xref: /freebsd/sys/netinet/tcp_subr.c (revision 3c6e15bceeab4470243c60c9a4b5b9cafca9abaa)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 #include <sys/vimage.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/ip_icmp.h>
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_seq.h>
86 #include <netinet/tcp_timer.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/tcp_syncache.h>
89 #include <netinet/tcp_offload.h>
90 #ifdef INET6
91 #include <netinet6/tcp6_var.h>
92 #endif
93 #include <netinet/tcpip.h>
94 #ifdef TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <netinet6/ip6protosw.h>
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/xform.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/key.h>
106 #include <sys/syslog.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 int	tcp_mssdflt = TCP_MSS;
115 #ifdef INET6
116 int	tcp_v6mssdflt = TCP6_MSS;
117 #endif
118 
119 static int
120 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
121 {
122 	INIT_VNET_INET(TD_TO_VNET(curthread));
123 	int error, new;
124 
125 	new = V_tcp_mssdflt;
126 	error = sysctl_handle_int(oidp, &new, 0, req);
127 	if (error == 0 && req->newptr) {
128 		if (new < TCP_MINMSS)
129 			error = EINVAL;
130 		else
131 			V_tcp_mssdflt = new;
132 	}
133 	return (error);
134 }
135 
136 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLTYPE_INT|CTLFLAG_RW,
137 	   &tcp_mssdflt, 0, &sysctl_net_inet_tcp_mss_check, "I",
138 	   "Default TCP Maximum Segment Size");
139 
140 #ifdef INET6
141 static int
142 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
143 {
144 	INIT_VNET_INET6(TD_TO_VNET(curthread));
145 	int error, new;
146 
147 	new = V_tcp_v6mssdflt;
148 	error = sysctl_handle_int(oidp, &new, 0, req);
149 	if (error == 0 && req->newptr) {
150 		if (new < TCP_MINMSS)
151 			error = EINVAL;
152 		else
153 			V_tcp_v6mssdflt = new;
154 	}
155 	return (error);
156 }
157 
158 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLTYPE_INT|CTLFLAG_RW,
159 	   &tcp_v6mssdflt, 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
160 	   "Default TCP Maximum Segment Size for IPv6");
161 #endif
162 
163 /*
164  * Minimum MSS we accept and use. This prevents DoS attacks where
165  * we are forced to a ridiculous low MSS like 20 and send hundreds
166  * of packets instead of one. The effect scales with the available
167  * bandwidth and quickly saturates the CPU and network interface
168  * with packet generation and sending. Set to zero to disable MINMSS
169  * checking. This setting prevents us from sending too small packets.
170  */
171 int	tcp_minmss = TCP_MINMSS;
172 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, minmss,
173     CTLFLAG_RW, tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
174 
175 int	tcp_do_rfc1323 = 1;
176 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
177     CTLFLAG_RW, tcp_do_rfc1323, 0,
178     "Enable rfc1323 (high performance TCP) extensions");
179 
180 static int	tcp_log_debug = 0;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
182     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
183 
184 static int	tcp_tcbhashsize = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
186     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
187 
188 static int	do_tcpdrain = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
190     "Enable tcp_drain routine for extra help when low on mbufs");
191 
192 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, pcbcount,
193     CTLFLAG_RD, tcbinfo.ipi_count, 0, "Number of active PCBs");
194 
195 static int	icmp_may_rst = 1;
196 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, icmp_may_rst,
197     CTLFLAG_RW, icmp_may_rst, 0,
198     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
199 
200 static int	tcp_isn_reseed_interval = 0;
201 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, isn_reseed_interval,
202     CTLFLAG_RW, tcp_isn_reseed_interval, 0,
203     "Seconds between reseeding of ISN secret");
204 
205 /*
206  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
207  * 1024 exists only for debugging.  A good production default would be
208  * something like 6100.
209  */
210 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
211     "TCP inflight data limiting");
212 
213 static int	tcp_inflight_enable = 1;
214 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, enable,
215     CTLFLAG_RW, tcp_inflight_enable, 0,
216     "Enable automatic TCP inflight data limiting");
217 
218 static int	tcp_inflight_debug = 0;
219 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
220     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
221 
222 static int	tcp_inflight_rttthresh;
223 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
224     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
225     "RTT threshold below which inflight will deactivate itself");
226 
227 static int	tcp_inflight_min = 6144;
228 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, min,
229     CTLFLAG_RW, tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
230 
231 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
232 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, max,
233     CTLFLAG_RW, tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
234 
235 static int	tcp_inflight_stab = 20;
236 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_inflight, OID_AUTO, stab,
237     CTLFLAG_RW, tcp_inflight_stab, 0,
238     "Inflight Algorithm Stabilization 20 = 2 packets");
239 
240 uma_zone_t sack_hole_zone;
241 
242 static struct inpcb *tcp_notify(struct inpcb *, int);
243 static void	tcp_isn_tick(void *);
244 
245 /*
246  * Target size of TCP PCB hash tables. Must be a power of two.
247  *
248  * Note that this can be overridden by the kernel environment
249  * variable net.inet.tcp.tcbhashsize
250  */
251 #ifndef TCBHASHSIZE
252 #define TCBHASHSIZE	512
253 #endif
254 
255 /*
256  * XXX
257  * Callouts should be moved into struct tcp directly.  They are currently
258  * separate because the tcpcb structure is exported to userland for sysctl
259  * parsing purposes, which do not know about callouts.
260  */
261 struct tcpcb_mem {
262 	struct	tcpcb		tcb;
263 	struct	tcp_timer	tt;
264 };
265 
266 static uma_zone_t tcpcb_zone;
267 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
268 struct callout isn_callout;
269 static struct mtx isn_mtx;
270 
271 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
272 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
273 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
274 
275 /*
276  * TCP initialization.
277  */
278 static void
279 tcp_zone_change(void *tag)
280 {
281 
282 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
283 	uma_zone_set_max(tcpcb_zone, maxsockets);
284 	tcp_tw_zone_change();
285 }
286 
287 static int
288 tcp_inpcb_init(void *mem, int size, int flags)
289 {
290 	struct inpcb *inp = mem;
291 
292 	INP_LOCK_INIT(inp, "inp", "tcpinp");
293 	return (0);
294 }
295 
296 void
297 tcp_init(void)
298 {
299 	INIT_VNET_INET(curvnet);
300 
301 	int hashsize = TCBHASHSIZE;
302 	tcp_delacktime = TCPTV_DELACK;
303 	tcp_keepinit = TCPTV_KEEP_INIT;
304 	tcp_keepidle = TCPTV_KEEP_IDLE;
305 	tcp_keepintvl = TCPTV_KEEPINTVL;
306 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
307 	tcp_msl = TCPTV_MSL;
308 	tcp_rexmit_min = TCPTV_MIN;
309 	if (tcp_rexmit_min < 1)
310 		tcp_rexmit_min = 1;
311 	tcp_rexmit_slop = TCPTV_CPU_VAR;
312 	V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
313 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
314 
315 	INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp");
316 	LIST_INIT(&V_tcb);
317 	V_tcbinfo.ipi_listhead = &V_tcb;
318 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
319 	if (!powerof2(hashsize)) {
320 		printf("WARNING: TCB hash size not a power of 2\n");
321 		hashsize = 512; /* safe default */
322 	}
323 	tcp_tcbhashsize = hashsize;
324 	V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
325 	    &V_tcbinfo.ipi_hashmask);
326 	V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
327 	    &V_tcbinfo.ipi_porthashmask);
328 	V_tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
329 	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
330 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
331 #ifdef INET6
332 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
333 #else /* INET6 */
334 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
335 #endif /* INET6 */
336 	if (max_protohdr < TCP_MINPROTOHDR)
337 		max_protohdr = TCP_MINPROTOHDR;
338 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
339 		panic("tcp_init");
340 #undef TCP_MINPROTOHDR
341 	/*
342 	 * These have to be type stable for the benefit of the timers.
343 	 */
344 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
345 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
346 	uma_zone_set_max(tcpcb_zone, maxsockets);
347 	tcp_tw_init();
348 	syncache_init();
349 	tcp_hc_init();
350 	tcp_reass_init();
351 	ISN_LOCK_INIT();
352 	callout_init(&isn_callout, CALLOUT_MPSAFE);
353 	tcp_isn_tick(NULL);
354 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
355 		SHUTDOWN_PRI_DEFAULT);
356 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
357 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
358 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
359 		EVENTHANDLER_PRI_ANY);
360 }
361 
362 void
363 tcp_fini(void *xtp)
364 {
365 
366 	callout_stop(&isn_callout);
367 }
368 
369 /*
370  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
371  * tcp_template used to store this data in mbufs, but we now recopy it out
372  * of the tcpcb each time to conserve mbufs.
