1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/kernel.h> 45 #include <sys/sysctl.h> 46 #include <sys/jail.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/random.h> 58 59 #include <vm/uma.h> 60 61 #include <net/route.h> 62 #include <net/if.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #endif 71 #include <netinet/in_pcb.h> 72 #ifdef INET6 73 #include <netinet6/in6_pcb.h> 74 #endif 75 #include <netinet/in_var.h> 76 #include <netinet/ip_var.h> 77 #ifdef INET6 78 #include <netinet6/ip6_var.h> 79 #include <netinet6/scope6_var.h> 80 #include <netinet6/nd6.h> 81 #endif 82 #include <netinet/ip_icmp.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/tcp_syncache.h> 89 #include <netinet/tcp_offload.h> 90 #ifdef INET6 91 #include <netinet6/tcp6_var.h> 92 #endif 93 #include <netinet/tcpip.h> 94 #ifdef TCPDEBUG 95 #include <netinet/tcp_debug.h> 96 #endif 97 #include <netinet6/ip6protosw.h> 98 99 #ifdef IPSEC 100 #include <netipsec/ipsec.h> 101 #include <netipsec/xform.h> 102 #ifdef INET6 103 #include <netipsec/ipsec6.h> 104 #endif 105 #include <netipsec/key.h> 106 #include <sys/syslog.h> 107 #endif /*IPSEC*/ 108 109 #include <machine/in_cksum.h> 110 #include <sys/md5.h> 111 112 #include <security/mac/mac_framework.h> 113 114 VNET_DEFINE(int, tcp_mssdflt); 115 #ifdef INET6 116 VNET_DEFINE(int, tcp_v6mssdflt); 117 #endif 118 VNET_DEFINE(int, tcp_minmss); 119 VNET_DEFINE(int, tcp_do_rfc1323); 120 121 static VNET_DEFINE(int, icmp_may_rst); 122 static VNET_DEFINE(int, tcp_isn_reseed_interval); 123 static VNET_DEFINE(int, tcp_inflight_enable); 124 static VNET_DEFINE(int, tcp_inflight_rttthresh); 125 static VNET_DEFINE(int, tcp_inflight_min); 126 static VNET_DEFINE(int, tcp_inflight_max); 127 static VNET_DEFINE(int, tcp_inflight_stab); 128 129 #define V_icmp_may_rst VNET(icmp_may_rst) 130 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 131 #define V_tcp_inflight_enable VNET(tcp_inflight_enable) 132 #define V_tcp_inflight_rttthresh VNET(tcp_inflight_rttthresh) 133 #define V_tcp_inflight_min VNET(tcp_inflight_min) 134 #define V_tcp_inflight_max VNET(tcp_inflight_max) 135 #define V_tcp_inflight_stab VNET(tcp_inflight_stab) 136 137 static int 138 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 139 { 140 int error, new; 141 142 new = V_tcp_mssdflt; 143 error = sysctl_handle_int(oidp, &new, 0, req); 144 if (error == 0 && req->newptr) { 145 if (new < TCP_MINMSS) 146 error = EINVAL; 147 else 148 V_tcp_mssdflt = new; 149 } 150 return (error); 151 } 152 153 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 154 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 155 &sysctl_net_inet_tcp_mss_check, "I", 156 "Default TCP Maximum Segment Size"); 157 158 #ifdef INET6 159 static int 160 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 161 { 162 int error, new; 163 164 new = V_tcp_v6mssdflt; 165 error = sysctl_handle_int(oidp, &new, 0, req); 166 if (error == 0 && req->newptr) { 167 if (new < TCP_MINMSS) 168 error = EINVAL; 169 else 170 V_tcp_v6mssdflt = new; 171 } 172 return (error); 173 } 174 175 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 176 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 177 &sysctl_net_inet_tcp_mss_v6_check, "I", 178 "Default TCP Maximum Segment Size for IPv6"); 179 #endif 180 181 static int 182 vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS) 183 { 184 185 VNET_SYSCTL_ARG(req, arg1); 186 return (sysctl_msec_to_ticks(oidp, arg1, arg2, req)); 187 } 188 189 /* 190 * Minimum MSS we accept and use. This prevents DoS attacks where 191 * we are forced to a ridiculous low MSS like 20 and send hundreds 192 * of packets instead of one. The effect scales with the available 193 * bandwidth and quickly saturates the CPU and network interface 194 * with packet generation and sending. Set to zero to disable MINMSS 195 * checking. This setting prevents us from sending too small packets. 196 */ 197 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW, 198 &VNET_NAME(tcp_minmss), 0, 199 "Minmum TCP Maximum Segment Size"); 200 201 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 202 &VNET_NAME(tcp_do_rfc1323), 0, 203 "Enable rfc1323 (high performance TCP) extensions"); 204 205 static int tcp_log_debug = 0; 206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 207 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 208 209 static int tcp_tcbhashsize = 0; 210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 211 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 212 213 static int do_tcpdrain = 1; 214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 215 "Enable tcp_drain routine for extra help when low on mbufs"); 216 217 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 218 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 219 220 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, 221 &VNET_NAME(icmp_may_rst), 0, 222 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 223 224 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 225 &VNET_NAME(tcp_isn_reseed_interval), 0, 226 "Seconds between reseeding of ISN secret"); 227 228 /* 229 * TCP bandwidth limiting sysctls. Note that the default lower bound of 230 * 1024 exists only for debugging. A good production default would be 231 * something like 6100. 232 */ 233 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0, 234 "TCP inflight data limiting"); 235 236 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW, 237 &VNET_NAME(tcp_inflight_enable), 0, 238 "Enable automatic TCP inflight data limiting"); 239 240 static int tcp_inflight_debug = 0; 241 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW, 242 &tcp_inflight_debug, 0, 243 "Debug TCP inflight calculations"); 244 245 SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, 246 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0, 247 vnet_sysctl_msec_to_ticks, "I", 248 "RTT threshold below which inflight will deactivate itself"); 249 250 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW, 251 &VNET_NAME(tcp_inflight_min), 0, 252 "Lower-bound for TCP inflight window"); 253 254 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW, 255 &VNET_NAME(tcp_inflight_max), 0, 256 "Upper-bound for TCP inflight window"); 257 258 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW, 259 &VNET_NAME(tcp_inflight_stab), 0, 260 "Inflight Algorithm Stabilization 20 = 2 packets"); 261 262 #ifdef TCP_SORECEIVE_STREAM 263 static int tcp_soreceive_stream = 0; 264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 265 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 266 #endif 267 268 VNET_DEFINE(uma_zone_t, sack_hole_zone); 269 #define V_sack_hole_zone VNET(sack_hole_zone) 270 271 static struct inpcb *tcp_notify(struct inpcb *, int); 272 static void tcp_isn_tick(void *); 273 274 /* 275 * Target size of TCP PCB hash tables. Must be a power of two. 276 * 277 * Note that this can be overridden by the kernel environment 278 * variable net.inet.tcp.tcbhashsize 279 */ 280 #ifndef TCBHASHSIZE 281 #define TCBHASHSIZE 512 282 #endif 283 284 /* 285 * XXX 286 * Callouts should be moved into struct tcp directly. They are currently 287 * separate because the tcpcb structure is exported to userland for sysctl 288 * parsing purposes, which do not know about callouts. 289 */ 290 struct tcpcb_mem { 291 struct tcpcb tcb; 292 struct tcp_timer tt; 293 }; 294 295 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 296 #define V_tcpcb_zone VNET(tcpcb_zone) 297 298 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 299 struct callout isn_callout; 300 static struct mtx isn_mtx; 301 302 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 303 #define ISN_LOCK() mtx_lock(&isn_mtx) 304 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 305 306 /* 307 * TCP initialization. 