1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/eventhandler.h> 45 #include <sys/hhook.h> 46 #include <sys/kernel.h> 47 #include <sys/khelp.h> 48 #include <sys/sysctl.h> 49 #include <sys/jail.h> 50 #include <sys/malloc.h> 51 #include <sys/refcount.h> 52 #include <sys/mbuf.h> 53 #ifdef INET6 54 #include <sys/domain.h> 55 #endif 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/protosw.h> 62 #include <sys/random.h> 63 64 #include <vm/uma.h> 65 66 #include <net/route.h> 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_var.h> 80 #ifdef INET6 81 #include <netinet/ip6.h> 82 #include <netinet6/in6_fib.h> 83 #include <netinet6/in6_pcb.h> 84 #include <netinet6/ip6_var.h> 85 #include <netinet6/scope6_var.h> 86 #include <netinet6/nd6.h> 87 #endif 88 89 #ifdef TCP_RFC7413 90 #include <netinet/tcp_fastopen.h> 91 #endif 92 #include <netinet/tcp.h> 93 #include <netinet/tcp_fsm.h> 94 #include <netinet/tcp_seq.h> 95 #include <netinet/tcp_timer.h> 96 #include <netinet/tcp_var.h> 97 #include <netinet/tcp_syncache.h> 98 #include <netinet/tcp_cc.h> 99 #ifdef INET6 100 #include <netinet6/tcp6_var.h> 101 #endif 102 #include <netinet/tcpip.h> 103 #ifdef TCPPCAP 104 #include <netinet/tcp_pcap.h> 105 #endif 106 #ifdef TCPDEBUG 107 #include <netinet/tcp_debug.h> 108 #endif 109 #ifdef INET6 110 #include <netinet6/ip6protosw.h> 111 #endif 112 #ifdef TCP_OFFLOAD 113 #include <netinet/tcp_offload.h> 114 #endif 115 116 #ifdef IPSEC 117 #include <netipsec/ipsec.h> 118 #include <netipsec/xform.h> 119 #ifdef INET6 120 #include <netipsec/ipsec6.h> 121 #endif 122 #include <netipsec/key.h> 123 #include <sys/syslog.h> 124 #endif /*IPSEC*/ 125 126 #include <machine/in_cksum.h> 127 #include <sys/md5.h> 128 129 #include <security/mac/mac_framework.h> 130 131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 132 #ifdef INET6 133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 134 #endif 135 136 struct rwlock tcp_function_lock; 137 138 static int 139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 140 { 141 int error, new; 142 143 new = V_tcp_mssdflt; 144 error = sysctl_handle_int(oidp, &new, 0, req); 145 if (error == 0 && req->newptr) { 146 if (new < TCP_MINMSS) 147 error = EINVAL; 148 else 149 V_tcp_mssdflt = new; 150 } 151 return (error); 152 } 153 154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 155 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 156 &sysctl_net_inet_tcp_mss_check, "I", 157 "Default TCP Maximum Segment Size"); 158 159 #ifdef INET6 160 static int 161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 162 { 163 int error, new; 164 165 new = V_tcp_v6mssdflt; 166 error = sysctl_handle_int(oidp, &new, 0, req); 167 if (error == 0 && req->newptr) { 168 if (new < TCP_MINMSS) 169 error = EINVAL; 170 else 171 V_tcp_v6mssdflt = new; 172 } 173 return (error); 174 } 175 176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 178 &sysctl_net_inet_tcp_mss_v6_check, "I", 179 "Default TCP Maximum Segment Size for IPv6"); 180 #endif /* INET6 */ 181 182 /* 183 * Minimum MSS we accept and use. This prevents DoS attacks where 184 * we are forced to a ridiculous low MSS like 20 and send hundreds 185 * of packets instead of one. The effect scales with the available 186 * bandwidth and quickly saturates the CPU and network interface 187 * with packet generation and sending. Set to zero to disable MINMSS 188 * checking. This setting prevents us from sending too small packets. 189 */ 190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 192 &VNET_NAME(tcp_minmss), 0, 193 "Minimum TCP Maximum Segment Size"); 194 195 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(tcp_do_rfc1323), 0, 198 "Enable rfc1323 (high performance TCP) extensions"); 199 200 static int tcp_log_debug = 0; 201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 202 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 203 204 static int tcp_tcbhashsize; 205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 206 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 207 208 static int do_tcpdrain = 1; 209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 210 "Enable tcp_drain routine for extra help when low on mbufs"); 211 212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 213 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 214 215 static VNET_DEFINE(int, icmp_may_rst) = 1; 216 #define V_icmp_may_rst VNET(icmp_may_rst) 217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 218 &VNET_NAME(icmp_may_rst), 0, 219 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 220 221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 222 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 224 &VNET_NAME(tcp_isn_reseed_interval), 0, 225 "Seconds between reseeding of ISN secret"); 226 227 static int tcp_soreceive_stream; 228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 229 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 230 231 #ifdef TCP_SIGNATURE 232 static int tcp_sig_checksigs = 1; 233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 234 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 235 #endif 236 237 VNET_DEFINE(uma_zone_t, sack_hole_zone); 238 #define V_sack_hole_zone VNET(sack_hole_zone) 239 240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 241 242 static struct inpcb *tcp_notify(struct inpcb *, int); 243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 244 static void tcp_mtudisc(struct inpcb *, int); 245 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 246 void *ip4hdr, const void *ip6hdr); 247 static void tcp_timer_discard(struct tcpcb *, uint32_t); 248 249 250 static struct tcp_function_block tcp_def_funcblk = { 251 "default", 252 tcp_output, 253 tcp_do_segment, 254 tcp_default_ctloutput, 255 NULL, 256 NULL, 257 NULL, 258 NULL, 259 NULL, 260 NULL, 261 NULL, 262 0, 263 0 264 }; 265 266 struct tcp_funchead t_functions; 267 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; 268 269 static struct tcp_function_block * 270 find_tcp_functions_locked(struct tcp_function_set *fs) 271 { 272 struct tcp_function *f; 273 struct tcp_function_block *blk=NULL; 274 275 TAILQ_FOREACH(f, &t_functions, tf_next) { 276 if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) { 277 blk = f->tf_fb; 278 break; 279 } 280 } 281 return(blk); 282 } 283 284 static struct tcp_function_block * 285 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 286 { 287 struct tcp_function_block *rblk=NULL; 288 struct tcp_function *f; 289 290 TAILQ_FOREACH(f, &t_functions, tf_next) { 291 if (f->tf_fb == blk) { 292 rblk = blk; 293 if (s) { 294 *s = f; 295 } 296 break; 297 } 298 } 299 return (rblk); 300 } 301 302 struct tcp_function_block * 303 find_and_ref_tcp_functions(struct tcp_function_set *fs) 304 { 305 struct tcp_function_block *blk; 306 307 rw_rlock(&tcp_function_lock); 308 blk = find_tcp_functions_locked(fs); 309 if (blk) 310 refcount_acquire(&blk->tfb_refcnt); 311 rw_runlock(&tcp_function_lock); 312 return(blk); 313 } 314 315 struct tcp_function_block * 316 find_and_ref_tcp_fb(struct tcp_function_block *blk) 317 { 318 struct tcp_function_block *rblk; 319 320 rw_rlock(&tcp_function_lock); 321 rblk = find_tcp_fb_locked(blk, NULL); 322 if (rblk) 323 refcount_acquire(&rblk->tfb_refcnt); 324 rw_runlock(&tcp_function_lock); 325 return(rblk); 326 } 327 328 329 static int 330 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 331 { 332 int error=ENOENT; 333 struct tcp_function_set fs; 334 struct tcp_function_block *blk; 335 336 memset(&fs, 0, sizeof(fs)); 337 rw_rlock(&tcp_function_lock); 338 blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); 339 if (blk) { 340 /* Found him */ 341 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 342 fs.pcbcnt = blk->tfb_refcnt; 343 } 344 rw_runlock(&tcp_function_lock); 345 error = sysctl_handle_string(oidp, fs.function_set_name, 346 sizeof(fs.function_set_name), req); 347 348 /* Check for error or no change */ 349 if (error != 0 || req->newptr == NULL) 350 return(error); 351 352 rw_wlock(&tcp_function_lock); 353 blk = find_tcp_functions_locked(&fs); 354 if ((blk == NULL) || 355 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 356 error = ENOENT; 357 goto done; 358 } 359 tcp_func_set_ptr = blk; 360 done: 361 rw_wunlock(&tcp_function_lock); 362 return (error); 363 } 364 365 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 366 CTLTYPE_STRING | CTLFLAG_RW, 367 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 368 "Set/get the default TCP functions"); 369 370 static int 371 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 372 { 373 int error, cnt, linesz; 374 struct tcp_function *f; 375 char *buffer, *cp; 376 size_t bufsz, outsz; 377 378 cnt = 0; 379 rw_rlock(&tcp_function_lock); 380 TAILQ_FOREACH(f, &t_functions, tf_next) { 381 cnt++; 382 } 383 rw_runlock(&tcp_function_lock); 384 385 bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1; 386 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 387 388 error = 0; 389 cp = buffer; 390 391 linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count"); 392 cp += linesz; 393 bufsz -= linesz; 394 outsz = linesz; 395 396 rw_rlock(&tcp_function_lock); 397 TAILQ_FOREACH(f, &t_functions, tf_next) { 398 linesz = snprintf(cp, bufsz, "%-32s%c %u\n", 399 f->tf_fb->tfb_tcp_block_name, 400 (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', 401 f->tf_fb->tfb_refcnt); 402 if (linesz >= bufsz) { 403 error = EOVERFLOW; 404 break; 405 } 406 cp += linesz; 407 bufsz -= linesz; 408 outsz += linesz; 409 } 410 rw_runlock(&tcp_function_lock); 411 if (error == 0) 412 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 413 free(buffer, M_TEMP); 414 return (error); 415 } 416 417 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 418 CTLTYPE_STRING|CTLFLAG_RD, 419 NULL, 0, sysctl_net_inet_list_available, "A", 420 "list available TCP Function sets"); 421 422 /* 423 * Target size of TCP PCB hash tables. Must be a power of two. 424 * 425 * Note that this can be overridden by the kernel environment 426 * variable net.inet.tcp.tcbhashsize 427 */ 428 #ifndef TCBHASHSIZE 429 #define TCBHASHSIZE 0 430 #endif 431 432 /* 433 * XXX 434 * Callouts should be moved into struct tcp directly. They are currently 435 * separate because the tcpcb structure is exported to userland for sysctl 436 * parsing purposes, which do not know about callouts. 