xref: /freebsd/sys/netinet/tcp_subr.c (revision 263d6a7ece4f357d01b3152c39e5d36043f877bb)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/ip_icmp.h>
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #include <netkey/key.h>
100 #endif /*IPSEC*/
101 
102 #ifdef FAST_IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #define	IPSEC
110 #endif /*FAST_IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 int	tcp_mssdflt = TCP_MSS;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
118 
119 #ifdef INET6
120 int	tcp_v6mssdflt = TCP6_MSS;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
122 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
123 	"Default TCP Maximum Segment Size for IPv6");
124 #endif
125 
126 /*
127  * Minimum MSS we accept and use. This prevents DoS attacks where
128  * we are forced to a ridiculous low MSS like 20 and send hundreds
129  * of packets instead of one. The effect scales with the available
130  * bandwidth and quickly saturates the CPU and network interface
131  * with packet generation and sending. Set to zero to disable MINMSS
132  * checking. This setting prevents us from sending too small packets.
133  */
134 int	tcp_minmss = TCP_MINMSS;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
136     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
137 /*
138  * Number of TCP segments per second we accept from remote host
139  * before we start to calculate average segment size. If average
140  * segment size drops below the minimum TCP MSS we assume a DoS
141  * attack and reset+drop the connection. Care has to be taken not to
142  * set this value too small to not kill interactive type connections
143  * (telnet, SSH) which send many small packets.
144  */
145 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
147     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
148     "be under the MINMSS Size");
149 
150 #if 0
151 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
152 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
153     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
154 #endif
155 
156 int	tcp_do_rfc1323 = 1;
157 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
158     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
159 
160 static int	tcp_tcbhashsize = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
162      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
163 
164 static int	do_tcpdrain = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
166      "Enable tcp_drain routine for extra help when low on mbufs");
167 
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
169     &tcbinfo.ipi_count, 0, "Number of active PCBs");
170 
171 static int	icmp_may_rst = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
173     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
174 
175 static int	tcp_isn_reseed_interval = 0;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
177     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
178 
179 /*
180  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
181  * 1024 exists only for debugging.  A good production default would be
182  * something like 6100.
183  */
184 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
185     "TCP inflight data limiting");
186 
187 static int	tcp_inflight_enable = 1;
188 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
189     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
190 
191 static int	tcp_inflight_debug = 0;
192 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
193     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
194 
195 static int	tcp_inflight_min = 6144;
196 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
197     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
198 
199 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
200 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
201     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
202 
203 static int	tcp_inflight_stab = 20;
204 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
205     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
206 
207 uma_zone_t sack_hole_zone;
208 
209 static struct inpcb *tcp_notify(struct inpcb *, int);
210 static void	tcp_discardcb(struct tcpcb *);
211 static void	tcp_isn_tick(void *);
212 
213 /*
214  * Target size of TCP PCB hash tables. Must be a power of two.
215  *
216  * Note that this can be overridden by the kernel environment
217  * variable net.inet.tcp.tcbhashsize
218  */
219 #ifndef TCBHASHSIZE
220 #define TCBHASHSIZE	512
221 #endif
222 
223 /*
224  * XXX
225  * Callouts should be moved into struct tcp directly.  They are currently
226  * separate because the tcpcb structure is exported to userland for sysctl
227  * parsing purposes, which do not know about callouts.
228  */
229 struct	tcpcb_mem {
230 	struct	tcpcb tcb;
231 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
232 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
233 };
234 
235 static uma_zone_t tcpcb_zone;
236 static uma_zone_t tcptw_zone;
237 struct callout isn_callout;
238 
239 /*
240  * Tcp initialization
241  */
242 void
243 tcp_init()
244 {
245 	int hashsize = TCBHASHSIZE;
246 
247 	tcp_delacktime = TCPTV_DELACK;
248 	tcp_keepinit = TCPTV_KEEP_INIT;
249 	tcp_keepidle = TCPTV_KEEP_IDLE;
250 	tcp_keepintvl = TCPTV_KEEPINTVL;
251 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
252 	tcp_msl = TCPTV_MSL;
253 	tcp_rexmit_min = TCPTV_MIN;
254 	tcp_rexmit_slop = TCPTV_CPU_VAR;
255 
256 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
257 	LIST_INIT(&tcb);
258 	tcbinfo.listhead = &tcb;
259 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
260 	if (!powerof2(hashsize)) {
261 		printf("WARNING: TCB hash size not a power of 2\n");
262 		hashsize = 512; /* safe default */
263 	}
264 	tcp_tcbhashsize = hashsize;
265 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
266 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
267 					&tcbinfo.porthashmask);
268 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
271 #ifdef INET6
272 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
273 #else /* INET6 */
274 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
275 #endif /* INET6 */
276 	if (max_protohdr < TCP_MINPROTOHDR)
277 		max_protohdr = TCP_MINPROTOHDR;
278 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
279 		panic("tcp_init");
280 #undef TCP_MINPROTOHDR
281 	/*
282 	 * These have to be type stable for the benefit of the timers.
283 	 */
284 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
285 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286 	uma_zone_set_max(tcpcb_zone, maxsockets);
287 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
288 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
289 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
290 	tcp_timer_init();
291 	syncache_init();
292 	tcp_hc_init();
293 	tcp_reass_init();
294 	callout_init(&isn_callout, CALLOUT_MPSAFE);
295 	tcp_isn_tick(NULL);
296 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
297 		SHUTDOWN_PRI_DEFAULT);
298 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
299 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300 }
301 
302 void
303 tcp_fini(xtp)
304 	void *xtp;
305 {
306 	callout_stop(&isn_callout);
307 
308 }
309 
310 /*
311  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
312  * tcp_template used to store this data in mbufs, but we now recopy it out
313  * of the tcpcb each time to conserve mbufs.
314  */
315 void
316 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
317 	struct inpcb *inp;
318 	void *ip_ptr;
319 	void *tcp_ptr;
320 {
321 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
322 
323 	INP_LOCK_ASSERT(inp);
324 
325 #ifdef INET6
326 	if ((inp->inp_vflag & INP_IPV6) != 0) {
327 		struct ip6_hdr *ip6;
328 
329 		ip6 = (struct ip6_hdr *)ip_ptr;
330 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
331 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
332 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
333 			(IPV6_VERSION & IPV6_VERSION_MASK);
334 		ip6->ip6_nxt = IPPROTO_TCP;
335 		ip6->ip6_plen = sizeof(struct tcphdr);
336 		ip6->ip6_src = inp->in6p_laddr;
337 		ip6->ip6_dst = inp->in6p_faddr;
338 	} else
339 #endif
340 	{
341 		struct ip *ip;
342 
343 		ip = (struct ip *)ip_ptr;
344 		ip->ip_v = IPVERSION;
345 		ip->ip_hl = 5;
346 		ip->ip_tos = inp->inp_ip_tos;
347 		ip->ip_len = 0;
348 		ip->ip_id = 0;
349 		ip->ip_off = 0;
350 		ip->ip_ttl = inp->inp_ip_ttl;
351 		ip->ip_sum = 0;
352 		ip->ip_p = IPPROTO_TCP;
353 		ip->ip_src = inp->inp_laddr;
354 		ip->ip_dst = inp->inp_faddr;
355 	}
356 	th->th_sport = inp->inp_lport;
357 	th->th_dport = inp->inp_fport;
358 	th->th_seq = 0;
359 	th->th_ack = 0;
360 	th->th_x2 = 0;
361 	th->th_off = 5;
362 	th->th_flags = 0;
363 	th->th_win = 0;
364 	th->th_urp = 0;
365 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
366 }
367 
368 /*
369  * Create template to be used to send tcp packets on a connection.
370  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
371  * use for this function is in keepalives, which use tcp_respond.
372  */
373 struct tcptemp *
374 tcpip_maketemplate(inp)
375 	struct inpcb *inp;
376 {
377 	struct mbuf *m;
378 	struct tcptemp *n;
379 
380 	m = m_get(M_DONTWAIT, MT_HEADER);
381 	if (m == NULL)
382 		return (0);
383 	m->m_len = sizeof(struct tcptemp);
384 	n = mtod(m, struct tcptemp *);
385 
386 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
387 	return (n);
388 }
389 
390 /*
391  * Send a single message to the TCP at address specified by
392  * the given TCP/IP header.  If m == NULL, then we make a copy
393  * of the tcpiphdr at ti and send directly to the addressed host.
394  * This is used to force keep alive messages out using the TCP
395  * template for a connection.  If flags are given then we send
396  * a message back to the TCP which originated the * segment ti,
397  * and discard the mbuf containing it and any other attached mbufs.
