1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 #include <sys/random.h> 57 58 #include <vm/vm_zone.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #define _IP_VHL 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #ifdef INET6 68 #include <netinet/ip6.h> 69 #endif 70 #include <netinet/in_pcb.h> 71 #ifdef INET6 72 #include <netinet6/in6_pcb.h> 73 #endif 74 #include <netinet/in_var.h> 75 #include <netinet/ip_var.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #endif 79 #include <netinet/tcp.h> 80 #include <netinet/tcp_fsm.h> 81 #include <netinet/tcp_seq.h> 82 #include <netinet/tcp_timer.h> 83 #include <netinet/tcp_var.h> 84 #ifdef INET6 85 #include <netinet6/tcp6_var.h> 86 #endif 87 #include <netinet/tcpip.h> 88 #ifdef TCPDEBUG 89 #include <netinet/tcp_debug.h> 90 #endif 91 #include <netinet6/ip6protosw.h> 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #ifdef INET6 96 #include <netinet6/ipsec6.h> 97 #endif 98 #endif /*IPSEC*/ 99 100 #include <machine/in_cksum.h> 101 102 int tcp_mssdflt = TCP_MSS; 103 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 104 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 105 106 #ifdef INET6 107 int tcp_v6mssdflt = TCP6_MSS; 108 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 109 CTLFLAG_RW, &tcp_v6mssdflt , 0, 110 "Default TCP Maximum Segment Size for IPv6"); 111 #endif 112 113 #if 0 114 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 115 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 116 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 117 #endif 118 119 static int tcp_do_rfc1323 = 1; 120 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 121 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 122 123 static int tcp_do_rfc1644 = 0; 124 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 125 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 126 127 static int tcp_tcbhashsize = 0; 128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 129 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 130 131 static int do_tcpdrain = 1; 132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 133 "Enable tcp_drain routine for extra help when low on mbufs"); 134 135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 136 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 137 138 static int icmp_may_rst = 1; 139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0, 140 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 141 142 static void tcp_cleartaocache __P((void)); 143 static void tcp_notify __P((struct inpcb *, int)); 144 145 /* 146 * Target size of TCP PCB hash tables. Must be a power of two. 147 * 148 * Note that this can be overridden by the kernel environment 149 * variable net.inet.tcp.tcbhashsize 150 */ 151 #ifndef TCBHASHSIZE 152 #define TCBHASHSIZE 512 153 #endif 154 155 /* 156 * This is the actual shape of what we allocate using the zone 157 * allocator. Doing it this way allows us to protect both structures 158 * using the same generation count, and also eliminates the overhead 159 * of allocating tcpcbs separately. By hiding the structure here, 160 * we avoid changing most of the rest of the code (although it needs 161 * to be changed, eventually, for greater efficiency). 162 */ 163 #define ALIGNMENT 32 164 #define ALIGNM1 (ALIGNMENT - 1) 165 struct inp_tp { 166 union { 167 struct inpcb inp; 168 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 169 } inp_tp_u; 170 struct tcpcb tcb; 171 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 172 struct callout inp_tp_delack; 173 }; 174 #undef ALIGNMENT 175 #undef ALIGNM1 176 177 /* 178 * Tcp initialization 179 */ 180 void 181 tcp_init() 182 { 183 int hashsize = TCBHASHSIZE; 184 185 tcp_ccgen = 1; 186 tcp_cleartaocache(); 187 188 tcp_delacktime = TCPTV_DELACK; 189 tcp_keepinit = TCPTV_KEEP_INIT; 190 tcp_keepidle = TCPTV_KEEP_IDLE; 191 tcp_keepintvl = TCPTV_KEEPINTVL; 192 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 193 tcp_msl = TCPTV_MSL; 194 195 LIST_INIT(&tcb); 196 tcbinfo.listhead = &tcb; 197 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 198 if (!powerof2(hashsize)) { 199 printf("WARNING: TCB hash size not a power of 2\n"); 200 hashsize = 512; /* safe default */ 201 } 202 tcp_tcbhashsize = hashsize; 203 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 204 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 205 &tcbinfo.porthashmask); 206 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets, 207 ZONE_INTERRUPT, 0); 208 #ifdef INET6 209 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 210 #else /* INET6 */ 211 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 212 #endif /* INET6 */ 213 if (max_protohdr < TCP_MINPROTOHDR) 214 max_protohdr = TCP_MINPROTOHDR; 215 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 216 panic("tcp_init"); 217 #undef TCP_MINPROTOHDR 218 } 219 220 /* 221 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 222 * tcp_template used to store this data in mbufs, but we now recopy it out 223 * of the tcpcb each time to conserve mbufs. 