xref: /freebsd/sys/netinet/tcp_subr.c (revision 3fe92528afe8313fecf48822dde74bad5e380f48)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 static int	tcp_tcbhashsize = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164 
165 static int	do_tcpdrain = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167      "Enable tcp_drain routine for extra help when low on mbufs");
168 
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170     &tcbinfo.ipi_count, 0, "Number of active PCBs");
171 
172 static int	icmp_may_rst = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 
176 static int	tcp_isn_reseed_interval = 0;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179 
180 static uma_zone_t tcptw_zone;
181 static int	maxtcptw;
182 static int
183 sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
184 {
185 	int error, new;
186 
187 	if (maxtcptw == 0)
188 		new = maxsockets / 5;
189 	else
190 		new = maxtcptw;
191 	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
192 	if (error == 0 && req->newptr) {
193 		if (new > maxtcptw) {
194 			maxtcptw = new;
195 			uma_zone_set_max(tcptw_zone, maxtcptw);
196 		} else
197 			error = EINVAL;
198 	}
199 	return (error);
200 }
201 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
202     &maxtcptw, 0, sysctl_maxtcptw, "IU",
203     "Maximum number of compressed TCP TIME_WAIT entries");
204 
205 static int	nolocaltimewait = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
207     &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
208 			 "for local connections");
209 
210 /*
211  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
212  * 1024 exists only for debugging.  A good production default would be
213  * something like 6100.
214  */
215 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
216     "TCP inflight data limiting");
217 
218 static int	tcp_inflight_enable = 1;
219 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
220     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
221 
222 static int	tcp_inflight_debug = 0;
223 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
224     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
225 
226 static int	tcp_inflight_rttthresh;
227 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
228     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
229     "RTT threshold below which inflight will deactivate itself");
230 
231 static int	tcp_inflight_min = 6144;
232 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
233     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
234 
235 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
236 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
237     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
238 
239 static int	tcp_inflight_stab = 20;
240 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
241     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
242 
243 uma_zone_t sack_hole_zone;
244 
245 static struct inpcb *tcp_notify(struct inpcb *, int);
246 static void	tcp_isn_tick(void *);
247 
248 /*
249  * Target size of TCP PCB hash tables. Must be a power of two.
250  *
251  * Note that this can be overridden by the kernel environment
252  * variable net.inet.tcp.tcbhashsize
253  */
254 #ifndef TCBHASHSIZE
255 #define TCBHASHSIZE	512
256 #endif
257 
258 /*
259  * XXX
260  * Callouts should be moved into struct tcp directly.  They are currently
261  * separate because the tcpcb structure is exported to userland for sysctl
262  * parsing purposes, which do not know about callouts.
263  */
264 struct	tcpcb_mem {
265 	struct	tcpcb tcb;
266 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
267 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
268 };
269 
270 static uma_zone_t tcpcb_zone;
271 struct callout isn_callout;
272 static struct mtx isn_mtx;
273 
274 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
275 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
276 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
277 
278 /*
279  * TCP initialization.
280  */
281 static void
282 tcp_zone_change(void *tag)
283 {
284 
285 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
286 	uma_zone_set_max(tcpcb_zone, maxsockets);
287 	if (maxtcptw == 0)
288 		uma_zone_set_max(tcptw_zone, maxsockets / 5);
289 }
290 
291 static int
292 tcp_inpcb_init(void *mem, int size, int flags)
293 {
294 	struct inpcb *inp = (struct inpcb *) mem;
295 	INP_LOCK_INIT(inp, "inp", "tcpinp");
296 	return (0);
297 }
298 
299 void
300 tcp_init(void)
301 {
302 	int hashsize = TCBHASHSIZE;
303 
304 	tcp_delacktime = TCPTV_DELACK;
305 	tcp_keepinit = TCPTV_KEEP_INIT;
306 	tcp_keepidle = TCPTV_KEEP_IDLE;
307 	tcp_keepintvl = TCPTV_KEEPINTVL;
308 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
309 	tcp_msl = TCPTV_MSL;
310 	tcp_rexmit_min = TCPTV_MIN;
311 	tcp_rexmit_slop = TCPTV_CPU_VAR;
312 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
313 
314 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
315 	LIST_INIT(&tcb);
316 	tcbinfo.listhead = &tcb;
317 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
318 	if (!powerof2(hashsize)) {
319 		printf("WARNING: TCB hash size not a power of 2\n");
320 		hashsize = 512; /* safe default */
321 	}
322 	tcp_tcbhashsize = hashsize;
323 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
324 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
325 					&tcbinfo.porthashmask);
326 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
327 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
328 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
329 #ifdef INET6
330 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
331 #else /* INET6 */
332 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
333 #endif /* INET6 */
334 	if (max_protohdr < TCP_MINPROTOHDR)
335 		max_protohdr = TCP_MINPROTOHDR;
336 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
337 		panic("tcp_init");
338 #undef TCP_MINPROTOHDR
339 	/*
340 	 * These have to be type stable for the benefit of the timers.
341 	 */
342 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
343 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
344 	uma_zone_set_max(tcpcb_zone, maxsockets);
345 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
346 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
347 	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
348 	if (maxtcptw == 0)
349 		uma_zone_set_max(tcptw_zone, maxsockets / 5);
350 	else
351 		uma_zone_set_max(tcptw_zone, maxtcptw);
352 	tcp_timer_init();
353 	syncache_init();
354 	tcp_hc_init();
355 	tcp_reass_init();
356 	ISN_LOCK_INIT();
357 	callout_init(&isn_callout, CALLOUT_MPSAFE);
358 	tcp_isn_tick(NULL);
359 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
360 		SHUTDOWN_PRI_DEFAULT);
361 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
362 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
363 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
364 		EVENTHANDLER_PRI_ANY);
365 }
366 
367 void
368 tcp_fini(void *xtp)
369 {
370 
371 	callout_stop(&isn_callout);
372 }
373 
374 /*
375  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
376  * tcp_template used to store this data in mbufs, but we now recopy it out
377  * of the tcpcb each time to conserve mbufs.
378  */
379 void
380 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
381 {
382 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
383 
384 	INP_LOCK_ASSERT(inp);
385 
386 #ifdef INET6
387 	if ((inp->inp_vflag & INP_IPV6) != 0) {
388 		struct ip6_hdr *ip6;
389 
390 		ip6 = (struct ip6_hdr *)ip_ptr;
391 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
392 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
393 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
394 			(IPV6_VERSION & IPV6_VERSION_MASK);
395 		ip6->ip6_nxt = IPPROTO_TCP;
396 		ip6->ip6_plen = sizeof(struct tcphdr);
397 		ip6->ip6_src = inp->in6p_laddr;
398 		ip6->ip6_dst = inp->in6p_faddr;
399 	} else
400 #endif
401 	{
402 		struct ip *ip;
403 
404 		ip = (struct ip *)ip_ptr;
405 		ip->ip_v = IPVERSION;
406 		ip->ip_hl = 5;
407 		ip->ip_tos = inp->inp_ip_tos;
408 		ip->ip_len = 0;
409 		ip->ip_id = 0;
410 		ip->ip_off = 0;
411 		ip->ip_ttl = inp->inp_ip_ttl;
412 		ip->ip_sum = 0;
413 		ip->ip_p = IPPROTO_TCP;
414 		ip->ip_src = inp->inp_laddr;
415 		ip->ip_dst = inp->inp_faddr;
416 	}
417 	th->th_sport = inp->inp_lport;
418 	th->th_dport = inp->inp_fport;
419 	th->th_seq = 0;
420 	th->th_ack = 0;
421 	th->th_x2 = 0;
422 	th->th_off = 5;
423 	th->th_flags = 0;
424 	th->th_win = 0;
425 	th->th_urp = 0;
426 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
427 }
428 
429 /*
430  * Create template to be used to send tcp packets on a connection.
431  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
432  * use for this function is in keepalives, which use tcp_respond.
433  */
434 struct tcptemp *
435 tcpip_maketemplate(struct inpcb *inp)
436 {
437 	struct mbuf *m;
438 	struct tcptemp *n;
439 
440 	m = m_get(M_DONTWAIT, MT_DATA);
441 	if (m == NULL)
442 		return (0);
443 	m->m_len = sizeof(struct tcptemp);
444 	n = mtod(m, struct tcptemp *);
445 
446 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
447 	return (n);
448 }
449 
450 /*
451  * Send a single message to the TCP at address specified by
452  * the given TCP/IP header.  If m == NULL, then we make a copy
453  * of the tcpiphdr at ti and send directly to the addressed host.
454  * This is used to force keep alive messages out using the TCP
455  * template for a connection.  If flags are given then we send
456  * a message back to the TCP which originated the * segment ti,
457  * and discard the mbuf containing it and any other attached mbufs.
458  *
459  * In any case the ack and sequence number of the transmitted
460  * segment are as specified by the parameters.
