1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ipsec.h" 36 #include "opt_kern_tls.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/arb.h> 41 #include <sys/callout.h> 42 #include <sys/eventhandler.h> 43 #ifdef TCP_HHOOK 44 #include <sys/hhook.h> 45 #endif 46 #include <sys/kernel.h> 47 #ifdef TCP_HHOOK 48 #include <sys/khelp.h> 49 #endif 50 #ifdef KERN_TLS 51 #include <sys/ktls.h> 52 #endif 53 #include <sys/qmath.h> 54 #include <sys/stats.h> 55 #include <sys/sysctl.h> 56 #include <sys/jail.h> 57 #include <sys/malloc.h> 58 #include <sys/refcount.h> 59 #include <sys/mbuf.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/protosw.h> 66 #include <sys/random.h> 67 68 #include <vm/uma.h> 69 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/if_private.h> 75 #include <net/vnet.h> 76 77 #include <netinet/in.h> 78 #include <netinet/in_fib.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_icmp.h> 85 #include <netinet/ip_var.h> 86 #ifdef INET6 87 #include <netinet/icmp6.h> 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_fib.h> 90 #include <netinet6/in6_pcb.h> 91 #include <netinet6/ip6_var.h> 92 #include <netinet6/scope6_var.h> 93 #include <netinet6/nd6.h> 94 #endif 95 96 #include <netinet/tcp.h> 97 #ifdef INVARIANTS 98 #define TCPSTATES 99 #endif 100 #include <netinet/tcp_fsm.h> 101 #include <netinet/tcp_seq.h> 102 #include <netinet/tcp_timer.h> 103 #include <netinet/tcp_var.h> 104 #include <netinet/tcp_ecn.h> 105 #include <netinet/tcp_log_buf.h> 106 #include <netinet/tcp_syncache.h> 107 #include <netinet/tcp_hpts.h> 108 #include <netinet/tcp_lro.h> 109 #include <netinet/cc/cc.h> 110 #include <netinet/tcpip.h> 111 #include <netinet/tcp_fastopen.h> 112 #include <netinet/tcp_accounting.h> 113 #ifdef TCPPCAP 114 #include <netinet/tcp_pcap.h> 115 #endif 116 #ifdef TCP_OFFLOAD 117 #include <netinet/tcp_offload.h> 118 #endif 119 #include <netinet/udp.h> 120 #include <netinet/udp_var.h> 121 #ifdef INET6 122 #include <netinet6/tcp6_var.h> 123 #endif 124 125 #include <netipsec/ipsec_support.h> 126 127 #include <machine/in_cksum.h> 128 #include <crypto/siphash/siphash.h> 129 130 #include <security/mac/mac_framework.h> 131 132 #ifdef INET6 133 static ip6proto_ctlinput_t tcp6_ctlinput; 134 static udp_tun_icmp_t tcp6_ctlinput_viaudp; 135 #endif 136 137 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 138 #ifdef INET6 139 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 140 #endif 141 142 uint32_t tcp_ack_war_time_window = 1000; 143 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow, 144 CTLFLAG_RW, 145 &tcp_ack_war_time_window, 1000, 146 "If the tcp_stack does ack-war prevention how many milliseconds are in its time window?"); 147 uint32_t tcp_ack_war_cnt = 5; 148 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, 149 CTLFLAG_RW, 150 &tcp_ack_war_cnt, 5, 151 "If the tcp_stack does ack-war prevention how many acks can be sent in its time window?"); 152 153 struct rwlock tcp_function_lock; 154 155 static int 156 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 157 { 158 int error, new; 159 160 new = V_tcp_mssdflt; 161 error = sysctl_handle_int(oidp, &new, 0, req); 162 if (error == 0 && req->newptr) { 163 if (new < TCP_MINMSS) 164 error = EINVAL; 165 else 166 V_tcp_mssdflt = new; 167 } 168 return (error); 169 } 170 171 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", 174 "Default TCP Maximum Segment Size"); 175 176 #ifdef INET6 177 static int 178 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 179 { 180 int error, new; 181 182 new = V_tcp_v6mssdflt; 183 error = sysctl_handle_int(oidp, &new, 0, req); 184 if (error == 0 && req->newptr) { 185 if (new < TCP_MINMSS) 186 error = EINVAL; 187 else 188 V_tcp_v6mssdflt = new; 189 } 190 return (error); 191 } 192 193 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", 196 "Default TCP Maximum Segment Size for IPv6"); 197 #endif /* INET6 */ 198 199 /* 200 * Minimum MSS we accept and use. This prevents DoS attacks where 201 * we are forced to a ridiculous low MSS like 20 and send hundreds 202 * of packets instead of one. The effect scales with the available 203 * bandwidth and quickly saturates the CPU and network interface 204 * with packet generation and sending. Set to zero to disable MINMSS 205 * checking. This setting prevents us from sending too small packets. 206 */ 207 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 209 &VNET_NAME(tcp_minmss), 0, 210 "Minimum TCP Maximum Segment Size"); 211 212 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 213 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 214 &VNET_NAME(tcp_do_rfc1323), 0, 215 "Enable rfc1323 (high performance TCP) extensions"); 216 217 /* 218 * As of June 2021, several TCP stacks violate RFC 7323 from September 2014. 219 * Some stacks negotiate TS, but never send them after connection setup. Some 220 * stacks negotiate TS, but don't send them when sending keep-alive segments. 221 * These include modern widely deployed TCP stacks. 222 * Therefore tolerating violations for now... 223 */ 224 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1; 225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW, 226 &VNET_NAME(tcp_tolerate_missing_ts), 0, 227 "Tolerate missing TCP timestamps"); 228 229 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1; 230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW, 231 &VNET_NAME(tcp_ts_offset_per_conn), 0, 232 "Initialize TCP timestamps per connection instead of per host pair"); 233 234 /* How many connections are pacing */ 235 static volatile uint32_t number_of_tcp_connections_pacing = 0; 236 static uint32_t shadow_num_connections = 0; 237 static counter_u64_t tcp_pacing_failures; 238 static counter_u64_t tcp_dgp_failures; 239 static uint32_t shadow_tcp_pacing_dgp = 0; 240 static volatile uint32_t number_of_dgp_connections = 0; 241 242 static int tcp_pacing_limit = 10000; 243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW, 244 &tcp_pacing_limit, 1000, 245 "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)"); 246 247 static int tcp_dgp_limit = -1; 248 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW, 249 &tcp_dgp_limit, -1, 250 "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)"); 251 252 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD, 253 &shadow_num_connections, 0, "Number of TCP connections being paced"); 254 255 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD, 256 &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit"); 257 258 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD, 259 &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit"); 260 261 static int tcp_log_debug = 0; 262 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 263 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 264 265 /* 266 * Target size of TCP PCB hash tables. Must be a power of two. 267 * 268 * Note that this can be overridden by the kernel environment 269 * variable net.inet.tcp.tcbhashsize 270 */ 271 #ifndef TCBHASHSIZE 272 #define TCBHASHSIZE 0 273 #endif 274 static int tcp_tcbhashsize = TCBHASHSIZE; 275 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 276 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 277 278 static int do_tcpdrain = 1; 279 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 280 "Enable tcp_drain routine for extra help when low on mbufs"); 281 282 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 283 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 284 285 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1; 286 #define V_icmp_may_rst VNET(icmp_may_rst) 287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 288 &VNET_NAME(icmp_may_rst), 0, 289 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 290 291 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0; 292 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 293 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 294 &VNET_NAME(tcp_isn_reseed_interval), 0, 295 "Seconds between reseeding of ISN secret"); 296 297 static int tcp_soreceive_stream; 298 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 299 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 300 301 VNET_DEFINE(uma_zone_t, sack_hole_zone); 302 #define V_sack_hole_zone VNET(sack_hole_zone) 303 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0; /* unlimited */ 304 static int 305 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS) 306 { 307 int error; 308 uint32_t new; 309 310 new = V_tcp_map_entries_limit; 311 error = sysctl_handle_int(oidp, &new, 0, req); 312 if (error == 0 && req->newptr) { 313 /* only allow "0" and value > minimum */ 314 if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT) 315 error = EINVAL; 316 else 317 V_tcp_map_entries_limit = new; 318 } 319 return (error); 320 } 321 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit, 322 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 323 &VNET_NAME(tcp_map_entries_limit), 0, 324 &sysctl_net_inet_tcp_map_limit_check, "IU", 325 "Total sendmap entries limit"); 326 327 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0; /* unlimited */ 328 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW, 329 &VNET_NAME(tcp_map_split_limit), 0, 330 "Total sendmap split entries limit"); 331 332 #ifdef TCP_HHOOK 333 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 334 #endif 335 336 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH 337 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]); 338 #define V_ts_offset_secret VNET(ts_offset_secret) 339 340 static int tcp_default_fb_init(struct tcpcb *tp, void **ptr); 341 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); 342 static int tcp_default_handoff_ok(struct tcpcb *tp); 343 static struct inpcb *tcp_notify(struct inpcb *, int); 344 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 345 static struct inpcb *tcp_mtudisc(struct inpcb *, int); 346 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int); 347 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 348 const void *ip4hdr, const void *ip6hdr); 349 static void tcp_default_switch_failed(struct tcpcb *tp); 350 static ipproto_ctlinput_t tcp_ctlinput; 351 static udp_tun_icmp_t tcp_ctlinput_viaudp; 352 353 static struct tcp_function_block tcp_def_funcblk = { 354 .tfb_tcp_block_name = "freebsd", 355 .tfb_tcp_output = tcp_default_output, 356 .tfb_tcp_do_segment = tcp_do_segment, 357 .tfb_tcp_ctloutput = tcp_default_ctloutput, 358 .tfb_tcp_handoff_ok = tcp_default_handoff_ok, 359 .tfb_tcp_fb_init = tcp_default_fb_init, 360 .tfb_tcp_fb_fini = tcp_default_fb_fini, 361 .tfb_switch_failed = tcp_default_switch_failed, 362 }; 363 364 static int tcp_fb_cnt = 0; 365 struct tcp_funchead t_functions; 366 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk; 367 #define V_tcp_func_set_ptr VNET(tcp_func_set_ptr) 368 369 void 370 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp) 371 { 372 TCPSTAT_INC(tcps_dsack_count); 373 tp->t_dsack_pack++; 374 if (tlp == 0) { 375 if (SEQ_GT(end, start)) { 376 tp->t_dsack_bytes += (end - start); 377 TCPSTAT_ADD(tcps_dsack_bytes, (end - start)); 378 } else { 379 tp->t_dsack_tlp_bytes += (start - end); 380 TCPSTAT_ADD(tcps_dsack_bytes, (start - end)); 381 } 382 } else { 383 if (SEQ_GT(end, start)) { 384 tp->t_dsack_bytes += (end - start); 385 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start)); 386 } else { 387 tp->t_dsack_tlp_bytes += (start - end); 388 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end)); 389 } 390 } 391 } 392 393 static struct tcp_function_block * 394 find_tcp_functions_locked(struct tcp_function_set *fs) 395 { 396 struct tcp_function *f; 397 struct tcp_function_block *blk = NULL; 398 399 rw_assert(&tcp_function_lock, RA_LOCKED); 400 TAILQ_FOREACH(f, &t_functions, tf_next) { 401 if (strcmp(f->tf_name, fs->function_set_name) == 0) { 402 blk = f->tf_fb; 403 break; 404 } 405 } 406 return (blk); 407 } 408 409 static struct tcp_function_block * 410 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 411 { 412 struct tcp_function_block *rblk = NULL; 413 struct tcp_function *f; 414 415 rw_assert(&tcp_function_lock, RA_LOCKED); 416 TAILQ_FOREACH(f, &t_functions, tf_next) { 417 if (f->tf_fb == blk) { 418 rblk = blk; 419 if (s) { 420 *s = f; 421 } 422 break; 423 } 424 } 425 return (rblk); 426 } 427 428 struct tcp_function_block * 429 find_and_ref_tcp_functions(struct tcp_function_set *fs) 430 { 431 struct tcp_function_block *blk; 432 433 rw_rlock(&tcp_function_lock); 434 blk = find_tcp_functions_locked(fs); 435 if (blk) 436 refcount_acquire(&blk->tfb_refcnt); 437 rw_runlock(&tcp_function_lock); 438 return (blk); 439 } 440 441 struct tcp_function_block * 442 find_and_ref_tcp_fb(struct tcp_function_block *blk) 443 { 444 struct tcp_function_block *rblk; 445 446 rw_rlock(&tcp_function_lock); 447 rblk = find_tcp_fb_locked(blk, NULL); 448 if (rblk) 449 refcount_acquire(&rblk->tfb_refcnt); 450 rw_runlock(&tcp_function_lock); 451 return (rblk); 452 } 453 454 /* Find a matching alias for the given tcp_function_block. */ 455 int 456 find_tcp_function_alias(struct tcp_function_block *blk, 457 struct tcp_function_set *fs) 458 { 459 struct tcp_function *f; 460 int found; 461 462 found = 0; 463 rw_rlock(&tcp_function_lock); 464 TAILQ_FOREACH(f, &t_functions, tf_next) { 465 if ((f->tf_fb == blk) && 466 (strncmp(f->tf_name, blk->tfb_tcp_block_name, 467 TCP_FUNCTION_NAME_LEN_MAX) != 0)) { 468 /* Matching function block with different name. */ 469 strncpy(fs->function_set_name, f->tf_name, 470 TCP_FUNCTION_NAME_LEN_MAX); 471 found = 1; 472 break; 473 } 474 } 475 /* Null terminate the string appropriately. */ 476 if (found) { 477 fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 478 } else { 479 fs->function_set_name[0] = '\0'; 480 } 481 rw_runlock(&tcp_function_lock); 482 return (found); 483 } 484 485 static struct tcp_function_block * 486 find_and_ref_tcp_default_fb(void) 487 { 488 struct tcp_function_block *rblk; 489 490 rw_rlock(&tcp_function_lock); 491 rblk = V_tcp_func_set_ptr; 492 refcount_acquire(&rblk->tfb_refcnt); 493 rw_runlock(&tcp_function_lock); 494 return (rblk); 495 } 496 497 void 498 tcp_switch_back_to_default(struct tcpcb *tp) 499 { 500 struct tcp_function_block *tfb; 501 void *ptr = NULL; 502 503 KASSERT(tp->t_fb != &tcp_def_funcblk, 504 ("%s: called by the built-in default stack", __func__)); 505 506 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 507 tp->t_fb->tfb_tcp_timer_stop_all(tp); 508 509 /* 510 * Now, we'll find a new function block to use. 511 * Start by trying the current user-selected 512 * default, unless this stack is the user-selected 513 * default. 514 */ 515 tfb = find_and_ref_tcp_default_fb(); 516 if (tfb == tp->t_fb) { 517 refcount_release(&tfb->tfb_refcnt); 518 tfb = NULL; 519 } 520 /* Does the stack accept this connection? */ 521 if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) { 522 refcount_release(&tfb->tfb_refcnt); 523 tfb = NULL; 524 } 525 /* Try to use that stack. */ 526 if (tfb != NULL) { 527 /* Initialize the new stack. If it succeeds, we are done. */ 528 if (tfb->tfb_tcp_fb_init == NULL || 529 (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) { 530 /* Release the old stack */ 531 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 532 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 533 refcount_release(&tp->t_fb->tfb_refcnt); 534 /* Now set in all the pointers */ 535 tp->t_fb = tfb; 536 tp->t_fb_ptr = ptr; 537 return; 538 } 539 /* 540 * Initialization failed. Release the reference count on 541 * the looked up default stack. 542 */ 543 refcount_release(&tfb->tfb_refcnt); 544 } 545 546 /* 547 * If that wasn't feasible, use the built-in default 548 * stack which is not allowed to reject anyone. 549 */ 550 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); 551 if (tfb == NULL) { 552 /* there always should be a default */ 553 panic("Can't refer to tcp_def_funcblk"); 554 } 555 if ((*tfb->tfb_tcp_handoff_ok)(tp)) { 556 /* The default stack cannot say no */ 557 panic("Default stack rejects a new session?"); 558 } 559 if (tfb->tfb_tcp_fb_init != NULL && 560 (*tfb->tfb_tcp_fb_init)(tp, &ptr)) { 561 /* The default stack cannot fail */ 562 panic("Default stack initialization failed"); 563 } 564 /* Now release the old stack */ 565 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 566 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 567 refcount_release(&tp->t_fb->tfb_refcnt); 568 /* And set in the pointers to the new */ 569 tp->t_fb = tfb; 570 tp->t_fb_ptr = ptr; 571 } 572 573 static bool 574 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, 575 const struct sockaddr *sa, void *ctx) 576 { 577 struct ip *iph; 578 #ifdef INET6 579 struct ip6_hdr *ip6; 580 #endif 581 struct udphdr *uh; 582 struct tcphdr *th; 583 int thlen; 584 uint16_t port; 585 586 TCPSTAT_INC(tcps_tunneled_pkts); 587 if ((m->m_flags & M_PKTHDR) == 0) { 588 /* Can't handle one that is not a pkt hdr */ 589 TCPSTAT_INC(tcps_tunneled_errs); 590 goto out; 591 } 592 thlen = sizeof(struct tcphdr); 593 if (m->m_len < off + sizeof(struct udphdr) + thlen && 594 (m = m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) { 595 TCPSTAT_INC(tcps_tunneled_errs); 596 goto out; 597 } 598 iph = mtod(m, struct ip *); 599 uh = (struct udphdr *)((caddr_t)iph + off); 600 th = (struct tcphdr *)(uh + 1); 601 thlen = th->th_off << 2; 602 if (m->m_len < off + sizeof(struct udphdr) + thlen) { 603 m = m_pullup(m, off + sizeof(struct udphdr) + thlen); 604 if (m == NULL) { 605 TCPSTAT_INC(tcps_tunneled_errs); 606 goto out; 607 } else { 608 iph = mtod(m, struct ip *); 609 uh = (struct udphdr *)((caddr_t)iph + off); 610 th = (struct tcphdr *)(uh + 1); 611 } 612 } 613 m->m_pkthdr.tcp_tun_port = port = uh->uh_sport; 614 bcopy(th, uh, m->m_len - off); 615 m->m_len -= sizeof(struct udphdr); 616 m->m_pkthdr.len -= sizeof(struct udphdr); 617 /* 618 * We use the same algorithm for 619 * both UDP and TCP for c-sum. So 620 * the code in tcp_input will skip 621 * the checksum. So we do nothing 622 * with the flag (m->m_pkthdr.csum_flags). 