1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_ipsec.h" 37 #include "opt_mac.h" 38 #include "opt_tcpdebug.h" 39 #include "opt_tcp_sack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/kernel.h> 45 #include <sys/sysctl.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 #include <sys/random.h> 57 58 #include <vm/uma.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/ip.h> 66 #ifdef INET6 67 #include <netinet/ip6.h> 68 #endif 69 #include <netinet/in_pcb.h> 70 #ifdef INET6 71 #include <netinet6/in6_pcb.h> 72 #endif 73 #include <netinet/in_var.h> 74 #include <netinet/ip_var.h> 75 #ifdef INET6 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #endif 80 #include <netinet/ip_icmp.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #ifdef INET6 87 #include <netinet6/tcp6_var.h> 88 #endif 89 #include <netinet/tcpip.h> 90 #ifdef TCPDEBUG 91 #include <netinet/tcp_debug.h> 92 #endif 93 #include <netinet6/ip6protosw.h> 94 95 #ifdef IPSEC 96 #include <netinet6/ipsec.h> 97 #ifdef INET6 98 #include <netinet6/ipsec6.h> 99 #endif 100 #include <netkey/key.h> 101 #endif /*IPSEC*/ 102 103 #ifdef FAST_IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/xform.h> 106 #ifdef INET6 107 #include <netipsec/ipsec6.h> 108 #endif 109 #include <netipsec/key.h> 110 #define IPSEC 111 #endif /*FAST_IPSEC*/ 112 113 #include <machine/in_cksum.h> 114 #include <sys/md5.h> 115 116 int tcp_mssdflt = TCP_MSS; 117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 118 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 119 120 #ifdef INET6 121 int tcp_v6mssdflt = TCP6_MSS; 122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 123 CTLFLAG_RW, &tcp_v6mssdflt , 0, 124 "Default TCP Maximum Segment Size for IPv6"); 125 #endif 126 127 /* 128 * Minimum MSS we accept and use. This prevents DoS attacks where 129 * we are forced to a ridiculous low MSS like 20 and send hundreds 130 * of packets instead of one. The effect scales with the available 131 * bandwidth and quickly saturates the CPU and network interface 132 * with packet generation and sending. Set to zero to disable MINMSS 133 * checking. This setting prevents us from sending too small packets. 134 */ 135 int tcp_minmss = TCP_MINMSS; 136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW, 137 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size"); 138 /* 139 * Number of TCP segments per second we accept from remote host 140 * before we start to calculate average segment size. If average 141 * segment size drops below the minimum TCP MSS we assume a DoS 142 * attack and reset+drop the connection. Care has to be taken not to 143 * set this value too small to not kill interactive type connections 144 * (telnet, SSH) which send many small packets. 145 */ 146 int tcp_minmssoverload = TCP_MINMSSOVERLOAD; 147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW, 148 &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to" 149 "be under the MINMSS Size"); 150 151 #if 0 152 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 154 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 155 #endif 156 157 int tcp_do_rfc1323 = 1; 158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 159 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 160 161 static int tcp_tcbhashsize = 0; 162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 163 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 164 165 static int do_tcpdrain = 1; 166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 167 "Enable tcp_drain routine for extra help when low on mbufs"); 168 169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 170 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 171 172 static int icmp_may_rst = 1; 173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0, 174 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 175 176 static int tcp_isn_reseed_interval = 0; 177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 178 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret"); 179 180 /* 181 * TCP bandwidth limiting sysctls. Note that the default lower bound of 182 * 1024 exists only for debugging. A good production default would be 183 * something like 6100. 184 */ 185 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0, 186 "TCP inflight data limiting"); 187 188 static int tcp_inflight_enable = 1; 189 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW, 190 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting"); 191 192 static int tcp_inflight_debug = 0; 193 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW, 194 &tcp_inflight_debug, 0, "Debug TCP inflight calculations"); 195 196 static int tcp_inflight_min = 6144; 197 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW, 198 &tcp_inflight_min, 0, "Lower-bound for TCP inflight window"); 199 200 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT; 201 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW, 202 &tcp_inflight_max, 0, "Upper-bound for TCP inflight window"); 203 204 static int tcp_inflight_stab = 20; 205 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW, 206 &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets"); 207 208 uma_zone_t sack_hole_zone; 209 210 static struct inpcb *tcp_notify(struct inpcb *, int); 211 static void tcp_discardcb(struct tcpcb *); 212 static void tcp_isn_tick(void *); 213 214 /* 215 * Target size of TCP PCB hash tables. Must be a power of two. 216 * 217 * Note that this can be overridden by the kernel environment 218 * variable net.inet.tcp.tcbhashsize 219 */ 220 #ifndef TCBHASHSIZE 221 #define TCBHASHSIZE 512 222 #endif 223 224 /* 225 * XXX 226 * Callouts should be moved into struct tcp directly. They are currently 227 * separate because the tcpcb structure is exported to userland for sysctl 228 * parsing purposes, which do not know about callouts. 229 */ 230 struct tcpcb_mem { 231 struct tcpcb tcb; 232 struct callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep; 233 struct callout tcpcb_mem_2msl, tcpcb_mem_delack; 234 }; 235 236 static uma_zone_t tcpcb_zone; 237 static uma_zone_t tcptw_zone; 238 struct callout isn_callout; 239 240 /* 241 * Tcp initialization 242 */ 243 void 244 tcp_init() 245 { 246 int hashsize = TCBHASHSIZE; 247 248 tcp_delacktime = TCPTV_DELACK; 249 tcp_keepinit = TCPTV_KEEP_INIT; 250 tcp_keepidle = TCPTV_KEEP_IDLE; 251 tcp_keepintvl = TCPTV_KEEPINTVL; 252 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 253 tcp_msl = TCPTV_MSL; 254 tcp_rexmit_min = TCPTV_MIN; 255 tcp_rexmit_slop = TCPTV_CPU_VAR; 256 257 INP_INFO_LOCK_INIT(&tcbinfo, "tcp"); 258 LIST_INIT(&tcb); 259 tcbinfo.listhead = &tcb; 260 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 261 if (!powerof2(hashsize)) { 262 printf("WARNING: TCB hash size not a power of 2\n"); 263 hashsize = 512; /* safe default */ 264 } 265 tcp_tcbhashsize = hashsize; 266 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 267 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 268 &tcbinfo.porthashmask); 269 tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb), 270 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 271 uma_zone_set_max(tcbinfo.ipi_zone, maxsockets); 272 #ifdef INET6 273 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 274 #else /* INET6 */ 275 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 276 #endif /* INET6 */ 277 if (max_protohdr < TCP_MINPROTOHDR) 278 max_protohdr = TCP_MINPROTOHDR; 279 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 280 panic("tcp_init"); 281 #undef TCP_MINPROTOHDR 282 /* 283 * These have to be type stable for the benefit of the timers. 284 */ 285 tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 286 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 287 uma_zone_set_max(tcpcb_zone, maxsockets); 288 tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw), 289 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 290 uma_zone_set_max(tcptw_zone, maxsockets / 5); 291 tcp_timer_init(); 292 syncache_init(); 293 tcp_hc_init(); 294 tcp_reass_init(); 295 callout_init(&isn_callout, CALLOUT_MPSAFE); 296 tcp_isn_tick(NULL); 297 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 298 SHUTDOWN_PRI_DEFAULT); 299 sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 300 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 301 } 302 303 void 304 tcp_fini(xtp) 305 void *xtp; 306 { 307 callout_stop(&isn_callout); 308 309 } 310 311 /* 312 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 313 * tcp_template used to store this data in mbufs, but we now recopy it out 314 * of the tcpcb each time to conserve mbufs. 