1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/eventhandler.h> 46 #ifdef TCP_HHOOK 47 #include <sys/hhook.h> 48 #endif 49 #include <sys/kernel.h> 50 #ifdef TCP_HHOOK 51 #include <sys/khelp.h> 52 #endif 53 #include <sys/sysctl.h> 54 #include <sys/jail.h> 55 #include <sys/malloc.h> 56 #include <sys/refcount.h> 57 #include <sys/mbuf.h> 58 #ifdef INET6 59 #include <sys/domain.h> 60 #endif 61 #include <sys/priv.h> 62 #include <sys/proc.h> 63 #include <sys/sdt.h> 64 #include <sys/socket.h> 65 #include <sys/socketvar.h> 66 #include <sys/protosw.h> 67 #include <sys/random.h> 68 69 #include <vm/uma.h> 70 71 #include <net/route.h> 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/vnet.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/in_kdtrace.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/ip_var.h> 85 #ifdef INET6 86 #include <netinet/icmp6.h> 87 #include <netinet/ip6.h> 88 #include <netinet6/in6_fib.h> 89 #include <netinet6/in6_pcb.h> 90 #include <netinet6/ip6_var.h> 91 #include <netinet6/scope6_var.h> 92 #include <netinet6/nd6.h> 93 #endif 94 95 #include <netinet/tcp.h> 96 #include <netinet/tcp_fsm.h> 97 #include <netinet/tcp_seq.h> 98 #include <netinet/tcp_timer.h> 99 #include <netinet/tcp_var.h> 100 #include <netinet/tcp_log_buf.h> 101 #include <netinet/tcp_syncache.h> 102 #include <netinet/tcp_hpts.h> 103 #include <netinet/cc/cc.h> 104 #ifdef INET6 105 #include <netinet6/tcp6_var.h> 106 #endif 107 #include <netinet/tcpip.h> 108 #include <netinet/tcp_fastopen.h> 109 #ifdef TCPPCAP 110 #include <netinet/tcp_pcap.h> 111 #endif 112 #ifdef TCPDEBUG 113 #include <netinet/tcp_debug.h> 114 #endif 115 #ifdef INET6 116 #include <netinet6/ip6protosw.h> 117 #endif 118 #ifdef TCP_OFFLOAD 119 #include <netinet/tcp_offload.h> 120 #endif 121 122 #include <netipsec/ipsec_support.h> 123 124 #include <machine/in_cksum.h> 125 #include <sys/md5.h> 126 127 #include <security/mac/mac_framework.h> 128 129 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 130 #ifdef INET6 131 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 132 #endif 133 134 struct rwlock tcp_function_lock; 135 136 static int 137 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 138 { 139 int error, new; 140 141 new = V_tcp_mssdflt; 142 error = sysctl_handle_int(oidp, &new, 0, req); 143 if (error == 0 && req->newptr) { 144 if (new < TCP_MINMSS) 145 error = EINVAL; 146 else 147 V_tcp_mssdflt = new; 148 } 149 return (error); 150 } 151 152 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 153 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 154 &sysctl_net_inet_tcp_mss_check, "I", 155 "Default TCP Maximum Segment Size"); 156 157 #ifdef INET6 158 static int 159 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 160 { 161 int error, new; 162 163 new = V_tcp_v6mssdflt; 164 error = sysctl_handle_int(oidp, &new, 0, req); 165 if (error == 0 && req->newptr) { 166 if (new < TCP_MINMSS) 167 error = EINVAL; 168 else 169 V_tcp_v6mssdflt = new; 170 } 171 return (error); 172 } 173 174 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 175 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 176 &sysctl_net_inet_tcp_mss_v6_check, "I", 177 "Default TCP Maximum Segment Size for IPv6"); 178 #endif /* INET6 */ 179 180 /* 181 * Minimum MSS we accept and use. This prevents DoS attacks where 182 * we are forced to a ridiculous low MSS like 20 and send hundreds 183 * of packets instead of one. The effect scales with the available 184 * bandwidth and quickly saturates the CPU and network interface 185 * with packet generation and sending. Set to zero to disable MINMSS 186 * checking. This setting prevents us from sending too small packets. 187 */ 188 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 190 &VNET_NAME(tcp_minmss), 0, 191 "Minimum TCP Maximum Segment Size"); 192 193 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 194 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 195 &VNET_NAME(tcp_do_rfc1323), 0, 196 "Enable rfc1323 (high performance TCP) extensions"); 197 198 static int tcp_log_debug = 0; 199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 200 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 201 202 static int tcp_tcbhashsize; 203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 204 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 205 206 static int do_tcpdrain = 1; 207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 208 "Enable tcp_drain routine for extra help when low on mbufs"); 209 210 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 211 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 212 213 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1; 214 #define V_icmp_may_rst VNET(icmp_may_rst) 215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(icmp_may_rst), 0, 217 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 218 219 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0; 220 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 222 &VNET_NAME(tcp_isn_reseed_interval), 0, 223 "Seconds between reseeding of ISN secret"); 224 225 static int tcp_soreceive_stream; 226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 227 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 228 229 VNET_DEFINE(uma_zone_t, sack_hole_zone); 230 #define V_sack_hole_zone VNET(sack_hole_zone) 231 232 #ifdef TCP_HHOOK 233 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 234 #endif 235 236 VNET_DEFINE_STATIC(u_char, ts_offset_secret[32]); 237 #define V_ts_offset_secret VNET(ts_offset_secret) 238 239 static int tcp_default_fb_init(struct tcpcb *tp); 240 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); 241 static int tcp_default_handoff_ok(struct tcpcb *tp); 242 static struct inpcb *tcp_notify(struct inpcb *, int); 243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 244 static void tcp_mtudisc(struct inpcb *, int); 245 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 246 void *ip4hdr, const void *ip6hdr); 247 248 249 static struct tcp_function_block tcp_def_funcblk = { 250 .tfb_tcp_block_name = "freebsd", 251 .tfb_tcp_output = tcp_output, 252 .tfb_tcp_do_segment = tcp_do_segment, 253 .tfb_tcp_ctloutput = tcp_default_ctloutput, 254 .tfb_tcp_handoff_ok = tcp_default_handoff_ok, 255 .tfb_tcp_fb_init = tcp_default_fb_init, 256 .tfb_tcp_fb_fini = tcp_default_fb_fini, 257 }; 258 259 int t_functions_inited = 0; 260 static int tcp_fb_cnt = 0; 261 struct tcp_funchead t_functions; 262 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; 263 264 static void 265 init_tcp_functions(void) 266 { 267 if (t_functions_inited == 0) { 268 TAILQ_INIT(&t_functions); 269 rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); 270 t_functions_inited = 1; 271 } 272 } 273 274 static struct tcp_function_block * 275 find_tcp_functions_locked(struct tcp_function_set *fs) 276 { 277 struct tcp_function *f; 278 struct tcp_function_block *blk=NULL; 279 280 TAILQ_FOREACH(f, &t_functions, tf_next) { 281 if (strcmp(f->tf_name, fs->function_set_name) == 0) { 282 blk = f->tf_fb; 283 break; 284 } 285 } 286 return(blk); 287 } 288 289 static struct tcp_function_block * 290 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 291 { 292 struct tcp_function_block *rblk=NULL; 293 struct tcp_function *f; 294 295 TAILQ_FOREACH(f, &t_functions, tf_next) { 296 if (f->tf_fb == blk) { 297 rblk = blk; 298 if (s) { 299 *s = f; 300 } 301 break; 302 } 303 } 304 return (rblk); 305 } 306 307 struct tcp_function_block * 308 find_and_ref_tcp_functions(struct tcp_function_set *fs) 309 { 310 struct tcp_function_block *blk; 311 312 rw_rlock(&tcp_function_lock); 313 blk = find_tcp_functions_locked(fs); 314 if (blk) 315 refcount_acquire(&blk->tfb_refcnt); 316 rw_runlock(&tcp_function_lock); 317 return(blk); 318 } 319 320 struct tcp_function_block * 321 find_and_ref_tcp_fb(struct tcp_function_block *blk) 322 { 323 struct tcp_function_block *rblk; 324 325 rw_rlock(&tcp_function_lock); 326 rblk = find_tcp_fb_locked(blk, NULL); 327 if (rblk) 328 refcount_acquire(&rblk->tfb_refcnt); 329 rw_runlock(&tcp_function_lock); 330 return(rblk); 331 } 332 333 static struct tcp_function_block * 334 find_and_ref_tcp_default_fb(void) 335 { 336 struct tcp_function_block *rblk; 337 338 rw_rlock(&tcp_function_lock); 339 rblk = tcp_func_set_ptr; 340 refcount_acquire(&rblk->tfb_refcnt); 341 rw_runlock(&tcp_function_lock); 342 return (rblk); 343 } 344 345 void 346 tcp_switch_back_to_default(struct tcpcb *tp) 347 { 348 struct tcp_function_block *tfb; 349 350 KASSERT(tp->t_fb != &tcp_def_funcblk, 351 ("%s: called by the built-in default stack", __func__)); 352 353 /* 354 * Release the old stack. This function will either find a new one 355 * or panic. 356 */ 357 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 358 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 359 refcount_release(&tp->t_fb->tfb_refcnt); 360 361 /* 362 * Now, we'll find a new function block to use. 363 * Start by trying the current user-selected 364 * default, unless this stack is the user-selected 365 * default. 366 */ 367 tfb = find_and_ref_tcp_default_fb(); 368 if (tfb == tp->t_fb) { 369 refcount_release(&tfb->tfb_refcnt); 370 tfb = NULL; 371 } 372 /* Does the stack accept this connection? */ 373 if (tfb != NULL && tfb->tfb_tcp_handoff_ok != NULL && 374 (*tfb->tfb_tcp_handoff_ok)(tp)) { 375 refcount_release(&tfb->tfb_refcnt); 376 tfb = NULL; 377 } 378 /* Try to use that stack. */ 379 if (tfb != NULL) { 380 /* Initialize the new stack. If it succeeds, we are done. */ 381 tp->t_fb = tfb; 382 if (tp->t_fb->tfb_tcp_fb_init == NULL || 383 (*tp->t_fb->tfb_tcp_fb_init)(tp) == 0) 384 return; 385 386 /* 387 * Initialization failed. Release the reference count on 388 * the stack. 389 */ 390 refcount_release(&tfb->tfb_refcnt); 391 } 392 393 /* 394 * If that wasn't feasible, use the built-in default 395 * stack which is not allowed to reject anyone. 396 */ 397 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); 398 if (tfb == NULL) { 399 /* there always should be a default */ 400 panic("Can't refer to tcp_def_funcblk"); 401 } 402 if (tfb->tfb_tcp_handoff_ok != NULL) { 403 if ((*tfb->tfb_tcp_handoff_ok) (tp)) { 404 /* The default stack cannot say no */ 405 panic("Default stack rejects a new session?"); 406 } 407 } 408 tp->t_fb = tfb; 409 if (tp->t_fb->tfb_tcp_fb_init != NULL && 410 (*tp->t_fb->tfb_tcp_fb_init)(tp)) { 411 /* The default stack cannot fail */ 412 panic("Default stack initialization failed"); 413 } 414 } 415 416 static int 417 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 418 { 419 int error=ENOENT; 420 struct tcp_function_set fs; 421 struct tcp_function_block *blk; 422 423 memset(&fs, 0, sizeof(fs)); 424 rw_rlock(&tcp_function_lock); 425 blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); 426 if (blk) { 427 /* Found him */ 428 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 429 fs.pcbcnt = blk->tfb_refcnt; 430 } 431 rw_runlock(&tcp_function_lock); 432 error = sysctl_handle_string(oidp, fs.function_set_name, 433 sizeof(fs.function_set_name), req); 434 435 /* Check for error or no change */ 436 if (error != 0 || req->newptr == NULL) 437 return(error); 438 439 rw_wlock(&tcp_function_lock); 440 blk = find_tcp_functions_locked(&fs); 441 if ((blk == NULL) || 442 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 443 error = ENOENT; 444 goto done; 445 } 446 tcp_func_set_ptr = blk; 447 done: 448 rw_wunlock(&tcp_function_lock); 449 return (error); 450 } 451 452 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 453 CTLTYPE_STRING | CTLFLAG_RW, 454 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 455 "Set/get the default TCP functions"); 456 457 static int 458 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 459 { 460 int error, cnt, linesz; 461 struct tcp_function *f; 462 char *buffer, *cp; 463 size_t bufsz, outsz; 464 bool alias; 465 466 cnt = 0; 467 rw_rlock(&tcp_function_lock); 468 TAILQ_FOREACH(f, &t_functions, tf_next) { 469 cnt++; 470 } 471 rw_runlock(&tcp_function_lock); 472 473 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; 474 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 475 476 error = 0; 477 cp = buffer; 478 479 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', 480 "Alias", "PCB count"); 481 cp += linesz; 482 bufsz -= linesz; 483 outsz = linesz; 484 485 rw_rlock(&tcp_function_lock); 486 TAILQ_FOREACH(f, &t_functions, tf_next) { 487 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); 488 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", 489 f->tf_fb->tfb_tcp_block_name, 490 (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', 491 alias ? f->tf_name : "-", 492 f->tf_fb->tfb_refcnt); 493 if (linesz >= bufsz) { 494 error = EOVERFLOW; 495 break; 496 } 497 cp += linesz; 498 bufsz -= linesz; 499 outsz += linesz; 500 } 501 rw_runlock(&tcp_function_lock); 502 if (error == 0) 503 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 504 free(buffer, M_TEMP); 505 return (error); 506 } 507 508 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 509 CTLTYPE_STRING|CTLFLAG_RD, 510 NULL, 0, sysctl_net_inet_list_available, "A", 511 "list available TCP Function sets"); 512 513 /* 514 * Exports one (struct tcp_function_info) for each alias/name. 515 */ 516 static int 517 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) 518 { 519 int cnt, error; 520 struct tcp_function *f; 521 struct tcp_function_info tfi; 522 523 /* 524 * We don't allow writes. 