xref: /freebsd/sys/netinet/tcp_subr.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/jail.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/uma.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/ip_icmp.h>
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_seq.h>
86 #include <netinet/tcp_timer.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/tcp_syncache.h>
89 #include <netinet/tcp_offload.h>
90 #ifdef INET6
91 #include <netinet6/tcp6_var.h>
92 #endif
93 #include <netinet/tcpip.h>
94 #ifdef TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <netinet6/ip6protosw.h>
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/xform.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/key.h>
106 #include <sys/syslog.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 VNET_DEFINE(int, tcp_mssdflt);
115 #ifdef INET6
116 VNET_DEFINE(int, tcp_v6mssdflt);
117 #endif
118 VNET_DEFINE(int, tcp_minmss);
119 VNET_DEFINE(int, tcp_do_rfc1323);
120 
121 static VNET_DEFINE(int, icmp_may_rst);
122 static VNET_DEFINE(int, tcp_isn_reseed_interval);
123 static VNET_DEFINE(int, tcp_inflight_enable);
124 static VNET_DEFINE(int, tcp_inflight_rttthresh);
125 static VNET_DEFINE(int, tcp_inflight_min);
126 static VNET_DEFINE(int, tcp_inflight_max);
127 static VNET_DEFINE(int, tcp_inflight_stab);
128 
129 #define	V_icmp_may_rst			VNET(icmp_may_rst)
130 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
131 #define	V_tcp_inflight_enable		VNET(tcp_inflight_enable)
132 #define	V_tcp_inflight_rttthresh	VNET(tcp_inflight_rttthresh)
133 #define	V_tcp_inflight_min		VNET(tcp_inflight_min)
134 #define	V_tcp_inflight_max		VNET(tcp_inflight_max)
135 #define	V_tcp_inflight_stab		VNET(tcp_inflight_stab)
136 
137 static int
138 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
139 {
140 	int error, new;
141 
142 	new = V_tcp_mssdflt;
143 	error = sysctl_handle_int(oidp, &new, 0, req);
144 	if (error == 0 && req->newptr) {
145 		if (new < TCP_MINMSS)
146 			error = EINVAL;
147 		else
148 			V_tcp_mssdflt = new;
149 	}
150 	return (error);
151 }
152 
153 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
154     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
155     &sysctl_net_inet_tcp_mss_check, "I",
156     "Default TCP Maximum Segment Size");
157 
158 #ifdef INET6
159 static int
160 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
161 {
162 	int error, new;
163 
164 	new = V_tcp_v6mssdflt;
165 	error = sysctl_handle_int(oidp, &new, 0, req);
166 	if (error == 0 && req->newptr) {
167 		if (new < TCP_MINMSS)
168 			error = EINVAL;
169 		else
170 			V_tcp_v6mssdflt = new;
171 	}
172 	return (error);
173 }
174 
175 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
176     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
177     &sysctl_net_inet_tcp_mss_v6_check, "I",
178    "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 static int
182 vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS)
183 {
184 
185 	VNET_SYSCTL_ARG(req, arg1);
186 	return (sysctl_msec_to_ticks(oidp, arg1, arg2, req));
187 }
188 
189 /*
190  * Minimum MSS we accept and use. This prevents DoS attacks where
191  * we are forced to a ridiculous low MSS like 20 and send hundreds
192  * of packets instead of one. The effect scales with the available
193  * bandwidth and quickly saturates the CPU and network interface
194  * with packet generation and sending. Set to zero to disable MINMSS
195  * checking. This setting prevents us from sending too small packets.
196  */
197 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
198      &VNET_NAME(tcp_minmss), 0,
199     "Minmum TCP Maximum Segment Size");
200 
201 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
202     &VNET_NAME(tcp_do_rfc1323), 0,
203     "Enable rfc1323 (high performance TCP) extensions");
204 
205 static int	tcp_log_debug = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
207     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
208 
209 static int	tcp_tcbhashsize = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
211     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
212 
213 static int	do_tcpdrain = 1;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
215     "Enable tcp_drain routine for extra help when low on mbufs");
216 
217 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
218     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
219 
220 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
221     &VNET_NAME(icmp_may_rst), 0,
222     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
223 
224 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
225     &VNET_NAME(tcp_isn_reseed_interval), 0,
226     "Seconds between reseeding of ISN secret");
227 
228 /*
229  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
230  * 1024 exists only for debugging.  A good production default would be
231  * something like 6100.
232  */
233 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
234     "TCP inflight data limiting");
235 
236 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
237     &VNET_NAME(tcp_inflight_enable), 0,
238     "Enable automatic TCP inflight data limiting");
239 
240 static int	tcp_inflight_debug = 0;
241 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
242     &tcp_inflight_debug, 0,
243     "Debug TCP inflight calculations");
244 
245 SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh,
246     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0,
247     vnet_sysctl_msec_to_ticks, "I",
248     "RTT threshold below which inflight will deactivate itself");
249 
250 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
251     &VNET_NAME(tcp_inflight_min), 0,
252     "Lower-bound for TCP inflight window");
253 
254 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
255     &VNET_NAME(tcp_inflight_max), 0,
256     "Upper-bound for TCP inflight window");
257 
258 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259     &VNET_NAME(tcp_inflight_stab), 0,
260     "Inflight Algorithm Stabilization 20 = 2 packets");
261 
262 #ifdef TCP_SORECEIVE_STREAM
263 static int	tcp_soreceive_stream = 0;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
265     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
266 #endif
267 
268 VNET_DEFINE(uma_zone_t, sack_hole_zone);
269 #define	V_sack_hole_zone		VNET(sack_hole_zone)
270 
271 static struct inpcb *tcp_notify(struct inpcb *, int);
272 static void	tcp_isn_tick(void *);
273 
274 /*
275  * Target size of TCP PCB hash tables. Must be a power of two.
276  *
277  * Note that this can be overridden by the kernel environment
278  * variable net.inet.tcp.tcbhashsize
279  */
280 #ifndef TCBHASHSIZE
281 #define TCBHASHSIZE	512
282 #endif
283 
284 /*
285  * XXX
286  * Callouts should be moved into struct tcp directly.  They are currently
287  * separate because the tcpcb structure is exported to userland for sysctl
288  * parsing purposes, which do not know about callouts.
289  */
290 struct tcpcb_mem {
291 	struct	tcpcb		tcb;
292 	struct	tcp_timer	tt;
293 };
294 
295 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
296 #define	V_tcpcb_zone			VNET(tcpcb_zone)
297 
298 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
299 struct callout isn_callout;
300 static struct mtx isn_mtx;
301 
302 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
303 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
304 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
305 
306 /*
307  * TCP initialization.
308  */
309 static void
310 tcp_zone_change(void *tag)
311 {
312 
313 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
314 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
315 	tcp_tw_zone_change();
316 }
317 
318 static int
319 tcp_inpcb_init(void *mem, int size, int flags)
320 {
321 	struct inpcb *inp = mem;
322 
323 	INP_LOCK_INIT(inp, "inp", "tcpinp");
324 	return (0);
325 }
326 
327 void
328 tcp_init(void)
329 {
330 	int hashsize;
331 
332 	V_blackhole = 0;
333 	V_tcp_delack_enabled = 1;
334 	V_drop_synfin = 0;
335 	V_tcp_do_rfc3042 = 1;
336 	V_tcp_do_rfc3390 = 1;
337 	V_tcp_do_ecn = 0;
338 	V_tcp_ecn_maxretries = 1;
339 	V_tcp_insecure_rst = 0;
340 	V_tcp_do_autorcvbuf = 1;
341 	V_tcp_autorcvbuf_inc = 16*1024;
342 	V_tcp_autorcvbuf_max = 256*1024;
343 	V_tcp_do_rfc3465 = 1;
344 	V_tcp_abc_l_var = 2;
345 
346 	V_tcp_mssdflt = TCP_MSS;
347 #ifdef INET6
348 	V_tcp_v6mssdflt = TCP6_MSS;
349 #endif
350 	V_tcp_minmss = TCP_MINMSS;
351 	V_tcp_do_rfc1323 = 1;
352 	V_icmp_may_rst = 1;
353 	V_tcp_isn_reseed_interval = 0;
354 	V_tcp_inflight_enable = 1;
355 	V_tcp_inflight_min = 6144;
356 	V_tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
357 	V_tcp_inflight_stab = 20;
358 
359 	V_path_mtu_discovery = 1;
360 	V_ss_fltsz = 1;
361 	V_ss_fltsz_local = 4;
362 	V_tcp_do_newreno = 1;
363 	V_tcp_do_tso = 1;
364 	V_tcp_do_autosndbuf = 1;
365 	V_tcp_autosndbuf_inc = 8*1024;
366 	V_tcp_autosndbuf_max = 256*1024;
367 
368 	V_nolocaltimewait = 0;
369 
370 	V_tcp_do_sack = 1;
371 	V_tcp_sack_maxholes = 128;
372 	V_tcp_sack_globalmaxholes = 65536;
373 	V_tcp_sack_globalholes = 0;
374 
375 	V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
376 
377 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
378 
379 	INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp");
380 	LIST_INIT(&V_tcb);
381 #ifdef VIMAGE
382 	V_tcbinfo.ipi_vnet = curvnet;
383 #endif
384 	V_tcbinfo.ipi_listhead = &V_tcb;
385 	hashsize = TCBHASHSIZE;
386 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
387 	if (!powerof2(hashsize)) {
388 		printf("WARNING: TCB hash size not a power of 2\n");
389 		hashsize = 512; /* safe default */
390 	}
391 	V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
392 	    &V_tcbinfo.ipi_hashmask);
393 	V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
394 	    &V_tcbinfo.ipi_porthashmask);
395 	V_tcbinfo.ipi_zone = uma_zcreate("tcp_inpcb", sizeof(struct inpcb),
396 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
397 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
398 	/*
399 	 * These have to be type stable for the benefit of the timers.