315 */ 316 void 317 tcpip_fillheaders(inp, ip_ptr, tcp_ptr) 318 struct inpcb *inp; 319 void *ip_ptr; 320 void *tcp_ptr; 321 { 322 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 323 324 INP_LOCK_ASSERT(inp); 325 326 #ifdef INET6 327 if ((inp->inp_vflag & INP_IPV6) != 0) { 328 struct ip6_hdr *ip6; 329 330 ip6 = (struct ip6_hdr *)ip_ptr; 331 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 332 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 333 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 334 (IPV6_VERSION & IPV6_VERSION_MASK); 335 ip6->ip6_nxt = IPPROTO_TCP; 336 ip6->ip6_plen = sizeof(struct tcphdr); 337 ip6->ip6_src = inp->in6p_laddr; 338 ip6->ip6_dst = inp->in6p_faddr; 339 } else 340 #endif 341 { 342 struct ip *ip; 343 344 ip = (struct ip *)ip_ptr; 345 ip->ip_v = IPVERSION; 346 ip->ip_hl = 5; 347 ip->ip_tos = inp->inp_ip_tos; 348 ip->ip_len = 0; 349 ip->ip_id = 0; 350 ip->ip_off = 0; 351 ip->ip_ttl = inp->inp_ip_ttl; 352 ip->ip_sum = 0; 353 ip->ip_p = IPPROTO_TCP; 354 ip->ip_src = inp->inp_laddr; 355 ip->ip_dst = inp->inp_faddr; 356 } 357 th->th_sport = inp->inp_lport; 358 th->th_dport = inp->inp_fport; 359 th->th_seq = 0; 360 th->th_ack = 0; 361 th->th_x2 = 0; 362 th->th_off = 5; 363 th->th_flags = 0; 364 th->th_win = 0; 365 th->th_urp = 0; 366 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 367 } 368 369 /* 370 * Create template to be used to send tcp packets on a connection. 371 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 372 * use for this function is in keepalives, which use tcp_respond. 373 */ 374 struct tcptemp * 375 tcpip_maketemplate(inp) 376 struct inpcb *inp; 377 { 378 struct mbuf *m; 379 struct tcptemp *n; 380 381 m = m_get(M_DONTWAIT, MT_DATA); 382 if (m == NULL) 383 return (0); 384 m->m_len = sizeof(struct tcptemp); 385 n = mtod(m, struct tcptemp *); 386 387 tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t); 388 return (n); 389 } 390 391 /* 392 * Send a single message to the TCP at address specified by 393 * the given TCP/IP header. If m == NULL, then we make a copy 394 * of the tcpiphdr at ti and send directly to the addressed host. 395 * This is used to force keep alive messages out using the TCP 396 * template for a connection. If flags are given then we send 397 * a message back to the TCP which originated the * segment ti, 398 * and discard the mbuf containing it and any other attached mbufs. 399 * 400 * In any case the ack and sequence number of the transmitted 401 * segment are as specified by the parameters. 402 * 403 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 404 */ 405 void 406 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 407 struct tcpcb *tp; 408 void *ipgen; 409 register struct tcphdr *th; 410 register struct mbuf *m; 411 tcp_seq ack, seq; 412 int flags; 413 { 414 register int tlen; 415 int win = 0; 416 struct ip *ip; 417 struct tcphdr *nth; 418 #ifdef INET6 419 struct ip6_hdr *ip6; 420 int isipv6; 421 #endif /* INET6 */ 422 int ipflags = 0; 423 struct inpcb *inp; 424 425 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 426 427 #ifdef INET6 428 isipv6 = ((struct ip *)ipgen)->ip_v == 6; 429 ip6 = ipgen; 430 #endif /* INET6 */ 431 ip = ipgen; 432 433 if (tp != NULL) { 434 inp = tp->t_inpcb; 435 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 436 INP_INFO_WLOCK_ASSERT(&tcbinfo); 437 INP_LOCK_ASSERT(inp); 438 } else 439 inp = NULL; 440 441 if (tp != NULL) { 442 if (!(flags & TH_RST)) { 443 win = sbspace(&inp->inp_socket->so_rcv); 444 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 445 win = (long)TCP_MAXWIN << tp->rcv_scale; 446 } 447 } 448 if (m == NULL) { 449 m = m_gethdr(M_DONTWAIT, MT_DATA); 450 if (m == NULL) 451 return; 452 tlen = 0; 453 m->m_data += max_linkhdr; 454 #ifdef INET6 455 if (isipv6) { 456 bcopy((caddr_t)ip6, mtod(m, caddr_t), 457 sizeof(struct ip6_hdr)); 458 ip6 = mtod(m, struct ip6_hdr *); 459 nth = (struct tcphdr *)(ip6 + 1); 460 } else 461 #endif /* INET6 */ 462 { 463 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 464 ip = mtod(m, struct ip *); 465 nth = (struct tcphdr *)(ip + 1); 466 } 467 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 468 flags = TH_ACK; 469 } else { 470 m_freem(m->m_next); 471 m->m_next = NULL; 472 m->m_data = (caddr_t)ipgen; 473 /* m_len is set later */ 474 tlen = 0; 475 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 476 #ifdef INET6 477 if (isipv6) { 478 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 479 nth = (struct tcphdr *)(ip6 + 1); 480 } else 481 #endif /* INET6 */ 482 { 483 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 484 nth = (struct tcphdr *)(ip + 1); 485 } 486 if (th != nth) { 487 /* 488 * this is usually a case when an extension header 489 * exists between the IPv6 header and the 490 * TCP header. 491 */ 492 nth->th_sport = th->th_sport; 493 nth->th_dport = th->th_dport; 494 } 495 xchg(nth->th_dport, nth->th_sport, n_short); 496 #undef xchg 497 } 498 #ifdef INET6 499 if (isipv6) { 500 ip6->ip6_flow = 0; 501 ip6->ip6_vfc = IPV6_VERSION; 502 ip6->ip6_nxt = IPPROTO_TCP; 503 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 504 tlen)); 505 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 506 } else 507 #endif 508 { 509 tlen += sizeof (struct tcpiphdr); 510 ip->ip_len = tlen; 511 ip->ip_ttl = ip_defttl; 512 if (path_mtu_discovery) 513 ip->ip_off |= IP_DF; 514 } 515 m->m_len = tlen; 516 m->m_pkthdr.len = tlen; 517 m->m_pkthdr.rcvif = NULL; 518 #ifdef MAC 519 if (inp != NULL) { 520 /* 521 * Packet is associated with a socket, so allow the 522 * label of the response to reflect the socket label. 523 */ 524 INP_LOCK_ASSERT(inp); 525 mac_create_mbuf_from_inpcb(inp, m); 526 } else { 527 /* 528 * Packet is not associated with a socket, so possibly 529 * update the label in place. 530 */ 531 mac_reflect_mbuf_tcp(m); 532 } 533 #endif 534 nth->th_seq = htonl(seq); 535 nth->th_ack = htonl(ack); 536 nth->th_x2 = 0; 537 nth->th_off = sizeof (struct tcphdr) >> 2; 538 nth->th_flags = flags; 539 if (tp != NULL) 540 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 541 else 542 nth->th_win = htons((u_short)win); 543 nth->th_urp = 0; 544 #ifdef INET6 545 if (isipv6) { 546 nth->th_sum = 0; 547 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 548 sizeof(struct ip6_hdr), 549 tlen - sizeof(struct ip6_hdr)); 550 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 551 NULL, NULL); 552 } else 553 #endif /* INET6 */ 554 { 555 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 556 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 557 m->m_pkthdr.csum_flags = CSUM_TCP; 558 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 559 } 560 #ifdef TCPDEBUG 561 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 562 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 563 #endif 564 #ifdef INET6 565 if (isipv6) 566 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 567 else 568 #endif /* INET6 */ 569 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 570 } 571 572 /* 573 * Create a new TCP control block, making an 574 * empty reassembly queue and hooking it to the argument 575 * protocol control block. The `inp' parameter must have 576 * come from the zone allocator set up in tcp_init(). 