525 */ 526 if (req->newptr != NULL) 527 return (EINVAL); 528 529 /* 530 * Wire the old buffer so we can directly copy the functions to 531 * user space without dropping the lock. 532 */ 533 if (req->oldptr != NULL) { 534 error = sysctl_wire_old_buffer(req, 0); 535 if (error) 536 return (error); 537 } 538 539 /* 540 * Walk the list and copy out matching entries. If INVARIANTS 541 * is compiled in, also walk the list to verify the length of 542 * the list matches what we have recorded. 543 */ 544 rw_rlock(&tcp_function_lock); 545 546 cnt = 0; 547 #ifndef INVARIANTS 548 if (req->oldptr == NULL) { 549 cnt = tcp_fb_cnt; 550 goto skip_loop; 551 } 552 #endif 553 TAILQ_FOREACH(f, &t_functions, tf_next) { 554 #ifdef INVARIANTS 555 cnt++; 556 #endif 557 if (req->oldptr != NULL) { 558 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; 559 tfi.tfi_id = f->tf_fb->tfb_id; 560 (void)strncpy(tfi.tfi_alias, f->tf_name, 561 TCP_FUNCTION_NAME_LEN_MAX); 562 tfi.tfi_alias[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 563 (void)strncpy(tfi.tfi_name, 564 f->tf_fb->tfb_tcp_block_name, 565 TCP_FUNCTION_NAME_LEN_MAX); 566 tfi.tfi_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 567 error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); 568 /* 569 * Don't stop on error, as that is the 570 * mechanism we use to accumulate length 571 * information if the buffer was too short. 572 */ 573 } 574 } 575 KASSERT(cnt == tcp_fb_cnt, 576 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); 577 #ifndef INVARIANTS 578 skip_loop: 579 #endif 580 rw_runlock(&tcp_function_lock); 581 if (req->oldptr == NULL) 582 error = SYSCTL_OUT(req, NULL, 583 (cnt + 1) * sizeof(struct tcp_function_info)); 584 585 return (error); 586 } 587 588 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, 589 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, 590 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", 591 "List TCP function block name-to-ID mappings"); 592 593 /* 594 * tfb_tcp_handoff_ok() function for the default stack. 595 * Note that we'll basically try to take all comers. 596 */ 597 static int 598 tcp_default_handoff_ok(struct tcpcb *tp) 599 { 600 601 return (0); 602 } 603 604 /* 605 * tfb_tcp_fb_init() function for the default stack. 606 * 607 * This handles making sure we have appropriate timers set if you are 608 * transitioning a socket that has some amount of setup done. 609 * 610 * The init() fuction from the default can *never* return non-zero i.e. 611 * it is required to always succeed since it is the stack of last resort! 612 */ 613 static int 614 tcp_default_fb_init(struct tcpcb *tp) 615 { 616 617 struct socket *so; 618 619 INP_WLOCK_ASSERT(tp->t_inpcb); 620 621 KASSERT(tp->t_state >= 0 && tp->t_state < TCPS_TIME_WAIT, 622 ("%s: connection %p in unexpected state %d", __func__, tp, 623 tp->t_state)); 624 625 /* 626 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't 627 * know what to do for unexpected states (which includes TIME_WAIT). 628 */ 629 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) 630 return (0); 631 632 /* 633 * Make sure some kind of transmission timer is set if there is 634 * outstanding data. 635 */ 636 so = tp->t_inpcb->inp_socket; 637 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || 638 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || 639 tcp_timer_active(tp, TT_PERSIST))) { 640 /* 641 * If the session has established and it looks like it should 642 * be in the persist state, set the persist timer. Otherwise, 643 * set the retransmit timer. 644 */ 645 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && 646 (int32_t)(tp->snd_nxt - tp->snd_una) < 647 (int32_t)sbavail(&so->so_snd)) 648 tcp_setpersist(tp); 649 else 650 tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); 651 } 652 653 /* All non-embryonic sessions get a keepalive timer. */ 654 if (!tcp_timer_active(tp, TT_KEEP)) 655 tcp_timer_activate(tp, TT_KEEP, 656 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : 657 TP_KEEPINIT(tp)); 658 659 return (0); 660 } 661 662 /* 663 * tfb_tcp_fb_fini() function for the default stack. 664 * 665 * This changes state as necessary (or prudent) to prepare for another stack 666 * to assume responsibility for the connection. 667 */ 668 static void 669 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) 670 { 671 672 INP_WLOCK_ASSERT(tp->t_inpcb); 673 return; 674 } 675 676 /* 677 * Target size of TCP PCB hash tables. Must be a power of two. 678 * 679 * Note that this can be overridden by the kernel environment 680 * variable net.inet.tcp.tcbhashsize 681 */ 682 #ifndef TCBHASHSIZE 683 #define TCBHASHSIZE 0 684 #endif 685 686 /* 687 * XXX 688 * Callouts should be moved into struct tcp directly. They are currently 689 * separate because the tcpcb structure is exported to userland for sysctl 690 * parsing purposes, which do not know about callouts. 691 */ 692 struct tcpcb_mem { 693 struct tcpcb tcb; 694 struct tcp_timer tt; 695 struct cc_var ccv; 696 #ifdef TCP_HHOOK 697 struct osd osd; 698 #endif 699 }; 700 701 VNET_DEFINE_STATIC(uma_zone_t, tcpcb_zone); 702 #define V_tcpcb_zone VNET(tcpcb_zone) 703 704 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 705 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 706 707 static struct mtx isn_mtx; 708 709 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 710 #define ISN_LOCK() mtx_lock(&isn_mtx) 711 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 712 713 /* 714 * TCP initialization. 715 */ 716 static void 717 tcp_zone_change(void *tag) 718 { 719 720 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 721 uma_zone_set_max(V_tcpcb_zone, maxsockets); 722 tcp_tw_zone_change(); 723 } 724 725 static int 726 tcp_inpcb_init(void *mem, int size, int flags) 727 { 728 struct inpcb *inp = mem; 729 730 INP_LOCK_INIT(inp, "inp", "tcpinp"); 731 return (0); 732 } 733 734 /* 735 * Take a value and get the next power of 2 that doesn't overflow. 736 * Used to size the tcp_inpcb hash buckets. 737 */ 738 static int 739 maketcp_hashsize(int size) 740 { 741 int hashsize; 742 743 /* 744 * auto tune. 745 * get the next power of 2 higher than maxsockets. 746 */ 747 hashsize = 1 << fls(size); 748 /* catch overflow, and just go one power of 2 smaller */ 749 if (hashsize < size) { 750 hashsize = 1 << (fls(size) - 1); 751 } 752 return (hashsize); 753 } 754 755 static volatile int next_tcp_stack_id = 1; 756 757 /* 758 * Register a TCP function block with the name provided in the names 759 * array. (Note that this function does NOT automatically register 760 * blk->tfb_tcp_block_name as a stack name. Therefore, you should 761 * explicitly include blk->tfb_tcp_block_name in the list of names if 762 * you wish to register the stack with that name.) 763 * 764 * Either all name registrations will succeed or all will fail. If 765 * a name registration fails, the function will update the num_names 766 * argument to point to the array index of the name that encountered 767 * the failure. 768 * 769 * Returns 0 on success, or an error code on failure. 770 */ 771 int 772 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, 773 const char *names[], int *num_names) 774 { 775 struct tcp_function *n; 776 struct tcp_function_set fs; 777 int error, i; 778 779 KASSERT(names != NULL && *num_names > 0, 780 ("%s: Called with 0-length name list", __func__)); 781 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); 782 783 if (t_functions_inited == 0) { 784 init_tcp_functions(); 785 } 786 if ((blk->tfb_tcp_output == NULL) || 787 (blk->tfb_tcp_do_segment == NULL) || 788 (blk->tfb_tcp_ctloutput == NULL) || 789 (strlen(blk->tfb_tcp_block_name) == 0)) { 790 /* 791 * These functions are required and you 792 * need a name. 793 */ 794 *num_names = 0; 795 return (EINVAL); 796 } 797 if (blk->tfb_tcp_timer_stop_all || 798 blk->tfb_tcp_timer_activate || 799 blk->tfb_tcp_timer_active || 800 blk->tfb_tcp_timer_stop) { 801 /* 802 * If you define one timer function you 803 * must have them all. 804 */ 805 if ((blk->tfb_tcp_timer_stop_all == NULL) || 806 (blk->tfb_tcp_timer_activate == NULL) || 807 (blk->tfb_tcp_timer_active == NULL) || 808 (blk->tfb_tcp_timer_stop == NULL)) { 809 *num_names = 0; 810 return (EINVAL); 811 } 812 } 813 814 refcount_init(&blk->tfb_refcnt, 0); 815 blk->tfb_flags = 0; 816 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); 817 for (i = 0; i < *num_names; i++) { 818 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 819 if (n == NULL) { 820 error = ENOMEM; 821 goto cleanup; 822 } 823 n->tf_fb = blk; 824 825 (void)strncpy(fs.function_set_name, names[i], 826 TCP_FUNCTION_NAME_LEN_MAX); 827 fs.function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 828 rw_wlock(&tcp_function_lock); 829 if (find_tcp_functions_locked(&fs) != NULL) { 830 /* Duplicate name space not allowed */ 831 rw_wunlock(&tcp_function_lock); 832 free(n, M_TCPFUNCTIONS); 833 error = EALREADY; 834 goto cleanup; 835 } 836 (void)strncpy(n->tf_name, names[i], TCP_FUNCTION_NAME_LEN_MAX); 837 n->tf_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 838 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 839 tcp_fb_cnt++; 840 rw_wunlock(&tcp_function_lock); 841 } 842 return(0); 843 844 cleanup: 845 /* 846 * Deregister the names we just added. Because registration failed 847 * for names[i], we don't need to deregister that name. 848 */ 849 *num_names = i; 850 rw_wlock(&tcp_function_lock); 851 while (--i >= 0) { 852 TAILQ_FOREACH(n, &t_functions, tf_next) { 853 if (!strncmp(n->tf_name, names[i], 854 TCP_FUNCTION_NAME_LEN_MAX)) { 855 TAILQ_REMOVE(&t_functions, n, tf_next); 856 tcp_fb_cnt--; 857 n->tf_fb = NULL; 858 free(n, M_TCPFUNCTIONS); 859 break; 860 } 861 } 862 } 863 rw_wunlock(&tcp_function_lock); 864 return (error); 865 } 866 867 /* 868 * Register a TCP function block using the name provided in the name 869 * argument. 870 * 871 * Returns 0 on success, or an error code on failure. 