xref: /freebsd/sys/netinet/tcp_subr.c (revision 3d11b6c8f01e1fca5936a11d6996448467851a94)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 static int	tcp_tcbhashsize = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164 
165 static int	do_tcpdrain = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167      "Enable tcp_drain routine for extra help when low on mbufs");
168 
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170     &tcbinfo.ipi_count, 0, "Number of active PCBs");
171 
172 static int	icmp_may_rst = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 
176 static int	tcp_isn_reseed_interval = 0;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179 
180 static int	maxtcptw;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182     &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183 
184 /*
185  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186  * 1024 exists only for debugging.  A good production default would be
187  * something like 6100.
188  */
189 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190     "TCP inflight data limiting");
191 
192 static int	tcp_inflight_enable = 1;
193 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195 
196 static int	tcp_inflight_debug = 0;
197 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199 
200 static int	tcp_inflight_rttthresh;
201 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203     "RTT threshold below which inflight will deactivate itself");
204 
205 static int	tcp_inflight_min = 6144;
206 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208 
209 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212 
213 static int	tcp_inflight_stab = 20;
214 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216 
217 uma_zone_t sack_hole_zone;
218 
219 static struct inpcb *tcp_notify(struct inpcb *, int);
220 static void	tcp_isn_tick(void *);
221 
222 /*
223  * Target size of TCP PCB hash tables. Must be a power of two.
224  *
225  * Note that this can be overridden by the kernel environment
226  * variable net.inet.tcp.tcbhashsize
227  */
228 #ifndef TCBHASHSIZE
229 #define TCBHASHSIZE	512
230 #endif
231 
232 /*
233  * XXX
234  * Callouts should be moved into struct tcp directly.  They are currently
235  * separate because the tcpcb structure is exported to userland for sysctl
236  * parsing purposes, which do not know about callouts.
237  */
238 struct	tcpcb_mem {
239 	struct	tcpcb tcb;
240 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242 };
243 
244 static uma_zone_t tcpcb_zone;
245 static uma_zone_t tcptw_zone;
246 struct callout isn_callout;
247 
248 /*
249  * TCP initialization.
250  */
251 void
252 tcp_init(void)
253 {
254 	int hashsize = TCBHASHSIZE;
255 
256 	tcp_delacktime = TCPTV_DELACK;
257 	tcp_keepinit = TCPTV_KEEP_INIT;
258 	tcp_keepidle = TCPTV_KEEP_IDLE;
259 	tcp_keepintvl = TCPTV_KEEPINTVL;
260 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
261 	tcp_msl = TCPTV_MSL;
262 	tcp_rexmit_min = TCPTV_MIN;
263 	tcp_rexmit_slop = TCPTV_CPU_VAR;
264 	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
265 
266 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
267 	LIST_INIT(&tcb);
268 	tcbinfo.listhead = &tcb;
269 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
270 	if (!powerof2(hashsize)) {
271 		printf("WARNING: TCB hash size not a power of 2\n");
272 		hashsize = 512; /* safe default */
273 	}
274 	tcp_tcbhashsize = hashsize;
275 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
276 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
277 					&tcbinfo.porthashmask);
278 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
280 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
281 #ifdef INET6
282 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
283 #else /* INET6 */
284 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
285 #endif /* INET6 */
286 	if (max_protohdr < TCP_MINPROTOHDR)
287 		max_protohdr = TCP_MINPROTOHDR;
288 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
289 		panic("tcp_init");
290 #undef TCP_MINPROTOHDR
291 	/*
292 	 * These have to be type stable for the benefit of the timers.
293 	 */
294 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
295 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
296 	uma_zone_set_max(tcpcb_zone, maxsockets);
297 	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
298 	if (maxtcptw == 0)
299 		maxtcptw = maxsockets / 5;
300 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
301 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302 	uma_zone_set_max(tcptw_zone, maxtcptw);
303 	tcp_timer_init();
304 	syncache_init();
305 	tcp_hc_init();
306 	tcp_reass_init();
307 	callout_init(&isn_callout, CALLOUT_MPSAFE);
308 	tcp_isn_tick(NULL);
309 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
310 		SHUTDOWN_PRI_DEFAULT);
311 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
312 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313 }
314 
315 void
316 tcp_fini(void *xtp)
317 {
318 
319 	callout_stop(&isn_callout);
320 }
321 
322 /*
323  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
324  * tcp_template used to store this data in mbufs, but we now recopy it out
325  * of the tcpcb each time to conserve mbufs.
326  */
327 void
328 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
329 {
330 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
331 
332 	INP_LOCK_ASSERT(inp);
333 
334 #ifdef INET6
335 	if ((inp->inp_vflag & INP_IPV6) != 0) {
336 		struct ip6_hdr *ip6;
337 
338 		ip6 = (struct ip6_hdr *)ip_ptr;
339 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
340 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
341 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
342 			(IPV6_VERSION & IPV6_VERSION_MASK);
343 		ip6->ip6_nxt = IPPROTO_TCP;
344 		ip6->ip6_plen = sizeof(struct tcphdr);
345 		ip6->ip6_src = inp->in6p_laddr;
346 		ip6->ip6_dst = inp->in6p_faddr;
347 	} else
348 #endif
349 	{
350 		struct ip *ip;
351 
352 		ip = (struct ip *)ip_ptr;
353 		ip->ip_v = IPVERSION;
354 		ip->ip_hl = 5;
355 		ip->ip_tos = inp->inp_ip_tos;
356 		ip->ip_len = 0;
357 		ip->ip_id = 0;
358 		ip->ip_off = 0;
359 		ip->ip_ttl = inp->inp_ip_ttl;
360 		ip->ip_sum = 0;
361 		ip->ip_p = IPPROTO_TCP;
362 		ip->ip_src = inp->inp_laddr;
363 		ip->ip_dst = inp->inp_faddr;
364 	}
365 	th->th_sport = inp->inp_lport;
366 	th->th_dport = inp->inp_fport;
367 	th->th_seq = 0;
368 	th->th_ack = 0;
369 	th->th_x2 = 0;
370 	th->th_off = 5;
371 	th->th_flags = 0;
372 	th->th_win = 0;
373 	th->th_urp = 0;
374 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
375 }
376 
377 /*
378  * Create template to be used to send tcp packets on a connection.
379  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
380  * use for this function is in keepalives, which use tcp_respond.
381  */
382 struct tcptemp *
383 tcpip_maketemplate(struct inpcb *inp)
384 {
385 	struct mbuf *m;
386 	struct tcptemp *n;
387 
388 	m = m_get(M_DONTWAIT, MT_DATA);
389 	if (m == NULL)
390 		return (0);
391 	m->m_len = sizeof(struct tcptemp);
392 	n = mtod(m, struct tcptemp *);
393 
394 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
395 	return (n);
396 }
397 
398 /*
399  * Send a single message to the TCP at address specified by
400  * the given TCP/IP header.  If m == NULL, then we make a copy
401  * of the tcpiphdr at ti and send directly to the addressed host.
402  * This is used to force keep alive messages out using the TCP
403  * template for a connection.  If flags are given then we send
404  * a message back to the TCP which originated the * segment ti,
405  * and discard the mbuf containing it and any other attached mbufs.
406  *
407  * In any case the ack and sequence number of the transmitted
408  * segment are as specified by the parameters.
409  *
410  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
411  */
412 void
413 tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
414     register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
415 {
416 	register int tlen;
417 	int win = 0;
418 	struct ip *ip;
419 	struct tcphdr *nth;
420 #ifdef INET6
421 	struct ip6_hdr *ip6;
422 	int isipv6;
423 #endif /* INET6 */
424 	int ipflags = 0;
425 	struct inpcb *inp;
426 
427 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
428 
429 #ifdef INET6
430 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
431 	ip6 = ipgen;
432 #endif /* INET6 */
433 	ip = ipgen;
434 
435 	if (tp != NULL) {
436 		inp = tp->t_inpcb;
437 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
438 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
439 		INP_LOCK_ASSERT(inp);
440 	} else
441 		inp = NULL;
442 
443 	if (tp != NULL) {
444 		if (!(flags & TH_RST)) {
445 			win = sbspace(&inp->inp_socket->so_rcv);
446 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
447 				win = (long)TCP_MAXWIN << tp->rcv_scale;
448 		}
449 	}
450 	if (m == NULL) {
451 		m = m_gethdr(M_DONTWAIT, MT_DATA);
452 		if (m == NULL)
453 			return;
454 		tlen = 0;
455 		m->m_data += max_linkhdr;
456 #ifdef INET6
457 		if (isipv6) {
458 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
459 			      sizeof(struct ip6_hdr));
460 			ip6 = mtod(m, struct ip6_hdr *);
461 			nth = (struct tcphdr *)(ip6 + 1);
462 		} else
463 #endif /* INET6 */
464 	      {
465 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
466 		ip = mtod(m, struct ip *);
467 		nth = (struct tcphdr *)(ip + 1);
468 	      }
469 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
470 		flags = TH_ACK;
471 	} else {
472 		m_freem(m->m_next);
473 		m->m_next = NULL;
474 		m->m_data = (caddr_t)ipgen;
475 		/* m_len is set later */
476 		tlen = 0;
477 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
478 #ifdef INET6
479 		if (isipv6) {
480 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
481 			nth = (struct tcphdr *)(ip6 + 1);
482 		} else
483 #endif /* INET6 */
484 	      {
485 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
486 		nth = (struct tcphdr *)(ip + 1);
487 	      }
488 		if (th != nth) {
489 			/*
490 			 * this is usually a case when an extension header
491 			 * exists between the IPv6 header and the
492 			 * TCP header.
