xref: /freebsd/sys/netinet/tcp_subr.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #include <netinet6/nd6.h>
79 #endif
80 #include <netinet/ip_icmp.h>
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 static int	tcp_tcbhashsize = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164 
165 static int	do_tcpdrain = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167      "Enable tcp_drain routine for extra help when low on mbufs");
168 
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170     &tcbinfo.ipi_count, 0, "Number of active PCBs");
171 
172 static int	icmp_may_rst = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 
176 static int	tcp_isn_reseed_interval = 0;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179 
180 /*
181  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182  * 1024 exists only for debugging.  A good production default would be
183  * something like 6100.
184  */
185 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186     "TCP inflight data limiting");
187 
188 static int	tcp_inflight_enable = 1;
189 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191 
192 static int	tcp_inflight_debug = 0;
193 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195 
196 static int	tcp_inflight_min = 6144;
197 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
198     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
199 
200 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
201 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
202     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
203 
204 static int	tcp_inflight_stab = 20;
205 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
206     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
207 
208 uma_zone_t sack_hole_zone;
209 
210 static struct inpcb *tcp_notify(struct inpcb *, int);
211 static void	tcp_discardcb(struct tcpcb *);
212 static void	tcp_isn_tick(void *);
213 
214 /*
215  * Target size of TCP PCB hash tables. Must be a power of two.
216  *
217  * Note that this can be overridden by the kernel environment
218  * variable net.inet.tcp.tcbhashsize
219  */
220 #ifndef TCBHASHSIZE
221 #define TCBHASHSIZE	512
222 #endif
223 
224 /*
225  * XXX
226  * Callouts should be moved into struct tcp directly.  They are currently
227  * separate because the tcpcb structure is exported to userland for sysctl
228  * parsing purposes, which do not know about callouts.
229  */
230 struct	tcpcb_mem {
231 	struct	tcpcb tcb;
232 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
233 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
234 };
235 
236 static uma_zone_t tcpcb_zone;
237 static uma_zone_t tcptw_zone;
238 struct callout isn_callout;
239 
240 /*
241  * Tcp initialization
242  */
243 void
244 tcp_init()
245 {
246 	int hashsize = TCBHASHSIZE;
247 
248 	tcp_delacktime = TCPTV_DELACK;
249 	tcp_keepinit = TCPTV_KEEP_INIT;
250 	tcp_keepidle = TCPTV_KEEP_IDLE;
251 	tcp_keepintvl = TCPTV_KEEPINTVL;
252 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
253 	tcp_msl = TCPTV_MSL;
254 	tcp_rexmit_min = TCPTV_MIN;
255 	tcp_rexmit_slop = TCPTV_CPU_VAR;
256 
257 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
258 	LIST_INIT(&tcb);
259 	tcbinfo.listhead = &tcb;
260 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
261 	if (!powerof2(hashsize)) {
262 		printf("WARNING: TCB hash size not a power of 2\n");
263 		hashsize = 512; /* safe default */
264 	}
265 	tcp_tcbhashsize = hashsize;
266 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
267 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
268 					&tcbinfo.porthashmask);
269 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
270 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
271 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
272 #ifdef INET6
273 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
274 #else /* INET6 */
275 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
276 #endif /* INET6 */
277 	if (max_protohdr < TCP_MINPROTOHDR)
278 		max_protohdr = TCP_MINPROTOHDR;
279 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
280 		panic("tcp_init");
281 #undef TCP_MINPROTOHDR
282 	/*
283 	 * These have to be type stable for the benefit of the timers.
284 	 */
285 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
286 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 	uma_zone_set_max(tcpcb_zone, maxsockets);
288 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
289 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
290 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
291 	tcp_timer_init();
292 	syncache_init();
293 	tcp_hc_init();
294 	tcp_reass_init();
295 	callout_init(&isn_callout, CALLOUT_MPSAFE);
296 	tcp_isn_tick(NULL);
297 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
298 		SHUTDOWN_PRI_DEFAULT);
299 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
300 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301 }
302 
303 void
304 tcp_fini(xtp)
305 	void *xtp;
306 {
307 	callout_stop(&isn_callout);
308 
309 }
310 
311 /*
312  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
313  * tcp_template used to store this data in mbufs, but we now recopy it out
314  * of the tcpcb each time to conserve mbufs.
