xref: /freebsd/sys/netinet/tcp_subr.c (revision 41466b50c1d5bfd1cf6adaae547a579a75d7c04e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/vm_zone.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 #include <sys/md5.h>
102 
103 int 	tcp_mssdflt = TCP_MSS;
104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106 
107 #ifdef INET6
108 int	tcp_v6mssdflt = TCP6_MSS;
109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111 	"Default TCP Maximum Segment Size for IPv6");
112 #endif
113 
114 #if 0
115 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118 #endif
119 
120 static int	tcp_do_rfc1323 = 1;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123 
124 static int	tcp_do_rfc1644 = 0;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127 
128 static int	tcp_tcbhashsize = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131 
132 static int	do_tcpdrain = 1;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134      "Enable tcp_drain routine for extra help when low on mbufs");
135 
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137     &tcbinfo.ipi_count, 0, "Number of active PCBs");
138 
139 static int	icmp_may_rst = 1;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142 
143 static int	tcp_strict_rfc1948 = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145     &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146 
147 static int	tcp_isn_reseed_interval = 0;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150 
151 static void	tcp_cleartaocache __P((void));
152 static void	tcp_notify __P((struct inpcb *, int));
153 
154 /*
155  * Target size of TCP PCB hash tables. Must be a power of two.
156  *
157  * Note that this can be overridden by the kernel environment
158  * variable net.inet.tcp.tcbhashsize
159  */
160 #ifndef TCBHASHSIZE
161 #define TCBHASHSIZE	512
162 #endif
163 
164 /*
165  * This is the actual shape of what we allocate using the zone
166  * allocator.  Doing it this way allows us to protect both structures
167  * using the same generation count, and also eliminates the overhead
168  * of allocating tcpcbs separately.  By hiding the structure here,
169  * we avoid changing most of the rest of the code (although it needs
170  * to be changed, eventually, for greater efficiency).
171  */
172 #define	ALIGNMENT	32
173 #define	ALIGNM1		(ALIGNMENT - 1)
174 struct	inp_tp {
175 	union {
176 		struct	inpcb inp;
177 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178 	} inp_tp_u;
179 	struct	tcpcb tcb;
180 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181 	struct	callout inp_tp_delack;
182 };
183 #undef ALIGNMENT
184 #undef ALIGNM1
185 
186 /*
187  * Tcp initialization
188  */
189 void
190 tcp_init()
191 {
192 	int hashsize = TCBHASHSIZE;
193 
194 	tcp_ccgen = 1;
195 	tcp_cleartaocache();
196 
197 	tcp_delacktime = TCPTV_DELACK;
198 	tcp_keepinit = TCPTV_KEEP_INIT;
199 	tcp_keepidle = TCPTV_KEEP_IDLE;
200 	tcp_keepintvl = TCPTV_KEEPINTVL;
201 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202 	tcp_msl = TCPTV_MSL;
203 
204 	LIST_INIT(&tcb);
205 	tcbinfo.listhead = &tcb;
206 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207 	if (!powerof2(hashsize)) {
208 		printf("WARNING: TCB hash size not a power of 2\n");
209 		hashsize = 512; /* safe default */
210 	}
211 	tcp_tcbhashsize = hashsize;
212 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214 					&tcbinfo.porthashmask);
215 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
216 				 ZONE_INTERRUPT, 0);
217 #ifdef INET6
218 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219 #else /* INET6 */
220 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221 #endif /* INET6 */
222 	if (max_protohdr < TCP_MINPROTOHDR)
223 		max_protohdr = TCP_MINPROTOHDR;
224 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225 		panic("tcp_init");
226 #undef TCP_MINPROTOHDR
227 }
228 
229 /*
230  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
231  * tcp_template used to store this data in mbufs, but we now recopy it out
232  * of the tcpcb each time to conserve mbufs.
233  */
234 void
235 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
236 	struct tcpcb *tp;
237 	void *ip_ptr;
238 	void *tcp_ptr;
239 {
240 	struct inpcb *inp = tp->t_inpcb;
241 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
242 
243 #ifdef INET6
244 	if ((inp->inp_vflag & INP_IPV6) != 0) {
245 		struct ip6_hdr *ip6;
246 
247 		ip6 = (struct ip6_hdr *)ip_ptr;
248 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
249 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
250 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
251 			(IPV6_VERSION & IPV6_VERSION_MASK);
252 		ip6->ip6_nxt = IPPROTO_TCP;
253 		ip6->ip6_plen = sizeof(struct tcphdr);
254 		ip6->ip6_src = inp->in6p_laddr;
255 		ip6->ip6_dst = inp->in6p_faddr;
256 		tcp_hdr->th_sum = 0;
257 	} else
258 #endif
259 	{
260 	struct ip *ip = (struct ip *) ip_ptr;
261 
262 	ip->ip_vhl = IP_VHL_BORING;
263 	ip->ip_tos = 0;
264 	ip->ip_len = 0;
265 	ip->ip_id = 0;
266 	ip->ip_off = 0;
267 	ip->ip_ttl = 0;
268 	ip->ip_sum = 0;
269 	ip->ip_p = IPPROTO_TCP;
270 	ip->ip_src = inp->inp_laddr;
271 	ip->ip_dst = inp->inp_faddr;
272 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
273 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
274 	}
275 
276 	tcp_hdr->th_sport = inp->inp_lport;
277 	tcp_hdr->th_dport = inp->inp_fport;
278 	tcp_hdr->th_seq = 0;
279 	tcp_hdr->th_ack = 0;
280 	tcp_hdr->th_x2 = 0;
281 	tcp_hdr->th_off = 5;
282 	tcp_hdr->th_flags = 0;
283 	tcp_hdr->th_win = 0;
284 	tcp_hdr->th_urp = 0;
285 }
286 
287 /*
288  * Create template to be used to send tcp packets on a connection.