493 			 */
494 			nth->th_sport = th->th_sport;
495 			nth->th_dport = th->th_dport;
496 		}
497 		xchg(nth->th_dport, nth->th_sport, n_short);
498 #undef xchg
499 	}
500 #ifdef INET6
501 	if (isipv6) {
502 		ip6->ip6_flow = 0;
503 		ip6->ip6_vfc = IPV6_VERSION;
504 		ip6->ip6_nxt = IPPROTO_TCP;
505 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
506 						tlen));
507 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
508 	} else
509 #endif
510 	{
511 		tlen += sizeof (struct tcpiphdr);
512 		ip->ip_len = tlen;
513 		ip->ip_ttl = ip_defttl;
514 		if (path_mtu_discovery)
515 			ip->ip_off |= IP_DF;
516 	}
517 	m->m_len = tlen;
518 	m->m_pkthdr.len = tlen;
519 	m->m_pkthdr.rcvif = NULL;
520 #ifdef MAC
521 	if (inp != NULL) {
522 		/*
523 		 * Packet is associated with a socket, so allow the
524 		 * label of the response to reflect the socket label.
525 		 */
526 		INP_LOCK_ASSERT(inp);
527 		mac_create_mbuf_from_inpcb(inp, m);
528 	} else {
529 		/*
530 		 * Packet is not associated with a socket, so possibly
531 		 * update the label in place.
532 		 */
533 		mac_reflect_mbuf_tcp(m);
534 	}
535 #endif
536 	nth->th_seq = htonl(seq);
537 	nth->th_ack = htonl(ack);
538 	nth->th_x2 = 0;
539 	nth->th_off = sizeof (struct tcphdr) >> 2;
540 	nth->th_flags = flags;
541 	if (tp != NULL)
542 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
543 	else
544 		nth->th_win = htons((u_short)win);
545 	nth->th_urp = 0;
546 #ifdef INET6
547 	if (isipv6) {
548 		nth->th_sum = 0;
549 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
550 					sizeof(struct ip6_hdr),
551 					tlen - sizeof(struct ip6_hdr));
552 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
553 		    NULL, NULL);
554 	} else
555 #endif /* INET6 */
556 	{
557 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
558 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
559 		m->m_pkthdr.csum_flags = CSUM_TCP;
560 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
561 	}
562 #ifdef TCPDEBUG
563 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
564 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
565 #endif
566 #ifdef INET6
567 	if (isipv6)
568 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
569 	else
570 #endif /* INET6 */
571 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
572 }
573 
574 /*
575  * Create a new TCP control block, making an
576  * empty reassembly queue and hooking it to the argument
577  * protocol control block.  The `inp' parameter must have
578  * come from the zone allocator set up in tcp_init().
579  */
580 struct tcpcb *
581 tcp_newtcpcb(struct inpcb *inp)
582 {
583 	struct tcpcb_mem *tm;
584 	struct tcpcb *tp;
585 #ifdef INET6
586 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
587 #endif /* INET6 */
588 
589 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
590 	if (tm == NULL)
591 		return (NULL);
592 	tp = &tm->tcb;
593 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
594 	tp->t_maxseg = tp->t_maxopd =
595 #ifdef INET6
596 		isipv6 ? tcp_v6mssdflt :
597 #endif /* INET6 */
598 		tcp_mssdflt;
599 
600 	/* Set up our timeouts. */
601 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
602 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
603 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
604 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
605 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
606 
607 	if (tcp_do_rfc1323)
608 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
609 	tp->sack_enable = tcp_do_sack;
610 	TAILQ_INIT(&tp->snd_holes);
611 	tp->t_inpcb = inp;	/* XXX */
612 	/*
613 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
614 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
615 	 * reasonable initial retransmit time.
616 	 */
617 	tp->t_srtt = TCPTV_SRTTBASE;
618 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
619 	tp->t_rttmin = tcp_rexmit_min;
620 	tp->t_rxtcur = TCPTV_RTOBASE;
621 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
624 	tp->t_rcvtime = ticks;
625 	tp->t_bw_rtttime = ticks;
626 	/*
627 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
628 	 * because the socket may be bound to an IPv6 wildcard address,
629 	 * which may match an IPv4-mapped IPv6 address.
630 	 */
631 	inp->inp_ip_ttl = ip_defttl;
632 	inp->inp_ppcb = tp;
633 	return (tp);		/* XXX */
634 }
635 
636 /*
637  * Drop a TCP connection, reporting
638  * the specified error.  If connection is synchronized,
639  * then send a RST to peer.
640  */
641 struct tcpcb *
642 tcp_drop(struct tcpcb *tp, int errno)
643 {
644 	struct socket *so = tp->t_inpcb->inp_socket;
645 
646 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
647 	INP_LOCK_ASSERT(tp->t_inpcb);
648 
649 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
650 		tp->t_state = TCPS_CLOSED;
651 		(void) tcp_output(tp);
652 		tcpstat.tcps_drops++;
653 	} else
654 		tcpstat.tcps_conndrops++;
655 	if (errno == ETIMEDOUT && tp->t_softerror)
656 		errno = tp->t_softerror;
657 	so->so_error = errno;
658 	return (tcp_close(tp));
659 }
660 
661 void
662 tcp_discardcb(struct tcpcb *tp)
663 {
664 	struct tseg_qent *q;
665 	struct inpcb *inp = tp->t_inpcb;
666 	struct socket *so = inp->inp_socket;
667 #ifdef INET6
668 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669 #endif /* INET6 */
670 
671 	/*
672 	 * XXXRW: This is all very well and good, but actually, we might be
673 	 * discarding the tcpcb after the socket is gone, so we can't do
674 	 * this:
675 	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
676 	 */
677 	INP_LOCK_ASSERT(inp);
678 
679 	/*
680 	 * Make sure that all of our timers are stopped before we
681 	 * delete the PCB.
682 	 */
683 	callout_stop(tp->tt_rexmt);
684 	callout_stop(tp->tt_persist);
685 	callout_stop(tp->tt_keep);
686 	callout_stop(tp->tt_2msl);
687 	callout_stop(tp->tt_delack);
688 
689 	/*
690 	 * If we got enough samples through the srtt filter,
691 	 * save the rtt and rttvar in the routing entry.
692 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
693 	 * 4 samples is enough for the srtt filter to converge
694 	 * to within enough % of the correct value; fewer samples
695 	 * and we could save a bogus rtt. The danger is not high
696 	 * as tcp quickly recovers from everything.
697 	 * XXX: Works very well but needs some more statistics!
698 	 */
699 	if (tp->t_rttupdated >= 4) {
700 		struct hc_metrics_lite metrics;
701 		u_long ssthresh;
702 
703 		bzero(&metrics, sizeof(metrics));
704 		/*
705 		 * Update the ssthresh always when the conditions below
706 		 * are satisfied. This gives us better new start value
707 		 * for the congestion avoidance for new connections.
708 		 * ssthresh is only set if packet loss occured on a session.
709 		 */
710 		ssthresh = tp->snd_ssthresh;
711 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
712 			/*
713 			 * convert the limit from user data bytes to
714 			 * packets then to packet data bytes.
715 			 */
716 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
717 			if (ssthresh < 2)
718 				ssthresh = 2;
719 			ssthresh *= (u_long)(tp->t_maxseg +
720 #ifdef INET6
721 				      (isipv6 ? sizeof (struct ip6_hdr) +
722 					       sizeof (struct tcphdr) :
723 #endif
724 				       sizeof (struct tcpiphdr)
725 #ifdef INET6
726 				       )
727 #endif
728 				      );
729 		} else
730 			ssthresh = 0;
731 		metrics.rmx_ssthresh = ssthresh;
732 
733 		metrics.rmx_rtt = tp->t_srtt;
734 		metrics.rmx_rttvar = tp->t_rttvar;
735 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
736 		metrics.rmx_bandwidth = tp->snd_bandwidth;
737 		metrics.rmx_cwnd = tp->snd_cwnd;
738 		metrics.rmx_sendpipe = 0;
739 		metrics.rmx_recvpipe = 0;
740 
741 		tcp_hc_update(&inp->inp_inc, &metrics);
742 	}
743 
744 	/* free the reassembly queue, if any */
745 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
746 		LIST_REMOVE(q, tqe_q);
747 		m_freem(q->tqe_m);
748 		uma_zfree(tcp_reass_zone, q);
749 		tp->t_segqlen--;
750 		tcp_reass_qsize--;
751 	}
752 	tcp_free_sackholes(tp);
753 	inp->inp_ppcb = NULL;
754 	tp->t_inpcb = NULL;
755 	uma_zfree(tcpcb_zone, tp);
756 
757 	/*
758 	 * XXXRW: This seems a bit unclean.