398  *
399  * In any case the ack and sequence number of the transmitted
400  * segment are as specified by the parameters.
401  *
402  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
403  */
404 void
405 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
406 	struct tcpcb *tp;
407 	void *ipgen;
408 	register struct tcphdr *th;
409 	register struct mbuf *m;
410 	tcp_seq ack, seq;
411 	int flags;
412 {
413 	register int tlen;
414 	int win = 0;
415 	struct ip *ip;
416 	struct tcphdr *nth;
417 #ifdef INET6
418 	struct ip6_hdr *ip6;
419 	int isipv6;
420 #endif /* INET6 */
421 	int ipflags = 0;
422 	struct inpcb *inp;
423 
424 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
425 
426 #ifdef INET6
427 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
428 	ip6 = ipgen;
429 #endif /* INET6 */
430 	ip = ipgen;
431 
432 	if (tp != NULL) {
433 		inp = tp->t_inpcb;
434 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
435 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
436 		INP_LOCK_ASSERT(inp);
437 	} else
438 		inp = NULL;
439 
440 	if (tp != NULL) {
441 		if (!(flags & TH_RST)) {
442 			win = sbspace(&inp->inp_socket->so_rcv);
443 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
444 				win = (long)TCP_MAXWIN << tp->rcv_scale;
445 		}
446 	}
447 	if (m == NULL) {
448 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
449 		if (m == NULL)
450 			return;
451 		tlen = 0;
452 		m->m_data += max_linkhdr;
453 #ifdef INET6
454 		if (isipv6) {
455 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
456 			      sizeof(struct ip6_hdr));
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			nth = (struct tcphdr *)(ip6 + 1);
459 		} else
460 #endif /* INET6 */
461 	      {
462 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
463 		ip = mtod(m, struct ip *);
464 		nth = (struct tcphdr *)(ip + 1);
465 	      }
466 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
467 		flags = TH_ACK;
468 	} else {
469 		m_freem(m->m_next);
470 		m->m_next = NULL;
471 		m->m_data = (caddr_t)ipgen;
472 		/* m_len is set later */
473 		tlen = 0;
474 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
475 #ifdef INET6
476 		if (isipv6) {
477 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
478 			nth = (struct tcphdr *)(ip6 + 1);
479 		} else
480 #endif /* INET6 */
481 	      {
482 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
483 		nth = (struct tcphdr *)(ip + 1);
484 	      }
485 		if (th != nth) {
486 			/*
487 			 * this is usually a case when an extension header
488 			 * exists between the IPv6 header and the
489 			 * TCP header.
490 			 */
491 			nth->th_sport = th->th_sport;
492 			nth->th_dport = th->th_dport;
493 		}
494 		xchg(nth->th_dport, nth->th_sport, n_short);
495 #undef xchg
496 	}
497 #ifdef INET6
498 	if (isipv6) {
499 		ip6->ip6_flow = 0;
500 		ip6->ip6_vfc = IPV6_VERSION;
501 		ip6->ip6_nxt = IPPROTO_TCP;
502 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
503 						tlen));
504 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
505 	} else
506 #endif
507 	{
508 		tlen += sizeof (struct tcpiphdr);
509 		ip->ip_len = tlen;
510 		ip->ip_ttl = ip_defttl;
511 		if (path_mtu_discovery)
512 			ip->ip_off |= IP_DF;
513 	}
514 	m->m_len = tlen;
515 	m->m_pkthdr.len = tlen;
516 	m->m_pkthdr.rcvif = NULL;
517 #ifdef MAC
518 	if (inp != NULL) {
519 		/*
520 		 * Packet is associated with a socket, so allow the
521 		 * label of the response to reflect the socket label.
522 		 */
523 		INP_LOCK_ASSERT(inp);
524 		mac_create_mbuf_from_inpcb(inp, m);
525 	} else {
526 		/*
527 		 * Packet is not associated with a socket, so possibly
528 		 * update the label in place.
529 		 */
530 		mac_reflect_mbuf_tcp(m);
531 	}
532 #endif
533 	nth->th_seq = htonl(seq);
534 	nth->th_ack = htonl(ack);
535 	nth->th_x2 = 0;
536 	nth->th_off = sizeof (struct tcphdr) >> 2;
537 	nth->th_flags = flags;
538 	if (tp != NULL)
539 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
540 	else
541 		nth->th_win = htons((u_short)win);
542 	nth->th_urp = 0;
543 #ifdef INET6
544 	if (isipv6) {
545 		nth->th_sum = 0;
546 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
547 					sizeof(struct ip6_hdr),
548 					tlen - sizeof(struct ip6_hdr));
549 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
550 		    NULL, NULL);
551 	} else
552 #endif /* INET6 */
553 	{
554 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
555 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
556 		m->m_pkthdr.csum_flags = CSUM_TCP;
557 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
558 	}
559 #ifdef TCPDEBUG
560 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
561 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
562 #endif
563 #ifdef INET6
564 	if (isipv6)
565 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
566 	else
567 #endif /* INET6 */
568 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
569 }
570 
571 /*
572  * Create a new TCP control block, making an
573  * empty reassembly queue and hooking it to the argument
574  * protocol control block.  The `inp' parameter must have
575  * come from the zone allocator set up in tcp_init().
576  */
577 struct tcpcb *
578 tcp_newtcpcb(inp)
579 	struct inpcb *inp;
580 {
581 	struct tcpcb_mem *tm;
582 	struct tcpcb *tp;
583 #ifdef INET6
584 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
585 #endif /* INET6 */
586 
587 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
588 	if (tm == NULL)
589 		return (NULL);
590 	tp = &tm->tcb;
591 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
592 	tp->t_maxseg = tp->t_maxopd =
593 #ifdef INET6
594 		isipv6 ? tcp_v6mssdflt :
595 #endif /* INET6 */
596 		tcp_mssdflt;
597 
598 	/* Set up our timeouts. */
599 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
600 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
601 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
602 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
603 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
604 
605 	if (tcp_do_rfc1323)
606 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
607 	tp->sack_enable = tcp_do_sack;
608 	if (tp->sack_enable)
609 		TAILQ_INIT(&tp->snd_holes);
610 	tp->t_inpcb = inp;	/* XXX */
611 	/*
612 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
613 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
614 	 * reasonable initial retransmit time.
615 	 */
616 	tp->t_srtt = TCPTV_SRTTBASE;
617 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
618 	tp->t_rttmin = tcp_rexmit_min;
619 	tp->t_rxtcur = TCPTV_RTOBASE;
620 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
621 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623 	tp->t_rcvtime = ticks;
624 	tp->t_bw_rtttime = ticks;
625 	/*
626 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
627 	 * because the socket may be bound to an IPv6 wildcard address,
628 	 * which may match an IPv4-mapped IPv6 address.
629 	 */
630 	inp->inp_ip_ttl = ip_defttl;
631 	inp->inp_ppcb = (caddr_t)tp;
632 	return (tp);		/* XXX */
633 }
634 
635 /*
636  * Drop a TCP connection, reporting
637  * the specified error.  If connection is synchronized,
638  * then send a RST to peer.
639  */
640 struct tcpcb *
641 tcp_drop(tp, errno)
642 	register struct tcpcb *tp;
643 	int errno;
644 {
645 	struct socket *so = tp->t_inpcb->inp_socket;
646 
647 	INP_LOCK_ASSERT(tp->t_inpcb);
648 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
649 		tp->t_state = TCPS_CLOSED;
650 		(void) tcp_output(tp);
651 		tcpstat.tcps_drops++;
652 	} else
653 		tcpstat.tcps_conndrops++;
654 	if (errno == ETIMEDOUT && tp->t_softerror)
655 		errno = tp->t_softerror;
656 	so->so_error = errno;
657 	return (tcp_close(tp));
658 }
659 
660 static void
661 tcp_discardcb(tp)
662 	struct tcpcb *tp;
663 {
664 	struct tseg_qent *q;
665 	struct inpcb *inp = tp->t_inpcb;
666 	struct socket *so = inp->inp_socket;
667 #ifdef INET6
668 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669 #endif /* INET6 */
670 
671 	INP_LOCK_ASSERT(inp);
672 
673 	/*
674 	 * Make sure that all of our timers are stopped before we
675 	 * delete the PCB.
676 	 */
677 	callout_stop(tp->tt_rexmt);
678 	callout_stop(tp->tt_persist);
679 	callout_stop(tp->tt_keep);
680 	callout_stop(tp->tt_2msl);
681 	callout_stop(tp->tt_delack);
682 
683 	/*
684 	 * If we got enough samples through the srtt filter,
685 	 * save the rtt and rttvar in the routing entry.
