003 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1004 if (inpb->inp_flags & INP_TIMEWAIT) 1005 continue; 1006 INP_WLOCK(inpb); 1007 if ((tcpb = intotcpcb(inpb)) != NULL) { 1008 tcp_reass_flush(tcpb); 1009 tcp_clean_sackreport(tcpb); 1010 } 1011 INP_WUNLOCK(inpb); 1012 } 1013 INP_INFO_RUNLOCK(&V_tcbinfo); 1014 CURVNET_RESTORE(); 1015 } 1016 VNET_LIST_RUNLOCK_NOSLEEP(); 1017 } 1018 1019 /* 1020 * Notify a tcp user of an asynchronous error; 1021 * store error as soft error, but wake up user 1022 * (for now, won't do anything until can select for soft error). 1023 * 1024 * Do not wake up user since there currently is no mechanism for 1025 * reporting soft errors (yet - a kqueue filter may be added). 1026 */ 1027 static struct inpcb * 1028 tcp_notify(struct inpcb *inp, int error) 1029 { 1030 struct tcpcb *tp; 1031 1032 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1033 INP_WLOCK_ASSERT(inp); 1034 1035 if ((inp->inp_flags & INP_TIMEWAIT) || 1036 (inp->inp_flags & INP_DROPPED)) 1037 return (inp); 1038 1039 tp = intotcpcb(inp); 1040 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1041 1042 /* 1043 * Ignore some errors if we are hooked up. 1044 * If connection hasn't completed, has retransmitted several times, 1045 * and receives a second error, give up now. This is better 1046 * than waiting a long time to establish a connection that 1047 * can never complete. 1048 */ 1049 if (tp->t_state == TCPS_ESTABLISHED && 1050 (error == EHOSTUNREACH || error == ENETUNREACH || 1051 error == EHOSTDOWN)) { 1052 return (inp); 1053 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1054 tp->t_softerror) { 1055 tp = tcp_drop(tp, error); 1056 if (tp != NULL) 1057 return (inp); 1058 else 1059 return (NULL); 1060 } else { 1061 tp->t_softerror = error; 1062 return (inp); 1063 } 1064 #if 0 1065 wakeup( &so->so_timeo); 1066 sorwakeup(so); 1067 sowwakeup(so); 1068 #endif 1069 } 1070 1071 static int 1072 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1073 { 1074 int error, i, m, n, pcb_count; 1075 struct inpcb *inp, **inp_list; 1076 inp_gen_t gencnt; 1077 struct xinpgen xig; 1078 1079 /* 1080 * The process of preparing the TCB list is too time-consuming and 1081 * resource-intensive to repeat twice on every request. 1082 */ 1083 if (req->oldptr == NULL) { 1084 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 1085 n += imax(n / 8, 10); 1086 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1087 return (0); 1088 } 1089 1090 if (req->newptr != NULL) 1091 return (EPERM); 1092 1093 /* 1094 * OK, now we're committed to doing something. 1095 */ 1096 INP_INFO_RLOCK(&V_tcbinfo); 1097 gencnt = V_tcbinfo.ipi_gencnt; 1098 n = V_tcbinfo.ipi_count; 1099 INP_INFO_RUNLOCK(&V_tcbinfo); 1100 1101 m = syncache_pcbcount(); 1102 1103 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1104 + (n + m) * sizeof(struct xtcpcb)); 1105 if (error != 0) 1106 return (error); 1107 1108 xig.xig_len = sizeof xig; 1109 xig.xig_count = n + m; 1110 xig.xig_gen = gencnt; 1111 xig.xig_sogen = so_gencnt; 1112 error = SYSCTL_OUT(req, &xig, sizeof xig); 1113 if (error) 1114 return (error); 1115 1116 error = syncache_pcblist(req, m, &pcb_count); 1117 if (error) 1118 return (error); 1119 1120 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1121 if (inp_list == NULL) 1122 return (ENOMEM); 1123 1124 INP_INFO_RLOCK(&V_tcbinfo); 1125 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1126 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1127 INP_WLOCK(inp); 1128 if (inp->inp_gencnt <= gencnt) { 1129 /* 1130 * XXX: This use of cr_cansee(), introduced with 1131 * TCP state changes, is not quite right, but for 1132 * now, better than nothing. 1133 */ 1134 if (inp->inp_flags & INP_TIMEWAIT) { 1135 if (intotw(inp) != NULL) 1136 error = cr_cansee(req->td->td_ucred, 1137 intotw(inp)->tw_cred); 1138 else 1139 error = EINVAL; /* Skip this inp. */ 1140 } else 1141 error = cr_canseeinpcb(req->td->td_ucred, inp); 1142 if (error == 0) { 1143 in_pcbref(inp); 1144 inp_list[i++] = inp; 1145 } 1146 } 1147 INP_WUNLOCK(inp); 1148 } 1149 INP_INFO_RUNLOCK(&V_tcbinfo); 1150 n = i; 1151 1152 error = 0; 1153 for (i = 0; i < n; i++) { 1154 inp = inp_list[i]; 1155 INP_RLOCK(inp); 1156 if (inp->inp_gencnt <= gencnt) { 1157 struct xtcpcb xt; 1158 void *inp_ppcb; 1159 1160 bzero(&xt, sizeof(xt)); 1161 xt.xt_len = sizeof xt; 1162 /* XXX should avoid extra copy */ 1163 bcopy(inp, &xt.xt_inp, sizeof *inp); 1164 inp_ppcb = inp->inp_ppcb; 1165 if (inp_ppcb == NULL) 1166 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1167 else if (inp->inp_flags & INP_TIMEWAIT) { 1168 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1169 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1170 } else { 1171 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1172 if (xt.xt_tp.t_timers) 1173 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1174 } 1175 if (inp->inp_socket != NULL) 1176 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1177 else { 1178 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1179 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1180 } 1181 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1182 INP_RUNLOCK(inp); 1183 error = SYSCTL_OUT(req, &xt, sizeof xt); 1184 } else 1185 INP_RUNLOCK(inp); 1186 } 1187 INP_INFO_WLOCK(&V_tcbinfo); 1188 for (i = 0; i < n; i++) { 1189 inp = inp_list[i]; 1190 INP_RLOCK(inp); 1191 if (!in_pcbrele_rlocked(inp)) 1192 INP_RUNLOCK(inp); 1193 } 1194 INP_INFO_WUNLOCK(&V_tcbinfo); 1195 1196 if (!error) { 1197 /* 1198 * Give the user an updated idea of our state. 