759 	 */
760 	if (so != NULL)
761 		soisdisconnected(so);
762 }
763 
764 /*
765  * Attempt to close a TCP control block, marking it as dropped, and freeing
766  * the socket if we hold the only reference.
767  */
768 struct tcpcb *
769 tcp_close(struct tcpcb *tp)
770 {
771 	struct inpcb *inp = tp->t_inpcb;
772 	struct socket *so;
773 
774 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
775 	INP_LOCK_ASSERT(inp);
776 
777 	inp->inp_vflag |= INP_DROPPED;
778 
779 	tcpstat.tcps_closed++;
780 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
781 	so = inp->inp_socket;
782 	soisdisconnected(so);
783 	if (inp->inp_vflag & INP_SOCKREF) {
784 		KASSERT(so->so_state & SS_PROTOREF,
785 		    ("tcp_close: !SS_PROTOREF"));
786 		inp->inp_vflag &= ~INP_SOCKREF;
787 		tcp_discardcb(tp);
788 #ifdef INET6
789 		if (inp->inp_vflag & INP_IPV6PROTO) {
790 			in6_pcbdetach(inp);
791 			in6_pcbfree(inp);
792 		} else {
793 #endif
794 			in_pcbdetach(inp);
795 			in_pcbfree(inp);
796 #ifdef INET6
797 		}
798 #endif
799 		ACCEPT_LOCK();
800 		SOCK_LOCK(so);
801 		so->so_state &= ~SS_PROTOREF;
802 		sofree(so);
803 		return (NULL);
804 	}
805 	return (tp);
806 }
807 
808 void
809 tcp_drain(void)
810 {
811 
812 	if (do_tcpdrain) {
813 		struct inpcb *inpb;
814 		struct tcpcb *tcpb;
815 		struct tseg_qent *te;
816 
817 	/*
818 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
819 	 * if there is one...
820 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
821 	 *      reassembly queue should be flushed, but in a situation
822 	 *	where we're really low on mbufs, this is potentially
823 	 *	usefull.
824 	 */
825 		INP_INFO_RLOCK(&tcbinfo);
826 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
827 			if (inpb->inp_vflag & INP_TIMEWAIT)
828 				continue;
829 			INP_LOCK(inpb);
830 			if ((tcpb = intotcpcb(inpb)) != NULL) {
831 				while ((te = LIST_FIRST(&tcpb->t_segq))
832 			            != NULL) {
833 					LIST_REMOVE(te, tqe_q);
834 					m_freem(te->tqe_m);
835 					uma_zfree(tcp_reass_zone, te);
836 					tcpb->t_segqlen--;
837 					tcp_reass_qsize--;
838 				}
839 				tcp_clean_sackreport(tcpb);
840 			}
841 			INP_UNLOCK(inpb);
842 		}
843 		INP_INFO_RUNLOCK(&tcbinfo);
844 	}
845 }
846 
847 /*
848  * Notify a tcp user of an asynchronous error;
849  * store error as soft error, but wake up user
850  * (for now, won't do anything until can select for soft error).
851  *
852  * Do not wake up user since there currently is no mechanism for
853  * reporting soft errors (yet - a kqueue filter may be added).
854  */
855 static struct inpcb *
856 tcp_notify(struct inpcb *inp, int error)
857 {
858 	struct tcpcb *tp;
859 
860 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
861 	INP_LOCK_ASSERT(inp);
862 
863 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
864 	    (inp->inp_vflag & INP_DROPPED))
865 		return (inp);
866 
867 	tp = intotcpcb(inp);
868 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
869 
870 	/*
871 	 * Ignore some errors if we are hooked up.
872 	 * If connection hasn't completed, has retransmitted several times,
873 	 * and receives a second error, give up now.  This is better
874 	 * than waiting a long time to establish a connection that
875 	 * can never complete.
876 	 */
877 	if (tp->t_state == TCPS_ESTABLISHED &&
878 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
879 	     error == EHOSTDOWN)) {
880 		return (inp);
881 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
882 	    tp->t_softerror) {
883 		tp = tcp_drop(tp, error);
884 		if (tp != NULL)
885 			return (inp);
886 		else
887 			return (NULL);
888 	} else {
889 		tp->t_softerror = error;
890 		return (inp);
891 	}
892 #if 0
893 	wakeup( &so->so_timeo);
894 	sorwakeup(so);
895 	sowwakeup(so);
896 #endif
897 }
898 
899 static int
900 tcp_pcblist(SYSCTL_HANDLER_ARGS)
901 {
902 	int error, i, n;
903 	struct inpcb *inp, **inp_list;
904 	inp_gen_t gencnt;
905 	struct xinpgen xig;
906 
907 	/*
908 	 * The process of preparing the TCB list is too time-consuming and
909 	 * resource-intensive to repeat twice on every request.
910 	 */
911 	if (req->oldptr == NULL) {
912 		n = tcbinfo.ipi_count;
913 		req->oldidx = 2 * (sizeof xig)
914 			+ (n + n/8) * sizeof(struct xtcpcb);
915 		return (0);
916 	}
917 
918 	if (req->newptr != NULL)
919 		return (EPERM);
920 
921 	/*
922 	 * OK, now we're committed to doing something.
923 	 */
924 	INP_INFO_RLOCK(&tcbinfo);
925 	gencnt = tcbinfo.ipi_gencnt;
926 	n = tcbinfo.ipi_count;
927 	INP_INFO_RUNLOCK(&tcbinfo);
928 
929 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
930 		+ n * sizeof(struct xtcpcb));
931 	if (error != 0)
932 		return (error);
933 
934 	xig.xig_len = sizeof xig;
935 	xig.xig_count = n;
936 	xig.xig_gen = gencnt;
937 	xig.xig_sogen = so_gencnt;
938 	error = SYSCTL_OUT(req, &xig, sizeof xig);
939 	if (error)
940 		return (error);
941 
942 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
943 	if (inp_list == NULL)
944 		return (ENOMEM);
945 
946 	INP_INFO_RLOCK(&tcbinfo);
947 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
948 	     inp = LIST_NEXT(inp, inp_list)) {
949 		INP_LOCK(inp);
950 		if (inp->inp_gencnt <= gencnt) {
951 			/*
952 			 * XXX: This use of cr_cansee(), introduced with
953 			 * TCP state changes, is not quite right, but for
954 			 * now, better than nothing.
955 			 */
956 			if (inp->inp_vflag & INP_TIMEWAIT) {
957 				if (intotw(inp) != NULL)
958 					error = cr_cansee(req->td->td_ucred,
959 					    intotw(inp)->tw_cred);
960 				else
961 					error = EINVAL;	/* Skip this inp. */
962 			} else
963 				error = cr_canseesocket(req->td->td_ucred,
964 				    inp->inp_socket);
965 			if (error == 0)
966 				inp_list[i++] = inp;
967 		}
968 		INP_UNLOCK(inp);
969 	}
970 	INP_INFO_RUNLOCK(&tcbinfo);
971 	n = i;
972 
973 	error = 0;
974 	for (i = 0; i < n; i++) {
975 		inp = inp_list[i];
976 		if (inp->inp_gencnt <= gencnt) {
977 			struct xtcpcb xt;
978 			void *inp_ppcb;
979 
980 			bzero(&xt, sizeof(xt));
981 			xt.xt_len = sizeof xt;
982 			/* XXX should avoid extra copy */
983 			bcopy(inp, &xt.xt_inp, sizeof *inp);
984 			inp_ppcb = inp->inp_ppcb;
985 			if (inp_ppcb == NULL)
986 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
987 			else if (inp->inp_vflag & INP_TIMEWAIT) {
988 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
989 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
990 			} else
991 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
992 			if (inp->inp_socket != NULL)
993 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
994 			else {
995 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
996 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
997 			}
998 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
999 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1000 		}
1001 	}
1002 	if (!error) {
1003 		/*
1004 		 * Give the user an updated idea of our state.
1005 		 * If the generation differs from what we told
1006 		 * her before, she knows that something happened
1007 		 * while we were processing this request, and it
1008 		 * might be necessary to retry.