315  */
316 void
317 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
318 	struct inpcb *inp;
319 	void *ip_ptr;
320 	void *tcp_ptr;
321 {
322 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
323 
324 	INP_LOCK_ASSERT(inp);
325 
326 #ifdef INET6
327 	if ((inp->inp_vflag & INP_IPV6) != 0) {
328 		struct ip6_hdr *ip6;
329 
330 		ip6 = (struct ip6_hdr *)ip_ptr;
331 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
332 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
333 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
334 			(IPV6_VERSION & IPV6_VERSION_MASK);
335 		ip6->ip6_nxt = IPPROTO_TCP;
336 		ip6->ip6_plen = sizeof(struct tcphdr);
337 		ip6->ip6_src = inp->in6p_laddr;
338 		ip6->ip6_dst = inp->in6p_faddr;
339 	} else
340 #endif
341 	{
342 		struct ip *ip;
343 
344 		ip = (struct ip *)ip_ptr;
345 		ip->ip_v = IPVERSION;
346 		ip->ip_hl = 5;
347 		ip->ip_tos = inp->inp_ip_tos;
348 		ip->ip_len = 0;
349 		ip->ip_id = 0;
350 		ip->ip_off = 0;
351 		ip->ip_ttl = inp->inp_ip_ttl;
352 		ip->ip_sum = 0;
353 		ip->ip_p = IPPROTO_TCP;
354 		ip->ip_src = inp->inp_laddr;
355 		ip->ip_dst = inp->inp_faddr;
356 	}
357 	th->th_sport = inp->inp_lport;
358 	th->th_dport = inp->inp_fport;
359 	th->th_seq = 0;
360 	th->th_ack = 0;
361 	th->th_x2 = 0;
362 	th->th_off = 5;
363 	th->th_flags = 0;
364 	th->th_win = 0;
365 	th->th_urp = 0;
366 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
367 }
368 
369 /*
370  * Create template to be used to send tcp packets on a connection.
371  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
372  * use for this function is in keepalives, which use tcp_respond.
373  */
374 struct tcptemp *
375 tcpip_maketemplate(inp)
376 	struct inpcb *inp;
377 {
378 	struct mbuf *m;
379 	struct tcptemp *n;
380 
381 	m = m_get(M_DONTWAIT, MT_DATA);
382 	if (m == NULL)
383 		return (0);
384 	m->m_len = sizeof(struct tcptemp);
385 	n = mtod(m, struct tcptemp *);
386 
387 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
388 	return (n);
389 }
390 
391 /*
392  * Send a single message to the TCP at address specified by
393  * the given TCP/IP header.  If m == NULL, then we make a copy
394  * of the tcpiphdr at ti and send directly to the addressed host.
395  * This is used to force keep alive messages out using the TCP
396  * template for a connection.  If flags are given then we send
397  * a message back to the TCP which originated the * segment ti,
398  * and discard the mbuf containing it and any other attached mbufs.
399  *
400  * In any case the ack and sequence number of the transmitted
401  * segment are as specified by the parameters.
402  *
403  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
404  */
405 void
406 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
407 	struct tcpcb *tp;
408 	void *ipgen;
409 	register struct tcphdr *th;
410 	register struct mbuf *m;
411 	tcp_seq ack, seq;
412 	int flags;
413 {
414 	register int tlen;
415 	int win = 0;
416 	struct ip *ip;
417 	struct tcphdr *nth;
418 #ifdef INET6
419 	struct ip6_hdr *ip6;
420 	int isipv6;
421 #endif /* INET6 */
422 	int ipflags = 0;
423 	struct inpcb *inp;
424 
425 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
426 
427 #ifdef INET6
428 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
429 	ip6 = ipgen;
430 #endif /* INET6 */
431 	ip = ipgen;
432 
433 	if (tp != NULL) {
434 		inp = tp->t_inpcb;
435 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
436 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
437 		INP_LOCK_ASSERT(inp);
438 	} else
439 		inp = NULL;
440 
441 	if (tp != NULL) {
442 		if (!(flags & TH_RST)) {
443 			win = sbspace(&inp->inp_socket->so_rcv);
444 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
445 				win = (long)TCP_MAXWIN << tp->rcv_scale;
446 		}
447 	}
448 	if (m == NULL) {
449 		m = m_gethdr(M_DONTWAIT, MT_DATA);
450 		if (m == NULL)
451 			return;
452 		tlen = 0;
453 		m->m_data += max_linkhdr;
454 #ifdef INET6
455 		if (isipv6) {
456 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
457 			      sizeof(struct ip6_hdr));
458 			ip6 = mtod(m, struct ip6_hdr *);
459 			nth = (struct tcphdr *)(ip6 + 1);
460 		} else
461 #endif /* INET6 */
462 	      {
463 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
464 		ip = mtod(m, struct ip *);
465 		nth = (struct tcphdr *)(ip + 1);
466 	      }
467 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
468 		flags = TH_ACK;
469 	} else {
470 		m_freem(m->m_next);
471 		m->m_next = NULL;
472 		m->m_data = (caddr_t)ipgen;
473 		/* m_len is set later */
474 		tlen = 0;
475 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
476 #ifdef INET6
477 		if (isipv6) {
478 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
479 			nth = (struct tcphdr *)(ip6 + 1);
480 		} else
481 #endif /* INET6 */
482 	      {
483 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
484 		nth = (struct tcphdr *)(ip + 1);
485 	      }
486 		if (th != nth) {
487 			/*
488 			 * this is usually a case when an extension header
489 			 * exists between the IPv6 header and the
490 			 * TCP header.