373  */
374 void
375 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
376 {
377 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
378 
379 	INP_WLOCK_ASSERT(inp);
380 
381 #ifdef INET6
382 	if ((inp->inp_vflag & INP_IPV6) != 0) {
383 		struct ip6_hdr *ip6;
384 
385 		ip6 = (struct ip6_hdr *)ip_ptr;
386 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
387 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
388 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
389 			(IPV6_VERSION & IPV6_VERSION_MASK);
390 		ip6->ip6_nxt = IPPROTO_TCP;
391 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
392 		ip6->ip6_src = inp->in6p_laddr;
393 		ip6->ip6_dst = inp->in6p_faddr;
394 	} else
395 #endif
396 	{
397 		struct ip *ip;
398 
399 		ip = (struct ip *)ip_ptr;
400 		ip->ip_v = IPVERSION;
401 		ip->ip_hl = 5;
402 		ip->ip_tos = inp->inp_ip_tos;
403 		ip->ip_len = 0;
404 		ip->ip_id = 0;
405 		ip->ip_off = 0;
406 		ip->ip_ttl = inp->inp_ip_ttl;
407 		ip->ip_sum = 0;
408 		ip->ip_p = IPPROTO_TCP;
409 		ip->ip_src = inp->inp_laddr;
410 		ip->ip_dst = inp->inp_faddr;
411 	}
412 	th->th_sport = inp->inp_lport;
413 	th->th_dport = inp->inp_fport;
414 	th->th_seq = 0;
415 	th->th_ack = 0;
416 	th->th_x2 = 0;
417 	th->th_off = 5;
418 	th->th_flags = 0;
419 	th->th_win = 0;
420 	th->th_urp = 0;
421 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
422 }
423 
424 /*
425  * Create template to be used to send tcp packets on a connection.
426  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
427  * use for this function is in keepalives, which use tcp_respond.
428  */
429 struct tcptemp *
430 tcpip_maketemplate(struct inpcb *inp)
431 {
432 	struct tcptemp *t;
433 
434 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
435 	if (t == NULL)
436 		return (NULL);
437 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
438 	return (t);
439 }
440 
441 /*
442  * Send a single message to the TCP at address specified by
443  * the given TCP/IP header.  If m == NULL, then we make a copy
444  * of the tcpiphdr at ti and send directly to the addressed host.
445  * This is used to force keep alive messages out using the TCP
446  * template for a connection.  If flags are given then we send
447  * a message back to the TCP which originated the * segment ti,
448  * and discard the mbuf containing it and any other attached mbufs.
449  *
450  * In any case the ack and sequence number of the transmitted
451  * segment are as specified by the parameters.
452  *
453  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
454  */
455 void
456 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
457     tcp_seq ack, tcp_seq seq, int flags)
458 {
459 	INIT_VNET_INET(curvnet);
460 	int tlen;
461 	int win = 0;
462 	struct ip *ip;
463 	struct tcphdr *nth;
464 #ifdef INET6
465 	struct ip6_hdr *ip6;
466 	int isipv6;
467 #endif /* INET6 */
468 	int ipflags = 0;
469 	struct inpcb *inp;
470 
471 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
472 
473 #ifdef INET6
474 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
475 	ip6 = ipgen;
476 #endif /* INET6 */
477 	ip = ipgen;
478 
479 	if (tp != NULL) {
480 		inp = tp->t_inpcb;
481 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
482 		INP_WLOCK_ASSERT(inp);
483 	} else
484 		inp = NULL;
485 
486 	if (tp != NULL) {
487 		if (!(flags & TH_RST)) {
488 			win = sbspace(&inp->inp_socket->so_rcv);
489 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
490 				win = (long)TCP_MAXWIN << tp->rcv_scale;
491 		}
492 	}
493 	if (m == NULL) {
494 		m = m_gethdr(M_DONTWAIT, MT_DATA);
495 		if (m == NULL)
496 			return;
497 		tlen = 0;
498 		m->m_data += max_linkhdr;
499 #ifdef INET6
500 		if (isipv6) {
501 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
502 			      sizeof(struct ip6_hdr));
503 			ip6 = mtod(m, struct ip6_hdr *);
504 			nth = (struct tcphdr *)(ip6 + 1);
505 		} else
506 #endif /* INET6 */
507 	      {
508 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
509 		ip = mtod(m, struct ip *);
510 		nth = (struct tcphdr *)(ip + 1);
511 	      }
512 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
513 		flags = TH_ACK;
514 	} else {
515 		/*
516 		 *  reuse the mbuf.
517 		 * XXX MRT We inherrit the FIB, which is lucky.
518 		 */
519 		m_freem(m->m_next);
520 		m->m_next = NULL;
521 		m->m_data = (caddr_t)ipgen;
522 		/* m_len is set later */
523 		tlen = 0;
524 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
525 #ifdef INET6
526 		if (isipv6) {
527 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
528 			nth = (struct tcphdr *)(ip6 + 1);
529 		} else
530 #endif /* INET6 */
531 	      {
532 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
533 		nth = (struct tcphdr *)(ip + 1);
534 	      }
535 		if (th != nth) {
536 			/*
537 			 * this is usually a case when an extension header
538 			 * exists between the IPv6 header and the
539 			 * TCP header.
540 			 */
541 			nth->th_sport = th->th_sport;
542 			nth->th_dport = th->th_dport;
543 		}
544 		xchg(nth->th_dport, nth->th_sport, n_short);
545 #undef xchg
546 	}
547 #ifdef INET6
548 	if (isipv6) {
549 		ip6->ip6_flow = 0;
550 		ip6->ip6_vfc = IPV6_VERSION;
551 		ip6->ip6_nxt = IPPROTO_TCP;
552 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
553 						tlen));
554 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
555 	} else
556 #endif
557 	{
558 		tlen += sizeof (struct tcpiphdr);
559 		ip->ip_len = tlen;
560 		ip->ip_ttl = V_ip_defttl;
561 		if (V_path_mtu_discovery)
562 			ip->ip_off |= IP_DF;
563 	}
564 	m->m_len = tlen;
565 	m->m_pkthdr.len = tlen;
566 	m->m_pkthdr.rcvif = NULL;
567 #ifdef MAC
568 	if (inp != NULL) {
569 		/*
570 		 * Packet is associated with a socket, so allow the
571 		 * label of the response to reflect the socket label.
572 		 */
573 		INP_WLOCK_ASSERT(inp);
574 		mac_inpcb_create_mbuf(inp, m);
575 	} else {
576 		/*
577 		 * Packet is not associated with a socket, so possibly
578 		 * update the label in place.
579 		 */
580 		mac_netinet_tcp_reply(m);
581 	}
582 #endif
583 	nth->th_seq = htonl(seq);
584 	nth->th_ack = htonl(ack);
585 	nth->th_x2 = 0;
586 	nth->th_off = sizeof (struct tcphdr) >> 2;
587 	nth->th_flags = flags;
588 	if (tp != NULL)
589 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
590 	else
591 		nth->th_win = htons((u_short)win);
592 	nth->th_urp = 0;
593 #ifdef INET6
594 	if (isipv6) {
595 		nth->th_sum = 0;
596 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
597 					sizeof(struct ip6_hdr),
598 					tlen - sizeof(struct ip6_hdr));
599 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
600 		    NULL, NULL);
601 	} else
602 #endif /* INET6 */
603 	{
604 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
605 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
606 		m->m_pkthdr.csum_flags = CSUM_TCP;
607 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
608 	}
609 #ifdef TCPDEBUG
610 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
611 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
612 #endif
613 #ifdef INET6
614 	if (isipv6)
615 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
616 	else
617 #endif /* INET6 */
618 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
619 }
620 
621 /*
622  * Create a new TCP control block, making an
623  * empty reassembly queue and hooking it to the argument
624  * protocol control block.  The `inp' parameter must have
625  * come from the zone allocator set up in tcp_init().
626  */
627 struct tcpcb *
628 tcp_newtcpcb(struct inpcb *inp)
629 {
630 	INIT_VNET_INET(inp->inp_vnet);
631 	struct tcpcb_mem *tm;
632 	struct tcpcb *tp;
633 #ifdef INET6
634 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
635 #endif /* INET6 */
636 
637 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
638 	if (tm == NULL)
639 		return (NULL);
640 	tp = &tm->tcb;
641 	tp->t_timers = &tm->tt;
642 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
643 	tp->t_maxseg = tp->t_maxopd =
644 #ifdef INET6
645 		isipv6 ? V_tcp_v6mssdflt :
646 #endif /* INET6 */
647 		V_tcp_mssdflt;
648 
649 	/* Set up our timeouts. */
650 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
651 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
652 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
653 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
654 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
655 
656 	if (V_tcp_do_rfc1323)
657 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
658 	if (V_tcp_do_sack)
659 		tp->t_flags |= TF_SACK_PERMIT;
660 	TAILQ_INIT(&tp->snd_holes);
661 	tp->t_inpcb = inp;	/* XXX */
662 	/*
663 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
664 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
665 	 * reasonable initial retransmit time.
