xref: /freebsd/sys/netinet/tcp_subr.c (revision 3311ff84eac3b7e82f28e331df0586036c6d361c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/hhook.h>
45 #include <sys/kernel.h>
46 #include <sys/khelp.h>
47 #include <sys/sysctl.h>
48 #include <sys/jail.h>
49 #include <sys/malloc.h>
50 #include <sys/refcount.h>
51 #include <sys/mbuf.h>
52 #ifdef INET6
53 #include <sys/domain.h>
54 #endif
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/sdt.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/protosw.h>
61 #include <sys/random.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/route.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/cc.h>
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h>
78 #include <netinet/ip_var.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/scope6_var.h>
84 #include <netinet6/nd6.h>
85 #endif
86 
87 #ifdef TCP_RFC7413
88 #include <netinet/tcp_fastopen.h>
89 #endif
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/tcp_syncache.h>
95 #ifdef INET6
96 #include <netinet6/tcp6_var.h>
97 #endif
98 #include <netinet/tcpip.h>
99 #ifdef TCPPCAP
100 #include <netinet/tcp_pcap.h>
101 #endif
102 #ifdef TCPDEBUG
103 #include <netinet/tcp_debug.h>
104 #endif
105 #ifdef INET6
106 #include <netinet6/ip6protosw.h>
107 #endif
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 
112 #ifdef IPSEC
113 #include <netipsec/ipsec.h>
114 #include <netipsec/xform.h>
115 #ifdef INET6
116 #include <netipsec/ipsec6.h>
117 #endif
118 #include <netipsec/key.h>
119 #include <sys/syslog.h>
120 #endif /*IPSEC*/
121 
122 #include <machine/in_cksum.h>
123 #include <sys/md5.h>
124 
125 #include <security/mac/mac_framework.h>
126 
127 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
128 #ifdef INET6
129 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
130 #endif
131 
132 struct rwlock tcp_function_lock;
133 
134 static int
135 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
136 {
137 	int error, new;
138 
139 	new = V_tcp_mssdflt;
140 	error = sysctl_handle_int(oidp, &new, 0, req);
141 	if (error == 0 && req->newptr) {
142 		if (new < TCP_MINMSS)
143 			error = EINVAL;
144 		else
145 			V_tcp_mssdflt = new;
146 	}
147 	return (error);
148 }
149 
150 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
151     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
152     &sysctl_net_inet_tcp_mss_check, "I",
153     "Default TCP Maximum Segment Size");
154 
155 #ifdef INET6
156 static int
157 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error, new;
160 
161 	new = V_tcp_v6mssdflt;
162 	error = sysctl_handle_int(oidp, &new, 0, req);
163 	if (error == 0 && req->newptr) {
164 		if (new < TCP_MINMSS)
165 			error = EINVAL;
166 		else
167 			V_tcp_v6mssdflt = new;
168 	}
169 	return (error);
170 }
171 
172 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
173     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
174     &sysctl_net_inet_tcp_mss_v6_check, "I",
175    "Default TCP Maximum Segment Size for IPv6");
176 #endif /* INET6 */
177 
178 /*
179  * Minimum MSS we accept and use. This prevents DoS attacks where
180  * we are forced to a ridiculous low MSS like 20 and send hundreds
181  * of packets instead of one. The effect scales with the available
182  * bandwidth and quickly saturates the CPU and network interface
183  * with packet generation and sending. Set to zero to disable MINMSS
184  * checking. This setting prevents us from sending too small packets.
185  */
186 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
188      &VNET_NAME(tcp_minmss), 0,
189     "Minimum TCP Maximum Segment Size");
190 
191 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
193     &VNET_NAME(tcp_do_rfc1323), 0,
194     "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int	tcp_log_debug = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
198     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
199 
200 static int	tcp_tcbhashsize;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
202     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
203 
204 static int	do_tcpdrain = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
206     "Enable tcp_drain routine for extra help when low on mbufs");
207 
208 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
209     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
210 
211 static VNET_DEFINE(int, icmp_may_rst) = 1;
212 #define	V_icmp_may_rst			VNET(icmp_may_rst)
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
214     &VNET_NAME(icmp_may_rst), 0,
215     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
216 
217 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
218 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
220     &VNET_NAME(tcp_isn_reseed_interval), 0,
221     "Seconds between reseeding of ISN secret");
222 
223 static int	tcp_soreceive_stream;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
225     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
226 
227 #ifdef TCP_SIGNATURE
228 static int	tcp_sig_checksigs = 1;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
230     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
231 #endif
232 
233 VNET_DEFINE(uma_zone_t, sack_hole_zone);
234 #define	V_sack_hole_zone		VNET(sack_hole_zone)
235 
236 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
237 
238 static struct inpcb *tcp_notify(struct inpcb *, int);
239 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
240 static void tcp_mtudisc(struct inpcb *, int);
241 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
242 		    void *ip4hdr, const void *ip6hdr);
243 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
244 
245 
246 static struct tcp_function_block tcp_def_funcblk = {
247 	"default",
248 	tcp_output,
249 	tcp_do_segment,
250 	tcp_default_ctloutput,
251 	NULL,
252 	NULL,
253 	NULL,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	0,
259 	0
260 };
261 
262 struct tcp_funchead t_functions;
263 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
264 
265 static struct tcp_function_block *
266 find_tcp_functions_locked(struct tcp_function_set *fs)
267 {
268 	struct tcp_function *f;
269 	struct tcp_function_block *blk=NULL;
270 
271 	TAILQ_FOREACH(f, &t_functions, tf_next) {
272 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
273 			blk = f->tf_fb;
274 			break;
275 		}
276 	}
277 	return(blk);
278 }
279 
280 static struct tcp_function_block *
281 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
282 {
283 	struct tcp_function_block *rblk=NULL;
284 	struct tcp_function *f;
285 
286 	TAILQ_FOREACH(f, &t_functions, tf_next) {
287 		if (f->tf_fb == blk) {
288 			rblk = blk;
289 			if (s) {
290 				*s = f;
291 			}
292 			break;
293 		}
294 	}
295 	return (rblk);
296 }
297 
298 struct tcp_function_block *
299 find_and_ref_tcp_functions(struct tcp_function_set *fs)
300 {
301 	struct tcp_function_block *blk;
302 
303 	rw_rlock(&tcp_function_lock);
304 	blk = find_tcp_functions_locked(fs);
305 	if (blk)
306 		refcount_acquire(&blk->tfb_refcnt);
307 	rw_runlock(&tcp_function_lock);
308 	return(blk);
309 }
310 
311 struct tcp_function_block *
312 find_and_ref_tcp_fb(struct tcp_function_block *blk)
313 {
314 	struct tcp_function_block *rblk;
315 
316 	rw_rlock(&tcp_function_lock);
317 	rblk = find_tcp_fb_locked(blk, NULL);
318 	if (rblk)
319 		refcount_acquire(&rblk->tfb_refcnt);
320 	rw_runlock(&tcp_function_lock);
321 	return(rblk);
322 }
323 
324 
325 static int
326 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
327 {
328 	int error=ENOENT;
329 	struct tcp_function_set fs;
330 	struct tcp_function_block *blk;
331 
332 	memset(&fs, 0, sizeof(fs));
333 	rw_rlock(&tcp_function_lock);
334 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
335 	if (blk) {
336 		/* Found him */
337 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
338 		fs.pcbcnt = blk->tfb_refcnt;
339 	}
340 	rw_runlock(&tcp_function_lock);
341 	error = sysctl_handle_string(oidp, fs.function_set_name,
342 				     sizeof(fs.function_set_name), req);
343 
344 	/* Check for error or no change */
345 	if (error != 0 || req->newptr == NULL)
346 		return(error);
347 
348 	rw_wlock(&tcp_function_lock);
349 	blk = find_tcp_functions_locked(&fs);
350 	if ((blk == NULL) ||
351 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
352 		error = ENOENT;
353 		goto done;
354 	}
355 	tcp_func_set_ptr = blk;
356 done:
357 	rw_wunlock(&tcp_function_lock);
358 	return (error);
359 }
360 
361 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
362 	    CTLTYPE_STRING | CTLFLAG_RW,
363 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
364 	    "Set/get the default TCP functions");
365 
366 static int
367 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
368 {
369 	int error, cnt, linesz;
370 	struct tcp_function *f;
371 	char *buffer, *cp;
372 	size_t bufsz, outsz;
373 
374 	cnt = 0;
375 	rw_rlock(&tcp_function_lock);
376 	TAILQ_FOREACH(f, &t_functions, tf_next) {
377 		cnt++;
378 	}
379 	rw_runlock(&tcp_function_lock);
380 
381 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
382 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
383 
384 	error = 0;
385 	cp = buffer;
386 
387 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
388 	cp += linesz;
389 	bufsz -= linesz;
390 	outsz = linesz;
391 
392 	rw_rlock(&tcp_function_lock);
393 	TAILQ_FOREACH(f, &t_functions, tf_next) {
394 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
395 		    f->tf_fb->tfb_tcp_block_name,
396 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
397 		    f->tf_fb->tfb_refcnt);
398 		if (linesz >= bufsz) {
399 			error = EOVERFLOW;
400 			break;
401 		}
402 		cp += linesz;
403 		bufsz -= linesz;
404 		outsz += linesz;
405 	}
406 	rw_runlock(&tcp_function_lock);
407 	if (error == 0)
408 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
409 	free(buffer, M_TEMP);
410 	return (error);
411 }
412 
413 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
414 	    CTLTYPE_STRING|CTLFLAG_RD,
415 	    NULL, 0, sysctl_net_inet_list_available, "A",
416 	    "list available TCP Function sets");
417 
418 /*
419  * Target size of TCP PCB hash tables. Must be a power of two.
420  *
421  * Note that this can be overridden by the kernel environment
422  * variable net.inet.tcp.tcbhashsize
423  */
424 #ifndef TCBHASHSIZE
425 #define TCBHASHSIZE	0
426 #endif
427 
428 /*
429  * XXX
430  * Callouts should be moved into struct tcp directly.  They are currently
431  * separate because the tcpcb structure is exported to userland for sysctl
432  * parsing purposes, which do not know about callouts.
433  */
434 struct tcpcb_mem {
435 	struct	tcpcb		tcb;
436 	struct	tcp_timer	tt;
437 	struct	cc_var		ccv;
438 	struct	osd		osd;
439 };
440 
441 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
442 #define	V_tcpcb_zone			VNET(tcpcb_zone)
443 
444 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
445 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
446 
447 static struct mtx isn_mtx;
448 
449 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
450 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
451 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
452 
453 /*
454  * TCP initialization.
455  */
456 static void
457 tcp_zone_change(void *tag)
458 {
459 
460 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
461 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
462 	tcp_tw_zone_change();
463 }
464 
465 static int
466 tcp_inpcb_init(void *mem, int size, int flags)
467 {
468 	struct inpcb *inp = mem;
469 
470 	INP_LOCK_INIT(inp, "inp", "tcpinp");
471 	return (0);
472 }
473 
474 /*
475  * Take a value and get the next power of 2 that doesn't overflow.
476  * Used to size the tcp_inpcb hash buckets.