491 			 */
492 			nth->th_sport = th->th_sport;
493 			nth->th_dport = th->th_dport;
494 		}
495 		xchg(nth->th_dport, nth->th_sport, n_short);
496 #undef xchg
497 	}
498 #ifdef INET6
499 	if (isipv6) {
500 		ip6->ip6_flow = 0;
501 		ip6->ip6_vfc = IPV6_VERSION;
502 		ip6->ip6_nxt = IPPROTO_TCP;
503 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
504 						tlen));
505 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
506 	} else
507 #endif
508 	{
509 		tlen += sizeof (struct tcpiphdr);
510 		ip->ip_len = tlen;
511 		ip->ip_ttl = ip_defttl;
512 		if (path_mtu_discovery)
513 			ip->ip_off |= IP_DF;
514 	}
515 	m->m_len = tlen;
516 	m->m_pkthdr.len = tlen;
517 	m->m_pkthdr.rcvif = NULL;
518 #ifdef MAC
519 	if (inp != NULL) {
520 		/*
521 		 * Packet is associated with a socket, so allow the
522 		 * label of the response to reflect the socket label.
523 		 */
524 		INP_LOCK_ASSERT(inp);
525 		mac_create_mbuf_from_inpcb(inp, m);
526 	} else {
527 		/*
528 		 * Packet is not associated with a socket, so possibly
529 		 * update the label in place.
530 		 */
531 		mac_reflect_mbuf_tcp(m);
532 	}
533 #endif
534 	nth->th_seq = htonl(seq);
535 	nth->th_ack = htonl(ack);
536 	nth->th_x2 = 0;
537 	nth->th_off = sizeof (struct tcphdr) >> 2;
538 	nth->th_flags = flags;
539 	if (tp != NULL)
540 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
541 	else
542 		nth->th_win = htons((u_short)win);
543 	nth->th_urp = 0;
544 #ifdef INET6
545 	if (isipv6) {
546 		nth->th_sum = 0;
547 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
548 					sizeof(struct ip6_hdr),
549 					tlen - sizeof(struct ip6_hdr));
550 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
551 		    NULL, NULL);
552 	} else
553 #endif /* INET6 */
554 	{
555 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
556 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
557 		m->m_pkthdr.csum_flags = CSUM_TCP;
558 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
559 	}
560 #ifdef TCPDEBUG
561 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
562 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
563 #endif
564 #ifdef INET6
565 	if (isipv6)
566 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
567 	else
568 #endif /* INET6 */
569 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
570 }
571 
572 /*
573  * Create a new TCP control block, making an
574  * empty reassembly queue and hooking it to the argument
575  * protocol control block.  The `inp' parameter must have
576  * come from the zone allocator set up in tcp_init().
577  */
578 struct tcpcb *
579 tcp_newtcpcb(inp)
580 	struct inpcb *inp;
581 {
582 	struct tcpcb_mem *tm;
583 	struct tcpcb *tp;
584 #ifdef INET6
585 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
586 #endif /* INET6 */
587 
588 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
589 	if (tm == NULL)
590 		return (NULL);
591 	tp = &tm->tcb;
592 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
593 	tp->t_maxseg = tp->t_maxopd =
594 #ifdef INET6
595 		isipv6 ? tcp_v6mssdflt :
596 #endif /* INET6 */
597 		tcp_mssdflt;
598 
599 	/* Set up our timeouts. */
600 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
601 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
602 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
603 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
604 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
605 
606 	if (tcp_do_rfc1323)
607 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
608 	tp->sack_enable = tcp_do_sack;
609 	TAILQ_INIT(&tp->snd_holes);
610 	tp->t_inpcb = inp;	/* XXX */
611 	/*
612 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
613 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
614 	 * reasonable initial retransmit time.
615 	 */
616 	tp->t_srtt = TCPTV_SRTTBASE;
617 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
618 	tp->t_rttmin = tcp_rexmit_min;
619 	tp->t_rxtcur = TCPTV_RTOBASE;
620 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
621 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623 	tp->t_rcvtime = ticks;
624 	tp->t_bw_rtttime = ticks;
625 	/*
626 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
627 	 * because the socket may be bound to an IPv6 wildcard address,
628 	 * which may match an IPv4-mapped IPv6 address.