872 */ 873 int 874 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, 875 int wait) 876 { 877 const char *name_list[1]; 878 int num_names, rv; 879 880 num_names = 1; 881 if (name != NULL) 882 name_list[0] = name; 883 else 884 name_list[0] = blk->tfb_tcp_block_name; 885 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); 886 return (rv); 887 } 888 889 /* 890 * Register a TCP function block using the name defined in 891 * blk->tfb_tcp_block_name. 892 * 893 * Returns 0 on success, or an error code on failure. 894 */ 895 int 896 register_tcp_functions(struct tcp_function_block *blk, int wait) 897 { 898 899 return (register_tcp_functions_as_name(blk, NULL, wait)); 900 } 901 902 /* 903 * Deregister all names associated with a function block. This 904 * functionally removes the function block from use within the system. 905 * 906 * When called with a true quiesce argument, mark the function block 907 * as being removed so no more stacks will use it and determine 908 * whether the removal would succeed. 909 * 910 * When called with a false quiesce argument, actually attempt the 911 * removal. 912 * 913 * When called with a force argument, attempt to switch all TCBs to 914 * use the default stack instead of returning EBUSY. 915 * 916 * Returns 0 on success (or if the removal would succeed, or an error 917 * code on failure. 918 */ 919 int 920 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, 921 bool force) 922 { 923 struct tcp_function *f; 924 925 if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { 926 /* You can't un-register the default */ 927 return (EPERM); 928 } 929 rw_wlock(&tcp_function_lock); 930 if (blk == tcp_func_set_ptr) { 931 /* You can't free the current default */ 932 rw_wunlock(&tcp_function_lock); 933 return (EBUSY); 934 } 935 /* Mark the block so no more stacks can use it. */ 936 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 937 /* 938 * If TCBs are still attached to the stack, attempt to switch them 939 * to the default stack. 940 */ 941 if (force && blk->tfb_refcnt) { 942 struct inpcb *inp; 943 struct tcpcb *tp; 944 VNET_ITERATOR_DECL(vnet_iter); 945 946 rw_wunlock(&tcp_function_lock); 947 948 VNET_LIST_RLOCK(); 949 VNET_FOREACH(vnet_iter) { 950 CURVNET_SET(vnet_iter); 951 INP_INFO_WLOCK(&V_tcbinfo); 952 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 953 INP_WLOCK(inp); 954 if (inp->inp_flags & INP_TIMEWAIT) { 955 INP_WUNLOCK(inp); 956 continue; 957 } 958 tp = intotcpcb(inp); 959 if (tp == NULL || tp->t_fb != blk) { 960 INP_WUNLOCK(inp); 961 continue; 962 } 963 tcp_switch_back_to_default(tp); 964 INP_WUNLOCK(inp); 965 } 966 INP_INFO_WUNLOCK(&V_tcbinfo); 967 CURVNET_RESTORE(); 968 } 969 VNET_LIST_RUNLOCK(); 970 971 rw_wlock(&tcp_function_lock); 972 } 973 if (blk->tfb_refcnt) { 974 /* TCBs still attached. */ 975 rw_wunlock(&tcp_function_lock); 976 return (EBUSY); 977 } 978 if (quiesce) { 979 /* Skip removal. */ 980 rw_wunlock(&tcp_function_lock); 981 return (0); 982 } 983 /* Remove any function names that map to this function block. */ 984 while (find_tcp_fb_locked(blk, &f) != NULL) { 985 TAILQ_REMOVE(&t_functions, f, tf_next); 986 tcp_fb_cnt--; 987 f->tf_fb = NULL; 988 free(f, M_TCPFUNCTIONS); 989 } 990 rw_wunlock(&tcp_function_lock); 991 return (0); 992 } 993 994 void 995 tcp_init(void) 996 { 997 const char *tcbhash_tuneable; 998 int hashsize; 999 1000 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 1001 1002 #ifdef TCP_HHOOK 1003 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 1004 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1005 printf("%s: WARNING: unable to register helper hook\n", __func__); 1006 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 1007 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1008 printf("%s: WARNING: unable to register helper hook\n", __func__); 1009 #endif 1010 hashsize = TCBHASHSIZE; 1011 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 1012 if (hashsize == 0) { 1013 /* 1014 * Auto tune the hash size based on maxsockets. 1015 * A perfect hash would have a 1:1 mapping 1016 * (hashsize = maxsockets) however it's been 1017 * suggested that O(2) average is better. 1018 */ 1019 hashsize = maketcp_hashsize(maxsockets / 4); 1020 /* 1021 * Our historical default is 512, 1022 * do not autotune lower than this. 1023 */ 1024 if (hashsize < 512) 1025 hashsize = 512; 1026 if (bootverbose && IS_DEFAULT_VNET(curvnet)) 1027 printf("%s: %s auto tuned to %d\n", __func__, 1028 tcbhash_tuneable, hashsize); 1029 } 1030 /* 1031 * We require a hashsize to be a power of two. 1032 * Previously if it was not a power of two we would just reset it 1033 * back to 512, which could be a nasty surprise if you did not notice 1034 * the error message. 1035 * Instead what we do is clip it to the closest power of two lower 1036 * than the specified hash value. 1037 */ 1038 if (!powerof2(hashsize)) { 1039 int oldhashsize = hashsize; 1040 1041 hashsize = maketcp_hashsize(hashsize); 1042 /* prevent absurdly low value */ 1043 if (hashsize < 16) 1044 hashsize = 16; 1045 printf("%s: WARNING: TCB hash size not a power of 2, " 1046 "clipped from %d to %d.\n", __func__, oldhashsize, 1047 hashsize); 1048 } 1049 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 1050 "tcp_inpcb", tcp_inpcb_init, IPI_HASHFIELDS_4TUPLE); 1051 1052 /* 1053 * These have to be type stable for the benefit of the timers. 1054 */ 1055 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 1056 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1057 uma_zone_set_max(V_tcpcb_zone, maxsockets); 1058 uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); 1059 1060 tcp_tw_init(); 1061 syncache_init(); 1062 tcp_hc_init(); 1063 1064 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 1065 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 1066 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1067 1068 tcp_fastopen_init(); 1069 1070 /* Skip initialization of globals for non-default instances. */ 1071 if (!IS_DEFAULT_VNET(curvnet)) 1072 return; 1073 1074 tcp_reass_global_init(); 1075 1076 /* XXX virtualize those bellow? */ 1077 tcp_delacktime = TCPTV_DELACK; 1078 tcp_keepinit = TCPTV_KEEP_INIT; 1079 tcp_keepidle = TCPTV_KEEP_IDLE; 1080 tcp_keepintvl = TCPTV_KEEPINTVL; 1081 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 1082 tcp_msl = TCPTV_MSL; 1083 tcp_rexmit_min = TCPTV_MIN; 1084 if (tcp_rexmit_min < 1) 1085 tcp_rexmit_min = 1; 1086 tcp_persmin = TCPTV_PERSMIN; 1087 tcp_persmax = TCPTV_PERSMAX; 1088 tcp_rexmit_slop = TCPTV_CPU_VAR; 1089 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 1090 tcp_tcbhashsize = hashsize; 1091 /* Setup the tcp function block list */ 1092 init_tcp_functions(); 1093 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 1094 #ifdef TCP_BLACKBOX 1095 /* Initialize the TCP logging data. */ 1096 tcp_log_init(); 1097 #endif 1098 read_random(&V_ts_offset_secret, sizeof(V_ts_offset_secret)); 1099 1100 if (tcp_soreceive_stream) { 1101 #ifdef INET 1102 tcp_usrreqs.pru_soreceive = soreceive_stream; 1103 #endif 1104 #ifdef INET6 1105 tcp6_usrreqs.pru_soreceive = soreceive_stream; 1106 #endif /* INET6 */ 1107 } 1108 1109 #ifdef INET6 1110 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 1111 #else /* INET6 */ 1112 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 1113 #endif /* INET6 */ 1114 if (max_protohdr < TCP_MINPROTOHDR) 1115 max_protohdr = TCP_MINPROTOHDR; 1116 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 1117 panic("tcp_init"); 1118 #undef TCP_MINPROTOHDR 1119 1120 ISN_LOCK_INIT(); 1121 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 1122 SHUTDOWN_PRI_DEFAULT); 1123 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 1124 EVENTHANDLER_PRI_ANY); 1125 #ifdef TCPPCAP 1126 tcp_pcap_init(); 1127 #endif 1128 } 1129 1130 #ifdef VIMAGE 1131 static void 1132 tcp_destroy(void *unused __unused) 1133 { 1134 int n; 1135 #ifdef TCP_HHOOK 1136 int error; 1137 #endif 1138 1139 /* 1140 * All our processes are gone, all our sockets should be cleaned 1141 * up, which means, we should be past the tcp_discardcb() calls. 1142 * Sleep to let all tcpcb timers really disappear and cleanup. 1143 */ 1144 for (;;) { 1145 INP_LIST_RLOCK(&V_tcbinfo); 1146 n = V_tcbinfo.ipi_count; 1147 INP_LIST_RUNLOCK(&V_tcbinfo); 1148 if (n == 0) 1149 break; 1150 pause("tcpdes", hz / 10); 1151 } 1152 tcp_hc_destroy(); 1153 syncache_destroy(); 1154 tcp_tw_destroy(); 1155 in_pcbinfo_destroy(&V_tcbinfo); 1156 /* tcp_discardcb() clears the sack_holes up. */ 1157 uma_zdestroy(V_sack_hole_zone); 1158 uma_zdestroy(V_tcpcb_zone); 1159 1160 /* 1161 * Cannot free the zone until all tcpcbs are released as we attach 1162 * the allocations to them. 1163 */ 1164 tcp_fastopen_destroy(); 1165 1166 #ifdef TCP_HHOOK 1167 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 1168 if (error != 0) { 1169 printf("%s: WARNING: unable to deregister helper hook " 1170 "type=%d, id=%d: error %d returned\n", __func__, 1171 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 1172 } 1173 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 1174 if (error != 0) { 1175 printf("%s: WARNING: unable to deregister helper hook " 1176 "type=%d, id=%d: error %d returned\n", __func__, 1177 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 1178 } 1179 #endif 1180 } 1181 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 1182 #endif 1183 1184 void 1185 tcp_fini(void *xtp) 1186 { 1187 1188 } 1189 1190 /* 1191 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 1192 * tcp_template used to store this data in mbufs, but we now recopy it out 1193 * of the tcpcb each time to conserve mbufs. 1194 */ 1195 void 1196 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 1197 { 1198 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 1199 1200 INP_WLOCK_ASSERT(inp); 1201 1202 #ifdef INET6 1203 if ((inp->inp_vflag & INP_IPV6) != 0) { 1204 struct ip6_hdr *ip6; 1205 1206 ip6 = (struct ip6_hdr *)ip_ptr; 1207 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 1208 (inp->inp_flow & IPV6_FLOWINFO_MASK); 1209 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 1210 (IPV6_VERSION & IPV6_VERSION_MASK); 1211 ip6->ip6_nxt = IPPROTO_TCP; 1212 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1213 ip6->ip6_src = inp->in6p_laddr; 1214 ip6->ip6_dst = inp->in6p_faddr; 1215 } 1216 #endif /* INET6 */ 1217 #if defined(INET6) && defined(INET) 1218 else 1219 #endif 1220 #ifdef INET 1221 { 1222 struct ip *ip; 1223 1224 ip = (struct ip *)ip_ptr; 1225 ip->ip_v = IPVERSION; 1226 ip->ip_hl = 5; 1227 ip->ip_tos = inp->inp_ip_tos; 1228 ip->ip_len = 0; 1229 ip->ip_id = 0; 1230 ip->ip_off = 0; 1231 ip->ip_ttl = inp->inp_ip_ttl; 1232 ip->ip_sum = 0; 1233 ip->ip_p = IPPROTO_TCP; 1234 ip->ip_src = inp->inp_laddr; 1235 ip->ip_dst = inp->inp_faddr; 1236 } 1237 #endif /* INET */ 1238 th->th_sport = inp->inp_lport; 1239 th->th_dport = inp->inp_fport; 1240 th->th_seq = 0; 1241 th->th_ack = 0; 1242 th->th_x2 = 0; 1243 th->th_off = 5; 1244 th->th_flags = 0; 1245 th->th_win = 0; 1246 th->th_urp = 0; 1247 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 1248 } 1249 1250 /* 1251 * Create template to be used to send tcp packets on a connection. 1252 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 1253 * use for this function is in keepalives, which use tcp_respond. 1254 */ 1255 struct tcptemp * 1256 tcpip_maketemplate(struct inpcb *inp) 1257 { 1258 struct tcptemp *t; 1259 1260 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 1261 if (t == NULL) 1262 return (NULL); 1263 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 1264 return (t); 1265 } 1266 1267 /* 1268 * Send a single message to the TCP at address specified by 1269 * the given TCP/IP header. If m == NULL, then we make a copy 1270 * of the tcpiphdr at th and send directly to the addressed host. 1271 * This is used to force keep alive messages out using the TCP 1272 * template for a connection. If flags are given then we send 1273 * a message back to the TCP which originated the segment th, 1274 * and discard the mbuf containing it and any other attached mbufs. 