xref: /freebsd/sys/netinet/tcp_subr.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int	tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int	tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int	tcp_inflight_min = 6144;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 static int	tcp_inflight_stab = 20;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
178     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
179 
180 static void	tcp_cleartaocache(void);
181 static struct inpcb *tcp_notify(struct inpcb *, int);
182 static void	tcp_discardcb(struct tcpcb *);
183 
184 /*
185  * Target size of TCP PCB hash tables. Must be a power of two.
186  *
187  * Note that this can be overridden by the kernel environment
188  * variable net.inet.tcp.tcbhashsize
189  */
190 #ifndef TCBHASHSIZE
191 #define TCBHASHSIZE	512
192 #endif
193 
194 /*
195  * XXX
196  * Callouts should be moved into struct tcp directly.  They are currently
197  * separate becuase the tcpcb structure is exported to userland for sysctl
198  * parsing purposes, which do not know about callouts.
199  */
200 struct	tcpcb_mem {
201 	struct	tcpcb tcb;
202 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
203 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
204 };
205 
206 static uma_zone_t tcpcb_zone;
207 static uma_zone_t tcptw_zone;
208 
209 /*
210  * Tcp initialization
211  */
212 void
213 tcp_init()
214 {
215 	int hashsize = TCBHASHSIZE;
216 
217 	tcp_ccgen = 1;
218 	tcp_cleartaocache();
219 
220 	tcp_delacktime = TCPTV_DELACK;
221 	tcp_keepinit = TCPTV_KEEP_INIT;
222 	tcp_keepidle = TCPTV_KEEP_IDLE;
223 	tcp_keepintvl = TCPTV_KEEPINTVL;
224 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
225 	tcp_msl = TCPTV_MSL;
226 	tcp_rexmit_min = TCPTV_MIN;
227 	tcp_rexmit_slop = TCPTV_CPU_VAR;
228 
229 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
230 	LIST_INIT(&tcb);
231 	tcbinfo.listhead = &tcb;
232 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
233 	if (!powerof2(hashsize)) {
234 		printf("WARNING: TCB hash size not a power of 2\n");
235 		hashsize = 512; /* safe default */
236 	}
237 	tcp_tcbhashsize = hashsize;
238 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
239 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
240 					&tcbinfo.porthashmask);
241 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
242 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
243 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
244 #ifdef INET6
245 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
246 #else /* INET6 */
247 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
248 #endif /* INET6 */
249 	if (max_protohdr < TCP_MINPROTOHDR)
250 		max_protohdr = TCP_MINPROTOHDR;
251 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
252 		panic("tcp_init");
253 #undef TCP_MINPROTOHDR
254 	/*
255 	 * These have to be type stable for the benefit of the timers.
256 	 */
257 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
258 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259 	uma_zone_set_max(tcpcb_zone, maxsockets);
260 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
261 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
263 	tcp_timer_init();
264 	syncache_init();
265 }
266 
267 /*
268  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
269  * tcp_template used to store this data in mbufs, but we now recopy it out
270  * of the tcpcb each time to conserve mbufs.
271  */
272 void
273 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
274 	struct inpcb *inp;
275 	void *ip_ptr;
276 	void *tcp_ptr;
277 {
278 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
279 
280 #ifdef INET6
281 	if ((inp->inp_vflag & INP_IPV6) != 0) {
282 		struct ip6_hdr *ip6;
283 
284 		ip6 = (struct ip6_hdr *)ip_ptr;
285 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
286 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
287 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
288 			(IPV6_VERSION & IPV6_VERSION_MASK);
289 		ip6->ip6_nxt = IPPROTO_TCP;
290 		ip6->ip6_plen = sizeof(struct tcphdr);
291 		ip6->ip6_src = inp->in6p_laddr;
292 		ip6->ip6_dst = inp->in6p_faddr;
293 	} else
294 #endif
295 	{
296 		struct ip *ip;
297 
298 		ip = (struct ip *)ip_ptr;
299 		ip->ip_v = IPVERSION;
300 		ip->ip_hl = 5;
301 		ip->ip_tos = inp->inp_ip_tos;
302 		ip->ip_len = 0;
303 		ip->ip_id = 0;
304 		ip->ip_off = 0;
305 		ip->ip_ttl = inp->inp_ip_ttl;
306 		ip->ip_sum = 0;
307 		ip->ip_p = IPPROTO_TCP;
308 		ip->ip_src = inp->inp_laddr;
309 		ip->ip_dst = inp->inp_faddr;
310 	}
311 	th->th_sport = inp->inp_lport;
312 	th->th_dport = inp->inp_fport;
313 	th->th_seq = 0;
314 	th->th_ack = 0;
315 	th->th_x2 = 0;
316 	th->th_off = 5;
317 	th->th_flags = 0;
318 	th->th_win = 0;
319 	th->th_urp = 0;
320 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
321 }
322 
323 /*
324  * Create template to be used to send tcp packets on a connection.
325  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
326  * use for this function is in keepalives, which use tcp_respond.
327  */
328 struct tcptemp *
329 tcpip_maketemplate(inp)
330 	struct inpcb *inp;
331 {
332 	struct mbuf *m;
333 	struct tcptemp *n;
334 
335 	m = m_get(M_DONTWAIT, MT_HEADER);
336 	if (m == NULL)
337 		return (0);
338 	m->m_len = sizeof(struct tcptemp);
339 	n = mtod(m, struct tcptemp *);
340 
341 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
342 	return (n);
343 }
344 
345 /*
346  * Send a single message to the TCP at address specified by
347  * the given TCP/IP header.  If m == 0, then we make a copy
348  * of the tcpiphdr at ti and send directly to the addressed host.
349  * This is used to force keep alive messages out using the TCP
350  * template for a connection.  If flags are given then we send
351  * a message back to the TCP which originated the * segment ti,
352  * and discard the mbuf containing it and any other attached mbufs.
353  *
354  * In any case the ack and sequence number of the transmitted
355  * segment are as specified by the parameters.
