xref: /freebsd/sys/netinet/tcp_subr.c (revision 49b49cda41feabe3439f7318e8bf40e3896c7bf4)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_fib.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet6/scope6_var.h>
86 #include <netinet6/nd6.h>
87 #endif
88 
89 #ifdef TCP_RFC7413
90 #include <netinet/tcp_fastopen.h>
91 #endif
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet/tcp_syncache.h>
98 #include <netinet/tcp_cc.h>
99 #ifdef INET6
100 #include <netinet6/tcp6_var.h>
101 #endif
102 #include <netinet/tcpip.h>
103 #ifdef TCPPCAP
104 #include <netinet/tcp_pcap.h>
105 #endif
106 #ifdef TCPDEBUG
107 #include <netinet/tcp_debug.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/ip6protosw.h>
111 #endif
112 #ifdef TCP_OFFLOAD
113 #include <netinet/tcp_offload.h>
114 #endif
115 
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/xform.h>
119 #ifdef INET6
120 #include <netipsec/ipsec6.h>
121 #endif
122 #include <netipsec/key.h>
123 #include <sys/syslog.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 #include <sys/md5.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
132 #ifdef INET6
133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
134 #endif
135 
136 struct rwlock tcp_function_lock;
137 
138 static int
139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
140 {
141 	int error, new;
142 
143 	new = V_tcp_mssdflt;
144 	error = sysctl_handle_int(oidp, &new, 0, req);
145 	if (error == 0 && req->newptr) {
146 		if (new < TCP_MINMSS)
147 			error = EINVAL;
148 		else
149 			V_tcp_mssdflt = new;
150 	}
151 	return (error);
152 }
153 
154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
155     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
156     &sysctl_net_inet_tcp_mss_check, "I",
157     "Default TCP Maximum Segment Size");
158 
159 #ifdef INET6
160 static int
161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, new;
164 
165 	new = V_tcp_v6mssdflt;
166 	error = sysctl_handle_int(oidp, &new, 0, req);
167 	if (error == 0 && req->newptr) {
168 		if (new < TCP_MINMSS)
169 			error = EINVAL;
170 		else
171 			V_tcp_v6mssdflt = new;
172 	}
173 	return (error);
174 }
175 
176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
177     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
178     &sysctl_net_inet_tcp_mss_v6_check, "I",
179    "Default TCP Maximum Segment Size for IPv6");
180 #endif /* INET6 */
181 
182 /*
183  * Minimum MSS we accept and use. This prevents DoS attacks where
184  * we are forced to a ridiculous low MSS like 20 and send hundreds
185  * of packets instead of one. The effect scales with the available
186  * bandwidth and quickly saturates the CPU and network interface
187  * with packet generation and sending. Set to zero to disable MINMSS
188  * checking. This setting prevents us from sending too small packets.
189  */
190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
192      &VNET_NAME(tcp_minmss), 0,
193     "Minimum TCP Maximum Segment Size");
194 
195 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_rfc1323), 0,
198     "Enable rfc1323 (high performance TCP) extensions");
199 
200 static int	tcp_log_debug = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
202     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
203 
204 static int	tcp_tcbhashsize;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
206     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
207 
208 static int	do_tcpdrain = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
210     "Enable tcp_drain routine for extra help when low on mbufs");
211 
212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
213     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
214 
215 static VNET_DEFINE(int, icmp_may_rst) = 1;
216 #define	V_icmp_may_rst			VNET(icmp_may_rst)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(icmp_may_rst), 0,
219     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
220 
221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
222 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_isn_reseed_interval), 0,
225     "Seconds between reseeding of ISN secret");
226 
227 static int	tcp_soreceive_stream;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
229     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
230 
231 #ifdef TCP_SIGNATURE
232 static int	tcp_sig_checksigs = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
234     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
235 #endif
236 
237 VNET_DEFINE(uma_zone_t, sack_hole_zone);
238 #define	V_sack_hole_zone		VNET(sack_hole_zone)
239 
240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
241 
242 static struct inpcb *tcp_notify(struct inpcb *, int);
243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
244 static void tcp_mtudisc(struct inpcb *, int);
245 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
246 		    void *ip4hdr, const void *ip6hdr);
247 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
248 
249 
250 static struct tcp_function_block tcp_def_funcblk = {
251 	"default",
252 	tcp_output,
253 	tcp_do_segment,
254 	tcp_default_ctloutput,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	NULL,
261 	NULL,
262 	0,
263 	0
264 };
265 
266 struct tcp_funchead t_functions;
267 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
268 
269 static struct tcp_function_block *
270 find_tcp_functions_locked(struct tcp_function_set *fs)
271 {
272 	struct tcp_function *f;
273 	struct tcp_function_block *blk=NULL;
274 
275 	TAILQ_FOREACH(f, &t_functions, tf_next) {
276 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
277 			blk = f->tf_fb;
278 			break;
279 		}
280 	}
281 	return(blk);
282 }
283 
284 static struct tcp_function_block *
285 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
286 {
287 	struct tcp_function_block *rblk=NULL;
288 	struct tcp_function *f;
289 
290 	TAILQ_FOREACH(f, &t_functions, tf_next) {
291 		if (f->tf_fb == blk) {
292 			rblk = blk;
293 			if (s) {
294 				*s = f;
295 			}
296 			break;
297 		}
298 	}
299 	return (rblk);
300 }
301 
302 struct tcp_function_block *
303 find_and_ref_tcp_functions(struct tcp_function_set *fs)
304 {
305 	struct tcp_function_block *blk;
306 
307 	rw_rlock(&tcp_function_lock);
308 	blk = find_tcp_functions_locked(fs);
309 	if (blk)
310 		refcount_acquire(&blk->tfb_refcnt);
311 	rw_runlock(&tcp_function_lock);
312 	return(blk);
313 }
314 
315 struct tcp_function_block *
316 find_and_ref_tcp_fb(struct tcp_function_block *blk)
317 {
318 	struct tcp_function_block *rblk;
319 
320 	rw_rlock(&tcp_function_lock);
321 	rblk = find_tcp_fb_locked(blk, NULL);
322 	if (rblk)
323 		refcount_acquire(&rblk->tfb_refcnt);
324 	rw_runlock(&tcp_function_lock);
325 	return(rblk);
326 }
327 
328 
329 static int
330 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
331 {
332 	int error=ENOENT;
333 	struct tcp_function_set fs;
334 	struct tcp_function_block *blk;
335 
336 	memset(&fs, 0, sizeof(fs));
337 	rw_rlock(&tcp_function_lock);
338 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
339 	if (blk) {
340 		/* Found him */
341 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
342 		fs.pcbcnt = blk->tfb_refcnt;
343 	}
344 	rw_runlock(&tcp_function_lock);
345 	error = sysctl_handle_string(oidp, fs.function_set_name,
346 				     sizeof(fs.function_set_name), req);
347 
348 	/* Check for error or no change */
349 	if (error != 0 || req->newptr == NULL)
350 		return(error);
351 
352 	rw_wlock(&tcp_function_lock);
353 	blk = find_tcp_functions_locked(&fs);
354 	if ((blk == NULL) ||
355 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
356 		error = ENOENT;
357 		goto done;
358 	}
359 	tcp_func_set_ptr = blk;
360 done:
361 	rw_wunlock(&tcp_function_lock);
362 	return (error);
363 }
364 
365 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
366 	    CTLTYPE_STRING | CTLFLAG_RW,
367 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
368 	    "Set/get the default TCP functions");
369 
370 static int
371 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
372 {
373 	int error, cnt, linesz;
374 	struct tcp_function *f;
375 	char *buffer, *cp;
376 	size_t bufsz, outsz;
377 
378 	cnt = 0;
379 	rw_rlock(&tcp_function_lock);
380 	TAILQ_FOREACH(f, &t_functions, tf_next) {
381 		cnt++;
382 	}
383 	rw_runlock(&tcp_function_lock);
384 
385 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
386 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
387 
388 	error = 0;
389 	cp = buffer;
390 
391 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
392 	cp += linesz;
393 	bufsz -= linesz;
394 	outsz = linesz;
395 
396 	rw_rlock(&tcp_function_lock);
397 	TAILQ_FOREACH(f, &t_functions, tf_next) {
398 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
399 		    f->tf_fb->tfb_tcp_block_name,
400 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
401 		    f->tf_fb->tfb_refcnt);
402 		if (linesz >= bufsz) {
403 			error = EOVERFLOW;
404 			break;
405 		}
406 		cp += linesz;
407 		bufsz -= linesz;
408 		outsz += linesz;
409 	}
410 	rw_runlock(&tcp_function_lock);
411 	if (error == 0)
412 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
413 	free(buffer, M_TEMP);
414 	return (error);
415 }
416 
417 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
418 	    CTLTYPE_STRING|CTLFLAG_RD,
419 	    NULL, 0, sysctl_net_inet_list_available, "A",
420 	    "list available TCP Function sets");
421 
422 /*
423  * Target size of TCP PCB hash tables. Must be a power of two.
424  *
425  * Note that this can be overridden by the kernel environment
426  * variable net.inet.tcp.tcbhashsize
427  */
428 #ifndef TCBHASHSIZE
429 #define TCBHASHSIZE	0
430 #endif
431 
432 /*
433  * XXX
434  * Callouts should be moved into struct tcp directly.  They are currently
435  * separate because the tcpcb structure is exported to userland for sysctl
436  * parsing purposes, which do not know about callouts.
437  */
438 struct tcpcb_mem {
439 	struct	tcpcb		tcb;
440 	struct	tcp_timer	tt;
441 	struct	cc_var		ccv;
442 	struct	osd		osd;
443 };
444 
445 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
446 #define	V_tcpcb_zone			VNET(tcpcb_zone)
447 
448 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
449 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
450 
451 static struct mtx isn_mtx;
452 
453 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
454 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
455 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
456 
457 /*
458  * TCP initialization.
459  */
460 static void
461 tcp_zone_change(void *tag)
462 {
463 
464 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
465 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
466 	tcp_tw_zone_change();
467 }
468 
469 static int
470 tcp_inpcb_init(void *mem, int size, int flags)
471 {
472 	struct inpcb *inp = mem;
473 
474 	INP_LOCK_INIT(inp, "inp", "tcpinp");
475 	return (0);
476 }
477 
478 /*
479  * Take a value and get the next power of 2 that doesn't overflow.
480  * Used to size the tcp_inpcb hash buckets.
481  */
482 static int
483 maketcp_hashsize(int size)
484 {
485 	int hashsize;
486 
487 	/*
488 	 * auto tune.
489 	 * get the next power of 2 higher than maxsockets.
490 	 */
491 	hashsize = 1 << fls(size);
492 	/* catch overflow, and just go one power of 2 smaller */
493 	if (hashsize < size) {
494 		hashsize = 1 << (fls(size) - 1);
495 	}
496 	return (hashsize);
497 }
498 
499 int
500 register_tcp_functions(struct tcp_function_block *blk, int wait)
501 {
502 	struct tcp_function_block *lblk;
503 	struct tcp_function *n;
504 	struct tcp_function_set fs;
505 
506 	if ((blk->tfb_tcp_output == NULL) ||
507 	    (blk->tfb_tcp_do_segment == NULL) ||
508 	    (blk->tfb_tcp_ctloutput == NULL) ||
509 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
510 		/*
511 		 * These functions are required and you
512 		 * need a name.