461  *
462  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
463  */
464 void
465 tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
466     register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
467 {
468 	register int tlen;
469 	int win = 0;
470 	struct ip *ip;
471 	struct tcphdr *nth;
472 #ifdef INET6
473 	struct ip6_hdr *ip6;
474 	int isipv6;
475 #endif /* INET6 */
476 	int ipflags = 0;
477 	struct inpcb *inp;
478 
479 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
480 
481 #ifdef INET6
482 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
483 	ip6 = ipgen;
484 #endif /* INET6 */
485 	ip = ipgen;
486 
487 	if (tp != NULL) {
488 		inp = tp->t_inpcb;
489 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
490 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
491 		INP_LOCK_ASSERT(inp);
492 	} else
493 		inp = NULL;
494 
495 	if (tp != NULL) {
496 		if (!(flags & TH_RST)) {
497 			win = sbspace(&inp->inp_socket->so_rcv);
498 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
499 				win = (long)TCP_MAXWIN << tp->rcv_scale;
500 		}
501 	}
502 	if (m == NULL) {
503 		m = m_gethdr(M_DONTWAIT, MT_DATA);
504 		if (m == NULL)
505 			return;
506 		tlen = 0;
507 		m->m_data += max_linkhdr;
508 #ifdef INET6
509 		if (isipv6) {
510 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
511 			      sizeof(struct ip6_hdr));
512 			ip6 = mtod(m, struct ip6_hdr *);
513 			nth = (struct tcphdr *)(ip6 + 1);
514 		} else
515 #endif /* INET6 */
516 	      {
517 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
518 		ip = mtod(m, struct ip *);
519 		nth = (struct tcphdr *)(ip + 1);
520 	      }
521 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
522 		flags = TH_ACK;
523 	} else {
524 		m_freem(m->m_next);
525 		m->m_next = NULL;
526 		m->m_data = (caddr_t)ipgen;
527 		/* m_len is set later */
528 		tlen = 0;
529 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
530 #ifdef INET6
531 		if (isipv6) {
532 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
533 			nth = (struct tcphdr *)(ip6 + 1);
534 		} else
535 #endif /* INET6 */
536 	      {
537 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
538 		nth = (struct tcphdr *)(ip + 1);
539 	      }
540 		if (th != nth) {
541 			/*
542 			 * this is usually a case when an extension header
543 			 * exists between the IPv6 header and the
544 			 * TCP header.
545 			 */
546 			nth->th_sport = th->th_sport;
547 			nth->th_dport = th->th_dport;
548 		}
549 		xchg(nth->th_dport, nth->th_sport, n_short);
550 #undef xchg
551 	}
552 #ifdef INET6
553 	if (isipv6) {
554 		ip6->ip6_flow = 0;
555 		ip6->ip6_vfc = IPV6_VERSION;
556 		ip6->ip6_nxt = IPPROTO_TCP;
557 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
558 						tlen));
559 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
560 	} else
561 #endif
562 	{
563 		tlen += sizeof (struct tcpiphdr);
564 		ip->ip_len = tlen;
565 		ip->ip_ttl = ip_defttl;
566 		if (path_mtu_discovery)
567 			ip->ip_off |= IP_DF;
568 	}
569 	m->m_len = tlen;
570 	m->m_pkthdr.len = tlen;
571 	m->m_pkthdr.rcvif = NULL;
572 #ifdef MAC
573 	if (inp != NULL) {
574 		/*
575 		 * Packet is associated with a socket, so allow the
576 		 * label of the response to reflect the socket label.
577 		 */
578 		INP_LOCK_ASSERT(inp);
579 		mac_create_mbuf_from_inpcb(inp, m);
580 	} else {
581 		/*
582 		 * Packet is not associated with a socket, so possibly
583 		 * update the label in place.
584 		 */
585 		mac_reflect_mbuf_tcp(m);
586 	}
587 #endif
588 	nth->th_seq = htonl(seq);
589 	nth->th_ack = htonl(ack);
590 	nth->th_x2 = 0;
591 	nth->th_off = sizeof (struct tcphdr) >> 2;
592 	nth->th_flags = flags;
593 	if (tp != NULL)
594 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
595 	else
596 		nth->th_win = htons((u_short)win);
597 	nth->th_urp = 0;
598 #ifdef INET6
599 	if (isipv6) {
600 		nth->th_sum = 0;
601 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
602 					sizeof(struct ip6_hdr),
603 					tlen - sizeof(struct ip6_hdr));
604 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
605 		    NULL, NULL);
606 	} else
607 #endif /* INET6 */
608 	{
609 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
610 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
611 		m->m_pkthdr.csum_flags = CSUM_TCP;
612 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
613 	}
614 #ifdef TCPDEBUG
615 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
616 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
617 #endif
618 #ifdef INET6
619 	if (isipv6)
620 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
621 	else
622 #endif /* INET6 */
623 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
624 }
625 
626 /*
627  * Create a new TCP control block, making an
628  * empty reassembly queue and hooking it to the argument
629  * protocol control block.  The `inp' parameter must have
630  * come from the zone allocator set up in tcp_init().
631  */
632 struct tcpcb *
633 tcp_newtcpcb(struct inpcb *inp)
634 {
635 	struct tcpcb_mem *tm;
636 	struct tcpcb *tp;
637 #ifdef INET6
638 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
639 #endif /* INET6 */
640 
641 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
642 	if (tm == NULL)
643 		return (NULL);
644 	tp = &tm->tcb;
645 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
646 	tp->t_maxseg = tp->t_maxopd =
647 #ifdef INET6
648 		isipv6 ? tcp_v6mssdflt :
649 #endif /* INET6 */
650 		tcp_mssdflt;
651 
652 	/* Set up our timeouts. */
653 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
654 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
655 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
656 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
657 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
658 
659 	if (tcp_do_rfc1323)
660 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
661 	tp->sack_enable = tcp_do_sack;
662 	TAILQ_INIT(&tp->snd_holes);
663 	tp->t_inpcb = inp;	/* XXX */
664 	/*
665 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
666 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
667 	 * reasonable initial retransmit time.
668 	 */
669 	tp->t_srtt = TCPTV_SRTTBASE;
670 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
671 	tp->t_rttmin = tcp_rexmit_min;
672 	tp->t_rxtcur = TCPTV_RTOBASE;
673 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
674 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
675 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
676 	tp->t_rcvtime = ticks;
677 	tp->t_bw_rtttime = ticks;
678 	/*
679 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
680 	 * because the socket may be bound to an IPv6 wildcard address,
681 	 * which may match an IPv4-mapped IPv6 address.
682 	 */
683 	inp->inp_ip_ttl = ip_defttl;
684 	inp->inp_ppcb = tp;
685 	return (tp);		/* XXX */
686 }
687 
688 /*
689  * Drop a TCP connection, reporting
690  * the specified error.  If connection is synchronized,
691  * then send a RST to peer.
692  */
693 struct tcpcb *
694 tcp_drop(struct tcpcb *tp, int errno)
695 {
696 	struct socket *so = tp->t_inpcb->inp_socket;
697 
698 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
699 	INP_LOCK_ASSERT(tp->t_inpcb);
700 
701 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
702 		tp->t_state = TCPS_CLOSED;
703 		(void) tcp_output(tp);
704 		tcpstat.tcps_drops++;
705 	} else
706 		tcpstat.tcps_conndrops++;
707 	if (errno == ETIMEDOUT && tp->t_softerror)
708 		errno = tp->t_softerror;
709 	so->so_error = errno;
710 	return (tcp_close(tp));
711 }
712 
713 void
714 tcp_discardcb(struct tcpcb *tp)
715 {
716 	struct tseg_qent *q;
717 	struct inpcb *inp = tp->t_inpcb;
718 	struct socket *so = inp->inp_socket;
719 #ifdef INET6
720 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
721 #endif /* INET6 */
722 
723 	INP_LOCK_ASSERT(inp);
724 
725 	/*
726 	 * Make sure that all of our timers are stopped before we
727 	 * delete the PCB.
728 	 */
729 	callout_stop(tp->tt_rexmt);
730 	callout_stop(tp->tt_persist);
731 	callout_stop(tp->tt_keep);
732 	callout_stop(tp->tt_2msl);
733 	callout_stop(tp->tt_delack);
734 
735 	/*
736 	 * If we got enough samples through the srtt filter,
737 	 * save the rtt and rttvar in the routing entry.
738 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
739 	 * 4 samples is enough for the srtt filter to converge
740 	 * to within enough % of the correct value; fewer samples
741 	 * and we could save a bogus rtt. The danger is not high
742 	 * as tcp quickly recovers from everything.
743 	 * XXX: Works very well but needs some more statistics!
744 	 */
745 	if (tp->t_rttupdated >= 4) {
746 		struct hc_metrics_lite metrics;
747 		u_long ssthresh;
748 
749 		bzero(&metrics, sizeof(metrics));
750 		/*
751 		 * Update the ssthresh always when the conditions below
752 		 * are satisfied. This gives us better new start value
753 		 * for the congestion avoidance for new connections.
754 		 * ssthresh is only set if packet loss occured on a session.
755 		 *
756 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
757 		 * being torn down.  Ideally this code would not use 'so'.
758 		 */
759 		ssthresh = tp->snd_ssthresh;
760 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
761 			/*
762 			 * convert the limit from user data bytes to
763 			 * packets then to packet data bytes.
