xref: /freebsd/sys/netinet/tcp_subr.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/vm_zone.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 
102 int 	tcp_mssdflt = TCP_MSS;
103 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
104     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
105 
106 #ifdef INET6
107 int	tcp_v6mssdflt = TCP6_MSS;
108 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
109 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
110 	"Default TCP Maximum Segment Size for IPv6");
111 #endif
112 
113 #if 0
114 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
115 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
116     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
117 #endif
118 
119 static int	tcp_do_rfc1323 = 1;
120 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
121     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
122 
123 static int	tcp_do_rfc1644 = 0;
124 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
125     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
126 
127 static int	tcp_tcbhashsize = 0;
128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
129      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
130 
131 static int	do_tcpdrain = 1;
132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
133      "Enable tcp_drain routine for extra help when low on mbufs");
134 
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
136     &tcbinfo.ipi_count, 0, "Number of active PCBs");
137 
138 static int	icmp_may_rst = 1;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
140     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
141 
142 static void	tcp_cleartaocache __P((void));
143 static void	tcp_notify __P((struct inpcb *, int));
144 
145 /*
146  * Target size of TCP PCB hash tables. Must be a power of two.
147  *
148  * Note that this can be overridden by the kernel environment
149  * variable net.inet.tcp.tcbhashsize
150  */
151 #ifndef TCBHASHSIZE
152 #define TCBHASHSIZE	512
153 #endif
154 
155 /*
156  * This is the actual shape of what we allocate using the zone
157  * allocator.  Doing it this way allows us to protect both structures
158  * using the same generation count, and also eliminates the overhead
159  * of allocating tcpcbs separately.  By hiding the structure here,
160  * we avoid changing most of the rest of the code (although it needs
161  * to be changed, eventually, for greater efficiency).
162  */
163 #define	ALIGNMENT	32
164 #define	ALIGNM1		(ALIGNMENT - 1)
165 struct	inp_tp {
166 	union {
167 		struct	inpcb inp;
168 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
169 	} inp_tp_u;
170 	struct	tcpcb tcb;
171 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
172 	struct	callout inp_tp_delack;
173 };
174 #undef ALIGNMENT
175 #undef ALIGNM1
176 
177 /*
178  * Tcp initialization
179  */
180 void
181 tcp_init()
182 {
183 	int hashsize = TCBHASHSIZE;
184 
185 	tcp_ccgen = 1;
186 	tcp_cleartaocache();
187 
188 	tcp_delacktime = TCPTV_DELACK;
189 	tcp_keepinit = TCPTV_KEEP_INIT;
190 	tcp_keepidle = TCPTV_KEEP_IDLE;
191 	tcp_keepintvl = TCPTV_KEEPINTVL;
192 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
193 	tcp_msl = TCPTV_MSL;
194 
195 	LIST_INIT(&tcb);
196 	tcbinfo.listhead = &tcb;
197 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
198 	if (!powerof2(hashsize)) {
199 		printf("WARNING: TCB hash size not a power of 2\n");
200 		hashsize = 512; /* safe default */
201 	}
202 	tcp_tcbhashsize = hashsize;
203 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
204 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
205 					&tcbinfo.porthashmask);
206 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
207 				 ZONE_INTERRUPT, 0);
208 #ifdef INET6
209 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
210 #else /* INET6 */
211 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
212 #endif /* INET6 */
213 	if (max_protohdr < TCP_MINPROTOHDR)
214 		max_protohdr = TCP_MINPROTOHDR;
215 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
216 		panic("tcp_init");
217 #undef TCP_MINPROTOHDR
218 }
219 
220 /*
221  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
222  * tcp_template used to store this data in mbufs, but we now recopy it out
223  * of the tcpcb each time to conserve mbufs.
224  */
225 void
226 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
227 	struct tcpcb *tp;
228 	void *ip_ptr;
229 	void *tcp_ptr;
230 {
231 	struct inpcb *inp = tp->t_inpcb;
232 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
233 
234 #ifdef INET6
235 	if ((inp->inp_vflag & INP_IPV6) != 0) {
236 		struct ip6_hdr *ip6;
237 
238 		ip6 = (struct ip6_hdr *)ip_ptr;
239 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
240 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
241 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
242 			(IPV6_VERSION & IPV6_VERSION_MASK);
243 		ip6->ip6_nxt = IPPROTO_TCP;
244 		ip6->ip6_plen = sizeof(struct tcphdr);
245 		ip6->ip6_src = inp->in6p_laddr;
246 		ip6->ip6_dst = inp->in6p_faddr;
247 		tcp_hdr->th_sum = 0;
248 	} else
249 #endif
250 	{
251 	struct ip *ip = (struct ip *) ip_ptr;
252 
253 	ip->ip_vhl = IP_VHL_BORING;
254 	ip->ip_tos = 0;
255 	ip->ip_len = 0;
256 	ip->ip_id = 0;
257 	ip->ip_off = 0;
258 	ip->ip_ttl = 0;
259 	ip->ip_sum = 0;
260 	ip->ip_p = IPPROTO_TCP;
261 	ip->ip_src = inp->inp_laddr;
262 	ip->ip_dst = inp->inp_faddr;
263 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
264 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
265 	}
266 
267 	tcp_hdr->th_sport = inp->inp_lport;
268 	tcp_hdr->th_dport = inp->inp_fport;
269 	tcp_hdr->th_seq = 0;
270 	tcp_hdr->th_ack = 0;
271 	tcp_hdr->th_x2 = 0;
272 	tcp_hdr->th_off = 5;
273 	tcp_hdr->th_flags = 0;
274 	tcp_hdr->th_win = 0;
275 	tcp_hdr->th_urp = 0;
276 }
277 
278 /*
279  * Create template to be used to send tcp packets on a connection.