666 	 */
667 	tp->t_srtt = TCPTV_SRTTBASE;
668 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
669 	tp->t_rttmin = tcp_rexmit_min;
670 	tp->t_rxtcur = TCPTV_RTOBASE;
671 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
672 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
673 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
674 	tp->t_rcvtime = ticks;
675 	tp->t_bw_rtttime = ticks;
676 	/*
677 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
678 	 * because the socket may be bound to an IPv6 wildcard address,
679 	 * which may match an IPv4-mapped IPv6 address.
680 	 */
681 	inp->inp_ip_ttl = V_ip_defttl;
682 	inp->inp_ppcb = tp;
683 	return (tp);		/* XXX */
684 }
685 
686 /*
687  * Drop a TCP connection, reporting
688  * the specified error.  If connection is synchronized,
689  * then send a RST to peer.
690  */
691 struct tcpcb *
692 tcp_drop(struct tcpcb *tp, int errno)
693 {
694 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
695 	struct socket *so = tp->t_inpcb->inp_socket;
696 
697 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
698 	INP_WLOCK_ASSERT(tp->t_inpcb);
699 
700 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
701 		tp->t_state = TCPS_CLOSED;
702 		(void) tcp_output_reset(tp);
703 		V_tcpstat.tcps_drops++;
704 	} else
705 		V_tcpstat.tcps_conndrops++;
706 	if (errno == ETIMEDOUT && tp->t_softerror)
707 		errno = tp->t_softerror;
708 	so->so_error = errno;
709 	return (tcp_close(tp));
710 }
711 
712 void
713 tcp_discardcb(struct tcpcb *tp)
714 {
715 	INIT_VNET_INET(tp->t_vnet);
716 	struct tseg_qent *q;
717 	struct inpcb *inp = tp->t_inpcb;
718 	struct socket *so = inp->inp_socket;
719 #ifdef INET6
720 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
721 #endif /* INET6 */
722 
723 	INP_WLOCK_ASSERT(inp);
724 
725 	/*
726 	 * Make sure that all of our timers are stopped before we
727 	 * delete the PCB.
728 	 */
729 	callout_stop(&tp->t_timers->tt_rexmt);
730 	callout_stop(&tp->t_timers->tt_persist);
731 	callout_stop(&tp->t_timers->tt_keep);
732 	callout_stop(&tp->t_timers->tt_2msl);
733 	callout_stop(&tp->t_timers->tt_delack);
734 
735 	/*
736 	 * If we got enough samples through the srtt filter,
737 	 * save the rtt and rttvar in the routing entry.
738 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
739 	 * 4 samples is enough for the srtt filter to converge
740 	 * to within enough % of the correct value; fewer samples
741 	 * and we could save a bogus rtt. The danger is not high
742 	 * as tcp quickly recovers from everything.
743 	 * XXX: Works very well but needs some more statistics!
744 	 */
745 	if (tp->t_rttupdated >= 4) {
746 		struct hc_metrics_lite metrics;
747 		u_long ssthresh;
748 
749 		bzero(&metrics, sizeof(metrics));
750 		/*
751 		 * Update the ssthresh always when the conditions below
752 		 * are satisfied. This gives us better new start value
753 		 * for the congestion avoidance for new connections.
754 		 * ssthresh is only set if packet loss occured on a session.
755 		 *
756 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
757 		 * being torn down.  Ideally this code would not use 'so'.
758 		 */
759 		ssthresh = tp->snd_ssthresh;
760 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
761 			/*
762 			 * convert the limit from user data bytes to
763 			 * packets then to packet data bytes.
764 			 */
765 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
766 			if (ssthresh < 2)
767 				ssthresh = 2;
768 			ssthresh *= (u_long)(tp->t_maxseg +
769 #ifdef INET6
770 				      (isipv6 ? sizeof (struct ip6_hdr) +
771 					       sizeof (struct tcphdr) :
772 #endif
773 				       sizeof (struct tcpiphdr)
774 #ifdef INET6
775 				       )
776 #endif
777 				      );
778 		} else
779 			ssthresh = 0;
780 		metrics.rmx_ssthresh = ssthresh;
781 
782 		metrics.rmx_rtt = tp->t_srtt;
783 		metrics.rmx_rttvar = tp->t_rttvar;
784 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
785 		metrics.rmx_bandwidth = tp->snd_bandwidth;
786 		metrics.rmx_cwnd = tp->snd_cwnd;
787 		metrics.rmx_sendpipe = 0;
788 		metrics.rmx_recvpipe = 0;
789 
790 		tcp_hc_update(&inp->inp_inc, &metrics);
791 	}
792 
793 	/* free the reassembly queue, if any */
794 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
795 		LIST_REMOVE(q, tqe_q);
796 		m_freem(q->tqe_m);
797 		uma_zfree(tcp_reass_zone, q);
798 		tp->t_segqlen--;
799 		V_tcp_reass_qsize--;
800 	}
801 	/* Disconnect offload device, if any. */
802 	tcp_offload_detach(tp);
803 
804 	tcp_free_sackholes(tp);
805 	inp->inp_ppcb = NULL;
806 	tp->t_inpcb = NULL;
807 	uma_zfree(tcpcb_zone, tp);
808 }
809 
810 /*
811  * Attempt to close a TCP control block, marking it as dropped, and freeing
812  * the socket if we hold the only reference.
813  */
814 struct tcpcb *
815 tcp_close(struct tcpcb *tp)
816 {
817 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
818 	struct inpcb *inp = tp->t_inpcb;
819 	struct socket *so;
820 
821 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
822 	INP_WLOCK_ASSERT(inp);
823 
824 	/* Notify any offload devices of listener close */
825 	if (tp->t_state == TCPS_LISTEN)
826 		tcp_offload_listen_close(tp);
827 	in_pcbdrop(inp);
828 	V_tcpstat.tcps_closed++;
829 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
830 	so = inp->inp_socket;
831 	soisdisconnected(so);
832 	if (inp->inp_vflag & INP_SOCKREF) {
833 		KASSERT(so->so_state & SS_PROTOREF,
834 		    ("tcp_close: !SS_PROTOREF"));
835 		inp->inp_vflag &= ~INP_SOCKREF;
836 		INP_WUNLOCK(inp);
837 		ACCEPT_LOCK();
838 		SOCK_LOCK(so);
839 		so->so_state &= ~SS_PROTOREF;
840 		sofree(so);
841 		return (NULL);
842 	}
843 	return (tp);
844 }
845 
846 void
847 tcp_drain(void)
848 {
849 	VNET_ITERATOR_DECL(vnet_iter);
850 
851 	if (!do_tcpdrain)
852 		return;
853 
854 	VNET_LIST_RLOCK();
855 	VNET_FOREACH(vnet_iter) {
856 		CURVNET_SET(vnet_iter);
857 		INIT_VNET_INET(vnet_iter);
858 		struct inpcb *inpb;
859 		struct tcpcb *tcpb;
860 		struct tseg_qent *te;
861 
862 	/*
863 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
864 	 * if there is one...
865 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
866 	 *      reassembly queue should be flushed, but in a situation
867 	 *	where we're really low on mbufs, this is potentially
868 	 *	usefull.
869 	 */
870 		INP_INFO_RLOCK(&V_tcbinfo);
871 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
872 			if (inpb->inp_vflag & INP_TIMEWAIT)
873 				continue;
874 			INP_WLOCK(inpb);
875 			if ((tcpb = intotcpcb(inpb)) != NULL) {
876 				while ((te = LIST_FIRST(&tcpb->t_segq))
877 			            != NULL) {
878 					LIST_REMOVE(te, tqe_q);
879 					m_freem(te->tqe_m);
880 					uma_zfree(tcp_reass_zone, te);
881 					tcpb->t_segqlen--;
882 					V_tcp_reass_qsize--;
883 				}
884 				tcp_clean_sackreport(tcpb);
885 			}
886 			INP_WUNLOCK(inpb);
887 		}
888 		INP_INFO_RUNLOCK(&V_tcbinfo);
889 		CURVNET_RESTORE();
890 	}
891 	VNET_LIST_RUNLOCK();
892 }
893 
894 /*
895  * Notify a tcp user of an asynchronous error;
896  * store error as soft error, but wake up user
897  * (for now, won't do anything until can select for soft error).
898  *
899  * Do not wake up user since there currently is no mechanism for
900  * reporting soft errors (yet - a kqueue filter may be added).
901  */
902 static struct inpcb *
903 tcp_notify(struct inpcb *inp, int error)
904 {
905 	struct tcpcb *tp;
906 
907 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
908 	INP_WLOCK_ASSERT(inp);
909 
910 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
911 	    (inp->inp_vflag & INP_DROPPED))
912 		return (inp);
913 
914 	tp = intotcpcb(inp);
915 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
916 
917 	/*
918 	 * Ignore some errors if we are hooked up.