577 */ 578 struct tcpcb * 579 tcp_newtcpcb(inp) 580 struct inpcb *inp; 581 { 582 struct tcpcb_mem *tm; 583 struct tcpcb *tp; 584 #ifdef INET6 585 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 586 #endif /* INET6 */ 587 588 tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO); 589 if (tm == NULL) 590 return (NULL); 591 tp = &tm->tcb; 592 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 593 tp->t_maxseg = tp->t_maxopd = 594 #ifdef INET6 595 isipv6 ? tcp_v6mssdflt : 596 #endif /* INET6 */ 597 tcp_mssdflt; 598 599 /* Set up our timeouts. */ 600 callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE); 601 callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE); 602 callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE); 603 callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE); 604 callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE); 605 606 if (tcp_do_rfc1323) 607 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 608 tp->sack_enable = tcp_do_sack; 609 TAILQ_INIT(&tp->snd_holes); 610 tp->t_inpcb = inp; /* XXX */ 611 /* 612 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 613 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 614 * reasonable initial retransmit time. 615 */ 616 tp->t_srtt = TCPTV_SRTTBASE; 617 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 618 tp->t_rttmin = tcp_rexmit_min; 619 tp->t_rxtcur = TCPTV_RTOBASE; 620 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 621 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 622 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 623 tp->t_rcvtime = ticks; 624 tp->t_bw_rtttime = ticks; 625 /* 626 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 627 * because the socket may be bound to an IPv6 wildcard address, 628 * which may match an IPv4-mapped IPv6 address. 629 */ 630 inp->inp_ip_ttl = ip_defttl; 631 inp->inp_ppcb = (caddr_t)tp; 632 return (tp); /* XXX */ 633 } 634 635 /* 636 * Drop a TCP connection, reporting 637 * the specified error. If connection is synchronized, 638 * then send a RST to peer. 639 */ 640 struct tcpcb * 641 tcp_drop(tp, errno) 642 register struct tcpcb *tp; 643 int errno; 644 { 645 struct socket *so = tp->t_inpcb->inp_socket; 646 647 INP_INFO_WLOCK_ASSERT(&tcbinfo); 648 INP_LOCK_ASSERT(tp->t_inpcb); 649 650 if (TCPS_HAVERCVDSYN(tp->t_state)) { 651 tp->t_state = TCPS_CLOSED; 652 (void) tcp_output(tp); 653 tcpstat.tcps_drops++; 654 } else 655 tcpstat.tcps_conndrops++; 656 if (errno == ETIMEDOUT && tp->t_softerror) 657 errno = tp->t_softerror; 658 so->so_error = errno; 659 return (tcp_close(tp)); 660 } 661 662 static void 663 tcp_discardcb(tp) 664 struct tcpcb *tp; 665 { 666 struct tseg_qent *q; 667 struct inpcb *inp = tp->t_inpcb; 668 struct socket *so = inp->inp_socket; 669 #ifdef INET6 670 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 671 #endif /* INET6 */ 672 673 INP_LOCK_ASSERT(inp); 674 675 /* 676 * Make sure that all of our timers are stopped before we 677 * delete the PCB. 678 */ 679 callout_stop(tp->tt_rexmt); 680 callout_stop(tp->tt_persist); 681 callout_stop(tp->tt_keep); 682 callout_stop(tp->tt_2msl); 683 callout_stop(tp->tt_delack); 684 685 /* 686 * If we got enough samples through the srtt filter, 687 * save the rtt and rttvar in the routing entry. 688 * 'Enough' is arbitrarily defined as 4 rtt samples. 689 * 4 samples is enough for the srtt filter to converge 690 * to within enough % of the correct value; fewer samples 691 * and we could save a bogus rtt. The danger is not high 692 * as tcp quickly recovers from everything. 693 * XXX: Works very well but needs some more statistics! 694 */ 695 if (tp->t_rttupdated >= 4) { 696 struct hc_metrics_lite metrics; 697 u_long ssthresh; 698 699 bzero(&metrics, sizeof(metrics)); 700 /* 701 * Update the ssthresh always when the conditions below 702 * are satisfied. This gives us better new start value 703 * for the congestion avoidance for new connections. 704 * ssthresh is only set if packet loss occured on a session. 705 */ 706 ssthresh = tp->snd_ssthresh; 707 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 708 /* 709 * convert the limit from user data bytes to 710 * packets then to packet data bytes. 711 */ 712 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 713 if (ssthresh < 2) 714 ssthresh = 2; 715 ssthresh *= (u_long)(tp->t_maxseg + 716 #ifdef INET6 717 (isipv6 ? sizeof (struct ip6_hdr) + 718 sizeof (struct tcphdr) : 719 #endif 720 sizeof (struct tcpiphdr) 721 #ifdef INET6 722 ) 723 #endif 724 ); 725 } else 726 ssthresh = 0; 727 metrics.rmx_ssthresh = ssthresh; 728 729 metrics.rmx_rtt = tp->t_srtt; 730 metrics.rmx_rttvar = tp->t_rttvar; 731 /* XXX: This wraps if the pipe is more than 4 Gbit per second */ 732 metrics.rmx_bandwidth = tp->snd_bandwidth; 733 metrics.rmx_cwnd = tp->snd_cwnd; 734 metrics.rmx_sendpipe = 0; 735 metrics.rmx_recvpipe = 0; 736 737 tcp_hc_update(&inp->inp_inc, &metrics); 738 } 739 740 /* free the reassembly queue, if any */ 741 while ((q = LIST_FIRST(&tp->t_segq)) != NULL) { 742 LIST_REMOVE(q, tqe_q); 743 m_freem(q->tqe_m); 744 uma_zfree(tcp_reass_zone, q); 745 tp->t_segqlen--; 746 tcp_reass_qsize--; 747 } 748 tcp_free_sackholes(tp); 749 inp->inp_ppcb = NULL; 750 tp->t_inpcb = NULL; 751 uma_zfree(tcpcb_zone, tp); 752 soisdisconnected(so); 753 } 754 755 /* 756 * Close a TCP control block: 757 * discard all space held by the tcp 758 * discard internet protocol block 759 * wake up any sleepers 760 */ 761 struct tcpcb * 762 tcp_close(tp) 763 struct tcpcb *tp; 764 { 765 struct inpcb *inp = tp->t_inpcb; 766 #ifdef INET6 767 struct socket *so = inp->inp_socket; 768 #endif 769 770 INP_INFO_WLOCK_ASSERT(&tcbinfo); 771 INP_LOCK_ASSERT(inp); 772 773 tcp_discardcb(tp); 774 #ifdef INET6 775 if (INP_CHECK_SOCKAF(so, AF_INET6)) 776 in6_pcbdetach(inp); 777 else 778 #endif 779 in_pcbdetach(inp); 780 tcpstat.tcps_closed++; 781 return (NULL); 782 } 783 784 void 785 tcp_drain() 786 { 787 if (do_tcpdrain) 788 { 789 struct inpcb *inpb; 790 struct tcpcb *tcpb; 791 struct tseg_qent *te; 792 793 /* 794 * Walk the tcpbs, if existing, and flush the reassembly queue, 795 * if there is one... 796 * XXX: The "Net/3" implementation doesn't imply that the TCP 797 * reassembly queue should be flushed, but in a situation 798 * where we're really low on mbufs, this is potentially 799 * usefull. 800 */ 801 INP_INFO_RLOCK(&tcbinfo); 802 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) { 803 if (inpb->inp_vflag & INP_TIMEWAIT) 804 continue; 805 INP_LOCK(inpb); 806 if ((tcpb = intotcpcb(inpb)) != NULL) { 807 while ((te = LIST_FIRST(&tcpb->t_segq)) 808 != NULL) { 809 LIST_REMOVE(te, tqe_q); 810 m_freem(te->tqe_m); 811 uma_zfree(tcp_reass_zone, te); 812 tcpb->t_segqlen--; 813 tcp_reass_qsize--; 814 } 815 tcp_clean_sackreport(tcpb); 816 } 817 INP_UNLOCK(inpb); 818 } 819 INP_INFO_RUNLOCK(&tcbinfo); 820 } 821 } 822 823 /* 824 * Notify a tcp user of an asynchronous error; 825 * store error as soft error, but wake up user 826 * (for now, won't do anything until can select for soft error). 827 * 828 * Do not wake up user since there currently is no mechanism for 829 * reporting soft errors (yet - a kqueue filter may be added). 830 */ 831 static struct inpcb * 832 tcp_notify(inp, error) 833 struct inpcb *inp; 834 int error; 835 { 836 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 837 838 INP_INFO_WLOCK_ASSERT(&tcbinfo); 839 INP_LOCK_ASSERT(inp); 840 841 /* 842 * Ignore some errors if we are hooked up. 843 * If connection hasn't completed, has retransmitted several times, 844 * and receives a second error, give up now. This is better 845 * than waiting a long time to establish a connection that 846 * can never complete. 847 */ 848 if (tp->t_state == TCPS_ESTABLISHED && 849 (error == EHOSTUNREACH || error == ENETUNREACH || 850 error == EHOSTDOWN)) { 851 return (inp); 852 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 853 tp->t_softerror) { 854 tcp_drop(tp, error); 855 return (struct inpcb *)0; 856 } else { 857 tp->t_softerror = error; 858 return (inp); 859 } 860 #if 0 861 wakeup( &so->so_timeo); 862 sorwakeup(so); 863 sowwakeup(so); 864 #endif 865 } 866 867 static int 868 tcp_pcblist(SYSCTL_HANDLER_ARGS) 869 { 870 int error, i, n; 871 struct inpcb *inp, **inp_list; 872 inp_gen_t gencnt; 873 struct xinpgen xig; 874 875 /* 876 * The process of preparing the TCB list is too time-consuming and 877 * resource-intensive to repeat twice on every request. 878 */ 879 if (req->oldptr == NULL) { 880 n = tcbinfo.ipi_count; 881 req->oldidx = 2 * (sizeof xig) 882 + (n + n/8) * sizeof(struct xtcpcb); 883 return (0); 884 } 885 886 if (req->newptr != NULL) 887 return (EPERM); 888 889 /* 890 * OK, now we're committed to doing something. 891 */ 892 INP_INFO_RLOCK(&tcbinfo); 893 gencnt = tcbinfo.ipi_gencnt; 894 n = tcbinfo.ipi_count; 895 INP_INFO_RUNLOCK(&tcbinfo); 896 897 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 898 + n * sizeof(struct xtcpcb)); 899 if (error != 0) 900 return (error); 901 902 xig.xig_len = sizeof xig; 903 xig.xig_count = n; 904 xig.xig_gen = gencnt; 905 xig.xig_sogen = so_gencnt; 906 error = SYSCTL_OUT(req, &xig, sizeof xig); 907 if (error) 908 return (error); 909 910 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 911 if (inp_list == NULL) 912 return (ENOMEM); 913 914 INP_INFO_RLOCK(&tcbinfo); 915 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n; 916 inp = LIST_NEXT(inp, inp_list)) { 917 INP_LOCK(inp); 918 if (inp->inp_gencnt <= gencnt) { 919 /* 920 * XXX: This use of cr_cansee(), introduced with 921 * TCP state changes, is not quite right, but for 922 * now, better than nothing. 