224 */ 225 void 226 tcp_fillheaders(tp, ip_ptr, tcp_ptr) 227 struct tcpcb *tp; 228 void *ip_ptr; 229 void *tcp_ptr; 230 { 231 struct inpcb *inp = tp->t_inpcb; 232 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr; 233 234 #ifdef INET6 235 if ((inp->inp_vflag & INP_IPV6) != 0) { 236 struct ip6_hdr *ip6; 237 238 ip6 = (struct ip6_hdr *)ip_ptr; 239 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 240 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 241 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 242 (IPV6_VERSION & IPV6_VERSION_MASK); 243 ip6->ip6_nxt = IPPROTO_TCP; 244 ip6->ip6_plen = sizeof(struct tcphdr); 245 ip6->ip6_src = inp->in6p_laddr; 246 ip6->ip6_dst = inp->in6p_faddr; 247 tcp_hdr->th_sum = 0; 248 } else 249 #endif 250 { 251 struct ip *ip = (struct ip *) ip_ptr; 252 253 ip->ip_vhl = IP_VHL_BORING; 254 ip->ip_tos = 0; 255 ip->ip_len = 0; 256 ip->ip_id = 0; 257 ip->ip_off = 0; 258 ip->ip_ttl = 0; 259 ip->ip_sum = 0; 260 ip->ip_p = IPPROTO_TCP; 261 ip->ip_src = inp->inp_laddr; 262 ip->ip_dst = inp->inp_faddr; 263 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 264 htons(sizeof(struct tcphdr) + IPPROTO_TCP)); 265 } 266 267 tcp_hdr->th_sport = inp->inp_lport; 268 tcp_hdr->th_dport = inp->inp_fport; 269 tcp_hdr->th_seq = 0; 270 tcp_hdr->th_ack = 0; 271 tcp_hdr->th_x2 = 0; 272 tcp_hdr->th_off = 5; 273 tcp_hdr->th_flags = 0; 274 tcp_hdr->th_win = 0; 275 tcp_hdr->th_urp = 0; 276 } 277 278 /* 279 * Create template to be used to send tcp packets on a connection. 280 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 281 * use for this function is in keepalives, which use tcp_respond. 282 */ 283 struct tcptemp * 284 tcp_maketemplate(tp) 285 struct tcpcb *tp; 286 { 287 struct mbuf *m; 288 struct tcptemp *n; 289 290 m = m_get(M_DONTWAIT, MT_HEADER); 291 if (m == NULL) 292 return (0); 293 m->m_len = sizeof(struct tcptemp); 294 n = mtod(m, struct tcptemp *); 295 296 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t); 297 return (n); 298 } 299 300 /* 301 * Send a single message to the TCP at address specified by 302 * the given TCP/IP header. If m == 0, then we make a copy 303 * of the tcpiphdr at ti and send directly to the addressed host. 304 * This is used to force keep alive messages out using the TCP 305 * template for a connection. If flags are given then we send 306 * a message back to the TCP which originated the * segment ti, 307 * and discard the mbuf containing it and any other attached mbufs. 308 * 309 * In any case the ack and sequence number of the transmitted 310 * segment are as specified by the parameters. 311 * 312 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 313 */ 314 void 315 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 316 struct tcpcb *tp; 317 void *ipgen; 318 register struct tcphdr *th; 319 register struct mbuf *m; 320 tcp_seq ack, seq; 321 int flags; 322 { 323 register int tlen; 324 int win = 0; 325 struct route *ro = 0; 326 struct route sro; 327 struct ip *ip; 328 struct tcphdr *nth; 329 #ifdef INET6 330 struct route_in6 *ro6 = 0; 331 struct route_in6 sro6; 332 struct ip6_hdr *ip6; 333 int isipv6; 334 #endif /* INET6 */ 335 int ipflags = 0; 336 337 #ifdef INET6 338 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 339 ip6 = ipgen; 340 #endif /* INET6 */ 341 ip = ipgen; 342 343 if (tp) { 344 if (!(flags & TH_RST)) { 345 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 346 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 347 win = (long)TCP_MAXWIN << tp->rcv_scale; 348 } 349 #ifdef INET6 350 if (isipv6) 351 ro6 = &tp->t_inpcb->in6p_route; 352 else 353 #endif /* INET6 */ 354 ro = &tp->t_inpcb->inp_route; 355 } else { 356 #ifdef INET6 357 if (isipv6) { 358 ro6 = &sro6; 359 bzero(ro6, sizeof *ro6); 360 } else 361 #endif /* INET6 */ 362 { 363 ro = &sro; 364 bzero(ro, sizeof *ro); 365 } 366 } 367 if (m == 0) { 368 m = m_gethdr(M_DONTWAIT, MT_HEADER); 369 if (m == NULL) 370 return; 371 tlen = 0; 372 m->m_data += max_linkhdr; 373 #ifdef INET6 374 if (isipv6) { 375 bcopy((caddr_t)ip6, mtod(m, caddr_t), 376 sizeof(struct ip6_hdr)); 377 ip6 = mtod(m, struct ip6_hdr *); 378 nth = (struct tcphdr *)(ip6 + 1); 379 } else 380 #endif /* INET6 */ 381 { 382 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 383 ip = mtod(m, struct ip *); 384 nth = (struct tcphdr *)(ip + 1); 385 } 386 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 387 flags = TH_ACK; 388 } else { 389 m_freem(m->m_next); 390 m->m_next = 0; 391 m->m_data = (caddr_t)ipgen; 392 /* m_len is set later */ 393 tlen = 0; 394 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 395 #ifdef INET6 396 if (isipv6) { 397 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 398 nth = (struct tcphdr *)(ip6 + 1); 399 } else 400 #endif /* INET6 */ 401 { 402 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 403 nth = (struct tcphdr *)(ip + 1); 404 } 405 if (th != nth) { 406 /* 407 * this is usually a case when an extension header 408 * exists between the IPv6 header and the 409 * TCP header. 