686 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
687 	 * 4 samples is enough for the srtt filter to converge
688 	 * to within enough % of the correct value; fewer samples
689 	 * and we could save a bogus rtt. The danger is not high
690 	 * as tcp quickly recovers from everything.
691 	 * XXX: Works very well but needs some more statistics!
692 	 */
693 	if (tp->t_rttupdated >= 4) {
694 		struct hc_metrics_lite metrics;
695 		u_long ssthresh;
696 
697 		bzero(&metrics, sizeof(metrics));
698 		/*
699 		 * Update the ssthresh always when the conditions below
700 		 * are satisfied. This gives us better new start value
701 		 * for the congestion avoidance for new connections.
702 		 * ssthresh is only set if packet loss occured on a session.
703 		 */
704 		ssthresh = tp->snd_ssthresh;
705 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
706 			/*
707 			 * convert the limit from user data bytes to
708 			 * packets then to packet data bytes.
709 			 */
710 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
711 			if (ssthresh < 2)
712 				ssthresh = 2;
713 			ssthresh *= (u_long)(tp->t_maxseg +
714 #ifdef INET6
715 				      (isipv6 ? sizeof (struct ip6_hdr) +
716 					       sizeof (struct tcphdr) :
717 #endif
718 				       sizeof (struct tcpiphdr)
719 #ifdef INET6
720 				       )
721 #endif
722 				      );
723 		} else
724 			ssthresh = 0;
725 		metrics.rmx_ssthresh = ssthresh;
726 
727 		metrics.rmx_rtt = tp->t_srtt;
728 		metrics.rmx_rttvar = tp->t_rttvar;
729 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
730 		metrics.rmx_bandwidth = tp->snd_bandwidth;
731 		metrics.rmx_cwnd = tp->snd_cwnd;
732 		metrics.rmx_sendpipe = 0;
733 		metrics.rmx_recvpipe = 0;
734 
735 		tcp_hc_update(&inp->inp_inc, &metrics);
736 	}
737 
738 	/* free the reassembly queue, if any */
739 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
740 		LIST_REMOVE(q, tqe_q);
741 		m_freem(q->tqe_m);
742 		uma_zfree(tcp_reass_zone, q);
743 		tp->t_segqlen--;
744 		tcp_reass_qsize--;
745 	}
746 	tcp_free_sackholes(tp);
747 	inp->inp_ppcb = NULL;
748 	tp->t_inpcb = NULL;
749 	uma_zfree(tcpcb_zone, tp);
750 	soisdisconnected(so);
751 }
752 
753 /*
754  * Close a TCP control block:
755  *    discard all space held by the tcp
756  *    discard internet protocol block
757  *    wake up any sleepers
758  */
759 struct tcpcb *
760 tcp_close(tp)
761 	struct tcpcb *tp;
762 {
763 	struct inpcb *inp = tp->t_inpcb;
764 #ifdef INET6
765 	struct socket *so = inp->inp_socket;
766 #endif
767 
768 	INP_LOCK_ASSERT(inp);
769 
770 	tcp_discardcb(tp);
771 #ifdef INET6
772 	if (INP_CHECK_SOCKAF(so, AF_INET6))
773 		in6_pcbdetach(inp);
774 	else
775 #endif
776 		in_pcbdetach(inp);
777 	tcpstat.tcps_closed++;
778 	return (NULL);
779 }
780 
781 void
782 tcp_drain()
783 {
784 	if (do_tcpdrain)
785 	{
786 		struct inpcb *inpb;
787 		struct tcpcb *tcpb;
788 		struct tseg_qent *te;
789 
790 	/*
791 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
792 	 * if there is one...
793 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
794 	 *      reassembly queue should be flushed, but in a situation
795 	 *	where we're really low on mbufs, this is potentially
796 	 *	usefull.
797 	 */
798 		INP_INFO_RLOCK(&tcbinfo);
799 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
800 			if (inpb->inp_vflag & INP_TIMEWAIT)
801 				continue;
802 			INP_LOCK(inpb);
803 			if ((tcpb = intotcpcb(inpb)) != NULL) {
804 				while ((te = LIST_FIRST(&tcpb->t_segq))
805 			            != NULL) {
806 					LIST_REMOVE(te, tqe_q);
807 					m_freem(te->tqe_m);
808 					uma_zfree(tcp_reass_zone, te);
809 					tcpb->t_segqlen--;
810 					tcp_reass_qsize--;
811 				}
812 				tcp_clean_sackreport(tcpb);
813 			}
814 			INP_UNLOCK(inpb);
815 		}
816 		INP_INFO_RUNLOCK(&tcbinfo);
817 	}
818 }
819 
820 /*
821  * Notify a tcp user of an asynchronous error;
822  * store error as soft error, but wake up user
823  * (for now, won't do anything until can select for soft error).
824  *
825  * Do not wake up user since there currently is no mechanism for
826  * reporting soft errors (yet - a kqueue filter may be added).
827  */
828 static struct inpcb *
829 tcp_notify(inp, error)
830 	struct inpcb *inp;
831 	int error;
832 {
833 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
834 
835 	INP_LOCK_ASSERT(inp);
836 
837 	/*
838 	 * Ignore some errors if we are hooked up.
839 	 * If connection hasn't completed, has retransmitted several times,
840 	 * and receives a second error, give up now.  This is better
841 	 * than waiting a long time to establish a connection that
842 	 * can never complete.
843 	 */
844 	if (tp->t_state == TCPS_ESTABLISHED &&
845 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
846 	     error == EHOSTDOWN)) {
847 		return (inp);
848 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
849 	    tp->t_softerror) {
850 		tcp_drop(tp, error);
851 		return (struct inpcb *)0;
852 	} else {
853 		tp->t_softerror = error;
854 		return (inp);
855 	}
856 #if 0
857 	wakeup( &so->so_timeo);
858 	sorwakeup(so);
859 	sowwakeup(so);
860 #endif
861 }
862 
863 static int
864 tcp_pcblist(SYSCTL_HANDLER_ARGS)
865 {
866 	int error, i, n, s;
867 	struct inpcb *inp, **inp_list;
868 	inp_gen_t gencnt;
869 	struct xinpgen xig;
870 
871 	/*
872 	 * The process of preparing the TCB list is too time-consuming and
873 	 * resource-intensive to repeat twice on every request.
874 	 */
875 	if (req->oldptr == NULL) {
876 		n = tcbinfo.ipi_count;
877 		req->oldidx = 2 * (sizeof xig)
878 			+ (n + n/8) * sizeof(struct xtcpcb);
879 		return (0);
880 	}
881 
882 	if (req->newptr != NULL)
883 		return (EPERM);
884 
885 	/*
886 	 * OK, now we're committed to doing something.
887 	 */
888 	s = splnet();
889 	INP_INFO_RLOCK(&tcbinfo);
890 	gencnt = tcbinfo.ipi_gencnt;
891 	n = tcbinfo.ipi_count;
892 	INP_INFO_RUNLOCK(&tcbinfo);
893 	splx(s);
894 
895 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
896 		+ n * sizeof(struct xtcpcb));
897 	if (error != 0)
898 		return (error);
899 
900 	xig.xig_len = sizeof xig;
901 	xig.xig_count = n;
902 	xig.xig_gen = gencnt;
903 	xig.xig_sogen = so_gencnt;
904 	error = SYSCTL_OUT(req, &xig, sizeof xig);
905 	if (error)
906 		return (error);
907 
908 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
909 	if (inp_list == NULL)
910 		return (ENOMEM);
911 
912 	s = splnet();
913 	INP_INFO_RLOCK(&tcbinfo);
914 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
915 	     inp = LIST_NEXT(inp, inp_list)) {
916 		INP_LOCK(inp);
917 		if (inp->inp_gencnt <= gencnt) {
918 			/*
919 			 * XXX: This use of cr_cansee(), introduced with
920 			 * TCP state changes, is not quite right, but for
921 			 * now, better than nothing.
922 			 */
923 			if (inp->inp_vflag & INP_TIMEWAIT)
924 				error = cr_cansee(req->td->td_ucred,
925 				    intotw(inp)->tw_cred);
926 			else
927 				error = cr_canseesocket(req->td->td_ucred,
928 				    inp->inp_socket);
929 			if (error == 0)
930 				inp_list[i++] = inp;
931 		}
932 		INP_UNLOCK(inp);
933 	}
934 	INP_INFO_RUNLOCK(&tcbinfo);
935 	splx(s);
936 	n = i;
937 
938 	error = 0;
939 	for (i = 0; i < n; i++) {
940 		inp = inp_list[i];
941 		if (inp->inp_gencnt <= gencnt) {
942 			struct xtcpcb xt;
943 			caddr_t inp_ppcb;
944 			xt.xt_len = sizeof xt;
945 			/* XXX should avoid extra copy */
946 			bcopy(inp, &xt.xt_inp, sizeof *inp);
947 			inp_ppcb = inp->inp_ppcb;
948 			if (inp_ppcb == NULL)
949 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
950 			else if (inp->inp_vflag & INP_TIMEWAIT) {
951 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
953 			} else
954 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
955 			if (inp->inp_socket != NULL)
956 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
957 			else {
958 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
959 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
960 			}
961 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
962 			error = SYSCTL_OUT(req, &xt, sizeof xt);
963 		}
964 	}
965 	if (!error) {
966 		/*
967 		 * Give the user an updated idea of our state.