437 */ 438 struct tcpcb_mem { 439 struct tcpcb tcb; 440 struct tcp_timer tt; 441 struct cc_var ccv; 442 struct osd osd; 443 }; 444 445 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 446 #define V_tcpcb_zone VNET(tcpcb_zone) 447 448 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 449 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 450 451 static struct mtx isn_mtx; 452 453 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 454 #define ISN_LOCK() mtx_lock(&isn_mtx) 455 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 456 457 /* 458 * TCP initialization. 459 */ 460 static void 461 tcp_zone_change(void *tag) 462 { 463 464 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 465 uma_zone_set_max(V_tcpcb_zone, maxsockets); 466 tcp_tw_zone_change(); 467 } 468 469 static int 470 tcp_inpcb_init(void *mem, int size, int flags) 471 { 472 struct inpcb *inp = mem; 473 474 INP_LOCK_INIT(inp, "inp", "tcpinp"); 475 return (0); 476 } 477 478 /* 479 * Take a value and get the next power of 2 that doesn't overflow. 480 * Used to size the tcp_inpcb hash buckets. 481 */ 482 static int 483 maketcp_hashsize(int size) 484 { 485 int hashsize; 486 487 /* 488 * auto tune. 489 * get the next power of 2 higher than maxsockets. 490 */ 491 hashsize = 1 << fls(size); 492 /* catch overflow, and just go one power of 2 smaller */ 493 if (hashsize < size) { 494 hashsize = 1 << (fls(size) - 1); 495 } 496 return (hashsize); 497 } 498 499 int 500 register_tcp_functions(struct tcp_function_block *blk, int wait) 501 { 502 struct tcp_function_block *lblk; 503 struct tcp_function *n; 504 struct tcp_function_set fs; 505 506 if ((blk->tfb_tcp_output == NULL) || 507 (blk->tfb_tcp_do_segment == NULL) || 508 (blk->tfb_tcp_ctloutput == NULL) || 509 (strlen(blk->tfb_tcp_block_name) == 0)) { 510 /* 511 * These functions are required and you 512 * need a name. 513 */ 514 return (EINVAL); 515 } 516 if (blk->tfb_tcp_timer_stop_all || 517 blk->tfb_tcp_timers_left || 518 blk->tfb_tcp_timer_activate || 519 blk->tfb_tcp_timer_active || 520 blk->tfb_tcp_timer_stop) { 521 /* 522 * If you define one timer function you 523 * must have them all. 524 */ 525 if ((blk->tfb_tcp_timer_stop_all == NULL) || 526 (blk->tfb_tcp_timers_left == NULL) || 527 (blk->tfb_tcp_timer_activate == NULL) || 528 (blk->tfb_tcp_timer_active == NULL) || 529 (blk->tfb_tcp_timer_stop == NULL)) { 530 return (EINVAL); 531 } 532 } 533 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 534 if (n == NULL) { 535 return (ENOMEM); 536 } 537 n->tf_fb = blk; 538 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 539 rw_wlock(&tcp_function_lock); 540 lblk = find_tcp_functions_locked(&fs); 541 if (lblk) { 542 /* Duplicate name space not allowed */ 543 rw_wunlock(&tcp_function_lock); 544 free(n, M_TCPFUNCTIONS); 545 return (EALREADY); 546 } 547 refcount_init(&blk->tfb_refcnt, 0); 548 blk->tfb_flags = 0; 549 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 550 rw_wunlock(&tcp_function_lock); 551 return(0); 552 } 553 554 int 555 deregister_tcp_functions(struct tcp_function_block *blk) 556 { 557 struct tcp_function_block *lblk; 558 struct tcp_function *f; 559 int error=ENOENT; 560 561 if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { 562 /* You can't un-register the default */ 563 return (EPERM); 564 } 565 rw_wlock(&tcp_function_lock); 566 if (blk == tcp_func_set_ptr) { 567 /* You can't free the current default */ 568 rw_wunlock(&tcp_function_lock); 569 return (EBUSY); 570 } 571 if (blk->tfb_refcnt) { 572 /* Still tcb attached, mark it. */ 573 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 574 rw_wunlock(&tcp_function_lock); 575 return (EBUSY); 576 } 577 lblk = find_tcp_fb_locked(blk, &f); 578 if (lblk) { 579 /* Found */ 580 TAILQ_REMOVE(&t_functions, f, tf_next); 581 f->tf_fb = NULL; 582 free(f, M_TCPFUNCTIONS); 583 error = 0; 584 } 585 rw_wunlock(&tcp_function_lock); 586 return (error); 587 } 588 589 void 590 tcp_init(void) 591 { 592 const char *tcbhash_tuneable; 593 int hashsize; 594 595 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 596 597 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 598 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 599 printf("%s: WARNING: unable to register helper hook\n", __func__); 600 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 601 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 602 printf("%s: WARNING: unable to register helper hook\n", __func__); 603 hashsize = TCBHASHSIZE; 604 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 605 if (hashsize == 0) { 606 /* 607 * Auto tune the hash size based on maxsockets. 608 * A perfect hash would have a 1:1 mapping 609 * (hashsize = maxsockets) however it's been 610 * suggested that O(2) average is better. 611 */ 612 hashsize = maketcp_hashsize(maxsockets / 4); 613 /* 614 * Our historical default is 512, 615 * do not autotune lower than this. 616 */ 617 if (hashsize < 512) 618 hashsize = 512; 619 if (bootverbose && IS_DEFAULT_VNET(curvnet)) 620 printf("%s: %s auto tuned to %d\n", __func__, 621 tcbhash_tuneable, hashsize); 622 } 623 /* 624 * We require a hashsize to be a power of two. 625 * Previously if it was not a power of two we would just reset it 626 * back to 512, which could be a nasty surprise if you did not notice 627 * the error message. 628 * Instead what we do is clip it to the closest power of two lower 629 * than the specified hash value. 630 */ 631 if (!powerof2(hashsize)) { 632 int oldhashsize = hashsize; 633 634 hashsize = maketcp_hashsize(hashsize); 635 /* prevent absurdly low value */ 636 if (hashsize < 16) 637 hashsize = 16; 638 printf("%s: WARNING: TCB hash size not a power of 2, " 639 "clipped from %d to %d.\n", __func__, oldhashsize, 640 hashsize); 641 } 642 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 643 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE, 644 IPI_HASHFIELDS_4TUPLE); 645 646 /* 647 * These have to be type stable for the benefit of the timers. 648 */ 649 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 650 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 651 uma_zone_set_max(V_tcpcb_zone, maxsockets); 652 uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); 653 654 tcp_tw_init(); 655 syncache_init(); 656 tcp_hc_init(); 657 658 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 659 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 660 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 661 662 /* Skip initialization of globals for non-default instances. */ 663 if (!IS_DEFAULT_VNET(curvnet)) 664 return; 665 666 tcp_reass_global_init(); 667 668 /* XXX virtualize those bellow? */ 669 tcp_delacktime = TCPTV_DELACK; 670 tcp_keepinit = TCPTV_KEEP_INIT; 671 tcp_keepidle = TCPTV_KEEP_IDLE; 672 tcp_keepintvl = TCPTV_KEEPINTVL; 673 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 674 tcp_msl = TCPTV_MSL; 675 tcp_rexmit_min = TCPTV_MIN; 676 if (tcp_rexmit_min < 1) 677 tcp_rexmit_min = 1; 678 tcp_rexmit_slop = TCPTV_CPU_VAR; 679 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 680 tcp_tcbhashsize = hashsize; 681 /* Setup the tcp function block list */ 682 TAILQ_INIT(&t_functions); 683 rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); 684 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 685 686 if (tcp_soreceive_stream) { 687 #ifdef INET 688 tcp_usrreqs.pru_soreceive = soreceive_stream; 689 #endif 690 #ifdef INET6 691 tcp6_usrreqs.pru_soreceive = soreceive_stream; 692 #endif /* INET6 */ 693 } 694 695 #ifdef INET6 696 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 697 #else /* INET6 */ 698 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 699 #endif /* INET6 */ 700 if (max_protohdr < TCP_MINPROTOHDR) 701 max_protohdr = TCP_MINPROTOHDR; 702 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 703 panic("tcp_init"); 704 #undef TCP_MINPROTOHDR 705 706 ISN_LOCK_INIT(); 707 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 708 SHUTDOWN_PRI_DEFAULT); 709 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 710 EVENTHANDLER_PRI_ANY); 711 #ifdef TCPPCAP 712 tcp_pcap_init(); 713 #endif 714 715 #ifdef TCP_RFC7413 716 tcp_fastopen_init(); 717 #endif 718 } 719 720 #ifdef VIMAGE 721 void 722 tcp_destroy(void) 723 { 724 int error; 725 726 #ifdef TCP_RFC7413 727 tcp_fastopen_destroy(); 728 #endif 729 tcp_hc_destroy(); 730 syncache_destroy(); 731 tcp_tw_destroy(); 732 in_pcbinfo_destroy(&V_tcbinfo); 733 uma_zdestroy(V_sack_hole_zone); 734 uma_zdestroy(V_tcpcb_zone); 735 736 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 737 if (error != 0) { 738 printf("%s: WARNING: unable to deregister helper hook " 739 "type=%d, id=%d: error %d returned\n", __func__, 740 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 741 } 742 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 743 if (error != 0) { 744 printf("%s: WARNING: unable to deregister helper hook " 745 "type=%d, id=%d: error %d returned\n", __func__, 746 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 747 } 748 } 749 #endif 750 751 void 752 tcp_fini(void *xtp) 753 { 754 755 } 756 757 /* 758 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 759 * tcp_template used to store this data in mbufs, but we now recopy it out 760 * of the tcpcb each time to conserve mbufs. 761 */ 762 void 763 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 764 { 765 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 766 767 INP_WLOCK_ASSERT(inp); 768 769 #ifdef INET6 770 if ((inp->inp_vflag & INP_IPV6) != 0) { 771 struct ip6_hdr *ip6; 772 773 ip6 = (struct ip6_hdr *)ip_ptr; 774 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 775 (inp->inp_flow & IPV6_FLOWINFO_MASK); 776 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 777 (IPV6_VERSION & IPV6_VERSION_MASK); 778 ip6->ip6_nxt = IPPROTO_TCP; 779 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 780 ip6->ip6_src = inp->in6p_laddr; 781 ip6->ip6_dst = inp->in6p_faddr; 782 } 783 #endif /* INET6 */ 784 #if defined(INET6) && defined(INET) 785 else 786 #endif 787 #ifdef INET 788 { 789 struct ip *ip; 790 791 ip = (struct ip *)ip_ptr; 792 ip->ip_v = IPVERSION; 793 ip->ip_hl = 5; 794 ip->ip_tos = inp->inp_ip_tos; 795 ip->ip_len = 0; 796 ip->ip_id = 0; 797 ip->ip_off = 0; 798 ip->ip_ttl = inp->inp_ip_ttl; 799 ip->ip_sum = 0; 800 ip->ip_p = IPPROTO_TCP; 801 ip->ip_src = inp->inp_laddr; 802 ip->ip_dst = inp->inp_faddr; 803 } 804 #endif /* INET */ 805 th->th_sport = inp->inp_lport; 806 th->th_dport = inp->inp_fport; 807 th->th_seq = 0; 808 th->th_ack = 0; 809 th->th_x2 = 0; 810 th->th_off = 5; 811 th->th_flags = 0; 812 th->th_win = 0; 813 th->th_urp = 0; 814 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 815 } 816 817 /* 818 * Create template to be used to send tcp packets on a connection. 