1275 * 1276 * In any case the ack and sequence number of the transmitted 1277 * segment are as specified by the parameters. 1278 * 1279 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 1280 */ 1281 void 1282 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 1283 tcp_seq ack, tcp_seq seq, int flags) 1284 { 1285 struct tcpopt to; 1286 struct inpcb *inp; 1287 struct ip *ip; 1288 struct mbuf *optm; 1289 struct tcphdr *nth; 1290 u_char *optp; 1291 #ifdef INET6 1292 struct ip6_hdr *ip6; 1293 int isipv6; 1294 #endif /* INET6 */ 1295 int optlen, tlen, win; 1296 bool incl_opts; 1297 1298 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 1299 1300 #ifdef INET6 1301 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 1302 ip6 = ipgen; 1303 #endif /* INET6 */ 1304 ip = ipgen; 1305 1306 if (tp != NULL) { 1307 inp = tp->t_inpcb; 1308 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 1309 INP_WLOCK_ASSERT(inp); 1310 } else 1311 inp = NULL; 1312 1313 incl_opts = false; 1314 win = 0; 1315 if (tp != NULL) { 1316 if (!(flags & TH_RST)) { 1317 win = sbspace(&inp->inp_socket->so_rcv); 1318 if (win > TCP_MAXWIN << tp->rcv_scale) 1319 win = TCP_MAXWIN << tp->rcv_scale; 1320 } 1321 if ((tp->t_flags & TF_NOOPT) == 0) 1322 incl_opts = true; 1323 } 1324 if (m == NULL) { 1325 m = m_gethdr(M_NOWAIT, MT_DATA); 1326 if (m == NULL) 1327 return; 1328 m->m_data += max_linkhdr; 1329 #ifdef INET6 1330 if (isipv6) { 1331 bcopy((caddr_t)ip6, mtod(m, caddr_t), 1332 sizeof(struct ip6_hdr)); 1333 ip6 = mtod(m, struct ip6_hdr *); 1334 nth = (struct tcphdr *)(ip6 + 1); 1335 } else 1336 #endif /* INET6 */ 1337 { 1338 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1339 ip = mtod(m, struct ip *); 1340 nth = (struct tcphdr *)(ip + 1); 1341 } 1342 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1343 flags = TH_ACK; 1344 } else if (!M_WRITABLE(m)) { 1345 struct mbuf *n; 1346 1347 /* Can't reuse 'm', allocate a new mbuf. */ 1348 n = m_gethdr(M_NOWAIT, MT_DATA); 1349 if (n == NULL) { 1350 m_freem(m); 1351 return; 1352 } 1353 1354 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 1355 m_freem(m); 1356 m_freem(n); 1357 return; 1358 } 1359 1360 n->m_data += max_linkhdr; 1361 /* m_len is set later */ 1362 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 1363 #ifdef INET6 1364 if (isipv6) { 1365 bcopy((caddr_t)ip6, mtod(n, caddr_t), 1366 sizeof(struct ip6_hdr)); 1367 ip6 = mtod(n, struct ip6_hdr *); 1368 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1369 nth = (struct tcphdr *)(ip6 + 1); 1370 } else 1371 #endif /* INET6 */ 1372 { 1373 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 1374 ip = mtod(n, struct ip *); 1375 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1376 nth = (struct tcphdr *)(ip + 1); 1377 } 1378 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1379 xchg(nth->th_dport, nth->th_sport, uint16_t); 1380 th = nth; 1381 m_freem(m); 1382 m = n; 1383 } else { 1384 /* 1385 * reuse the mbuf. 1386 * XXX MRT We inherit the FIB, which is lucky. 1387 */ 1388 m_freem(m->m_next); 1389 m->m_next = NULL; 1390 m->m_data = (caddr_t)ipgen; 1391 /* m_len is set later */ 1392 #ifdef INET6 1393 if (isipv6) { 1394 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1395 nth = (struct tcphdr *)(ip6 + 1); 1396 } else 1397 #endif /* INET6 */ 1398 { 1399 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1400 nth = (struct tcphdr *)(ip + 1); 1401 } 1402 if (th != nth) { 1403 /* 1404 * this is usually a case when an extension header 1405 * exists between the IPv6 header and the 1406 * TCP header. 1407 */ 1408 nth->th_sport = th->th_sport; 1409 nth->th_dport = th->th_dport; 1410 } 1411 xchg(nth->th_dport, nth->th_sport, uint16_t); 1412 #undef xchg 1413 } 1414 tlen = 0; 1415 #ifdef INET6 1416 if (isipv6) 1417 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1418 #endif 1419 #if defined(INET) && defined(INET6) 1420 else 1421 #endif 1422 #ifdef INET 1423 tlen = sizeof (struct tcpiphdr); 1424 #endif 1425 #ifdef INVARIANTS 1426 m->m_len = 0; 1427 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1428 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1429 m, tlen, (long)M_TRAILINGSPACE(m))); 1430 #endif 1431 m->m_len = tlen; 1432 to.to_flags = 0; 1433 if (incl_opts) { 1434 /* Make sure we have room. */ 1435 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1436 m->m_next = m_get(M_NOWAIT, MT_DATA); 1437 if (m->m_next) { 1438 optp = mtod(m->m_next, u_char *); 1439 optm = m->m_next; 1440 } else 1441 incl_opts = false; 1442 } else { 1443 optp = (u_char *) (nth + 1); 1444 optm = m; 1445 } 1446 } 1447 if (incl_opts) { 1448 /* Timestamps. */ 1449 if (tp->t_flags & TF_RCVD_TSTMP) { 1450 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 1451 to.to_tsecr = tp->ts_recent; 1452 to.to_flags |= TOF_TS; 1453 } 1454 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1455 /* TCP-MD5 (RFC2385). */ 1456 if (tp->t_flags & TF_SIGNATURE) 1457 to.to_flags |= TOF_SIGNATURE; 1458 #endif 1459 /* Add the options. */ 1460 tlen += optlen = tcp_addoptions(&to, optp); 1461 1462 /* Update m_len in the correct mbuf. */ 1463 optm->m_len += optlen; 1464 } else 1465 optlen = 0; 1466 #ifdef INET6 1467 if (isipv6) { 1468 ip6->ip6_flow = 0; 1469 ip6->ip6_vfc = IPV6_VERSION; 1470 ip6->ip6_nxt = IPPROTO_TCP; 1471 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 1472 } 1473 #endif 1474 #if defined(INET) && defined(INET6) 1475 else 1476 #endif 1477 #ifdef INET 1478 { 1479 ip->ip_len = htons(tlen); 1480 ip->ip_ttl = V_ip_defttl; 1481 if (V_path_mtu_discovery) 1482 ip->ip_off |= htons(IP_DF); 1483 } 1484 #endif 1485 m->m_pkthdr.len = tlen; 1486 m->m_pkthdr.rcvif = NULL; 1487 #ifdef MAC 1488 if (inp != NULL) { 1489 /* 1490 * Packet is associated with a socket, so allow the 1491 * label of the response to reflect the socket label. 1492 */ 1493 INP_WLOCK_ASSERT(inp); 1494 mac_inpcb_create_mbuf(inp, m); 1495 } else { 1496 /* 1497 * Packet is not associated with a socket, so possibly 1498 * update the label in place. 1499 */ 1500 mac_netinet_tcp_reply(m); 1501 } 1502 #endif 1503 nth->th_seq = htonl(seq); 1504 nth->th_ack = htonl(ack); 1505 nth->th_x2 = 0; 1506 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 1507 nth->th_flags = flags; 1508 if (tp != NULL) 1509 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 1510 else 1511 nth->th_win = htons((u_short)win); 1512 nth->th_urp = 0; 1513 1514 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1515 if (to.to_flags & TOF_SIGNATURE) { 1516 if (!TCPMD5_ENABLED() || 1517 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { 1518 m_freem(m); 1519 return; 1520 } 1521 } 1522 #endif 1523 1524 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 1525 #ifdef INET6 1526 if (isipv6) { 1527 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 1528 nth->th_sum = in6_cksum_pseudo(ip6, 1529 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 1530 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 1531 NULL, NULL); 1532 } 1533 #endif /* INET6 */ 1534 #if defined(INET6) && defined(INET) 1535 else 1536 #endif 1537 #ifdef INET 1538 { 1539 m->m_pkthdr.csum_flags = CSUM_TCP; 1540 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1541 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 1542 } 1543 #endif /* INET */ 1544 #ifdef TCPDEBUG 1545 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 1546 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 1547 #endif 1548 TCP_PROBE3(debug__output, tp, th, m); 1549 if (flags & TH_RST) 1550 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); 1551 1552 #ifdef INET6 1553 if (isipv6) { 1554 TCP_PROBE5(send, NULL, tp, ip6, tp, nth); 1555 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); 1556 } 1557 #endif /* INET6 */ 1558 #if defined(INET) && defined(INET6) 1559 else 1560 #endif 1561 #ifdef INET 1562 { 1563 TCP_PROBE5(send, NULL, tp, ip, tp, nth); 1564 (void)ip_output(m, NULL, NULL, 0, NULL, inp); 1565 } 1566 #endif 1567 } 1568 1569 /* 1570 * Create a new TCP control block, making an 1571 * empty reassembly queue and hooking it to the argument 1572 * protocol control block. The `inp' parameter must have 1573 * come from the zone allocator set up in tcp_init(). 1574 */ 1575 struct tcpcb * 1576 tcp_newtcpcb(struct inpcb *inp) 1577 { 1578 struct tcpcb_mem *tm; 1579 struct tcpcb *tp; 1580 #ifdef INET6 1581 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1582 #endif /* INET6 */ 1583 1584 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 1585 if (tm == NULL) 1586 return (NULL); 1587 tp = &tm->tcb; 1588 1589 /* Initialise cc_var struct for this tcpcb. */ 1590 tp->ccv = &tm->ccv; 1591 tp->ccv->type = IPPROTO_TCP; 1592 tp->ccv->ccvc.tcp = tp; 1593 rw_rlock(&tcp_function_lock); 1594 tp->t_fb = tcp_func_set_ptr; 1595 refcount_acquire(&tp->t_fb->tfb_refcnt); 1596 rw_runlock(&tcp_function_lock); 1597 /* 1598 * Use the current system default CC algorithm. 1599 */ 1600 CC_LIST_RLOCK(); 1601 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 1602 CC_ALGO(tp) = CC_DEFAULT(); 1603 CC_LIST_RUNLOCK(); 1604 1605 if (CC_ALGO(tp)->cb_init != NULL) 1606 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 1607 if (tp->t_fb->tfb_tcp_fb_fini) 1608 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 1609 refcount_release(&tp->t_fb->tfb_refcnt); 1610 uma_zfree(V_tcpcb_zone, tm); 1611 return (NULL); 1612 } 1613 1614 #ifdef TCP_HHOOK 1615 tp->osd = &tm->osd; 1616 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 1617 if (tp->t_fb->tfb_tcp_fb_fini) 1618 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 1619 refcount_release(&tp->t_fb->tfb_refcnt); 1620 uma_zfree(V_tcpcb_zone, tm); 1621 return (NULL); 1622 } 1623 #endif 1624 1625 #ifdef VIMAGE 1626 tp->t_vnet = inp->inp_vnet; 1627 #endif 1628 tp->t_timers = &tm->tt; 1629 TAILQ_INIT(&tp->t_segq); 1630 tp->t_maxseg = 1631 #ifdef INET6 1632 isipv6 ? V_tcp_v6mssdflt : 1633 #endif /* INET6 */ 1634 V_tcp_mssdflt; 1635 1636 /* Set up our timeouts. */ 1637 callout_init(&tp->t_timers->tt_rexmt, 1); 1638 callout_init(&tp->t_timers->tt_persist, 1); 1639 callout_init(&tp->t_timers->tt_keep, 1); 1640 callout_init(&tp->t_timers->tt_2msl, 1); 1641 callout_init(&tp->t_timers->tt_delack, 1); 1642 1643 if (V_tcp_do_rfc1323) 1644 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 1645 if (V_tcp_do_sack) 1646 tp->t_flags |= TF_SACK_PERMIT; 1647 TAILQ_INIT(&tp->snd_holes); 1648 /* 1649 * The tcpcb will hold a reference on its inpcb until tcp_discardcb() 1650 * is called. 1651 */ 1652 in_pcbref(inp); /* Reference for tcpcb */ 1653 tp->t_inpcb = inp; 1654 1655 /* 1656 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 1657 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 1658 * reasonable initial retransmit time. 1659 */ 1660 tp->t_srtt = TCPTV_SRTTBASE; 1661 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 1662 tp->t_rttmin = tcp_rexmit_min; 1663 tp->t_rxtcur = TCPTV_RTOBASE; 1664 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1665 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1666 tp->t_rcvtime = ticks; 1667 /* 1668 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 1669 * because the socket may be bound to an IPv6 wildcard address, 1670 * which may match an IPv4-mapped IPv6 address. 1671 */ 1672 inp->inp_ip_ttl = V_ip_defttl; 1673 inp->inp_ppcb = tp; 1674 #ifdef TCPPCAP 1675 /* 1676 * Init the TCP PCAP queues. 1677 */ 1678 tcp_pcap_tcpcb_init(tp); 1679 #endif 1680 #ifdef TCP_BLACKBOX 1681 /* Initialize the per-TCPCB log data. */ 1682 tcp_log_tcpcbinit(tp); 1683 #endif 1684 if (tp->t_fb->tfb_tcp_fb_init) { 1685 (*tp->t_fb->tfb_tcp_fb_init)(tp); 1686 } 1687 return (tp); /* XXX */ 1688 } 1689 1690 /* 1691 * Switch the congestion control algorithm back to NewReno for any active 1692 * control blocks using an algorithm which is about to go away. 1693 * This ensures the CC framework can allow the unload to proceed without leaving 1694 * any dangling pointers which would trigger a panic. 