280  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
281  * use for this function is in keepalives, which use tcp_respond.
282  */
283 struct tcptemp *
284 tcp_maketemplate(tp)
285 	struct tcpcb *tp;
286 {
287 	struct mbuf *m;
288 	struct tcptemp *n;
289 
290 	m = m_get(M_DONTWAIT, MT_HEADER);
291 	if (m == NULL)
292 		return (0);
293 	m->m_len = sizeof(struct tcptemp);
294 	n = mtod(m, struct tcptemp *);
295 
296 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
297 	return (n);
298 }
299 
300 /*
301  * Send a single message to the TCP at address specified by
302  * the given TCP/IP header.  If m == 0, then we make a copy
303  * of the tcpiphdr at ti and send directly to the addressed host.
304  * This is used to force keep alive messages out using the TCP
305  * template for a connection.  If flags are given then we send
306  * a message back to the TCP which originated the * segment ti,
307  * and discard the mbuf containing it and any other attached mbufs.
308  *
309  * In any case the ack and sequence number of the transmitted
310  * segment are as specified by the parameters.
311  *
312  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
313  */
314 void
315 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
316 	struct tcpcb *tp;
317 	void *ipgen;
318 	register struct tcphdr *th;
319 	register struct mbuf *m;
320 	tcp_seq ack, seq;
321 	int flags;
322 {
323 	register int tlen;
324 	int win = 0;
325 	struct route *ro = 0;
326 	struct route sro;
327 	struct ip *ip;
328 	struct tcphdr *nth;
329 #ifdef INET6
330 	struct route_in6 *ro6 = 0;
331 	struct route_in6 sro6;
332 	struct ip6_hdr *ip6;
333 	int isipv6;
334 #endif /* INET6 */
335 	int ipflags = 0;
336 
337 #ifdef INET6
338 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
339 	ip6 = ipgen;
340 #endif /* INET6 */
341 	ip = ipgen;
342 
343 	if (tp) {
344 		if (!(flags & TH_RST)) {
345 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
346 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
347 				win = (long)TCP_MAXWIN << tp->rcv_scale;
348 		}
349 #ifdef INET6
350 		if (isipv6)
351 			ro6 = &tp->t_inpcb->in6p_route;
352 		else
353 #endif /* INET6 */
354 		ro = &tp->t_inpcb->inp_route;
355 	} else {
356 #ifdef INET6
357 		if (isipv6) {
358 			ro6 = &sro6;
359 			bzero(ro6, sizeof *ro6);
360 		} else
361 #endif /* INET6 */
362 	      {
363 		ro = &sro;
364 		bzero(ro, sizeof *ro);
365 	      }
366 	}
367 	if (m == 0) {
368 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
369 		if (m == NULL)
370 			return;
371 		tlen = 0;
372 		m->m_data += max_linkhdr;
373 #ifdef INET6
374 		if (isipv6) {
375 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
376 			      sizeof(struct ip6_hdr));
377 			ip6 = mtod(m, struct ip6_hdr *);
378 			nth = (struct tcphdr *)(ip6 + 1);
379 		} else
380 #endif /* INET6 */
381 	      {
382 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
383 		ip = mtod(m, struct ip *);
384 		nth = (struct tcphdr *)(ip + 1);
385 	      }
386 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
387 		flags = TH_ACK;
388 	} else {
389 		m_freem(m->m_next);
390 		m->m_next = 0;
391 		m->m_data = (caddr_t)ipgen;
392 		/* m_len is set later */
393 		tlen = 0;
394 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
395 #ifdef INET6
396 		if (isipv6) {
397 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
398 			nth = (struct tcphdr *)(ip6 + 1);
399 		} else
400 #endif /* INET6 */
401 	      {
402 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
403 		nth = (struct tcphdr *)(ip + 1);
404 	      }
405 		if (th != nth) {
406 			/*
407 			 * this is usually a case when an extension header
408 			 * exists between the IPv6 header and the
409 			 * TCP header.
410 			 */
411 			nth->th_sport = th->th_sport;
412 			nth->th_dport = th->th_dport;
413 		}
414 		xchg(nth->th_dport, nth->th_sport, n_short);
415 #undef xchg
416 	}
417 #ifdef INET6
418 	if (isipv6) {
419 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
420 						tlen));
421 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
422 	} else
423 #endif
424       {
425 	tlen += sizeof (struct tcpiphdr);
426 	ip->ip_len = tlen;
427 	ip->ip_ttl = ip_defttl;
428       }
429 	m->m_len = tlen;
430 	m->m_pkthdr.len = tlen;
431 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
432 	nth->th_seq = htonl(seq);
433 	nth->th_ack = htonl(ack);
434 	nth->th_x2 = 0;
435 	nth->th_off = sizeof (struct tcphdr) >> 2;
436 	nth->th_flags = flags;
437 	if (tp)
438 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
439 	else
440 		nth->th_win = htons((u_short)win);
441 	nth->th_urp = 0;
442 #ifdef INET6
443 	if (isipv6) {
444 		nth->th_sum = 0;
445 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
446 					sizeof(struct ip6_hdr),
447 					tlen - sizeof(struct ip6_hdr));
448 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
449 					       ro6 && ro6->ro_rt ?