819 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 820 * use for this function is in keepalives, which use tcp_respond. 821 */ 822 struct tcptemp * 823 tcpip_maketemplate(struct inpcb *inp) 824 { 825 struct tcptemp *t; 826 827 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 828 if (t == NULL) 829 return (NULL); 830 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 831 return (t); 832 } 833 834 /* 835 * Send a single message to the TCP at address specified by 836 * the given TCP/IP header. If m == NULL, then we make a copy 837 * of the tcpiphdr at th and send directly to the addressed host. 838 * This is used to force keep alive messages out using the TCP 839 * template for a connection. If flags are given then we send 840 * a message back to the TCP which originated the segment th, 841 * and discard the mbuf containing it and any other attached mbufs. 842 * 843 * In any case the ack and sequence number of the transmitted 844 * segment are as specified by the parameters. 845 * 846 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 847 */ 848 void 849 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 850 tcp_seq ack, tcp_seq seq, int flags) 851 { 852 int tlen; 853 int win = 0; 854 struct ip *ip; 855 struct tcphdr *nth; 856 #ifdef INET6 857 struct ip6_hdr *ip6; 858 int isipv6; 859 #endif /* INET6 */ 860 int ipflags = 0; 861 struct inpcb *inp; 862 863 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 864 865 #ifdef INET6 866 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 867 ip6 = ipgen; 868 #endif /* INET6 */ 869 ip = ipgen; 870 871 if (tp != NULL) { 872 inp = tp->t_inpcb; 873 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 874 INP_WLOCK_ASSERT(inp); 875 } else 876 inp = NULL; 877 878 if (tp != NULL) { 879 if (!(flags & TH_RST)) { 880 win = sbspace(&inp->inp_socket->so_rcv); 881 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 882 win = (long)TCP_MAXWIN << tp->rcv_scale; 883 } 884 } 885 if (m == NULL) { 886 m = m_gethdr(M_NOWAIT, MT_DATA); 887 if (m == NULL) 888 return; 889 tlen = 0; 890 m->m_data += max_linkhdr; 891 #ifdef INET6 892 if (isipv6) { 893 bcopy((caddr_t)ip6, mtod(m, caddr_t), 894 sizeof(struct ip6_hdr)); 895 ip6 = mtod(m, struct ip6_hdr *); 896 nth = (struct tcphdr *)(ip6 + 1); 897 } else 898 #endif /* INET6 */ 899 { 900 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 901 ip = mtod(m, struct ip *); 902 nth = (struct tcphdr *)(ip + 1); 903 } 904 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 905 flags = TH_ACK; 906 } else { 907 /* 908 * reuse the mbuf. 909 * XXX MRT We inherrit the FIB, which is lucky. 910 */ 911 m_freem(m->m_next); 912 m->m_next = NULL; 913 m->m_data = (caddr_t)ipgen; 914 /* m_len is set later */ 915 tlen = 0; 916 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 917 #ifdef INET6 918 if (isipv6) { 919 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 920 nth = (struct tcphdr *)(ip6 + 1); 921 } else 922 #endif /* INET6 */ 923 { 924 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 925 nth = (struct tcphdr *)(ip + 1); 926 } 927 if (th != nth) { 928 /* 929 * this is usually a case when an extension header 930 * exists between the IPv6 header and the 931 * TCP header. 932 */ 933 nth->th_sport = th->th_sport; 934 nth->th_dport = th->th_dport; 935 } 936 xchg(nth->th_dport, nth->th_sport, uint16_t); 937 #undef xchg 938 } 939 #ifdef INET6 940 if (isipv6) { 941 ip6->ip6_flow = 0; 942 ip6->ip6_vfc = IPV6_VERSION; 943 ip6->ip6_nxt = IPPROTO_TCP; 944 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 945 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 946 } 947 #endif 948 #if defined(INET) && defined(INET6) 949 else 950 #endif 951 #ifdef INET 952 { 953 tlen += sizeof (struct tcpiphdr); 954 ip->ip_len = htons(tlen); 955 ip->ip_ttl = V_ip_defttl; 956 if (V_path_mtu_discovery) 957 ip->ip_off |= htons(IP_DF); 958 } 959 #endif 960 m->m_len = tlen; 961 m->m_pkthdr.len = tlen; 962 m->m_pkthdr.rcvif = NULL; 963 #ifdef MAC 964 if (inp != NULL) { 965 /* 966 * Packet is associated with a socket, so allow the 967 * label of the response to reflect the socket label. 968 */ 969 INP_WLOCK_ASSERT(inp); 970 mac_inpcb_create_mbuf(inp, m); 971 } else { 972 /* 973 * Packet is not associated with a socket, so possibly 974 * update the label in place. 975 */ 976 mac_netinet_tcp_reply(m); 977 } 978 #endif 979 nth->th_seq = htonl(seq); 980 nth->th_ack = htonl(ack); 981 nth->th_x2 = 0; 982 nth->th_off = sizeof (struct tcphdr) >> 2; 983 nth->th_flags = flags; 984 if (tp != NULL) 985 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 986 else 987 nth->th_win = htons((u_short)win); 988 nth->th_urp = 0; 989 990 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 991 #ifdef INET6 992 if (isipv6) { 993 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 994 nth->th_sum = in6_cksum_pseudo(ip6, 995 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 996 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 997 NULL, NULL); 998 } 999 #endif /* INET6 */ 1000 #if defined(INET6) && defined(INET) 1001 else 1002 #endif 1003 #ifdef INET 1004 { 1005 m->m_pkthdr.csum_flags = CSUM_TCP; 1006 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1007 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 1008 } 1009 #endif /* INET */ 1010 #ifdef TCPDEBUG 1011 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 1012 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 1013 #endif 1014 TCP_PROBE3(debug__input, tp, th, mtod(m, const char *)); 1015 if (flags & TH_RST) 1016 TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *), 1017 tp, nth); 1018 1019 TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth); 1020 #ifdef INET6 1021 if (isipv6) 1022 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 1023 #endif /* INET6 */ 1024 #if defined(INET) && defined(INET6) 1025 else 1026 #endif 1027 #ifdef INET 1028 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 1029 #endif 1030 } 1031 1032 /* 1033 * Create a new TCP control block, making an 1034 * empty reassembly queue and hooking it to the argument 1035 * protocol control block. The `inp' parameter must have 1036 * come from the zone allocator set up in tcp_init(). 1037 */ 1038 struct tcpcb * 1039 tcp_newtcpcb(struct inpcb *inp) 1040 { 1041 struct tcpcb_mem *tm; 1042 struct tcpcb *tp; 1043 #ifdef INET6 1044 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1045 #endif /* INET6 */ 1046 1047 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 1048 if (tm == NULL) 1049 return (NULL); 1050 tp = &tm->tcb; 1051 1052 /* Initialise cc_var struct for this tcpcb. */ 1053 tp->ccv = &tm->ccv; 1054 tp->ccv->type = IPPROTO_TCP; 1055 tp->ccv->ccvc.tcp = tp; 1056 rw_rlock(&tcp_function_lock); 1057 tp->t_fb = tcp_func_set_ptr; 1058 refcount_acquire(&tp->t_fb->tfb_refcnt); 1059 rw_runlock(&tcp_function_lock); 1060 if (tp->t_fb->tfb_tcp_fb_init) { 1061 (*tp->t_fb->tfb_tcp_fb_init)(tp); 1062 } 1063 /* 1064 * Use the current system default CC algorithm. 1065 */ 1066 CC_LIST_RLOCK(); 1067 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 1068 CC_ALGO(tp) = CC_DEFAULT(); 1069 CC_LIST_RUNLOCK(); 1070 1071 if (CC_ALGO(tp)->cb_init != NULL) 1072 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 1073 if (tp->t_fb->tfb_tcp_fb_fini) 1074 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1075 refcount_release(&tp->t_fb->tfb_refcnt); 1076 uma_zfree(V_tcpcb_zone, tm); 1077 return (NULL); 1078 } 1079 1080 tp->osd = &tm->osd; 1081 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 1082 if (tp->t_fb->tfb_tcp_fb_fini) 1083 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1084 refcount_release(&tp->t_fb->tfb_refcnt); 1085 uma_zfree(V_tcpcb_zone, tm); 1086 return (NULL); 1087 } 1088 1089 #ifdef VIMAGE 1090 tp->t_vnet = inp->inp_vnet; 1091 #endif 1092 tp->t_timers = &tm->tt; 1093 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 1094 tp->t_maxseg = 1095 #ifdef INET6 1096 isipv6 ? V_tcp_v6mssdflt : 1097 #endif /* INET6 */ 1098 V_tcp_mssdflt; 1099 1100 /* Set up our timeouts. */ 1101 callout_init(&tp->t_timers->tt_rexmt, 1); 1102 callout_init(&tp->t_timers->tt_persist, 1); 1103 callout_init(&tp->t_timers->tt_keep, 1); 1104 callout_init(&tp->t_timers->tt_2msl, 1); 1105 callout_init(&tp->t_timers->tt_delack, 1); 1106 1107 if (V_tcp_do_rfc1323) 1108 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 1109 if (V_tcp_do_sack) 1110 tp->t_flags |= TF_SACK_PERMIT; 1111 TAILQ_INIT(&tp->snd_holes); 1112 /* 1113 * The tcpcb will hold a reference on its inpcb until tcp_discardcb() 1114 * is called. 1115 */ 1116 in_pcbref(inp); /* Reference for tcpcb */ 1117 tp->t_inpcb = inp; 1118 1119 /* 1120 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 1121 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 1122 * reasonable initial retransmit time. 1123 */ 1124 tp->t_srtt = TCPTV_SRTTBASE; 1125 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 1126 tp->t_rttmin = tcp_rexmit_min; 1127 tp->t_rxtcur = TCPTV_RTOBASE; 1128 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1129 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1130 tp->t_rcvtime = ticks; 1131 /* 1132 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 1133 * because the socket may be bound to an IPv6 wildcard address, 1134 * which may match an IPv4-mapped IPv6 address. 1135 */ 1136 inp->inp_ip_ttl = V_ip_defttl; 1137 inp->inp_ppcb = tp; 1138 #ifdef TCPPCAP 1139 /* 1140 * Init the TCP PCAP queues. 1141 */ 1142 tcp_pcap_tcpcb_init(tp); 1143 #endif 1144 return (tp); /* XXX */ 1145 } 1146 1147 /* 1148 * Switch the congestion control algorithm back to NewReno for any active 1149 * control blocks using an algorithm which is about to go away. 1150 * This ensures the CC framework can allow the unload to proceed without leaving 1151 * any dangling pointers which would trigger a panic. 