1695 * Returning non-zero would inform the CC framework that something went wrong 1696 * and it would be unsafe to allow the unload to proceed. However, there is no 1697 * way for this to occur with this implementation so we always return zero. 1698 */ 1699 int 1700 tcp_ccalgounload(struct cc_algo *unload_algo) 1701 { 1702 struct cc_algo *tmpalgo; 1703 struct inpcb *inp; 1704 struct tcpcb *tp; 1705 VNET_ITERATOR_DECL(vnet_iter); 1706 1707 /* 1708 * Check all active control blocks across all network stacks and change 1709 * any that are using "unload_algo" back to NewReno. If "unload_algo" 1710 * requires cleanup code to be run, call it. 1711 */ 1712 VNET_LIST_RLOCK(); 1713 VNET_FOREACH(vnet_iter) { 1714 CURVNET_SET(vnet_iter); 1715 INP_INFO_WLOCK(&V_tcbinfo); 1716 /* 1717 * New connections already part way through being initialised 1718 * with the CC algo we're removing will not race with this code 1719 * because the INP_INFO_WLOCK is held during initialisation. We 1720 * therefore don't enter the loop below until the connection 1721 * list has stabilised. 1722 */ 1723 CK_LIST_FOREACH(inp, &V_tcb, inp_list) { 1724 INP_WLOCK(inp); 1725 /* Important to skip tcptw structs. */ 1726 if (!(inp->inp_flags & INP_TIMEWAIT) && 1727 (tp = intotcpcb(inp)) != NULL) { 1728 /* 1729 * By holding INP_WLOCK here, we are assured 1730 * that the connection is not currently 1731 * executing inside the CC module's functions 1732 * i.e. it is safe to make the switch back to 1733 * NewReno. 1734 */ 1735 if (CC_ALGO(tp) == unload_algo) { 1736 tmpalgo = CC_ALGO(tp); 1737 if (tmpalgo->cb_destroy != NULL) 1738 tmpalgo->cb_destroy(tp->ccv); 1739 CC_DATA(tp) = NULL; 1740 /* 1741 * NewReno may allocate memory on 1742 * demand for certain stateful 1743 * configuration as needed, but is 1744 * coded to never fail on memory 1745 * allocation failure so it is a safe 1746 * fallback. 1747 */ 1748 CC_ALGO(tp) = &newreno_cc_algo; 1749 } 1750 } 1751 INP_WUNLOCK(inp); 1752 } 1753 INP_INFO_WUNLOCK(&V_tcbinfo); 1754 CURVNET_RESTORE(); 1755 } 1756 VNET_LIST_RUNLOCK(); 1757 1758 return (0); 1759 } 1760 1761 /* 1762 * Drop a TCP connection, reporting 1763 * the specified error. If connection is synchronized, 1764 * then send a RST to peer. 1765 */ 1766 struct tcpcb * 1767 tcp_drop(struct tcpcb *tp, int errno) 1768 { 1769 struct socket *so = tp->t_inpcb->inp_socket; 1770 1771 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1772 INP_WLOCK_ASSERT(tp->t_inpcb); 1773 1774 if (TCPS_HAVERCVDSYN(tp->t_state)) { 1775 tcp_state_change(tp, TCPS_CLOSED); 1776 (void) tp->t_fb->tfb_tcp_output(tp); 1777 TCPSTAT_INC(tcps_drops); 1778 } else 1779 TCPSTAT_INC(tcps_conndrops); 1780 if (errno == ETIMEDOUT && tp->t_softerror) 1781 errno = tp->t_softerror; 1782 so->so_error = errno; 1783 return (tcp_close(tp)); 1784 } 1785 1786 void 1787 tcp_discardcb(struct tcpcb *tp) 1788 { 1789 struct inpcb *inp = tp->t_inpcb; 1790 struct socket *so = inp->inp_socket; 1791 #ifdef INET6 1792 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1793 #endif /* INET6 */ 1794 int released __unused; 1795 1796 INP_WLOCK_ASSERT(inp); 1797 1798 /* 1799 * Make sure that all of our timers are stopped before we delete the 1800 * PCB. 1801 * 1802 * If stopping a timer fails, we schedule a discard function in same 1803 * callout, and the last discard function called will take care of 1804 * deleting the tcpcb. 1805 */ 1806 tp->t_timers->tt_draincnt = 0; 1807 tcp_timer_stop(tp, TT_REXMT); 1808 tcp_timer_stop(tp, TT_PERSIST); 1809 tcp_timer_stop(tp, TT_KEEP); 1810 tcp_timer_stop(tp, TT_2MSL); 1811 tcp_timer_stop(tp, TT_DELACK); 1812 if (tp->t_fb->tfb_tcp_timer_stop_all) { 1813 /* 1814 * Call the stop-all function of the methods, 1815 * this function should call the tcp_timer_stop() 1816 * method with each of the function specific timeouts. 1817 * That stop will be called via the tfb_tcp_timer_stop() 1818 * which should use the async drain function of the 1819 * callout system (see tcp_var.h). 1820 */ 1821 tp->t_fb->tfb_tcp_timer_stop_all(tp); 1822 } 1823 1824 /* 1825 * If we got enough samples through the srtt filter, 1826 * save the rtt and rttvar in the routing entry. 1827 * 'Enough' is arbitrarily defined as 4 rtt samples. 1828 * 4 samples is enough for the srtt filter to converge 1829 * to within enough % of the correct value; fewer samples 1830 * and we could save a bogus rtt. The danger is not high 1831 * as tcp quickly recovers from everything. 1832 * XXX: Works very well but needs some more statistics! 1833 */ 1834 if (tp->t_rttupdated >= 4) { 1835 struct hc_metrics_lite metrics; 1836 uint32_t ssthresh; 1837 1838 bzero(&metrics, sizeof(metrics)); 1839 /* 1840 * Update the ssthresh always when the conditions below 1841 * are satisfied. This gives us better new start value 1842 * for the congestion avoidance for new connections. 1843 * ssthresh is only set if packet loss occurred on a session. 1844 * 1845 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 1846 * being torn down. Ideally this code would not use 'so'. 1847 */ 1848 ssthresh = tp->snd_ssthresh; 1849 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 1850 /* 1851 * convert the limit from user data bytes to 1852 * packets then to packet data bytes. 1853 */ 1854 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 1855 if (ssthresh < 2) 1856 ssthresh = 2; 1857 ssthresh *= (tp->t_maxseg + 1858 #ifdef INET6 1859 (isipv6 ? sizeof (struct ip6_hdr) + 1860 sizeof (struct tcphdr) : 1861 #endif 1862 sizeof (struct tcpiphdr) 1863 #ifdef INET6 1864 ) 1865 #endif 1866 ); 1867 } else 1868 ssthresh = 0; 1869 metrics.rmx_ssthresh = ssthresh; 1870 1871 metrics.rmx_rtt = tp->t_srtt; 1872 metrics.rmx_rttvar = tp->t_rttvar; 1873 metrics.rmx_cwnd = tp->snd_cwnd; 1874 metrics.rmx_sendpipe = 0; 1875 metrics.rmx_recvpipe = 0; 1876 1877 tcp_hc_update(&inp->inp_inc, &metrics); 1878 } 1879 1880 /* free the reassembly queue, if any */ 1881 tcp_reass_flush(tp); 1882 1883 #ifdef TCP_OFFLOAD 1884 /* Disconnect offload device, if any. */ 1885 if (tp->t_flags & TF_TOE) 1886 tcp_offload_detach(tp); 1887 #endif 1888 1889 tcp_free_sackholes(tp); 1890 1891 #ifdef TCPPCAP 1892 /* Free the TCP PCAP queues. */ 1893 tcp_pcap_drain(&(tp->t_inpkts)); 1894 tcp_pcap_drain(&(tp->t_outpkts)); 1895 #endif 1896 1897 /* Allow the CC algorithm to clean up after itself. */ 1898 if (CC_ALGO(tp)->cb_destroy != NULL) 1899 CC_ALGO(tp)->cb_destroy(tp->ccv); 1900 CC_DATA(tp) = NULL; 1901 1902 #ifdef TCP_HHOOK 1903 khelp_destroy_osd(tp->osd); 1904 #endif 1905 1906 CC_ALGO(tp) = NULL; 1907 inp->inp_ppcb = NULL; 1908 if (tp->t_timers->tt_draincnt == 0) { 1909 /* We own the last reference on tcpcb, let's free it. */ 1910 #ifdef TCP_BLACKBOX 1911 tcp_log_tcpcbfini(tp); 1912 #endif 1913 TCPSTATES_DEC(tp->t_state); 1914 if (tp->t_fb->tfb_tcp_fb_fini) 1915 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 1916 refcount_release(&tp->t_fb->tfb_refcnt); 1917 tp->t_inpcb = NULL; 1918 uma_zfree(V_tcpcb_zone, tp); 1919 released = in_pcbrele_wlocked(inp); 1920 KASSERT(!released, ("%s: inp %p should not have been released " 1921 "here", __func__, inp)); 1922 } 1923 } 1924 1925 void 1926 tcp_timer_discard(void *ptp) 1927 { 1928 struct inpcb *inp; 1929 struct tcpcb *tp; 1930 struct epoch_tracker et; 1931 1932 tp = (struct tcpcb *)ptp; 1933 CURVNET_SET(tp->t_vnet); 1934 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 1935 inp = tp->t_inpcb; 1936 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", 1937 __func__, tp)); 1938 INP_WLOCK(inp); 1939 KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, 1940 ("%s: tcpcb has to be stopped here", __func__)); 1941 tp->t_timers->tt_draincnt--; 1942 if (tp->t_timers->tt_draincnt == 0) { 1943 /* We own the last reference on this tcpcb, let's free it. */ 1944 #ifdef TCP_BLACKBOX 1945 tcp_log_tcpcbfini(tp); 1946 #endif 1947 TCPSTATES_DEC(tp->t_state); 1948 if (tp->t_fb->tfb_tcp_fb_fini) 1949 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 1950 refcount_release(&tp->t_fb->tfb_refcnt); 1951 tp->t_inpcb = NULL; 1952 uma_zfree(V_tcpcb_zone, tp); 1953 if (in_pcbrele_wlocked(inp)) { 1954 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 1955 CURVNET_RESTORE(); 1956 return; 1957 } 1958 } 1959 INP_WUNLOCK(inp); 1960 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 1961 CURVNET_RESTORE(); 1962 } 1963 1964 /* 1965 * Attempt to close a TCP control block, marking it as dropped, and freeing 1966 * the socket if we hold the only reference. 1967 */ 1968 struct tcpcb * 1969 tcp_close(struct tcpcb *tp) 1970 { 1971 struct inpcb *inp = tp->t_inpcb; 1972 struct socket *so; 1973 1974 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1975 INP_WLOCK_ASSERT(inp); 1976 1977 #ifdef TCP_OFFLOAD 1978 if (tp->t_state == TCPS_LISTEN) 1979 tcp_offload_listen_stop(tp); 1980 #endif 1981 /* 1982 * This releases the TFO pending counter resource for TFO listen 1983 * sockets as well as passively-created TFO sockets that transition 1984 * from SYN_RECEIVED to CLOSED. 1985 */ 1986 if (tp->t_tfo_pending) { 1987 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 1988 tp->t_tfo_pending = NULL; 1989 } 1990 in_pcbdrop(inp); 1991 TCPSTAT_INC(tcps_closed); 1992 if (tp->t_state != TCPS_CLOSED) 1993 tcp_state_change(tp, TCPS_CLOSED); 1994 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 1995 so = inp->inp_socket; 1996 soisdisconnected(so); 1997 if (inp->inp_flags & INP_SOCKREF) { 1998 KASSERT(so->so_state & SS_PROTOREF, 1999 ("tcp_close: !SS_PROTOREF")); 2000 inp->inp_flags &= ~INP_SOCKREF; 2001 INP_WUNLOCK(inp); 2002 SOCK_LOCK(so); 2003 so->so_state &= ~SS_PROTOREF; 2004 sofree(so); 2005 return (NULL); 2006 } 2007 return (tp); 2008 } 2009 2010 void 2011 tcp_drain(void) 2012 { 2013 VNET_ITERATOR_DECL(vnet_iter); 2014 2015 if (!do_tcpdrain) 2016 return; 2017 2018 VNET_LIST_RLOCK_NOSLEEP(); 2019 VNET_FOREACH(vnet_iter) { 2020 CURVNET_SET(vnet_iter); 2021 struct inpcb *inpb; 2022 struct tcpcb *tcpb; 2023 2024 /* 2025 * Walk the tcpbs, if existing, and flush the reassembly queue, 2026 * if there is one... 2027 * XXX: The "Net/3" implementation doesn't imply that the TCP 2028 * reassembly queue should be flushed, but in a situation 2029 * where we're really low on mbufs, this is potentially 2030 * useful. 2031 */ 2032 INP_INFO_WLOCK(&V_tcbinfo); 2033 CK_LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 2034 INP_WLOCK(inpb); 2035 if (inpb->inp_flags & INP_TIMEWAIT) { 2036 INP_WUNLOCK(inpb); 2037 continue; 2038 } 2039 if ((tcpb = intotcpcb(inpb)) != NULL) { 2040 tcp_reass_flush(tcpb); 2041 tcp_clean_sackreport(tcpb); 2042 #ifdef TCP_BLACKBOX 2043 tcp_log_drain(tcpb); 2044 #endif 2045 #ifdef TCPPCAP 2046 if (tcp_pcap_aggressive_free) { 2047 /* Free the TCP PCAP queues. */ 2048 tcp_pcap_drain(&(tcpb->t_inpkts)); 2049 tcp_pcap_drain(&(tcpb->t_outpkts)); 2050 } 2051 #endif 2052 } 2053 INP_WUNLOCK(inpb); 2054 } 2055 INP_INFO_WUNLOCK(&V_tcbinfo); 2056 CURVNET_RESTORE(); 2057 } 2058 VNET_LIST_RUNLOCK_NOSLEEP(); 2059 } 2060 2061 /* 2062 * Notify a tcp user of an asynchronous error; 2063 * store error as soft error, but wake up user 2064 * (for now, won't do anything until can select for soft error). 2065 * 2066 * Do not wake up user since there currently is no mechanism for 2067 * reporting soft errors (yet - a kqueue filter may be added). 