968 		 * If the generation differs from what we told
969 		 * her before, she knows that something happened
970 		 * while we were processing this request, and it
971 		 * might be necessary to retry.
972 		 */
973 		s = splnet();
974 		INP_INFO_RLOCK(&tcbinfo);
975 		xig.xig_gen = tcbinfo.ipi_gencnt;
976 		xig.xig_sogen = so_gencnt;
977 		xig.xig_count = tcbinfo.ipi_count;
978 		INP_INFO_RUNLOCK(&tcbinfo);
979 		splx(s);
980 		error = SYSCTL_OUT(req, &xig, sizeof xig);
981 	}
982 	free(inp_list, M_TEMP);
983 	return (error);
984 }
985 
986 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
987 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
988 
989 static int
990 tcp_getcred(SYSCTL_HANDLER_ARGS)
991 {
992 	struct xucred xuc;
993 	struct sockaddr_in addrs[2];
994 	struct inpcb *inp;
995 	int error, s;
996 
997 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
998 	if (error)
999 		return (error);
1000 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1001 	if (error)
1002 		return (error);
1003 	s = splnet();
1004 	INP_INFO_RLOCK(&tcbinfo);
1005 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1006 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1007 	if (inp == NULL) {
1008 		error = ENOENT;
1009 		goto outunlocked;
1010 	}
1011 	INP_LOCK(inp);
1012 	if (inp->inp_socket == NULL) {
1013 		error = ENOENT;
1014 		goto out;
1015 	}
1016 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1017 	if (error)
1018 		goto out;
1019 	cru2x(inp->inp_socket->so_cred, &xuc);
1020 out:
1021 	INP_UNLOCK(inp);
1022 outunlocked:
1023 	INP_INFO_RUNLOCK(&tcbinfo);
1024 	splx(s);
1025 	if (error == 0)
1026 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1027 	return (error);
1028 }
1029 
1030 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1031     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1032     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1033 
1034 #ifdef INET6
1035 static int
1036 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1037 {
1038 	struct xucred xuc;
1039 	struct sockaddr_in6 addrs[2];
1040 	struct in6_addr a6[2];
1041 	struct inpcb *inp;
1042 	int error, s, mapped = 0;
1043 
1044 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1045 	if (error)
1046 		return (error);
1047 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1048 	if (error)
1049 		return (error);
1050 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1051 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1052 			mapped = 1;
1053 		else
1054 			return (EINVAL);
1055 	} else {
1056 		error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
1057 		if (error)
1058 			return (EINVAL);
1059 		error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
1060 		if (error)
1061 			return (EINVAL);
1062 	}
1063 	s = splnet();
1064 	INP_INFO_RLOCK(&tcbinfo);
1065 	if (mapped == 1)
1066 		inp = in_pcblookup_hash(&tcbinfo,
1067 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1068 			addrs[1].sin6_port,
1069 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1070 			addrs[0].sin6_port,
1071 			0, NULL);
1072 	else
1073 		inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
1074 			&a6[0], addrs[0].sin6_port, 0, NULL);
1075 	if (inp == NULL) {
1076 		error = ENOENT;
1077 		goto outunlocked;
1078 	}
1079 	INP_LOCK(inp);
1080 	if (inp->inp_socket == NULL) {
1081 		error = ENOENT;
1082 		goto out;
1083 	}
1084 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1085 	if (error)
1086 		goto out;
1087 	cru2x(inp->inp_socket->so_cred, &xuc);
1088 out:
1089 	INP_UNLOCK(inp);
1090 outunlocked:
1091 	INP_INFO_RUNLOCK(&tcbinfo);
1092 	splx(s);
1093 	if (error == 0)
1094 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095 	return (error);
1096 }
1097 
1098 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1099     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1101 #endif
1102 
1103 
1104 void
1105 tcp_ctlinput(cmd, sa, vip)
1106 	int cmd;
1107 	struct sockaddr *sa;
1108 	void *vip;
1109 {
1110 	struct ip *ip = vip;
1111 	struct tcphdr *th;
1112 	struct in_addr faddr;
1113 	struct inpcb *inp;
1114 	struct tcpcb *tp;
1115 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1116 	struct icmp *icp;
1117 	struct in_conninfo inc;
1118 	tcp_seq icmp_tcp_seq;
1119 	int mtu, s;
1120 
1121 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1122 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1123 		return;
1124 
1125 	if (cmd == PRC_MSGSIZE)
1126 		notify = tcp_mtudisc;
1127 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1128 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1129 		notify = tcp_drop_syn_sent;
1130 	/*
1131 	 * Redirects don't need to be handled up here.
1132 	 */
1133 	else if (PRC_IS_REDIRECT(cmd))
1134 		return;
1135 	/*
1136 	 * Source quench is depreciated.
1137 	 */
1138 	else if (cmd == PRC_QUENCH)
1139 		return;
1140 	/*
1141 	 * Hostdead is ugly because it goes linearly through all PCBs.
1142 	 * XXX: We never get this from ICMP, otherwise it makes an
1143 	 * excellent DoS attack on machines with many connections.
1144 	 */
1145 	else if (cmd == PRC_HOSTDEAD)
1146 		ip = NULL;
1147 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1148 		return;
1149 	if (ip != NULL) {
1150 		s = splnet();
1151 		icp = (struct icmp *)((caddr_t)ip
1152 				      - offsetof(struct icmp, icmp_ip));
1153 		th = (struct tcphdr *)((caddr_t)ip
1154 				       + (ip->ip_hl << 2));
1155 		INP_INFO_WLOCK(&tcbinfo);
1156 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1157 		    ip->ip_src, th->th_sport, 0, NULL);
1158 		if (inp != NULL)  {
1159 			INP_LOCK(inp);
1160 			if (inp->inp_socket != NULL) {
1161 				icmp_tcp_seq = htonl(th->th_seq);
1162 				tp = intotcpcb(inp);
1163 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1164 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1165 					if (cmd == PRC_MSGSIZE) {
1166 					    /*
1167 					     * MTU discovery:
1168 					     * If we got a needfrag set the MTU
1169 					     * in the route to the suggested new
1170 					     * value (if given) and then notify.
1171 					     * If no new MTU was suggested, then
1172 					     * we guess a new one less than the
1173 					     * current value.
1174 					     * If the new MTU is unreasonably
1175 					     * small (defined by sysctl tcp_minmss),
1176 					     * then we up the MTU value to minimum.
1177 					     */
1178 					    bzero(&inc, sizeof(inc));
1179 					    inc.inc_flags = 0;	/* IPv4 */
1180 					    inc.inc_faddr = faddr;
1181 
1182 					    mtu = ntohs(icp->icmp_nextmtu);
1183 					    if (!mtu)
1184 						mtu = ip_next_mtu(mtu, 1);
1185 					    if (mtu >= max(296, (tcp_minmss
1186 						 + sizeof(struct tcpiphdr))))
1187 						tcp_hc_updatemtu(&inc, mtu);
1188 					}
1189 
1190 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1191 				}
1192 			}
1193 			if (inp != NULL)
1194 				INP_UNLOCK(inp);
1195 		} else {
1196 			inc.inc_fport = th->th_dport;
1197 			inc.inc_lport = th->th_sport;
1198 			inc.inc_faddr = faddr;
1199 			inc.inc_laddr = ip->ip_src;
1200 #ifdef INET6
1201 			inc.inc_isipv6 = 0;
1202 #endif
1203 			syncache_unreach(&inc, th);
1204 		}
1205 		INP_INFO_WUNLOCK(&tcbinfo);
1206 		splx(s);
1207 	} else
1208 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1209 }
1210 
1211 #ifdef INET6
1212 void
1213 tcp6_ctlinput(cmd, sa, d)
1214 	int cmd;
1215 	struct sockaddr *sa;
1216 	void *d;
1217 {
1218 	struct tcphdr th;
1219 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1220 	struct ip6_hdr *ip6;
1221 	struct mbuf *m;
1222 	struct ip6ctlparam *ip6cp = NULL;
1223 	const struct sockaddr_in6 *sa6_src = NULL;
1224 	int off;
1225 	struct tcp_portonly {
1226 		u_int16_t th_sport;
1227 		u_int16_t th_dport;
1228 	} *thp;
1229 
1230 	if (sa->sa_family != AF_INET6 ||
1231 	    sa->sa_len != sizeof(struct sockaddr_in6))
1232 		return;
1233 
1234 	if (cmd == PRC_MSGSIZE)
1235 		notify = tcp_mtudisc;
1236 	else if (!PRC_IS_REDIRECT(cmd) &&
1237 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1238 		return;
1239 	/* Source quench is depreciated. */
1240 	else if (cmd == PRC_QUENCH)
1241 		return;
1242 
1243 	/* if the parameter is from icmp6, decode it. */
1244 	if (d != NULL) {
1245 		ip6cp = (struct ip6ctlparam *)d;
1246 		m = ip6cp->ip6c_m;
1247 		ip6 = ip6cp->ip6c_ip6;
1248 		off = ip6cp->ip6c_off;
1249 		sa6_src = ip6cp->ip6c_src;
1250 	} else {
1251 		m = NULL;
1252 		ip6 = NULL;
1253 		off = 0;	/* fool gcc */
1254 		sa6_src = &sa6_any;
1255 	}
1256 
1257 	if (ip6 != NULL) {
1258 		struct in_conninfo inc;
1259 		/*
1260 		 * XXX: We assume that when IPV6 is non NULL,
1261 		 * M and OFF are valid.