623 */ 624 switch (iph->ip_v) { 625 #ifdef INET 626 case IPVERSION: 627 iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); 628 tcp_input_with_port(&m, &off, IPPROTO_TCP, port); 629 break; 630 #endif 631 #ifdef INET6 632 case IPV6_VERSION >> 4: 633 ip6 = mtod(m, struct ip6_hdr *); 634 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); 635 tcp6_input_with_port(&m, &off, IPPROTO_TCP, port); 636 break; 637 #endif 638 default: 639 goto out; 640 break; 641 } 642 return (true); 643 out: 644 m_freem(m); 645 646 return (true); 647 } 648 649 static int 650 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 651 { 652 int error = ENOENT; 653 struct tcp_function_set fs; 654 struct tcp_function_block *blk; 655 656 memset(&fs, 0, sizeof(fs)); 657 rw_rlock(&tcp_function_lock); 658 blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL); 659 if (blk) { 660 /* Found him */ 661 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 662 fs.pcbcnt = blk->tfb_refcnt; 663 } 664 rw_runlock(&tcp_function_lock); 665 error = sysctl_handle_string(oidp, fs.function_set_name, 666 sizeof(fs.function_set_name), req); 667 668 /* Check for error or no change */ 669 if (error != 0 || req->newptr == NULL) 670 return (error); 671 672 rw_wlock(&tcp_function_lock); 673 blk = find_tcp_functions_locked(&fs); 674 if ((blk == NULL) || 675 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 676 error = ENOENT; 677 goto done; 678 } 679 V_tcp_func_set_ptr = blk; 680 done: 681 rw_wunlock(&tcp_function_lock); 682 return (error); 683 } 684 685 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 686 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 687 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 688 "Set/get the default TCP functions"); 689 690 static int 691 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 692 { 693 int error, cnt, linesz; 694 struct tcp_function *f; 695 char *buffer, *cp; 696 size_t bufsz, outsz; 697 bool alias; 698 699 cnt = 0; 700 rw_rlock(&tcp_function_lock); 701 TAILQ_FOREACH(f, &t_functions, tf_next) { 702 cnt++; 703 } 704 rw_runlock(&tcp_function_lock); 705 706 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; 707 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 708 709 error = 0; 710 cp = buffer; 711 712 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', 713 "Alias", "PCB count"); 714 cp += linesz; 715 bufsz -= linesz; 716 outsz = linesz; 717 718 rw_rlock(&tcp_function_lock); 719 TAILQ_FOREACH(f, &t_functions, tf_next) { 720 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); 721 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", 722 f->tf_fb->tfb_tcp_block_name, 723 (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ', 724 alias ? f->tf_name : "-", 725 f->tf_fb->tfb_refcnt); 726 if (linesz >= bufsz) { 727 error = EOVERFLOW; 728 break; 729 } 730 cp += linesz; 731 bufsz -= linesz; 732 outsz += linesz; 733 } 734 rw_runlock(&tcp_function_lock); 735 if (error == 0) 736 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 737 free(buffer, M_TEMP); 738 return (error); 739 } 740 741 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 742 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 743 NULL, 0, sysctl_net_inet_list_available, "A", 744 "list available TCP Function sets"); 745 746 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT; 747 748 #ifdef INET 749 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL; 750 #define V_udp4_tun_socket VNET(udp4_tun_socket) 751 #endif 752 #ifdef INET6 753 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL; 754 #define V_udp6_tun_socket VNET(udp6_tun_socket) 755 #endif 756 757 static struct sx tcpoudp_lock; 758 759 static void 760 tcp_over_udp_stop(void) 761 { 762 763 sx_assert(&tcpoudp_lock, SA_XLOCKED); 764 765 #ifdef INET 766 if (V_udp4_tun_socket != NULL) { 767 soclose(V_udp4_tun_socket); 768 V_udp4_tun_socket = NULL; 769 } 770 #endif 771 #ifdef INET6 772 if (V_udp6_tun_socket != NULL) { 773 soclose(V_udp6_tun_socket); 774 V_udp6_tun_socket = NULL; 775 } 776 #endif 777 } 778 779 static int 780 tcp_over_udp_start(void) 781 { 782 uint16_t port; 783 int ret; 784 #ifdef INET 785 struct sockaddr_in sin; 786 #endif 787 #ifdef INET6 788 struct sockaddr_in6 sin6; 789 #endif 790 791 sx_assert(&tcpoudp_lock, SA_XLOCKED); 792 793 port = V_tcp_udp_tunneling_port; 794 if (ntohs(port) == 0) { 795 /* Must have a port set */ 796 return (EINVAL); 797 } 798 #ifdef INET 799 if (V_udp4_tun_socket != NULL) { 800 /* Already running -- must stop first */ 801 return (EALREADY); 802 } 803 #endif 804 #ifdef INET6 805 if (V_udp6_tun_socket != NULL) { 806 /* Already running -- must stop first */ 807 return (EALREADY); 808 } 809 #endif 810 #ifdef INET 811 if ((ret = socreate(PF_INET, &V_udp4_tun_socket, 812 SOCK_DGRAM, IPPROTO_UDP, 813 curthread->td_ucred, curthread))) { 814 tcp_over_udp_stop(); 815 return (ret); 816 } 817 /* Call the special UDP hook. */ 818 if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket, 819 tcp_recv_udp_tunneled_packet, 820 tcp_ctlinput_viaudp, 821 NULL))) { 822 tcp_over_udp_stop(); 823 return (ret); 824 } 825 /* Ok, we have a socket, bind it to the port. */ 826 memset(&sin, 0, sizeof(struct sockaddr_in)); 827 sin.sin_len = sizeof(struct sockaddr_in); 828 sin.sin_family = AF_INET; 829 sin.sin_port = htons(port); 830 if ((ret = sobind(V_udp4_tun_socket, 831 (struct sockaddr *)&sin, curthread))) { 832 tcp_over_udp_stop(); 833 return (ret); 834 } 835 #endif 836 #ifdef INET6 837 if ((ret = socreate(PF_INET6, &V_udp6_tun_socket, 838 SOCK_DGRAM, IPPROTO_UDP, 839 curthread->td_ucred, curthread))) { 840 tcp_over_udp_stop(); 841 return (ret); 842 } 843 /* Call the special UDP hook. */ 844 if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket, 845 tcp_recv_udp_tunneled_packet, 846 tcp6_ctlinput_viaudp, 847 NULL))) { 848 tcp_over_udp_stop(); 849 return (ret); 850 } 851 /* Ok, we have a socket, bind it to the port. */ 852 memset(&sin6, 0, sizeof(struct sockaddr_in6)); 853 sin6.sin6_len = sizeof(struct sockaddr_in6); 854 sin6.sin6_family = AF_INET6; 855 sin6.sin6_port = htons(port); 856 if ((ret = sobind(V_udp6_tun_socket, 857 (struct sockaddr *)&sin6, curthread))) { 858 tcp_over_udp_stop(); 859 return (ret); 860 } 861 #endif 862 return (0); 863 } 864 865 static int 866 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS) 867 { 868 int error; 869 uint32_t old, new; 870 871 old = V_tcp_udp_tunneling_port; 872 new = old; 873 error = sysctl_handle_int(oidp, &new, 0, req); 874 if ((error == 0) && 875 (req->newptr != NULL)) { 876 if ((new < TCP_TUNNELING_PORT_MIN) || 877 (new > TCP_TUNNELING_PORT_MAX)) { 878 error = EINVAL; 879 } else { 880 sx_xlock(&tcpoudp_lock); 881 V_tcp_udp_tunneling_port = new; 882 if (old != 0) { 883 tcp_over_udp_stop(); 884 } 885 if (new != 0) { 886 error = tcp_over_udp_start(); 887 if (error != 0) { 888 V_tcp_udp_tunneling_port = 0; 889 } 890 } 891 sx_xunlock(&tcpoudp_lock); 892 } 893 } 894 return (error); 895 } 896 897 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port, 898 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 899 &VNET_NAME(tcp_udp_tunneling_port), 900 0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU", 901 "Tunneling port for tcp over udp"); 902 903 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT; 904 905 static int 906 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS) 907 { 908 int error, new; 909 910 new = V_tcp_udp_tunneling_overhead; 911 error = sysctl_handle_int(oidp, &new, 0, req); 912 if (error == 0 && req->newptr) { 913 if ((new < TCP_TUNNELING_OVERHEAD_MIN) || 914 (new > TCP_TUNNELING_OVERHEAD_MAX)) 915 error = EINVAL; 916 else 917 V_tcp_udp_tunneling_overhead = new; 918 } 919 return (error); 920 } 921 922 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead, 923 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 924 &VNET_NAME(tcp_udp_tunneling_overhead), 925 0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU", 926 "MSS reduction when using tcp over udp"); 927 928 /* 929 * Exports one (struct tcp_function_info) for each alias/name. 930 */ 931 static int 932 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) 933 { 934 int cnt, error; 935 struct tcp_function *f; 936 struct tcp_function_info tfi; 937 938 /* 939 * We don't allow writes. 940 */ 941 if (req->newptr != NULL) 942 return (EINVAL); 943 944 /* 945 * Wire the old buffer so we can directly copy the functions to 946 * user space without dropping the lock. 947 */ 948 if (req->oldptr != NULL) { 949 error = sysctl_wire_old_buffer(req, 0); 950 if (error) 951 return (error); 952 } 953 954 /* 955 * Walk the list and copy out matching entries. If INVARIANTS 956 * is compiled in, also walk the list to verify the length of 957 * the list matches what we have recorded. 958 */ 959 rw_rlock(&tcp_function_lock); 960 961 cnt = 0; 962 #ifndef INVARIANTS 963 if (req->oldptr == NULL) { 964 cnt = tcp_fb_cnt; 965 goto skip_loop; 966 } 967 #endif 968 TAILQ_FOREACH(f, &t_functions, tf_next) { 969 #ifdef INVARIANTS 970 cnt++; 971 #endif 972 if (req->oldptr != NULL) { 973 bzero(&tfi, sizeof(tfi)); 974 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; 975 tfi.tfi_id = f->tf_fb->tfb_id; 976 (void)strlcpy(tfi.tfi_alias, f->tf_name, 977 sizeof(tfi.tfi_alias)); 978 (void)strlcpy(tfi.tfi_name, 979 f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name)); 980 error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); 981 /* 982 * Don't stop on error, as that is the 983 * mechanism we use to accumulate length 984 * information if the buffer was too short. 985 */ 986 } 987 } 988 KASSERT(cnt == tcp_fb_cnt, 989 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); 990 #ifndef INVARIANTS 991 skip_loop: 992 #endif 993 rw_runlock(&tcp_function_lock); 994 if (req->oldptr == NULL) 995 error = SYSCTL_OUT(req, NULL, 996 (cnt + 1) * sizeof(struct tcp_function_info)); 997 998 return (error); 999 } 1000 1001 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, 1002 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, 1003 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", 1004 "List TCP function block name-to-ID mappings"); 1005 1006 /* 1007 * tfb_tcp_handoff_ok() function for the default stack. 1008 * Note that we'll basically try to take all comers. 1009 */ 1010 static int 1011 tcp_default_handoff_ok(struct tcpcb *tp) 1012 { 1013 1014 return (0); 1015 } 1016 1017 /* 1018 * tfb_tcp_fb_init() function for the default stack. 1019 * 1020 * This handles making sure we have appropriate timers set if you are 1021 * transitioning a socket that has some amount of setup done. 1022 * 1023 * The init() fuction from the default can *never* return non-zero i.e. 1024 * it is required to always succeed since it is the stack of last resort! 1025 */ 1026 static int 1027 tcp_default_fb_init(struct tcpcb *tp, void **ptr) 1028 { 1029 struct socket *so = tptosocket(tp); 1030 int rexmt; 1031 1032 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1033 /* We don't use the pointer */ 1034 *ptr = NULL; 1035 1036 KASSERT(tp->t_state < TCPS_TIME_WAIT, 1037 ("%s: connection %p in unexpected state %d", __func__, tp, 1038 tp->t_state)); 1039 1040 /* Make sure we get no interesting mbuf queuing behavior */ 1041 /* All mbuf queue/ack compress flags should be off */ 1042 tcp_lro_features_off(tp); 1043 1044 /* Cancel the GP measurement in progress */ 1045 tp->t_flags &= ~TF_GPUTINPROG; 1046 /* Validate the timers are not in usec, if they are convert */ 1047 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 1048 if ((tp->t_state == TCPS_SYN_SENT) || 1049 (tp->t_state == TCPS_SYN_RECEIVED)) 1050 rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift]; 1051 else 1052 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; 1053 if (tp->t_rxtshift == 0) 1054 tp->t_rxtcur = rexmt; 1055 else 1056 TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX); 1057 1058 /* 1059 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't 1060 * know what to do for unexpected states (which includes TIME_WAIT). 1061 */ 1062 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) 1063 return (0); 1064 1065 /* 1066 * Make sure some kind of transmission timer is set if there is 1067 * outstanding data. 1068 */ 1069 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || 1070 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || 1071 tcp_timer_active(tp, TT_PERSIST))) { 1072 /* 1073 * If the session has established and it looks like it should 1074 * be in the persist state, set the persist timer. Otherwise, 1075 * set the retransmit timer. 1076 */ 1077 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && 1078 (int32_t)(tp->snd_nxt - tp->snd_una) < 1079 (int32_t)sbavail(&so->so_snd)) 1080 tcp_setpersist(tp); 1081 else 1082 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp)); 1083 } 1084 1085 /* All non-embryonic sessions get a keepalive timer. */ 1086 if (!tcp_timer_active(tp, TT_KEEP)) 1087 tcp_timer_activate(tp, TT_KEEP, 1088 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : 1089 TP_KEEPINIT(tp)); 1090 1091 /* 1092 * Make sure critical variables are initialized 1093 * if transitioning while in Recovery. 1094 */ 1095 if IN_FASTRECOVERY(tp->t_flags) { 1096 if (tp->sackhint.recover_fs == 0) 1097 tp->sackhint.recover_fs = max(1, 1098 tp->snd_nxt - tp->snd_una); 1099 } 1100 1101 return (0); 1102 } 1103 1104 /* 1105 * tfb_tcp_fb_fini() function for the default stack. 1106 * 1107 * This changes state as necessary (or prudent) to prepare for another stack 1108 * to assume responsibility for the connection. 1109 */ 1110 static void 1111 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) 1112 { 1113 1114 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1115 1116 #ifdef TCP_BLACKBOX 1117 tcp_log_flowend(tp); 1118 #endif 1119 tp->t_acktime = 0; 1120 return; 1121 } 1122 1123 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 1124 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 1125 1126 static struct mtx isn_mtx; 1127 1128 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 1129 #define ISN_LOCK() mtx_lock(&isn_mtx) 1130 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 1131 1132 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash"); 1133 1134 /* 1135 * Take a value and get the next power of 2 that doesn't overflow. 1136 * Used to size the tcp_inpcb hash buckets. 1137 */ 1138 static int 1139 maketcp_hashsize(int size) 1140 { 1141 int hashsize; 1142 1143 /* 1144 * auto tune. 1145 * get the next power of 2 higher than maxsockets. 1146 */ 1147 hashsize = 1 << fls(size); 1148 /* catch overflow, and just go one power of 2 smaller */ 1149 if (hashsize < size) { 1150 hashsize = 1 << (fls(size) - 1); 1151 } 1152 return (hashsize); 1153 } 1154 1155 static volatile int next_tcp_stack_id = 1; 1156 1157 /* 1158 * Register a TCP function block with the name provided in the names 1159 * array. (Note that this function does NOT automatically register 1160 * blk->tfb_tcp_block_name as a stack name. Therefore, you should 1161 * explicitly include blk->tfb_tcp_block_name in the list of names if 1162 * you wish to register the stack with that name.) 1163 * 1164 * Either all name registrations will succeed or all will fail. If 1165 * a name registration fails, the function will update the num_names 1166 * argument to point to the array index of the name that encountered 1167 * the failure. 1168 * 1169 * Returns 0 on success, or an error code on failure. 1170 */ 1171 int 1172 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, 1173 const char *names[], int *num_names) 1174 { 1175 struct tcp_function *n; 1176 struct tcp_function_set fs; 1177 int error, i; 1178 1179 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); 1180 KASSERT(*num_names > 0, 1181 ("%s: Called with non-positive length of name list", __func__)); 1182 KASSERT(rw_initialized(&tcp_function_lock), 1183 ("%s: called too early", __func__)); 1184 1185 if ((blk->tfb_tcp_output == NULL) || 1186 (blk->tfb_tcp_do_segment == NULL) || 1187 (blk->tfb_tcp_ctloutput == NULL) || 1188 (blk->tfb_tcp_handoff_ok == NULL) || 1189 (strlen(blk->tfb_tcp_block_name) == 0)) { 1190 /* 1191 * These functions are required and you 1192 * need a name. 1193 */ 1194 *num_names = 0; 1195 return (EINVAL); 1196 } 1197 1198 if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { 1199 *num_names = 0; 1200 return (EINVAL); 1201 } 1202 1203 refcount_init(&blk->tfb_refcnt, 0); 1204 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); 1205 for (i = 0; i < *num_names; i++) { 1206 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 1207 if (n == NULL) { 1208 error = ENOMEM; 1209 goto cleanup; 1210 } 1211 n->tf_fb = blk; 1212 1213 (void)strlcpy(fs.function_set_name, names[i], 1214 sizeof(fs.function_set_name)); 1215 rw_wlock(&tcp_function_lock); 1216 if (find_tcp_functions_locked(&fs) != NULL) { 1217 /* Duplicate name space not allowed */ 1218 rw_wunlock(&tcp_function_lock); 1219 free(n, M_TCPFUNCTIONS); 1220 error = EALREADY; 1221 goto cleanup; 1222 } 1223 (void)strlcpy(n->tf_name, names[i], sizeof(n->tf_name)); 1224 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 1225 tcp_fb_cnt++; 1226 rw_wunlock(&tcp_function_lock); 1227 } 1228 return (0); 1229 1230 cleanup: 1231 /* 1232 * Deregister the names we just added. Because registration failed 1233 * for names[i], we don't need to deregister that name. 1234 */ 1235 *num_names = i; 1236 rw_wlock(&tcp_function_lock); 1237 while (--i >= 0) { 1238 TAILQ_FOREACH(n, &t_functions, tf_next) { 1239 if (!strncmp(n->tf_name, names[i], 1240 TCP_FUNCTION_NAME_LEN_MAX)) { 1241 TAILQ_REMOVE(&t_functions, n, tf_next); 1242 tcp_fb_cnt--; 1243 n->tf_fb = NULL; 1244 free(n, M_TCPFUNCTIONS); 1245 break; 1246 } 1247 } 1248 } 1249 rw_wunlock(&tcp_function_lock); 1250 return (error); 1251 } 1252 1253 /* 1254 * Register a TCP function block using the name provided in the name 1255 * argument. 