450 					       ro6->ro_rt->rt_ifp :
451 					       NULL);
452 	} else
453 #endif /* INET6 */
454       {
455         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
456 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
457         m->m_pkthdr.csum_flags = CSUM_TCP;
458         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
459       }
460 #ifdef TCPDEBUG
461 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
462 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
463 #endif
464 #ifdef IPSEC
465 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
466 		m_freem(m);
467 		return;
468 	}
469 #endif
470 #ifdef INET6
471 	if (isipv6) {
472 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
473 		if (ro6 == &sro6 && ro6->ro_rt) {
474 			RTFREE(ro6->ro_rt);
475 			ro6->ro_rt = NULL;
476 		}
477 	} else
478 #endif /* INET6 */
479       {
480 	(void) ip_output(m, NULL, ro, ipflags, NULL);
481 	if (ro == &sro && ro->ro_rt) {
482 		RTFREE(ro->ro_rt);
483 		ro->ro_rt = NULL;
484 	}
485       }
486 }
487 
488 /*
489  * Create a new TCP control block, making an
490  * empty reassembly queue and hooking it to the argument
491  * protocol control block.  The `inp' parameter must have
492  * come from the zone allocator set up in tcp_init().
493  */
494 struct tcpcb *
495 tcp_newtcpcb(inp)
496 	struct inpcb *inp;
497 {
498 	struct inp_tp *it;
499 	register struct tcpcb *tp;
500 #ifdef INET6
501 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
502 #endif /* INET6 */
503 
504 	it = (struct inp_tp *)inp;
505 	tp = &it->tcb;
506 	bzero((char *) tp, sizeof(struct tcpcb));
507 	LIST_INIT(&tp->t_segq);
508 	tp->t_maxseg = tp->t_maxopd =
509 #ifdef INET6
510 		isipv6 ? tcp_v6mssdflt :
511 #endif /* INET6 */
512 		tcp_mssdflt;
513 
514 	/* Set up our timeouts. */
515 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
516 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
517 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
518 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
519 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
520 
521 	if (tcp_do_rfc1323)
522 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
523 	if (tcp_do_rfc1644)
524 		tp->t_flags |= TF_REQ_CC;
525 	tp->t_inpcb = inp;	/* XXX */
526 	/*
527 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
528 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
529 	 * reasonable initial retransmit time.
530 	 */
531 	tp->t_srtt = TCPTV_SRTTBASE;
532 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
533 	tp->t_rttmin = TCPTV_MIN;
534 	tp->t_rxtcur = TCPTV_RTOBASE;
535 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
536 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
537 	tp->t_rcvtime = ticks;
538         /*
539 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
540 	 * because the socket may be bound to an IPv6 wildcard address,
541 	 * which may match an IPv4-mapped IPv6 address.
542 	 */
543 	inp->inp_ip_ttl = ip_defttl;
544 	inp->inp_ppcb = (caddr_t)tp;
545 	return (tp);		/* XXX */
546 }
547 
548 /*
549  * Drop a TCP connection, reporting
550  * the specified error.  If connection is synchronized,
551  * then send a RST to peer.
552  */
553 struct tcpcb *
554 tcp_drop(tp, errno)
555 	register struct tcpcb *tp;
556 	int errno;
557 {
558 	struct socket *so = tp->t_inpcb->inp_socket;
559 
560 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
561 		tp->t_state = TCPS_CLOSED;
562 		(void) tcp_output(tp);
563 		tcpstat.tcps_drops++;
564 	} else
565 		tcpstat.tcps_conndrops++;
566 	if (errno == ETIMEDOUT && tp->t_softerror)
567 		errno = tp->t_softerror;
568 	so->so_error = errno;
569 	return (tcp_close(tp));
570 }
571 
572 /*
573  * Close a TCP control block:
574  *	discard all space held by the tcp
575  *	discard internet protocol block
576  *	wake up any sleepers
577  */
578 struct tcpcb *
579 tcp_close(tp)
580 	register struct tcpcb *tp;
581 {
582 	register struct tseg_qent *q;
583 	struct inpcb *inp = tp->t_inpcb;
584 	struct socket *so = inp->inp_socket;
585 #ifdef INET6
586 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
587 #endif /* INET6 */
588 	register struct rtentry *rt;
589 	int dosavessthresh;
590 
591 	/*
592 	 * Make sure that all of our timers are stopped before we
593 	 * delete the PCB.
594 	 */
595 	callout_stop(tp->tt_rexmt);
596 	callout_stop(tp->tt_persist);
597 	callout_stop(tp->tt_keep);
598 	callout_stop(tp->tt_2msl);
599 	callout_stop(tp->tt_delack);
600 
601 	/*
602 	 * If we got enough samples through the srtt filter,
603 	 * save the rtt and rttvar in the routing entry.
604 	 * 'Enough' is arbitrarily defined as the 16 samples.
605 	 * 16 samples is enough for the srtt filter to converge
606 	 * to within 5% of the correct value; fewer samples and
607 	 * we could save a very bogus rtt.