1262 		 */
1263 
1264 		/* check if we can safely examine src and dst ports */
1265 		if (m->m_pkthdr.len < off + sizeof(*thp))
1266 			return;
1267 
1268 		bzero(&th, sizeof(th));
1269 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1270 
1271 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1272 		    (struct sockaddr *)ip6cp->ip6c_src,
1273 		    th.th_sport, cmd, NULL, notify);
1274 
1275 		inc.inc_fport = th.th_dport;
1276 		inc.inc_lport = th.th_sport;
1277 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1278 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1279 		inc.inc_isipv6 = 1;
1280 		INP_INFO_WLOCK(&tcbinfo);
1281 		syncache_unreach(&inc, &th);
1282 		INP_INFO_WUNLOCK(&tcbinfo);
1283 	} else
1284 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1285 			      0, cmd, NULL, notify);
1286 }
1287 #endif /* INET6 */
1288 
1289 
1290 /*
1291  * Following is where TCP initial sequence number generation occurs.
1292  *
1293  * There are two places where we must use initial sequence numbers:
1294  * 1.  In SYN-ACK packets.
1295  * 2.  In SYN packets.
1296  *
1297  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1298  * tcp_syncache.c for details.
1299  *
1300  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1301  * depends on this property.  In addition, these ISNs should be
1302  * unguessable so as to prevent connection hijacking.  To satisfy
1303  * the requirements of this situation, the algorithm outlined in
1304  * RFC 1948 is used, with only small modifications.
1305  *
1306  * Implementation details:
1307  *
1308  * Time is based off the system timer, and is corrected so that it
1309  * increases by one megabyte per second.  This allows for proper
1310  * recycling on high speed LANs while still leaving over an hour
1311  * before rollover.
1312  *
1313  * As reading the *exact* system time is too expensive to be done
1314  * whenever setting up a TCP connection, we increment the time
1315  * offset in two ways.  First, a small random positive increment
1316  * is added to isn_offset for each connection that is set up.
1317  * Second, the function tcp_isn_tick fires once per clock tick
1318  * and increments isn_offset as necessary so that sequence numbers
1319  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1320  * random positive increments serve only to ensure that the same
1321  * exact sequence number is never sent out twice (as could otherwise
1322  * happen when a port is recycled in less than the system tick
1323  * interval.)
1324  *
1325  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1326  * between seeding of isn_secret.  This is normally set to zero,
1327  * as reseeding should not be necessary.
1328  *
1329  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1330  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1331  * general, this means holding an exclusive (write) lock.
1332  */
1333 
1334 #define ISN_BYTES_PER_SECOND 1048576
1335 #define ISN_STATIC_INCREMENT 4096
1336 #define ISN_RANDOM_INCREMENT (4096 - 1)
1337 
1338 static u_char isn_secret[32];
1339 static int isn_last_reseed;
1340 static u_int32_t isn_offset, isn_offset_old;
1341 static MD5_CTX isn_ctx;
1342 
1343 tcp_seq
1344 tcp_new_isn(tp)
1345 	struct tcpcb *tp;
1346 {
1347 	u_int32_t md5_buffer[4];
1348 	tcp_seq new_isn;
1349 
1350 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1351 	INP_LOCK_ASSERT(tp->t_inpcb);
1352 
1353 	/* Seed if this is the first use, reseed if requested. */
1354 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1355 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1356 		< (u_int)ticks))) {
1357 		read_random(&isn_secret, sizeof(isn_secret));
1358 		isn_last_reseed = ticks;
1359 	}
1360 
1361 	/* Compute the md5 hash and return the ISN. */
1362 	MD5Init(&isn_ctx);
1363 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1364 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1365 #ifdef INET6
1366 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1367 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1368 			  sizeof(struct in6_addr));
1369 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1370 			  sizeof(struct in6_addr));
1371 	} else
1372 #endif
1373 	{
1374 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1375 			  sizeof(struct in_addr));
1376 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1377 			  sizeof(struct in_addr));
1378 	}
1379 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1380 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1381 	new_isn = (tcp_seq) md5_buffer[0];
1382 	isn_offset += ISN_STATIC_INCREMENT +
1383 		(arc4random() & ISN_RANDOM_INCREMENT);
1384 	new_isn += isn_offset;
1385 	return (new_isn);
1386 }
1387 
1388 /*
1389  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1390  * to keep time flowing at a relatively constant rate.  If the random
1391  * increments have already pushed us past the projected offset, do nothing.
1392  */
1393 static void
1394 tcp_isn_tick(xtp)
1395 	void *xtp;
1396 {
1397 	u_int32_t projected_offset;
1398 
1399 	INP_INFO_WLOCK(&tcbinfo);
1400 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1401 
1402 	if (projected_offset > isn_offset)
1403 		isn_offset = projected_offset;
1404 
1405 	isn_offset_old = isn_offset;
1406 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1407 	INP_INFO_WUNLOCK(&tcbinfo);
1408 }
1409 
1410 /*
1411  * When a specific ICMP unreachable message is received and the
1412  * connection state is SYN-SENT, drop the connection.  This behavior
1413  * is controlled by the icmp_may_rst sysctl.
1414  */
1415 struct inpcb *
1416 tcp_drop_syn_sent(inp, errno)
1417 	struct inpcb *inp;
1418 	int errno;
1419 {
1420 	struct tcpcb *tp = intotcpcb(inp);
1421 
1422 	INP_LOCK_ASSERT(inp);
1423 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1424 		tcp_drop(tp, errno);
1425 		return (NULL);
1426 	}
1427 	return (inp);
1428 }
1429 
1430 /*
1431  * When `need fragmentation' ICMP is received, update our idea of the MSS
1432  * based on the new value in the route.  Also nudge TCP to send something,
1433  * since we know the packet we just sent was dropped.
1434  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1435  */
1436 struct inpcb *
1437 tcp_mtudisc(inp, errno)
1438 	struct inpcb *inp;
1439 	int errno;
1440 {
1441 	struct tcpcb *tp = intotcpcb(inp);
1442 	struct socket *so = inp->inp_socket;
1443 	u_int maxmtu;
1444 	u_int romtu;
1445 	int mss;
1446 #ifdef INET6
1447 	int isipv6;
1448 #endif /* INET6 */
1449 
1450 	INP_LOCK_ASSERT(inp);
1451 	if (tp != NULL) {
1452 #ifdef INET6
1453 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1454 #endif
1455 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1456 		romtu =
1457 #ifdef INET6
1458 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1459 #endif /* INET6 */
1460 		    tcp_maxmtu(&inp->inp_inc);
1461 		if (!maxmtu)
1462 			maxmtu = romtu;
1463 		else
1464 			maxmtu = min(maxmtu, romtu);
1465 		if (!maxmtu) {
1466 			tp->t_maxopd = tp->t_maxseg =
1467 #ifdef INET6
1468 				isipv6 ? tcp_v6mssdflt :
1469 #endif /* INET6 */
1470 				tcp_mssdflt;
1471 			return (inp);
1472 		}
1473 		mss = maxmtu -
1474 #ifdef INET6
1475 			(isipv6 ?