764 			 */
765 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
766 			if (ssthresh < 2)
767 				ssthresh = 2;
768 			ssthresh *= (u_long)(tp->t_maxseg +
769 #ifdef INET6
770 				      (isipv6 ? sizeof (struct ip6_hdr) +
771 					       sizeof (struct tcphdr) :
772 #endif
773 				       sizeof (struct tcpiphdr)
774 #ifdef INET6
775 				       )
776 #endif
777 				      );
778 		} else
779 			ssthresh = 0;
780 		metrics.rmx_ssthresh = ssthresh;
781 
782 		metrics.rmx_rtt = tp->t_srtt;
783 		metrics.rmx_rttvar = tp->t_rttvar;
784 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
785 		metrics.rmx_bandwidth = tp->snd_bandwidth;
786 		metrics.rmx_cwnd = tp->snd_cwnd;
787 		metrics.rmx_sendpipe = 0;
788 		metrics.rmx_recvpipe = 0;
789 
790 		tcp_hc_update(&inp->inp_inc, &metrics);
791 	}
792 
793 	/* free the reassembly queue, if any */
794 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
795 		LIST_REMOVE(q, tqe_q);
796 		m_freem(q->tqe_m);
797 		uma_zfree(tcp_reass_zone, q);
798 		tp->t_segqlen--;
799 		tcp_reass_qsize--;
800 	}
801 	tcp_free_sackholes(tp);
802 	inp->inp_ppcb = NULL;
803 	tp->t_inpcb = NULL;
804 	uma_zfree(tcpcb_zone, tp);
805 }
806 
807 /*
808  * Attempt to close a TCP control block, marking it as dropped, and freeing
809  * the socket if we hold the only reference.
810  */
811 struct tcpcb *
812 tcp_close(struct tcpcb *tp)
813 {
814 	struct inpcb *inp = tp->t_inpcb;
815 	struct socket *so;
816 
817 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
818 	INP_LOCK_ASSERT(inp);
819 
820 	in_pcbdrop(inp);
821 	tcpstat.tcps_closed++;
822 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
823 	so = inp->inp_socket;
824 	soisdisconnected(so);
825 	if (inp->inp_vflag & INP_SOCKREF) {
826 		KASSERT(so->so_state & SS_PROTOREF,
827 		    ("tcp_close: !SS_PROTOREF"));
828 		inp->inp_vflag &= ~INP_SOCKREF;
829 		INP_UNLOCK(inp);
830 		ACCEPT_LOCK();
831 		SOCK_LOCK(so);
832 		so->so_state &= ~SS_PROTOREF;
833 		sofree(so);
834 		return (NULL);
835 	}
836 	return (tp);
837 }
838 
839 void
840 tcp_drain(void)
841 {
842 
843 	if (do_tcpdrain) {
844 		struct inpcb *inpb;
845 		struct tcpcb *tcpb;
846 		struct tseg_qent *te;
847 
848 	/*
849 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
850 	 * if there is one...
851 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
852 	 *      reassembly queue should be flushed, but in a situation
853 	 *	where we're really low on mbufs, this is potentially
854 	 *	usefull.
855 	 */
856 		INP_INFO_RLOCK(&tcbinfo);
857 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
858 			if (inpb->inp_vflag & INP_TIMEWAIT)
859 				continue;
860 			INP_LOCK(inpb);
861 			if ((tcpb = intotcpcb(inpb)) != NULL) {
862 				while ((te = LIST_FIRST(&tcpb->t_segq))
863 			            != NULL) {
864 					LIST_REMOVE(te, tqe_q);
865 					m_freem(te->tqe_m);
866 					uma_zfree(tcp_reass_zone, te);
867 					tcpb->t_segqlen--;
868 					tcp_reass_qsize--;
869 				}
870 				tcp_clean_sackreport(tcpb);
871 			}
872 			INP_UNLOCK(inpb);
873 		}
874 		INP_INFO_RUNLOCK(&tcbinfo);
875 	}
876 }
877 
878 /*
879  * Notify a tcp user of an asynchronous error;
880  * store error as soft error, but wake up user
881  * (for now, won't do anything until can select for soft error).
882  *
883  * Do not wake up user since there currently is no mechanism for
884  * reporting soft errors (yet - a kqueue filter may be added).
885  */
886 static struct inpcb *
887 tcp_notify(struct inpcb *inp, int error)
888 {
889 	struct tcpcb *tp;
890 
891 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
892 	INP_LOCK_ASSERT(inp);
893 
894 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
895 	    (inp->inp_vflag & INP_DROPPED))
896 		return (inp);
897 
898 	tp = intotcpcb(inp);
899 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
900 
901 	/*
902 	 * Ignore some errors if we are hooked up.
903 	 * If connection hasn't completed, has retransmitted several times,
904 	 * and receives a second error, give up now.  This is better
905 	 * than waiting a long time to establish a connection that
906 	 * can never complete.
907 	 */
908 	if (tp->t_state == TCPS_ESTABLISHED &&
909 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
910 	     error == EHOSTDOWN)) {
911 		return (inp);
912 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
913 	    tp->t_softerror) {
914 		tp = tcp_drop(tp, error);
915 		if (tp != NULL)
916 			return (inp);
917 		else
918 			return (NULL);
919 	} else {
920 		tp->t_softerror = error;
921 		return (inp);
922 	}
923 #if 0
924 	wakeup( &so->so_timeo);
925 	sorwakeup(so);
926 	sowwakeup(so);
927 #endif
928 }
929 
930 static int
931 tcp_pcblist(SYSCTL_HANDLER_ARGS)
932 {
933 	int error, i, n;
934 	struct inpcb *inp, **inp_list;
935 	inp_gen_t gencnt;
936 	struct xinpgen xig;
937 
938 	/*
939 	 * The process of preparing the TCB list is too time-consuming and
940 	 * resource-intensive to repeat twice on every request.
941 	 */
942 	if (req->oldptr == NULL) {
943 		n = tcbinfo.ipi_count;
944 		req->oldidx = 2 * (sizeof xig)
945 			+ (n + n/8) * sizeof(struct xtcpcb);
946 		return (0);
947 	}
948 
949 	if (req->newptr != NULL)
950 		return (EPERM);
951 
952 	/*
953 	 * OK, now we're committed to doing something.
954 	 */
955 	INP_INFO_RLOCK(&tcbinfo);
956 	gencnt = tcbinfo.ipi_gencnt;
957 	n = tcbinfo.ipi_count;
958 	INP_INFO_RUNLOCK(&tcbinfo);
959 
960 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
961 		+ n * sizeof(struct xtcpcb));
962 	if (error != 0)
963 		return (error);
964 
965 	xig.xig_len = sizeof xig;
966 	xig.xig_count = n;
967 	xig.xig_gen = gencnt;
968 	xig.xig_sogen = so_gencnt;
969 	error = SYSCTL_OUT(req, &xig, sizeof xig);
970 	if (error)
971 		return (error);
972 
973 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
974 	if (inp_list == NULL)
975 		return (ENOMEM);
976 
977 	INP_INFO_RLOCK(&tcbinfo);
978 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
979 	     inp = LIST_NEXT(inp, inp_list)) {
980 		INP_LOCK(inp);
981 		if (inp->inp_gencnt <= gencnt) {
982 			/*
983 			 * XXX: This use of cr_cansee(), introduced with
984 			 * TCP state changes, is not quite right, but for
985 			 * now, better than nothing.
986 			 */
987 			if (inp->inp_vflag & INP_TIMEWAIT) {
988 				if (intotw(inp) != NULL)
989 					error = cr_cansee(req->td->td_ucred,
990 					    intotw(inp)->tw_cred);
991 				else
992 					error = EINVAL;	/* Skip this inp. */
993 			} else
994 				error = cr_canseesocket(req->td->td_ucred,
995 				    inp->inp_socket);
996 			if (error == 0)
997 				inp_list[i++] = inp;
998 		}
999 		INP_UNLOCK(inp);
1000 	}
1001 	INP_INFO_RUNLOCK(&tcbinfo);
1002 	n = i;
1003 
1004 	error = 0;
1005 	for (i = 0; i < n; i++) {
1006 		inp = inp_list[i];
1007 		INP_LOCK(inp);
1008 		if (inp->inp_gencnt <= gencnt) {
1009 			struct xtcpcb xt;
1010 			void *inp_ppcb;
1011 
1012 			bzero(&xt, sizeof(xt));
1013 			xt.xt_len = sizeof xt;
1014 			/* XXX should avoid extra copy */
1015 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1016 			inp_ppcb = inp->inp_ppcb;
1017 			if (inp_ppcb == NULL)
1018 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1019 			else if (inp->inp_vflag & INP_TIMEWAIT) {
1020 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1021 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1022 			} else
1023 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1024 			if (inp->inp_socket != NULL)
1025 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1026 			else {
1027 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1028 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1029 			}
1030 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1031 			INP_UNLOCK(inp);
1032 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1033 		} else
1034 			INP_UNLOCK(inp);
1035 
1036 	}
1037 	if (!error) {
1038 		/*
1039 		 * Give the user an updated idea of our state.
1040 		 * If the generation differs from what we told
1041 		 * her before, she knows that something happened
1042 		 * while we were processing this request, and it
1043 		 * might be necessary to retry.
