xref: /freebsd/sys/netinet/tcp_subr.c (revision 4f1f4356f3012928b463f9ef1710fb908e48b1e2)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/jail.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/uma.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/ip_icmp.h>
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_seq.h>
86 #include <netinet/tcp_timer.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/tcp_syncache.h>
89 #include <netinet/tcp_offload.h>
90 #ifdef INET6
91 #include <netinet6/tcp6_var.h>
92 #endif
93 #include <netinet/tcpip.h>
94 #ifdef TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <netinet6/ip6protosw.h>
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/xform.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/key.h>
106 #include <sys/syslog.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
115 #ifdef INET6
116 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
117 #endif
118 
119 static int
120 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
121 {
122 	int error, new;
123 
124 	new = V_tcp_mssdflt;
125 	error = sysctl_handle_int(oidp, &new, 0, req);
126 	if (error == 0 && req->newptr) {
127 		if (new < TCP_MINMSS)
128 			error = EINVAL;
129 		else
130 			V_tcp_mssdflt = new;
131 	}
132 	return (error);
133 }
134 
135 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
136     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
137     &sysctl_net_inet_tcp_mss_check, "I",
138     "Default TCP Maximum Segment Size");
139 
140 #ifdef INET6
141 static int
142 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
143 {
144 	int error, new;
145 
146 	new = V_tcp_v6mssdflt;
147 	error = sysctl_handle_int(oidp, &new, 0, req);
148 	if (error == 0 && req->newptr) {
149 		if (new < TCP_MINMSS)
150 			error = EINVAL;
151 		else
152 			V_tcp_v6mssdflt = new;
153 	}
154 	return (error);
155 }
156 
157 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
158     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
159     &sysctl_net_inet_tcp_mss_v6_check, "I",
160    "Default TCP Maximum Segment Size for IPv6");
161 #endif
162 
163 static int
164 vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS)
165 {
166 
167 	VNET_SYSCTL_ARG(req, arg1);
168 	return (sysctl_msec_to_ticks(oidp, arg1, arg2, req));
169 }
170 
171 /*
172  * Minimum MSS we accept and use. This prevents DoS attacks where
173  * we are forced to a ridiculous low MSS like 20 and send hundreds
174  * of packets instead of one. The effect scales with the available
175  * bandwidth and quickly saturates the CPU and network interface
176  * with packet generation and sending. Set to zero to disable MINMSS
177  * checking. This setting prevents us from sending too small packets.
178  */
179 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
180 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
181      &VNET_NAME(tcp_minmss), 0,
182     "Minmum TCP Maximum Segment Size");
183 
184 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
186     &VNET_NAME(tcp_do_rfc1323), 0,
187     "Enable rfc1323 (high performance TCP) extensions");
188 
189 static int	tcp_log_debug = 0;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
191     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
192 
193 static int	tcp_tcbhashsize = 0;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
195     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
196 
197 static int	do_tcpdrain = 1;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
199     "Enable tcp_drain routine for extra help when low on mbufs");
200 
201 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
202     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
203 
204 static VNET_DEFINE(int, icmp_may_rst) = 1;
205 #define	V_icmp_may_rst			VNET(icmp_may_rst)
206 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
207     &VNET_NAME(icmp_may_rst), 0,
208     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
209 
210 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
211 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
212 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &VNET_NAME(tcp_isn_reseed_interval), 0,
214     "Seconds between reseeding of ISN secret");
215 
216 /*
217  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
218  * 1024 exists only for debugging.  A good production default would be
219  * something like 6100.
220  */
221 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
222     "TCP inflight data limiting");
223 
224 static VNET_DEFINE(int, tcp_inflight_enable) = 0;
225 #define	V_tcp_inflight_enable		VNET(tcp_inflight_enable)
226 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
227     &VNET_NAME(tcp_inflight_enable), 0,
228     "Enable automatic TCP inflight data limiting");
229 
230 static int	tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0,
233     "Debug TCP inflight calculations");
234 
235 static VNET_DEFINE(int, tcp_inflight_rttthresh);
236 #define	V_tcp_inflight_rttthresh	VNET(tcp_inflight_rttthresh)
237 SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh,
238     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0,
239     vnet_sysctl_msec_to_ticks, "I",
240     "RTT threshold below which inflight will deactivate itself");
241 
242 static VNET_DEFINE(int, tcp_inflight_min) = 6144;
243 #define	V_tcp_inflight_min		VNET(tcp_inflight_min)
244 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
245     &VNET_NAME(tcp_inflight_min), 0,
246     "Lower-bound for TCP inflight window");
247 
248 static VNET_DEFINE(int, tcp_inflight_max) = TCP_MAXWIN << TCP_MAX_WINSHIFT;
249 #define	V_tcp_inflight_max		VNET(tcp_inflight_max)
250 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
251     &VNET_NAME(tcp_inflight_max), 0,
252     "Upper-bound for TCP inflight window");
253 
254 static VNET_DEFINE(int, tcp_inflight_stab) = 20;
255 #define	V_tcp_inflight_stab		VNET(tcp_inflight_stab)
256 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
257     &VNET_NAME(tcp_inflight_stab), 0,
258     "Inflight Algorithm Stabilization 20 = 2 packets");
259 
260 #ifdef TCP_SORECEIVE_STREAM
261 static int	tcp_soreceive_stream = 0;
262 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
263     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
264 #endif
265 
266 VNET_DEFINE(uma_zone_t, sack_hole_zone);
267 #define	V_sack_hole_zone		VNET(sack_hole_zone)
268 
269 static struct inpcb *tcp_notify(struct inpcb *, int);
270 static void	tcp_isn_tick(void *);
271 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
272 		    void *ip4hdr, const void *ip6hdr);
273 
274 /*
275  * Target size of TCP PCB hash tables. Must be a power of two.
276  *
277  * Note that this can be overridden by the kernel environment
278  * variable net.inet.tcp.tcbhashsize
279  */
280 #ifndef TCBHASHSIZE
281 #define TCBHASHSIZE	512
282 #endif
283 
284 /*
285  * XXX
286  * Callouts should be moved into struct tcp directly.  They are currently
287  * separate because the tcpcb structure is exported to userland for sysctl
288  * parsing purposes, which do not know about callouts.
289  */
290 struct tcpcb_mem {
291 	struct	tcpcb		tcb;
292 	struct	tcp_timer	tt;
293 };
294 
295 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
296 #define	V_tcpcb_zone			VNET(tcpcb_zone)
297 
298 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
299 struct callout isn_callout;
300 static struct mtx isn_mtx;
301 
302 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
303 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
304 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
305 
306 /*
307  * TCP initialization.
308  */
309 static void
310 tcp_zone_change(void *tag)
311 {
312 
313 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
314 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
315 	tcp_tw_zone_change();
316 }
317 
318 static int
319 tcp_inpcb_init(void *mem, int size, int flags)
320 {
321 	struct inpcb *inp = mem;
322 
323 	INP_LOCK_INIT(inp, "inp", "tcpinp");
324 	return (0);
325 }
326 
327 void
328 tcp_init(void)
329 {
330 	int hashsize;
331 
332 	hashsize = TCBHASHSIZE;
333 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
334 	if (!powerof2(hashsize)) {
335 		printf("WARNING: TCB hash size not a power of 2\n");
336 		hashsize = 512; /* safe default */
337 	}
338 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
339 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE);
340 
341 	V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
342 
343 	/*
344 	 * These have to be type stable for the benefit of the timers.
345 	 */
346 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
347 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
348 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
349 
350 	tcp_tw_init();
351 	syncache_init();
352 	tcp_hc_init();
353 	tcp_reass_init();
354 
355 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
356 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
357 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
358 
359 	/* Skip initialization of globals for non-default instances. */
360 	if (!IS_DEFAULT_VNET(curvnet))
361 		return;
362 
363 	/* XXX virtualize those bellow? */
364 	tcp_delacktime = TCPTV_DELACK;
365 	tcp_keepinit = TCPTV_KEEP_INIT;
366 	tcp_keepidle = TCPTV_KEEP_IDLE;
367 	tcp_keepintvl = TCPTV_KEEPINTVL;
368 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
369 	tcp_msl = TCPTV_MSL;
370 	tcp_rexmit_min = TCPTV_MIN;
371 	if (tcp_rexmit_min < 1)
372 		tcp_rexmit_min = 1;
373 	tcp_rexmit_slop = TCPTV_CPU_VAR;
374 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
375 	tcp_tcbhashsize = hashsize;
376 
377 #ifdef TCP_SORECEIVE_STREAM
378 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
379 	if (tcp_soreceive_stream) {
380 		tcp_usrreqs.pru_soreceive = soreceive_stream;
381 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
382 	}
383 #endif
384 
385 #ifdef INET6
386 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
387 #else /* INET6 */
388 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
389 #endif /* INET6 */
390 	if (max_protohdr < TCP_MINPROTOHDR)
391 		max_protohdr = TCP_MINPROTOHDR;
392 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
393 		panic("tcp_init");
394 #undef TCP_MINPROTOHDR
395 
396 	ISN_LOCK_INIT();
397 	callout_init(&isn_callout, CALLOUT_MPSAFE);
398 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
399 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
400 		SHUTDOWN_PRI_DEFAULT);
401 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
402 		EVENTHANDLER_PRI_ANY);
403 }
404 
405 #ifdef VIMAGE
406 void
407 tcp_destroy(void)
408 {
409 
410 	tcp_reass_destroy();
411 	tcp_hc_destroy();
412 	syncache_destroy();
413 	tcp_tw_destroy();
414 	in_pcbinfo_destroy(&V_tcbinfo);
415 	uma_zdestroy(V_sack_hole_zone);
416 	uma_zdestroy(V_tcpcb_zone);
417 }
418 #endif
419 
420 void
421 tcp_fini(void *xtp)
422 {
423 
424 	callout_stop(&isn_callout);
425 }
426 
427 /*
428  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
429  * tcp_template used to store this data in mbufs, but we now recopy it out
430  * of the tcpcb each time to conserve mbufs.