2068 */ 2069 static struct inpcb * 2070 tcp_notify(struct inpcb *inp, int error) 2071 { 2072 struct tcpcb *tp; 2073 2074 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 2075 INP_WLOCK_ASSERT(inp); 2076 2077 if ((inp->inp_flags & INP_TIMEWAIT) || 2078 (inp->inp_flags & INP_DROPPED)) 2079 return (inp); 2080 2081 tp = intotcpcb(inp); 2082 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 2083 2084 /* 2085 * Ignore some errors if we are hooked up. 2086 * If connection hasn't completed, has retransmitted several times, 2087 * and receives a second error, give up now. This is better 2088 * than waiting a long time to establish a connection that 2089 * can never complete. 2090 */ 2091 if (tp->t_state == TCPS_ESTABLISHED && 2092 (error == EHOSTUNREACH || error == ENETUNREACH || 2093 error == EHOSTDOWN)) { 2094 if (inp->inp_route.ro_rt) { 2095 RTFREE(inp->inp_route.ro_rt); 2096 inp->inp_route.ro_rt = (struct rtentry *)NULL; 2097 } 2098 return (inp); 2099 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 2100 tp->t_softerror) { 2101 tp = tcp_drop(tp, error); 2102 if (tp != NULL) 2103 return (inp); 2104 else 2105 return (NULL); 2106 } else { 2107 tp->t_softerror = error; 2108 return (inp); 2109 } 2110 #if 0 2111 wakeup( &so->so_timeo); 2112 sorwakeup(so); 2113 sowwakeup(so); 2114 #endif 2115 } 2116 2117 static int 2118 tcp_pcblist(SYSCTL_HANDLER_ARGS) 2119 { 2120 int error, i, m, n, pcb_count; 2121 struct inpcb *inp, **inp_list; 2122 inp_gen_t gencnt; 2123 struct xinpgen xig; 2124 struct epoch_tracker et; 2125 2126 /* 2127 * The process of preparing the TCB list is too time-consuming and 2128 * resource-intensive to repeat twice on every request. 2129 */ 2130 if (req->oldptr == NULL) { 2131 n = V_tcbinfo.ipi_count + 2132 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2133 n += imax(n / 8, 10); 2134 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 2135 return (0); 2136 } 2137 2138 if (req->newptr != NULL) 2139 return (EPERM); 2140 2141 /* 2142 * OK, now we're committed to doing something. 2143 */ 2144 INP_LIST_RLOCK(&V_tcbinfo); 2145 gencnt = V_tcbinfo.ipi_gencnt; 2146 n = V_tcbinfo.ipi_count; 2147 INP_LIST_RUNLOCK(&V_tcbinfo); 2148 2149 m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2150 2151 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 2152 + (n + m) * sizeof(struct xtcpcb)); 2153 if (error != 0) 2154 return (error); 2155 2156 xig.xig_len = sizeof xig; 2157 xig.xig_count = n + m; 2158 xig.xig_gen = gencnt; 2159 xig.xig_sogen = so_gencnt; 2160 error = SYSCTL_OUT(req, &xig, sizeof xig); 2161 if (error) 2162 return (error); 2163 2164 error = syncache_pcblist(req, m, &pcb_count); 2165 if (error) 2166 return (error); 2167 2168 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 2169 2170 INP_INFO_WLOCK(&V_tcbinfo); 2171 for (inp = CK_LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 2172 inp != NULL && i < n; inp = CK_LIST_NEXT(inp, inp_list)) { 2173 INP_WLOCK(inp); 2174 if (inp->inp_gencnt <= gencnt) { 2175 /* 2176 * XXX: This use of cr_cansee(), introduced with 2177 * TCP state changes, is not quite right, but for 2178 * now, better than nothing. 2179 */ 2180 if (inp->inp_flags & INP_TIMEWAIT) { 2181 if (intotw(inp) != NULL) 2182 error = cr_cansee(req->td->td_ucred, 2183 intotw(inp)->tw_cred); 2184 else 2185 error = EINVAL; /* Skip this inp. */ 2186 } else 2187 error = cr_canseeinpcb(req->td->td_ucred, inp); 2188 if (error == 0) { 2189 in_pcbref(inp); 2190 inp_list[i++] = inp; 2191 } 2192 } 2193 INP_WUNLOCK(inp); 2194 } 2195 INP_INFO_WUNLOCK(&V_tcbinfo); 2196 n = i; 2197 2198 error = 0; 2199 for (i = 0; i < n; i++) { 2200 inp = inp_list[i]; 2201 INP_RLOCK(inp); 2202 if (inp->inp_gencnt <= gencnt) { 2203 struct xtcpcb xt; 2204 2205 tcp_inptoxtp(inp, &xt); 2206 INP_RUNLOCK(inp); 2207 error = SYSCTL_OUT(req, &xt, sizeof xt); 2208 } else 2209 INP_RUNLOCK(inp); 2210 } 2211 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 2212 for (i = 0; i < n; i++) { 2213 inp = inp_list[i]; 2214 INP_RLOCK(inp); 2215 if (!in_pcbrele_rlocked(inp)) 2216 INP_RUNLOCK(inp); 2217 } 2218 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 2219 2220 if (!error) { 2221 /* 2222 * Give the user an updated idea of our state. 2223 * If the generation differs from what we told 2224 * her before, she knows that something happened 2225 * while we were processing this request, and it 2226 * might be necessary to retry. 2227 */ 2228 INP_LIST_RLOCK(&V_tcbinfo); 2229 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2230 xig.xig_sogen = so_gencnt; 2231 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 2232 INP_LIST_RUNLOCK(&V_tcbinfo); 2233 error = SYSCTL_OUT(req, &xig, sizeof xig); 2234 } 2235 free(inp_list, M_TEMP); 2236 return (error); 2237 } 2238 2239 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 2240 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 2241 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 2242 2243 #ifdef INET 2244 static int 2245 tcp_getcred(SYSCTL_HANDLER_ARGS) 2246 { 2247 struct xucred xuc; 2248 struct sockaddr_in addrs[2]; 2249 struct inpcb *inp; 2250 int error; 2251 2252 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2253 if (error) 2254 return (error); 2255 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2256 if (error) 2257 return (error); 2258 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 2259 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 2260 if (inp != NULL) { 2261 if (inp->inp_socket == NULL) 2262 error = ENOENT; 2263 if (error == 0) 2264 error = cr_canseeinpcb(req->td->td_ucred, inp); 2265 if (error == 0) 2266 cru2x(inp->inp_cred, &xuc); 2267 INP_RUNLOCK(inp); 2268 } else 2269 error = ENOENT; 2270 if (error == 0) 2271 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2272 return (error); 2273 } 2274 2275 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 2276 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 2277 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 2278 #endif /* INET */ 2279 2280 #ifdef INET6 2281 static int 2282 tcp6_getcred(SYSCTL_HANDLER_ARGS) 2283 { 2284 struct xucred xuc; 2285 struct sockaddr_in6 addrs[2]; 2286 struct inpcb *inp; 2287 int error; 2288 #ifdef INET 2289 int mapped = 0; 2290 #endif 2291 2292 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2293 if (error) 2294 return (error); 2295 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2296 if (error) 2297 return (error); 2298 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 2299 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 2300 return (error); 2301 } 2302 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 2303 #ifdef INET 2304 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 2305 mapped = 1; 2306 else 2307 #endif 2308 return (EINVAL); 2309 } 2310 2311 #ifdef INET 2312 if (mapped == 1) 2313 inp = in_pcblookup(&V_tcbinfo, 2314 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 2315 addrs[1].sin6_port, 2316 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 2317 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 2318 else 2319 #endif 2320 inp = in6_pcblookup(&V_tcbinfo, 2321 &addrs[1].sin6_addr, addrs[1].sin6_port, 2322 &addrs[0].sin6_addr, addrs[0].sin6_port, 2323 INPLOOKUP_RLOCKPCB, NULL); 2324 if (inp != NULL) { 2325 if (inp->inp_socket == NULL) 2326 error = ENOENT; 2327 if (error == 0) 2328 error = cr_canseeinpcb(req->td->td_ucred, inp); 2329 if (error == 0) 2330 cru2x(inp->inp_cred, &xuc); 2331 INP_RUNLOCK(inp); 2332 } else 2333 error = ENOENT; 2334 if (error == 0) 2335 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2336 return (error); 2337 } 2338 2339 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 2340 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 2341 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 2342 #endif /* INET6 */ 2343 2344 2345 #ifdef INET 2346 void 2347 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 2348 { 2349 struct ip *ip = vip; 2350 struct tcphdr *th; 2351 struct in_addr faddr; 2352 struct inpcb *inp; 2353 struct tcpcb *tp; 2354 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 2355 struct icmp *icp; 2356 struct in_conninfo inc; 2357 struct epoch_tracker et; 2358 tcp_seq icmp_tcp_seq; 2359 int mtu; 2360 2361 faddr = ((struct sockaddr_in *)sa)->sin_addr; 2362 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 2363 return; 2364 2365 if (cmd == PRC_MSGSIZE) 2366 notify = tcp_mtudisc_notify; 2367 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 2368 cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || 2369 cmd == PRC_TIMXCEED_INTRANS) && ip) 2370 notify = tcp_drop_syn_sent; 2371 2372 /* 2373 * Hostdead is ugly because it goes linearly through all PCBs. 2374 * XXX: We never get this from ICMP, otherwise it makes an 2375 * excellent DoS attack on machines with many connections. 2376 */ 2377 else if (cmd == PRC_HOSTDEAD) 2378 ip = NULL; 2379 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 2380 return; 2381 2382 if (ip == NULL) { 2383 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 2384 return; 2385 } 2386 2387 icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); 2388 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 2389 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 2390 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, 2391 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 2392 if (inp != NULL && PRC_IS_REDIRECT(cmd)) { 2393 /* signal EHOSTDOWN, as it flushes the cached route */ 2394 inp = (*notify)(inp, EHOSTDOWN); 2395 goto out; 2396 } 2397 icmp_tcp_seq = th->th_seq; 2398 if (inp != NULL) { 2399 if (!(inp->inp_flags & INP_TIMEWAIT) && 2400 !(inp->inp_flags & INP_DROPPED) && 2401 !(inp->inp_socket == NULL)) { 2402 tp = intotcpcb(inp); 2403 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2404 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2405 if (cmd == PRC_MSGSIZE) { 2406 /* 2407 * MTU discovery: 2408 * If we got a needfrag set the MTU 2409 * in the route to the suggested new 2410 * value (if given) and then notify. 2411 */ 2412 mtu = ntohs(icp->icmp_nextmtu); 2413 /* 2414 * If no alternative MTU was 2415 * proposed, try the next smaller 2416 * one. 2417 */ 2418 if (!mtu) 2419 mtu = ip_next_mtu( 2420 ntohs(ip->ip_len), 1); 2421 if (mtu < V_tcp_minmss + 2422 sizeof(struct tcpiphdr)) 2423 mtu = V_tcp_minmss + 2424 sizeof(struct tcpiphdr); 2425 /* 2426 * Only process the offered MTU if it 2427 * is smaller than the current one. 2428 */ 2429 if (mtu < tp->t_maxseg + 2430 sizeof(struct tcpiphdr)) { 2431 bzero(&inc, sizeof(inc)); 2432 inc.inc_faddr = faddr; 2433 inc.inc_fibnum = 2434 inp->inp_inc.inc_fibnum; 2435 tcp_hc_updatemtu(&inc, mtu); 2436 tcp_mtudisc(inp, mtu); 2437 } 2438 } else 2439 inp = (*notify)(inp, 2440 inetctlerrmap[cmd]); 2441 } 2442 } 2443 } else { 2444 bzero(&inc, sizeof(inc)); 2445 inc.inc_fport = th->th_dport; 2446 inc.inc_lport = th->th_sport; 2447 inc.inc_faddr = faddr; 2448 inc.inc_laddr = ip->ip_src; 2449 syncache_unreach(&inc, icmp_tcp_seq); 2450 } 2451 out: 2452 if (inp != NULL) 2453 INP_WUNLOCK(inp); 2454 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 2455 } 2456 #endif /* INET */ 2457 2458 #ifdef INET6 2459 void 2460 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 2461 { 2462 struct in6_addr *dst; 2463 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 2464 struct ip6_hdr *ip6; 2465 struct mbuf *m; 2466 struct inpcb *inp; 2467 struct tcpcb *tp; 2468 struct icmp6_hdr *icmp6; 2469 struct ip6ctlparam *ip6cp = NULL; 2470 const struct sockaddr_in6 *sa6_src = NULL; 2471 struct in_conninfo inc; 2472 struct epoch_tracker et; 2473 struct tcp_ports { 2474 uint16_t th_sport; 2475 uint16_t th_dport; 2476 } t_ports; 2477 tcp_seq icmp_tcp_seq; 2478 unsigned int mtu; 2479 unsigned int off; 2480 2481 if (sa->sa_family != AF_INET6 || 2482 sa->sa_len != sizeof(struct sockaddr_in6)) 2483 return; 2484 2485 /* if the parameter is from icmp6, decode it. */ 2486 if (d != NULL) { 2487 ip6cp = (struct ip6ctlparam *)d; 2488 icmp6 = ip6cp->ip6c_icmp6; 2489 m = ip6cp->ip6c_m; 2490 ip6 = ip6cp->ip6c_ip6; 2491 off = ip6cp->ip6c_off; 2492 sa6_src = ip6cp->ip6c_src; 2493 dst = ip6cp->ip6c_finaldst; 2494 } else { 2495 m = NULL; 2496 ip6 = NULL; 2497 off = 0; /* fool gcc */ 2498 sa6_src = &sa6_any; 2499 dst = NULL; 2500 } 2501 2502 if (cmd == PRC_MSGSIZE) 2503 notify = tcp_mtudisc_notify; 2504 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 2505 cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || 2506 cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL) 2507 notify = tcp_drop_syn_sent; 2508 2509 /* 2510 * Hostdead is ugly because it goes linearly through all PCBs. 2511 * XXX: We never get this from ICMP, otherwise it makes an 2512 * excellent DoS attack on machines with many connections. 