919 	 * If connection hasn't completed, has retransmitted several times,
920 	 * and receives a second error, give up now.  This is better
921 	 * than waiting a long time to establish a connection that
922 	 * can never complete.
923 	 */
924 	if (tp->t_state == TCPS_ESTABLISHED &&
925 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
926 	     error == EHOSTDOWN)) {
927 		return (inp);
928 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
929 	    tp->t_softerror) {
930 		tp = tcp_drop(tp, error);
931 		if (tp != NULL)
932 			return (inp);
933 		else
934 			return (NULL);
935 	} else {
936 		tp->t_softerror = error;
937 		return (inp);
938 	}
939 #if 0
940 	wakeup( &so->so_timeo);
941 	sorwakeup(so);
942 	sowwakeup(so);
943 #endif
944 }
945 
946 static int
947 tcp_pcblist(SYSCTL_HANDLER_ARGS)
948 {
949 	INIT_VNET_INET(curvnet);
950 	int error, i, m, n, pcb_count;
951 	struct inpcb *inp, **inp_list;
952 	inp_gen_t gencnt;
953 	struct xinpgen xig;
954 
955 	/*
956 	 * The process of preparing the TCB list is too time-consuming and
957 	 * resource-intensive to repeat twice on every request.
958 	 */
959 	if (req->oldptr == NULL) {
960 		m = syncache_pcbcount();
961 		n = V_tcbinfo.ipi_count;
962 		req->oldidx = 2 * (sizeof xig)
963 			+ ((m + n) + n/8) * sizeof(struct xtcpcb);
964 		return (0);
965 	}
966 
967 	if (req->newptr != NULL)
968 		return (EPERM);
969 
970 	/*
971 	 * OK, now we're committed to doing something.
972 	 */
973 	INP_INFO_RLOCK(&V_tcbinfo);
974 	gencnt = V_tcbinfo.ipi_gencnt;
975 	n = V_tcbinfo.ipi_count;
976 	INP_INFO_RUNLOCK(&V_tcbinfo);
977 
978 	m = syncache_pcbcount();
979 
980 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
981 		+ (n + m) * sizeof(struct xtcpcb));
982 	if (error != 0)
983 		return (error);
984 
985 	xig.xig_len = sizeof xig;
986 	xig.xig_count = n + m;
987 	xig.xig_gen = gencnt;
988 	xig.xig_sogen = so_gencnt;
989 	error = SYSCTL_OUT(req, &xig, sizeof xig);
990 	if (error)
991 		return (error);
992 
993 	error = syncache_pcblist(req, m, &pcb_count);
994 	if (error)
995 		return (error);
996 
997 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
998 	if (inp_list == NULL)
999 		return (ENOMEM);
1000 
1001 	INP_INFO_RLOCK(&V_tcbinfo);
1002 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1003 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1004 		INP_RLOCK(inp);
1005 		if (inp->inp_gencnt <= gencnt) {
1006 			/*
1007 			 * XXX: This use of cr_cansee(), introduced with
1008 			 * TCP state changes, is not quite right, but for
1009 			 * now, better than nothing.
1010 			 */
1011 			if (inp->inp_vflag & INP_TIMEWAIT) {
1012 				if (intotw(inp) != NULL)
1013 					error = cr_cansee(req->td->td_ucred,
1014 					    intotw(inp)->tw_cred);
1015 				else
1016 					error = EINVAL;	/* Skip this inp. */
1017 			} else
1018 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1019 			if (error == 0)
1020 				inp_list[i++] = inp;
1021 		}
1022 		INP_RUNLOCK(inp);
1023 	}
1024 	INP_INFO_RUNLOCK(&V_tcbinfo);
1025 	n = i;
1026 
1027 	error = 0;
1028 	for (i = 0; i < n; i++) {
1029 		inp = inp_list[i];
1030 		INP_RLOCK(inp);
1031 		if (inp->inp_gencnt <= gencnt) {
1032 			struct xtcpcb xt;
1033 			void *inp_ppcb;
1034 
1035 			bzero(&xt, sizeof(xt));
1036 			xt.xt_len = sizeof xt;
1037 			/* XXX should avoid extra copy */
1038 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1039 			inp_ppcb = inp->inp_ppcb;
1040 			if (inp_ppcb == NULL)
1041 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1042 			else if (inp->inp_vflag & INP_TIMEWAIT) {
1043 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1044 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1045 			} else
1046 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1047 			if (inp->inp_socket != NULL)
1048 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1049 			else {
1050 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1051 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1052 			}
1053 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1054 			INP_RUNLOCK(inp);
1055 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1056 		} else
1057 			INP_RUNLOCK(inp);
1058 
1059 	}
1060 	if (!error) {
1061 		/*
1062 		 * Give the user an updated idea of our state.
1063 		 * If the generation differs from what we told
1064 		 * her before, she knows that something happened
1065 		 * while we were processing this request, and it
1066 		 * might be necessary to retry.
1067 		 */
1068 		INP_INFO_RLOCK(&V_tcbinfo);
1069 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1070 		xig.xig_sogen = so_gencnt;
1071 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1072 		INP_INFO_RUNLOCK(&V_tcbinfo);
1073 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1074 	}
1075 	free(inp_list, M_TEMP);
1076 	return (error);
1077 }
1078 
1079 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1080     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1081 
1082 static int
1083 tcp_getcred(SYSCTL_HANDLER_ARGS)
1084 {
1085 	INIT_VNET_INET(curvnet);
1086 	struct xucred xuc;
1087 	struct sockaddr_in addrs[2];
1088 	struct inpcb *inp;
1089 	int error;
1090 
1091 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1092 	if (error)
1093 		return (error);
1094 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1095 	if (error)
1096 		return (error);
1097 	INP_INFO_RLOCK(&V_tcbinfo);
1098 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1099 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1100 	if (inp != NULL) {
1101 		INP_RLOCK(inp);
1102 		INP_INFO_RUNLOCK(&V_tcbinfo);
1103 		if (inp->inp_socket == NULL)
1104 			error = ENOENT;
1105 		if (error == 0)
1106 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1107 		if (error == 0)
1108 			cru2x(inp->inp_cred, &xuc);
1109 		INP_RUNLOCK(inp);
1110 	} else {
1111 		INP_INFO_RUNLOCK(&V_tcbinfo);
1112 		error = ENOENT;
1113 	}
1114 	if (error == 0)
1115 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1116 	return (error);
1117 }
1118 
1119 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1120     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1121     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1122 
1123 #ifdef INET6
1124 static int
1125 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1126 {
1127 	INIT_VNET_INET(curvnet);
1128 	INIT_VNET_INET6(curvnet);
1129 	struct xucred xuc;
1130 	struct sockaddr_in6 addrs[2];
1131 	struct inpcb *inp;
1132 	int error, mapped = 0;
1133 
1134 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1135 	if (error)
1136 		return (error);
1137 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1138 	if (error)
1139 		return (error);
1140 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1141 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1142 		return (error);
1143 	}
1144 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1145 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1146 			mapped = 1;
1147 		else
1148 			return (EINVAL);
1149 	}
1150 
1151 	INP_INFO_RLOCK(&V_tcbinfo);
1152 	if (mapped == 1)
1153 		inp = in_pcblookup_hash(&V_tcbinfo,
1154 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1155 			addrs[1].sin6_port,
1156 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1157 			addrs[0].sin6_port,
1158 			0, NULL);
1159 	else
1160 		inp = in6_pcblookup_hash(&V_tcbinfo,
1161 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1162 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1163 	if (inp != NULL) {
1164 		INP_RLOCK(inp);
1165 		INP_INFO_RUNLOCK(&V_tcbinfo);
1166 		if (inp->inp_socket == NULL)
1167 			error = ENOENT;
1168 		if (error == 0)
1169 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1170 		if (error == 0)
1171 			cru2x(inp->inp_cred, &xuc);
1172 		INP_RUNLOCK(inp);
1173 	} else {
1174 		INP_INFO_RUNLOCK(&V_tcbinfo);
1175 		error = ENOENT;
1176 	}
1177 	if (error == 0)
1178 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1179 	return (error);
1180 }
1181 
1182 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1183     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1184     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1185 #endif
1186 
1187 
1188 void
1189 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1190 {
1191 	INIT_VNET_INET(curvnet);
1192 	struct ip *ip = vip;
1193 	struct tcphdr *th;
1194 	struct in_addr faddr;
1195 	struct inpcb *inp;
1196 	struct tcpcb *tp;
1197 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1198 	struct icmp *icp;
1199 	struct in_conninfo inc;
1200 	tcp_seq icmp_tcp_seq;
1201 	int mtu;
1202 
1203 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1204 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1205 		return;
1206 
1207 	if (cmd == PRC_MSGSIZE)
1208 		notify = tcp_mtudisc;
1209 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1210 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1211 		notify = tcp_drop_syn_sent;
1212 	/*
1213 	 * Redirects don't need to be handled up here.