1256 * 1257 * Returns 0 on success, or an error code on failure. 1258 */ 1259 int 1260 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, 1261 int wait) 1262 { 1263 const char *name_list[1]; 1264 int num_names, rv; 1265 1266 num_names = 1; 1267 if (name != NULL) 1268 name_list[0] = name; 1269 else 1270 name_list[0] = blk->tfb_tcp_block_name; 1271 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); 1272 return (rv); 1273 } 1274 1275 /* 1276 * Register a TCP function block using the name defined in 1277 * blk->tfb_tcp_block_name. 1278 * 1279 * Returns 0 on success, or an error code on failure. 1280 */ 1281 int 1282 register_tcp_functions(struct tcp_function_block *blk, int wait) 1283 { 1284 1285 return (register_tcp_functions_as_name(blk, NULL, wait)); 1286 } 1287 1288 /* 1289 * Deregister all names associated with a function block. This 1290 * functionally removes the function block from use within the system. 1291 * 1292 * When called with a true quiesce argument, mark the function block 1293 * as being removed so no more stacks will use it and determine 1294 * whether the removal would succeed. 1295 * 1296 * When called with a false quiesce argument, actually attempt the 1297 * removal. 1298 * 1299 * When called with a force argument, attempt to switch all TCBs to 1300 * use the default stack instead of returning EBUSY. 1301 * 1302 * Returns 0 on success (or if the removal would succeed), or an error 1303 * code on failure. 1304 */ 1305 int 1306 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, 1307 bool force) 1308 { 1309 struct tcp_function *f; 1310 VNET_ITERATOR_DECL(vnet_iter); 1311 1312 if (blk == &tcp_def_funcblk) { 1313 /* You can't un-register the default */ 1314 return (EPERM); 1315 } 1316 rw_wlock(&tcp_function_lock); 1317 VNET_LIST_RLOCK_NOSLEEP(); 1318 VNET_FOREACH(vnet_iter) { 1319 CURVNET_SET(vnet_iter); 1320 if (blk == V_tcp_func_set_ptr) { 1321 /* You can't free the current default in some vnet. */ 1322 CURVNET_RESTORE(); 1323 VNET_LIST_RUNLOCK_NOSLEEP(); 1324 rw_wunlock(&tcp_function_lock); 1325 return (EBUSY); 1326 } 1327 CURVNET_RESTORE(); 1328 } 1329 VNET_LIST_RUNLOCK_NOSLEEP(); 1330 /* Mark the block so no more stacks can use it. */ 1331 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 1332 /* 1333 * If TCBs are still attached to the stack, attempt to switch them 1334 * to the default stack. 1335 */ 1336 if (force && blk->tfb_refcnt) { 1337 struct inpcb *inp; 1338 struct tcpcb *tp; 1339 VNET_ITERATOR_DECL(vnet_iter); 1340 1341 rw_wunlock(&tcp_function_lock); 1342 1343 VNET_LIST_RLOCK(); 1344 VNET_FOREACH(vnet_iter) { 1345 CURVNET_SET(vnet_iter); 1346 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1347 INPLOOKUP_WLOCKPCB); 1348 1349 while ((inp = inp_next(&inpi)) != NULL) { 1350 tp = intotcpcb(inp); 1351 if (tp == NULL || tp->t_fb != blk) 1352 continue; 1353 tcp_switch_back_to_default(tp); 1354 } 1355 CURVNET_RESTORE(); 1356 } 1357 VNET_LIST_RUNLOCK(); 1358 1359 rw_wlock(&tcp_function_lock); 1360 } 1361 if (blk->tfb_refcnt) { 1362 /* TCBs still attached. */ 1363 rw_wunlock(&tcp_function_lock); 1364 return (EBUSY); 1365 } 1366 if (quiesce) { 1367 /* Skip removal. */ 1368 rw_wunlock(&tcp_function_lock); 1369 return (0); 1370 } 1371 /* Remove any function names that map to this function block. */ 1372 while (find_tcp_fb_locked(blk, &f) != NULL) { 1373 TAILQ_REMOVE(&t_functions, f, tf_next); 1374 tcp_fb_cnt--; 1375 f->tf_fb = NULL; 1376 free(f, M_TCPFUNCTIONS); 1377 } 1378 rw_wunlock(&tcp_function_lock); 1379 return (0); 1380 } 1381 1382 static void 1383 tcp_drain(void) 1384 { 1385 struct epoch_tracker et; 1386 VNET_ITERATOR_DECL(vnet_iter); 1387 1388 if (!do_tcpdrain) 1389 return; 1390 1391 NET_EPOCH_ENTER(et); 1392 VNET_LIST_RLOCK_NOSLEEP(); 1393 VNET_FOREACH(vnet_iter) { 1394 CURVNET_SET(vnet_iter); 1395 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1396 INPLOOKUP_WLOCKPCB); 1397 struct inpcb *inpb; 1398 struct tcpcb *tcpb; 1399 1400 /* 1401 * Walk the tcpbs, if existing, and flush the reassembly queue, 1402 * if there is one... 1403 * XXX: The "Net/3" implementation doesn't imply that the TCP 1404 * reassembly queue should be flushed, but in a situation 1405 * where we're really low on mbufs, this is potentially 1406 * useful. 1407 */ 1408 while ((inpb = inp_next(&inpi)) != NULL) { 1409 if ((tcpb = intotcpcb(inpb)) != NULL) { 1410 tcp_reass_flush(tcpb); 1411 tcp_clean_sackreport(tcpb); 1412 #ifdef TCP_BLACKBOX 1413 tcp_log_drain(tcpb); 1414 #endif 1415 #ifdef TCPPCAP 1416 if (tcp_pcap_aggressive_free) { 1417 /* Free the TCP PCAP queues. */ 1418 tcp_pcap_drain(&(tcpb->t_inpkts)); 1419 tcp_pcap_drain(&(tcpb->t_outpkts)); 1420 } 1421 #endif 1422 } 1423 } 1424 CURVNET_RESTORE(); 1425 } 1426 VNET_LIST_RUNLOCK_NOSLEEP(); 1427 NET_EPOCH_EXIT(et); 1428 } 1429 1430 static void 1431 tcp_vnet_init(void *arg __unused) 1432 { 1433 1434 #ifdef TCP_HHOOK 1435 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 1436 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1437 printf("%s: WARNING: unable to register helper hook\n", __func__); 1438 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 1439 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1440 printf("%s: WARNING: unable to register helper hook\n", __func__); 1441 #endif 1442 #ifdef STATS 1443 if (tcp_stats_init()) 1444 printf("%s: WARNING: unable to initialise TCP stats\n", 1445 __func__); 1446 #endif 1447 in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize, 1448 tcp_tcbhashsize); 1449 1450 syncache_init(); 1451 tcp_hc_init(); 1452 1453 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 1454 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 1455 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1456 1457 tcp_fastopen_init(); 1458 1459 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); 1460 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); 1461 1462 V_tcp_msl = TCPTV_MSL; 1463 } 1464 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 1465 tcp_vnet_init, NULL); 1466 1467 static void 1468 tcp_init(void *arg __unused) 1469 { 1470 int hashsize; 1471 1472 tcp_reass_global_init(); 1473 1474 /* XXX virtualize those below? */ 1475 tcp_delacktime = TCPTV_DELACK; 1476 tcp_keepinit = TCPTV_KEEP_INIT; 1477 tcp_keepidle = TCPTV_KEEP_IDLE; 1478 tcp_keepintvl = TCPTV_KEEPINTVL; 1479 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 1480 tcp_rexmit_initial = TCPTV_RTOBASE; 1481 if (tcp_rexmit_initial < 1) 1482 tcp_rexmit_initial = 1; 1483 tcp_rexmit_min = TCPTV_MIN; 1484 if (tcp_rexmit_min < 1) 1485 tcp_rexmit_min = 1; 1486 tcp_persmin = TCPTV_PERSMIN; 1487 tcp_persmax = TCPTV_PERSMAX; 1488 tcp_rexmit_slop = TCPTV_CPU_VAR; 1489 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 1490 1491 /* Setup the tcp function block list */ 1492 TAILQ_INIT(&t_functions); 1493 rw_init(&tcp_function_lock, "tcp_func_lock"); 1494 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 1495 sx_init(&tcpoudp_lock, "TCP over UDP configuration"); 1496 #ifdef TCP_BLACKBOX 1497 /* Initialize the TCP logging data. */ 1498 tcp_log_init(); 1499 #endif 1500 arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0); 1501 1502 if (tcp_soreceive_stream) { 1503 #ifdef INET 1504 tcp_protosw.pr_soreceive = soreceive_stream; 1505 #endif 1506 #ifdef INET6 1507 tcp6_protosw.pr_soreceive = soreceive_stream; 1508 #endif /* INET6 */ 1509 } 1510 1511 #ifdef INET6 1512 max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); 1513 #else /* INET6 */ 1514 max_protohdr_grow(sizeof(struct tcpiphdr)); 1515 #endif /* INET6 */ 1516 1517 ISN_LOCK_INIT(); 1518 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 1519 SHUTDOWN_PRI_DEFAULT); 1520 EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1521 EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1522 1523 tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK); 1524 tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK); 1525 tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK); 1526 tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK); 1527 tcp_extra_mbuf = counter_u64_alloc(M_WAITOK); 1528 tcp_would_have_but = counter_u64_alloc(M_WAITOK); 1529 tcp_comp_total = counter_u64_alloc(M_WAITOK); 1530 tcp_uncomp_total = counter_u64_alloc(M_WAITOK); 1531 tcp_bad_csums = counter_u64_alloc(M_WAITOK); 1532 tcp_pacing_failures = counter_u64_alloc(M_WAITOK); 1533 tcp_dgp_failures = counter_u64_alloc(M_WAITOK); 1534 #ifdef TCPPCAP 1535 tcp_pcap_init(); 1536 #endif 1537 1538 hashsize = tcp_tcbhashsize; 1539 if (hashsize == 0) { 1540 /* 1541 * Auto tune the hash size based on maxsockets. 1542 * A perfect hash would have a 1:1 mapping 1543 * (hashsize = maxsockets) however it's been 1544 * suggested that O(2) average is better. 1545 */ 1546 hashsize = maketcp_hashsize(maxsockets / 4); 1547 /* 1548 * Our historical default is 512, 1549 * do not autotune lower than this. 1550 */ 1551 if (hashsize < 512) 1552 hashsize = 512; 1553 if (bootverbose) 1554 printf("%s: %s auto tuned to %d\n", __func__, 1555 "net.inet.tcp.tcbhashsize", hashsize); 1556 } 1557 /* 1558 * We require a hashsize to be a power of two. 1559 * Previously if it was not a power of two we would just reset it 1560 * back to 512, which could be a nasty surprise if you did not notice 1561 * the error message. 1562 * Instead what we do is clip it to the closest power of two lower 1563 * than the specified hash value. 1564 */ 1565 if (!powerof2(hashsize)) { 1566 int oldhashsize = hashsize; 1567 1568 hashsize = maketcp_hashsize(hashsize); 1569 /* prevent absurdly low value */ 1570 if (hashsize < 16) 1571 hashsize = 16; 1572 printf("%s: WARNING: TCB hash size not a power of 2, " 1573 "clipped from %d to %d.\n", __func__, oldhashsize, 1574 hashsize); 1575 } 1576 tcp_tcbhashsize = hashsize; 1577 1578 #ifdef INET 1579 IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput); 1580 #endif 1581 #ifdef INET6 1582 IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput); 1583 #endif 1584 } 1585 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL); 1586 1587 #ifdef VIMAGE 1588 static void 1589 tcp_destroy(void *unused __unused) 1590 { 1591 int n; 1592 #ifdef TCP_HHOOK 1593 int error; 1594 #endif 1595 1596 /* 1597 * All our processes are gone, all our sockets should be cleaned 1598 * up, which means, we should be past the tcp_discardcb() calls. 1599 * Sleep to let all tcpcb timers really disappear and cleanup. 1600 */ 1601 for (;;) { 1602 INP_INFO_WLOCK(&V_tcbinfo); 1603 n = V_tcbinfo.ipi_count; 1604 INP_INFO_WUNLOCK(&V_tcbinfo); 1605 if (n == 0) 1606 break; 1607 pause("tcpdes", hz / 10); 1608 } 1609 tcp_hc_destroy(); 1610 syncache_destroy(); 1611 in_pcbinfo_destroy(&V_tcbinfo); 1612 /* tcp_discardcb() clears the sack_holes up. */ 1613 uma_zdestroy(V_sack_hole_zone); 1614 1615 /* 1616 * Cannot free the zone until all tcpcbs are released as we attach 1617 * the allocations to them. 1618 */ 1619 tcp_fastopen_destroy(); 1620 1621 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); 1622 VNET_PCPUSTAT_FREE(tcpstat); 1623 1624 #ifdef TCP_HHOOK 1625 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 1626 if (error != 0) { 1627 printf("%s: WARNING: unable to deregister helper hook " 1628 "type=%d, id=%d: error %d returned\n", __func__, 1629 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 1630 } 1631 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 1632 if (error != 0) { 1633 printf("%s: WARNING: unable to deregister helper hook " 1634 "type=%d, id=%d: error %d returned\n", __func__, 1635 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 1636 } 1637 #endif 1638 } 1639 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 1640 #endif 1641 1642 void 1643 tcp_fini(void *xtp) 1644 { 1645 1646 } 1647 1648 /* 1649 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 1650 * tcp_template used to store this data in mbufs, but we now recopy it out 1651 * of the tcpcb each time to conserve mbufs. 1652 */ 1653 void 1654 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr) 1655 { 1656 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 1657 1658 INP_WLOCK_ASSERT(inp); 1659 1660 #ifdef INET6 1661 if ((inp->inp_vflag & INP_IPV6) != 0) { 1662 struct ip6_hdr *ip6; 1663 1664 ip6 = (struct ip6_hdr *)ip_ptr; 1665 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 1666 (inp->inp_flow & IPV6_FLOWINFO_MASK); 1667 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 1668 (IPV6_VERSION & IPV6_VERSION_MASK); 1669 if (port == 0) 1670 ip6->ip6_nxt = IPPROTO_TCP; 1671 else 1672 ip6->ip6_nxt = IPPROTO_UDP; 1673 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1674 ip6->ip6_src = inp->in6p_laddr; 1675 ip6->ip6_dst = inp->in6p_faddr; 1676 } 1677 #endif /* INET6 */ 1678 #if defined(INET6) && defined(INET) 1679 else 1680 #endif 1681 #ifdef INET 1682 { 1683 struct ip *ip; 1684 1685 ip = (struct ip *)ip_ptr; 1686 ip->ip_v = IPVERSION; 1687 ip->ip_hl = 5; 1688 ip->ip_tos = inp->inp_ip_tos; 1689 ip->ip_len = 0; 1690 ip->ip_id = 0; 1691 ip->ip_off = 0; 1692 ip->ip_ttl = inp->inp_ip_ttl; 1693 ip->ip_sum = 0; 1694 if (port == 0) 1695 ip->ip_p = IPPROTO_TCP; 1696 else 1697 ip->ip_p = IPPROTO_UDP; 1698 ip->ip_src = inp->inp_laddr; 1699 ip->ip_dst = inp->inp_faddr; 1700 } 1701 #endif /* INET */ 1702 th->th_sport = inp->inp_lport; 1703 th->th_dport = inp->inp_fport; 1704 th->th_seq = 0; 1705 th->th_ack = 0; 1706 th->th_off = 5; 1707 tcp_set_flags(th, 0); 1708 th->th_win = 0; 1709 th->th_urp = 0; 1710 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 1711 } 1712 1713 /* 1714 * Create template to be used to send tcp packets on a connection. 1715 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 1716 * use for this function is in keepalives, which use tcp_respond. 1717 */ 1718 struct tcptemp * 1719 tcpip_maketemplate(struct inpcb *inp) 1720 { 1721 struct tcptemp *t; 1722 1723 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 1724 if (t == NULL) 1725 return (NULL); 1726 tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t); 1727 return (t); 1728 } 1729 1730 /* 1731 * Send a single message to the TCP at address specified by 1732 * the given TCP/IP header. If m == NULL, then we make a copy 1733 * of the tcpiphdr at th and send directly to the addressed host. 1734 * This is used to force keep alive messages out using the TCP 1735 * template for a connection. If flags are given then we send 1736 * a message back to the TCP which originated the segment th, 1737 * and discard the mbuf containing it and any other attached mbufs. 1738 * 1739 * In any case the ack and sequence number of the transmitted 1740 * segment are as specified by the parameters. 1741 * 1742 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 1743 */ 1744 1745 void 1746 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 1747 tcp_seq ack, tcp_seq seq, uint16_t flags) 1748 { 1749 struct tcpopt to; 1750 struct inpcb *inp; 1751 struct ip *ip; 1752 struct mbuf *optm; 1753 struct udphdr *uh = NULL; 1754 struct tcphdr *nth; 1755 struct tcp_log_buffer *lgb; 1756 u_char *optp; 1757 #ifdef INET6 1758 struct ip6_hdr *ip6; 1759 int isipv6; 1760 #endif /* INET6 */ 1761 int optlen, tlen, win, ulen; 1762 int ect = 0; 1763 bool incl_opts; 1764 uint16_t port; 1765 int output_ret; 1766 #ifdef INVARIANTS 1767 int thflags = tcp_get_flags(th); 1768 #endif 1769 1770 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 1771 NET_EPOCH_ASSERT(); 1772 1773 #ifdef INET6 1774 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 1775 ip6 = ipgen; 1776 #endif /* INET6 */ 1777 ip = ipgen; 1778 1779 if (tp != NULL) { 1780 inp = tptoinpcb(tp); 1781 INP_LOCK_ASSERT(inp); 1782 } else 1783 inp = NULL; 1784 1785 if (m != NULL) { 1786 #ifdef INET6 1787 if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP)) 1788 port = m->m_pkthdr.tcp_tun_port; 1789 else 1790 #endif 1791 if (ip && (ip->ip_p == IPPROTO_UDP)) 1792 port = m->m_pkthdr.tcp_tun_port; 1793 else 1794 port = 0; 1795 } else 1796 port = tp->t_port; 1797 1798 incl_opts = false; 1799 win = 0; 1800 if (tp != NULL) { 1801 if (!