1044 		 */
1045 		INP_INFO_RLOCK(&tcbinfo);
1046 		xig.xig_gen = tcbinfo.ipi_gencnt;
1047 		xig.xig_sogen = so_gencnt;
1048 		xig.xig_count = tcbinfo.ipi_count;
1049 		INP_INFO_RUNLOCK(&tcbinfo);
1050 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1051 	}
1052 	free(inp_list, M_TEMP);
1053 	return (error);
1054 }
1055 
1056 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1057 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1058 
1059 static int
1060 tcp_getcred(SYSCTL_HANDLER_ARGS)
1061 {
1062 	struct xucred xuc;
1063 	struct sockaddr_in addrs[2];
1064 	struct inpcb *inp;
1065 	int error;
1066 
1067 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1068 	if (error)
1069 		return (error);
1070 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1071 	if (error)
1072 		return (error);
1073 	INP_INFO_RLOCK(&tcbinfo);
1074 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1075 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1076 	if (inp == NULL) {
1077 		error = ENOENT;
1078 		goto outunlocked;
1079 	}
1080 	INP_LOCK(inp);
1081 	if (inp->inp_socket == NULL) {
1082 		error = ENOENT;
1083 		goto out;
1084 	}
1085 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1086 	if (error)
1087 		goto out;
1088 	cru2x(inp->inp_socket->so_cred, &xuc);
1089 out:
1090 	INP_UNLOCK(inp);
1091 outunlocked:
1092 	INP_INFO_RUNLOCK(&tcbinfo);
1093 	if (error == 0)
1094 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095 	return (error);
1096 }
1097 
1098 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1099     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1101 
1102 #ifdef INET6
1103 static int
1104 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1105 {
1106 	struct xucred xuc;
1107 	struct sockaddr_in6 addrs[2];
1108 	struct inpcb *inp;
1109 	int error, mapped = 0;
1110 
1111 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1112 	if (error)
1113 		return (error);
1114 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1115 	if (error)
1116 		return (error);
1117 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1118 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1119 		return (error);
1120 	}
1121 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1122 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1123 			mapped = 1;
1124 		else
1125 			return (EINVAL);
1126 	}
1127 
1128 	INP_INFO_RLOCK(&tcbinfo);
1129 	if (mapped == 1)
1130 		inp = in_pcblookup_hash(&tcbinfo,
1131 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1132 			addrs[1].sin6_port,
1133 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1134 			addrs[0].sin6_port,
1135 			0, NULL);
1136 	else
1137 		inp = in6_pcblookup_hash(&tcbinfo,
1138 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1139 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1140 	if (inp == NULL) {
1141 		error = ENOENT;
1142 		goto outunlocked;
1143 	}
1144 	INP_LOCK(inp);
1145 	if (inp->inp_socket == NULL) {
1146 		error = ENOENT;
1147 		goto out;
1148 	}
1149 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1150 	if (error)
1151 		goto out;
1152 	cru2x(inp->inp_socket->so_cred, &xuc);
1153 out:
1154 	INP_UNLOCK(inp);
1155 outunlocked:
1156 	INP_INFO_RUNLOCK(&tcbinfo);
1157 	if (error == 0)
1158 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1159 	return (error);
1160 }
1161 
1162 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1163     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1164     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1165 #endif
1166 
1167 
1168 void
1169 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1170 {
1171 	struct ip *ip = vip;
1172 	struct tcphdr *th;
1173 	struct in_addr faddr;
1174 	struct inpcb *inp;
1175 	struct tcpcb *tp;
1176 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1177 	struct icmp *icp;
1178 	struct in_conninfo inc;
1179 	tcp_seq icmp_tcp_seq;
1180 	int mtu;
1181 
1182 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1183 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1184 		return;
1185 
1186 	if (cmd == PRC_MSGSIZE)
1187 		notify = tcp_mtudisc;
1188 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1189 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1190 		notify = tcp_drop_syn_sent;
1191 	/*
1192 	 * Redirects don't need to be handled up here.
1193 	 */
1194 	else if (PRC_IS_REDIRECT(cmd))
1195 		return;
1196 	/*
1197 	 * Source quench is depreciated.
1198 	 */
1199 	else if (cmd == PRC_QUENCH)
1200 		return;
1201 	/*
1202 	 * Hostdead is ugly because it goes linearly through all PCBs.
1203 	 * XXX: We never get this from ICMP, otherwise it makes an
1204 	 * excellent DoS attack on machines with many connections.
1205 	 */
1206 	else if (cmd == PRC_HOSTDEAD)
1207 		ip = NULL;
1208 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1209 		return;
1210 	if (ip != NULL) {
1211 		icp = (struct icmp *)((caddr_t)ip
1212 				      - offsetof(struct icmp, icmp_ip));
1213 		th = (struct tcphdr *)((caddr_t)ip
1214 				       + (ip->ip_hl << 2));
1215 		INP_INFO_WLOCK(&tcbinfo);
1216 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1217 		    ip->ip_src, th->th_sport, 0, NULL);
1218 		if (inp != NULL)  {
1219 			INP_LOCK(inp);
1220 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1221 			    !(inp->inp_vflag & INP_DROPPED) &&
1222 			    !(inp->inp_socket == NULL)) {
1223 				icmp_tcp_seq = htonl(th->th_seq);
1224 				tp = intotcpcb(inp);
1225 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1226 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1227 					if (cmd == PRC_MSGSIZE) {
1228 					    /*
1229 					     * MTU discovery:
1230 					     * If we got a needfrag set the MTU
1231 					     * in the route to the suggested new
1232 					     * value (if given) and then notify.
1233 					     */
1234 					    bzero(&inc, sizeof(inc));
1235 					    inc.inc_flags = 0;	/* IPv4 */
1236 					    inc.inc_faddr = faddr;
1237 
1238 					    mtu = ntohs(icp->icmp_nextmtu);
1239 					    /*
1240 					     * If no alternative MTU was
1241 					     * proposed, try the next smaller
1242 					     * one.  ip->ip_len has already
1243 					     * been swapped in icmp_input().
1244 					     */
1245 					    if (!mtu)
1246 						mtu = ip_next_mtu(ip->ip_len,
1247 						 1);
1248 					    if (mtu < max(296, (tcp_minmss)
1249 						 + sizeof(struct tcpiphdr)))
1250 						mtu = 0;
1251 					    if (!mtu)
1252 						mtu = tcp_mssdflt
1253 						 + sizeof(struct tcpiphdr);
1254 					    /*
1255 					     * Only cache the the MTU if it
1256 					     * is smaller than the interface
1257 					     * or route MTU.  tcp_mtudisc()
1258 					     * will do right thing by itself.
1259 					     */
1260 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1261 						tcp_hc_updatemtu(&inc, mtu);
1262 					}
1263 
1264 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1265 				}
1266 			}
1267 			if (inp != NULL)
1268 				INP_UNLOCK(inp);
1269 		} else {
1270 			inc.inc_fport = th->th_dport;
1271 			inc.inc_lport = th->th_sport;
1272 			inc.inc_faddr = faddr;
1273 			inc.inc_laddr = ip->ip_src;
1274 #ifdef INET6
1275 			inc.inc_isipv6 = 0;
1276 #endif
1277 			syncache_unreach(&inc, th);
1278 		}
1279 		INP_INFO_WUNLOCK(&tcbinfo);
1280 	} else
1281 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1282 }
1283 
1284 #ifdef INET6
1285 void
1286 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1287 {
1288 	struct tcphdr th;
1289 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1290 	struct ip6_hdr *ip6;
1291 	struct mbuf *m;
1292 	struct ip6ctlparam *ip6cp = NULL;
1293 	const struct sockaddr_in6 *sa6_src = NULL;
1294 	int off;
1295 	struct tcp_portonly {
1296 		u_int16_t th_sport;
1297 		u_int16_t th_dport;
1298 	} *thp;
1299 
1300 	if (sa->sa_family != AF_INET6 ||
1301 	    sa->sa_len != sizeof(struct sockaddr_in6))
1302 		return;
1303 
1304 	if (cmd == PRC_MSGSIZE)
1305 		notify = tcp_mtudisc;
1306 	else if (!PRC_IS_REDIRECT(cmd) &&
1307 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1308 		return;
1309 	/* Source quench is depreciated. */
1310 	else if (cmd == PRC_QUENCH)
1311 		return;
1312 
1313 	/* if the parameter is from icmp6, decode it. */
1314 	if (d != NULL) {
1315 		ip6cp = (struct ip6ctlparam *)d;
1316 		m = ip6cp->ip6c_m;
1317 		ip6 = ip6cp->ip6c_ip6;
1318 		off = ip6cp->ip6c_off;
1319 		sa6_src = ip6cp->ip6c_src;
1320 	} else {
1321 		m = NULL;
1322 		ip6 = NULL;
1323 		off = 0;	/* fool gcc */
1324 		sa6_src = &sa6_any;
1325 	}
1326 
1327 	if (ip6 != NULL) {
1328 		struct in_conninfo inc;
1329 		/*
1330 		 * XXX: We assume that when IPV6 is non NULL,
1331 		 * M and OFF are valid.