1152 * Returning non-zero would inform the CC framework that something went wrong 1153 * and it would be unsafe to allow the unload to proceed. However, there is no 1154 * way for this to occur with this implementation so we always return zero. 1155 */ 1156 int 1157 tcp_ccalgounload(struct cc_algo *unload_algo) 1158 { 1159 struct cc_algo *tmpalgo; 1160 struct inpcb *inp; 1161 struct tcpcb *tp; 1162 VNET_ITERATOR_DECL(vnet_iter); 1163 1164 /* 1165 * Check all active control blocks across all network stacks and change 1166 * any that are using "unload_algo" back to NewReno. If "unload_algo" 1167 * requires cleanup code to be run, call it. 1168 */ 1169 VNET_LIST_RLOCK(); 1170 VNET_FOREACH(vnet_iter) { 1171 CURVNET_SET(vnet_iter); 1172 INP_INFO_WLOCK(&V_tcbinfo); 1173 /* 1174 * New connections already part way through being initialised 1175 * with the CC algo we're removing will not race with this code 1176 * because the INP_INFO_WLOCK is held during initialisation. We 1177 * therefore don't enter the loop below until the connection 1178 * list has stabilised. 1179 */ 1180 LIST_FOREACH(inp, &V_tcb, inp_list) { 1181 INP_WLOCK(inp); 1182 /* Important to skip tcptw structs. */ 1183 if (!(inp->inp_flags & INP_TIMEWAIT) && 1184 (tp = intotcpcb(inp)) != NULL) { 1185 /* 1186 * By holding INP_WLOCK here, we are assured 1187 * that the connection is not currently 1188 * executing inside the CC module's functions 1189 * i.e. it is safe to make the switch back to 1190 * NewReno. 1191 */ 1192 if (CC_ALGO(tp) == unload_algo) { 1193 tmpalgo = CC_ALGO(tp); 1194 /* NewReno does not require any init. */ 1195 CC_ALGO(tp) = &newreno_cc_algo; 1196 if (tmpalgo->cb_destroy != NULL) 1197 tmpalgo->cb_destroy(tp->ccv); 1198 } 1199 } 1200 INP_WUNLOCK(inp); 1201 } 1202 INP_INFO_WUNLOCK(&V_tcbinfo); 1203 CURVNET_RESTORE(); 1204 } 1205 VNET_LIST_RUNLOCK(); 1206 1207 return (0); 1208 } 1209 1210 /* 1211 * Drop a TCP connection, reporting 1212 * the specified error. If connection is synchronized, 1213 * then send a RST to peer. 1214 */ 1215 struct tcpcb * 1216 tcp_drop(struct tcpcb *tp, int errno) 1217 { 1218 struct socket *so = tp->t_inpcb->inp_socket; 1219 1220 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1221 INP_WLOCK_ASSERT(tp->t_inpcb); 1222 1223 if (TCPS_HAVERCVDSYN(tp->t_state)) { 1224 tcp_state_change(tp, TCPS_CLOSED); 1225 (void) tp->t_fb->tfb_tcp_output(tp); 1226 TCPSTAT_INC(tcps_drops); 1227 } else 1228 TCPSTAT_INC(tcps_conndrops); 1229 if (errno == ETIMEDOUT && tp->t_softerror) 1230 errno = tp->t_softerror; 1231 so->so_error = errno; 1232 return (tcp_close(tp)); 1233 } 1234 1235 void 1236 tcp_discardcb(struct tcpcb *tp) 1237 { 1238 struct inpcb *inp = tp->t_inpcb; 1239 struct socket *so = inp->inp_socket; 1240 #ifdef INET6 1241 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1242 #endif /* INET6 */ 1243 int released; 1244 1245 INP_WLOCK_ASSERT(inp); 1246 1247 /* 1248 * Make sure that all of our timers are stopped before we delete the 1249 * PCB. 1250 * 1251 * If stopping a timer fails, we schedule a discard function in same 1252 * callout, and the last discard function called will take care of 1253 * deleting the tcpcb. 1254 */ 1255 tcp_timer_stop(tp, TT_REXMT); 1256 tcp_timer_stop(tp, TT_PERSIST); 1257 tcp_timer_stop(tp, TT_KEEP); 1258 tcp_timer_stop(tp, TT_2MSL); 1259 tcp_timer_stop(tp, TT_DELACK); 1260 if (tp->t_fb->tfb_tcp_timer_stop_all) { 1261 /* Call the stop-all function of the methods */ 1262 tp->t_fb->tfb_tcp_timer_stop_all(tp); 1263 } 1264 1265 /* 1266 * If we got enough samples through the srtt filter, 1267 * save the rtt and rttvar in the routing entry. 1268 * 'Enough' is arbitrarily defined as 4 rtt samples. 1269 * 4 samples is enough for the srtt filter to converge 1270 * to within enough % of the correct value; fewer samples 1271 * and we could save a bogus rtt. The danger is not high 1272 * as tcp quickly recovers from everything. 1273 * XXX: Works very well but needs some more statistics! 1274 */ 1275 if (tp->t_rttupdated >= 4) { 1276 struct hc_metrics_lite metrics; 1277 u_long ssthresh; 1278 1279 bzero(&metrics, sizeof(metrics)); 1280 /* 1281 * Update the ssthresh always when the conditions below 1282 * are satisfied. This gives us better new start value 1283 * for the congestion avoidance for new connections. 1284 * ssthresh is only set if packet loss occured on a session. 1285 * 1286 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 1287 * being torn down. Ideally this code would not use 'so'. 1288 */ 1289 ssthresh = tp->snd_ssthresh; 1290 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 1291 /* 1292 * convert the limit from user data bytes to 1293 * packets then to packet data bytes. 1294 */ 1295 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 1296 if (ssthresh < 2) 1297 ssthresh = 2; 1298 ssthresh *= (u_long)(tp->t_maxseg + 1299 #ifdef INET6 1300 (isipv6 ? sizeof (struct ip6_hdr) + 1301 sizeof (struct tcphdr) : 1302 #endif 1303 sizeof (struct tcpiphdr) 1304 #ifdef INET6 1305 ) 1306 #endif 1307 ); 1308 } else 1309 ssthresh = 0; 1310 metrics.rmx_ssthresh = ssthresh; 1311 1312 metrics.rmx_rtt = tp->t_srtt; 1313 metrics.rmx_rttvar = tp->t_rttvar; 1314 metrics.rmx_cwnd = tp->snd_cwnd; 1315 metrics.rmx_sendpipe = 0; 1316 metrics.rmx_recvpipe = 0; 1317 1318 tcp_hc_update(&inp->inp_inc, &metrics); 1319 } 1320 1321 /* free the reassembly queue, if any */ 1322 tcp_reass_flush(tp); 1323 1324 #ifdef TCP_OFFLOAD 1325 /* Disconnect offload device, if any. */ 1326 if (tp->t_flags & TF_TOE) 1327 tcp_offload_detach(tp); 1328 #endif 1329 1330 tcp_free_sackholes(tp); 1331 1332 #ifdef TCPPCAP 1333 /* Free the TCP PCAP queues. */ 1334 tcp_pcap_drain(&(tp->t_inpkts)); 1335 tcp_pcap_drain(&(tp->t_outpkts)); 1336 #endif 1337 1338 /* Allow the CC algorithm to clean up after itself. */ 1339 if (CC_ALGO(tp)->cb_destroy != NULL) 1340 CC_ALGO(tp)->cb_destroy(tp->ccv); 1341 1342 khelp_destroy_osd(tp->osd); 1343 1344 CC_ALGO(tp) = NULL; 1345 inp->inp_ppcb = NULL; 1346 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1347 /* We own the last reference on tcpcb, let's free it. */ 1348 if ((tp->t_fb->tfb_tcp_timers_left) && 1349 (tp->t_fb->tfb_tcp_timers_left(tp))) { 1350 /* Some fb timers left running! */ 1351 return; 1352 } 1353 if (tp->t_fb->tfb_tcp_fb_fini) 1354 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1355 refcount_release(&tp->t_fb->tfb_refcnt); 1356 tp->t_inpcb = NULL; 1357 uma_zfree(V_tcpcb_zone, tp); 1358 released = in_pcbrele_wlocked(inp); 1359 KASSERT(!released, ("%s: inp %p should not have been released " 1360 "here", __func__, inp)); 1361 } 1362 } 1363 1364 void 1365 tcp_timer_2msl_discard(void *xtp) 1366 { 1367 1368 tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL); 1369 } 1370 1371 void 1372 tcp_timer_keep_discard(void *xtp) 1373 { 1374 1375 tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP); 1376 } 1377 1378 void 1379 tcp_timer_persist_discard(void *xtp) 1380 { 1381 1382 tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST); 1383 } 1384 1385 void 1386 tcp_timer_rexmt_discard(void *xtp) 1387 { 1388 1389 tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT); 1390 } 1391 1392 void 1393 tcp_timer_delack_discard(void *xtp) 1394 { 1395 1396 tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK); 1397 } 1398 1399 void 1400 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type) 1401 { 1402 struct inpcb *inp; 1403 1404 CURVNET_SET(tp->t_vnet); 1405 INP_INFO_RLOCK(&V_tcbinfo); 1406 inp = tp->t_inpcb; 1407 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", 1408 __func__, tp)); 1409 INP_WLOCK(inp); 1410 KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, 1411 ("%s: tcpcb has to be stopped here", __func__)); 1412 KASSERT((tp->t_timers->tt_flags & timer_type) != 0, 1413 ("%s: discard callout should be running", __func__)); 1414 tp->t_timers->tt_flags &= ~timer_type; 1415 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1416 /* We own the last reference on this tcpcb, let's free it. */ 1417 if ((tp->t_fb->tfb_tcp_timers_left) && 1418 (tp->t_fb->tfb_tcp_timers_left(tp))) { 1419 /* Some fb timers left running! */ 1420 goto leave; 1421 } 1422 if (tp->t_fb->tfb_tcp_fb_fini) 1423 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1424 refcount_release(&tp->t_fb->tfb_refcnt); 1425 tp->t_inpcb = NULL; 1426 uma_zfree(V_tcpcb_zone, tp); 1427 if (in_pcbrele_wlocked(inp)) { 1428 INP_INFO_RUNLOCK(&V_tcbinfo); 1429 CURVNET_RESTORE(); 1430 return; 1431 } 1432 } 1433 leave: 1434 INP_WUNLOCK(inp); 1435 INP_INFO_RUNLOCK(&V_tcbinfo); 1436 CURVNET_RESTORE(); 1437 } 1438 1439 /* 1440 * Attempt to close a TCP control block, marking it as dropped, and freeing 1441 * the socket if we hold the only reference. 1442 */ 1443 struct tcpcb * 1444 tcp_close(struct tcpcb *tp) 1445 { 1446 struct inpcb *inp = tp->t_inpcb; 1447 struct socket *so; 1448 1449 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1450 INP_WLOCK_ASSERT(inp); 1451 1452 #ifdef TCP_OFFLOAD 1453 if (tp->t_state == TCPS_LISTEN) 1454 tcp_offload_listen_stop(tp); 1455 #endif 1456 #ifdef TCP_RFC7413 1457 /* 1458 * This releases the TFO pending counter resource for TFO listen 1459 * sockets as well as passively-created TFO sockets that transition 1460 * from SYN_RECEIVED to CLOSED. 1461 */ 1462 if (tp->t_tfo_pending) { 1463 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 1464 tp->t_tfo_pending = NULL; 1465 } 1466 #endif 1467 in_pcbdrop(inp); 1468 TCPSTAT_INC(tcps_closed); 1469 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 1470 so = inp->inp_socket; 1471 soisdisconnected(so); 1472 if (inp->inp_flags & INP_SOCKREF) { 1473 KASSERT(so->so_state & SS_PROTOREF, 1474 ("tcp_close: !SS_PROTOREF")); 1475 inp->inp_flags &= ~INP_SOCKREF; 1476 INP_WUNLOCK(inp); 1477 ACCEPT_LOCK(); 1478 SOCK_LOCK(so); 1479 so->so_state &= ~SS_PROTOREF; 1480 sofree(so); 1481 return (NULL); 1482 } 1483 return (tp); 1484 } 1485 1486 void 1487 tcp_drain(void) 1488 { 1489 VNET_ITERATOR_DECL(vnet_iter); 1490 1491 if (!do_tcpdrain) 1492 return; 1493 1494 VNET_LIST_RLOCK_NOSLEEP(); 1495 VNET_FOREACH(vnet_iter) { 1496 CURVNET_SET(vnet_iter); 1497 struct inpcb *inpb; 1498 struct tcpcb *tcpb; 1499 1500 /* 1501 * Walk the tcpbs, if existing, and flush the reassembly queue, 1502 * if there is one... 1503 * XXX: The "Net/3" implementation doesn't imply that the TCP 1504 * reassembly queue should be flushed, but in a situation 1505 * where we're really low on mbufs, this is potentially 1506 * useful. 