513 		 */
514 		return (EINVAL);
515 	}
516 	if (blk->tfb_tcp_timer_stop_all ||
517 	    blk->tfb_tcp_timers_left ||
518 	    blk->tfb_tcp_timer_activate ||
519 	    blk->tfb_tcp_timer_active ||
520 	    blk->tfb_tcp_timer_stop) {
521 		/*
522 		 * If you define one timer function you
523 		 * must have them all.
524 		 */
525 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
526 		    (blk->tfb_tcp_timers_left  == NULL) ||
527 		    (blk->tfb_tcp_timer_activate == NULL) ||
528 		    (blk->tfb_tcp_timer_active == NULL) ||
529 		    (blk->tfb_tcp_timer_stop == NULL)) {
530 			return (EINVAL);
531 		}
532 	}
533 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
534 	if (n == NULL) {
535 		return (ENOMEM);
536 	}
537 	n->tf_fb = blk;
538 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
539 	rw_wlock(&tcp_function_lock);
540 	lblk = find_tcp_functions_locked(&fs);
541 	if (lblk) {
542 		/* Duplicate name space not allowed */
543 		rw_wunlock(&tcp_function_lock);
544 		free(n, M_TCPFUNCTIONS);
545 		return (EALREADY);
546 	}
547 	refcount_init(&blk->tfb_refcnt, 0);
548 	blk->tfb_flags = 0;
549 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
550 	rw_wunlock(&tcp_function_lock);
551 	return(0);
552 }
553 
554 int
555 deregister_tcp_functions(struct tcp_function_block *blk)
556 {
557 	struct tcp_function_block *lblk;
558 	struct tcp_function *f;
559 	int error=ENOENT;
560 
561 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
562 		/* You can't un-register the default */
563 		return (EPERM);
564 	}
565 	rw_wlock(&tcp_function_lock);
566 	if (blk == tcp_func_set_ptr) {
567 		/* You can't free the current default */
568 		rw_wunlock(&tcp_function_lock);
569 		return (EBUSY);
570 	}
571 	if (blk->tfb_refcnt) {
572 		/* Still tcb attached, mark it. */
573 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
574 		rw_wunlock(&tcp_function_lock);
575 		return (EBUSY);
576 	}
577 	lblk = find_tcp_fb_locked(blk, &f);
578 	if (lblk) {
579 		/* Found */
580 		TAILQ_REMOVE(&t_functions, f, tf_next);
581 		f->tf_fb = NULL;
582 		free(f, M_TCPFUNCTIONS);
583 		error = 0;
584 	}
585 	rw_wunlock(&tcp_function_lock);
586 	return (error);
587 }
588 
589 void
590 tcp_init(void)
591 {
592 	const char *tcbhash_tuneable;
593 	int hashsize;
594 
595 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
596 
597 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
598 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
599 		printf("%s: WARNING: unable to register helper hook\n", __func__);
600 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
601 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
602 		printf("%s: WARNING: unable to register helper hook\n", __func__);
603 	hashsize = TCBHASHSIZE;
604 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
605 	if (hashsize == 0) {
606 		/*
607 		 * Auto tune the hash size based on maxsockets.
608 		 * A perfect hash would have a 1:1 mapping
609 		 * (hashsize = maxsockets) however it's been
610 		 * suggested that O(2) average is better.
611 		 */
612 		hashsize = maketcp_hashsize(maxsockets / 4);
613 		/*
614 		 * Our historical default is 512,
615 		 * do not autotune lower than this.
616 		 */
617 		if (hashsize < 512)
618 			hashsize = 512;
619 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
620 			printf("%s: %s auto tuned to %d\n", __func__,
621 			    tcbhash_tuneable, hashsize);
622 	}
623 	/*
624 	 * We require a hashsize to be a power of two.
625 	 * Previously if it was not a power of two we would just reset it
626 	 * back to 512, which could be a nasty surprise if you did not notice
627 	 * the error message.
628 	 * Instead what we do is clip it to the closest power of two lower
629 	 * than the specified hash value.
630 	 */
631 	if (!powerof2(hashsize)) {
632 		int oldhashsize = hashsize;
633 
634 		hashsize = maketcp_hashsize(hashsize);
635 		/* prevent absurdly low value */
636 		if (hashsize < 16)
637 			hashsize = 16;
638 		printf("%s: WARNING: TCB hash size not a power of 2, "
639 		    "clipped from %d to %d.\n", __func__, oldhashsize,
640 		    hashsize);
641 	}
642 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
643 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
644 	    IPI_HASHFIELDS_4TUPLE);
645 
646 	/*
647 	 * These have to be type stable for the benefit of the timers.
648 	 */
649 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
650 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
651 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
652 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
653 
654 	tcp_tw_init();
655 	syncache_init();
656 	tcp_hc_init();
657 
658 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
659 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
660 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
661 
662 	/* Skip initialization of globals for non-default instances. */
663 	if (!IS_DEFAULT_VNET(curvnet))
664 		return;
665 
666 	tcp_reass_global_init();
667 
668 	/* XXX virtualize those bellow? */
669 	tcp_delacktime = TCPTV_DELACK;
670 	tcp_keepinit = TCPTV_KEEP_INIT;
671 	tcp_keepidle = TCPTV_KEEP_IDLE;
672 	tcp_keepintvl = TCPTV_KEEPINTVL;
673 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
674 	tcp_msl = TCPTV_MSL;
675 	tcp_rexmit_min = TCPTV_MIN;
676 	if (tcp_rexmit_min < 1)
677 		tcp_rexmit_min = 1;
678 	tcp_rexmit_slop = TCPTV_CPU_VAR;
679 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
680 	tcp_tcbhashsize = hashsize;
681 	/* Setup the tcp function block list */
682 	TAILQ_INIT(&t_functions);
683 	rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
684 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
685 
686 	if (tcp_soreceive_stream) {
687 #ifdef INET
688 		tcp_usrreqs.pru_soreceive = soreceive_stream;
689 #endif
690 #ifdef INET6
691 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
692 #endif /* INET6 */
693 	}
694 
695 #ifdef INET6
696 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
697 #else /* INET6 */
698 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
699 #endif /* INET6 */
700 	if (max_protohdr < TCP_MINPROTOHDR)
701 		max_protohdr = TCP_MINPROTOHDR;
702 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
703 		panic("tcp_init");
704 #undef TCP_MINPROTOHDR
705 
706 	ISN_LOCK_INIT();
707 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
708 		SHUTDOWN_PRI_DEFAULT);
709 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
710 		EVENTHANDLER_PRI_ANY);
711 #ifdef TCPPCAP
712 	tcp_pcap_init();
713 #endif
714 
715 #ifdef TCP_RFC7413
716 	tcp_fastopen_init();
717 #endif
718 }
719 
720 #ifdef VIMAGE
721 void
722 tcp_destroy(void)
723 {
724 	int error;
725 
726 #ifdef TCP_RFC7413
727 	tcp_fastopen_destroy();
728 #endif
729 	tcp_hc_destroy();
730 	syncache_destroy();
731 	tcp_tw_destroy();
732 	in_pcbinfo_destroy(&V_tcbinfo);
733 	uma_zdestroy(V_sack_hole_zone);
734 	uma_zdestroy(V_tcpcb_zone);
735 
736 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
737 	if (error != 0) {
738 		printf("%s: WARNING: unable to deregister helper hook "
739 		    "type=%d, id=%d: error %d returned\n", __func__,
740 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
741 	}
742 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
743 	if (error != 0) {
744 		printf("%s: WARNING: unable to deregister helper hook "
745 		    "type=%d, id=%d: error %d returned\n", __func__,
746 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
747 	}
748 }
749 #endif
750 
751 void
752 tcp_fini(void *xtp)
753 {
754 
755 }
756 
757 /*
758  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
759  * tcp_template used to store this data in mbufs, but we now recopy it out
760  * of the tcpcb each time to conserve mbufs.
761  */
762 void
763 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
764 {
765 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
766 
767 	INP_WLOCK_ASSERT(inp);
768 
769 #ifdef INET6
770 	if ((inp->inp_vflag & INP_IPV6) != 0) {
771 		struct ip6_hdr *ip6;
772 
773 		ip6 = (struct ip6_hdr *)ip_ptr;
774 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
775 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
776 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
777 			(IPV6_VERSION & IPV6_VERSION_MASK);
778 		ip6->ip6_nxt = IPPROTO_TCP;
779 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
780 		ip6->ip6_src = inp->in6p_laddr;
781 		ip6->ip6_dst = inp->in6p_faddr;
782 	}
783 #endif /* INET6 */
784 #if defined(INET6) && defined(INET)
785 	else
786 #endif
787 #ifdef INET
788 	{
789 		struct ip *ip;
790 
791 		ip = (struct ip *)ip_ptr;
792 		ip->ip_v = IPVERSION;
793 		ip->ip_hl = 5;
794 		ip->ip_tos = inp->inp_ip_tos;
795 		ip->ip_len = 0;
796 		ip->ip_id = 0;
797 		ip->ip_off = 0;
798 		ip->ip_ttl = inp->inp_ip_ttl;
799 		ip->ip_sum = 0;
800 		ip->ip_p = IPPROTO_TCP;
801 		ip->ip_src = inp->inp_laddr;
802 		ip->ip_dst = inp->inp_faddr;
803 	}
804 #endif /* INET */
805 	th->th_sport = inp->inp_lport;
806 	th->th_dport = inp->inp_fport;
807 	th->th_seq = 0;
808 	th->th_ack = 0;
809 	th->th_x2 = 0;
810 	th->th_off = 5;
811 	th->th_flags = 0;
812 	th->th_win = 0;
813 	th->th_urp = 0;
814 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
815 }
816 
817 /*
818  * Create template to be used to send tcp packets on a connection.
819  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
820  * use for this function is in keepalives, which use tcp_respond.
821  */
822 struct tcptemp *
823 tcpip_maketemplate(struct inpcb *inp)
824 {
825 	struct tcptemp *t;
826 
827 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
828 	if (t == NULL)
829 		return (NULL);
830 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
831 	return (t);
832 }
833 
834 /*
835  * Send a single message to the TCP at address specified by
836  * the given TCP/IP header.  If m == NULL, then we make a copy
837  * of the tcpiphdr at th and send directly to the addressed host.
838  * This is used to force keep alive messages out using the TCP
839  * template for a connection.  If flags are given then we send
840  * a message back to the TCP which originated the segment th,
841  * and discard the mbuf containing it and any other attached mbufs.
842  *
843  * In any case the ack and sequence number of the transmitted
844  * segment are as specified by the parameters.