431  */
432 void
433 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
434 {
435 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
436 
437 	INP_WLOCK_ASSERT(inp);
438 
439 #ifdef INET6
440 	if ((inp->inp_vflag & INP_IPV6) != 0) {
441 		struct ip6_hdr *ip6;
442 
443 		ip6 = (struct ip6_hdr *)ip_ptr;
444 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
445 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
446 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
447 			(IPV6_VERSION & IPV6_VERSION_MASK);
448 		ip6->ip6_nxt = IPPROTO_TCP;
449 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
450 		ip6->ip6_src = inp->in6p_laddr;
451 		ip6->ip6_dst = inp->in6p_faddr;
452 	} else
453 #endif
454 	{
455 		struct ip *ip;
456 
457 		ip = (struct ip *)ip_ptr;
458 		ip->ip_v = IPVERSION;
459 		ip->ip_hl = 5;
460 		ip->ip_tos = inp->inp_ip_tos;
461 		ip->ip_len = 0;
462 		ip->ip_id = 0;
463 		ip->ip_off = 0;
464 		ip->ip_ttl = inp->inp_ip_ttl;
465 		ip->ip_sum = 0;
466 		ip->ip_p = IPPROTO_TCP;
467 		ip->ip_src = inp->inp_laddr;
468 		ip->ip_dst = inp->inp_faddr;
469 	}
470 	th->th_sport = inp->inp_lport;
471 	th->th_dport = inp->inp_fport;
472 	th->th_seq = 0;
473 	th->th_ack = 0;
474 	th->th_x2 = 0;
475 	th->th_off = 5;
476 	th->th_flags = 0;
477 	th->th_win = 0;
478 	th->th_urp = 0;
479 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
480 }
481 
482 /*
483  * Create template to be used to send tcp packets on a connection.
484  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
485  * use for this function is in keepalives, which use tcp_respond.
486  */
487 struct tcptemp *
488 tcpip_maketemplate(struct inpcb *inp)
489 {
490 	struct tcptemp *t;
491 
492 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
493 	if (t == NULL)
494 		return (NULL);
495 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
496 	return (t);
497 }
498 
499 /*
500  * Send a single message to the TCP at address specified by
501  * the given TCP/IP header.  If m == NULL, then we make a copy
502  * of the tcpiphdr at ti and send directly to the addressed host.
503  * This is used to force keep alive messages out using the TCP
504  * template for a connection.  If flags are given then we send
505  * a message back to the TCP which originated the * segment ti,
506  * and discard the mbuf containing it and any other attached mbufs.
507  *
508  * In any case the ack and sequence number of the transmitted
509  * segment are as specified by the parameters.
510  *
511  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
512  */
513 void
514 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
515     tcp_seq ack, tcp_seq seq, int flags)
516 {
517 	int tlen;
518 	int win = 0;
519 	struct ip *ip;
520 	struct tcphdr *nth;
521 #ifdef INET6
522 	struct ip6_hdr *ip6;
523 	int isipv6;
524 #endif /* INET6 */
525 	int ipflags = 0;
526 	struct inpcb *inp;
527 
528 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
529 
530 #ifdef INET6
531 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
532 	ip6 = ipgen;
533 #endif /* INET6 */
534 	ip = ipgen;
535 
536 	if (tp != NULL) {
537 		inp = tp->t_inpcb;
538 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
539 		INP_WLOCK_ASSERT(inp);
540 	} else
541 		inp = NULL;
542 
543 	if (tp != NULL) {
544 		if (!(flags & TH_RST)) {
545 			win = sbspace(&inp->inp_socket->so_rcv);
546 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
547 				win = (long)TCP_MAXWIN << tp->rcv_scale;
548 		}
549 	}
550 	if (m == NULL) {
551 		m = m_gethdr(M_DONTWAIT, MT_DATA);
552 		if (m == NULL)
553 			return;
554 		tlen = 0;
555 		m->m_data += max_linkhdr;
556 #ifdef INET6
557 		if (isipv6) {
558 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
559 			      sizeof(struct ip6_hdr));
560 			ip6 = mtod(m, struct ip6_hdr *);
561 			nth = (struct tcphdr *)(ip6 + 1);
562 		} else
563 #endif /* INET6 */
564 	      {
565 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
566 		ip = mtod(m, struct ip *);
567 		nth = (struct tcphdr *)(ip + 1);
568 	      }
569 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
570 		flags = TH_ACK;
571 	} else {
572 		/*
573 		 *  reuse the mbuf.
574 		 * XXX MRT We inherrit the FIB, which is lucky.
575 		 */
576 		m_freem(m->m_next);
577 		m->m_next = NULL;
578 		m->m_data = (caddr_t)ipgen;
579 		/* m_len is set later */
580 		tlen = 0;
581 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
582 #ifdef INET6
583 		if (isipv6) {
584 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
585 			nth = (struct tcphdr *)(ip6 + 1);
586 		} else
587 #endif /* INET6 */
588 	      {
589 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
590 		nth = (struct tcphdr *)(ip + 1);
591 	      }
592 		if (th != nth) {
593 			/*
594 			 * this is usually a case when an extension header
595 			 * exists between the IPv6 header and the
596 			 * TCP header.
597 			 */
598 			nth->th_sport = th->th_sport;
599 			nth->th_dport = th->th_dport;
600 		}
601 		xchg(nth->th_dport, nth->th_sport, uint16_t);
602 #undef xchg
603 	}
604 #ifdef INET6
605 	if (isipv6) {
606 		ip6->ip6_flow = 0;
607 		ip6->ip6_vfc = IPV6_VERSION;
608 		ip6->ip6_nxt = IPPROTO_TCP;
609 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
610 						tlen));
611 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
612 	} else
613 #endif
614 	{
615 		tlen += sizeof (struct tcpiphdr);
616 		ip->ip_len = tlen;
617 		ip->ip_ttl = V_ip_defttl;
618 		if (V_path_mtu_discovery)
619 			ip->ip_off |= IP_DF;
620 	}
621 	m->m_len = tlen;
622 	m->m_pkthdr.len = tlen;
623 	m->m_pkthdr.rcvif = NULL;
624 #ifdef MAC
625 	if (inp != NULL) {
626 		/*
627 		 * Packet is associated with a socket, so allow the
628 		 * label of the response to reflect the socket label.
629 		 */
630 		INP_WLOCK_ASSERT(inp);
631 		mac_inpcb_create_mbuf(inp, m);
632 	} else {
633 		/*
634 		 * Packet is not associated with a socket, so possibly
635 		 * update the label in place.
636 		 */
637 		mac_netinet_tcp_reply(m);
638 	}
639 #endif
640 	nth->th_seq = htonl(seq);
641 	nth->th_ack = htonl(ack);
642 	nth->th_x2 = 0;
643 	nth->th_off = sizeof (struct tcphdr) >> 2;
644 	nth->th_flags = flags;
645 	if (tp != NULL)
646 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
647 	else
648 		nth->th_win = htons((u_short)win);
649 	nth->th_urp = 0;
650 #ifdef INET6
651 	if (isipv6) {
652 		nth->th_sum = 0;
653 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
654 					sizeof(struct ip6_hdr),
655 					tlen - sizeof(struct ip6_hdr));
656 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
657 		    NULL, NULL);
658 	} else
659 #endif /* INET6 */
660 	{
661 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
662 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
663 		m->m_pkthdr.csum_flags = CSUM_TCP;
664 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
665 	}
666 #ifdef TCPDEBUG
667 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
668 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
669 #endif
670 #ifdef INET6
671 	if (isipv6)
672 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
673 	else
674 #endif /* INET6 */
675 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
676 }
677 
678 /*
679  * Create a new TCP control block, making an
680  * empty reassembly queue and hooking it to the argument
681  * protocol control block.  The `inp' parameter must have
682  * come from the zone allocator set up in tcp_init().