308 */ 309 static void 310 tcp_zone_change(void *tag) 311 { 312 313 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 314 uma_zone_set_max(V_tcpcb_zone, maxsockets); 315 tcp_tw_zone_change(); 316 } 317 318 static int 319 tcp_inpcb_init(void *mem, int size, int flags) 320 { 321 struct inpcb *inp = mem; 322 323 INP_LOCK_INIT(inp, "inp", "tcpinp"); 324 return (0); 325 } 326 327 void 328 tcp_init(void) 329 { 330 int hashsize; 331 332 V_blackhole = 0; 333 V_tcp_delack_enabled = 1; 334 V_drop_synfin = 0; 335 V_tcp_do_rfc3042 = 1; 336 V_tcp_do_rfc3390 = 1; 337 V_tcp_do_ecn = 0; 338 V_tcp_ecn_maxretries = 1; 339 V_tcp_insecure_rst = 0; 340 V_tcp_do_autorcvbuf = 1; 341 V_tcp_autorcvbuf_inc = 16*1024; 342 V_tcp_autorcvbuf_max = 256*1024; 343 V_tcp_do_rfc3465 = 1; 344 V_tcp_abc_l_var = 2; 345 346 V_tcp_mssdflt = TCP_MSS; 347 #ifdef INET6 348 V_tcp_v6mssdflt = TCP6_MSS; 349 #endif 350 V_tcp_minmss = TCP_MINMSS; 351 V_tcp_do_rfc1323 = 1; 352 V_icmp_may_rst = 1; 353 V_tcp_isn_reseed_interval = 0; 354 V_tcp_inflight_enable = 1; 355 V_tcp_inflight_min = 6144; 356 V_tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT; 357 V_tcp_inflight_stab = 20; 358 359 V_path_mtu_discovery = 1; 360 V_ss_fltsz = 1; 361 V_ss_fltsz_local = 4; 362 V_tcp_do_newreno = 1; 363 V_tcp_do_tso = 1; 364 V_tcp_do_autosndbuf = 1; 365 V_tcp_autosndbuf_inc = 8*1024; 366 V_tcp_autosndbuf_max = 256*1024; 367 368 V_nolocaltimewait = 0; 369 370 V_tcp_do_sack = 1; 371 V_tcp_sack_maxholes = 128; 372 V_tcp_sack_globalmaxholes = 65536; 373 V_tcp_sack_globalholes = 0; 374 375 V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH; 376 377 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 378 379 INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp"); 380 LIST_INIT(&V_tcb); 381 #ifdef VIMAGE 382 V_tcbinfo.ipi_vnet = curvnet; 383 #endif 384 V_tcbinfo.ipi_listhead = &V_tcb; 385 hashsize = TCBHASHSIZE; 386 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 387 if (!powerof2(hashsize)) { 388 printf("WARNING: TCB hash size not a power of 2\n"); 389 hashsize = 512; /* safe default */ 390 } 391 V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB, 392 &V_tcbinfo.ipi_hashmask); 393 V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB, 394 &V_tcbinfo.ipi_porthashmask); 395 V_tcbinfo.ipi_zone = uma_zcreate("tcp_inpcb", sizeof(struct inpcb), 396 NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 397 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 398 /* 399 * These have to be type stable for the benefit of the timers. 400 */ 401 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 402 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 403 uma_zone_set_max(V_tcpcb_zone, maxsockets); 404 tcp_tw_init(); 405 syncache_init(); 406 tcp_hc_init(); 407 tcp_reass_init(); 408 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 409 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 410 411 /* Skip initialization of globals for non-default instances. */ 412 if (!IS_DEFAULT_VNET(curvnet)) 413 return; 414 415 /* XXX virtualize those bellow? */ 416 tcp_delacktime = TCPTV_DELACK; 417 tcp_keepinit = TCPTV_KEEP_INIT; 418 tcp_keepidle = TCPTV_KEEP_IDLE; 419 tcp_keepintvl = TCPTV_KEEPINTVL; 420 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 421 tcp_msl = TCPTV_MSL; 422 tcp_rexmit_min = TCPTV_MIN; 423 if (tcp_rexmit_min < 1) 424 tcp_rexmit_min = 1; 425 tcp_rexmit_slop = TCPTV_CPU_VAR; 426 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 427 tcp_tcbhashsize = hashsize; 428 429 #ifdef TCP_SORECEIVE_STREAM 430 TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream); 431 if (tcp_soreceive_stream) { 432 tcp_usrreqs.pru_soreceive = soreceive_stream; 433 tcp6_usrreqs.pru_soreceive = soreceive_stream; 434 } 435 #endif 436 437 #ifdef INET6 438 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 439 #else /* INET6 */ 440 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 441 #endif /* INET6 */ 442 if (max_protohdr < TCP_MINPROTOHDR) 443 max_protohdr = TCP_MINPROTOHDR; 444 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 445 panic("tcp_init"); 446 #undef TCP_MINPROTOHDR 447 448 ISN_LOCK_INIT(); 449 callout_init(&isn_callout, CALLOUT_MPSAFE); 450 callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL); 451 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 452 SHUTDOWN_PRI_DEFAULT); 453 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 454 EVENTHANDLER_PRI_ANY); 455 } 456 457 #ifdef VIMAGE 458 void 459 tcp_destroy(void) 460 { 461 462 tcp_tw_destroy(); 463 tcp_hc_destroy(); 464 syncache_destroy(); 465 466 /* XXX check that hashes are empty! */ 467 hashdestroy(V_tcbinfo.ipi_hashbase, M_PCB, 468 V_tcbinfo.ipi_hashmask); 469 hashdestroy(V_tcbinfo.ipi_porthashbase, M_PCB, 470 V_tcbinfo.ipi_porthashmask); 471 INP_INFO_LOCK_DESTROY(&V_tcbinfo); 472 } 473 #endif 474 475 void 476 tcp_fini(void *xtp) 477 { 478 479 callout_stop(&isn_callout); 480 } 481 482 /* 483 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 484 * tcp_template used to store this data in mbufs, but we now recopy it out 485 * of the tcpcb each time to conserve mbufs. 486 */ 487 void 488 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 489 { 490 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 491 492 INP_WLOCK_ASSERT(inp); 493 494 #ifdef INET6 495 if ((inp->inp_vflag & INP_IPV6) != 0) { 496 struct ip6_hdr *ip6; 497 498 ip6 = (struct ip6_hdr *)ip_ptr; 499 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 500 (inp->inp_flow & IPV6_FLOWINFO_MASK); 501 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 502 (IPV6_VERSION & IPV6_VERSION_MASK); 503 ip6->ip6_nxt = IPPROTO_TCP; 504 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 505 ip6->ip6_src = inp->in6p_laddr; 506 ip6->ip6_dst = inp->in6p_faddr; 507 } else 508 #endif 509 { 510 struct ip *ip; 511 512 ip = (struct ip *)ip_ptr; 513 ip->ip_v = IPVERSION; 514 ip->ip_hl = 5; 515 ip->ip_tos = inp->inp_ip_tos; 516 ip->ip_len = 0; 517 ip->ip_id = 0; 518 ip->ip_off = 0; 519 ip->ip_ttl = inp->inp_ip_ttl; 520 ip->ip_sum = 0; 521 ip->ip_p = IPPROTO_TCP; 522 ip->ip_src = inp->inp_laddr; 523 ip->ip_dst = inp->inp_faddr; 524 } 525 th->th_sport = inp->inp_lport; 526 th->th_dport = inp->inp_fport; 527 th->th_seq = 0; 528 th->th_ack = 0; 529 th->th_x2 = 0; 530 th->th_off = 5; 531 th->th_flags = 0; 532 th->th_win = 0; 533 th->th_urp = 0; 534 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 535 } 536 537 /* 538 * Create template to be used to send tcp packets on a connection. 539 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 540 * use for this function is in keepalives, which use tcp_respond. 541 */ 542 struct tcptemp * 543 tcpip_maketemplate(struct inpcb *inp) 544 { 545 struct tcptemp *t; 546 547 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 548 if (t == NULL) 549 return (NULL); 550 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 551 return (t); 552 } 553 554 /* 555 * Send a single message to the TCP at address specified by 556 * the given TCP/IP header. If m == NULL, then we make a copy 557 * of the tcpiphdr at ti and send directly to the addressed host. 558 * This is used to force keep alive messages out using the TCP 559 * template for a connection. If flags are given then we send 560 * a message back to the TCP which originated the * segment ti, 561 * and discard the mbuf containing it and any other attached mbufs. 562 * 563 * In any case the ack and sequence number of the transmitted 564 * segment are as specified by the parameters. 565 * 566 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 567 */ 568 void 569 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 570 tcp_seq ack, tcp_seq seq, int flags) 571 { 572 int tlen; 573 int win = 0; 574 struct ip *ip; 575 struct tcphdr *nth; 576 #ifdef INET6 577 struct ip6_hdr *ip6; 578 int isipv6; 579 #endif /* INET6 */ 580 int ipflags = 0; 581 struct inpcb *inp; 582 583 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 584 585 #ifdef INET6 586 isipv6 = ((struct ip *)ipgen)->ip_v == 6; 587 ip6 = ipgen; 588 #endif /* INET6 */ 589 ip = ipgen; 590 591 if (tp != NULL) { 592 inp = tp->t_inpcb; 593 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 594 INP_WLOCK_ASSERT(inp); 595 } else 596 inp = NULL; 597 598 if (tp != NULL) { 599 if (!(flags & TH_RST)) { 600 win = sbspace(&inp->inp_socket->so_rcv); 601 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 602 win = (long)TCP_MAXWIN << tp->rcv_scale; 603 } 604 } 605 if (m == NULL) { 606 m = m_gethdr(M_DONTWAIT, MT_DATA); 607 if (m == NULL) 608 return; 609 tlen = 0; 610 m->m_data += max_linkhdr; 611 #ifdef INET6 612 if (isipv6) { 613 bcopy((caddr_t)ip6, mtod(m, caddr_t), 614 sizeof(struct ip6_hdr)); 615 ip6 = mtod(m, struct ip6_hdr *); 616 nth = (struct tcphdr *)(ip6 + 1); 617 } else 618 #endif /* INET6 */ 619 { 620 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 621 ip = mtod(m, struct ip *); 622 nth = (struct tcphdr *)(ip + 1); 623 } 624 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 625 flags = TH_ACK; 626 } else { 627 /* 628 * reuse the mbuf. 629 * XXX MRT We inherrit the FIB, which is lucky. 630 */ 631 m_freem(m->m_next); 632 m->m_next = NULL; 633 m->m_data = (caddr_t)ipgen; 634 /* m_len is set later */ 635 tlen = 0; 636 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 637 #ifdef INET6 638 if (isipv6) { 639 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 640 nth = (struct tcphdr *)(ip6 + 1); 641 } else 642 #endif /* INET6 */ 643 { 644 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 645 nth = (struct tcphdr *)(ip + 1); 646 } 647 if (th != nth) { 648 /* 649 * this is usually a case when an extension header 650 * exists between the IPv6 header and the 651 * TCP header. 