845  *
846  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
847  */
848 void
849 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
850     tcp_seq ack, tcp_seq seq, int flags)
851 {
852 	int tlen;
853 	int win = 0;
854 	struct ip *ip;
855 	struct tcphdr *nth;
856 #ifdef INET6
857 	struct ip6_hdr *ip6;
858 	int isipv6;
859 #endif /* INET6 */
860 	int ipflags = 0;
861 	struct inpcb *inp;
862 
863 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
864 
865 #ifdef INET6
866 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
867 	ip6 = ipgen;
868 #endif /* INET6 */
869 	ip = ipgen;
870 
871 	if (tp != NULL) {
872 		inp = tp->t_inpcb;
873 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
874 		INP_WLOCK_ASSERT(inp);
875 	} else
876 		inp = NULL;
877 
878 	if (tp != NULL) {
879 		if (!(flags & TH_RST)) {
880 			win = sbspace(&inp->inp_socket->so_rcv);
881 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
882 				win = (long)TCP_MAXWIN << tp->rcv_scale;
883 		}
884 	}
885 	if (m == NULL) {
886 		m = m_gethdr(M_NOWAIT, MT_DATA);
887 		if (m == NULL)
888 			return;
889 		tlen = 0;
890 		m->m_data += max_linkhdr;
891 #ifdef INET6
892 		if (isipv6) {
893 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
894 			      sizeof(struct ip6_hdr));
895 			ip6 = mtod(m, struct ip6_hdr *);
896 			nth = (struct tcphdr *)(ip6 + 1);
897 		} else
898 #endif /* INET6 */
899 		{
900 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
901 			ip = mtod(m, struct ip *);
902 			nth = (struct tcphdr *)(ip + 1);
903 		}
904 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
905 		flags = TH_ACK;
906 	} else {
907 		/*
908 		 *  reuse the mbuf.
909 		 * XXX MRT We inherrit the FIB, which is lucky.
910 		 */
911 		m_freem(m->m_next);
912 		m->m_next = NULL;
913 		m->m_data = (caddr_t)ipgen;
914 		/* m_len is set later */
915 		tlen = 0;
916 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
917 #ifdef INET6
918 		if (isipv6) {
919 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
920 			nth = (struct tcphdr *)(ip6 + 1);
921 		} else
922 #endif /* INET6 */
923 		{
924 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
925 			nth = (struct tcphdr *)(ip + 1);
926 		}
927 		if (th != nth) {
928 			/*
929 			 * this is usually a case when an extension header
930 			 * exists between the IPv6 header and the
931 			 * TCP header.
932 			 */
933 			nth->th_sport = th->th_sport;
934 			nth->th_dport = th->th_dport;
935 		}
936 		xchg(nth->th_dport, nth->th_sport, uint16_t);
937 #undef xchg
938 	}
939 #ifdef INET6
940 	if (isipv6) {
941 		ip6->ip6_flow = 0;
942 		ip6->ip6_vfc = IPV6_VERSION;
943 		ip6->ip6_nxt = IPPROTO_TCP;
944 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
945 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
946 	}
947 #endif
948 #if defined(INET) && defined(INET6)
949 	else
950 #endif
951 #ifdef INET
952 	{
953 		tlen += sizeof (struct tcpiphdr);
954 		ip->ip_len = htons(tlen);
955 		ip->ip_ttl = V_ip_defttl;
956 		if (V_path_mtu_discovery)
957 			ip->ip_off |= htons(IP_DF);
958 	}
959 #endif
960 	m->m_len = tlen;
961 	m->m_pkthdr.len = tlen;
962 	m->m_pkthdr.rcvif = NULL;
963 #ifdef MAC
964 	if (inp != NULL) {
965 		/*
966 		 * Packet is associated with a socket, so allow the
967 		 * label of the response to reflect the socket label.
968 		 */
969 		INP_WLOCK_ASSERT(inp);
970 		mac_inpcb_create_mbuf(inp, m);
971 	} else {
972 		/*
973 		 * Packet is not associated with a socket, so possibly
974 		 * update the label in place.
975 		 */
976 		mac_netinet_tcp_reply(m);
977 	}
978 #endif
979 	nth->th_seq = htonl(seq);
980 	nth->th_ack = htonl(ack);
981 	nth->th_x2 = 0;
982 	nth->th_off = sizeof (struct tcphdr) >> 2;
983 	nth->th_flags = flags;
984 	if (tp != NULL)
985 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
986 	else
987 		nth->th_win = htons((u_short)win);
988 	nth->th_urp = 0;
989 
990 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
991 #ifdef INET6
992 	if (isipv6) {
993 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
994 		nth->th_sum = in6_cksum_pseudo(ip6,
995 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
996 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
997 		    NULL, NULL);
998 	}
999 #endif /* INET6 */
1000 #if defined(INET6) && defined(INET)
1001 	else
1002 #endif
1003 #ifdef INET
1004 	{
1005 		m->m_pkthdr.csum_flags = CSUM_TCP;
1006 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1007 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1008 	}
1009 #endif /* INET */
1010 #ifdef TCPDEBUG
1011 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1012 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1013 #endif
1014 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1015 	if (flags & TH_RST)
1016 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1017 		    tp, nth);
1018 
1019 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1020 #ifdef INET6
1021 	if (isipv6)
1022 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
1023 #endif /* INET6 */
1024 #if defined(INET) && defined(INET6)
1025 	else
1026 #endif
1027 #ifdef INET
1028 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
1029 #endif
1030 }
1031 
1032 /*
1033  * Create a new TCP control block, making an
1034  * empty reassembly queue and hooking it to the argument
1035  * protocol control block.  The `inp' parameter must have
1036  * come from the zone allocator set up in tcp_init().
1037  */
1038 struct tcpcb *
1039 tcp_newtcpcb(struct inpcb *inp)
1040 {
1041 	struct tcpcb_mem *tm;
1042 	struct tcpcb *tp;
1043 #ifdef INET6
1044 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1045 #endif /* INET6 */
1046 
1047 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1048 	if (tm == NULL)
1049 		return (NULL);
1050 	tp = &tm->tcb;
1051 
1052 	/* Initialise cc_var struct for this tcpcb. */
1053 	tp->ccv = &tm->ccv;
1054 	tp->ccv->type = IPPROTO_TCP;
1055 	tp->ccv->ccvc.tcp = tp;
1056 	rw_rlock(&tcp_function_lock);
1057 	tp->t_fb = tcp_func_set_ptr;
1058 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1059 	rw_runlock(&tcp_function_lock);
1060 	if (tp->t_fb->tfb_tcp_fb_init) {
1061 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1062 	}
1063 	/*
1064 	 * Use the current system default CC algorithm.
1065 	 */
1066 	CC_LIST_RLOCK();
1067 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1068 	CC_ALGO(tp) = CC_DEFAULT();
1069 	CC_LIST_RUNLOCK();
1070 
1071 	if (CC_ALGO(tp)->cb_init != NULL)
1072 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1073 			if (tp->t_fb->tfb_tcp_fb_fini)
1074 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1075 			refcount_release(&tp->t_fb->tfb_refcnt);
1076 			uma_zfree(V_tcpcb_zone, tm);
1077 			return (NULL);
1078 		}
1079 
1080 	tp->osd = &tm->osd;
1081 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1082 		if (tp->t_fb->tfb_tcp_fb_fini)
1083 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1084 		refcount_release(&tp->t_fb->tfb_refcnt);
1085 		uma_zfree(V_tcpcb_zone, tm);
1086 		return (NULL);
1087 	}
1088 
1089 #ifdef VIMAGE
1090 	tp->t_vnet = inp->inp_vnet;
1091 #endif
1092 	tp->t_timers = &tm->tt;
1093 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1094 	tp->t_maxseg =
1095 #ifdef INET6
1096 		isipv6 ? V_tcp_v6mssdflt :
1097 #endif /* INET6 */
1098 		V_tcp_mssdflt;
1099 
1100 	/* Set up our timeouts. */
1101 	callout_init(&tp->t_timers->tt_rexmt, 1);
1102 	callout_init(&tp->t_timers->tt_persist, 1);
1103 	callout_init(&tp->t_timers->tt_keep, 1);
1104 	callout_init(&tp->t_timers->tt_2msl, 1);
1105 	callout_init(&tp->t_timers->tt_delack, 1);
1106 
1107 	if (V_tcp_do_rfc1323)
1108 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1109 	if (V_tcp_do_sack)
1110 		tp->t_flags |= TF_SACK_PERMIT;
1111 	TAILQ_INIT(&tp->snd_holes);
1112 	/*
1113 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1114 	 * is called.
1115 	 */
1116 	in_pcbref(inp);	/* Reference for tcpcb */
1117 	tp->t_inpcb = inp;
1118 
1119 	/*
1120 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1121 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1122 	 * reasonable initial retransmit time.
1123 	 */
1124 	tp->t_srtt = TCPTV_SRTTBASE;
1125 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1126 	tp->t_rttmin = tcp_rexmit_min;
1127 	tp->t_rxtcur = TCPTV_RTOBASE;
1128 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1129 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1130 	tp->t_rcvtime = ticks;
1131 	/*
1132 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1133 	 * because the socket may be bound to an IPv6 wildcard address,
1134 	 * which may match an IPv4-mapped IPv6 address.
1135 	 */
1136 	inp->inp_ip_ttl = V_ip_defttl;
1137 	inp->inp_ppcb = tp;
1138 #ifdef TCPPCAP
1139 	/*
1140 	 * Init the TCP PCAP queues.
1141 	 */
1142 	tcp_pcap_tcpcb_init(tp);
1143 #endif
1144 	return (tp);		/* XXX */
1145 }
1146 
1147 /*
1148  * Switch the congestion control algorithm back to NewReno for any active
1149  * control blocks using an algorithm which is about to go away.
1150  * This ensures the CC framework can allow the unload to proceed without leaving
1151  * any dangling pointers which would trigger a panic.
1152  * Returning non-zero would inform the CC framework that something went wrong
1153  * and it would be unsafe to allow the unload to proceed. However, there is no
1154  * way for this to occur with this implementation so we always return zero.
1155  */
1156 int
1157 tcp_ccalgounload(struct cc_algo *unload_algo)
1158 {
1159 	struct cc_algo *tmpalgo;
1160 	struct inpcb *inp;
1161 	struct tcpcb *tp;
1162 	VNET_ITERATOR_DECL(vnet_iter);
1163 
1164 	/*
1165 	 * Check all active control blocks across all network stacks and change
1166 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1167 	 * requires cleanup code to be run, call it.
1168 	 */
1169 	VNET_LIST_RLOCK();
1170 	VNET_FOREACH(vnet_iter) {
1171 		CURVNET_SET(vnet_iter);
1172 		INP_INFO_WLOCK(&V_tcbinfo);
1173 		/*
1174 		 * New connections already part way through being initialised
1175 		 * with the CC algo we're removing will not race with this code
1176 		 * because the INP_INFO_WLOCK is held during initialisation. We
1177 		 * therefore don't enter the loop below until the connection
1178 		 * list has stabilised.