683  */
684 struct tcpcb *
685 tcp_newtcpcb(struct inpcb *inp)
686 {
687 	struct tcpcb_mem *tm;
688 	struct tcpcb *tp;
689 #ifdef INET6
690 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
691 #endif /* INET6 */
692 
693 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
694 	if (tm == NULL)
695 		return (NULL);
696 	tp = &tm->tcb;
697 #ifdef VIMAGE
698 	tp->t_vnet = inp->inp_vnet;
699 #endif
700 	tp->t_timers = &tm->tt;
701 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
702 	tp->t_maxseg = tp->t_maxopd =
703 #ifdef INET6
704 		isipv6 ? V_tcp_v6mssdflt :
705 #endif /* INET6 */
706 		V_tcp_mssdflt;
707 
708 	/* Set up our timeouts. */
709 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
710 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
711 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
712 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
713 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
714 
715 	if (V_tcp_do_rfc1323)
716 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
717 	if (V_tcp_do_sack)
718 		tp->t_flags |= TF_SACK_PERMIT;
719 	TAILQ_INIT(&tp->snd_holes);
720 	tp->t_inpcb = inp;	/* XXX */
721 	/*
722 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
723 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
724 	 * reasonable initial retransmit time.
725 	 */
726 	tp->t_srtt = TCPTV_SRTTBASE;
727 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
728 	tp->t_rttmin = tcp_rexmit_min;
729 	tp->t_rxtcur = TCPTV_RTOBASE;
730 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
731 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
732 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
733 	tp->t_rcvtime = ticks;
734 	tp->t_bw_rtttime = ticks;
735 	/*
736 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
737 	 * because the socket may be bound to an IPv6 wildcard address,
738 	 * which may match an IPv4-mapped IPv6 address.
739 	 */
740 	inp->inp_ip_ttl = V_ip_defttl;
741 	inp->inp_ppcb = tp;
742 	return (tp);		/* XXX */
743 }
744 
745 /*
746  * Drop a TCP connection, reporting
747  * the specified error.  If connection is synchronized,
748  * then send a RST to peer.
749  */
750 struct tcpcb *
751 tcp_drop(struct tcpcb *tp, int errno)
752 {
753 	struct socket *so = tp->t_inpcb->inp_socket;
754 
755 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
756 	INP_WLOCK_ASSERT(tp->t_inpcb);
757 
758 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
759 		tp->t_state = TCPS_CLOSED;
760 		(void) tcp_output_reset(tp);
761 		TCPSTAT_INC(tcps_drops);
762 	} else
763 		TCPSTAT_INC(tcps_conndrops);
764 	if (errno == ETIMEDOUT && tp->t_softerror)
765 		errno = tp->t_softerror;
766 	so->so_error = errno;
767 	return (tcp_close(tp));
768 }
769 
770 void
771 tcp_discardcb(struct tcpcb *tp)
772 {
773 	struct tseg_qent *q;
774 	struct inpcb *inp = tp->t_inpcb;
775 	struct socket *so = inp->inp_socket;
776 #ifdef INET6
777 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
778 #endif /* INET6 */
779 
780 	INP_WLOCK_ASSERT(inp);
781 
782 	/*
783 	 * Make sure that all of our timers are stopped before we delete the
784 	 * PCB.
785 	 *
786 	 * XXXRW: Really, we would like to use callout_drain() here in order
787 	 * to avoid races experienced in tcp_timer.c where a timer is already
788 	 * executing at this point.  However, we can't, both because we're
789 	 * running in a context where we can't sleep, and also because we
790 	 * hold locks required by the timers.  What we instead need to do is
791 	 * test to see if callout_drain() is required, and if so, defer some
792 	 * portion of the remainder of tcp_discardcb() to an asynchronous
793 	 * context that can callout_drain() and then continue.  Some care
794 	 * will be required to ensure that no further processing takes place
795 	 * on the tcpcb, even though it hasn't been freed (a flag?).
796 	 */
797 	callout_stop(&tp->t_timers->tt_rexmt);
798 	callout_stop(&tp->t_timers->tt_persist);
799 	callout_stop(&tp->t_timers->tt_keep);
800 	callout_stop(&tp->t_timers->tt_2msl);
801 	callout_stop(&tp->t_timers->tt_delack);
802 
803 	/*
804 	 * If we got enough samples through the srtt filter,
805 	 * save the rtt and rttvar in the routing entry.
806 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
807 	 * 4 samples is enough for the srtt filter to converge
808 	 * to within enough % of the correct value; fewer samples
809 	 * and we could save a bogus rtt. The danger is not high
810 	 * as tcp quickly recovers from everything.
811 	 * XXX: Works very well but needs some more statistics!
812 	 */
813 	if (tp->t_rttupdated >= 4) {
814 		struct hc_metrics_lite metrics;
815 		u_long ssthresh;
816 
817 		bzero(&metrics, sizeof(metrics));
818 		/*
819 		 * Update the ssthresh always when the conditions below
820 		 * are satisfied. This gives us better new start value
821 		 * for the congestion avoidance for new connections.
822 		 * ssthresh is only set if packet loss occured on a session.
823 		 *
824 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
825 		 * being torn down.  Ideally this code would not use 'so'.
826 		 */
827 		ssthresh = tp->snd_ssthresh;
828 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
829 			/*
830 			 * convert the limit from user data bytes to
831 			 * packets then to packet data bytes.
832 			 */
833 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
834 			if (ssthresh < 2)
835 				ssthresh = 2;
836 			ssthresh *= (u_long)(tp->t_maxseg +
837 #ifdef INET6
838 				      (isipv6 ? sizeof (struct ip6_hdr) +
839 					       sizeof (struct tcphdr) :
840 #endif
841 				       sizeof (struct tcpiphdr)
842 #ifdef INET6
843 				       )
844 #endif
845 				      );
846 		} else
847 			ssthresh = 0;
848 		metrics.rmx_ssthresh = ssthresh;
849 
850 		metrics.rmx_rtt = tp->t_srtt;
851 		metrics.rmx_rttvar = tp->t_rttvar;
852 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
853 		metrics.rmx_bandwidth = tp->snd_bandwidth;
854 		metrics.rmx_cwnd = tp->snd_cwnd;
855 		metrics.rmx_sendpipe = 0;
856 		metrics.rmx_recvpipe = 0;
857 
858 		tcp_hc_update(&inp->inp_inc, &metrics);
859 	}
860 
861 	/* free the reassembly queue, if any */
862 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
863 		LIST_REMOVE(q, tqe_q);
864 		m_freem(q->tqe_m);
865 		uma_zfree(V_tcp_reass_zone, q);
866 		tp->t_segqlen--;
867 		V_tcp_reass_qsize--;
868 	}
869 	/* Disconnect offload device, if any. */
870 	tcp_offload_detach(tp);
871 
872 	tcp_free_sackholes(tp);
873 	inp->inp_ppcb = NULL;
874 	tp->t_inpcb = NULL;
875 	uma_zfree(V_tcpcb_zone, tp);
876 }
877 
878 /*
879  * Attempt to close a TCP control block, marking it as dropped, and freeing
880  * the socket if we hold the only reference.
881  */
882 struct tcpcb *
883 tcp_close(struct tcpcb *tp)
884 {
885 	struct inpcb *inp = tp->t_inpcb;
886 	struct socket *so;
887 
888 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
889 	INP_WLOCK_ASSERT(inp);
890 
891 	/* Notify any offload devices of listener close */
892 	if (tp->t_state == TCPS_LISTEN)
893 		tcp_offload_listen_close(tp);
894 	in_pcbdrop(inp);
895 	TCPSTAT_INC(tcps_closed);
896 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
897 	so = inp->inp_socket;
898 	soisdisconnected(so);
899 	if (inp->inp_flags & INP_SOCKREF) {
900 		KASSERT(so->so_state & SS_PROTOREF,
901 		    ("tcp_close: !SS_PROTOREF"));
902 		inp->inp_flags &= ~INP_SOCKREF;
903 		INP_WUNLOCK(inp);
904 		ACCEPT_LOCK();
905 		SOCK_LOCK(so);
906 		so->so_state &= ~SS_PROTOREF;
907 		sofree(so);
908 		return (NULL);
909 	}
910 	return (tp);
911 }
912 
913 void
914 tcp_drain(void)
915 {
916 	VNET_ITERATOR_DECL(vnet_iter);
917 
918 	if (!do_tcpdrain)
919 		return;
920 
921 	VNET_LIST_RLOCK_NOSLEEP();
922 	VNET_FOREACH(vnet_iter) {
923 		CURVNET_SET(vnet_iter);
924 		struct inpcb *inpb;
925 		struct tcpcb *tcpb;
926 		struct tseg_qent *te;
927 
928 	/*
929 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
930 	 * if there is one...
931 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
932 	 *      reassembly queue should be flushed, but in a situation
933 	 *	where we're really low on mbufs, this is potentially
934 	 *	usefull.