1009 		 */
1010 		INP_INFO_RLOCK(&tcbinfo);
1011 		xig.xig_gen = tcbinfo.ipi_gencnt;
1012 		xig.xig_sogen = so_gencnt;
1013 		xig.xig_count = tcbinfo.ipi_count;
1014 		INP_INFO_RUNLOCK(&tcbinfo);
1015 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1016 	}
1017 	free(inp_list, M_TEMP);
1018 	return (error);
1019 }
1020 
1021 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1022 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1023 
1024 static int
1025 tcp_getcred(SYSCTL_HANDLER_ARGS)
1026 {
1027 	struct xucred xuc;
1028 	struct sockaddr_in addrs[2];
1029 	struct inpcb *inp;
1030 	int error;
1031 
1032 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1033 	if (error)
1034 		return (error);
1035 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1036 	if (error)
1037 		return (error);
1038 	INP_INFO_RLOCK(&tcbinfo);
1039 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1040 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1041 	if (inp == NULL) {
1042 		error = ENOENT;
1043 		goto outunlocked;
1044 	}
1045 	INP_LOCK(inp);
1046 	if (inp->inp_socket == NULL) {
1047 		error = ENOENT;
1048 		goto out;
1049 	}
1050 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1051 	if (error)
1052 		goto out;
1053 	cru2x(inp->inp_socket->so_cred, &xuc);
1054 out:
1055 	INP_UNLOCK(inp);
1056 outunlocked:
1057 	INP_INFO_RUNLOCK(&tcbinfo);
1058 	if (error == 0)
1059 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1060 	return (error);
1061 }
1062 
1063 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1064     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1065     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1066 
1067 #ifdef INET6
1068 static int
1069 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1070 {
1071 	struct xucred xuc;
1072 	struct sockaddr_in6 addrs[2];
1073 	struct inpcb *inp;
1074 	int error, mapped = 0;
1075 
1076 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1077 	if (error)
1078 		return (error);
1079 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1080 	if (error)
1081 		return (error);
1082 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1083 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1084 		return (error);
1085 	}
1086 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1087 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1088 			mapped = 1;
1089 		else
1090 			return (EINVAL);
1091 	}
1092 
1093 	INP_INFO_RLOCK(&tcbinfo);
1094 	if (mapped == 1)
1095 		inp = in_pcblookup_hash(&tcbinfo,
1096 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1097 			addrs[1].sin6_port,
1098 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1099 			addrs[0].sin6_port,
1100 			0, NULL);
1101 	else
1102 		inp = in6_pcblookup_hash(&tcbinfo,
1103 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1104 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1105 	if (inp == NULL) {
1106 		error = ENOENT;
1107 		goto outunlocked;
1108 	}
1109 	INP_LOCK(inp);
1110 	if (inp->inp_socket == NULL) {
1111 		error = ENOENT;
1112 		goto out;
1113 	}
1114 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1115 	if (error)
1116 		goto out;
1117 	cru2x(inp->inp_socket->so_cred, &xuc);
1118 out:
1119 	INP_UNLOCK(inp);
1120 outunlocked:
1121 	INP_INFO_RUNLOCK(&tcbinfo);
1122 	if (error == 0)
1123 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1124 	return (error);
1125 }
1126 
1127 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1128     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1129     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1130 #endif
1131 
1132 
1133 void
1134 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1135 {
1136 	struct ip *ip = vip;
1137 	struct tcphdr *th;
1138 	struct in_addr faddr;
1139 	struct inpcb *inp;
1140 	struct tcpcb *tp;
1141 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1142 	struct icmp *icp;
1143 	struct in_conninfo inc;
1144 	tcp_seq icmp_tcp_seq;
1145 	int mtu;
1146 
1147 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1148 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1149 		return;
1150 
1151 	if (cmd == PRC_MSGSIZE)
1152 		notify = tcp_mtudisc;
1153 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1154 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1155 		notify = tcp_drop_syn_sent;
1156 	/*
1157 	 * Redirects don't need to be handled up here.
1158 	 */
1159 	else if (PRC_IS_REDIRECT(cmd))
1160 		return;
1161 	/*
1162 	 * Source quench is depreciated.
1163 	 */
1164 	else if (cmd == PRC_QUENCH)
1165 		return;
1166 	/*
1167 	 * Hostdead is ugly because it goes linearly through all PCBs.
1168 	 * XXX: We never get this from ICMP, otherwise it makes an
1169 	 * excellent DoS attack on machines with many connections.
1170 	 */
1171 	else if (cmd == PRC_HOSTDEAD)
1172 		ip = NULL;
1173 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1174 		return;
1175 	if (ip != NULL) {
1176 		icp = (struct icmp *)((caddr_t)ip
1177 				      - offsetof(struct icmp, icmp_ip));
1178 		th = (struct tcphdr *)((caddr_t)ip
1179 				       + (ip->ip_hl << 2));
1180 		INP_INFO_WLOCK(&tcbinfo);
1181 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1182 		    ip->ip_src, th->th_sport, 0, NULL);
1183 		if (inp != NULL)  {
1184 			INP_LOCK(inp);
1185 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1186 			    !(inp->inp_vflag & INP_DROPPED) &&
1187 			    !(inp->inp_socket == NULL)) {
1188 				icmp_tcp_seq = htonl(th->th_seq);
1189 				tp = intotcpcb(inp);
1190 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1191 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1192 					if (cmd == PRC_MSGSIZE) {
1193 					    /*
1194 					     * MTU discovery:
1195 					     * If we got a needfrag set the MTU
1196 					     * in the route to the suggested new
1197 					     * value (if given) and then notify.
1198 					     */
1199 					    bzero(&inc, sizeof(inc));
1200 					    inc.inc_flags = 0;	/* IPv4 */
1201 					    inc.inc_faddr = faddr;
1202 
1203 					    mtu = ntohs(icp->icmp_nextmtu);
1204 					    /*
1205 					     * If no alternative MTU was
1206 					     * proposed, try the next smaller
1207 					     * one.  ip->ip_len has already
1208 					     * been swapped in icmp_input().
1209 					     */
1210 					    if (!mtu)
1211 						mtu = ip_next_mtu(ip->ip_len,
1212 						 1);
1213 					    if (mtu < max(296, (tcp_minmss)
1214 						 + sizeof(struct tcpiphdr)))
1215 						mtu = 0;
1216 					    if (!mtu)
1217 						mtu = tcp_mssdflt
1218 						 + sizeof(struct tcpiphdr);
1219 					    /*
1220 					     * Only cache the the MTU if it
1221 					     * is smaller than the interface
1222 					     * or route MTU.  tcp_mtudisc()
1223 					     * will do right thing by itself.
1224 					     */
1225 					    if (mtu <= tcp_maxmtu(&inc))
1226 						tcp_hc_updatemtu(&inc, mtu);
1227 					}
1228 
1229 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1230 				}
1231 			}
1232 			if (inp != NULL)
1233 				INP_UNLOCK(inp);
1234 		} else {
1235 			inc.inc_fport = th->th_dport;
1236 			inc.inc_lport = th->th_sport;
1237 			inc.inc_faddr = faddr;
1238 			inc.inc_laddr = ip->ip_src;
1239 #ifdef INET6
1240 			inc.inc_isipv6 = 0;
1241 #endif
1242 			syncache_unreach(&inc, th);
1243 		}
1244 		INP_INFO_WUNLOCK(&tcbinfo);
1245 	} else
1246 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1247 }
1248 
1249 #ifdef INET6
1250 void
1251 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1252 {
1253 	struct tcphdr th;
1254 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1255 	struct ip6_hdr *ip6;
1256 	struct mbuf *m;
1257 	struct ip6ctlparam *ip6cp = NULL;
1258 	const struct sockaddr_in6 *sa6_src = NULL;
1259 	int off;
1260 	struct tcp_portonly {
1261 		u_int16_t th_sport;
1262 		u_int16_t th_dport;
1263 	} *thp;
1264 
1265 	if (sa->sa_family != AF_INET6 ||
1266 	    sa->sa_len != sizeof(struct sockaddr_in6))
1267 		return;
1268 
1269 	if (cmd == PRC_MSGSIZE)
1270 		notify = tcp_mtudisc;
1271 	else if (!PRC_IS_REDIRECT(cmd) &&
1272 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1273 		return;
1274 	/* Source quench is depreciated. */
1275 	else if (cmd == PRC_QUENCH)
1276 		return;
1277 
1278 	/* if the parameter is from icmp6, decode it. */
1279 	if (d != NULL) {
1280 		ip6cp = (struct ip6ctlparam *)d;
1281 		m = ip6cp->ip6c_m;
1282 		ip6 = ip6cp->ip6c_ip6;
1283 		off = ip6cp->ip6c_off;
1284 		sa6_src = ip6cp->ip6c_src;
1285 	} else {
1286 		m = NULL;
1287 		ip6 = NULL;
1288 		off = 0;	/* fool gcc */
1289 		sa6_src = &sa6_any;
1290 	}
1291 
1292 	if (ip6 != NULL) {
1293 		struct in_conninfo inc;
1294 		/*
1295 		 * XXX: We assume that when IPV6 is non NULL,
1296 		 * M and OFF are valid.
