xref: /freebsd/sys/netinet/tcp_subr.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/cc.h>
68 #include <netinet/in.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_pcb.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #include <netinet/tcp_syncache.h>
88 #include <netinet/tcp_offload.h>
89 #ifdef INET6
90 #include <netinet6/tcp6_var.h>
91 #endif
92 #include <netinet/tcpip.h>
93 #ifdef TCPDEBUG
94 #include <netinet/tcp_debug.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/ip6protosw.h>
98 #endif
99 
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/xform.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/key.h>
107 #include <sys/syslog.h>
108 #endif /*IPSEC*/
109 
110 #include <machine/in_cksum.h>
111 #include <sys/md5.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
116 #ifdef INET6
117 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
118 #endif
119 
120 static int
121 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new;
124 
125 	new = V_tcp_mssdflt;
126 	error = sysctl_handle_int(oidp, &new, 0, req);
127 	if (error == 0 && req->newptr) {
128 		if (new < TCP_MINMSS)
129 			error = EINVAL;
130 		else
131 			V_tcp_mssdflt = new;
132 	}
133 	return (error);
134 }
135 
136 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
137     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
138     &sysctl_net_inet_tcp_mss_check, "I",
139     "Default TCP Maximum Segment Size");
140 
141 #ifdef INET6
142 static int
143 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new;
146 
147 	new = V_tcp_v6mssdflt;
148 	error = sysctl_handle_int(oidp, &new, 0, req);
149 	if (error == 0 && req->newptr) {
150 		if (new < TCP_MINMSS)
151 			error = EINVAL;
152 		else
153 			V_tcp_v6mssdflt = new;
154 	}
155 	return (error);
156 }
157 
158 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
159     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
160     &sysctl_net_inet_tcp_mss_v6_check, "I",
161    "Default TCP Maximum Segment Size for IPv6");
162 #endif /* INET6 */
163 
164 /*
165  * Minimum MSS we accept and use. This prevents DoS attacks where
166  * we are forced to a ridiculous low MSS like 20 and send hundreds
167  * of packets instead of one. The effect scales with the available
168  * bandwidth and quickly saturates the CPU and network interface
169  * with packet generation and sending. Set to zero to disable MINMSS
170  * checking. This setting prevents us from sending too small packets.
171  */
172 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
174      &VNET_NAME(tcp_minmss), 0,
175     "Minmum TCP Maximum Segment Size");
176 
177 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
178 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
179     &VNET_NAME(tcp_do_rfc1323), 0,
180     "Enable rfc1323 (high performance TCP) extensions");
181 
182 static int	tcp_log_debug = 0;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
184     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
185 
186 static int	tcp_tcbhashsize = 0;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
188     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
189 
190 static int	do_tcpdrain = 1;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
192     "Enable tcp_drain routine for extra help when low on mbufs");
193 
194 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
195     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
196 
197 static VNET_DEFINE(int, icmp_may_rst) = 1;
198 #define	V_icmp_may_rst			VNET(icmp_may_rst)
199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
200     &VNET_NAME(icmp_may_rst), 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
204 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
206     &VNET_NAME(tcp_isn_reseed_interval), 0,
207     "Seconds between reseeding of ISN secret");
208 
209 static int	tcp_soreceive_stream = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
211     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
212 
213 #ifdef TCP_SIGNATURE
214 static int	tcp_sig_checksigs = 1;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
216     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
217 #endif
218 
219 VNET_DEFINE(uma_zone_t, sack_hole_zone);
220 #define	V_sack_hole_zone		VNET(sack_hole_zone)
221 
222 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
223 
224 static struct inpcb *tcp_notify(struct inpcb *, int);
225 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
226 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
227 		    void *ip4hdr, const void *ip6hdr);
228 
229 /*
230  * Target size of TCP PCB hash tables. Must be a power of two.
231  *
232  * Note that this can be overridden by the kernel environment
233  * variable net.inet.tcp.tcbhashsize
234  */
235 #ifndef TCBHASHSIZE
236 #define TCBHASHSIZE	512
237 #endif
238 
239 /*
240  * XXX
241  * Callouts should be moved into struct tcp directly.  They are currently
242  * separate because the tcpcb structure is exported to userland for sysctl
243  * parsing purposes, which do not know about callouts.
244  */
245 struct tcpcb_mem {
246 	struct	tcpcb		tcb;
247 	struct	tcp_timer	tt;
248 	struct	cc_var		ccv;
249 	struct	osd		osd;
250 };
251 
252 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
253 #define	V_tcpcb_zone			VNET(tcpcb_zone)
254 
255 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
256 static struct mtx isn_mtx;
257 
258 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
259 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
260 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
261 
262 /*
263  * TCP initialization.
264  */
265 static void
266 tcp_zone_change(void *tag)
267 {
268 
269 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
270 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
271 	tcp_tw_zone_change();
272 }
273 
274 static int
275 tcp_inpcb_init(void *mem, int size, int flags)
276 {
277 	struct inpcb *inp = mem;
278 
279 	INP_LOCK_INIT(inp, "inp", "tcpinp");
280 	return (0);
281 }
282 
283 void
284 tcp_init(void)
285 {
286 	int hashsize;
287 
288 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
289 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
290 		printf("%s: WARNING: unable to register helper hook\n", __func__);
291 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
292 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
293 		printf("%s: WARNING: unable to register helper hook\n", __func__);
294 
295 	hashsize = TCBHASHSIZE;
296 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
297 	if (!powerof2(hashsize)) {
298 		printf("WARNING: TCB hash size not a power of 2\n");
299 		hashsize = 512; /* safe default */
300 	}
301 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
302 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
303 	    IPI_HASHFIELDS_4TUPLE);
304 
305 	/*
306 	 * These have to be type stable for the benefit of the timers.
307 	 */
308 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
309 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
310 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
311 
312 	tcp_tw_init();
313 	syncache_init();
314 	tcp_hc_init();
315 	tcp_reass_init();
316 
317 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
318 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
319 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
320 
321 	/* Skip initialization of globals for non-default instances. */
322 	if (!IS_DEFAULT_VNET(curvnet))
323 		return;
324 
325 	/* XXX virtualize those bellow? */
326 	tcp_delacktime = TCPTV_DELACK;
327 	tcp_keepinit = TCPTV_KEEP_INIT;
328 	tcp_keepidle = TCPTV_KEEP_IDLE;
329 	tcp_keepintvl = TCPTV_KEEPINTVL;
330 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
331 	tcp_msl = TCPTV_MSL;
332 	tcp_rexmit_min = TCPTV_MIN;
333 	if (tcp_rexmit_min < 1)
334 		tcp_rexmit_min = 1;
335 	tcp_rexmit_slop = TCPTV_CPU_VAR;
336 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
337 	tcp_tcbhashsize = hashsize;
338 
339 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
340 	if (tcp_soreceive_stream) {
341 #ifdef INET
342 		tcp_usrreqs.pru_soreceive = soreceive_stream;
343 #endif
344 #ifdef INET6
345 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
346 #endif /* INET6 */
347 	}
348 
349 #ifdef INET6
350 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
351 #else /* INET6 */
352 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
353 #endif /* INET6 */
354 	if (max_protohdr < TCP_MINPROTOHDR)
355 		max_protohdr = TCP_MINPROTOHDR;
356 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
357 		panic("tcp_init");
358 #undef TCP_MINPROTOHDR
359 
360 	ISN_LOCK_INIT();
361 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
362 		SHUTDOWN_PRI_DEFAULT);
363 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
364 		EVENTHANDLER_PRI_ANY);
365 }
366 
367 #ifdef VIMAGE
368 void
369 tcp_destroy(void)
370 {
371 
372 	tcp_reass_destroy();
373 	tcp_hc_destroy();
374 	syncache_destroy();
375 	tcp_tw_destroy();
376 	in_pcbinfo_destroy(&V_tcbinfo);
377 	uma_zdestroy(V_sack_hole_zone);
378 	uma_zdestroy(V_tcpcb_zone);
379 }
380 #endif
381 
382 void
383 tcp_fini(void *xtp)
384 {
385 
386 }
387 
388 /*
389  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
390  * tcp_template used to store this data in mbufs, but we now recopy it out
391  * of the tcpcb each time to conserve mbufs.