289  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
290  * use for this function is in keepalives, which use tcp_respond.
291  */
292 struct tcptemp *
293 tcp_maketemplate(tp)
294 	struct tcpcb *tp;
295 {
296 	struct mbuf *m;
297 	struct tcptemp *n;
298 
299 	m = m_get(M_DONTWAIT, MT_HEADER);
300 	if (m == NULL)
301 		return (0);
302 	m->m_len = sizeof(struct tcptemp);
303 	n = mtod(m, struct tcptemp *);
304 
305 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
306 	return (n);
307 }
308 
309 /*
310  * Send a single message to the TCP at address specified by
311  * the given TCP/IP header.  If m == 0, then we make a copy
312  * of the tcpiphdr at ti and send directly to the addressed host.
313  * This is used to force keep alive messages out using the TCP
314  * template for a connection.  If flags are given then we send
315  * a message back to the TCP which originated the * segment ti,
316  * and discard the mbuf containing it and any other attached mbufs.
317  *
318  * In any case the ack and sequence number of the transmitted
319  * segment are as specified by the parameters.
320  *
321  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
322  */
323 void
324 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
325 	struct tcpcb *tp;
326 	void *ipgen;
327 	register struct tcphdr *th;
328 	register struct mbuf *m;
329 	tcp_seq ack, seq;
330 	int flags;
331 {
332 	register int tlen;
333 	int win = 0;
334 	struct route *ro = 0;
335 	struct route sro;
336 	struct ip *ip;
337 	struct tcphdr *nth;
338 #ifdef INET6
339 	struct route_in6 *ro6 = 0;
340 	struct route_in6 sro6;
341 	struct ip6_hdr *ip6;
342 	int isipv6;
343 #endif /* INET6 */
344 	int ipflags = 0;
345 
346 #ifdef INET6
347 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
348 	ip6 = ipgen;
349 #endif /* INET6 */
350 	ip = ipgen;
351 
352 	if (tp) {
353 		if (!(flags & TH_RST)) {
354 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
355 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
356 				win = (long)TCP_MAXWIN << tp->rcv_scale;
357 		}
358 #ifdef INET6
359 		if (isipv6)
360 			ro6 = &tp->t_inpcb->in6p_route;
361 		else
362 #endif /* INET6 */
363 		ro = &tp->t_inpcb->inp_route;
364 	} else {
365 #ifdef INET6
366 		if (isipv6) {
367 			ro6 = &sro6;
368 			bzero(ro6, sizeof *ro6);
369 		} else
370 #endif /* INET6 */
371 	      {
372 		ro = &sro;
373 		bzero(ro, sizeof *ro);
374 	      }
375 	}
376 	if (m == 0) {
377 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
378 		if (m == NULL)
379 			return;
380 		tlen = 0;
381 		m->m_data += max_linkhdr;
382 #ifdef INET6
383 		if (isipv6) {
384 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
385 			      sizeof(struct ip6_hdr));
386 			ip6 = mtod(m, struct ip6_hdr *);
387 			nth = (struct tcphdr *)(ip6 + 1);
388 		} else
389 #endif /* INET6 */
390 	      {
391 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
392 		ip = mtod(m, struct ip *);
393 		nth = (struct tcphdr *)(ip + 1);
394 	      }
395 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
396 		flags = TH_ACK;
397 	} else {
398 		m_freem(m->m_next);
399 		m->m_next = 0;
400 		m->m_data = (caddr_t)ipgen;
401 		/* m_len is set later */
402 		tlen = 0;
403 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
404 #ifdef INET6
405 		if (isipv6) {
406 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
407 			nth = (struct tcphdr *)(ip6 + 1);
408 		} else
409 #endif /* INET6 */
410 	      {
411 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
412 		nth = (struct tcphdr *)(ip + 1);
413 	      }
414 		if (th != nth) {
415 			/*
416 			 * this is usually a case when an extension header
417 			 * exists between the IPv6 header and the
418 			 * TCP header.
419 			 */
420 			nth->th_sport = th->th_sport;
421 			nth->th_dport = th->th_dport;
422 		}
423 		xchg(nth->th_dport, nth->th_sport, n_short);
424 #undef xchg
425 	}
426 #ifdef INET6
427 	if (isipv6) {
428 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
429 						tlen));
430 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
431 	} else
432 #endif
433       {
434 	tlen += sizeof (struct tcpiphdr);
435 	ip->ip_len = tlen;
436 	ip->ip_ttl = ip_defttl;
437       }
438 	m->m_len = tlen;
439 	m->m_pkthdr.len = tlen;
440 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
441 	nth->th_seq = htonl(seq);
442 	nth->th_ack = htonl(ack);
443 	nth->th_x2 = 0;
444 	nth->th_off = sizeof (struct tcphdr) >> 2;
445 	nth->th_flags = flags;
446 	if (tp)
447 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
448 	else
449 		nth->th_win = htons((u_short)win);
450 	nth->th_urp = 0;
451 #ifdef INET6
452 	if (isipv6) {
453 		nth->th_sum = 0;
454 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
455 					sizeof(struct ip6_hdr),
456 					tlen - sizeof(struct ip6_hdr));
457 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
458 					       ro6 && ro6->ro_rt ?