477  */
478 static int
479 maketcp_hashsize(int size)
480 {
481 	int hashsize;
482 
483 	/*
484 	 * auto tune.
485 	 * get the next power of 2 higher than maxsockets.
486 	 */
487 	hashsize = 1 << fls(size);
488 	/* catch overflow, and just go one power of 2 smaller */
489 	if (hashsize < size) {
490 		hashsize = 1 << (fls(size) - 1);
491 	}
492 	return (hashsize);
493 }
494 
495 int
496 register_tcp_functions(struct tcp_function_block *blk, int wait)
497 {
498 	struct tcp_function_block *lblk;
499 	struct tcp_function *n;
500 	struct tcp_function_set fs;
501 
502 	if ((blk->tfb_tcp_output == NULL) ||
503 	    (blk->tfb_tcp_do_segment == NULL) ||
504 	    (blk->tfb_tcp_ctloutput == NULL) ||
505 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
506 		/*
507 		 * These functions are required and you
508 		 * need a name.
509 		 */
510 		return (EINVAL);
511 	}
512 	if (blk->tfb_tcp_timer_stop_all ||
513 	    blk->tfb_tcp_timers_left ||
514 	    blk->tfb_tcp_timer_activate ||
515 	    blk->tfb_tcp_timer_active ||
516 	    blk->tfb_tcp_timer_stop) {
517 		/*
518 		 * If you define one timer function you
519 		 * must have them all.
520 		 */
521 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
522 		    (blk->tfb_tcp_timers_left  == NULL) ||
523 		    (blk->tfb_tcp_timer_activate == NULL) ||
524 		    (blk->tfb_tcp_timer_active == NULL) ||
525 		    (blk->tfb_tcp_timer_stop == NULL)) {
526 			return (EINVAL);
527 		}
528 	}
529 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
530 	if (n == NULL) {
531 		return (ENOMEM);
532 	}
533 	n->tf_fb = blk;
534 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
535 	rw_wlock(&tcp_function_lock);
536 	lblk = find_tcp_functions_locked(&fs);
537 	if (lblk) {
538 		/* Duplicate name space not allowed */
539 		rw_wunlock(&tcp_function_lock);
540 		free(n, M_TCPFUNCTIONS);
541 		return (EALREADY);
542 	}
543 	refcount_init(&blk->tfb_refcnt, 0);
544 	blk->tfb_flags = 0;
545 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
546 	rw_wunlock(&tcp_function_lock);
547 	return(0);
548 }
549 
550 int
551 deregister_tcp_functions(struct tcp_function_block *blk)
552 {
553 	struct tcp_function_block *lblk;
554 	struct tcp_function *f;
555 	int error=ENOENT;
556 
557 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
558 		/* You can't un-register the default */
559 		return (EPERM);
560 	}
561 	rw_wlock(&tcp_function_lock);
562 	if (blk == tcp_func_set_ptr) {
563 		/* You can't free the current default */
564 		rw_wunlock(&tcp_function_lock);
565 		return (EBUSY);
566 	}
567 	if (blk->tfb_refcnt) {
568 		/* Still tcb attached, mark it. */
569 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
570 		rw_wunlock(&tcp_function_lock);
571 		return (EBUSY);
572 	}
573 	lblk = find_tcp_fb_locked(blk, &f);
574 	if (lblk) {
575 		/* Found */
576 		TAILQ_REMOVE(&t_functions, f, tf_next);
577 		f->tf_fb = NULL;
578 		free(f, M_TCPFUNCTIONS);
579 		error = 0;
580 	}
581 	rw_wunlock(&tcp_function_lock);
582 	return (error);
583 }
584 
585 void
586 tcp_init(void)
587 {
588 	const char *tcbhash_tuneable;
589 	int hashsize;
590 
591 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
592 
593 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
594 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
595 		printf("%s: WARNING: unable to register helper hook\n", __func__);
596 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
597 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
598 		printf("%s: WARNING: unable to register helper hook\n", __func__);
599 	hashsize = TCBHASHSIZE;
600 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
601 	if (hashsize == 0) {
602 		/*
603 		 * Auto tune the hash size based on maxsockets.
604 		 * A perfect hash would have a 1:1 mapping
605 		 * (hashsize = maxsockets) however it's been
606 		 * suggested that O(2) average is better.
607 		 */
608 		hashsize = maketcp_hashsize(maxsockets / 4);
609 		/*
610 		 * Our historical default is 512,
611 		 * do not autotune lower than this.
612 		 */
613 		if (hashsize < 512)
614 			hashsize = 512;
615 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
616 			printf("%s: %s auto tuned to %d\n", __func__,
617 			    tcbhash_tuneable, hashsize);
618 	}
619 	/*
620 	 * We require a hashsize to be a power of two.
621 	 * Previously if it was not a power of two we would just reset it
622 	 * back to 512, which could be a nasty surprise if you did not notice
623 	 * the error message.
624 	 * Instead what we do is clip it to the closest power of two lower
625 	 * than the specified hash value.
626 	 */
627 	if (!powerof2(hashsize)) {
628 		int oldhashsize = hashsize;
629 
630 		hashsize = maketcp_hashsize(hashsize);
631 		/* prevent absurdly low value */
632 		if (hashsize < 16)
633 			hashsize = 16;
634 		printf("%s: WARNING: TCB hash size not a power of 2, "
635 		    "clipped from %d to %d.\n", __func__, oldhashsize,
636 		    hashsize);
637 	}
638 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
639 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
640 	    IPI_HASHFIELDS_4TUPLE);
641 
642 	/*
643 	 * These have to be type stable for the benefit of the timers.
644 	 */
645 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
646 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
647 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
648 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
649 
650 	tcp_tw_init();
651 	syncache_init();
652 	tcp_hc_init();
653 
654 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
655 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
656 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
657 
658 	/* Skip initialization of globals for non-default instances. */
659 	if (!IS_DEFAULT_VNET(curvnet))
660 		return;
661 
662 	tcp_reass_global_init();
663 
664 	/* XXX virtualize those bellow? */
665 	tcp_delacktime = TCPTV_DELACK;
666 	tcp_keepinit = TCPTV_KEEP_INIT;
667 	tcp_keepidle = TCPTV_KEEP_IDLE;
668 	tcp_keepintvl = TCPTV_KEEPINTVL;
669 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
670 	tcp_msl = TCPTV_MSL;
671 	tcp_rexmit_min = TCPTV_MIN;
672 	if (tcp_rexmit_min < 1)
673 		tcp_rexmit_min = 1;
674 	tcp_rexmit_slop = TCPTV_CPU_VAR;
675 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
676 	tcp_tcbhashsize = hashsize;
677 	/* Setup the tcp function block list */
678 	TAILQ_INIT(&t_functions);
679 	rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
680 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
681 
682 	if (tcp_soreceive_stream) {
683 #ifdef INET
684 		tcp_usrreqs.pru_soreceive = soreceive_stream;
685 #endif
686 #ifdef INET6
687 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
688 #endif /* INET6 */
689 	}
690 
691 #ifdef INET6
692 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
693 #else /* INET6 */
694 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
695 #endif /* INET6 */
696 	if (max_protohdr < TCP_MINPROTOHDR)
697 		max_protohdr = TCP_MINPROTOHDR;
698 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
699 		panic("tcp_init");
700 #undef TCP_MINPROTOHDR
701 
702 	ISN_LOCK_INIT();
703 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
704 		SHUTDOWN_PRI_DEFAULT);
705 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
706 		EVENTHANDLER_PRI_ANY);
707 #ifdef TCPPCAP
708 	tcp_pcap_init();
709 #endif
710 
711 #ifdef TCP_RFC7413
712 	tcp_fastopen_init();
713 #endif
714 }
715 
716 #ifdef VIMAGE
717 void
718 tcp_destroy(void)
719 {
720 	int error;
721 
722 #ifdef TCP_RFC7413
723 	tcp_fastopen_destroy();
724 #endif
725 	tcp_hc_destroy();
726 	syncache_destroy();
727 	tcp_tw_destroy();
728 	in_pcbinfo_destroy(&V_tcbinfo);
729 	uma_zdestroy(V_sack_hole_zone);
730 	uma_zdestroy(V_tcpcb_zone);
731 
732 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
733 	if (error != 0) {
734 		printf("%s: WARNING: unable to deregister helper hook "
735 		    "type=%d, id=%d: error %d returned\n", __func__,
736 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
737 	}
738 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
739 	if (error != 0) {
740 		printf("%s: WARNING: unable to deregister helper hook "
741 		    "type=%d, id=%d: error %d returned\n", __func__,
742 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
743 	}
744 }
745 #endif
746 
747 void
748 tcp_fini(void *xtp)
749 {
750 
751 }
752 
753 /*
754  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
755  * tcp_template used to store this data in mbufs, but we now recopy it out
756  * of the tcpcb each time to conserve mbufs.
757  */
758 void
759 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
760 {
761 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
762 
763 	INP_WLOCK_ASSERT(inp);
764 
765 #ifdef INET6
766 	if ((inp->inp_vflag & INP_IPV6) != 0) {
767 		struct ip6_hdr *ip6;
768 
769 		ip6 = (struct ip6_hdr *)ip_ptr;
770 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
771 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
772 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
773 			(IPV6_VERSION & IPV6_VERSION_MASK);
774 		ip6->ip6_nxt = IPPROTO_TCP;
775 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
776 		ip6->ip6_src = inp->in6p_laddr;
777 		ip6->ip6_dst = inp->in6p_faddr;
778 	}
779 #endif /* INET6 */
780 #if defined(INET6) && defined(INET)
781 	else
782 #endif
783 #ifdef INET
784 	{
785 		struct ip *ip;
786 
787 		ip = (struct ip *)ip_ptr;
788 		ip->ip_v = IPVERSION;
789 		ip->ip_hl = 5;
790 		ip->ip_tos = inp->inp_ip_tos;
791 		ip->ip_len = 0;
792 		ip->ip_id = 0;
793 		ip->ip_off = 0;
794 		ip->ip_ttl = inp->inp_ip_ttl;
795 		ip->ip_sum = 0;
796 		ip->ip_p = IPPROTO_TCP;
797 		ip->ip_src = inp->inp_laddr;
798 		ip->ip_dst = inp->inp_faddr;
799 	}
800 #endif /* INET */
801 	th->th_sport = inp->inp_lport;
802 	th->th_dport = inp->inp_fport;
803 	th->th_seq = 0;
804 	th->th_ack = 0;
805 	th->th_x2 = 0;
806 	th->th_off = 5;
807 	th->th_flags = 0;
808 	th->th_win = 0;
809 	th->th_urp = 0;
810 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
811 }
812 
813 /*
814  * Create template to be used to send tcp packets on a connection.
815  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
816  * use for this function is in keepalives, which use tcp_respond.
817  */
818 struct tcptemp *
819 tcpip_maketemplate(struct inpcb *inp)
820 {
821 	struct tcptemp *t;
822 
823 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
824 	if (t == NULL)
825 		return (NULL);
826 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
827 	return (t);
828 }
829 
830 /*
831  * Send a single message to the TCP at address specified by
832  * the given TCP/IP header.  If m == NULL, then we make a copy
833  * of the tcpiphdr at th and send directly to the addressed host.