392  */
393 void
394 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
395 {
396 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
397 
398 	INP_WLOCK_ASSERT(inp);
399 
400 #ifdef INET6
401 	if ((inp->inp_vflag & INP_IPV6) != 0) {
402 		struct ip6_hdr *ip6;
403 
404 		ip6 = (struct ip6_hdr *)ip_ptr;
405 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
406 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
407 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
408 			(IPV6_VERSION & IPV6_VERSION_MASK);
409 		ip6->ip6_nxt = IPPROTO_TCP;
410 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
411 		ip6->ip6_src = inp->in6p_laddr;
412 		ip6->ip6_dst = inp->in6p_faddr;
413 	}
414 #endif /* INET6 */
415 #if defined(INET6) && defined(INET)
416 	else
417 #endif
418 #ifdef INET
419 	{
420 		struct ip *ip;
421 
422 		ip = (struct ip *)ip_ptr;
423 		ip->ip_v = IPVERSION;
424 		ip->ip_hl = 5;
425 		ip->ip_tos = inp->inp_ip_tos;
426 		ip->ip_len = 0;
427 		ip->ip_id = 0;
428 		ip->ip_off = 0;
429 		ip->ip_ttl = inp->inp_ip_ttl;
430 		ip->ip_sum = 0;
431 		ip->ip_p = IPPROTO_TCP;
432 		ip->ip_src = inp->inp_laddr;
433 		ip->ip_dst = inp->inp_faddr;
434 	}
435 #endif /* INET */
436 	th->th_sport = inp->inp_lport;
437 	th->th_dport = inp->inp_fport;
438 	th->th_seq = 0;
439 	th->th_ack = 0;
440 	th->th_x2 = 0;
441 	th->th_off = 5;
442 	th->th_flags = 0;
443 	th->th_win = 0;
444 	th->th_urp = 0;
445 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
446 }
447 
448 /*
449  * Create template to be used to send tcp packets on a connection.
450  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
451  * use for this function is in keepalives, which use tcp_respond.
452  */
453 struct tcptemp *
454 tcpip_maketemplate(struct inpcb *inp)
455 {
456 	struct tcptemp *t;
457 
458 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
459 	if (t == NULL)
460 		return (NULL);
461 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
462 	return (t);
463 }
464 
465 /*
466  * Send a single message to the TCP at address specified by
467  * the given TCP/IP header.  If m == NULL, then we make a copy
468  * of the tcpiphdr at ti and send directly to the addressed host.
469  * This is used to force keep alive messages out using the TCP
470  * template for a connection.  If flags are given then we send
471  * a message back to the TCP which originated the * segment ti,
472  * and discard the mbuf containing it and any other attached mbufs.
473  *
474  * In any case the ack and sequence number of the transmitted
475  * segment are as specified by the parameters.
476  *
477  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
478  */
479 void
480 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
481     tcp_seq ack, tcp_seq seq, int flags)
482 {
483 	int tlen;
484 	int win = 0;
485 	struct ip *ip;
486 	struct tcphdr *nth;
487 #ifdef INET6
488 	struct ip6_hdr *ip6;
489 	int isipv6;
490 #endif /* INET6 */
491 	int ipflags = 0;
492 	struct inpcb *inp;
493 
494 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
495 
496 #ifdef INET6
497 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
498 	ip6 = ipgen;
499 #endif /* INET6 */
500 	ip = ipgen;
501 
502 	if (tp != NULL) {
503 		inp = tp->t_inpcb;
504 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
505 		INP_WLOCK_ASSERT(inp);
506 	} else
507 		inp = NULL;
508 
509 	if (tp != NULL) {
510 		if (!(flags & TH_RST)) {
511 			win = sbspace(&inp->inp_socket->so_rcv);
512 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
513 				win = (long)TCP_MAXWIN << tp->rcv_scale;
514 		}
515 	}
516 	if (m == NULL) {
517 		m = m_gethdr(M_DONTWAIT, MT_DATA);
518 		if (m == NULL)
519 			return;
520 		tlen = 0;
521 		m->m_data += max_linkhdr;
522 #ifdef INET6
523 		if (isipv6) {
524 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
525 			      sizeof(struct ip6_hdr));
526 			ip6 = mtod(m, struct ip6_hdr *);
527 			nth = (struct tcphdr *)(ip6 + 1);
528 		} else
529 #endif /* INET6 */
530 	      {
531 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
532 		ip = mtod(m, struct ip *);
533 		nth = (struct tcphdr *)(ip + 1);
534 	      }
535 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
536 		flags = TH_ACK;
537 	} else {
538 		/*
539 		 *  reuse the mbuf.
540 		 * XXX MRT We inherrit the FIB, which is lucky.
541 		 */
542 		m_freem(m->m_next);
543 		m->m_next = NULL;
544 		m->m_data = (caddr_t)ipgen;
545 		m_addr_changed(m);
546 		/* m_len is set later */
547 		tlen = 0;
548 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
549 #ifdef INET6
550 		if (isipv6) {
551 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
552 			nth = (struct tcphdr *)(ip6 + 1);
553 		} else
554 #endif /* INET6 */
555 	      {
556 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
557 		nth = (struct tcphdr *)(ip + 1);
558 	      }
559 		if (th != nth) {
560 			/*
561 			 * this is usually a case when an extension header
562 			 * exists between the IPv6 header and the
563 			 * TCP header.
564 			 */
565 			nth->th_sport = th->th_sport;
566 			nth->th_dport = th->th_dport;
567 		}
568 		xchg(nth->th_dport, nth->th_sport, uint16_t);
569 #undef xchg
570 	}
571 #ifdef INET6
572 	if (isipv6) {
573 		ip6->ip6_flow = 0;
574 		ip6->ip6_vfc = IPV6_VERSION;
575 		ip6->ip6_nxt = IPPROTO_TCP;
576 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
577 						tlen));
578 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
579 	}
580 #endif
581 #if defined(INET) && defined(INET6)
582 	else
583 #endif
584 #ifdef INET
585 	{
586 		tlen += sizeof (struct tcpiphdr);
587 		ip->ip_len = tlen;
588 		ip->ip_ttl = V_ip_defttl;
589 		if (V_path_mtu_discovery)
590 			ip->ip_off |= IP_DF;
591 	}
592 #endif
593 	m->m_len = tlen;
594 	m->m_pkthdr.len = tlen;
595 	m->m_pkthdr.rcvif = NULL;
596 #ifdef MAC
597 	if (inp != NULL) {
598 		/*
599 		 * Packet is associated with a socket, so allow the
600 		 * label of the response to reflect the socket label.
601 		 */
602 		INP_WLOCK_ASSERT(inp);
603 		mac_inpcb_create_mbuf(inp, m);
604 	} else {
605 		/*
606 		 * Packet is not associated with a socket, so possibly
607 		 * update the label in place.
608 		 */
609 		mac_netinet_tcp_reply(m);
610 	}
611 #endif
612 	nth->th_seq = htonl(seq);
613 	nth->th_ack = htonl(ack);
614 	nth->th_x2 = 0;
615 	nth->th_off = sizeof (struct tcphdr) >> 2;
616 	nth->th_flags = flags;
617 	if (tp != NULL)
618 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
619 	else
620 		nth->th_win = htons((u_short)win);
621 	nth->th_urp = 0;
622 #ifdef INET6
623 	if (isipv6) {
624 		nth->th_sum = 0;
625 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
626 					sizeof(struct ip6_hdr),
627 					tlen - sizeof(struct ip6_hdr));
628 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
629 		    NULL, NULL);
630 	}
631 #endif /* INET6 */
632 #if defined(INET6) && defined(INET)
633 	else
634 #endif
635 #ifdef INET
636 	{
637 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
638 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
639 		m->m_pkthdr.csum_flags = CSUM_TCP;
640 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
641 	}
642 #endif /* INET */
643 #ifdef TCPDEBUG
644 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
645 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
646 #endif
647 #ifdef INET6
648 	if (isipv6)
649 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
650 #endif /* INET6 */
651 #if defined(INET) && defined(INET6)
652 	else
653 #endif
654 #ifdef INET
655 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
656 #endif
657 }
658 
659 /*
660  * Create a new TCP control block, making an
661  * empty reassembly queue and hooking it to the argument
662  * protocol control block.  The `inp' parameter must have
663  * come from the zone allocator set up in tcp_init().
664  */
665 struct tcpcb *
666 tcp_newtcpcb(struct inpcb *inp)
667 {
668 	struct tcpcb_mem *tm;
669 	struct tcpcb *tp;
670 #ifdef INET6
671 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
672 #endif /* INET6 */
673 
674 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
675 	if (tm == NULL)
676 		return (NULL);
677 	tp = &tm->tcb;
678 
679 	/* Initialise cc_var struct for this tcpcb. */
680 	tp->ccv = &tm->ccv;
681 	tp->ccv->type = IPPROTO_TCP;
682 	tp->ccv->ccvc.tcp = tp;
683 
684 	/*
685 	 * Use the current system default CC algorithm.