1214 	 */
1215 	else if (PRC_IS_REDIRECT(cmd))
1216 		return;
1217 	/*
1218 	 * Source quench is depreciated.
1219 	 */
1220 	else if (cmd == PRC_QUENCH)
1221 		return;
1222 	/*
1223 	 * Hostdead is ugly because it goes linearly through all PCBs.
1224 	 * XXX: We never get this from ICMP, otherwise it makes an
1225 	 * excellent DoS attack on machines with many connections.
1226 	 */
1227 	else if (cmd == PRC_HOSTDEAD)
1228 		ip = NULL;
1229 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1230 		return;
1231 	if (ip != NULL) {
1232 		icp = (struct icmp *)((caddr_t)ip
1233 				      - offsetof(struct icmp, icmp_ip));
1234 		th = (struct tcphdr *)((caddr_t)ip
1235 				       + (ip->ip_hl << 2));
1236 		INP_INFO_WLOCK(&V_tcbinfo);
1237 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1238 		    ip->ip_src, th->th_sport, 0, NULL);
1239 		if (inp != NULL)  {
1240 			INP_WLOCK(inp);
1241 			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1242 			    !(inp->inp_vflag & INP_DROPPED) &&
1243 			    !(inp->inp_socket == NULL)) {
1244 				icmp_tcp_seq = htonl(th->th_seq);
1245 				tp = intotcpcb(inp);
1246 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1247 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1248 					if (cmd == PRC_MSGSIZE) {
1249 					    /*
1250 					     * MTU discovery:
1251 					     * If we got a needfrag set the MTU
1252 					     * in the route to the suggested new
1253 					     * value (if given) and then notify.
1254 					     */
1255 					    bzero(&inc, sizeof(inc));
1256 					    inc.inc_flags = 0;	/* IPv4 */
1257 					    inc.inc_faddr = faddr;
1258 					    inc.inc_fibnum =
1259 						inp->inp_inc.inc_fibnum;
1260 
1261 					    mtu = ntohs(icp->icmp_nextmtu);
1262 					    /*
1263 					     * If no alternative MTU was
1264 					     * proposed, try the next smaller
1265 					     * one.  ip->ip_len has already
1266 					     * been swapped in icmp_input().
1267 					     */
1268 					    if (!mtu)
1269 						mtu = ip_next_mtu(ip->ip_len,
1270 						 1);
1271 					    if (mtu < max(296, V_tcp_minmss
1272 						 + sizeof(struct tcpiphdr)))
1273 						mtu = 0;
1274 					    if (!mtu)
1275 						mtu = V_tcp_mssdflt
1276 						 + sizeof(struct tcpiphdr);
1277 					    /*
1278 					     * Only cache the the MTU if it
1279 					     * is smaller than the interface
1280 					     * or route MTU.  tcp_mtudisc()
1281 					     * will do right thing by itself.
1282 					     */
1283 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1284 						tcp_hc_updatemtu(&inc, mtu);
1285 					}
1286 
1287 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1288 				}
1289 			}
1290 			if (inp != NULL)
1291 				INP_WUNLOCK(inp);
1292 		} else {
1293 			inc.inc_fport = th->th_dport;
1294 			inc.inc_lport = th->th_sport;
1295 			inc.inc_faddr = faddr;
1296 			inc.inc_laddr = ip->ip_src;
1297 #ifdef INET6
1298 			inc.inc_isipv6 = 0;
1299 #endif
1300 			syncache_unreach(&inc, th);
1301 		}
1302 		INP_INFO_WUNLOCK(&V_tcbinfo);
1303 	} else
1304 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1305 }
1306 
1307 #ifdef INET6
1308 void
1309 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1310 {
1311 	INIT_VNET_INET(curvnet);
1312 	struct tcphdr th;
1313 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1314 	struct ip6_hdr *ip6;
1315 	struct mbuf *m;
1316 	struct ip6ctlparam *ip6cp = NULL;
1317 	const struct sockaddr_in6 *sa6_src = NULL;
1318 	int off;
1319 	struct tcp_portonly {
1320 		u_int16_t th_sport;
1321 		u_int16_t th_dport;
1322 	} *thp;
1323 
1324 	if (sa->sa_family != AF_INET6 ||
1325 	    sa->sa_len != sizeof(struct sockaddr_in6))
1326 		return;
1327 
1328 	if (cmd == PRC_MSGSIZE)
1329 		notify = tcp_mtudisc;
1330 	else if (!PRC_IS_REDIRECT(cmd) &&
1331 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1332 		return;
1333 	/* Source quench is depreciated. */
1334 	else if (cmd == PRC_QUENCH)
1335 		return;
1336 
1337 	/* if the parameter is from icmp6, decode it. */
1338 	if (d != NULL) {
1339 		ip6cp = (struct ip6ctlparam *)d;
1340 		m = ip6cp->ip6c_m;
1341 		ip6 = ip6cp->ip6c_ip6;
1342 		off = ip6cp->ip6c_off;
1343 		sa6_src = ip6cp->ip6c_src;
1344 	} else {
1345 		m = NULL;
1346 		ip6 = NULL;
1347 		off = 0;	/* fool gcc */
1348 		sa6_src = &sa6_any;
1349 	}
1350 
1351 	if (ip6 != NULL) {
1352 		struct in_conninfo inc;
1353 		/*
1354 		 * XXX: We assume that when IPV6 is non NULL,
1355 		 * M and OFF are valid.
1356 		 */
1357 
1358 		/* check if we can safely examine src and dst ports */
1359 		if (m->m_pkthdr.len < off + sizeof(*thp))
1360 			return;
1361 
1362 		bzero(&th, sizeof(th));
1363 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1364 
1365 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1366 		    (struct sockaddr *)ip6cp->ip6c_src,
1367 		    th.th_sport, cmd, NULL, notify);
1368 
1369 		inc.inc_fport = th.th_dport;
1370 		inc.inc_lport = th.th_sport;
1371 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1372 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1373 		inc.inc_isipv6 = 1;
1374 		INP_INFO_WLOCK(&V_tcbinfo);
1375 		syncache_unreach(&inc, &th);
1376 		INP_INFO_WUNLOCK(&V_tcbinfo);
1377 	} else
1378 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1379 			      0, cmd, NULL, notify);
1380 }
1381 #endif /* INET6 */
1382 
1383 
1384 /*
1385  * Following is where TCP initial sequence number generation occurs.
1386  *
1387  * There are two places where we must use initial sequence numbers:
1388  * 1.  In SYN-ACK packets.
1389  * 2.  In SYN packets.
1390  *
1391  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1392  * tcp_syncache.c for details.
1393  *
1394  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1395  * depends on this property.  In addition, these ISNs should be
1396  * unguessable so as to prevent connection hijacking.  To satisfy
1397  * the requirements of this situation, the algorithm outlined in
1398  * RFC 1948 is used, with only small modifications.
1399  *
1400  * Implementation details:
1401  *
1402  * Time is based off the system timer, and is corrected so that it
1403  * increases by one megabyte per second.  This allows for proper
1404  * recycling on high speed LANs while still leaving over an hour
1405  * before rollover.
1406  *
1407  * As reading the *exact* system time is too expensive to be done
1408  * whenever setting up a TCP connection, we increment the time
1409  * offset in two ways.  First, a small random positive increment
1410  * is added to isn_offset for each connection that is set up.
1411  * Second, the function tcp_isn_tick fires once per clock tick
1412  * and increments isn_offset as necessary so that sequence numbers
1413  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1414  * random positive increments serve only to ensure that the same
1415  * exact sequence number is never sent out twice (as could otherwise
1416  * happen when a port is recycled in less than the system tick
1417  * interval.)
1418  *
1419  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1420  * between seeding of isn_secret.  This is normally set to zero,
1421  * as reseeding should not be necessary.
1422  *
1423  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1424  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1425  * general, this means holding an exclusive (write) lock.
1426  */
1427 
1428 #define ISN_BYTES_PER_SECOND 1048576
1429 #define ISN_STATIC_INCREMENT 4096
1430 #define ISN_RANDOM_INCREMENT (4096 - 1)
1431 
1432 static u_char isn_secret[32];
1433 static int isn_last_reseed;
1434 static u_int32_t isn_offset, isn_offset_old;
1435 static MD5_CTX isn_ctx;
1436 
1437 tcp_seq
1438 tcp_new_isn(struct tcpcb *tp)
1439 {
1440 	INIT_VNET_INET(tp->t_vnet);
1441 	u_int32_t md5_buffer[4];
1442 	tcp_seq new_isn;
1443 
1444 	INP_WLOCK_ASSERT(tp->t_inpcb);
1445 
1446 	ISN_LOCK();
1447 	/* Seed if this is the first use, reseed if requested. */
1448 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1449 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1450 		< (u_int)ticks))) {
1451 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1452 		V_isn_last_reseed = ticks;
1453 	}
1454 
1455 	/* Compute the md5 hash and return the ISN. */
1456 	MD5Init(&V_isn_ctx);
1457 	MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1458 	MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1459 #ifdef INET6
1460 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1461 		MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1462 			  sizeof(struct in6_addr));
1463 		MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1464 			  sizeof(struct in6_addr));
1465 	} else
1466 #endif
1467 	{
1468 		MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1469 			  sizeof(struct in_addr));
1470 		MD5Update(&V_isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1471 			  sizeof(struct in_addr));
1472 	}
1473 	MD5Update(&V_isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1474 	MD5Final((u_char *) &md5_buffer, &V_isn_ctx);
1475 	new_isn = (tcp_seq) md5_buffer[0];
1476 	V_isn_offset += ISN_STATIC_INCREMENT +
1477 		(arc4random() & ISN_RANDOM_INCREMENT);
1478 	new_isn += V_isn_offset;
1479 	ISN_UNLOCK();
1480 	return (new_isn);
1481 }
1482 
1483 /*
1484  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1485  * to keep time flowing at a relatively constant rate.  If the random
1486  * increments have already pushed us past the projected offset, do nothing.