2513 */ 2514 else if (cmd == PRC_HOSTDEAD) 2515 ip6 = NULL; 2516 else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0) 2517 return; 2518 2519 if (ip6 == NULL) { 2520 in6_pcbnotify(&V_tcbinfo, sa, 0, 2521 (const struct sockaddr *)sa6_src, 2522 0, cmd, NULL, notify); 2523 return; 2524 } 2525 2526 /* Check if we can safely get the ports from the tcp hdr */ 2527 if (m == NULL || 2528 (m->m_pkthdr.len < 2529 (int32_t) (off + sizeof(struct tcp_ports)))) { 2530 return; 2531 } 2532 bzero(&t_ports, sizeof(struct tcp_ports)); 2533 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); 2534 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 2535 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, 2536 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); 2537 if (inp != NULL && PRC_IS_REDIRECT(cmd)) { 2538 /* signal EHOSTDOWN, as it flushes the cached route */ 2539 inp = (*notify)(inp, EHOSTDOWN); 2540 goto out; 2541 } 2542 off += sizeof(struct tcp_ports); 2543 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { 2544 goto out; 2545 } 2546 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); 2547 if (inp != NULL) { 2548 if (!(inp->inp_flags & INP_TIMEWAIT) && 2549 !(inp->inp_flags & INP_DROPPED) && 2550 !(inp->inp_socket == NULL)) { 2551 tp = intotcpcb(inp); 2552 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2553 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2554 if (cmd == PRC_MSGSIZE) { 2555 /* 2556 * MTU discovery: 2557 * If we got a needfrag set the MTU 2558 * in the route to the suggested new 2559 * value (if given) and then notify. 2560 */ 2561 mtu = ntohl(icmp6->icmp6_mtu); 2562 /* 2563 * If no alternative MTU was 2564 * proposed, or the proposed 2565 * MTU was too small, set to 2566 * the min. 2567 */ 2568 if (mtu < IPV6_MMTU) 2569 mtu = IPV6_MMTU - 8; 2570 bzero(&inc, sizeof(inc)); 2571 inc.inc_fibnum = M_GETFIB(m); 2572 inc.inc_flags |= INC_ISIPV6; 2573 inc.inc6_faddr = *dst; 2574 if (in6_setscope(&inc.inc6_faddr, 2575 m->m_pkthdr.rcvif, NULL)) 2576 goto out; 2577 /* 2578 * Only process the offered MTU if it 2579 * is smaller than the current one. 2580 */ 2581 if (mtu < tp->t_maxseg + 2582 sizeof (struct tcphdr) + 2583 sizeof (struct ip6_hdr)) { 2584 tcp_hc_updatemtu(&inc, mtu); 2585 tcp_mtudisc(inp, mtu); 2586 ICMP6STAT_INC(icp6s_pmtuchg); 2587 } 2588 } else 2589 inp = (*notify)(inp, 2590 inet6ctlerrmap[cmd]); 2591 } 2592 } 2593 } else { 2594 bzero(&inc, sizeof(inc)); 2595 inc.inc_fibnum = M_GETFIB(m); 2596 inc.inc_flags |= INC_ISIPV6; 2597 inc.inc_fport = t_ports.th_dport; 2598 inc.inc_lport = t_ports.th_sport; 2599 inc.inc6_faddr = *dst; 2600 inc.inc6_laddr = ip6->ip6_src; 2601 syncache_unreach(&inc, icmp_tcp_seq); 2602 } 2603 out: 2604 if (inp != NULL) 2605 INP_WUNLOCK(inp); 2606 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 2607 } 2608 #endif /* INET6 */ 2609 2610 static uint32_t 2611 tcp_keyed_hash(struct in_conninfo *inc, u_char *key) 2612 { 2613 MD5_CTX ctx; 2614 uint32_t hash[4]; 2615 2616 MD5Init(&ctx); 2617 MD5Update(&ctx, &inc->inc_fport, sizeof(uint16_t)); 2618 MD5Update(&ctx, &inc->inc_lport, sizeof(uint16_t)); 2619 switch (inc->inc_flags & INC_ISIPV6) { 2620 #ifdef INET 2621 case 0: 2622 MD5Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr)); 2623 MD5Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr)); 2624 break; 2625 #endif 2626 #ifdef INET6 2627 case INC_ISIPV6: 2628 MD5Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr)); 2629 MD5Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr)); 2630 break; 2631 #endif 2632 } 2633 MD5Update(&ctx, key, 32); 2634 MD5Final((unsigned char *)hash, &ctx); 2635 2636 return (hash[0]); 2637 } 2638 2639 uint32_t 2640 tcp_new_ts_offset(struct in_conninfo *inc) 2641 { 2642 return (tcp_keyed_hash(inc, V_ts_offset_secret)); 2643 } 2644 2645 /* 2646 * Following is where TCP initial sequence number generation occurs. 2647 * 2648 * There are two places where we must use initial sequence numbers: 2649 * 1. In SYN-ACK packets. 2650 * 2. In SYN packets. 2651 * 2652 * All ISNs for SYN-ACK packets are generated by the syncache. See 2653 * tcp_syncache.c for details. 2654 * 2655 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 2656 * depends on this property. In addition, these ISNs should be 2657 * unguessable so as to prevent connection hijacking. To satisfy 2658 * the requirements of this situation, the algorithm outlined in 2659 * RFC 1948 is used, with only small modifications. 2660 * 2661 * Implementation details: 2662 * 2663 * Time is based off the system timer, and is corrected so that it 2664 * increases by one megabyte per second. This allows for proper 2665 * recycling on high speed LANs while still leaving over an hour 2666 * before rollover. 2667 * 2668 * As reading the *exact* system time is too expensive to be done 2669 * whenever setting up a TCP connection, we increment the time 2670 * offset in two ways. First, a small random positive increment 2671 * is added to isn_offset for each connection that is set up. 2672 * Second, the function tcp_isn_tick fires once per clock tick 2673 * and increments isn_offset as necessary so that sequence numbers 2674 * are incremented at approximately ISN_BYTES_PER_SECOND. The 2675 * random positive increments serve only to ensure that the same 2676 * exact sequence number is never sent out twice (as could otherwise 2677 * happen when a port is recycled in less than the system tick 2678 * interval.) 2679 * 2680 * net.inet.tcp.isn_reseed_interval controls the number of seconds 2681 * between seeding of isn_secret. This is normally set to zero, 2682 * as reseeding should not be necessary. 2683 * 2684 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 2685 * isn_offset_old, and isn_ctx is performed using the ISN lock. In 2686 * general, this means holding an exclusive (write) lock. 2687 */ 2688 2689 #define ISN_BYTES_PER_SECOND 1048576 2690 #define ISN_STATIC_INCREMENT 4096 2691 #define ISN_RANDOM_INCREMENT (4096 - 1) 2692 2693 VNET_DEFINE_STATIC(u_char, isn_secret[32]); 2694 VNET_DEFINE_STATIC(int, isn_last); 2695 VNET_DEFINE_STATIC(int, isn_last_reseed); 2696 VNET_DEFINE_STATIC(u_int32_t, isn_offset); 2697 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old); 2698 2699 #define V_isn_secret VNET(isn_secret) 2700 #define V_isn_last VNET(isn_last) 2701 #define V_isn_last_reseed VNET(isn_last_reseed) 2702 #define V_isn_offset VNET(isn_offset) 2703 #define V_isn_offset_old VNET(isn_offset_old) 2704 2705 tcp_seq 2706 tcp_new_isn(struct in_conninfo *inc) 2707 { 2708 tcp_seq new_isn; 2709 u_int32_t projected_offset; 2710 2711 ISN_LOCK(); 2712 /* Seed if this is the first use, reseed if requested. */ 2713 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 2714 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 2715 < (u_int)ticks))) { 2716 read_random(&V_isn_secret, sizeof(V_isn_secret)); 2717 V_isn_last_reseed = ticks; 2718 } 2719 2720 /* Compute the md5 hash and return the ISN. */ 2721 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret); 2722 V_isn_offset += ISN_STATIC_INCREMENT + 2723 (arc4random() & ISN_RANDOM_INCREMENT); 2724 if (ticks != V_isn_last) { 2725 projected_offset = V_isn_offset_old + 2726 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 2727 if (SEQ_GT(projected_offset, V_isn_offset)) 2728 V_isn_offset = projected_offset; 2729 V_isn_offset_old = V_isn_offset; 2730 V_isn_last = ticks; 2731 } 2732 new_isn += V_isn_offset; 2733 ISN_UNLOCK(); 2734 return (new_isn); 2735 } 2736 2737 /* 2738 * When a specific ICMP unreachable message is received and the 2739 * connection state is SYN-SENT, drop the connection. This behavior 2740 * is controlled by the icmp_may_rst sysctl. 2741 */ 2742 struct inpcb * 2743 tcp_drop_syn_sent(struct inpcb *inp, int errno) 2744 { 2745 struct tcpcb *tp; 2746 2747 INP_INFO_RLOCK_ASSERT(&V_tcbinfo); 2748 INP_WLOCK_ASSERT(inp); 2749 2750 if ((inp->inp_flags & INP_TIMEWAIT) || 2751 (inp->inp_flags & INP_DROPPED)) 2752 return (inp); 2753 2754 tp = intotcpcb(inp); 2755 if (tp->t_state != TCPS_SYN_SENT) 2756 return (inp); 2757 2758 if (IS_FASTOPEN(tp->t_flags)) 2759 tcp_fastopen_disable_path(tp); 2760 2761 tp = tcp_drop(tp, errno); 2762 if (tp != NULL) 2763 return (inp); 2764 else 2765 return (NULL); 2766 } 2767 2768 /* 2769 * When `need fragmentation' ICMP is received, update our idea of the MSS 2770 * based on the new value. Also nudge TCP to send something, since we 2771 * know the packet we just sent was dropped. 2772 * This duplicates some code in the tcp_mss() function in tcp_input.c. 2773 */ 2774 static struct inpcb * 2775 tcp_mtudisc_notify(struct inpcb *inp, int error) 2776 { 2777 2778 tcp_mtudisc(inp, -1); 2779 return (inp); 2780 } 2781 2782 static void 2783 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 2784 { 2785 struct tcpcb *tp; 2786 struct socket *so; 2787 2788 INP_WLOCK_ASSERT(inp); 2789 if ((inp->inp_flags & INP_TIMEWAIT) || 2790 (inp->inp_flags & INP_DROPPED)) 2791 return; 2792 2793 tp = intotcpcb(inp); 2794 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 2795 2796 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 2797 2798 so = inp->inp_socket; 2799 SOCKBUF_LOCK(&so->so_snd); 2800 /* If the mss is larger than the socket buffer, decrease the mss. */ 2801 if (so->so_snd.sb_hiwat < tp->t_maxseg) 2802 tp->t_maxseg = so->so_snd.sb_hiwat; 2803 SOCKBUF_UNLOCK(&so->so_snd); 2804 2805 TCPSTAT_INC(tcps_mturesent); 2806 tp->t_rtttime = 0; 2807 tp->snd_nxt = tp->snd_una; 2808 tcp_free_sackholes(tp); 2809 tp->snd_recover = tp->snd_max; 2810 if (tp->t_flags & TF_SACK_PERMIT) 2811 EXIT_FASTRECOVERY(tp->t_flags); 2812 tp->t_fb->tfb_tcp_output(tp); 2813 } 2814 2815 #ifdef INET 2816 /* 2817 * Look-up the routing entry to the peer of this inpcb. If no route 2818 * is found and it cannot be allocated, then return 0. This routine 2819 * is called by TCP routines that access the rmx structure and by 2820 * tcp_mss_update to get the peer/interface MTU. 2821 */ 2822 uint32_t 2823 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 2824 { 2825 struct nhop4_extended nh4; 2826 struct ifnet *ifp; 2827 uint32_t maxmtu = 0; 2828 2829 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 2830 2831 if (inc->inc_faddr.s_addr != INADDR_ANY) { 2832 2833 if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, 2834 NHR_REF, 0, &nh4) != 0) 2835 return (0); 2836 2837 ifp = nh4.nh_ifp; 2838 maxmtu = nh4.nh_mtu; 2839 2840 /* Report additional interface capabilities. */ 2841 if (cap != NULL) { 2842 if (ifp->if_capenable & IFCAP_TSO4 && 2843 ifp->if_hwassist & CSUM_TSO) { 2844 cap->ifcap |= CSUM_TSO; 2845 cap->tsomax = ifp->if_hw_tsomax; 2846 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2847 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2848 } 2849 } 2850 fib4_free_nh_ext(inc->inc_fibnum, &nh4); 2851 } 2852 return (maxmtu); 2853 } 2854 #endif /* INET */ 2855 2856 #ifdef INET6 2857 uint32_t 2858 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 2859 { 2860 struct nhop6_extended nh6; 2861 struct in6_addr dst6; 2862 uint32_t scopeid; 2863 struct ifnet *ifp; 2864 uint32_t maxmtu = 0; 2865 2866 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 2867 2868 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 2869 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 2870 if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 2871 0, &nh6) != 0) 2872 return (0); 2873 2874 ifp = nh6.nh_ifp; 2875 maxmtu = nh6.nh_mtu; 2876 2877 /* Report additional interface capabilities. */ 2878 if (cap != NULL) { 2879 if (ifp->if_capenable & IFCAP_TSO6 && 2880 ifp->if_hwassist & CSUM_TSO) { 2881 cap->ifcap |= CSUM_TSO; 2882 cap->tsomax = ifp->if_hw_tsomax; 2883 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2884 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2885 } 2886 } 2887 fib6_free_nh_ext(inc->inc_fibnum, &nh6); 2888 } 2889 2890 return (maxmtu); 2891 } 2892 #endif /* INET6 */ 2893 2894 /* 2895 * Calculate effective SMSS per RFC5681 definition for a given TCP 2896 * connection at its current state, taking into account SACK and etc. 2897 */ 2898 u_int 2899 tcp_maxseg(const struct tcpcb *tp) 2900 { 2901 u_int optlen; 2902 2903 if (tp->t_flags & TF_NOOPT) 2904 return (tp->t_maxseg); 2905 2906 /* 2907 * Here we have a simplified code from tcp_addoptions(), 2908 * without a proper loop, and having most of paddings hardcoded. 