(flags & TH_RST)) { 1802 win = sbspace(&inp->inp_socket->so_rcv); 1803 if (win > TCP_MAXWIN << tp->rcv_scale) 1804 win = TCP_MAXWIN << tp->rcv_scale; 1805 } 1806 if ((tp->t_flags & TF_NOOPT) == 0) 1807 incl_opts = true; 1808 } 1809 if (m == NULL) { 1810 m = m_gethdr(M_NOWAIT, MT_DATA); 1811 if (m == NULL) 1812 return; 1813 m->m_data += max_linkhdr; 1814 #ifdef INET6 1815 if (isipv6) { 1816 bcopy((caddr_t)ip6, mtod(m, caddr_t), 1817 sizeof(struct ip6_hdr)); 1818 ip6 = mtod(m, struct ip6_hdr *); 1819 nth = (struct tcphdr *)(ip6 + 1); 1820 if (port) { 1821 /* Insert a UDP header */ 1822 uh = (struct udphdr *)nth; 1823 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1824 uh->uh_dport = port; 1825 nth = (struct tcphdr *)(uh + 1); 1826 } 1827 } else 1828 #endif /* INET6 */ 1829 { 1830 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1831 ip = mtod(m, struct ip *); 1832 nth = (struct tcphdr *)(ip + 1); 1833 if (port) { 1834 /* Insert a UDP header */ 1835 uh = (struct udphdr *)nth; 1836 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1837 uh->uh_dport = port; 1838 nth = (struct tcphdr *)(uh + 1); 1839 } 1840 } 1841 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1842 flags = TH_ACK; 1843 } else if ((!M_WRITABLE(m)) || (port != 0)) { 1844 struct mbuf *n; 1845 1846 /* Can't reuse 'm', allocate a new mbuf. */ 1847 n = m_gethdr(M_NOWAIT, MT_DATA); 1848 if (n == NULL) { 1849 m_freem(m); 1850 return; 1851 } 1852 1853 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 1854 m_freem(m); 1855 m_freem(n); 1856 return; 1857 } 1858 1859 n->m_data += max_linkhdr; 1860 /* m_len is set later */ 1861 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 1862 #ifdef INET6 1863 if (isipv6) { 1864 bcopy((caddr_t)ip6, mtod(n, caddr_t), 1865 sizeof(struct ip6_hdr)); 1866 ip6 = mtod(n, struct ip6_hdr *); 1867 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1868 nth = (struct tcphdr *)(ip6 + 1); 1869 if (port) { 1870 /* Insert a UDP header */ 1871 uh = (struct udphdr *)nth; 1872 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1873 uh->uh_dport = port; 1874 nth = (struct tcphdr *)(uh + 1); 1875 } 1876 } else 1877 #endif /* INET6 */ 1878 { 1879 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 1880 ip = mtod(n, struct ip *); 1881 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1882 nth = (struct tcphdr *)(ip + 1); 1883 if (port) { 1884 /* Insert a UDP header */ 1885 uh = (struct udphdr *)nth; 1886 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1887 uh->uh_dport = port; 1888 nth = (struct tcphdr *)(uh + 1); 1889 } 1890 } 1891 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1892 xchg(nth->th_dport, nth->th_sport, uint16_t); 1893 th = nth; 1894 m_freem(m); 1895 m = n; 1896 } else { 1897 /* 1898 * reuse the mbuf. 1899 * XXX MRT We inherit the FIB, which is lucky. 1900 */ 1901 m_freem(m->m_next); 1902 m->m_next = NULL; 1903 m->m_data = (caddr_t)ipgen; 1904 /* clear any receive flags for proper bpf timestamping */ 1905 m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO); 1906 /* m_len is set later */ 1907 #ifdef INET6 1908 if (isipv6) { 1909 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1910 nth = (struct tcphdr *)(ip6 + 1); 1911 } else 1912 #endif /* INET6 */ 1913 { 1914 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1915 nth = (struct tcphdr *)(ip + 1); 1916 } 1917 if (th != nth) { 1918 /* 1919 * this is usually a case when an extension header 1920 * exists between the IPv6 header and the 1921 * TCP header. 1922 */ 1923 nth->th_sport = th->th_sport; 1924 nth->th_dport = th->th_dport; 1925 } 1926 xchg(nth->th_dport, nth->th_sport, uint16_t); 1927 #undef xchg 1928 } 1929 tlen = 0; 1930 #ifdef INET6 1931 if (isipv6) 1932 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1933 #endif 1934 #if defined(INET) && defined(INET6) 1935 else 1936 #endif 1937 #ifdef INET 1938 tlen = sizeof (struct tcpiphdr); 1939 #endif 1940 if (port) 1941 tlen += sizeof (struct udphdr); 1942 #ifdef INVARIANTS 1943 m->m_len = 0; 1944 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1945 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1946 m, tlen, (long)M_TRAILINGSPACE(m))); 1947 #endif 1948 m->m_len = tlen; 1949 to.to_flags = 0; 1950 if (incl_opts) { 1951 ect = tcp_ecn_output_established(tp, &flags, 0, false); 1952 /* Make sure we have room. */ 1953 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1954 m->m_next = m_get(M_NOWAIT, MT_DATA); 1955 if (m->m_next) { 1956 optp = mtod(m->m_next, u_char *); 1957 optm = m->m_next; 1958 } else 1959 incl_opts = false; 1960 } else { 1961 optp = (u_char *) (nth + 1); 1962 optm = m; 1963 } 1964 } 1965 if (incl_opts) { 1966 /* Timestamps. */ 1967 if (tp->t_flags & TF_RCVD_TSTMP) { 1968 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 1969 to.to_tsecr = tp->ts_recent; 1970 to.to_flags |= TOF_TS; 1971 } 1972 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1973 /* TCP-MD5 (RFC2385). */ 1974 if (tp->t_flags & TF_SIGNATURE) 1975 to.to_flags |= TOF_SIGNATURE; 1976 #endif 1977 /* Add the options. */ 1978 tlen += optlen = tcp_addoptions(&to, optp); 1979 1980 /* Update m_len in the correct mbuf. */ 1981 optm->m_len += optlen; 1982 } else 1983 optlen = 0; 1984 #ifdef INET6 1985 if (isipv6) { 1986 if (uh) { 1987 ulen = tlen - sizeof(struct ip6_hdr); 1988 uh->uh_ulen = htons(ulen); 1989 } 1990 ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN); 1991 ip6->ip6_vfc = IPV6_VERSION; 1992 if (port) 1993 ip6->ip6_nxt = IPPROTO_UDP; 1994 else 1995 ip6->ip6_nxt = IPPROTO_TCP; 1996 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 1997 } 1998 #endif 1999 #if defined(INET) && defined(INET6) 2000 else 2001 #endif 2002 #ifdef INET 2003 { 2004 if (uh) { 2005 ulen = tlen - sizeof(struct ip); 2006 uh->uh_ulen = htons(ulen); 2007 } 2008 ip->ip_len = htons(tlen); 2009 if (inp != NULL) { 2010 ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK; 2011 ip->ip_ttl = inp->inp_ip_ttl; 2012 } else { 2013 ip->ip_tos = 0; 2014 ip->ip_ttl = V_ip_defttl; 2015 } 2016 ip->ip_tos |= ect; 2017 if (port) { 2018 ip->ip_p = IPPROTO_UDP; 2019 } else { 2020 ip->ip_p = IPPROTO_TCP; 2021 } 2022 if (V_path_mtu_discovery) 2023 ip->ip_off |= htons(IP_DF); 2024 } 2025 #endif 2026 m->m_pkthdr.len = tlen; 2027 m->m_pkthdr.rcvif = NULL; 2028 #ifdef MAC 2029 if (inp != NULL) { 2030 /* 2031 * Packet is associated with a socket, so allow the 2032 * label of the response to reflect the socket label. 2033 */ 2034 INP_LOCK_ASSERT(inp); 2035 mac_inpcb_create_mbuf(inp, m); 2036 } else { 2037 /* 2038 * Packet is not associated with a socket, so possibly 2039 * update the label in place. 2040 */ 2041 mac_netinet_tcp_reply(m); 2042 } 2043 #endif 2044 nth->th_seq = htonl(seq); 2045 nth->th_ack = htonl(ack); 2046 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 2047 tcp_set_flags(nth, flags); 2048 if (tp && (flags & TH_RST)) { 2049 /* Log the reset */ 2050 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 2051 } 2052 if (tp != NULL) 2053 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 2054 else 2055 nth->th_win = htons((u_short)win); 2056 nth->th_urp = 0; 2057 2058 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2059 if (to.to_flags & TOF_SIGNATURE) { 2060 if (!TCPMD5_ENABLED() || 2061 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { 2062 m_freem(m); 2063 return; 2064 } 2065 } 2066 #endif 2067 2068 #ifdef INET6 2069 if (isipv6) { 2070 if (port) { 2071 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 2072 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2073 uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 2074 nth->th_sum = 0; 2075 } else { 2076 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 2077 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2078 nth->th_sum = in6_cksum_pseudo(ip6, 2079 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 2080 } 2081 ip6->ip6_hlim = in6_selecthlim(inp, NULL); 2082 } 2083 #endif /* INET6 */ 2084 #if defined(INET6) && defined(INET) 2085 else 2086 #endif 2087 #ifdef INET 2088 { 2089 if (port) { 2090 uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2091 htons(ulen + IPPROTO_UDP)); 2092 m->m_pkthdr.csum_flags = CSUM_UDP; 2093 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2094 nth->th_sum = 0; 2095 } else { 2096 m->m_pkthdr.csum_flags = CSUM_TCP; 2097 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2098 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2099 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 2100 } 2101 } 2102 #endif /* INET */ 2103 TCP_PROBE3(debug__output, tp, th, m); 2104 if (flags & TH_RST) 2105 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); 2106 lgb = NULL; 2107 if ((tp != NULL) && tcp_bblogging_on(tp)) { 2108 if (INP_WLOCKED(inp)) { 2109 union tcp_log_stackspecific log; 2110 struct timeval tv; 2111 2112 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2113 log.u_bbr.inhpts = tcp_in_hpts(tp); 2114 log.u_bbr.flex8 = 4; 2115 log.u_bbr.pkts_out = tp->t_maxseg; 2116 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2117 log.u_bbr.delivered = 0; 2118 lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT, 2119 ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv); 2120 } else { 2121 /* 2122 * We can not log the packet, since we only own the 2123 * read lock, but a write lock is needed. The read lock 2124 * is not upgraded to a write lock, since only getting 2125 * the read lock was done intentionally to improve the 2126 * handling of SYN flooding attacks. 2127 * This happens only for pure SYN segments received in 2128 * the initial CLOSED state, or received in a more 2129 * advanced state than listen and the UDP encapsulation 2130 * port is unexpected. 2131 * The incoming SYN segments do not really belong to 2132 * the TCP connection and the handling does not change 2133 * the state of the TCP connection. Therefore, the 2134 * sending of the RST segments is not logged. Please 2135 * note that also the incoming SYN segments are not 2136 * logged. 2137 * 2138 * The following code ensures that the above description 2139 * is and stays correct. 2140 */ 2141 KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN && 2142 (tp->t_state == TCPS_CLOSED || 2143 (tp->t_state > TCPS_LISTEN && tp->t_port != port)), 2144 ("%s: Logging of TCP segment with flags 0x%b and " 2145 "UDP encapsulation port %u skipped in state %s", 2146 __func__, thflags, PRINT_TH_FLAGS, 2147 ntohs(port), tcpstates[tp->t_state])); 2148 } 2149 } 2150 2151 if (flags & TH_ACK) 2152 TCPSTAT_INC(tcps_sndacks); 2153 else if (flags & (TH_SYN|TH_FIN|TH_RST)) 2154 TCPSTAT_INC(tcps_sndctrl); 2155 TCPSTAT_INC(tcps_sndtotal); 2156 2157 #ifdef INET6 2158 if (isipv6) { 2159 TCP_PROBE5(send, NULL, tp, ip6, tp, nth); 2160 output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL, 2161 NULL, 0, NULL, NULL, inp); 2162 } 2163 #endif /* INET6 */ 2164 #if defined(INET) && defined(INET6) 2165 else 2166 #endif 2167 #ifdef INET 2168 { 2169 TCP_PROBE5(send, NULL, tp, ip, tp, nth); 2170 output_ret = ip_output(m, NULL, NULL, 0, NULL, inp); 2171 } 2172 #endif 2173 if (lgb != NULL) 2174 lgb->tlb_errno = output_ret; 2175 } 2176 2177 /* 2178 * Create a new TCP control block, making an empty reassembly queue and hooking 2179 * it to the argument protocol control block. The `inp' parameter must have 2180 * come from the zone allocator set up by tcpcbstor declaration. 2181 */ 2182 struct tcpcb * 2183 tcp_newtcpcb(struct inpcb *inp) 2184 { 2185 struct tcpcb *tp = intotcpcb(inp); 2186 #ifdef INET6 2187 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2188 #endif /* INET6 */ 2189 2190 /* 2191 * Historically allocation was done with M_ZERO. There is a lot of 2192 * code that rely on that. For now take safe approach and zero whole 2193 * tcpcb. This definitely can be optimized. 2194 */ 2195 bzero(&tp->t_start_zero, t_zero_size); 2196 2197 /* Initialise cc_var struct for this tcpcb. */ 2198 tp->t_ccv.type = IPPROTO_TCP; 2199 tp->t_ccv.ccvc.tcp = tp; 2200 rw_rlock(&tcp_function_lock); 2201 tp->t_fb = V_tcp_func_set_ptr; 2202 refcount_acquire(&tp->t_fb->tfb_refcnt); 2203 rw_runlock(&tcp_function_lock); 2204 /* 2205 * Use the current system default CC algorithm. 2206 */ 2207 cc_attach(tp, CC_DEFAULT_ALGO()); 2208 2209 if (CC_ALGO(tp)->cb_init != NULL) 2210 if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) { 2211 cc_detach(tp); 2212 if (tp->t_fb->tfb_tcp_fb_fini) 2213 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2214 refcount_release(&tp->t_fb->tfb_refcnt); 2215 return (NULL); 2216 } 2217 2218 #ifdef TCP_HHOOK 2219 if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) { 2220 if (CC_ALGO(tp)->cb_destroy != NULL) 2221 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2222 CC_DATA(tp) = NULL; 2223 cc_detach(tp); 2224 if (tp->t_fb->tfb_tcp_fb_fini) 2225 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2226 refcount_release(&tp->t_fb->tfb_refcnt); 2227 return (NULL); 2228 } 2229 #endif 2230 2231 TAILQ_INIT(&tp->t_segq); 2232 STAILQ_INIT(&tp->t_inqueue); 2233 tp->t_maxseg = 2234 #ifdef INET6 2235 isipv6 ? V_tcp_v6mssdflt : 2236 #endif /* INET6 */ 2237 V_tcp_mssdflt; 2238 2239 /* All mbuf queue/ack compress flags should be off */ 2240 tcp_lro_features_off(tp); 2241 2242 tp->t_hpts_cpu = HPTS_CPU_NONE; 2243 tp->t_lro_cpu = HPTS_CPU_NONE; 2244 2245 callout_init_rw(&tp->t_callout, &inp->inp_lock, CALLOUT_RETURNUNLOCKED); 2246 for (int i = 0; i < TT_N; i++) 2247 tp->t_timers[i] = SBT_MAX; 2248 2249 switch (V_tcp_do_rfc1323) { 2250 case 0: 2251 break; 2252 default: 2253 case 1: 2254 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 2255 break; 2256 case 2: 2257 tp->t_flags = TF_REQ_SCALE; 2258 break; 2259 case 3: 2260 tp->t_flags = TF_REQ_TSTMP; 2261 break; 2262 } 2263 if (V_tcp_do_sack) 2264 tp->t_flags |= TF_SACK_PERMIT; 2265 TAILQ_INIT(&tp->snd_holes); 2266 2267 /* 2268 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 2269 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 2270 * reasonable initial retransmit time. 2271 */ 2272 tp->t_srtt = TCPTV_SRTTBASE; 2273 tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 2274 tp->t_rttmin = tcp_rexmit_min; 2275 tp->t_rxtcur = tcp_rexmit_initial; 2276 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2277 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2278 tp->t_rcvtime = ticks; 2279 /* We always start with ticks granularity */ 2280 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 2281 /* 2282 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 2283 * because the socket may be bound to an IPv6 wildcard address, 2284 * which may match an IPv4-mapped IPv6 address. 2285 */ 2286 inp->inp_ip_ttl = V_ip_defttl; 2287 #ifdef TCPPCAP 2288 /* 2289 * Init the TCP PCAP queues. 2290 */ 2291 tcp_pcap_tcpcb_init(tp); 2292 #endif 2293 #ifdef TCP_BLACKBOX 2294 /* Initialize the per-TCPCB log data. */ 2295 tcp_log_tcpcbinit(tp); 2296 #endif 2297 tp->t_pacing_rate = -1; 2298 if (tp->t_fb->tfb_tcp_fb_init) { 2299 if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) { 2300 if (CC_ALGO(tp)->cb_destroy != NULL) 2301 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2302 CC_DATA(tp) = NULL; 2303 cc_detach(tp); 2304 #ifdef TCP_HHOOK 2305 khelp_destroy_osd(&tp->t_osd); 2306 #endif 2307 refcount_release(&tp->t_fb->tfb_refcnt); 2308 return (NULL); 2309 } 2310 } 2311 #ifdef STATS 2312 if (V_tcp_perconn_stats_enable == 1) 2313 tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0); 2314 #endif 2315 if (V_tcp_do_lrd) 2316 tp->t_flags |= TF_LRD; 2317 2318 return (tp); 2319 } 2320 2321 /* 2322 * Drop a TCP connection, reporting 2323 * the specified error. If connection is synchronized, 2324 * then send a RST to peer. 2325 */ 2326 struct tcpcb * 2327 tcp_drop(struct tcpcb *tp, int errno) 2328 { 2329 struct socket *so = tptosocket(tp); 2330 2331 NET_EPOCH_ASSERT(); 2332 INP_WLOCK_ASSERT(tptoinpcb(tp)); 2333 2334 if (TCPS_HAVERCVDSYN(tp->t_state)) { 2335 tcp_state_change(tp, TCPS_CLOSED); 2336 /* Don't use tcp_output() here due to possible recursion. */ 2337 (void)tcp_output_nodrop(tp); 2338 TCPSTAT_INC(tcps_drops); 2339 } else 2340 TCPSTAT_INC(tcps_conndrops); 2341 if (errno == ETIMEDOUT && tp->t_softerror) 2342 errno = tp->t_softerror; 2343 so->so_error = errno; 2344 return (tcp_close(tp)); 2345 } 2346 2347 void 2348 tcp_discardcb(struct tcpcb *tp) 2349 { 2350 struct inpcb *inp = tptoinpcb(tp); 2351 struct socket *so = tptosocket(tp); 2352 struct mbuf *m; 2353 #ifdef INET6 2354 bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2355 #endif 2356 2357 INP_WLOCK_ASSERT(inp); 2358 MPASS(!callout_active(&tp->t_callout)); 2359 MPASS(TAILQ_EMPTY(&tp->snd_holes)); 2360 2361 /* free the reassembly queue, if any */ 2362 tcp_reass_flush(tp); 2363 2364 #ifdef TCP_OFFLOAD 2365 /* Disconnect offload device, if any. */ 2366 if (tp->t_flags & TF_TOE) 2367 tcp_offload_detach(tp); 2368 #endif 2369 #ifdef TCPPCAP 2370 /* Free the TCP PCAP queues. */ 2371 tcp_pcap_drain(&(tp->t_inpkts)); 2372 tcp_pcap_drain(&(tp->t_outpkts)); 2373 #endif 2374 2375 /* Allow the CC algorithm to clean up after itself. */ 2376 if (CC_ALGO(tp)->cb_destroy != NULL) 2377 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2378 CC_DATA(tp) = NULL; 2379 /* Detach from the CC algorithm */ 2380 cc_detach(tp); 2381 2382 #ifdef TCP_HHOOK 2383 khelp_destroy_osd(&tp->t_osd); 2384 #endif 2385 #ifdef STATS 2386 stats_blob_destroy(tp->t_stats); 2387 #endif 2388 2389 CC_ALGO(tp) = NULL; 2390 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) { 2391 struct mbuf *prev; 2392 2393 STAILQ_INIT(&tp->t_inqueue); 2394 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev) 2395 m_freem(m); 2396 } 2397 TCPSTATES_DEC(tp->t_state); 2398 2399 if (tp->t_fb->tfb_tcp_fb_fini) 2400 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2401 MPASS(!tcp_in_hpts(tp)); 2402 #ifdef TCP_BLACKBOX 2403 tcp_log_tcpcbfini(tp); 2404 #endif 2405 2406 /* 2407 * If we got enough samples through the srtt filter, 2408 * save the rtt and rttvar in the routing entry. 