686 	 */
687 	CC_LIST_RLOCK();
688 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
689 	CC_ALGO(tp) = CC_DEFAULT();
690 	CC_LIST_RUNLOCK();
691 
692 	if (CC_ALGO(tp)->cb_init != NULL)
693 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
694 			uma_zfree(V_tcpcb_zone, tm);
695 			return (NULL);
696 		}
697 
698 	tp->osd = &tm->osd;
699 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
700 		uma_zfree(V_tcpcb_zone, tm);
701 		return (NULL);
702 	}
703 
704 #ifdef VIMAGE
705 	tp->t_vnet = inp->inp_vnet;
706 #endif
707 	tp->t_timers = &tm->tt;
708 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
709 	tp->t_maxseg = tp->t_maxopd =
710 #ifdef INET6
711 		isipv6 ? V_tcp_v6mssdflt :
712 #endif /* INET6 */
713 		V_tcp_mssdflt;
714 
715 	/* Set up our timeouts. */
716 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
717 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
718 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
719 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
720 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
721 
722 	if (V_tcp_do_rfc1323)
723 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
724 	if (V_tcp_do_sack)
725 		tp->t_flags |= TF_SACK_PERMIT;
726 	TAILQ_INIT(&tp->snd_holes);
727 	tp->t_inpcb = inp;	/* XXX */
728 	/*
729 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
730 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
731 	 * reasonable initial retransmit time.
732 	 */
733 	tp->t_srtt = TCPTV_SRTTBASE;
734 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735 	tp->t_rttmin = tcp_rexmit_min;
736 	tp->t_rxtcur = TCPTV_RTOBASE;
737 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->t_rcvtime = ticks;
740 	/*
741 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
742 	 * because the socket may be bound to an IPv6 wildcard address,
743 	 * which may match an IPv4-mapped IPv6 address.
744 	 */
745 	inp->inp_ip_ttl = V_ip_defttl;
746 	inp->inp_ppcb = tp;
747 	return (tp);		/* XXX */
748 }
749 
750 /*
751  * Switch the congestion control algorithm back to NewReno for any active
752  * control blocks using an algorithm which is about to go away.
753  * This ensures the CC framework can allow the unload to proceed without leaving
754  * any dangling pointers which would trigger a panic.
755  * Returning non-zero would inform the CC framework that something went wrong
756  * and it would be unsafe to allow the unload to proceed. However, there is no
757  * way for this to occur with this implementation so we always return zero.
758  */
759 int
760 tcp_ccalgounload(struct cc_algo *unload_algo)
761 {
762 	struct cc_algo *tmpalgo;
763 	struct inpcb *inp;
764 	struct tcpcb *tp;
765 	VNET_ITERATOR_DECL(vnet_iter);
766 
767 	/*
768 	 * Check all active control blocks across all network stacks and change
769 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
770 	 * requires cleanup code to be run, call it.
771 	 */
772 	VNET_LIST_RLOCK();
773 	VNET_FOREACH(vnet_iter) {
774 		CURVNET_SET(vnet_iter);
775 		INP_INFO_RLOCK(&V_tcbinfo);
776 		/*
777 		 * New connections already part way through being initialised
778 		 * with the CC algo we're removing will not race with this code
779 		 * because the INP_INFO_WLOCK is held during initialisation. We
780 		 * therefore don't enter the loop below until the connection
781 		 * list has stabilised.
782 		 */
783 		LIST_FOREACH(inp, &V_tcb, inp_list) {
784 			INP_WLOCK(inp);
785 			/* Important to skip tcptw structs. */
786 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
787 			    (tp = intotcpcb(inp)) != NULL) {
788 				/*
789 				 * By holding INP_WLOCK here, we are assured
790 				 * that the connection is not currently
791 				 * executing inside the CC module's functions
792 				 * i.e. it is safe to make the switch back to
793 				 * NewReno.
794 				 */
795 				if (CC_ALGO(tp) == unload_algo) {
796 					tmpalgo = CC_ALGO(tp);
797 					/* NewReno does not require any init. */
798 					CC_ALGO(tp) = &newreno_cc_algo;
799 					if (tmpalgo->cb_destroy != NULL)
800 						tmpalgo->cb_destroy(tp->ccv);
801 				}
802 			}
803 			INP_WUNLOCK(inp);
804 		}
805 		INP_INFO_RUNLOCK(&V_tcbinfo);
806 		CURVNET_RESTORE();
807 	}
808 	VNET_LIST_RUNLOCK();
809 
810 	return (0);
811 }
812 
813 /*
814  * Drop a TCP connection, reporting
815  * the specified error.  If connection is synchronized,
816  * then send a RST to peer.
817  */
818 struct tcpcb *
819 tcp_drop(struct tcpcb *tp, int errno)
820 {
821 	struct socket *so = tp->t_inpcb->inp_socket;
822 
823 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
824 	INP_WLOCK_ASSERT(tp->t_inpcb);
825 
826 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
827 		tp->t_state = TCPS_CLOSED;
828 		(void) tcp_output_reset(tp);
829 		TCPSTAT_INC(tcps_drops);
830 	} else
831 		TCPSTAT_INC(tcps_conndrops);
832 	if (errno == ETIMEDOUT && tp->t_softerror)
833 		errno = tp->t_softerror;
834 	so->so_error = errno;
835 	return (tcp_close(tp));
836 }
837 
838 void
839 tcp_discardcb(struct tcpcb *tp)
840 {
841 	struct inpcb *inp = tp->t_inpcb;
842 	struct socket *so = inp->inp_socket;
843 #ifdef INET6
844 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
845 #endif /* INET6 */
846 
847 	INP_WLOCK_ASSERT(inp);
848 
849 	/*
850 	 * Make sure that all of our timers are stopped before we delete the
851 	 * PCB.
852 	 *
853 	 * XXXRW: Really, we would like to use callout_drain() here in order
854 	 * to avoid races experienced in tcp_timer.c where a timer is already
855 	 * executing at this point.  However, we can't, both because we're
856 	 * running in a context where we can't sleep, and also because we
857 	 * hold locks required by the timers.  What we instead need to do is
858 	 * test to see if callout_drain() is required, and if so, defer some
859 	 * portion of the remainder of tcp_discardcb() to an asynchronous
860 	 * context that can callout_drain() and then continue.  Some care
861 	 * will be required to ensure that no further processing takes place
862 	 * on the tcpcb, even though it hasn't been freed (a flag?).
863 	 */
864 	callout_stop(&tp->t_timers->tt_rexmt);
865 	callout_stop(&tp->t_timers->tt_persist);
866 	callout_stop(&tp->t_timers->tt_keep);
867 	callout_stop(&tp->t_timers->tt_2msl);
868 	callout_stop(&tp->t_timers->tt_delack);
869 
870 	/*
871 	 * If we got enough samples through the srtt filter,
872 	 * save the rtt and rttvar in the routing entry.
873 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
874 	 * 4 samples is enough for the srtt filter to converge
875 	 * to within enough % of the correct value; fewer samples
876 	 * and we could save a bogus rtt. The danger is not high
877 	 * as tcp quickly recovers from everything.
878 	 * XXX: Works very well but needs some more statistics!
879 	 */
880 	if (tp->t_rttupdated >= 4) {
881 		struct hc_metrics_lite metrics;
882 		u_long ssthresh;
883 
884 		bzero(&metrics, sizeof(metrics));
885 		/*
886 		 * Update the ssthresh always when the conditions below
887 		 * are satisfied. This gives us better new start value
888 		 * for the congestion avoidance for new connections.
889 		 * ssthresh is only set if packet loss occured on a session.
890 		 *
891 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
892 		 * being torn down.  Ideally this code would not use 'so'.
893 		 */
894 		ssthresh = tp->snd_ssthresh;
895 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
896 			/*
897 			 * convert the limit from user data bytes to
898 			 * packets then to packet data bytes.
899 			 */
900 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
901 			if (ssthresh < 2)
902 				ssthresh = 2;
903 			ssthresh *= (u_long)(tp->t_maxseg +
904 #ifdef INET6
905 				      (isipv6 ? sizeof (struct ip6_hdr) +
906 					       sizeof (struct tcphdr) :
907 #endif
908 				       sizeof (struct tcpiphdr)
909 #ifdef INET6
910 				       )
911 #endif
912 				      );
913 		} else
914 			ssthresh = 0;
915 		metrics.rmx_ssthresh = ssthresh;
916 
917 		metrics.rmx_rtt = tp->t_srtt;
918 		metrics.rmx_rttvar = tp->t_rttvar;
919 		metrics.rmx_cwnd = tp->snd_cwnd;
920 		metrics.rmx_sendpipe = 0;
921 		metrics.rmx_recvpipe = 0;
922 
923 		tcp_hc_update(&inp->inp_inc, &metrics);
924 	}
925 
926 	/* free the reassembly queue, if any */
927 	tcp_reass_flush(tp);
928 	/* Disconnect offload device, if any. */
929 	tcp_offload_detach(tp);
930 
931 	tcp_free_sackholes(tp);
932 
933 	/* Allow the CC algorithm to clean up after itself. */
934 	if (CC_ALGO(tp)->cb_destroy != NULL)
935 		CC_ALGO(tp)->cb_destroy(tp->ccv);
936 
937 	khelp_destroy_osd(tp->osd);
938 
939 	CC_ALGO(tp) = NULL;
940 	inp->inp_ppcb = NULL;
941 	tp->t_inpcb = NULL;
942 	uma_zfree(V_tcpcb_zone, tp);
943 }
944 
945 /*
946  * Attempt to close a TCP control block, marking it as dropped, and freeing
947  * the socket if we hold the only reference.