608 	 *
609 	 * Don't update the default route's characteristics and don't
610 	 * update anything that the user "locked".
611 	 */
612 	if (tp->t_rttupdated >= 16) {
613 		register u_long i = 0;
614 #ifdef INET6
615 		if (isipv6) {
616 			struct sockaddr_in6 *sin6;
617 
618 			if ((rt = inp->in6p_route.ro_rt) == NULL)
619 				goto no_valid_rt;
620 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
621 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
622 				goto no_valid_rt;
623 		}
624 		else
625 #endif /* INET6 */
626 		if ((rt = inp->inp_route.ro_rt) == NULL ||
627 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
628 		    == INADDR_ANY)
629 			goto no_valid_rt;
630 
631 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
632 			i = tp->t_srtt *
633 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
634 			if (rt->rt_rmx.rmx_rtt && i)
635 				/*
636 				 * filter this update to half the old & half
637 				 * the new values, converting scale.
638 				 * See route.h and tcp_var.h for a
639 				 * description of the scaling constants.
640 				 */
641 				rt->rt_rmx.rmx_rtt =
642 				    (rt->rt_rmx.rmx_rtt + i) / 2;
643 			else
644 				rt->rt_rmx.rmx_rtt = i;
645 			tcpstat.tcps_cachedrtt++;
646 		}
647 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
648 			i = tp->t_rttvar *
649 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
650 			if (rt->rt_rmx.rmx_rttvar && i)
651 				rt->rt_rmx.rmx_rttvar =
652 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
653 			else
654 				rt->rt_rmx.rmx_rttvar = i;
655 			tcpstat.tcps_cachedrttvar++;
656 		}
657 		/*
658 		 * The old comment here said:
659 		 * update the pipelimit (ssthresh) if it has been updated
660 		 * already or if a pipesize was specified & the threshhold
661 		 * got below half the pipesize.  I.e., wait for bad news
662 		 * before we start updating, then update on both good
663 		 * and bad news.
664 		 *
665 		 * But we want to save the ssthresh even if no pipesize is
666 		 * specified explicitly in the route, because such
667 		 * connections still have an implicit pipesize specified
668 		 * by the global tcp_sendspace.  In the absence of a reliable
669 		 * way to calculate the pipesize, it will have to do.
670 		 */
671 		i = tp->snd_ssthresh;
672 		if (rt->rt_rmx.rmx_sendpipe != 0)
673 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
674 		else
675 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
676 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
677 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
678 		    || dosavessthresh) {
679 			/*
680 			 * convert the limit from user data bytes to
681 			 * packets then to packet data bytes.
682 			 */
683 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
684 			if (i < 2)
685 				i = 2;
686 			i *= (u_long)(tp->t_maxseg +
687 #ifdef INET6
688 				      (isipv6 ? sizeof (struct ip6_hdr) +
689 					       sizeof (struct tcphdr) :
690 #endif
691 				       sizeof (struct tcpiphdr)
692 #ifdef INET6
693 				       )
694 #endif
695 				      );
696 			if (rt->rt_rmx.rmx_ssthresh)
697 				rt->rt_rmx.rmx_ssthresh =
698 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
699 			else
700 				rt->rt_rmx.rmx_ssthresh = i;
701 			tcpstat.tcps_cachedssthresh++;
702 		}
703 	}
704 	rt = inp->inp_route.ro_rt;
705 	if (rt) {
706 		/*
707 		 * mark route for deletion if no information is
708 		 * cached.
709 		 */
710 		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
711 		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
712 			if (rt->rt_rmx.rmx_rtt == 0)
713 				rt->rt_flags |= RTF_DELCLONE;
714 		}
715 	}
716     no_valid_rt:
717 	/* free the reassembly queue, if any */
718 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
719 		LIST_REMOVE(q, tqe_q);
720 		m_freem(q->tqe_m);
721 		FREE(q, M_TSEGQ);
722 	}
723 	inp->inp_ppcb = NULL;
724 	soisdisconnected(so);
725 #ifdef INET6
726 	if (INP_CHECK_SOCKAF(so, AF_INET6))
727 		in6_pcbdetach(inp);
728 	else
729 #endif /* INET6 */
730 	in_pcbdetach(inp);
731 	tcpstat.tcps_closed++;
732 	return ((struct tcpcb *)0);
733 }
734 
735 void
736 tcp_drain()
737 {
738 	if (do_tcpdrain)
739 	{
740 		struct inpcb *inpb;
741 		struct tcpcb *tcpb;
742 		struct tseg_qent *te;
743 
744 	/*
745 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
746 	 * if there is one...
747 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
748 	 *      reassembly queue should be flushed, but in a situation
749 	 * 	where we're really low on mbufs, this is potentially
750 	 *  	usefull.
751 	 */
752 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
753 			if ((tcpb = intotcpcb(inpb))) {
754 				while ((te = LIST_FIRST(&tcpb->t_segq))
755 			            != NULL) {
756 					LIST_REMOVE(te, tqe_q);
757 					m_freem(te->tqe_m);
758 					FREE(te, M_TSEGQ);
759 				}
760 			}
761 		}
762 	}
763 }
764 
765 /*
766  * Notify a tcp user of an asynchronous error;
767  * store error as soft error, but wake up user
768  * (for now, won't do anything until can select for soft error).
769  *
770  * Do not wake up user since there currently is no mechanism for
771  * reporting soft errors (yet - a kqueue filter may be added).