629 	 */
630 	inp->inp_ip_ttl = ip_defttl;
631 	inp->inp_ppcb = (caddr_t)tp;
632 	return (tp);		/* XXX */
633 }
634 
635 /*
636  * Drop a TCP connection, reporting
637  * the specified error.  If connection is synchronized,
638  * then send a RST to peer.
639  */
640 struct tcpcb *
641 tcp_drop(tp, errno)
642 	register struct tcpcb *tp;
643 	int errno;
644 {
645 	struct socket *so = tp->t_inpcb->inp_socket;
646 
647 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
648 	INP_LOCK_ASSERT(tp->t_inpcb);
649 
650 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
651 		tp->t_state = TCPS_CLOSED;
652 		(void) tcp_output(tp);
653 		tcpstat.tcps_drops++;
654 	} else
655 		tcpstat.tcps_conndrops++;
656 	if (errno == ETIMEDOUT && tp->t_softerror)
657 		errno = tp->t_softerror;
658 	so->so_error = errno;
659 	return (tcp_close(tp));
660 }
661 
662 static void
663 tcp_discardcb(tp)
664 	struct tcpcb *tp;
665 {
666 	struct tseg_qent *q;
667 	struct inpcb *inp = tp->t_inpcb;
668 	struct socket *so = inp->inp_socket;
669 #ifdef INET6
670 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
671 #endif /* INET6 */
672 
673 	INP_LOCK_ASSERT(inp);
674 
675 	/*
676 	 * Make sure that all of our timers are stopped before we
677 	 * delete the PCB.
678 	 */
679 	callout_stop(tp->tt_rexmt);
680 	callout_stop(tp->tt_persist);
681 	callout_stop(tp->tt_keep);
682 	callout_stop(tp->tt_2msl);
683 	callout_stop(tp->tt_delack);
684 
685 	/*
686 	 * If we got enough samples through the srtt filter,
687 	 * save the rtt and rttvar in the routing entry.
688 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
689 	 * 4 samples is enough for the srtt filter to converge
690 	 * to within enough % of the correct value; fewer samples
691 	 * and we could save a bogus rtt. The danger is not high
692 	 * as tcp quickly recovers from everything.
693 	 * XXX: Works very well but needs some more statistics!
694 	 */
695 	if (tp->t_rttupdated >= 4) {
696 		struct hc_metrics_lite metrics;
697 		u_long ssthresh;
698 
699 		bzero(&metrics, sizeof(metrics));
700 		/*
701 		 * Update the ssthresh always when the conditions below
702 		 * are satisfied. This gives us better new start value
703 		 * for the congestion avoidance for new connections.
704 		 * ssthresh is only set if packet loss occured on a session.
705 		 */
706 		ssthresh = tp->snd_ssthresh;
707 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
708 			/*
709 			 * convert the limit from user data bytes to
710 			 * packets then to packet data bytes.
711 			 */
712 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
713 			if (ssthresh < 2)
714 				ssthresh = 2;
715 			ssthresh *= (u_long)(tp->t_maxseg +
716 #ifdef INET6
717 				      (isipv6 ? sizeof (struct ip6_hdr) +
718 					       sizeof (struct tcphdr) :
719 #endif
720 				       sizeof (struct tcpiphdr)
721 #ifdef INET6
722 				       )
723 #endif
724 				      );
725 		} else
726 			ssthresh = 0;
727 		metrics.rmx_ssthresh = ssthresh;
728 
729 		metrics.rmx_rtt = tp->t_srtt;
730 		metrics.rmx_rttvar = tp->t_rttvar;
731 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
732 		metrics.rmx_bandwidth = tp->snd_bandwidth;
733 		metrics.rmx_cwnd = tp->snd_cwnd;
734 		metrics.rmx_sendpipe = 0;
735 		metrics.rmx_recvpipe = 0;
736 
737 		tcp_hc_update(&inp->inp_inc, &metrics);
738 	}
739 
740 	/* free the reassembly queue, if any */
741 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
742 		LIST_REMOVE(q, tqe_q);
743 		m_freem(q->tqe_m);
744 		uma_zfree(tcp_reass_zone, q);
745 		tp->t_segqlen--;
746 		tcp_reass_qsize--;
747 	}
748 	tcp_free_sackholes(tp);
749 	inp->inp_ppcb = NULL;
750 	tp->t_inpcb = NULL;
751 	uma_zfree(tcpcb_zone, tp);
752 	soisdisconnected(so);
753 }
754 
755 /*
756  * Close a TCP control block:
757  *    discard all space held by the tcp
758  *    discard internet protocol block
759  *    wake up any sleepers
760  */
761 struct tcpcb *
762 tcp_close(tp)
763 	struct tcpcb *tp;
764 {
765 	struct inpcb *inp = tp->t_inpcb;
766 #ifdef INET6
767 	struct socket *so = inp->inp_socket;
768 #endif
769 
770 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
771 	INP_LOCK_ASSERT(inp);
772 
773 	tcp_discardcb(tp);
774 #ifdef INET6
775 	if (INP_CHECK_SOCKAF(so, AF_INET6))
776 		in6_pcbdetach(inp);
777 	else
778 #endif
779 		in_pcbdetach(inp);
780 	tcpstat.tcps_closed++;
781 	return (NULL);
782 }
783 
784 void
785 tcp_drain()
786 {
787 	if (do_tcpdrain)
788 	{
789 		struct inpcb *inpb;
790 		struct tcpcb *tcpb;
791 		struct tseg_qent *te;
792 
793 	/*
794 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
795 	 * if there is one...