1297 		 */
1298 
1299 		/* check if we can safely examine src and dst ports */
1300 		if (m->m_pkthdr.len < off + sizeof(*thp))
1301 			return;
1302 
1303 		bzero(&th, sizeof(th));
1304 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1305 
1306 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1307 		    (struct sockaddr *)ip6cp->ip6c_src,
1308 		    th.th_sport, cmd, NULL, notify);
1309 
1310 		inc.inc_fport = th.th_dport;
1311 		inc.inc_lport = th.th_sport;
1312 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1313 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1314 		inc.inc_isipv6 = 1;
1315 		INP_INFO_WLOCK(&tcbinfo);
1316 		syncache_unreach(&inc, &th);
1317 		INP_INFO_WUNLOCK(&tcbinfo);
1318 	} else
1319 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1320 			      0, cmd, NULL, notify);
1321 }
1322 #endif /* INET6 */
1323 
1324 
1325 /*
1326  * Following is where TCP initial sequence number generation occurs.
1327  *
1328  * There are two places where we must use initial sequence numbers:
1329  * 1.  In SYN-ACK packets.
1330  * 2.  In SYN packets.
1331  *
1332  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1333  * tcp_syncache.c for details.
1334  *
1335  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1336  * depends on this property.  In addition, these ISNs should be
1337  * unguessable so as to prevent connection hijacking.  To satisfy
1338  * the requirements of this situation, the algorithm outlined in
1339  * RFC 1948 is used, with only small modifications.
1340  *
1341  * Implementation details:
1342  *
1343  * Time is based off the system timer, and is corrected so that it
1344  * increases by one megabyte per second.  This allows for proper
1345  * recycling on high speed LANs while still leaving over an hour
1346  * before rollover.
1347  *
1348  * As reading the *exact* system time is too expensive to be done
1349  * whenever setting up a TCP connection, we increment the time
1350  * offset in two ways.  First, a small random positive increment
1351  * is added to isn_offset for each connection that is set up.
1352  * Second, the function tcp_isn_tick fires once per clock tick
1353  * and increments isn_offset as necessary so that sequence numbers
1354  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1355  * random positive increments serve only to ensure that the same
1356  * exact sequence number is never sent out twice (as could otherwise
1357  * happen when a port is recycled in less than the system tick
1358  * interval.)
1359  *
1360  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1361  * between seeding of isn_secret.  This is normally set to zero,
1362  * as reseeding should not be necessary.
1363  *
1364  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1365  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1366  * general, this means holding an exclusive (write) lock.
1367  */
1368 
1369 #define ISN_BYTES_PER_SECOND 1048576
1370 #define ISN_STATIC_INCREMENT 4096
1371 #define ISN_RANDOM_INCREMENT (4096 - 1)
1372 
1373 static u_char isn_secret[32];
1374 static int isn_last_reseed;
1375 static u_int32_t isn_offset, isn_offset_old;
1376 static MD5_CTX isn_ctx;
1377 
1378 tcp_seq
1379 tcp_new_isn(struct tcpcb *tp)
1380 {
1381 	u_int32_t md5_buffer[4];
1382 	tcp_seq new_isn;
1383 
1384 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1385 	INP_LOCK_ASSERT(tp->t_inpcb);
1386 
1387 	/* Seed if this is the first use, reseed if requested. */
1388 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1389 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1390 		< (u_int)ticks))) {
1391 		read_random(&isn_secret, sizeof(isn_secret));
1392 		isn_last_reseed = ticks;
1393 	}
1394 
1395 	/* Compute the md5 hash and return the ISN. */
1396 	MD5Init(&isn_ctx);
1397 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1398 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1399 #ifdef INET6
1400 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1401 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1402 			  sizeof(struct in6_addr));
1403 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1404 			  sizeof(struct in6_addr));
1405 	} else
1406 #endif
1407 	{
1408 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1409 			  sizeof(struct in_addr));
1410 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1411 			  sizeof(struct in_addr));
1412 	}
1413 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1414 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1415 	new_isn = (tcp_seq) md5_buffer[0];
1416 	isn_offset += ISN_STATIC_INCREMENT +
1417 		(arc4random() & ISN_RANDOM_INCREMENT);
1418 	new_isn += isn_offset;
1419 	return (new_isn);
1420 }
1421 
1422 /*
1423  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1424  * to keep time flowing at a relatively constant rate.  If the random
1425  * increments have already pushed us past the projected offset, do nothing.
1426  */
1427 static void
1428 tcp_isn_tick(void *xtp)
1429 {
1430 	u_int32_t projected_offset;
1431 
1432 	INP_INFO_WLOCK(&tcbinfo);
1433 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1434 
1435 	if (projected_offset > isn_offset)
1436 		isn_offset = projected_offset;
1437 
1438 	isn_offset_old = isn_offset;
1439 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1440 	INP_INFO_WUNLOCK(&tcbinfo);
1441 }
1442 
1443 /*
1444  * When a specific ICMP unreachable message is received and the
1445  * connection state is SYN-SENT, drop the connection.  This behavior
1446  * is controlled by the icmp_may_rst sysctl.
1447  */
1448 struct inpcb *
1449 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1450 {
1451 	struct tcpcb *tp;
1452 
1453 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1454 	INP_LOCK_ASSERT(inp);
1455 
1456 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1457 	    (inp->inp_vflag & INP_DROPPED))
1458 		return (inp);
1459 
1460 	tp = intotcpcb(inp);
1461 	if (tp->t_state != TCPS_SYN_SENT)
1462 		return (inp);
1463 
1464 	tp = tcp_drop(tp, errno);
1465 	if (tp != NULL)
1466 		return (inp);
1467 	else
1468 		return (NULL);
1469 }
1470 
1471 /*
1472  * When `need fragmentation' ICMP is received, update our idea of the MSS
1473  * based on the new value in the route.  Also nudge TCP to send something,
1474  * since we know the packet we just sent was dropped.
1475  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1476  */
1477 struct inpcb *
1478 tcp_mtudisc(struct inpcb *inp, int errno)
1479 {
1480 	struct tcpcb *tp;
1481 	struct socket *so = inp->inp_socket;
1482 	u_int maxmtu;
1483 	u_int romtu;
1484 	int mss;
1485 #ifdef INET6
1486 	int isipv6;
1487 #endif /* INET6 */
1488 
1489 	INP_LOCK_ASSERT(inp);
1490 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1491 	    (inp->inp_vflag & INP_DROPPED))
1492 		return (inp);
1493 
1494 	tp = intotcpcb(inp);
1495 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1496 
1497 #ifdef INET6
1498 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1499 #endif
1500 	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1501 	romtu =
1502 #ifdef INET6
1503 	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1504 #endif /* INET6 */
1505 	    tcp_maxmtu(&inp->inp_inc);
1506 	if (!maxmtu)
1507 		maxmtu = romtu;
1508 	else
1509 		maxmtu = min(maxmtu, romtu);
1510 	if (!maxmtu) {
1511 		tp->t_maxopd = tp->t_maxseg =
1512 #ifdef INET6
1513 			isipv6 ? tcp_v6mssdflt :
1514 #endif /* INET6 */
1515 			tcp_mssdflt;
1516 		return (inp);
1517 	}
1518 	mss = maxmtu -
1519 #ifdef INET6
1520 		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1521 #endif /* INET6 */
1522 		 sizeof(struct tcpiphdr)
1523 #ifdef INET6
1524 		 )
1525 #endif /* INET6 */
1526 		;
1527 
1528 	/*
1529 	 * XXX - The above conditional probably violates the TCP
1530 	 * spec.  The problem is that, since we don't know the
1531 	 * other end's MSS, we are supposed to use a conservative
1532 	 * default.  But, if we do that, then MTU discovery will
1533 	 * never actually take place, because the conservative
1534 	 * default is much less than the MTUs typically seen
1535 	 * on the Internet today.  For the moment, we'll sweep
1536 	 * this under the carpet.
1537 	 *
1538 	 * The conservative default might not actually be a problem
1539 	 * if the only case this occurs is when sending an initial
1540 	 * SYN with options and data to a host we've never talked
1541 	 * to before.  Then, they will reply with an MSS value which
1542 	 * will get recorded and the new parameters should get
1543 	 * recomputed.  For Further Study.
1544 	 */
1545 	if (tp->t_maxopd <= mss)
1546 		return (inp);
1547 	tp->t_maxopd = mss;
1548 
1549 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1550 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1551 		mss -= TCPOLEN_TSTAMP_APPA;
1552 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1553 	if (mss > MCLBYTES)
1554 		mss &= ~(MCLBYTES-1);
1555 #else
1556 	if (mss > MCLBYTES)
1557 		mss = mss / MCLBYTES * MCLBYTES;
1558 #endif
1559 	if (so->so_snd.sb_hiwat < mss)
1560 		mss = so->so_snd.sb_hiwat;
1561 
1562 	tp->t_maxseg = mss;
1563 
1564 	tcpstat.tcps_mturesent++;
1565 	tp->t_rtttime = 0;
1566 	tp->snd_nxt = tp->snd_una;
1567 	tcp_output(tp);
1568 	return (inp);
1569 }
1570 
1571 /*
1572  * Look-up the routing entry to the peer of this inpcb.  If no route
1573  * is found and it cannot be allocated, then return NULL.  This routine
1574  * is called by TCP routines that access the rmx structure and by tcp_mss
1575  * to get the interface MTU.