1476 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1477 #endif /* INET6 */
1478 			 sizeof(struct tcpiphdr)
1479 #ifdef INET6
1480 			 )
1481 #endif /* INET6 */
1482 			;
1483 
1484 		/*
1485 		 * XXX - The above conditional probably violates the TCP
1486 		 * spec.  The problem is that, since we don't know the
1487 		 * other end's MSS, we are supposed to use a conservative
1488 		 * default.  But, if we do that, then MTU discovery will
1489 		 * never actually take place, because the conservative
1490 		 * default is much less than the MTUs typically seen
1491 		 * on the Internet today.  For the moment, we'll sweep
1492 		 * this under the carpet.
1493 		 *
1494 		 * The conservative default might not actually be a problem
1495 		 * if the only case this occurs is when sending an initial
1496 		 * SYN with options and data to a host we've never talked
1497 		 * to before.  Then, they will reply with an MSS value which
1498 		 * will get recorded and the new parameters should get
1499 		 * recomputed.  For Further Study.
1500 		 */
1501 		if (tp->t_maxopd <= mss)
1502 			return (inp);
1503 		tp->t_maxopd = mss;
1504 
1505 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1506 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1507 			mss -= TCPOLEN_TSTAMP_APPA;
1508 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1509 		if (mss > MCLBYTES)
1510 			mss &= ~(MCLBYTES-1);
1511 #else
1512 		if (mss > MCLBYTES)
1513 			mss = mss / MCLBYTES * MCLBYTES;
1514 #endif
1515 		if (so->so_snd.sb_hiwat < mss)
1516 			mss = so->so_snd.sb_hiwat;
1517 
1518 		tp->t_maxseg = mss;
1519 
1520 		tcpstat.tcps_mturesent++;
1521 		tp->t_rtttime = 0;
1522 		tp->snd_nxt = tp->snd_una;
1523 		tcp_output(tp);
1524 	}
1525 	return (inp);
1526 }
1527 
1528 /*
1529  * Look-up the routing entry to the peer of this inpcb.  If no route
1530  * is found and it cannot be allocated, then return NULL.  This routine
1531  * is called by TCP routines that access the rmx structure and by tcp_mss
1532  * to get the interface MTU.
1533  */
1534 u_long
1535 tcp_maxmtu(inc)
1536 	struct in_conninfo *inc;
1537 {
1538 	struct route sro;
1539 	struct sockaddr_in *dst;
1540 	struct ifnet *ifp;
1541 	u_long maxmtu = 0;
1542 
1543 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1544 
1545 	bzero(&sro, sizeof(sro));
1546 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1547 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1548 		dst->sin_family = AF_INET;
1549 		dst->sin_len = sizeof(*dst);
1550 		dst->sin_addr = inc->inc_faddr;
1551 		rtalloc_ign(&sro, RTF_CLONING);
1552 	}
1553 	if (sro.ro_rt != NULL) {
1554 		ifp = sro.ro_rt->rt_ifp;
1555 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1556 			maxmtu = ifp->if_mtu;
1557 		else
1558 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1559 		RTFREE(sro.ro_rt);
1560 	}
1561 	return (maxmtu);
1562 }
1563 
1564 #ifdef INET6
1565 u_long
1566 tcp_maxmtu6(inc)
1567 	struct in_conninfo *inc;
1568 {
1569 	struct route_in6 sro6;
1570 	struct ifnet *ifp;
1571 	u_long maxmtu = 0;
1572 
1573 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1574 
1575 	bzero(&sro6, sizeof(sro6));
1576 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1577 		sro6.ro_dst.sin6_family = AF_INET6;
1578 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1579 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1580 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1581 	}
1582 	if (sro6.ro_rt != NULL) {
1583 		ifp = sro6.ro_rt->rt_ifp;
1584 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1585 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1586 		else
1587 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1588 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1589 		RTFREE(sro6.ro_rt);
1590 	}
1591 
1592 	return (maxmtu);
1593 }
1594 #endif /* INET6 */
1595 
1596 #ifdef IPSEC
1597 /* compute ESP/AH header size for TCP, including outer IP header. */
1598 size_t
1599 ipsec_hdrsiz_tcp(tp)
1600 	struct tcpcb *tp;
1601 {
1602 	struct inpcb *inp;
1603 	struct mbuf *m;
1604 	size_t hdrsiz;
1605 	struct ip *ip;
1606 #ifdef INET6
1607 	struct ip6_hdr *ip6;
1608 #endif
1609 	struct tcphdr *th;
1610 
1611 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1612 		return (0);
1613 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1614 	if (!m)
1615 		return (0);
1616 
1617 #ifdef INET6
1618 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1619 		ip6 = mtod(m, struct ip6_hdr *);
1620 		th = (struct tcphdr *)(ip6 + 1);
1621 		m->m_pkthdr.len = m->m_len =
1622 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1623 		tcpip_fillheaders(inp, ip6, th);
1624 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1625 	} else
1626 #endif /* INET6 */
1627 	{
1628 		ip = mtod(m, struct ip *);
1629 		th = (struct tcphdr *)(ip + 1);
1630 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1631 		tcpip_fillheaders(inp, ip, th);
1632 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1633 	}
1634 
1635 	m_free(m);
1636 	return (hdrsiz);
1637 }
1638 #endif /*IPSEC*/
1639 
1640 /*
1641  * Move a TCP connection into TIME_WAIT state.
1642  *    tcbinfo is locked.
1643  *    inp is locked, and is unlocked before returning.
1644  */
1645 void
1646 tcp_twstart(tp)
1647 	struct tcpcb *tp;
1648 {
1649 	struct tcptw *tw;
1650 	struct inpcb *inp;
1651 	int tw_time, acknow;
1652 	struct socket *so;
1653 
1654 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1655 	INP_LOCK_ASSERT(tp->t_inpcb);
1656 
1657 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1658 	if (tw == NULL) {
1659 		tw = tcp_timer_2msl_tw(1);
1660 		if (tw == NULL) {
1661 			tcp_close(tp);
1662 			return;
1663 		}
1664 	}
1665 	inp = tp->t_inpcb;
1666 	tw->tw_inpcb = inp;
1667 
1668 	/*
1669 	 * Recover last window size sent.
1670 	 */
1671 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1672 
1673 	/*
1674 	 * Set t_recent if timestamps are used on the connection.
1675 	 */
1676 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1677 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1678 		tw->t_recent = tp->ts_recent;
1679 	else
1680 		tw->t_recent = 0;
1681 
1682 	tw->snd_nxt = tp->snd_nxt;
1683 	tw->rcv_nxt = tp->rcv_nxt;
1684 	tw->iss     = tp->iss;
1685 	tw->irs     = tp->irs;
1686 	tw->t_starttime = tp->t_starttime;
1687 	tw->tw_time = 0;
1688 
1689 /* XXX
1690  * If this code will
1691  * be used for fin-wait-2 state also, then we may need
1692  * a ts_recent from the last segment.
1693  */
1694 	tw_time = 2 * tcp_msl;
1695 	acknow = tp->t_flags & TF_ACKNOW;
1696 	tcp_discardcb(tp);
1697 	so = inp->inp_socket;
1698 	ACCEPT_LOCK();
1699 	SOCK_LOCK(so);
1700 	so->so_pcb = NULL;
1701 	tw->tw_cred = crhold(so->so_cred);
1702 	tw->tw_so_options = so->so_options;
1703 	sotryfree(so);
1704 	inp->inp_socket = NULL;
1705 	if (acknow)
1706 		tcp_twrespond(tw, TH_ACK);
1707 	inp->inp_ppcb = (caddr_t)tw;
1708 	inp->inp_vflag |= INP_TIMEWAIT;
1709 	tcp_timer_2msl_reset(tw, tw_time);
1710 	INP_UNLOCK(inp);
1711 }
1712 
1713 /*
1714  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1715  * the actual rate is slightly higher due to the addition of
1716  * random positive increments.
1717  *
1718  * Most other new OSes use semi-randomized ISN values, so we
1719  * do not need to worry about them.
1720  */
1721 #define MS_ISN_BYTES_PER_SECOND		250000
1722 
1723 /*
1724  * Determine if the ISN we will generate has advanced beyond the last
1725  * sequence number used by the previous connection.  If so, indicate
1726  * that it is safe to recycle this tw socket by returning 1.
1727  *
1728  * XXXRW: This function should assert the inpcb lock as it does multiple
1729  * non-atomic reads from the tcptw, but is currently called without it from
1730  * in_pcb.c:in_pcblookup_local().