1332 		 */
1333 
1334 		/* check if we can safely examine src and dst ports */
1335 		if (m->m_pkthdr.len < off + sizeof(*thp))
1336 			return;
1337 
1338 		bzero(&th, sizeof(th));
1339 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1340 
1341 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1342 		    (struct sockaddr *)ip6cp->ip6c_src,
1343 		    th.th_sport, cmd, NULL, notify);
1344 
1345 		inc.inc_fport = th.th_dport;
1346 		inc.inc_lport = th.th_sport;
1347 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1348 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1349 		inc.inc_isipv6 = 1;
1350 		INP_INFO_WLOCK(&tcbinfo);
1351 		syncache_unreach(&inc, &th);
1352 		INP_INFO_WUNLOCK(&tcbinfo);
1353 	} else
1354 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1355 			      0, cmd, NULL, notify);
1356 }
1357 #endif /* INET6 */
1358 
1359 
1360 /*
1361  * Following is where TCP initial sequence number generation occurs.
1362  *
1363  * There are two places where we must use initial sequence numbers:
1364  * 1.  In SYN-ACK packets.
1365  * 2.  In SYN packets.
1366  *
1367  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1368  * tcp_syncache.c for details.
1369  *
1370  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1371  * depends on this property.  In addition, these ISNs should be
1372  * unguessable so as to prevent connection hijacking.  To satisfy
1373  * the requirements of this situation, the algorithm outlined in
1374  * RFC 1948 is used, with only small modifications.
1375  *
1376  * Implementation details:
1377  *
1378  * Time is based off the system timer, and is corrected so that it
1379  * increases by one megabyte per second.  This allows for proper
1380  * recycling on high speed LANs while still leaving over an hour
1381  * before rollover.
1382  *
1383  * As reading the *exact* system time is too expensive to be done
1384  * whenever setting up a TCP connection, we increment the time
1385  * offset in two ways.  First, a small random positive increment
1386  * is added to isn_offset for each connection that is set up.
1387  * Second, the function tcp_isn_tick fires once per clock tick
1388  * and increments isn_offset as necessary so that sequence numbers
1389  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1390  * random positive increments serve only to ensure that the same
1391  * exact sequence number is never sent out twice (as could otherwise
1392  * happen when a port is recycled in less than the system tick
1393  * interval.)
1394  *
1395  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1396  * between seeding of isn_secret.  This is normally set to zero,
1397  * as reseeding should not be necessary.
1398  *
1399  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1400  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1401  * general, this means holding an exclusive (write) lock.
1402  */
1403 
1404 #define ISN_BYTES_PER_SECOND 1048576
1405 #define ISN_STATIC_INCREMENT 4096
1406 #define ISN_RANDOM_INCREMENT (4096 - 1)
1407 
1408 static u_char isn_secret[32];
1409 static int isn_last_reseed;
1410 static u_int32_t isn_offset, isn_offset_old;
1411 static MD5_CTX isn_ctx;
1412 
1413 tcp_seq
1414 tcp_new_isn(struct tcpcb *tp)
1415 {
1416 	u_int32_t md5_buffer[4];
1417 	tcp_seq new_isn;
1418 
1419 	INP_LOCK_ASSERT(tp->t_inpcb);
1420 
1421 	ISN_LOCK();
1422 	/* Seed if this is the first use, reseed if requested. */
1423 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1424 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1425 		< (u_int)ticks))) {
1426 		read_random(&isn_secret, sizeof(isn_secret));
1427 		isn_last_reseed = ticks;
1428 	}
1429 
1430 	/* Compute the md5 hash and return the ISN. */
1431 	MD5Init(&isn_ctx);
1432 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1433 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1434 #ifdef INET6
1435 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1436 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1437 			  sizeof(struct in6_addr));
1438 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1439 			  sizeof(struct in6_addr));
1440 	} else
1441 #endif
1442 	{
1443 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1444 			  sizeof(struct in_addr));
1445 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1446 			  sizeof(struct in_addr));
1447 	}
1448 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1449 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1450 	new_isn = (tcp_seq) md5_buffer[0];
1451 	isn_offset += ISN_STATIC_INCREMENT +
1452 		(arc4random() & ISN_RANDOM_INCREMENT);
1453 	new_isn += isn_offset;
1454 	ISN_UNLOCK();
1455 	return (new_isn);
1456 }
1457 
1458 /*
1459  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1460  * to keep time flowing at a relatively constant rate.  If the random
1461  * increments have already pushed us past the projected offset, do nothing.
1462  */
1463 static void
1464 tcp_isn_tick(void *xtp)
1465 {
1466 	u_int32_t projected_offset;
1467 
1468 	ISN_LOCK();
1469 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1470 
1471 	if (projected_offset > isn_offset)
1472 		isn_offset = projected_offset;
1473 
1474 	isn_offset_old = isn_offset;
1475 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1476 	ISN_UNLOCK();
1477 }
1478 
1479 /*
1480  * When a specific ICMP unreachable message is received and the
1481  * connection state is SYN-SENT, drop the connection.  This behavior
1482  * is controlled by the icmp_may_rst sysctl.
1483  */
1484 struct inpcb *
1485 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1486 {
1487 	struct tcpcb *tp;
1488 
1489 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1490 	INP_LOCK_ASSERT(inp);
1491 
1492 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1493 	    (inp->inp_vflag & INP_DROPPED))
1494 		return (inp);
1495 
1496 	tp = intotcpcb(inp);
1497 	if (tp->t_state != TCPS_SYN_SENT)
1498 		return (inp);
1499 
1500 	tp = tcp_drop(tp, errno);
1501 	if (tp != NULL)
1502 		return (inp);
1503 	else
1504 		return (NULL);
1505 }
1506 
1507 /*
1508  * When `need fragmentation' ICMP is received, update our idea of the MSS
1509  * based on the new value in the route.  Also nudge TCP to send something,
1510  * since we know the packet we just sent was dropped.
1511  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1512  */
1513 struct inpcb *
1514 tcp_mtudisc(struct inpcb *inp, int errno)
1515 {
1516 	struct tcpcb *tp;
1517 	struct socket *so = inp->inp_socket;
1518 	u_int maxmtu;
1519 	u_int romtu;
1520 	int mss;
1521 #ifdef INET6
1522 	int isipv6;
1523 #endif /* INET6 */
1524 
1525 	INP_LOCK_ASSERT(inp);
1526 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1527 	    (inp->inp_vflag & INP_DROPPED))
1528 		return (inp);
1529 
1530 	tp = intotcpcb(inp);
1531 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1532 
1533 #ifdef INET6
1534 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1535 #endif
1536 	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1537 	romtu =
1538 #ifdef INET6
1539 	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1540 #endif /* INET6 */
1541 	    tcp_maxmtu(&inp->inp_inc, NULL);
1542 	if (!maxmtu)
1543 		maxmtu = romtu;
1544 	else
1545 		maxmtu = min(maxmtu, romtu);
1546 	if (!maxmtu) {
1547 		tp->t_maxopd = tp->t_maxseg =
1548 #ifdef INET6
1549 			isipv6 ? tcp_v6mssdflt :
1550 #endif /* INET6 */
1551 			tcp_mssdflt;
1552 		return (inp);
1553 	}
1554 	mss = maxmtu -
1555 #ifdef INET6
1556 		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1557 #endif /* INET6 */
1558 		 sizeof(struct tcpiphdr)
1559 #ifdef INET6
1560 		 )
1561 #endif /* INET6 */
1562 		;
1563 
1564 	/*
1565 	 * XXX - The above conditional probably violates the TCP
1566 	 * spec.  The problem is that, since we don't know the
1567 	 * other end's MSS, we are supposed to use a conservative
1568 	 * default.  But, if we do that, then MTU discovery will
1569 	 * never actually take place, because the conservative
1570 	 * default is much less than the MTUs typically seen
1571 	 * on the Internet today.  For the moment, we'll sweep
1572 	 * this under the carpet.
1573 	 *
1574 	 * The conservative default might not actually be a problem
1575 	 * if the only case this occurs is when sending an initial
1576 	 * SYN with options and data to a host we've never talked
1577 	 * to before.  Then, they will reply with an MSS value which
1578 	 * will get recorded and the new parameters should get
1579 	 * recomputed.  For Further Study.
1580 	 */
1581 	if (tp->t_maxopd <= mss)
1582 		return (inp);
1583 	tp->t_maxopd = mss;
1584 
1585 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1586 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1587 		mss -= TCPOLEN_TSTAMP_APPA;
1588 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1589 	if (mss > MCLBYTES)
1590 		mss &= ~(MCLBYTES-1);
1591 #else
1592 	if (mss > MCLBYTES)
1593 		mss = mss / MCLBYTES * MCLBYTES;
1594 #endif
1595 	if (so->so_snd.sb_hiwat < mss)
1596 		mss = so->so_snd.sb_hiwat;
1597 
1598 	tp->t_maxseg = mss;
1599 
1600 	tcpstat.tcps_mturesent++;
1601 	tp->t_rtttime = 0;
1602 	tp->snd_nxt = tp->snd_una;
1603 	tcp_free_sackholes(tp);
1604 	tp->snd_recover = tp->snd_max;
1605 	if (tp->sack_enable)
1606 		EXIT_FASTRECOVERY(tp);
1607 	tcp_output(tp);
1608 	return (inp);
1609 }
1610 
1611 /*
1612  * Look-up the routing entry to the peer of this inpcb.  If no route
1613  * is found and it cannot be allocated, then return NULL.  This routine
1614  * is called by TCP routines that access the rmx structure and by tcp_mss
1615  * to get the interface MTU.