1179 		 */
1180 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1181 			INP_WLOCK(inp);
1182 			/* Important to skip tcptw structs. */
1183 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1184 			    (tp = intotcpcb(inp)) != NULL) {
1185 				/*
1186 				 * By holding INP_WLOCK here, we are assured
1187 				 * that the connection is not currently
1188 				 * executing inside the CC module's functions
1189 				 * i.e. it is safe to make the switch back to
1190 				 * NewReno.
1191 				 */
1192 				if (CC_ALGO(tp) == unload_algo) {
1193 					tmpalgo = CC_ALGO(tp);
1194 					/* NewReno does not require any init. */
1195 					CC_ALGO(tp) = &newreno_cc_algo;
1196 					if (tmpalgo->cb_destroy != NULL)
1197 						tmpalgo->cb_destroy(tp->ccv);
1198 				}
1199 			}
1200 			INP_WUNLOCK(inp);
1201 		}
1202 		INP_INFO_WUNLOCK(&V_tcbinfo);
1203 		CURVNET_RESTORE();
1204 	}
1205 	VNET_LIST_RUNLOCK();
1206 
1207 	return (0);
1208 }
1209 
1210 /*
1211  * Drop a TCP connection, reporting
1212  * the specified error.  If connection is synchronized,
1213  * then send a RST to peer.
1214  */
1215 struct tcpcb *
1216 tcp_drop(struct tcpcb *tp, int errno)
1217 {
1218 	struct socket *so = tp->t_inpcb->inp_socket;
1219 
1220 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1221 	INP_WLOCK_ASSERT(tp->t_inpcb);
1222 
1223 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1224 		tcp_state_change(tp, TCPS_CLOSED);
1225 		(void) tp->t_fb->tfb_tcp_output(tp);
1226 		TCPSTAT_INC(tcps_drops);
1227 	} else
1228 		TCPSTAT_INC(tcps_conndrops);
1229 	if (errno == ETIMEDOUT && tp->t_softerror)
1230 		errno = tp->t_softerror;
1231 	so->so_error = errno;
1232 	return (tcp_close(tp));
1233 }
1234 
1235 void
1236 tcp_discardcb(struct tcpcb *tp)
1237 {
1238 	struct inpcb *inp = tp->t_inpcb;
1239 	struct socket *so = inp->inp_socket;
1240 #ifdef INET6
1241 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1242 #endif /* INET6 */
1243 	int released;
1244 
1245 	INP_WLOCK_ASSERT(inp);
1246 
1247 	/*
1248 	 * Make sure that all of our timers are stopped before we delete the
1249 	 * PCB.
1250 	 *
1251 	 * If stopping a timer fails, we schedule a discard function in same
1252 	 * callout, and the last discard function called will take care of
1253 	 * deleting the tcpcb.
1254 	 */
1255 	tcp_timer_stop(tp, TT_REXMT);
1256 	tcp_timer_stop(tp, TT_PERSIST);
1257 	tcp_timer_stop(tp, TT_KEEP);
1258 	tcp_timer_stop(tp, TT_2MSL);
1259 	tcp_timer_stop(tp, TT_DELACK);
1260 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1261 		/* Call the stop-all function of the methods */
1262 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1263 	}
1264 
1265 	/*
1266 	 * If we got enough samples through the srtt filter,
1267 	 * save the rtt and rttvar in the routing entry.
1268 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1269 	 * 4 samples is enough for the srtt filter to converge
1270 	 * to within enough % of the correct value; fewer samples
1271 	 * and we could save a bogus rtt. The danger is not high
1272 	 * as tcp quickly recovers from everything.
1273 	 * XXX: Works very well but needs some more statistics!
1274 	 */
1275 	if (tp->t_rttupdated >= 4) {
1276 		struct hc_metrics_lite metrics;
1277 		u_long ssthresh;
1278 
1279 		bzero(&metrics, sizeof(metrics));
1280 		/*
1281 		 * Update the ssthresh always when the conditions below
1282 		 * are satisfied. This gives us better new start value
1283 		 * for the congestion avoidance for new connections.
1284 		 * ssthresh is only set if packet loss occured on a session.
1285 		 *
1286 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1287 		 * being torn down.  Ideally this code would not use 'so'.
1288 		 */
1289 		ssthresh = tp->snd_ssthresh;
1290 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1291 			/*
1292 			 * convert the limit from user data bytes to
1293 			 * packets then to packet data bytes.
1294 			 */
1295 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1296 			if (ssthresh < 2)
1297 				ssthresh = 2;
1298 			ssthresh *= (u_long)(tp->t_maxseg +
1299 #ifdef INET6
1300 			    (isipv6 ? sizeof (struct ip6_hdr) +
1301 				sizeof (struct tcphdr) :
1302 #endif
1303 				sizeof (struct tcpiphdr)
1304 #ifdef INET6
1305 			    )
1306 #endif
1307 			    );
1308 		} else
1309 			ssthresh = 0;
1310 		metrics.rmx_ssthresh = ssthresh;
1311 
1312 		metrics.rmx_rtt = tp->t_srtt;
1313 		metrics.rmx_rttvar = tp->t_rttvar;
1314 		metrics.rmx_cwnd = tp->snd_cwnd;
1315 		metrics.rmx_sendpipe = 0;
1316 		metrics.rmx_recvpipe = 0;
1317 
1318 		tcp_hc_update(&inp->inp_inc, &metrics);
1319 	}
1320 
1321 	/* free the reassembly queue, if any */
1322 	tcp_reass_flush(tp);
1323 
1324 #ifdef TCP_OFFLOAD
1325 	/* Disconnect offload device, if any. */
1326 	if (tp->t_flags & TF_TOE)
1327 		tcp_offload_detach(tp);
1328 #endif
1329 
1330 	tcp_free_sackholes(tp);
1331 
1332 #ifdef TCPPCAP
1333 	/* Free the TCP PCAP queues. */
1334 	tcp_pcap_drain(&(tp->t_inpkts));
1335 	tcp_pcap_drain(&(tp->t_outpkts));
1336 #endif
1337 
1338 	/* Allow the CC algorithm to clean up after itself. */
1339 	if (CC_ALGO(tp)->cb_destroy != NULL)
1340 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1341 
1342 	khelp_destroy_osd(tp->osd);
1343 
1344 	CC_ALGO(tp) = NULL;
1345 	inp->inp_ppcb = NULL;
1346 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1347 		/* We own the last reference on tcpcb, let's free it. */
1348 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1349 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1350 			    /* Some fb timers left running! */
1351 			    return;
1352 		}
1353 		if (tp->t_fb->tfb_tcp_fb_fini)
1354 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1355 		refcount_release(&tp->t_fb->tfb_refcnt);
1356 		tp->t_inpcb = NULL;
1357 		uma_zfree(V_tcpcb_zone, tp);
1358 		released = in_pcbrele_wlocked(inp);
1359 		KASSERT(!released, ("%s: inp %p should not have been released "
1360 			"here", __func__, inp));
1361 	}
1362 }
1363 
1364 void
1365 tcp_timer_2msl_discard(void *xtp)
1366 {
1367 
1368 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1369 }
1370 
1371 void
1372 tcp_timer_keep_discard(void *xtp)
1373 {
1374 
1375 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1376 }
1377 
1378 void
1379 tcp_timer_persist_discard(void *xtp)
1380 {
1381 
1382 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1383 }
1384 
1385 void
1386 tcp_timer_rexmt_discard(void *xtp)
1387 {
1388 
1389 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1390 }
1391 
1392 void
1393 tcp_timer_delack_discard(void *xtp)
1394 {
1395 
1396 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1397 }
1398 
1399 void
1400 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1401 {
1402 	struct inpcb *inp;
1403 
1404 	CURVNET_SET(tp->t_vnet);
1405 	INP_INFO_RLOCK(&V_tcbinfo);
1406 	inp = tp->t_inpcb;
1407 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1408 		__func__, tp));
1409 	INP_WLOCK(inp);
1410 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1411 		("%s: tcpcb has to be stopped here", __func__));
1412 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1413 		("%s: discard callout should be running", __func__));
1414 	tp->t_timers->tt_flags &= ~timer_type;
1415 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1416 		/* We own the last reference on this tcpcb, let's free it. */
1417 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1418 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1419 			    /* Some fb timers left running! */
1420 			    goto leave;
1421 		}
1422 		if (tp->t_fb->tfb_tcp_fb_fini)
1423 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1424 		refcount_release(&tp->t_fb->tfb_refcnt);
1425 		tp->t_inpcb = NULL;
1426 		uma_zfree(V_tcpcb_zone, tp);
1427 		if (in_pcbrele_wlocked(inp)) {
1428 			INP_INFO_RUNLOCK(&V_tcbinfo);
1429 			CURVNET_RESTORE();
1430 			return;
1431 		}
1432 	}
1433 leave:
1434 	INP_WUNLOCK(inp);
1435 	INP_INFO_RUNLOCK(&V_tcbinfo);
1436 	CURVNET_RESTORE();
1437 }
1438 
1439 /*
1440  * Attempt to close a TCP control block, marking it as dropped, and freeing
1441  * the socket if we hold the only reference.
1442  */
1443 struct tcpcb *
1444 tcp_close(struct tcpcb *tp)
1445 {
1446 	struct inpcb *inp = tp->t_inpcb;
1447 	struct socket *so;
1448 
1449 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1450 	INP_WLOCK_ASSERT(inp);
1451 
1452 #ifdef TCP_OFFLOAD
1453 	if (tp->t_state == TCPS_LISTEN)
1454 		tcp_offload_listen_stop(tp);
1455 #endif
1456 #ifdef TCP_RFC7413
1457 	/*
1458 	 * This releases the TFO pending counter resource for TFO listen
1459 	 * sockets as well as passively-created TFO sockets that transition
1460 	 * from SYN_RECEIVED to CLOSED.
1461 	 */
1462 	if (tp->t_tfo_pending) {
1463 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1464 		tp->t_tfo_pending = NULL;
1465 	}
1466 #endif
1467 	in_pcbdrop(inp);
1468 	TCPSTAT_INC(tcps_closed);
1469 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1470 	so = inp->inp_socket;
1471 	soisdisconnected(so);
1472 	if (inp->inp_flags & INP_SOCKREF) {
1473 		KASSERT(so->so_state & SS_PROTOREF,
1474 		    ("tcp_close: !SS_PROTOREF"));
1475 		inp->inp_flags &= ~INP_SOCKREF;
1476 		INP_WUNLOCK(inp);
1477 		ACCEPT_LOCK();
1478 		SOCK_LOCK(so);
1479 		so->so_state &= ~SS_PROTOREF;
1480 		sofree(so);
1481 		return (NULL);
1482 	}
1483 	return (tp);
1484 }
1485 
1486 void
1487 tcp_drain(void)
1488 {
1489 	VNET_ITERATOR_DECL(vnet_iter);
1490 
1491 	if (!do_tcpdrain)
1492 		return;
1493 
1494 	VNET_LIST_RLOCK_NOSLEEP();
1495 	VNET_FOREACH(vnet_iter) {
1496 		CURVNET_SET(vnet_iter);
1497 		struct inpcb *inpb;
1498 		struct tcpcb *tcpb;
1499 
1500 	/*
1501 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1502 	 * if there is one...