652 */ 653 nth->th_sport = th->th_sport; 654 nth->th_dport = th->th_dport; 655 } 656 xchg(nth->th_dport, nth->th_sport, uint16_t); 657 #undef xchg 658 } 659 #ifdef INET6 660 if (isipv6) { 661 ip6->ip6_flow = 0; 662 ip6->ip6_vfc = IPV6_VERSION; 663 ip6->ip6_nxt = IPPROTO_TCP; 664 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 665 tlen)); 666 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 667 } else 668 #endif 669 { 670 tlen += sizeof (struct tcpiphdr); 671 ip->ip_len = tlen; 672 ip->ip_ttl = V_ip_defttl; 673 if (V_path_mtu_discovery) 674 ip->ip_off |= IP_DF; 675 } 676 m->m_len = tlen; 677 m->m_pkthdr.len = tlen; 678 m->m_pkthdr.rcvif = NULL; 679 #ifdef MAC 680 if (inp != NULL) { 681 /* 682 * Packet is associated with a socket, so allow the 683 * label of the response to reflect the socket label. 684 */ 685 INP_WLOCK_ASSERT(inp); 686 mac_inpcb_create_mbuf(inp, m); 687 } else { 688 /* 689 * Packet is not associated with a socket, so possibly 690 * update the label in place. 691 */ 692 mac_netinet_tcp_reply(m); 693 } 694 #endif 695 nth->th_seq = htonl(seq); 696 nth->th_ack = htonl(ack); 697 nth->th_x2 = 0; 698 nth->th_off = sizeof (struct tcphdr) >> 2; 699 nth->th_flags = flags; 700 if (tp != NULL) 701 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 702 else 703 nth->th_win = htons((u_short)win); 704 nth->th_urp = 0; 705 #ifdef INET6 706 if (isipv6) { 707 nth->th_sum = 0; 708 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 709 sizeof(struct ip6_hdr), 710 tlen - sizeof(struct ip6_hdr)); 711 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 712 NULL, NULL); 713 } else 714 #endif /* INET6 */ 715 { 716 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 717 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 718 m->m_pkthdr.csum_flags = CSUM_TCP; 719 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 720 } 721 #ifdef TCPDEBUG 722 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 723 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 724 #endif 725 #ifdef INET6 726 if (isipv6) 727 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 728 else 729 #endif /* INET6 */ 730 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 731 } 732 733 /* 734 * Create a new TCP control block, making an 735 * empty reassembly queue and hooking it to the argument 736 * protocol control block. The `inp' parameter must have 737 * come from the zone allocator set up in tcp_init(). 738 */ 739 struct tcpcb * 740 tcp_newtcpcb(struct inpcb *inp) 741 { 742 struct tcpcb_mem *tm; 743 struct tcpcb *tp; 744 #ifdef INET6 745 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 746 #endif /* INET6 */ 747 748 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 749 if (tm == NULL) 750 return (NULL); 751 tp = &tm->tcb; 752 #ifdef VIMAGE 753 tp->t_vnet = inp->inp_vnet; 754 #endif 755 tp->t_timers = &tm->tt; 756 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 757 tp->t_maxseg = tp->t_maxopd = 758 #ifdef INET6 759 isipv6 ? V_tcp_v6mssdflt : 760 #endif /* INET6 */ 761 V_tcp_mssdflt; 762 763 /* Set up our timeouts. */ 764 callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE); 765 callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE); 766 callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE); 767 callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE); 768 callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE); 769 770 if (V_tcp_do_rfc1323) 771 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 772 if (V_tcp_do_sack) 773 tp->t_flags |= TF_SACK_PERMIT; 774 TAILQ_INIT(&tp->snd_holes); 775 tp->t_inpcb = inp; /* XXX */ 776 /* 777 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 778 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 779 * reasonable initial retransmit time. 780 */ 781 tp->t_srtt = TCPTV_SRTTBASE; 782 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 783 tp->t_rttmin = tcp_rexmit_min; 784 tp->t_rxtcur = TCPTV_RTOBASE; 785 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 786 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 787 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 788 tp->t_rcvtime = ticks; 789 tp->t_bw_rtttime = ticks; 790 /* 791 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 792 * because the socket may be bound to an IPv6 wildcard address, 793 * which may match an IPv4-mapped IPv6 address. 794 */ 795 inp->inp_ip_ttl = V_ip_defttl; 796 inp->inp_ppcb = tp; 797 return (tp); /* XXX */ 798 } 799 800 /* 801 * Drop a TCP connection, reporting 802 * the specified error. If connection is synchronized, 803 * then send a RST to peer. 804 */ 805 struct tcpcb * 806 tcp_drop(struct tcpcb *tp, int errno) 807 { 808 struct socket *so = tp->t_inpcb->inp_socket; 809 810 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 811 INP_WLOCK_ASSERT(tp->t_inpcb); 812 813 if (TCPS_HAVERCVDSYN(tp->t_state)) { 814 tp->t_state = TCPS_CLOSED; 815 (void) tcp_output_reset(tp); 816 TCPSTAT_INC(tcps_drops); 817 } else 818 TCPSTAT_INC(tcps_conndrops); 819 if (errno == ETIMEDOUT && tp->t_softerror) 820 errno = tp->t_softerror; 821 so->so_error = errno; 822 return (tcp_close(tp)); 823 } 824 825 void 826 tcp_discardcb(struct tcpcb *tp) 827 { 828 struct tseg_qent *q; 829 struct inpcb *inp = tp->t_inpcb; 830 struct socket *so = inp->inp_socket; 831 #ifdef INET6 832 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 833 #endif /* INET6 */ 834 835 INP_WLOCK_ASSERT(inp); 836 837 /* 838 * Make sure that all of our timers are stopped before we 839 * delete the PCB. 840 */ 841 callout_stop(&tp->t_timers->tt_rexmt); 842 callout_stop(&tp->t_timers->tt_persist); 843 callout_stop(&tp->t_timers->tt_keep); 844 callout_stop(&tp->t_timers->tt_2msl); 845 callout_stop(&tp->t_timers->tt_delack); 846 847 /* 848 * If we got enough samples through the srtt filter, 849 * save the rtt and rttvar in the routing entry. 850 * 'Enough' is arbitrarily defined as 4 rtt samples. 851 * 4 samples is enough for the srtt filter to converge 852 * to within enough % of the correct value; fewer samples 853 * and we could save a bogus rtt. The danger is not high 854 * as tcp quickly recovers from everything. 855 * XXX: Works very well but needs some more statistics! 856 */ 857 if (tp->t_rttupdated >= 4) { 858 struct hc_metrics_lite metrics; 859 u_long ssthresh; 860 861 bzero(&metrics, sizeof(metrics)); 862 /* 863 * Update the ssthresh always when the conditions below 864 * are satisfied. This gives us better new start value 865 * for the congestion avoidance for new connections. 866 * ssthresh is only set if packet loss occured on a session. 867 * 868 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 869 * being torn down. Ideally this code would not use 'so'. 870 */ 871 ssthresh = tp->snd_ssthresh; 872 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 873 /* 874 * convert the limit from user data bytes to 875 * packets then to packet data bytes. 876 */ 877 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 878 if (ssthresh < 2) 879 ssthresh = 2; 880 ssthresh *= (u_long)(tp->t_maxseg + 881 #ifdef INET6 882 (isipv6 ? sizeof (struct ip6_hdr) + 883 sizeof (struct tcphdr) : 884 #endif 885 sizeof (struct tcpiphdr) 886 #ifdef INET6 887 ) 888 #endif 889 ); 890 } else 891 ssthresh = 0; 892 metrics.rmx_ssthresh = ssthresh; 893 894 metrics.rmx_rtt = tp->t_srtt; 895 metrics.rmx_rttvar = tp->t_rttvar; 896 /* XXX: This wraps if the pipe is more than 4 Gbit per second */ 897 metrics.rmx_bandwidth = tp->snd_bandwidth; 898 metrics.rmx_cwnd = tp->snd_cwnd; 899 metrics.rmx_sendpipe = 0; 900 metrics.rmx_recvpipe = 0; 901 902 tcp_hc_update(&inp->inp_inc, &metrics); 903 } 904 905 /* free the reassembly queue, if any */ 906 while ((q = LIST_FIRST(&tp->t_segq)) != NULL) { 907 LIST_REMOVE(q, tqe_q); 908 m_freem(q->tqe_m); 909 uma_zfree(V_tcp_reass_zone, q); 910 tp->t_segqlen--; 911 V_tcp_reass_qsize--; 912 } 913 /* Disconnect offload device, if any. */ 914 tcp_offload_detach(tp); 915 916 tcp_free_sackholes(tp); 917 inp->inp_ppcb = NULL; 918 tp->t_inpcb = NULL; 919 uma_zfree(V_tcpcb_zone, tp); 920 } 921 922 /* 923 * Attempt to close a TCP control block, marking it as dropped, and freeing 924 * the socket if we hold the only reference. 925 */ 926 struct tcpcb * 927 tcp_close(struct tcpcb *tp) 928 { 929 struct inpcb *inp = tp->t_inpcb; 930 struct socket *so; 931 932 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 933 INP_WLOCK_ASSERT(inp); 934 935 /* Notify any offload devices of listener close */ 936 if (tp->t_state == TCPS_LISTEN) 937 tcp_offload_listen_close(tp); 938 in_pcbdrop(inp); 939 TCPSTAT_INC(tcps_closed); 940 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 941 so = inp->inp_socket; 942 soisdisconnected(so); 943 if (inp->inp_flags & INP_SOCKREF) { 944 KASSERT(so->so_state & SS_PROTOREF, 945 ("tcp_close: !SS_PROTOREF")); 946 inp->inp_flags &= ~INP_SOCKREF; 947 INP_WUNLOCK(inp); 948 ACCEPT_LOCK(); 949 SOCK_LOCK(so); 950 so->so_state &= ~SS_PROTOREF; 951 sofree(so); 952 return (NULL); 953 } 954 return (tp); 955 } 956 957 void 958 tcp_drain(void) 959 { 960 VNET_ITERATOR_DECL(vnet_iter); 961 962 if (!do_tcpdrain) 963 return; 964 965 VNET_LIST_RLOCK_NOSLEEP(); 966 VNET_FOREACH(vnet_iter) { 967 CURVNET_SET(vnet_iter); 968 struct inpcb *inpb; 969 struct tcpcb *tcpb; 970 struct tseg_qent *te; 971 972 /* 973 * Walk the tcpbs, if existing, and flush the reassembly queue, 974 * if there is one... 975 * XXX: The "Net/3" implementation doesn't imply that the TCP 976 * reassembly queue should be flushed, but in a situation 977 * where we're really low on mbufs, this is potentially 978 * usefull. 