1731  */
1732 int
1733 tcp_twrecycleable(struct tcptw *tw)
1734 {
1735 	tcp_seq new_iss = tw->iss;
1736 	tcp_seq new_irs = tw->irs;
1737 
1738 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1739 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1740 
1741 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1742 		return (1);
1743 	else
1744 		return (0);
1745 }
1746 
1747 struct tcptw *
1748 tcp_twclose(struct tcptw *tw, int reuse)
1749 {
1750 	struct inpcb *inp;
1751 
1752 	inp = tw->tw_inpcb;
1753 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1754 	INP_LOCK_ASSERT(inp);
1755 
1756 	tw->tw_inpcb = NULL;
1757 	tcp_timer_2msl_stop(tw);
1758 	inp->inp_ppcb = NULL;
1759 #ifdef INET6
1760 	if (inp->inp_vflag & INP_IPV6PROTO)
1761 		in6_pcbdetach(inp);
1762 	else
1763 #endif
1764 		in_pcbdetach(inp);
1765 	tcpstat.tcps_closed++;
1766 	crfree(tw->tw_cred);
1767 	tw->tw_cred = NULL;
1768 	if (reuse)
1769 		return (tw);
1770 	uma_zfree(tcptw_zone, tw);
1771 	return (NULL);
1772 }
1773 
1774 int
1775 tcp_twrespond(struct tcptw *tw, int flags)
1776 {
1777 	struct inpcb *inp = tw->tw_inpcb;
1778 	struct tcphdr *th;
1779 	struct mbuf *m;
1780 	struct ip *ip = NULL;
1781 	u_int8_t *optp;
1782 	u_int hdrlen, optlen;
1783 	int error;
1784 #ifdef INET6
1785 	struct ip6_hdr *ip6 = NULL;
1786 	int isipv6 = inp->inp_inc.inc_isipv6;
1787 #endif
1788 
1789 	INP_LOCK_ASSERT(inp);
1790 
1791 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1792 	if (m == NULL)
1793 		return (ENOBUFS);
1794 	m->m_data += max_linkhdr;
1795 
1796 #ifdef MAC
1797 	mac_create_mbuf_from_inpcb(inp, m);
1798 #endif
1799 
1800 #ifdef INET6
1801 	if (isipv6) {
1802 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1803 		ip6 = mtod(m, struct ip6_hdr *);
1804 		th = (struct tcphdr *)(ip6 + 1);
1805 		tcpip_fillheaders(inp, ip6, th);
1806 	} else
1807 #endif
1808 	{
1809 		hdrlen = sizeof(struct tcpiphdr);
1810 		ip = mtod(m, struct ip *);
1811 		th = (struct tcphdr *)(ip + 1);
1812 		tcpip_fillheaders(inp, ip, th);
1813 	}
1814 	optp = (u_int8_t *)(th + 1);
1815 
1816 	/*
1817 	 * Send a timestamp and echo-reply if both our side and our peer
1818 	 * have sent timestamps in our SYN's and this is not a RST.
1819 	 */
1820 	if (tw->t_recent && flags == TH_ACK) {
1821 		u_int32_t *lp = (u_int32_t *)optp;
1822 
1823 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1824 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1825 		*lp++ = htonl(ticks);
1826 		*lp   = htonl(tw->t_recent);
1827 		optp += TCPOLEN_TSTAMP_APPA;
1828 	}
1829 
1830 	optlen = optp - (u_int8_t *)(th + 1);
1831 
1832 	m->m_len = hdrlen + optlen;
1833 	m->m_pkthdr.len = m->m_len;
1834 
1835 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1836 
1837 	th->th_seq = htonl(tw->snd_nxt);
1838 	th->th_ack = htonl(tw->rcv_nxt);
1839 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1840 	th->th_flags = flags;
1841 	th->th_win = htons(tw->last_win);
1842 
1843 #ifdef INET6
1844 	if (isipv6) {
1845 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1846 		    sizeof(struct tcphdr) + optlen);
1847 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1848 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1849 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1850 	} else
1851 #endif
1852 	{
1853 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1854 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1855 		m->m_pkthdr.csum_flags = CSUM_TCP;
1856 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1857 		ip->ip_len = m->m_pkthdr.len;
1858 		if (path_mtu_discovery)
1859 			ip->ip_off |= IP_DF;
1860 		error = ip_output(m, inp->inp_options, NULL,
1861 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1862 		    NULL, inp);
1863 	}
1864 	if (flags & TH_ACK)
1865 		tcpstat.tcps_sndacks++;
1866 	else
1867 		tcpstat.tcps_sndctrl++;
1868 	tcpstat.tcps_sndtotal++;
1869 	return (error);
1870 }
1871 
1872 /*
1873  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1874  *
1875  * This code attempts to calculate the bandwidth-delay product as a
1876  * means of determining the optimal window size to maximize bandwidth,
1877  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1878  * routers.  This code also does a fairly good job keeping RTTs in check
1879  * across slow links like modems.  We implement an algorithm which is very
1880  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1881  * transmitter side of a TCP connection and so only effects the transmit
1882  * side of the connection.
1883  *
1884  * BACKGROUND:  TCP makes no provision for the management of buffer space
1885  * at the end points or at the intermediate routers and switches.  A TCP
1886  * stream, whether using NewReno or not, will eventually buffer as
1887  * many packets as it is able and the only reason this typically works is
1888  * due to the fairly small default buffers made available for a connection
1889  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1890  * scaling it is now fairly easy for even a single TCP connection to blow-out
1891  * all available buffer space not only on the local interface, but on
1892  * intermediate routers and switches as well.  NewReno makes a misguided
1893  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1894  * then backing off, then steadily increasing the window again until another
1895  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1896  * is only made worse as network loads increase and the idea of intentionally
1897  * blowing out network buffers is, frankly, a terrible way to manage network
1898  * resources.
1899  *
1900  * It is far better to limit the transmit window prior to the failure
1901  * condition being achieved.  There are two general ways to do this:  First
1902  * you can 'scan' through different transmit window sizes and locate the
1903  * point where the RTT stops increasing, indicating that you have filled the
1904  * pipe, then scan backwards until you note that RTT stops decreasing, then
1905  * repeat ad-infinitum.  This method works in principle but has severe
1906  * implementation issues due to RTT variances, timer granularity, and
1907  * instability in the algorithm which can lead to many false positives and
1908  * create oscillations as well as interact badly with other TCP streams
1909  * implementing the same algorithm.
1910  *
1911  * The second method is to limit the window to the bandwidth delay product
1912  * of the link.  This is the method we implement.  RTT variances and our
1913  * own manipulation of the congestion window, bwnd, can potentially
1914  * destabilize the algorithm.  For this reason we have to stabilize the
1915  * elements used to calculate the window.  We do this by using the minimum
1916  * observed RTT, the long term average of the observed bandwidth, and
1917  * by adding two segments worth of slop.  It isn't perfect but it is able
1918  * to react to changing conditions and gives us a very stable basis on
1919  * which to extend the algorithm.
1920  */
1921 void
1922 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1923 {
1924 	u_long bw;
1925 	u_long bwnd;
1926 	int save_ticks;
1927 
1928 	INP_LOCK_ASSERT(tp->t_inpcb);
1929 
1930 	/*
1931 	 * If inflight_enable is disabled in the middle of a tcp connection,
1932 	 * make sure snd_bwnd is effectively disabled.
1933 	 */
1934 	if (tcp_inflight_enable == 0) {
1935 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1936 		tp->snd_bandwidth = 0;
1937 		return;
1938 	}
1939 
1940 	/*
1941 	 * Figure out the bandwidth.  Due to the tick granularity this
1942 	 * is a very rough number and it MUST be averaged over a fairly
1943 	 * long period of time.  XXX we need to take into account a link
1944 	 * that is not using all available bandwidth, but for now our
1945 	 * slop will ramp us up if this case occurs and the bandwidth later
1946 	 * increases.
1947 	 *
1948 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1949 	 * effectively reset t_bw_rtttime for this case.
1950 	 */
1951 	save_ticks = ticks;
1952 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1953 		return;
1954 
1955 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1956 	    (save_ticks - tp->t_bw_rtttime);
1957 	tp->t_bw_rtttime = save_ticks;
1958 	tp->t_bw_rtseq = ack_seq;
1959 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1960 		return;
1961 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1962 
1963 	tp->snd_bandwidth = bw;
1964 
1965 	/*
1966 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1967 	 * segments.  The additional slop puts us squarely in the sweet
1968 	 * spot and also handles the bandwidth run-up case and stabilization.
1969 	 * Without the slop we could be locking ourselves into a lower
1970 	 * bandwidth.
1971 	 *
1972 	 * Situations Handled:
1973 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1974 	 *	    high speed LANs, allowing larger TCP buffers to be
1975 	 *	    specified, and also does a good job preventing
1976 	 *	    over-queueing of packets over choke points like modems
1977 	 *	    (at least for the transmit side).