935 	 */
936 		INP_INFO_RLOCK(&V_tcbinfo);
937 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
938 			if (inpb->inp_flags & INP_TIMEWAIT)
939 				continue;
940 			INP_WLOCK(inpb);
941 			if ((tcpb = intotcpcb(inpb)) != NULL) {
942 				while ((te = LIST_FIRST(&tcpb->t_segq))
943 			            != NULL) {
944 					LIST_REMOVE(te, tqe_q);
945 					m_freem(te->tqe_m);
946 					uma_zfree(V_tcp_reass_zone, te);
947 					tcpb->t_segqlen--;
948 					V_tcp_reass_qsize--;
949 				}
950 				tcp_clean_sackreport(tcpb);
951 			}
952 			INP_WUNLOCK(inpb);
953 		}
954 		INP_INFO_RUNLOCK(&V_tcbinfo);
955 		CURVNET_RESTORE();
956 	}
957 	VNET_LIST_RUNLOCK_NOSLEEP();
958 }
959 
960 /*
961  * Notify a tcp user of an asynchronous error;
962  * store error as soft error, but wake up user
963  * (for now, won't do anything until can select for soft error).
964  *
965  * Do not wake up user since there currently is no mechanism for
966  * reporting soft errors (yet - a kqueue filter may be added).
967  */
968 static struct inpcb *
969 tcp_notify(struct inpcb *inp, int error)
970 {
971 	struct tcpcb *tp;
972 
973 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
974 	INP_WLOCK_ASSERT(inp);
975 
976 	if ((inp->inp_flags & INP_TIMEWAIT) ||
977 	    (inp->inp_flags & INP_DROPPED))
978 		return (inp);
979 
980 	tp = intotcpcb(inp);
981 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
982 
983 	/*
984 	 * Ignore some errors if we are hooked up.
985 	 * If connection hasn't completed, has retransmitted several times,
986 	 * and receives a second error, give up now.  This is better
987 	 * than waiting a long time to establish a connection that
988 	 * can never complete.
989 	 */
990 	if (tp->t_state == TCPS_ESTABLISHED &&
991 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
992 	     error == EHOSTDOWN)) {
993 		return (inp);
994 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
995 	    tp->t_softerror) {
996 		tp = tcp_drop(tp, error);
997 		if (tp != NULL)
998 			return (inp);
999 		else
1000 			return (NULL);
1001 	} else {
1002 		tp->t_softerror = error;
1003 		return (inp);
1004 	}
1005 #if 0
1006 	wakeup( &so->so_timeo);
1007 	sorwakeup(so);
1008 	sowwakeup(so);
1009 #endif
1010 }
1011 
1012 static int
1013 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1014 {
1015 	int error, i, m, n, pcb_count;
1016 	struct inpcb *inp, **inp_list;
1017 	inp_gen_t gencnt;
1018 	struct xinpgen xig;
1019 
1020 	/*
1021 	 * The process of preparing the TCB list is too time-consuming and
1022 	 * resource-intensive to repeat twice on every request.
1023 	 */
1024 	if (req->oldptr == NULL) {
1025 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1026 		n += imax(n / 8, 10);
1027 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1028 		return (0);
1029 	}
1030 
1031 	if (req->newptr != NULL)
1032 		return (EPERM);
1033 
1034 	/*
1035 	 * OK, now we're committed to doing something.
1036 	 */
1037 	INP_INFO_RLOCK(&V_tcbinfo);
1038 	gencnt = V_tcbinfo.ipi_gencnt;
1039 	n = V_tcbinfo.ipi_count;
1040 	INP_INFO_RUNLOCK(&V_tcbinfo);
1041 
1042 	m = syncache_pcbcount();
1043 
1044 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1045 		+ (n + m) * sizeof(struct xtcpcb));
1046 	if (error != 0)
1047 		return (error);
1048 
1049 	xig.xig_len = sizeof xig;
1050 	xig.xig_count = n + m;
1051 	xig.xig_gen = gencnt;
1052 	xig.xig_sogen = so_gencnt;
1053 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1054 	if (error)
1055 		return (error);
1056 
1057 	error = syncache_pcblist(req, m, &pcb_count);
1058 	if (error)
1059 		return (error);
1060 
1061 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1062 	if (inp_list == NULL)
1063 		return (ENOMEM);
1064 
1065 	INP_INFO_RLOCK(&V_tcbinfo);
1066 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1067 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1068 		INP_WLOCK(inp);
1069 		if (inp->inp_gencnt <= gencnt) {
1070 			/*
1071 			 * XXX: This use of cr_cansee(), introduced with
1072 			 * TCP state changes, is not quite right, but for
1073 			 * now, better than nothing.
1074 			 */
1075 			if (inp->inp_flags & INP_TIMEWAIT) {
1076 				if (intotw(inp) != NULL)
1077 					error = cr_cansee(req->td->td_ucred,
1078 					    intotw(inp)->tw_cred);
1079 				else
1080 					error = EINVAL;	/* Skip this inp. */
1081 			} else
1082 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1083 			if (error == 0) {
1084 				in_pcbref(inp);
1085 				inp_list[i++] = inp;
1086 			}
1087 		}
1088 		INP_WUNLOCK(inp);
1089 	}
1090 	INP_INFO_RUNLOCK(&V_tcbinfo);
1091 	n = i;
1092 
1093 	error = 0;
1094 	for (i = 0; i < n; i++) {
1095 		inp = inp_list[i];
1096 		INP_RLOCK(inp);
1097 		if (inp->inp_gencnt <= gencnt) {
1098 			struct xtcpcb xt;
1099 			void *inp_ppcb;
1100 
1101 			bzero(&xt, sizeof(xt));
1102 			xt.xt_len = sizeof xt;
1103 			/* XXX should avoid extra copy */
1104 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1105 			inp_ppcb = inp->inp_ppcb;
1106 			if (inp_ppcb == NULL)
1107 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1108 			else if (inp->inp_flags & INP_TIMEWAIT) {
1109 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1110 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1111 			} else {
1112 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1113 				if (xt.xt_tp.t_timers)
1114 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1115 			}
1116 			if (inp->inp_socket != NULL)
1117 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1118 			else {
1119 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1120 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1121 			}
1122 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1123 			INP_RUNLOCK(inp);
1124 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1125 		} else
1126 			INP_RUNLOCK(inp);
1127 	}
1128 	INP_INFO_WLOCK(&V_tcbinfo);
1129 	for (i = 0; i < n; i++) {
1130 		inp = inp_list[i];
1131 		INP_WLOCK(inp);
1132 		if (!in_pcbrele(inp))
1133 			INP_WUNLOCK(inp);
1134 	}
1135 	INP_INFO_WUNLOCK(&V_tcbinfo);
1136 
1137 	if (!error) {
1138 		/*
1139 		 * Give the user an updated idea of our state.
1140 		 * If the generation differs from what we told
1141 		 * her before, she knows that something happened
1142 		 * while we were processing this request, and it
1143 		 * might be necessary to retry.
1144 		 */
1145 		INP_INFO_RLOCK(&V_tcbinfo);
1146 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1147 		xig.xig_sogen = so_gencnt;
1148 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1149 		INP_INFO_RUNLOCK(&V_tcbinfo);
1150 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1151 	}
1152 	free(inp_list, M_TEMP);
1153 	return (error);
1154 }
1155 
1156 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1157     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1158 
1159 static int
1160 tcp_getcred(SYSCTL_HANDLER_ARGS)
1161 {
1162 	struct xucred xuc;
1163 	struct sockaddr_in addrs[2];
1164 	struct inpcb *inp;
1165 	int error;
1166 
1167 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1168 	if (error)
1169 		return (error);
1170 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1171 	if (error)
1172 		return (error);
1173 	INP_INFO_RLOCK(&V_tcbinfo);
1174 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1175 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1176 	if (inp != NULL) {
1177 		INP_RLOCK(inp);
1178 		INP_INFO_RUNLOCK(&V_tcbinfo);
1179 		if (inp->inp_socket == NULL)
1180 			error = ENOENT;
1181 		if (error == 0)
1182 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1183 		if (error == 0)
1184 			cru2x(inp->inp_cred, &xuc);
1185 		INP_RUNLOCK(inp);
1186 	} else {
1187 		INP_INFO_RUNLOCK(&V_tcbinfo);
1188 		error = ENOENT;
1189 	}
1190 	if (error == 0)
1191 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1192 	return (error);
1193 }
1194 
1195 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1196     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1197     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1198 
1199 #ifdef INET6
1200 static int
1201 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1202 {
1203 	struct xucred xuc;
1204 	struct sockaddr_in6 addrs[2];
1205 	struct inpcb *inp;
1206 	int error, mapped = 0;
1207 
1208 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1209 	if (error)
1210 		return (error);
1211 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1212 	if (error)
1213 		return (error);
1214 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1215 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1216 		return (error);
1217 	}
1218 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1219 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1220 			mapped = 1;
1221 		else
1222 			return (EINVAL);
1223 	}
1224 
1225 	INP_INFO_RLOCK(&V_tcbinfo);
1226 	if (mapped == 1)
1227 		inp = in_pcblookup_hash(&V_tcbinfo,
1228 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1229 			addrs[1].sin6_port,
1230 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1231 			addrs[0].sin6_port,
1232 			0, NULL);
1233 	else
1234 		inp = in6_pcblookup_hash(&V_tcbinfo,
1235 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1236 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1237 	if (inp != NULL) {
1238 		INP_RLOCK(inp);
1239 		INP_INFO_RUNLOCK(&V_tcbinfo);
1240 		if (inp->inp_socket == NULL)
1241 			error = ENOENT;
1242 		if (error == 0)
1243 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1244 		if (error == 0)
1245 			cru2x(inp->inp_cred, &xuc);
1246 		INP_RUNLOCK(inp);
1247 	} else {
1248 		INP_INFO_RUNLOCK(&V_tcbinfo);
1249 		error = ENOENT;
1250 	}
1251 	if (error == 0)
1252 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1253 	return (error);
1254 }
1255 
1256 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1257     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1258     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1259 #endif
1260 
1261 
1262 void
1263 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1264 {
1265 	struct ip *ip = vip;
1266 	struct tcphdr *th;
1267 	struct in_addr faddr;
1268 	struct inpcb *inp;
1269 	struct tcpcb *tp;
1270 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1271 	struct icmp *icp;
1272 	struct in_conninfo inc;
1273 	tcp_seq icmp_tcp_seq;
1274 	int mtu;
1275 
1276 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1277 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1278 		return;
1279 
1280 	if (cmd == PRC_MSGSIZE)
1281 		notify = tcp_mtudisc;
1282 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1283 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1284 		notify = tcp_drop_syn_sent;
1285 	/*
1286 	 * Redirects don't need to be handled up here.