923 */ 924 if (inp->inp_vflag & INP_TIMEWAIT) 925 error = cr_cansee(req->td->td_ucred, 926 intotw(inp)->tw_cred); 927 else 928 error = cr_canseesocket(req->td->td_ucred, 929 inp->inp_socket); 930 if (error == 0) 931 inp_list[i++] = inp; 932 } 933 INP_UNLOCK(inp); 934 } 935 INP_INFO_RUNLOCK(&tcbinfo); 936 n = i; 937 938 error = 0; 939 for (i = 0; i < n; i++) { 940 inp = inp_list[i]; 941 if (inp->inp_gencnt <= gencnt) { 942 struct xtcpcb xt; 943 caddr_t inp_ppcb; 944 945 bzero(&xt, sizeof(xt)); 946 xt.xt_len = sizeof xt; 947 /* XXX should avoid extra copy */ 948 bcopy(inp, &xt.xt_inp, sizeof *inp); 949 inp_ppcb = inp->inp_ppcb; 950 if (inp_ppcb == NULL) 951 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 952 else if (inp->inp_vflag & INP_TIMEWAIT) { 953 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 954 xt.xt_tp.t_state = TCPS_TIME_WAIT; 955 } else 956 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 957 if (inp->inp_socket != NULL) 958 sotoxsocket(inp->inp_socket, &xt.xt_socket); 959 else { 960 bzero(&xt.xt_socket, sizeof xt.xt_socket); 961 xt.xt_socket.xso_protocol = IPPROTO_TCP; 962 } 963 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 964 error = SYSCTL_OUT(req, &xt, sizeof xt); 965 } 966 } 967 if (!error) { 968 /* 969 * Give the user an updated idea of our state. 970 * If the generation differs from what we told 971 * her before, she knows that something happened 972 * while we were processing this request, and it 973 * might be necessary to retry. 974 */ 975 INP_INFO_RLOCK(&tcbinfo); 976 xig.xig_gen = tcbinfo.ipi_gencnt; 977 xig.xig_sogen = so_gencnt; 978 xig.xig_count = tcbinfo.ipi_count; 979 INP_INFO_RUNLOCK(&tcbinfo); 980 error = SYSCTL_OUT(req, &xig, sizeof xig); 981 } 982 free(inp_list, M_TEMP); 983 return (error); 984 } 985 986 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 987 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 988 989 static int 990 tcp_getcred(SYSCTL_HANDLER_ARGS) 991 { 992 struct xucred xuc; 993 struct sockaddr_in addrs[2]; 994 struct inpcb *inp; 995 int error; 996 997 error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL); 998 if (error) 999 return (error); 1000 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1001 if (error) 1002 return (error); 1003 INP_INFO_RLOCK(&tcbinfo); 1004 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1005 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 1006 if (inp == NULL) { 1007 error = ENOENT; 1008 goto outunlocked; 1009 } 1010 INP_LOCK(inp); 1011 if (inp->inp_socket == NULL) { 1012 error = ENOENT; 1013 goto out; 1014 } 1015 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 1016 if (error) 1017 goto out; 1018 cru2x(inp->inp_socket->so_cred, &xuc); 1019 out: 1020 INP_UNLOCK(inp); 1021 outunlocked: 1022 INP_INFO_RUNLOCK(&tcbinfo); 1023 if (error == 0) 1024 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1025 return (error); 1026 } 1027 1028 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1029 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1030 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1031 1032 #ifdef INET6 1033 static int 1034 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1035 { 1036 struct xucred xuc; 1037 struct sockaddr_in6 addrs[2]; 1038 struct inpcb *inp; 1039 int error, mapped = 0; 1040 1041 error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL); 1042 if (error) 1043 return (error); 1044 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1045 if (error) 1046 return (error); 1047 if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 || 1048 (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) { 1049 return (error); 1050 } 1051 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1052 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1053 mapped = 1; 1054 else 1055 return (EINVAL); 1056 } 1057 1058 INP_INFO_RLOCK(&tcbinfo); 1059 if (mapped == 1) 1060 inp = in_pcblookup_hash(&tcbinfo, 1061 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1062 addrs[1].sin6_port, 1063 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1064 addrs[0].sin6_port, 1065 0, NULL); 1066 else 1067 inp = in6_pcblookup_hash(&tcbinfo, 1068 &addrs[1].sin6_addr, addrs[1].sin6_port, 1069 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL); 1070 if (inp == NULL) { 1071 error = ENOENT; 1072 goto outunlocked; 1073 } 1074 INP_LOCK(inp); 1075 if (inp->inp_socket == NULL) { 1076 error = ENOENT; 1077 goto out; 1078 } 1079 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 1080 if (error) 1081 goto out; 1082 cru2x(inp->inp_socket->so_cred, &xuc); 1083 out: 1084 INP_UNLOCK(inp); 1085 outunlocked: 1086 INP_INFO_RUNLOCK(&tcbinfo); 1087 if (error == 0) 1088 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1089 return (error); 1090 } 1091 1092 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1093 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1094 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1095 #endif 1096 1097 1098 void 1099 tcp_ctlinput(cmd, sa, vip) 1100 int cmd; 1101 struct sockaddr *sa; 1102 void *vip; 1103 { 1104 struct ip *ip = vip; 1105 struct tcphdr *th; 1106 struct in_addr faddr; 1107 struct inpcb *inp; 1108 struct tcpcb *tp; 1109 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1110 struct icmp *icp; 1111 struct in_conninfo inc; 1112 tcp_seq icmp_tcp_seq; 1113 int mtu; 1114 1115 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1116 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1117 return; 1118 1119 if (cmd == PRC_MSGSIZE) 1120 notify = tcp_mtudisc; 1121 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1122 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1123 notify = tcp_drop_syn_sent; 1124 /* 1125 * Redirects don't need to be handled up here. 1126 */ 1127 else if (PRC_IS_REDIRECT(cmd)) 1128 return; 1129 /* 1130 * Source quench is depreciated. 1131 */ 1132 else if (cmd == PRC_QUENCH) 1133 return; 1134 /* 1135 * Hostdead is ugly because it goes linearly through all PCBs. 1136 * XXX: We never get this from ICMP, otherwise it makes an 1137 * excellent DoS attack on machines with many connections. 1138 */ 1139 else if (cmd == PRC_HOSTDEAD) 1140 ip = NULL; 1141 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1142 return; 1143 if (ip != NULL) { 1144 icp = (struct icmp *)((caddr_t)ip 1145 - offsetof(struct icmp, icmp_ip)); 1146 th = (struct tcphdr *)((caddr_t)ip 1147 + (ip->ip_hl << 2)); 1148 INP_INFO_WLOCK(&tcbinfo); 1149 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport, 1150 ip->ip_src, th->th_sport, 0, NULL); 1151 if (inp != NULL) { 1152 INP_LOCK(inp); 1153 if (inp->inp_socket != NULL) { 1154 icmp_tcp_seq = htonl(th->th_seq); 1155 tp = intotcpcb(inp); 1156 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1157 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1158 if (cmd == PRC_MSGSIZE) { 1159 /* 1160 * MTU discovery: 1161 * If we got a needfrag set the MTU 1162 * in the route to the suggested new 1163 * value (if given) and then notify. 1164 */ 1165 bzero(&inc, sizeof(inc)); 1166 inc.inc_flags = 0; /* IPv4 */ 1167 inc.inc_faddr = faddr; 1168 1169 mtu = ntohs(icp->icmp_nextmtu); 1170 /* 1171 * If no alternative MTU was 1172 * proposed, try the next smaller 1173 * one. ip->ip_len has already 1174 * been swapped in icmp_input(). 1175 */ 1176 if (!mtu) 1177 mtu = ip_next_mtu(ip->ip_len, 1178 1); 1179 if (mtu < max(296, (tcp_minmss) 1180 + sizeof(struct tcpiphdr))) 1181 mtu = 0; 1182 if (!mtu) 1183 mtu = tcp_mssdflt 1184 + sizeof(struct tcpiphdr); 1185 /* 1186 * Only cache the the MTU if it 1187 * is smaller than the interface 1188 * or route MTU. tcp_mtudisc() 1189 * will do right thing by itself. 