2409 * 'Enough' is arbitrarily defined as 4 rtt samples. 2410 * 4 samples is enough for the srtt filter to converge 2411 * to within enough % of the correct value; fewer samples 2412 * and we could save a bogus rtt. The danger is not high 2413 * as tcp quickly recovers from everything. 2414 * XXX: Works very well but needs some more statistics! 2415 * 2416 * XXXRRS: Updating must be after the stack fini() since 2417 * that may be converting some internal representation of 2418 * say srtt etc into the general one used by other stacks. 2419 * Lets also at least protect against the so being NULL 2420 * as RW stated below. 2421 */ 2422 if ((tp->t_rttupdated >= 4) && (so != NULL)) { 2423 struct hc_metrics_lite metrics; 2424 uint32_t ssthresh; 2425 2426 bzero(&metrics, sizeof(metrics)); 2427 /* 2428 * Update the ssthresh always when the conditions below 2429 * are satisfied. This gives us better new start value 2430 * for the congestion avoidance for new connections. 2431 * ssthresh is only set if packet loss occurred on a session. 2432 * 2433 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 2434 * being torn down. Ideally this code would not use 'so'. 2435 */ 2436 ssthresh = tp->snd_ssthresh; 2437 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 2438 /* 2439 * convert the limit from user data bytes to 2440 * packets then to packet data bytes. 2441 */ 2442 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 2443 if (ssthresh < 2) 2444 ssthresh = 2; 2445 ssthresh *= (tp->t_maxseg + 2446 #ifdef INET6 2447 (isipv6 ? sizeof (struct ip6_hdr) + 2448 sizeof (struct tcphdr) : 2449 #endif 2450 sizeof (struct tcpiphdr) 2451 #ifdef INET6 2452 ) 2453 #endif 2454 ); 2455 } else 2456 ssthresh = 0; 2457 metrics.rmx_ssthresh = ssthresh; 2458 2459 metrics.rmx_rtt = tp->t_srtt; 2460 metrics.rmx_rttvar = tp->t_rttvar; 2461 metrics.rmx_cwnd = tp->snd_cwnd; 2462 metrics.rmx_sendpipe = 0; 2463 metrics.rmx_recvpipe = 0; 2464 2465 tcp_hc_update(&inp->inp_inc, &metrics); 2466 } 2467 2468 refcount_release(&tp->t_fb->tfb_refcnt); 2469 } 2470 2471 /* 2472 * Attempt to close a TCP control block, marking it as dropped, and freeing 2473 * the socket if we hold the only reference. 2474 */ 2475 struct tcpcb * 2476 tcp_close(struct tcpcb *tp) 2477 { 2478 struct inpcb *inp = tptoinpcb(tp); 2479 struct socket *so = tptosocket(tp); 2480 2481 INP_WLOCK_ASSERT(inp); 2482 2483 #ifdef TCP_OFFLOAD 2484 if (tp->t_state == TCPS_LISTEN) 2485 tcp_offload_listen_stop(tp); 2486 #endif 2487 /* 2488 * This releases the TFO pending counter resource for TFO listen 2489 * sockets as well as passively-created TFO sockets that transition 2490 * from SYN_RECEIVED to CLOSED. 2491 */ 2492 if (tp->t_tfo_pending) { 2493 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2494 tp->t_tfo_pending = NULL; 2495 } 2496 tcp_timer_stop(tp); 2497 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 2498 tp->t_fb->tfb_tcp_timer_stop_all(tp); 2499 in_pcbdrop(inp); 2500 TCPSTAT_INC(tcps_closed); 2501 if (tp->t_state != TCPS_CLOSED) 2502 tcp_state_change(tp, TCPS_CLOSED); 2503 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 2504 tcp_free_sackholes(tp); 2505 soisdisconnected(so); 2506 if (inp->inp_flags & INP_SOCKREF) { 2507 inp->inp_flags &= ~INP_SOCKREF; 2508 INP_WUNLOCK(inp); 2509 sorele(so); 2510 return (NULL); 2511 } 2512 return (tp); 2513 } 2514 2515 /* 2516 * Notify a tcp user of an asynchronous error; 2517 * store error as soft error, but wake up user 2518 * (for now, won't do anything until can select for soft error). 2519 * 2520 * Do not wake up user since there currently is no mechanism for 2521 * reporting soft errors (yet - a kqueue filter may be added). 2522 */ 2523 static struct inpcb * 2524 tcp_notify(struct inpcb *inp, int error) 2525 { 2526 struct tcpcb *tp; 2527 2528 INP_WLOCK_ASSERT(inp); 2529 2530 tp = intotcpcb(inp); 2531 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 2532 2533 /* 2534 * Ignore some errors if we are hooked up. 2535 * If connection hasn't completed, has retransmitted several times, 2536 * and receives a second error, give up now. This is better 2537 * than waiting a long time to establish a connection that 2538 * can never complete. 2539 */ 2540 if (tp->t_state == TCPS_ESTABLISHED && 2541 (error == EHOSTUNREACH || error == ENETUNREACH || 2542 error == EHOSTDOWN)) { 2543 if (inp->inp_route.ro_nh) { 2544 NH_FREE(inp->inp_route.ro_nh); 2545 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 2546 } 2547 return (inp); 2548 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 2549 tp->t_softerror) { 2550 tp = tcp_drop(tp, error); 2551 if (tp != NULL) 2552 return (inp); 2553 else 2554 return (NULL); 2555 } else { 2556 tp->t_softerror = error; 2557 return (inp); 2558 } 2559 #if 0 2560 wakeup( &so->so_timeo); 2561 sorwakeup(so); 2562 sowwakeup(so); 2563 #endif 2564 } 2565 2566 static int 2567 tcp_pcblist(SYSCTL_HANDLER_ARGS) 2568 { 2569 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2570 INPLOOKUP_RLOCKPCB); 2571 struct xinpgen xig; 2572 struct inpcb *inp; 2573 int error; 2574 2575 if (req->newptr != NULL) 2576 return (EPERM); 2577 2578 if (req->oldptr == NULL) { 2579 int n; 2580 2581 n = V_tcbinfo.ipi_count + 2582 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2583 n += imax(n / 8, 10); 2584 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 2585 return (0); 2586 } 2587 2588 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 2589 return (error); 2590 2591 bzero(&xig, sizeof(xig)); 2592 xig.xig_len = sizeof xig; 2593 xig.xig_count = V_tcbinfo.ipi_count + 2594 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2595 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2596 xig.xig_sogen = so_gencnt; 2597 error = SYSCTL_OUT(req, &xig, sizeof xig); 2598 if (error) 2599 return (error); 2600 2601 error = syncache_pcblist(req); 2602 if (error) 2603 return (error); 2604 2605 while ((inp = inp_next(&inpi)) != NULL) { 2606 if (inp->inp_gencnt <= xig.xig_gen && 2607 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 2608 struct xtcpcb xt; 2609 2610 tcp_inptoxtp(inp, &xt); 2611 error = SYSCTL_OUT(req, &xt, sizeof xt); 2612 if (error) { 2613 INP_RUNLOCK(inp); 2614 break; 2615 } else 2616 continue; 2617 } 2618 } 2619 2620 if (!error) { 2621 /* 2622 * Give the user an updated idea of our state. 2623 * If the generation differs from what we told 2624 * her before, she knows that something happened 2625 * while we were processing this request, and it 2626 * might be necessary to retry. 2627 */ 2628 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2629 xig.xig_sogen = so_gencnt; 2630 xig.xig_count = V_tcbinfo.ipi_count + 2631 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2632 error = SYSCTL_OUT(req, &xig, sizeof xig); 2633 } 2634 2635 return (error); 2636 } 2637 2638 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 2639 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 2640 NULL, 0, tcp_pcblist, "S,xtcpcb", 2641 "List of active TCP connections"); 2642 2643 #ifdef INET 2644 static int 2645 tcp_getcred(SYSCTL_HANDLER_ARGS) 2646 { 2647 struct xucred xuc; 2648 struct sockaddr_in addrs[2]; 2649 struct epoch_tracker et; 2650 struct inpcb *inp; 2651 int error; 2652 2653 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2654 if (error) 2655 return (error); 2656 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2657 if (error) 2658 return (error); 2659 NET_EPOCH_ENTER(et); 2660 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 2661 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 2662 NET_EPOCH_EXIT(et); 2663 if (inp != NULL) { 2664 if (error == 0) 2665 error = cr_canseeinpcb(req->td->td_ucred, inp); 2666 if (error == 0) 2667 cru2x(inp->inp_cred, &xuc); 2668 INP_RUNLOCK(inp); 2669 } else 2670 error = ENOENT; 2671 if (error == 0) 2672 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2673 return (error); 2674 } 2675 2676 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 2677 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2678 0, 0, tcp_getcred, "S,xucred", 2679 "Get the xucred of a TCP connection"); 2680 #endif /* INET */ 2681 2682 #ifdef INET6 2683 static int 2684 tcp6_getcred(SYSCTL_HANDLER_ARGS) 2685 { 2686 struct epoch_tracker et; 2687 struct xucred xuc; 2688 struct sockaddr_in6 addrs[2]; 2689 struct inpcb *inp; 2690 int error; 2691 #ifdef INET 2692 int mapped = 0; 2693 #endif 2694 2695 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2696 if (error) 2697 return (error); 2698 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2699 if (error) 2700 return (error); 2701 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 2702 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 2703 return (error); 2704 } 2705 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 2706 #ifdef INET 2707 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 2708 mapped = 1; 2709 else 2710 #endif 2711 return (EINVAL); 2712 } 2713 2714 NET_EPOCH_ENTER(et); 2715 #ifdef INET 2716 if (mapped == 1) 2717 inp = in_pcblookup(&V_tcbinfo, 2718 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 2719 addrs[1].sin6_port, 2720 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 2721 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 2722 else 2723 #endif 2724 inp = in6_pcblookup(&V_tcbinfo, 2725 &addrs[1].sin6_addr, addrs[1].sin6_port, 2726 &addrs[0].sin6_addr, addrs[0].sin6_port, 2727 INPLOOKUP_RLOCKPCB, NULL); 2728 NET_EPOCH_EXIT(et); 2729 if (inp != NULL) { 2730 if (error == 0) 2731 error = cr_canseeinpcb(req->td->td_ucred, inp); 2732 if (error == 0) 2733 cru2x(inp->inp_cred, &xuc); 2734 INP_RUNLOCK(inp); 2735 } else 2736 error = ENOENT; 2737 if (error == 0) 2738 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2739 return (error); 2740 } 2741 2742 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 2743 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2744 0, 0, tcp6_getcred, "S,xucred", 2745 "Get the xucred of a TCP6 connection"); 2746 #endif /* INET6 */ 2747 2748 #ifdef INET 2749 /* Path MTU to try next when a fragmentation-needed message is received. */ 2750 static inline int 2751 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip) 2752 { 2753 int mtu = ntohs(icp->icmp_nextmtu); 2754 2755 /* If no alternative MTU was proposed, try the next smaller one. */ 2756 if (!mtu) 2757 mtu = ip_next_mtu(ntohs(ip->ip_len), 1); 2758 if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) 2759 mtu = V_tcp_minmss + sizeof(struct tcpiphdr); 2760 2761 return (mtu); 2762 } 2763 2764 static void 2765 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port) 2766 { 2767 struct ip *ip; 2768 struct tcphdr *th; 2769 struct inpcb *inp; 2770 struct tcpcb *tp; 2771 struct inpcb *(*notify)(struct inpcb *, int); 2772 struct in_conninfo inc; 2773 tcp_seq icmp_tcp_seq; 2774 int errno, mtu; 2775 2776 errno = icmp_errmap(icp); 2777 switch (errno) { 2778 case 0: 2779 return; 2780 case EMSGSIZE: 2781 notify = tcp_mtudisc_notify; 2782 break; 2783 case ECONNREFUSED: 2784 if (V_icmp_may_rst) 2785 notify = tcp_drop_syn_sent; 2786 else 2787 notify = tcp_notify; 2788 break; 2789 case EHOSTUNREACH: 2790 if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED) 2791 notify = tcp_drop_syn_sent; 2792 else 2793 notify = tcp_notify; 2794 break; 2795 default: 2796 notify = tcp_notify; 2797 } 2798 2799 ip = &icp->icmp_ip; 2800 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 2801 icmp_tcp_seq = th->th_seq; 2802 inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src, 2803 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 2804 if (inp != NULL) { 2805 tp = intotcpcb(inp); 2806 #ifdef TCP_OFFLOAD 2807 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 2808 /* 2809 * MTU discovery for offloaded connections. Let 2810 * the TOE driver verify seq# and process it. 2811 */ 2812 mtu = tcp_next_pmtu(icp, ip); 2813 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 2814 goto out; 2815 } 2816 #endif 2817 if (tp->t_port != port) 2818 goto out; 2819 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2820 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2821 if (errno == EMSGSIZE) { 2822 /* 2823 * MTU discovery: we got a needfrag and 2824 * will potentially try a lower MTU. 2825 */ 2826 mtu = tcp_next_pmtu(icp, ip); 2827 2828 /* 2829 * Only process the offered MTU if it 2830 * is smaller than the current one. 2831 */ 2832 if (mtu < tp->t_maxseg + 2833 sizeof(struct tcpiphdr)) { 2834 bzero(&inc, sizeof(inc)); 2835 inc.inc_faddr = ip->ip_dst; 2836 inc.inc_fibnum = 2837 inp->inp_inc.inc_fibnum; 2838 tcp_hc_updatemtu(&inc, mtu); 2839 inp = tcp_mtudisc(inp, mtu); 2840 } 2841 } else 2842 inp = (*notify)(inp, errno); 2843 } 2844 } else { 2845 bzero(&inc, sizeof(inc)); 2846 inc.inc_fport = th->th_dport; 2847 inc.inc_lport = th->th_sport; 2848 inc.inc_faddr = ip->ip_dst; 2849 inc.inc_laddr = ip->ip_src; 2850 syncache_unreach(&inc, icmp_tcp_seq, port); 2851 } 2852 out: 2853 if (inp != NULL) 2854 INP_WUNLOCK(inp); 2855 } 2856 2857 static void 2858 tcp_ctlinput(struct icmp *icmp) 2859 { 2860 tcp_ctlinput_with_port(icmp, htons(0)); 2861 } 2862 2863 static void 2864 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param) 2865 { 2866 /* Its a tunneled TCP over UDP icmp */ 2867 struct icmp *icmp = param.icmp; 2868 struct ip *outer_ip, *inner_ip; 2869 struct udphdr *udp; 2870 struct tcphdr *th, ttemp; 2871 int i_hlen, o_len; 2872 uint16_t port; 2873 2874 outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); 2875 inner_ip = &icmp->icmp_ip; 2876 i_hlen = inner_ip->ip_hl << 2; 2877 o_len = ntohs(outer_ip->ip_len); 2878 if (o_len < 2879 (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) { 2880 /* Not enough data present */ 2881 return; 2882 } 2883 /* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */ 2884 udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen); 2885 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 2886 return; 2887 } 2888 port = udp->uh_dport; 2889 th = (struct tcphdr *)(udp + 1); 2890 memcpy(&ttemp, th, sizeof(struct tcphdr)); 2891 memcpy(udp, &ttemp, sizeof(struct tcphdr)); 2892 /* Now adjust down the size of the outer IP header */ 2893 o_len -= sizeof(struct udphdr); 2894 outer_ip->ip_len = htons(o_len); 2895 /* Now call in to the normal handling code */ 2896 tcp_ctlinput_with_port(icmp, port); 2897 } 2898 #endif /* INET */ 2899 2900 #ifdef INET6 2901 static inline int 2902 tcp6_next_pmtu(const struct icmp6_hdr *icmp6) 2903 { 2904 int mtu = ntohl(icmp6->icmp6_mtu); 2905 2906 /* 2907 * If no alternative MTU was proposed, or the proposed MTU was too 2908 * small, set to the min. 2909 */ 2910 if (mtu < IPV6_MMTU) 2911 mtu = IPV6_MMTU - 8; /* XXXNP: what is the adjustment for? */ 2912 return (mtu); 2913 } 2914 2915 static void 2916 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port) 2917 { 2918 struct in6_addr *dst; 2919 struct inpcb *(*notify)(struct inpcb *, int); 2920 struct ip6_hdr *ip6; 2921 struct mbuf *m; 2922 struct inpcb *inp; 2923 struct tcpcb *tp; 2924 struct icmp6_hdr *icmp6; 2925 struct in_conninfo inc; 2926 struct tcp_ports { 2927 uint16_t th_sport; 2928 uint16_t th_dport; 2929 } t_ports; 2930 tcp_seq icmp_tcp_seq; 2931 unsigned int mtu; 2932 unsigned int off; 2933 int errno; 2934 2935 icmp6 = ip6cp->ip6c_icmp6; 2936 m = ip6cp->ip6c_m; 2937 ip6 = ip6cp->ip6c_ip6; 2938 off = ip6cp->ip6c_off; 2939 dst = &ip6cp->ip6c_finaldst->sin6_addr; 2940 2941 errno = icmp6_errmap(icmp6); 2942 switch (errno) { 2943 case 0: 2944 return; 2945 case EMSGSIZE: 2946 notify = tcp_mtudisc_notify; 2947 break; 2948 case ECONNREFUSED: 2949 if (V_icmp_may_rst) 2950 notify = tcp_drop_syn_sent; 2951 else 2952 notify = tcp_notify; 2953 break; 2954 case EHOSTUNREACH: 2955 /* 2956 * There are only four ICMPs that may reset connection: 2957 * - administratively prohibited 2958 * - port unreachable 2959 * - time exceeded in transit 2960 * - unknown next header 2961 */ 2962 if (V_icmp_may_rst && 2963 ((icmp6->icmp6_type == ICMP6_DST_UNREACH && 2964 (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN || 2965 icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) || 2966 (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED && 2967 icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) || 2968 (icmp6->icmp6_type == ICMP6_PARAM_PROB && 2969 icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER))) 2970 notify = tcp_drop_syn_sent; 2971 else 2972 notify = tcp_notify; 2973 break; 2974 default: 2975 notify = tcp_notify; 2976 } 2977 2978 /* Check if we can safely get the ports from the tcp hdr */ 2979 if (m == NULL || 2980 (m->m_pkthdr.len < 2981 (int32_t) (off + sizeof(struct tcp_ports)))) { 2982 return; 2983 } 2984 bzero(&t_ports, sizeof(struct tcp_ports)); 2985 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); 2986 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, 2987 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); 2988 off += sizeof(struct tcp_ports); 2989 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { 2990 goto out; 2991 } 2992 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); 2993 if (inp != NULL) { 2994 tp = intotcpcb(inp); 2995 #ifdef TCP_OFFLOAD 2996 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 2997 /* MTU discovery for offloaded connections. */ 2998 mtu = tcp6_next_pmtu(icmp6); 2999 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 3000 goto out; 3001 } 3002 #endif 3003 if (tp->t_port != port) 3004 goto out; 3005 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 3006 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 3007 if (errno == EMSGSIZE) { 3008 /* 3009 * MTU discovery: 3010 * If we got a needfrag set the MTU 3011 * in the route to the suggested new 3012 * value (if given) and then notify. 