772  */
773 static void
774 tcp_notify(inp, error)
775 	struct inpcb *inp;
776 	int error;
777 {
778 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
779 
780 	/*
781 	 * Ignore some errors if we are hooked up.
782 	 * If connection hasn't completed, has retransmitted several times,
783 	 * and receives a second error, give up now.  This is better
784 	 * than waiting a long time to establish a connection that
785 	 * can never complete.
786 	 */
787 	if (tp->t_state == TCPS_ESTABLISHED &&
788 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
789 	      error == EHOSTDOWN)) {
790 		return;
791 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
792 	    tp->t_softerror)
793 		tcp_drop(tp, error);
794 	else
795 		tp->t_softerror = error;
796 #if 0
797 	wakeup((caddr_t) &so->so_timeo);
798 	sorwakeup(so);
799 	sowwakeup(so);
800 #endif
801 }
802 
803 static int
804 tcp_pcblist(SYSCTL_HANDLER_ARGS)
805 {
806 	int error, i, n, s;
807 	struct inpcb *inp, **inp_list;
808 	inp_gen_t gencnt;
809 	struct xinpgen xig;
810 
811 	/*
812 	 * The process of preparing the TCB list is too time-consuming and
813 	 * resource-intensive to repeat twice on every request.
814 	 */
815 	if (req->oldptr == 0) {
816 		n = tcbinfo.ipi_count;
817 		req->oldidx = 2 * (sizeof xig)
818 			+ (n + n/8) * sizeof(struct xtcpcb);
819 		return 0;
820 	}
821 
822 	if (req->newptr != 0)
823 		return EPERM;
824 
825 	/*
826 	 * OK, now we're committed to doing something.
827 	 */
828 	s = splnet();
829 	gencnt = tcbinfo.ipi_gencnt;
830 	n = tcbinfo.ipi_count;
831 	splx(s);
832 
833 	xig.xig_len = sizeof xig;
834 	xig.xig_count = n;
835 	xig.xig_gen = gencnt;
836 	xig.xig_sogen = so_gencnt;
837 	error = SYSCTL_OUT(req, &xig, sizeof xig);
838 	if (error)
839 		return error;
840 
841 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
842 	if (inp_list == 0)
843 		return ENOMEM;
844 
845 	s = splnet();
846 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
847 	     inp = LIST_NEXT(inp, inp_list)) {
848 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
849 			inp_list[i++] = inp;
850 	}
851 	splx(s);
852 	n = i;
853 
854 	error = 0;
855 	for (i = 0; i < n; i++) {
856 		inp = inp_list[i];
857 		if (inp->inp_gencnt <= gencnt) {
858 			struct xtcpcb xt;
859 			caddr_t inp_ppcb;
860 			xt.xt_len = sizeof xt;
861 			/* XXX should avoid extra copy */
862 			bcopy(inp, &xt.xt_inp, sizeof *inp);
863 			inp_ppcb = inp->inp_ppcb;
864 			if (inp_ppcb != NULL)
865 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
866 			else
867 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
868 			if (inp->inp_socket)
869 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
870 			error = SYSCTL_OUT(req, &xt, sizeof xt);
871 		}
872 	}
873 	if (!error) {
874 		/*
875 		 * Give the user an updated idea of our state.
876 		 * If the generation differs from what we told
877 		 * her before, she knows that something happened
878 		 * while we were processing this request, and it
879 		 * might be necessary to retry.
880 		 */
881 		s = splnet();
882 		xig.xig_gen = tcbinfo.ipi_gencnt;
883 		xig.xig_sogen = so_gencnt;
884 		xig.xig_count = tcbinfo.ipi_count;
885 		splx(s);
886 		error = SYSCTL_OUT(req, &xig, sizeof xig);
887 	}
888 	free(inp_list, M_TEMP);
889 	return error;
890 }
891 
892 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
893 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
894 
895 static int
896 tcp_getcred(SYSCTL_HANDLER_ARGS)
897 {
898 	struct xucred xuc;
899 	struct sockaddr_in addrs[2];
900 	struct inpcb *inp;
901 	int error, s;
902 
903 	error = suser_xxx(0, req->p, PRISON_ROOT);
904 	if (error)
905 		return (error);
906 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
907 	if (error)
908 		return (error);
909 	s = splnet();
910 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
911 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
912 	if (inp == NULL || inp->inp_socket == NULL) {
913 		error = ENOENT;
914 		goto out;
915 	}
916 	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
917 	if (error)
918 		goto out;
919 	bzero(&xuc, sizeof(xuc));
920 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
921 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
922 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
923 	    sizeof(xuc.cr_groups));
924 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
925 out:
926 	splx(s);
927 	return (error);
928 }
929 
930 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
931     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
932     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