1190 */ 1191 if (mtu <= tcp_maxmtu(&inc)) 1192 tcp_hc_updatemtu(&inc, mtu); 1193 } 1194 1195 inp = (*notify)(inp, inetctlerrmap[cmd]); 1196 } 1197 } 1198 if (inp != NULL) 1199 INP_UNLOCK(inp); 1200 } else { 1201 inc.inc_fport = th->th_dport; 1202 inc.inc_lport = th->th_sport; 1203 inc.inc_faddr = faddr; 1204 inc.inc_laddr = ip->ip_src; 1205 #ifdef INET6 1206 inc.inc_isipv6 = 0; 1207 #endif 1208 syncache_unreach(&inc, th); 1209 } 1210 INP_INFO_WUNLOCK(&tcbinfo); 1211 } else 1212 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify); 1213 } 1214 1215 #ifdef INET6 1216 void 1217 tcp6_ctlinput(cmd, sa, d) 1218 int cmd; 1219 struct sockaddr *sa; 1220 void *d; 1221 { 1222 struct tcphdr th; 1223 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1224 struct ip6_hdr *ip6; 1225 struct mbuf *m; 1226 struct ip6ctlparam *ip6cp = NULL; 1227 const struct sockaddr_in6 *sa6_src = NULL; 1228 int off; 1229 struct tcp_portonly { 1230 u_int16_t th_sport; 1231 u_int16_t th_dport; 1232 } *thp; 1233 1234 if (sa->sa_family != AF_INET6 || 1235 sa->sa_len != sizeof(struct sockaddr_in6)) 1236 return; 1237 1238 if (cmd == PRC_MSGSIZE) 1239 notify = tcp_mtudisc; 1240 else if (!PRC_IS_REDIRECT(cmd) && 1241 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1242 return; 1243 /* Source quench is depreciated. */ 1244 else if (cmd == PRC_QUENCH) 1245 return; 1246 1247 /* if the parameter is from icmp6, decode it. */ 1248 if (d != NULL) { 1249 ip6cp = (struct ip6ctlparam *)d; 1250 m = ip6cp->ip6c_m; 1251 ip6 = ip6cp->ip6c_ip6; 1252 off = ip6cp->ip6c_off; 1253 sa6_src = ip6cp->ip6c_src; 1254 } else { 1255 m = NULL; 1256 ip6 = NULL; 1257 off = 0; /* fool gcc */ 1258 sa6_src = &sa6_any; 1259 } 1260 1261 if (ip6 != NULL) { 1262 struct in_conninfo inc; 1263 /* 1264 * XXX: We assume that when IPV6 is non NULL, 1265 * M and OFF are valid. 1266 */ 1267 1268 /* check if we can safely examine src and dst ports */ 1269 if (m->m_pkthdr.len < off + sizeof(*thp)) 1270 return; 1271 1272 bzero(&th, sizeof(th)); 1273 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1274 1275 in6_pcbnotify(&tcbinfo, sa, th.th_dport, 1276 (struct sockaddr *)ip6cp->ip6c_src, 1277 th.th_sport, cmd, NULL, notify); 1278 1279 inc.inc_fport = th.th_dport; 1280 inc.inc_lport = th.th_sport; 1281 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1282 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1283 inc.inc_isipv6 = 1; 1284 INP_INFO_WLOCK(&tcbinfo); 1285 syncache_unreach(&inc, &th); 1286 INP_INFO_WUNLOCK(&tcbinfo); 1287 } else 1288 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 1289 0, cmd, NULL, notify); 1290 } 1291 #endif /* INET6 */ 1292 1293 1294 /* 1295 * Following is where TCP initial sequence number generation occurs. 1296 * 1297 * There are two places where we must use initial sequence numbers: 1298 * 1. In SYN-ACK packets. 1299 * 2. In SYN packets. 1300 * 1301 * All ISNs for SYN-ACK packets are generated by the syncache. See 1302 * tcp_syncache.c for details. 1303 * 1304 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1305 * depends on this property. In addition, these ISNs should be 1306 * unguessable so as to prevent connection hijacking. To satisfy 1307 * the requirements of this situation, the algorithm outlined in 1308 * RFC 1948 is used, with only small modifications. 1309 * 1310 * Implementation details: 1311 * 1312 * Time is based off the system timer, and is corrected so that it 1313 * increases by one megabyte per second. This allows for proper 1314 * recycling on high speed LANs while still leaving over an hour 1315 * before rollover. 1316 * 1317 * As reading the *exact* system time is too expensive to be done 1318 * whenever setting up a TCP connection, we increment the time 1319 * offset in two ways. First, a small random positive increment 1320 * is added to isn_offset for each connection that is set up. 1321 * Second, the function tcp_isn_tick fires once per clock tick 1322 * and increments isn_offset as necessary so that sequence numbers 1323 * are incremented at approximately ISN_BYTES_PER_SECOND. The 1324 * random positive increments serve only to ensure that the same 1325 * exact sequence number is never sent out twice (as could otherwise 1326 * happen when a port is recycled in less than the system tick 1327 * interval.) 1328 * 1329 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1330 * between seeding of isn_secret. This is normally set to zero, 1331 * as reseeding should not be necessary. 1332 * 1333 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 1334 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 1335 * general, this means holding an exclusive (write) lock. 1336 */ 1337 1338 #define ISN_BYTES_PER_SECOND 1048576 1339 #define ISN_STATIC_INCREMENT 4096 1340 #define ISN_RANDOM_INCREMENT (4096 - 1) 1341 1342 static u_char isn_secret[32]; 1343 static int isn_last_reseed; 1344 static u_int32_t isn_offset, isn_offset_old; 1345 static MD5_CTX isn_ctx; 1346 1347 tcp_seq 1348 tcp_new_isn(tp) 1349 struct tcpcb *tp; 1350 { 1351 u_int32_t md5_buffer[4]; 1352 tcp_seq new_isn; 1353 1354 INP_INFO_WLOCK_ASSERT(&tcbinfo); 1355 INP_LOCK_ASSERT(tp->t_inpcb); 1356 1357 /* Seed if this is the first use, reseed if requested. */ 1358 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) && 1359 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz) 1360 < (u_int)ticks))) { 1361 read_random(&isn_secret, sizeof(isn_secret)); 1362 isn_last_reseed = ticks; 1363 } 1364 1365 /* Compute the md5 hash and return the ISN. */ 1366 MD5Init(&isn_ctx); 1367 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1368 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1369 #ifdef INET6 1370 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1371 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1372 sizeof(struct in6_addr)); 1373 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1374 sizeof(struct in6_addr)); 1375 } else 1376 #endif 1377 { 1378 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1379 sizeof(struct in_addr)); 1380 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1381 sizeof(struct in_addr)); 1382 } 1383 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret)); 1384 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1385 new_isn = (tcp_seq) md5_buffer[0]; 1386 isn_offset += ISN_STATIC_INCREMENT + 1387 (arc4random() & ISN_RANDOM_INCREMENT); 1388 new_isn += isn_offset; 1389 return (new_isn); 1390 } 1391 1392 /* 1393 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary 1394 * to keep time flowing at a relatively constant rate. If the random 1395 * increments have already pushed us past the projected offset, do nothing. 1396 */ 1397 static void 1398 tcp_isn_tick(xtp) 1399 void *xtp; 1400 { 1401 u_int32_t projected_offset; 1402 1403 INP_INFO_WLOCK(&tcbinfo); 1404 projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100; 1405 1406 if (projected_offset > isn_offset) 1407 isn_offset = projected_offset; 1408 1409 isn_offset_old = isn_offset; 1410 callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL); 1411 INP_INFO_WUNLOCK(&tcbinfo); 1412 } 1413 1414 /* 1415 * When a specific ICMP unreachable message is received and the 1416 * connection state is SYN-SENT, drop the connection. This behavior 1417 * is controlled by the icmp_may_rst sysctl. 1418 */ 1419 struct inpcb * 1420 tcp_drop_syn_sent(inp, errno) 1421 struct inpcb *inp; 1422 int errno; 1423 { 1424 struct tcpcb *tp = intotcpcb(inp); 1425 1426 INP_INFO_WLOCK_ASSERT(&tcbinfo); 1427 INP_LOCK_ASSERT(inp); 1428 1429 if (tp != NULL && tp->t_state == TCPS_SYN_SENT) { 1430 tcp_drop(tp, errno); 1431 return (NULL); 1432 } 1433 return (inp); 1434 } 1435 1436 /* 1437 * When `need fragmentation' ICMP is received, update our idea of the MSS 1438 * based on the new value in the route. Also nudge TCP to send something, 1439 * since we know the packet we just sent was dropped. 1440 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1441 */ 1442 struct inpcb * 1443 tcp_mtudisc(inp, errno) 1444 struct inpcb *inp; 1445 int errno; 1446 { 1447 struct tcpcb *tp = intotcpcb(inp); 1448 struct socket *so = inp->inp_socket; 1449 u_int maxmtu; 1450 u_int romtu; 1451 int mss; 1452 #ifdef INET6 1453 int isipv6; 1454 #endif /* INET6 */ 1455 1456 INP_LOCK_ASSERT(inp); 1457 if (tp != NULL) { 1458 #ifdef INET6 1459 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1460 #endif 1461 maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */ 1462 romtu = 1463 #ifdef INET6 1464 isipv6 ? tcp_maxmtu6(&inp->inp_inc) : 1465 #endif /* INET6 */ 1466 tcp_maxmtu(&inp->inp_inc); 1467 if (!maxmtu) 1468 maxmtu = romtu; 1469 else 1470 maxmtu = min(maxmtu, romtu); 1471 if (!maxmtu) { 1472 tp->t_maxopd = tp->t_maxseg = 1473 #ifdef INET6 1474 isipv6 ? tcp_v6mssdflt : 1475 #endif /* INET6 */ 1476 tcp_mssdflt; 1477 return (inp); 1478 } 1479 mss = maxmtu - 1480 #ifdef INET6 1481 (isipv6 ? 