1199 * If the generation differs from what we told 1200 * her before, she knows that something happened 1201 * while we were processing this request, and it 1202 * might be necessary to retry. 1203 */ 1204 INP_INFO_RLOCK(&V_tcbinfo); 1205 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1206 xig.xig_sogen = so_gencnt; 1207 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1208 INP_INFO_RUNLOCK(&V_tcbinfo); 1209 error = SYSCTL_OUT(req, &xig, sizeof xig); 1210 } 1211 free(inp_list, M_TEMP); 1212 return (error); 1213 } 1214 1215 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1216 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1217 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1218 1219 #ifdef INET 1220 static int 1221 tcp_getcred(SYSCTL_HANDLER_ARGS) 1222 { 1223 struct xucred xuc; 1224 struct sockaddr_in addrs[2]; 1225 struct inpcb *inp; 1226 int error; 1227 1228 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1229 if (error) 1230 return (error); 1231 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1232 if (error) 1233 return (error); 1234 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1235 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1236 if (inp != NULL) { 1237 if (inp->inp_socket == NULL) 1238 error = ENOENT; 1239 if (error == 0) 1240 error = cr_canseeinpcb(req->td->td_ucred, inp); 1241 if (error == 0) 1242 cru2x(inp->inp_cred, &xuc); 1243 INP_RUNLOCK(inp); 1244 } else 1245 error = ENOENT; 1246 if (error == 0) 1247 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1248 return (error); 1249 } 1250 1251 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1252 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1253 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1254 #endif /* INET */ 1255 1256 #ifdef INET6 1257 static int 1258 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1259 { 1260 struct xucred xuc; 1261 struct sockaddr_in6 addrs[2]; 1262 struct inpcb *inp; 1263 int error; 1264 #ifdef INET 1265 int mapped = 0; 1266 #endif 1267 1268 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1269 if (error) 1270 return (error); 1271 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1272 if (error) 1273 return (error); 1274 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1275 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1276 return (error); 1277 } 1278 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1279 #ifdef INET 1280 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1281 mapped = 1; 1282 else 1283 #endif 1284 return (EINVAL); 1285 } 1286 1287 #ifdef INET 1288 if (mapped == 1) 1289 inp = in_pcblookup(&V_tcbinfo, 1290 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1291 addrs[1].sin6_port, 1292 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1293 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1294 else 1295 #endif 1296 inp = in6_pcblookup(&V_tcbinfo, 1297 &addrs[1].sin6_addr, addrs[1].sin6_port, 1298 &addrs[0].sin6_addr, addrs[0].sin6_port, 1299 INPLOOKUP_RLOCKPCB, NULL); 1300 if (inp != NULL) { 1301 if (inp->inp_socket == NULL) 1302 error = ENOENT; 1303 if (error == 0) 1304 error = cr_canseeinpcb(req->td->td_ucred, inp); 1305 if (error == 0) 1306 cru2x(inp->inp_cred, &xuc); 1307 INP_RUNLOCK(inp); 1308 } else 1309 error = ENOENT; 1310 if (error == 0) 1311 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1312 return (error); 1313 } 1314 1315 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1316 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1317 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1318 #endif /* INET6 */ 1319 1320 1321 #ifdef INET 1322 void 1323 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1324 { 1325 struct ip *ip = vip; 1326 struct tcphdr *th; 1327 struct in_addr faddr; 1328 struct inpcb *inp; 1329 struct tcpcb *tp; 1330 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1331 struct icmp *icp; 1332 struct in_conninfo inc; 1333 tcp_seq icmp_tcp_seq; 1334 int mtu; 1335 1336 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1337 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1338 return; 1339 1340 if (cmd == PRC_MSGSIZE) 1341 notify = tcp_mtudisc_notify; 1342 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1343 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1344 notify = tcp_drop_syn_sent; 1345 /* 1346 * Redirects don't need to be handled up here. 1347 */ 1348 else if (PRC_IS_REDIRECT(cmd)) 1349 return; 1350 /* 1351 * Source quench is depreciated. 