796 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
797 	 *      reassembly queue should be flushed, but in a situation
798 	 *	where we're really low on mbufs, this is potentially
799 	 *	usefull.
800 	 */
801 		INP_INFO_RLOCK(&tcbinfo);
802 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
803 			if (inpb->inp_vflag & INP_TIMEWAIT)
804 				continue;
805 			INP_LOCK(inpb);
806 			if ((tcpb = intotcpcb(inpb)) != NULL) {
807 				while ((te = LIST_FIRST(&tcpb->t_segq))
808 			            != NULL) {
809 					LIST_REMOVE(te, tqe_q);
810 					m_freem(te->tqe_m);
811 					uma_zfree(tcp_reass_zone, te);
812 					tcpb->t_segqlen--;
813 					tcp_reass_qsize--;
814 				}
815 				tcp_clean_sackreport(tcpb);
816 			}
817 			INP_UNLOCK(inpb);
818 		}
819 		INP_INFO_RUNLOCK(&tcbinfo);
820 	}
821 }
822 
823 /*
824  * Notify a tcp user of an asynchronous error;
825  * store error as soft error, but wake up user
826  * (for now, won't do anything until can select for soft error).
827  *
828  * Do not wake up user since there currently is no mechanism for
829  * reporting soft errors (yet - a kqueue filter may be added).
830  */
831 static struct inpcb *
832 tcp_notify(inp, error)
833 	struct inpcb *inp;
834 	int error;
835 {
836 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
837 
838 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
839 	INP_LOCK_ASSERT(inp);
840 
841 	/*
842 	 * Ignore some errors if we are hooked up.
843 	 * If connection hasn't completed, has retransmitted several times,
844 	 * and receives a second error, give up now.  This is better
845 	 * than waiting a long time to establish a connection that
846 	 * can never complete.
847 	 */
848 	if (tp->t_state == TCPS_ESTABLISHED &&
849 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
850 	     error == EHOSTDOWN)) {
851 		return (inp);
852 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
853 	    tp->t_softerror) {
854 		tcp_drop(tp, error);
855 		return (struct inpcb *)0;
856 	} else {
857 		tp->t_softerror = error;
858 		return (inp);
859 	}
860 #if 0
861 	wakeup( &so->so_timeo);
862 	sorwakeup(so);
863 	sowwakeup(so);
864 #endif
865 }
866 
867 static int
868 tcp_pcblist(SYSCTL_HANDLER_ARGS)
869 {
870 	int error, i, n;
871 	struct inpcb *inp, **inp_list;
872 	inp_gen_t gencnt;
873 	struct xinpgen xig;
874 
875 	/*
876 	 * The process of preparing the TCB list is too time-consuming and
877 	 * resource-intensive to repeat twice on every request.
878 	 */
879 	if (req->oldptr == NULL) {
880 		n = tcbinfo.ipi_count;
881 		req->oldidx = 2 * (sizeof xig)
882 			+ (n + n/8) * sizeof(struct xtcpcb);
883 		return (0);
884 	}
885 
886 	if (req->newptr != NULL)
887 		return (EPERM);
888 
889 	/*
890 	 * OK, now we're committed to doing something.