948  */
949 struct tcpcb *
950 tcp_close(struct tcpcb *tp)
951 {
952 	struct inpcb *inp = tp->t_inpcb;
953 	struct socket *so;
954 
955 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
956 	INP_WLOCK_ASSERT(inp);
957 
958 	/* Notify any offload devices of listener close */
959 	if (tp->t_state == TCPS_LISTEN)
960 		tcp_offload_listen_close(tp);
961 	in_pcbdrop(inp);
962 	TCPSTAT_INC(tcps_closed);
963 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
964 	so = inp->inp_socket;
965 	soisdisconnected(so);
966 	if (inp->inp_flags & INP_SOCKREF) {
967 		KASSERT(so->so_state & SS_PROTOREF,
968 		    ("tcp_close: !SS_PROTOREF"));
969 		inp->inp_flags &= ~INP_SOCKREF;
970 		INP_WUNLOCK(inp);
971 		ACCEPT_LOCK();
972 		SOCK_LOCK(so);
973 		so->so_state &= ~SS_PROTOREF;
974 		sofree(so);
975 		return (NULL);
976 	}
977 	return (tp);
978 }
979 
980 void
981 tcp_drain(void)
982 {
983 	VNET_ITERATOR_DECL(vnet_iter);
984 
985 	if (!do_tcpdrain)
986 		return;
987 
988 	VNET_LIST_RLOCK_NOSLEEP();
989 	VNET_FOREACH(vnet_iter) {
990 		CURVNET_SET(vnet_iter);
991 		struct inpcb *inpb;
992 		struct tcpcb *tcpb;
993 
994 	/*
995 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
996 	 * if there is one...
997 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
998 	 *      reassembly queue should be flushed, but in a situation
999 	 *	where we're really low on mbufs, this is potentially
1000 	 *	usefull.
1001 	 */
1002 		INP_INFO_RLOCK(&V_tcbinfo);
1003 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1004 			if (inpb->inp_flags & INP_TIMEWAIT)
1005 				continue;
1006 			INP_WLOCK(inpb);
1007 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1008 				tcp_reass_flush(tcpb);
1009 				tcp_clean_sackreport(tcpb);
1010 			}
1011 			INP_WUNLOCK(inpb);
1012 		}
1013 		INP_INFO_RUNLOCK(&V_tcbinfo);
1014 		CURVNET_RESTORE();
1015 	}
1016 	VNET_LIST_RUNLOCK_NOSLEEP();
1017 }
1018 
1019 /*
1020  * Notify a tcp user of an asynchronous error;
1021  * store error as soft error, but wake up user
1022  * (for now, won't do anything until can select for soft error).
1023  *
1024  * Do not wake up user since there currently is no mechanism for
1025  * reporting soft errors (yet - a kqueue filter may be added).
1026  */
1027 static struct inpcb *
1028 tcp_notify(struct inpcb *inp, int error)
1029 {
1030 	struct tcpcb *tp;
1031 
1032 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1033 	INP_WLOCK_ASSERT(inp);
1034 
1035 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1036 	    (inp->inp_flags & INP_DROPPED))
1037 		return (inp);
1038 
1039 	tp = intotcpcb(inp);
1040 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1041 
1042 	/*
1043 	 * Ignore some errors if we are hooked up.
1044 	 * If connection hasn't completed, has retransmitted several times,
1045 	 * and receives a second error, give up now.  This is better
1046 	 * than waiting a long time to establish a connection that
1047 	 * can never complete.
1048 	 */
1049 	if (tp->t_state == TCPS_ESTABLISHED &&
1050 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1051 	     error == EHOSTDOWN)) {
1052 		return (inp);
1053 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1054 	    tp->t_softerror) {
1055 		tp = tcp_drop(tp, error);
1056 		if (tp != NULL)
1057 			return (inp);
1058 		else
1059 			return (NULL);
1060 	} else {
1061 		tp->t_softerror = error;
1062 		return (inp);
1063 	}
1064 #if 0
1065 	wakeup( &so->so_timeo);
1066 	sorwakeup(so);
1067 	sowwakeup(so);
1068 #endif
1069 }
1070 
1071 static int
1072 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1073 {
1074 	int error, i, m, n, pcb_count;
1075 	struct inpcb *inp, **inp_list;
1076 	inp_gen_t gencnt;
1077 	struct xinpgen xig;
1078 
1079 	/*
1080 	 * The process of preparing the TCB list is too time-consuming and
1081 	 * resource-intensive to repeat twice on every request.
1082 	 */
1083 	if (req->oldptr == NULL) {
1084 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1085 		n += imax(n / 8, 10);
1086 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1087 		return (0);
1088 	}
1089 
1090 	if (req->newptr != NULL)
1091 		return (EPERM);
1092 
1093 	/*
1094 	 * OK, now we're committed to doing something.
1095 	 */
1096 	INP_INFO_RLOCK(&V_tcbinfo);
1097 	gencnt = V_tcbinfo.ipi_gencnt;
1098 	n = V_tcbinfo.ipi_count;
1099 	INP_INFO_RUNLOCK(&V_tcbinfo);
1100 
1101 	m = syncache_pcbcount();
1102 
1103 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1104 		+ (n + m) * sizeof(struct xtcpcb));
1105 	if (error != 0)
1106 		return (error);
1107 
1108 	xig.xig_len = sizeof xig;
1109 	xig.xig_count = n + m;
1110 	xig.xig_gen = gencnt;
1111 	xig.xig_sogen = so_gencnt;
1112 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1113 	if (error)
1114 		return (error);
1115 
1116 	error = syncache_pcblist(req, m, &pcb_count);
1117 	if (error)
1118 		return (error);
1119 
1120 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1121 	if (inp_list == NULL)
1122 		return (ENOMEM);
1123 
1124 	INP_INFO_RLOCK(&V_tcbinfo);
1125 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1126 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1127 		INP_WLOCK(inp);
1128 		if (inp->inp_gencnt <= gencnt) {
1129 			/*
1130 			 * XXX: This use of cr_cansee(), introduced with
1131 			 * TCP state changes, is not quite right, but for
1132 			 * now, better than nothing.
1133 			 */
1134 			if (inp->inp_flags & INP_TIMEWAIT) {
1135 				if (intotw(inp) != NULL)
1136 					error = cr_cansee(req->td->td_ucred,
1137 					    intotw(inp)->tw_cred);
1138 				else
1139 					error = EINVAL;	/* Skip this inp. */
1140 			} else
1141 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1142 			if (error == 0) {
1143 				in_pcbref(inp);
1144 				inp_list[i++] = inp;
1145 			}
1146 		}
1147 		INP_WUNLOCK(inp);
1148 	}
1149 	INP_INFO_RUNLOCK(&V_tcbinfo);
1150 	n = i;
1151 
1152 	error = 0;
1153 	for (i = 0; i < n; i++) {
1154 		inp = inp_list[i];
1155 		INP_RLOCK(inp);
1156 		if (inp->inp_gencnt <= gencnt) {
1157 			struct xtcpcb xt;
1158 			void *inp_ppcb;
1159 
1160 			bzero(&xt, sizeof(xt));
1161 			xt.xt_len = sizeof xt;
1162 			/* XXX should avoid extra copy */
1163 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1164 			inp_ppcb = inp->inp_ppcb;
1165 			if (inp_ppcb == NULL)
1166 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1167 			else if (inp->inp_flags & INP_TIMEWAIT) {
1168 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1169 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1170 			} else {
1171 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1172 				if (xt.xt_tp.t_timers)
1173 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1174 			}
1175 			if (inp->inp_socket != NULL)
1176 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1177 			else {
1178 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1179 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1180 			}
1181 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1182 			INP_RUNLOCK(inp);
1183 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1184 		} else
1185 			INP_RUNLOCK(inp);
1186 	}
1187 	INP_INFO_WLOCK(&V_tcbinfo);
1188 	for (i = 0; i < n; i++) {
1189 		inp = inp_list[i];
1190 		INP_RLOCK(inp);
1191 		if (!in_pcbrele_rlocked(inp))
1192 			INP_RUNLOCK(inp);
1193 	}
1194 	INP_INFO_WUNLOCK(&V_tcbinfo);
1195 
1196 	if (!error) {
1197 		/*
1198 		 * Give the user an updated idea of our state.