410 */ 411 nth->th_sport = th->th_sport; 412 nth->th_dport = th->th_dport; 413 } 414 xchg(nth->th_dport, nth->th_sport, n_short); 415 #undef xchg 416 } 417 #ifdef INET6 418 if (isipv6) { 419 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 420 tlen)); 421 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 422 } else 423 #endif 424 { 425 tlen += sizeof (struct tcpiphdr); 426 ip->ip_len = tlen; 427 ip->ip_ttl = ip_defttl; 428 } 429 m->m_len = tlen; 430 m->m_pkthdr.len = tlen; 431 m->m_pkthdr.rcvif = (struct ifnet *) 0; 432 nth->th_seq = htonl(seq); 433 nth->th_ack = htonl(ack); 434 nth->th_x2 = 0; 435 nth->th_off = sizeof (struct tcphdr) >> 2; 436 nth->th_flags = flags; 437 if (tp) 438 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 439 else 440 nth->th_win = htons((u_short)win); 441 nth->th_urp = 0; 442 #ifdef INET6 443 if (isipv6) { 444 nth->th_sum = 0; 445 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 446 sizeof(struct ip6_hdr), 447 tlen - sizeof(struct ip6_hdr)); 448 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 449 ro6 && ro6->ro_rt ? 450 ro6->ro_rt->rt_ifp : 451 NULL); 452 } else 453 #endif /* INET6 */ 454 { 455 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 456 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 457 m->m_pkthdr.csum_flags = CSUM_TCP; 458 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 459 } 460 #ifdef TCPDEBUG 461 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 462 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 463 #endif 464 #ifdef IPSEC 465 if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) { 466 m_freem(m); 467 return; 468 } 469 #endif 470 #ifdef INET6 471 if (isipv6) { 472 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 473 if (ro6 == &sro6 && ro6->ro_rt) { 474 RTFREE(ro6->ro_rt); 475 ro6->ro_rt = NULL; 476 } 477 } else 478 #endif /* INET6 */ 479 { 480 (void) ip_output(m, NULL, ro, ipflags, NULL); 481 if (ro == &sro && ro->ro_rt) { 482 RTFREE(ro->ro_rt); 483 ro->ro_rt = NULL; 484 } 485 } 486 } 487 488 /* 489 * Create a new TCP control block, making an 490 * empty reassembly queue and hooking it to the argument 491 * protocol control block. The `inp' parameter must have 492 * come from the zone allocator set up in tcp_init(). 493 */ 494 struct tcpcb * 495 tcp_newtcpcb(inp) 496 struct inpcb *inp; 497 { 498 struct inp_tp *it; 499 register struct tcpcb *tp; 500 #ifdef INET6 501 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 502 #endif /* INET6 */ 503 504 it = (struct inp_tp *)inp; 505 tp = &it->tcb; 506 bzero((char *) tp, sizeof(struct tcpcb)); 507 LIST_INIT(&tp->t_segq); 508 tp->t_maxseg = tp->t_maxopd = 509 #ifdef INET6 510 isipv6 ? tcp_v6mssdflt : 511 #endif /* INET6 */ 512 tcp_mssdflt; 513 514 /* Set up our timeouts. */ 515 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0); 516 callout_init(tp->tt_persist = &it->inp_tp_persist, 0); 517 callout_init(tp->tt_keep = &it->inp_tp_keep, 0); 518 callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0); 519 callout_init(tp->tt_delack = &it->inp_tp_delack, 0); 520 521 if (tcp_do_rfc1323) 522 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 523 if (tcp_do_rfc1644) 524 tp->t_flags |= TF_REQ_CC; 525 tp->t_inpcb = inp; /* XXX */ 526 /* 527 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 528 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 529 * reasonable initial retransmit time. 530 */ 531 tp->t_srtt = TCPTV_SRTTBASE; 532 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 533 tp->t_rttmin = TCPTV_MIN; 534 tp->t_rxtcur = TCPTV_RTOBASE; 535 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 536 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 537 tp->t_rcvtime = ticks; 538 /* 539 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 540 * because the socket may be bound to an IPv6 wildcard address, 541 * which may match an IPv4-mapped IPv6 address. 