979 */ 980 INP_INFO_RLOCK(&V_tcbinfo); 981 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 982 if (inpb->inp_flags & INP_TIMEWAIT) 983 continue; 984 INP_WLOCK(inpb); 985 if ((tcpb = intotcpcb(inpb)) != NULL) { 986 while ((te = LIST_FIRST(&tcpb->t_segq)) 987 != NULL) { 988 LIST_REMOVE(te, tqe_q); 989 m_freem(te->tqe_m); 990 uma_zfree(V_tcp_reass_zone, te); 991 tcpb->t_segqlen--; 992 V_tcp_reass_qsize--; 993 } 994 tcp_clean_sackreport(tcpb); 995 } 996 INP_WUNLOCK(inpb); 997 } 998 INP_INFO_RUNLOCK(&V_tcbinfo); 999 CURVNET_RESTORE(); 1000 } 1001 VNET_LIST_RUNLOCK_NOSLEEP(); 1002 } 1003 1004 /* 1005 * Notify a tcp user of an asynchronous error; 1006 * store error as soft error, but wake up user 1007 * (for now, won't do anything until can select for soft error). 1008 * 1009 * Do not wake up user since there currently is no mechanism for 1010 * reporting soft errors (yet - a kqueue filter may be added). 1011 */ 1012 static struct inpcb * 1013 tcp_notify(struct inpcb *inp, int error) 1014 { 1015 struct tcpcb *tp; 1016 1017 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1018 INP_WLOCK_ASSERT(inp); 1019 1020 if ((inp->inp_flags & INP_TIMEWAIT) || 1021 (inp->inp_flags & INP_DROPPED)) 1022 return (inp); 1023 1024 tp = intotcpcb(inp); 1025 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1026 1027 /* 1028 * Ignore some errors if we are hooked up. 1029 * If connection hasn't completed, has retransmitted several times, 1030 * and receives a second error, give up now. This is better 1031 * than waiting a long time to establish a connection that 1032 * can never complete. 1033 */ 1034 if (tp->t_state == TCPS_ESTABLISHED && 1035 (error == EHOSTUNREACH || error == ENETUNREACH || 1036 error == EHOSTDOWN)) { 1037 return (inp); 1038 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1039 tp->t_softerror) { 1040 tp = tcp_drop(tp, error); 1041 if (tp != NULL) 1042 return (inp); 1043 else 1044 return (NULL); 1045 } else { 1046 tp->t_softerror = error; 1047 return (inp); 1048 } 1049 #if 0 1050 wakeup( &so->so_timeo); 1051 sorwakeup(so); 1052 sowwakeup(so); 1053 #endif 1054 } 1055 1056 static int 1057 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1058 { 1059 int error, i, m, n, pcb_count; 1060 struct inpcb *inp, **inp_list; 1061 inp_gen_t gencnt; 1062 struct xinpgen xig; 1063 1064 /* 1065 * The process of preparing the TCB list is too time-consuming and 1066 * resource-intensive to repeat twice on every request. 1067 */ 1068 if (req->oldptr == NULL) { 1069 m = syncache_pcbcount(); 1070 n = V_tcbinfo.ipi_count; 1071 req->oldidx = 2 * (sizeof xig) 1072 + ((m + n) + n/8) * sizeof(struct xtcpcb); 1073 return (0); 1074 } 1075 1076 if (req->newptr != NULL) 1077 return (EPERM); 1078 1079 /* 1080 * OK, now we're committed to doing something. 1081 */ 1082 INP_INFO_RLOCK(&V_tcbinfo); 1083 gencnt = V_tcbinfo.ipi_gencnt; 1084 n = V_tcbinfo.ipi_count; 1085 INP_INFO_RUNLOCK(&V_tcbinfo); 1086 1087 m = syncache_pcbcount(); 1088 1089 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1090 + (n + m) * sizeof(struct xtcpcb)); 1091 if (error != 0) 1092 return (error); 1093 1094 xig.xig_len = sizeof xig; 1095 xig.xig_count = n + m; 1096 xig.xig_gen = gencnt; 1097 xig.xig_sogen = so_gencnt; 1098 error = SYSCTL_OUT(req, &xig, sizeof xig); 1099 if (error) 1100 return (error); 1101 1102 error = syncache_pcblist(req, m, &pcb_count); 1103 if (error) 1104 return (error); 1105 1106 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1107 if (inp_list == NULL) 1108 return (ENOMEM); 1109 1110 INP_INFO_RLOCK(&V_tcbinfo); 1111 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1112 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1113 INP_RLOCK(inp); 1114 if (inp->inp_gencnt <= gencnt) { 1115 /* 1116 * XXX: This use of cr_cansee(), introduced with 1117 * TCP state changes, is not quite right, but for 1118 * now, better than nothing. 1119 */ 1120 if (inp->inp_flags & INP_TIMEWAIT) { 1121 if (intotw(inp) != NULL) 1122 error = cr_cansee(req->td->td_ucred, 1123 intotw(inp)->tw_cred); 1124 else 1125 error = EINVAL; /* Skip this inp. */ 1126 } else 1127 error = cr_canseeinpcb(req->td->td_ucred, inp); 1128 if (error == 0) 1129 inp_list[i++] = inp; 1130 } 1131 INP_RUNLOCK(inp); 1132 } 1133 INP_INFO_RUNLOCK(&V_tcbinfo); 1134 n = i; 1135 1136 error = 0; 1137 for (i = 0; i < n; i++) { 1138 inp = inp_list[i]; 1139 INP_RLOCK(inp); 1140 if (inp->inp_gencnt <= gencnt) { 1141 struct xtcpcb xt; 1142 void *inp_ppcb; 1143 1144 bzero(&xt, sizeof(xt)); 1145 xt.xt_len = sizeof xt; 1146 /* XXX should avoid extra copy */ 1147 bcopy(inp, &xt.xt_inp, sizeof *inp); 1148 inp_ppcb = inp->inp_ppcb; 1149 if (inp_ppcb == NULL) 1150 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1151 else if (inp->inp_flags & INP_TIMEWAIT) { 1152 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1153 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1154 } else { 1155 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1156 if (xt.xt_tp.t_timers) 1157 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1158 } 1159 if (inp->inp_socket != NULL) 1160 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1161 else { 1162 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1163 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1164 } 1165 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1166 INP_RUNLOCK(inp); 1167 error = SYSCTL_OUT(req, &xt, sizeof xt); 1168 } else 1169 INP_RUNLOCK(inp); 1170 1171 } 1172 if (!error) { 1173 /* 1174 * Give the user an updated idea of our state. 1175 * If the generation differs from what we told 1176 * her before, she knows that something happened 1177 * while we were processing this request, and it 1178 * might be necessary to retry. 1179 */ 1180 INP_INFO_RLOCK(&V_tcbinfo); 1181 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1182 xig.xig_sogen = so_gencnt; 1183 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1184 INP_INFO_RUNLOCK(&V_tcbinfo); 1185 error = SYSCTL_OUT(req, &xig, sizeof xig); 1186 } 1187 free(inp_list, M_TEMP); 1188 return (error); 1189 } 1190 1191 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 1192 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1193 1194 static int 1195 tcp_getcred(SYSCTL_HANDLER_ARGS) 1196 { 1197 struct xucred xuc; 1198 struct sockaddr_in addrs[2]; 1199 struct inpcb *inp; 1200 int error; 1201 1202 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1203 if (error) 1204 return (error); 1205 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1206 if (error) 1207 return (error); 1208 INP_INFO_RLOCK(&V_tcbinfo); 1209 inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr, 1210 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 1211 if (inp != NULL) { 1212 INP_RLOCK(inp); 1213 INP_INFO_RUNLOCK(&V_tcbinfo); 1214 if (inp->inp_socket == NULL) 1215 error = ENOENT; 1216 if (error == 0) 1217 error = cr_canseeinpcb(req->td->td_ucred, inp); 1218 if (error == 0) 1219 cru2x(inp->inp_cred, &xuc); 1220 INP_RUNLOCK(inp); 1221 } else { 1222 INP_INFO_RUNLOCK(&V_tcbinfo); 1223 error = ENOENT; 1224 } 1225 if (error == 0) 1226 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1227 return (error); 1228 } 1229 1230 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1231 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1232 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1233 1234 #ifdef INET6 1235 static int 1236 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1237 { 1238 struct xucred xuc; 1239 struct sockaddr_in6 addrs[2]; 1240 struct inpcb *inp; 1241 int error, mapped = 0; 1242 1243 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1244 if (error) 1245 return (error); 1246 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1247 if (error) 1248 return (error); 1249 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1250 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1251 return (error); 1252 } 1253 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1254 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1255 mapped = 1; 1256 else 1257 return (EINVAL); 1258 } 1259 1260 INP_INFO_RLOCK(&V_tcbinfo); 1261 if (mapped == 1) 1262 inp = in_pcblookup_hash(&V_tcbinfo, 1263 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1264 addrs[1].sin6_port, 1265 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1266 addrs[0].sin6_port, 1267 