400 	 */
401 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
402 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
403 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
404 	tcp_tw_init();
405 	syncache_init();
406 	tcp_hc_init();
407 	tcp_reass_init();
408 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
409 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
410 
411 	/* Skip initialization of globals for non-default instances. */
412 	if (!IS_DEFAULT_VNET(curvnet))
413 		return;
414 
415 	/* XXX virtualize those bellow? */
416 	tcp_delacktime = TCPTV_DELACK;
417 	tcp_keepinit = TCPTV_KEEP_INIT;
418 	tcp_keepidle = TCPTV_KEEP_IDLE;
419 	tcp_keepintvl = TCPTV_KEEPINTVL;
420 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
421 	tcp_msl = TCPTV_MSL;
422 	tcp_rexmit_min = TCPTV_MIN;
423 	if (tcp_rexmit_min < 1)
424 		tcp_rexmit_min = 1;
425 	tcp_rexmit_slop = TCPTV_CPU_VAR;
426 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
427 	tcp_tcbhashsize = hashsize;
428 
429 #ifdef TCP_SORECEIVE_STREAM
430 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
431 	if (tcp_soreceive_stream) {
432 		tcp_usrreqs.pru_soreceive = soreceive_stream;
433 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
434 	}
435 #endif
436 
437 #ifdef INET6
438 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
439 #else /* INET6 */
440 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
441 #endif /* INET6 */
442 	if (max_protohdr < TCP_MINPROTOHDR)
443 		max_protohdr = TCP_MINPROTOHDR;
444 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
445 		panic("tcp_init");
446 #undef TCP_MINPROTOHDR
447 
448 	ISN_LOCK_INIT();
449 	callout_init(&isn_callout, CALLOUT_MPSAFE);
450 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
451 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
452 		SHUTDOWN_PRI_DEFAULT);
453 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
454 		EVENTHANDLER_PRI_ANY);
455 }
456 
457 #ifdef VIMAGE
458 void
459 tcp_destroy(void)
460 {
461 
462 	tcp_tw_destroy();
463 	tcp_hc_destroy();
464 	syncache_destroy();
465 
466 	/* XXX check that hashes are empty! */
467 	hashdestroy(V_tcbinfo.ipi_hashbase, M_PCB,
468 	    V_tcbinfo.ipi_hashmask);
469 	hashdestroy(V_tcbinfo.ipi_porthashbase, M_PCB,
470 	    V_tcbinfo.ipi_porthashmask);
471 	INP_INFO_LOCK_DESTROY(&V_tcbinfo);
472 }
473 #endif
474 
475 void
476 tcp_fini(void *xtp)
477 {
478 
479 	callout_stop(&isn_callout);
480 }
481 
482 /*
483  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
484  * tcp_template used to store this data in mbufs, but we now recopy it out
485  * of the tcpcb each time to conserve mbufs.
486  */
487 void
488 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
489 {
490 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
491 
492 	INP_WLOCK_ASSERT(inp);
493 
494 #ifdef INET6
495 	if ((inp->inp_vflag & INP_IPV6) != 0) {
496 		struct ip6_hdr *ip6;
497 
498 		ip6 = (struct ip6_hdr *)ip_ptr;
499 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
500 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
501 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
502 			(IPV6_VERSION & IPV6_VERSION_MASK);
503 		ip6->ip6_nxt = IPPROTO_TCP;
504 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
505 		ip6->ip6_src = inp->in6p_laddr;
506 		ip6->ip6_dst = inp->in6p_faddr;
507 	} else
508 #endif
509 	{
510 		struct ip *ip;
511 
512 		ip = (struct ip *)ip_ptr;
513 		ip->ip_v = IPVERSION;
514 		ip->ip_hl = 5;
515 		ip->ip_tos = inp->inp_ip_tos;
516 		ip->ip_len = 0;
517 		ip->ip_id = 0;
518 		ip->ip_off = 0;
519 		ip->ip_ttl = inp->inp_ip_ttl;
520 		ip->ip_sum = 0;
521 		ip->ip_p = IPPROTO_TCP;
522 		ip->ip_src = inp->inp_laddr;
523 		ip->ip_dst = inp->inp_faddr;
524 	}
525 	th->th_sport = inp->inp_lport;
526 	th->th_dport = inp->inp_fport;
527 	th->th_seq = 0;
528 	th->th_ack = 0;
529 	th->th_x2 = 0;
530 	th->th_off = 5;
531 	th->th_flags = 0;
532 	th->th_win = 0;
533 	th->th_urp = 0;
534 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
535 }
536 
537 /*
538  * Create template to be used to send tcp packets on a connection.
539  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
540  * use for this function is in keepalives, which use tcp_respond.
541  */
542 struct tcptemp *
543 tcpip_maketemplate(struct inpcb *inp)
544 {
545 	struct tcptemp *t;
546 
547 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
548 	if (t == NULL)
549 		return (NULL);
550 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
551 	return (t);
552 }
553 
554 /*
555  * Send a single message to the TCP at address specified by
556  * the given TCP/IP header.  If m == NULL, then we make a copy
557  * of the tcpiphdr at ti and send directly to the addressed host.
558  * This is used to force keep alive messages out using the TCP
559  * template for a connection.  If flags are given then we send
560  * a message back to the TCP which originated the * segment ti,
561  * and discard the mbuf containing it and any other attached mbufs.
562  *
563  * In any case the ack and sequence number of the transmitted
564  * segment are as specified by the parameters.
565  *
566  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
567  */
568 void
569 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
570     tcp_seq ack, tcp_seq seq, int flags)
571 {
572 	int tlen;
573 	int win = 0;
574 	struct ip *ip;
575 	struct tcphdr *nth;
576 #ifdef INET6
577 	struct ip6_hdr *ip6;
578 	int isipv6;
579 #endif /* INET6 */
580 	int ipflags = 0;
581 	struct inpcb *inp;
582 
583 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
584 
585 #ifdef INET6
586 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
587 	ip6 = ipgen;
588 #endif /* INET6 */
589 	ip = ipgen;
590 
591 	if (tp != NULL) {
592 		inp = tp->t_inpcb;
593 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
594 		INP_WLOCK_ASSERT(inp);
595 	} else
596 		inp = NULL;
597 
598 	if (tp != NULL) {
599 		if (!(flags & TH_RST)) {
600 			win = sbspace(&inp->inp_socket->so_rcv);
601 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
602 				win = (long)TCP_MAXWIN << tp->rcv_scale;
603 		}
604 	}
605 	if (m == NULL) {
606 		m = m_gethdr(M_DONTWAIT, MT_DATA);
607 		if (m == NULL)
608 			return;
609 		tlen = 0;
610 		m->m_data += max_linkhdr;
611 #ifdef INET6
612 		if (isipv6) {
613 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
614 			      sizeof(struct ip6_hdr));
615 			ip6 = mtod(m, struct ip6_hdr *);
616 			nth = (struct tcphdr *)(ip6 + 1);
617 		} else
618 #endif /* INET6 */
619 	      {
620 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
621 		ip = mtod(m, struct ip *);
622 		nth = (struct tcphdr *)(ip + 1);
623 	      }
624 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
625 		flags = TH_ACK;
626 	} else {
627 		/*
628 		 *  reuse the mbuf.
629 		 * XXX MRT We inherrit the FIB, which is lucky.
630 		 */
631 		m_freem(m->m_next);
632 		m->m_next = NULL;
633 		m->m_data = (caddr_t)ipgen;
634 		/* m_len is set later */
635 		tlen = 0;
636 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
637 #ifdef INET6
638 		if (isipv6) {
639 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
640 			nth = (struct tcphdr *)(ip6 + 1);
641 		} else
642 #endif /* INET6 */
643 	      {
644 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
645 		nth = (struct tcphdr *)(ip + 1);
646 	      }
647 		if (th != nth) {
648 			/*
649 			 * this is usually a case when an extension header
650 			 * exists between the IPv6 header and the
651 			 * TCP header.
652 			 */
653 			nth->th_sport = th->th_sport;
654 			nth->th_dport = th->th_dport;
655 		}
656 		xchg(nth->th_dport, nth->th_sport, uint16_t);
657 #undef xchg
658 	}
659 #ifdef INET6
660 	if (isipv6) {
661 		ip6->ip6_flow = 0;
662 		ip6->ip6_vfc = IPV6_VERSION;
663 		ip6->ip6_nxt = IPPROTO_TCP;
664 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
665 						tlen));
666 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
667 	} else
668 #endif
669 	{
670 		tlen += sizeof (struct tcpiphdr);
671 		ip->ip_len = tlen;
672 		ip->ip_ttl = V_ip_defttl;
673 		if (V_path_mtu_discovery)
674 			ip->ip_off |= IP_DF;
675 	}
676 	m->m_len = tlen;
677 	m->m_pkthdr.len = tlen;
678 	m->m_pkthdr.rcvif = NULL;
679 #ifdef MAC
680 	if (inp != NULL) {
681 		/*
682 		 * Packet is associated with a socket, so allow the
683 		 * label of the response to reflect the socket label.