933 
934 #ifdef INET6
935 static int
936 tcp6_getcred(SYSCTL_HANDLER_ARGS)
937 {
938 	struct xucred xuc;
939 	struct sockaddr_in6 addrs[2];
940 	struct inpcb *inp;
941 	int error, s, mapped = 0;
942 
943 	error = suser_xxx(0, req->p, PRISON_ROOT);
944 	if (error)
945 		return (error);
946 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
947 	if (error)
948 		return (error);
949 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
950 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
951 			mapped = 1;
952 		else
953 			return (EINVAL);
954 	}
955 	s = splnet();
956 	if (mapped == 1)
957 		inp = in_pcblookup_hash(&tcbinfo,
958 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
959 			addrs[1].sin6_port,
960 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
961 			addrs[0].sin6_port,
962 			0, NULL);
963 	else
964 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
965 				 addrs[1].sin6_port,
966 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
967 				 0, NULL);
968 	if (inp == NULL || inp->inp_socket == NULL) {
969 		error = ENOENT;
970 		goto out;
971 	}
972 	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
973 	if (error)
974 		goto out;
975 	bzero(&xuc, sizeof(xuc));
976 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
977 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
978 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
979 	    sizeof(xuc.cr_groups));
980 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
981 out:
982 	splx(s);
983 	return (error);
984 }
985 
986 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
987     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
988     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
989 #endif
990 
991 
992 void
993 tcp_ctlinput(cmd, sa, vip)
994 	int cmd;
995 	struct sockaddr *sa;
996 	void *vip;
997 {
998 	struct ip *ip = vip;
999 	struct tcphdr *th;
1000 	struct in_addr faddr;
1001 	struct inpcb *inp;
1002 	struct tcpcb *tp;
1003 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1004 	tcp_seq icmp_seq;
1005 	int s;
1006 
1007 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1008 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1009 		return;
1010 
1011 	if (cmd == PRC_QUENCH)
1012 		notify = tcp_quench;
1013 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1014 		cmd == PRC_UNREACH_PORT) && ip)
1015 		notify = tcp_drop_syn_sent;
1016 	else if (cmd == PRC_MSGSIZE)
1017 		notify = tcp_mtudisc;
1018 	else if (PRC_IS_REDIRECT(cmd)) {
1019 		ip = 0;
1020 		notify = in_rtchange;
1021 	} else if (cmd == PRC_HOSTDEAD)
1022 		ip = 0;
1023 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1024 		return;
1025 	if (ip) {
1026 		s = splnet();
1027 		th = (struct tcphdr *)((caddr_t)ip
1028 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1029 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1030 		    ip->ip_src, th->th_sport, 0, NULL);
1031 		if (inp != NULL && inp->inp_socket != NULL) {
1032 			icmp_seq = htonl(th->th_seq);
1033 			tp = intotcpcb(inp);
1034 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1035 			    SEQ_LT(icmp_seq, tp->snd_max))
1036 				(*notify)(inp, inetctlerrmap[cmd]);
1037 		}
1038 		splx(s);
1039 	} else
1040 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1041 }
1042 
1043 #ifdef INET6
1044 void
1045 tcp6_ctlinput(cmd, sa, d)
1046 	int cmd;
1047 	struct sockaddr *sa;
1048 	void *d;
1049 {
1050 	struct tcphdr th;
1051 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1052 	struct ip6_hdr *ip6;
1053 	struct mbuf *m;
1054 	struct ip6ctlparam *ip6cp = NULL;
1055 	const struct sockaddr_in6 *sa6_src = NULL;
1056 	int off;
1057 	struct tcp_portonly {
1058 		u_int16_t th_sport;
1059 		u_int16_t th_dport;
1060 	} *thp;
1061 
1062 	if (sa->sa_family != AF_INET6 ||
1063 	    sa->sa_len != sizeof(struct sockaddr_in6))
1064 		return;
1065 
1066 	if (cmd == PRC_QUENCH)
1067 		notify = tcp_quench;
1068 	else if (cmd == PRC_MSGSIZE)
1069 		notify = tcp_mtudisc;
1070 	else if (!PRC_IS_REDIRECT(cmd) &&
1071 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1072 		return;
1073 
1074 	/* if the parameter is from icmp6, decode it. */
1075 	if (d != NULL) {
1076 		ip6cp = (struct ip6ctlparam *)d;
1077 		m = ip6cp->ip6c_m;
1078 		ip6 = ip6cp->ip6c_ip6;
1079 		off = ip6cp->ip6c_off;
1080 		sa6_src = ip6cp->ip6c_src;
1081 	} else {
1082 		m = NULL;
1083 		ip6 = NULL;
1084 		off = 0;	/* fool gcc */
1085 		sa6_src = &sa6_any;
1086 	}
1087 
1088 	if (ip6) {
1089 		/*
1090 		 * XXX: We assume that when IPV6 is non NULL,
1091 		 * M and OFF are valid.