0, NULL); 1268 else 1269 inp = in6_pcblookup_hash(&V_tcbinfo, 1270 &addrs[1].sin6_addr, addrs[1].sin6_port, 1271 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL); 1272 if (inp != NULL) { 1273 INP_RLOCK(inp); 1274 INP_INFO_RUNLOCK(&V_tcbinfo); 1275 if (inp->inp_socket == NULL) 1276 error = ENOENT; 1277 if (error == 0) 1278 error = cr_canseeinpcb(req->td->td_ucred, inp); 1279 if (error == 0) 1280 cru2x(inp->inp_cred, &xuc); 1281 INP_RUNLOCK(inp); 1282 } else { 1283 INP_INFO_RUNLOCK(&V_tcbinfo); 1284 error = ENOENT; 1285 } 1286 if (error == 0) 1287 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1288 return (error); 1289 } 1290 1291 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1292 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1293 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1294 #endif 1295 1296 1297 void 1298 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1299 { 1300 struct ip *ip = vip; 1301 struct tcphdr *th; 1302 struct in_addr faddr; 1303 struct inpcb *inp; 1304 struct tcpcb *tp; 1305 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1306 struct icmp *icp; 1307 struct in_conninfo inc; 1308 tcp_seq icmp_tcp_seq; 1309 int mtu; 1310 1311 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1312 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1313 return; 1314 1315 if (cmd == PRC_MSGSIZE) 1316 notify = tcp_mtudisc; 1317 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1318 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1319 notify = tcp_drop_syn_sent; 1320 /* 1321 * Redirects don't need to be handled up here. 1322 */ 1323 else if (PRC_IS_REDIRECT(cmd)) 1324 return; 1325 /* 1326 * Source quench is depreciated. 1327 */ 1328 else if (cmd == PRC_QUENCH) 1329 return; 1330 /* 1331 * Hostdead is ugly because it goes linearly through all PCBs. 1332 * XXX: We never get this from ICMP, otherwise it makes an 1333 * excellent DoS attack on machines with many connections. 1334 */ 1335 else if (cmd == PRC_HOSTDEAD) 1336 ip = NULL; 1337 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1338 return; 1339 if (ip != NULL) { 1340 icp = (struct icmp *)((caddr_t)ip 1341 - offsetof(struct icmp, icmp_ip)); 1342 th = (struct tcphdr *)((caddr_t)ip 1343 + (ip->ip_hl << 2)); 1344 INP_INFO_WLOCK(&V_tcbinfo); 1345 inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport, 1346 ip->ip_src, th->th_sport, 0, NULL); 1347 if (inp != NULL) { 1348 INP_WLOCK(inp); 1349 if (!(inp->inp_flags & INP_TIMEWAIT) && 1350 !(inp->inp_flags & INP_DROPPED) && 1351 !(inp->inp_socket == NULL)) { 1352 icmp_tcp_seq = htonl(th->th_seq); 1353 tp = intotcpcb(inp); 1354 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1355 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1356 if (cmd == PRC_MSGSIZE) { 1357 /* 1358 * MTU discovery: 1359 * If we got a needfrag set the MTU 1360 * in the route to the suggested new 1361 * value (if given) and then notify. 1362 */ 1363 bzero(&inc, sizeof(inc)); 1364 inc.inc_faddr = faddr; 1365 inc.inc_fibnum = 1366 inp->inp_inc.inc_fibnum; 1367 1368 mtu = ntohs(icp->icmp_nextmtu); 1369 /* 1370 * If no alternative MTU was 1371 * proposed, try the next smaller 1372 * one. ip->ip_len has already 1373 * been swapped in icmp_input(). 1374 */ 1375 if (!mtu) 1376 mtu = ip_next_mtu(ip->ip_len, 1377 1); 1378 if (mtu < max(296, V_tcp_minmss 1379 + sizeof(struct tcpiphdr))) 1380 mtu = 0; 1381 if (!mtu) 1382 mtu = V_tcp_mssdflt 1383 + sizeof(struct tcpiphdr); 1384 /* 1385 * Only cache the the MTU if it 1386 * is smaller than the interface 1387 * or route MTU. tcp_mtudisc() 1388 * will do right thing by itself. 1389 */ 1390 if (mtu <= tcp_maxmtu(&inc, NULL)) 1391 tcp_hc_updatemtu(&inc, mtu); 1392 } 1393 1394 inp = (*notify)(inp, inetctlerrmap[cmd]); 1395 } 1396 } 1397 if (inp != NULL) 1398 INP_WUNLOCK(inp); 1399 } else { 1400 bzero(&inc, sizeof(inc)); 1401 inc.inc_fport = th->th_dport; 1402 inc.inc_lport = th->th_sport; 1403 inc.inc_faddr = faddr; 1404 inc.inc_laddr = ip->ip_src; 1405 syncache_unreach(&inc, th); 1406 } 1407 INP_INFO_WUNLOCK(&V_tcbinfo); 1408 } else 1409 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1410 } 1411 1412 #ifdef INET6 1413 void 1414 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1415 { 1416 struct tcphdr th; 1417 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1418 struct ip6_hdr *ip6; 1419 struct mbuf *m; 1420 struct ip6ctlparam *ip6cp = NULL; 1421 const struct sockaddr_in6 *sa6_src = NULL; 1422 int off; 1423 struct tcp_portonly { 1424 u_int16_t th_sport; 1425 u_int16_t th_dport; 1426 } *thp; 1427 1428 if (sa->sa_family != AF_INET6 || 1429 sa->sa_len != sizeof(struct sockaddr_in6)) 1430 return; 1431 1432 if (cmd == PRC_MSGSIZE) 1433 notify = tcp_mtudisc; 1434 else if (!PRC_IS_REDIRECT(cmd) && 1435 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1436 return; 1437 /* Source quench is depreciated. */ 1438 else if (cmd == PRC_QUENCH) 1439 return; 1440 1441 /* if the parameter is from icmp6, decode it. */ 1442 if (d != NULL) { 1443 ip6cp = (struct ip6ctlparam *)d; 1444 m = ip6cp->ip6c_m; 1445 ip6 = ip6cp->ip6c_ip6; 1446 off = ip6cp->ip6c_off; 1447 sa6_src = ip6cp->ip6c_src; 1448 } else { 1449 m = NULL; 1450 ip6 = NULL; 1451 off = 0; /* fool gcc */ 1452 sa6_src = &sa6_any; 1453 } 1454 1455 if (ip6 != NULL) { 1456 struct in_conninfo inc; 1457 /* 1458 * XXX: We assume that when IPV6 is non NULL, 1459 * M and OFF are valid. 1460 */ 1461 1462 /* check if we can safely examine src and dst ports */ 1463 if (m->m_pkthdr.len < off + sizeof(*thp)) 1464 return; 1465 1466 bzero(&th, sizeof(th)); 1467 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1468 1469 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1470 (struct sockaddr *)ip6cp->ip6c_src, 1471 th.th_sport, cmd, NULL, notify); 1472 1473 bzero(&inc, sizeof(inc)); 1474 inc.inc_fport = th.th_dport; 1475 inc.inc_lport = th.th_sport; 1476 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1477 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1478 inc.inc_flags |= INC_ISIPV6; 1479 INP_INFO_WLOCK(&V_tcbinfo); 1480 syncache_unreach(&inc, &th); 1481 INP_INFO_WUNLOCK(&V_tcbinfo); 1482 } else 1483 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1484 0, cmd, NULL, notify); 1485 } 1486 #endif /* INET6 */ 1487 1488 1489 /* 1490 * Following is where TCP initial sequence number generation occurs. 1491 * 1492 * There are two places where we must use initial sequence numbers: 1493 * 1. In SYN-ACK packets. 1494 * 2. In SYN packets. 1495 * 1496 * All ISNs for SYN-ACK packets are generated by the syncache. See 1497 * tcp_syncache.c for details. 1498 * 1499 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1500 * depends on this property. In addition, these ISNs should be 1501 * unguessable so as to prevent connection hijacking. To satisfy 1502 * the requirements of this situation, the algorithm outlined in 1503 * RFC 1948 is used, with only small modifications. 1504 * 1505 * Implementation details: 1506 * 1507 * Time is based off the system timer, and is corrected so that it 1508 * increases by one megabyte per second. This allows for proper 1509 * recycling on high speed LANs while still leaving over an hour 1510 * before rollover. 1511 * 1512 * As reading the *exact* system time is too expensive to be done 1513 * whenever setting up a TCP connection, we increment the time 1514 * offset in two ways. First, a small random positive increment 1515 * is added to isn_offset for each connection that is set up. 1516 * Second, the function tcp_isn_tick fires once per clock tick 1517 * and increments isn_offset as necessary so that sequence numbers 1518 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1519 * random positive increments serve only to ensure that the same 1520 * exact sequence number is never sent out twice (as could otherwise 1521 * happen when a port is recycled in less than the system tick 1522 * interval.) 1523 * 1524 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1525 * between seeding of isn_secret. This is normally set to zero, 1526 * as reseeding should not be necessary. 