684 		 */
685 		INP_WLOCK_ASSERT(inp);
686 		mac_inpcb_create_mbuf(inp, m);
687 	} else {
688 		/*
689 		 * Packet is not associated with a socket, so possibly
690 		 * update the label in place.
691 		 */
692 		mac_netinet_tcp_reply(m);
693 	}
694 #endif
695 	nth->th_seq = htonl(seq);
696 	nth->th_ack = htonl(ack);
697 	nth->th_x2 = 0;
698 	nth->th_off = sizeof (struct tcphdr) >> 2;
699 	nth->th_flags = flags;
700 	if (tp != NULL)
701 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
702 	else
703 		nth->th_win = htons((u_short)win);
704 	nth->th_urp = 0;
705 #ifdef INET6
706 	if (isipv6) {
707 		nth->th_sum = 0;
708 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
709 					sizeof(struct ip6_hdr),
710 					tlen - sizeof(struct ip6_hdr));
711 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
712 		    NULL, NULL);
713 	} else
714 #endif /* INET6 */
715 	{
716 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
717 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
718 		m->m_pkthdr.csum_flags = CSUM_TCP;
719 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
720 	}
721 #ifdef TCPDEBUG
722 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
723 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
724 #endif
725 #ifdef INET6
726 	if (isipv6)
727 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
728 	else
729 #endif /* INET6 */
730 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
731 }
732 
733 /*
734  * Create a new TCP control block, making an
735  * empty reassembly queue and hooking it to the argument
736  * protocol control block.  The `inp' parameter must have
737  * come from the zone allocator set up in tcp_init().
738  */
739 struct tcpcb *
740 tcp_newtcpcb(struct inpcb *inp)
741 {
742 	struct tcpcb_mem *tm;
743 	struct tcpcb *tp;
744 #ifdef INET6
745 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
746 #endif /* INET6 */
747 
748 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
749 	if (tm == NULL)
750 		return (NULL);
751 	tp = &tm->tcb;
752 #ifdef VIMAGE
753 	tp->t_vnet = inp->inp_vnet;
754 #endif
755 	tp->t_timers = &tm->tt;
756 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
757 	tp->t_maxseg = tp->t_maxopd =
758 #ifdef INET6
759 		isipv6 ? V_tcp_v6mssdflt :
760 #endif /* INET6 */
761 		V_tcp_mssdflt;
762 
763 	/* Set up our timeouts. */
764 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
765 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
766 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
767 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
768 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
769 
770 	if (V_tcp_do_rfc1323)
771 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
772 	if (V_tcp_do_sack)
773 		tp->t_flags |= TF_SACK_PERMIT;
774 	TAILQ_INIT(&tp->snd_holes);
775 	tp->t_inpcb = inp;	/* XXX */
776 	/*
777 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
778 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
779 	 * reasonable initial retransmit time.
780 	 */
781 	tp->t_srtt = TCPTV_SRTTBASE;
782 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
783 	tp->t_rttmin = tcp_rexmit_min;
784 	tp->t_rxtcur = TCPTV_RTOBASE;
785 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
786 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
787 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
788 	tp->t_rcvtime = ticks;
789 	tp->t_bw_rtttime = ticks;
790 	/*
791 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
792 	 * because the socket may be bound to an IPv6 wildcard address,
793 	 * which may match an IPv4-mapped IPv6 address.
794 	 */
795 	inp->inp_ip_ttl = V_ip_defttl;
796 	inp->inp_ppcb = tp;
797 	return (tp);		/* XXX */
798 }
799 
800 /*
801  * Drop a TCP connection, reporting
802  * the specified error.  If connection is synchronized,
803  * then send a RST to peer.
804  */
805 struct tcpcb *
806 tcp_drop(struct tcpcb *tp, int errno)
807 {
808 	struct socket *so = tp->t_inpcb->inp_socket;
809 
810 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
811 	INP_WLOCK_ASSERT(tp->t_inpcb);
812 
813 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
814 		tp->t_state = TCPS_CLOSED;
815 		(void) tcp_output_reset(tp);
816 		TCPSTAT_INC(tcps_drops);
817 	} else
818 		TCPSTAT_INC(tcps_conndrops);
819 	if (errno == ETIMEDOUT && tp->t_softerror)
820 		errno = tp->t_softerror;
821 	so->so_error = errno;
822 	return (tcp_close(tp));
823 }
824 
825 void
826 tcp_discardcb(struct tcpcb *tp)
827 {
828 	struct tseg_qent *q;
829 	struct inpcb *inp = tp->t_inpcb;
830 	struct socket *so = inp->inp_socket;
831 #ifdef INET6
832 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
833 #endif /* INET6 */
834 
835 	INP_WLOCK_ASSERT(inp);
836 
837 	/*
838 	 * Make sure that all of our timers are stopped before we
839 	 * delete the PCB.
840 	 */
841 	callout_stop(&tp->t_timers->tt_rexmt);
842 	callout_stop(&tp->t_timers->tt_persist);
843 	callout_stop(&tp->t_timers->tt_keep);
844 	callout_stop(&tp->t_timers->tt_2msl);
845 	callout_stop(&tp->t_timers->tt_delack);
846 
847 	/*
848 	 * If we got enough samples through the srtt filter,
849 	 * save the rtt and rttvar in the routing entry.
850 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
851 	 * 4 samples is enough for the srtt filter to converge
852 	 * to within enough % of the correct value; fewer samples
853 	 * and we could save a bogus rtt. The danger is not high
854 	 * as tcp quickly recovers from everything.
855 	 * XXX: Works very well but needs some more statistics!
856 	 */
857 	if (tp->t_rttupdated >= 4) {
858 		struct hc_metrics_lite metrics;
859 		u_long ssthresh;
860 
861 		bzero(&metrics, sizeof(metrics));
862 		/*
863 		 * Update the ssthresh always when the conditions below
864 		 * are satisfied. This gives us better new start value
865 		 * for the congestion avoidance for new connections.
866 		 * ssthresh is only set if packet loss occured on a session.
867 		 *
868 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
869 		 * being torn down.  Ideally this code would not use 'so'.
870 		 */
871 		ssthresh = tp->snd_ssthresh;
872 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
873 			/*
874 			 * convert the limit from user data bytes to
875 			 * packets then to packet data bytes.
876 			 */
877 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
878 			if (ssthresh < 2)
879 				ssthresh = 2;
880 			ssthresh *= (u_long)(tp->t_maxseg +
881 #ifdef INET6
882 				      (isipv6 ? sizeof (struct ip6_hdr) +
883 					       sizeof (struct tcphdr) :
884 #endif
885 				       sizeof (struct tcpiphdr)
886 #ifdef INET6
887 				       )
888 #endif
889 				      );
890 		} else
891 			ssthresh = 0;
892 		metrics.rmx_ssthresh = ssthresh;
893 
894 		metrics.rmx_rtt = tp->t_srtt;
895 		metrics.rmx_rttvar = tp->t_rttvar;
896 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
897 		metrics.rmx_bandwidth = tp->snd_bandwidth;
898 		metrics.rmx_cwnd = tp->snd_cwnd;
899 		metrics.rmx_sendpipe = 0;
900 		metrics.rmx_recvpipe = 0;
901 
902 		tcp_hc_update(&inp->inp_inc, &metrics);
903 	}
904 
905 	/* free the reassembly queue, if any */
906 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
907 		LIST_REMOVE(q, tqe_q);
908 		m_freem(q->tqe_m);
909 		uma_zfree(V_tcp_reass_zone, q);
910 		tp->t_segqlen--;
911 		V_tcp_reass_qsize--;
912 	}
913 	/* Disconnect offload device, if any. */
914 	tcp_offload_detach(tp);
915 
916 	tcp_free_sackholes(tp);
917 	inp->inp_ppcb = NULL;
918 	tp->t_inpcb = NULL;
919 	uma_zfree(V_tcpcb_zone, tp);
920 }
921 
922 /*
923  * Attempt to close a TCP control block, marking it as dropped, and freeing
924  * the socket if we hold the only reference.
925  */
926 struct tcpcb *
927 tcp_close(struct tcpcb *tp)
928 {
929 	struct inpcb *inp = tp->t_inpcb;
930 	struct socket *so;
931 
932 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
933 	INP_WLOCK_ASSERT(inp);
934 
935 	/* Notify any offload devices of listener close */
936 	if (tp->t_state == TCPS_LISTEN)
937 		tcp_offload_listen_close(tp);
938 	in_pcbdrop(inp);
939 	TCPSTAT_INC(tcps_closed);
940 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
941 	so = inp->inp_socket;
942 	soisdisconnected(so);
943 	if (inp->inp_flags & INP_SOCKREF) {
944 		KASSERT(so->so_state & SS_PROTOREF,
945 		    ("tcp_close: !SS_PROTOREF"));
946 		inp->inp_flags &= ~INP_SOCKREF;
947 		INP_WUNLOCK(inp);
948 		ACCEPT_LOCK();
949 		SOCK_LOCK(so);
950 		so->so_state &= ~SS_PROTOREF;
951 		sofree(so);
952 		return (NULL);
953 	}
954 	return (tp);
955 }
956 
957 void
958 tcp_drain(void)
959 {
960 	VNET_ITERATOR_DECL(vnet_iter);
961 
962 	if (!do_tcpdrain)
963 		return;
964 
965 	VNET_LIST_RLOCK_NOSLEEP();
966 	VNET_FOREACH(vnet_iter) {
967 		CURVNET_SET(vnet_iter);
968 		struct inpcb *inpb;
969 		struct tcpcb *tcpb;
970 		struct tseg_qent *te;
971 
972 	/*
973 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
974 	 * if there is one...