891 	 */
892 	INP_INFO_RLOCK(&tcbinfo);
893 	gencnt = tcbinfo.ipi_gencnt;
894 	n = tcbinfo.ipi_count;
895 	INP_INFO_RUNLOCK(&tcbinfo);
896 
897 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
898 		+ n * sizeof(struct xtcpcb));
899 	if (error != 0)
900 		return (error);
901 
902 	xig.xig_len = sizeof xig;
903 	xig.xig_count = n;
904 	xig.xig_gen = gencnt;
905 	xig.xig_sogen = so_gencnt;
906 	error = SYSCTL_OUT(req, &xig, sizeof xig);
907 	if (error)
908 		return (error);
909 
910 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
911 	if (inp_list == NULL)
912 		return (ENOMEM);
913 
914 	INP_INFO_RLOCK(&tcbinfo);
915 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
916 	     inp = LIST_NEXT(inp, inp_list)) {
917 		INP_LOCK(inp);
918 		if (inp->inp_gencnt <= gencnt) {
919 			/*
920 			 * XXX: This use of cr_cansee(), introduced with
921 			 * TCP state changes, is not quite right, but for
922 			 * now, better than nothing.
923 			 */
924 			if (inp->inp_vflag & INP_TIMEWAIT)
925 				error = cr_cansee(req->td->td_ucred,
926 				    intotw(inp)->tw_cred);
927 			else
928 				error = cr_canseesocket(req->td->td_ucred,
929 				    inp->inp_socket);
930 			if (error == 0)
931 				inp_list[i++] = inp;
932 		}
933 		INP_UNLOCK(inp);
934 	}
935 	INP_INFO_RUNLOCK(&tcbinfo);
936 	n = i;
937 
938 	error = 0;
939 	for (i = 0; i < n; i++) {
940 		inp = inp_list[i];
941 		if (inp->inp_gencnt <= gencnt) {
942 			struct xtcpcb xt;
943 			caddr_t inp_ppcb;
944 
945 			bzero(&xt, sizeof(xt));
946 			xt.xt_len = sizeof xt;
947 			/* XXX should avoid extra copy */
948 			bcopy(inp, &xt.xt_inp, sizeof *inp);
949 			inp_ppcb = inp->inp_ppcb;
950 			if (inp_ppcb == NULL)
951 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952 			else if (inp->inp_vflag & INP_TIMEWAIT) {
953 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
954 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
955 			} else
956 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
957 			if (inp->inp_socket != NULL)
958 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
959 			else {
960 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
961 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
962 			}
963 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
964 			error = SYSCTL_OUT(req, &xt, sizeof xt);
965 		}
966 	}
967 	if (!error) {
968 		/*
969 		 * Give the user an updated idea of our state.
970 		 * If the generation differs from what we told
971 		 * her before, she knows that something happened
972 		 * while we were processing this request, and it
973 		 * might be necessary to retry.
974 		 */
975 		INP_INFO_RLOCK(&tcbinfo);
976 		xig.xig_gen = tcbinfo.ipi_gencnt;
977 		xig.xig_sogen = so_gencnt;
978 		xig.xig_count = tcbinfo.ipi_count;
979 		INP_INFO_RUNLOCK(&tcbinfo);
980 		error = SYSCTL_OUT(req, &xig, sizeof xig);
981 	}
982 	free(inp_list, M_TEMP);
983 	return (error);
984 }
985 
986 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
987 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
988 
989 static int
990 tcp_getcred(SYSCTL_HANDLER_ARGS)
991 {
992 	struct xucred xuc;
993 	struct sockaddr_in addrs[2];
994 	struct inpcb *inp;
995 	int error;
996 
997 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
998 	if (error)
999 		return (error);
1000 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1001 	if (error)
1002 		return (error);
1003 	INP_INFO_RLOCK(&tcbinfo);
1004 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1005 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1006 	if (inp == NULL) {
1007 		error = ENOENT;
1008 		goto outunlocked;
1009 	}
1010 	INP_LOCK(inp);
1011 	if (inp->inp_socket == NULL) {
1012 		error = ENOENT;
1013 		goto out;
1014 	}
1015 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1016 	if (error)
1017 		goto out;
1018 	cru2x(inp->inp_socket->so_cred, &xuc);
1019 out:
1020 	INP_UNLOCK(inp);
1021 outunlocked:
1022 	INP_INFO_RUNLOCK(&tcbinfo);
1023 	if (error == 0)
1024 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1025 	return (error);
1026 }
1027 
1028 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1029     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1030     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1031 
1032 #ifdef INET6
1033 static int
1034 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1035 {
1036 	struct xucred xuc;
1037 	struct sockaddr_in6 addrs[2];
1038 	struct inpcb *inp;
1039 	int error, mapped = 0;
1040 
1041 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1042 	if (error)
1043 		return (error);
1044 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1045 	if (error)