1503 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1504 	 *      reassembly queue should be flushed, but in a situation
1505 	 *	where we're really low on mbufs, this is potentially
1506 	 *	useful.
1507 	 */
1508 		INP_INFO_WLOCK(&V_tcbinfo);
1509 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1510 			if (inpb->inp_flags & INP_TIMEWAIT)
1511 				continue;
1512 			INP_WLOCK(inpb);
1513 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1514 				tcp_reass_flush(tcpb);
1515 				tcp_clean_sackreport(tcpb);
1516 			}
1517 			INP_WUNLOCK(inpb);
1518 		}
1519 		INP_INFO_WUNLOCK(&V_tcbinfo);
1520 		CURVNET_RESTORE();
1521 	}
1522 	VNET_LIST_RUNLOCK_NOSLEEP();
1523 }
1524 
1525 /*
1526  * Notify a tcp user of an asynchronous error;
1527  * store error as soft error, but wake up user
1528  * (for now, won't do anything until can select for soft error).
1529  *
1530  * Do not wake up user since there currently is no mechanism for
1531  * reporting soft errors (yet - a kqueue filter may be added).
1532  */
1533 static struct inpcb *
1534 tcp_notify(struct inpcb *inp, int error)
1535 {
1536 	struct tcpcb *tp;
1537 
1538 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1539 	INP_WLOCK_ASSERT(inp);
1540 
1541 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1542 	    (inp->inp_flags & INP_DROPPED))
1543 		return (inp);
1544 
1545 	tp = intotcpcb(inp);
1546 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1547 
1548 	/*
1549 	 * Ignore some errors if we are hooked up.
1550 	 * If connection hasn't completed, has retransmitted several times,
1551 	 * and receives a second error, give up now.  This is better
1552 	 * than waiting a long time to establish a connection that
1553 	 * can never complete.
1554 	 */
1555 	if (tp->t_state == TCPS_ESTABLISHED &&
1556 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1557 	     error == EHOSTDOWN)) {
1558 		return (inp);
1559 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1560 	    tp->t_softerror) {
1561 		tp = tcp_drop(tp, error);
1562 		if (tp != NULL)
1563 			return (inp);
1564 		else
1565 			return (NULL);
1566 	} else {
1567 		tp->t_softerror = error;
1568 		return (inp);
1569 	}
1570 #if 0
1571 	wakeup( &so->so_timeo);
1572 	sorwakeup(so);
1573 	sowwakeup(so);
1574 #endif
1575 }
1576 
1577 static int
1578 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1579 {
1580 	int error, i, m, n, pcb_count;
1581 	struct inpcb *inp, **inp_list;
1582 	inp_gen_t gencnt;
1583 	struct xinpgen xig;
1584 
1585 	/*
1586 	 * The process of preparing the TCB list is too time-consuming and
1587 	 * resource-intensive to repeat twice on every request.
1588 	 */
1589 	if (req->oldptr == NULL) {
1590 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1591 		n += imax(n / 8, 10);
1592 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1593 		return (0);
1594 	}
1595 
1596 	if (req->newptr != NULL)
1597 		return (EPERM);
1598 
1599 	/*
1600 	 * OK, now we're committed to doing something.
1601 	 */
1602 	INP_LIST_RLOCK(&V_tcbinfo);
1603 	gencnt = V_tcbinfo.ipi_gencnt;
1604 	n = V_tcbinfo.ipi_count;
1605 	INP_LIST_RUNLOCK(&V_tcbinfo);
1606 
1607 	m = syncache_pcbcount();
1608 
1609 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1610 		+ (n + m) * sizeof(struct xtcpcb));
1611 	if (error != 0)
1612 		return (error);
1613 
1614 	xig.xig_len = sizeof xig;
1615 	xig.xig_count = n + m;
1616 	xig.xig_gen = gencnt;
1617 	xig.xig_sogen = so_gencnt;
1618 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1619 	if (error)
1620 		return (error);
1621 
1622 	error = syncache_pcblist(req, m, &pcb_count);
1623 	if (error)
1624 		return (error);
1625 
1626 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1627 	if (inp_list == NULL)
1628 		return (ENOMEM);
1629 
1630 	INP_INFO_WLOCK(&V_tcbinfo);
1631 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1632 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1633 		INP_WLOCK(inp);
1634 		if (inp->inp_gencnt <= gencnt) {
1635 			/*
1636 			 * XXX: This use of cr_cansee(), introduced with
1637 			 * TCP state changes, is not quite right, but for
1638 			 * now, better than nothing.
1639 			 */
1640 			if (inp->inp_flags & INP_TIMEWAIT) {
1641 				if (intotw(inp) != NULL)
1642 					error = cr_cansee(req->td->td_ucred,
1643 					    intotw(inp)->tw_cred);
1644 				else
1645 					error = EINVAL;	/* Skip this inp. */
1646 			} else
1647 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1648 			if (error == 0) {
1649 				in_pcbref(inp);
1650 				inp_list[i++] = inp;
1651 			}
1652 		}
1653 		INP_WUNLOCK(inp);
1654 	}
1655 	INP_INFO_WUNLOCK(&V_tcbinfo);
1656 	n = i;
1657 
1658 	error = 0;
1659 	for (i = 0; i < n; i++) {
1660 		inp = inp_list[i];
1661 		INP_RLOCK(inp);
1662 		if (inp->inp_gencnt <= gencnt) {
1663 			struct xtcpcb xt;
1664 			void *inp_ppcb;
1665 
1666 			bzero(&xt, sizeof(xt));
1667 			xt.xt_len = sizeof xt;
1668 			/* XXX should avoid extra copy */
1669 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1670 			inp_ppcb = inp->inp_ppcb;
1671 			if (inp_ppcb == NULL)
1672 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1673 			else if (inp->inp_flags & INP_TIMEWAIT) {
1674 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1675 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1676 			} else {
1677 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1678 				if (xt.xt_tp.t_timers)
1679 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1680 			}
1681 			if (inp->inp_socket != NULL)
1682 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1683 			else {
1684 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1685 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1686 			}
1687 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1688 			INP_RUNLOCK(inp);
1689 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1690 		} else
1691 			INP_RUNLOCK(inp);
1692 	}
1693 	INP_INFO_RLOCK(&V_tcbinfo);
1694 	for (i = 0; i < n; i++) {
1695 		inp = inp_list[i];
1696 		INP_RLOCK(inp);
1697 		if (!in_pcbrele_rlocked(inp))
1698 			INP_RUNLOCK(inp);
1699 	}
1700 	INP_INFO_RUNLOCK(&V_tcbinfo);
1701 
1702 	if (!error) {
1703 		/*
1704 		 * Give the user an updated idea of our state.
1705 		 * If the generation differs from what we told
1706 		 * her before, she knows that something happened
1707 		 * while we were processing this request, and it
1708 		 * might be necessary to retry.
1709 		 */
1710 		INP_LIST_RLOCK(&V_tcbinfo);
1711 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1712 		xig.xig_sogen = so_gencnt;
1713 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1714 		INP_LIST_RUNLOCK(&V_tcbinfo);
1715 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1716 	}
1717 	free(inp_list, M_TEMP);
1718 	return (error);
1719 }
1720 
1721 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1722     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1723     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1724 
1725 #ifdef INET
1726 static int
1727 tcp_getcred(SYSCTL_HANDLER_ARGS)
1728 {
1729 	struct xucred xuc;
1730 	struct sockaddr_in addrs[2];
1731 	struct inpcb *inp;
1732 	int error;
1733 
1734 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1735 	if (error)
1736 		return (error);
1737 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1738 	if (error)
1739 		return (error);
1740 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1741 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1742 	if (inp != NULL) {
1743 		if (inp->inp_socket == NULL)
1744 			error = ENOENT;
1745 		if (error == 0)
1746 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1747 		if (error == 0)
1748 			cru2x(inp->inp_cred, &xuc);
1749 		INP_RUNLOCK(inp);
1750 	} else
1751 		error = ENOENT;
1752 	if (error == 0)
1753 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1754 	return (error);
1755 }
1756 
1757 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1758     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1759     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1760 #endif /* INET */
1761 
1762 #ifdef INET6
1763 static int
1764 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1765 {
1766 	struct xucred xuc;
1767 	struct sockaddr_in6 addrs[2];
1768 	struct inpcb *inp;
1769 	int error;
1770 #ifdef INET
1771 	int mapped = 0;
1772 #endif
1773 
1774 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1775 	if (error)
1776 		return (error);
1777 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1778 	if (error)
1779 		return (error);
1780 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1781 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1782 		return (error);
1783 	}
1784 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1785 #ifdef INET
1786 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1787 			mapped = 1;
1788 		else
1789 #endif
1790 			return (EINVAL);
1791 	}
1792 
1793 #ifdef INET
1794 	if (mapped == 1)
1795 		inp = in_pcblookup(&V_tcbinfo,
1796 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1797 			addrs[1].sin6_port,
1798 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1799 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1800 	else
1801 #endif
1802 		inp = in6_pcblookup(&V_tcbinfo,
1803 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1804 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1805 			INPLOOKUP_RLOCKPCB, NULL);
1806 	if (inp != NULL) {
1807 		if (inp->inp_socket == NULL)
1808 			error = ENOENT;
1809 		if (error == 0)
1810 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1811 		if (error == 0)
1812 			cru2x(inp->inp_cred, &xuc);
1813 		INP_RUNLOCK(inp);
1814 	} else
1815 		error = ENOENT;
1816 	if (error == 0)
1817 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1818 	return (error);
1819 }
1820 
1821 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1822     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1823     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1824 #endif /* INET6 */
1825 
1826 
1827 #ifdef INET
1828 void
1829 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1830 {
1831 	struct ip *ip = vip;
1832 	struct tcphdr *th;
1833 	struct in_addr faddr;
1834 	struct inpcb *inp;
1835 	struct tcpcb *tp;
1836 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1837 	struct icmp *icp;
1838 	struct in_conninfo inc;
1839 	tcp_seq icmp_tcp_seq;
1840 	int mtu;
1841 
1842 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1843 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1844 		return;
1845 
1846 	if (cmd == PRC_MSGSIZE)
1847 		notify = tcp_mtudisc_notify;
1848 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1849 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1850 		notify = tcp_drop_syn_sent;
1851 	/*
1852 	 * Redirects don't need to be handled up here.
1853 	 */
1854 	else if (PRC_IS_REDIRECT(cmd))
1855 		return;
1856 	/*
1857 	 * Hostdead is ugly because it goes linearly through all PCBs.
1858 	 * XXX: We never get this from ICMP, otherwise it makes an
1859 	 * excellent DoS attack on machines with many connections.