975 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
976 	 *      reassembly queue should be flushed, but in a situation
977 	 *	where we're really low on mbufs, this is potentially
978 	 *	usefull.
979 	 */
980 		INP_INFO_RLOCK(&V_tcbinfo);
981 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
982 			if (inpb->inp_flags & INP_TIMEWAIT)
983 				continue;
984 			INP_WLOCK(inpb);
985 			if ((tcpb = intotcpcb(inpb)) != NULL) {
986 				while ((te = LIST_FIRST(&tcpb->t_segq))
987 			            != NULL) {
988 					LIST_REMOVE(te, tqe_q);
989 					m_freem(te->tqe_m);
990 					uma_zfree(V_tcp_reass_zone, te);
991 					tcpb->t_segqlen--;
992 					V_tcp_reass_qsize--;
993 				}
994 				tcp_clean_sackreport(tcpb);
995 			}
996 			INP_WUNLOCK(inpb);
997 		}
998 		INP_INFO_RUNLOCK(&V_tcbinfo);
999 		CURVNET_RESTORE();
1000 	}
1001 	VNET_LIST_RUNLOCK_NOSLEEP();
1002 }
1003 
1004 /*
1005  * Notify a tcp user of an asynchronous error;
1006  * store error as soft error, but wake up user
1007  * (for now, won't do anything until can select for soft error).
1008  *
1009  * Do not wake up user since there currently is no mechanism for
1010  * reporting soft errors (yet - a kqueue filter may be added).
1011  */
1012 static struct inpcb *
1013 tcp_notify(struct inpcb *inp, int error)
1014 {
1015 	struct tcpcb *tp;
1016 
1017 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1018 	INP_WLOCK_ASSERT(inp);
1019 
1020 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1021 	    (inp->inp_flags & INP_DROPPED))
1022 		return (inp);
1023 
1024 	tp = intotcpcb(inp);
1025 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1026 
1027 	/*
1028 	 * Ignore some errors if we are hooked up.
1029 	 * If connection hasn't completed, has retransmitted several times,
1030 	 * and receives a second error, give up now.  This is better
1031 	 * than waiting a long time to establish a connection that
1032 	 * can never complete.
1033 	 */
1034 	if (tp->t_state == TCPS_ESTABLISHED &&
1035 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1036 	     error == EHOSTDOWN)) {
1037 		return (inp);
1038 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1039 	    tp->t_softerror) {
1040 		tp = tcp_drop(tp, error);
1041 		if (tp != NULL)
1042 			return (inp);
1043 		else
1044 			return (NULL);
1045 	} else {
1046 		tp->t_softerror = error;
1047 		return (inp);
1048 	}
1049 #if 0
1050 	wakeup( &so->so_timeo);
1051 	sorwakeup(so);
1052 	sowwakeup(so);
1053 #endif
1054 }
1055 
1056 static int
1057 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1058 {
1059 	int error, i, m, n, pcb_count;
1060 	struct inpcb *inp, **inp_list;
1061 	inp_gen_t gencnt;
1062 	struct xinpgen xig;
1063 
1064 	/*
1065 	 * The process of preparing the TCB list is too time-consuming and
1066 	 * resource-intensive to repeat twice on every request.
1067 	 */
1068 	if (req->oldptr == NULL) {
1069 		m = syncache_pcbcount();
1070 		n = V_tcbinfo.ipi_count;
1071 		req->oldidx = 2 * (sizeof xig)
1072 			+ ((m + n) + n/8) * sizeof(struct xtcpcb);
1073 		return (0);
1074 	}
1075 
1076 	if (req->newptr != NULL)
1077 		return (EPERM);
1078 
1079 	/*
1080 	 * OK, now we're committed to doing something.
1081 	 */
1082 	INP_INFO_RLOCK(&V_tcbinfo);
1083 	gencnt = V_tcbinfo.ipi_gencnt;
1084 	n = V_tcbinfo.ipi_count;
1085 	INP_INFO_RUNLOCK(&V_tcbinfo);
1086 
1087 	m = syncache_pcbcount();
1088 
1089 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1090 		+ (n + m) * sizeof(struct xtcpcb));
1091 	if (error != 0)
1092 		return (error);
1093 
1094 	xig.xig_len = sizeof xig;
1095 	xig.xig_count = n + m;
1096 	xig.xig_gen = gencnt;
1097 	xig.xig_sogen = so_gencnt;
1098 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1099 	if (error)
1100 		return (error);
1101 
1102 	error = syncache_pcblist(req, m, &pcb_count);
1103 	if (error)
1104 		return (error);
1105 
1106 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1107 	if (inp_list == NULL)
1108 		return (ENOMEM);
1109 
1110 	INP_INFO_RLOCK(&V_tcbinfo);
1111 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1112 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1113 		INP_RLOCK(inp);
1114 		if (inp->inp_gencnt <= gencnt) {
1115 			/*
1116 			 * XXX: This use of cr_cansee(), introduced with
1117 			 * TCP state changes, is not quite right, but for
1118 			 * now, better than nothing.
1119 			 */
1120 			if (inp->inp_flags & INP_TIMEWAIT) {
1121 				if (intotw(inp) != NULL)
1122 					error = cr_cansee(req->td->td_ucred,
1123 					    intotw(inp)->tw_cred);
1124 				else
1125 					error = EINVAL;	/* Skip this inp. */
1126 			} else
1127 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1128 			if (error == 0)
1129 				inp_list[i++] = inp;
1130 		}
1131 		INP_RUNLOCK(inp);
1132 	}
1133 	INP_INFO_RUNLOCK(&V_tcbinfo);
1134 	n = i;
1135 
1136 	error = 0;
1137 	for (i = 0; i < n; i++) {
1138 		inp = inp_list[i];
1139 		INP_RLOCK(inp);
1140 		if (inp->inp_gencnt <= gencnt) {
1141 			struct xtcpcb xt;
1142 			void *inp_ppcb;
1143 
1144 			bzero(&xt, sizeof(xt));
1145 			xt.xt_len = sizeof xt;
1146 			/* XXX should avoid extra copy */
1147 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1148 			inp_ppcb = inp->inp_ppcb;
1149 			if (inp_ppcb == NULL)
1150 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1151 			else if (inp->inp_flags & INP_TIMEWAIT) {
1152 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1153 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1154 			} else {
1155 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1156 				if (xt.xt_tp.t_timers)
1157 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1158 			}
1159 			if (inp->inp_socket != NULL)
1160 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1161 			else {
1162 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1163 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1164 			}
1165 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1166 			INP_RUNLOCK(inp);
1167 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1168 		} else
1169 			INP_RUNLOCK(inp);
1170 
1171 	}
1172 	if (!error) {
1173 		/*
1174 		 * Give the user an updated idea of our state.
1175 		 * If the generation differs from what we told
1176 		 * her before, she knows that something happened
1177 		 * while we were processing this request, and it
1178 		 * might be necessary to retry.