356  *
357  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
358  */
359 void
360 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
361 	struct tcpcb *tp;
362 	void *ipgen;
363 	register struct tcphdr *th;
364 	register struct mbuf *m;
365 	tcp_seq ack, seq;
366 	int flags;
367 {
368 	register int tlen;
369 	int win = 0;
370 	struct route *ro = 0;
371 	struct route sro;
372 	struct ip *ip;
373 	struct tcphdr *nth;
374 #ifdef INET6
375 	struct route_in6 *ro6 = 0;
376 	struct route_in6 sro6;
377 	struct ip6_hdr *ip6;
378 	int isipv6;
379 #endif /* INET6 */
380 	int ipflags = 0;
381 	struct inpcb *inp;
382 
383 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
384 
385 #ifdef INET6
386 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
387 	ip6 = ipgen;
388 #endif /* INET6 */
389 	ip = ipgen;
390 
391 	if (tp) {
392 		inp = tp->t_inpcb;
393 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
394 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
395 		INP_LOCK_ASSERT(inp);
396 		if (!(flags & TH_RST)) {
397 			win = sbspace(&inp->inp_socket->so_rcv);
398 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
399 				win = (long)TCP_MAXWIN << tp->rcv_scale;
400 		}
401 #ifdef INET6
402 		if (isipv6)
403 			ro6 = &inp->in6p_route;
404 		else
405 #endif /* INET6 */
406 		ro = &inp->inp_route;
407 	} else {
408 		inp = NULL;
409 #ifdef INET6
410 		if (isipv6) {
411 			ro6 = &sro6;
412 			bzero(ro6, sizeof *ro6);
413 		} else
414 #endif /* INET6 */
415 	      {
416 		ro = &sro;
417 		bzero(ro, sizeof *ro);
418 	      }
419 	}
420 	if (m == 0) {
421 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
422 		if (m == NULL)
423 			return;
424 		tlen = 0;
425 		m->m_data += max_linkhdr;
426 #ifdef INET6
427 		if (isipv6) {
428 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
429 			      sizeof(struct ip6_hdr));
430 			ip6 = mtod(m, struct ip6_hdr *);
431 			nth = (struct tcphdr *)(ip6 + 1);
432 		} else
433 #endif /* INET6 */
434 	      {
435 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
436 		ip = mtod(m, struct ip *);
437 		nth = (struct tcphdr *)(ip + 1);
438 	      }
439 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
440 		flags = TH_ACK;
441 	} else {
442 		m_freem(m->m_next);
443 		m->m_next = 0;
444 		m->m_data = (caddr_t)ipgen;
445 		/* m_len is set later */
446 		tlen = 0;
447 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
448 #ifdef INET6
449 		if (isipv6) {
450 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
451 			nth = (struct tcphdr *)(ip6 + 1);
452 		} else
453 #endif /* INET6 */
454 	      {
455 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
456 		nth = (struct tcphdr *)(ip + 1);
457 	      }
458 		if (th != nth) {
459 			/*
460 			 * this is usually a case when an extension header
461 			 * exists between the IPv6 header and the
462 			 * TCP header.
463 			 */
464 			nth->th_sport = th->th_sport;
465 			nth->th_dport = th->th_dport;
466 		}
467 		xchg(nth->th_dport, nth->th_sport, n_short);
468 #undef xchg
469 	}
470 #ifdef INET6
471 	if (isipv6) {
472 		ip6->ip6_flow = 0;
473 		ip6->ip6_vfc = IPV6_VERSION;
474 		ip6->ip6_nxt = IPPROTO_TCP;
475 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
476 						tlen));
477 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
478 	} else
479 #endif
480       {
481 	tlen += sizeof (struct tcpiphdr);
482 	ip->ip_len = tlen;
483 	ip->ip_ttl = ip_defttl;
484       }
485 	m->m_len = tlen;
486 	m->m_pkthdr.len = tlen;
487 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
488 #ifdef MAC
489 	if (inp != NULL) {
490 		/*
491 		 * Packet is associated with a socket, so allow the
492 		 * label of the response to reflect the socket label.
493 		 */
494 		mac_create_mbuf_from_socket(inp->inp_socket, m);
495 	} else {
496 		/*
497 		 * Packet is not associated with a socket, so possibly
498 		 * update the label in place.
499 		 */
500 		mac_reflect_mbuf_tcp(m);
501 	}
502 #endif
503 	nth->th_seq = htonl(seq);
504 	nth->th_ack = htonl(ack);
505 	nth->th_x2 = 0;
506 	nth->th_off = sizeof (struct tcphdr) >> 2;
507 	nth->th_flags = flags;
508 	if (tp)
509 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
510 	else
511 		nth->th_win = htons((u_short)win);
512 	nth->th_urp = 0;
513 #ifdef INET6
514 	if (isipv6) {
515 		nth->th_sum = 0;
516 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
517 					sizeof(struct ip6_hdr),
518 					tlen - sizeof(struct ip6_hdr));
519 		ip6->ip6_hlim = in6_selecthlim(inp,
520 					       ro6 && ro6->ro_rt ?
521 					       ro6->ro_rt->rt_ifp :
522 					       NULL);
523 	} else
524 #endif /* INET6 */
525       {
526         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
527 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
528         m->m_pkthdr.csum_flags = CSUM_TCP;
529         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
530       }
531 #ifdef TCPDEBUG
532 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
533 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
534 #endif
535 #ifdef INET6
536 	if (isipv6) {
537 		(void) ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
538 		if (ro6 == &sro6 && ro6->ro_rt) {
539 			RTFREE(ro6->ro_rt);
540 			ro6->ro_rt = NULL;
541 		}
542 	} else
543 #endif /* INET6 */
544 	{
545 		(void) ip_output(m, NULL, ro, ipflags, NULL, inp);
546 		if (ro == &sro && ro->ro_rt) {
547 			RTFREE(ro->ro_rt);
548 			ro->ro_rt = NULL;
549 		}
550 	}
551 }
552 
553 /*
554  * Create a new TCP control block, making an
555  * empty reassembly queue and hooking it to the argument
556  * protocol control block.  The `inp' parameter must have
557  * come from the zone allocator set up in tcp_init().
558  */
559 struct tcpcb *
560 tcp_newtcpcb(inp)
561 	struct inpcb *inp;
562 {
563 	struct tcpcb_mem *tm;
564 	struct tcpcb *tp;
565 #ifdef INET6
566 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
567 #endif /* INET6 */
568 
569 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
570 	if (tm == NULL)
571 		return (NULL);
572 	tp = &tm->tcb;
573 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
574 	tp->t_maxseg = tp->t_maxopd =
575 #ifdef INET6
576 		isipv6 ? tcp_v6mssdflt :
577 #endif /* INET6 */
578 		tcp_mssdflt;
579 
580 	/* Set up our timeouts. */
581 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
582 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
583 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
584 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
585 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
586 
587 	if (tcp_do_rfc1323)
588 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
589 	if (tcp_do_rfc1644)
590 		tp->t_flags |= TF_REQ_CC;
591 	tp->t_inpcb = inp;	/* XXX */
592 	/*
593 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
594 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
595 	 * reasonable initial retransmit time.
596 	 */
597 	tp->t_srtt = TCPTV_SRTTBASE;
598 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
599 	tp->t_rttmin = tcp_rexmit_min;
600 	tp->t_rxtcur = TCPTV_RTOBASE;
601 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
602 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
603 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
604 	tp->t_rcvtime = ticks;
605 	tp->t_bw_rtttime = ticks;
606         /*
607 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
608 	 * because the socket may be bound to an IPv6 wildcard address,
609 	 * which may match an IPv4-mapped IPv6 address.
610 	 */
611 	inp->inp_ip_ttl = ip_defttl;
612 	inp->inp_ppcb = (caddr_t)tp;
613 	return (tp);		/* XXX */
614 }
615 
616 /*
617  * Drop a TCP connection, reporting
618  * the specified error.  If connection is synchronized,
619  * then send a RST to peer.
620  */
621 struct tcpcb *
622 tcp_drop(tp, errno)
623 	register struct tcpcb *tp;
624 	int errno;
625 {
626 	struct socket *so = tp->t_inpcb->inp_socket;
627 
628 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
629 		tp->t_state = TCPS_CLOSED;
630 		(void) tcp_output(tp);
631 		tcpstat.tcps_drops++;
632 	} else
633 		tcpstat.tcps_conndrops++;
634 	if (errno == ETIMEDOUT && tp->t_softerror)
635 		errno = tp->t_softerror;
636 	so->so_error = errno;
637 	return (tcp_close(tp));
638 }
639 
640 static void
641 tcp_discardcb(tp)
642 	struct tcpcb *tp;
643 {
644 	struct tseg_qent *q;
645 	struct inpcb *inp = tp->t_inpcb;
646 	struct socket *so = inp->inp_socket;
647 #ifdef INET6
648 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
649 #endif /* INET6 */
650 	struct rtentry *rt;
651 	int dosavessthresh;
652 
653 	/*
654 	 * Make sure that all of our timers are stopped before we
655 	 * delete the PCB.