3013 */ 3014 mtu = tcp6_next_pmtu(icmp6); 3015 3016 bzero(&inc, sizeof(inc)); 3017 inc.inc_fibnum = M_GETFIB(m); 3018 inc.inc_flags |= INC_ISIPV6; 3019 inc.inc6_faddr = *dst; 3020 if (in6_setscope(&inc.inc6_faddr, 3021 m->m_pkthdr.rcvif, NULL)) 3022 goto out; 3023 /* 3024 * Only process the offered MTU if it 3025 * is smaller than the current one. 3026 */ 3027 if (mtu < tp->t_maxseg + 3028 sizeof (struct tcphdr) + 3029 sizeof (struct ip6_hdr)) { 3030 tcp_hc_updatemtu(&inc, mtu); 3031 tcp_mtudisc(inp, mtu); 3032 ICMP6STAT_INC(icp6s_pmtuchg); 3033 } 3034 } else 3035 inp = (*notify)(inp, errno); 3036 } 3037 } else { 3038 bzero(&inc, sizeof(inc)); 3039 inc.inc_fibnum = M_GETFIB(m); 3040 inc.inc_flags |= INC_ISIPV6; 3041 inc.inc_fport = t_ports.th_dport; 3042 inc.inc_lport = t_ports.th_sport; 3043 inc.inc6_faddr = *dst; 3044 inc.inc6_laddr = ip6->ip6_src; 3045 syncache_unreach(&inc, icmp_tcp_seq, port); 3046 } 3047 out: 3048 if (inp != NULL) 3049 INP_WUNLOCK(inp); 3050 } 3051 3052 static void 3053 tcp6_ctlinput(struct ip6ctlparam *ctl) 3054 { 3055 tcp6_ctlinput_with_port(ctl, htons(0)); 3056 } 3057 3058 static void 3059 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param) 3060 { 3061 struct ip6ctlparam *ip6cp = param.ip6cp; 3062 struct mbuf *m; 3063 struct udphdr *udp; 3064 uint16_t port; 3065 3066 m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL); 3067 if (m == NULL) { 3068 return; 3069 } 3070 udp = mtod(m, struct udphdr *); 3071 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 3072 return; 3073 } 3074 port = udp->uh_dport; 3075 m_adj(m, sizeof(struct udphdr)); 3076 if ((m->m_flags & M_PKTHDR) == 0) { 3077 ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr); 3078 } 3079 /* Now call in to the normal handling code */ 3080 tcp6_ctlinput_with_port(ip6cp, port); 3081 } 3082 3083 #endif /* INET6 */ 3084 3085 static uint32_t 3086 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len) 3087 { 3088 SIPHASH_CTX ctx; 3089 uint32_t hash[2]; 3090 3091 KASSERT(len >= SIPHASH_KEY_LENGTH, 3092 ("%s: keylen %u too short ", __func__, len)); 3093 SipHash24_Init(&ctx); 3094 SipHash_SetKey(&ctx, (uint8_t *)key); 3095 SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t)); 3096 SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t)); 3097 switch (inc->inc_flags & INC_ISIPV6) { 3098 #ifdef INET 3099 case 0: 3100 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr)); 3101 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr)); 3102 break; 3103 #endif 3104 #ifdef INET6 3105 case INC_ISIPV6: 3106 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr)); 3107 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr)); 3108 break; 3109 #endif 3110 } 3111 SipHash_Final((uint8_t *)hash, &ctx); 3112 3113 return (hash[0] ^ hash[1]); 3114 } 3115 3116 uint32_t 3117 tcp_new_ts_offset(struct in_conninfo *inc) 3118 { 3119 struct in_conninfo inc_store, *local_inc; 3120 3121 if (!V_tcp_ts_offset_per_conn) { 3122 memcpy(&inc_store, inc, sizeof(struct in_conninfo)); 3123 inc_store.inc_lport = 0; 3124 inc_store.inc_fport = 0; 3125 local_inc = &inc_store; 3126 } else { 3127 local_inc = inc; 3128 } 3129 return (tcp_keyed_hash(local_inc, V_ts_offset_secret, 3130 sizeof(V_ts_offset_secret))); 3131 } 3132 3133 /* 3134 * Following is where TCP initial sequence number generation occurs. 3135 * 3136 * There are two places where we must use initial sequence numbers: 3137 * 1. In SYN-ACK packets. 3138 * 2. In SYN packets. 3139 * 3140 * All ISNs for SYN-ACK packets are generated by the syncache. See 3141 * tcp_syncache.c for details. 3142 * 3143 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 3144 * depends on this property. In addition, these ISNs should be 3145 * unguessable so as to prevent connection hijacking. To satisfy 3146 * the requirements of this situation, the algorithm outlined in 3147 * RFC 1948 is used, with only small modifications. 3148 * 3149 * Implementation details: 3150 * 3151 * Time is based off the system timer, and is corrected so that it 3152 * increases by one megabyte per second. This allows for proper 3153 * recycling on high speed LANs while still leaving over an hour 3154 * before rollover. 3155 * 3156 * As reading the *exact* system time is too expensive to be done 3157 * whenever setting up a TCP connection, we increment the time 3158 * offset in two ways. First, a small random positive increment 3159 * is added to isn_offset for each connection that is set up. 3160 * Second, the function tcp_isn_tick fires once per clock tick 3161 * and increments isn_offset as necessary so that sequence numbers 3162 * are incremented at approximately ISN_BYTES_PER_SECOND. The 3163 * random positive increments serve only to ensure that the same 3164 * exact sequence number is never sent out twice (as could otherwise 3165 * happen when a port is recycled in less than the system tick 3166 * interval.) 3167 * 3168 * net.inet.tcp.isn_reseed_interval controls the number of seconds 3169 * between seeding of isn_secret. This is normally set to zero, 3170 * as reseeding should not be necessary. 3171 * 3172 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 3173 * isn_offset_old, and isn_ctx is performed using the ISN lock. In 3174 * general, this means holding an exclusive (write) lock. 3175 */ 3176 3177 #define ISN_BYTES_PER_SECOND 1048576 3178 #define ISN_STATIC_INCREMENT 4096 3179 #define ISN_RANDOM_INCREMENT (4096 - 1) 3180 #define ISN_SECRET_LENGTH SIPHASH_KEY_LENGTH 3181 3182 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]); 3183 VNET_DEFINE_STATIC(int, isn_last); 3184 VNET_DEFINE_STATIC(int, isn_last_reseed); 3185 VNET_DEFINE_STATIC(u_int32_t, isn_offset); 3186 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old); 3187 3188 #define V_isn_secret VNET(isn_secret) 3189 #define V_isn_last VNET(isn_last) 3190 #define V_isn_last_reseed VNET(isn_last_reseed) 3191 #define V_isn_offset VNET(isn_offset) 3192 #define V_isn_offset_old VNET(isn_offset_old) 3193 3194 tcp_seq 3195 tcp_new_isn(struct in_conninfo *inc) 3196 { 3197 tcp_seq new_isn; 3198 u_int32_t projected_offset; 3199 3200 ISN_LOCK(); 3201 /* Seed if this is the first use, reseed if requested. */ 3202 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 3203 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 3204 < (u_int)ticks))) { 3205 arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0); 3206 V_isn_last_reseed = ticks; 3207 } 3208 3209 /* Compute the hash and return the ISN. */ 3210 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret, 3211 sizeof(V_isn_secret)); 3212 V_isn_offset += ISN_STATIC_INCREMENT + 3213 (arc4random() & ISN_RANDOM_INCREMENT); 3214 if (ticks != V_isn_last) { 3215 projected_offset = V_isn_offset_old + 3216 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 3217 if (SEQ_GT(projected_offset, V_isn_offset)) 3218 V_isn_offset = projected_offset; 3219 V_isn_offset_old = V_isn_offset; 3220 V_isn_last = ticks; 3221 } 3222 new_isn += V_isn_offset; 3223 ISN_UNLOCK(); 3224 return (new_isn); 3225 } 3226 3227 /* 3228 * When a specific ICMP unreachable message is received and the 3229 * connection state is SYN-SENT, drop the connection. This behavior 3230 * is controlled by the icmp_may_rst sysctl. 3231 */ 3232 static struct inpcb * 3233 tcp_drop_syn_sent(struct inpcb *inp, int errno) 3234 { 3235 struct tcpcb *tp; 3236 3237 NET_EPOCH_ASSERT(); 3238 INP_WLOCK_ASSERT(inp); 3239 3240 tp = intotcpcb(inp); 3241 if (tp->t_state != TCPS_SYN_SENT) 3242 return (inp); 3243 3244 if (tp->t_flags & TF_FASTOPEN) 3245 tcp_fastopen_disable_path(tp); 3246 3247 tp = tcp_drop(tp, errno); 3248 if (tp != NULL) 3249 return (inp); 3250 else 3251 return (NULL); 3252 } 3253 3254 /* 3255 * When `need fragmentation' ICMP is received, update our idea of the MSS 3256 * based on the new value. Also nudge TCP to send something, since we 3257 * know the packet we just sent was dropped. 3258 * This duplicates some code in the tcp_mss() function in tcp_input.c. 3259 */ 3260 static struct inpcb * 3261 tcp_mtudisc_notify(struct inpcb *inp, int error) 3262 { 3263 3264 return (tcp_mtudisc(inp, -1)); 3265 } 3266 3267 static struct inpcb * 3268 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 3269 { 3270 struct tcpcb *tp; 3271 struct socket *so; 3272 3273 INP_WLOCK_ASSERT(inp); 3274 3275 tp = intotcpcb(inp); 3276 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 3277 3278 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 3279 3280 so = inp->inp_socket; 3281 SOCKBUF_LOCK(&so->so_snd); 3282 /* If the mss is larger than the socket buffer, decrease the mss. */ 3283 if (so->so_snd.sb_hiwat < tp->t_maxseg) { 3284 tp->t_maxseg = so->so_snd.sb_hiwat; 3285 if (tp->t_maxseg < V_tcp_mssdflt) { 3286 /* 3287 * The MSS is so small we should not process incoming 3288 * SACK's since we are subject to attack in such a 3289 * case. 3290 */ 3291 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3292 } else { 3293 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3294 } 3295 } 3296 SOCKBUF_UNLOCK(&so->so_snd); 3297 3298 TCPSTAT_INC(tcps_mturesent); 3299 tp->t_rtttime = 0; 3300 tp->snd_nxt = tp->snd_una; 3301 tcp_free_sackholes(tp); 3302 tp->snd_recover = tp->snd_max; 3303 if (tp->t_flags & TF_SACK_PERMIT) 3304 EXIT_FASTRECOVERY(tp->t_flags); 3305 if (tp->t_fb->tfb_tcp_mtu_chg != NULL) { 3306 /* 3307 * Conceptually the snd_nxt setting 3308 * and freeing sack holes should 3309 * be done by the default stacks 3310 * own tfb_tcp_mtu_chg(). 3311 */ 3312 tp->t_fb->tfb_tcp_mtu_chg(tp); 3313 } 3314 if (tcp_output(tp) < 0) 3315 return (NULL); 3316 else 3317 return (inp); 3318 } 3319 3320 #ifdef INET 3321 /* 3322 * Look-up the routing entry to the peer of this inpcb. If no route 3323 * is found and it cannot be allocated, then return 0. This routine 3324 * is called by TCP routines that access the rmx structure and by 3325 * tcp_mss_update to get the peer/interface MTU. 3326 */ 3327 uint32_t 3328 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 3329 { 3330 struct nhop_object *nh; 3331 struct ifnet *ifp; 3332 uint32_t maxmtu = 0; 3333 3334 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 3335 3336 if (inc->inc_faddr.s_addr != INADDR_ANY) { 3337 nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0); 3338 if (nh == NULL) 3339 return (0); 3340 3341 ifp = nh->nh_ifp; 3342 maxmtu = nh->nh_mtu; 3343 3344 /* Report additional interface capabilities. */ 3345 if (cap != NULL) { 3346 if (ifp->if_capenable & IFCAP_TSO4 && 3347 ifp->if_hwassist & CSUM_TSO) { 3348 cap->ifcap |= CSUM_TSO; 3349 cap->tsomax = ifp->if_hw_tsomax; 3350 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3351 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3352 } 3353 } 3354 } 3355 return (maxmtu); 3356 } 3357 #endif /* INET */ 3358 3359 #ifdef INET6 3360 uint32_t 3361 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 3362 { 3363 struct nhop_object *nh; 3364 struct in6_addr dst6; 3365 uint32_t scopeid; 3366 struct ifnet *ifp; 3367 uint32_t maxmtu = 0; 3368 3369 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 3370 3371 if (inc->inc_flags & INC_IPV6MINMTU) 3372 return (IPV6_MMTU); 3373 3374 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 3375 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 3376 nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0); 3377 if (nh == NULL) 3378 return (0); 3379 3380 ifp = nh->nh_ifp; 3381 maxmtu = nh->nh_mtu; 3382 3383 /* Report additional interface capabilities. */ 3384 if (cap != NULL) { 3385 if (ifp->if_capenable & IFCAP_TSO6 && 3386 ifp->if_hwassist & CSUM_TSO) { 3387 cap->ifcap |= CSUM_TSO; 3388 cap->tsomax = ifp->if_hw_tsomax; 3389 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3390 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3391 } 3392 } 3393 } 3394 3395 return (maxmtu); 3396 } 3397 3398 /* 3399 * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack. 3400 * 3401 * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag. 3402 * The right place to do that is ip6_setpktopt() that has just been 3403 * executed. By the way it just filled ip6po_minmtu for us. 3404 */ 3405 void 3406 tcp6_use_min_mtu(struct tcpcb *tp) 3407 { 3408 struct inpcb *inp = tptoinpcb(tp); 3409 3410 INP_WLOCK_ASSERT(inp); 3411 /* 3412 * In case of the IPV6_USE_MIN_MTU socket 3413 * option, the INC_IPV6MINMTU flag to announce 3414 * a corresponding MSS during the initial 3415 * handshake. If the TCP connection is not in 3416 * the front states, just reduce the MSS being 3417 * used. This avoids the sending of TCP 3418 * segments which will be fragmented at the 3419 * IPv6 layer. 3420 */ 3421 inp->inp_inc.inc_flags |= INC_IPV6MINMTU; 3422 if ((tp->t_state >= TCPS_SYN_SENT) && 3423 (inp->inp_inc.inc_flags & INC_ISIPV6)) { 3424 struct ip6_pktopts *opt; 3425 3426 opt = inp->in6p_outputopts; 3427 if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL && 3428 tp->t_maxseg > TCP6_MSS) { 3429 tp->t_maxseg = TCP6_MSS; 3430 if (tp->t_maxseg < V_tcp_mssdflt) { 3431 /* 3432 * The MSS is so small we should not process incoming 3433 * SACK's since we are subject to attack in such a 3434 * case. 3435 */ 3436 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3437 } else { 3438 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3439 } 3440 } 3441 } 3442 } 3443 #endif /* INET6 */ 3444 3445 /* 3446 * Calculate effective SMSS per RFC5681 definition for a given TCP 3447 * connection at its current state, taking into account SACK and etc. 3448 */ 3449 u_int 3450 tcp_maxseg(const struct tcpcb *tp) 3451 { 3452 u_int optlen; 3453 3454 if (tp->t_flags & TF_NOOPT) 3455 return (tp->t_maxseg); 3456 3457 /* 3458 * Here we have a simplified code from tcp_addoptions(), 3459 * without a proper loop, and having most of paddings hardcoded. 3460 * We might make mistakes with padding here in some edge cases, 3461 * but this is harmless, since result of tcp_maxseg() is used 3462 * only in cwnd and ssthresh estimations. 3463 */ 3464 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3465 if (tp->t_flags & TF_RCVD_TSTMP) 3466 optlen = TCPOLEN_TSTAMP_APPA; 3467 else 3468 optlen = 0; 3469 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3470 if (tp->t_flags & TF_SIGNATURE) 3471 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3472 #endif 3473 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 3474 optlen += TCPOLEN_SACKHDR; 3475 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 3476 optlen = PADTCPOLEN(optlen); 3477 } 3478 } else { 3479 if (tp->t_flags & TF_REQ_TSTMP) 3480 optlen = TCPOLEN_TSTAMP_APPA; 3481 else 3482 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3483 if (tp->t_flags & TF_REQ_SCALE) 3484 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3485 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3486 if (tp->t_flags & TF_SIGNATURE) 3487 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3488 #endif 3489 if (tp->t_flags & TF_SACK_PERMIT) 3490 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3491 } 3492 optlen = min(optlen, TCP_MAXOLEN); 3493 return (tp->t_maxseg - optlen); 3494 } 3495 3496 3497 u_int 3498 tcp_fixed_maxseg(const struct tcpcb *tp) 3499 { 3500 int optlen; 3501 3502 if (tp->t_flags & TF_NOOPT) 3503 return (tp->t_maxseg); 3504 3505 /* 3506 * Here we have a simplified code from tcp_addoptions(), 3507 * without a proper loop, and having most of paddings hardcoded. 