1179 		 */
1180 		INP_INFO_RLOCK(&V_tcbinfo);
1181 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1182 		xig.xig_sogen = so_gencnt;
1183 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1184 		INP_INFO_RUNLOCK(&V_tcbinfo);
1185 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1186 	}
1187 	free(inp_list, M_TEMP);
1188 	return (error);
1189 }
1190 
1191 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1192     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1193 
1194 static int
1195 tcp_getcred(SYSCTL_HANDLER_ARGS)
1196 {
1197 	struct xucred xuc;
1198 	struct sockaddr_in addrs[2];
1199 	struct inpcb *inp;
1200 	int error;
1201 
1202 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1203 	if (error)
1204 		return (error);
1205 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1206 	if (error)
1207 		return (error);
1208 	INP_INFO_RLOCK(&V_tcbinfo);
1209 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1210 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1211 	if (inp != NULL) {
1212 		INP_RLOCK(inp);
1213 		INP_INFO_RUNLOCK(&V_tcbinfo);
1214 		if (inp->inp_socket == NULL)
1215 			error = ENOENT;
1216 		if (error == 0)
1217 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1218 		if (error == 0)
1219 			cru2x(inp->inp_cred, &xuc);
1220 		INP_RUNLOCK(inp);
1221 	} else {
1222 		INP_INFO_RUNLOCK(&V_tcbinfo);
1223 		error = ENOENT;
1224 	}
1225 	if (error == 0)
1226 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1227 	return (error);
1228 }
1229 
1230 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1231     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1232     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1233 
1234 #ifdef INET6
1235 static int
1236 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1237 {
1238 	struct xucred xuc;
1239 	struct sockaddr_in6 addrs[2];
1240 	struct inpcb *inp;
1241 	int error, mapped = 0;
1242 
1243 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1244 	if (error)
1245 		return (error);
1246 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1247 	if (error)
1248 		return (error);
1249 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1250 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1251 		return (error);
1252 	}
1253 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1254 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1255 			mapped = 1;
1256 		else
1257 			return (EINVAL);
1258 	}
1259 
1260 	INP_INFO_RLOCK(&V_tcbinfo);
1261 	if (mapped == 1)
1262 		inp = in_pcblookup_hash(&V_tcbinfo,
1263 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1264 			addrs[1].sin6_port,
1265 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1266 			addrs[0].sin6_port,
1267 			0, NULL);
1268 	else
1269 		inp = in6_pcblookup_hash(&V_tcbinfo,
1270 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1271 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1272 	if (inp != NULL) {
1273 		INP_RLOCK(inp);
1274 		INP_INFO_RUNLOCK(&V_tcbinfo);
1275 		if (inp->inp_socket == NULL)
1276 			error = ENOENT;
1277 		if (error == 0)
1278 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1279 		if (error == 0)
1280 			cru2x(inp->inp_cred, &xuc);
1281 		INP_RUNLOCK(inp);
1282 	} else {
1283 		INP_INFO_RUNLOCK(&V_tcbinfo);
1284 		error = ENOENT;
1285 	}
1286 	if (error == 0)
1287 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1288 	return (error);
1289 }
1290 
1291 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1292     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1293     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1294 #endif
1295 
1296 
1297 void
1298 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1299 {
1300 	struct ip *ip = vip;
1301 	struct tcphdr *th;
1302 	struct in_addr faddr;
1303 	struct inpcb *inp;
1304 	struct tcpcb *tp;
1305 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1306 	struct icmp *icp;
1307 	struct in_conninfo inc;
1308 	tcp_seq icmp_tcp_seq;
1309 	int mtu;
1310 
1311 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1312 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1313 		return;
1314 
1315 	if (cmd == PRC_MSGSIZE)
1316 		notify = tcp_mtudisc;
1317 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1318 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1319 		notify = tcp_drop_syn_sent;
1320 	/*
1321 	 * Redirects don't need to be handled up here.
1322 	 */
1323 	else if (PRC_IS_REDIRECT(cmd))
1324 		return;
1325 	/*
1326 	 * Source quench is depreciated.
1327 	 */
1328 	else if (cmd == PRC_QUENCH)
1329 		return;
1330 	/*
1331 	 * Hostdead is ugly because it goes linearly through all PCBs.
1332 	 * XXX: We never get this from ICMP, otherwise it makes an
1333 	 * excellent DoS attack on machines with many connections.
1334 	 */
1335 	else if (cmd == PRC_HOSTDEAD)
1336 		ip = NULL;
1337 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1338 		return;
1339 	if (ip != NULL) {
1340 		icp = (struct icmp *)((caddr_t)ip
1341 				      - offsetof(struct icmp, icmp_ip));
1342 		th = (struct tcphdr *)((caddr_t)ip
1343 				       + (ip->ip_hl << 2));
1344 		INP_INFO_WLOCK(&V_tcbinfo);
1345 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1346 		    ip->ip_src, th->th_sport, 0, NULL);
1347 		if (inp != NULL)  {
1348 			INP_WLOCK(inp);
1349 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1350 			    !(inp->inp_flags & INP_DROPPED) &&
1351 			    !(inp->inp_socket == NULL)) {
1352 				icmp_tcp_seq = htonl(th->th_seq);
1353 				tp = intotcpcb(inp);
1354 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1355 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1356 					if (cmd == PRC_MSGSIZE) {
1357 					    /*
1358 					     * MTU discovery:
1359 					     * If we got a needfrag set the MTU
1360 					     * in the route to the suggested new
1361 					     * value (if given) and then notify.
1362 					     */
1363 					    bzero(&inc, sizeof(inc));
1364 					    inc.inc_faddr = faddr;
1365 					    inc.inc_fibnum =
1366 						inp->inp_inc.inc_fibnum;
1367 
1368 					    mtu = ntohs(icp->icmp_nextmtu);
1369 					    /*
1370 					     * If no alternative MTU was
1371 					     * proposed, try the next smaller
1372 					     * one.  ip->ip_len has already
1373 					     * been swapped in icmp_input().
1374 					     */
1375 					    if (!mtu)
1376 						mtu = ip_next_mtu(ip->ip_len,
1377 						 1);
1378 					    if (mtu < max(296, V_tcp_minmss
1379 						 + sizeof(struct tcpiphdr)))
1380 						mtu = 0;
1381 					    if (!mtu)
1382 						mtu = V_tcp_mssdflt
1383 						 + sizeof(struct tcpiphdr);
1384 					    /*
1385 					     * Only cache the the MTU if it
1386 					     * is smaller than the interface
1387 					     * or route MTU.  tcp_mtudisc()
1388 					     * will do right thing by itself.
1389 					     */
1390 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1391 						tcp_hc_updatemtu(&inc, mtu);
1392 					}
1393 
1394 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1395 				}
1396 			}
1397 			if (inp != NULL)
1398 				INP_WUNLOCK(inp);
1399 		} else {
1400 			bzero(&inc, sizeof(inc));
1401 			inc.inc_fport = th->th_dport;
1402 			inc.inc_lport = th->th_sport;
1403 			inc.inc_faddr = faddr;
1404 			inc.inc_laddr = ip->ip_src;
1405 			syncache_unreach(&inc, th);
1406 		}
1407 		INP_INFO_WUNLOCK(&V_tcbinfo);
1408 	} else
1409 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1410 }
1411 
1412 #ifdef INET6
1413 void
1414 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1415 {
1416 	struct tcphdr th;
1417 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1418 	struct ip6_hdr *ip6;
1419 	struct mbuf *m;
1420 	struct ip6ctlparam *ip6cp = NULL;
1421 	const struct sockaddr_in6 *sa6_src = NULL;
1422 	int off;
1423 	struct tcp_portonly {
1424 		u_int16_t th_sport;
1425 		u_int16_t th_dport;
1426 	} *thp;
1427 
1428 	if (sa->sa_family != AF_INET6 ||
1429 	    sa->sa_len != sizeof(struct sockaddr_in6))
1430 		return;
1431 
1432 	if (cmd == PRC_MSGSIZE)
1433 		notify = tcp_mtudisc;
1434 	else if (!PRC_IS_REDIRECT(cmd) &&
1435 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1436 		return;
1437 	/* Source quench is depreciated. */
1438 	else if (cmd == PRC_QUENCH)
1439 		return;
1440 
1441 	/* if the parameter is from icmp6, decode it. */
1442 	if (d != NULL) {
1443 		ip6cp = (struct ip6ctlparam *)d;
1444 		m = ip6cp->ip6c_m;
1445 		ip6 = ip6cp->ip6c_ip6;
1446 		off = ip6cp->ip6c_off;
1447 		sa6_src = ip6cp->ip6c_src;
1448 	} else {
1449 		m = NULL;
1450 		ip6 = NULL;
1451 		off = 0;	/* fool gcc */
1452 		sa6_src = &sa6_any;
1453 	}
1454 
1455 	if (ip6 != NULL) {
1456 		struct in_conninfo inc;
1457 		/*
1458 		 * XXX: We assume that when IPV6 is non NULL,
1459 		 * M and OFF are valid.
1460 		 */
1461 
1462 		/* check if we can safely examine src and dst ports */
1463 		if (m->m_pkthdr.len < off + sizeof(*thp))
1464 			return;
1465 
1466 		bzero(&th, sizeof(th));
1467 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1468 
1469 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1470 		    (struct sockaddr *)ip6cp->ip6c_src,
1471 		    th.th_sport, cmd, NULL, notify);
1472 
1473 		bzero(&inc, sizeof(inc));
1474 		inc.inc_fport = th.th_dport;
1475 		inc.inc_lport = th.th_sport;
1476 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1477 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1478 		inc.inc_flags |= INC_ISIPV6;
1479 		INP_INFO_WLOCK(&V_tcbinfo);
1480 		syncache_unreach(&inc, &th);
1481 		INP_INFO_WUNLOCK(&V_tcbinfo);
1482 	} else
1483 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1484 			      0, cmd, NULL, notify);
1485 }
1486 #endif /* INET6 */
1487 
1488 
1489 /*
1490  * Following is where TCP initial sequence number generation occurs.
1491  *
1492  * There are two places where we must use initial sequence numbers:
1493  * 1.  In SYN-ACK packets.
1494  * 2.  In SYN packets.
1495  *
1496  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1497  * tcp_syncache.c for details.
1498  *
1499  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1500  * depends on this property.  In addition, these ISNs should be
1501  * unguessable so as to prevent connection hijacking.  To satisfy
1502  * the requirements of this situation, the algorithm outlined in
1503  * RFC 1948 is used, with only small modifications.
1504  *
1505  * Implementation details:
1506  *
1507  * Time is based off the system timer, and is corrected so that it
1508  * increases by one megabyte per second.  This allows for proper
1509  * recycling on high speed LANs while still leaving over an hour
1510  * before rollover.