656 	 */
657 	callout_stop(tp->tt_rexmt);
658 	callout_stop(tp->tt_persist);
659 	callout_stop(tp->tt_keep);
660 	callout_stop(tp->tt_2msl);
661 	callout_stop(tp->tt_delack);
662 
663 	/*
664 	 * If we got enough samples through the srtt filter,
665 	 * save the rtt and rttvar in the routing entry.
666 	 * 'Enough' is arbitrarily defined as the 16 samples.
667 	 * 16 samples is enough for the srtt filter to converge
668 	 * to within 5% of the correct value; fewer samples and
669 	 * we could save a very bogus rtt.
670 	 *
671 	 * Don't update the default route's characteristics and don't
672 	 * update anything that the user "locked".
673 	 */
674 	if (tp->t_rttupdated >= 16) {
675 		register u_long i = 0;
676 #ifdef INET6
677 		if (isipv6) {
678 			struct sockaddr_in6 *sin6;
679 
680 			if ((rt = inp->in6p_route.ro_rt) == NULL)
681 				goto no_valid_rt;
682 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
683 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
684 				goto no_valid_rt;
685 		}
686 		else
687 #endif /* INET6 */
688 		if ((rt = inp->inp_route.ro_rt) == NULL ||
689 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
690 		    == INADDR_ANY)
691 			goto no_valid_rt;
692 
693 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
694 			i = tp->t_srtt *
695 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
696 			if (rt->rt_rmx.rmx_rtt && i)
697 				/*
698 				 * filter this update to half the old & half
699 				 * the new values, converting scale.
700 				 * See route.h and tcp_var.h for a
701 				 * description of the scaling constants.
702 				 */
703 				rt->rt_rmx.rmx_rtt =
704 				    (rt->rt_rmx.rmx_rtt + i) / 2;
705 			else
706 				rt->rt_rmx.rmx_rtt = i;
707 			tcpstat.tcps_cachedrtt++;
708 		}
709 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
710 			i = tp->t_rttvar *
711 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
712 			if (rt->rt_rmx.rmx_rttvar && i)
713 				rt->rt_rmx.rmx_rttvar =
714 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
715 			else
716 				rt->rt_rmx.rmx_rttvar = i;
717 			tcpstat.tcps_cachedrttvar++;
718 		}
719 		/*
720 		 * The old comment here said:
721 		 * update the pipelimit (ssthresh) if it has been updated
722 		 * already or if a pipesize was specified & the threshhold
723 		 * got below half the pipesize.  I.e., wait for bad news
724 		 * before we start updating, then update on both good
725 		 * and bad news.
726 		 *
727 		 * But we want to save the ssthresh even if no pipesize is
728 		 * specified explicitly in the route, because such
729 		 * connections still have an implicit pipesize specified
730 		 * by the global tcp_sendspace.  In the absence of a reliable
731 		 * way to calculate the pipesize, it will have to do.
732 		 */
733 		i = tp->snd_ssthresh;
734 		if (rt->rt_rmx.rmx_sendpipe != 0)
735 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
736 		else
737 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
738 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
739 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
740 		    || dosavessthresh) {
741 			/*
742 			 * convert the limit from user data bytes to
743 			 * packets then to packet data bytes.
744 			 */
745 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
746 			if (i < 2)
747 				i = 2;
748 			i *= (u_long)(tp->t_maxseg +
749 #ifdef INET6
750 				      (isipv6 ? sizeof (struct ip6_hdr) +
751 					       sizeof (struct tcphdr) :
752 #endif
753 				       sizeof (struct tcpiphdr)
754 #ifdef INET6
755 				       )
756 #endif
757 				      );
758 			if (rt->rt_rmx.rmx_ssthresh)
759 				rt->rt_rmx.rmx_ssthresh =
760 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
761 			else
762 				rt->rt_rmx.rmx_ssthresh = i;
763 			tcpstat.tcps_cachedssthresh++;
764 		}
765 	}
766     no_valid_rt:
767 	/* free the reassembly queue, if any */
768 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
769 		LIST_REMOVE(q, tqe_q);
770 		m_freem(q->tqe_m);
771 		FREE(q, M_TSEGQ);
772 	}
773 	inp->inp_ppcb = NULL;
774 	tp->t_inpcb = NULL;
775 	uma_zfree(tcpcb_zone, tp);
776 	soisdisconnected(so);
777 }
778 
779 /*
780  * Close a TCP control block:
781  *    discard all space held by the tcp
782  *    discard internet protocol block
783  *    wake up any sleepers
784  */
785 struct tcpcb *
786 tcp_close(tp)
787 	struct tcpcb *tp;
788 {
789 	struct inpcb *inp = tp->t_inpcb;
790 #ifdef INET6
791 	struct socket *so = inp->inp_socket;
792 #endif
793 
794 	tcp_discardcb(tp);
795 #ifdef INET6
796 	if (INP_CHECK_SOCKAF(so, AF_INET6))
797 		in6_pcbdetach(inp);
798 	else
799 #endif
800 		in_pcbdetach(inp);
801 	tcpstat.tcps_closed++;
802 	return ((struct tcpcb *)0);
803 }
804 
805 void
806 tcp_drain()
807 {
808 	if (do_tcpdrain)
809 	{
810 		struct inpcb *inpb;
811 		struct tcpcb *tcpb;
812 		struct tseg_qent *te;
813 
814 	/*
815 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
816 	 * if there is one...
817 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
818 	 *      reassembly queue should be flushed, but in a situation
819 	 * 	where we're really low on mbufs, this is potentially
820 	 *  	usefull.
821 	 */
822 		INP_INFO_RLOCK(&tcbinfo);
823 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
824 			if (inpb->inp_vflag & INP_TIMEWAIT)
825 				continue;
826 			INP_LOCK(inpb);
827 			if ((tcpb = intotcpcb(inpb))) {
828 				while ((te = LIST_FIRST(&tcpb->t_segq))
829 			            != NULL) {
830 					LIST_REMOVE(te, tqe_q);
831 					m_freem(te->tqe_m);
832 					FREE(te, M_TSEGQ);
833 				}
834 			}
835 			INP_UNLOCK(inpb);
836 		}
837 		INP_INFO_RUNLOCK(&tcbinfo);
838 	}
839 }
840 
841 /*
842  * Notify a tcp user of an asynchronous error;
843  * store error as soft error, but wake up user
844  * (for now, won't do anything until can select for soft error).
845  *
846  * Do not wake up user since there currently is no mechanism for
847  * reporting soft errors (yet - a kqueue filter may be added).
848  */
849 static struct inpcb *
850 tcp_notify(inp, error)
851 	struct inpcb *inp;
852 	int error;
853 {
854 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
855 
856 	/*
857 	 * Ignore some errors if we are hooked up.
858 	 * If connection hasn't completed, has retransmitted several times,
859 	 * and receives a second error, give up now.  This is better
860 	 * than waiting a long time to establish a connection that
861 	 * can never complete.