1487  */
1488 static void
1489 tcp_isn_tick(void *xtp)
1490 {
1491 	VNET_ITERATOR_DECL(vnet_iter);
1492 	u_int32_t projected_offset;
1493 
1494 	ISN_LOCK();
1495 	VNET_LIST_RLOCK();
1496 	VNET_FOREACH(vnet_iter) {
1497 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1498 		INIT_VNET_INET(curvnet);
1499 		projected_offset =
1500 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1501 
1502 		if (SEQ_GT(projected_offset, V_isn_offset))
1503 			V_isn_offset = projected_offset;
1504 
1505 		V_isn_offset_old = V_isn_offset;
1506 		CURVNET_RESTORE();
1507 	}
1508 	VNET_LIST_RUNLOCK();
1509 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1510 	ISN_UNLOCK();
1511 }
1512 
1513 /*
1514  * When a specific ICMP unreachable message is received and the
1515  * connection state is SYN-SENT, drop the connection.  This behavior
1516  * is controlled by the icmp_may_rst sysctl.
1517  */
1518 struct inpcb *
1519 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1520 {
1521 #ifdef INVARIANTS
1522 	INIT_VNET_INET(inp->inp_vnet);
1523 #endif
1524 	struct tcpcb *tp;
1525 
1526 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1527 	INP_WLOCK_ASSERT(inp);
1528 
1529 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1530 	    (inp->inp_vflag & INP_DROPPED))
1531 		return (inp);
1532 
1533 	tp = intotcpcb(inp);
1534 	if (tp->t_state != TCPS_SYN_SENT)
1535 		return (inp);
1536 
1537 	tp = tcp_drop(tp, errno);
1538 	if (tp != NULL)
1539 		return (inp);
1540 	else
1541 		return (NULL);
1542 }
1543 
1544 /*
1545  * When `need fragmentation' ICMP is received, update our idea of the MSS
1546  * based on the new value in the route.  Also nudge TCP to send something,
1547  * since we know the packet we just sent was dropped.
1548  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1549  */
1550 struct inpcb *
1551 tcp_mtudisc(struct inpcb *inp, int errno)
1552 {
1553 	INIT_VNET_INET(inp->inp_vnet);
1554 	struct tcpcb *tp;
1555 	struct socket *so;
1556 
1557 	INP_WLOCK_ASSERT(inp);
1558 	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1559 	    (inp->inp_vflag & INP_DROPPED))
1560 		return (inp);
1561 
1562 	tp = intotcpcb(inp);
1563 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1564 
1565 	tcp_mss_update(tp, -1, NULL, NULL);
1566 
1567 	so = inp->inp_socket;
1568 	SOCKBUF_LOCK(&so->so_snd);
1569 	/* If the mss is larger than the socket buffer, decrease the mss. */
1570 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1571 		tp->t_maxseg = so->so_snd.sb_hiwat;
1572 	SOCKBUF_UNLOCK(&so->so_snd);
1573 
1574 	V_tcpstat.tcps_mturesent++;
1575 	tp->t_rtttime = 0;
1576 	tp->snd_nxt = tp->snd_una;
1577 	tcp_free_sackholes(tp);
1578 	tp->snd_recover = tp->snd_max;
1579 	if (tp->t_flags & TF_SACK_PERMIT)
1580 		EXIT_FASTRECOVERY(tp);
1581 	tcp_output_send(tp);
1582 	return (inp);
1583 }
1584 
1585 /*
1586  * Look-up the routing entry to the peer of this inpcb.  If no route
1587  * is found and it cannot be allocated, then return 0.  This routine
1588  * is called by TCP routines that access the rmx structure and by
1589  * tcp_mss_update to get the peer/interface MTU.
1590  */
1591 u_long
1592 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1593 {
1594 	struct route sro;
1595 	struct sockaddr_in *dst;
1596 	struct ifnet *ifp;
1597 	u_long maxmtu = 0;
1598 
1599 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1600 
1601 	bzero(&sro, sizeof(sro));
1602 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1603 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1604 		dst->sin_family = AF_INET;
1605 		dst->sin_len = sizeof(*dst);
1606 		dst->sin_addr = inc->inc_faddr;
1607 		in_rtalloc_ign(&sro, RTF_CLONING, inc->inc_fibnum);
1608 	}
1609 	if (sro.ro_rt != NULL) {
1610 		ifp = sro.ro_rt->rt_ifp;
1611 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1612 			maxmtu = ifp->if_mtu;
1613 		else
1614 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1615 
1616 		/* Report additional interface capabilities. */
1617 		if (flags != NULL) {
1618 			if (ifp->if_capenable & IFCAP_TSO4 &&
1619 			    ifp->if_hwassist & CSUM_TSO)
1620 				*flags |= CSUM_TSO;
1621 		}
1622 		RTFREE(sro.ro_rt);
1623 	}
1624 	return (maxmtu);
1625 }
1626 
1627 #ifdef INET6
1628 u_long
1629 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1630 {
1631 	struct route_in6 sro6;
1632 	struct ifnet *ifp;
1633 	u_long maxmtu = 0;
1634 
1635 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1636 
1637 	bzero(&sro6, sizeof(sro6));
1638 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1639 		sro6.ro_dst.sin6_family = AF_INET6;
1640 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1641 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1642 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1643 	}
1644 	if (sro6.ro_rt != NULL) {
1645 		ifp = sro6.ro_rt->rt_ifp;
1646 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1647 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1648 		else
1649 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1650 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1651 
1652 		/* Report additional interface capabilities. */
1653 		if (flags != NULL) {
1654 			if (ifp->if_capenable & IFCAP_TSO6 &&
1655 			    ifp->if_hwassist & CSUM_TSO)
1656 				*flags |= CSUM_TSO;
1657 		}
1658 		RTFREE(sro6.ro_rt);
1659 	}
1660 
1661 	return (maxmtu);
1662 }
1663 #endif /* INET6 */
1664 
1665 #ifdef IPSEC
1666 /* compute ESP/AH header size for TCP, including outer IP header. */
1667 size_t
1668 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1669 {
1670 	struct inpcb *inp;
1671 	struct mbuf *m;
1672 	size_t hdrsiz;
1673 	struct ip *ip;
1674 #ifdef INET6
1675 	struct ip6_hdr *ip6;
1676 #endif
1677 	struct tcphdr *th;
1678 
1679 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1680 		return (0);
1681 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1682 	if (!m)
1683 		return (0);
1684 
1685 #ifdef INET6
1686 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1687 		ip6 = mtod(m, struct ip6_hdr *);
1688 		th = (struct tcphdr *)(ip6 + 1);
1689 		m->m_pkthdr.len = m->m_len =
1690 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1691 		tcpip_fillheaders(inp, ip6, th);
1692 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1693 	} else
1694 #endif /* INET6 */
1695 	{
1696 		ip = mtod(m, struct ip *);
1697 		th = (struct tcphdr *)(ip + 1);
1698 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1699 		tcpip_fillheaders(inp, ip, th);
1700 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1701 	}
1702 
1703 	m_free(m);
1704 	return (hdrsiz);
1705 }
1706 #endif /* IPSEC */
1707 
1708 /*
1709  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1710  *
1711  * This code attempts to calculate the bandwidth-delay product as a
1712  * means of determining the optimal window size to maximize bandwidth,
1713  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1714  * routers.  This code also does a fairly good job keeping RTTs in check
1715  * across slow links like modems.  We implement an algorithm which is very
1716  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1717  * transmitter side of a TCP connection and so only effects the transmit
1718  * side of the connection.