1482 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1483 #endif /* INET6 */ 1484 sizeof(struct tcpiphdr) 1485 #ifdef INET6 1486 ) 1487 #endif /* INET6 */ 1488 ; 1489 1490 /* 1491 * XXX - The above conditional probably violates the TCP 1492 * spec. The problem is that, since we don't know the 1493 * other end's MSS, we are supposed to use a conservative 1494 * default. But, if we do that, then MTU discovery will 1495 * never actually take place, because the conservative 1496 * default is much less than the MTUs typically seen 1497 * on the Internet today. For the moment, we'll sweep 1498 * this under the carpet. 1499 * 1500 * The conservative default might not actually be a problem 1501 * if the only case this occurs is when sending an initial 1502 * SYN with options and data to a host we've never talked 1503 * to before. Then, they will reply with an MSS value which 1504 * will get recorded and the new parameters should get 1505 * recomputed. For Further Study. 1506 */ 1507 if (tp->t_maxopd <= mss) 1508 return (inp); 1509 tp->t_maxopd = mss; 1510 1511 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1512 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1513 mss -= TCPOLEN_TSTAMP_APPA; 1514 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1515 if (mss > MCLBYTES) 1516 mss &= ~(MCLBYTES-1); 1517 #else 1518 if (mss > MCLBYTES) 1519 mss = mss / MCLBYTES * MCLBYTES; 1520 #endif 1521 if (so->so_snd.sb_hiwat < mss) 1522 mss = so->so_snd.sb_hiwat; 1523 1524 tp->t_maxseg = mss; 1525 1526 tcpstat.tcps_mturesent++; 1527 tp->t_rtttime = 0; 1528 tp->snd_nxt = tp->snd_una; 1529 tcp_output(tp); 1530 } 1531 return (inp); 1532 } 1533 1534 /* 1535 * Look-up the routing entry to the peer of this inpcb. If no route 1536 * is found and it cannot be allocated, then return NULL. This routine 1537 * is called by TCP routines that access the rmx structure and by tcp_mss 1538 * to get the interface MTU. 1539 */ 1540 u_long 1541 tcp_maxmtu(inc) 1542 struct in_conninfo *inc; 1543 { 1544 struct route sro; 1545 struct sockaddr_in *dst; 1546 struct ifnet *ifp; 1547 u_long maxmtu = 0; 1548 1549 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 1550 1551 bzero(&sro, sizeof(sro)); 1552 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1553 dst = (struct sockaddr_in *)&sro.ro_dst; 1554 dst->sin_family = AF_INET; 1555 dst->sin_len = sizeof(*dst); 1556 dst->sin_addr = inc->inc_faddr; 1557 rtalloc_ign(&sro, RTF_CLONING); 1558 } 1559 if (sro.ro_rt != NULL) { 1560 ifp = sro.ro_rt->rt_ifp; 1561 if (sro.ro_rt->rt_rmx.rmx_mtu == 0) 1562 maxmtu = ifp->if_mtu; 1563 else 1564 maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu); 1565 RTFREE(sro.ro_rt); 1566 } 1567 return (maxmtu); 1568 } 1569 1570 #ifdef INET6 1571 u_long 1572 tcp_maxmtu6(inc) 1573 struct in_conninfo *inc; 1574 { 1575 struct route_in6 sro6; 1576 struct ifnet *ifp; 1577 u_long maxmtu = 0; 1578 1579 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 1580 1581 bzero(&sro6, sizeof(sro6)); 1582 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1583 sro6.ro_dst.sin6_family = AF_INET6; 1584 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1585 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 1586 rtalloc_ign((struct route *)&sro6, RTF_CLONING); 1587 } 1588 if (sro6.ro_rt != NULL) { 1589 ifp = sro6.ro_rt->rt_ifp; 1590 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0) 1591 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 1592 else 1593 maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu, 1594 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 1595 RTFREE(sro6.ro_rt); 1596 } 1597 1598 return (maxmtu); 1599 } 1600 #endif /* INET6 */ 1601 1602 #ifdef IPSEC 1603 /* compute ESP/AH header size for TCP, including outer IP header. */ 1604 size_t 1605 ipsec_hdrsiz_tcp(tp) 1606 struct tcpcb *tp; 1607 { 1608 struct inpcb *inp; 1609 struct mbuf *m; 1610 size_t hdrsiz; 1611 struct ip *ip; 1612 #ifdef INET6 1613 struct ip6_hdr *ip6; 1614 #endif 1615 struct tcphdr *th; 1616 1617 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1618 return (0); 1619 MGETHDR(m, M_DONTWAIT, MT_DATA); 1620 if (!m) 1621 return (0); 1622 1623 #ifdef INET6 1624 if ((inp->inp_vflag & INP_IPV6) != 0) { 1625 ip6 = mtod(m, struct ip6_hdr *); 1626 th = (struct tcphdr *)(ip6 + 1); 1627 m->m_pkthdr.len = m->m_len = 1628 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1629 tcpip_fillheaders(inp, ip6, th); 1630 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1631 } else 1632 #endif /* INET6 */ 1633 { 1634 ip = mtod(m, struct ip *); 1635 th = (struct tcphdr *)(ip + 1); 1636 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1637 tcpip_fillheaders(inp, ip, th); 1638 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1639 } 1640 1641 m_free(m); 1642 return (hdrsiz); 1643 } 1644 #endif /*IPSEC*/ 1645 1646 /* 1647 * Move a TCP connection into TIME_WAIT state. 1648 * tcbinfo is locked. 1649 * inp is locked, and is unlocked before returning. 1650 */ 1651 void 1652 tcp_twstart(tp) 1653 struct tcpcb *tp; 1654 { 1655 struct tcptw *tw; 1656 struct inpcb *inp; 1657 int tw_time, acknow; 1658 struct socket *so; 1659 1660 INP_INFO_WLOCK_ASSERT(&tcbinfo); /* tcp_timer_2msl_reset(). */ 1661 INP_LOCK_ASSERT(tp->t_inpcb); 1662 1663 tw = uma_zalloc(tcptw_zone, M_NOWAIT); 1664 if (tw == NULL) { 1665 tw = tcp_timer_2msl_tw(1); 1666 if (tw == NULL) { 1667 tcp_close(tp); 1668 return; 1669 } 1670 } 1671 inp = tp->t_inpcb; 1672 tw->tw_inpcb = inp; 1673 1674 /* 1675 * Recover last window size sent. 1676 */ 1677 tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale; 1678 1679 /* 1680 * Set t_recent if timestamps are used on the connection. 1681 */ 1682 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) == 1683 (TF_REQ_TSTMP|TF_RCVD_TSTMP)) 1684 tw->t_recent = tp->ts_recent; 1685 else 1686 tw->t_recent = 0; 1687 1688 tw->snd_nxt = tp->snd_nxt; 1689 tw->rcv_nxt = tp->rcv_nxt; 1690 tw->iss = tp->iss; 1691 tw->irs = tp->irs; 1692 tw->t_starttime = tp->t_starttime; 1693 tw->tw_time = 0; 1694 1695 /* XXX 1696 * If this code will 1697 * be used for fin-wait-2 state also, then we may need 1698 * a ts_recent from the last segment. 1699 */ 1700 tw_time = 2 * tcp_msl; 1701 acknow = tp->t_flags & TF_ACKNOW; 1702 tcp_discardcb(tp); 1703 so = inp->inp_socket; 1704 ACCEPT_LOCK(); 1705 SOCK_LOCK(so); 1706 so->so_pcb = NULL; 1707 tw->tw_cred = crhold(so->so_cred); 1708 tw->tw_so_options = so->so_options; 1709 sotryfree(so); 1710 inp->inp_socket = NULL; 1711 if (acknow) 1712 tcp_twrespond(tw, TH_ACK); 1713 inp->inp_ppcb = (caddr_t)tw; 1714 inp->inp_vflag |= INP_TIMEWAIT; 1715 tcp_timer_2msl_reset(tw, tw_time); 1716 INP_UNLOCK(inp); 1717 } 1718 1719 /* 1720 * The appromixate rate of ISN increase of Microsoft TCP stacks; 1721 * the actual rate is slightly higher due to the addition of 1722 * random positive increments. 1723 * 1724 * Most other new OSes use semi-randomized ISN values, so we 1725 * do not need to worry about them. 1726 */ 1727 #define MS_ISN_BYTES_PER_SECOND 250000 1728 1729 /* 1730 * Determine if the ISN we will generate has advanced beyond the last 1731 * sequence number used by the previous connection. If so, indicate 1732 * that it is safe to recycle this tw socket by returning 1. 1733 * 1734 * XXXRW: This function should assert the inpcb lock as it does multiple 1735 * non-atomic reads from the tcptw, but is currently called without it from 1736 * in_pcb.c:in_pcblookup_local(). 