862 	 */
863 	if (tp->t_state == TCPS_ESTABLISHED &&
864 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
865 	     error == EHOSTDOWN)) {
866 		return inp;
867 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
868 	    tp->t_softerror) {
869 		tcp_drop(tp, error);
870 		return (struct inpcb *)0;
871 	} else {
872 		tp->t_softerror = error;
873 		return inp;
874 	}
875 #if 0
876 	wakeup( &so->so_timeo);
877 	sorwakeup(so);
878 	sowwakeup(so);
879 #endif
880 }
881 
882 static int
883 tcp_pcblist(SYSCTL_HANDLER_ARGS)
884 {
885 	int error, i, n, s;
886 	struct inpcb *inp, **inp_list;
887 	inp_gen_t gencnt;
888 	struct xinpgen xig;
889 
890 	/*
891 	 * The process of preparing the TCB list is too time-consuming and
892 	 * resource-intensive to repeat twice on every request.
893 	 */
894 	if (req->oldptr == 0) {
895 		n = tcbinfo.ipi_count;
896 		req->oldidx = 2 * (sizeof xig)
897 			+ (n + n/8) * sizeof(struct xtcpcb);
898 		return 0;
899 	}
900 
901 	if (req->newptr != 0)
902 		return EPERM;
903 
904 	/*
905 	 * OK, now we're committed to doing something.
906 	 */
907 	s = splnet();
908 	INP_INFO_RLOCK(&tcbinfo);
909 	gencnt = tcbinfo.ipi_gencnt;
910 	n = tcbinfo.ipi_count;
911 	INP_INFO_RUNLOCK(&tcbinfo);
912 	splx(s);
913 
914 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
915 		+ n * sizeof(struct xtcpcb));
916 
917 	xig.xig_len = sizeof xig;
918 	xig.xig_count = n;
919 	xig.xig_gen = gencnt;
920 	xig.xig_sogen = so_gencnt;
921 	error = SYSCTL_OUT(req, &xig, sizeof xig);
922 	if (error)
923 		return error;
924 
925 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
926 	if (inp_list == 0)
927 		return ENOMEM;
928 
929 	s = splnet();
930 	INP_INFO_RLOCK(&tcbinfo);
931 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
932 	     inp = LIST_NEXT(inp, inp_list)) {
933 		INP_LOCK(inp);
934 		if (inp->inp_gencnt <= gencnt) {
935 			/*
936 			 * XXX: This use of cr_cansee(), introduced with
937 			 * TCP state changes, is not quite right, but for
938 			 * now, better than nothing.
939 			 */
940 			if (inp->inp_vflag & INP_TIMEWAIT)
941 				error = cr_cansee(req->td->td_ucred,
942 				    intotw(inp)->tw_cred);
943 			else
944 				error = cr_canseesocket(req->td->td_ucred,
945 				    inp->inp_socket);
946 			if (error == 0)
947 				inp_list[i++] = inp;
948 		}
949 		INP_UNLOCK(inp);
950 	}
951 	INP_INFO_RUNLOCK(&tcbinfo);
952 	splx(s);
953 	n = i;
954 
955 	error = 0;
956 	for (i = 0; i < n; i++) {
957 		inp = inp_list[i];
958 		if (inp->inp_gencnt <= gencnt) {
959 			struct xtcpcb xt;
960 			caddr_t inp_ppcb;
961 			xt.xt_len = sizeof xt;
962 			/* XXX should avoid extra copy */
963 			bcopy(inp, &xt.xt_inp, sizeof *inp);
964 			inp_ppcb = inp->inp_ppcb;
965 			if (inp_ppcb == NULL)
966 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
967 			else if (inp->inp_vflag & INP_TIMEWAIT) {
968 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
969 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
970 			} else
971 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
972 			if (inp->inp_socket)
973 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
974 			else {
975 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
976 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
977 			}
978 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
979 			error = SYSCTL_OUT(req, &xt, sizeof xt);
980 		}
981 	}
982 	if (!error) {
983 		/*
984 		 * Give the user an updated idea of our state.
985 		 * If the generation differs from what we told
986 		 * her before, she knows that something happened
987 		 * while we were processing this request, and it
988 		 * might be necessary to retry.
989 		 */
990 		s = splnet();
991 		INP_INFO_RLOCK(&tcbinfo);
992 		xig.xig_gen = tcbinfo.ipi_gencnt;
993 		xig.xig_sogen = so_gencnt;
994 		xig.xig_count = tcbinfo.ipi_count;
995 		INP_INFO_RUNLOCK(&tcbinfo);
996 		splx(s);
997 		error = SYSCTL_OUT(req, &xig, sizeof xig);
998 	}
999 	free(inp_list, M_TEMP);
1000 	return error;
1001 }
1002 
1003 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1004 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1005 
1006 static int
1007 tcp_getcred(SYSCTL_HANDLER_ARGS)
1008 {
1009 	struct xucred xuc;
1010 	struct sockaddr_in addrs[2];
1011 	struct inpcb *inp;
1012 	int error, s;
1013 
1014 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1015 	if (error)
1016 		return (error);
1017 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1018 	if (error)
1019 		return (error);
1020 	s = splnet();
1021 	INP_INFO_RLOCK(&tcbinfo);
1022 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1023 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1024 	if (inp == NULL) {
1025 		error = ENOENT;
1026 		goto outunlocked;
1027 	}
1028 	INP_LOCK(inp);
1029 	if (inp->inp_socket == NULL) {
1030 		error = ENOENT;
1031 		goto out;
1032 	}
1033 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1034 	if (error)
1035 		goto out;
1036 	cru2x(inp->inp_socket->so_cred, &xuc);
1037 out:
1038 	INP_UNLOCK(inp);
1039 outunlocked:
1040 	INP_INFO_RUNLOCK(&tcbinfo);
1041 	splx(s);
1042 	if (error == 0)
1043 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1044 	return (error);
1045 }
1046 
1047 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1048     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1049     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1050 
1051 #ifdef INET6
1052 static int
1053 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1054 {
1055 	struct xucred xuc;
1056 	struct sockaddr_in6 addrs[2];
1057 	struct inpcb *inp;
1058 	int error, s, mapped = 0;
1059 
1060 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1061 	if (error)
1062 		return (error);
1063 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1064 	if (error)
1065 		return (error);
1066 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1067 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1068 			mapped = 1;
1069 		else
1070 			return (EINVAL);
1071 	}
1072 	s = splnet();
1073 	INP_INFO_RLOCK(&tcbinfo);
1074 	if (mapped == 1)
1075 		inp = in_pcblookup_hash(&tcbinfo,
1076 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1077 			addrs[1].sin6_port,
1078 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1079 			addrs[0].sin6_port,
1080 			0, NULL);
1081 	else
1082 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1083 				 addrs[1].sin6_port,
1084 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1085 				 0, NULL);
1086 	if (inp == NULL) {
1087 		error = ENOENT;
1088 		goto outunlocked;
1089 	}
1090 	INP_LOCK(inp);
1091 	if (inp->inp_socket == NULL) {
1092 		error = ENOENT;
1093 		goto out;
1094 	}
1095 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1096 	if (error)
1097 		goto out;
1098 	cru2x(inp->inp_socket->so_cred, &xuc);
1099 out:
1100 	INP_UNLOCK(inp);
1101 outunlocked:
1102 	INP_INFO_RUNLOCK(&tcbinfo);
1103 	splx(s);
1104 	if (error == 0)
1105 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1106 	return (error);
1107 }
1108 
1109 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1110     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1111     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1112 #endif
1113 
1114 
1115 void
1116 tcp_ctlinput(cmd, sa, vip)
1117 	int cmd;