1199 		 * If the generation differs from what we told
1200 		 * her before, she knows that something happened
1201 		 * while we were processing this request, and it
1202 		 * might be necessary to retry.
1203 		 */
1204 		INP_INFO_RLOCK(&V_tcbinfo);
1205 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1206 		xig.xig_sogen = so_gencnt;
1207 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1208 		INP_INFO_RUNLOCK(&V_tcbinfo);
1209 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1210 	}
1211 	free(inp_list, M_TEMP);
1212 	return (error);
1213 }
1214 
1215 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1216     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1217     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1218 
1219 #ifdef INET
1220 static int
1221 tcp_getcred(SYSCTL_HANDLER_ARGS)
1222 {
1223 	struct xucred xuc;
1224 	struct sockaddr_in addrs[2];
1225 	struct inpcb *inp;
1226 	int error;
1227 
1228 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1229 	if (error)
1230 		return (error);
1231 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1232 	if (error)
1233 		return (error);
1234 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1235 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1236 	if (inp != NULL) {
1237 		if (inp->inp_socket == NULL)
1238 			error = ENOENT;
1239 		if (error == 0)
1240 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1241 		if (error == 0)
1242 			cru2x(inp->inp_cred, &xuc);
1243 		INP_RUNLOCK(inp);
1244 	} else
1245 		error = ENOENT;
1246 	if (error == 0)
1247 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1248 	return (error);
1249 }
1250 
1251 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1252     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1253     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1254 #endif /* INET */
1255 
1256 #ifdef INET6
1257 static int
1258 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1259 {
1260 	struct xucred xuc;
1261 	struct sockaddr_in6 addrs[2];
1262 	struct inpcb *inp;
1263 	int error;
1264 #ifdef INET
1265 	int mapped = 0;
1266 #endif
1267 
1268 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1269 	if (error)
1270 		return (error);
1271 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1272 	if (error)
1273 		return (error);
1274 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1275 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1276 		return (error);
1277 	}
1278 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1279 #ifdef INET
1280 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1281 			mapped = 1;
1282 		else
1283 #endif
1284 			return (EINVAL);
1285 	}
1286 
1287 #ifdef INET
1288 	if (mapped == 1)
1289 		inp = in_pcblookup(&V_tcbinfo,
1290 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1291 			addrs[1].sin6_port,
1292 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1293 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1294 	else
1295 #endif
1296 		inp = in6_pcblookup(&V_tcbinfo,
1297 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1298 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1299 			INPLOOKUP_RLOCKPCB, NULL);
1300 	if (inp != NULL) {
1301 		if (inp->inp_socket == NULL)
1302 			error = ENOENT;
1303 		if (error == 0)
1304 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1305 		if (error == 0)
1306 			cru2x(inp->inp_cred, &xuc);
1307 		INP_RUNLOCK(inp);
1308 	} else
1309 		error = ENOENT;
1310 	if (error == 0)
1311 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1312 	return (error);
1313 }
1314 
1315 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1316     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1317     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1318 #endif /* INET6 */
1319 
1320 
1321 #ifdef INET
1322 void
1323 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1324 {
1325 	struct ip *ip = vip;
1326 	struct tcphdr *th;
1327 	struct in_addr faddr;
1328 	struct inpcb *inp;
1329 	struct tcpcb *tp;
1330 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1331 	struct icmp *icp;
1332 	struct in_conninfo inc;
1333 	tcp_seq icmp_tcp_seq;
1334 	int mtu;
1335 
1336 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1337 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1338 		return;
1339 
1340 	if (cmd == PRC_MSGSIZE)
1341 		notify = tcp_mtudisc_notify;
1342 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1343 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1344 		notify = tcp_drop_syn_sent;
1345 	/*
1346 	 * Redirects don't need to be handled up here.
1347 	 */
1348 	else if (PRC_IS_REDIRECT(cmd))
1349 		return;
1350 	/*
1351 	 * Source quench is depreciated.
1352 	 */
1353 	else if (cmd == PRC_QUENCH)
1354 		return;
1355 	/*
1356 	 * Hostdead is ugly because it goes linearly through all PCBs.
1357 	 * XXX: We never get this from ICMP, otherwise it makes an
1358 	 * excellent DoS attack on machines with many connections.
1359 	 */
1360 	else if (cmd == PRC_HOSTDEAD)
1361 		ip = NULL;
1362 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1363 		return;
1364 	if (ip != NULL) {
1365 		icp = (struct icmp *)((caddr_t)ip
1366 				      - offsetof(struct icmp, icmp_ip));
1367 		th = (struct tcphdr *)((caddr_t)ip
1368 				       + (ip->ip_hl << 2));
1369 		INP_INFO_WLOCK(&V_tcbinfo);
1370 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1371 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1372 		if (inp != NULL)  {
1373 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1374 			    !(inp->inp_flags & INP_DROPPED) &&
1375 			    !(inp->inp_socket == NULL)) {
1376 				icmp_tcp_seq = htonl(th->th_seq);
1377 				tp = intotcpcb(inp);
1378 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1379 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1380 					if (cmd == PRC_MSGSIZE) {
1381 					    /*
1382 					     * MTU discovery:
1383 					     * If we got a needfrag set the MTU
1384 					     * in the route to the suggested new
1385 					     * value (if given) and then notify.
1386 					     */
1387 					    bzero(&inc, sizeof(inc));
1388 					    inc.inc_faddr = faddr;
1389 					    inc.inc_fibnum =
1390 						inp->inp_inc.inc_fibnum;
1391 
1392 					    mtu = ntohs(icp->icmp_nextmtu);
1393 					    /*
1394 					     * If no alternative MTU was
1395 					     * proposed, try the next smaller
1396 					     * one.  ip->ip_len has already
1397 					     * been swapped in icmp_input().
1398 					     */
1399 					    if (!mtu)
1400 						mtu = ip_next_mtu(ip->ip_len,
1401 						 1);
1402 					    if (mtu < V_tcp_minmss
1403 						 + sizeof(struct tcpiphdr))
1404 						mtu = V_tcp_minmss
1405 						 + sizeof(struct tcpiphdr);
1406 					    /*
1407 					     * Only cache the MTU if it
1408 					     * is smaller than the interface
1409 					     * or route MTU.  tcp_mtudisc()
1410 					     * will do right thing by itself.
1411 					     */
1412 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1413 						tcp_hc_updatemtu(&inc, mtu);
1414 					    tcp_mtudisc(inp, mtu);
1415 					} else
1416 						inp = (*notify)(inp,
1417 						    inetctlerrmap[cmd]);
1418 				}
1419 			}
1420 			if (inp != NULL)
1421 				INP_WUNLOCK(inp);
1422 		} else {
1423 			bzero(&inc, sizeof(inc));
1424 			inc.inc_fport = th->th_dport;
1425 			inc.inc_lport = th->th_sport;
1426 			inc.inc_faddr = faddr;
1427 			inc.inc_laddr = ip->ip_src;
1428 			syncache_unreach(&inc, th);
1429 		}
1430 		INP_INFO_WUNLOCK(&V_tcbinfo);
1431 	} else
1432 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1433 }
1434 #endif /* INET */
1435 
1436 #ifdef INET6
1437 void
1438 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1439 {
1440 	struct tcphdr th;
1441 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1442 	struct ip6_hdr *ip6;
1443 	struct mbuf *m;
1444 	struct ip6ctlparam *ip6cp = NULL;
1445 	const struct sockaddr_in6 *sa6_src = NULL;
1446 	int off;
1447 	struct tcp_portonly {
1448 		u_int16_t th_sport;
1449 		u_int16_t th_dport;
1450 	} *thp;
1451 
1452 	if (sa->sa_family != AF_INET6 ||
1453 	    sa->sa_len != sizeof(struct sockaddr_in6))
1454 		return;
1455 
1456 	if (cmd == PRC_MSGSIZE)
1457 		notify = tcp_mtudisc_notify;
1458 	else if (!PRC_IS_REDIRECT(cmd) &&
1459 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1460 		return;
1461 	/* Source quench is depreciated. */
1462 	else if (cmd == PRC_QUENCH)
1463 		return;
1464 
1465 	/* if the parameter is from icmp6, decode it. */
1466 	if (d != NULL) {
1467 		ip6cp = (struct ip6ctlparam *)d;
1468 		m = ip6cp->ip6c_m;
1469 		ip6 = ip6cp->ip6c_ip6;
1470 		off = ip6cp->ip6c_off;
1471 		sa6_src = ip6cp->ip6c_src;
1472 	} else {
1473 		m = NULL;
1474 		ip6 = NULL;
1475 		off = 0;	/* fool gcc */
1476 		sa6_src = &sa6_any;
1477 	}
1478 
1479 	if (ip6 != NULL) {
1480 		struct in_conninfo inc;
1481 		/*
1482 		 * XXX: We assume that when IPV6 is non NULL,
1483 		 * M and OFF are valid.