1092 		 */
1093 
1094 		/* check if we can safely examine src and dst ports */
1095 		if (m->m_pkthdr.len < off + sizeof(*thp))
1096 			return;
1097 
1098 		bzero(&th, sizeof(th));
1099 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1100 
1101 		in6_pcbnotify(&tcb, sa, th.th_dport,
1102 		    (struct sockaddr *)ip6cp->ip6c_src,
1103 		    th.th_sport, cmd, notify);
1104 	} else
1105 		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1106 			      0, cmd, notify);
1107 }
1108 #endif /* INET6 */
1109 
1110 #define TCP_RNDISS_ROUNDS	16
1111 #define TCP_RNDISS_OUT	7200
1112 #define TCP_RNDISS_MAX	30000
1113 
1114 u_int8_t tcp_rndiss_sbox[128];
1115 u_int16_t tcp_rndiss_msb;
1116 u_int16_t tcp_rndiss_cnt;
1117 long tcp_rndiss_reseed;
1118 
1119 u_int16_t
1120 tcp_rndiss_encrypt(val)
1121 	u_int16_t val;
1122 {
1123 	u_int16_t sum = 0, i;
1124 
1125 	for (i = 0; i < TCP_RNDISS_ROUNDS; i++) {
1126 		sum += 0x79b9;
1127 		val ^= ((u_int16_t)tcp_rndiss_sbox[(val^sum) & 0x7f]) << 7;
1128 		val = ((val & 0xff) << 7) | (val >> 8);
1129 	}
1130 
1131 	return val;
1132 }
1133 
1134 void
1135 tcp_rndiss_init()
1136 {
1137 	struct timeval time;
1138 
1139 	getmicrotime(&time);
1140 	read_random(tcp_rndiss_sbox, sizeof(tcp_rndiss_sbox));
1141 
1142 	tcp_rndiss_reseed = time.tv_sec + TCP_RNDISS_OUT;
1143 	tcp_rndiss_msb = tcp_rndiss_msb == 0x8000 ? 0 : 0x8000;
1144 	tcp_rndiss_cnt = 0;
1145 }
1146 
1147 tcp_seq
1148 tcp_rndiss_next()
1149 {
1150 	u_int16_t tmp;
1151 	struct timeval time;
1152 
1153 	getmicrotime(&time);
1154 
1155         if (tcp_rndiss_cnt >= TCP_RNDISS_MAX ||
1156 	    time.tv_sec > tcp_rndiss_reseed)
1157                 tcp_rndiss_init();
1158 
1159 	read_random(&tmp, sizeof(tmp));
1160 
1161 	/* (tmp & 0x7fff) ensures a 32768 byte gap between ISS */
1162 	return ((tcp_rndiss_encrypt(tcp_rndiss_cnt++) | tcp_rndiss_msb) <<16) |
1163 		(tmp & 0x7fff);
1164 }
1165 
1166 
1167 /*
1168  * When a source quench is received, close congestion window
1169  * to one segment.  We will gradually open it again as we proceed.
1170  */
1171 void
1172 tcp_quench(inp, errno)
1173 	struct inpcb *inp;
1174 	int errno;
1175 {
1176 	struct tcpcb *tp = intotcpcb(inp);
1177 
1178 	if (tp)
1179 		tp->snd_cwnd = tp->t_maxseg;
1180 }
1181 
1182 /*
1183  * When a specific ICMP unreachable message is received and the
1184  * connection state is SYN-SENT, drop the connection.  This behavior
1185  * is controlled by the icmp_may_rst sysctl.
1186  */
1187 void
1188 tcp_drop_syn_sent(inp, errno)
1189 	struct inpcb *inp;
1190 	int errno;
1191 {
1192 	struct tcpcb *tp = intotcpcb(inp);
1193 
1194 	if (tp && tp->t_state == TCPS_SYN_SENT)
1195 		tcp_drop(tp, errno);
1196 }
1197 
1198 /*
1199  * When `need fragmentation' ICMP is received, update our idea of the MSS
1200  * based on the new value in the route.  Also nudge TCP to send something,
1201  * since we know the packet we just sent was dropped.
1202  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1203  */
1204 void
1205 tcp_mtudisc(inp, errno)
1206 	struct inpcb *inp;
1207 	int errno;
1208 {
1209 	struct tcpcb *tp = intotcpcb(inp);
1210 	struct rtentry *rt;
1211 	struct rmxp_tao *taop;
1212 	struct socket *so = inp->inp_socket;
1213 	int offered;
1214 	int mss;
1215 #ifdef INET6
1216 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1217 #endif /* INET6 */
1218 
1219 	if (tp) {
1220 #ifdef INET6
1221 		if (isipv6)
1222 			rt = tcp_rtlookup6(inp);
1223 		else
1224 #endif /* INET6 */
1225 		rt = tcp_rtlookup(inp);
1226 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1227 			tp->t_maxopd = tp->t_maxseg =
1228 #ifdef INET6
1229 				isipv6 ? tcp_v6mssdflt :
1230 #endif /* INET6 */
1231 				tcp_mssdflt;
1232 			return;
1233 		}
1234 		taop = rmx_taop(rt->rt_rmx);
1235 		offered = taop->tao_mssopt;
1236 		mss = rt->rt_rmx.rmx_mtu -
1237 #ifdef INET6
1238 			(isipv6 ?
1239 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1240 #endif /* INET6 */
1241 			 sizeof(struct tcpiphdr)
1242 #ifdef INET6
1243 			 )
1244 #endif /* INET6 */
1245 			;
1246 
1247 		if (offered)
1248 			mss = min(mss, offered);
1249 		/*
1250 		 * XXX - The above conditional probably violates the TCP
1251 		 * spec.  The problem is that, since we don't know the
1252 		 * other end's MSS, we are supposed to use a conservative
1253 		 * default.  But, if we do that, then MTU discovery will
1254 		 * never actually take place, because the conservative
1255 		 * default is much less than the MTUs typically seen
1256 		 * on the Internet today.  For the moment, we'll sweep
1257 		 * this under the carpet.
1258 		 *
1259 		 * The conservative default might not actually be a problem
1260 		 * if the only case this occurs is when sending an initial
1261 		 * SYN with options and data to a host we've never talked
1262 		 * to before.  Then, they will reply with an MSS value which
1263 		 * will get recorded and the new parameters should get
1264 		 * recomputed.  For Further Study.