542 */ 543 inp->inp_ip_ttl = ip_defttl; 544 inp->inp_ppcb = (caddr_t)tp; 545 return (tp); /* XXX */ 546 } 547 548 /* 549 * Drop a TCP connection, reporting 550 * the specified error. If connection is synchronized, 551 * then send a RST to peer. 552 */ 553 struct tcpcb * 554 tcp_drop(tp, errno) 555 register struct tcpcb *tp; 556 int errno; 557 { 558 struct socket *so = tp->t_inpcb->inp_socket; 559 560 if (TCPS_HAVERCVDSYN(tp->t_state)) { 561 tp->t_state = TCPS_CLOSED; 562 (void) tcp_output(tp); 563 tcpstat.tcps_drops++; 564 } else 565 tcpstat.tcps_conndrops++; 566 if (errno == ETIMEDOUT && tp->t_softerror) 567 errno = tp->t_softerror; 568 so->so_error = errno; 569 return (tcp_close(tp)); 570 } 571 572 /* 573 * Close a TCP control block: 574 * discard all space held by the tcp 575 * discard internet protocol block 576 * wake up any sleepers 577 */ 578 struct tcpcb * 579 tcp_close(tp) 580 register struct tcpcb *tp; 581 { 582 register struct tseg_qent *q; 583 struct inpcb *inp = tp->t_inpcb; 584 struct socket *so = inp->inp_socket; 585 #ifdef INET6 586 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 587 #endif /* INET6 */ 588 register struct rtentry *rt; 589 int dosavessthresh; 590 591 /* 592 * Make sure that all of our timers are stopped before we 593 * delete the PCB. 594 */ 595 callout_stop(tp->tt_rexmt); 596 callout_stop(tp->tt_persist); 597 callout_stop(tp->tt_keep); 598 callout_stop(tp->tt_2msl); 599 callout_stop(tp->tt_delack); 600 601 /* 602 * If we got enough samples through the srtt filter, 603 * save the rtt and rttvar in the routing entry. 604 * 'Enough' is arbitrarily defined as the 16 samples. 605 * 16 samples is enough for the srtt filter to converge 606 * to within 5% of the correct value; fewer samples and 607 * we could save a very bogus rtt. 608 * 609 * Don't update the default route's characteristics and don't 610 * update anything that the user "locked". 611 */ 612 if (tp->t_rttupdated >= 16) { 613 register u_long i = 0; 614 #ifdef INET6 615 if (isipv6) { 616 struct sockaddr_in6 *sin6; 617 618 if ((rt = inp->in6p_route.ro_rt) == NULL) 619 goto no_valid_rt; 620 sin6 = (struct sockaddr_in6 *)rt_key(rt); 621 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 622 goto no_valid_rt; 623 } 624 else 625 #endif /* INET6 */ 626 if ((rt = inp->inp_route.ro_rt) == NULL || 627 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 628 == INADDR_ANY) 629 goto no_valid_rt; 630 631 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 632 i = tp->t_srtt * 633 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 634 if (rt->rt_rmx.rmx_rtt && i) 635 /* 636 * filter this update to half the old & half 637 * the new values, converting scale. 638 * See route.h and tcp_var.h for a 639 * description of the scaling constants. 640 */ 641 rt->rt_rmx.rmx_rtt = 642 (rt->rt_rmx.rmx_rtt + i) / 2; 643 else 644 rt->rt_rmx.rmx_rtt = i; 645 tcpstat.tcps_cachedrtt++; 646 } 647 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 648 i = tp->t_rttvar * 649 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 650 if (rt->rt_rmx.rmx_rttvar && i) 651 rt->rt_rmx.rmx_rttvar = 652 (rt->rt_rmx.rmx_rttvar + i) / 2; 653 else 654 rt->rt_rmx.rmx_rttvar = i; 655 tcpstat.tcps_cachedrttvar++; 656 } 657 /* 658 * The old comment here said: 659 * update the pipelimit (ssthresh) if it has been updated 660 * already or if a pipesize was specified & the threshhold 661 * got below half the pipesize. I.e., wait for bad news 662 * before we start updating, then update on both good 663 * and bad news. 664 * 665 * But we want to save the ssthresh even if no pipesize is 666 * specified explicitly in the route, because such 667 * connections still have an implicit pipesize specified 668 * by the global tcp_sendspace. In the absence of a reliable 669 * way to calculate the pipesize, it will have to do. 670 */ 671 i = tp->snd_ssthresh; 672 if (rt->rt_rmx.rmx_sendpipe != 0) 673 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 674 else 675 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 676 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 677 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 678 || dosavessthresh) { 679 /* 680 * convert the limit from user data bytes to 681 * packets then to packet data bytes. 682 */ 683 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 684 if (i < 2) 685 i = 2; 686 i *= (u_long)(tp->t_maxseg + 687 #ifdef INET6 688 (isipv6 ? sizeof (struct ip6_hdr) + 689 sizeof (struct tcphdr) : 690 #endif 691 sizeof (struct tcpiphdr) 692 #ifdef INET6 693 ) 694 #endif 695 ); 696 if (rt->rt_rmx.rmx_ssthresh) 697 rt->rt_rmx.rmx_ssthresh = 698 (rt->rt_rmx.rmx_ssthresh + i) / 2; 699 else 700 rt->rt_rmx.rmx_ssthresh = i; 701 tcpstat.tcps_cachedssthresh++; 702 } 703 } 704 rt = inp->inp_route.ro_rt; 705 if (rt) { 706 /* 707 * mark route for deletion if no information is 708 * cached. 