1352 */ 1353 else if (cmd == PRC_QUENCH) 1354 return; 1355 /* 1356 * Hostdead is ugly because it goes linearly through all PCBs. 1357 * XXX: We never get this from ICMP, otherwise it makes an 1358 * excellent DoS attack on machines with many connections. 1359 */ 1360 else if (cmd == PRC_HOSTDEAD) 1361 ip = NULL; 1362 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1363 return; 1364 if (ip != NULL) { 1365 icp = (struct icmp *)((caddr_t)ip 1366 - offsetof(struct icmp, icmp_ip)); 1367 th = (struct tcphdr *)((caddr_t)ip 1368 + (ip->ip_hl << 2)); 1369 INP_INFO_WLOCK(&V_tcbinfo); 1370 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, 1371 ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1372 if (inp != NULL) { 1373 if (!(inp->inp_flags & INP_TIMEWAIT) && 1374 !(inp->inp_flags & INP_DROPPED) && 1375 !(inp->inp_socket == NULL)) { 1376 icmp_tcp_seq = htonl(th->th_seq); 1377 tp = intotcpcb(inp); 1378 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1379 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1380 if (cmd == PRC_MSGSIZE) { 1381 /* 1382 * MTU discovery: 1383 * If we got a needfrag set the MTU 1384 * in the route to the suggested new 1385 * value (if given) and then notify. 1386 */ 1387 bzero(&inc, sizeof(inc)); 1388 inc.inc_faddr = faddr; 1389 inc.inc_fibnum = 1390 inp->inp_inc.inc_fibnum; 1391 1392 mtu = ntohs(icp->icmp_nextmtu); 1393 /* 1394 * If no alternative MTU was 1395 * proposed, try the next smaller 1396 * one. ip->ip_len has already 1397 * been swapped in icmp_input(). 1398 */ 1399 if (!mtu) 1400 mtu = ip_next_mtu(ip->ip_len, 1401 1); 1402 if (mtu < V_tcp_minmss 1403 + sizeof(struct tcpiphdr)) 1404 mtu = V_tcp_minmss 1405 + sizeof(struct tcpiphdr); 1406 /* 1407 * Only cache the MTU if it 1408 * is smaller than the interface 1409 * or route MTU. tcp_mtudisc() 1410 * will do right thing by itself. 1411 */ 1412 if (mtu <= tcp_maxmtu(&inc, NULL)) 1413 tcp_hc_updatemtu(&inc, mtu); 1414 tcp_mtudisc(inp, mtu); 1415 } else 1416 inp = (*notify)(inp, 1417 inetctlerrmap[cmd]); 1418 } 1419 } 1420 if (inp != NULL) 1421 INP_WUNLOCK(inp); 1422 } else { 1423 bzero(&inc, sizeof(inc)); 1424 inc.inc_fport = th->th_dport; 1425 inc.inc_lport = th->th_sport; 1426 inc.inc_faddr = faddr; 1427 inc.inc_laddr = ip->ip_src; 1428 syncache_unreach(&inc, th); 1429 } 1430 INP_INFO_WUNLOCK(&V_tcbinfo); 1431 } else 1432 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1433 } 1434 #endif /* INET */ 1435 1436 #ifdef INET6 1437 void 1438 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1439 { 1440 struct tcphdr th; 1441 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1442 struct ip6_hdr *ip6; 1443 struct mbuf *m; 1444 struct ip6ctlparam *ip6cp = NULL; 1445 const struct sockaddr_in6 *sa6_src = NULL; 1446 int off; 1447 struct tcp_portonly { 1448 u_int16_t th_sport; 1449 u_int16_t th_dport; 1450 } *thp; 1451 1452 if (sa->sa_family != AF_INET6 || 1453 sa->sa_len != sizeof(struct sockaddr_in6)) 1454 return; 1455 1456 if (cmd == PRC_MSGSIZE) 1457 notify = tcp_mtudisc_notify; 1458 else if (!PRC_IS_REDIRECT(cmd) && 1459 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1460 return; 1461 /* Source quench is depreciated. */ 1462 else if (cmd == PRC_QUENCH) 1463 return; 1464 1465 /* if the parameter is from icmp6, decode it. */ 1466 if (d != NULL) { 1467 ip6cp = (struct ip6ctlparam *)d; 1468 m = ip6cp->ip6c_m; 1469 ip6 = ip6cp->ip6c_ip6; 1470 off = ip6cp->ip6c_off; 1471 sa6_src = ip6cp->ip6c_src; 1472 } else { 1473 m = NULL; 1474 ip6 = NULL; 1475 off = 0; /* fool gcc */ 1476 sa6_src = &sa6_any; 1477 } 1478 1479 if (ip6 != NULL) { 1480 struct in_conninfo inc; 1481 /* 1482 * XXX: We assume that when IPV6 is non NULL, 1483 * M and OFF are valid. 1484 */ 1485 1486 /* check if we can safely examine src and dst ports */ 1487 if (m->m_pkthdr.len < off + sizeof(*thp)) 1488 return; 1489 1490 bzero(&th, sizeof(th)); 1491 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1492 1493 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1494 (struct sockaddr *)ip6cp->ip6c_src, 1495 th.th_sport, cmd, NULL, notify); 1496 1497 bzero(&inc, sizeof(inc)); 1498 inc.inc_fport = th.th_dport; 1499 inc.inc_lport = th.th_sport; 1500 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1501 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1502 inc.inc_flags |= INC_ISIPV6; 1503 INP_INFO_WLOCK(&V_tcbinfo); 1504 syncache_unreach(&inc, &th); 1505 INP_INFO_WUNLOCK(&V_tcbinfo); 1506 } else 1507 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1508 0, cmd, NULL, notify); 1509 } 1510 #endif /* INET6 */ 1511 1512 1513 /* 1514 * Following is where TCP initial sequence number generation occurs. 1515 * 1516 * There are two places where we must use initial sequence numbers: 1517 * 1. In SYN-ACK packets. 