1507 */ 1508 INP_INFO_WLOCK(&V_tcbinfo); 1509 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1510 if (inpb->inp_flags & INP_TIMEWAIT) 1511 continue; 1512 INP_WLOCK(inpb); 1513 if ((tcpb = intotcpcb(inpb)) != NULL) { 1514 tcp_reass_flush(tcpb); 1515 tcp_clean_sackreport(tcpb); 1516 } 1517 INP_WUNLOCK(inpb); 1518 } 1519 INP_INFO_WUNLOCK(&V_tcbinfo); 1520 CURVNET_RESTORE(); 1521 } 1522 VNET_LIST_RUNLOCK_NOSLEEP(); 1523 } 1524 1525 /* 1526 * Notify a tcp user of an asynchronous error; 1527 * store error as soft error, but wake up user 1528 * (for now, won't do anything until can select for soft error). 1529 * 1530 * Do not wake up user since there currently is no mechanism for 1531 * reporting soft errors (yet - a kqueue filter may be added). 1532 */ 1533 static struct inpcb * 1534 tcp_notify(struct inpcb *inp, int error) 1535 { 1536 struct tcpcb *tp; 1537 1538 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1539 INP_WLOCK_ASSERT(inp); 1540 1541 if ((inp->inp_flags & INP_TIMEWAIT) || 1542 (inp->inp_flags & INP_DROPPED)) 1543 return (inp); 1544 1545 tp = intotcpcb(inp); 1546 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1547 1548 /* 1549 * Ignore some errors if we are hooked up. 1550 * If connection hasn't completed, has retransmitted several times, 1551 * and receives a second error, give up now. This is better 1552 * than waiting a long time to establish a connection that 1553 * can never complete. 1554 */ 1555 if (tp->t_state == TCPS_ESTABLISHED && 1556 (error == EHOSTUNREACH || error == ENETUNREACH || 1557 error == EHOSTDOWN)) { 1558 return (inp); 1559 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1560 tp->t_softerror) { 1561 tp = tcp_drop(tp, error); 1562 if (tp != NULL) 1563 return (inp); 1564 else 1565 return (NULL); 1566 } else { 1567 tp->t_softerror = error; 1568 return (inp); 1569 } 1570 #if 0 1571 wakeup( &so->so_timeo); 1572 sorwakeup(so); 1573 sowwakeup(so); 1574 #endif 1575 } 1576 1577 static int 1578 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1579 { 1580 int error, i, m, n, pcb_count; 1581 struct inpcb *inp, **inp_list; 1582 inp_gen_t gencnt; 1583 struct xinpgen xig; 1584 1585 /* 1586 * The process of preparing the TCB list is too time-consuming and 1587 * resource-intensive to repeat twice on every request. 1588 */ 1589 if (req->oldptr == NULL) { 1590 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 1591 n += imax(n / 8, 10); 1592 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1593 return (0); 1594 } 1595 1596 if (req->newptr != NULL) 1597 return (EPERM); 1598 1599 /* 1600 * OK, now we're committed to doing something. 1601 */ 1602 INP_LIST_RLOCK(&V_tcbinfo); 1603 gencnt = V_tcbinfo.ipi_gencnt; 1604 n = V_tcbinfo.ipi_count; 1605 INP_LIST_RUNLOCK(&V_tcbinfo); 1606 1607 m = syncache_pcbcount(); 1608 1609 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1610 + (n + m) * sizeof(struct xtcpcb)); 1611 if (error != 0) 1612 return (error); 1613 1614 xig.xig_len = sizeof xig; 1615 xig.xig_count = n + m; 1616 xig.xig_gen = gencnt; 1617 xig.xig_sogen = so_gencnt; 1618 error = SYSCTL_OUT(req, &xig, sizeof xig); 1619 if (error) 1620 return (error); 1621 1622 error = syncache_pcblist(req, m, &pcb_count); 1623 if (error) 1624 return (error); 1625 1626 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1627 if (inp_list == NULL) 1628 return (ENOMEM); 1629 1630 INP_INFO_WLOCK(&V_tcbinfo); 1631 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1632 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1633 INP_WLOCK(inp); 1634 if (inp->inp_gencnt <= gencnt) { 1635 /* 1636 * XXX: This use of cr_cansee(), introduced with 1637 * TCP state changes, is not quite right, but for 1638 * now, better than nothing. 1639 */ 1640 if (inp->inp_flags & INP_TIMEWAIT) { 1641 if (intotw(inp) != NULL) 1642 error = cr_cansee(req->td->td_ucred, 1643 intotw(inp)->tw_cred); 1644 else 1645 error = EINVAL; /* Skip this inp. */ 1646 } else 1647 error = cr_canseeinpcb(req->td->td_ucred, inp); 1648 if (error == 0) { 1649 in_pcbref(inp); 1650 inp_list[i++] = inp; 1651 } 1652 } 1653 INP_WUNLOCK(inp); 1654 } 1655 INP_INFO_WUNLOCK(&V_tcbinfo); 1656 n = i; 1657 1658 error = 0; 1659 for (i = 0; i < n; i++) { 1660 inp = inp_list[i]; 1661 INP_RLOCK(inp); 1662 if (inp->inp_gencnt <= gencnt) { 1663 struct xtcpcb xt; 1664 void *inp_ppcb; 1665 1666 bzero(&xt, sizeof(xt)); 1667 xt.xt_len = sizeof xt; 1668 /* XXX should avoid extra copy */ 1669 bcopy(inp, &xt.xt_inp, sizeof *inp); 1670 inp_ppcb = inp->inp_ppcb; 1671 if (inp_ppcb == NULL) 1672 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1673 else if (inp->inp_flags & INP_TIMEWAIT) { 1674 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1675 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1676 } else { 1677 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1678 if (xt.xt_tp.t_timers) 1679 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1680 } 1681 if (inp->inp_socket != NULL) 1682 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1683 else { 1684 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1685 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1686 } 1687 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1688 INP_RUNLOCK(inp); 1689 error = SYSCTL_OUT(req, &xt, sizeof xt); 1690 } else 1691 INP_RUNLOCK(inp); 1692 } 1693 INP_INFO_RLOCK(&V_tcbinfo); 1694 for (i = 0; i < n; i++) { 1695 inp = inp_list[i]; 1696 INP_RLOCK(inp); 1697 if (!in_pcbrele_rlocked(inp)) 1698 INP_RUNLOCK(inp); 1699 } 1700 INP_INFO_RUNLOCK(&V_tcbinfo); 1701 1702 if (!error) { 1703 /* 1704 * Give the user an updated idea of our state. 1705 * If the generation differs from what we told 1706 * her before, she knows that something happened 1707 * while we were processing this request, and it 1708 * might be necessary to retry. 1709 */ 1710 INP_LIST_RLOCK(&V_tcbinfo); 1711 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1712 xig.xig_sogen = so_gencnt; 1713 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1714 INP_LIST_RUNLOCK(&V_tcbinfo); 1715 error = SYSCTL_OUT(req, &xig, sizeof xig); 1716 } 1717 free(inp_list, M_TEMP); 1718 return (error); 1719 } 1720 1721 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1722 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1723 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1724 1725 #ifdef INET 1726 static int 1727 tcp_getcred(SYSCTL_HANDLER_ARGS) 1728 { 1729 struct xucred xuc; 1730 struct sockaddr_in addrs[2]; 1731 struct inpcb *inp; 1732 int error; 1733 1734 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1735 if (error) 1736 return (error); 1737 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1738 if (error) 1739 return (error); 1740 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1741 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1742 if (inp != NULL) { 1743 if (inp->inp_socket == NULL) 1744 error = ENOENT; 1745 if (error == 0) 1746 error = cr_canseeinpcb(req->td->td_ucred, inp); 1747 if (error == 0) 1748 cru2x(inp->inp_cred, &xuc); 1749 INP_RUNLOCK(inp); 1750 } else 1751 error = ENOENT; 1752 if (error == 0) 1753 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1754 return (error); 1755 } 1756 1757 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1758 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1759 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1760 #endif /* INET */ 1761 1762 #ifdef INET6 1763 static int 1764 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1765 { 1766 struct xucred xuc; 1767 struct sockaddr_in6 addrs[2]; 1768 struct inpcb *inp; 1769 int error; 1770 #ifdef INET 1771 int mapped = 0; 1772 #endif 1773 1774 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1775 if (error) 1776 return (error); 1777 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1778 if (error) 1779 return (error); 1780 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1781 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1782 return (error); 1783 } 1784 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1785 #ifdef INET 1786 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1787 mapped = 1; 1788 else 1789 #endif 1790 return (EINVAL); 1791 } 1792 1793 #ifdef INET 1794 if (mapped == 1) 1795 inp = in_pcblookup(&V_tcbinfo, 1796 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1797 addrs[1].sin6_port, 1798 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1799 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1800 else 1801 #endif 1802 inp = in6_pcblookup(&V_tcbinfo, 1803 &addrs[1].sin6_addr, addrs[1].sin6_port, 1804 &addrs[0].sin6_addr, addrs[0].sin6_port, 1805 INPLOOKUP_RLOCKPCB, NULL); 1806 if (inp != NULL) { 1807 if (inp->inp_socket == NULL) 1808 error = ENOENT; 1809 if (error == 0) 1810 error = cr_canseeinpcb(req->td->td_ucred, inp); 1811 if (error == 0) 1812 cru2x(inp->inp_cred, &xuc); 1813 INP_RUNLOCK(inp); 1814 } else 1815 error = ENOENT; 1816 if (error == 0) 1817 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1818 return (error); 1819 } 1820 1821 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1822 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1823 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1824 #endif /* INET6 */ 1825 1826 1827 #ifdef INET 1828 void 1829 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1830 { 1831 struct ip *ip = vip; 1832 struct tcphdr *th; 1833 struct in_addr faddr; 1834 struct inpcb *inp; 1835 struct tcpcb *tp; 1836 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1837 struct icmp *icp; 1838 struct in_conninfo inc; 1839 tcp_seq icmp_tcp_seq; 1840 int mtu; 1841 1842 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1843 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1844 return; 1845 1846 if (cmd == PRC_MSGSIZE) 1847 notify = tcp_mtudisc_notify; 1848 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1849 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1850 notify = tcp_drop_syn_sent; 1851 /* 1852 * Redirects don't need to be handled up here. 1853 */ 1854 else if (PRC_IS_REDIRECT(cmd)) 1855 return; 1856 /* 1857 * Hostdead is ugly because it goes linearly through all PCBs. 1858 * XXX: We never get this from ICMP, otherwise it makes an 1859 * excellent DoS attack on machines with many connections. 1860 */ 1861 else if (cmd == PRC_HOSTDEAD) 1862 ip = NULL; 1863 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1864 return; 1865 1866 if (ip == NULL) { 1867 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1868 return; 1869 } 1870 1871 icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); 1872 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 1873 INP_INFO_RLOCK(&V_tcbinfo); 1874 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, 1875 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1876 if (inp != NULL) { 1877 if (!