1737 */ 1738 int 1739 tcp_twrecycleable(struct tcptw *tw) 1740 { 1741 tcp_seq new_iss = tw->iss; 1742 tcp_seq new_irs = tw->irs; 1743 1744 new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz); 1745 new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz); 1746 1747 if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt)) 1748 return (1); 1749 else 1750 return (0); 1751 } 1752 1753 struct tcptw * 1754 tcp_twclose(struct tcptw *tw, int reuse) 1755 { 1756 struct inpcb *inp; 1757 1758 inp = tw->tw_inpcb; 1759 INP_INFO_WLOCK_ASSERT(&tcbinfo); /* tcp_timer_2msl_stop(). */ 1760 INP_LOCK_ASSERT(inp); 1761 1762 tw->tw_inpcb = NULL; 1763 tcp_timer_2msl_stop(tw); 1764 inp->inp_ppcb = NULL; 1765 #ifdef INET6 1766 if (inp->inp_vflag & INP_IPV6PROTO) 1767 in6_pcbdetach(inp); 1768 else 1769 #endif 1770 in_pcbdetach(inp); 1771 tcpstat.tcps_closed++; 1772 crfree(tw->tw_cred); 1773 tw->tw_cred = NULL; 1774 if (reuse) 1775 return (tw); 1776 uma_zfree(tcptw_zone, tw); 1777 return (NULL); 1778 } 1779 1780 int 1781 tcp_twrespond(struct tcptw *tw, int flags) 1782 { 1783 struct inpcb *inp = tw->tw_inpcb; 1784 struct tcphdr *th; 1785 struct mbuf *m; 1786 struct ip *ip = NULL; 1787 u_int8_t *optp; 1788 u_int hdrlen, optlen; 1789 int error; 1790 #ifdef INET6 1791 struct ip6_hdr *ip6 = NULL; 1792 int isipv6 = inp->inp_inc.inc_isipv6; 1793 #endif 1794 1795 INP_LOCK_ASSERT(inp); 1796 1797 m = m_gethdr(M_DONTWAIT, MT_DATA); 1798 if (m == NULL) 1799 return (ENOBUFS); 1800 m->m_data += max_linkhdr; 1801 1802 #ifdef MAC 1803 mac_create_mbuf_from_inpcb(inp, m); 1804 #endif 1805 1806 #ifdef INET6 1807 if (isipv6) { 1808 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1809 ip6 = mtod(m, struct ip6_hdr *); 1810 th = (struct tcphdr *)(ip6 + 1); 1811 tcpip_fillheaders(inp, ip6, th); 1812 } else 1813 #endif 1814 { 1815 hdrlen = sizeof(struct tcpiphdr); 1816 ip = mtod(m, struct ip *); 1817 th = (struct tcphdr *)(ip + 1); 1818 tcpip_fillheaders(inp, ip, th); 1819 } 1820 optp = (u_int8_t *)(th + 1); 1821 1822 /* 1823 * Send a timestamp and echo-reply if both our side and our peer 1824 * have sent timestamps in our SYN's and this is not a RST. 1825 */ 1826 if (tw->t_recent && flags == TH_ACK) { 1827 u_int32_t *lp = (u_int32_t *)optp; 1828 1829 /* Form timestamp option as shown in appendix A of RFC 1323. */ 1830 *lp++ = htonl(TCPOPT_TSTAMP_HDR); 1831 *lp++ = htonl(ticks); 1832 *lp = htonl(tw->t_recent); 1833 optp += TCPOLEN_TSTAMP_APPA; 1834 } 1835 1836 optlen = optp - (u_int8_t *)(th + 1); 1837 1838 m->m_len = hdrlen + optlen; 1839 m->m_pkthdr.len = m->m_len; 1840 1841 KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small")); 1842 1843 th->th_seq = htonl(tw->snd_nxt); 1844 th->th_ack = htonl(tw->rcv_nxt); 1845 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 1846 th->th_flags = flags; 1847 th->th_win = htons(tw->last_win); 1848 1849 #ifdef INET6 1850 if (isipv6) { 1851 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), 1852 sizeof(struct tcphdr) + optlen); 1853 ip6->ip6_hlim = in6_selecthlim(inp, NULL); 1854 error = ip6_output(m, inp->in6p_outputopts, NULL, 1855 (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp); 1856 } else 1857 #endif 1858 { 1859 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1860 htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP)); 1861 m->m_pkthdr.csum_flags = CSUM_TCP; 1862 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 1863 ip->ip_len = m->m_pkthdr.len; 1864 if (path_mtu_discovery) 1865 ip->ip_off |= IP_DF; 1866 error = ip_output(m, inp->inp_options, NULL, 1867 ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 1868 NULL, inp); 1869 } 1870 if (flags & TH_ACK) 1871 tcpstat.tcps_sndacks++; 1872 else 1873 tcpstat.tcps_sndctrl++; 1874 tcpstat.tcps_sndtotal++; 1875 return (error); 1876 } 1877 1878 /* 1879 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING 1880 * 1881 * This code attempts to calculate the bandwidth-delay product as a 1882 * means of determining the optimal window size to maximize bandwidth, 1883 * minimize RTT, and avoid the over-allocation of buffers on interfaces and 1884 * routers. This code also does a fairly good job keeping RTTs in check 1885 * across slow links like modems. We implement an algorithm which is very 1886 * similar (but not meant to be) TCP/Vegas. The code operates on the 1887 * transmitter side of a TCP connection and so only effects the transmit 1888 * side of the connection. 1889 * 1890 * BACKGROUND: TCP makes no provision for the management of buffer space 1891 * at the end points or at the intermediate routers and switches. A TCP 1892 * stream, whether using NewReno or not, will eventually buffer as 1893 * many packets as it is able and the only reason this typically works is 1894 * due to the fairly small default buffers made available for a connection 1895 * (typicaly 16K or 32K). As machines use larger windows and/or window 1896 * scaling it is now fairly easy for even a single TCP connection to blow-out 1897 * all available buffer space not only on the local interface, but on 1898 * intermediate routers and switches as well. NewReno makes a misguided 1899 * attempt to 'solve' this problem by waiting for an actual failure to occur, 1900 * then backing off, then steadily increasing the window again until another 1901 * failure occurs, ad-infinitum. This results in terrible oscillation that 1902 * is only made worse as network loads increase and the idea of intentionally 1903 * blowing out network buffers is, frankly, a terrible way to manage network 1904 * resources. 1905 * 1906 * It is far better to limit the transmit window prior to the failure 1907 * condition being achieved. There are two general ways to do this: First 1908 * you can 'scan' through different transmit window sizes and locate the 1909 * point where the RTT stops increasing, indicating that you have filled the 1910 * pipe, then scan backwards until you note that RTT stops decreasing, then 1911 * repeat ad-infinitum. This method works in principle but has severe 1912 * implementation issues due to RTT variances, timer granularity, and 1913 * instability in the algorithm which can lead to many false positives and 1914 * create oscillations as well as interact badly with other TCP streams 1915 * implementing the same algorithm. 1916 * 1917 * The second method is to limit the window to the bandwidth delay product 1918 * of the link. This is the method we implement. RTT variances and our 1919 * own manipulation of the congestion window, bwnd, can potentially 1920 * destabilize the algorithm. For this reason we have to stabilize the 1921 * elements used to calculate the window. We do this by using the minimum 1922 * observed RTT, the long term average of the observed bandwidth, and 1923 * by adding two segments worth of slop. It isn't perfect but it is able 1924 * to react to changing conditions and gives us a very stable basis on 1925 * which to extend the algorithm. 1926 */ 1927 void 1928 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq) 1929 { 1930 u_long bw; 1931 u_long bwnd; 1932 int save_ticks; 1933 1934 INP_LOCK_ASSERT(tp->t_inpcb); 1935 1936 /* 1937 * If inflight_enable is disabled in the middle of a tcp connection, 1938 * make sure snd_bwnd is effectively disabled. 1939 */ 1940 if (tcp_inflight_enable == 0) { 1941 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1942 tp->snd_bandwidth = 0; 1943 return; 1944 } 1945 1946 /* 1947 * Figure out the bandwidth. Due to the tick granularity this 1948 * is a very rough number and it MUST be averaged over a fairly 1949 * long period of time. XXX we need to take into account a link 1950 * that is not using all available bandwidth, but for now our 1951 * slop will ramp us up if this case occurs and the bandwidth later 1952 * increases. 1953 * 1954 * Note: if ticks rollover 'bw' may wind up negative. We must 1955 * effectively reset t_bw_rtttime for this case. 1956 */ 1957 save_ticks = ticks; 1958 if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1) 1959 return; 1960 1961 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / 1962 (save_ticks - tp->t_bw_rtttime); 1963 tp->t_bw_rtttime = save_ticks; 1964 tp->t_bw_rtseq = ack_seq; 1965 if (tp->t_bw_rtttime == 0 || (int)bw < 0) 1966 return; 1967 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4; 1968 1969 tp->snd_bandwidth = bw; 1970 1971 /* 1972 * Calculate the semi-static bandwidth delay product, plus two maximal 1973 * segments. The additional slop puts us squarely in the sweet 1974 * spot and also handles the bandwidth run-up case and stabilization. 1975 * Without the slop we could be locking ourselves into a lower 1976 * bandwidth. 1977 * 1978 * Situations Handled: 1979 * (1) Prevents over-queueing of packets on LANs, especially on 1980 * high speed LANs, allowing larger TCP buffers to be 1981 * specified, and also does a good job preventing 1982 * over-queueing of packets over choke points like modems 1983 * (at least for the transmit side). 