1046 		return (error);
1047 	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1048 	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1049 		return (error);
1050 	}
1051 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1052 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1053 			mapped = 1;
1054 		else
1055 			return (EINVAL);
1056 	}
1057 
1058 	INP_INFO_RLOCK(&tcbinfo);
1059 	if (mapped == 1)
1060 		inp = in_pcblookup_hash(&tcbinfo,
1061 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1062 			addrs[1].sin6_port,
1063 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1064 			addrs[0].sin6_port,
1065 			0, NULL);
1066 	else
1067 		inp = in6_pcblookup_hash(&tcbinfo,
1068 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1069 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1070 	if (inp == NULL) {
1071 		error = ENOENT;
1072 		goto outunlocked;
1073 	}
1074 	INP_LOCK(inp);
1075 	if (inp->inp_socket == NULL) {
1076 		error = ENOENT;
1077 		goto out;
1078 	}
1079 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1080 	if (error)
1081 		goto out;
1082 	cru2x(inp->inp_socket->so_cred, &xuc);
1083 out:
1084 	INP_UNLOCK(inp);
1085 outunlocked:
1086 	INP_INFO_RUNLOCK(&tcbinfo);
1087 	if (error == 0)
1088 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1089 	return (error);
1090 }
1091 
1092 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1093     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1094     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1095 #endif
1096 
1097 
1098 void
1099 tcp_ctlinput(cmd, sa, vip)
1100 	int cmd;
1101 	struct sockaddr *sa;
1102 	void *vip;
1103 {
1104 	struct ip *ip = vip;
1105 	struct tcphdr *th;
1106 	struct in_addr faddr;
1107 	struct inpcb *inp;
1108 	struct tcpcb *tp;
1109 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1110 	struct icmp *icp;
1111 	struct in_conninfo inc;
1112 	tcp_seq icmp_tcp_seq;
1113 	int mtu;
1114 
1115 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1116 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1117 		return;
1118 
1119 	if (cmd == PRC_MSGSIZE)
1120 		notify = tcp_mtudisc;
1121 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1122 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1123 		notify = tcp_drop_syn_sent;
1124 	/*
1125 	 * Redirects don't need to be handled up here.
1126 	 */
1127 	else if (PRC_IS_REDIRECT(cmd))
1128 		return;
1129 	/*
1130 	 * Source quench is depreciated.
1131 	 */
1132 	else if (cmd == PRC_QUENCH)
1133 		return;
1134 	/*
1135 	 * Hostdead is ugly because it goes linearly through all PCBs.
1136 	 * XXX: We never get this from ICMP, otherwise it makes an
1137 	 * excellent DoS attack on machines with many connections.
1138 	 */
1139 	else if (cmd == PRC_HOSTDEAD)
1140 		ip = NULL;
1141 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1142 		return;
1143 	if (ip != NULL) {
1144 		icp = (struct icmp *)((caddr_t)ip
1145 				      - offsetof(struct icmp, icmp_ip));
1146 		th = (struct tcphdr *)((caddr_t)ip
1147 				       + (ip->ip_hl << 2));
1148 		INP_INFO_WLOCK(&tcbinfo);
1149 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1150 		    ip->ip_src, th->th_sport, 0, NULL);
1151 		if (inp != NULL)  {
1152 			INP_LOCK(inp);
1153 			if (inp->inp_socket != NULL) {
1154 				icmp_tcp_seq = htonl(th->th_seq);
1155 				tp = intotcpcb(inp);
1156 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1157 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1158 					if (cmd == PRC_MSGSIZE) {
1159 					    /*
1160 					     * MTU discovery:
1161 					     * If we got a needfrag set the MTU
1162 					     * in the route to the suggested new
1163 					     * value (if given) and then notify.
1164 					     */
1165 					    bzero(&inc, sizeof(inc));
1166 					    inc.inc_flags = 0;	/* IPv4 */
1167 					    inc.inc_faddr = faddr;
1168 
1169 					    mtu = ntohs(icp->icmp_nextmtu);
1170 					    /*
1171 					     * If no alternative MTU was
1172 					     * proposed, try the next smaller
1173 					     * one.  ip->ip_len has already
1174 					     * been swapped in icmp_input().
1175 					     */
1176 					    if (!mtu)
1177 						mtu = ip_next_mtu(ip->ip_len,
1178 						 1);
1179 					    if (mtu < max(296, (tcp_minmss)
1180 						 + sizeof(struct tcpiphdr)))
1181 						mtu = 0;
1182 					    if (!mtu)
1183 						mtu = tcp_mssdflt
1184 						 + sizeof(struct tcpiphdr);
1185 					    /*
1186 					     * Only cache the the MTU if it
1187 					     * is smaller than the interface
1188 					     * or route MTU.  tcp_mtudisc()
1189 					     * will do right thing by itself.