1118 	struct sockaddr *sa;
1119 	void *vip;
1120 {
1121 	struct ip *ip = vip;
1122 	struct tcphdr *th;
1123 	struct in_addr faddr;
1124 	struct inpcb *inp;
1125 	struct tcpcb *tp;
1126 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1127 	tcp_seq icmp_seq;
1128 	int s;
1129 
1130 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1131 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1132 		return;
1133 
1134 	if (cmd == PRC_QUENCH)
1135 		notify = tcp_quench;
1136 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1137 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1138 		notify = tcp_drop_syn_sent;
1139 	else if (cmd == PRC_MSGSIZE)
1140 		notify = tcp_mtudisc;
1141 	else if (PRC_IS_REDIRECT(cmd)) {
1142 		ip = 0;
1143 		notify = in_rtchange;
1144 	} else if (cmd == PRC_HOSTDEAD)
1145 		ip = 0;
1146 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1147 		return;
1148 	if (ip) {
1149 		s = splnet();
1150 		th = (struct tcphdr *)((caddr_t)ip
1151 				       + (ip->ip_hl << 2));
1152 		INP_INFO_WLOCK(&tcbinfo);
1153 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1154 		    ip->ip_src, th->th_sport, 0, NULL);
1155 		if (inp != NULL)  {
1156 			INP_LOCK(inp);
1157 			if (inp->inp_socket != NULL) {
1158 				icmp_seq = htonl(th->th_seq);
1159 				tp = intotcpcb(inp);
1160 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1161 			    		SEQ_LT(icmp_seq, tp->snd_max))
1162 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1163 			}
1164 			if (inp)
1165 				INP_UNLOCK(inp);
1166 		} else {
1167 			struct in_conninfo inc;
1168 
1169 			inc.inc_fport = th->th_dport;
1170 			inc.inc_lport = th->th_sport;
1171 			inc.inc_faddr = faddr;
1172 			inc.inc_laddr = ip->ip_src;
1173 #ifdef INET6
1174 			inc.inc_isipv6 = 0;
1175 #endif
1176 			syncache_unreach(&inc, th);
1177 		}
1178 		INP_INFO_WUNLOCK(&tcbinfo);
1179 		splx(s);
1180 	} else
1181 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1182 }
1183 
1184 #ifdef INET6
1185 void
1186 tcp6_ctlinput(cmd, sa, d)
1187 	int cmd;
1188 	struct sockaddr *sa;
1189 	void *d;
1190 {
1191 	struct tcphdr th;
1192 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1193 	struct ip6_hdr *ip6;
1194 	struct mbuf *m;
1195 	struct ip6ctlparam *ip6cp = NULL;
1196 	const struct sockaddr_in6 *sa6_src = NULL;
1197 	int off;
1198 	struct tcp_portonly {
1199 		u_int16_t th_sport;
1200 		u_int16_t th_dport;
1201 	} *thp;
1202 
1203 	if (sa->sa_family != AF_INET6 ||
1204 	    sa->sa_len != sizeof(struct sockaddr_in6))
1205 		return;
1206 
1207 	if (cmd == PRC_QUENCH)
1208 		notify = tcp_quench;
1209 	else if (cmd == PRC_MSGSIZE)
1210 		notify = tcp_mtudisc;
1211 	else if (!PRC_IS_REDIRECT(cmd) &&
1212 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1213 		return;
1214 
1215 	/* if the parameter is from icmp6, decode it. */
1216 	if (d != NULL) {
1217 		ip6cp = (struct ip6ctlparam *)d;
1218 		m = ip6cp->ip6c_m;
1219 		ip6 = ip6cp->ip6c_ip6;
1220 		off = ip6cp->ip6c_off;
1221 		sa6_src = ip6cp->ip6c_src;
1222 	} else {
1223 		m = NULL;
1224 		ip6 = NULL;
1225 		off = 0;	/* fool gcc */
1226 		sa6_src = &sa6_any;
1227 	}
1228 
1229 	if (ip6) {
1230 		struct in_conninfo inc;
1231 		/*
1232 		 * XXX: We assume that when IPV6 is non NULL,
1233 		 * M and OFF are valid.
1234 		 */
1235 
1236 		/* check if we can safely examine src and dst ports */
1237 		if (m->m_pkthdr.len < off + sizeof(*thp))
1238 			return;
1239 
1240 		bzero(&th, sizeof(th));
1241 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1242 
1243 		in6_pcbnotify(&tcb, sa, th.th_dport,
1244 		    (struct sockaddr *)ip6cp->ip6c_src,
1245 		    th.th_sport, cmd, notify);
1246 
1247 		inc.inc_fport = th.th_dport;
1248 		inc.inc_lport = th.th_sport;
1249 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1250 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1251 		inc.inc_isipv6 = 1;
1252 		syncache_unreach(&inc, &th);
1253 	} else
1254 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1255 			      0, cmd, notify);
1256 }
1257 #endif /* INET6 */
1258 
1259 
1260 /*
1261  * Following is where TCP initial sequence number generation occurs.
1262  *
1263  * There are two places where we must use initial sequence numbers:
1264  * 1.  In SYN-ACK packets.
1265  * 2.  In SYN packets.
1266  *
1267  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1268  * tcp_syncache.c for details.
1269  *
1270  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1271  * depends on this property.  In addition, these ISNs should be
1272  * unguessable so as to prevent connection hijacking.  To satisfy
1273  * the requirements of this situation, the algorithm outlined in
1274  * RFC 1948 is used to generate sequence numbers.
1275  *
1276  * Implementation details:
1277  *
1278  * Time is based off the system timer, and is corrected so that it
1279  * increases by one megabyte per second.  This allows for proper
1280  * recycling on high speed LANs while still leaving over an hour
1281  * before rollover.
1282  *
1283  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1284  * between seeding of isn_secret.  This is normally set to zero,
1285  * as reseeding should not be necessary.
1286  *
1287  */
1288 
1289 #define ISN_BYTES_PER_SECOND 1048576
1290 
1291 u_char isn_secret[32];
1292 int isn_last_reseed;
1293 MD5_CTX isn_ctx;
1294 
1295 tcp_seq
1296 tcp_new_isn(tp)
1297 	struct tcpcb *tp;
1298 {
1299 	u_int32_t md5_buffer[4];
1300 	tcp_seq new_isn;
1301 
1302 	/* Seed if this is the first use, reseed if requested. */
1303 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1304 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1305 		< (u_int)ticks))) {
1306 		read_random(&isn_secret, sizeof(isn_secret));
1307 		isn_last_reseed = ticks;
1308 	}
1309 
1310 	/* Compute the md5 hash and return the ISN. */
1311 	MD5Init(&isn_ctx);
1312 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1313 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1314 #ifdef INET6
1315 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1316 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1317 			  sizeof(struct in6_addr));
1318 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1319 			  sizeof(struct in6_addr));
1320 	} else
1321 #endif
1322 	{
1323 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1324 			  sizeof(struct in_addr));
1325 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1326 			  sizeof(struct in_addr));
1327 	}
1328 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1329 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1330 	new_isn = (tcp_seq) md5_buffer[0];
1331 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1332 	return new_isn;
1333 }
1334 
1335 /*
1336  * When a source quench is received, close congestion window
1337  * to one segment.  We will gradually open it again as we proceed.
1338  */
1339 struct inpcb *
1340 tcp_quench(inp, errno)
1341 	struct inpcb *inp;
1342 	int errno;
1343 {
1344 	struct tcpcb *tp = intotcpcb(inp);
1345 
1346 	if (tp)
1347 		tp->snd_cwnd = tp->t_maxseg;
1348 	return (inp);
1349 }
1350 
1351 /*
1352  * When a specific ICMP unreachable message is received and the
1353  * connection state is SYN-SENT, drop the connection.  This behavior
1354  * is controlled by the icmp_may_rst sysctl.