459 					       ro6->ro_rt->rt_ifp :
460 					       NULL);
461 	} else
462 #endif /* INET6 */
463       {
464         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
465 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
466         m->m_pkthdr.csum_flags = CSUM_TCP;
467         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
468       }
469 #ifdef TCPDEBUG
470 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
471 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
472 #endif
473 #ifdef IPSEC
474 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
475 		m_freem(m);
476 		return;
477 	}
478 #endif
479 #ifdef INET6
480 	if (isipv6) {
481 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
482 		if (ro6 == &sro6 && ro6->ro_rt) {
483 			RTFREE(ro6->ro_rt);
484 			ro6->ro_rt = NULL;
485 		}
486 	} else
487 #endif /* INET6 */
488       {
489 	(void) ip_output(m, NULL, ro, ipflags, NULL);
490 	if (ro == &sro && ro->ro_rt) {
491 		RTFREE(ro->ro_rt);
492 		ro->ro_rt = NULL;
493 	}
494       }
495 }
496 
497 /*
498  * Create a new TCP control block, making an
499  * empty reassembly queue and hooking it to the argument
500  * protocol control block.  The `inp' parameter must have
501  * come from the zone allocator set up in tcp_init().
502  */
503 struct tcpcb *
504 tcp_newtcpcb(inp)
505 	struct inpcb *inp;
506 {
507 	struct inp_tp *it;
508 	register struct tcpcb *tp;
509 #ifdef INET6
510 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
511 #endif /* INET6 */
512 
513 	it = (struct inp_tp *)inp;
514 	tp = &it->tcb;
515 	bzero((char *) tp, sizeof(struct tcpcb));
516 	LIST_INIT(&tp->t_segq);
517 	tp->t_maxseg = tp->t_maxopd =
518 #ifdef INET6
519 		isipv6 ? tcp_v6mssdflt :
520 #endif /* INET6 */
521 		tcp_mssdflt;
522 
523 	/* Set up our timeouts. */
524 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
525 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
526 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
527 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
528 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
529 
530 	if (tcp_do_rfc1323)
531 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
532 	if (tcp_do_rfc1644)
533 		tp->t_flags |= TF_REQ_CC;
534 	tp->t_inpcb = inp;	/* XXX */
535 	/*
536 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
537 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
538 	 * reasonable initial retransmit time.
539 	 */
540 	tp->t_srtt = TCPTV_SRTTBASE;
541 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
542 	tp->t_rttmin = TCPTV_MIN;
543 	tp->t_rxtcur = TCPTV_RTOBASE;
544 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
545 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
546 	tp->t_rcvtime = ticks;
547         /*
548 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
549 	 * because the socket may be bound to an IPv6 wildcard address,
550 	 * which may match an IPv4-mapped IPv6 address.
551 	 */
552 	inp->inp_ip_ttl = ip_defttl;
553 	inp->inp_ppcb = (caddr_t)tp;
554 	return (tp);		/* XXX */
555 }
556 
557 /*
558  * Drop a TCP connection, reporting
559  * the specified error.  If connection is synchronized,
560  * then send a RST to peer.
561  */
562 struct tcpcb *
563 tcp_drop(tp, errno)
564 	register struct tcpcb *tp;
565 	int errno;
566 {
567 	struct socket *so = tp->t_inpcb->inp_socket;
568 
569 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
570 		tp->t_state = TCPS_CLOSED;
571 		(void) tcp_output(tp);
572 		tcpstat.tcps_drops++;
573 	} else
574 		tcpstat.tcps_conndrops++;
575 	if (errno == ETIMEDOUT && tp->t_softerror)
576 		errno = tp->t_softerror;
577 	so->so_error = errno;
578 	return (tcp_close(tp));
579 }
580 
581 /*
582  * Close a TCP control block:
583  *	discard all space held by the tcp
584  *	discard internet protocol block
585  *	wake up any sleepers
586  */
587 struct tcpcb *
588 tcp_close(tp)
589 	register struct tcpcb *tp;
590 {
591 	register struct tseg_qent *q;
592 	struct inpcb *inp = tp->t_inpcb;
593 	struct socket *so = inp->inp_socket;
594 #ifdef INET6
595 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
596 #endif /* INET6 */
597 	register struct rtentry *rt;
598 	int dosavessthresh;
599 
600 	/*
601 	 * Make sure that all of our timers are stopped before we
602 	 * delete the PCB.
603 	 */
604 	callout_stop(tp->tt_rexmt);
605 	callout_stop(tp->tt_persist);
606 	callout_stop(tp->tt_keep);
607 	callout_stop(tp->tt_2msl);
608 	callout_stop(tp->tt_delack);
609 
610 	/*
611 	 * If we got enough samples through the srtt filter,
612 	 * save the rtt and rttvar in the routing entry.
613 	 * 'Enough' is arbitrarily defined as the 16 samples.
614 	 * 16 samples is enough for the srtt filter to converge
615 	 * to within 5% of the correct value; fewer samples and
616 	 * we could save a very bogus rtt.
617 	 *
618 	 * Don't update the default route's characteristics and don't
619 	 * update anything that the user "locked".