834  * This is used to force keep alive messages out using the TCP
835  * template for a connection.  If flags are given then we send
836  * a message back to the TCP which originated the segment th,
837  * and discard the mbuf containing it and any other attached mbufs.
838  *
839  * In any case the ack and sequence number of the transmitted
840  * segment are as specified by the parameters.
841  *
842  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
843  */
844 void
845 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
846     tcp_seq ack, tcp_seq seq, int flags)
847 {
848 	int tlen;
849 	int win = 0;
850 	struct ip *ip;
851 	struct tcphdr *nth;
852 #ifdef INET6
853 	struct ip6_hdr *ip6;
854 	int isipv6;
855 #endif /* INET6 */
856 	int ipflags = 0;
857 	struct inpcb *inp;
858 
859 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
860 
861 #ifdef INET6
862 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
863 	ip6 = ipgen;
864 #endif /* INET6 */
865 	ip = ipgen;
866 
867 	if (tp != NULL) {
868 		inp = tp->t_inpcb;
869 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
870 		INP_WLOCK_ASSERT(inp);
871 	} else
872 		inp = NULL;
873 
874 	if (tp != NULL) {
875 		if (!(flags & TH_RST)) {
876 			win = sbspace(&inp->inp_socket->so_rcv);
877 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
878 				win = (long)TCP_MAXWIN << tp->rcv_scale;
879 		}
880 	}
881 	if (m == NULL) {
882 		m = m_gethdr(M_NOWAIT, MT_DATA);
883 		if (m == NULL)
884 			return;
885 		tlen = 0;
886 		m->m_data += max_linkhdr;
887 #ifdef INET6
888 		if (isipv6) {
889 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
890 			      sizeof(struct ip6_hdr));
891 			ip6 = mtod(m, struct ip6_hdr *);
892 			nth = (struct tcphdr *)(ip6 + 1);
893 		} else
894 #endif /* INET6 */
895 		{
896 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
897 			ip = mtod(m, struct ip *);
898 			nth = (struct tcphdr *)(ip + 1);
899 		}
900 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
901 		flags = TH_ACK;
902 	} else {
903 		/*
904 		 *  reuse the mbuf.
905 		 * XXX MRT We inherrit the FIB, which is lucky.
906 		 */
907 		m_freem(m->m_next);
908 		m->m_next = NULL;
909 		m->m_data = (caddr_t)ipgen;
910 		/* m_len is set later */
911 		tlen = 0;
912 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
913 #ifdef INET6
914 		if (isipv6) {
915 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
916 			nth = (struct tcphdr *)(ip6 + 1);
917 		} else
918 #endif /* INET6 */
919 		{
920 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
921 			nth = (struct tcphdr *)(ip + 1);
922 		}
923 		if (th != nth) {
924 			/*
925 			 * this is usually a case when an extension header
926 			 * exists between the IPv6 header and the
927 			 * TCP header.
928 			 */
929 			nth->th_sport = th->th_sport;
930 			nth->th_dport = th->th_dport;
931 		}
932 		xchg(nth->th_dport, nth->th_sport, uint16_t);
933 #undef xchg
934 	}
935 #ifdef INET6
936 	if (isipv6) {
937 		ip6->ip6_flow = 0;
938 		ip6->ip6_vfc = IPV6_VERSION;
939 		ip6->ip6_nxt = IPPROTO_TCP;
940 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
941 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
942 	}
943 #endif
944 #if defined(INET) && defined(INET6)
945 	else
946 #endif
947 #ifdef INET
948 	{
949 		tlen += sizeof (struct tcpiphdr);
950 		ip->ip_len = htons(tlen);
951 		ip->ip_ttl = V_ip_defttl;
952 		if (V_path_mtu_discovery)
953 			ip->ip_off |= htons(IP_DF);
954 	}
955 #endif
956 	m->m_len = tlen;
957 	m->m_pkthdr.len = tlen;
958 	m->m_pkthdr.rcvif = NULL;
959 #ifdef MAC
960 	if (inp != NULL) {
961 		/*
962 		 * Packet is associated with a socket, so allow the
963 		 * label of the response to reflect the socket label.
964 		 */
965 		INP_WLOCK_ASSERT(inp);
966 		mac_inpcb_create_mbuf(inp, m);
967 	} else {
968 		/*
969 		 * Packet is not associated with a socket, so possibly
970 		 * update the label in place.
971 		 */
972 		mac_netinet_tcp_reply(m);
973 	}
974 #endif
975 	nth->th_seq = htonl(seq);
976 	nth->th_ack = htonl(ack);
977 	nth->th_x2 = 0;
978 	nth->th_off = sizeof (struct tcphdr) >> 2;
979 	nth->th_flags = flags;
980 	if (tp != NULL)
981 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
982 	else
983 		nth->th_win = htons((u_short)win);
984 	nth->th_urp = 0;
985 
986 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
987 #ifdef INET6
988 	if (isipv6) {
989 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
990 		nth->th_sum = in6_cksum_pseudo(ip6,
991 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
992 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
993 		    NULL, NULL);
994 	}
995 #endif /* INET6 */
996 #if defined(INET6) && defined(INET)
997 	else
998 #endif
999 #ifdef INET
1000 	{
1001 		m->m_pkthdr.csum_flags = CSUM_TCP;
1002 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1003 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1004 	}
1005 #endif /* INET */
1006 #ifdef TCPDEBUG
1007 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1008 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1009 #endif
1010 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1011 	if (flags & TH_RST)
1012 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1013 		    tp, nth);
1014 
1015 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1016 #ifdef INET6
1017 	if (isipv6)
1018 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
1019 #endif /* INET6 */
1020 #if defined(INET) && defined(INET6)
1021 	else
1022 #endif
1023 #ifdef INET
1024 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
1025 #endif
1026 }
1027 
1028 /*
1029  * Create a new TCP control block, making an
1030  * empty reassembly queue and hooking it to the argument
1031  * protocol control block.  The `inp' parameter must have
1032  * come from the zone allocator set up in tcp_init().
1033  */
1034 struct tcpcb *
1035 tcp_newtcpcb(struct inpcb *inp)
1036 {
1037 	struct tcpcb_mem *tm;
1038 	struct tcpcb *tp;
1039 #ifdef INET6
1040 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1041 #endif /* INET6 */
1042 
1043 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1044 	if (tm == NULL)
1045 		return (NULL);
1046 	tp = &tm->tcb;
1047 
1048 	/* Initialise cc_var struct for this tcpcb. */
1049 	tp->ccv = &tm->ccv;
1050 	tp->ccv->type = IPPROTO_TCP;
1051 	tp->ccv->ccvc.tcp = tp;
1052 	rw_rlock(&tcp_function_lock);
1053 	tp->t_fb = tcp_func_set_ptr;
1054 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1055 	rw_runlock(&tcp_function_lock);
1056 	if (tp->t_fb->tfb_tcp_fb_init) {
1057 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1058 	}
1059 	/*
1060 	 * Use the current system default CC algorithm.
1061 	 */
1062 	CC_LIST_RLOCK();
1063 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1064 	CC_ALGO(tp) = CC_DEFAULT();
1065 	CC_LIST_RUNLOCK();
1066 
1067 	if (CC_ALGO(tp)->cb_init != NULL)
1068 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1069 			if (tp->t_fb->tfb_tcp_fb_fini)
1070 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1071 			refcount_release(&tp->t_fb->tfb_refcnt);
1072 			uma_zfree(V_tcpcb_zone, tm);
1073 			return (NULL);
1074 		}
1075 
1076 	tp->osd = &tm->osd;
1077 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1078 		if (tp->t_fb->tfb_tcp_fb_fini)
1079 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1080 		refcount_release(&tp->t_fb->tfb_refcnt);
1081 		uma_zfree(V_tcpcb_zone, tm);
1082 		return (NULL);
1083 	}
1084 
1085 #ifdef VIMAGE
1086 	tp->t_vnet = inp->inp_vnet;
1087 #endif
1088 	tp->t_timers = &tm->tt;
1089 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1090 	tp->t_maxseg =
1091 #ifdef INET6
1092 		isipv6 ? V_tcp_v6mssdflt :
1093 #endif /* INET6 */
1094 		V_tcp_mssdflt;
1095 
1096 	/* Set up our timeouts. */
1097 	callout_init(&tp->t_timers->tt_rexmt, 1);
1098 	callout_init(&tp->t_timers->tt_persist, 1);
1099 	callout_init(&tp->t_timers->tt_keep, 1);
1100 	callout_init(&tp->t_timers->tt_2msl, 1);
1101 	callout_init(&tp->t_timers->tt_delack, 1);
1102 
1103 	if (V_tcp_do_rfc1323)
1104 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1105 	if (V_tcp_do_sack)
1106 		tp->t_flags |= TF_SACK_PERMIT;
1107 	TAILQ_INIT(&tp->snd_holes);
1108 	/*
1109 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1110 	 * is called.
1111 	 */
1112 	in_pcbref(inp);	/* Reference for tcpcb */
1113 	tp->t_inpcb = inp;
1114 
1115 	/*
1116 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1117 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1118 	 * reasonable initial retransmit time.
1119 	 */
1120 	tp->t_srtt = TCPTV_SRTTBASE;
1121 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1122 	tp->t_rttmin = tcp_rexmit_min;
1123 	tp->t_rxtcur = TCPTV_RTOBASE;
1124 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1125 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1126 	tp->t_rcvtime = ticks;
1127 	/*
1128 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1129 	 * because the socket may be bound to an IPv6 wildcard address,
1130 	 * which may match an IPv4-mapped IPv6 address.
1131 	 */
1132 	inp->inp_ip_ttl = V_ip_defttl;
1133 	inp->inp_ppcb = tp;
1134 #ifdef TCPPCAP
1135 	/*
1136 	 * Init the TCP PCAP queues.
1137 	 */
1138 	tcp_pcap_tcpcb_init(tp);
1139 #endif
1140 	return (tp);		/* XXX */
1141 }
1142 
1143 /*
1144  * Switch the congestion control algorithm back to NewReno for any active
1145  * control blocks using an algorithm which is about to go away.
1146  * This ensures the CC framework can allow the unload to proceed without leaving
1147  * any dangling pointers which would trigger a panic.
1148  * Returning non-zero would inform the CC framework that something went wrong
1149  * and it would be unsafe to allow the unload to proceed. However, there is no
1150  * way for this to occur with this implementation so we always return zero.
1151  */
1152 int
1153 tcp_ccalgounload(struct cc_algo *unload_algo)
1154 {
1155 	struct cc_algo *tmpalgo;
1156 	struct inpcb *inp;
1157 	struct tcpcb *tp;
1158 	VNET_ITERATOR_DECL(vnet_iter);
1159 
1160 	/*
1161 	 * Check all active control blocks across all network stacks and change
1162 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1163 	 * requires cleanup code to be run, call it.
1164 	 */
1165 	VNET_LIST_RLOCK();
1166 	VNET_FOREACH(vnet_iter) {
1167 		CURVNET_SET(vnet_iter);
1168 		INP_INFO_WLOCK(&V_tcbinfo);
1169 		/*
1170 		 * New connections already part way through being initialised
1171 		 * with the CC algo we're removing will not race with this code
1172 		 * because the INP_INFO_WLOCK is held during initialisation. We
1173 		 * therefore don't enter the loop below until the connection
1174 		 * list has stabilised.