709 */ 710 if ((tp->t_flags & TF_LQ_OVERFLOW) && 711 ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){ 712 if (rt->rt_rmx.rmx_rtt == 0) 713 rt->rt_flags |= RTF_DELCLONE; 714 } 715 } 716 no_valid_rt: 717 /* free the reassembly queue, if any */ 718 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 719 LIST_REMOVE(q, tqe_q); 720 m_freem(q->tqe_m); 721 FREE(q, M_TSEGQ); 722 } 723 inp->inp_ppcb = NULL; 724 soisdisconnected(so); 725 #ifdef INET6 726 if (INP_CHECK_SOCKAF(so, AF_INET6)) 727 in6_pcbdetach(inp); 728 else 729 #endif /* INET6 */ 730 in_pcbdetach(inp); 731 tcpstat.tcps_closed++; 732 return ((struct tcpcb *)0); 733 } 734 735 void 736 tcp_drain() 737 { 738 if (do_tcpdrain) 739 { 740 struct inpcb *inpb; 741 struct tcpcb *tcpb; 742 struct tseg_qent *te; 743 744 /* 745 * Walk the tcpbs, if existing, and flush the reassembly queue, 746 * if there is one... 747 * XXX: The "Net/3" implementation doesn't imply that the TCP 748 * reassembly queue should be flushed, but in a situation 749 * where we're really low on mbufs, this is potentially 750 * usefull. 751 */ 752 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) { 753 if ((tcpb = intotcpcb(inpb))) { 754 while ((te = LIST_FIRST(&tcpb->t_segq)) 755 != NULL) { 756 LIST_REMOVE(te, tqe_q); 757 m_freem(te->tqe_m); 758 FREE(te, M_TSEGQ); 759 } 760 } 761 } 762 } 763 } 764 765 /* 766 * Notify a tcp user of an asynchronous error; 767 * store error as soft error, but wake up user 768 * (for now, won't do anything until can select for soft error). 769 * 770 * Do not wake up user since there currently is no mechanism for 771 * reporting soft errors (yet - a kqueue filter may be added). 772 */ 773 static void 774 tcp_notify(inp, error) 775 struct inpcb *inp; 776 int error; 777 { 778 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 779 780 /* 781 * Ignore some errors if we are hooked up. 782 * If connection hasn't completed, has retransmitted several times, 783 * and receives a second error, give up now. This is better 784 * than waiting a long time to establish a connection that 785 * can never complete. 786 */ 787 if (tp->t_state == TCPS_ESTABLISHED && 788 (error == EHOSTUNREACH || error == ENETUNREACH || 789 error == EHOSTDOWN)) { 790 return; 791 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 792 tp->t_softerror) 793 tcp_drop(tp, error); 794 else 795 tp->t_softerror = error; 796 #if 0 797 wakeup((caddr_t) &so->so_timeo); 798 sorwakeup(so); 799 sowwakeup(so); 800 #endif 801 } 802 803 static int 804 tcp_pcblist(SYSCTL_HANDLER_ARGS) 805 { 806 int error, i, n, s; 807 struct inpcb *inp, **inp_list; 808 inp_gen_t gencnt; 809 struct xinpgen xig; 810 811 /* 812 * The process of preparing the TCB list is too time-consuming and 813 * resource-intensive to repeat twice on every request. 814 */ 815 if (req->oldptr == 0) { 816 n = tcbinfo.ipi_count; 817 req->oldidx = 2 * (sizeof xig) 818 + (n + n/8) * sizeof(struct xtcpcb); 819 return 0; 820 } 821 822 if (req->newptr != 0) 823 return EPERM; 824 825 /* 826 * OK, now we're committed to doing something. 827 */ 828 s = splnet(); 829 gencnt = tcbinfo.ipi_gencnt; 830 n = tcbinfo.ipi_count; 831 splx(s); 832 833 xig.xig_len = sizeof xig; 834 xig.xig_count = n; 835 xig.xig_gen = gencnt; 836 xig.xig_sogen = so_gencnt; 837 error = SYSCTL_OUT(req, &xig, sizeof xig); 838 if (error) 839 return error; 840 841 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 842 if (inp_list == 0) 843 return ENOMEM; 844 845 s = splnet(); 846 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n; 847 inp = LIST_NEXT(inp, inp_list)) { 848 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp)) 849 inp_list[i++] = inp; 850 } 851 splx(s); 852 n = i; 853 854 error = 0; 855 for (i = 0; i < n; i++) { 856 inp = inp_list[i]; 857 if (inp->inp_gencnt <= gencnt) { 858 struct xtcpcb xt; 859 caddr_t inp_ppcb; 860 xt.xt_len = sizeof xt; 861 /* XXX should avoid extra copy */ 862 bcopy(inp, &xt.xt_inp, sizeof *inp); 863 inp_ppcb = inp->inp_ppcb; 864 if (inp_ppcb != NULL) 865 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 866 else 867 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 868 if (inp->inp_socket) 869 sotoxsocket(inp->inp_socket, &xt.xt_socket); 870 error = SYSCTL_OUT(req, &xt, sizeof xt); 871 } 872 } 873 if (!error) { 874 /* 875 * Give the user an updated idea of our state. 876 * If the generation differs from what we told 877 * her before, she knows that something happened 878 * while we were processing this request, and it 879 * might be necessary to retry. 