1527 * 1528 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1529 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1530 * general, this means holding an exclusive (write) lock. 1531 */ 1532 1533 #define ISN_BYTES_PER_SECOND 1048576 1534 #define ISN_STATIC_INCREMENT 4096 1535 #define ISN_RANDOM_INCREMENT (4096 - 1) 1536 1537 static VNET_DEFINE(u_char, isn_secret[32]); 1538 static VNET_DEFINE(int, isn_last_reseed); 1539 static VNET_DEFINE(u_int32_t, isn_offset); 1540 static VNET_DEFINE(u_int32_t, isn_offset_old); 1541 1542 #define V_isn_secret VNET(isn_secret) 1543 #define V_isn_last_reseed VNET(isn_last_reseed) 1544 #define V_isn_offset VNET(isn_offset) 1545 #define V_isn_offset_old VNET(isn_offset_old) 1546 1547 tcp_seq 1548 tcp_new_isn(struct tcpcb *tp) 1549 { 1550 MD5_CTX isn_ctx; 1551 u_int32_t md5_buffer[4]; 1552 tcp_seq new_isn; 1553 1554 INP_WLOCK_ASSERT(tp->t_inpcb); 1555 1556 ISN_LOCK(); 1557 /* Seed if this is the first use, reseed if requested. */ 1558 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 1559 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 1560 < (u_int)ticks))) { 1561 read_random(&V_isn_secret, sizeof(V_isn_secret)); 1562 V_isn_last_reseed = ticks; 1563 } 1564 1565 /* Compute the md5 hash and return the ISN. */ 1566 MD5Init(&isn_ctx); 1567 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1568 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1569 #ifdef INET6 1570 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1571 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1572 sizeof(struct in6_addr)); 1573 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1574 sizeof(struct in6_addr)); 1575 } else 1576 #endif 1577 { 1578 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1579 sizeof(struct in_addr)); 1580 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1581 sizeof(struct in_addr)); 1582 } 1583 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 1584 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1585 new_isn = (tcp_seq) md5_buffer[0]; 1586 V_isn_offset += ISN_STATIC_INCREMENT + 1587 (arc4random() & ISN_RANDOM_INCREMENT); 1588 new_isn += V_isn_offset; 1589 ISN_UNLOCK(); 1590 return (new_isn); 1591 } 1592 1593 /* 1594 * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary 1595 * to keep time flowing at a relatively constant rate. If the random 1596 * increments have already pushed us past the projected offset, do nothing. 1597 */ 1598 static void 1599 tcp_isn_tick(void *xtp) 1600 { 1601 VNET_ITERATOR_DECL(vnet_iter); 1602 u_int32_t projected_offset; 1603 1604 VNET_LIST_RLOCK_NOSLEEP(); 1605 ISN_LOCK(); 1606 VNET_FOREACH(vnet_iter) { 1607 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */ 1608 projected_offset = 1609 V_isn_offset_old + ISN_BYTES_PER_SECOND / 100; 1610 1611 if (SEQ_GT(projected_offset, V_isn_offset)) 1612 V_isn_offset = projected_offset; 1613 1614 V_isn_offset_old = V_isn_offset; 1615 CURVNET_RESTORE(); 1616 } 1617 ISN_UNLOCK(); 1618 VNET_LIST_RUNLOCK_NOSLEEP(); 1619 callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL); 1620 } 1621 1622 /* 1623 * When a specific ICMP unreachable message is received and the 1624 * connection state is SYN-SENT, drop the connection. This behavior 1625 * is controlled by the icmp_may_rst sysctl. 1626 */ 1627 struct inpcb * 1628 tcp_drop_syn_sent(struct inpcb *inp, int errno) 1629 { 1630 struct tcpcb *tp; 1631 1632 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1633 INP_WLOCK_ASSERT(inp); 1634 1635 if ((inp->inp_flags & INP_TIMEWAIT) || 1636 (inp->inp_flags & INP_DROPPED)) 1637 return (inp); 1638 1639 tp = intotcpcb(inp); 1640 if (tp->t_state != TCPS_SYN_SENT) 1641 return (inp); 1642 1643 tp = tcp_drop(tp, errno); 1644 if (tp != NULL) 1645 return (inp); 1646 else 1647 return (NULL); 1648 } 1649 1650 /* 1651 * When `need fragmentation' ICMP is received, update our idea of the MSS 1652 * based on the new value in the route. Also nudge TCP to send something, 1653 * since we know the packet we just sent was dropped. 1654 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1655 */ 1656 struct inpcb * 1657 tcp_mtudisc(struct inpcb *inp, int errno) 1658 { 1659 struct tcpcb *tp; 1660 struct socket *so; 1661 1662 INP_WLOCK_ASSERT(inp); 1663 if ((inp->inp_flags & INP_TIMEWAIT) || 1664 (inp->inp_flags & INP_DROPPED)) 1665 return (inp); 1666 1667 tp = intotcpcb(inp); 1668 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 1669 1670 tcp_mss_update(tp, -1, NULL, NULL); 1671 1672 so = inp->inp_socket; 1673 SOCKBUF_LOCK(&so->so_snd); 1674 /* If the mss is larger than the socket buffer, decrease the mss. */ 1675 if (so->so_snd.sb_hiwat < tp->t_maxseg) 1676 tp->t_maxseg = so->so_snd.sb_hiwat; 1677 SOCKBUF_UNLOCK(&so->so_snd); 1678 1679 TCPSTAT_INC(tcps_mturesent); 1680 tp->t_rtttime = 0; 1681 tp->snd_nxt = tp->snd_una; 1682 tcp_free_sackholes(tp); 1683 tp->snd_recover = tp->snd_max; 1684 if (tp->t_flags & TF_SACK_PERMIT) 1685 EXIT_FASTRECOVERY(tp); 1686 tcp_output_send(tp); 1687 return (inp); 1688 } 1689 1690 /* 1691 * Look-up the routing entry to the peer of this inpcb. If no route 1692 * is found and it cannot be allocated, then return 0. This routine 1693 * is called by TCP routines that access the rmx structure and by 1694 * tcp_mss_update to get the peer/interface MTU. 1695 */ 1696 u_long 1697 tcp_maxmtu(struct in_conninfo *inc, int *flags) 1698 { 1699 struct route sro; 1700 struct sockaddr_in *dst; 1701 struct ifnet *ifp; 1702 u_long maxmtu = 0; 1703 1704 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1705 1706 bzero(&sro, sizeof(sro)); 1707 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1708 dst = (struct sockaddr_in *)&sro.ro_dst; 1709 dst->sin_family = AF_INET; 1710 dst->sin_len = sizeof(*dst); 1711 dst->sin_addr = inc->inc_faddr; 1712 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 1713 } 1714 if (sro.ro_rt != NULL) { 1715 ifp = sro.ro_rt->rt_ifp; 1716 if (sro.ro_rt->rt_rmx.rmx_mtu == 0) 1717 maxmtu = ifp->if_mtu; 1718 else 1719 maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu); 1720 1721 /* Report additional interface capabilities. */ 1722 if (flags != NULL) { 1723 if (ifp->if_capenable & IFCAP_TSO4 && 1724 ifp->if_hwassist & CSUM_TSO) 1725 *flags |= CSUM_TSO; 1726 } 1727 RTFREE(sro.ro_rt); 1728 } 1729 return (maxmtu); 1730 } 1731 1732 #ifdef INET6 1733 u_long 1734 tcp_maxmtu6(struct in_conninfo *inc, int *flags) 1735 { 1736 struct route_in6 sro6; 1737 struct ifnet *ifp; 1738 u_long maxmtu = 0; 1739 1740 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1741 1742 bzero(&sro6, sizeof(sro6)); 1743 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1744 sro6.ro_dst.sin6_family = AF_INET6; 1745 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1746 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1747 rtalloc_ign((struct route *)&sro6, 0); 1748 } 1749 if (sro6.ro_rt != NULL) { 1750 ifp = sro6.ro_rt->rt_ifp; 1751 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0) 1752 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1753 else 1754 maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu, 1755 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1756 1757 /* Report additional interface capabilities. */ 1758 if (flags != NULL) { 1759 if (ifp->if_capenable & IFCAP_TSO6 && 1760 ifp->if_hwassist & CSUM_TSO) 1761 *flags |= CSUM_TSO; 1762 } 1763 RTFREE(sro6.ro_rt); 1764 } 1765 1766 return (maxmtu); 1767 } 1768 #endif /* INET6 */ 1769 1770 #ifdef IPSEC 1771 /* compute ESP/AH header size for TCP, including outer IP header. */ 1772 size_t 1773 ipsec_hdrsiz_tcp(struct tcpcb *tp) 1774 { 1775 struct inpcb *inp; 1776 struct mbuf *m; 1777 size_t hdrsiz; 1778 struct ip *ip; 1779 #ifdef INET6 1780 struct ip6_hdr *ip6; 1781 #endif 1782 struct tcphdr *th; 1783 1784 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1785 return (0); 1786 MGETHDR(m, M_DONTWAIT, MT_DATA); 1787 if (!m) 1788 return (0); 1789 1790 #ifdef INET6 1791 if ((inp->inp_vflag & INP_IPV6) != 0) { 1792 ip6 = mtod(m, struct ip6_hdr *); 1793 th = (struct tcphdr *)(ip6 + 1); 1794 m->m_pkthdr.len = m->m_len = 1795 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1796 tcpip_fillheaders(inp, ip6, th); 1797 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1798 } else 1799 #endif /* INET6 */ 1800 { 1801 ip = mtod(m, struct ip *); 1802 th = (struct tcphdr *)(ip + 1); 1803 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1804 tcpip_fillheaders(inp, ip, th); 1805 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1806 } 1807 1808 m_free(m); 1809 return (hdrsiz); 1810 } 1811 #endif /* IPSEC */ 1812 1813 /* 1814 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING 1815 * 1816 * This code attempts to calculate the bandwidth-delay product as a 1817 * means of determining the optimal window size to maximize bandwidth, 1818 * minimize RTT, and avoid the over-allocation of buffers on interfaces and 1819 * routers. This code also does a fairly good job keeping RTTs in check 1820 * across slow links like modems. We implement an algorithm which is very 1821 * similar (but not meant to be) TCP/Vegas. The code operates on the 1822 * transmitter side of a TCP connection and so only effects the transmit 1823 * side of the connection. 