1518 * 2. In SYN packets. 1519 * 1520 * All ISNs for SYN-ACK packets are generated by the syncache. See 1521 * tcp_syncache.c for details. 1522 * 1523 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1524 * depends on this property. In addition, these ISNs should be 1525 * unguessable so as to prevent connection hijacking. To satisfy 1526 * the requirements of this situation, the algorithm outlined in 1527 * RFC 1948 is used, with only small modifications. 1528 * 1529 * Implementation details: 1530 * 1531 * Time is based off the system timer, and is corrected so that it 1532 * increases by one megabyte per second. This allows for proper 1533 * recycling on high speed LANs while still leaving over an hour 1534 * before rollover. 1535 * 1536 * As reading the *exact* system time is too expensive to be done 1537 * whenever setting up a TCP connection, we increment the time 1538 * offset in two ways. First, a small random positive increment 1539 * is added to isn_offset for each connection that is set up. 1540 * Second, the function tcp_isn_tick fires once per clock tick 1541 * and increments isn_offset as necessary so that sequence numbers 1542 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1543 * random positive increments serve only to ensure that the same 1544 * exact sequence number is never sent out twice (as could otherwise 1545 * happen when a port is recycled in less than the system tick 1546 * interval.) 1547 * 1548 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1549 * between seeding of isn_secret. This is normally set to zero, 1550 * as reseeding should not be necessary. 1551 * 1552 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1553 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1554 * general, this means holding an exclusive (write) lock. 1555 */ 1556 1557 #define ISN_BYTES_PER_SECOND 1048576 1558 #define ISN_STATIC_INCREMENT 4096 1559 #define ISN_RANDOM_INCREMENT (4096 - 1) 1560 1561 static VNET_DEFINE(u_char, isn_secret[32]); 1562 static VNET_DEFINE(int, isn_last); 1563 static VNET_DEFINE(int, isn_last_reseed); 1564 static VNET_DEFINE(u_int32_t, isn_offset); 1565 static VNET_DEFINE(u_int32_t, isn_offset_old); 1566 1567 #define V_isn_secret VNET(isn_secret) 1568 #define V_isn_last VNET(isn_last) 1569 #define V_isn_last_reseed VNET(isn_last_reseed) 1570 #define V_isn_offset VNET(isn_offset) 1571 #define V_isn_offset_old VNET(isn_offset_old) 1572 1573 tcp_seq 1574 tcp_new_isn(struct tcpcb *tp) 1575 { 1576 MD5_CTX isn_ctx; 1577 u_int32_t md5_buffer[4]; 1578 tcp_seq new_isn; 1579 u_int32_t projected_offset; 1580 1581 INP_WLOCK_ASSERT(tp->t_inpcb); 1582 1583 ISN_LOCK(); 1584 /* Seed if this is the first use, reseed if requested. */ 1585 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 1586 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 1587 < (u_int)ticks))) { 1588 read_random(&V_isn_secret, sizeof(V_isn_secret)); 1589 V_isn_last_reseed = ticks; 1590 } 1591 1592 /* Compute the md5 hash and return the ISN. */ 1593 MD5Init(&isn_ctx); 1594 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1595 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1596 #ifdef INET6 1597 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1598 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1599 sizeof(struct in6_addr)); 1600 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1601 sizeof(struct in6_addr)); 1602 } else 1603 #endif 1604 { 1605 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1606 sizeof(struct in_addr)); 1607 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1608 sizeof(struct in_addr)); 1609 } 1610 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 1611 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1612 new_isn = (tcp_seq) md5_buffer[0]; 1613 V_isn_offset += ISN_STATIC_INCREMENT + 1614 (arc4random() & ISN_RANDOM_INCREMENT); 1615 if (ticks != V_isn_last) { 1616 projected_offset = V_isn_offset_old + 1617 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 1618 if (SEQ_GT(projected_offset, V_isn_offset)) 1619 V_isn_offset = projected_offset; 1620 V_isn_offset_old = V_isn_offset; 1621 V_isn_last = ticks; 1622 } 1623 new_isn += V_isn_offset; 1624 ISN_UNLOCK(); 1625 return (new_isn); 1626 } 1627 1628 /* 1629 * When a specific ICMP unreachable message is received and the 1630 * connection state is SYN-SENT, drop the connection. This behavior 1631 * is controlled by the icmp_may_rst sysctl. 1632 */ 1633 struct inpcb * 1634 tcp_drop_syn_sent(struct inpcb *inp, int errno) 1635 { 1636 struct tcpcb *tp; 1637 1638 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1639 INP_WLOCK_ASSERT(inp); 1640 1641 if ((inp->inp_flags & INP_TIMEWAIT) || 1642 (inp->inp_flags & INP_DROPPED)) 1643 return (inp); 1644 1645 tp = intotcpcb(inp); 1646 if (tp->t_state != TCPS_SYN_SENT) 1647 return (inp); 1648 1649 tp = tcp_drop(tp, errno); 1650 if (tp != NULL) 1651 return (inp); 1652 else 1653 return (NULL); 1654 } 1655 1656 /* 1657 * When `need fragmentation' ICMP is received, update our idea of the MSS 1658 * based on the new value. Also nudge TCP to send something, since we 1659 * know the packet we just sent was dropped. 