620 	 */
621 	if (tp->t_rttupdated >= 16) {
622 		register u_long i = 0;
623 #ifdef INET6
624 		if (isipv6) {
625 			struct sockaddr_in6 *sin6;
626 
627 			if ((rt = inp->in6p_route.ro_rt) == NULL)
628 				goto no_valid_rt;
629 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
630 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
631 				goto no_valid_rt;
632 		}
633 		else
634 #endif /* INET6 */
635 		if ((rt = inp->inp_route.ro_rt) == NULL ||
636 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
637 		    == INADDR_ANY)
638 			goto no_valid_rt;
639 
640 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
641 			i = tp->t_srtt *
642 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
643 			if (rt->rt_rmx.rmx_rtt && i)
644 				/*
645 				 * filter this update to half the old & half
646 				 * the new values, converting scale.
647 				 * See route.h and tcp_var.h for a
648 				 * description of the scaling constants.
649 				 */
650 				rt->rt_rmx.rmx_rtt =
651 				    (rt->rt_rmx.rmx_rtt + i) / 2;
652 			else
653 				rt->rt_rmx.rmx_rtt = i;
654 			tcpstat.tcps_cachedrtt++;
655 		}
656 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
657 			i = tp->t_rttvar *
658 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
659 			if (rt->rt_rmx.rmx_rttvar && i)
660 				rt->rt_rmx.rmx_rttvar =
661 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
662 			else
663 				rt->rt_rmx.rmx_rttvar = i;
664 			tcpstat.tcps_cachedrttvar++;
665 		}
666 		/*
667 		 * The old comment here said:
668 		 * update the pipelimit (ssthresh) if it has been updated
669 		 * already or if a pipesize was specified & the threshhold
670 		 * got below half the pipesize.  I.e., wait for bad news
671 		 * before we start updating, then update on both good
672 		 * and bad news.
673 		 *
674 		 * But we want to save the ssthresh even if no pipesize is
675 		 * specified explicitly in the route, because such
676 		 * connections still have an implicit pipesize specified
677 		 * by the global tcp_sendspace.  In the absence of a reliable
678 		 * way to calculate the pipesize, it will have to do.
679 		 */
680 		i = tp->snd_ssthresh;
681 		if (rt->rt_rmx.rmx_sendpipe != 0)
682 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
683 		else
684 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
685 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
686 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
687 		    || dosavessthresh) {
688 			/*
689 			 * convert the limit from user data bytes to
690 			 * packets then to packet data bytes.
691 			 */
692 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
693 			if (i < 2)
694 				i = 2;
695 			i *= (u_long)(tp->t_maxseg +
696 #ifdef INET6
697 				      (isipv6 ? sizeof (struct ip6_hdr) +
698 					       sizeof (struct tcphdr) :
699 #endif
700 				       sizeof (struct tcpiphdr)
701 #ifdef INET6
702 				       )
703 #endif
704 				      );
705 			if (rt->rt_rmx.rmx_ssthresh)
706 				rt->rt_rmx.rmx_ssthresh =
707 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
708 			else
709 				rt->rt_rmx.rmx_ssthresh = i;
710 			tcpstat.tcps_cachedssthresh++;
711 		}
712 	}
713 	rt = inp->inp_route.ro_rt;
714 	if (rt) {
715 		/*
716 		 * mark route for deletion if no information is
717 		 * cached.
718 		 */
719 		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
720 		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
721 			if (rt->rt_rmx.rmx_rtt == 0)
722 				rt->rt_flags |= RTF_DELCLONE;
723 		}
724 	}
725     no_valid_rt:
726 	/* free the reassembly queue, if any */
727 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
728 		LIST_REMOVE(q, tqe_q);
729 		m_freem(q->tqe_m);
730 		FREE(q, M_TSEGQ);
731 	}
732 	inp->inp_ppcb = NULL;
733 	soisdisconnected(so);
734 #ifdef INET6
735 	if (INP_CHECK_SOCKAF(so, AF_INET6))
736 		in6_pcbdetach(inp);
737 	else
738 #endif /* INET6 */
739 	in_pcbdetach(inp);
740 	tcpstat.tcps_closed++;
741 	return ((struct tcpcb *)0);
742 }
743 
744 void
745 tcp_drain()
746 {
747 	if (do_tcpdrain)
748 	{
749 		struct inpcb *inpb;
750 		struct tcpcb *tcpb;
751 		struct tseg_qent *te;
752 
753 	/*
754 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
755 	 * if there is one...
756 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
757 	 *      reassembly queue should be flushed, but in a situation
758 	 * 	where we're really low on mbufs, this is potentially
759 	 *  	usefull.
760 	 */
761 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
762 			if ((tcpb = intotcpcb(inpb))) {
763 				while ((te = LIST_FIRST(&tcpb->t_segq))
764 			            != NULL) {
765 					LIST_REMOVE(te, tqe_q);
766 					m_freem(te->tqe_m);
767 					FREE(te, M_TSEGQ);
768 				}
769 			}
770 		}
771 	}
772 }
773 
774 /*
775  * Notify a tcp user of an asynchronous error;
776  * store error as soft error, but wake up user
777  * (for now, won't do anything until can select for soft error).
778  *
779  * Do not wake up user since there currently is no mechanism for
780  * reporting soft errors (yet - a kqueue filter may be added).
781  */
782 static void
783 tcp_notify(inp, error)
784 	struct inpcb *inp;
785 	int error;
786 {
787 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
788 
789 	/*
790 	 * Ignore some errors if we are hooked up.
791 	 * If connection hasn't completed, has retransmitted several times,
792 	 * and receives a second error, give up now.  This is better
793 	 * than waiting a long time to establish a connection that
794 	 * can never complete.