1287 	 */
1288 	else if (PRC_IS_REDIRECT(cmd))
1289 		return;
1290 	/*
1291 	 * Source quench is depreciated.
1292 	 */
1293 	else if (cmd == PRC_QUENCH)
1294 		return;
1295 	/*
1296 	 * Hostdead is ugly because it goes linearly through all PCBs.
1297 	 * XXX: We never get this from ICMP, otherwise it makes an
1298 	 * excellent DoS attack on machines with many connections.
1299 	 */
1300 	else if (cmd == PRC_HOSTDEAD)
1301 		ip = NULL;
1302 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1303 		return;
1304 	if (ip != NULL) {
1305 		icp = (struct icmp *)((caddr_t)ip
1306 				      - offsetof(struct icmp, icmp_ip));
1307 		th = (struct tcphdr *)((caddr_t)ip
1308 				       + (ip->ip_hl << 2));
1309 		INP_INFO_WLOCK(&V_tcbinfo);
1310 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1311 		    ip->ip_src, th->th_sport, 0, NULL);
1312 		if (inp != NULL)  {
1313 			INP_WLOCK(inp);
1314 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1315 			    !(inp->inp_flags & INP_DROPPED) &&
1316 			    !(inp->inp_socket == NULL)) {
1317 				icmp_tcp_seq = htonl(th->th_seq);
1318 				tp = intotcpcb(inp);
1319 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1320 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1321 					if (cmd == PRC_MSGSIZE) {
1322 					    /*
1323 					     * MTU discovery:
1324 					     * If we got a needfrag set the MTU
1325 					     * in the route to the suggested new
1326 					     * value (if given) and then notify.
1327 					     */
1328 					    bzero(&inc, sizeof(inc));
1329 					    inc.inc_faddr = faddr;
1330 					    inc.inc_fibnum =
1331 						inp->inp_inc.inc_fibnum;
1332 
1333 					    mtu = ntohs(icp->icmp_nextmtu);
1334 					    /*
1335 					     * If no alternative MTU was
1336 					     * proposed, try the next smaller
1337 					     * one.  ip->ip_len has already
1338 					     * been swapped in icmp_input().
1339 					     */
1340 					    if (!mtu)
1341 						mtu = ip_next_mtu(ip->ip_len,
1342 						 1);
1343 					    if (mtu < V_tcp_minmss
1344 						 + sizeof(struct tcpiphdr))
1345 						mtu = V_tcp_minmss
1346 						 + sizeof(struct tcpiphdr);
1347 					    /*
1348 					     * Only cache the the MTU if it
1349 					     * is smaller than the interface
1350 					     * or route MTU.  tcp_mtudisc()
1351 					     * will do right thing by itself.
1352 					     */
1353 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1354 						tcp_hc_updatemtu(&inc, mtu);
1355 					}
1356 
1357 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1358 				}
1359 			}
1360 			if (inp != NULL)
1361 				INP_WUNLOCK(inp);
1362 		} else {
1363 			bzero(&inc, sizeof(inc));
1364 			inc.inc_fport = th->th_dport;
1365 			inc.inc_lport = th->th_sport;
1366 			inc.inc_faddr = faddr;
1367 			inc.inc_laddr = ip->ip_src;
1368 			syncache_unreach(&inc, th);
1369 		}
1370 		INP_INFO_WUNLOCK(&V_tcbinfo);
1371 	} else
1372 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1373 }
1374 
1375 #ifdef INET6
1376 void
1377 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1378 {
1379 	struct tcphdr th;
1380 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1381 	struct ip6_hdr *ip6;
1382 	struct mbuf *m;
1383 	struct ip6ctlparam *ip6cp = NULL;
1384 	const struct sockaddr_in6 *sa6_src = NULL;
1385 	int off;
1386 	struct tcp_portonly {
1387 		u_int16_t th_sport;
1388 		u_int16_t th_dport;
1389 	} *thp;
1390 
1391 	if (sa->sa_family != AF_INET6 ||
1392 	    sa->sa_len != sizeof(struct sockaddr_in6))
1393 		return;
1394 
1395 	if (cmd == PRC_MSGSIZE)
1396 		notify = tcp_mtudisc;
1397 	else if (!PRC_IS_REDIRECT(cmd) &&
1398 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1399 		return;
1400 	/* Source quench is depreciated. */
1401 	else if (cmd == PRC_QUENCH)
1402 		return;
1403 
1404 	/* if the parameter is from icmp6, decode it. */
1405 	if (d != NULL) {
1406 		ip6cp = (struct ip6ctlparam *)d;
1407 		m = ip6cp->ip6c_m;
1408 		ip6 = ip6cp->ip6c_ip6;
1409 		off = ip6cp->ip6c_off;
1410 		sa6_src = ip6cp->ip6c_src;
1411 	} else {
1412 		m = NULL;
1413 		ip6 = NULL;
1414 		off = 0;	/* fool gcc */
1415 		sa6_src = &sa6_any;
1416 	}
1417 
1418 	if (ip6 != NULL) {
1419 		struct in_conninfo inc;
1420 		/*
1421 		 * XXX: We assume that when IPV6 is non NULL,
1422 		 * M and OFF are valid.
1423 		 */
1424 
1425 		/* check if we can safely examine src and dst ports */
1426 		if (m->m_pkthdr.len < off + sizeof(*thp))
1427 			return;
1428 
1429 		bzero(&th, sizeof(th));
1430 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1431 
1432 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1433 		    (struct sockaddr *)ip6cp->ip6c_src,
1434 		    th.th_sport, cmd, NULL, notify);
1435 
1436 		bzero(&inc, sizeof(inc));
1437 		inc.inc_fport = th.th_dport;
1438 		inc.inc_lport = th.th_sport;
1439 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1440 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1441 		inc.inc_flags |= INC_ISIPV6;
1442 		INP_INFO_WLOCK(&V_tcbinfo);
1443 		syncache_unreach(&inc, &th);
1444 		INP_INFO_WUNLOCK(&V_tcbinfo);
1445 	} else
1446 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1447 			      0, cmd, NULL, notify);
1448 }
1449 #endif /* INET6 */
1450 
1451 
1452 /*
1453  * Following is where TCP initial sequence number generation occurs.
1454  *
1455  * There are two places where we must use initial sequence numbers:
1456  * 1.  In SYN-ACK packets.
1457  * 2.  In SYN packets.
1458  *
1459  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1460  * tcp_syncache.c for details.
1461  *
1462  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1463  * depends on this property.  In addition, these ISNs should be
1464  * unguessable so as to prevent connection hijacking.  To satisfy
1465  * the requirements of this situation, the algorithm outlined in
1466  * RFC 1948 is used, with only small modifications.
1467  *
1468  * Implementation details:
1469  *
1470  * Time is based off the system timer, and is corrected so that it
1471  * increases by one megabyte per second.  This allows for proper
1472  * recycling on high speed LANs while still leaving over an hour
1473  * before rollover.
1474  *
1475  * As reading the *exact* system time is too expensive to be done
1476  * whenever setting up a TCP connection, we increment the time
1477  * offset in two ways.  First, a small random positive increment
1478  * is added to isn_offset for each connection that is set up.
1479  * Second, the function tcp_isn_tick fires once per clock tick
1480  * and increments isn_offset as necessary so that sequence numbers
1481  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1482  * random positive increments serve only to ensure that the same
1483  * exact sequence number is never sent out twice (as could otherwise
1484  * happen when a port is recycled in less than the system tick
1485  * interval.)
1486  *
1487  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1488  * between seeding of isn_secret.  This is normally set to zero,
1489  * as reseeding should not be necessary.
1490  *
1491  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1492  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1493  * general, this means holding an exclusive (write) lock.