1824 * 1825 * BACKGROUND: TCP makes no provision for the management of buffer space 1826 * at the end points or at the intermediate routers and switches. A TCP 1827 * stream, whether using NewReno or not, will eventually buffer as 1828 * many packets as it is able and the only reason this typically works is 1829 * due to the fairly small default buffers made available for a connection 1830 * (typicaly 16K or 32K). As machines use larger windows and/or window 1831 * scaling it is now fairly easy for even a single TCP connection to blow-out 1832 * all available buffer space not only on the local interface, but on 1833 * intermediate routers and switches as well. NewReno makes a misguided 1834 * attempt to 'solve' this problem by waiting for an actual failure to occur, 1835 * then backing off, then steadily increasing the window again until another 1836 * failure occurs, ad-infinitum. This results in terrible oscillation that 1837 * is only made worse as network loads increase and the idea of intentionally 1838 * blowing out network buffers is, frankly, a terrible way to manage network 1839 * resources. 1840 * 1841 * It is far better to limit the transmit window prior to the failure 1842 * condition being achieved. There are two general ways to do this: First 1843 * you can 'scan' through different transmit window sizes and locate the 1844 * point where the RTT stops increasing, indicating that you have filled the 1845 * pipe, then scan backwards until you note that RTT stops decreasing, then 1846 * repeat ad-infinitum. This method works in principle but has severe 1847 * implementation issues due to RTT variances, timer granularity, and 1848 * instability in the algorithm which can lead to many false positives and 1849 * create oscillations as well as interact badly with other TCP streams 1850 * implementing the same algorithm. 1851 * 1852 * The second method is to limit the window to the bandwidth delay product 1853 * of the link. This is the method we implement. RTT variances and our 1854 * own manipulation of the congestion window, bwnd, can potentially 1855 * destabilize the algorithm. For this reason we have to stabilize the 1856 * elements used to calculate the window. We do this by using the minimum 1857 * observed RTT, the long term average of the observed bandwidth, and 1858 * by adding two segments worth of slop. It isn't perfect but it is able 1859 * to react to changing conditions and gives us a very stable basis on 1860 * which to extend the algorithm. 1861 */ 1862 void 1863 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq) 1864 { 1865 u_long bw; 1866 u_long bwnd; 1867 int save_ticks; 1868 1869 INP_WLOCK_ASSERT(tp->t_inpcb); 1870 1871 /* 1872 * If inflight_enable is disabled in the middle of a tcp connection, 1873 * make sure snd_bwnd is effectively disabled. 1874 */ 1875 if (V_tcp_inflight_enable == 0 || 1876 tp->t_rttlow < V_tcp_inflight_rttthresh) { 1877 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1878 tp->snd_bandwidth = 0; 1879 return; 1880 } 1881 1882 /* 1883 * Figure out the bandwidth. Due to the tick granularity this 1884 * is a very rough number and it MUST be averaged over a fairly 1885 * long period of time. XXX we need to take into account a link 1886 * that is not using all available bandwidth, but for now our 1887 * slop will ramp us up if this case occurs and the bandwidth later 1888 * increases. 1889 * 1890 * Note: if ticks rollover 'bw' may wind up negative. We must 1891 * effectively reset t_bw_rtttime for this case. 1892 */ 1893 save_ticks = ticks; 1894 if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1) 1895 return; 1896 1897 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / 1898 (save_ticks - tp->t_bw_rtttime); 1899 tp->t_bw_rtttime = save_ticks; 1900 tp->t_bw_rtseq = ack_seq; 1901 if (tp->t_bw_rtttime == 0 || (int)bw < 0) 1902 return; 1903 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4; 1904 1905 tp->snd_bandwidth = bw; 1906 1907 /* 1908 * Calculate the semi-static bandwidth delay product, plus two maximal 1909 * segments. The additional slop puts us squarely in the sweet 1910 * spot and also handles the bandwidth run-up case and stabilization. 1911 * Without the slop we could be locking ourselves into a lower 1912 * bandwidth. 1913 * 1914 * Situations Handled: 1915 * (1) Prevents over-queueing of packets on LANs, especially on 1916 * high speed LANs, allowing larger TCP buffers to be 1917 * specified, and also does a good job preventing 1918 * over-queueing of packets over choke points like modems 1919 * (at least for the transmit side). 1920 * 1921 * (2) Is able to handle changing network loads (bandwidth 1922 * drops so bwnd drops, bandwidth increases so bwnd 1923 * increases). 1924 * 1925 * (3) Theoretically should stabilize in the face of multiple 1926 * connections implementing the same algorithm (this may need 1927 * a little work). 1928 * 1929 * (4) Stability value (defaults to 20 = 2 maximal packets) can 1930 * be adjusted with a sysctl but typically only needs to be 1931 * on very slow connections. A value no smaller then 5 1932 * should be used, but only reduce this default if you have 1933 * no other choice. 1934 */ 1935 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2) 1936 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10; 1937 #undef USERTT 1938 1939 if (tcp_inflight_debug > 0) { 1940 static int ltime; 1941 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) { 1942 ltime = ticks; 1943 printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n", 1944 tp, 1945 bw, 1946 tp->t_rttbest, 1947 tp->t_srtt, 1948 bwnd 1949 ); 1950 } 1951 } 1952 if ((long)bwnd < V_tcp_inflight_min) 1953 bwnd = V_tcp_inflight_min; 1954 if (bwnd > V_tcp_inflight_max) 1955 bwnd = V_tcp_inflight_max; 1956 if ((long)bwnd < tp->t_maxseg * 2) 1957 bwnd = tp->t_maxseg * 2; 1958 tp->snd_bwnd = bwnd; 1959 } 1960 1961 #ifdef TCP_SIGNATURE 1962 /* 1963 * Callback function invoked by m_apply() to digest TCP segment data 1964 * contained within an mbuf chain. 1965 */ 1966 static int 1967 tcp_signature_apply(void *fstate, void *data, u_int len) 1968 { 1969 1970 MD5Update(fstate, (u_char *)data, len); 1971 return (0); 1972 } 1973 1974 /* 1975 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 1976 * 1977 * Parameters: 1978 * m pointer to head of mbuf chain 1979 * _unused 1980 * len length of TCP segment data, excluding options 1981 * optlen length of TCP segment options 1982 * buf pointer to storage for computed MD5 digest 1983 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 1984 * 1985 * We do this over ip, tcphdr, segment data, and the key in the SADB. 1986 * When called from tcp_input(), we can be sure that th_sum has been 1987 * zeroed out and verified already. 1988 * 1989 * Return 0 if successful, otherwise return -1. 1990 * 1991 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 1992 * search with the destination IP address, and a 'magic SPI' to be 1993 * determined by the application. This is hardcoded elsewhere to 1179 1994 * right now. Another branch of this code exists which uses the SPD to 1995 * specify per-application flows but it is unstable. 1996 */ 1997 int 1998 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 1999 u_char *buf, u_int direction) 2000 { 2001 union sockaddr_union dst; 2002 struct ippseudo ippseudo; 2003 MD5_CTX ctx; 2004 int doff; 2005 struct ip *ip; 2006 struct ipovly *ipovly; 2007 struct secasvar *sav; 2008 struct tcphdr *th; 2009 #ifdef INET6 2010 struct ip6_hdr *ip6; 2011 struct in6_addr in6; 2012 char ip6buf[INET6_ADDRSTRLEN]; 2013 uint32_t plen; 2014 uint16_t nhdr; 2015 #endif 2016 u_short savecsum; 2017 2018 KASSERT(m != NULL, ("NULL mbuf chain")); 2019 KASSERT(buf != NULL, ("NULL signature pointer")); 2020 2021 /* Extract the destination from the IP header in the mbuf. */ 2022 bzero(&dst, sizeof(union sockaddr_union)); 2023 ip = mtod(m, struct ip *); 2024 #ifdef INET6 2025 ip6 = NULL; /* Make the compiler happy. */ 2026 #endif 2027 switch (ip->ip_v) { 2028 case IPVERSION: 2029 dst.sa.sa_len = sizeof(struct sockaddr_in); 2030 dst.sa.sa_family = AF_INET; 2031 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2032 ip->ip_src : ip->ip_dst; 2033 break; 2034 #ifdef INET6 2035 case (IPV6_VERSION >> 4): 2036 ip6 = mtod(m, struct ip6_hdr *); 2037 dst.sa.sa_len = sizeof(struct sockaddr_in6); 2038 dst.sa.sa_family = AF_INET6; 2039 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 2040 ip6->ip6_src : ip6->ip6_dst; 2041 break; 2042 #endif 2043 default: 2044 return (EINVAL); 2045 /* NOTREACHED */ 2046 break; 2047 } 2048 2049 /* Look up an SADB entry which matches the address of the peer. */ 2050 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2051 if (sav == NULL) { 2052 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 2053 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 2054 #ifdef INET6 2055 (ip->ip_v == (IPV6_VERSION >> 4)) ? 2056 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 2057 #endif 2058 "(unsupported)")); 2059 return (EINVAL); 2060 } 2061 2062 MD5Init(&ctx); 2063 /* 2064 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 2065 * 2066 * XXX The ippseudo header MUST be digested in network byte order, 2067 * or else we'll fail the regression test. Assume all fields we've 2068 * been doing arithmetic on have been in host byte order. 