1355  */
1356 struct inpcb *
1357 tcp_drop_syn_sent(inp, errno)
1358 	struct inpcb *inp;
1359 	int errno;
1360 {
1361 	struct tcpcb *tp = intotcpcb(inp);
1362 
1363 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1364 		tcp_drop(tp, errno);
1365 		return (struct inpcb *)0;
1366 	}
1367 	return inp;
1368 }
1369 
1370 /*
1371  * When `need fragmentation' ICMP is received, update our idea of the MSS
1372  * based on the new value in the route.  Also nudge TCP to send something,
1373  * since we know the packet we just sent was dropped.
1374  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1375  */
1376 struct inpcb *
1377 tcp_mtudisc(inp, errno)
1378 	struct inpcb *inp;
1379 	int errno;
1380 {
1381 	struct tcpcb *tp = intotcpcb(inp);
1382 	struct rtentry *rt;
1383 	struct rmxp_tao *taop;
1384 	struct socket *so = inp->inp_socket;
1385 	int offered;
1386 	int mss;
1387 #ifdef INET6
1388 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1389 #endif /* INET6 */
1390 
1391 	if (tp) {
1392 #ifdef INET6
1393 		if (isipv6)
1394 			rt = tcp_rtlookup6(&inp->inp_inc);
1395 		else
1396 #endif /* INET6 */
1397 		rt = tcp_rtlookup(&inp->inp_inc);
1398 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1399 			tp->t_maxopd = tp->t_maxseg =
1400 #ifdef INET6
1401 				isipv6 ? tcp_v6mssdflt :
1402 #endif /* INET6 */
1403 				tcp_mssdflt;
1404 			return inp;
1405 		}
1406 		taop = rmx_taop(rt->rt_rmx);
1407 		offered = taop->tao_mssopt;
1408 		mss = rt->rt_rmx.rmx_mtu -
1409 #ifdef INET6
1410 			(isipv6 ?
1411 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1412 #endif /* INET6 */
1413 			 sizeof(struct tcpiphdr)
1414 #ifdef INET6
1415 			 )
1416 #endif /* INET6 */
1417 			;
1418 
1419 		if (offered)
1420 			mss = min(mss, offered);
1421 		/*
1422 		 * XXX - The above conditional probably violates the TCP
1423 		 * spec.  The problem is that, since we don't know the
1424 		 * other end's MSS, we are supposed to use a conservative
1425 		 * default.  But, if we do that, then MTU discovery will
1426 		 * never actually take place, because the conservative
1427 		 * default is much less than the MTUs typically seen
1428 		 * on the Internet today.  For the moment, we'll sweep
1429 		 * this under the carpet.
1430 		 *
1431 		 * The conservative default might not actually be a problem
1432 		 * if the only case this occurs is when sending an initial
1433 		 * SYN with options and data to a host we've never talked
1434 		 * to before.  Then, they will reply with an MSS value which
1435 		 * will get recorded and the new parameters should get
1436 		 * recomputed.  For Further Study.
1437 		 */
1438 		if (tp->t_maxopd <= mss)
1439 			return inp;
1440 		tp->t_maxopd = mss;
1441 
1442 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1443 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1444 			mss -= TCPOLEN_TSTAMP_APPA;
1445 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1446 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1447 			mss -= TCPOLEN_CC_APPA;
1448 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1449 		if (mss > MCLBYTES)
1450 			mss &= ~(MCLBYTES-1);
1451 #else
1452 		if (mss > MCLBYTES)
1453 			mss = mss / MCLBYTES * MCLBYTES;
1454 #endif
1455 		if (so->so_snd.sb_hiwat < mss)
1456 			mss = so->so_snd.sb_hiwat;
1457 
1458 		tp->t_maxseg = mss;
1459 
1460 		tcpstat.tcps_mturesent++;
1461 		tp->t_rtttime = 0;
1462 		tp->snd_nxt = tp->snd_una;
1463 		tcp_output(tp);
1464 	}
1465 	return inp;
1466 }
1467 
1468 /*
1469  * Look-up the routing entry to the peer of this inpcb.  If no route
1470  * is found and it cannot be allocated, then return NULL.  This routine
1471  * is called by TCP routines that access the rmx structure and by tcp_mss
1472  * to get the interface MTU.
1473  */
1474 struct rtentry *
1475 tcp_rtlookup(inc)
1476 	struct in_conninfo *inc;
1477 {
1478 	struct route *ro;
1479 	struct rtentry *rt;
1480 
1481 	ro = &inc->inc_route;
1482 	rt = ro->ro_rt;
1483 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1484 		/* No route yet, so try to acquire one */
1485 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1486 			ro->ro_dst.sa_family = AF_INET;
1487 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1488 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1489 			    inc->inc_faddr;
1490 			rtalloc(ro);
1491 			rt = ro->ro_rt;
1492 		}
1493 	}
1494 	return rt;
1495 }
1496 
1497 #ifdef INET6
1498 struct rtentry *
1499 tcp_rtlookup6(inc)
1500 	struct in_conninfo *inc;
1501 {
1502 	struct route_in6 *ro6;
1503 	struct rtentry *rt;
1504 
1505 	ro6 = &inc->inc6_route;
1506 	rt = ro6->ro_rt;
1507 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1508 		/* No route yet, so try to acquire one */
1509 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1510 			ro6->ro_dst.sin6_family = AF_INET6;
1511 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1512 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1513 			rtalloc((struct route *)ro6);
1514 			rt = ro6->ro_rt;
1515 		}
1516 	}
1517 	return rt;
1518 }
1519 #endif /* INET6 */
1520 
1521 #ifdef IPSEC
1522 /* compute ESP/AH header size for TCP, including outer IP header. */
1523 size_t
1524 ipsec_hdrsiz_tcp(tp)
1525 	struct tcpcb *tp;
1526 {
1527 	struct inpcb *inp;
1528 	struct mbuf *m;
1529 	size_t hdrsiz;
1530 	struct ip *ip;
1531 #ifdef INET6
1532 	struct ip6_hdr *ip6;
1533 #endif
1534 	struct tcphdr *th;
1535 
1536 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1537 		return 0;
1538 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1539 	if (!m)
1540 		return 0;
1541 
1542 #ifdef INET6
1543 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1544 		ip6 = mtod(m, struct ip6_hdr *);
1545 		th = (struct tcphdr *)(ip6 + 1);
1546 		m->m_pkthdr.len = m->m_len =
1547 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1548 		tcpip_fillheaders(inp, ip6, th);
1549 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1550 	} else
1551 #endif /* INET6 */
1552       {
1553 	ip = mtod(m, struct ip *);
1554 	th = (struct tcphdr *)(ip + 1);
1555 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1556 	tcpip_fillheaders(inp, ip, th);
1557 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1558       }
1559 
1560 	m_free(m);
1561 	return hdrsiz;
1562 }
1563 #endif /*IPSEC*/
1564 
1565 /*
1566  * Return a pointer to the cached information about the remote host.
1567  * The cached information is stored in the protocol specific part of
1568  * the route metrics.