(inp->inp_flags & INP_TIMEWAIT) && 1878 !(inp->inp_flags & INP_DROPPED) && 1879 !(inp->inp_socket == NULL)) { 1880 icmp_tcp_seq = ntohl(th->th_seq); 1881 tp = intotcpcb(inp); 1882 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1883 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1884 if (cmd == PRC_MSGSIZE) { 1885 /* 1886 * MTU discovery: 1887 * If we got a needfrag set the MTU 1888 * in the route to the suggested new 1889 * value (if given) and then notify. 1890 */ 1891 mtu = ntohs(icp->icmp_nextmtu); 1892 /* 1893 * If no alternative MTU was 1894 * proposed, try the next smaller 1895 * one. 1896 */ 1897 if (!mtu) 1898 mtu = ip_next_mtu( 1899 ntohs(ip->ip_len), 1); 1900 if (mtu < V_tcp_minmss + 1901 sizeof(struct tcpiphdr)) 1902 mtu = V_tcp_minmss + 1903 sizeof(struct tcpiphdr); 1904 /* 1905 * Only process the offered MTU if it 1906 * is smaller than the current one. 1907 */ 1908 if (mtu < tp->t_maxseg + 1909 sizeof(struct tcpiphdr)) { 1910 bzero(&inc, sizeof(inc)); 1911 inc.inc_faddr = faddr; 1912 inc.inc_fibnum = 1913 inp->inp_inc.inc_fibnum; 1914 tcp_hc_updatemtu(&inc, mtu); 1915 tcp_mtudisc(inp, mtu); 1916 } 1917 } else 1918 inp = (*notify)(inp, 1919 inetctlerrmap[cmd]); 1920 } 1921 } 1922 if (inp != NULL) 1923 INP_WUNLOCK(inp); 1924 } else { 1925 bzero(&inc, sizeof(inc)); 1926 inc.inc_fport = th->th_dport; 1927 inc.inc_lport = th->th_sport; 1928 inc.inc_faddr = faddr; 1929 inc.inc_laddr = ip->ip_src; 1930 syncache_unreach(&inc, th); 1931 } 1932 INP_INFO_RUNLOCK(&V_tcbinfo); 1933 } 1934 #endif /* INET */ 1935 1936 #ifdef INET6 1937 void 1938 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1939 { 1940 struct tcphdr th; 1941 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1942 struct ip6_hdr *ip6; 1943 struct mbuf *m; 1944 struct ip6ctlparam *ip6cp = NULL; 1945 const struct sockaddr_in6 *sa6_src = NULL; 1946 int off; 1947 struct tcp_portonly { 1948 u_int16_t th_sport; 1949 u_int16_t th_dport; 1950 } *thp; 1951 1952 if (sa->sa_family != AF_INET6 || 1953 sa->sa_len != sizeof(struct sockaddr_in6)) 1954 return; 1955 1956 if (cmd == PRC_MSGSIZE) 1957 notify = tcp_mtudisc_notify; 1958 else if (!PRC_IS_REDIRECT(cmd) && 1959 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1960 return; 1961 1962 /* if the parameter is from icmp6, decode it. */ 1963 if (d != NULL) { 1964 ip6cp = (struct ip6ctlparam *)d; 1965 m = ip6cp->ip6c_m; 1966 ip6 = ip6cp->ip6c_ip6; 1967 off = ip6cp->ip6c_off; 1968 sa6_src = ip6cp->ip6c_src; 1969 } else { 1970 m = NULL; 1971 ip6 = NULL; 1972 off = 0; /* fool gcc */ 1973 sa6_src = &sa6_any; 1974 } 1975 1976 if (ip6 != NULL) { 1977 struct in_conninfo inc; 1978 /* 1979 * XXX: We assume that when IPV6 is non NULL, 1980 * M and OFF are valid. 1981 */ 1982 1983 /* check if we can safely examine src and dst ports */ 1984 if (m->m_pkthdr.len < off + sizeof(*thp)) 1985 return; 1986 1987 bzero(&th, sizeof(th)); 1988 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1989 1990 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1991 (struct sockaddr *)ip6cp->ip6c_src, 1992 th.th_sport, cmd, NULL, notify); 1993 1994 bzero(&inc, sizeof(inc)); 1995 inc.inc_fport = th.th_dport; 1996 inc.inc_lport = th.th_sport; 1997 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1998 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1999 inc.inc_flags |= INC_ISIPV6; 2000 INP_INFO_RLOCK(&V_tcbinfo); 2001 syncache_unreach(&inc, &th); 2002 INP_INFO_RUNLOCK(&V_tcbinfo); 2003 } else 2004 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 2005 0, cmd, NULL, notify); 2006 } 2007 #endif /* INET6 */ 2008 2009 2010 /* 2011 * Following is where TCP initial sequence number generation occurs. 2012 * 2013 * There are two places where we must use initial sequence numbers: 2014 * 1. In SYN-ACK packets. 2015 * 2. In SYN packets. 2016 * 2017 * All ISNs for SYN-ACK packets are generated by the syncache. See 2018 * tcp_syncache.c for details. 2019 * 2020 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 2021 * depends on this property. In addition, these ISNs should be 2022 * unguessable so as to prevent connection hijacking. To satisfy 2023 * the requirements of this situation, the algorithm outlined in 2024 * RFC 1948 is used, with only small modifications. 2025 * 2026 * Implementation details: 2027 * 2028 * Time is based off the system timer, and is corrected so that it 2029 * increases by one megabyte per second. This allows for proper 2030 * recycling on high speed LANs while still leaving over an hour 2031 * before rollover. 2032 * 2033 * As reading the *exact* system time is too expensive to be done 2034 * whenever setting up a TCP connection, we increment the time 2035 * offset in two ways. First, a small random positive increment 2036 * is added to isn_offset for each connection that is set up. 2037 * Second, the function tcp_isn_tick fires once per clock tick 2038 * and increments isn_offset as necessary so that sequence numbers 2039 * are incremented at approximately ISN_BYTES_PER_SECOND. The 2040 * random positive increments serve only to ensure that the same 2041 * exact sequence number is never sent out twice (as could otherwise 2042 * happen when a port is recycled in less than the system tick 2043 * interval.) 2044 * 2045 * net.inet.tcp.isn_reseed_interval controls the number of seconds 2046 * between seeding of isn_secret. This is normally set to zero, 2047 * as reseeding should not be necessary. 2048 * 2049 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 2050 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 2051 * general, this means holding an exclusive (write) lock. 2052 */ 2053 2054 #define ISN_BYTES_PER_SECOND 1048576 2055 #define ISN_STATIC_INCREMENT 4096 2056 #define ISN_RANDOM_INCREMENT (4096 - 1) 2057 2058 static VNET_DEFINE(u_char, isn_secret[32]); 2059 static VNET_DEFINE(int, isn_last); 2060 static VNET_DEFINE(int, isn_last_reseed); 2061 static VNET_DEFINE(u_int32_t, isn_offset); 2062 static VNET_DEFINE(u_int32_t, isn_offset_old); 2063 2064 #define V_isn_secret VNET(isn_secret) 2065 #define V_isn_last VNET(isn_last) 2066 #define V_isn_last_reseed VNET(isn_last_reseed) 2067 #define V_isn_offset VNET(isn_offset) 2068 #define V_isn_offset_old VNET(isn_offset_old) 2069 2070 tcp_seq 2071 tcp_new_isn(struct tcpcb *tp) 2072 { 2073 MD5_CTX isn_ctx; 2074 u_int32_t md5_buffer[4]; 2075 tcp_seq new_isn; 2076 u_int32_t projected_offset; 2077 2078 INP_WLOCK_ASSERT(tp->t_inpcb); 2079 2080 ISN_LOCK(); 2081 /* Seed if this is the first use, reseed if requested. */ 2082 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 2083 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 2084 < (u_int)ticks))) { 2085 read_random(&V_isn_secret, sizeof(V_isn_secret)); 2086 V_isn_last_reseed = ticks; 2087 } 2088 2089 /* Compute the md5 hash and return the ISN. */ 2090 MD5Init(&isn_ctx); 2091 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 2092 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 2093 #ifdef INET6 2094 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 2095 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 2096 sizeof(struct in6_addr)); 2097 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 2098 sizeof(struct in6_addr)); 2099 } else 2100 #endif 2101 { 2102 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 2103 sizeof(struct in_addr)); 2104 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 2105 sizeof(struct in_addr)); 2106 } 2107 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 2108 MD5Final((u_char *) &md5_buffer, &isn_ctx); 2109 new_isn = (tcp_seq) md5_buffer[0]; 2110 V_isn_offset += ISN_STATIC_INCREMENT + 2111 (arc4random() & ISN_RANDOM_INCREMENT); 2112 if (ticks != V_isn_last) { 2113 projected_offset = V_isn_offset_old + 2114 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 2115 if (SEQ_GT(projected_offset, V_isn_offset)) 2116 V_isn_offset = projected_offset; 2117 V_isn_offset_old = V_isn_offset; 2118 V_isn_last = ticks; 2119 } 2120 new_isn += V_isn_offset; 2121 ISN_UNLOCK(); 2122 return (new_isn); 2123 } 2124 2125 /* 2126 * When a specific ICMP unreachable message is received and the 2127 * connection state is SYN-SENT, drop the connection. This behavior 2128 * is controlled by the icmp_may_rst sysctl. 2129 */ 2130 struct inpcb * 2131 tcp_drop_syn_sent(struct inpcb *inp, int errno) 2132 { 2133 struct tcpcb *tp; 2134 2135 INP_INFO_RLOCK_ASSERT(&V_tcbinfo); 2136 INP_WLOCK_ASSERT(inp); 2137 2138 if ((inp->inp_flags & INP_TIMEWAIT) || 2139 (inp->inp_flags & INP_DROPPED)) 2140 return (inp); 2141 2142 tp = intotcpcb(inp); 2143 if (tp->t_state != TCPS_SYN_SENT) 2144 return (inp); 2145 2146 tp = tcp_drop(tp, errno); 2147 if (tp != NULL) 2148 return (inp); 2149 else 2150 return (NULL); 2151 } 2152 2153 /* 2154 * When `need fragmentation' ICMP is received, update our idea of the MSS 2155 * based on the new value. Also nudge TCP to send something, since we 2156 * know the packet we just sent was dropped. 