1175 		 */
1176 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1177 			INP_WLOCK(inp);
1178 			/* Important to skip tcptw structs. */
1179 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1180 			    (tp = intotcpcb(inp)) != NULL) {
1181 				/*
1182 				 * By holding INP_WLOCK here, we are assured
1183 				 * that the connection is not currently
1184 				 * executing inside the CC module's functions
1185 				 * i.e. it is safe to make the switch back to
1186 				 * NewReno.
1187 				 */
1188 				if (CC_ALGO(tp) == unload_algo) {
1189 					tmpalgo = CC_ALGO(tp);
1190 					/* NewReno does not require any init. */
1191 					CC_ALGO(tp) = &newreno_cc_algo;
1192 					if (tmpalgo->cb_destroy != NULL)
1193 						tmpalgo->cb_destroy(tp->ccv);
1194 				}
1195 			}
1196 			INP_WUNLOCK(inp);
1197 		}
1198 		INP_INFO_WUNLOCK(&V_tcbinfo);
1199 		CURVNET_RESTORE();
1200 	}
1201 	VNET_LIST_RUNLOCK();
1202 
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Drop a TCP connection, reporting
1208  * the specified error.  If connection is synchronized,
1209  * then send a RST to peer.
1210  */
1211 struct tcpcb *
1212 tcp_drop(struct tcpcb *tp, int errno)
1213 {
1214 	struct socket *so = tp->t_inpcb->inp_socket;
1215 
1216 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1217 	INP_WLOCK_ASSERT(tp->t_inpcb);
1218 
1219 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1220 		tcp_state_change(tp, TCPS_CLOSED);
1221 		(void) tp->t_fb->tfb_tcp_output(tp);
1222 		TCPSTAT_INC(tcps_drops);
1223 	} else
1224 		TCPSTAT_INC(tcps_conndrops);
1225 	if (errno == ETIMEDOUT && tp->t_softerror)
1226 		errno = tp->t_softerror;
1227 	so->so_error = errno;
1228 	return (tcp_close(tp));
1229 }
1230 
1231 void
1232 tcp_discardcb(struct tcpcb *tp)
1233 {
1234 	struct inpcb *inp = tp->t_inpcb;
1235 	struct socket *so = inp->inp_socket;
1236 #ifdef INET6
1237 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1238 #endif /* INET6 */
1239 	int released;
1240 
1241 	INP_WLOCK_ASSERT(inp);
1242 
1243 	/*
1244 	 * Make sure that all of our timers are stopped before we delete the
1245 	 * PCB.
1246 	 *
1247 	 * If stopping a timer fails, we schedule a discard function in same
1248 	 * callout, and the last discard function called will take care of
1249 	 * deleting the tcpcb.
1250 	 */
1251 	tcp_timer_stop(tp, TT_REXMT);
1252 	tcp_timer_stop(tp, TT_PERSIST);
1253 	tcp_timer_stop(tp, TT_KEEP);
1254 	tcp_timer_stop(tp, TT_2MSL);
1255 	tcp_timer_stop(tp, TT_DELACK);
1256 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1257 		/* Call the stop-all function of the methods */
1258 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1259 	}
1260 
1261 	/*
1262 	 * If we got enough samples through the srtt filter,
1263 	 * save the rtt and rttvar in the routing entry.
1264 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1265 	 * 4 samples is enough for the srtt filter to converge
1266 	 * to within enough % of the correct value; fewer samples
1267 	 * and we could save a bogus rtt. The danger is not high
1268 	 * as tcp quickly recovers from everything.
1269 	 * XXX: Works very well but needs some more statistics!
1270 	 */
1271 	if (tp->t_rttupdated >= 4) {
1272 		struct hc_metrics_lite metrics;
1273 		u_long ssthresh;
1274 
1275 		bzero(&metrics, sizeof(metrics));
1276 		/*
1277 		 * Update the ssthresh always when the conditions below
1278 		 * are satisfied. This gives us better new start value
1279 		 * for the congestion avoidance for new connections.
1280 		 * ssthresh is only set if packet loss occured on a session.
1281 		 *
1282 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1283 		 * being torn down.  Ideally this code would not use 'so'.
1284 		 */
1285 		ssthresh = tp->snd_ssthresh;
1286 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1287 			/*
1288 			 * convert the limit from user data bytes to
1289 			 * packets then to packet data bytes.
1290 			 */
1291 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1292 			if (ssthresh < 2)
1293 				ssthresh = 2;
1294 			ssthresh *= (u_long)(tp->t_maxseg +
1295 #ifdef INET6
1296 			    (isipv6 ? sizeof (struct ip6_hdr) +
1297 				sizeof (struct tcphdr) :
1298 #endif
1299 				sizeof (struct tcpiphdr)
1300 #ifdef INET6
1301 			    )
1302 #endif
1303 			    );
1304 		} else
1305 			ssthresh = 0;
1306 		metrics.rmx_ssthresh = ssthresh;
1307 
1308 		metrics.rmx_rtt = tp->t_srtt;
1309 		metrics.rmx_rttvar = tp->t_rttvar;
1310 		metrics.rmx_cwnd = tp->snd_cwnd;
1311 		metrics.rmx_sendpipe = 0;
1312 		metrics.rmx_recvpipe = 0;
1313 
1314 		tcp_hc_update(&inp->inp_inc, &metrics);
1315 	}
1316 
1317 	/* free the reassembly queue, if any */
1318 	tcp_reass_flush(tp);
1319 
1320 #ifdef TCP_OFFLOAD
1321 	/* Disconnect offload device, if any. */
1322 	if (tp->t_flags & TF_TOE)
1323 		tcp_offload_detach(tp);
1324 #endif
1325 
1326 	tcp_free_sackholes(tp);
1327 
1328 #ifdef TCPPCAP
1329 	/* Free the TCP PCAP queues. */
1330 	tcp_pcap_drain(&(tp->t_inpkts));
1331 	tcp_pcap_drain(&(tp->t_outpkts));
1332 #endif
1333 
1334 	/* Allow the CC algorithm to clean up after itself. */
1335 	if (CC_ALGO(tp)->cb_destroy != NULL)
1336 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1337 
1338 	khelp_destroy_osd(tp->osd);
1339 
1340 	CC_ALGO(tp) = NULL;
1341 	inp->inp_ppcb = NULL;
1342 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1343 		/* We own the last reference on tcpcb, let's free it. */
1344 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1345 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1346 			    /* Some fb timers left running! */
1347 			    return;
1348 		}
1349 		if (tp->t_fb->tfb_tcp_fb_fini)
1350 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1351 		refcount_release(&tp->t_fb->tfb_refcnt);
1352 		tp->t_inpcb = NULL;
1353 		uma_zfree(V_tcpcb_zone, tp);
1354 		released = in_pcbrele_wlocked(inp);
1355 		KASSERT(!released, ("%s: inp %p should not have been released "
1356 			"here", __func__, inp));
1357 	}
1358 }
1359 
1360 void
1361 tcp_timer_2msl_discard(void *xtp)
1362 {
1363 
1364 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1365 }
1366 
1367 void
1368 tcp_timer_keep_discard(void *xtp)
1369 {
1370 
1371 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1372 }
1373 
1374 void
1375 tcp_timer_persist_discard(void *xtp)
1376 {
1377 
1378 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1379 }
1380 
1381 void
1382 tcp_timer_rexmt_discard(void *xtp)
1383 {
1384 
1385 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1386 }
1387 
1388 void
1389 tcp_timer_delack_discard(void *xtp)
1390 {
1391 
1392 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1393 }
1394 
1395 void
1396 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1397 {
1398 	struct inpcb *inp;
1399 
1400 	CURVNET_SET(tp->t_vnet);
1401 	INP_INFO_RLOCK(&V_tcbinfo);
1402 	inp = tp->t_inpcb;
1403 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1404 		__func__, tp));
1405 	INP_WLOCK(inp);
1406 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1407 		("%s: tcpcb has to be stopped here", __func__));
1408 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1409 		("%s: discard callout should be running", __func__));
1410 	tp->t_timers->tt_flags &= ~timer_type;
1411 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1412 		/* We own the last reference on this tcpcb, let's free it. */
1413 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1414 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1415 			    /* Some fb timers left running! */
1416 			    goto leave;
1417 		}
1418 		if (tp->t_fb->tfb_tcp_fb_fini)
1419 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1420 		refcount_release(&tp->t_fb->tfb_refcnt);
1421 		tp->t_inpcb = NULL;
1422 		uma_zfree(V_tcpcb_zone, tp);
1423 		if (in_pcbrele_wlocked(inp)) {
1424 			INP_INFO_RUNLOCK(&V_tcbinfo);
1425 			CURVNET_RESTORE();
1426 			return;
1427 		}
1428 	}
1429 leave:
1430 	INP_WUNLOCK(inp);
1431 	INP_INFO_RUNLOCK(&V_tcbinfo);
1432 	CURVNET_RESTORE();
1433 }
1434 
1435 /*
1436  * Attempt to close a TCP control block, marking it as dropped, and freeing
1437  * the socket if we hold the only reference.
1438  */
1439 struct tcpcb *
1440 tcp_close(struct tcpcb *tp)
1441 {
1442 	struct inpcb *inp = tp->t_inpcb;
1443 	struct socket *so;
1444 
1445 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1446 	INP_WLOCK_ASSERT(inp);
1447 
1448 #ifdef TCP_OFFLOAD
1449 	if (tp->t_state == TCPS_LISTEN)
1450 		tcp_offload_listen_stop(tp);
1451 #endif
1452 #ifdef TCP_RFC7413
1453 	/*
1454 	 * This releases the TFO pending counter resource for TFO listen
1455 	 * sockets as well as passively-created TFO sockets that transition
1456 	 * from SYN_RECEIVED to CLOSED.
1457 	 */
1458 	if (tp->t_tfo_pending) {
1459 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1460 		tp->t_tfo_pending = NULL;
1461 	}
1462 #endif
1463 	in_pcbdrop(inp);
1464 	TCPSTAT_INC(tcps_closed);
1465 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1466 	so = inp->inp_socket;
1467 	soisdisconnected(so);
1468 	if (inp->inp_flags & INP_SOCKREF) {
1469 		KASSERT(so->so_state & SS_PROTOREF,
1470 		    ("tcp_close: !SS_PROTOREF"));
1471 		inp->inp_flags &= ~INP_SOCKREF;
1472 		INP_WUNLOCK(inp);
1473 		ACCEPT_LOCK();
1474 		SOCK_LOCK(so);
1475 		so->so_state &= ~SS_PROTOREF;
1476 		sofree(so);
1477 		return (NULL);
1478 	}
1479 	return (tp);
1480 }
1481 
1482 void
1483 tcp_drain(void)
1484 {
1485 	VNET_ITERATOR_DECL(vnet_iter);
1486 
1487 	if (!do_tcpdrain)
1488 		return;
1489 
1490 	VNET_LIST_RLOCK_NOSLEEP();
1491 	VNET_FOREACH(vnet_iter) {
1492 		CURVNET_SET(vnet_iter);
1493 		struct inpcb *inpb;
1494 		struct tcpcb *tcpb;
1495 
1496 	/*
1497 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1498 	 * if there is one...