1616  */
1617 u_long
1618 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1619 {
1620 	struct route sro;
1621 	struct sockaddr_in *dst;
1622 	struct ifnet *ifp;
1623 	u_long maxmtu = 0;
1624 
1625 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1626 
1627 	bzero(&sro, sizeof(sro));
1628 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1629 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1630 		dst->sin_family = AF_INET;
1631 		dst->sin_len = sizeof(*dst);
1632 		dst->sin_addr = inc->inc_faddr;
1633 		rtalloc_ign(&sro, RTF_CLONING);
1634 	}
1635 	if (sro.ro_rt != NULL) {
1636 		ifp = sro.ro_rt->rt_ifp;
1637 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1638 			maxmtu = ifp->if_mtu;
1639 		else
1640 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1641 
1642 		/* Report additional interface capabilities. */
1643 		if (flags != NULL) {
1644 			if (ifp->if_capenable & IFCAP_TSO4 &&
1645 			    ifp->if_hwassist & CSUM_TSO)
1646 				*flags |= CSUM_TSO;
1647 		}
1648 		RTFREE(sro.ro_rt);
1649 	}
1650 	return (maxmtu);
1651 }
1652 
1653 #ifdef INET6
1654 u_long
1655 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1656 {
1657 	struct route_in6 sro6;
1658 	struct ifnet *ifp;
1659 	u_long maxmtu = 0;
1660 
1661 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1662 
1663 	bzero(&sro6, sizeof(sro6));
1664 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1665 		sro6.ro_dst.sin6_family = AF_INET6;
1666 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1667 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1668 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1669 	}
1670 	if (sro6.ro_rt != NULL) {
1671 		ifp = sro6.ro_rt->rt_ifp;
1672 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1673 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1674 		else
1675 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1676 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1677 
1678 		/* Report additional interface capabilities. */
1679 		if (flags != NULL) {
1680 			if (ifp->if_capenable & IFCAP_TSO6 &&
1681 			    ifp->if_hwassist & CSUM_TSO)
1682 				*flags |= CSUM_TSO;
1683 		}
1684 		RTFREE(sro6.ro_rt);
1685 	}
1686 
1687 	return (maxmtu);
1688 }
1689 #endif /* INET6 */
1690 
1691 #ifdef IPSEC
1692 /* compute ESP/AH header size for TCP, including outer IP header. */
1693 size_t
1694 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1695 {
1696 	struct inpcb *inp;
1697 	struct mbuf *m;
1698 	size_t hdrsiz;
1699 	struct ip *ip;
1700 #ifdef INET6
1701 	struct ip6_hdr *ip6;
1702 #endif
1703 	struct tcphdr *th;
1704 
1705 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1706 		return (0);
1707 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1708 	if (!m)
1709 		return (0);
1710 
1711 #ifdef INET6
1712 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1713 		ip6 = mtod(m, struct ip6_hdr *);
1714 		th = (struct tcphdr *)(ip6 + 1);
1715 		m->m_pkthdr.len = m->m_len =
1716 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1717 		tcpip_fillheaders(inp, ip6, th);
1718 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1719 	} else
1720 #endif /* INET6 */
1721 	{
1722 		ip = mtod(m, struct ip *);
1723 		th = (struct tcphdr *)(ip + 1);
1724 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1725 		tcpip_fillheaders(inp, ip, th);
1726 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1727 	}
1728 
1729 	m_free(m);
1730 	return (hdrsiz);
1731 }
1732 #endif /*IPSEC*/
1733 
1734 /*
1735  * Move a TCP connection into TIME_WAIT state.
1736  *    tcbinfo is locked.
1737  *    inp is locked, and is unlocked before returning.
1738  */
1739 void
1740 tcp_twstart(struct tcpcb *tp)
1741 {
1742 	struct tcptw *tw;
1743 	struct inpcb *inp = tp->t_inpcb;
1744 	int acknow;
1745 	struct socket *so;
1746 
1747 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1748 	INP_LOCK_ASSERT(inp);
1749 
1750 	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1751 		tp = tcp_close(tp);
1752 		if (tp != NULL)
1753 			INP_UNLOCK(inp);
1754 		return;
1755 	}
1756 
1757 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1758 	if (tw == NULL) {
1759 		tw = tcp_timer_2msl_tw(1);
1760 		if (tw == NULL) {
1761 			tp = tcp_close(tp);
1762 			if (tp != NULL)
1763 				INP_UNLOCK(inp);
1764 			return;
1765 		}
1766 	}
1767 	tw->tw_inpcb = inp;
1768 
1769 	/*
1770 	 * Recover last window size sent.
1771 	 */
1772 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1773 
1774 	/*
1775 	 * Set t_recent if timestamps are used on the connection.
1776 	 */
1777 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1778 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1779 		tw->t_recent = tp->ts_recent;
1780 	else
1781 		tw->t_recent = 0;
1782 
1783 	tw->snd_nxt = tp->snd_nxt;
1784 	tw->rcv_nxt = tp->rcv_nxt;
1785 	tw->iss     = tp->iss;
1786 	tw->irs     = tp->irs;
1787 	tw->t_starttime = tp->t_starttime;
1788 	tw->tw_time = 0;
1789 
1790 /* XXX
1791  * If this code will
1792  * be used for fin-wait-2 state also, then we may need
1793  * a ts_recent from the last segment.
1794  */
1795 	acknow = tp->t_flags & TF_ACKNOW;
1796 
1797 	/*
1798 	 * First, discard tcpcb state, which includes stopping its timers and
1799 	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1800 	 * that work is now done in the caller.
1801 	 *
1802 	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1803 	 * and might not be needed here any longer.
1804 	 */
1805 	tcp_discardcb(tp);
1806 	so = inp->inp_socket;
1807 	soisdisconnected(so);
1808 	SOCK_LOCK(so);
1809 	tw->tw_cred = crhold(so->so_cred);
1810 	tw->tw_so_options = so->so_options;
1811 	SOCK_UNLOCK(so);
1812 	if (acknow)
1813 		tcp_twrespond(tw, TH_ACK);
1814 	inp->inp_ppcb = tw;
1815 	inp->inp_vflag |= INP_TIMEWAIT;
1816 	tcp_timer_2msl_reset(tw, 0);
1817 
1818 	/*
1819 	 * If the inpcb owns the sole reference to the socket, then we can
1820 	 * detach and free the socket as it is not needed in time wait.
1821 	 */
1822 	if (inp->inp_vflag & INP_SOCKREF) {
1823 		KASSERT(so->so_state & SS_PROTOREF,
1824 		    ("tcp_twstart: !SS_PROTOREF"));
1825 		inp->inp_vflag &= ~INP_SOCKREF;
1826 		INP_UNLOCK(inp);
1827 		ACCEPT_LOCK();
1828 		SOCK_LOCK(so);
1829 		so->so_state &= ~SS_PROTOREF;
1830 		sofree(so);
1831 	} else
1832 		INP_UNLOCK(inp);
1833 }
1834 
1835 #if 0
1836 /*
1837  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1838  * the actual rate is slightly higher due to the addition of
1839  * random positive increments.
1840  *
1841  * Most other new OSes use semi-randomized ISN values, so we
1842  * do not need to worry about them.
1843  */
1844 #define MS_ISN_BYTES_PER_SECOND		250000
1845 
1846 /*
1847  * Determine if the ISN we will generate has advanced beyond the last
1848  * sequence number used by the previous connection.  If so, indicate
1849  * that it is safe to recycle this tw socket by returning 1.
1850  */
1851 int
1852 tcp_twrecycleable(struct tcptw *tw)
1853 {
1854 	tcp_seq new_iss = tw->iss;
1855 	tcp_seq new_irs = tw->irs;
1856 
1857 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1858 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1859 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1860 
1861 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1862 		return (1);
1863 	else
1864 		return (0);
1865 }
1866 #endif
1867 
1868 void
1869 tcp_twclose(struct tcptw *tw, int reuse)
1870 {
1871 	struct socket *so;
1872 	struct inpcb *inp;
1873 
1874 	/*
1875 	 * At this point, we are in one of two situations:
1876 	 *
1877 	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1878 	 *     all state.
1879 	 *
1880 	 * (2) We have a socket -- if we own a reference, release it and
1881 	 *     notify the socket layer.
1882 	 */
1883 	inp = tw->tw_inpcb;
1884 	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1885 	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1886 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1887 	INP_LOCK_ASSERT(inp);
1888 
1889 	tw->tw_inpcb = NULL;
1890 	tcp_timer_2msl_stop(tw);
1891 	inp->inp_ppcb = NULL;
1892 	in_pcbdrop(inp);
1893 
1894 	so = inp->inp_socket;
1895 	if (so != NULL) {
1896 		/*
1897 		 * If there's a socket, handle two cases: first, we own a
1898 		 * strong reference, which we will now release, or we don't
1899 		 * in which case another reference exists (XXXRW: think
1900 		 * about this more), and we don't need to take action.