1860 	 */
1861 	else if (cmd == PRC_HOSTDEAD)
1862 		ip = NULL;
1863 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1864 		return;
1865 
1866 	if (ip == NULL) {
1867 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1868 		return;
1869 	}
1870 
1871 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1872 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1873 	INP_INFO_RLOCK(&V_tcbinfo);
1874 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1875 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1876 	if (inp != NULL)  {
1877 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1878 		    !(inp->inp_flags & INP_DROPPED) &&
1879 		    !(inp->inp_socket == NULL)) {
1880 			icmp_tcp_seq = ntohl(th->th_seq);
1881 			tp = intotcpcb(inp);
1882 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1883 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1884 				if (cmd == PRC_MSGSIZE) {
1885 					/*
1886 					 * MTU discovery:
1887 					 * If we got a needfrag set the MTU
1888 					 * in the route to the suggested new
1889 					 * value (if given) and then notify.
1890 					 */
1891 				    	mtu = ntohs(icp->icmp_nextmtu);
1892 					/*
1893 					 * If no alternative MTU was
1894 					 * proposed, try the next smaller
1895 					 * one.
1896 					 */
1897 					if (!mtu)
1898 						mtu = ip_next_mtu(
1899 						    ntohs(ip->ip_len), 1);
1900 					if (mtu < V_tcp_minmss +
1901 					    sizeof(struct tcpiphdr))
1902 						mtu = V_tcp_minmss +
1903 						    sizeof(struct tcpiphdr);
1904 					/*
1905 					 * Only process the offered MTU if it
1906 					 * is smaller than the current one.
1907 					 */
1908 					if (mtu < tp->t_maxseg +
1909 					    sizeof(struct tcpiphdr)) {
1910 						bzero(&inc, sizeof(inc));
1911 						inc.inc_faddr = faddr;
1912 						inc.inc_fibnum =
1913 						    inp->inp_inc.inc_fibnum;
1914 						tcp_hc_updatemtu(&inc, mtu);
1915 						tcp_mtudisc(inp, mtu);
1916 					}
1917 				} else
1918 					inp = (*notify)(inp,
1919 					    inetctlerrmap[cmd]);
1920 			}
1921 		}
1922 		if (inp != NULL)
1923 			INP_WUNLOCK(inp);
1924 	} else {
1925 		bzero(&inc, sizeof(inc));
1926 		inc.inc_fport = th->th_dport;
1927 		inc.inc_lport = th->th_sport;
1928 		inc.inc_faddr = faddr;
1929 		inc.inc_laddr = ip->ip_src;
1930 		syncache_unreach(&inc, th);
1931 	}
1932 	INP_INFO_RUNLOCK(&V_tcbinfo);
1933 }
1934 #endif /* INET */
1935 
1936 #ifdef INET6
1937 void
1938 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1939 {
1940 	struct tcphdr th;
1941 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1942 	struct ip6_hdr *ip6;
1943 	struct mbuf *m;
1944 	struct ip6ctlparam *ip6cp = NULL;
1945 	const struct sockaddr_in6 *sa6_src = NULL;
1946 	int off;
1947 	struct tcp_portonly {
1948 		u_int16_t th_sport;
1949 		u_int16_t th_dport;
1950 	} *thp;
1951 
1952 	if (sa->sa_family != AF_INET6 ||
1953 	    sa->sa_len != sizeof(struct sockaddr_in6))
1954 		return;
1955 
1956 	if (cmd == PRC_MSGSIZE)
1957 		notify = tcp_mtudisc_notify;
1958 	else if (!PRC_IS_REDIRECT(cmd) &&
1959 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1960 		return;
1961 
1962 	/* if the parameter is from icmp6, decode it. */
1963 	if (d != NULL) {
1964 		ip6cp = (struct ip6ctlparam *)d;
1965 		m = ip6cp->ip6c_m;
1966 		ip6 = ip6cp->ip6c_ip6;
1967 		off = ip6cp->ip6c_off;
1968 		sa6_src = ip6cp->ip6c_src;
1969 	} else {
1970 		m = NULL;
1971 		ip6 = NULL;
1972 		off = 0;	/* fool gcc */
1973 		sa6_src = &sa6_any;
1974 	}
1975 
1976 	if (ip6 != NULL) {
1977 		struct in_conninfo inc;
1978 		/*
1979 		 * XXX: We assume that when IPV6 is non NULL,
1980 		 * M and OFF are valid.
1981 		 */
1982 
1983 		/* check if we can safely examine src and dst ports */
1984 		if (m->m_pkthdr.len < off + sizeof(*thp))
1985 			return;
1986 
1987 		bzero(&th, sizeof(th));
1988 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1989 
1990 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1991 		    (struct sockaddr *)ip6cp->ip6c_src,
1992 		    th.th_sport, cmd, NULL, notify);
1993 
1994 		bzero(&inc, sizeof(inc));
1995 		inc.inc_fport = th.th_dport;
1996 		inc.inc_lport = th.th_sport;
1997 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1998 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1999 		inc.inc_flags |= INC_ISIPV6;
2000 		INP_INFO_RLOCK(&V_tcbinfo);
2001 		syncache_unreach(&inc, &th);
2002 		INP_INFO_RUNLOCK(&V_tcbinfo);
2003 	} else
2004 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2005 			      0, cmd, NULL, notify);
2006 }
2007 #endif /* INET6 */
2008 
2009 
2010 /*
2011  * Following is where TCP initial sequence number generation occurs.
2012  *
2013  * There are two places where we must use initial sequence numbers:
2014  * 1.  In SYN-ACK packets.
2015  * 2.  In SYN packets.
2016  *
2017  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2018  * tcp_syncache.c for details.
2019  *
2020  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2021  * depends on this property.  In addition, these ISNs should be
2022  * unguessable so as to prevent connection hijacking.  To satisfy
2023  * the requirements of this situation, the algorithm outlined in
2024  * RFC 1948 is used, with only small modifications.
2025  *
2026  * Implementation details:
2027  *
2028  * Time is based off the system timer, and is corrected so that it
2029  * increases by one megabyte per second.  This allows for proper
2030  * recycling on high speed LANs while still leaving over an hour
2031  * before rollover.
2032  *
2033  * As reading the *exact* system time is too expensive to be done
2034  * whenever setting up a TCP connection, we increment the time
2035  * offset in two ways.  First, a small random positive increment
2036  * is added to isn_offset for each connection that is set up.
2037  * Second, the function tcp_isn_tick fires once per clock tick
2038  * and increments isn_offset as necessary so that sequence numbers
2039  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2040  * random positive increments serve only to ensure that the same
2041  * exact sequence number is never sent out twice (as could otherwise
2042  * happen when a port is recycled in less than the system tick
2043  * interval.)
2044  *
2045  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2046  * between seeding of isn_secret.  This is normally set to zero,
2047  * as reseeding should not be necessary.
2048  *
2049  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2050  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2051  * general, this means holding an exclusive (write) lock.
2052  */
2053 
2054 #define ISN_BYTES_PER_SECOND 1048576
2055 #define ISN_STATIC_INCREMENT 4096
2056 #define ISN_RANDOM_INCREMENT (4096 - 1)
2057 
2058 static VNET_DEFINE(u_char, isn_secret[32]);
2059 static VNET_DEFINE(int, isn_last);
2060 static VNET_DEFINE(int, isn_last_reseed);
2061 static VNET_DEFINE(u_int32_t, isn_offset);
2062 static VNET_DEFINE(u_int32_t, isn_offset_old);
2063 
2064 #define	V_isn_secret			VNET(isn_secret)
2065 #define	V_isn_last			VNET(isn_last)
2066 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2067 #define	V_isn_offset			VNET(isn_offset)
2068 #define	V_isn_offset_old		VNET(isn_offset_old)
2069 
2070 tcp_seq
2071 tcp_new_isn(struct tcpcb *tp)
2072 {
2073 	MD5_CTX isn_ctx;
2074 	u_int32_t md5_buffer[4];
2075 	tcp_seq new_isn;
2076 	u_int32_t projected_offset;
2077 
2078 	INP_WLOCK_ASSERT(tp->t_inpcb);
2079 
2080 	ISN_LOCK();
2081 	/* Seed if this is the first use, reseed if requested. */
2082 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2083 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2084 		< (u_int)ticks))) {
2085 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2086 		V_isn_last_reseed = ticks;
2087 	}
2088 
2089 	/* Compute the md5 hash and return the ISN. */
2090 	MD5Init(&isn_ctx);
2091 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2092 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2093 #ifdef INET6
2094 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2095 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2096 			  sizeof(struct in6_addr));
2097 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2098 			  sizeof(struct in6_addr));
2099 	} else
2100 #endif
2101 	{
2102 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2103 			  sizeof(struct in_addr));
2104 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2105 			  sizeof(struct in_addr));
2106 	}
2107 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2108 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2109 	new_isn = (tcp_seq) md5_buffer[0];
2110 	V_isn_offset += ISN_STATIC_INCREMENT +
2111 		(arc4random() & ISN_RANDOM_INCREMENT);
2112 	if (ticks != V_isn_last) {
2113 		projected_offset = V_isn_offset_old +
2114 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2115 		if (SEQ_GT(projected_offset, V_isn_offset))
2116 			V_isn_offset = projected_offset;
2117 		V_isn_offset_old = V_isn_offset;
2118 		V_isn_last = ticks;
2119 	}
2120 	new_isn += V_isn_offset;
2121 	ISN_UNLOCK();
2122 	return (new_isn);
2123 }
2124 
2125 /*
2126  * When a specific ICMP unreachable message is received and the
2127  * connection state is SYN-SENT, drop the connection.  This behavior
2128  * is controlled by the icmp_may_rst sysctl.
2129  */
2130 struct inpcb *
2131 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2132 {
2133 	struct tcpcb *tp;
2134 
2135 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2136 	INP_WLOCK_ASSERT(inp);
2137 
2138 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2139 	    (inp->inp_flags & INP_DROPPED))
2140 		return (inp);
2141 
2142 	tp = intotcpcb(inp);
2143 	if (tp->t_state != TCPS_SYN_SENT)
2144 		return (inp);
2145 
2146 	tp = tcp_drop(tp, errno);
2147 	if (tp != NULL)
2148 		return (inp);
2149 	else
2150 		return (NULL);
2151 }
2152 
2153 /*
2154  * When `need fragmentation' ICMP is received, update our idea of the MSS
2155  * based on the new value. Also nudge TCP to send something, since we
2156  * know the packet we just sent was dropped.