1719  *
1720  * BACKGROUND:  TCP makes no provision for the management of buffer space
1721  * at the end points or at the intermediate routers and switches.  A TCP
1722  * stream, whether using NewReno or not, will eventually buffer as
1723  * many packets as it is able and the only reason this typically works is
1724  * due to the fairly small default buffers made available for a connection
1725  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1726  * scaling it is now fairly easy for even a single TCP connection to blow-out
1727  * all available buffer space not only on the local interface, but on
1728  * intermediate routers and switches as well.  NewReno makes a misguided
1729  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1730  * then backing off, then steadily increasing the window again until another
1731  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1732  * is only made worse as network loads increase and the idea of intentionally
1733  * blowing out network buffers is, frankly, a terrible way to manage network
1734  * resources.
1735  *
1736  * It is far better to limit the transmit window prior to the failure
1737  * condition being achieved.  There are two general ways to do this:  First
1738  * you can 'scan' through different transmit window sizes and locate the
1739  * point where the RTT stops increasing, indicating that you have filled the
1740  * pipe, then scan backwards until you note that RTT stops decreasing, then
1741  * repeat ad-infinitum.  This method works in principle but has severe
1742  * implementation issues due to RTT variances, timer granularity, and
1743  * instability in the algorithm which can lead to many false positives and
1744  * create oscillations as well as interact badly with other TCP streams
1745  * implementing the same algorithm.
1746  *
1747  * The second method is to limit the window to the bandwidth delay product
1748  * of the link.  This is the method we implement.  RTT variances and our
1749  * own manipulation of the congestion window, bwnd, can potentially
1750  * destabilize the algorithm.  For this reason we have to stabilize the
1751  * elements used to calculate the window.  We do this by using the minimum
1752  * observed RTT, the long term average of the observed bandwidth, and
1753  * by adding two segments worth of slop.  It isn't perfect but it is able
1754  * to react to changing conditions and gives us a very stable basis on
1755  * which to extend the algorithm.
1756  */
1757 void
1758 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1759 {
1760 	INIT_VNET_INET(tp->t_vnet);
1761 	u_long bw;
1762 	u_long bwnd;
1763 	int save_ticks;
1764 
1765 	INP_WLOCK_ASSERT(tp->t_inpcb);
1766 
1767 	/*
1768 	 * If inflight_enable is disabled in the middle of a tcp connection,
1769 	 * make sure snd_bwnd is effectively disabled.
1770 	 */
1771 	if (V_tcp_inflight_enable == 0 ||
1772 	    tp->t_rttlow < V_tcp_inflight_rttthresh) {
1773 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1774 		tp->snd_bandwidth = 0;
1775 		return;
1776 	}
1777 
1778 	/*
1779 	 * Figure out the bandwidth.  Due to the tick granularity this
1780 	 * is a very rough number and it MUST be averaged over a fairly
1781 	 * long period of time.  XXX we need to take into account a link
1782 	 * that is not using all available bandwidth, but for now our
1783 	 * slop will ramp us up if this case occurs and the bandwidth later
1784 	 * increases.
1785 	 *
1786 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1787 	 * effectively reset t_bw_rtttime for this case.
1788 	 */
1789 	save_ticks = ticks;
1790 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1791 		return;
1792 
1793 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1794 	    (save_ticks - tp->t_bw_rtttime);
1795 	tp->t_bw_rtttime = save_ticks;
1796 	tp->t_bw_rtseq = ack_seq;
1797 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1798 		return;
1799 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1800 
1801 	tp->snd_bandwidth = bw;
1802 
1803 	/*
1804 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1805 	 * segments.  The additional slop puts us squarely in the sweet
1806 	 * spot and also handles the bandwidth run-up case and stabilization.
1807 	 * Without the slop we could be locking ourselves into a lower
1808 	 * bandwidth.
1809 	 *
1810 	 * Situations Handled:
1811 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1812 	 *	    high speed LANs, allowing larger TCP buffers to be
1813 	 *	    specified, and also does a good job preventing
1814 	 *	    over-queueing of packets over choke points like modems
1815 	 *	    (at least for the transmit side).
1816 	 *
1817 	 *	(2) Is able to handle changing network loads (bandwidth
1818 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1819 	 *	    increases).
1820 	 *
1821 	 *	(3) Theoretically should stabilize in the face of multiple
1822 	 *	    connections implementing the same algorithm (this may need
1823 	 *	    a little work).
1824 	 *
1825 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1826 	 *	    be adjusted with a sysctl but typically only needs to be
1827 	 *	    on very slow connections.  A value no smaller then 5
1828 	 *	    should be used, but only reduce this default if you have
1829 	 *	    no other choice.
1830 	 */
1831 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1832 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
1833 #undef USERTT
1834 
1835 	if (tcp_inflight_debug > 0) {
1836 		static int ltime;
1837 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1838 			ltime = ticks;
1839 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1840 			    tp,
1841 			    bw,
1842 			    tp->t_rttbest,
1843 			    tp->t_srtt,
1844 			    bwnd
1845 			);
1846 		}
1847 	}
1848 	if ((long)bwnd < V_tcp_inflight_min)
1849 		bwnd = V_tcp_inflight_min;
1850 	if (bwnd > V_tcp_inflight_max)
1851 		bwnd = V_tcp_inflight_max;
1852 	if ((long)bwnd < tp->t_maxseg * 2)
1853 		bwnd = tp->t_maxseg * 2;
1854 	tp->snd_bwnd = bwnd;
1855 }
1856 
1857 #ifdef TCP_SIGNATURE
1858 /*
1859  * Callback function invoked by m_apply() to digest TCP segment data
1860  * contained within an mbuf chain.
1861  */
1862 static int
1863 tcp_signature_apply(void *fstate, void *data, u_int len)
1864 {
1865 
1866 	MD5Update(fstate, (u_char *)data, len);
1867 	return (0);
1868 }
1869 
1870 /*
1871  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1872  *
1873  * Parameters:
1874  * m		pointer to head of mbuf chain
1875  * _unused
1876  * len		length of TCP segment data, excluding options
1877  * optlen	length of TCP segment options
1878  * buf		pointer to storage for computed MD5 digest
1879  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1880  *
1881  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1882  * When called from tcp_input(), we can be sure that th_sum has been
1883  * zeroed out and verified already.
1884  *
1885  * Return 0 if successful, otherwise return -1.
1886  *
1887  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1888  * search with the destination IP address, and a 'magic SPI' to be
1889  * determined by the application. This is hardcoded elsewhere to 1179
1890  * right now. Another branch of this code exists which uses the SPD to
1891  * specify per-application flows but it is unstable.
1892  */
1893 int
1894 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1895     u_char *buf, u_int direction)
1896 {
1897 	union sockaddr_union dst;
1898 	struct ippseudo ippseudo;
1899 	MD5_CTX ctx;
1900 	int doff;
1901 	struct ip *ip;
1902 	struct ipovly *ipovly;
1903 	struct secasvar *sav;
1904 	struct tcphdr *th;
1905 #ifdef INET6
1906 	struct ip6_hdr *ip6;
1907 	struct in6_addr in6;
1908 	char ip6buf[INET6_ADDRSTRLEN];
1909 	uint32_t plen;
1910 	uint16_t nhdr;
1911 #endif
1912 	u_short savecsum;
1913 
1914 	KASSERT(m != NULL, ("NULL mbuf chain"));
1915 	KASSERT(buf != NULL, ("NULL signature pointer"));
1916 
1917 	/* Extract the destination from the IP header in the mbuf. */
1918 	bzero(&dst, sizeof(union sockaddr_union));
1919 	ip = mtod(m, struct ip *);
1920 #ifdef INET6
1921 	ip6 = NULL;	/* Make the compiler happy. */
1922 #endif
1923 	switch (ip->ip_v) {
1924 	case IPVERSION:
1925 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1926 		dst.sa.sa_family = AF_INET;
1927 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1928 		    ip->ip_src : ip->ip_dst;
1929 		break;
1930 #ifdef INET6
1931 	case (IPV6_VERSION >> 4):
1932 		ip6 = mtod(m, struct ip6_hdr *);
1933 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1934 		dst.sa.sa_family = AF_INET6;
1935 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1936 		    ip6->ip6_src : ip6->ip6_dst;
1937 		break;
1938 #endif
1939 	default:
1940 		return (EINVAL);
1941 		/* NOTREACHED */
1942 		break;
1943 	}
1944 
1945 	/* Look up an SADB entry which matches the address of the peer. */
1946 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1947 	if (sav == NULL) {
1948 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1949 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1950 #ifdef INET6
1951 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1952 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1953 #endif
1954 			"(unsupported)"));
1955 		return (EINVAL);
1956 	}
1957 
1958 	MD5Init(&ctx);
1959 	/*
1960 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1961 	 *
1962 	 * XXX The ippseudo header MUST be digested in network byte order,
1963 	 * or else we'll fail the regression test. Assume all fields we've
1964 	 * been doing arithmetic on have been in host byte order.
1965 	 * XXX One cannot depend on ipovly->ih_len here. When called from
1966 	 * tcp_output(), the underlying ip_len member has not yet been set.