1660 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1661 */ 1662 static struct inpcb * 1663 tcp_mtudisc_notify(struct inpcb *inp, int error) 1664 { 1665 1666 return (tcp_mtudisc(inp, -1)); 1667 } 1668 1669 struct inpcb * 1670 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 1671 { 1672 struct tcpcb *tp; 1673 struct socket *so; 1674 1675 INP_WLOCK_ASSERT(inp); 1676 if ((inp->inp_flags & INP_TIMEWAIT) || 1677 (inp->inp_flags & INP_DROPPED)) 1678 return (inp); 1679 1680 tp = intotcpcb(inp); 1681 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 1682 1683 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 1684 1685 so = inp->inp_socket; 1686 SOCKBUF_LOCK(&so->so_snd); 1687 /* If the mss is larger than the socket buffer, decrease the mss. */ 1688 if (so->so_snd.sb_hiwat < tp->t_maxseg) 1689 tp->t_maxseg = so->so_snd.sb_hiwat; 1690 SOCKBUF_UNLOCK(&so->so_snd); 1691 1692 TCPSTAT_INC(tcps_mturesent); 1693 tp->t_rtttime = 0; 1694 tp->snd_nxt = tp->snd_una; 1695 tcp_free_sackholes(tp); 1696 tp->snd_recover = tp->snd_max; 1697 if (tp->t_flags & TF_SACK_PERMIT) 1698 EXIT_FASTRECOVERY(tp->t_flags); 1699 tcp_output_send(tp); 1700 return (inp); 1701 } 1702 1703 #ifdef INET 1704 /* 1705 * Look-up the routing entry to the peer of this inpcb. If no route 1706 * is found and it cannot be allocated, then return 0. This routine 1707 * is called by TCP routines that access the rmx structure and by 1708 * tcp_mss_update to get the peer/interface MTU. 1709 */ 1710 u_long 1711 tcp_maxmtu(struct in_conninfo *inc, int *flags) 1712 { 1713 struct route sro; 1714 struct sockaddr_in *dst; 1715 struct ifnet *ifp; 1716 u_long maxmtu = 0; 1717 1718 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1719 1720 bzero(&sro, sizeof(sro)); 1721 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1722 dst = (struct sockaddr_in *)&sro.ro_dst; 1723 dst->sin_family = AF_INET; 1724 dst->sin_len = sizeof(*dst); 1725 dst->sin_addr = inc->inc_faddr; 1726 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 1727 } 1728 if (sro.ro_rt != NULL) { 1729 ifp = sro.ro_rt->rt_ifp; 1730 if (sro.ro_rt->rt_rmx.rmx_mtu == 0) 1731 maxmtu = ifp->if_mtu; 1732 else 1733 maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu); 1734 1735 /* Report additional interface capabilities. */ 1736 if (flags != NULL) { 1737 if (ifp->if_capenable & IFCAP_TSO4 && 1738 ifp->if_hwassist & CSUM_TSO) 1739 *flags |= CSUM_TSO; 1740 } 1741 RTFREE(sro.ro_rt); 1742 } 1743 return (maxmtu); 1744 } 1745 #endif /* INET */ 1746 1747 #ifdef INET6 1748 u_long 1749 tcp_maxmtu6(struct in_conninfo *inc, int *flags) 1750 { 1751 struct route_in6 sro6; 1752 struct ifnet *ifp; 1753 u_long maxmtu = 0; 1754 1755 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1756 1757 bzero(&sro6, sizeof(sro6)); 1758 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1759 sro6.ro_dst.sin6_family = AF_INET6; 1760 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1761 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1762 in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum); 1763 } 1764 if (sro6.ro_rt != NULL) { 1765 ifp = sro6.ro_rt->rt_ifp; 1766 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0) 1767 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1768 else 1769 maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu, 1770 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1771 1772 /* Report additional interface capabilities. */ 1773 if (flags != NULL) { 1774 if (ifp->if_capenable & IFCAP_TSO6 && 1775 ifp->if_hwassist & CSUM_TSO) 1776 *flags |= CSUM_TSO; 1777 } 1778 RTFREE(sro6.ro_rt); 1779 } 1780 1781 return (maxmtu); 1782 } 1783 #endif /* INET6 */ 1784 1785 #ifdef IPSEC 1786 /* compute ESP/AH header size for TCP, including outer IP header. */ 1787 size_t 1788 ipsec_hdrsiz_tcp(struct tcpcb *tp) 1789 { 1790 struct inpcb *inp; 1791 struct mbuf *m; 1792 size_t hdrsiz; 1793 struct ip *ip; 1794 #ifdef INET6 1795 struct ip6_hdr *ip6; 1796 #endif 1797 struct tcphdr *th; 1798 1799 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1800 return (0); 1801 MGETHDR(m, M_DONTWAIT, MT_DATA); 1802 if (!m) 1803 return (0); 1804 1805 #ifdef INET6 1806 if ((inp->inp_vflag & INP_IPV6) != 0) { 1807 ip6 = mtod(m, struct ip6_hdr *); 1808 th = (struct tcphdr *)(ip6 + 1); 1809 m->m_pkthdr.len = m->m_len = 1810 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1811 tcpip_fillheaders(inp, ip6, th); 1812 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1813 } else 1814 #endif /* INET6 */ 1815 { 1816 ip = mtod(m, struct ip *); 1817 th = (struct tcphdr *)(ip + 1); 1818 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1819 tcpip_fillheaders(inp, ip, th); 1820 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1821 } 1822 1823 m_free(m); 1824 return (hdrsiz); 1825 } 1826 #endif /* IPSEC */ 1827 1828 #ifdef TCP_SIGNATURE 1829 /* 1830 * Callback function invoked by m_apply() to digest TCP segment data 1831 * contained within an mbuf chain. 