3508 * We only consider fixed options that we would send every 3509 * time I.e. SACK is not considered. This is important 3510 * for cc modules to figure out what the modulo of the 3511 * cwnd should be. 3512 */ 3513 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3514 if (tp->t_flags & TF_RCVD_TSTMP) 3515 optlen = TCPOLEN_TSTAMP_APPA; 3516 else 3517 optlen = 0; 3518 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3519 if (tp->t_flags & TF_SIGNATURE) 3520 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3521 #endif 3522 } else { 3523 if (tp->t_flags & TF_REQ_TSTMP) 3524 optlen = TCPOLEN_TSTAMP_APPA; 3525 else 3526 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3527 if (tp->t_flags & TF_REQ_SCALE) 3528 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3529 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3530 if (tp->t_flags & TF_SIGNATURE) 3531 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3532 #endif 3533 if (tp->t_flags & TF_SACK_PERMIT) 3534 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3535 } 3536 optlen = min(optlen, TCP_MAXOLEN); 3537 return (tp->t_maxseg - optlen); 3538 } 3539 3540 3541 3542 static int 3543 sysctl_drop(SYSCTL_HANDLER_ARGS) 3544 { 3545 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3546 struct sockaddr_storage addrs[2]; 3547 struct inpcb *inp; 3548 struct tcpcb *tp; 3549 #ifdef INET 3550 struct sockaddr_in *fin = NULL, *lin = NULL; 3551 #endif 3552 struct epoch_tracker et; 3553 #ifdef INET6 3554 struct sockaddr_in6 *fin6, *lin6; 3555 #endif 3556 int error; 3557 3558 inp = NULL; 3559 #ifdef INET6 3560 fin6 = lin6 = NULL; 3561 #endif 3562 error = 0; 3563 3564 if (req->oldptr != NULL || req->oldlen != 0) 3565 return (EINVAL); 3566 if (req->newptr == NULL) 3567 return (EPERM); 3568 if (req->newlen < sizeof(addrs)) 3569 return (ENOMEM); 3570 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3571 if (error) 3572 return (error); 3573 3574 switch (addrs[0].ss_family) { 3575 #ifdef INET6 3576 case AF_INET6: 3577 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3578 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3579 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3580 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3581 return (EINVAL); 3582 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3583 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3584 return (EINVAL); 3585 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3586 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3587 #ifdef INET 3588 fin = (struct sockaddr_in *)&addrs[0]; 3589 lin = (struct sockaddr_in *)&addrs[1]; 3590 #endif 3591 break; 3592 } 3593 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3594 if (error) 3595 return (error); 3596 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3597 if (error) 3598 return (error); 3599 break; 3600 #endif 3601 #ifdef INET 3602 case AF_INET: 3603 fin = (struct sockaddr_in *)&addrs[0]; 3604 lin = (struct sockaddr_in *)&addrs[1]; 3605 if (fin->sin_len != sizeof(struct sockaddr_in) || 3606 lin->sin_len != sizeof(struct sockaddr_in)) 3607 return (EINVAL); 3608 break; 3609 #endif 3610 default: 3611 return (EINVAL); 3612 } 3613 NET_EPOCH_ENTER(et); 3614 switch (addrs[0].ss_family) { 3615 #ifdef INET6 3616 case AF_INET6: 3617 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3618 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3619 INPLOOKUP_WLOCKPCB, NULL); 3620 break; 3621 #endif 3622 #ifdef INET 3623 case AF_INET: 3624 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3625 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3626 break; 3627 #endif 3628 } 3629 if (inp != NULL) { 3630 if (!SOLISTENING(inp->inp_socket)) { 3631 tp = intotcpcb(inp); 3632 tp = tcp_drop(tp, ECONNABORTED); 3633 if (tp != NULL) 3634 INP_WUNLOCK(inp); 3635 } else 3636 INP_WUNLOCK(inp); 3637 } else 3638 error = ESRCH; 3639 NET_EPOCH_EXIT(et); 3640 return (error); 3641 } 3642 3643 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 3644 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3645 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "", 3646 "Drop TCP connection"); 3647 3648 static int 3649 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS) 3650 { 3651 return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo, 3652 &tcp_ctloutput_set)); 3653 } 3654 3655 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt, 3656 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3657 CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "", 3658 "Set socket option for TCP endpoint"); 3659 3660 #ifdef KERN_TLS 3661 static int 3662 sysctl_switch_tls(SYSCTL_HANDLER_ARGS) 3663 { 3664 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3665 struct sockaddr_storage addrs[2]; 3666 struct inpcb *inp; 3667 #ifdef INET 3668 struct sockaddr_in *fin = NULL, *lin = NULL; 3669 #endif 3670 struct epoch_tracker et; 3671 #ifdef INET6 3672 struct sockaddr_in6 *fin6, *lin6; 3673 #endif 3674 int error; 3675 3676 inp = NULL; 3677 #ifdef INET6 3678 fin6 = lin6 = NULL; 3679 #endif 3680 error = 0; 3681 3682 if (req->oldptr != NULL || req->oldlen != 0) 3683 return (EINVAL); 3684 if (req->newptr == NULL) 3685 return (EPERM); 3686 if (req->newlen < sizeof(addrs)) 3687 return (ENOMEM); 3688 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3689 if (error) 3690 return (error); 3691 3692 switch (addrs[0].ss_family) { 3693 #ifdef INET6 3694 case AF_INET6: 3695 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3696 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3697 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3698 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3699 return (EINVAL); 3700 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3701 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3702 return (EINVAL); 3703 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3704 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3705 #ifdef INET 3706 fin = (struct sockaddr_in *)&addrs[0]; 3707 lin = (struct sockaddr_in *)&addrs[1]; 3708 #endif 3709 break; 3710 } 3711 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3712 if (error) 3713 return (error); 3714 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3715 if (error) 3716 return (error); 3717 break; 3718 #endif 3719 #ifdef INET 3720 case AF_INET: 3721 fin = (struct sockaddr_in *)&addrs[0]; 3722 lin = (struct sockaddr_in *)&addrs[1]; 3723 if (fin->sin_len != sizeof(struct sockaddr_in) || 3724 lin->sin_len != sizeof(struct sockaddr_in)) 3725 return (EINVAL); 3726 break; 3727 #endif 3728 default: 3729 return (EINVAL); 3730 } 3731 NET_EPOCH_ENTER(et); 3732 switch (addrs[0].ss_family) { 3733 #ifdef INET6 3734 case AF_INET6: 3735 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3736 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3737 INPLOOKUP_WLOCKPCB, NULL); 3738 break; 3739 #endif 3740 #ifdef INET 3741 case AF_INET: 3742 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3743 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3744 break; 3745 #endif 3746 } 3747 NET_EPOCH_EXIT(et); 3748 if (inp != NULL) { 3749 struct socket *so; 3750 3751 so = inp->inp_socket; 3752 soref(so); 3753 error = ktls_set_tx_mode(so, 3754 arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET); 3755 INP_WUNLOCK(inp); 3756 sorele(so); 3757 } else 3758 error = ESRCH; 3759 return (error); 3760 } 3761 3762 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls, 3763 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3764 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "", 3765 "Switch TCP connection to SW TLS"); 3766 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls, 3767 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3768 CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "", 3769 "Switch TCP connection to ifnet TLS"); 3770 #endif 3771 3772 /* 3773 * Generate a standardized TCP log line for use throughout the 3774 * tcp subsystem. Memory allocation is done with M_NOWAIT to 3775 * allow use in the interrupt context. 3776 * 3777 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 3778 * NB: The function may return NULL if memory allocation failed. 3779 * 3780 * Due to header inclusion and ordering limitations the struct ip 3781 * and ip6_hdr pointers have to be passed as void pointers. 3782 */ 3783 char * 3784 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3785 const void *ip6hdr) 3786 { 3787 3788 /* Is logging enabled? */ 3789 if (V_tcp_log_in_vain == 0) 3790 return (NULL); 3791 3792 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3793 } 3794 3795 char * 3796 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3797 const void *ip6hdr) 3798 { 3799 3800 /* Is logging enabled? */ 3801 if (tcp_log_debug == 0) 3802 return (NULL); 3803 3804 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3805 } 3806 3807 static char * 3808 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3809 const void *ip6hdr) 3810 { 3811 char *s, *sp; 3812 size_t size; 3813 #ifdef INET 3814 const struct ip *ip = (const struct ip *)ip4hdr; 3815 #endif 3816 #ifdef INET6 3817 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr; 3818 #endif /* INET6 */ 3819 3820 /* 3821 * The log line looks like this: 3822 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 3823 */ 3824 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 3825 sizeof(PRINT_TH_FLAGS) + 1 + 3826 #ifdef INET6 3827 2 * INET6_ADDRSTRLEN; 3828 #else 3829 2 * INET_ADDRSTRLEN; 3830 #endif /* INET6 */ 3831 3832 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 3833 if (s == NULL) 3834 return (NULL); 3835 3836 strcat(s, "TCP: ["); 3837 sp = s + strlen(s); 3838 3839 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 3840 inet_ntoa_r(inc->inc_faddr, sp); 3841 sp = s + strlen(s); 3842 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3843 sp = s + strlen(s); 3844 inet_ntoa_r(inc->inc_laddr, sp); 3845 sp = s + strlen(s); 3846 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3847 #ifdef INET6 3848 } else if (inc) { 3849 ip6_sprintf(sp, &inc->inc6_faddr); 3850 sp = s + strlen(s); 3851 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3852 sp = s + strlen(s); 3853 ip6_sprintf(sp, &inc->inc6_laddr); 3854 sp = s + strlen(s); 3855 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3856 } else if (ip6 && th) { 3857 ip6_sprintf(sp, &ip6->ip6_src); 3858 sp = s + strlen(s); 3859 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3860 sp = s + strlen(s); 3861 ip6_sprintf(sp, &ip6->ip6_dst); 3862 sp = s + strlen(s); 3863 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3864 #endif /* INET6 */ 3865 #ifdef INET 3866 } else if (ip && th) { 3867 inet_ntoa_r(ip->ip_src, sp); 3868 sp = s + strlen(s); 3869 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3870 sp = s + strlen(s); 3871 inet_ntoa_r(ip->ip_dst, sp); 3872 sp = s + strlen(s); 3873 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3874 #endif /* INET */ 3875 } else { 3876 free(s, M_TCPLOG); 3877 return (NULL); 3878 } 3879 sp = s + strlen(s); 3880 if (th) 3881 sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS); 3882 if (*(s + size - 1) != '\0') 3883 panic("%s: string too long", __func__); 3884 return (s); 3885 } 3886 3887 /* 3888 * A subroutine which makes it easy to track TCP state changes with DTrace. 3889 * This function shouldn't be called for t_state initializations that don't 3890 * correspond to actual TCP state transitions. 3891 */ 3892 void 3893 tcp_state_change(struct tcpcb *tp, int newstate) 3894 { 3895 #if defined(KDTRACE_HOOKS) 3896 int pstate = tp->t_state; 3897 #endif 3898 3899 TCPSTATES_DEC(tp->t_state); 3900 TCPSTATES_INC(newstate); 3901 tp->t_state = newstate; 3902 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3903 } 3904 3905 /* 3906 * Create an external-format (``xtcpcb'') structure using the information in 3907 * the kernel-format tcpcb structure pointed to by tp. This is done to 3908 * reduce the spew of irrelevant information over this interface, to isolate 3909 * user code from changes in the kernel structure, and potentially to provide 3910 * information-hiding if we decide that some of this information should be 3911 * hidden from users. 3912 */ 3913 void 3914 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) 3915 { 3916 struct tcpcb *tp = intotcpcb(inp); 3917 sbintime_t now; 3918 3919 bzero(xt, sizeof(*xt)); 3920 xt->t_state = tp->t_state; 3921 xt->t_logstate = tcp_get_bblog_state(tp); 3922 xt->t_flags = tp->t_flags; 3923 xt->t_sndzerowin = tp->t_sndzerowin; 3924 xt->t_sndrexmitpack = tp->t_sndrexmitpack; 3925 xt->t_rcvoopack = tp->t_rcvoopack; 3926 xt->t_rcv_wnd = tp->rcv_wnd; 3927 xt->t_snd_wnd = tp->snd_wnd; 3928 xt->t_snd_cwnd = tp->snd_cwnd; 3929 xt->t_snd_ssthresh = tp->snd_ssthresh; 3930 xt->t_dsack_bytes = tp->t_dsack_bytes; 3931 xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes; 3932 xt->t_dsack_pack = tp->t_dsack_pack; 3933 xt->t_maxseg = tp->t_maxseg; 3934 xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 + 3935 (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0; 3936 3937 now = getsbinuptime(); 3938 #define COPYTIMER(which,where) do { \ 3939 if (tp->t_timers[which] != SBT_MAX) \ 3940 xt->where = (tp->t_timers[which] - now) / SBT_1MS; \ 3941 else \ 3942 xt->where = 0; \ 3943 } while (0) 3944 COPYTIMER(TT_DELACK, tt_delack); 3945 COPYTIMER(TT_REXMT, tt_rexmt); 3946 COPYTIMER(TT_PERSIST, tt_persist); 3947 COPYTIMER(TT_KEEP, tt_keep); 3948 COPYTIMER(TT_2MSL, tt_2msl); 3949 #undef COPYTIMER 3950 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; 3951 3952 xt->xt_encaps_port = tp->t_port; 3953 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, 3954 TCP_FUNCTION_NAME_LEN_MAX); 3955 bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX); 3956 #ifdef TCP_BLACKBOX 3957 (void)tcp_log_get_id(tp, xt->xt_logid); 3958 #endif 3959 3960 xt->xt_len = sizeof(struct xtcpcb); 3961 in_pcbtoxinpcb(inp, &xt->xt_inp); 3962 } 3963 3964 void 3965 tcp_log_end_status(struct tcpcb *tp, uint8_t status) 3966 { 3967 uint32_t bit, i; 3968 3969 if ((tp == NULL) || 3970 (status > TCP_EI_STATUS_MAX_VALUE) || 3971 (status == 0)) { 3972 /* Invalid */ 3973 return; 3974 } 3975 if (status > (sizeof(uint32_t) * 8)) { 3976 /* Should this be a KASSERT? */ 3977 return; 3978 } 3979 bit = 1U << (status - 1); 3980 if (bit & tp->t_end_info_status) { 3981 /* already logged */ 3982 return; 3983 } 3984 for (i = 0; i < TCP_END_BYTE_INFO; i++) { 3985 if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) { 3986 tp->t_end_info_bytes[i] = status; 3987 tp->t_end_info_status |= bit; 3988 break; 3989 } 3990 } 3991 } 3992 3993 int 3994 tcp_can_enable_pacing(void) 3995 { 3996 3997 if ((tcp_pacing_limit == -1) || 3998 (tcp_pacing_limit > number_of_tcp_connections_pacing)) { 3999 atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1); 4000 shadow_num_connections = number_of_tcp_connections_pacing; 4001 return (1); 4002 } else { 4003 counter_u64_add(tcp_pacing_failures, 1); 4004 return (0); 4005 } 4006 } 4007 4008 int 4009 tcp_incr_dgp_pacing_cnt(void) 4010 { 4011 if ((tcp_dgp_limit == -1) || 4012 (tcp_dgp_limit > number_of_dgp_connections)) { 4013 atomic_fetchadd_int(&number_of_dgp_connections, 1); 4014 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4015 return (1); 4016 } else { 4017 counter_u64_add(tcp_dgp_failures, 1); 4018 return (0); 4019 } 4020 } 4021 4022 static uint8_t tcp_dgp_warning = 0; 4023 4024 void 4025 tcp_dec_dgp_pacing_cnt(void) 4026 { 4027 uint32_t ret; 4028 4029 ret = atomic_fetchadd_int(&number_of_dgp_connections, -1); 4030 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4031 KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?")); 4032 if (ret == 0) { 4033 if (tcp_dgp_limit != -1) { 4034 printf("Warning all DGP is now disabled, count decrements invalidly!\n"); 4035 tcp_dgp_limit = 0; 4036 tcp_dgp_warning = 1; 4037 } else if (tcp_dgp_warning == 0) { 4038 printf("Warning DGP pacing is invalid, invalid decrement\n"); 4039 tcp_dgp_warning = 1; 4040 } 4041 } 4042 4043 } 4044 4045 static uint8_t tcp_pacing_warning = 0; 4046 4047 void 4048 tcp_decrement_paced_conn(void) 4049 { 4050 uint32_t ret; 4051 4052 ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1); 4053 shadow_num_connections = number_of_tcp_connections_pacing; 4054 KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?")); 4055 if (ret == 0) { 4056 if (tcp_pacing_limit != -1) { 4057 printf("Warning all pacing is now disabled, count decrements invalidly!\n"); 4058 tcp_pacing_limit = 0; 4059 } else if (tcp_pacing_warning == 0) { 4060 printf("Warning pacing count is invalid, invalid decrement\n"); 4061 tcp_pacing_warning = 1; 4062 } 4063 } 4064 } 4065 4066 static void 4067 tcp_default_switch_failed(struct tcpcb *tp) 4068 { 4069 /* 4070 * If a switch fails we only need to 4071 * care about two things: 4072 * a) The t_flags2 4073 * and 4074 * b) The timer granularity. 4075 * Timeouts, at least for now, don't use the 4076 * old callout system in the other stacks so 4077 * those are hopefully safe. 4078 */ 4079 tcp_lro_features_off(tp); 4080 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 4081 } 4082 4083 #ifdef TCP_ACCOUNTING 4084 int 4085 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss) 4086 { 4087 if (SEQ_LT(th->th_ack, tp->snd_una)) { 4088 /* Do we have a SACK? */ 4089 if (to->to_flags & TOF_SACK) { 4090 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4091 tp->tcp_cnt_counters[ACK_SACK]++; 4092 } 4093 return (ACK_SACK); 4094 } else { 4095 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4096 tp->tcp_cnt_counters[ACK_BEHIND]++; 4097 } 4098 return (ACK_BEHIND); 4099 } 4100 } else if (th->th_ack == tp->snd_una) { 4101 /* Do we have a SACK? */ 4102 if (to->to_flags & TOF_SACK) { 4103 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4104 tp->tcp_cnt_counters[ACK_SACK]++; 4105 } 4106 return (ACK_SACK); 4107 } else if (tiwin != tp->snd_wnd) { 4108 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4109 tp->tcp_cnt_counters[ACK_RWND]++; 4110 } 4111 return (ACK_RWND); 4112 } else { 4113 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4114 tp->tcp_cnt_counters[ACK_DUPACK]++; 4115 } 4116 return (ACK_DUPACK); 4117 } 4118 } else { 4119 if (!SEQ_GT(th->th_ack, tp->snd_max)) { 4120 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4121 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss); 4122 } 4123 } 4124 if (to->to_flags & TOF_SACK) { 4125 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4126 tp->tcp_cnt_counters[ACK_CUMACK_SACK]++; 4127 } 4128 return (ACK_CUMACK_SACK); 4129 } else { 4130 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4131 tp->tcp_cnt_counters[ACK_CUMACK]++; 4132 } 4133 return (ACK_CUMACK); 4134 } 4135 } 4136 } 4137 #endif 4138 4139 void 4140 tcp_change_time_units(struct tcpcb *tp, int granularity) 4141 { 4142 if (tp->t_tmr_granularity == granularity) { 4143 /* We are there */ 4144 return; 4145 } 4146 if (granularity == TCP_TMR_GRANULARITY_USEC) { 4147 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS), 4148 ("Granularity is not TICKS its %u in tp:%p", 4149 tp->t_tmr_granularity, tp)); 4150 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 4151 if (tp->t_srtt > 1) { 4152 uint32_t val, frac; 4153 4154 val = tp->t_srtt >> TCP_RTT_SHIFT; 4155 frac = tp->t_srtt & 0x1f; 4156 tp->t_srtt = TICKS_2_USEC(val); 4157 /* 4158 * frac is the fractional part of the srtt (if any) 4159 * but its in ticks and every bit represents 4160 * 1/32nd of a hz. 4161 */ 4162 if (frac) { 4163 if (hz == 1000) { 4164 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4165 } else { 4166 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4167 } 4168 tp->t_srtt += frac; 4169 } 4170 } 4171 if (tp->t_rttvar) { 4172 uint32_t val, frac; 4173 4174 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 4175 frac = tp->t_rttvar & 0x1f; 4176 tp->t_rttvar = TICKS_2_USEC(val); 4177 /* 4178 * frac is the fractional part of the srtt (if any) 4179 * but its in ticks and every bit represents 4180 * 1/32nd of a hz. 4181 */ 4182 if (frac) { 4183 if (hz == 1000) { 4184 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4185 } else { 4186 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4187 } 4188 tp->t_rttvar += frac; 4189 } 4190 } 4191 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC; 4192 } else if (granularity == TCP_TMR_GRANULARITY_TICKS) { 4193 /* Convert back to ticks, with */ 4194 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC), 4195 ("Granularity is not USEC its %u in tp:%p", 4196 tp->t_tmr_granularity, tp)); 4197 if (tp->t_srtt > 1) { 4198 uint32_t val, frac; 4199 4200 val = USEC_2_TICKS(tp->t_srtt); 4201 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 4202 tp->t_srtt = val << TCP_RTT_SHIFT; 4203 /* 4204 * frac is the fractional part here is left 4205 * over from converting to hz and shifting. 