1984 * 1985 * (2) Is able to handle changing network loads (bandwidth 1986 * drops so bwnd drops, bandwidth increases so bwnd 1987 * increases). 1988 * 1989 * (3) Theoretically should stabilize in the face of multiple 1990 * connections implementing the same algorithm (this may need 1991 * a little work). 1992 * 1993 * (4) Stability value (defaults to 20 = 2 maximal packets) can 1994 * be adjusted with a sysctl but typically only needs to be 1995 * on very slow connections. A value no smaller then 5 1996 * should be used, but only reduce this default if you have 1997 * no other choice. 1998 */ 1999 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2) 2000 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10; 2001 #undef USERTT 2002 2003 if (tcp_inflight_debug > 0) { 2004 static int ltime; 2005 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) { 2006 ltime = ticks; 2007 printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n", 2008 tp, 2009 bw, 2010 tp->t_rttbest, 2011 tp->t_srtt, 2012 bwnd 2013 ); 2014 } 2015 } 2016 if ((long)bwnd < tcp_inflight_min) 2017 bwnd = tcp_inflight_min; 2018 if (bwnd > tcp_inflight_max) 2019 bwnd = tcp_inflight_max; 2020 if ((long)bwnd < tp->t_maxseg * 2) 2021 bwnd = tp->t_maxseg * 2; 2022 tp->snd_bwnd = bwnd; 2023 } 2024 2025 #ifdef TCP_SIGNATURE 2026 /* 2027 * Callback function invoked by m_apply() to digest TCP segment data 2028 * contained within an mbuf chain. 2029 */ 2030 static int 2031 tcp_signature_apply(void *fstate, void *data, u_int len) 2032 { 2033 2034 MD5Update(fstate, (u_char *)data, len); 2035 return (0); 2036 } 2037 2038 /* 2039 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385) 2040 * 2041 * Parameters: 2042 * m pointer to head of mbuf chain 2043 * off0 offset to TCP header within the mbuf chain 2044 * len length of TCP segment data, excluding options 2045 * optlen length of TCP segment options 2046 * buf pointer to storage for computed MD5 digest 2047 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2048 * 2049 * We do this over ip, tcphdr, segment data, and the key in the SADB. 2050 * When called from tcp_input(), we can be sure that th_sum has been 2051 * zeroed out and verified already. 2052 * 2053 * This function is for IPv4 use only. Calling this function with an 2054 * IPv6 packet in the mbuf chain will yield undefined results. 2055 * 2056 * Return 0 if successful, otherwise return -1. 2057 * 2058 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 2059 * search with the destination IP address, and a 'magic SPI' to be 2060 * determined by the application. This is hardcoded elsewhere to 1179 2061 * right now. Another branch of this code exists which uses the SPD to 2062 * specify per-application flows but it is unstable. 2063 */ 2064 int 2065 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen, 2066 u_char *buf, u_int direction) 2067 { 2068 union sockaddr_union dst; 2069 struct ippseudo ippseudo; 2070 MD5_CTX ctx; 2071 int doff; 2072 struct ip *ip; 2073 struct ipovly *ipovly; 2074 struct secasvar *sav; 2075 struct tcphdr *th; 2076 u_short savecsum; 2077 2078 KASSERT(m != NULL, ("NULL mbuf chain")); 2079 KASSERT(buf != NULL, ("NULL signature pointer")); 2080 2081 /* Extract the destination from the IP header in the mbuf. */ 2082 ip = mtod(m, struct ip *); 2083 bzero(&dst, sizeof(union sockaddr_union)); 2084 dst.sa.sa_len = sizeof(struct sockaddr_in); 2085 dst.sa.sa_family = AF_INET; 2086 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2087 ip->ip_src : ip->ip_dst; 2088 2089 /* Look up an SADB entry which matches the address of the peer. */ 2090 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2091 if (sav == NULL) { 2092 printf("%s: SADB lookup failed for %s\n", __func__, 2093 inet_ntoa(dst.sin.sin_addr)); 2094 return (EINVAL); 2095 } 2096 2097 MD5Init(&ctx); 2098 ipovly = (struct ipovly *)ip; 2099 th = (struct tcphdr *)((u_char *)ip + off0); 2100 doff = off0 + sizeof(struct tcphdr) + optlen; 2101 2102 /* 2103 * Step 1: Update MD5 hash with IP pseudo-header. 2104 * 2105 * XXX The ippseudo header MUST be digested in network byte order, 2106 * or else we'll fail the regression test. Assume all fields we've 2107 * been doing arithmetic on have been in host byte order. 2108 * XXX One cannot depend on ipovly->ih_len here. When called from 2109 * tcp_output(), the underlying ip_len member has not yet been set. 2110 */ 2111 ippseudo.ippseudo_src = ipovly->ih_src; 2112 ippseudo.ippseudo_dst = ipovly->ih_dst; 2113 ippseudo.ippseudo_pad = 0; 2114 ippseudo.ippseudo_p = IPPROTO_TCP; 2115 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen); 2116 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2117 2118 /* 2119 * Step 2: Update MD5 hash with TCP header, excluding options. 2120 * The TCP checksum must be set to zero. 2121 */ 2122 savecsum = th->th_sum; 2123 th->th_sum = 0; 2124 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2125 th->th_sum = savecsum; 2126 2127 /* 2128 * Step 3: Update MD5 hash with TCP segment data. 2129 * Use m_apply() to avoid an early m_pullup(). 2130 */ 2131 if (len > 0) 2132 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2133 2134 /* 2135 * Step 4: Update MD5 hash with shared secret. 2136 */ 2137 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); 2138 MD5Final(buf, &ctx); 2139 2140 key_sa_recordxfer(sav, m); 2141 KEY_FREESAV(&sav); 2142 return (0); 2143 } 2144 #endif /* TCP_SIGNATURE */ 2145 2146 static int 2147 sysctl_drop(SYSCTL_HANDLER_ARGS) 2148 { 2149 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2150 struct sockaddr_storage addrs[2]; 2151 struct inpcb *inp; 2152 struct tcpcb *tp; 2153 struct tcptw *tw; 2154 struct sockaddr_in *fin, *lin; 2155 #ifdef INET6 2156 struct sockaddr_in6 *fin6, *lin6; 2157 struct in6_addr f6, l6; 2158 #endif 2159 int error; 2160 2161 inp = NULL; 2162 fin = lin = NULL; 2163 #ifdef INET6 2164 fin6 = lin6 = NULL; 2165 #endif 2166 error = 0; 2167 2168 if (req->oldptr != NULL || req->oldlen != 0) 2169 return (EINVAL); 2170 if (req->newptr == NULL) 2171 return (EPERM); 2172 if (req->newlen < sizeof(addrs)) 2173 return (ENOMEM); 2174 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2175 if (error) 2176 return (error); 2177 2178 switch (addrs[0].ss_family) { 2179 #ifdef INET6 2180 case AF_INET6: 2181 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2182 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2183 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2184 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2185 return (EINVAL); 2186 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2187 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2188 return (EINVAL); 2189 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2190 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2191 fin = (struct sockaddr_in *)&addrs[0]; 2192 lin = (struct sockaddr_in *)&addrs[1]; 2193 break; 2194 } 2195 error = sa6_embedscope(fin6, ip6_use_defzone); 2196 if (error) 2197 return (error); 2198 error = sa6_embedscope(lin6, ip6_use_defzone); 2199 if (error) 2200 return (error); 2201 break; 2202 #endif 2203 case AF_INET: 2204 fin = (struct sockaddr_in *)&addrs[0]; 2205 lin = (struct sockaddr_in *)&addrs[1]; 2206 if (fin->sin_len != sizeof(struct sockaddr_in) || 2207 lin->sin_len != sizeof(struct sockaddr_in)) 2208 return (EINVAL); 2209 break; 2210 default: 2211 return (EINVAL); 2212 } 2213 INP_INFO_WLOCK(&tcbinfo); 2214 switch (addrs[0].ss_family) { 2215 #ifdef INET6 2216 case AF_INET6: 2217 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port, 2218 &l6, lin6->sin6_port, 0, NULL); 2219 break; 2220 #endif 2221 case AF_INET: 2222 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port, 2223 lin->sin_addr, lin->sin_port, 0, NULL); 2224 break; 2225 } 2226 if (inp != NULL) { 2227 INP_LOCK(inp); 2228 if ((tw = intotw(inp)) && 2229 (inp->inp_vflag & INP_TIMEWAIT) != 0) { 2230 (void) tcp_twclose(tw, 0); 2231 } else if ((tp = intotcpcb(inp)) && 2232 ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) { 2233 tp = tcp_drop(tp, ECONNABORTED); 2234 if (tp != NULL) 2235 INP_UNLOCK(inp); 2236 } else 2237 INP_UNLOCK(inp); 2238 } else 2239 error = ESRCH; 2240 INP_INFO_WUNLOCK(&tcbinfo); 2241 return (error); 2242 } 2243 2244 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2245 CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL, 2246 0, sysctl_drop, "", "Drop TCP connection"); 2247