1494  */
1495 
1496 #define ISN_BYTES_PER_SECOND 1048576
1497 #define ISN_STATIC_INCREMENT 4096
1498 #define ISN_RANDOM_INCREMENT (4096 - 1)
1499 
1500 static VNET_DEFINE(u_char, isn_secret[32]);
1501 static VNET_DEFINE(int, isn_last_reseed);
1502 static VNET_DEFINE(u_int32_t, isn_offset);
1503 static VNET_DEFINE(u_int32_t, isn_offset_old);
1504 
1505 #define	V_isn_secret			VNET(isn_secret)
1506 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1507 #define	V_isn_offset			VNET(isn_offset)
1508 #define	V_isn_offset_old		VNET(isn_offset_old)
1509 
1510 tcp_seq
1511 tcp_new_isn(struct tcpcb *tp)
1512 {
1513 	MD5_CTX isn_ctx;
1514 	u_int32_t md5_buffer[4];
1515 	tcp_seq new_isn;
1516 
1517 	INP_WLOCK_ASSERT(tp->t_inpcb);
1518 
1519 	ISN_LOCK();
1520 	/* Seed if this is the first use, reseed if requested. */
1521 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1522 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1523 		< (u_int)ticks))) {
1524 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1525 		V_isn_last_reseed = ticks;
1526 	}
1527 
1528 	/* Compute the md5 hash and return the ISN. */
1529 	MD5Init(&isn_ctx);
1530 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1531 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1532 #ifdef INET6
1533 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1534 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1535 			  sizeof(struct in6_addr));
1536 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1537 			  sizeof(struct in6_addr));
1538 	} else
1539 #endif
1540 	{
1541 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1542 			  sizeof(struct in_addr));
1543 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1544 			  sizeof(struct in_addr));
1545 	}
1546 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1547 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1548 	new_isn = (tcp_seq) md5_buffer[0];
1549 	V_isn_offset += ISN_STATIC_INCREMENT +
1550 		(arc4random() & ISN_RANDOM_INCREMENT);
1551 	new_isn += V_isn_offset;
1552 	ISN_UNLOCK();
1553 	return (new_isn);
1554 }
1555 
1556 /*
1557  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1558  * to keep time flowing at a relatively constant rate.  If the random
1559  * increments have already pushed us past the projected offset, do nothing.
1560  */
1561 static void
1562 tcp_isn_tick(void *xtp)
1563 {
1564 	VNET_ITERATOR_DECL(vnet_iter);
1565 	u_int32_t projected_offset;
1566 
1567 	VNET_LIST_RLOCK_NOSLEEP();
1568 	ISN_LOCK();
1569 	VNET_FOREACH(vnet_iter) {
1570 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1571 		projected_offset =
1572 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1573 
1574 		if (SEQ_GT(projected_offset, V_isn_offset))
1575 			V_isn_offset = projected_offset;
1576 
1577 		V_isn_offset_old = V_isn_offset;
1578 		CURVNET_RESTORE();
1579 	}
1580 	ISN_UNLOCK();
1581 	VNET_LIST_RUNLOCK_NOSLEEP();
1582 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1583 }
1584 
1585 /*
1586  * When a specific ICMP unreachable message is received and the
1587  * connection state is SYN-SENT, drop the connection.  This behavior
1588  * is controlled by the icmp_may_rst sysctl.
1589  */
1590 struct inpcb *
1591 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1592 {
1593 	struct tcpcb *tp;
1594 
1595 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1596 	INP_WLOCK_ASSERT(inp);
1597 
1598 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1599 	    (inp->inp_flags & INP_DROPPED))
1600 		return (inp);
1601 
1602 	tp = intotcpcb(inp);
1603 	if (tp->t_state != TCPS_SYN_SENT)
1604 		return (inp);
1605 
1606 	tp = tcp_drop(tp, errno);
1607 	if (tp != NULL)
1608 		return (inp);
1609 	else
1610 		return (NULL);
1611 }
1612 
1613 /*
1614  * When `need fragmentation' ICMP is received, update our idea of the MSS
1615  * based on the new value in the route.  Also nudge TCP to send something,
1616  * since we know the packet we just sent was dropped.
1617  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1618  */
1619 struct inpcb *
1620 tcp_mtudisc(struct inpcb *inp, int errno)
1621 {
1622 	struct tcpcb *tp;
1623 	struct socket *so;
1624 
1625 	INP_WLOCK_ASSERT(inp);
1626 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1627 	    (inp->inp_flags & INP_DROPPED))
1628 		return (inp);
1629 
1630 	tp = intotcpcb(inp);
1631 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1632 
1633 	tcp_mss_update(tp, -1, NULL, NULL);
1634 
1635 	so = inp->inp_socket;
1636 	SOCKBUF_LOCK(&so->so_snd);
1637 	/* If the mss is larger than the socket buffer, decrease the mss. */
1638 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1639 		tp->t_maxseg = so->so_snd.sb_hiwat;
1640 	SOCKBUF_UNLOCK(&so->so_snd);
1641 
1642 	TCPSTAT_INC(tcps_mturesent);
1643 	tp->t_rtttime = 0;
1644 	tp->snd_nxt = tp->snd_una;
1645 	tcp_free_sackholes(tp);
1646 	tp->snd_recover = tp->snd_max;
1647 	if (tp->t_flags & TF_SACK_PERMIT)
1648 		EXIT_FASTRECOVERY(tp);
1649 	tcp_output_send(tp);
1650 	return (inp);
1651 }
1652 
1653 /*
1654  * Look-up the routing entry to the peer of this inpcb.  If no route
1655  * is found and it cannot be allocated, then return 0.  This routine
1656  * is called by TCP routines that access the rmx structure and by
1657  * tcp_mss_update to get the peer/interface MTU.
1658  */
1659 u_long
1660 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1661 {
1662 	struct route sro;
1663 	struct sockaddr_in *dst;
1664 	struct ifnet *ifp;
1665 	u_long maxmtu = 0;
1666 
1667 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1668 
1669 	bzero(&sro, sizeof(sro));
1670 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1671 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1672 		dst->sin_family = AF_INET;
1673 		dst->sin_len = sizeof(*dst);
1674 		dst->sin_addr = inc->inc_faddr;
1675 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1676 	}
1677 	if (sro.ro_rt != NULL) {
1678 		ifp = sro.ro_rt->rt_ifp;
1679 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1680 			maxmtu = ifp->if_mtu;
1681 		else
1682 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1683 
1684 		/* Report additional interface capabilities. */
1685 		if (flags != NULL) {
1686 			if (ifp->if_capenable & IFCAP_TSO4 &&
1687 			    ifp->if_hwassist & CSUM_TSO)
1688 				*flags |= CSUM_TSO;
1689 		}
1690 		RTFREE(sro.ro_rt);
1691 	}
1692 	return (maxmtu);
1693 }
1694 
1695 #ifdef INET6
1696 u_long
1697 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1698 {
1699 	struct route_in6 sro6;
1700 	struct ifnet *ifp;
1701 	u_long maxmtu = 0;
1702 
1703 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1704 
1705 	bzero(&sro6, sizeof(sro6));
1706 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1707 		sro6.ro_dst.sin6_family = AF_INET6;
1708 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1709 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1710 		rtalloc_ign((struct route *)&sro6, 0);
1711 	}
1712 	if (sro6.ro_rt != NULL) {
1713 		ifp = sro6.ro_rt->rt_ifp;
1714 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1715 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1716 		else
1717 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1718 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1719 
1720 		/* Report additional interface capabilities. */
1721 		if (flags != NULL) {
1722 			if (ifp->if_capenable & IFCAP_TSO6 &&
1723 			    ifp->if_hwassist & CSUM_TSO)
1724 				*flags |= CSUM_TSO;
1725 		}
1726 		RTFREE(sro6.ro_rt);
1727 	}
1728 
1729 	return (maxmtu);
1730 }
1731 #endif /* INET6 */
1732 
1733 #ifdef IPSEC
1734 /* compute ESP/AH header size for TCP, including outer IP header. */
1735 size_t
1736 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1737 {
1738 	struct inpcb *inp;
1739 	struct mbuf *m;
1740 	size_t hdrsiz;
1741 	struct ip *ip;
1742 #ifdef INET6
1743 	struct ip6_hdr *ip6;
1744 #endif
1745 	struct tcphdr *th;
1746 
1747 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1748 		return (0);
1749 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1750 	if (!m)
1751 		return (0);
1752 
1753 #ifdef INET6
1754 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1755 		ip6 = mtod(m, struct ip6_hdr *);
1756 		th = (struct tcphdr *)(ip6 + 1);
1757 		m->m_pkthdr.len = m->m_len =
1758 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1759 		tcpip_fillheaders(inp, ip6, th);
1760 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1761 	} else
1762 #endif /* INET6 */
1763 	{
1764 		ip = mtod(m, struct ip *);
1765 		th = (struct tcphdr *)(ip + 1);
1766 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1767 		tcpip_fillheaders(inp, ip, th);
1768 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1769 	}
1770 
1771 	m_free(m);
1772 	return (hdrsiz);
1773 }
1774 #endif /* IPSEC */
1775 
1776 /*
1777  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1778  *
1779  * This code attempts to calculate the bandwidth-delay product as a
1780  * means of determining the optimal window size to maximize bandwidth,
1781  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1782  * routers.  This code also does a fairly good job keeping RTTs in check
1783  * across slow links like modems.  We implement an algorithm which is very
1784  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1785  * transmitter side of a TCP connection and so only effects the transmit
1786  * side of the connection.