2069 * XXX One cannot depend on ipovly->ih_len here. When called from 2070 * tcp_output(), the underlying ip_len member has not yet been set. 2071 */ 2072 switch (ip->ip_v) { 2073 case IPVERSION: 2074 ipovly = (struct ipovly *)ip; 2075 ippseudo.ippseudo_src = ipovly->ih_src; 2076 ippseudo.ippseudo_dst = ipovly->ih_dst; 2077 ippseudo.ippseudo_pad = 0; 2078 ippseudo.ippseudo_p = IPPROTO_TCP; 2079 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 2080 optlen); 2081 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2082 2083 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 2084 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 2085 break; 2086 #ifdef INET6 2087 /* 2088 * RFC 2385, 2.0 Proposal 2089 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 2090 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 2091 * extended next header value (to form 32 bits), and 32-bit segment 2092 * length. 2093 * Note: Upper-Layer Packet Length comes before Next Header. 2094 */ 2095 case (IPV6_VERSION >> 4): 2096 in6 = ip6->ip6_src; 2097 in6_clearscope(&in6); 2098 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2099 in6 = ip6->ip6_dst; 2100 in6_clearscope(&in6); 2101 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2102 plen = htonl(len + sizeof(struct tcphdr) + optlen); 2103 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 2104 nhdr = 0; 2105 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2106 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2107 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2108 nhdr = IPPROTO_TCP; 2109 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2110 2111 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 2112 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 2113 break; 2114 #endif 2115 default: 2116 return (EINVAL); 2117 /* NOTREACHED */ 2118 break; 2119 } 2120 2121 2122 /* 2123 * Step 2: Update MD5 hash with TCP header, excluding options. 2124 * The TCP checksum must be set to zero. 2125 */ 2126 savecsum = th->th_sum; 2127 th->th_sum = 0; 2128 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2129 th->th_sum = savecsum; 2130 2131 /* 2132 * Step 3: Update MD5 hash with TCP segment data. 2133 * Use m_apply() to avoid an early m_pullup(). 2134 */ 2135 if (len > 0) 2136 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2137 2138 /* 2139 * Step 4: Update MD5 hash with shared secret. 2140 */ 2141 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2142 MD5Final(buf, &ctx); 2143 2144 key_sa_recordxfer(sav, m); 2145 KEY_FREESAV(&sav); 2146 return (0); 2147 } 2148 #endif /* TCP_SIGNATURE */ 2149 2150 static int 2151 sysctl_drop(SYSCTL_HANDLER_ARGS) 2152 { 2153 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2154 struct sockaddr_storage addrs[2]; 2155 struct inpcb *inp; 2156 struct tcpcb *tp; 2157 struct tcptw *tw; 2158 struct sockaddr_in *fin, *lin; 2159 #ifdef INET6 2160 struct sockaddr_in6 *fin6, *lin6; 2161 #endif 2162 int error; 2163 2164 inp = NULL; 2165 fin = lin = NULL; 2166 #ifdef INET6 2167 fin6 = lin6 = NULL; 2168 #endif 2169 error = 0; 2170 2171 if (req->oldptr != NULL || req->oldlen != 0) 2172 return (EINVAL); 2173 if (req->newptr == NULL) 2174 return (EPERM); 2175 if (req->newlen < sizeof(addrs)) 2176 return (ENOMEM); 2177 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2178 if (error) 2179 return (error); 2180 2181 switch (addrs[0].ss_family) { 2182 #ifdef INET6 2183 case AF_INET6: 2184 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2185 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2186 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2187 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2188 return (EINVAL); 2189 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2190 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2191 return (EINVAL); 2192 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2193 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2194 fin = (struct sockaddr_in *)&addrs[0]; 2195 lin = (struct sockaddr_in *)&addrs[1]; 2196 break; 2197 } 2198 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2199 if (error) 2200 return (error); 2201 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2202 if (error) 2203 return (error); 2204 break; 2205 #endif 2206 case AF_INET: 2207 fin = (struct sockaddr_in *)&addrs[0]; 2208 lin = (struct sockaddr_in *)&addrs[1]; 2209 if (fin->sin_len != sizeof(struct sockaddr_in) || 2210 lin->sin_len != sizeof(struct sockaddr_in)) 2211 return (EINVAL); 2212 break; 2213 default: 2214 return (EINVAL); 2215 } 2216 INP_INFO_WLOCK(&V_tcbinfo); 2217 switch (addrs[0].ss_family) { 2218 #ifdef INET6 2219 case AF_INET6: 2220 inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr, 2221 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0, 2222 NULL); 2223 break; 2224 #endif 2225 case AF_INET: 2226 inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr, 2227 fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL); 2228 break; 2229 } 2230 if (inp != NULL) { 2231 INP_WLOCK(inp); 2232 if (inp->inp_flags & INP_TIMEWAIT) { 2233 /* 2234 * XXXRW: There currently exists a state where an 2235 * inpcb is present, but its timewait state has been 2236 * discarded. For now, don't allow dropping of this 2237 * type of inpcb. 2238 */ 2239 tw = intotw(inp); 2240 if (tw != NULL) 2241 tcp_twclose(tw, 0); 2242 else 2243 INP_WUNLOCK(inp); 2244 } else if (!(inp->inp_flags & INP_DROPPED) && 2245 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2246 tp = intotcpcb(inp); 2247 tp = tcp_drop(tp, ECONNABORTED); 2248 if (tp != NULL) 2249 INP_WUNLOCK(inp); 2250 } else 2251 INP_WUNLOCK(inp); 2252 } else 2253 error = ESRCH; 2254 INP_INFO_WUNLOCK(&V_tcbinfo); 2255 return (error); 2256 } 2257 2258 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2259 CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL, 2260 0, sysctl_drop, "", "Drop TCP connection"); 2261 2262 /* 2263 * Generate a standardized TCP log line for use throughout the 2264 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2265 * allow use in the interrupt context. 2266 * 2267 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2268 * NB: The function may return NULL if memory allocation failed. 2269 * 2270 * Due to header inclusion and ordering limitations the struct ip 2271 * and ip6_hdr pointers have to be passed as void pointers. 2272 */ 2273 char * 2274 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2275 const void *ip6hdr) 2276 { 2277 char *s, *sp; 2278 size_t size; 2279 struct ip *ip; 2280 #ifdef INET6 2281 const struct ip6_hdr *ip6; 2282 2283 ip6 = (const struct ip6_hdr *)ip6hdr; 2284 #endif /* INET6 */ 2285 ip = (struct ip *)ip4hdr; 2286 2287 /* 2288 * The log line looks like this: 2289 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2290 */ 2291 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2292 sizeof(PRINT_TH_FLAGS) + 1 + 2293 #ifdef INET6 2294 2 * INET6_ADDRSTRLEN; 2295 #else 2296 2 * INET_ADDRSTRLEN; 2297 #endif /* INET6 */ 2298 2299 /* Is logging enabled? */ 2300 if (tcp_log_debug == 0 && tcp_log_in_vain == 0) 2301 return (NULL); 2302 2303 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2304 if (s == NULL) 2305 return (NULL); 2306 2307 strcat(s, "TCP: ["); 2308 sp = s + strlen(s); 2309 2310 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2311 inet_ntoa_r(inc->inc_faddr, sp); 2312 sp = s + strlen(s); 2313 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2314 sp = s + strlen(s); 2315 inet_ntoa_r(inc->inc_laddr, sp); 2316 sp = s + strlen(s); 2317 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2318 #ifdef INET6 2319 } else if (inc) { 2320 ip6_sprintf(sp, &inc->inc6_faddr); 2321 sp = s + strlen(s); 2322 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2323 sp = s + strlen(s); 2324 ip6_sprintf(sp, &inc->inc6_laddr); 2325 sp = s + strlen(s); 2326 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2327 } else if (ip6 && th) { 2328 ip6_sprintf(sp, &ip6->ip6_src); 2329 sp = s + strlen(s); 2330 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2331 sp = s + strlen(s); 2332 ip6_sprintf(sp, &ip6->ip6_dst); 2333 sp = s + strlen(s); 2334 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2335 #endif /* INET6 */ 2336 } else if (ip && th) { 2337 inet_ntoa_r(ip->ip_src, sp); 2338 sp = s + strlen(s); 2339 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2340 sp = s + strlen(s); 2341 inet_ntoa_r(ip->ip_dst, sp); 2342 sp = s + strlen(s); 2343 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2344 } else { 2345 free(s, M_TCPLOG); 2346 return (NULL); 2347 } 2348 sp = s + strlen(s); 2349 if (th) 2350 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2351 if (*(s + size - 1) != '\0') 2352 panic("%s: string too long", __func__); 2353 return (s); 2354 } 2355