1511  *
1512  * As reading the *exact* system time is too expensive to be done
1513  * whenever setting up a TCP connection, we increment the time
1514  * offset in two ways.  First, a small random positive increment
1515  * is added to isn_offset for each connection that is set up.
1516  * Second, the function tcp_isn_tick fires once per clock tick
1517  * and increments isn_offset as necessary so that sequence numbers
1518  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1519  * random positive increments serve only to ensure that the same
1520  * exact sequence number is never sent out twice (as could otherwise
1521  * happen when a port is recycled in less than the system tick
1522  * interval.)
1523  *
1524  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1525  * between seeding of isn_secret.  This is normally set to zero,
1526  * as reseeding should not be necessary.
1527  *
1528  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1529  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1530  * general, this means holding an exclusive (write) lock.
1531  */
1532 
1533 #define ISN_BYTES_PER_SECOND 1048576
1534 #define ISN_STATIC_INCREMENT 4096
1535 #define ISN_RANDOM_INCREMENT (4096 - 1)
1536 
1537 static VNET_DEFINE(u_char, isn_secret[32]);
1538 static VNET_DEFINE(int, isn_last_reseed);
1539 static VNET_DEFINE(u_int32_t, isn_offset);
1540 static VNET_DEFINE(u_int32_t, isn_offset_old);
1541 
1542 #define	V_isn_secret			VNET(isn_secret)
1543 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1544 #define	V_isn_offset			VNET(isn_offset)
1545 #define	V_isn_offset_old		VNET(isn_offset_old)
1546 
1547 tcp_seq
1548 tcp_new_isn(struct tcpcb *tp)
1549 {
1550 	MD5_CTX isn_ctx;
1551 	u_int32_t md5_buffer[4];
1552 	tcp_seq new_isn;
1553 
1554 	INP_WLOCK_ASSERT(tp->t_inpcb);
1555 
1556 	ISN_LOCK();
1557 	/* Seed if this is the first use, reseed if requested. */
1558 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1559 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1560 		< (u_int)ticks))) {
1561 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1562 		V_isn_last_reseed = ticks;
1563 	}
1564 
1565 	/* Compute the md5 hash and return the ISN. */
1566 	MD5Init(&isn_ctx);
1567 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1568 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1569 #ifdef INET6
1570 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1571 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1572 			  sizeof(struct in6_addr));
1573 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1574 			  sizeof(struct in6_addr));
1575 	} else
1576 #endif
1577 	{
1578 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1579 			  sizeof(struct in_addr));
1580 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1581 			  sizeof(struct in_addr));
1582 	}
1583 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1584 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1585 	new_isn = (tcp_seq) md5_buffer[0];
1586 	V_isn_offset += ISN_STATIC_INCREMENT +
1587 		(arc4random() & ISN_RANDOM_INCREMENT);
1588 	new_isn += V_isn_offset;
1589 	ISN_UNLOCK();
1590 	return (new_isn);
1591 }
1592 
1593 /*
1594  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1595  * to keep time flowing at a relatively constant rate.  If the random
1596  * increments have already pushed us past the projected offset, do nothing.
1597  */
1598 static void
1599 tcp_isn_tick(void *xtp)
1600 {
1601 	VNET_ITERATOR_DECL(vnet_iter);
1602 	u_int32_t projected_offset;
1603 
1604 	VNET_LIST_RLOCK_NOSLEEP();
1605 	ISN_LOCK();
1606 	VNET_FOREACH(vnet_iter) {
1607 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1608 		projected_offset =
1609 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1610 
1611 		if (SEQ_GT(projected_offset, V_isn_offset))
1612 			V_isn_offset = projected_offset;
1613 
1614 		V_isn_offset_old = V_isn_offset;
1615 		CURVNET_RESTORE();
1616 	}
1617 	ISN_UNLOCK();
1618 	VNET_LIST_RUNLOCK_NOSLEEP();
1619 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1620 }
1621 
1622 /*
1623  * When a specific ICMP unreachable message is received and the
1624  * connection state is SYN-SENT, drop the connection.  This behavior
1625  * is controlled by the icmp_may_rst sysctl.
1626  */
1627 struct inpcb *
1628 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1629 {
1630 	struct tcpcb *tp;
1631 
1632 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1633 	INP_WLOCK_ASSERT(inp);
1634 
1635 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1636 	    (inp->inp_flags & INP_DROPPED))
1637 		return (inp);
1638 
1639 	tp = intotcpcb(inp);
1640 	if (tp->t_state != TCPS_SYN_SENT)
1641 		return (inp);
1642 
1643 	tp = tcp_drop(tp, errno);
1644 	if (tp != NULL)
1645 		return (inp);
1646 	else
1647 		return (NULL);
1648 }
1649 
1650 /*
1651  * When `need fragmentation' ICMP is received, update our idea of the MSS
1652  * based on the new value in the route.  Also nudge TCP to send something,
1653  * since we know the packet we just sent was dropped.
1654  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1655  */
1656 struct inpcb *
1657 tcp_mtudisc(struct inpcb *inp, int errno)
1658 {
1659 	struct tcpcb *tp;
1660 	struct socket *so;
1661 
1662 	INP_WLOCK_ASSERT(inp);
1663 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1664 	    (inp->inp_flags & INP_DROPPED))
1665 		return (inp);
1666 
1667 	tp = intotcpcb(inp);
1668 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1669 
1670 	tcp_mss_update(tp, -1, NULL, NULL);
1671 
1672 	so = inp->inp_socket;
1673 	SOCKBUF_LOCK(&so->so_snd);
1674 	/* If the mss is larger than the socket buffer, decrease the mss. */
1675 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1676 		tp->t_maxseg = so->so_snd.sb_hiwat;
1677 	SOCKBUF_UNLOCK(&so->so_snd);
1678 
1679 	TCPSTAT_INC(tcps_mturesent);
1680 	tp->t_rtttime = 0;
1681 	tp->snd_nxt = tp->snd_una;
1682 	tcp_free_sackholes(tp);
1683 	tp->snd_recover = tp->snd_max;
1684 	if (tp->t_flags & TF_SACK_PERMIT)
1685 		EXIT_FASTRECOVERY(tp);
1686 	tcp_output_send(tp);
1687 	return (inp);
1688 }
1689 
1690 /*
1691  * Look-up the routing entry to the peer of this inpcb.  If no route
1692  * is found and it cannot be allocated, then return 0.  This routine
1693  * is called by TCP routines that access the rmx structure and by
1694  * tcp_mss_update to get the peer/interface MTU.
1695  */
1696 u_long
1697 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1698 {
1699 	struct route sro;
1700 	struct sockaddr_in *dst;
1701 	struct ifnet *ifp;
1702 	u_long maxmtu = 0;
1703 
1704 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1705 
1706 	bzero(&sro, sizeof(sro));
1707 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1708 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1709 		dst->sin_family = AF_INET;
1710 		dst->sin_len = sizeof(*dst);
1711 		dst->sin_addr = inc->inc_faddr;
1712 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1713 	}
1714 	if (sro.ro_rt != NULL) {
1715 		ifp = sro.ro_rt->rt_ifp;
1716 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1717 			maxmtu = ifp->if_mtu;
1718 		else
1719 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1720 
1721 		/* Report additional interface capabilities. */
1722 		if (flags != NULL) {
1723 			if (ifp->if_capenable & IFCAP_TSO4 &&
1724 			    ifp->if_hwassist & CSUM_TSO)
1725 				*flags |= CSUM_TSO;
1726 		}
1727 		RTFREE(sro.ro_rt);
1728 	}
1729 	return (maxmtu);
1730 }
1731 
1732 #ifdef INET6
1733 u_long
1734 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1735 {
1736 	struct route_in6 sro6;
1737 	struct ifnet *ifp;
1738 	u_long maxmtu = 0;
1739 
1740 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1741 
1742 	bzero(&sro6, sizeof(sro6));
1743 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1744 		sro6.ro_dst.sin6_family = AF_INET6;
1745 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1746 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1747 		rtalloc_ign((struct route *)&sro6, 0);
1748 	}
1749 	if (sro6.ro_rt != NULL) {
1750 		ifp = sro6.ro_rt->rt_ifp;
1751 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1752 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1753 		else
1754 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1755 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1756 
1757 		/* Report additional interface capabilities. */
1758 		if (flags != NULL) {
1759 			if (ifp->if_capenable & IFCAP_TSO6 &&
1760 			    ifp->if_hwassist & CSUM_TSO)
1761 				*flags |= CSUM_TSO;
1762 		}
1763 		RTFREE(sro6.ro_rt);
1764 	}
1765 
1766 	return (maxmtu);
1767 }
1768 #endif /* INET6 */
1769 
1770 #ifdef IPSEC
1771 /* compute ESP/AH header size for TCP, including outer IP header. */
1772 size_t
1773 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1774 {
1775 	struct inpcb *inp;
1776 	struct mbuf *m;
1777 	size_t hdrsiz;
1778 	struct ip *ip;
1779 #ifdef INET6
1780 	struct ip6_hdr *ip6;
1781 #endif
1782 	struct tcphdr *th;
1783 
1784 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1785 		return (0);
1786 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1787 	if (!m)
1788 		return (0);
1789 
1790 #ifdef INET6
1791 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1792 		ip6 = mtod(m, struct ip6_hdr *);
1793 		th = (struct tcphdr *)(ip6 + 1);
1794 		m->m_pkthdr.len = m->m_len =
1795 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1796 		tcpip_fillheaders(inp, ip6, th);
1797 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1798 	} else
1799 #endif /* INET6 */
1800 	{
1801 		ip = mtod(m, struct ip *);
1802 		th = (struct tcphdr *)(ip + 1);
1803 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1804 		tcpip_fillheaders(inp, ip, th);
1805 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1806 	}
1807 
1808 	m_free(m);
1809 	return (hdrsiz);
1810 }
1811 #endif /* IPSEC */
1812 
1813 /*
1814  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1815  *
1816  * This code attempts to calculate the bandwidth-delay product as a
1817  * means of determining the optimal window size to maximize bandwidth,
1818  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1819  * routers.  This code also does a fairly good job keeping RTTs in check
1820  * across slow links like modems.  We implement an algorithm which is very
1821  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1822  * transmitter side of a TCP connection and so only effects the transmit
1823  * side of the connection.