1787  *
1788  * BACKGROUND:  TCP makes no provision for the management of buffer space
1789  * at the end points or at the intermediate routers and switches.  A TCP
1790  * stream, whether using NewReno or not, will eventually buffer as
1791  * many packets as it is able and the only reason this typically works is
1792  * due to the fairly small default buffers made available for a connection
1793  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1794  * scaling it is now fairly easy for even a single TCP connection to blow-out
1795  * all available buffer space not only on the local interface, but on
1796  * intermediate routers and switches as well.  NewReno makes a misguided
1797  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1798  * then backing off, then steadily increasing the window again until another
1799  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1800  * is only made worse as network loads increase and the idea of intentionally
1801  * blowing out network buffers is, frankly, a terrible way to manage network
1802  * resources.
1803  *
1804  * It is far better to limit the transmit window prior to the failure
1805  * condition being achieved.  There are two general ways to do this:  First
1806  * you can 'scan' through different transmit window sizes and locate the
1807  * point where the RTT stops increasing, indicating that you have filled the
1808  * pipe, then scan backwards until you note that RTT stops decreasing, then
1809  * repeat ad-infinitum.  This method works in principle but has severe
1810  * implementation issues due to RTT variances, timer granularity, and
1811  * instability in the algorithm which can lead to many false positives and
1812  * create oscillations as well as interact badly with other TCP streams
1813  * implementing the same algorithm.
1814  *
1815  * The second method is to limit the window to the bandwidth delay product
1816  * of the link.  This is the method we implement.  RTT variances and our
1817  * own manipulation of the congestion window, bwnd, can potentially
1818  * destabilize the algorithm.  For this reason we have to stabilize the
1819  * elements used to calculate the window.  We do this by using the minimum
1820  * observed RTT, the long term average of the observed bandwidth, and
1821  * by adding two segments worth of slop.  It isn't perfect but it is able
1822  * to react to changing conditions and gives us a very stable basis on
1823  * which to extend the algorithm.
1824  */
1825 void
1826 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1827 {
1828 	u_long bw;
1829 	u_long bwnd;
1830 	int save_ticks;
1831 
1832 	INP_WLOCK_ASSERT(tp->t_inpcb);
1833 
1834 	/*
1835 	 * If inflight_enable is disabled in the middle of a tcp connection,
1836 	 * make sure snd_bwnd is effectively disabled.
1837 	 */
1838 	if (V_tcp_inflight_enable == 0 ||
1839 	    tp->t_rttlow < V_tcp_inflight_rttthresh) {
1840 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1841 		tp->snd_bandwidth = 0;
1842 		return;
1843 	}
1844 
1845 	/*
1846 	 * Figure out the bandwidth.  Due to the tick granularity this
1847 	 * is a very rough number and it MUST be averaged over a fairly
1848 	 * long period of time.  XXX we need to take into account a link
1849 	 * that is not using all available bandwidth, but for now our
1850 	 * slop will ramp us up if this case occurs and the bandwidth later
1851 	 * increases.
1852 	 *
1853 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1854 	 * effectively reset t_bw_rtttime for this case.
1855 	 */
1856 	save_ticks = ticks;
1857 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1858 		return;
1859 
1860 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1861 	    (save_ticks - tp->t_bw_rtttime);
1862 	tp->t_bw_rtttime = save_ticks;
1863 	tp->t_bw_rtseq = ack_seq;
1864 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1865 		return;
1866 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1867 
1868 	tp->snd_bandwidth = bw;
1869 
1870 	/*
1871 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1872 	 * segments.  The additional slop puts us squarely in the sweet
1873 	 * spot and also handles the bandwidth run-up case and stabilization.
1874 	 * Without the slop we could be locking ourselves into a lower
1875 	 * bandwidth.
1876 	 *
1877 	 * Situations Handled:
1878 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1879 	 *	    high speed LANs, allowing larger TCP buffers to be
1880 	 *	    specified, and also does a good job preventing
1881 	 *	    over-queueing of packets over choke points like modems
1882 	 *	    (at least for the transmit side).
1883 	 *
1884 	 *	(2) Is able to handle changing network loads (bandwidth
1885 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1886 	 *	    increases).
1887 	 *
1888 	 *	(3) Theoretically should stabilize in the face of multiple
1889 	 *	    connections implementing the same algorithm (this may need
1890 	 *	    a little work).
1891 	 *
1892 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1893 	 *	    be adjusted with a sysctl but typically only needs to be
1894 	 *	    on very slow connections.  A value no smaller then 5
1895 	 *	    should be used, but only reduce this default if you have
1896 	 *	    no other choice.
1897 	 */
1898 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1899 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
1900 #undef USERTT
1901 
1902 	if (tcp_inflight_debug > 0) {
1903 		static int ltime;
1904 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1905 			ltime = ticks;
1906 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1907 			    tp,
1908 			    bw,
1909 			    tp->t_rttbest,
1910 			    tp->t_srtt,
1911 			    bwnd
1912 			);
1913 		}
1914 	}
1915 	if ((long)bwnd < V_tcp_inflight_min)
1916 		bwnd = V_tcp_inflight_min;
1917 	if (bwnd > V_tcp_inflight_max)
1918 		bwnd = V_tcp_inflight_max;
1919 	if ((long)bwnd < tp->t_maxseg * 2)
1920 		bwnd = tp->t_maxseg * 2;
1921 	tp->snd_bwnd = bwnd;
1922 }
1923 
1924 #ifdef TCP_SIGNATURE
1925 /*
1926  * Callback function invoked by m_apply() to digest TCP segment data
1927  * contained within an mbuf chain.
1928  */
1929 static int
1930 tcp_signature_apply(void *fstate, void *data, u_int len)
1931 {
1932 
1933 	MD5Update(fstate, (u_char *)data, len);
1934 	return (0);
1935 }
1936 
1937 /*
1938  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1939  *
1940  * Parameters:
1941  * m		pointer to head of mbuf chain
1942  * _unused
1943  * len		length of TCP segment data, excluding options
1944  * optlen	length of TCP segment options
1945  * buf		pointer to storage for computed MD5 digest
1946  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1947  *
1948  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1949  * When called from tcp_input(), we can be sure that th_sum has been
1950  * zeroed out and verified already.
1951  *
1952  * Return 0 if successful, otherwise return -1.
1953  *
1954  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1955  * search with the destination IP address, and a 'magic SPI' to be
1956  * determined by the application. This is hardcoded elsewhere to 1179
1957  * right now. Another branch of this code exists which uses the SPD to
1958  * specify per-application flows but it is unstable.
1959  */
1960 int
1961 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1962     u_char *buf, u_int direction)
1963 {
1964 	union sockaddr_union dst;
1965 	struct ippseudo ippseudo;
1966 	MD5_CTX ctx;
1967 	int doff;
1968 	struct ip *ip;
1969 	struct ipovly *ipovly;
1970 	struct secasvar *sav;
1971 	struct tcphdr *th;
1972 #ifdef INET6
1973 	struct ip6_hdr *ip6;
1974 	struct in6_addr in6;
1975 	char ip6buf[INET6_ADDRSTRLEN];
1976 	uint32_t plen;
1977 	uint16_t nhdr;
1978 #endif
1979 	u_short savecsum;
1980 
1981 	KASSERT(m != NULL, ("NULL mbuf chain"));
1982 	KASSERT(buf != NULL, ("NULL signature pointer"));
1983 
1984 	/* Extract the destination from the IP header in the mbuf. */
1985 	bzero(&dst, sizeof(union sockaddr_union));
1986 	ip = mtod(m, struct ip *);
1987 #ifdef INET6
1988 	ip6 = NULL;	/* Make the compiler happy. */
1989 #endif
1990 	switch (ip->ip_v) {
1991 	case IPVERSION:
1992 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1993 		dst.sa.sa_family = AF_INET;
1994 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1995 		    ip->ip_src : ip->ip_dst;
1996 		break;
1997 #ifdef INET6
1998 	case (IPV6_VERSION >> 4):
1999 		ip6 = mtod(m, struct ip6_hdr *);
2000 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2001 		dst.sa.sa_family = AF_INET6;
2002 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2003 		    ip6->ip6_src : ip6->ip6_dst;
2004 		break;
2005 #endif
2006 	default:
2007 		return (EINVAL);
2008 		/* NOTREACHED */
2009 		break;
2010 	}
2011 
2012 	/* Look up an SADB entry which matches the address of the peer. */
2013 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2014 	if (sav == NULL) {
2015 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2016 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2017 #ifdef INET6
2018 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2019 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2020 #endif
2021 			"(unsupported)"));
2022 		return (EINVAL);
2023 	}
2024 
2025 	MD5Init(&ctx);
2026 	/*
2027 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2028 	 *
2029 	 * XXX The ippseudo header MUST be digested in network byte order,
2030 	 * or else we'll fail the regression test. Assume all fields we've
2031 	 * been doing arithmetic on have been in host byte order.