1484 		 */
1485 
1486 		/* check if we can safely examine src and dst ports */
1487 		if (m->m_pkthdr.len < off + sizeof(*thp))
1488 			return;
1489 
1490 		bzero(&th, sizeof(th));
1491 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1492 
1493 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1494 		    (struct sockaddr *)ip6cp->ip6c_src,
1495 		    th.th_sport, cmd, NULL, notify);
1496 
1497 		bzero(&inc, sizeof(inc));
1498 		inc.inc_fport = th.th_dport;
1499 		inc.inc_lport = th.th_sport;
1500 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1501 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1502 		inc.inc_flags |= INC_ISIPV6;
1503 		INP_INFO_WLOCK(&V_tcbinfo);
1504 		syncache_unreach(&inc, &th);
1505 		INP_INFO_WUNLOCK(&V_tcbinfo);
1506 	} else
1507 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1508 			      0, cmd, NULL, notify);
1509 }
1510 #endif /* INET6 */
1511 
1512 
1513 /*
1514  * Following is where TCP initial sequence number generation occurs.
1515  *
1516  * There are two places where we must use initial sequence numbers:
1517  * 1.  In SYN-ACK packets.
1518  * 2.  In SYN packets.
1519  *
1520  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1521  * tcp_syncache.c for details.
1522  *
1523  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1524  * depends on this property.  In addition, these ISNs should be
1525  * unguessable so as to prevent connection hijacking.  To satisfy
1526  * the requirements of this situation, the algorithm outlined in
1527  * RFC 1948 is used, with only small modifications.
1528  *
1529  * Implementation details:
1530  *
1531  * Time is based off the system timer, and is corrected so that it
1532  * increases by one megabyte per second.  This allows for proper
1533  * recycling on high speed LANs while still leaving over an hour
1534  * before rollover.
1535  *
1536  * As reading the *exact* system time is too expensive to be done
1537  * whenever setting up a TCP connection, we increment the time
1538  * offset in two ways.  First, a small random positive increment
1539  * is added to isn_offset for each connection that is set up.
1540  * Second, the function tcp_isn_tick fires once per clock tick
1541  * and increments isn_offset as necessary so that sequence numbers
1542  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1543  * random positive increments serve only to ensure that the same
1544  * exact sequence number is never sent out twice (as could otherwise
1545  * happen when a port is recycled in less than the system tick
1546  * interval.)
1547  *
1548  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1549  * between seeding of isn_secret.  This is normally set to zero,
1550  * as reseeding should not be necessary.
1551  *
1552  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1553  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1554  * general, this means holding an exclusive (write) lock.
1555  */
1556 
1557 #define ISN_BYTES_PER_SECOND 1048576
1558 #define ISN_STATIC_INCREMENT 4096
1559 #define ISN_RANDOM_INCREMENT (4096 - 1)
1560 
1561 static VNET_DEFINE(u_char, isn_secret[32]);
1562 static VNET_DEFINE(int, isn_last);
1563 static VNET_DEFINE(int, isn_last_reseed);
1564 static VNET_DEFINE(u_int32_t, isn_offset);
1565 static VNET_DEFINE(u_int32_t, isn_offset_old);
1566 
1567 #define	V_isn_secret			VNET(isn_secret)
1568 #define	V_isn_last			VNET(isn_last)
1569 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1570 #define	V_isn_offset			VNET(isn_offset)
1571 #define	V_isn_offset_old		VNET(isn_offset_old)
1572 
1573 tcp_seq
1574 tcp_new_isn(struct tcpcb *tp)
1575 {
1576 	MD5_CTX isn_ctx;
1577 	u_int32_t md5_buffer[4];
1578 	tcp_seq new_isn;
1579 	u_int32_t projected_offset;
1580 
1581 	INP_WLOCK_ASSERT(tp->t_inpcb);
1582 
1583 	ISN_LOCK();
1584 	/* Seed if this is the first use, reseed if requested. */
1585 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1586 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1587 		< (u_int)ticks))) {
1588 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1589 		V_isn_last_reseed = ticks;
1590 	}
1591 
1592 	/* Compute the md5 hash and return the ISN. */
1593 	MD5Init(&isn_ctx);
1594 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1595 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1596 #ifdef INET6
1597 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1598 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1599 			  sizeof(struct in6_addr));
1600 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1601 			  sizeof(struct in6_addr));
1602 	} else
1603 #endif
1604 	{
1605 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1606 			  sizeof(struct in_addr));
1607 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1608 			  sizeof(struct in_addr));
1609 	}
1610 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1611 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1612 	new_isn = (tcp_seq) md5_buffer[0];
1613 	V_isn_offset += ISN_STATIC_INCREMENT +
1614 		(arc4random() & ISN_RANDOM_INCREMENT);
1615 	if (ticks != V_isn_last) {
1616 		projected_offset = V_isn_offset_old +
1617 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1618 		if (SEQ_GT(projected_offset, V_isn_offset))
1619 			V_isn_offset = projected_offset;
1620 		V_isn_offset_old = V_isn_offset;
1621 		V_isn_last = ticks;
1622 	}
1623 	new_isn += V_isn_offset;
1624 	ISN_UNLOCK();
1625 	return (new_isn);
1626 }
1627 
1628 /*
1629  * When a specific ICMP unreachable message is received and the
1630  * connection state is SYN-SENT, drop the connection.  This behavior
1631  * is controlled by the icmp_may_rst sysctl.
1632  */
1633 struct inpcb *
1634 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1635 {
1636 	struct tcpcb *tp;
1637 
1638 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1639 	INP_WLOCK_ASSERT(inp);
1640 
1641 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1642 	    (inp->inp_flags & INP_DROPPED))
1643 		return (inp);
1644 
1645 	tp = intotcpcb(inp);
1646 	if (tp->t_state != TCPS_SYN_SENT)
1647 		return (inp);
1648 
1649 	tp = tcp_drop(tp, errno);
1650 	if (tp != NULL)
1651 		return (inp);
1652 	else
1653 		return (NULL);
1654 }
1655 
1656 /*
1657  * When `need fragmentation' ICMP is received, update our idea of the MSS
1658  * based on the new value. Also nudge TCP to send something, since we
1659  * know the packet we just sent was dropped.
1660  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1661  */
1662 static struct inpcb *
1663 tcp_mtudisc_notify(struct inpcb *inp, int error)
1664 {
1665 
1666 	return (tcp_mtudisc(inp, -1));
1667 }
1668 
1669 struct inpcb *
1670 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1671 {
1672 	struct tcpcb *tp;
1673 	struct socket *so;
1674 
1675 	INP_WLOCK_ASSERT(inp);
1676 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1677 	    (inp->inp_flags & INP_DROPPED))
1678 		return (inp);
1679 
1680 	tp = intotcpcb(inp);
1681 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1682 
1683 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1684 
1685 	so = inp->inp_socket;
1686 	SOCKBUF_LOCK(&so->so_snd);
1687 	/* If the mss is larger than the socket buffer, decrease the mss. */
1688 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1689 		tp->t_maxseg = so->so_snd.sb_hiwat;
1690 	SOCKBUF_UNLOCK(&so->so_snd);
1691 
1692 	TCPSTAT_INC(tcps_mturesent);
1693 	tp->t_rtttime = 0;
1694 	tp->snd_nxt = tp->snd_una;
1695 	tcp_free_sackholes(tp);
1696 	tp->snd_recover = tp->snd_max;
1697 	if (tp->t_flags & TF_SACK_PERMIT)
1698 		EXIT_FASTRECOVERY(tp->t_flags);
1699 	tcp_output_send(tp);
1700 	return (inp);
1701 }
1702 
1703 #ifdef INET
1704 /*
1705  * Look-up the routing entry to the peer of this inpcb.  If no route
1706  * is found and it cannot be allocated, then return 0.  This routine
1707  * is called by TCP routines that access the rmx structure and by
1708  * tcp_mss_update to get the peer/interface MTU.