880 */ 881 s = splnet(); 882 xig.xig_gen = tcbinfo.ipi_gencnt; 883 xig.xig_sogen = so_gencnt; 884 xig.xig_count = tcbinfo.ipi_count; 885 splx(s); 886 error = SYSCTL_OUT(req, &xig, sizeof xig); 887 } 888 free(inp_list, M_TEMP); 889 return error; 890 } 891 892 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 893 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 894 895 static int 896 tcp_getcred(SYSCTL_HANDLER_ARGS) 897 { 898 struct xucred xuc; 899 struct sockaddr_in addrs[2]; 900 struct inpcb *inp; 901 int error, s; 902 903 error = suser_xxx(0, req->p, PRISON_ROOT); 904 if (error) 905 return (error); 906 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 907 if (error) 908 return (error); 909 s = splnet(); 910 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 911 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 912 if (inp == NULL || inp->inp_socket == NULL) { 913 error = ENOENT; 914 goto out; 915 } 916 error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred); 917 if (error) 918 goto out; 919 bzero(&xuc, sizeof(xuc)); 920 xuc.cr_uid = inp->inp_socket->so_cred->cr_uid; 921 xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups; 922 bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups, 923 sizeof(xuc.cr_groups)); 924 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 925 out: 926 splx(s); 927 return (error); 928 } 929 930 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 931 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 932 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 933 934 #ifdef INET6 935 static int 936 tcp6_getcred(SYSCTL_HANDLER_ARGS) 937 { 938 struct xucred xuc; 939 struct sockaddr_in6 addrs[2]; 940 struct inpcb *inp; 941 int error, s, mapped = 0; 942 943 error = suser_xxx(0, req->p, PRISON_ROOT); 944 if (error) 945 return (error); 946 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 947 if (error) 948 return (error); 949 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 950 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 951 mapped = 1; 952 else 953 return (EINVAL); 954 } 955 s = splnet(); 956 if (mapped == 1) 957 inp = in_pcblookup_hash(&tcbinfo, 958 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 959 addrs[1].sin6_port, 960 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 961 addrs[0].sin6_port, 962 0, NULL); 963 else 964 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 965 addrs[1].sin6_port, 966 &addrs[0].sin6_addr, addrs[0].sin6_port, 967 0, NULL); 968 if (inp == NULL || inp->inp_socket == NULL) { 969 error = ENOENT; 970 goto out; 971 } 972 error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred); 973 if (error) 974 goto out; 975 bzero(&xuc, sizeof(xuc)); 976 xuc.cr_uid = inp->inp_socket->so_cred->cr_uid; 977 xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups; 978 bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups, 979 sizeof(xuc.cr_groups)); 980 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 981 out: 982 splx(s); 983 return (error); 984 } 985 986 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 987 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 988 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 989 #endif 990 991 992 void 993 tcp_ctlinput(cmd, sa, vip) 994 int cmd; 995 struct sockaddr *sa; 996 void *vip; 997 { 998 struct ip *ip = vip; 999 struct tcphdr *th; 1000 struct in_addr faddr; 1001 struct inpcb *inp; 1002 struct tcpcb *tp; 1003 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 1004 tcp_seq icmp_seq; 1005 int s; 1006 1007 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1008 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1009 return; 1010 1011 if (cmd == PRC_QUENCH) 1012 notify = tcp_quench; 1013 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1014 cmd == PRC_UNREACH_PORT) && ip) 1015 notify = tcp_drop_syn_sent; 1016 else if (cmd == PRC_MSGSIZE) 1017 notify = tcp_mtudisc; 1018 else if (PRC_IS_REDIRECT(cmd)) { 1019 ip = 0; 1020 notify = in_rtchange; 1021 } else if (cmd == PRC_HOSTDEAD) 1022 ip = 0; 1023 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0) 1024 return; 1025 if (ip) { 1026 s = splnet(); 1027 th = (struct tcphdr *)((caddr_t)ip 1028 + (IP_VHL_HL(ip->ip_vhl) << 2)); 1029 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport, 1030 ip->ip_src, th->th_sport, 0, NULL); 1031 if (inp != NULL && inp->inp_socket != NULL) { 1032 icmp_seq = htonl(th->th_seq); 1033 tp = intotcpcb(inp); 1034 if (SEQ_GEQ(icmp_seq, tp->snd_una) && 1035 SEQ_LT(icmp_seq, tp->snd_max)) 1036 (*notify)(inp, inetctlerrmap[cmd]); 1037 } 1038 splx(s); 1039 } else 1040 in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify); 1041 } 1042 1043 #ifdef INET6 1044 void 1045 tcp6_ctlinput(cmd, sa, d) 1046 int cmd; 1047 struct sockaddr *sa; 1048 void *d; 1049 { 1050 struct tcphdr th; 1051 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 1052 struct ip6_hdr *ip6; 1053 struct mbuf *m; 1054 struct ip6ctlparam *ip6cp = NULL; 1055 const struct sockaddr_in6 *sa6_src = NULL; 1056 int off; 1057 struct tcp_portonly { 1058 u_int16_t th_sport; 1059 u_int16_t th_dport; 1060 } *thp; 1061 1062 if (sa->sa_family != AF_INET6 || 1063 sa->sa_len != sizeof(struct sockaddr_in6)) 1064 return; 1065 1066 if (cmd == PRC_QUENCH) 1067 notify = tcp_quench; 1068 else if (cmd == PRC_MSGSIZE) 1069 notify = tcp_mtudisc; 1070 else if (!PRC_IS_REDIRECT(cmd) && 1071 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1072 return; 1073 1074 /* if the parameter is from icmp6, decode it. */ 1075 if (d != NULL) { 1076 ip6cp = (struct ip6ctlparam *)d; 1077 m = ip6cp->ip6c_m; 1078 ip6 = ip6cp->ip6c_ip6; 1079 off = ip6cp->ip6c_off; 1080 sa6_src = ip6cp->ip6c_src; 1081 } else { 1082 m = NULL; 1083 ip6 = NULL; 1084 off = 0; /* fool gcc */ 1085 sa6_src = &sa6_any; 1086 } 1087 1088 if (ip6) { 1089 /* 1090 * XXX: We assume that when IPV6 is non NULL, 1091 * M and OFF are valid. 