2157 * This duplicates some code in the tcp_mss() function in tcp_input.c. 2158 */ 2159 static struct inpcb * 2160 tcp_mtudisc_notify(struct inpcb *inp, int error) 2161 { 2162 2163 tcp_mtudisc(inp, -1); 2164 return (inp); 2165 } 2166 2167 static void 2168 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 2169 { 2170 struct tcpcb *tp; 2171 struct socket *so; 2172 2173 INP_WLOCK_ASSERT(inp); 2174 if ((inp->inp_flags & INP_TIMEWAIT) || 2175 (inp->inp_flags & INP_DROPPED)) 2176 return; 2177 2178 tp = intotcpcb(inp); 2179 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 2180 2181 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 2182 2183 so = inp->inp_socket; 2184 SOCKBUF_LOCK(&so->so_snd); 2185 /* If the mss is larger than the socket buffer, decrease the mss. */ 2186 if (so->so_snd.sb_hiwat < tp->t_maxseg) 2187 tp->t_maxseg = so->so_snd.sb_hiwat; 2188 SOCKBUF_UNLOCK(&so->so_snd); 2189 2190 TCPSTAT_INC(tcps_mturesent); 2191 tp->t_rtttime = 0; 2192 tp->snd_nxt = tp->snd_una; 2193 tcp_free_sackholes(tp); 2194 tp->snd_recover = tp->snd_max; 2195 if (tp->t_flags & TF_SACK_PERMIT) 2196 EXIT_FASTRECOVERY(tp->t_flags); 2197 tp->t_fb->tfb_tcp_output(tp); 2198 } 2199 2200 #ifdef INET 2201 /* 2202 * Look-up the routing entry to the peer of this inpcb. If no route 2203 * is found and it cannot be allocated, then return 0. This routine 2204 * is called by TCP routines that access the rmx structure and by 2205 * tcp_mss_update to get the peer/interface MTU. 2206 */ 2207 u_long 2208 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 2209 { 2210 struct nhop4_extended nh4; 2211 struct ifnet *ifp; 2212 u_long maxmtu = 0; 2213 2214 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 2215 2216 if (inc->inc_faddr.s_addr != INADDR_ANY) { 2217 2218 if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, 2219 NHR_REF, 0, &nh4) != 0) 2220 return (0); 2221 2222 ifp = nh4.nh_ifp; 2223 maxmtu = nh4.nh_mtu; 2224 2225 /* Report additional interface capabilities. */ 2226 if (cap != NULL) { 2227 if (ifp->if_capenable & IFCAP_TSO4 && 2228 ifp->if_hwassist & CSUM_TSO) { 2229 cap->ifcap |= CSUM_TSO; 2230 cap->tsomax = ifp->if_hw_tsomax; 2231 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2232 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2233 } 2234 } 2235 fib4_free_nh_ext(inc->inc_fibnum, &nh4); 2236 } 2237 return (maxmtu); 2238 } 2239 #endif /* INET */ 2240 2241 #ifdef INET6 2242 u_long 2243 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 2244 { 2245 struct nhop6_extended nh6; 2246 struct in6_addr dst6; 2247 uint32_t scopeid; 2248 struct ifnet *ifp; 2249 u_long maxmtu = 0; 2250 2251 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 2252 2253 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 2254 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 2255 if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 2256 0, &nh6) != 0) 2257 return (0); 2258 2259 ifp = nh6.nh_ifp; 2260 maxmtu = nh6.nh_mtu; 2261 2262 /* Report additional interface capabilities. */ 2263 if (cap != NULL) { 2264 if (ifp->if_capenable & IFCAP_TSO6 && 2265 ifp->if_hwassist & CSUM_TSO) { 2266 cap->ifcap |= CSUM_TSO; 2267 cap->tsomax = ifp->if_hw_tsomax; 2268 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2269 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2270 } 2271 } 2272 fib6_free_nh_ext(inc->inc_fibnum, &nh6); 2273 } 2274 2275 return (maxmtu); 2276 } 2277 #endif /* INET6 */ 2278 2279 /* 2280 * Calculate effective SMSS per RFC5681 definition for a given TCP 2281 * connection at its current state, taking into account SACK and etc. 2282 */ 2283 u_int 2284 tcp_maxseg(const struct tcpcb *tp) 2285 { 2286 u_int optlen; 2287 2288 if (tp->t_flags & TF_NOOPT) 2289 return (tp->t_maxseg); 2290 2291 /* 2292 * Here we have a simplified code from tcp_addoptions(), 2293 * without a proper loop, and having most of paddings hardcoded. 2294 * We might make mistakes with padding here in some edge cases, 2295 * but this is harmless, since result of tcp_maxseg() is used 2296 * only in cwnd and ssthresh estimations. 2297 */ 2298 #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) 2299 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 2300 if (tp->t_flags & TF_RCVD_TSTMP) 2301 optlen = TCPOLEN_TSTAMP_APPA; 2302 else 2303 optlen = 0; 2304 #ifdef TCP_SIGNATURE 2305 if (tp->t_flags & TF_SIGNATURE) 2306 optlen += PAD(TCPOLEN_SIGNATURE); 2307 #endif 2308 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 2309 optlen += TCPOLEN_SACKHDR; 2310 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 2311 optlen = PAD(optlen); 2312 } 2313 } else { 2314 if (tp->t_flags & TF_REQ_TSTMP) 2315 optlen = TCPOLEN_TSTAMP_APPA; 2316 else 2317 optlen = PAD(TCPOLEN_MAXSEG); 2318 if (tp->t_flags & TF_REQ_SCALE) 2319 optlen += PAD(TCPOLEN_WINDOW); 2320 #ifdef TCP_SIGNATURE 2321 if (tp->t_flags & TF_SIGNATURE) 2322 optlen += PAD(TCPOLEN_SIGNATURE); 2323 #endif 2324 if (tp->t_flags & TF_SACK_PERMIT) 2325 optlen += PAD(TCPOLEN_SACK_PERMITTED); 2326 } 2327 #undef PAD 2328 optlen = min(optlen, TCP_MAXOLEN); 2329 return (tp->t_maxseg - optlen); 2330 } 2331 2332 #ifdef IPSEC 2333 /* compute ESP/AH header size for TCP, including outer IP header. */ 2334 size_t 2335 ipsec_hdrsiz_tcp(struct tcpcb *tp) 2336 { 2337 struct inpcb *inp; 2338 struct mbuf *m; 2339 size_t hdrsiz; 2340 struct ip *ip; 2341 #ifdef INET6 2342 struct ip6_hdr *ip6; 2343 #endif 2344 struct tcphdr *th; 2345 2346 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) || 2347 (!key_havesp(IPSEC_DIR_OUTBOUND))) 2348 return (0); 2349 m = m_gethdr(M_NOWAIT, MT_DATA); 2350 if (!m) 2351 return (0); 2352 2353 #ifdef INET6 2354 if ((inp->inp_vflag & INP_IPV6) != 0) { 2355 ip6 = mtod(m, struct ip6_hdr *); 2356 th = (struct tcphdr *)(ip6 + 1); 2357 m->m_pkthdr.len = m->m_len = 2358 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 2359 tcpip_fillheaders(inp, ip6, th); 2360 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2361 } else 2362 #endif /* INET6 */ 2363 { 2364 ip = mtod(m, struct ip *); 2365 th = (struct tcphdr *)(ip + 1); 2366 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 2367 tcpip_fillheaders(inp, ip, th); 2368 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2369 } 2370 2371 m_free(m); 2372 return (hdrsiz); 2373 } 2374 #endif /* IPSEC */ 2375 2376 #ifdef TCP_SIGNATURE 2377 /* 2378 * Callback function invoked by m_apply() to digest TCP segment data 2379 * contained within an mbuf chain. 2380 */ 2381 static int 2382 tcp_signature_apply(void *fstate, void *data, u_int len) 2383 { 2384 2385 MD5Update(fstate, (u_char *)data, len); 2386 return (0); 2387 } 2388 2389 /* 2390 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 2391 * search with the destination IP address, and a 'magic SPI' to be 2392 * determined by the application. This is hardcoded elsewhere to 1179 2393 */ 2394 struct secasvar * 2395 tcp_get_sav(struct mbuf *m, u_int direction) 2396 { 2397 union sockaddr_union dst; 2398 struct secasvar *sav; 2399 struct ip *ip; 2400 #ifdef INET6 2401 struct ip6_hdr *ip6; 2402 char ip6buf[INET6_ADDRSTRLEN]; 2403 #endif 2404 2405 /* Extract the destination from the IP header in the mbuf. */ 2406 bzero(&dst, sizeof(union sockaddr_union)); 2407 ip = mtod(m, struct ip *); 2408 #ifdef INET6 2409 ip6 = NULL; /* Make the compiler happy. */ 2410 #endif 2411 switch (ip->ip_v) { 2412 #ifdef INET 2413 case IPVERSION: 2414 dst.sa.sa_len = sizeof(struct sockaddr_in); 2415 dst.sa.sa_family = AF_INET; 2416 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2417 ip->ip_src : ip->ip_dst; 2418 break; 2419 #endif 2420 #ifdef INET6 2421 case (IPV6_VERSION >> 4): 2422 ip6 = mtod(m, struct ip6_hdr *); 2423 dst.sa.sa_len = sizeof(struct sockaddr_in6); 2424 dst.sa.sa_family = AF_INET6; 2425 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 2426 ip6->ip6_src : ip6->ip6_dst; 2427 break; 2428 #endif 2429 default: 2430 return (NULL); 2431 /* NOTREACHED */ 2432 break; 2433 } 2434 2435 /* Look up an SADB entry which matches the address of the peer. */ 2436 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2437 if (sav == NULL) { 2438 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 2439 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 2440 #ifdef INET6 2441 (ip->ip_v == (IPV6_VERSION >> 4)) ? 2442 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 2443 #endif 2444 "(unsupported)")); 2445 } 2446 2447 return (sav); 2448 } 2449 2450 /* 2451 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2452 * 2453 * Parameters: 2454 * m pointer to head of mbuf chain 2455 * len length of TCP segment data, excluding options 2456 * optlen length of TCP segment options 2457 * buf pointer to storage for computed MD5 digest 2458 * sav pointer to security assosiation 2459 * 2460 * We do this over ip, tcphdr, segment data, and the key in the SADB. 2461 * When called from tcp_input(), we can be sure that th_sum has been 2462 * zeroed out and verified already. 2463 * 2464 * Releases reference to SADB key before return. 2465 * 2466 * Return 0 if successful, otherwise return -1. 2467 * 2468 */ 2469 int 2470 tcp_signature_do_compute(struct mbuf *m, int len, int optlen, 2471 u_char *buf, struct secasvar *sav) 2472 { 2473 #ifdef INET 2474 struct ippseudo ippseudo; 2475 #endif 2476 MD5_CTX ctx; 2477 int doff; 2478 struct ip *ip; 2479 #ifdef INET 2480 struct ipovly *ipovly; 2481 #endif 2482 struct tcphdr *th; 2483 #ifdef INET6 2484 struct ip6_hdr *ip6; 2485 struct in6_addr in6; 2486 uint32_t plen; 2487 uint16_t nhdr; 2488 #endif 2489 u_short savecsum; 2490 2491 KASSERT(m != NULL, ("NULL mbuf chain")); 2492 KASSERT(buf != NULL, ("NULL signature pointer")); 2493 2494 /* Extract the destination from the IP header in the mbuf. */ 2495 ip = mtod(m, struct ip *); 2496 #ifdef INET6 2497 ip6 = NULL; /* Make the compiler happy. */ 2498 #endif 2499 2500 MD5Init(&ctx); 2501 /* 2502 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 2503 * 2504 * XXX The ippseudo header MUST be digested in network byte order, 2505 * or else we'll fail the regression test. Assume all fields we've 2506 * been doing arithmetic on have been in host byte order. 2507 * XXX One cannot depend on ipovly->ih_len here. When called from 2508 * tcp_output(), the underlying ip_len member has not yet been set. 2509 */ 2510 switch (ip->ip_v) { 2511 #ifdef INET 2512 case IPVERSION: 2513 ipovly = (struct ipovly *)ip; 2514 ippseudo.ippseudo_src = ipovly->ih_src; 2515 ippseudo.ippseudo_dst = ipovly->ih_dst; 2516 ippseudo.ippseudo_pad = 0; 2517 ippseudo.ippseudo_p = IPPROTO_TCP; 2518 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 2519 optlen); 2520 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2521 2522 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 2523 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 2524 break; 2525 #endif 2526 #ifdef INET6 2527 /* 2528 * RFC 2385, 2.0 Proposal 2529 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 2530 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 2531 * extended next header value (to form 32 bits), and 32-bit segment 2532 * length. 2533 * Note: Upper-Layer Packet Length comes before Next Header. 2534 */ 2535 case (IPV6_VERSION >> 4): 2536 in6 = ip6->ip6_src; 2537 in6_clearscope(&in6); 2538 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2539 in6 = ip6->ip6_dst; 2540 in6_clearscope(&in6); 2541 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2542 plen = htonl(len + sizeof(struct tcphdr) + optlen); 2543 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 2544 nhdr = 0; 2545 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2546 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2547 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2548 nhdr = IPPROTO_TCP; 2549 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2550 2551 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 2552 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 2553 break; 2554 #endif 2555 default: 2556 KEY_FREESAV(&sav); 2557 return (-1); 2558 /* NOTREACHED */ 2559 break; 2560 } 2561 2562 2563 /* 2564 * Step 2: Update MD5 hash with TCP header, excluding options. 