1576  */
1577 u_long
1578 tcp_maxmtu(struct in_conninfo *inc)
1579 {
1580 	struct route sro;
1581 	struct sockaddr_in *dst;
1582 	struct ifnet *ifp;
1583 	u_long maxmtu = 0;
1584 
1585 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1586 
1587 	bzero(&sro, sizeof(sro));
1588 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1589 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1590 		dst->sin_family = AF_INET;
1591 		dst->sin_len = sizeof(*dst);
1592 		dst->sin_addr = inc->inc_faddr;
1593 		rtalloc_ign(&sro, RTF_CLONING);
1594 	}
1595 	if (sro.ro_rt != NULL) {
1596 		ifp = sro.ro_rt->rt_ifp;
1597 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1598 			maxmtu = ifp->if_mtu;
1599 		else
1600 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1601 		RTFREE(sro.ro_rt);
1602 	}
1603 	return (maxmtu);
1604 }
1605 
1606 #ifdef INET6
1607 u_long
1608 tcp_maxmtu6(struct in_conninfo *inc)
1609 {
1610 	struct route_in6 sro6;
1611 	struct ifnet *ifp;
1612 	u_long maxmtu = 0;
1613 
1614 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1615 
1616 	bzero(&sro6, sizeof(sro6));
1617 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1618 		sro6.ro_dst.sin6_family = AF_INET6;
1619 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1620 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1621 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1622 	}
1623 	if (sro6.ro_rt != NULL) {
1624 		ifp = sro6.ro_rt->rt_ifp;
1625 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1626 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1627 		else
1628 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1629 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1630 		RTFREE(sro6.ro_rt);
1631 	}
1632 
1633 	return (maxmtu);
1634 }
1635 #endif /* INET6 */
1636 
1637 #ifdef IPSEC
1638 /* compute ESP/AH header size for TCP, including outer IP header. */
1639 size_t
1640 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1641 {
1642 	struct inpcb *inp;
1643 	struct mbuf *m;
1644 	size_t hdrsiz;
1645 	struct ip *ip;
1646 #ifdef INET6
1647 	struct ip6_hdr *ip6;
1648 #endif
1649 	struct tcphdr *th;
1650 
1651 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1652 		return (0);
1653 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1654 	if (!m)
1655 		return (0);
1656 
1657 #ifdef INET6
1658 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1659 		ip6 = mtod(m, struct ip6_hdr *);
1660 		th = (struct tcphdr *)(ip6 + 1);
1661 		m->m_pkthdr.len = m->m_len =
1662 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1663 		tcpip_fillheaders(inp, ip6, th);
1664 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1665 	} else
1666 #endif /* INET6 */
1667 	{
1668 		ip = mtod(m, struct ip *);
1669 		th = (struct tcphdr *)(ip + 1);
1670 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1671 		tcpip_fillheaders(inp, ip, th);
1672 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1673 	}
1674 
1675 	m_free(m);
1676 	return (hdrsiz);
1677 }
1678 #endif /*IPSEC*/
1679 
1680 /*
1681  * Move a TCP connection into TIME_WAIT state.
1682  *    tcbinfo is locked.
1683  *    inp is locked, and is unlocked before returning.
1684  */
1685 void
1686 tcp_twstart(struct tcpcb *tp)
1687 {
1688 	struct tcptw *tw;
1689 	struct inpcb *inp;
1690 	int tw_time, acknow;
1691 	struct socket *so;
1692 
1693 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1694 	INP_LOCK_ASSERT(tp->t_inpcb);
1695 
1696 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1697 	if (tw == NULL) {
1698 		tw = tcp_timer_2msl_tw(1);
1699 		if (tw == NULL) {
1700 			tp = tcp_close(tp);
1701 			if (tp != NULL)
1702 				INP_UNLOCK(tp->t_inpcb);
1703 			return;
1704 		}
1705 	}
1706 	inp = tp->t_inpcb;
1707 	tw->tw_inpcb = inp;
1708 
1709 	/*
1710 	 * Recover last window size sent.
1711 	 */
1712 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1713 
1714 	/*
1715 	 * Set t_recent if timestamps are used on the connection.
1716 	 */
1717 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1718 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1719 		tw->t_recent = tp->ts_recent;
1720 	else
1721 		tw->t_recent = 0;
1722 
1723 	tw->snd_nxt = tp->snd_nxt;
1724 	tw->rcv_nxt = tp->rcv_nxt;
1725 	tw->iss     = tp->iss;
1726 	tw->irs     = tp->irs;
1727 	tw->t_starttime = tp->t_starttime;
1728 	tw->tw_time = 0;
1729 
1730 /* XXX
1731  * If this code will
1732  * be used for fin-wait-2 state also, then we may need
1733  * a ts_recent from the last segment.
1734  */
1735 	tw_time = 2 * tcp_msl;
1736 	acknow = tp->t_flags & TF_ACKNOW;
1737 
1738 	/*
1739 	 * First, discard tcpcb state, which includes stopping its timers and
1740 	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1741 	 * that work is now done in the caller.
1742 	 */
1743 	tcp_discardcb(tp);
1744 	so = inp->inp_socket;
1745 	SOCK_LOCK(so);
1746 	tw->tw_cred = crhold(so->so_cred);
1747 	tw->tw_so_options = so->so_options;
1748 	SOCK_UNLOCK(so);
1749 	if (acknow)
1750 		tcp_twrespond(tw, TH_ACK);
1751 	inp->inp_ppcb = tw;
1752 	inp->inp_vflag |= INP_TIMEWAIT;
1753 	tcp_timer_2msl_reset(tw, tw_time);
1754 
1755 	/*
1756 	 * If the inpcb owns the sole reference to the socket, then we can
1757 	 * detach and free the socket as it is not needed in time wait.
1758 	 */
1759 	if (inp->inp_vflag & INP_SOCKREF) {
1760 		KASSERT(so->so_state & SS_PROTOREF,
1761 		    ("tcp_twstart: !SS_PROTOREF"));
1762 		inp->inp_vflag &= ~INP_SOCKREF;
1763 #ifdef INET6
1764 		if (inp->inp_vflag & INP_IPV6PROTO)
1765 			in6_pcbdetach(inp);
1766 		else
1767 #endif
1768 			in_pcbdetach(inp);
1769 		INP_UNLOCK(inp);
1770 		ACCEPT_LOCK();
1771 		SOCK_LOCK(so);
1772 		so->so_state &= ~SS_PROTOREF;
1773 		sofree(so);
1774 	} else
1775 		INP_UNLOCK(inp);
1776 }
1777 
1778 /*
1779  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1780  * the actual rate is slightly higher due to the addition of
1781  * random positive increments.
1782  *
1783  * Most other new OSes use semi-randomized ISN values, so we
1784  * do not need to worry about them.
1785  */
1786 #define MS_ISN_BYTES_PER_SECOND		250000
1787 
1788 /*
1789  * Determine if the ISN we will generate has advanced beyond the last
1790  * sequence number used by the previous connection.  If so, indicate
1791  * that it is safe to recycle this tw socket by returning 1.
1792  *
1793  * XXXRW: This function should assert the inpcb lock as it does multiple
1794  * non-atomic reads from the tcptw, but is currently called without it from
1795  * in_pcb.c:in_pcblookup_local().
1796  */
1797 int
1798 tcp_twrecycleable(struct tcptw *tw)
1799 {
1800 	tcp_seq new_iss = tw->iss;
1801 	tcp_seq new_irs = tw->irs;
1802 
1803 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1804 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1805 
1806 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1807 		return (1);
1808 	else
1809 		return (0);
1810 }
1811 
1812 void
1813 tcp_twclose(struct tcptw *tw, int reuse)
1814 {
1815 	struct socket *so;
1816 	struct inpcb *inp;
1817 
1818 	/*
1819 	 * At this point, we are in one of two situations:
1820 	 *
1821 	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1822 	 * after validating.
1823 	 *
1824 	 * (2) We have a socket, which we may or may now own the reference
1825 	 * for.  If we own the reference, release all the state after
1826 	 * validating.  If not, leave it for the socket close to clean up.
1827 	 */
1828 	inp = tw->tw_inpcb;
1829 	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1830 	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1831 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1832 	INP_LOCK_ASSERT(inp);
1833 
1834 	tw->tw_inpcb = NULL;
1835 	tcp_timer_2msl_stop(tw);
1836 	inp->inp_ppcb = NULL;
1837 	inp->inp_vflag |= INP_DROPPED;
1838 
1839 	so = inp->inp_socket;
1840 	if (so != NULL) {
1841 		if (inp->inp_vflag & INP_SOCKREF) {
1842 			/*
1843 			 * If a socket is present, and we own the only
1844 			 * reference, we need to tear down the socket and the
1845 			 * inpcb.