2032 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2033 	 * tcp_output(), the underlying ip_len member has not yet been set.
2034 	 */
2035 	switch (ip->ip_v) {
2036 	case IPVERSION:
2037 		ipovly = (struct ipovly *)ip;
2038 		ippseudo.ippseudo_src = ipovly->ih_src;
2039 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2040 		ippseudo.ippseudo_pad = 0;
2041 		ippseudo.ippseudo_p = IPPROTO_TCP;
2042 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2043 		    optlen);
2044 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2045 
2046 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2047 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2048 		break;
2049 #ifdef INET6
2050 	/*
2051 	 * RFC 2385, 2.0  Proposal
2052 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2053 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2054 	 * extended next header value (to form 32 bits), and 32-bit segment
2055 	 * length.
2056 	 * Note: Upper-Layer Packet Length comes before Next Header.
2057 	 */
2058 	case (IPV6_VERSION >> 4):
2059 		in6 = ip6->ip6_src;
2060 		in6_clearscope(&in6);
2061 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2062 		in6 = ip6->ip6_dst;
2063 		in6_clearscope(&in6);
2064 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2065 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2066 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2067 		nhdr = 0;
2068 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2069 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2070 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2071 		nhdr = IPPROTO_TCP;
2072 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2073 
2074 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2075 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2076 		break;
2077 #endif
2078 	default:
2079 		return (EINVAL);
2080 		/* NOTREACHED */
2081 		break;
2082 	}
2083 
2084 
2085 	/*
2086 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2087 	 * The TCP checksum must be set to zero.
2088 	 */
2089 	savecsum = th->th_sum;
2090 	th->th_sum = 0;
2091 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2092 	th->th_sum = savecsum;
2093 
2094 	/*
2095 	 * Step 3: Update MD5 hash with TCP segment data.
2096 	 *         Use m_apply() to avoid an early m_pullup().
2097 	 */
2098 	if (len > 0)
2099 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2100 
2101 	/*
2102 	 * Step 4: Update MD5 hash with shared secret.
2103 	 */
2104 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2105 	MD5Final(buf, &ctx);
2106 
2107 	key_sa_recordxfer(sav, m);
2108 	KEY_FREESAV(&sav);
2109 	return (0);
2110 }
2111 #endif /* TCP_SIGNATURE */
2112 
2113 static int
2114 sysctl_drop(SYSCTL_HANDLER_ARGS)
2115 {
2116 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2117 	struct sockaddr_storage addrs[2];
2118 	struct inpcb *inp;
2119 	struct tcpcb *tp;
2120 	struct tcptw *tw;
2121 	struct sockaddr_in *fin, *lin;
2122 #ifdef INET6
2123 	struct sockaddr_in6 *fin6, *lin6;
2124 #endif
2125 	int error;
2126 
2127 	inp = NULL;
2128 	fin = lin = NULL;
2129 #ifdef INET6
2130 	fin6 = lin6 = NULL;
2131 #endif
2132 	error = 0;
2133 
2134 	if (req->oldptr != NULL || req->oldlen != 0)
2135 		return (EINVAL);
2136 	if (req->newptr == NULL)
2137 		return (EPERM);
2138 	if (req->newlen < sizeof(addrs))
2139 		return (ENOMEM);
2140 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2141 	if (error)
2142 		return (error);
2143 
2144 	switch (addrs[0].ss_family) {
2145 #ifdef INET6
2146 	case AF_INET6:
2147 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2148 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2149 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2150 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2151 			return (EINVAL);
2152 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2153 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2154 				return (EINVAL);
2155 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2156 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2157 			fin = (struct sockaddr_in *)&addrs[0];
2158 			lin = (struct sockaddr_in *)&addrs[1];
2159 			break;
2160 		}
2161 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2162 		if (error)
2163 			return (error);
2164 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2165 		if (error)
2166 			return (error);
2167 		break;
2168 #endif
2169 	case AF_INET:
2170 		fin = (struct sockaddr_in *)&addrs[0];
2171 		lin = (struct sockaddr_in *)&addrs[1];
2172 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2173 		    lin->sin_len != sizeof(struct sockaddr_in))
2174 			return (EINVAL);
2175 		break;
2176 	default:
2177 		return (EINVAL);
2178 	}
2179 	INP_INFO_WLOCK(&V_tcbinfo);
2180 	switch (addrs[0].ss_family) {
2181 #ifdef INET6
2182 	case AF_INET6:
2183 		inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
2184 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
2185 		    NULL);
2186 		break;
2187 #endif
2188 	case AF_INET:
2189 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2190 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2191 		break;
2192 	}
2193 	if (inp != NULL) {
2194 		INP_WLOCK(inp);
2195 		if (inp->inp_flags & INP_TIMEWAIT) {
2196 			/*
2197 			 * XXXRW: There currently exists a state where an
2198 			 * inpcb is present, but its timewait state has been
2199 			 * discarded.  For now, don't allow dropping of this
2200 			 * type of inpcb.
2201 			 */
2202 			tw = intotw(inp);
2203 			if (tw != NULL)
2204 				tcp_twclose(tw, 0);
2205 			else
2206 				INP_WUNLOCK(inp);
2207 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2208 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2209 			tp = intotcpcb(inp);
2210 			tp = tcp_drop(tp, ECONNABORTED);
2211 			if (tp != NULL)
2212 				INP_WUNLOCK(inp);
2213 		} else
2214 			INP_WUNLOCK(inp);
2215 	} else
2216 		error = ESRCH;
2217 	INP_INFO_WUNLOCK(&V_tcbinfo);
2218 	return (error);
2219 }
2220 
2221 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2222     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2223     0, sysctl_drop, "", "Drop TCP connection");
2224 
2225 /*
2226  * Generate a standardized TCP log line for use throughout the
2227  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2228  * allow use in the interrupt context.
2229  *
2230  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2231  * NB: The function may return NULL if memory allocation failed.
2232  *
2233  * Due to header inclusion and ordering limitations the struct ip
2234  * and ip6_hdr pointers have to be passed as void pointers.
2235  */
2236 char *
2237 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2238     const void *ip6hdr)
2239 {
2240 
2241 	/* Is logging enabled? */
2242 	if (tcp_log_in_vain == 0)
2243 		return (NULL);
2244 
2245 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2246 }
2247 
2248 char *
2249 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2250     const void *ip6hdr)
2251 {
2252 
2253 	/* Is logging enabled? */
2254 	if (tcp_log_debug == 0)
2255 		return (NULL);
2256 
2257 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2258 }
2259 
2260 static char *
2261 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2262     const void *ip6hdr)
2263 {
2264 	char *s, *sp;
2265 	size_t size;
2266 	struct ip *ip;
2267 #ifdef INET6
2268 	const struct ip6_hdr *ip6;
2269 
2270 	ip6 = (const struct ip6_hdr *)ip6hdr;
2271 #endif /* INET6 */
2272 	ip = (struct ip *)ip4hdr;
2273 
2274 	/*
2275 	 * The log line looks like this:
2276 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2277 	 */
2278 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2279 	    sizeof(PRINT_TH_FLAGS) + 1 +
2280 #ifdef INET6
2281 	    2 * INET6_ADDRSTRLEN;
2282 #else
2283 	    2 * INET_ADDRSTRLEN;
2284 #endif /* INET6 */
2285 
2286 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2287 	if (s == NULL)
2288 		return (NULL);
2289 
2290 	strcat(s, "TCP: [");
2291 	sp = s + strlen(s);
2292 
2293 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2294 		inet_ntoa_r(inc->inc_faddr, sp);
2295 		sp = s + strlen(s);
2296 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2297 		sp = s + strlen(s);
2298 		inet_ntoa_r(inc->inc_laddr, sp);
2299 		sp = s + strlen(s);
2300 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2301 #ifdef INET6
2302 	} else if (inc) {
2303 		ip6_sprintf(sp, &inc->inc6_faddr);
2304 		sp = s + strlen(s);
2305 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2306 		sp = s + strlen(s);
2307 		ip6_sprintf(sp, &inc->inc6_laddr);
2308 		sp = s + strlen(s);
2309 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2310 	} else if (ip6 && th) {
2311 		ip6_sprintf(sp, &ip6->ip6_src);
2312 		sp = s + strlen(s);
2313 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2314 		sp = s + strlen(s);
2315 		ip6_sprintf(sp, &ip6->ip6_dst);
2316 		sp = s + strlen(s);
2317 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2318 #endif /* INET6 */
2319 	} else if (ip && th) {
2320 		inet_ntoa_r(ip->ip_src, sp);
2321 		sp = s + strlen(s);
2322 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2323 		sp = s + strlen(s);
2324 		inet_ntoa_r(ip->ip_dst, sp);
2325 		sp = s + strlen(s);
2326 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2327 	} else {
2328 		free(s, M_TCPLOG);
2329 		return (NULL);
2330 	}
2331 	sp = s + strlen(s);
2332 	if (th)
2333 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2334 	if (*(s + size - 1) != '\0')
2335 		panic("%s: string too long", __func__);
2336 	return (s);
2337 }
2338