1092 */ 1093 1094 /* check if we can safely examine src and dst ports */ 1095 if (m->m_pkthdr.len < off + sizeof(*thp)) 1096 return; 1097 1098 bzero(&th, sizeof(th)); 1099 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1100 1101 in6_pcbnotify(&tcb, sa, th.th_dport, 1102 (struct sockaddr *)ip6cp->ip6c_src, 1103 th.th_sport, cmd, notify); 1104 } else 1105 in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src, 1106 0, cmd, notify); 1107 } 1108 #endif /* INET6 */ 1109 1110 #define TCP_RNDISS_ROUNDS 16 1111 #define TCP_RNDISS_OUT 7200 1112 #define TCP_RNDISS_MAX 30000 1113 1114 u_int8_t tcp_rndiss_sbox[128]; 1115 u_int16_t tcp_rndiss_msb; 1116 u_int16_t tcp_rndiss_cnt; 1117 long tcp_rndiss_reseed; 1118 1119 u_int16_t 1120 tcp_rndiss_encrypt(val) 1121 u_int16_t val; 1122 { 1123 u_int16_t sum = 0, i; 1124 1125 for (i = 0; i < TCP_RNDISS_ROUNDS; i++) { 1126 sum += 0x79b9; 1127 val ^= ((u_int16_t)tcp_rndiss_sbox[(val^sum) & 0x7f]) << 7; 1128 val = ((val & 0xff) << 7) | (val >> 8); 1129 } 1130 1131 return val; 1132 } 1133 1134 void 1135 tcp_rndiss_init() 1136 { 1137 struct timeval time; 1138 1139 getmicrotime(&time); 1140 read_random(tcp_rndiss_sbox, sizeof(tcp_rndiss_sbox)); 1141 1142 tcp_rndiss_reseed = time.tv_sec + TCP_RNDISS_OUT; 1143 tcp_rndiss_msb = tcp_rndiss_msb == 0x8000 ? 0 : 0x8000; 1144 tcp_rndiss_cnt = 0; 1145 } 1146 1147 tcp_seq 1148 tcp_rndiss_next() 1149 { 1150 u_int16_t tmp; 1151 struct timeval time; 1152 1153 getmicrotime(&time); 1154 1155 if (tcp_rndiss_cnt >= TCP_RNDISS_MAX || 1156 time.tv_sec > tcp_rndiss_reseed) 1157 tcp_rndiss_init(); 1158 1159 read_random(&tmp, sizeof(tmp)); 1160 1161 /* (tmp & 0x7fff) ensures a 32768 byte gap between ISS */ 1162 return ((tcp_rndiss_encrypt(tcp_rndiss_cnt++) | tcp_rndiss_msb) <<16) | 1163 (tmp & 0x7fff); 1164 } 1165 1166 1167 /* 1168 * When a source quench is received, close congestion window 1169 * to one segment. We will gradually open it again as we proceed. 1170 */ 1171 void 1172 tcp_quench(inp, errno) 1173 struct inpcb *inp; 1174 int errno; 1175 { 1176 struct tcpcb *tp = intotcpcb(inp); 1177 1178 if (tp) 1179 tp->snd_cwnd = tp->t_maxseg; 1180 } 1181 1182 /* 1183 * When a specific ICMP unreachable message is received and the 1184 * connection state is SYN-SENT, drop the connection. This behavior 1185 * is controlled by the icmp_may_rst sysctl. 1186 */ 1187 void 1188 tcp_drop_syn_sent(inp, errno) 1189 struct inpcb *inp; 1190 int errno; 1191 { 1192 struct tcpcb *tp = intotcpcb(inp); 1193 1194 if (tp && tp->t_state == TCPS_SYN_SENT) 1195 tcp_drop(tp, errno); 1196 } 1197 1198 /* 1199 * When `need fragmentation' ICMP is received, update our idea of the MSS 1200 * based on the new value in the route. Also nudge TCP to send something, 1201 * since we know the packet we just sent was dropped. 1202 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1203 */ 1204 void 1205 tcp_mtudisc(inp, errno) 1206 struct inpcb *inp; 1207 int errno; 1208 { 1209 struct tcpcb *tp = intotcpcb(inp); 1210 struct rtentry *rt; 1211 struct rmxp_tao *taop; 1212 struct socket *so = inp->inp_socket; 1213 int offered; 1214 int mss; 1215 #ifdef INET6 1216 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1217 #endif /* INET6 */ 1218 1219 if (tp) { 1220 #ifdef INET6 1221 if (isipv6) 1222 rt = tcp_rtlookup6(inp); 1223 else 1224 #endif /* INET6 */ 1225 rt = tcp_rtlookup(inp); 1226 if (!rt || !rt->rt_rmx.rmx_mtu) { 1227 tp->t_maxopd = tp->t_maxseg = 1228 #ifdef INET6 1229 isipv6 ? tcp_v6mssdflt : 1230 #endif /* INET6 */ 1231 tcp_mssdflt; 1232 return; 1233 } 1234 taop = rmx_taop(rt->rt_rmx); 1235 offered = taop->tao_mssopt; 1236 mss = rt->rt_rmx.rmx_mtu - 1237 #ifdef INET6 1238 (isipv6 ? 1239 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1240 #endif /* INET6 */ 1241 sizeof(struct tcpiphdr) 1242 #ifdef INET6 1243 ) 1244 #endif /* INET6 */ 1245 ; 1246 1247 if (offered) 1248 mss = min(mss, offered); 1249 /* 1250 * XXX - The above conditional probably violates the TCP 1251 * spec. The problem is that, since we don't know the 1252 * other end's MSS, we are supposed to use a conservative 1253 * default. But, if we do that, then MTU discovery will 1254 * never actually take place, because the conservative 1255 * default is much less than the MTUs typically seen 1256 * on the Internet today. For the moment, we'll sweep 1257 * this under the carpet. 