1832 */ 1833 static int 1834 tcp_signature_apply(void *fstate, void *data, u_int len) 1835 { 1836 1837 MD5Update(fstate, (u_char *)data, len); 1838 return (0); 1839 } 1840 1841 /* 1842 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 1843 * 1844 * Parameters: 1845 * m pointer to head of mbuf chain 1846 * _unused 1847 * len length of TCP segment data, excluding options 1848 * optlen length of TCP segment options 1849 * buf pointer to storage for computed MD5 digest 1850 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 1851 * 1852 * We do this over ip, tcphdr, segment data, and the key in the SADB. 1853 * When called from tcp_input(), we can be sure that th_sum has been 1854 * zeroed out and verified already. 1855 * 1856 * Return 0 if successful, otherwise return -1. 1857 * 1858 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 1859 * search with the destination IP address, and a 'magic SPI' to be 1860 * determined by the application. This is hardcoded elsewhere to 1179 1861 * right now. Another branch of this code exists which uses the SPD to 1862 * specify per-application flows but it is unstable. 1863 */ 1864 int 1865 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 1866 u_char *buf, u_int direction) 1867 { 1868 union sockaddr_union dst; 1869 #ifdef INET 1870 struct ippseudo ippseudo; 1871 #endif 1872 MD5_CTX ctx; 1873 int doff; 1874 struct ip *ip; 1875 #ifdef INET 1876 struct ipovly *ipovly; 1877 #endif 1878 struct secasvar *sav; 1879 struct tcphdr *th; 1880 #ifdef INET6 1881 struct ip6_hdr *ip6; 1882 struct in6_addr in6; 1883 char ip6buf[INET6_ADDRSTRLEN]; 1884 uint32_t plen; 1885 uint16_t nhdr; 1886 #endif 1887 u_short savecsum; 1888 1889 KASSERT(m != NULL, ("NULL mbuf chain")); 1890 KASSERT(buf != NULL, ("NULL signature pointer")); 1891 1892 /* Extract the destination from the IP header in the mbuf. */ 1893 bzero(&dst, sizeof(union sockaddr_union)); 1894 ip = mtod(m, struct ip *); 1895 #ifdef INET6 1896 ip6 = NULL; /* Make the compiler happy. */ 1897 #endif 1898 switch (ip->ip_v) { 1899 #ifdef INET 1900 case IPVERSION: 1901 dst.sa.sa_len = sizeof(struct sockaddr_in); 1902 dst.sa.sa_family = AF_INET; 1903 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 1904 ip->ip_src : ip->ip_dst; 1905 break; 1906 #endif 1907 #ifdef INET6 1908 case (IPV6_VERSION >> 4): 1909 ip6 = mtod(m, struct ip6_hdr *); 1910 dst.sa.sa_len = sizeof(struct sockaddr_in6); 1911 dst.sa.sa_family = AF_INET6; 1912 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 1913 ip6->ip6_src : ip6->ip6_dst; 1914 break; 1915 #endif 1916 default: 1917 return (EINVAL); 1918 /* NOTREACHED */ 1919 break; 1920 } 1921 1922 /* Look up an SADB entry which matches the address of the peer. */ 1923 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 1924 if (sav == NULL) { 1925 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 1926 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 1927 #ifdef INET6 1928 (ip->ip_v == (IPV6_VERSION >> 4)) ? 1929 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 1930 #endif 1931 "(unsupported)")); 1932 return (EINVAL); 1933 } 1934 1935 MD5Init(&ctx); 1936 /* 1937 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 1938 * 1939 * XXX The ippseudo header MUST be digested in network byte order, 1940 * or else we'll fail the regression test. Assume all fields we've 1941 * been doing arithmetic on have been in host byte order. 1942 * XXX One cannot depend on ipovly->ih_len here. When called from 1943 * tcp_output(), the underlying ip_len member has not yet been set. 1944 */ 1945 switch (ip->ip_v) { 1946 #ifdef INET 1947 case IPVERSION: 1948 ipovly = (struct ipovly *)ip; 1949 ippseudo.ippseudo_src = ipovly->ih_src; 1950 ippseudo.ippseudo_dst = ipovly->ih_dst; 1951 ippseudo.ippseudo_pad = 0; 1952 ippseudo.ippseudo_p = IPPROTO_TCP; 1953 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 1954 optlen); 1955 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 1956 1957 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 1958 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 1959 break; 1960 #endif 1961 #ifdef INET6 1962 /* 1963 * RFC 2385, 2.0 Proposal 1964 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 1965 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 1966 * extended next header value (to form 32 bits), and 32-bit segment 1967 * length. 1968 * Note: Upper-Layer Packet Length comes before Next Header. 