795 	 */
796 	if (tp->t_state == TCPS_ESTABLISHED &&
797 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
798 	      error == EHOSTDOWN)) {
799 		return;
800 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
801 	    tp->t_softerror)
802 		tcp_drop(tp, error);
803 	else
804 		tp->t_softerror = error;
805 #if 0
806 	wakeup((caddr_t) &so->so_timeo);
807 	sorwakeup(so);
808 	sowwakeup(so);
809 #endif
810 }
811 
812 static int
813 tcp_pcblist(SYSCTL_HANDLER_ARGS)
814 {
815 	int error, i, n, s;
816 	struct inpcb *inp, **inp_list;
817 	inp_gen_t gencnt;
818 	struct xinpgen xig;
819 
820 	/*
821 	 * The process of preparing the TCB list is too time-consuming and
822 	 * resource-intensive to repeat twice on every request.
823 	 */
824 	if (req->oldptr == 0) {
825 		n = tcbinfo.ipi_count;
826 		req->oldidx = 2 * (sizeof xig)
827 			+ (n + n/8) * sizeof(struct xtcpcb);
828 		return 0;
829 	}
830 
831 	if (req->newptr != 0)
832 		return EPERM;
833 
834 	/*
835 	 * OK, now we're committed to doing something.
836 	 */
837 	s = splnet();
838 	gencnt = tcbinfo.ipi_gencnt;
839 	n = tcbinfo.ipi_count;
840 	splx(s);
841 
842 	xig.xig_len = sizeof xig;
843 	xig.xig_count = n;
844 	xig.xig_gen = gencnt;
845 	xig.xig_sogen = so_gencnt;
846 	error = SYSCTL_OUT(req, &xig, sizeof xig);
847 	if (error)
848 		return error;
849 
850 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
851 	if (inp_list == 0)
852 		return ENOMEM;
853 
854 	s = splnet();
855 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
856 	     inp = LIST_NEXT(inp, inp_list)) {
857 		if (inp->inp_gencnt <= gencnt) {
858 			if (cr_cansee(req->p->p_ucred,
859 			    inp->inp_socket->so_cred))
860 				continue;
861 			inp_list[i++] = inp;
862 		}
863 	}
864 	splx(s);
865 	n = i;
866 
867 	error = 0;
868 	for (i = 0; i < n; i++) {
869 		inp = inp_list[i];
870 		if (inp->inp_gencnt <= gencnt) {
871 			struct xtcpcb xt;
872 			caddr_t inp_ppcb;
873 			xt.xt_len = sizeof xt;
874 			/* XXX should avoid extra copy */
875 			bcopy(inp, &xt.xt_inp, sizeof *inp);
876 			inp_ppcb = inp->inp_ppcb;
877 			if (inp_ppcb != NULL)
878 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
879 			else
880 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
881 			if (inp->inp_socket)
882 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
883 			error = SYSCTL_OUT(req, &xt, sizeof xt);
884 		}
885 	}
886 	if (!error) {
887 		/*
888 		 * Give the user an updated idea of our state.
889 		 * If the generation differs from what we told
890 		 * her before, she knows that something happened
891 		 * while we were processing this request, and it
892 		 * might be necessary to retry.
893 		 */
894 		s = splnet();
895 		xig.xig_gen = tcbinfo.ipi_gencnt;
896 		xig.xig_sogen = so_gencnt;
897 		xig.xig_count = tcbinfo.ipi_count;
898 		splx(s);
899 		error = SYSCTL_OUT(req, &xig, sizeof xig);
900 	}
901 	free(inp_list, M_TEMP);
902 	return error;
903 }
904 
905 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
906 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
907 
908 static int
909 tcp_getcred(SYSCTL_HANDLER_ARGS)
910 {
911 	struct xucred xuc;
912 	struct sockaddr_in addrs[2];
913 	struct inpcb *inp;
914 	int error, s;
915 
916 	error = suser_xxx(0, req->p, PRISON_ROOT);
917 	if (error)
918 		return (error);
919 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
920 	if (error)
921 		return (error);
922 	s = splnet();
923 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
924 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
925 	if (inp == NULL || inp->inp_socket == NULL) {
926 		error = ENOENT;
927 		goto out;
928 	}
929 	error = cr_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
930 	if (error)
931 		goto out;
932 	bzero(&xuc, sizeof(xuc));
933 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
934 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
935 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
936 	    sizeof(xuc.cr_groups));
937 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
938 out:
939 	splx(s);
940 	return (error);
941 }
942 
943 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
944     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
945     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
946 
947 #ifdef INET6
948 static int
949 tcp6_getcred(SYSCTL_HANDLER_ARGS)
950 {
951 	struct xucred xuc;
952 	struct sockaddr_in6 addrs[2];
953 	struct inpcb *inp;
954 	int error, s, mapped = 0;
955 
956 	error = suser_xxx(0, req->p, PRISON_ROOT);
957 	if (error)
958 		return (error);
959 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
960 	if (error)
961 		return (error);
962 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
963 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
964 			mapped = 1;
965 		else
966 			return (EINVAL);
967 	}
968 	s = splnet();
969 	if (mapped == 1)
970 		inp = in_pcblookup_hash(&tcbinfo,
971 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
972 			addrs[1].sin6_port,
973 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
974 			addrs[0].sin6_port,
975 			0, NULL);
976 	else
977 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
978 				 addrs[1].sin6_port,
979 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