1258 * 1259 * The conservative default might not actually be a problem 1260 * if the only case this occurs is when sending an initial 1261 * SYN with options and data to a host we've never talked 1262 * to before. Then, they will reply with an MSS value which 1263 * will get recorded and the new parameters should get 1264 * recomputed. For Further Study. 1265 */ 1266 if (tp->t_maxopd <= mss) 1267 return; 1268 tp->t_maxopd = mss; 1269 1270 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1271 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1272 mss -= TCPOLEN_TSTAMP_APPA; 1273 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1274 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1275 mss -= TCPOLEN_CC_APPA; 1276 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1277 if (mss > MCLBYTES) 1278 mss &= ~(MCLBYTES-1); 1279 #else 1280 if (mss > MCLBYTES) 1281 mss = mss / MCLBYTES * MCLBYTES; 1282 #endif 1283 if (so->so_snd.sb_hiwat < mss) 1284 mss = so->so_snd.sb_hiwat; 1285 1286 tp->t_maxseg = mss; 1287 1288 tcpstat.tcps_mturesent++; 1289 tp->t_rtttime = 0; 1290 tp->snd_nxt = tp->snd_una; 1291 tcp_output(tp); 1292 } 1293 } 1294 1295 /* 1296 * Look-up the routing entry to the peer of this inpcb. If no route 1297 * is found and it cannot be allocated the return NULL. This routine 1298 * is called by TCP routines that access the rmx structure and by tcp_mss 1299 * to get the interface MTU. 1300 */ 1301 struct rtentry * 1302 tcp_rtlookup(inp) 1303 struct inpcb *inp; 1304 { 1305 struct route *ro; 1306 struct rtentry *rt; 1307 1308 ro = &inp->inp_route; 1309 rt = ro->ro_rt; 1310 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1311 /* No route yet, so try to acquire one */ 1312 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1313 ro->ro_dst.sa_family = AF_INET; 1314 ro->ro_dst.sa_len = sizeof(struct sockaddr_in); 1315 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1316 inp->inp_faddr; 1317 rtalloc(ro); 1318 rt = ro->ro_rt; 1319 } 1320 } 1321 return rt; 1322 } 1323 1324 #ifdef INET6 1325 struct rtentry * 1326 tcp_rtlookup6(inp) 1327 struct inpcb *inp; 1328 { 1329 struct route_in6 *ro6; 1330 struct rtentry *rt; 1331 1332 ro6 = &inp->in6p_route; 1333 rt = ro6->ro_rt; 1334 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1335 /* No route yet, so try to acquire one */ 1336 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { 1337 struct sockaddr_in6 *dst6; 1338 1339 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst; 1340 dst6->sin6_family = AF_INET6; 1341 dst6->sin6_len = sizeof(*dst6); 1342 dst6->sin6_addr = inp->in6p_faddr; 1343 rtalloc((struct route *)ro6); 1344 rt = ro6->ro_rt; 1345 } 1346 } 1347 return rt; 1348 } 1349 #endif /* INET6 */ 1350 1351 #ifdef IPSEC 1352 /* compute ESP/AH header size for TCP, including outer IP header. */ 1353 size_t 1354 ipsec_hdrsiz_tcp(tp) 1355 struct tcpcb *tp; 1356 { 1357 struct inpcb *inp; 1358 struct mbuf *m; 1359 size_t hdrsiz; 1360 struct ip *ip; 1361 #ifdef INET6 1362 struct ip6_hdr *ip6; 1363 #endif /* INET6 */ 1364 struct tcphdr *th; 1365 1366 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1367 return 0; 1368 MGETHDR(m, M_DONTWAIT, MT_DATA); 1369 if (!m) 1370 return 0; 1371 1372 #ifdef INET6 1373 if ((inp->inp_vflag & INP_IPV6) != 0) { 1374 ip6 = mtod(m, struct ip6_hdr *); 1375 th = (struct tcphdr *)(ip6 + 1); 1376 m->m_pkthdr.len = m->m_len = 1377 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1378 tcp_fillheaders(tp, ip6, th); 1379 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1380 } else 1381 #endif /* INET6 */ 1382 { 1383 ip = mtod(m, struct ip *); 1384 th = (struct tcphdr *)(ip + 1); 1385 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1386 tcp_fillheaders(tp, ip, th); 1387 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1388 } 1389 1390 m_free(m); 1391 return hdrsiz; 1392 } 1393 #endif /*IPSEC*/ 1394 1395 /* 1396 * Return a pointer to the cached information about the remote host. 1397 * The cached information is stored in the protocol specific part of 1398 * the route metrics. 1399 */ 1400 struct rmxp_tao * 1401 tcp_gettaocache(inp) 1402 struct inpcb *inp; 1403 { 1404 struct rtentry *rt; 1405 1406 #ifdef INET6 1407 if ((inp->inp_vflag & INP_IPV6) != 0) 1408 rt = tcp_rtlookup6(inp); 1409 else 1410 #endif /* INET6 */ 1411 rt = tcp_rtlookup(inp); 1412 1413 /* Make sure this is a host route and is up. */ 1414 if (rt == NULL || 1415 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1416 return NULL; 1417 1418 return rmx_taop(rt->rt_rmx); 1419 } 1420 1421 /* 1422 * Clear all the TAO cache entries, called from tcp_init. 1423 * 1424 * XXX 1425 * This routine is just an empty one, because we assume that the routing 1426 * routing tables are initialized at the same time when TCP, so there is 1427 * nothing in the cache left over. 1428 */ 1429 static void 1430 tcp_cleartaocache() 1431 { 1432 } 1433