4206 * We need to convert this to the 5 bit 4207 * remainder. 4208 */ 4209 if (frac) { 4210 if (hz == 1000) { 4211 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4212 } else { 4213 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4214 } 4215 tp->t_srtt += frac; 4216 } 4217 } 4218 if (tp->t_rttvar) { 4219 uint32_t val, frac; 4220 4221 val = USEC_2_TICKS(tp->t_rttvar); 4222 frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz); 4223 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 4224 /* 4225 * frac is the fractional part here is left 4226 * over from converting to hz and shifting. 4227 * We need to convert this to the 4 bit 4228 * remainder. 4229 */ 4230 if (frac) { 4231 if (hz == 1000) { 4232 frac = (((uint64_t)frac * (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4233 } else { 4234 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4235 } 4236 tp->t_rttvar += frac; 4237 } 4238 } 4239 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 4240 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 4241 } 4242 #ifdef INVARIANTS 4243 else { 4244 panic("Unknown granularity:%d tp:%p", 4245 granularity, tp); 4246 } 4247 #endif 4248 } 4249 4250 void 4251 tcp_handle_orphaned_packets(struct tcpcb *tp) 4252 { 4253 struct mbuf *save, *m, *prev; 4254 /* 4255 * Called when a stack switch is occuring from the fini() 4256 * of the old stack. We assue the init() as already been 4257 * run of the new stack and it has set the t_flags2 to 4258 * what it supports. This function will then deal with any 4259 * differences i.e. cleanup packets that maybe queued that 4260 * the newstack does not support. 4261 */ 4262 4263 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 4264 return; 4265 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 && 4266 !STAILQ_EMPTY(&tp->t_inqueue)) { 4267 /* 4268 * It is unsafe to process the packets since a 4269 * reset may be lurking in them (its rare but it 4270 * can occur). If we were to find a RST, then we 4271 * would end up dropping the connection and the 4272 * INP lock, so when we return the caller (tcp_usrreq) 4273 * will blow up when it trys to unlock the inp. 4274 * This new stack does not do any fancy LRO features 4275 * so all we can do is toss the packets. 4276 */ 4277 m = STAILQ_FIRST(&tp->t_inqueue); 4278 STAILQ_INIT(&tp->t_inqueue); 4279 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) 4280 m_freem(m); 4281 } else { 4282 /* 4283 * Here we have a stack that does mbuf queuing but 4284 * does not support compressed ack's. We must 4285 * walk all the mbufs and discard any compressed acks. 4286 */ 4287 STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) { 4288 if (m->m_flags & M_ACKCMP) { 4289 if (m == STAILQ_FIRST(&tp->t_inqueue)) 4290 STAILQ_REMOVE_HEAD(&tp->t_inqueue, 4291 m_stailqpkt); 4292 else 4293 STAILQ_REMOVE_AFTER(&tp->t_inqueue, 4294 prev, m_stailqpkt); 4295 m_freem(m); 4296 } else 4297 prev = m; 4298 } 4299 } 4300 } 4301 4302 #ifdef TCP_REQUEST_TRK 4303 uint32_t 4304 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes) 4305 { 4306 #ifdef KERN_TLS 4307 struct ktls_session *tls; 4308 uint32_t rec_oh, records; 4309 4310 tls = so->so_snd.sb_tls_info; 4311 if (tls == NULL) 4312 return (0); 4313 4314 rec_oh = tls->params.tls_hlen + tls->params.tls_tlen; 4315 records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len); 4316 return (records * rec_oh); 4317 #else 4318 return (0); 4319 #endif 4320 } 4321 4322 extern uint32_t tcp_stale_entry_time; 4323 uint32_t tcp_stale_entry_time = 250000; 4324 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW, 4325 &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out"); 4326 4327 void 4328 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req, 4329 uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes) 4330 { 4331 if (tcp_bblogging_on(tp)) { 4332 union tcp_log_stackspecific log; 4333 struct timeval tv; 4334 4335 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4336 log.u_bbr.inhpts = tcp_in_hpts(tp); 4337 log.u_bbr.flex8 = val; 4338 log.u_bbr.rttProp = req->timestamp; 4339 log.u_bbr.delRate = req->start; 4340 log.u_bbr.cur_del_rate = req->end; 4341 log.u_bbr.flex1 = req->start_seq; 4342 log.u_bbr.flex2 = req->end_seq; 4343 log.u_bbr.flex3 = req->flags; 4344 log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff); 4345 log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff); 4346 log.u_bbr.flex7 = slot; 4347 log.u_bbr.bw_inuse = offset; 4348 /* nbytes = flex6 | epoch */ 4349 log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff); 4350 log.u_bbr.epoch = (nbytes & 0x00000000ffffffff); 4351 /* cspr = lt_epoch | pkts_out */ 4352 log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff); 4353 log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff); 4354 log.u_bbr.applimited = tp->t_tcpreq_closed; 4355 log.u_bbr.applimited <<= 8; 4356 log.u_bbr.applimited |= tp->t_tcpreq_open; 4357 log.u_bbr.applimited <<= 8; 4358 log.u_bbr.applimited |= tp->t_tcpreq_req; 4359 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4360 TCP_LOG_EVENTP(tp, NULL, 4361 &tptosocket(tp)->so_rcv, 4362 &tptosocket(tp)->so_snd, 4363 TCP_LOG_REQ_T, 0, 4364 0, &log, false, &tv); 4365 } 4366 } 4367 4368 void 4369 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent) 4370 { 4371 if (tp->t_tcpreq_req > 0) 4372 tp->t_tcpreq_req--; 4373 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4374 if (tp->t_tcpreq_open > 0) 4375 tp->t_tcpreq_open--; 4376 } else { 4377 if (tp->t_tcpreq_closed > 0) 4378 tp->t_tcpreq_closed--; 4379 } 4380 ent->flags = TCP_TRK_TRACK_FLG_EMPTY; 4381 } 4382 4383 static void 4384 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest) 4385 { 4386 struct tcp_sendfile_track *ent; 4387 uint64_t time_delta, oldest_delta; 4388 int i, oldest, oldest_set = 0, cnt_rm = 0; 4389 4390 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4391 ent = &tp->t_tcpreq_info[i]; 4392 if (ent->flags != TCP_TRK_TRACK_FLG_USED) { 4393 /* 4394 * We only care about closed end ranges 4395 * that are allocated and have no sendfile 4396 * ever touching them. They would be in 4397 * state USED. 4398 */ 4399 continue; 4400 } 4401 if (ts >= ent->localtime) 4402 time_delta = ts - ent->localtime; 4403 else 4404 time_delta = 0; 4405 if (time_delta && 4406 ((oldest_delta < time_delta) || (oldest_set == 0))) { 4407 oldest_set = 1; 4408 oldest = i; 4409 oldest_delta = time_delta; 4410 } 4411 if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) { 4412 /* 4413 * No sendfile in a our time-limit 4414 * time to purge it. 4415 */ 4416 cnt_rm++; 4417 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4418 time_delta, 0); 4419 tcp_req_free_a_slot(tp, ent); 4420 } 4421 } 4422 if ((cnt_rm == 0) && rm_oldest && oldest_set) { 4423 ent = &tp->t_tcpreq_info[oldest]; 4424 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4425 oldest_delta, 1); 4426 tcp_req_free_a_slot(tp, ent); 4427 } 4428 } 4429 4430 int 4431 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point) 4432 { 4433 int i, ret = 0; 4434 struct tcp_sendfile_track *ent; 4435 4436 /* Clean up any old closed end requests that are now completed */ 4437 if (tp->t_tcpreq_req == 0) 4438 return (0); 4439 if (tp->t_tcpreq_closed == 0) 4440 return (0); 4441 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4442 ent = &tp->t_tcpreq_info[i]; 4443 /* Skip empty ones */ 4444 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4445 continue; 4446 /* Skip open ones */ 4447 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) 4448 continue; 4449 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4450 /* We are past it -- free it */ 4451 tcp_req_log_req_info(tp, ent, 4452 i, TCP_TRK_REQ_LOG_FREED, 0, 0); 4453 tcp_req_free_a_slot(tp, ent); 4454 ret++; 4455 } 4456 } 4457 return (ret); 4458 } 4459 4460 int 4461 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point) 4462 { 4463 if (tp->t_tcpreq_req == 0) 4464 return (-1); 4465 if (tp->t_tcpreq_closed == 0) 4466 return (-1); 4467 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4468 return (-1); 4469 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4470 return (1); 4471 } 4472 return (0); 4473 } 4474 4475 struct tcp_sendfile_track * 4476 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip) 4477 { 4478 /* 4479 * Given an ack point (th_ack) walk through our entries and 4480 * return the first one found that th_ack goes past the 4481 * end_seq. 4482 */ 4483 struct tcp_sendfile_track *ent; 4484 int i; 4485 4486 if (tp->t_tcpreq_req == 0) { 4487 /* none open */ 4488 return (NULL); 4489 } 4490 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4491 ent = &tp->t_tcpreq_info[i]; 4492 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4493 continue; 4494 if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) { 4495 if (SEQ_GEQ(th_ack, ent->end_seq)) { 4496 *ip = i; 4497 return (ent); 4498 } 4499 } 4500 } 4501 return (NULL); 4502 } 4503 4504 struct tcp_sendfile_track * 4505 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq) 4506 { 4507 struct tcp_sendfile_track *ent; 4508 int i; 4509 4510 if (tp->t_tcpreq_req == 0) { 4511 /* none open */ 4512 return (NULL); 4513 } 4514 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4515 ent = &tp->t_tcpreq_info[i]; 4516 tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH, 4517 (uint64_t)seq, 0); 4518 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4519 continue; 4520 } 4521 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4522 /* 4523 * An open end request only needs to 4524 * match the beginning seq or be 4525 * all we have (once we keep going on 4526 * a open end request we may have a seq 4527 * wrap). 4528 */ 4529 if ((SEQ_GEQ(seq, ent->start_seq)) || 4530 (tp->t_tcpreq_closed == 0)) 4531 return (ent); 4532 } else { 4533 /* 4534 * For this one we need to 4535 * be a bit more careful if its 4536 * completed at least. 4537 */ 4538 if ((SEQ_GEQ(seq, ent->start_seq)) && 4539 (SEQ_LT(seq, ent->end_seq))) { 4540 return (ent); 4541 } 4542 } 4543 } 4544 return (NULL); 4545 } 4546 4547 /* Should this be in its own file tcp_req.c ? */ 4548 struct tcp_sendfile_track * 4549 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups) 4550 { 4551 struct tcp_sendfile_track *fil; 4552 int i, allocated; 4553 4554 /* In case the stack does not check for completions do so now */ 4555 tcp_req_check_for_comp(tp, tp->snd_una); 4556 /* Check for stale entries */ 4557 if (tp->t_tcpreq_req) 4558 tcp_req_check_for_stale_entries(tp, ts, 4559 (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ)); 4560 /* Check to see if this is a duplicate of one not started */ 4561 if (tp->t_tcpreq_req) { 4562 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4563 fil = &tp->t_tcpreq_info[i]; 4564 if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0) 4565 continue; 4566 if ((fil->timestamp == req->timestamp) && 4567 (fil->start == req->start) && 4568 ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) || 4569 (fil->end == req->end))) { 4570 /* 4571 * We already have this request 4572 * and it has not been started with sendfile. 4573 * This probably means the user was returned 4574 * a 4xx of some sort and its going to age 4575 * out, lets not duplicate it. 4576 */ 4577 return (fil); 4578 } 4579 } 4580 } 4581 /* Ok if there is no room at the inn we are in trouble */ 4582 if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) { 4583 tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL); 4584 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4585 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], 4586 i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0); 4587 } 4588 return (NULL); 4589 } 4590 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4591 fil = &tp->t_tcpreq_info[i]; 4592 if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4593 allocated = 1; 4594 fil->flags = TCP_TRK_TRACK_FLG_USED; 4595 fil->timestamp = req->timestamp; 4596 fil->playout_ms = req->playout_ms; 4597 fil->localtime = ts; 4598 fil->start = req->start; 4599 if (req->flags & TCP_LOG_HTTPD_RANGE_END) { 4600 fil->end = req->end; 4601 } else { 4602 fil->end = 0; 4603 fil->flags |= TCP_TRK_TRACK_FLG_OPEN; 4604 } 4605 /* 4606 * We can set the min boundaries to the TCP Sequence space, 4607 * but it might be found to be further up when sendfile 4608 * actually runs on this range (if it ever does). 4609 */ 4610 fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc; 4611 fil->start_seq = tp->snd_una + 4612 tptosocket(tp)->so_snd.sb_ccc; 4613 if (req->flags & TCP_LOG_HTTPD_RANGE_END) 4614 fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start))); 4615 else 4616 fil->end_seq = 0; 4617 if (tptosocket(tp)->so_snd.sb_tls_info) { 4618 /* 4619 * This session is doing TLS. Take a swag guess 4620 * at the overhead. 4621 */ 4622 fil->end_seq += tcp_estimate_tls_overhead( 4623 tptosocket(tp), (fil->end - fil->start)); 4624 } 4625 tp->t_tcpreq_req++; 4626 if (fil->flags & TCP_TRK_TRACK_FLG_OPEN) 4627 tp->t_tcpreq_open++; 4628 else 4629 tp->t_tcpreq_closed++; 4630 tcp_req_log_req_info(tp, fil, i, 4631 TCP_TRK_REQ_LOG_NEW, 0, 0); 4632 break; 4633 } else 4634 fil = NULL; 4635 } 4636 return (fil); 4637 } 4638 4639 void 4640 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts) 4641 { 4642 (void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1); 4643 } 4644 #endif 4645 4646 void 4647 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err) 4648 { 4649 if (tcp_bblogging_on(tp)) { 4650 struct tcp_log_buffer *l; 4651 4652 l = tcp_log_event(tp, NULL, 4653 &tptosocket(tp)->so_rcv, 4654 &tptosocket(tp)->so_snd, 4655 TCP_LOG_SOCKET_OPT, 4656 err, 0, NULL, 1, 4657 NULL, NULL, 0, NULL); 4658 if (l) { 4659 l->tlb_flex1 = option_num; 4660 l->tlb_flex2 = option_val; 4661 } 4662 } 4663 } 4664 4665 uint32_t 4666 tcp_get_srtt(struct tcpcb *tp, int granularity) 4667 { 4668 uint32_t srtt; 4669 4670 KASSERT(granularity == TCP_TMR_GRANULARITY_USEC || 4671 granularity == TCP_TMR_GRANULARITY_TICKS, 4672 ("%s: called with unexpected granularity %d", __func__, 4673 granularity)); 4674 4675 srtt = tp->t_srtt; 4676 4677 /* 4678 * We only support two granularities. If the stored granularity 4679 * does not match the granularity requested by the caller, 4680 * convert the stored value to the requested unit of granularity. 4681 */ 4682 if (tp->t_tmr_granularity != granularity) { 4683 if (granularity == TCP_TMR_GRANULARITY_USEC) 4684 srtt = TICKS_2_USEC(srtt); 4685 else 4686 srtt = USEC_2_TICKS(srtt); 4687 } 4688 4689 /* 4690 * If the srtt is stored with ticks granularity, we need to 4691 * unshift to get the actual value. We do this after the 4692 * conversion above (if one was necessary) in order to maximize 4693 * precision. 4694 */ 4695 if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS) 4696 srtt = srtt >> TCP_RTT_SHIFT; 4697 4698 return (srtt); 4699 } 4700 4701 void 4702 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt, 4703 uint8_t is_tlp, bool hw_tls) 4704 { 4705 4706 if (is_tlp) { 4707 tp->t_sndtlppack++; 4708 tp->t_sndtlpbyte += len; 4709 } 4710 /* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */ 4711 if (is_rxt) 4712 tp->t_snd_rxt_bytes += len; 4713 else 4714 tp->t_sndbytes += len; 4715 4716 #ifdef KERN_TLS 4717 if (hw_tls && is_rxt && len != 0) { 4718 uint64_t rexmit_percent; 4719 4720 rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) / 4721 (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes)); 4722 if (rexmit_percent > ktls_ifnet_max_rexmit_pct) 4723 ktls_disable_ifnet(tp); 4724 } 4725 #endif 4726 } 4727