1967 	 */
1968 	switch (ip->ip_v) {
1969 	case IPVERSION:
1970 		ipovly = (struct ipovly *)ip;
1971 		ippseudo.ippseudo_src = ipovly->ih_src;
1972 		ippseudo.ippseudo_dst = ipovly->ih_dst;
1973 		ippseudo.ippseudo_pad = 0;
1974 		ippseudo.ippseudo_p = IPPROTO_TCP;
1975 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1976 		    optlen);
1977 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1978 
1979 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1980 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1981 		break;
1982 #ifdef INET6
1983 	/*
1984 	 * RFC 2385, 2.0  Proposal
1985 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1986 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1987 	 * extended next header value (to form 32 bits), and 32-bit segment
1988 	 * length.
1989 	 * Note: Upper-Layer Packet Length comes before Next Header.
1990 	 */
1991 	case (IPV6_VERSION >> 4):
1992 		in6 = ip6->ip6_src;
1993 		in6_clearscope(&in6);
1994 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1995 		in6 = ip6->ip6_dst;
1996 		in6_clearscope(&in6);
1997 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1998 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1999 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2000 		nhdr = 0;
2001 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2002 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2003 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2004 		nhdr = IPPROTO_TCP;
2005 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2006 
2007 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2008 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2009 		break;
2010 #endif
2011 	default:
2012 		return (EINVAL);
2013 		/* NOTREACHED */
2014 		break;
2015 	}
2016 
2017 
2018 	/*
2019 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2020 	 * The TCP checksum must be set to zero.
2021 	 */
2022 	savecsum = th->th_sum;
2023 	th->th_sum = 0;
2024 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2025 	th->th_sum = savecsum;
2026 
2027 	/*
2028 	 * Step 3: Update MD5 hash with TCP segment data.
2029 	 *         Use m_apply() to avoid an early m_pullup().
2030 	 */
2031 	if (len > 0)
2032 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2033 
2034 	/*
2035 	 * Step 4: Update MD5 hash with shared secret.
2036 	 */
2037 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2038 	MD5Final(buf, &ctx);
2039 
2040 	key_sa_recordxfer(sav, m);
2041 	KEY_FREESAV(&sav);
2042 	return (0);
2043 }
2044 #endif /* TCP_SIGNATURE */
2045 
2046 static int
2047 sysctl_drop(SYSCTL_HANDLER_ARGS)
2048 {
2049 	INIT_VNET_INET(curvnet);
2050 #ifdef INET6
2051 	INIT_VNET_INET6(curvnet);
2052 #endif
2053 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2054 	struct sockaddr_storage addrs[2];
2055 	struct inpcb *inp;
2056 	struct tcpcb *tp;
2057 	struct tcptw *tw;
2058 	struct sockaddr_in *fin, *lin;
2059 #ifdef INET6
2060 	struct sockaddr_in6 *fin6, *lin6;
2061 	struct in6_addr f6, l6;
2062 #endif
2063 	int error;
2064 
2065 	inp = NULL;
2066 	fin = lin = NULL;
2067 #ifdef INET6
2068 	fin6 = lin6 = NULL;
2069 #endif
2070 	error = 0;
2071 
2072 	if (req->oldptr != NULL || req->oldlen != 0)
2073 		return (EINVAL);
2074 	if (req->newptr == NULL)
2075 		return (EPERM);
2076 	if (req->newlen < sizeof(addrs))
2077 		return (ENOMEM);
2078 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2079 	if (error)
2080 		return (error);
2081 
2082 	switch (addrs[0].ss_family) {
2083 #ifdef INET6
2084 	case AF_INET6:
2085 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2086 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2087 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2088 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2089 			return (EINVAL);
2090 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2091 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2092 				return (EINVAL);
2093 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2094 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2095 			fin = (struct sockaddr_in *)&addrs[0];
2096 			lin = (struct sockaddr_in *)&addrs[1];
2097 			break;
2098 		}
2099 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2100 		if (error)
2101 			return (error);
2102 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2103 		if (error)
2104 			return (error);
2105 		break;
2106 #endif
2107 	case AF_INET:
2108 		fin = (struct sockaddr_in *)&addrs[0];
2109 		lin = (struct sockaddr_in *)&addrs[1];
2110 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2111 		    lin->sin_len != sizeof(struct sockaddr_in))
2112 			return (EINVAL);
2113 		break;
2114 	default:
2115 		return (EINVAL);
2116 	}
2117 	INP_INFO_WLOCK(&V_tcbinfo);
2118 	switch (addrs[0].ss_family) {
2119 #ifdef INET6
2120 	case AF_INET6:
2121 		inp = in6_pcblookup_hash(&V_tcbinfo, &f6, fin6->sin6_port,
2122 		    &l6, lin6->sin6_port, 0, NULL);
2123 		break;
2124 #endif
2125 	case AF_INET:
2126 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2127 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2128 		break;
2129 	}
2130 	if (inp != NULL) {
2131 		INP_WLOCK(inp);
2132 		if (inp->inp_vflag & INP_TIMEWAIT) {
2133 			/*
2134 			 * XXXRW: There currently exists a state where an
2135 			 * inpcb is present, but its timewait state has been
2136 			 * discarded.  For now, don't allow dropping of this
2137 			 * type of inpcb.
2138 			 */
2139 			tw = intotw(inp);
2140 			if (tw != NULL)
2141 				tcp_twclose(tw, 0);
2142 			else
2143 				INP_WUNLOCK(inp);
2144 		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2145 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2146 			tp = intotcpcb(inp);
2147 			tp = tcp_drop(tp, ECONNABORTED);
2148 			if (tp != NULL)
2149 				INP_WUNLOCK(inp);
2150 		} else
2151 			INP_WUNLOCK(inp);
2152 	} else
2153 		error = ESRCH;
2154 	INP_INFO_WUNLOCK(&V_tcbinfo);
2155 	return (error);
2156 }
2157 
2158 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2159     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2160     0, sysctl_drop, "", "Drop TCP connection");
2161 
2162 /*
2163  * Generate a standardized TCP log line for use throughout the
2164  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2165  * allow use in the interrupt context.
2166  *
2167  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2168  * NB: The function may return NULL if memory allocation failed.
2169  *
2170  * Due to header inclusion and ordering limitations the struct ip
2171  * and ip6_hdr pointers have to be passed as void pointers.
2172  */
2173 char *
2174 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2175     const void *ip6hdr)
2176 {
2177 	char *s, *sp;
2178 	size_t size;
2179 	struct ip *ip;
2180 #ifdef INET6
2181 	const struct ip6_hdr *ip6;
2182 
2183 	ip6 = (const struct ip6_hdr *)ip6hdr;
2184 #endif /* INET6 */
2185 	ip = (struct ip *)ip4hdr;
2186 
2187 	/*
2188 	 * The log line looks like this:
2189 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2190 	 */
2191 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2192 	    sizeof(PRINT_TH_FLAGS) + 1 +
2193 #ifdef INET6
2194 	    2 * INET6_ADDRSTRLEN;
2195 #else
2196 	    2 * INET_ADDRSTRLEN;
2197 #endif /* INET6 */
2198 
2199 	/* Is logging enabled? */
2200 	if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
2201 		return (NULL);
2202 
2203 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2204 	if (s == NULL)
2205 		return (NULL);
2206 
2207 	strcat(s, "TCP: [");
2208 	sp = s + strlen(s);
2209 
2210 	if (inc && inc->inc_isipv6 == 0) {
2211 		inet_ntoa_r(inc->inc_faddr, sp);
2212 		sp = s + strlen(s);
2213 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2214 		sp = s + strlen(s);
2215 		inet_ntoa_r(inc->inc_laddr, sp);
2216 		sp = s + strlen(s);
2217 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2218 #ifdef INET6
2219 	} else if (inc) {
2220 		ip6_sprintf(sp, &inc->inc6_faddr);
2221 		sp = s + strlen(s);
2222 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2223 		sp = s + strlen(s);
2224 		ip6_sprintf(sp, &inc->inc6_laddr);
2225 		sp = s + strlen(s);
2226 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2227 	} else if (ip6 && th) {
2228 		ip6_sprintf(sp, &ip6->ip6_src);
2229 		sp = s + strlen(s);
2230 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2231 		sp = s + strlen(s);
2232 		ip6_sprintf(sp, &ip6->ip6_dst);
2233 		sp = s + strlen(s);
2234 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2235 #endif /* INET6 */
2236 	} else if (ip && th) {
2237 		inet_ntoa_r(ip->ip_src, sp);
2238 		sp = s + strlen(s);
2239 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2240 		sp = s + strlen(s);
2241 		inet_ntoa_r(ip->ip_dst, sp);
2242 		sp = s + strlen(s);
2243 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2244 	} else {
2245 		free(s, M_TCPLOG);
2246 		return (NULL);
2247 	}
2248 	sp = s + strlen(s);
2249 	if (th)
2250 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2251 	if (*(s + size - 1) != '\0')
2252 		panic("%s: string too long", __func__);
2253 	return (s);
2254 }
2255