1901 		 */
1902 		if (inp->inp_vflag & INP_SOCKREF) {
1903 			inp->inp_vflag &= ~INP_SOCKREF;
1904 			INP_UNLOCK(inp);
1905 			ACCEPT_LOCK();
1906 			SOCK_LOCK(so);
1907 			KASSERT(so->so_state & SS_PROTOREF,
1908 			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1909 			so->so_state &= ~SS_PROTOREF;
1910 			sofree(so);
1911 		} else {
1912 			/*
1913 			 * If we don't own the only reference, the socket and
1914 			 * inpcb need to be left around to be handled by
1915 			 * tcp_usr_detach() later.
1916 			 */
1917 			INP_UNLOCK(inp);
1918 		}
1919 	} else {
1920 #ifdef INET6
1921 		if (inp->inp_vflag & INP_IPV6PROTO)
1922 			in6_pcbfree(inp);
1923 		else
1924 #endif
1925 			in_pcbfree(inp);
1926 	}
1927 	tcpstat.tcps_closed++;
1928 	crfree(tw->tw_cred);
1929 	tw->tw_cred = NULL;
1930 	if (reuse)
1931 		return;
1932 	uma_zfree(tcptw_zone, tw);
1933 }
1934 
1935 int
1936 tcp_twrespond(struct tcptw *tw, int flags)
1937 {
1938 	struct inpcb *inp = tw->tw_inpcb;
1939 	struct tcphdr *th;
1940 	struct mbuf *m;
1941 	struct ip *ip = NULL;
1942 	u_int8_t *optp;
1943 	u_int hdrlen, optlen;
1944 	int error;
1945 #ifdef INET6
1946 	struct ip6_hdr *ip6 = NULL;
1947 	int isipv6 = inp->inp_inc.inc_isipv6;
1948 #endif
1949 
1950 	INP_LOCK_ASSERT(inp);
1951 
1952 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1953 	if (m == NULL)
1954 		return (ENOBUFS);
1955 	m->m_data += max_linkhdr;
1956 
1957 #ifdef MAC
1958 	mac_create_mbuf_from_inpcb(inp, m);
1959 #endif
1960 
1961 #ifdef INET6
1962 	if (isipv6) {
1963 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1964 		ip6 = mtod(m, struct ip6_hdr *);
1965 		th = (struct tcphdr *)(ip6 + 1);
1966 		tcpip_fillheaders(inp, ip6, th);
1967 	} else
1968 #endif
1969 	{
1970 		hdrlen = sizeof(struct tcpiphdr);
1971 		ip = mtod(m, struct ip *);
1972 		th = (struct tcphdr *)(ip + 1);
1973 		tcpip_fillheaders(inp, ip, th);
1974 	}
1975 	optp = (u_int8_t *)(th + 1);
1976 
1977 	/*
1978 	 * Send a timestamp and echo-reply if both our side and our peer
1979 	 * have sent timestamps in our SYN's and this is not a RST.
1980 	 */
1981 	if (tw->t_recent && flags == TH_ACK) {
1982 		u_int32_t *lp = (u_int32_t *)optp;
1983 
1984 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1985 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1986 		*lp++ = htonl(ticks);
1987 		*lp   = htonl(tw->t_recent);
1988 		optp += TCPOLEN_TSTAMP_APPA;
1989 	}
1990 
1991 	optlen = optp - (u_int8_t *)(th + 1);
1992 
1993 	m->m_len = hdrlen + optlen;
1994 	m->m_pkthdr.len = m->m_len;
1995 
1996 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1997 
1998 	th->th_seq = htonl(tw->snd_nxt);
1999 	th->th_ack = htonl(tw->rcv_nxt);
2000 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2001 	th->th_flags = flags;
2002 	th->th_win = htons(tw->last_win);
2003 
2004 #ifdef INET6
2005 	if (isipv6) {
2006 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2007 		    sizeof(struct tcphdr) + optlen);
2008 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2009 		error = ip6_output(m, inp->in6p_outputopts, NULL,
2010 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2011 	} else
2012 #endif
2013 	{
2014 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2015 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2016 		m->m_pkthdr.csum_flags = CSUM_TCP;
2017 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2018 		ip->ip_len = m->m_pkthdr.len;
2019 		if (path_mtu_discovery)
2020 			ip->ip_off |= IP_DF;
2021 		error = ip_output(m, inp->inp_options, NULL,
2022 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2023 		    NULL, inp);
2024 	}
2025 	if (flags & TH_ACK)
2026 		tcpstat.tcps_sndacks++;
2027 	else
2028 		tcpstat.tcps_sndctrl++;
2029 	tcpstat.tcps_sndtotal++;
2030 	return (error);
2031 }
2032 
2033 /*
2034  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2035  *
2036  * This code attempts to calculate the bandwidth-delay product as a
2037  * means of determining the optimal window size to maximize bandwidth,
2038  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2039  * routers.  This code also does a fairly good job keeping RTTs in check
2040  * across slow links like modems.  We implement an algorithm which is very
2041  * similar (but not meant to be) TCP/Vegas.  The code operates on the
2042  * transmitter side of a TCP connection and so only effects the transmit
2043  * side of the connection.
2044  *
2045  * BACKGROUND:  TCP makes no provision for the management of buffer space
2046  * at the end points or at the intermediate routers and switches.  A TCP
2047  * stream, whether using NewReno or not, will eventually buffer as
2048  * many packets as it is able and the only reason this typically works is
2049  * due to the fairly small default buffers made available for a connection
2050  * (typicaly 16K or 32K).  As machines use larger windows and/or window
2051  * scaling it is now fairly easy for even a single TCP connection to blow-out
2052  * all available buffer space not only on the local interface, but on
2053  * intermediate routers and switches as well.  NewReno makes a misguided
2054  * attempt to 'solve' this problem by waiting for an actual failure to occur,
2055  * then backing off, then steadily increasing the window again until another
2056  * failure occurs, ad-infinitum.  This results in terrible oscillation that
2057  * is only made worse as network loads increase and the idea of intentionally
2058  * blowing out network buffers is, frankly, a terrible way to manage network
2059  * resources.
2060  *
2061  * It is far better to limit the transmit window prior to the failure
2062  * condition being achieved.  There are two general ways to do this:  First
2063  * you can 'scan' through different transmit window sizes and locate the
2064  * point where the RTT stops increasing, indicating that you have filled the
2065  * pipe, then scan backwards until you note that RTT stops decreasing, then
2066  * repeat ad-infinitum.  This method works in principle but has severe
2067  * implementation issues due to RTT variances, timer granularity, and
2068  * instability in the algorithm which can lead to many false positives and
2069  * create oscillations as well as interact badly with other TCP streams
2070  * implementing the same algorithm.
2071  *
2072  * The second method is to limit the window to the bandwidth delay product
2073  * of the link.  This is the method we implement.  RTT variances and our
2074  * own manipulation of the congestion window, bwnd, can potentially
2075  * destabilize the algorithm.  For this reason we have to stabilize the
2076  * elements used to calculate the window.  We do this by using the minimum
2077  * observed RTT, the long term average of the observed bandwidth, and
2078  * by adding two segments worth of slop.  It isn't perfect but it is able
2079  * to react to changing conditions and gives us a very stable basis on
2080  * which to extend the algorithm.
2081  */
2082 void
2083 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2084 {
2085 	u_long bw;
2086 	u_long bwnd;
2087 	int save_ticks;
2088 
2089 	INP_LOCK_ASSERT(tp->t_inpcb);
2090 
2091 	/*
2092 	 * If inflight_enable is disabled in the middle of a tcp connection,
2093 	 * make sure snd_bwnd is effectively disabled.
2094 	 */
2095 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2096 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2097 		tp->snd_bandwidth = 0;
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * Figure out the bandwidth.  Due to the tick granularity this
2103 	 * is a very rough number and it MUST be averaged over a fairly
2104 	 * long period of time.  XXX we need to take into account a link
2105 	 * that is not using all available bandwidth, but for now our
2106 	 * slop will ramp us up if this case occurs and the bandwidth later
2107 	 * increases.
2108 	 *
2109 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2110 	 * effectively reset t_bw_rtttime for this case.
2111 	 */
2112 	save_ticks = ticks;
2113 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2114 		return;
2115 
2116 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2117 	    (save_ticks - tp->t_bw_rtttime);
2118 	tp->t_bw_rtttime = save_ticks;
2119 	tp->t_bw_rtseq = ack_seq;
2120 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2121 		return;
2122 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2123 
2124 	tp->snd_bandwidth = bw;
2125 
2126 	/*
2127 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2128 	 * segments.  The additional slop puts us squarely in the sweet
2129 	 * spot and also handles the bandwidth run-up case and stabilization.
2130 	 * Without the slop we could be locking ourselves into a lower
2131 	 * bandwidth.
2132 	 *
2133 	 * Situations Handled:
2134 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2135 	 *	    high speed LANs, allowing larger TCP buffers to be
2136 	 *	    specified, and also does a good job preventing
2137 	 *	    over-queueing of packets over choke points like modems
2138 	 *	    (at least for the transmit side).