980 				 0, NULL);
981 	if (inp == NULL || inp->inp_socket == NULL) {
982 		error = ENOENT;
983 		goto out;
984 	}
985 	error = cr_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
986 	if (error)
987 		goto out;
988 	bzero(&xuc, sizeof(xuc));
989 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
990 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
991 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
992 	    sizeof(xuc.cr_groups));
993 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
994 out:
995 	splx(s);
996 	return (error);
997 }
998 
999 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1000     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1001     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1002 #endif
1003 
1004 
1005 void
1006 tcp_ctlinput(cmd, sa, vip)
1007 	int cmd;
1008 	struct sockaddr *sa;
1009 	void *vip;
1010 {
1011 	struct ip *ip = vip;
1012 	struct tcphdr *th;
1013 	struct in_addr faddr;
1014 	struct inpcb *inp;
1015 	struct tcpcb *tp;
1016 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1017 	tcp_seq icmp_seq;
1018 	int s;
1019 
1020 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1021 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1022 		return;
1023 
1024 	if (cmd == PRC_QUENCH)
1025 		notify = tcp_quench;
1026 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1027 		cmd == PRC_UNREACH_PORT) && ip)
1028 		notify = tcp_drop_syn_sent;
1029 	else if (cmd == PRC_MSGSIZE)
1030 		notify = tcp_mtudisc;
1031 	else if (PRC_IS_REDIRECT(cmd)) {
1032 		ip = 0;
1033 		notify = in_rtchange;
1034 	} else if (cmd == PRC_HOSTDEAD)
1035 		ip = 0;
1036 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1037 		return;
1038 	if (ip) {
1039 		s = splnet();
1040 		th = (struct tcphdr *)((caddr_t)ip
1041 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1042 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1043 		    ip->ip_src, th->th_sport, 0, NULL);
1044 		if (inp != NULL && inp->inp_socket != NULL) {
1045 			icmp_seq = htonl(th->th_seq);
1046 			tp = intotcpcb(inp);
1047 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1048 			    SEQ_LT(icmp_seq, tp->snd_max))
1049 				(*notify)(inp, inetctlerrmap[cmd]);
1050 		}
1051 		splx(s);
1052 	} else
1053 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1054 }
1055 
1056 #ifdef INET6
1057 void
1058 tcp6_ctlinput(cmd, sa, d)
1059 	int cmd;
1060 	struct sockaddr *sa;
1061 	void *d;
1062 {
1063 	struct tcphdr th;
1064 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1065 	struct ip6_hdr *ip6;
1066 	struct mbuf *m;
1067 	struct ip6ctlparam *ip6cp = NULL;
1068 	const struct sockaddr_in6 *sa6_src = NULL;
1069 	int off;
1070 	struct tcp_portonly {
1071 		u_int16_t th_sport;
1072 		u_int16_t th_dport;
1073 	} *thp;
1074 
1075 	if (sa->sa_family != AF_INET6 ||
1076 	    sa->sa_len != sizeof(struct sockaddr_in6))
1077 		return;
1078 
1079 	if (cmd == PRC_QUENCH)
1080 		notify = tcp_quench;
1081 	else if (cmd == PRC_MSGSIZE)
1082 		notify = tcp_mtudisc;
1083 	else if (!PRC_IS_REDIRECT(cmd) &&
1084 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1085 		return;
1086 
1087 	/* if the parameter is from icmp6, decode it. */
1088 	if (d != NULL) {
1089 		ip6cp = (struct ip6ctlparam *)d;
1090 		m = ip6cp->ip6c_m;
1091 		ip6 = ip6cp->ip6c_ip6;
1092 		off = ip6cp->ip6c_off;
1093 		sa6_src = ip6cp->ip6c_src;
1094 	} else {
1095 		m = NULL;
1096 		ip6 = NULL;
1097 		off = 0;	/* fool gcc */
1098 		sa6_src = &sa6_any;
1099 	}
1100 
1101 	if (ip6) {
1102 		/*
1103 		 * XXX: We assume that when IPV6 is non NULL,
1104 		 * M and OFF are valid.
1105 		 */
1106 
1107 		/* check if we can safely examine src and dst ports */
1108 		if (m->m_pkthdr.len < off + sizeof(*thp))
1109 			return;
1110 
1111 		bzero(&th, sizeof(th));
1112 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1113 
1114 		in6_pcbnotify(&tcb, sa, th.th_dport,
1115 		    (struct sockaddr *)ip6cp->ip6c_src,
1116 		    th.th_sport, cmd, notify);
1117 	} else
1118 		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1119 			      0, cmd, notify);
1120 }
1121 #endif /* INET6 */
1122 
1123 
1124 /*
1125  * Following is where TCP initial sequence number generation occurs.
1126  *
1127  * There are two places where we must use initial sequence numbers:
1128  * 1.  In SYN-ACK packets.
1129  * 2.  In SYN packets.
1130  *
1131  * The ISNs in SYN-ACK packets have no monotonicity requirement,
1132  * and should be as unpredictable as possible to avoid the possibility
1133  * of spoofing and/or connection hijacking.  To satisfy this
1134  * requirement, SYN-ACK ISNs are generated via the arc4random()
1135  * function.  If exact RFC 1948 compliance is requested via sysctl,
1136  * these ISNs will be generated just like those in SYN packets.
1137  *
1138  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1139  * depends on this property.  In addition, these ISNs should be
1140  * unguessable so as to prevent connection hijacking.  To satisfy
1141  * the requirements of this situation, the algorithm outlined in
1142  * RFC 1948 is used to generate sequence numbers.
1143  *
1144  * For more information on the theory of operation, please see
1145  * RFC 1948.