1499 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1500 	 *      reassembly queue should be flushed, but in a situation
1501 	 *	where we're really low on mbufs, this is potentially
1502 	 *	useful.
1503 	 */
1504 		INP_INFO_WLOCK(&V_tcbinfo);
1505 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1506 			if (inpb->inp_flags & INP_TIMEWAIT)
1507 				continue;
1508 			INP_WLOCK(inpb);
1509 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1510 				tcp_reass_flush(tcpb);
1511 				tcp_clean_sackreport(tcpb);
1512 			}
1513 			INP_WUNLOCK(inpb);
1514 		}
1515 		INP_INFO_WUNLOCK(&V_tcbinfo);
1516 		CURVNET_RESTORE();
1517 	}
1518 	VNET_LIST_RUNLOCK_NOSLEEP();
1519 }
1520 
1521 /*
1522  * Notify a tcp user of an asynchronous error;
1523  * store error as soft error, but wake up user
1524  * (for now, won't do anything until can select for soft error).
1525  *
1526  * Do not wake up user since there currently is no mechanism for
1527  * reporting soft errors (yet - a kqueue filter may be added).
1528  */
1529 static struct inpcb *
1530 tcp_notify(struct inpcb *inp, int error)
1531 {
1532 	struct tcpcb *tp;
1533 
1534 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1535 	INP_WLOCK_ASSERT(inp);
1536 
1537 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1538 	    (inp->inp_flags & INP_DROPPED))
1539 		return (inp);
1540 
1541 	tp = intotcpcb(inp);
1542 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1543 
1544 	/*
1545 	 * Ignore some errors if we are hooked up.
1546 	 * If connection hasn't completed, has retransmitted several times,
1547 	 * and receives a second error, give up now.  This is better
1548 	 * than waiting a long time to establish a connection that
1549 	 * can never complete.
1550 	 */
1551 	if (tp->t_state == TCPS_ESTABLISHED &&
1552 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1553 	     error == EHOSTDOWN)) {
1554 		return (inp);
1555 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1556 	    tp->t_softerror) {
1557 		tp = tcp_drop(tp, error);
1558 		if (tp != NULL)
1559 			return (inp);
1560 		else
1561 			return (NULL);
1562 	} else {
1563 		tp->t_softerror = error;
1564 		return (inp);
1565 	}
1566 #if 0
1567 	wakeup( &so->so_timeo);
1568 	sorwakeup(so);
1569 	sowwakeup(so);
1570 #endif
1571 }
1572 
1573 static int
1574 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1575 {
1576 	int error, i, m, n, pcb_count;
1577 	struct inpcb *inp, **inp_list;
1578 	inp_gen_t gencnt;
1579 	struct xinpgen xig;
1580 
1581 	/*
1582 	 * The process of preparing the TCB list is too time-consuming and
1583 	 * resource-intensive to repeat twice on every request.
1584 	 */
1585 	if (req->oldptr == NULL) {
1586 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1587 		n += imax(n / 8, 10);
1588 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1589 		return (0);
1590 	}
1591 
1592 	if (req->newptr != NULL)
1593 		return (EPERM);
1594 
1595 	/*
1596 	 * OK, now we're committed to doing something.
1597 	 */
1598 	INP_LIST_RLOCK(&V_tcbinfo);
1599 	gencnt = V_tcbinfo.ipi_gencnt;
1600 	n = V_tcbinfo.ipi_count;
1601 	INP_LIST_RUNLOCK(&V_tcbinfo);
1602 
1603 	m = syncache_pcbcount();
1604 
1605 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1606 		+ (n + m) * sizeof(struct xtcpcb));
1607 	if (error != 0)
1608 		return (error);
1609 
1610 	xig.xig_len = sizeof xig;
1611 	xig.xig_count = n + m;
1612 	xig.xig_gen = gencnt;
1613 	xig.xig_sogen = so_gencnt;
1614 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1615 	if (error)
1616 		return (error);
1617 
1618 	error = syncache_pcblist(req, m, &pcb_count);
1619 	if (error)
1620 		return (error);
1621 
1622 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1623 	if (inp_list == NULL)
1624 		return (ENOMEM);
1625 
1626 	INP_INFO_WLOCK(&V_tcbinfo);
1627 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1628 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1629 		INP_WLOCK(inp);
1630 		if (inp->inp_gencnt <= gencnt) {
1631 			/*
1632 			 * XXX: This use of cr_cansee(), introduced with
1633 			 * TCP state changes, is not quite right, but for
1634 			 * now, better than nothing.
1635 			 */
1636 			if (inp->inp_flags & INP_TIMEWAIT) {
1637 				if (intotw(inp) != NULL)
1638 					error = cr_cansee(req->td->td_ucred,
1639 					    intotw(inp)->tw_cred);
1640 				else
1641 					error = EINVAL;	/* Skip this inp. */
1642 			} else
1643 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1644 			if (error == 0) {
1645 				in_pcbref(inp);
1646 				inp_list[i++] = inp;
1647 			}
1648 		}
1649 		INP_WUNLOCK(inp);
1650 	}
1651 	INP_INFO_WUNLOCK(&V_tcbinfo);
1652 	n = i;
1653 
1654 	error = 0;
1655 	for (i = 0; i < n; i++) {
1656 		inp = inp_list[i];
1657 		INP_RLOCK(inp);
1658 		if (inp->inp_gencnt <= gencnt) {
1659 			struct xtcpcb xt;
1660 			void *inp_ppcb;
1661 
1662 			bzero(&xt, sizeof(xt));
1663 			xt.xt_len = sizeof xt;
1664 			/* XXX should avoid extra copy */
1665 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1666 			inp_ppcb = inp->inp_ppcb;
1667 			if (inp_ppcb == NULL)
1668 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1669 			else if (inp->inp_flags & INP_TIMEWAIT) {
1670 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1671 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1672 			} else {
1673 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1674 				if (xt.xt_tp.t_timers)
1675 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1676 			}
1677 			if (inp->inp_socket != NULL)
1678 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1679 			else {
1680 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1681 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1682 			}
1683 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1684 			INP_RUNLOCK(inp);
1685 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1686 		} else
1687 			INP_RUNLOCK(inp);
1688 	}
1689 	INP_INFO_RLOCK(&V_tcbinfo);
1690 	for (i = 0; i < n; i++) {
1691 		inp = inp_list[i];
1692 		INP_RLOCK(inp);
1693 		if (!in_pcbrele_rlocked(inp))
1694 			INP_RUNLOCK(inp);
1695 	}
1696 	INP_INFO_RUNLOCK(&V_tcbinfo);
1697 
1698 	if (!error) {
1699 		/*
1700 		 * Give the user an updated idea of our state.
1701 		 * If the generation differs from what we told
1702 		 * her before, she knows that something happened
1703 		 * while we were processing this request, and it
1704 		 * might be necessary to retry.
1705 		 */
1706 		INP_LIST_RLOCK(&V_tcbinfo);
1707 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1708 		xig.xig_sogen = so_gencnt;
1709 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1710 		INP_LIST_RUNLOCK(&V_tcbinfo);
1711 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1712 	}
1713 	free(inp_list, M_TEMP);
1714 	return (error);
1715 }
1716 
1717 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1718     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1719     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1720 
1721 #ifdef INET
1722 static int
1723 tcp_getcred(SYSCTL_HANDLER_ARGS)
1724 {
1725 	struct xucred xuc;
1726 	struct sockaddr_in addrs[2];
1727 	struct inpcb *inp;
1728 	int error;
1729 
1730 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1731 	if (error)
1732 		return (error);
1733 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1734 	if (error)
1735 		return (error);
1736 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1737 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1738 	if (inp != NULL) {
1739 		if (inp->inp_socket == NULL)
1740 			error = ENOENT;
1741 		if (error == 0)
1742 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1743 		if (error == 0)
1744 			cru2x(inp->inp_cred, &xuc);
1745 		INP_RUNLOCK(inp);
1746 	} else
1747 		error = ENOENT;
1748 	if (error == 0)
1749 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1750 	return (error);
1751 }
1752 
1753 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1754     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1755     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1756 #endif /* INET */
1757 
1758 #ifdef INET6
1759 static int
1760 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1761 {
1762 	struct xucred xuc;
1763 	struct sockaddr_in6 addrs[2];
1764 	struct inpcb *inp;
1765 	int error;
1766 #ifdef INET
1767 	int mapped = 0;
1768 #endif
1769 
1770 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1771 	if (error)
1772 		return (error);
1773 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1774 	if (error)
1775 		return (error);
1776 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1777 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1778 		return (error);
1779 	}
1780 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1781 #ifdef INET
1782 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1783 			mapped = 1;
1784 		else
1785 #endif
1786 			return (EINVAL);
1787 	}
1788 
1789 #ifdef INET
1790 	if (mapped == 1)
1791 		inp = in_pcblookup(&V_tcbinfo,
1792 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1793 			addrs[1].sin6_port,
1794 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1795 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1796 	else
1797 #endif
1798 		inp = in6_pcblookup(&V_tcbinfo,
1799 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1800 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1801 			INPLOOKUP_RLOCKPCB, NULL);
1802 	if (inp != NULL) {
1803 		if (inp->inp_socket == NULL)
1804 			error = ENOENT;
1805 		if (error == 0)
1806 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1807 		if (error == 0)
1808 			cru2x(inp->inp_cred, &xuc);
1809 		INP_RUNLOCK(inp);
1810 	} else
1811 		error = ENOENT;
1812 	if (error == 0)
1813 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1814 	return (error);
1815 }
1816 
1817 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1818     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1819     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1820 #endif /* INET6 */
1821 
1822 
1823 #ifdef INET
1824 void
1825 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1826 {
1827 	struct ip *ip = vip;
1828 	struct tcphdr *th;
1829 	struct in_addr faddr;
1830 	struct inpcb *inp;
1831 	struct tcpcb *tp;
1832 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1833 	struct icmp *icp;
1834 	struct in_conninfo inc;
1835 	tcp_seq icmp_tcp_seq;
1836 	int mtu;
1837 
1838 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1839 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1840 		return;
1841 
1842 	if (cmd == PRC_MSGSIZE)
1843 		notify = tcp_mtudisc_notify;
1844 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1845 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1846 		notify = tcp_drop_syn_sent;
1847 	/*
1848 	 * Redirects don't need to be handled up here.
1849 	 */
1850 	else if (PRC_IS_REDIRECT(cmd))
1851 		return;
1852 	/*
1853 	 * Hostdead is ugly because it goes linearly through all PCBs.
1854 	 * XXX: We never get this from ICMP, otherwise it makes an
1855 	 * excellent DoS attack on machines with many connections.