1969 */ 1970 case (IPV6_VERSION >> 4): 1971 in6 = ip6->ip6_src; 1972 in6_clearscope(&in6); 1973 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1974 in6 = ip6->ip6_dst; 1975 in6_clearscope(&in6); 1976 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 1977 plen = htonl(len + sizeof(struct tcphdr) + optlen); 1978 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 1979 nhdr = 0; 1980 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1981 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1982 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1983 nhdr = IPPROTO_TCP; 1984 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 1985 1986 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 1987 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 1988 break; 1989 #endif 1990 default: 1991 return (EINVAL); 1992 /* NOTREACHED */ 1993 break; 1994 } 1995 1996 1997 /* 1998 * Step 2: Update MD5 hash with TCP header, excluding options. 1999 * The TCP checksum must be set to zero. 2000 */ 2001 savecsum = th->th_sum; 2002 th->th_sum = 0; 2003 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2004 th->th_sum = savecsum; 2005 2006 /* 2007 * Step 3: Update MD5 hash with TCP segment data. 2008 * Use m_apply() to avoid an early m_pullup(). 2009 */ 2010 if (len > 0) 2011 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2012 2013 /* 2014 * Step 4: Update MD5 hash with shared secret. 2015 */ 2016 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2017 MD5Final(buf, &ctx); 2018 2019 key_sa_recordxfer(sav, m); 2020 KEY_FREESAV(&sav); 2021 return (0); 2022 } 2023 2024 /* 2025 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2026 * 2027 * Parameters: 2028 * m pointer to head of mbuf chain 2029 * len length of TCP segment data, excluding options 2030 * optlen length of TCP segment options 2031 * buf pointer to storage for computed MD5 digest 2032 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2033 * 2034 * Return 1 if successful, otherwise return 0. 2035 */ 2036 int 2037 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2038 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2039 { 2040 char tmpdigest[TCP_SIGLEN]; 2041 2042 if (tcp_sig_checksigs == 0) 2043 return (1); 2044 if ((tcpbflag & TF_SIGNATURE) == 0) { 2045 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2046 2047 /* 2048 * If this socket is not expecting signature but 2049 * the segment contains signature just fail. 2050 */ 2051 TCPSTAT_INC(tcps_sig_err_sigopt); 2052 TCPSTAT_INC(tcps_sig_rcvbadsig); 2053 return (0); 2054 } 2055 2056 /* Signature is not expected, and not present in segment. */ 2057 return (1); 2058 } 2059 2060 /* 2061 * If this socket is expecting signature but the segment does not 2062 * contain any just fail. 2063 */ 2064 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2065 TCPSTAT_INC(tcps_sig_err_nosigopt); 2066 TCPSTAT_INC(tcps_sig_rcvbadsig); 2067 return (0); 2068 } 2069 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2070 IPSEC_DIR_INBOUND) == -1) { 2071 TCPSTAT_INC(tcps_sig_err_buildsig); 2072 TCPSTAT_INC(tcps_sig_rcvbadsig); 2073 return (0); 2074 } 2075 2076 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2077 TCPSTAT_INC(tcps_sig_rcvbadsig); 2078 return (0); 2079 } 2080 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2081 return (1); 2082 } 2083 #endif /* TCP_SIGNATURE */ 2084 2085 static int 2086 sysctl_drop(SYSCTL_HANDLER_ARGS) 2087 { 2088 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2089 struct sockaddr_storage addrs[2]; 2090 struct inpcb *inp; 2091 struct tcpcb *tp; 2092 struct tcptw *tw; 2093 struct sockaddr_in *fin, *lin; 2094 #ifdef INET6 2095 struct sockaddr_in6 *fin6, *lin6; 2096 #endif 2097 int error; 2098 2099 inp = NULL; 2100 fin = lin = NULL; 2101 #ifdef INET6 2102 fin6 = lin6 = NULL; 2103 #endif 2104 error = 0; 2105 2106 if (req->oldptr != NULL || req->oldlen != 0) 2107 return (EINVAL); 2108 if (req->newptr == NULL) 2109 return (EPERM); 2110 if (req->newlen < sizeof(addrs)) 2111 return (ENOMEM); 2112 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2113 if (error) 2114 return (error); 2115 2116 switch (addrs[0].ss_family) { 2117 #ifdef INET6 2118 case AF_INET6: 2119 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2120 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2121 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2122 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2123 return (EINVAL); 2124 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2125 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2126 return (EINVAL); 2127 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2128 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2129 fin = (struct sockaddr_in *)&addrs[0]; 2130 lin = (struct sockaddr_in *)&addrs[1]; 2131 break; 2132 } 2133 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2134 if (error) 2135 return (error); 2136 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2137 if (error) 2138 return (error); 2139 break; 2140 #endif 2141 #ifdef INET 2142 case AF_INET: 2143 fin = (struct sockaddr_in *)&addrs[0]; 2144 lin = (struct sockaddr_in *)&addrs[1]; 2145 if (fin->sin_len != sizeof(struct sockaddr_in) || 2146 lin->sin_len != sizeof(struct sockaddr_in)) 2147 return (EINVAL); 2148 break; 2149 #endif 2150 default: 2151 return (EINVAL); 2152 } 2153 INP_INFO_WLOCK(&V_tcbinfo); 2154 switch (addrs[0].ss_family) { 2155 #ifdef INET6 2156 case AF_INET6: 2157 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2158 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2159 INPLOOKUP_WLOCKPCB, NULL); 2160 break; 2161 #endif 2162 #ifdef INET 2163 case AF_INET: 2164 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2165 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2166 break; 2167 #endif 2168 } 2169 if (inp != NULL) { 2170 if (inp->inp_flags & INP_TIMEWAIT) { 2171 /* 2172 * XXXRW: There currently exists a state where an 2173 * inpcb is present, but its timewait state has been 2174 * discarded. For now, don't allow dropping of this 2175 * type of inpcb. 2176 */ 2177 tw = intotw(inp); 2178 if (tw != NULL) 2179 tcp_twclose(tw, 0); 2180 else 2181 INP_WUNLOCK(inp); 2182 } else if (!(inp->inp_flags & INP_DROPPED) && 2183 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2184 tp = intotcpcb(inp); 2185 tp = tcp_drop(tp, ECONNABORTED); 2186 if (tp != NULL) 2187 INP_WUNLOCK(inp); 2188 } else 2189 INP_WUNLOCK(inp); 2190 } else 2191 error = ESRCH; 2192 INP_INFO_WUNLOCK(&V_tcbinfo); 2193 return (error); 2194 } 2195 2196 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2197 CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL, 2198 0, sysctl_drop, "", "Drop TCP connection"); 2199 2200 /* 2201 * Generate a standardized TCP log line for use throughout the 2202 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2203 * allow use in the interrupt context. 2204 * 2205 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2206 * NB: The function may return NULL if memory allocation failed. 2207 * 2208 * Due to header inclusion and ordering limitations the struct ip 2209 * and ip6_hdr pointers have to be passed as void pointers. 2210 */ 2211 char * 2212 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2213 const void *ip6hdr) 2214 { 2215 2216 /* Is logging enabled? */ 2217 if (tcp_log_in_vain == 0) 2218 return (NULL); 2219 2220 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2221 } 2222 2223 char * 2224 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2225 const void *ip6hdr) 2226 { 2227 2228 /* Is logging enabled? */ 2229 if (tcp_log_debug == 0) 2230 return (NULL); 2231 2232 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2233 } 2234 2235 static char * 2236 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2237 const void *ip6hdr) 2238 { 2239 char *s, *sp; 2240 size_t size; 2241 struct ip *ip; 2242 #ifdef INET6 2243 const struct ip6_hdr *ip6; 2244 2245 ip6 = (const struct ip6_hdr *)ip6hdr; 2246 #endif /* INET6 */ 2247 ip = (struct ip *)ip4hdr; 2248 2249 /* 2250 * The log line looks like this: 2251 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2252 */ 2253 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2254 sizeof(PRINT_TH_FLAGS) + 1 + 2255 #ifdef INET6 2256 2 * INET6_ADDRSTRLEN; 2257 #else 2258 2 * INET_ADDRSTRLEN; 2259 #endif /* INET6 */ 2260 2261 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2262 if (s == NULL) 2263 return (NULL); 2264 2265 strcat(s, "TCP: ["); 2266 sp = s + strlen(s); 2267 2268 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2269 inet_ntoa_r(inc->inc_faddr, sp); 2270 sp = s + strlen(s); 2271 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2272 sp = s + strlen(s); 2273 inet_ntoa_r(inc->inc_laddr, sp); 2274 sp = s + strlen(s); 2275 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2276 #ifdef INET6 2277 } else if (inc) { 2278 ip6_sprintf(sp, &inc->inc6_faddr); 2279 sp = s + strlen(s); 2280 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2281 sp = s + strlen(s); 2282 ip6_sprintf(sp, &inc->inc6_laddr); 2283 sp = s + strlen(s); 2284 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2285 } else if (ip6 && th) { 2286 ip6_sprintf(sp, &ip6->ip6_src); 2287 sp = s + strlen(s); 2288 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2289 sp = s + strlen(s); 2290 ip6_sprintf(sp, &ip6->ip6_dst); 2291 sp = s + strlen(s); 2292 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2293 #endif /* INET6 */ 2294 #ifdef INET 2295 } else if (ip && th) { 2296 inet_ntoa_r(ip->ip_src, sp); 2297 sp = s + strlen(s); 2298 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2299 sp = s + strlen(s); 2300 inet_ntoa_r(ip->ip_dst, sp); 2301 sp = s + strlen(s); 2302 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2303 #endif /* INET */ 2304 } else { 2305 free(s, M_TCPLOG); 2306 return (NULL); 2307 } 2308 sp = s + strlen(s); 2309 if (th) 2310 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2311 if (*(s + size - 1) != '\0') 2312 panic("%s: string too long", __func__); 2313 return (s); 2314 } 2315