1146  *
1147  * Implementation details:
1148  *
1149  * Time is based off the system timer, and is corrected so that it
1150  * increases by one megabyte per second.  This allows for proper
1151  * recycling on high speed LANs while still leaving over an hour
1152  * before rollover.
1153  *
1154  * Two sysctls control the generation of ISNs:
1155  *
1156  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1157  * between seeding of isn_secret.  This is normally set to zero,
1158  * as reseeding should not be necessary.
1159  *
1160  * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1161  * strictly.  When strict compliance is requested, reseeding is
1162  * disabled and SYN-ACKs will be generated in the same manner as
1163  * SYNs.  Strict mode is disabled by default.
1164  *
1165  */
1166 
1167 #define ISN_BYTES_PER_SECOND 1048576
1168 
1169 u_char isn_secret[32];
1170 int isn_last_reseed;
1171 MD5_CTX isn_ctx;
1172 
1173 tcp_seq
1174 tcp_new_isn(tp)
1175 	struct tcpcb *tp;
1176 {
1177 	u_int32_t md5_buffer[4];
1178 	tcp_seq new_isn;
1179 
1180 	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1181 	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1182 	   && tcp_strict_rfc1948 == 0)
1183 		return arc4random();
1184 
1185 	/* Seed if this is the first use, reseed if requested. */
1186 	if ((isn_last_reseed == 0) ||
1187 	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1188 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1189 		< (u_int)ticks))) {
1190 		read_random(&isn_secret, sizeof(isn_secret));
1191 		isn_last_reseed = ticks;
1192 	}
1193 
1194 	/* Compute the md5 hash and return the ISN. */
1195 	MD5Init(&isn_ctx);
1196 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1197 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1198 #ifdef INET6
1199 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1200 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1201 			  sizeof(struct in6_addr));
1202 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1203 			  sizeof(struct in6_addr));
1204 	} else
1205 #endif
1206 	{
1207 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1208 			  sizeof(struct in_addr));
1209 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1210 			  sizeof(struct in_addr));
1211 	}
1212 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1213 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1214 	new_isn = (tcp_seq) md5_buffer[0];
1215 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1216 	return new_isn;
1217 }
1218 
1219 /*
1220  * When a source quench is received, close congestion window
1221  * to one segment.  We will gradually open it again as we proceed.
1222  */
1223 void
1224 tcp_quench(inp, errno)
1225 	struct inpcb *inp;
1226 	int errno;
1227 {
1228 	struct tcpcb *tp = intotcpcb(inp);
1229 
1230 	if (tp)
1231 		tp->snd_cwnd = tp->t_maxseg;
1232 }
1233 
1234 /*
1235  * When a specific ICMP unreachable message is received and the
1236  * connection state is SYN-SENT, drop the connection.  This behavior
1237  * is controlled by the icmp_may_rst sysctl.
1238  */
1239 void
1240 tcp_drop_syn_sent(inp, errno)
1241 	struct inpcb *inp;
1242 	int errno;
1243 {
1244 	struct tcpcb *tp = intotcpcb(inp);
1245 
1246 	if (tp && tp->t_state == TCPS_SYN_SENT)
1247 		tcp_drop(tp, errno);
1248 }
1249 
1250 /*
1251  * When `need fragmentation' ICMP is received, update our idea of the MSS
1252  * based on the new value in the route.  Also nudge TCP to send something,
1253  * since we know the packet we just sent was dropped.
1254  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1255  */
1256 void
1257 tcp_mtudisc(inp, errno)
1258 	struct inpcb *inp;
1259 	int errno;
1260 {
1261 	struct tcpcb *tp = intotcpcb(inp);
1262 	struct rtentry *rt;
1263 	struct rmxp_tao *taop;
1264 	struct socket *so = inp->inp_socket;
1265 	int offered;
1266 	int mss;
1267 #ifdef INET6
1268 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1269 #endif /* INET6 */
1270 
1271 	if (tp) {
1272 #ifdef INET6
1273 		if (isipv6)
1274 			rt = tcp_rtlookup6(inp);
1275 		else
1276 #endif /* INET6 */
1277 		rt = tcp_rtlookup(inp);
1278 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1279 			tp->t_maxopd = tp->t_maxseg =
1280 #ifdef INET6
1281 				isipv6 ? tcp_v6mssdflt :
1282 #endif /* INET6 */
1283 				tcp_mssdflt;
1284 			return;
1285 		}
1286 		taop = rmx_taop(rt->rt_rmx);
1287 		offered = taop->tao_mssopt;
1288 		mss = rt->rt_rmx.rmx_mtu -
1289 #ifdef INET6
1290 			(isipv6 ?
1291 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1292 #endif /* INET6 */
1293 			 sizeof(struct tcpiphdr)
1294 #ifdef INET6
1295 			 )
1296 #endif /* INET6 */
1297 			;
1298 
1299 		if (offered)
1300 			mss = min(mss, offered);
1301 		/*
1302 		 * XXX - The above conditional probably violates the TCP
1303 		 * spec.  The problem is that, since we don't know the
1304 		 * other end's MSS, we are supposed to use a conservative
1305 		 * default.  But, if we do that, then MTU discovery will
1306 		 * never actually take place, because the conservative
1307 		 * default is much less than the MTUs typically seen
1308 		 * on the Internet today.  For the moment, we'll sweep
1309 		 * this under the carpet.