1265 		 */
1266 		if (tp->t_maxopd <= mss)
1267 			return;
1268 		tp->t_maxopd = mss;
1269 
1270 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1271 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1272 			mss -= TCPOLEN_TSTAMP_APPA;
1273 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1274 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1275 			mss -= TCPOLEN_CC_APPA;
1276 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1277 		if (mss > MCLBYTES)
1278 			mss &= ~(MCLBYTES-1);
1279 #else
1280 		if (mss > MCLBYTES)
1281 			mss = mss / MCLBYTES * MCLBYTES;
1282 #endif
1283 		if (so->so_snd.sb_hiwat < mss)
1284 			mss = so->so_snd.sb_hiwat;
1285 
1286 		tp->t_maxseg = mss;
1287 
1288 		tcpstat.tcps_mturesent++;
1289 		tp->t_rtttime = 0;
1290 		tp->snd_nxt = tp->snd_una;
1291 		tcp_output(tp);
1292 	}
1293 }
1294 
1295 /*
1296  * Look-up the routing entry to the peer of this inpcb.  If no route
1297  * is found and it cannot be allocated the return NULL.  This routine
1298  * is called by TCP routines that access the rmx structure and by tcp_mss
1299  * to get the interface MTU.
1300  */
1301 struct rtentry *
1302 tcp_rtlookup(inp)
1303 	struct inpcb *inp;
1304 {
1305 	struct route *ro;
1306 	struct rtentry *rt;
1307 
1308 	ro = &inp->inp_route;
1309 	rt = ro->ro_rt;
1310 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1311 		/* No route yet, so try to acquire one */
1312 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1313 			ro->ro_dst.sa_family = AF_INET;
1314 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1315 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1316 				inp->inp_faddr;
1317 			rtalloc(ro);
1318 			rt = ro->ro_rt;
1319 		}
1320 	}
1321 	return rt;
1322 }
1323 
1324 #ifdef INET6
1325 struct rtentry *
1326 tcp_rtlookup6(inp)
1327 	struct inpcb *inp;
1328 {
1329 	struct route_in6 *ro6;
1330 	struct rtentry *rt;
1331 
1332 	ro6 = &inp->in6p_route;
1333 	rt = ro6->ro_rt;
1334 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1335 		/* No route yet, so try to acquire one */
1336 		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1337 			struct sockaddr_in6 *dst6;
1338 
1339 			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1340 			dst6->sin6_family = AF_INET6;
1341 			dst6->sin6_len = sizeof(*dst6);
1342 			dst6->sin6_addr = inp->in6p_faddr;
1343 			rtalloc((struct route *)ro6);
1344 			rt = ro6->ro_rt;
1345 		}
1346 	}
1347 	return rt;
1348 }
1349 #endif /* INET6 */
1350 
1351 #ifdef IPSEC
1352 /* compute ESP/AH header size for TCP, including outer IP header. */
1353 size_t
1354 ipsec_hdrsiz_tcp(tp)
1355 	struct tcpcb *tp;
1356 {
1357 	struct inpcb *inp;
1358 	struct mbuf *m;
1359 	size_t hdrsiz;
1360 	struct ip *ip;
1361 #ifdef INET6
1362 	struct ip6_hdr *ip6;
1363 #endif /* INET6 */
1364 	struct tcphdr *th;
1365 
1366 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1367 		return 0;
1368 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1369 	if (!m)
1370 		return 0;
1371 
1372 #ifdef INET6
1373 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1374 		ip6 = mtod(m, struct ip6_hdr *);
1375 		th = (struct tcphdr *)(ip6 + 1);
1376 		m->m_pkthdr.len = m->m_len =
1377 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1378 		tcp_fillheaders(tp, ip6, th);
1379 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1380 	} else
1381 #endif /* INET6 */
1382       {
1383 	ip = mtod(m, struct ip *);
1384 	th = (struct tcphdr *)(ip + 1);
1385 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1386 	tcp_fillheaders(tp, ip, th);
1387 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1388       }
1389 
1390 	m_free(m);
1391 	return hdrsiz;
1392 }
1393 #endif /*IPSEC*/
1394 
1395 /*
1396  * Return a pointer to the cached information about the remote host.
1397  * The cached information is stored in the protocol specific part of
1398  * the route metrics.
1399  */
1400 struct rmxp_tao *
1401 tcp_gettaocache(inp)
1402 	struct inpcb *inp;
1403 {
1404 	struct rtentry *rt;
1405 
1406 #ifdef INET6
1407 	if ((inp->inp_vflag & INP_IPV6) != 0)
1408 		rt = tcp_rtlookup6(inp);
1409 	else
1410 #endif /* INET6 */
1411 	rt = tcp_rtlookup(inp);
1412 
1413 	/* Make sure this is a host route and is up. */
1414 	if (rt == NULL ||
1415 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1416 		return NULL;
1417 
1418 	return rmx_taop(rt->rt_rmx);
1419 }
1420 
1421 /*
1422  * Clear all the TAO cache entries, called from tcp_init.
1423  *
1424  * XXX
1425  * This routine is just an empty one, because we assume that the routing
1426  * routing tables are initialized at the same time when TCP, so there is
1427  * nothing in the cache left over.
1428  */
1429 static void
1430 tcp_cleartaocache()
1431 {
1432 }
1433