1856 	 */
1857 	else if (cmd == PRC_HOSTDEAD)
1858 		ip = NULL;
1859 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1860 		return;
1861 
1862 	if (ip == NULL) {
1863 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1864 		return;
1865 	}
1866 
1867 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1868 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1869 	INP_INFO_RLOCK(&V_tcbinfo);
1870 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1871 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1872 	if (inp != NULL)  {
1873 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1874 		    !(inp->inp_flags & INP_DROPPED) &&
1875 		    !(inp->inp_socket == NULL)) {
1876 			icmp_tcp_seq = ntohl(th->th_seq);
1877 			tp = intotcpcb(inp);
1878 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1879 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1880 				if (cmd == PRC_MSGSIZE) {
1881 					/*
1882 					 * MTU discovery:
1883 					 * If we got a needfrag set the MTU
1884 					 * in the route to the suggested new
1885 					 * value (if given) and then notify.
1886 					 */
1887 				    	mtu = ntohs(icp->icmp_nextmtu);
1888 					/*
1889 					 * If no alternative MTU was
1890 					 * proposed, try the next smaller
1891 					 * one.
1892 					 */
1893 					if (!mtu)
1894 						mtu = ip_next_mtu(
1895 						    ntohs(ip->ip_len), 1);
1896 					if (mtu < V_tcp_minmss +
1897 					    sizeof(struct tcpiphdr))
1898 						mtu = V_tcp_minmss +
1899 						    sizeof(struct tcpiphdr);
1900 					/*
1901 					 * Only process the offered MTU if it
1902 					 * is smaller than the current one.
1903 					 */
1904 					if (mtu < tp->t_maxseg +
1905 					    sizeof(struct tcpiphdr)) {
1906 						bzero(&inc, sizeof(inc));
1907 						inc.inc_faddr = faddr;
1908 						inc.inc_fibnum =
1909 						    inp->inp_inc.inc_fibnum;
1910 						tcp_hc_updatemtu(&inc, mtu);
1911 						tcp_mtudisc(inp, mtu);
1912 					}
1913 				} else
1914 					inp = (*notify)(inp,
1915 					    inetctlerrmap[cmd]);
1916 			}
1917 		}
1918 		if (inp != NULL)
1919 			INP_WUNLOCK(inp);
1920 	} else {
1921 		bzero(&inc, sizeof(inc));
1922 		inc.inc_fport = th->th_dport;
1923 		inc.inc_lport = th->th_sport;
1924 		inc.inc_faddr = faddr;
1925 		inc.inc_laddr = ip->ip_src;
1926 		syncache_unreach(&inc, th);
1927 	}
1928 	INP_INFO_RUNLOCK(&V_tcbinfo);
1929 }
1930 #endif /* INET */
1931 
1932 #ifdef INET6
1933 void
1934 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1935 {
1936 	struct tcphdr th;
1937 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1938 	struct ip6_hdr *ip6;
1939 	struct mbuf *m;
1940 	struct ip6ctlparam *ip6cp = NULL;
1941 	const struct sockaddr_in6 *sa6_src = NULL;
1942 	int off;
1943 	struct tcp_portonly {
1944 		u_int16_t th_sport;
1945 		u_int16_t th_dport;
1946 	} *thp;
1947 
1948 	if (sa->sa_family != AF_INET6 ||
1949 	    sa->sa_len != sizeof(struct sockaddr_in6))
1950 		return;
1951 
1952 	if (cmd == PRC_MSGSIZE)
1953 		notify = tcp_mtudisc_notify;
1954 	else if (!PRC_IS_REDIRECT(cmd) &&
1955 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1956 		return;
1957 
1958 	/* if the parameter is from icmp6, decode it. */
1959 	if (d != NULL) {
1960 		ip6cp = (struct ip6ctlparam *)d;
1961 		m = ip6cp->ip6c_m;
1962 		ip6 = ip6cp->ip6c_ip6;
1963 		off = ip6cp->ip6c_off;
1964 		sa6_src = ip6cp->ip6c_src;
1965 	} else {
1966 		m = NULL;
1967 		ip6 = NULL;
1968 		off = 0;	/* fool gcc */
1969 		sa6_src = &sa6_any;
1970 	}
1971 
1972 	if (ip6 != NULL) {
1973 		struct in_conninfo inc;
1974 		/*
1975 		 * XXX: We assume that when IPV6 is non NULL,
1976 		 * M and OFF are valid.
1977 		 */
1978 
1979 		/* check if we can safely examine src and dst ports */
1980 		if (m->m_pkthdr.len < off + sizeof(*thp))
1981 			return;
1982 
1983 		bzero(&th, sizeof(th));
1984 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1985 
1986 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1987 		    (struct sockaddr *)ip6cp->ip6c_src,
1988 		    th.th_sport, cmd, NULL, notify);
1989 
1990 		bzero(&inc, sizeof(inc));
1991 		inc.inc_fport = th.th_dport;
1992 		inc.inc_lport = th.th_sport;
1993 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1994 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1995 		inc.inc_flags |= INC_ISIPV6;
1996 		INP_INFO_RLOCK(&V_tcbinfo);
1997 		syncache_unreach(&inc, &th);
1998 		INP_INFO_RUNLOCK(&V_tcbinfo);
1999 	} else
2000 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2001 			      0, cmd, NULL, notify);
2002 }
2003 #endif /* INET6 */
2004 
2005 
2006 /*
2007  * Following is where TCP initial sequence number generation occurs.
2008  *
2009  * There are two places where we must use initial sequence numbers:
2010  * 1.  In SYN-ACK packets.
2011  * 2.  In SYN packets.
2012  *
2013  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2014  * tcp_syncache.c for details.
2015  *
2016  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2017  * depends on this property.  In addition, these ISNs should be
2018  * unguessable so as to prevent connection hijacking.  To satisfy
2019  * the requirements of this situation, the algorithm outlined in
2020  * RFC 1948 is used, with only small modifications.
2021  *
2022  * Implementation details:
2023  *
2024  * Time is based off the system timer, and is corrected so that it
2025  * increases by one megabyte per second.  This allows for proper
2026  * recycling on high speed LANs while still leaving over an hour
2027  * before rollover.
2028  *
2029  * As reading the *exact* system time is too expensive to be done
2030  * whenever setting up a TCP connection, we increment the time
2031  * offset in two ways.  First, a small random positive increment
2032  * is added to isn_offset for each connection that is set up.
2033  * Second, the function tcp_isn_tick fires once per clock tick
2034  * and increments isn_offset as necessary so that sequence numbers
2035  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2036  * random positive increments serve only to ensure that the same
2037  * exact sequence number is never sent out twice (as could otherwise
2038  * happen when a port is recycled in less than the system tick
2039  * interval.)
2040  *
2041  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2042  * between seeding of isn_secret.  This is normally set to zero,
2043  * as reseeding should not be necessary.
2044  *
2045  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2046  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2047  * general, this means holding an exclusive (write) lock.
2048  */
2049 
2050 #define ISN_BYTES_PER_SECOND 1048576
2051 #define ISN_STATIC_INCREMENT 4096
2052 #define ISN_RANDOM_INCREMENT (4096 - 1)
2053 
2054 static VNET_DEFINE(u_char, isn_secret[32]);
2055 static VNET_DEFINE(int, isn_last);
2056 static VNET_DEFINE(int, isn_last_reseed);
2057 static VNET_DEFINE(u_int32_t, isn_offset);
2058 static VNET_DEFINE(u_int32_t, isn_offset_old);
2059 
2060 #define	V_isn_secret			VNET(isn_secret)
2061 #define	V_isn_last			VNET(isn_last)
2062 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2063 #define	V_isn_offset			VNET(isn_offset)
2064 #define	V_isn_offset_old		VNET(isn_offset_old)
2065 
2066 tcp_seq
2067 tcp_new_isn(struct tcpcb *tp)
2068 {
2069 	MD5_CTX isn_ctx;
2070 	u_int32_t md5_buffer[4];
2071 	tcp_seq new_isn;
2072 	u_int32_t projected_offset;
2073 
2074 	INP_WLOCK_ASSERT(tp->t_inpcb);
2075 
2076 	ISN_LOCK();
2077 	/* Seed if this is the first use, reseed if requested. */
2078 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2079 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2080 		< (u_int)ticks))) {
2081 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2082 		V_isn_last_reseed = ticks;
2083 	}
2084 
2085 	/* Compute the md5 hash and return the ISN. */
2086 	MD5Init(&isn_ctx);
2087 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2088 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2089 #ifdef INET6
2090 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2091 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2092 			  sizeof(struct in6_addr));
2093 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2094 			  sizeof(struct in6_addr));
2095 	} else
2096 #endif
2097 	{
2098 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2099 			  sizeof(struct in_addr));
2100 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2101 			  sizeof(struct in_addr));
2102 	}
2103 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2104 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2105 	new_isn = (tcp_seq) md5_buffer[0];
2106 	V_isn_offset += ISN_STATIC_INCREMENT +
2107 		(arc4random() & ISN_RANDOM_INCREMENT);
2108 	if (ticks != V_isn_last) {
2109 		projected_offset = V_isn_offset_old +
2110 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2111 		if (SEQ_GT(projected_offset, V_isn_offset))
2112 			V_isn_offset = projected_offset;
2113 		V_isn_offset_old = V_isn_offset;
2114 		V_isn_last = ticks;
2115 	}
2116 	new_isn += V_isn_offset;
2117 	ISN_UNLOCK();
2118 	return (new_isn);
2119 }
2120 
2121 /*
2122  * When a specific ICMP unreachable message is received and the
2123  * connection state is SYN-SENT, drop the connection.  This behavior
2124  * is controlled by the icmp_may_rst sysctl.
2125  */
2126 struct inpcb *
2127 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2128 {
2129 	struct tcpcb *tp;
2130 
2131 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2132 	INP_WLOCK_ASSERT(inp);
2133 
2134 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2135 	    (inp->inp_flags & INP_DROPPED))
2136 		return (inp);
2137 
2138 	tp = intotcpcb(inp);
2139 	if (tp->t_state != TCPS_SYN_SENT)
2140 		return (inp);
2141 
2142 	tp = tcp_drop(tp, errno);
2143 	if (tp != NULL)
2144 		return (inp);
2145 	else
2146 		return (NULL);
2147 }
2148 
2149 /*
2150  * When `need fragmentation' ICMP is received, update our idea of the MSS
2151  * based on the new value. Also nudge TCP to send something, since we
2152  * know the packet we just sent was dropped.
2153  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2154  */
2155 static struct inpcb *
2156 tcp_mtudisc_notify(struct inpcb *inp, int error)
2157 {
2158 
2159 	tcp_mtudisc(inp, -1);
2160 	return (inp);
2161 }
2162 
2163 static void
2164 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2165 {
2166 	struct tcpcb *tp;
2167 	struct socket *so;
2168 
2169 	INP_WLOCK_ASSERT(inp);
2170 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2171 	    (inp->inp_flags & INP_DROPPED))
2172 		return;
2173 
2174 	tp = intotcpcb(inp);
2175 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2176 
2177 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2178 
2179 	so = inp->inp_socket;
2180 	SOCKBUF_LOCK(&so->so_snd);
2181 	/* If the mss is larger than the socket buffer, decrease the mss. */
2182 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2183 		tp->t_maxseg = so->so_snd.sb_hiwat;
2184 	SOCKBUF_UNLOCK(&so->so_snd);
2185 
2186 	TCPSTAT_INC(tcps_mturesent);
2187 	tp->t_rtttime = 0;
2188 	tp->snd_nxt = tp->snd_una;
2189 	tcp_free_sackholes(tp);
2190 	tp->snd_recover = tp->snd_max;
2191 	if (tp->t_flags & TF_SACK_PERMIT)
2192 		EXIT_FASTRECOVERY(tp->t_flags);
2193 	tp->t_fb->tfb_tcp_output(tp);
2194 }
2195 
2196 #ifdef INET
2197 /*
2198  * Look-up the routing entry to the peer of this inpcb.  If no route
2199  * is found and it cannot be allocated, then return 0.  This routine
2200  * is called by TCP routines that access the rmx structure and by
2201  * tcp_mss_update to get the peer/interface MTU.