1978 	 *
1979 	 *	(2) Is able to handle changing network loads (bandwidth
1980 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1981 	 *	    increases).
1982 	 *
1983 	 *	(3) Theoretically should stabilize in the face of multiple
1984 	 *	    connections implementing the same algorithm (this may need
1985 	 *	    a little work).
1986 	 *
1987 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1988 	 *	    be adjusted with a sysctl but typically only needs to be
1989 	 *	    on very slow connections.  A value no smaller then 5
1990 	 *	    should be used, but only reduce this default if you have
1991 	 *	    no other choice.
1992 	 */
1993 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1994 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1995 #undef USERTT
1996 
1997 	if (tcp_inflight_debug > 0) {
1998 		static int ltime;
1999 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2000 			ltime = ticks;
2001 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2002 			    tp,
2003 			    bw,
2004 			    tp->t_rttbest,
2005 			    tp->t_srtt,
2006 			    bwnd
2007 			);
2008 		}
2009 	}
2010 	if ((long)bwnd < tcp_inflight_min)
2011 		bwnd = tcp_inflight_min;
2012 	if (bwnd > tcp_inflight_max)
2013 		bwnd = tcp_inflight_max;
2014 	if ((long)bwnd < tp->t_maxseg * 2)
2015 		bwnd = tp->t_maxseg * 2;
2016 	tp->snd_bwnd = bwnd;
2017 }
2018 
2019 #ifdef TCP_SIGNATURE
2020 /*
2021  * Callback function invoked by m_apply() to digest TCP segment data
2022  * contained within an mbuf chain.
2023  */
2024 static int
2025 tcp_signature_apply(void *fstate, void *data, u_int len)
2026 {
2027 
2028 	MD5Update(fstate, (u_char *)data, len);
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2034  *
2035  * Parameters:
2036  * m		pointer to head of mbuf chain
2037  * off0		offset to TCP header within the mbuf chain
2038  * len		length of TCP segment data, excluding options
2039  * optlen	length of TCP segment options
2040  * buf		pointer to storage for computed MD5 digest
2041  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2042  *
2043  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2044  * When called from tcp_input(), we can be sure that th_sum has been
2045  * zeroed out and verified already.
2046  *
2047  * This function is for IPv4 use only. Calling this function with an
2048  * IPv6 packet in the mbuf chain will yield undefined results.
2049  *
2050  * Return 0 if successful, otherwise return -1.
2051  *
2052  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2053  * search with the destination IP address, and a 'magic SPI' to be
2054  * determined by the application. This is hardcoded elsewhere to 1179
2055  * right now. Another branch of this code exists which uses the SPD to
2056  * specify per-application flows but it is unstable.
2057  */
2058 int
2059 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2060     u_char *buf, u_int direction)
2061 {
2062 	union sockaddr_union dst;
2063 	struct ippseudo ippseudo;
2064 	MD5_CTX ctx;
2065 	int doff;
2066 	struct ip *ip;
2067 	struct ipovly *ipovly;
2068 	struct secasvar *sav;
2069 	struct tcphdr *th;
2070 	u_short savecsum;
2071 
2072 	KASSERT(m != NULL, ("NULL mbuf chain"));
2073 	KASSERT(buf != NULL, ("NULL signature pointer"));
2074 
2075 	/* Extract the destination from the IP header in the mbuf. */
2076 	ip = mtod(m, struct ip *);
2077 	bzero(&dst, sizeof(union sockaddr_union));
2078 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2079 	dst.sa.sa_family = AF_INET;
2080 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2081 	    ip->ip_src : ip->ip_dst;
2082 
2083 	/* Look up an SADB entry which matches the address of the peer. */
2084 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2085 	if (sav == NULL) {
2086 		printf("%s: SADB lookup failed for %s\n", __func__,
2087 		    inet_ntoa(dst.sin.sin_addr));
2088 		return (EINVAL);
2089 	}
2090 
2091 	MD5Init(&ctx);
2092 	ipovly = (struct ipovly *)ip;
2093 	th = (struct tcphdr *)((u_char *)ip + off0);
2094 	doff = off0 + sizeof(struct tcphdr) + optlen;
2095 
2096 	/*
2097 	 * Step 1: Update MD5 hash with IP pseudo-header.
2098 	 *
2099 	 * XXX The ippseudo header MUST be digested in network byte order,
2100 	 * or else we'll fail the regression test. Assume all fields we've
2101 	 * been doing arithmetic on have been in host byte order.
2102 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2103 	 * tcp_output(), the underlying ip_len member has not yet been set.
2104 	 */
2105 	ippseudo.ippseudo_src = ipovly->ih_src;
2106 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2107 	ippseudo.ippseudo_pad = 0;
2108 	ippseudo.ippseudo_p = IPPROTO_TCP;
2109 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2110 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2111 
2112 	/*
2113 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2114 	 * The TCP checksum must be set to zero.
2115 	 */
2116 	savecsum = th->th_sum;
2117 	th->th_sum = 0;
2118 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2119 	th->th_sum = savecsum;
2120 
2121 	/*
2122 	 * Step 3: Update MD5 hash with TCP segment data.
2123 	 *         Use m_apply() to avoid an early m_pullup().
2124 	 */
2125 	if (len > 0)
2126 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2127 
2128 	/*
2129 	 * Step 4: Update MD5 hash with shared secret.
2130 	 */
2131 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2132 	MD5Final(buf, &ctx);
2133 
2134 	key_sa_recordxfer(sav, m);
2135 	KEY_FREESAV(&sav);
2136 	return (0);
2137 }
2138 #endif /* TCP_SIGNATURE */
2139 
2140 static int
2141 sysctl_drop(SYSCTL_HANDLER_ARGS)
2142 {
2143 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2144 	struct sockaddr_storage addrs[2];
2145 	struct inpcb *inp;
2146 	struct tcpcb *tp;
2147 	struct sockaddr_in *fin, *lin;
2148 #ifdef INET6
2149 	struct sockaddr_in6 *fin6, *lin6;
2150 	struct in6_addr f6, l6;
2151 #endif
2152 	int error;
2153 
2154 	inp = NULL;
2155 	fin = lin = NULL;
2156 #ifdef INET6
2157 	fin6 = lin6 = NULL;
2158 #endif
2159 	error = 0;
2160 
2161 	if (req->oldptr != NULL || req->oldlen != 0)
2162 		return (EINVAL);
2163 	if (req->newptr == NULL)
2164 		return (EPERM);
2165 	if (req->newlen < sizeof(addrs))
2166 		return (ENOMEM);
2167 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2168 	if (error)
2169 		return (error);
2170 
2171 	switch (addrs[0].ss_family) {
2172 #ifdef INET6
2173 	case AF_INET6:
2174 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2175 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2176 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2177 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2178 			return (EINVAL);
2179 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2180 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2181 				return (EINVAL);
2182 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2183 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2184 			fin = (struct sockaddr_in *)&addrs[0];
2185 			lin = (struct sockaddr_in *)&addrs[1];
2186 			break;
2187 		}
2188 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2189 		if (error)
2190 			return (EINVAL);
2191 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2192 		if (error)
2193 			return (EINVAL);
2194 		break;
2195 #endif
2196 	case AF_INET:
2197 		fin = (struct sockaddr_in *)&addrs[0];
2198 		lin = (struct sockaddr_in *)&addrs[1];
2199 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2200 		    lin->sin_len != sizeof(struct sockaddr_in))
2201 			return (EINVAL);
2202 		break;
2203 	default:
2204 		return (EINVAL);
2205 	}
2206 	INP_INFO_WLOCK(&tcbinfo);
2207 	switch (addrs[0].ss_family) {
2208 #ifdef INET6
2209 	case AF_INET6:
2210 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2211 		    &l6, lin6->sin6_port, 0, NULL);
2212 		break;
2213 #endif
2214 	case AF_INET:
2215 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2216 		    lin->sin_addr, lin->sin_port, 0, NULL);
2217 		break;
2218 	}
2219 	if (inp != NULL) {
2220 		INP_LOCK(inp);
2221 		if ((tp = intotcpcb(inp)) &&
2222 		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2223 			tp = tcp_drop(tp, ECONNABORTED);
2224 			if (tp != NULL)
2225 				INP_UNLOCK(inp);
2226 		} else
2227 			INP_UNLOCK(inp);
2228 	} else
2229 		error = ESRCH;
2230 	INP_INFO_WUNLOCK(&tcbinfo);
2231 	return (error);
2232 }
2233 
2234 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2235     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2236     0, sysctl_drop, "", "Drop TCP connection");
2237