1709  */
1710 u_long
1711 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1712 {
1713 	struct route sro;
1714 	struct sockaddr_in *dst;
1715 	struct ifnet *ifp;
1716 	u_long maxmtu = 0;
1717 
1718 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1719 
1720 	bzero(&sro, sizeof(sro));
1721 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1722 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1723 		dst->sin_family = AF_INET;
1724 		dst->sin_len = sizeof(*dst);
1725 		dst->sin_addr = inc->inc_faddr;
1726 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1727 	}
1728 	if (sro.ro_rt != NULL) {
1729 		ifp = sro.ro_rt->rt_ifp;
1730 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1731 			maxmtu = ifp->if_mtu;
1732 		else
1733 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1734 
1735 		/* Report additional interface capabilities. */
1736 		if (flags != NULL) {
1737 			if (ifp->if_capenable & IFCAP_TSO4 &&
1738 			    ifp->if_hwassist & CSUM_TSO)
1739 				*flags |= CSUM_TSO;
1740 		}
1741 		RTFREE(sro.ro_rt);
1742 	}
1743 	return (maxmtu);
1744 }
1745 #endif /* INET */
1746 
1747 #ifdef INET6
1748 u_long
1749 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1750 {
1751 	struct route_in6 sro6;
1752 	struct ifnet *ifp;
1753 	u_long maxmtu = 0;
1754 
1755 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1756 
1757 	bzero(&sro6, sizeof(sro6));
1758 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1759 		sro6.ro_dst.sin6_family = AF_INET6;
1760 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1761 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1762 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1763 	}
1764 	if (sro6.ro_rt != NULL) {
1765 		ifp = sro6.ro_rt->rt_ifp;
1766 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1767 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1768 		else
1769 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1770 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1771 
1772 		/* Report additional interface capabilities. */
1773 		if (flags != NULL) {
1774 			if (ifp->if_capenable & IFCAP_TSO6 &&
1775 			    ifp->if_hwassist & CSUM_TSO)
1776 				*flags |= CSUM_TSO;
1777 		}
1778 		RTFREE(sro6.ro_rt);
1779 	}
1780 
1781 	return (maxmtu);
1782 }
1783 #endif /* INET6 */
1784 
1785 #ifdef IPSEC
1786 /* compute ESP/AH header size for TCP, including outer IP header. */
1787 size_t
1788 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1789 {
1790 	struct inpcb *inp;
1791 	struct mbuf *m;
1792 	size_t hdrsiz;
1793 	struct ip *ip;
1794 #ifdef INET6
1795 	struct ip6_hdr *ip6;
1796 #endif
1797 	struct tcphdr *th;
1798 
1799 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1800 		return (0);
1801 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1802 	if (!m)
1803 		return (0);
1804 
1805 #ifdef INET6
1806 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1807 		ip6 = mtod(m, struct ip6_hdr *);
1808 		th = (struct tcphdr *)(ip6 + 1);
1809 		m->m_pkthdr.len = m->m_len =
1810 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1811 		tcpip_fillheaders(inp, ip6, th);
1812 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1813 	} else
1814 #endif /* INET6 */
1815 	{
1816 		ip = mtod(m, struct ip *);
1817 		th = (struct tcphdr *)(ip + 1);
1818 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1819 		tcpip_fillheaders(inp, ip, th);
1820 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1821 	}
1822 
1823 	m_free(m);
1824 	return (hdrsiz);
1825 }
1826 #endif /* IPSEC */
1827 
1828 #ifdef TCP_SIGNATURE
1829 /*
1830  * Callback function invoked by m_apply() to digest TCP segment data
1831  * contained within an mbuf chain.
1832  */
1833 static int
1834 tcp_signature_apply(void *fstate, void *data, u_int len)
1835 {
1836 
1837 	MD5Update(fstate, (u_char *)data, len);
1838 	return (0);
1839 }
1840 
1841 /*
1842  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1843  *
1844  * Parameters:
1845  * m		pointer to head of mbuf chain
1846  * _unused
1847  * len		length of TCP segment data, excluding options
1848  * optlen	length of TCP segment options
1849  * buf		pointer to storage for computed MD5 digest
1850  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1851  *
1852  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1853  * When called from tcp_input(), we can be sure that th_sum has been
1854  * zeroed out and verified already.
1855  *
1856  * Return 0 if successful, otherwise return -1.
1857  *
1858  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1859  * search with the destination IP address, and a 'magic SPI' to be
1860  * determined by the application. This is hardcoded elsewhere to 1179
1861  * right now. Another branch of this code exists which uses the SPD to
1862  * specify per-application flows but it is unstable.
1863  */
1864 int
1865 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1866     u_char *buf, u_int direction)
1867 {
1868 	union sockaddr_union dst;
1869 #ifdef INET
1870 	struct ippseudo ippseudo;
1871 #endif
1872 	MD5_CTX ctx;
1873 	int doff;
1874 	struct ip *ip;
1875 #ifdef INET
1876 	struct ipovly *ipovly;
1877 #endif
1878 	struct secasvar *sav;
1879 	struct tcphdr *th;
1880 #ifdef INET6
1881 	struct ip6_hdr *ip6;
1882 	struct in6_addr in6;
1883 	char ip6buf[INET6_ADDRSTRLEN];
1884 	uint32_t plen;
1885 	uint16_t nhdr;
1886 #endif
1887 	u_short savecsum;
1888 
1889 	KASSERT(m != NULL, ("NULL mbuf chain"));
1890 	KASSERT(buf != NULL, ("NULL signature pointer"));
1891 
1892 	/* Extract the destination from the IP header in the mbuf. */
1893 	bzero(&dst, sizeof(union sockaddr_union));
1894 	ip = mtod(m, struct ip *);
1895 #ifdef INET6
1896 	ip6 = NULL;	/* Make the compiler happy. */
1897 #endif
1898 	switch (ip->ip_v) {
1899 #ifdef INET
1900 	case IPVERSION:
1901 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1902 		dst.sa.sa_family = AF_INET;
1903 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1904 		    ip->ip_src : ip->ip_dst;
1905 		break;
1906 #endif
1907 #ifdef INET6
1908 	case (IPV6_VERSION >> 4):
1909 		ip6 = mtod(m, struct ip6_hdr *);
1910 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1911 		dst.sa.sa_family = AF_INET6;
1912 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1913 		    ip6->ip6_src : ip6->ip6_dst;
1914 		break;
1915 #endif
1916 	default:
1917 		return (EINVAL);
1918 		/* NOTREACHED */
1919 		break;
1920 	}
1921 
1922 	/* Look up an SADB entry which matches the address of the peer. */
1923 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1924 	if (sav == NULL) {
1925 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1926 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1927 #ifdef INET6
1928 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1929 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1930 #endif
1931 			"(unsupported)"));
1932 		return (EINVAL);
1933 	}
1934 
1935 	MD5Init(&ctx);
1936 	/*
1937 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1938 	 *
1939 	 * XXX The ippseudo header MUST be digested in network byte order,
1940 	 * or else we'll fail the regression test. Assume all fields we've
1941 	 * been doing arithmetic on have been in host byte order.
1942 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1943 	 * tcp_output(), the underlying ip_len member has not yet been set.
1944 	 */
1945 	switch (ip->ip_v) {
1946 #ifdef INET
1947 	case IPVERSION:
1948 		ipovly = (struct ipovly *)ip;
1949 		ippseudo.ippseudo_src = ipovly->ih_src;
1950 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1951 		ippseudo.ippseudo_pad = 0;
1952 		ippseudo.ippseudo_p = IPPROTO_TCP;
1953 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1954 		    optlen);
1955 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1956 
1957 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1958 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1959 		break;
1960 #endif
1961 #ifdef INET6
1962 	/*
1963 	 * RFC 2385, 2.0  Proposal
1964 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1965 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1966 	 * extended next header value (to form 32 bits), and 32-bit segment
1967 	 * length.
1968 	 * Note: Upper-Layer Packet Length comes before Next Header.
1969 	 */
1970 	case (IPV6_VERSION >> 4):
1971 		in6 = ip6->ip6_src;
1972 		in6_clearscope(&in6);
1973 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1974 		in6 = ip6->ip6_dst;
1975 		in6_clearscope(&in6);
1976 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1977 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1978 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1979 		nhdr = 0;
1980 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1981 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1982 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1983 		nhdr = IPPROTO_TCP;
1984 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1985 
1986 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1987 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1988 		break;
1989 #endif
1990 	default:
1991 		return (EINVAL);
1992 		/* NOTREACHED */
1993 		break;
1994 	}
1995 
1996 
1997 	/*
1998 	 * Step 2: Update MD5 hash with TCP header, excluding options.
1999 	 * The TCP checksum must be set to zero.
2000 	 */
2001 	savecsum = th->th_sum;
2002 	th->th_sum = 0;
2003 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2004 	th->th_sum = savecsum;
2005 
2006 	/*
2007 	 * Step 3: Update MD5 hash with TCP segment data.
2008 	 *         Use m_apply() to avoid an early m_pullup().
2009 	 */
2010 	if (len > 0)
2011 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2012 
2013 	/*
2014 	 * Step 4: Update MD5 hash with shared secret.