1846 			 */
1847 			inp->inp_vflag &= ~INP_SOCKREF;
1848 #ifdef INET6
1849 			if (inp->inp_vflag & INP_IPV6PROTO) {
1850 				in6_pcbdetach(inp);
1851 				in6_pcbfree(inp);
1852 			} else {
1853 				in_pcbdetach(inp);
1854 				in_pcbfree(inp);
1855 			}
1856 #endif
1857 			ACCEPT_LOCK();
1858 			SOCK_LOCK(so);
1859 			KASSERT(so->so_state & SS_PROTOREF,
1860 			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1861 			so->so_state &= ~SS_PROTOREF;
1862 			sofree(so);
1863 		} else {
1864 			/*
1865 			 * If we don't own the only reference, the socket and
1866 			 * inpcb need to be left around to be handled by
1867 			 * tcp_usr_detach() later.
1868 			 */
1869 			INP_UNLOCK(inp);
1870 		}
1871 	} else {
1872 #ifdef INET6
1873 		if (inp->inp_vflag & INP_IPV6PROTO)
1874 			in6_pcbfree(inp);
1875 		else
1876 #endif
1877 			in_pcbfree(inp);
1878 	}
1879 	tcpstat.tcps_closed++;
1880 	crfree(tw->tw_cred);
1881 	tw->tw_cred = NULL;
1882 	if (reuse)
1883 		return;
1884 	uma_zfree(tcptw_zone, tw);
1885 }
1886 
1887 int
1888 tcp_twrespond(struct tcptw *tw, int flags)
1889 {
1890 	struct inpcb *inp = tw->tw_inpcb;
1891 	struct tcphdr *th;
1892 	struct mbuf *m;
1893 	struct ip *ip = NULL;
1894 	u_int8_t *optp;
1895 	u_int hdrlen, optlen;
1896 	int error;
1897 #ifdef INET6
1898 	struct ip6_hdr *ip6 = NULL;
1899 	int isipv6 = inp->inp_inc.inc_isipv6;
1900 #endif
1901 
1902 	INP_LOCK_ASSERT(inp);
1903 
1904 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1905 	if (m == NULL)
1906 		return (ENOBUFS);
1907 	m->m_data += max_linkhdr;
1908 
1909 #ifdef MAC
1910 	mac_create_mbuf_from_inpcb(inp, m);
1911 #endif
1912 
1913 #ifdef INET6
1914 	if (isipv6) {
1915 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1916 		ip6 = mtod(m, struct ip6_hdr *);
1917 		th = (struct tcphdr *)(ip6 + 1);
1918 		tcpip_fillheaders(inp, ip6, th);
1919 	} else
1920 #endif
1921 	{
1922 		hdrlen = sizeof(struct tcpiphdr);
1923 		ip = mtod(m, struct ip *);
1924 		th = (struct tcphdr *)(ip + 1);
1925 		tcpip_fillheaders(inp, ip, th);
1926 	}
1927 	optp = (u_int8_t *)(th + 1);
1928 
1929 	/*
1930 	 * Send a timestamp and echo-reply if both our side and our peer
1931 	 * have sent timestamps in our SYN's and this is not a RST.
1932 	 */
1933 	if (tw->t_recent && flags == TH_ACK) {
1934 		u_int32_t *lp = (u_int32_t *)optp;
1935 
1936 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1937 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1938 		*lp++ = htonl(ticks);
1939 		*lp   = htonl(tw->t_recent);
1940 		optp += TCPOLEN_TSTAMP_APPA;
1941 	}
1942 
1943 	optlen = optp - (u_int8_t *)(th + 1);
1944 
1945 	m->m_len = hdrlen + optlen;
1946 	m->m_pkthdr.len = m->m_len;
1947 
1948 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1949 
1950 	th->th_seq = htonl(tw->snd_nxt);
1951 	th->th_ack = htonl(tw->rcv_nxt);
1952 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1953 	th->th_flags = flags;
1954 	th->th_win = htons(tw->last_win);
1955 
1956 #ifdef INET6
1957 	if (isipv6) {
1958 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1959 		    sizeof(struct tcphdr) + optlen);
1960 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1961 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1962 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1963 	} else
1964 #endif
1965 	{
1966 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1967 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1968 		m->m_pkthdr.csum_flags = CSUM_TCP;
1969 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1970 		ip->ip_len = m->m_pkthdr.len;
1971 		if (path_mtu_discovery)
1972 			ip->ip_off |= IP_DF;
1973 		error = ip_output(m, inp->inp_options, NULL,
1974 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1975 		    NULL, inp);
1976 	}
1977 	if (flags & TH_ACK)
1978 		tcpstat.tcps_sndacks++;
1979 	else
1980 		tcpstat.tcps_sndctrl++;
1981 	tcpstat.tcps_sndtotal++;
1982 	return (error);
1983 }
1984 
1985 /*
1986  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1987  *
1988  * This code attempts to calculate the bandwidth-delay product as a
1989  * means of determining the optimal window size to maximize bandwidth,
1990  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1991  * routers.  This code also does a fairly good job keeping RTTs in check
1992  * across slow links like modems.  We implement an algorithm which is very
1993  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1994  * transmitter side of a TCP connection and so only effects the transmit
1995  * side of the connection.
1996  *
1997  * BACKGROUND:  TCP makes no provision for the management of buffer space
1998  * at the end points or at the intermediate routers and switches.  A TCP
1999  * stream, whether using NewReno or not, will eventually buffer as
2000  * many packets as it is able and the only reason this typically works is
2001  * due to the fairly small default buffers made available for a connection
2002  * (typicaly 16K or 32K).  As machines use larger windows and/or window
2003  * scaling it is now fairly easy for even a single TCP connection to blow-out
2004  * all available buffer space not only on the local interface, but on
2005  * intermediate routers and switches as well.  NewReno makes a misguided
2006  * attempt to 'solve' this problem by waiting for an actual failure to occur,
2007  * then backing off, then steadily increasing the window again until another
2008  * failure occurs, ad-infinitum.  This results in terrible oscillation that
2009  * is only made worse as network loads increase and the idea of intentionally
2010  * blowing out network buffers is, frankly, a terrible way to manage network
2011  * resources.
2012  *
2013  * It is far better to limit the transmit window prior to the failure
2014  * condition being achieved.  There are two general ways to do this:  First
2015  * you can 'scan' through different transmit window sizes and locate the
2016  * point where the RTT stops increasing, indicating that you have filled the
2017  * pipe, then scan backwards until you note that RTT stops decreasing, then
2018  * repeat ad-infinitum.  This method works in principle but has severe
2019  * implementation issues due to RTT variances, timer granularity, and
2020  * instability in the algorithm which can lead to many false positives and
2021  * create oscillations as well as interact badly with other TCP streams
2022  * implementing the same algorithm.
2023  *
2024  * The second method is to limit the window to the bandwidth delay product
2025  * of the link.  This is the method we implement.  RTT variances and our
2026  * own manipulation of the congestion window, bwnd, can potentially
2027  * destabilize the algorithm.  For this reason we have to stabilize the
2028  * elements used to calculate the window.  We do this by using the minimum
2029  * observed RTT, the long term average of the observed bandwidth, and
2030  * by adding two segments worth of slop.  It isn't perfect but it is able
2031  * to react to changing conditions and gives us a very stable basis on
2032  * which to extend the algorithm.
2033  */
2034 void
2035 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2036 {
2037 	u_long bw;
2038 	u_long bwnd;
2039 	int save_ticks;
2040 
2041 	INP_LOCK_ASSERT(tp->t_inpcb);
2042 
2043 	/*
2044 	 * If inflight_enable is disabled in the middle of a tcp connection,
2045 	 * make sure snd_bwnd is effectively disabled.
2046 	 */
2047 	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2048 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2049 		tp->snd_bandwidth = 0;
2050 		return;
2051 	}
2052 
2053 	/*
2054 	 * Figure out the bandwidth.  Due to the tick granularity this
2055 	 * is a very rough number and it MUST be averaged over a fairly
2056 	 * long period of time.  XXX we need to take into account a link
2057 	 * that is not using all available bandwidth, but for now our
2058 	 * slop will ramp us up if this case occurs and the bandwidth later
2059 	 * increases.
2060 	 *
2061 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2062 	 * effectively reset t_bw_rtttime for this case.
2063 	 */
2064 	save_ticks = ticks;
2065 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2066 		return;
2067 
2068 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2069 	    (save_ticks - tp->t_bw_rtttime);
2070 	tp->t_bw_rtttime = save_ticks;
2071 	tp->t_bw_rtseq = ack_seq;
2072 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2073 		return;
2074 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2075 
2076 	tp->snd_bandwidth = bw;
2077 
2078 	/*
2079 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2080 	 * segments.  The additional slop puts us squarely in the sweet
2081 	 * spot and also handles the bandwidth run-up case and stabilization.
2082 	 * Without the slop we could be locking ourselves into a lower
2083 	 * bandwidth.
2084 	 *
2085 	 * Situations Handled:
2086 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2087 	 *	    high speed LANs, allowing larger TCP buffers to be
2088 	 *	    specified, and also does a good job preventing
2089 	 *	    over-queueing of packets over choke points like modems
2090 	 *	    (at least for the transmit side).
2091 	 *
2092 	 *	(2) Is able to handle changing network loads (bandwidth
2093 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2094 	 *	    increases).