2909 * We might make mistakes with padding here in some edge cases, 2910 * but this is harmless, since result of tcp_maxseg() is used 2911 * only in cwnd and ssthresh estimations. 2912 */ 2913 #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) 2914 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 2915 if (tp->t_flags & TF_RCVD_TSTMP) 2916 optlen = TCPOLEN_TSTAMP_APPA; 2917 else 2918 optlen = 0; 2919 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2920 if (tp->t_flags & TF_SIGNATURE) 2921 optlen += PAD(TCPOLEN_SIGNATURE); 2922 #endif 2923 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 2924 optlen += TCPOLEN_SACKHDR; 2925 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 2926 optlen = PAD(optlen); 2927 } 2928 } else { 2929 if (tp->t_flags & TF_REQ_TSTMP) 2930 optlen = TCPOLEN_TSTAMP_APPA; 2931 else 2932 optlen = PAD(TCPOLEN_MAXSEG); 2933 if (tp->t_flags & TF_REQ_SCALE) 2934 optlen += PAD(TCPOLEN_WINDOW); 2935 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2936 if (tp->t_flags & TF_SIGNATURE) 2937 optlen += PAD(TCPOLEN_SIGNATURE); 2938 #endif 2939 if (tp->t_flags & TF_SACK_PERMIT) 2940 optlen += PAD(TCPOLEN_SACK_PERMITTED); 2941 } 2942 #undef PAD 2943 optlen = min(optlen, TCP_MAXOLEN); 2944 return (tp->t_maxseg - optlen); 2945 } 2946 2947 static int 2948 sysctl_drop(SYSCTL_HANDLER_ARGS) 2949 { 2950 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2951 struct sockaddr_storage addrs[2]; 2952 struct inpcb *inp; 2953 struct tcpcb *tp; 2954 struct tcptw *tw; 2955 struct sockaddr_in *fin, *lin; 2956 struct epoch_tracker et; 2957 #ifdef INET6 2958 struct sockaddr_in6 *fin6, *lin6; 2959 #endif 2960 int error; 2961 2962 inp = NULL; 2963 fin = lin = NULL; 2964 #ifdef INET6 2965 fin6 = lin6 = NULL; 2966 #endif 2967 error = 0; 2968 2969 if (req->oldptr != NULL || req->oldlen != 0) 2970 return (EINVAL); 2971 if (req->newptr == NULL) 2972 return (EPERM); 2973 if (req->newlen < sizeof(addrs)) 2974 return (ENOMEM); 2975 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2976 if (error) 2977 return (error); 2978 2979 switch (addrs[0].ss_family) { 2980 #ifdef INET6 2981 case AF_INET6: 2982 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2983 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2984 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2985 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2986 return (EINVAL); 2987 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2988 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2989 return (EINVAL); 2990 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2991 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2992 fin = (struct sockaddr_in *)&addrs[0]; 2993 lin = (struct sockaddr_in *)&addrs[1]; 2994 break; 2995 } 2996 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2997 if (error) 2998 return (error); 2999 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3000 if (error) 3001 return (error); 3002 break; 3003 #endif 3004 #ifdef INET 3005 case AF_INET: 3006 fin = (struct sockaddr_in *)&addrs[0]; 3007 lin = (struct sockaddr_in *)&addrs[1]; 3008 if (fin->sin_len != sizeof(struct sockaddr_in) || 3009 lin->sin_len != sizeof(struct sockaddr_in)) 3010 return (EINVAL); 3011 break; 3012 #endif 3013 default: 3014 return (EINVAL); 3015 } 3016 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 3017 switch (addrs[0].ss_family) { 3018 #ifdef INET6 3019 case AF_INET6: 3020 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3021 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3022 INPLOOKUP_WLOCKPCB, NULL); 3023 break; 3024 #endif 3025 #ifdef INET 3026 case AF_INET: 3027 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3028 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3029 break; 3030 #endif 3031 } 3032 if (inp != NULL) { 3033 if (inp->inp_flags & INP_TIMEWAIT) { 3034 /* 3035 * XXXRW: There currently exists a state where an 3036 * inpcb is present, but its timewait state has been 3037 * discarded. For now, don't allow dropping of this 3038 * type of inpcb. 3039 */ 3040 tw = intotw(inp); 3041 if (tw != NULL) 3042 tcp_twclose(tw, 0); 3043 else 3044 INP_WUNLOCK(inp); 3045 } else if (!(inp->inp_flags & INP_DROPPED) && 3046 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 3047 tp = intotcpcb(inp); 3048 tp = tcp_drop(tp, ECONNABORTED); 3049 if (tp != NULL) 3050 INP_WUNLOCK(inp); 3051 } else 3052 INP_WUNLOCK(inp); 3053 } else 3054 error = ESRCH; 3055 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 3056 return (error); 3057 } 3058 3059 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 3060 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 3061 0, sysctl_drop, "", "Drop TCP connection"); 3062 3063 /* 3064 * Generate a standardized TCP log line for use throughout the 3065 * tcp subsystem. Memory allocation is done with M_NOWAIT to 3066 * allow use in the interrupt context. 3067 * 3068 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 3069 * NB: The function may return NULL if memory allocation failed. 3070 * 3071 * Due to header inclusion and ordering limitations the struct ip 3072 * and ip6_hdr pointers have to be passed as void pointers. 3073 */ 3074 char * 3075 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 3076 const void *ip6hdr) 3077 { 3078 3079 /* Is logging enabled? */ 3080 if (tcp_log_in_vain == 0) 3081 return (NULL); 3082 3083 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3084 } 3085 3086 char * 3087 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 3088 const void *ip6hdr) 3089 { 3090 3091 /* Is logging enabled? */ 3092 if (tcp_log_debug == 0) 3093 return (NULL); 3094 3095 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3096 } 3097 3098 static char * 3099 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 3100 const void *ip6hdr) 3101 { 3102 char *s, *sp; 3103 size_t size; 3104 struct ip *ip; 3105 #ifdef INET6 3106 const struct ip6_hdr *ip6; 3107 3108 ip6 = (const struct ip6_hdr *)ip6hdr; 3109 #endif /* INET6 */ 3110 ip = (struct ip *)ip4hdr; 3111 3112 /* 3113 * The log line looks like this: 3114 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 3115 */ 3116 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 3117 sizeof(PRINT_TH_FLAGS) + 1 + 3118 #ifdef INET6 3119 2 * INET6_ADDRSTRLEN; 3120 #else 3121 2 * INET_ADDRSTRLEN; 3122 #endif /* INET6 */ 3123 3124 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 3125 if (s == NULL) 3126 return (NULL); 3127 3128 strcat(s, "TCP: ["); 3129 sp = s + strlen(s); 3130 3131 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 3132 inet_ntoa_r(inc->inc_faddr, sp); 3133 sp = s + strlen(s); 3134 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3135 sp = s + strlen(s); 3136 inet_ntoa_r(inc->inc_laddr, sp); 3137 sp = s + strlen(s); 3138 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3139 #ifdef INET6 3140 } else if (inc) { 3141 ip6_sprintf(sp, &inc->inc6_faddr); 3142 sp = s + strlen(s); 3143 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3144 sp = s + strlen(s); 3145 ip6_sprintf(sp, &inc->inc6_laddr); 3146 sp = s + strlen(s); 3147 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3148 } else if (ip6 && th) { 3149 ip6_sprintf(sp, &ip6->ip6_src); 3150 sp = s + strlen(s); 3151 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3152 sp = s + strlen(s); 3153 ip6_sprintf(sp, &ip6->ip6_dst); 3154 sp = s + strlen(s); 3155 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3156 #endif /* INET6 */ 3157 #ifdef INET 3158 } else if (ip && th) { 3159 inet_ntoa_r(ip->ip_src, sp); 3160 sp = s + strlen(s); 3161 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3162 sp = s + strlen(s); 3163 inet_ntoa_r(ip->ip_dst, sp); 3164 sp = s + strlen(s); 3165 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3166 #endif /* INET */ 3167 } else { 3168 free(s, M_TCPLOG); 3169 return (NULL); 3170 } 3171 sp = s + strlen(s); 3172 if (th) 3173 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 3174 if (*(s + size - 1) != '\0') 3175 panic("%s: string too long", __func__); 3176 return (s); 3177 } 3178 3179 /* 3180 * A subroutine which makes it easy to track TCP state changes with DTrace. 3181 * This function shouldn't be called for t_state initializations that don't 3182 * correspond to actual TCP state transitions. 3183 */ 3184 void 3185 tcp_state_change(struct tcpcb *tp, int newstate) 3186 { 3187 #if defined(KDTRACE_HOOKS) 3188 int pstate = tp->t_state; 3189 #endif 3190 3191 TCPSTATES_DEC(tp->t_state); 3192 TCPSTATES_INC(newstate); 3193 tp->t_state = newstate; 3194 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3195 } 3196 3197 /* 3198 * Create an external-format (``xtcpcb'') structure using the information in 3199 * the kernel-format tcpcb structure pointed to by tp. This is done to 3200 * reduce the spew of irrelevant information over this interface, to isolate 3201 * user code from changes in the kernel structure, and potentially to provide 3202 * information-hiding if we decide that some of this information should be 3203 * hidden from users. 3204 */ 3205 void 3206 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) 3207 { 3208 struct tcpcb *tp = intotcpcb(inp); 3209 sbintime_t now; 3210 3211 if (inp->inp_flags & INP_TIMEWAIT) { 3212 bzero(xt, sizeof(struct xtcpcb)); 3213 xt->t_state = TCPS_TIME_WAIT; 3214 } else { 3215 xt->t_state = tp->t_state; 3216 xt->t_logstate = tp->t_logstate; 3217 xt->t_flags = tp->t_flags; 3218 xt->t_sndzerowin = tp->t_sndzerowin; 3219 xt->t_sndrexmitpack = tp->t_sndrexmitpack; 3220 xt->t_rcvoopack = tp->t_rcvoopack; 3221 3222 now = getsbinuptime(); 3223 #define COPYTIMER(ttt) do { \ 3224 if (callout_active(&tp->t_timers->ttt)) \ 3225 xt->ttt = (tp->t_timers->ttt.c_time - now) / \ 3226 SBT_1MS; \ 3227 else \ 3228 xt->ttt = 0; \ 3229 } while (0) 3230 COPYTIMER(tt_delack); 3231 COPYTIMER(tt_rexmt); 3232 COPYTIMER(tt_persist); 3233 COPYTIMER(tt_keep); 3234 COPYTIMER(tt_2msl); 3235 #undef COPYTIMER 3236 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; 3237 3238 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, 3239 TCP_FUNCTION_NAME_LEN_MAX); 3240 bzero(xt->xt_logid, TCP_LOG_ID_LEN); 3241 #ifdef TCP_BLACKBOX 3242 (void)tcp_log_get_id(tp, xt->xt_logid); 3243 #endif 3244 } 3245 3246 xt->xt_len = sizeof(struct xtcpcb); 3247 in_pcbtoxinpcb(inp, &xt->xt_inp); 3248 if (inp->inp_socket == NULL) 3249 xt->xt_inp.xi_socket.xso_protocol = IPPROTO_TCP; 3250 } 3251