2202  */
2203 u_long
2204 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2205 {
2206 	struct route sro;
2207 	struct sockaddr_in *dst;
2208 	struct ifnet *ifp;
2209 	u_long maxmtu = 0;
2210 
2211 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2212 
2213 	bzero(&sro, sizeof(sro));
2214 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2215 	        dst = (struct sockaddr_in *)&sro.ro_dst;
2216 		dst->sin_family = AF_INET;
2217 		dst->sin_len = sizeof(*dst);
2218 		dst->sin_addr = inc->inc_faddr;
2219 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
2220 	}
2221 	if (sro.ro_rt != NULL) {
2222 		ifp = sro.ro_rt->rt_ifp;
2223 		if (sro.ro_rt->rt_mtu == 0)
2224 			maxmtu = ifp->if_mtu;
2225 		else
2226 			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
2227 
2228 		/* Report additional interface capabilities. */
2229 		if (cap != NULL) {
2230 			if (ifp->if_capenable & IFCAP_TSO4 &&
2231 			    ifp->if_hwassist & CSUM_TSO) {
2232 				cap->ifcap |= CSUM_TSO;
2233 				cap->tsomax = ifp->if_hw_tsomax;
2234 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2235 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2236 			}
2237 		}
2238 		RTFREE(sro.ro_rt);
2239 	}
2240 	return (maxmtu);
2241 }
2242 #endif /* INET */
2243 
2244 #ifdef INET6
2245 u_long
2246 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2247 {
2248 	struct route_in6 sro6;
2249 	struct ifnet *ifp;
2250 	u_long maxmtu = 0;
2251 
2252 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2253 
2254 	bzero(&sro6, sizeof(sro6));
2255 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2256 		sro6.ro_dst.sin6_family = AF_INET6;
2257 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
2258 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
2259 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
2260 	}
2261 	if (sro6.ro_rt != NULL) {
2262 		ifp = sro6.ro_rt->rt_ifp;
2263 		if (sro6.ro_rt->rt_mtu == 0)
2264 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
2265 		else
2266 			maxmtu = min(sro6.ro_rt->rt_mtu,
2267 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
2268 
2269 		/* Report additional interface capabilities. */
2270 		if (cap != NULL) {
2271 			if (ifp->if_capenable & IFCAP_TSO6 &&
2272 			    ifp->if_hwassist & CSUM_TSO) {
2273 				cap->ifcap |= CSUM_TSO;
2274 				cap->tsomax = ifp->if_hw_tsomax;
2275 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2276 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2277 			}
2278 		}
2279 		RTFREE(sro6.ro_rt);
2280 	}
2281 
2282 	return (maxmtu);
2283 }
2284 #endif /* INET6 */
2285 
2286 /*
2287  * Calculate effective SMSS per RFC5681 definition for a given TCP
2288  * connection at its current state, taking into account SACK and etc.
2289  */
2290 u_int
2291 tcp_maxseg(const struct tcpcb *tp)
2292 {
2293 	u_int optlen;
2294 
2295 	if (tp->t_flags & TF_NOOPT)
2296 		return (tp->t_maxseg);
2297 
2298 	/*
2299 	 * Here we have a simplified code from tcp_addoptions(),
2300 	 * without a proper loop, and having most of paddings hardcoded.
2301 	 * We might make mistakes with padding here in some edge cases,
2302 	 * but this is harmless, since result of tcp_maxseg() is used
2303 	 * only in cwnd and ssthresh estimations.
2304 	 */
2305 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2306 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2307 		if (tp->t_flags & TF_RCVD_TSTMP)
2308 			optlen = TCPOLEN_TSTAMP_APPA;
2309 		else
2310 			optlen = 0;
2311 #ifdef TCP_SIGNATURE
2312 		if (tp->t_flags & TF_SIGNATURE)
2313 			optlen += PAD(TCPOLEN_SIGNATURE);
2314 #endif
2315 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2316 			optlen += TCPOLEN_SACKHDR;
2317 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2318 			optlen = PAD(optlen);
2319 		}
2320 	} else {
2321 		if (tp->t_flags & TF_REQ_TSTMP)
2322 			optlen = TCPOLEN_TSTAMP_APPA;
2323 		else
2324 			optlen = PAD(TCPOLEN_MAXSEG);
2325 		if (tp->t_flags & TF_REQ_SCALE)
2326 			optlen += PAD(TCPOLEN_WINDOW);
2327 #ifdef TCP_SIGNATURE
2328 		if (tp->t_flags & TF_SIGNATURE)
2329 			optlen += PAD(TCPOLEN_SIGNATURE);
2330 #endif
2331 		if (tp->t_flags & TF_SACK_PERMIT)
2332 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2333 	}
2334 #undef PAD
2335 	optlen = min(optlen, TCP_MAXOLEN);
2336 	return (tp->t_maxseg - optlen);
2337 }
2338 
2339 #ifdef IPSEC
2340 /* compute ESP/AH header size for TCP, including outer IP header. */
2341 size_t
2342 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2343 {
2344 	struct inpcb *inp;
2345 	struct mbuf *m;
2346 	size_t hdrsiz;
2347 	struct ip *ip;
2348 #ifdef INET6
2349 	struct ip6_hdr *ip6;
2350 #endif
2351 	struct tcphdr *th;
2352 
2353 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2354 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2355 		return (0);
2356 	m = m_gethdr(M_NOWAIT, MT_DATA);
2357 	if (!m)
2358 		return (0);
2359 
2360 #ifdef INET6
2361 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2362 		ip6 = mtod(m, struct ip6_hdr *);
2363 		th = (struct tcphdr *)(ip6 + 1);
2364 		m->m_pkthdr.len = m->m_len =
2365 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2366 		tcpip_fillheaders(inp, ip6, th);
2367 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2368 	} else
2369 #endif /* INET6 */
2370 	{
2371 		ip = mtod(m, struct ip *);
2372 		th = (struct tcphdr *)(ip + 1);
2373 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2374 		tcpip_fillheaders(inp, ip, th);
2375 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2376 	}
2377 
2378 	m_free(m);
2379 	return (hdrsiz);
2380 }
2381 #endif /* IPSEC */
2382 
2383 #ifdef TCP_SIGNATURE
2384 /*
2385  * Callback function invoked by m_apply() to digest TCP segment data
2386  * contained within an mbuf chain.
2387  */
2388 static int
2389 tcp_signature_apply(void *fstate, void *data, u_int len)
2390 {
2391 
2392 	MD5Update(fstate, (u_char *)data, len);
2393 	return (0);
2394 }
2395 
2396 /*
2397  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2398  * search with the destination IP address, and a 'magic SPI' to be
2399  * determined by the application. This is hardcoded elsewhere to 1179
2400 */
2401 struct secasvar *
2402 tcp_get_sav(struct mbuf *m, u_int direction)
2403 {
2404 	union sockaddr_union dst;
2405 	struct secasvar *sav;
2406 	struct ip *ip;
2407 #ifdef INET6
2408 	struct ip6_hdr *ip6;
2409 	char ip6buf[INET6_ADDRSTRLEN];
2410 #endif
2411 
2412 	/* Extract the destination from the IP header in the mbuf. */
2413 	bzero(&dst, sizeof(union sockaddr_union));
2414 	ip = mtod(m, struct ip *);
2415 #ifdef INET6
2416 	ip6 = NULL;	/* Make the compiler happy. */
2417 #endif
2418 	switch (ip->ip_v) {
2419 #ifdef INET
2420 	case IPVERSION:
2421 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2422 		dst.sa.sa_family = AF_INET;
2423 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2424 		    ip->ip_src : ip->ip_dst;
2425 		break;
2426 #endif
2427 #ifdef INET6
2428 	case (IPV6_VERSION >> 4):
2429 		ip6 = mtod(m, struct ip6_hdr *);
2430 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2431 		dst.sa.sa_family = AF_INET6;
2432 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2433 		    ip6->ip6_src : ip6->ip6_dst;
2434 		break;
2435 #endif
2436 	default:
2437 		return (NULL);
2438 		/* NOTREACHED */
2439 		break;
2440 	}
2441 
2442 	/* Look up an SADB entry which matches the address of the peer. */
2443 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2444 	if (sav == NULL) {
2445 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2446 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2447 #ifdef INET6
2448 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2449 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2450 #endif
2451 			"(unsupported)"));
2452 	}
2453 
2454 	return (sav);
2455 }
2456 
2457 /*
2458  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2459  *
2460  * Parameters:
2461  * m		pointer to head of mbuf chain
2462  * len		length of TCP segment data, excluding options
2463  * optlen	length of TCP segment options
2464  * buf		pointer to storage for computed MD5 digest
2465  * sav		pointer to security assosiation
2466  *
2467  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2468  * When called from tcp_input(), we can be sure that th_sum has been
2469  * zeroed out and verified already.
2470  *
2471  * Releases reference to SADB key before return.
2472  *
2473  * Return 0 if successful, otherwise return -1.
2474  *
2475  */
2476 int
2477 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2478     u_char *buf, struct secasvar *sav)
2479 {
2480 #ifdef INET
2481 	struct ippseudo ippseudo;
2482 #endif
2483 	MD5_CTX ctx;
2484 	int doff;
2485 	struct ip *ip;
2486 #ifdef INET
2487 	struct ipovly *ipovly;
2488 #endif
2489 	struct tcphdr *th;
2490 #ifdef INET6
2491 	struct ip6_hdr *ip6;
2492 	struct in6_addr in6;
2493 	uint32_t plen;
2494 	uint16_t nhdr;
2495 #endif
2496 	u_short savecsum;
2497 
2498 	KASSERT(m != NULL, ("NULL mbuf chain"));
2499 	KASSERT(buf != NULL, ("NULL signature pointer"));
2500 
2501 	/* Extract the destination from the IP header in the mbuf. */
2502 	ip = mtod(m, struct ip *);
2503 #ifdef INET6
2504 	ip6 = NULL;	/* Make the compiler happy. */
2505 #endif
2506 
2507 	MD5Init(&ctx);
2508 	/*
2509 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2510 	 *
2511 	 * XXX The ippseudo header MUST be digested in network byte order,
2512 	 * or else we'll fail the regression test. Assume all fields we've
2513 	 * been doing arithmetic on have been in host byte order.
2514 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2515 	 * tcp_output(), the underlying ip_len member has not yet been set.