1824  *
1825  * BACKGROUND:  TCP makes no provision for the management of buffer space
1826  * at the end points or at the intermediate routers and switches.  A TCP
1827  * stream, whether using NewReno or not, will eventually buffer as
1828  * many packets as it is able and the only reason this typically works is
1829  * due to the fairly small default buffers made available for a connection
1830  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1831  * scaling it is now fairly easy for even a single TCP connection to blow-out
1832  * all available buffer space not only on the local interface, but on
1833  * intermediate routers and switches as well.  NewReno makes a misguided
1834  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1835  * then backing off, then steadily increasing the window again until another
1836  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1837  * is only made worse as network loads increase and the idea of intentionally
1838  * blowing out network buffers is, frankly, a terrible way to manage network
1839  * resources.
1840  *
1841  * It is far better to limit the transmit window prior to the failure
1842  * condition being achieved.  There are two general ways to do this:  First
1843  * you can 'scan' through different transmit window sizes and locate the
1844  * point where the RTT stops increasing, indicating that you have filled the
1845  * pipe, then scan backwards until you note that RTT stops decreasing, then
1846  * repeat ad-infinitum.  This method works in principle but has severe
1847  * implementation issues due to RTT variances, timer granularity, and
1848  * instability in the algorithm which can lead to many false positives and
1849  * create oscillations as well as interact badly with other TCP streams
1850  * implementing the same algorithm.
1851  *
1852  * The second method is to limit the window to the bandwidth delay product
1853  * of the link.  This is the method we implement.  RTT variances and our
1854  * own manipulation of the congestion window, bwnd, can potentially
1855  * destabilize the algorithm.  For this reason we have to stabilize the
1856  * elements used to calculate the window.  We do this by using the minimum
1857  * observed RTT, the long term average of the observed bandwidth, and
1858  * by adding two segments worth of slop.  It isn't perfect but it is able
1859  * to react to changing conditions and gives us a very stable basis on
1860  * which to extend the algorithm.
1861  */
1862 void
1863 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1864 {
1865 	u_long bw;
1866 	u_long bwnd;
1867 	int save_ticks;
1868 
1869 	INP_WLOCK_ASSERT(tp->t_inpcb);
1870 
1871 	/*
1872 	 * If inflight_enable is disabled in the middle of a tcp connection,
1873 	 * make sure snd_bwnd is effectively disabled.
1874 	 */
1875 	if (V_tcp_inflight_enable == 0 ||
1876 	    tp->t_rttlow < V_tcp_inflight_rttthresh) {
1877 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1878 		tp->snd_bandwidth = 0;
1879 		return;
1880 	}
1881 
1882 	/*
1883 	 * Figure out the bandwidth.  Due to the tick granularity this
1884 	 * is a very rough number and it MUST be averaged over a fairly
1885 	 * long period of time.  XXX we need to take into account a link
1886 	 * that is not using all available bandwidth, but for now our
1887 	 * slop will ramp us up if this case occurs and the bandwidth later
1888 	 * increases.
1889 	 *
1890 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1891 	 * effectively reset t_bw_rtttime for this case.
1892 	 */
1893 	save_ticks = ticks;
1894 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1895 		return;
1896 
1897 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1898 	    (save_ticks - tp->t_bw_rtttime);
1899 	tp->t_bw_rtttime = save_ticks;
1900 	tp->t_bw_rtseq = ack_seq;
1901 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1902 		return;
1903 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1904 
1905 	tp->snd_bandwidth = bw;
1906 
1907 	/*
1908 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1909 	 * segments.  The additional slop puts us squarely in the sweet
1910 	 * spot and also handles the bandwidth run-up case and stabilization.
1911 	 * Without the slop we could be locking ourselves into a lower
1912 	 * bandwidth.
1913 	 *
1914 	 * Situations Handled:
1915 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1916 	 *	    high speed LANs, allowing larger TCP buffers to be
1917 	 *	    specified, and also does a good job preventing
1918 	 *	    over-queueing of packets over choke points like modems
1919 	 *	    (at least for the transmit side).
1920 	 *
1921 	 *	(2) Is able to handle changing network loads (bandwidth
1922 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1923 	 *	    increases).
1924 	 *
1925 	 *	(3) Theoretically should stabilize in the face of multiple
1926 	 *	    connections implementing the same algorithm (this may need
1927 	 *	    a little work).
1928 	 *
1929 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1930 	 *	    be adjusted with a sysctl but typically only needs to be
1931 	 *	    on very slow connections.  A value no smaller then 5
1932 	 *	    should be used, but only reduce this default if you have
1933 	 *	    no other choice.
1934 	 */
1935 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1936 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
1937 #undef USERTT
1938 
1939 	if (tcp_inflight_debug > 0) {
1940 		static int ltime;
1941 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1942 			ltime = ticks;
1943 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1944 			    tp,
1945 			    bw,
1946 			    tp->t_rttbest,
1947 			    tp->t_srtt,
1948 			    bwnd
1949 			);
1950 		}
1951 	}
1952 	if ((long)bwnd < V_tcp_inflight_min)
1953 		bwnd = V_tcp_inflight_min;
1954 	if (bwnd > V_tcp_inflight_max)
1955 		bwnd = V_tcp_inflight_max;
1956 	if ((long)bwnd < tp->t_maxseg * 2)
1957 		bwnd = tp->t_maxseg * 2;
1958 	tp->snd_bwnd = bwnd;
1959 }
1960 
1961 #ifdef TCP_SIGNATURE
1962 /*
1963  * Callback function invoked by m_apply() to digest TCP segment data
1964  * contained within an mbuf chain.
1965  */
1966 static int
1967 tcp_signature_apply(void *fstate, void *data, u_int len)
1968 {
1969 
1970 	MD5Update(fstate, (u_char *)data, len);
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1976  *
1977  * Parameters:
1978  * m		pointer to head of mbuf chain
1979  * _unused
1980  * len		length of TCP segment data, excluding options
1981  * optlen	length of TCP segment options
1982  * buf		pointer to storage for computed MD5 digest
1983  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1984  *
1985  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1986  * When called from tcp_input(), we can be sure that th_sum has been
1987  * zeroed out and verified already.
1988  *
1989  * Return 0 if successful, otherwise return -1.
1990  *
1991  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1992  * search with the destination IP address, and a 'magic SPI' to be
1993  * determined by the application. This is hardcoded elsewhere to 1179
1994  * right now. Another branch of this code exists which uses the SPD to
1995  * specify per-application flows but it is unstable.
1996  */
1997 int
1998 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1999     u_char *buf, u_int direction)
2000 {
2001 	union sockaddr_union dst;
2002 	struct ippseudo ippseudo;
2003 	MD5_CTX ctx;
2004 	int doff;
2005 	struct ip *ip;
2006 	struct ipovly *ipovly;
2007 	struct secasvar *sav;
2008 	struct tcphdr *th;
2009 #ifdef INET6
2010 	struct ip6_hdr *ip6;
2011 	struct in6_addr in6;
2012 	char ip6buf[INET6_ADDRSTRLEN];
2013 	uint32_t plen;
2014 	uint16_t nhdr;
2015 #endif
2016 	u_short savecsum;
2017 
2018 	KASSERT(m != NULL, ("NULL mbuf chain"));
2019 	KASSERT(buf != NULL, ("NULL signature pointer"));
2020 
2021 	/* Extract the destination from the IP header in the mbuf. */
2022 	bzero(&dst, sizeof(union sockaddr_union));
2023 	ip = mtod(m, struct ip *);
2024 #ifdef INET6
2025 	ip6 = NULL;	/* Make the compiler happy. */
2026 #endif
2027 	switch (ip->ip_v) {
2028 	case IPVERSION:
2029 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2030 		dst.sa.sa_family = AF_INET;
2031 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2032 		    ip->ip_src : ip->ip_dst;
2033 		break;
2034 #ifdef INET6
2035 	case (IPV6_VERSION >> 4):
2036 		ip6 = mtod(m, struct ip6_hdr *);
2037 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2038 		dst.sa.sa_family = AF_INET6;
2039 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2040 		    ip6->ip6_src : ip6->ip6_dst;
2041 		break;
2042 #endif
2043 	default:
2044 		return (EINVAL);
2045 		/* NOTREACHED */
2046 		break;
2047 	}
2048 
2049 	/* Look up an SADB entry which matches the address of the peer. */
2050 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2051 	if (sav == NULL) {
2052 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2053 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2054 #ifdef INET6
2055 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2056 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2057 #endif
2058 			"(unsupported)"));
2059 		return (EINVAL);
2060 	}
2061 
2062 	MD5Init(&ctx);
2063 	/*
2064 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2065 	 *
2066 	 * XXX The ippseudo header MUST be digested in network byte order,
2067 	 * or else we'll fail the regression test. Assume all fields we've
2068 	 * been doing arithmetic on have been in host byte order.