2157  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2158  */
2159 static struct inpcb *
2160 tcp_mtudisc_notify(struct inpcb *inp, int error)
2161 {
2162 
2163 	tcp_mtudisc(inp, -1);
2164 	return (inp);
2165 }
2166 
2167 static void
2168 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2169 {
2170 	struct tcpcb *tp;
2171 	struct socket *so;
2172 
2173 	INP_WLOCK_ASSERT(inp);
2174 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2175 	    (inp->inp_flags & INP_DROPPED))
2176 		return;
2177 
2178 	tp = intotcpcb(inp);
2179 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2180 
2181 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2182 
2183 	so = inp->inp_socket;
2184 	SOCKBUF_LOCK(&so->so_snd);
2185 	/* If the mss is larger than the socket buffer, decrease the mss. */
2186 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2187 		tp->t_maxseg = so->so_snd.sb_hiwat;
2188 	SOCKBUF_UNLOCK(&so->so_snd);
2189 
2190 	TCPSTAT_INC(tcps_mturesent);
2191 	tp->t_rtttime = 0;
2192 	tp->snd_nxt = tp->snd_una;
2193 	tcp_free_sackholes(tp);
2194 	tp->snd_recover = tp->snd_max;
2195 	if (tp->t_flags & TF_SACK_PERMIT)
2196 		EXIT_FASTRECOVERY(tp->t_flags);
2197 	tp->t_fb->tfb_tcp_output(tp);
2198 }
2199 
2200 #ifdef INET
2201 /*
2202  * Look-up the routing entry to the peer of this inpcb.  If no route
2203  * is found and it cannot be allocated, then return 0.  This routine
2204  * is called by TCP routines that access the rmx structure and by
2205  * tcp_mss_update to get the peer/interface MTU.
2206  */
2207 u_long
2208 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2209 {
2210 	struct nhop4_extended nh4;
2211 	struct ifnet *ifp;
2212 	u_long maxmtu = 0;
2213 
2214 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2215 
2216 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2217 
2218 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2219 		    NHR_REF, 0, &nh4) != 0)
2220 			return (0);
2221 
2222 		ifp = nh4.nh_ifp;
2223 		maxmtu = nh4.nh_mtu;
2224 
2225 		/* Report additional interface capabilities. */
2226 		if (cap != NULL) {
2227 			if (ifp->if_capenable & IFCAP_TSO4 &&
2228 			    ifp->if_hwassist & CSUM_TSO) {
2229 				cap->ifcap |= CSUM_TSO;
2230 				cap->tsomax = ifp->if_hw_tsomax;
2231 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2232 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2233 			}
2234 		}
2235 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2236 	}
2237 	return (maxmtu);
2238 }
2239 #endif /* INET */
2240 
2241 #ifdef INET6
2242 u_long
2243 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2244 {
2245 	struct nhop6_extended nh6;
2246 	struct in6_addr dst6;
2247 	uint32_t scopeid;
2248 	struct ifnet *ifp;
2249 	u_long maxmtu = 0;
2250 
2251 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2252 
2253 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2254 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2255 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2256 		    0, &nh6) != 0)
2257 			return (0);
2258 
2259 		ifp = nh6.nh_ifp;
2260 		maxmtu = nh6.nh_mtu;
2261 
2262 		/* Report additional interface capabilities. */
2263 		if (cap != NULL) {
2264 			if (ifp->if_capenable & IFCAP_TSO6 &&
2265 			    ifp->if_hwassist & CSUM_TSO) {
2266 				cap->ifcap |= CSUM_TSO;
2267 				cap->tsomax = ifp->if_hw_tsomax;
2268 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2269 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2270 			}
2271 		}
2272 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2273 	}
2274 
2275 	return (maxmtu);
2276 }
2277 #endif /* INET6 */
2278 
2279 /*
2280  * Calculate effective SMSS per RFC5681 definition for a given TCP
2281  * connection at its current state, taking into account SACK and etc.
2282  */
2283 u_int
2284 tcp_maxseg(const struct tcpcb *tp)
2285 {
2286 	u_int optlen;
2287 
2288 	if (tp->t_flags & TF_NOOPT)
2289 		return (tp->t_maxseg);
2290 
2291 	/*
2292 	 * Here we have a simplified code from tcp_addoptions(),
2293 	 * without a proper loop, and having most of paddings hardcoded.
2294 	 * We might make mistakes with padding here in some edge cases,
2295 	 * but this is harmless, since result of tcp_maxseg() is used
2296 	 * only in cwnd and ssthresh estimations.
2297 	 */
2298 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2299 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2300 		if (tp->t_flags & TF_RCVD_TSTMP)
2301 			optlen = TCPOLEN_TSTAMP_APPA;
2302 		else
2303 			optlen = 0;
2304 #ifdef TCP_SIGNATURE
2305 		if (tp->t_flags & TF_SIGNATURE)
2306 			optlen += PAD(TCPOLEN_SIGNATURE);
2307 #endif
2308 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2309 			optlen += TCPOLEN_SACKHDR;
2310 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2311 			optlen = PAD(optlen);
2312 		}
2313 	} else {
2314 		if (tp->t_flags & TF_REQ_TSTMP)
2315 			optlen = TCPOLEN_TSTAMP_APPA;
2316 		else
2317 			optlen = PAD(TCPOLEN_MAXSEG);
2318 		if (tp->t_flags & TF_REQ_SCALE)
2319 			optlen += PAD(TCPOLEN_WINDOW);
2320 #ifdef TCP_SIGNATURE
2321 		if (tp->t_flags & TF_SIGNATURE)
2322 			optlen += PAD(TCPOLEN_SIGNATURE);
2323 #endif
2324 		if (tp->t_flags & TF_SACK_PERMIT)
2325 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2326 	}
2327 #undef PAD
2328 	optlen = min(optlen, TCP_MAXOLEN);
2329 	return (tp->t_maxseg - optlen);
2330 }
2331 
2332 #ifdef IPSEC
2333 /* compute ESP/AH header size for TCP, including outer IP header. */
2334 size_t
2335 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2336 {
2337 	struct inpcb *inp;
2338 	struct mbuf *m;
2339 	size_t hdrsiz;
2340 	struct ip *ip;
2341 #ifdef INET6
2342 	struct ip6_hdr *ip6;
2343 #endif
2344 	struct tcphdr *th;
2345 
2346 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2347 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2348 		return (0);
2349 	m = m_gethdr(M_NOWAIT, MT_DATA);
2350 	if (!m)
2351 		return (0);
2352 
2353 #ifdef INET6
2354 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2355 		ip6 = mtod(m, struct ip6_hdr *);
2356 		th = (struct tcphdr *)(ip6 + 1);
2357 		m->m_pkthdr.len = m->m_len =
2358 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2359 		tcpip_fillheaders(inp, ip6, th);
2360 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2361 	} else
2362 #endif /* INET6 */
2363 	{
2364 		ip = mtod(m, struct ip *);
2365 		th = (struct tcphdr *)(ip + 1);
2366 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2367 		tcpip_fillheaders(inp, ip, th);
2368 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2369 	}
2370 
2371 	m_free(m);
2372 	return (hdrsiz);
2373 }
2374 #endif /* IPSEC */
2375 
2376 #ifdef TCP_SIGNATURE
2377 /*
2378  * Callback function invoked by m_apply() to digest TCP segment data
2379  * contained within an mbuf chain.
2380  */
2381 static int
2382 tcp_signature_apply(void *fstate, void *data, u_int len)
2383 {
2384 
2385 	MD5Update(fstate, (u_char *)data, len);
2386 	return (0);
2387 }
2388 
2389 /*
2390  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2391  * search with the destination IP address, and a 'magic SPI' to be
2392  * determined by the application. This is hardcoded elsewhere to 1179
2393 */
2394 struct secasvar *
2395 tcp_get_sav(struct mbuf *m, u_int direction)
2396 {
2397 	union sockaddr_union dst;
2398 	struct secasvar *sav;
2399 	struct ip *ip;
2400 #ifdef INET6
2401 	struct ip6_hdr *ip6;
2402 	char ip6buf[INET6_ADDRSTRLEN];
2403 #endif
2404 
2405 	/* Extract the destination from the IP header in the mbuf. */
2406 	bzero(&dst, sizeof(union sockaddr_union));
2407 	ip = mtod(m, struct ip *);
2408 #ifdef INET6
2409 	ip6 = NULL;	/* Make the compiler happy. */
2410 #endif
2411 	switch (ip->ip_v) {
2412 #ifdef INET
2413 	case IPVERSION:
2414 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2415 		dst.sa.sa_family = AF_INET;
2416 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2417 		    ip->ip_src : ip->ip_dst;
2418 		break;
2419 #endif
2420 #ifdef INET6
2421 	case (IPV6_VERSION >> 4):
2422 		ip6 = mtod(m, struct ip6_hdr *);
2423 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2424 		dst.sa.sa_family = AF_INET6;
2425 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2426 		    ip6->ip6_src : ip6->ip6_dst;
2427 		break;
2428 #endif
2429 	default:
2430 		return (NULL);
2431 		/* NOTREACHED */
2432 		break;
2433 	}
2434 
2435 	/* Look up an SADB entry which matches the address of the peer. */
2436 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2437 	if (sav == NULL) {
2438 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2439 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2440 #ifdef INET6
2441 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2442 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2443 #endif
2444 			"(unsupported)"));
2445 	}
2446 
2447 	return (sav);
2448 }
2449 
2450 /*
2451  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2452  *
2453  * Parameters:
2454  * m		pointer to head of mbuf chain
2455  * len		length of TCP segment data, excluding options
2456  * optlen	length of TCP segment options
2457  * buf		pointer to storage for computed MD5 digest
2458  * sav		pointer to security assosiation
2459  *
2460  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2461  * When called from tcp_input(), we can be sure that th_sum has been
2462  * zeroed out and verified already.
2463  *
2464  * Releases reference to SADB key before return.
2465  *
2466  * Return 0 if successful, otherwise return -1.
2467  *
2468  */
2469 int
2470 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2471     u_char *buf, struct secasvar *sav)
2472 {
2473 #ifdef INET
2474 	struct ippseudo ippseudo;
2475 #endif
2476 	MD5_CTX ctx;
2477 	int doff;
2478 	struct ip *ip;
2479 #ifdef INET
2480 	struct ipovly *ipovly;
2481 #endif
2482 	struct tcphdr *th;
2483 #ifdef INET6
2484 	struct ip6_hdr *ip6;
2485 	struct in6_addr in6;
2486 	uint32_t plen;
2487 	uint16_t nhdr;
2488 #endif
2489 	u_short savecsum;
2490 
2491 	KASSERT(m != NULL, ("NULL mbuf chain"));
2492 	KASSERT(buf != NULL, ("NULL signature pointer"));
2493 
2494 	/* Extract the destination from the IP header in the mbuf. */
2495 	ip = mtod(m, struct ip *);
2496 #ifdef INET6
2497 	ip6 = NULL;	/* Make the compiler happy. */
2498 #endif
2499 
2500 	MD5Init(&ctx);
2501 	/*
2502 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2503 	 *
2504 	 * XXX The ippseudo header MUST be digested in network byte order,
2505 	 * or else we'll fail the regression test. Assume all fields we've
2506 	 * been doing arithmetic on have been in host byte order.
2507 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2508 	 * tcp_output(), the underlying ip_len member has not yet been set.
2509 	 */
2510 	switch (ip->ip_v) {
2511 #ifdef INET
2512 	case IPVERSION:
2513 		ipovly = (struct ipovly *)ip;
2514 		ippseudo.ippseudo_src = ipovly->ih_src;
2515 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2516 		ippseudo.ippseudo_pad = 0;
2517 		ippseudo.ippseudo_p = IPPROTO_TCP;
2518 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2519 		    optlen);
2520 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2521 
2522 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2523 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2524 		break;
2525 #endif
2526 #ifdef INET6
2527 	/*
2528 	 * RFC 2385, 2.0  Proposal
2529 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2530 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2531 	 * extended next header value (to form 32 bits), and 32-bit segment
2532 	 * length.