1569  */
1570 struct rmxp_tao *
1571 tcp_gettaocache(inc)
1572 	struct in_conninfo *inc;
1573 {
1574 	struct rtentry *rt;
1575 
1576 #ifdef INET6
1577 	if (inc->inc_isipv6)
1578 		rt = tcp_rtlookup6(inc);
1579 	else
1580 #endif /* INET6 */
1581 	rt = tcp_rtlookup(inc);
1582 
1583 	/* Make sure this is a host route and is up. */
1584 	if (rt == NULL ||
1585 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1586 		return NULL;
1587 
1588 	return rmx_taop(rt->rt_rmx);
1589 }
1590 
1591 /*
1592  * Clear all the TAO cache entries, called from tcp_init.
1593  *
1594  * XXX
1595  * This routine is just an empty one, because we assume that the routing
1596  * routing tables are initialized at the same time when TCP, so there is
1597  * nothing in the cache left over.
1598  */
1599 static void
1600 tcp_cleartaocache()
1601 {
1602 }
1603 
1604 /*
1605  * Move a TCP connection into TIME_WAIT state.
1606  *    tcbinfo is unlocked.
1607  *    inp is locked, and is unlocked before returning.
1608  */
1609 void
1610 tcp_twstart(tp)
1611 	struct tcpcb *tp;
1612 {
1613 	struct tcptw *tw;
1614 	struct inpcb *inp;
1615 	int tw_time, acknow;
1616 	struct socket *so;
1617 
1618 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1619 	if (tw == NULL) {
1620 		tw = tcp_timer_2msl_tw(1);
1621 		if (tw == NULL) {
1622 			tcp_close(tp);
1623 			return;
1624 		}
1625 	}
1626 	inp = tp->t_inpcb;
1627 	tw->tw_inpcb = inp;
1628 
1629 	/*
1630 	 * Recover last window size sent.
1631 	 */
1632 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1633 
1634 	/*
1635 	 * Set t_recent if timestamps are used on the connection.
1636 	 */
1637         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1638             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1639 		tw->t_recent = tp->ts_recent;
1640 	else
1641 		tw->t_recent = 0;
1642 
1643 	tw->snd_nxt = tp->snd_nxt;
1644 	tw->rcv_nxt = tp->rcv_nxt;
1645 	tw->iss     = tp->iss;
1646 	tw->irs     = tp->irs;
1647 	tw->cc_recv = tp->cc_recv;
1648 	tw->cc_send = tp->cc_send;
1649 	tw->t_starttime = tp->t_starttime;
1650 	tw->tw_time = 0;
1651 
1652 /* XXX
1653  * If this code will
1654  * be used for fin-wait-2 state also, then we may need
1655  * a ts_recent from the last segment.
1656  */
1657 	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1658 	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1659 		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1660 		/* For T/TCP client, force ACK now. */
1661 		acknow = 1;
1662 	} else {
1663 		tw_time = 2 * tcp_msl;
1664 		acknow = tp->t_flags & TF_ACKNOW;
1665 	}
1666 	tcp_discardcb(tp);
1667 	so = inp->inp_socket;
1668 	so->so_pcb = NULL;
1669 	tw->tw_cred = crhold(so->so_cred);
1670 	tw->tw_so_options = so->so_options;
1671 	if (acknow)
1672 		tcp_twrespond(tw, so, NULL, TH_ACK);
1673 	sotryfree(so);
1674 	inp->inp_socket = NULL;
1675 	inp->inp_ppcb = (caddr_t)tw;
1676 	inp->inp_vflag |= INP_TIMEWAIT;
1677 	tcp_timer_2msl_reset(tw, tw_time);
1678 	INP_UNLOCK(inp);
1679 }
1680 
1681 /*
1682  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1683  * the actual rate is slightly higher due to the addition of
1684  * random positive increments.
1685  *
1686  * Most other new OSes use semi-randomized ISN values, so we
1687  * do not need to worry about them.
1688  */
1689 #define MS_ISN_BYTES_PER_SECOND		250000
1690 
1691 /*
1692  * Determine if the ISN we will generate has advanced beyond the last
1693  * sequence number used by the previous connection.  If so, indicate
1694  * that it is safe to recycle this tw socket by returning 1.
1695  */
1696 int
1697 tcp_twrecycleable(struct tcptw *tw)
1698 {
1699 	tcp_seq new_iss = tw->iss;
1700 	tcp_seq new_irs = tw->irs;
1701 
1702 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1703 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1704 
1705 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1706 		return 1;
1707 	else
1708 		return 0;
1709 }
1710 
1711 struct tcptw *
1712 tcp_twclose(struct tcptw *tw, int reuse)
1713 {
1714 	struct inpcb *inp;
1715 
1716 	inp = tw->tw_inpcb;
1717 	tw->tw_inpcb = NULL;
1718 	tcp_timer_2msl_stop(tw);
1719 	inp->inp_ppcb = NULL;
1720 #ifdef INET6
1721 	if (inp->inp_vflag & INP_IPV6PROTO)
1722 		in6_pcbdetach(inp);
1723 	else
1724 #endif
1725 		in_pcbdetach(inp);
1726 	tcpstat.tcps_closed++;
1727 	if (reuse)
1728 		return (tw);
1729 	uma_zfree(tcptw_zone, tw);
1730 	return (NULL);
1731 }
1732 
1733 /*
1734  * One of so and msrc must be non-NULL for use by the MAC Framework to
1735  * construct a label for ay resulting packet.
1736  */
1737 int
1738 tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
1739     int flags)
1740 {
1741 	struct inpcb *inp = tw->tw_inpcb;
1742 	struct tcphdr *th;
1743 	struct mbuf *m;
1744 	struct ip *ip = NULL;
1745 	u_int8_t *optp;
1746 	u_int hdrlen, optlen;
1747 	int error;
1748 #ifdef INET6
1749 	struct ip6_hdr *ip6 = NULL;
1750 	int isipv6 = inp->inp_inc.inc_isipv6;
1751 #endif
1752 
1753 	KASSERT(so != NULL || msrc != NULL,
1754 	    ("tcp_twrespond: so and msrc NULL"));
1755 
1756 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1757 	if (m == NULL)
1758 		return (ENOBUFS);
1759 	m->m_data += max_linkhdr;
1760 
1761 #ifdef MAC
1762 	if (so != NULL)
1763 		mac_create_mbuf_from_socket(so, m);
1764 	else
1765 		mac_create_mbuf_netlayer(msrc, m);
1766 #endif
1767 
1768 #ifdef INET6
1769 	if (isipv6) {
1770 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1771 		ip6 = mtod(m, struct ip6_hdr *);
1772 		th = (struct tcphdr *)(ip6 + 1);
1773 		tcpip_fillheaders(inp, ip6, th);
1774 	} else
1775 #endif
1776 	{
1777 		hdrlen = sizeof(struct tcpiphdr);
1778 		ip = mtod(m, struct ip *);
1779 		th = (struct tcphdr *)(ip + 1);
1780 		tcpip_fillheaders(inp, ip, th);
1781 	}
1782 	optp = (u_int8_t *)(th + 1);
1783 
1784  	/*
1785 	 * Send a timestamp and echo-reply if both our side and our peer
1786 	 * have sent timestamps in our SYN's and this is not a RST.
1787  	 */
1788 	if (tw->t_recent && flags == TH_ACK) {
1789 		u_int32_t *lp = (u_int32_t *)optp;
1790 
1791  		/* Form timestamp option as shown in appendix A of RFC 1323. */
1792  		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1793  		*lp++ = htonl(ticks);
1794  		*lp   = htonl(tw->t_recent);
1795  		optp += TCPOLEN_TSTAMP_APPA;
1796  	}
1797 
1798  	/*
1799 	 * Send `CC-family' options if needed, and it's not a RST.