2015 	 */
2016 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2017 	MD5Final(buf, &ctx);
2018 
2019 	key_sa_recordxfer(sav, m);
2020 	KEY_FREESAV(&sav);
2021 	return (0);
2022 }
2023 
2024 /*
2025  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2026  *
2027  * Parameters:
2028  * m		pointer to head of mbuf chain
2029  * len		length of TCP segment data, excluding options
2030  * optlen	length of TCP segment options
2031  * buf		pointer to storage for computed MD5 digest
2032  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2033  *
2034  * Return 1 if successful, otherwise return 0.
2035  */
2036 int
2037 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2038     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2039 {
2040 	char tmpdigest[TCP_SIGLEN];
2041 
2042 	if (tcp_sig_checksigs == 0)
2043 		return (1);
2044 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2045 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2046 
2047 			/*
2048 			 * If this socket is not expecting signature but
2049 			 * the segment contains signature just fail.
2050 			 */
2051 			TCPSTAT_INC(tcps_sig_err_sigopt);
2052 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2053 			return (0);
2054 		}
2055 
2056 		/* Signature is not expected, and not present in segment. */
2057 		return (1);
2058 	}
2059 
2060 	/*
2061 	 * If this socket is expecting signature but the segment does not
2062 	 * contain any just fail.
2063 	 */
2064 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2065 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2066 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2067 		return (0);
2068 	}
2069 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2070 	    IPSEC_DIR_INBOUND) == -1) {
2071 		TCPSTAT_INC(tcps_sig_err_buildsig);
2072 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2073 		return (0);
2074 	}
2075 
2076 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2077 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2078 		return (0);
2079 	}
2080 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2081 	return (1);
2082 }
2083 #endif /* TCP_SIGNATURE */
2084 
2085 static int
2086 sysctl_drop(SYSCTL_HANDLER_ARGS)
2087 {
2088 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2089 	struct sockaddr_storage addrs[2];
2090 	struct inpcb *inp;
2091 	struct tcpcb *tp;
2092 	struct tcptw *tw;
2093 	struct sockaddr_in *fin, *lin;
2094 #ifdef INET6
2095 	struct sockaddr_in6 *fin6, *lin6;
2096 #endif
2097 	int error;
2098 
2099 	inp = NULL;
2100 	fin = lin = NULL;
2101 #ifdef INET6
2102 	fin6 = lin6 = NULL;
2103 #endif
2104 	error = 0;
2105 
2106 	if (req->oldptr != NULL || req->oldlen != 0)
2107 		return (EINVAL);
2108 	if (req->newptr == NULL)
2109 		return (EPERM);
2110 	if (req->newlen < sizeof(addrs))
2111 		return (ENOMEM);
2112 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2113 	if (error)
2114 		return (error);
2115 
2116 	switch (addrs[0].ss_family) {
2117 #ifdef INET6
2118 	case AF_INET6:
2119 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2120 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2121 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2122 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2123 			return (EINVAL);
2124 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2125 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2126 				return (EINVAL);
2127 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2128 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2129 			fin = (struct sockaddr_in *)&addrs[0];
2130 			lin = (struct sockaddr_in *)&addrs[1];
2131 			break;
2132 		}
2133 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2134 		if (error)
2135 			return (error);
2136 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2137 		if (error)
2138 			return (error);
2139 		break;
2140 #endif
2141 #ifdef INET
2142 	case AF_INET:
2143 		fin = (struct sockaddr_in *)&addrs[0];
2144 		lin = (struct sockaddr_in *)&addrs[1];
2145 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2146 		    lin->sin_len != sizeof(struct sockaddr_in))
2147 			return (EINVAL);
2148 		break;
2149 #endif
2150 	default:
2151 		return (EINVAL);
2152 	}
2153 	INP_INFO_WLOCK(&V_tcbinfo);
2154 	switch (addrs[0].ss_family) {
2155 #ifdef INET6
2156 	case AF_INET6:
2157 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2158 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2159 		    INPLOOKUP_WLOCKPCB, NULL);
2160 		break;
2161 #endif
2162 #ifdef INET
2163 	case AF_INET:
2164 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2165 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2166 		break;
2167 #endif
2168 	}
2169 	if (inp != NULL) {
2170 		if (inp->inp_flags & INP_TIMEWAIT) {
2171 			/*
2172 			 * XXXRW: There currently exists a state where an
2173 			 * inpcb is present, but its timewait state has been
2174 			 * discarded.  For now, don't allow dropping of this
2175 			 * type of inpcb.
2176 			 */
2177 			tw = intotw(inp);
2178 			if (tw != NULL)
2179 				tcp_twclose(tw, 0);
2180 			else
2181 				INP_WUNLOCK(inp);
2182 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2183 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2184 			tp = intotcpcb(inp);
2185 			tp = tcp_drop(tp, ECONNABORTED);
2186 			if (tp != NULL)
2187 				INP_WUNLOCK(inp);
2188 		} else
2189 			INP_WUNLOCK(inp);
2190 	} else
2191 		error = ESRCH;
2192 	INP_INFO_WUNLOCK(&V_tcbinfo);
2193 	return (error);
2194 }
2195 
2196 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2197     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2198     0, sysctl_drop, "", "Drop TCP connection");
2199 
2200 /*
2201  * Generate a standardized TCP log line for use throughout the
2202  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2203  * allow use in the interrupt context.
2204  *
2205  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2206  * NB: The function may return NULL if memory allocation failed.
2207  *
2208  * Due to header inclusion and ordering limitations the struct ip
2209  * and ip6_hdr pointers have to be passed as void pointers.
2210  */
2211 char *
2212 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2213     const void *ip6hdr)
2214 {
2215 
2216 	/* Is logging enabled? */
2217 	if (tcp_log_in_vain == 0)
2218 		return (NULL);
2219 
2220 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2221 }
2222 
2223 char *
2224 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2225     const void *ip6hdr)
2226 {
2227 
2228 	/* Is logging enabled? */
2229 	if (tcp_log_debug == 0)
2230 		return (NULL);
2231 
2232 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2233 }
2234 
2235 static char *
2236 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2237     const void *ip6hdr)
2238 {
2239 	char *s, *sp;
2240 	size_t size;
2241 	struct ip *ip;
2242 #ifdef INET6
2243 	const struct ip6_hdr *ip6;
2244 
2245 	ip6 = (const struct ip6_hdr *)ip6hdr;
2246 #endif /* INET6 */
2247 	ip = (struct ip *)ip4hdr;
2248 
2249 	/*
2250 	 * The log line looks like this:
2251 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2252 	 */
2253 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2254 	    sizeof(PRINT_TH_FLAGS) + 1 +
2255 #ifdef INET6
2256 	    2 * INET6_ADDRSTRLEN;
2257 #else
2258 	    2 * INET_ADDRSTRLEN;
2259 #endif /* INET6 */
2260 
2261 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2262 	if (s == NULL)
2263 		return (NULL);
2264 
2265 	strcat(s, "TCP: [");
2266 	sp = s + strlen(s);
2267 
2268 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2269 		inet_ntoa_r(inc->inc_faddr, sp);
2270 		sp = s + strlen(s);
2271 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2272 		sp = s + strlen(s);
2273 		inet_ntoa_r(inc->inc_laddr, sp);
2274 		sp = s + strlen(s);
2275 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2276 #ifdef INET6
2277 	} else if (inc) {
2278 		ip6_sprintf(sp, &inc->inc6_faddr);
2279 		sp = s + strlen(s);
2280 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2281 		sp = s + strlen(s);
2282 		ip6_sprintf(sp, &inc->inc6_laddr);
2283 		sp = s + strlen(s);
2284 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2285 	} else if (ip6 && th) {
2286 		ip6_sprintf(sp, &ip6->ip6_src);
2287 		sp = s + strlen(s);
2288 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2289 		sp = s + strlen(s);
2290 		ip6_sprintf(sp, &ip6->ip6_dst);
2291 		sp = s + strlen(s);
2292 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2293 #endif /* INET6 */
2294 #ifdef INET
2295 	} else if (ip && th) {
2296 		inet_ntoa_r(ip->ip_src, sp);
2297 		sp = s + strlen(s);
2298 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2299 		sp = s + strlen(s);
2300 		inet_ntoa_r(ip->ip_dst, sp);
2301 		sp = s + strlen(s);
2302 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2303 #endif /* INET */
2304 	} else {
2305 		free(s, M_TCPLOG);
2306 		return (NULL);
2307 	}
2308 	sp = s + strlen(s);
2309 	if (th)
2310 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2311 	if (*(s + size - 1) != '\0')
2312 		panic("%s: string too long", __func__);
2313 	return (s);
2314 }
2315