1310 		 *
1311 		 * The conservative default might not actually be a problem
1312 		 * if the only case this occurs is when sending an initial
1313 		 * SYN with options and data to a host we've never talked
1314 		 * to before.  Then, they will reply with an MSS value which
1315 		 * will get recorded and the new parameters should get
1316 		 * recomputed.  For Further Study.
1317 		 */
1318 		if (tp->t_maxopd <= mss)
1319 			return;
1320 		tp->t_maxopd = mss;
1321 
1322 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1323 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1324 			mss -= TCPOLEN_TSTAMP_APPA;
1325 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1326 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1327 			mss -= TCPOLEN_CC_APPA;
1328 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1329 		if (mss > MCLBYTES)
1330 			mss &= ~(MCLBYTES-1);
1331 #else
1332 		if (mss > MCLBYTES)
1333 			mss = mss / MCLBYTES * MCLBYTES;
1334 #endif
1335 		if (so->so_snd.sb_hiwat < mss)
1336 			mss = so->so_snd.sb_hiwat;
1337 
1338 		tp->t_maxseg = mss;
1339 
1340 		tcpstat.tcps_mturesent++;
1341 		tp->t_rtttime = 0;
1342 		tp->snd_nxt = tp->snd_una;
1343 		tcp_output(tp);
1344 	}
1345 }
1346 
1347 /*
1348  * Look-up the routing entry to the peer of this inpcb.  If no route
1349  * is found and it cannot be allocated the return NULL.  This routine
1350  * is called by TCP routines that access the rmx structure and by tcp_mss
1351  * to get the interface MTU.
1352  */
1353 struct rtentry *
1354 tcp_rtlookup(inp)
1355 	struct inpcb *inp;
1356 {
1357 	struct route *ro;
1358 	struct rtentry *rt;
1359 
1360 	ro = &inp->inp_route;
1361 	rt = ro->ro_rt;
1362 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1363 		/* No route yet, so try to acquire one */
1364 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1365 			ro->ro_dst.sa_family = AF_INET;
1366 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1367 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1368 				inp->inp_faddr;
1369 			rtalloc(ro);
1370 			rt = ro->ro_rt;
1371 		}
1372 	}
1373 	return rt;
1374 }
1375 
1376 #ifdef INET6
1377 struct rtentry *
1378 tcp_rtlookup6(inp)
1379 	struct inpcb *inp;
1380 {
1381 	struct route_in6 *ro6;
1382 	struct rtentry *rt;
1383 
1384 	ro6 = &inp->in6p_route;
1385 	rt = ro6->ro_rt;
1386 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1387 		/* No route yet, so try to acquire one */
1388 		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1389 			struct sockaddr_in6 *dst6;
1390 
1391 			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1392 			dst6->sin6_family = AF_INET6;
1393 			dst6->sin6_len = sizeof(*dst6);
1394 			dst6->sin6_addr = inp->in6p_faddr;
1395 			rtalloc((struct route *)ro6);
1396 			rt = ro6->ro_rt;
1397 		}
1398 	}
1399 	return rt;
1400 }
1401 #endif /* INET6 */
1402 
1403 #ifdef IPSEC
1404 /* compute ESP/AH header size for TCP, including outer IP header. */
1405 size_t
1406 ipsec_hdrsiz_tcp(tp)
1407 	struct tcpcb *tp;
1408 {
1409 	struct inpcb *inp;
1410 	struct mbuf *m;
1411 	size_t hdrsiz;
1412 	struct ip *ip;
1413 #ifdef INET6
1414 	struct ip6_hdr *ip6;
1415 #endif /* INET6 */
1416 	struct tcphdr *th;
1417 
1418 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1419 		return 0;
1420 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1421 	if (!m)
1422 		return 0;
1423 
1424 #ifdef INET6
1425 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1426 		ip6 = mtod(m, struct ip6_hdr *);
1427 		th = (struct tcphdr *)(ip6 + 1);
1428 		m->m_pkthdr.len = m->m_len =
1429 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1430 		tcp_fillheaders(tp, ip6, th);
1431 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1432 	} else
1433 #endif /* INET6 */
1434       {
1435 	ip = mtod(m, struct ip *);
1436 	th = (struct tcphdr *)(ip + 1);
1437 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1438 	tcp_fillheaders(tp, ip, th);
1439 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1440       }
1441 
1442 	m_free(m);
1443 	return hdrsiz;
1444 }
1445 #endif /*IPSEC*/
1446 
1447 /*
1448  * Return a pointer to the cached information about the remote host.
1449  * The cached information is stored in the protocol specific part of
1450  * the route metrics.
1451  */
1452 struct rmxp_tao *
1453 tcp_gettaocache(inp)
1454 	struct inpcb *inp;
1455 {
1456 	struct rtentry *rt;
1457 
1458 #ifdef INET6
1459 	if ((inp->inp_vflag & INP_IPV6) != 0)
1460 		rt = tcp_rtlookup6(inp);
1461 	else
1462 #endif /* INET6 */
1463 	rt = tcp_rtlookup(inp);
1464 
1465 	/* Make sure this is a host route and is up. */
1466 	if (rt == NULL ||
1467 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1468 		return NULL;
1469 
1470 	return rmx_taop(rt->rt_rmx);
1471 }
1472 
1473 /*
1474  * Clear all the TAO cache entries, called from tcp_init.
1475  *
1476  * XXX
1477  * This routine is just an empty one, because we assume that the routing
1478  * routing tables are initialized at the same time when TCP, so there is
1479  * nothing in the cache left over.
1480  */
1481 static void
1482 tcp_cleartaocache()
1483 {
1484 }
1485