2069 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2070 	 * tcp_output(), the underlying ip_len member has not yet been set.
2071 	 */
2072 	switch (ip->ip_v) {
2073 	case IPVERSION:
2074 		ipovly = (struct ipovly *)ip;
2075 		ippseudo.ippseudo_src = ipovly->ih_src;
2076 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2077 		ippseudo.ippseudo_pad = 0;
2078 		ippseudo.ippseudo_p = IPPROTO_TCP;
2079 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2080 		    optlen);
2081 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2082 
2083 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2084 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2085 		break;
2086 #ifdef INET6
2087 	/*
2088 	 * RFC 2385, 2.0  Proposal
2089 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2090 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2091 	 * extended next header value (to form 32 bits), and 32-bit segment
2092 	 * length.
2093 	 * Note: Upper-Layer Packet Length comes before Next Header.
2094 	 */
2095 	case (IPV6_VERSION >> 4):
2096 		in6 = ip6->ip6_src;
2097 		in6_clearscope(&in6);
2098 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2099 		in6 = ip6->ip6_dst;
2100 		in6_clearscope(&in6);
2101 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2102 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2103 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2104 		nhdr = 0;
2105 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2106 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2107 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2108 		nhdr = IPPROTO_TCP;
2109 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2110 
2111 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2112 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2113 		break;
2114 #endif
2115 	default:
2116 		return (EINVAL);
2117 		/* NOTREACHED */
2118 		break;
2119 	}
2120 
2121 
2122 	/*
2123 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2124 	 * The TCP checksum must be set to zero.
2125 	 */
2126 	savecsum = th->th_sum;
2127 	th->th_sum = 0;
2128 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2129 	th->th_sum = savecsum;
2130 
2131 	/*
2132 	 * Step 3: Update MD5 hash with TCP segment data.
2133 	 *         Use m_apply() to avoid an early m_pullup().
2134 	 */
2135 	if (len > 0)
2136 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2137 
2138 	/*
2139 	 * Step 4: Update MD5 hash with shared secret.
2140 	 */
2141 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2142 	MD5Final(buf, &ctx);
2143 
2144 	key_sa_recordxfer(sav, m);
2145 	KEY_FREESAV(&sav);
2146 	return (0);
2147 }
2148 #endif /* TCP_SIGNATURE */
2149 
2150 static int
2151 sysctl_drop(SYSCTL_HANDLER_ARGS)
2152 {
2153 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2154 	struct sockaddr_storage addrs[2];
2155 	struct inpcb *inp;
2156 	struct tcpcb *tp;
2157 	struct tcptw *tw;
2158 	struct sockaddr_in *fin, *lin;
2159 #ifdef INET6
2160 	struct sockaddr_in6 *fin6, *lin6;
2161 #endif
2162 	int error;
2163 
2164 	inp = NULL;
2165 	fin = lin = NULL;
2166 #ifdef INET6
2167 	fin6 = lin6 = NULL;
2168 #endif
2169 	error = 0;
2170 
2171 	if (req->oldptr != NULL || req->oldlen != 0)
2172 		return (EINVAL);
2173 	if (req->newptr == NULL)
2174 		return (EPERM);
2175 	if (req->newlen < sizeof(addrs))
2176 		return (ENOMEM);
2177 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2178 	if (error)
2179 		return (error);
2180 
2181 	switch (addrs[0].ss_family) {
2182 #ifdef INET6
2183 	case AF_INET6:
2184 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2185 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2186 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2187 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2188 			return (EINVAL);
2189 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2190 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2191 				return (EINVAL);
2192 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2193 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2194 			fin = (struct sockaddr_in *)&addrs[0];
2195 			lin = (struct sockaddr_in *)&addrs[1];
2196 			break;
2197 		}
2198 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2199 		if (error)
2200 			return (error);
2201 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2202 		if (error)
2203 			return (error);
2204 		break;
2205 #endif
2206 	case AF_INET:
2207 		fin = (struct sockaddr_in *)&addrs[0];
2208 		lin = (struct sockaddr_in *)&addrs[1];
2209 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2210 		    lin->sin_len != sizeof(struct sockaddr_in))
2211 			return (EINVAL);
2212 		break;
2213 	default:
2214 		return (EINVAL);
2215 	}
2216 	INP_INFO_WLOCK(&V_tcbinfo);
2217 	switch (addrs[0].ss_family) {
2218 #ifdef INET6
2219 	case AF_INET6:
2220 		inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
2221 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
2222 		    NULL);
2223 		break;
2224 #endif
2225 	case AF_INET:
2226 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2227 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2228 		break;
2229 	}
2230 	if (inp != NULL) {
2231 		INP_WLOCK(inp);
2232 		if (inp->inp_flags & INP_TIMEWAIT) {
2233 			/*
2234 			 * XXXRW: There currently exists a state where an
2235 			 * inpcb is present, but its timewait state has been
2236 			 * discarded.  For now, don't allow dropping of this
2237 			 * type of inpcb.
2238 			 */
2239 			tw = intotw(inp);
2240 			if (tw != NULL)
2241 				tcp_twclose(tw, 0);
2242 			else
2243 				INP_WUNLOCK(inp);
2244 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2245 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2246 			tp = intotcpcb(inp);
2247 			tp = tcp_drop(tp, ECONNABORTED);
2248 			if (tp != NULL)
2249 				INP_WUNLOCK(inp);
2250 		} else
2251 			INP_WUNLOCK(inp);
2252 	} else
2253 		error = ESRCH;
2254 	INP_INFO_WUNLOCK(&V_tcbinfo);
2255 	return (error);
2256 }
2257 
2258 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2259     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2260     0, sysctl_drop, "", "Drop TCP connection");
2261 
2262 /*
2263  * Generate a standardized TCP log line for use throughout the
2264  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2265  * allow use in the interrupt context.
2266  *
2267  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2268  * NB: The function may return NULL if memory allocation failed.
2269  *
2270  * Due to header inclusion and ordering limitations the struct ip
2271  * and ip6_hdr pointers have to be passed as void pointers.
2272  */
2273 char *
2274 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2275     const void *ip6hdr)
2276 {
2277 	char *s, *sp;
2278 	size_t size;
2279 	struct ip *ip;
2280 #ifdef INET6
2281 	const struct ip6_hdr *ip6;
2282 
2283 	ip6 = (const struct ip6_hdr *)ip6hdr;
2284 #endif /* INET6 */
2285 	ip = (struct ip *)ip4hdr;
2286 
2287 	/*
2288 	 * The log line looks like this:
2289 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2290 	 */
2291 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2292 	    sizeof(PRINT_TH_FLAGS) + 1 +
2293 #ifdef INET6
2294 	    2 * INET6_ADDRSTRLEN;
2295 #else
2296 	    2 * INET_ADDRSTRLEN;
2297 #endif /* INET6 */
2298 
2299 	/* Is logging enabled? */
2300 	if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
2301 		return (NULL);
2302 
2303 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2304 	if (s == NULL)
2305 		return (NULL);
2306 
2307 	strcat(s, "TCP: [");
2308 	sp = s + strlen(s);
2309 
2310 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2311 		inet_ntoa_r(inc->inc_faddr, sp);
2312 		sp = s + strlen(s);
2313 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2314 		sp = s + strlen(s);
2315 		inet_ntoa_r(inc->inc_laddr, sp);
2316 		sp = s + strlen(s);
2317 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2318 #ifdef INET6
2319 	} else if (inc) {
2320 		ip6_sprintf(sp, &inc->inc6_faddr);
2321 		sp = s + strlen(s);
2322 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2323 		sp = s + strlen(s);
2324 		ip6_sprintf(sp, &inc->inc6_laddr);
2325 		sp = s + strlen(s);
2326 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2327 	} else if (ip6 && th) {
2328 		ip6_sprintf(sp, &ip6->ip6_src);
2329 		sp = s + strlen(s);
2330 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2331 		sp = s + strlen(s);
2332 		ip6_sprintf(sp, &ip6->ip6_dst);
2333 		sp = s + strlen(s);
2334 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2335 #endif /* INET6 */
2336 	} else if (ip && th) {
2337 		inet_ntoa_r(ip->ip_src, sp);
2338 		sp = s + strlen(s);
2339 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2340 		sp = s + strlen(s);
2341 		inet_ntoa_r(ip->ip_dst, sp);
2342 		sp = s + strlen(s);
2343 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2344 	} else {
2345 		free(s, M_TCPLOG);
2346 		return (NULL);
2347 	}
2348 	sp = s + strlen(s);
2349 	if (th)
2350 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2351 	if (*(s + size - 1) != '\0')
2352 		panic("%s: string too long", __func__);
2353 	return (s);
2354 }
2355