1800  	 */
1801 	if (tw->cc_recv != 0 && flags == TH_ACK) {
1802 		u_int32_t *lp = (u_int32_t *)optp;
1803 
1804 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1805 		*lp   = htonl(tw->cc_send);
1806 		optp += TCPOLEN_CC_APPA;
1807  	}
1808 	optlen = optp - (u_int8_t *)(th + 1);
1809 
1810 	m->m_len = hdrlen + optlen;
1811 	m->m_pkthdr.len = m->m_len;
1812 
1813 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1814 
1815 	th->th_seq = htonl(tw->snd_nxt);
1816 	th->th_ack = htonl(tw->rcv_nxt);
1817 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1818 	th->th_flags = flags;
1819 	th->th_win = htons(tw->last_win);
1820 
1821 #ifdef INET6
1822 	if (isipv6) {
1823 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1824 		    sizeof(struct tcphdr) + optlen);
1825 		ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ?
1826 		    inp->in6p_route.ro_rt->rt_ifp : NULL);
1827 		error = ip6_output(m, inp->in6p_outputopts, &inp->in6p_route,
1828 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1829 	} else
1830 #endif
1831 	{
1832 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1833                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1834 		m->m_pkthdr.csum_flags = CSUM_TCP;
1835 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1836 		ip->ip_len = m->m_pkthdr.len;
1837 		error = ip_output(m, inp->inp_options, &inp->inp_route,
1838 		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1839 	}
1840 	if (flags & TH_ACK)
1841 		tcpstat.tcps_sndacks++;
1842 	else
1843 		tcpstat.tcps_sndctrl++;
1844 	tcpstat.tcps_sndtotal++;
1845 	return (error);
1846 }
1847 
1848 /*
1849  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1850  *
1851  * This code attempts to calculate the bandwidth-delay product as a
1852  * means of determining the optimal window size to maximize bandwidth,
1853  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1854  * routers.  This code also does a fairly good job keeping RTTs in check
1855  * across slow links like modems.  We implement an algorithm which is very
1856  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1857  * transmitter side of a TCP connection and so only effects the transmit
1858  * side of the connection.
1859  *
1860  * BACKGROUND:  TCP makes no provision for the management of buffer space
1861  * at the end points or at the intermediate routers and switches.  A TCP
1862  * stream, whether using NewReno or not, will eventually buffer as
1863  * many packets as it is able and the only reason this typically works is
1864  * due to the fairly small default buffers made available for a connection
1865  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1866  * scaling it is now fairly easy for even a single TCP connection to blow-out
1867  * all available buffer space not only on the local interface, but on
1868  * intermediate routers and switches as well.  NewReno makes a misguided
1869  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1870  * then backing off, then steadily increasing the window again until another
1871  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1872  * is only made worse as network loads increase and the idea of intentionally
1873  * blowing out network buffers is, frankly, a terrible way to manage network
1874  * resources.
1875  *
1876  * It is far better to limit the transmit window prior to the failure
1877  * condition being achieved.  There are two general ways to do this:  First
1878  * you can 'scan' through different transmit window sizes and locate the
1879  * point where the RTT stops increasing, indicating that you have filled the
1880  * pipe, then scan backwards until you note that RTT stops decreasing, then
1881  * repeat ad-infinitum.  This method works in principle but has severe
1882  * implementation issues due to RTT variances, timer granularity, and
1883  * instability in the algorithm which can lead to many false positives and
1884  * create oscillations as well as interact badly with other TCP streams
1885  * implementing the same algorithm.
1886  *
1887  * The second method is to limit the window to the bandwidth delay product
1888  * of the link.  This is the method we implement.  RTT variances and our
1889  * own manipulation of the congestion window, bwnd, can potentially
1890  * destabilize the algorithm.  For this reason we have to stabilize the
1891  * elements used to calculate the window.  We do this by using the minimum
1892  * observed RTT, the long term average of the observed bandwidth, and
1893  * by adding two segments worth of slop.  It isn't perfect but it is able
1894  * to react to changing conditions and gives us a very stable basis on
1895  * which to extend the algorithm.
1896  */
1897 void
1898 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1899 {
1900 	u_long bw;
1901 	u_long bwnd;
1902 	int save_ticks;
1903 
1904 	/*
1905 	 * If inflight_enable is disabled in the middle of a tcp connection,
1906 	 * make sure snd_bwnd is effectively disabled.
1907 	 */
1908 	if (tcp_inflight_enable == 0) {
1909 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1910 		tp->snd_bandwidth = 0;
1911 		return;
1912 	}
1913 
1914 	/*
1915 	 * Figure out the bandwidth.  Due to the tick granularity this
1916 	 * is a very rough number and it MUST be averaged over a fairly
1917 	 * long period of time.  XXX we need to take into account a link
1918 	 * that is not using all available bandwidth, but for now our
1919 	 * slop will ramp us up if this case occurs and the bandwidth later
1920 	 * increases.
1921 	 *
1922 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1923 	 * effectively reset t_bw_rtttime for this case.
1924 	 */
1925 	save_ticks = ticks;
1926 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1927 		return;
1928 
1929 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1930 	    (save_ticks - tp->t_bw_rtttime);
1931 	tp->t_bw_rtttime = save_ticks;
1932 	tp->t_bw_rtseq = ack_seq;
1933 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1934 		return;
1935 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1936 
1937 	tp->snd_bandwidth = bw;
1938 
1939 	/*
1940 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1941 	 * segments.  The additional slop puts us squarely in the sweet
1942 	 * spot and also handles the bandwidth run-up case and stabilization.
1943 	 * Without the slop we could be locking ourselves into a lower
1944 	 * bandwidth.
1945 	 *
1946 	 * Situations Handled:
1947 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1948 	 *	    high speed LANs, allowing larger TCP buffers to be
1949 	 *	    specified, and also does a good job preventing
1950 	 *	    over-queueing of packets over choke points like modems
1951 	 *	    (at least for the transmit side).
1952 	 *
1953 	 *	(2) Is able to handle changing network loads (bandwidth
1954 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1955 	 *	    increases).
1956 	 *
1957 	 *	(3) Theoretically should stabilize in the face of multiple
1958 	 *	    connections implementing the same algorithm (this may need
1959 	 *	    a little work).
1960 	 *
1961 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1962 	 *	    be adjusted with a sysctl but typically only needs to be
1963 	 *	    on very slow connections.  A value no smaller then 5
1964 	 *	    should be used, but only reduce this default if you have
1965 	 *	    no other choice.
1966 	 */
1967 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1968 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1969 #undef USERTT
1970 
1971 	if (tcp_inflight_debug > 0) {
1972 		static int ltime;
1973 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1974 			ltime = ticks;
1975 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1976 			    tp,
1977 			    bw,
1978 			    tp->t_rttbest,
1979 			    tp->t_srtt,
1980 			    bwnd
1981 			);
1982 		}
1983 	}
1984 	if ((long)bwnd < tcp_inflight_min)
1985 		bwnd = tcp_inflight_min;
1986 	if (bwnd > tcp_inflight_max)
1987 		bwnd = tcp_inflight_max;
1988 	if ((long)bwnd < tp->t_maxseg * 2)
1989 		bwnd = tp->t_maxseg * 2;
1990 	tp->snd_bwnd = bwnd;
1991 }
1992 
1993