2565 * The TCP checksum must be set to zero. 2566 */ 2567 savecsum = th->th_sum; 2568 th->th_sum = 0; 2569 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2570 th->th_sum = savecsum; 2571 2572 /* 2573 * Step 3: Update MD5 hash with TCP segment data. 2574 * Use m_apply() to avoid an early m_pullup(). 2575 */ 2576 if (len > 0) 2577 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2578 2579 /* 2580 * Step 4: Update MD5 hash with shared secret. 2581 */ 2582 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2583 MD5Final(buf, &ctx); 2584 2585 key_sa_recordxfer(sav, m); 2586 KEY_FREESAV(&sav); 2587 return (0); 2588 } 2589 2590 /* 2591 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2592 * 2593 * Return 0 if successful, otherwise return -1. 2594 */ 2595 int 2596 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 2597 u_char *buf, u_int direction) 2598 { 2599 struct secasvar *sav; 2600 2601 if ((sav = tcp_get_sav(m, direction)) == NULL) 2602 return (-1); 2603 2604 return (tcp_signature_do_compute(m, len, optlen, buf, sav)); 2605 } 2606 2607 /* 2608 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2609 * 2610 * Parameters: 2611 * m pointer to head of mbuf chain 2612 * len length of TCP segment data, excluding options 2613 * optlen length of TCP segment options 2614 * buf pointer to storage for computed MD5 digest 2615 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2616 * 2617 * Return 1 if successful, otherwise return 0. 2618 */ 2619 int 2620 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2621 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2622 { 2623 char tmpdigest[TCP_SIGLEN]; 2624 2625 if (tcp_sig_checksigs == 0) 2626 return (1); 2627 if ((tcpbflag & TF_SIGNATURE) == 0) { 2628 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2629 2630 /* 2631 * If this socket is not expecting signature but 2632 * the segment contains signature just fail. 2633 */ 2634 TCPSTAT_INC(tcps_sig_err_sigopt); 2635 TCPSTAT_INC(tcps_sig_rcvbadsig); 2636 return (0); 2637 } 2638 2639 /* Signature is not expected, and not present in segment. */ 2640 return (1); 2641 } 2642 2643 /* 2644 * If this socket is expecting signature but the segment does not 2645 * contain any just fail. 2646 */ 2647 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2648 TCPSTAT_INC(tcps_sig_err_nosigopt); 2649 TCPSTAT_INC(tcps_sig_rcvbadsig); 2650 return (0); 2651 } 2652 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2653 IPSEC_DIR_INBOUND) == -1) { 2654 TCPSTAT_INC(tcps_sig_err_buildsig); 2655 TCPSTAT_INC(tcps_sig_rcvbadsig); 2656 return (0); 2657 } 2658 2659 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2660 TCPSTAT_INC(tcps_sig_rcvbadsig); 2661 return (0); 2662 } 2663 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2664 return (1); 2665 } 2666 #endif /* TCP_SIGNATURE */ 2667 2668 static int 2669 sysctl_drop(SYSCTL_HANDLER_ARGS) 2670 { 2671 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2672 struct sockaddr_storage addrs[2]; 2673 struct inpcb *inp; 2674 struct tcpcb *tp; 2675 struct tcptw *tw; 2676 struct sockaddr_in *fin, *lin; 2677 #ifdef INET6 2678 struct sockaddr_in6 *fin6, *lin6; 2679 #endif 2680 int error; 2681 2682 inp = NULL; 2683 fin = lin = NULL; 2684 #ifdef INET6 2685 fin6 = lin6 = NULL; 2686 #endif 2687 error = 0; 2688 2689 if (req->oldptr != NULL || req->oldlen != 0) 2690 return (EINVAL); 2691 if (req->newptr == NULL) 2692 return (EPERM); 2693 if (req->newlen < sizeof(addrs)) 2694 return (ENOMEM); 2695 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2696 if (error) 2697 return (error); 2698 2699 switch (addrs[0].ss_family) { 2700 #ifdef INET6 2701 case AF_INET6: 2702 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2703 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2704 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2705 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2706 return (EINVAL); 2707 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2708 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2709 return (EINVAL); 2710 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2711 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2712 fin = (struct sockaddr_in *)&addrs[0]; 2713 lin = (struct sockaddr_in *)&addrs[1]; 2714 break; 2715 } 2716 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2717 if (error) 2718 return (error); 2719 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2720 if (error) 2721 return (error); 2722 break; 2723 #endif 2724 #ifdef INET 2725 case AF_INET: 2726 fin = (struct sockaddr_in *)&addrs[0]; 2727 lin = (struct sockaddr_in *)&addrs[1]; 2728 if (fin->sin_len != sizeof(struct sockaddr_in) || 2729 lin->sin_len != sizeof(struct sockaddr_in)) 2730 return (EINVAL); 2731 break; 2732 #endif 2733 default: 2734 return (EINVAL); 2735 } 2736 INP_INFO_RLOCK(&V_tcbinfo); 2737 switch (addrs[0].ss_family) { 2738 #ifdef INET6 2739 case AF_INET6: 2740 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2741 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2742 INPLOOKUP_WLOCKPCB, NULL); 2743 break; 2744 #endif 2745 #ifdef INET 2746 case AF_INET: 2747 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2748 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2749 break; 2750 #endif 2751 } 2752 if (inp != NULL) { 2753 if (inp->inp_flags & INP_TIMEWAIT) { 2754 /* 2755 * XXXRW: There currently exists a state where an 2756 * inpcb is present, but its timewait state has been 2757 * discarded. For now, don't allow dropping of this 2758 * type of inpcb. 2759 */ 2760 tw = intotw(inp); 2761 if (tw != NULL) 2762 tcp_twclose(tw, 0); 2763 else 2764 INP_WUNLOCK(inp); 2765 } else if (!(inp->inp_flags & INP_DROPPED) && 2766 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2767 tp = intotcpcb(inp); 2768 tp = tcp_drop(tp, ECONNABORTED); 2769 if (tp != NULL) 2770 INP_WUNLOCK(inp); 2771 } else 2772 INP_WUNLOCK(inp); 2773 } else 2774 error = ESRCH; 2775 INP_INFO_RUNLOCK(&V_tcbinfo); 2776 return (error); 2777 } 2778 2779 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2780 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 2781 0, sysctl_drop, "", "Drop TCP connection"); 2782 2783 /* 2784 * Generate a standardized TCP log line for use throughout the 2785 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2786 * allow use in the interrupt context. 2787 * 2788 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2789 * NB: The function may return NULL if memory allocation failed. 2790 * 2791 * Due to header inclusion and ordering limitations the struct ip 2792 * and ip6_hdr pointers have to be passed as void pointers. 2793 */ 2794 char * 2795 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2796 const void *ip6hdr) 2797 { 2798 2799 /* Is logging enabled? */ 2800 if (tcp_log_in_vain == 0) 2801 return (NULL); 2802 2803 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2804 } 2805 2806 char * 2807 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2808 const void *ip6hdr) 2809 { 2810 2811 /* Is logging enabled? */ 2812 if (tcp_log_debug == 0) 2813 return (NULL); 2814 2815 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2816 } 2817 2818 static char * 2819 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2820 const void *ip6hdr) 2821 { 2822 char *s, *sp; 2823 size_t size; 2824 struct ip *ip; 2825 #ifdef INET6 2826 const struct ip6_hdr *ip6; 2827 2828 ip6 = (const struct ip6_hdr *)ip6hdr; 2829 #endif /* INET6 */ 2830 ip = (struct ip *)ip4hdr; 2831 2832 /* 2833 * The log line looks like this: 2834 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2835 */ 2836 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2837 sizeof(PRINT_TH_FLAGS) + 1 + 2838 #ifdef INET6 2839 2 * INET6_ADDRSTRLEN; 2840 #else 2841 2 * INET_ADDRSTRLEN; 2842 #endif /* INET6 */ 2843 2844 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2845 if (s == NULL) 2846 return (NULL); 2847 2848 strcat(s, "TCP: ["); 2849 sp = s + strlen(s); 2850 2851 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2852 inet_ntoa_r(inc->inc_faddr, sp); 2853 sp = s + strlen(s); 2854 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2855 sp = s + strlen(s); 2856 inet_ntoa_r(inc->inc_laddr, sp); 2857 sp = s + strlen(s); 2858 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2859 #ifdef INET6 2860 } else if (inc) { 2861 ip6_sprintf(sp, &inc->inc6_faddr); 2862 sp = s + strlen(s); 2863 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2864 sp = s + strlen(s); 2865 ip6_sprintf(sp, &inc->inc6_laddr); 2866 sp = s + strlen(s); 2867 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2868 } else if (ip6 && th) { 2869 ip6_sprintf(sp, &ip6->ip6_src); 2870 sp = s + strlen(s); 2871 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2872 sp = s + strlen(s); 2873 ip6_sprintf(sp, &ip6->ip6_dst); 2874 sp = s + strlen(s); 2875 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2876 #endif /* INET6 */ 2877 #ifdef INET 2878 } else if (ip && th) { 2879 inet_ntoa_r(ip->ip_src, sp); 2880 sp = s + strlen(s); 2881 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2882 sp = s + strlen(s); 2883 inet_ntoa_r(ip->ip_dst, sp); 2884 sp = s + strlen(s); 2885 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2886 #endif /* INET */ 2887 } else { 2888 free(s, M_TCPLOG); 2889 return (NULL); 2890 } 2891 sp = s + strlen(s); 2892 if (th) 2893 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2894 if (*(s + size - 1) != '\0') 2895 panic("%s: string too long", __func__); 2896 return (s); 2897 } 2898 2899 /* 2900 * A subroutine which makes it easy to track TCP state changes with DTrace. 2901 * This function shouldn't be called for t_state initializations that don't 2902 * correspond to actual TCP state transitions. 2903 */ 2904 void 2905 tcp_state_change(struct tcpcb *tp, int newstate) 2906 { 2907 #if defined(KDTRACE_HOOKS) 2908 int pstate = tp->t_state; 2909 #endif 2910 2911 tp->t_state = newstate; 2912 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 2913 } 2914