2516 	 */
2517 	switch (ip->ip_v) {
2518 #ifdef INET
2519 	case IPVERSION:
2520 		ipovly = (struct ipovly *)ip;
2521 		ippseudo.ippseudo_src = ipovly->ih_src;
2522 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2523 		ippseudo.ippseudo_pad = 0;
2524 		ippseudo.ippseudo_p = IPPROTO_TCP;
2525 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2526 		    optlen);
2527 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2528 
2529 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2530 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2531 		break;
2532 #endif
2533 #ifdef INET6
2534 	/*
2535 	 * RFC 2385, 2.0  Proposal
2536 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2537 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2538 	 * extended next header value (to form 32 bits), and 32-bit segment
2539 	 * length.
2540 	 * Note: Upper-Layer Packet Length comes before Next Header.
2541 	 */
2542 	case (IPV6_VERSION >> 4):
2543 		in6 = ip6->ip6_src;
2544 		in6_clearscope(&in6);
2545 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2546 		in6 = ip6->ip6_dst;
2547 		in6_clearscope(&in6);
2548 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2549 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2550 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2551 		nhdr = 0;
2552 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2553 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2554 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2555 		nhdr = IPPROTO_TCP;
2556 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2557 
2558 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2559 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2560 		break;
2561 #endif
2562 	default:
2563 		KEY_FREESAV(&sav);
2564 		return (-1);
2565 		/* NOTREACHED */
2566 		break;
2567 	}
2568 
2569 
2570 	/*
2571 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2572 	 * The TCP checksum must be set to zero.
2573 	 */
2574 	savecsum = th->th_sum;
2575 	th->th_sum = 0;
2576 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2577 	th->th_sum = savecsum;
2578 
2579 	/*
2580 	 * Step 3: Update MD5 hash with TCP segment data.
2581 	 *         Use m_apply() to avoid an early m_pullup().
2582 	 */
2583 	if (len > 0)
2584 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2585 
2586 	/*
2587 	 * Step 4: Update MD5 hash with shared secret.
2588 	 */
2589 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2590 	MD5Final(buf, &ctx);
2591 
2592 	key_sa_recordxfer(sav, m);
2593 	KEY_FREESAV(&sav);
2594 	return (0);
2595 }
2596 
2597 /*
2598  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2599  *
2600  * Return 0 if successful, otherwise return -1.
2601  */
2602 int
2603 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2604     u_char *buf, u_int direction)
2605 {
2606 	struct secasvar *sav;
2607 
2608 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2609 		return (-1);
2610 
2611 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2612 }
2613 
2614 /*
2615  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2616  *
2617  * Parameters:
2618  * m		pointer to head of mbuf chain
2619  * len		length of TCP segment data, excluding options
2620  * optlen	length of TCP segment options
2621  * buf		pointer to storage for computed MD5 digest
2622  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2623  *
2624  * Return 1 if successful, otherwise return 0.
2625  */
2626 int
2627 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2628     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2629 {
2630 	char tmpdigest[TCP_SIGLEN];
2631 
2632 	if (tcp_sig_checksigs == 0)
2633 		return (1);
2634 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2635 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2636 
2637 			/*
2638 			 * If this socket is not expecting signature but
2639 			 * the segment contains signature just fail.
2640 			 */
2641 			TCPSTAT_INC(tcps_sig_err_sigopt);
2642 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2643 			return (0);
2644 		}
2645 
2646 		/* Signature is not expected, and not present in segment. */
2647 		return (1);
2648 	}
2649 
2650 	/*
2651 	 * If this socket is expecting signature but the segment does not
2652 	 * contain any just fail.
2653 	 */
2654 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2655 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2656 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2657 		return (0);
2658 	}
2659 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2660 	    IPSEC_DIR_INBOUND) == -1) {
2661 		TCPSTAT_INC(tcps_sig_err_buildsig);
2662 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2663 		return (0);
2664 	}
2665 
2666 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2667 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2668 		return (0);
2669 	}
2670 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2671 	return (1);
2672 }
2673 #endif /* TCP_SIGNATURE */
2674 
2675 static int
2676 sysctl_drop(SYSCTL_HANDLER_ARGS)
2677 {
2678 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2679 	struct sockaddr_storage addrs[2];
2680 	struct inpcb *inp;
2681 	struct tcpcb *tp;
2682 	struct tcptw *tw;
2683 	struct sockaddr_in *fin, *lin;
2684 #ifdef INET6
2685 	struct sockaddr_in6 *fin6, *lin6;
2686 #endif
2687 	int error;
2688 
2689 	inp = NULL;
2690 	fin = lin = NULL;
2691 #ifdef INET6
2692 	fin6 = lin6 = NULL;
2693 #endif
2694 	error = 0;
2695 
2696 	if (req->oldptr != NULL || req->oldlen != 0)
2697 		return (EINVAL);
2698 	if (req->newptr == NULL)
2699 		return (EPERM);
2700 	if (req->newlen < sizeof(addrs))
2701 		return (ENOMEM);
2702 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2703 	if (error)
2704 		return (error);
2705 
2706 	switch (addrs[0].ss_family) {
2707 #ifdef INET6
2708 	case AF_INET6:
2709 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2710 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2711 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2712 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2713 			return (EINVAL);
2714 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2715 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2716 				return (EINVAL);
2717 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2718 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2719 			fin = (struct sockaddr_in *)&addrs[0];
2720 			lin = (struct sockaddr_in *)&addrs[1];
2721 			break;
2722 		}
2723 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2724 		if (error)
2725 			return (error);
2726 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2727 		if (error)
2728 			return (error);
2729 		break;
2730 #endif
2731 #ifdef INET
2732 	case AF_INET:
2733 		fin = (struct sockaddr_in *)&addrs[0];
2734 		lin = (struct sockaddr_in *)&addrs[1];
2735 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2736 		    lin->sin_len != sizeof(struct sockaddr_in))
2737 			return (EINVAL);
2738 		break;
2739 #endif
2740 	default:
2741 		return (EINVAL);
2742 	}
2743 	INP_INFO_RLOCK(&V_tcbinfo);
2744 	switch (addrs[0].ss_family) {
2745 #ifdef INET6
2746 	case AF_INET6:
2747 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2748 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2749 		    INPLOOKUP_WLOCKPCB, NULL);
2750 		break;
2751 #endif
2752 #ifdef INET
2753 	case AF_INET:
2754 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2755 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2756 		break;
2757 #endif
2758 	}
2759 	if (inp != NULL) {
2760 		if (inp->inp_flags & INP_TIMEWAIT) {
2761 			/*
2762 			 * XXXRW: There currently exists a state where an
2763 			 * inpcb is present, but its timewait state has been
2764 			 * discarded.  For now, don't allow dropping of this
2765 			 * type of inpcb.
2766 			 */
2767 			tw = intotw(inp);
2768 			if (tw != NULL)
2769 				tcp_twclose(tw, 0);
2770 			else
2771 				INP_WUNLOCK(inp);
2772 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2773 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2774 			tp = intotcpcb(inp);
2775 			tp = tcp_drop(tp, ECONNABORTED);
2776 			if (tp != NULL)
2777 				INP_WUNLOCK(inp);
2778 		} else
2779 			INP_WUNLOCK(inp);
2780 	} else
2781 		error = ESRCH;
2782 	INP_INFO_RUNLOCK(&V_tcbinfo);
2783 	return (error);
2784 }
2785 
2786 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2787     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2788     0, sysctl_drop, "", "Drop TCP connection");
2789 
2790 /*
2791  * Generate a standardized TCP log line for use throughout the
2792  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2793  * allow use in the interrupt context.
2794  *
2795  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2796  * NB: The function may return NULL if memory allocation failed.
2797  *
2798  * Due to header inclusion and ordering limitations the struct ip
2799  * and ip6_hdr pointers have to be passed as void pointers.
2800  */
2801 char *
2802 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2803     const void *ip6hdr)
2804 {
2805 
2806 	/* Is logging enabled? */
2807 	if (tcp_log_in_vain == 0)
2808 		return (NULL);
2809 
2810 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2811 }
2812 
2813 char *
2814 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2815     const void *ip6hdr)
2816 {
2817 
2818 	/* Is logging enabled? */
2819 	if (tcp_log_debug == 0)
2820 		return (NULL);
2821 
2822 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2823 }
2824 
2825 static char *
2826 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2827     const void *ip6hdr)
2828 {
2829 	char *s, *sp;
2830 	size_t size;
2831 	struct ip *ip;
2832 #ifdef INET6
2833 	const struct ip6_hdr *ip6;
2834 
2835 	ip6 = (const struct ip6_hdr *)ip6hdr;
2836 #endif /* INET6 */
2837 	ip = (struct ip *)ip4hdr;
2838 
2839 	/*
2840 	 * The log line looks like this:
2841 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2842 	 */
2843 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2844 	    sizeof(PRINT_TH_FLAGS) + 1 +
2845 #ifdef INET6
2846 	    2 * INET6_ADDRSTRLEN;
2847 #else
2848 	    2 * INET_ADDRSTRLEN;
2849 #endif /* INET6 */
2850 
2851 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2852 	if (s == NULL)
2853 		return (NULL);
2854 
2855 	strcat(s, "TCP: [");
2856 	sp = s + strlen(s);
2857 
2858 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2859 		inet_ntoa_r(inc->inc_faddr, sp);
2860 		sp = s + strlen(s);
2861 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2862 		sp = s + strlen(s);
2863 		inet_ntoa_r(inc->inc_laddr, sp);
2864 		sp = s + strlen(s);
2865 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2866 #ifdef INET6
2867 	} else if (inc) {
2868 		ip6_sprintf(sp, &inc->inc6_faddr);
2869 		sp = s + strlen(s);
2870 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2871 		sp = s + strlen(s);
2872 		ip6_sprintf(sp, &inc->inc6_laddr);
2873 		sp = s + strlen(s);
2874 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2875 	} else if (ip6 && th) {
2876 		ip6_sprintf(sp, &ip6->ip6_src);
2877 		sp = s + strlen(s);
2878 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2879 		sp = s + strlen(s);
2880 		ip6_sprintf(sp, &ip6->ip6_dst);
2881 		sp = s + strlen(s);
2882 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2883 #endif /* INET6 */
2884 #ifdef INET
2885 	} else if (ip && th) {
2886 		inet_ntoa_r(ip->ip_src, sp);
2887 		sp = s + strlen(s);
2888 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2889 		sp = s + strlen(s);
2890 		inet_ntoa_r(ip->ip_dst, sp);
2891 		sp = s + strlen(s);
2892 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2893 #endif /* INET */
2894 	} else {
2895 		free(s, M_TCPLOG);
2896 		return (NULL);
2897 	}
2898 	sp = s + strlen(s);
2899 	if (th)
2900 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2901 	if (*(s + size - 1) != '\0')
2902 		panic("%s: string too long", __func__);
2903 	return (s);
2904 }
2905 
2906 /*
2907  * A subroutine which makes it easy to track TCP state changes with DTrace.
2908  * This function shouldn't be called for t_state initializations that don't
2909  * correspond to actual TCP state transitions.
2910  */
2911 void
2912 tcp_state_change(struct tcpcb *tp, int newstate)
2913 {
2914 #if defined(KDTRACE_HOOKS)
2915 	int pstate = tp->t_state;
2916 #endif
2917 
2918 	tp->t_state = newstate;
2919 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2920 }
2921