2533 	 * Note: Upper-Layer Packet Length comes before Next Header.
2534 	 */
2535 	case (IPV6_VERSION >> 4):
2536 		in6 = ip6->ip6_src;
2537 		in6_clearscope(&in6);
2538 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2539 		in6 = ip6->ip6_dst;
2540 		in6_clearscope(&in6);
2541 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2542 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2543 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2544 		nhdr = 0;
2545 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2546 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2547 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2548 		nhdr = IPPROTO_TCP;
2549 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2550 
2551 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2552 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2553 		break;
2554 #endif
2555 	default:
2556 		KEY_FREESAV(&sav);
2557 		return (-1);
2558 		/* NOTREACHED */
2559 		break;
2560 	}
2561 
2562 
2563 	/*
2564 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2565 	 * The TCP checksum must be set to zero.
2566 	 */
2567 	savecsum = th->th_sum;
2568 	th->th_sum = 0;
2569 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2570 	th->th_sum = savecsum;
2571 
2572 	/*
2573 	 * Step 3: Update MD5 hash with TCP segment data.
2574 	 *         Use m_apply() to avoid an early m_pullup().
2575 	 */
2576 	if (len > 0)
2577 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2578 
2579 	/*
2580 	 * Step 4: Update MD5 hash with shared secret.
2581 	 */
2582 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2583 	MD5Final(buf, &ctx);
2584 
2585 	key_sa_recordxfer(sav, m);
2586 	KEY_FREESAV(&sav);
2587 	return (0);
2588 }
2589 
2590 /*
2591  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2592  *
2593  * Return 0 if successful, otherwise return -1.
2594  */
2595 int
2596 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2597     u_char *buf, u_int direction)
2598 {
2599 	struct secasvar *sav;
2600 
2601 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2602 		return (-1);
2603 
2604 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2605 }
2606 
2607 /*
2608  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2609  *
2610  * Parameters:
2611  * m		pointer to head of mbuf chain
2612  * len		length of TCP segment data, excluding options
2613  * optlen	length of TCP segment options
2614  * buf		pointer to storage for computed MD5 digest
2615  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2616  *
2617  * Return 1 if successful, otherwise return 0.
2618  */
2619 int
2620 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2621     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2622 {
2623 	char tmpdigest[TCP_SIGLEN];
2624 
2625 	if (tcp_sig_checksigs == 0)
2626 		return (1);
2627 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2628 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2629 
2630 			/*
2631 			 * If this socket is not expecting signature but
2632 			 * the segment contains signature just fail.
2633 			 */
2634 			TCPSTAT_INC(tcps_sig_err_sigopt);
2635 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2636 			return (0);
2637 		}
2638 
2639 		/* Signature is not expected, and not present in segment. */
2640 		return (1);
2641 	}
2642 
2643 	/*
2644 	 * If this socket is expecting signature but the segment does not
2645 	 * contain any just fail.
2646 	 */
2647 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2648 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2649 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2650 		return (0);
2651 	}
2652 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2653 	    IPSEC_DIR_INBOUND) == -1) {
2654 		TCPSTAT_INC(tcps_sig_err_buildsig);
2655 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2656 		return (0);
2657 	}
2658 
2659 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2660 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2661 		return (0);
2662 	}
2663 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2664 	return (1);
2665 }
2666 #endif /* TCP_SIGNATURE */
2667 
2668 static int
2669 sysctl_drop(SYSCTL_HANDLER_ARGS)
2670 {
2671 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2672 	struct sockaddr_storage addrs[2];
2673 	struct inpcb *inp;
2674 	struct tcpcb *tp;
2675 	struct tcptw *tw;
2676 	struct sockaddr_in *fin, *lin;
2677 #ifdef INET6
2678 	struct sockaddr_in6 *fin6, *lin6;
2679 #endif
2680 	int error;
2681 
2682 	inp = NULL;
2683 	fin = lin = NULL;
2684 #ifdef INET6
2685 	fin6 = lin6 = NULL;
2686 #endif
2687 	error = 0;
2688 
2689 	if (req->oldptr != NULL || req->oldlen != 0)
2690 		return (EINVAL);
2691 	if (req->newptr == NULL)
2692 		return (EPERM);
2693 	if (req->newlen < sizeof(addrs))
2694 		return (ENOMEM);
2695 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2696 	if (error)
2697 		return (error);
2698 
2699 	switch (addrs[0].ss_family) {
2700 #ifdef INET6
2701 	case AF_INET6:
2702 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2703 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2704 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2705 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2706 			return (EINVAL);
2707 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2708 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2709 				return (EINVAL);
2710 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2711 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2712 			fin = (struct sockaddr_in *)&addrs[0];
2713 			lin = (struct sockaddr_in *)&addrs[1];
2714 			break;
2715 		}
2716 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2717 		if (error)
2718 			return (error);
2719 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2720 		if (error)
2721 			return (error);
2722 		break;
2723 #endif
2724 #ifdef INET
2725 	case AF_INET:
2726 		fin = (struct sockaddr_in *)&addrs[0];
2727 		lin = (struct sockaddr_in *)&addrs[1];
2728 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2729 		    lin->sin_len != sizeof(struct sockaddr_in))
2730 			return (EINVAL);
2731 		break;
2732 #endif
2733 	default:
2734 		return (EINVAL);
2735 	}
2736 	INP_INFO_RLOCK(&V_tcbinfo);
2737 	switch (addrs[0].ss_family) {
2738 #ifdef INET6
2739 	case AF_INET6:
2740 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2741 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2742 		    INPLOOKUP_WLOCKPCB, NULL);
2743 		break;
2744 #endif
2745 #ifdef INET
2746 	case AF_INET:
2747 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2748 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2749 		break;
2750 #endif
2751 	}
2752 	if (inp != NULL) {
2753 		if (inp->inp_flags & INP_TIMEWAIT) {
2754 			/*
2755 			 * XXXRW: There currently exists a state where an
2756 			 * inpcb is present, but its timewait state has been
2757 			 * discarded.  For now, don't allow dropping of this
2758 			 * type of inpcb.
2759 			 */
2760 			tw = intotw(inp);
2761 			if (tw != NULL)
2762 				tcp_twclose(tw, 0);
2763 			else
2764 				INP_WUNLOCK(inp);
2765 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2766 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2767 			tp = intotcpcb(inp);
2768 			tp = tcp_drop(tp, ECONNABORTED);
2769 			if (tp != NULL)
2770 				INP_WUNLOCK(inp);
2771 		} else
2772 			INP_WUNLOCK(inp);
2773 	} else
2774 		error = ESRCH;
2775 	INP_INFO_RUNLOCK(&V_tcbinfo);
2776 	return (error);
2777 }
2778 
2779 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2780     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2781     0, sysctl_drop, "", "Drop TCP connection");
2782 
2783 /*
2784  * Generate a standardized TCP log line for use throughout the
2785  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2786  * allow use in the interrupt context.
2787  *
2788  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2789  * NB: The function may return NULL if memory allocation failed.
2790  *
2791  * Due to header inclusion and ordering limitations the struct ip
2792  * and ip6_hdr pointers have to be passed as void pointers.
2793  */
2794 char *
2795 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2796     const void *ip6hdr)
2797 {
2798 
2799 	/* Is logging enabled? */
2800 	if (tcp_log_in_vain == 0)
2801 		return (NULL);
2802 
2803 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2804 }
2805 
2806 char *
2807 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2808     const void *ip6hdr)
2809 {
2810 
2811 	/* Is logging enabled? */
2812 	if (tcp_log_debug == 0)
2813 		return (NULL);
2814 
2815 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2816 }
2817 
2818 static char *
2819 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2820     const void *ip6hdr)
2821 {
2822 	char *s, *sp;
2823 	size_t size;
2824 	struct ip *ip;
2825 #ifdef INET6
2826 	const struct ip6_hdr *ip6;
2827 
2828 	ip6 = (const struct ip6_hdr *)ip6hdr;
2829 #endif /* INET6 */
2830 	ip = (struct ip *)ip4hdr;
2831 
2832 	/*
2833 	 * The log line looks like this:
2834 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2835 	 */
2836 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2837 	    sizeof(PRINT_TH_FLAGS) + 1 +
2838 #ifdef INET6
2839 	    2 * INET6_ADDRSTRLEN;
2840 #else
2841 	    2 * INET_ADDRSTRLEN;
2842 #endif /* INET6 */
2843 
2844 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2845 	if (s == NULL)
2846 		return (NULL);
2847 
2848 	strcat(s, "TCP: [");
2849 	sp = s + strlen(s);
2850 
2851 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2852 		inet_ntoa_r(inc->inc_faddr, sp);
2853 		sp = s + strlen(s);
2854 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2855 		sp = s + strlen(s);
2856 		inet_ntoa_r(inc->inc_laddr, sp);
2857 		sp = s + strlen(s);
2858 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2859 #ifdef INET6
2860 	} else if (inc) {
2861 		ip6_sprintf(sp, &inc->inc6_faddr);
2862 		sp = s + strlen(s);
2863 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2864 		sp = s + strlen(s);
2865 		ip6_sprintf(sp, &inc->inc6_laddr);
2866 		sp = s + strlen(s);
2867 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2868 	} else if (ip6 && th) {
2869 		ip6_sprintf(sp, &ip6->ip6_src);
2870 		sp = s + strlen(s);
2871 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2872 		sp = s + strlen(s);
2873 		ip6_sprintf(sp, &ip6->ip6_dst);
2874 		sp = s + strlen(s);
2875 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2876 #endif /* INET6 */
2877 #ifdef INET
2878 	} else if (ip && th) {
2879 		inet_ntoa_r(ip->ip_src, sp);
2880 		sp = s + strlen(s);
2881 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2882 		sp = s + strlen(s);
2883 		inet_ntoa_r(ip->ip_dst, sp);
2884 		sp = s + strlen(s);
2885 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2886 #endif /* INET */
2887 	} else {
2888 		free(s, M_TCPLOG);
2889 		return (NULL);
2890 	}
2891 	sp = s + strlen(s);
2892 	if (th)
2893 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2894 	if (*(s + size - 1) != '\0')
2895 		panic("%s: string too long", __func__);
2896 	return (s);
2897 }
2898 
2899 /*
2900  * A subroutine which makes it easy to track TCP state changes with DTrace.
2901  * This function shouldn't be called for t_state initializations that don't
2902  * correspond to actual TCP state transitions.
2903  */
2904 void
2905 tcp_state_change(struct tcpcb *tp, int newstate)
2906 {
2907 #if defined(KDTRACE_HOOKS)
2908 	int pstate = tp->t_state;
2909 #endif
2910 
2911 	tp->t_state = newstate;
2912 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2913 }
2914