2095 	 *
2096 	 *	(3) Theoretically should stabilize in the face of multiple
2097 	 *	    connections implementing the same algorithm (this may need
2098 	 *	    a little work).
2099 	 *
2100 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2101 	 *	    be adjusted with a sysctl but typically only needs to be
2102 	 *	    on very slow connections.  A value no smaller then 5
2103 	 *	    should be used, but only reduce this default if you have
2104 	 *	    no other choice.
2105 	 */
2106 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2107 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2108 #undef USERTT
2109 
2110 	if (tcp_inflight_debug > 0) {
2111 		static int ltime;
2112 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2113 			ltime = ticks;
2114 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2115 			    tp,
2116 			    bw,
2117 			    tp->t_rttbest,
2118 			    tp->t_srtt,
2119 			    bwnd
2120 			);
2121 		}
2122 	}
2123 	if ((long)bwnd < tcp_inflight_min)
2124 		bwnd = tcp_inflight_min;
2125 	if (bwnd > tcp_inflight_max)
2126 		bwnd = tcp_inflight_max;
2127 	if ((long)bwnd < tp->t_maxseg * 2)
2128 		bwnd = tp->t_maxseg * 2;
2129 	tp->snd_bwnd = bwnd;
2130 }
2131 
2132 #ifdef TCP_SIGNATURE
2133 /*
2134  * Callback function invoked by m_apply() to digest TCP segment data
2135  * contained within an mbuf chain.
2136  */
2137 static int
2138 tcp_signature_apply(void *fstate, void *data, u_int len)
2139 {
2140 
2141 	MD5Update(fstate, (u_char *)data, len);
2142 	return (0);
2143 }
2144 
2145 /*
2146  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2147  *
2148  * Parameters:
2149  * m		pointer to head of mbuf chain
2150  * off0		offset to TCP header within the mbuf chain
2151  * len		length of TCP segment data, excluding options
2152  * optlen	length of TCP segment options
2153  * buf		pointer to storage for computed MD5 digest
2154  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2155  *
2156  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2157  * When called from tcp_input(), we can be sure that th_sum has been
2158  * zeroed out and verified already.
2159  *
2160  * This function is for IPv4 use only. Calling this function with an
2161  * IPv6 packet in the mbuf chain will yield undefined results.
2162  *
2163  * Return 0 if successful, otherwise return -1.
2164  *
2165  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2166  * search with the destination IP address, and a 'magic SPI' to be
2167  * determined by the application. This is hardcoded elsewhere to 1179
2168  * right now. Another branch of this code exists which uses the SPD to
2169  * specify per-application flows but it is unstable.
2170  */
2171 int
2172 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2173     u_char *buf, u_int direction)
2174 {
2175 	union sockaddr_union dst;
2176 	struct ippseudo ippseudo;
2177 	MD5_CTX ctx;
2178 	int doff;
2179 	struct ip *ip;
2180 	struct ipovly *ipovly;
2181 	struct secasvar *sav;
2182 	struct tcphdr *th;
2183 	u_short savecsum;
2184 
2185 	KASSERT(m != NULL, ("NULL mbuf chain"));
2186 	KASSERT(buf != NULL, ("NULL signature pointer"));
2187 
2188 	/* Extract the destination from the IP header in the mbuf. */
2189 	ip = mtod(m, struct ip *);
2190 	bzero(&dst, sizeof(union sockaddr_union));
2191 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2192 	dst.sa.sa_family = AF_INET;
2193 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2194 	    ip->ip_src : ip->ip_dst;
2195 
2196 	/* Look up an SADB entry which matches the address of the peer. */
2197 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2198 	if (sav == NULL) {
2199 		printf("%s: SADB lookup failed for %s\n", __func__,
2200 		    inet_ntoa(dst.sin.sin_addr));
2201 		return (EINVAL);
2202 	}
2203 
2204 	MD5Init(&ctx);
2205 	ipovly = (struct ipovly *)ip;
2206 	th = (struct tcphdr *)((u_char *)ip + off0);
2207 	doff = off0 + sizeof(struct tcphdr) + optlen;
2208 
2209 	/*
2210 	 * Step 1: Update MD5 hash with IP pseudo-header.
2211 	 *
2212 	 * XXX The ippseudo header MUST be digested in network byte order,
2213 	 * or else we'll fail the regression test. Assume all fields we've
2214 	 * been doing arithmetic on have been in host byte order.
2215 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2216 	 * tcp_output(), the underlying ip_len member has not yet been set.
2217 	 */
2218 	ippseudo.ippseudo_src = ipovly->ih_src;
2219 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2220 	ippseudo.ippseudo_pad = 0;
2221 	ippseudo.ippseudo_p = IPPROTO_TCP;
2222 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2223 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2224 
2225 	/*
2226 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2227 	 * The TCP checksum must be set to zero.
2228 	 */
2229 	savecsum = th->th_sum;
2230 	th->th_sum = 0;
2231 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2232 	th->th_sum = savecsum;
2233 
2234 	/*
2235 	 * Step 3: Update MD5 hash with TCP segment data.
2236 	 *         Use m_apply() to avoid an early m_pullup().
2237 	 */
2238 	if (len > 0)
2239 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2240 
2241 	/*
2242 	 * Step 4: Update MD5 hash with shared secret.
2243 	 */
2244 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2245 	MD5Final(buf, &ctx);
2246 
2247 	key_sa_recordxfer(sav, m);
2248 	KEY_FREESAV(&sav);
2249 	return (0);
2250 }
2251 #endif /* TCP_SIGNATURE */
2252 
2253 static int
2254 sysctl_drop(SYSCTL_HANDLER_ARGS)
2255 {
2256 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2257 	struct sockaddr_storage addrs[2];
2258 	struct inpcb *inp;
2259 	struct tcpcb *tp;
2260 	struct tcptw *tw;
2261 	struct sockaddr_in *fin, *lin;
2262 #ifdef INET6
2263 	struct sockaddr_in6 *fin6, *lin6;
2264 	struct in6_addr f6, l6;
2265 #endif
2266 	int error;
2267 
2268 	inp = NULL;
2269 	fin = lin = NULL;
2270 #ifdef INET6
2271 	fin6 = lin6 = NULL;
2272 #endif
2273 	error = 0;
2274 
2275 	if (req->oldptr != NULL || req->oldlen != 0)
2276 		return (EINVAL);
2277 	if (req->newptr == NULL)
2278 		return (EPERM);
2279 	if (req->newlen < sizeof(addrs))
2280 		return (ENOMEM);
2281 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2282 	if (error)
2283 		return (error);
2284 
2285 	switch (addrs[0].ss_family) {
2286 #ifdef INET6
2287 	case AF_INET6:
2288 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2289 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2290 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2291 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2292 			return (EINVAL);
2293 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2294 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2295 				return (EINVAL);
2296 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2297 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2298 			fin = (struct sockaddr_in *)&addrs[0];
2299 			lin = (struct sockaddr_in *)&addrs[1];
2300 			break;
2301 		}
2302 		error = sa6_embedscope(fin6, ip6_use_defzone);
2303 		if (error)
2304 			return (error);
2305 		error = sa6_embedscope(lin6, ip6_use_defzone);
2306 		if (error)
2307 			return (error);
2308 		break;
2309 #endif
2310 	case AF_INET:
2311 		fin = (struct sockaddr_in *)&addrs[0];
2312 		lin = (struct sockaddr_in *)&addrs[1];
2313 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2314 		    lin->sin_len != sizeof(struct sockaddr_in))
2315 			return (EINVAL);
2316 		break;
2317 	default:
2318 		return (EINVAL);
2319 	}
2320 	INP_INFO_WLOCK(&tcbinfo);
2321 	switch (addrs[0].ss_family) {
2322 #ifdef INET6
2323 	case AF_INET6:
2324 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2325 		    &l6, lin6->sin6_port, 0, NULL);
2326 		break;
2327 #endif
2328 	case AF_INET:
2329 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2330 		    lin->sin_addr, lin->sin_port, 0, NULL);
2331 		break;
2332 	}
2333 	if (inp != NULL) {
2334 		INP_LOCK(inp);
2335 		if (inp->inp_vflag & INP_TIMEWAIT) {
2336 			/*
2337 			 * XXXRW: There currently exists a state where an
2338 			 * inpcb is present, but its timewait state has been
2339 			 * discarded.  For now, don't allow dropping of this
2340 			 * type of inpcb.
2341 			 */
2342 			tw = intotw(inp);
2343 			if (tw != NULL)
2344 				tcp_twclose(tw, 0);
2345 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2346 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2347 			tp = intotcpcb(inp);
2348 			tcp_drop(tp, ECONNABORTED);
2349 		}
2350 		INP_UNLOCK(inp);
2351 	} else
2352 		error = ESRCH;
2353 	INP_INFO_WUNLOCK(&tcbinfo);
2354 	return (error);
2355 }
2356 
2357 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2358     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2359     0, sysctl_drop, "", "Drop TCP connection");
2360