2139 	 *
2140 	 *	(2) Is able to handle changing network loads (bandwidth
2141 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2142 	 *	    increases).
2143 	 *
2144 	 *	(3) Theoretically should stabilize in the face of multiple
2145 	 *	    connections implementing the same algorithm (this may need
2146 	 *	    a little work).
2147 	 *
2148 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2149 	 *	    be adjusted with a sysctl but typically only needs to be
2150 	 *	    on very slow connections.  A value no smaller then 5
2151 	 *	    should be used, but only reduce this default if you have
2152 	 *	    no other choice.
2153 	 */
2154 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2155 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2156 #undef USERTT
2157 
2158 	if (tcp_inflight_debug > 0) {
2159 		static int ltime;
2160 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2161 			ltime = ticks;
2162 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2163 			    tp,
2164 			    bw,
2165 			    tp->t_rttbest,
2166 			    tp->t_srtt,
2167 			    bwnd
2168 			);
2169 		}
2170 	}
2171 	if ((long)bwnd < tcp_inflight_min)
2172 		bwnd = tcp_inflight_min;
2173 	if (bwnd > tcp_inflight_max)
2174 		bwnd = tcp_inflight_max;
2175 	if ((long)bwnd < tp->t_maxseg * 2)
2176 		bwnd = tp->t_maxseg * 2;
2177 	tp->snd_bwnd = bwnd;
2178 }
2179 
2180 #ifdef TCP_SIGNATURE
2181 /*
2182  * Callback function invoked by m_apply() to digest TCP segment data
2183  * contained within an mbuf chain.
2184  */
2185 static int
2186 tcp_signature_apply(void *fstate, void *data, u_int len)
2187 {
2188 
2189 	MD5Update(fstate, (u_char *)data, len);
2190 	return (0);
2191 }
2192 
2193 /*
2194  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2195  *
2196  * Parameters:
2197  * m		pointer to head of mbuf chain
2198  * off0		offset to TCP header within the mbuf chain
2199  * len		length of TCP segment data, excluding options
2200  * optlen	length of TCP segment options
2201  * buf		pointer to storage for computed MD5 digest
2202  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2203  *
2204  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2205  * When called from tcp_input(), we can be sure that th_sum has been
2206  * zeroed out and verified already.
2207  *
2208  * This function is for IPv4 use only. Calling this function with an
2209  * IPv6 packet in the mbuf chain will yield undefined results.
2210  *
2211  * Return 0 if successful, otherwise return -1.
2212  *
2213  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2214  * search with the destination IP address, and a 'magic SPI' to be
2215  * determined by the application. This is hardcoded elsewhere to 1179
2216  * right now. Another branch of this code exists which uses the SPD to
2217  * specify per-application flows but it is unstable.
2218  */
2219 int
2220 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2221     u_char *buf, u_int direction)
2222 {
2223 	union sockaddr_union dst;
2224 	struct ippseudo ippseudo;
2225 	MD5_CTX ctx;
2226 	int doff;
2227 	struct ip *ip;
2228 	struct ipovly *ipovly;
2229 	struct secasvar *sav;
2230 	struct tcphdr *th;
2231 	u_short savecsum;
2232 
2233 	KASSERT(m != NULL, ("NULL mbuf chain"));
2234 	KASSERT(buf != NULL, ("NULL signature pointer"));
2235 
2236 	/* Extract the destination from the IP header in the mbuf. */
2237 	ip = mtod(m, struct ip *);
2238 	bzero(&dst, sizeof(union sockaddr_union));
2239 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2240 	dst.sa.sa_family = AF_INET;
2241 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2242 	    ip->ip_src : ip->ip_dst;
2243 
2244 	/* Look up an SADB entry which matches the address of the peer. */
2245 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2246 	if (sav == NULL) {
2247 		printf("%s: SADB lookup failed for %s\n", __func__,
2248 		    inet_ntoa(dst.sin.sin_addr));
2249 		return (EINVAL);
2250 	}
2251 
2252 	MD5Init(&ctx);
2253 	ipovly = (struct ipovly *)ip;
2254 	th = (struct tcphdr *)((u_char *)ip + off0);
2255 	doff = off0 + sizeof(struct tcphdr) + optlen;
2256 
2257 	/*
2258 	 * Step 1: Update MD5 hash with IP pseudo-header.
2259 	 *
2260 	 * XXX The ippseudo header MUST be digested in network byte order,
2261 	 * or else we'll fail the regression test. Assume all fields we've
2262 	 * been doing arithmetic on have been in host byte order.
2263 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2264 	 * tcp_output(), the underlying ip_len member has not yet been set.
2265 	 */
2266 	ippseudo.ippseudo_src = ipovly->ih_src;
2267 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2268 	ippseudo.ippseudo_pad = 0;
2269 	ippseudo.ippseudo_p = IPPROTO_TCP;
2270 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2271 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2272 
2273 	/*
2274 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2275 	 * The TCP checksum must be set to zero.
2276 	 */
2277 	savecsum = th->th_sum;
2278 	th->th_sum = 0;
2279 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2280 	th->th_sum = savecsum;
2281 
2282 	/*
2283 	 * Step 3: Update MD5 hash with TCP segment data.
2284 	 *         Use m_apply() to avoid an early m_pullup().
2285 	 */
2286 	if (len > 0)
2287 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2288 
2289 	/*
2290 	 * Step 4: Update MD5 hash with shared secret.
2291 	 */
2292 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2293 	MD5Final(buf, &ctx);
2294 
2295 	key_sa_recordxfer(sav, m);
2296 	KEY_FREESAV(&sav);
2297 	return (0);
2298 }
2299 #endif /* TCP_SIGNATURE */
2300 
2301 static int
2302 sysctl_drop(SYSCTL_HANDLER_ARGS)
2303 {
2304 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2305 	struct sockaddr_storage addrs[2];
2306 	struct inpcb *inp;
2307 	struct tcpcb *tp;
2308 	struct tcptw *tw;
2309 	struct sockaddr_in *fin, *lin;
2310 #ifdef INET6
2311 	struct sockaddr_in6 *fin6, *lin6;
2312 	struct in6_addr f6, l6;
2313 #endif
2314 	int error;
2315 
2316 	inp = NULL;
2317 	fin = lin = NULL;
2318 #ifdef INET6
2319 	fin6 = lin6 = NULL;
2320 #endif
2321 	error = 0;
2322 
2323 	if (req->oldptr != NULL || req->oldlen != 0)
2324 		return (EINVAL);
2325 	if (req->newptr == NULL)
2326 		return (EPERM);
2327 	if (req->newlen < sizeof(addrs))
2328 		return (ENOMEM);
2329 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2330 	if (error)
2331 		return (error);
2332 
2333 	switch (addrs[0].ss_family) {
2334 #ifdef INET6
2335 	case AF_INET6:
2336 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2337 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2338 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2339 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2340 			return (EINVAL);
2341 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2342 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2343 				return (EINVAL);
2344 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2345 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2346 			fin = (struct sockaddr_in *)&addrs[0];
2347 			lin = (struct sockaddr_in *)&addrs[1];
2348 			break;
2349 		}
2350 		error = sa6_embedscope(fin6, ip6_use_defzone);
2351 		if (error)
2352 			return (error);
2353 		error = sa6_embedscope(lin6, ip6_use_defzone);
2354 		if (error)
2355 			return (error);
2356 		break;
2357 #endif
2358 	case AF_INET:
2359 		fin = (struct sockaddr_in *)&addrs[0];
2360 		lin = (struct sockaddr_in *)&addrs[1];
2361 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2362 		    lin->sin_len != sizeof(struct sockaddr_in))
2363 			return (EINVAL);
2364 		break;
2365 	default:
2366 		return (EINVAL);
2367 	}
2368 	INP_INFO_WLOCK(&tcbinfo);
2369 	switch (addrs[0].ss_family) {
2370 #ifdef INET6
2371 	case AF_INET6:
2372 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2373 		    &l6, lin6->sin6_port, 0, NULL);
2374 		break;
2375 #endif
2376 	case AF_INET:
2377 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2378 		    lin->sin_addr, lin->sin_port, 0, NULL);
2379 		break;
2380 	}
2381 	if (inp != NULL) {
2382 		INP_LOCK(inp);
2383 		if (inp->inp_vflag & INP_TIMEWAIT) {
2384 			/*
2385 			 * XXXRW: There currently exists a state where an
2386 			 * inpcb is present, but its timewait state has been
2387 			 * discarded.  For now, don't allow dropping of this
2388 			 * type of inpcb.
2389 			 */
2390 			tw = intotw(inp);
2391 			if (tw != NULL)
2392 				tcp_twclose(tw, 0);
2393 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2394 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2395 			tp = intotcpcb(inp);
2396 			tcp_drop(tp, ECONNABORTED);
2397 		}
2398 		INP_UNLOCK(inp);
2399 	} else
2400 		error = ESRCH;
2401 	INP_INFO_WUNLOCK(&tcbinfo);
2402 	return (error);
2403 }
2404 
2405 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2406     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2407     0, sysctl_drop, "", "Drop TCP connection");
2408