1190 					     */
1191 					    if (mtu <= tcp_maxmtu(&inc))
1192 						tcp_hc_updatemtu(&inc, mtu);
1193 					}
1194 
1195 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1196 				}
1197 			}
1198 			if (inp != NULL)
1199 				INP_UNLOCK(inp);
1200 		} else {
1201 			inc.inc_fport = th->th_dport;
1202 			inc.inc_lport = th->th_sport;
1203 			inc.inc_faddr = faddr;
1204 			inc.inc_laddr = ip->ip_src;
1205 #ifdef INET6
1206 			inc.inc_isipv6 = 0;
1207 #endif
1208 			syncache_unreach(&inc, th);
1209 		}
1210 		INP_INFO_WUNLOCK(&tcbinfo);
1211 	} else
1212 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1213 }
1214 
1215 #ifdef INET6
1216 void
1217 tcp6_ctlinput(cmd, sa, d)
1218 	int cmd;
1219 	struct sockaddr *sa;
1220 	void *d;
1221 {
1222 	struct tcphdr th;
1223 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1224 	struct ip6_hdr *ip6;
1225 	struct mbuf *m;
1226 	struct ip6ctlparam *ip6cp = NULL;
1227 	const struct sockaddr_in6 *sa6_src = NULL;
1228 	int off;
1229 	struct tcp_portonly {
1230 		u_int16_t th_sport;
1231 		u_int16_t th_dport;
1232 	} *thp;
1233 
1234 	if (sa->sa_family != AF_INET6 ||
1235 	    sa->sa_len != sizeof(struct sockaddr_in6))
1236 		return;
1237 
1238 	if (cmd == PRC_MSGSIZE)
1239 		notify = tcp_mtudisc;
1240 	else if (!PRC_IS_REDIRECT(cmd) &&
1241 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1242 		return;
1243 	/* Source quench is depreciated. */
1244 	else if (cmd == PRC_QUENCH)
1245 		return;
1246 
1247 	/* if the parameter is from icmp6, decode it. */
1248 	if (d != NULL) {
1249 		ip6cp = (struct ip6ctlparam *)d;
1250 		m = ip6cp->ip6c_m;
1251 		ip6 = ip6cp->ip6c_ip6;
1252 		off = ip6cp->ip6c_off;
1253 		sa6_src = ip6cp->ip6c_src;
1254 	} else {
1255 		m = NULL;
1256 		ip6 = NULL;
1257 		off = 0;	/* fool gcc */
1258 		sa6_src = &sa6_any;
1259 	}
1260 
1261 	if (ip6 != NULL) {
1262 		struct in_conninfo inc;
1263 		/*
1264 		 * XXX: We assume that when IPV6 is non NULL,
1265 		 * M and OFF are valid.
1266 		 */
1267 
1268 		/* check if we can safely examine src and dst ports */
1269 		if (m->m_pkthdr.len < off + sizeof(*thp))
1270 			return;
1271 
1272 		bzero(&th, sizeof(th));
1273 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1274 
1275 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1276 		    (struct sockaddr *)ip6cp->ip6c_src,
1277 		    th.th_sport, cmd, NULL, notify);
1278 
1279 		inc.inc_fport = th.th_dport;
1280 		inc.inc_lport = th.th_sport;
1281 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1282 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1283 		inc.inc_isipv6 = 1;
1284 		INP_INFO_WLOCK(&tcbinfo);
1285 		syncache_unreach(&inc, &th);
1286 		INP_INFO_WUNLOCK(&tcbinfo);
1287 	} else
1288 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1289 			      0, cmd, NULL, notify);
1290 }
1291 #endif /* INET6 */
1292 
1293 
1294 /*
1295  * Following is where TCP initial sequence number generation occurs.
1296  *
1297  * There are two places where we must use initial sequence numbers:
1298  * 1.  In SYN-ACK packets.
1299  * 2.  In SYN packets.
1300  *
1301  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1302  * tcp_syncache.c for details.
1303  *
1304  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1305  * depends on this property.  In addition, these ISNs should be
1306  * unguessable so as to prevent connection hijacking.  To satisfy
1307  * the requirements of this situation, the algorithm outlined in
1308  * RFC 1948 is used, with only small modifications.
1309  *
1310  * Implementation details:
1311  *
1312  * Time is based off the system timer, and is corrected so that it
1313  * increases by one megabyte per second.  This allows for proper
1314  * recycling on high speed LANs while still leaving over an hour
1315  * before rollover.
1316  *
1317  * As reading the *exact* system time is too expensive to be done
1318  * whenever setting up a TCP connection, we increment the time
1319  * offset in two ways.  First, a small random positive increment
1320  * is added to isn_offset for each connection that is set up.
1321  * Second, the function tcp_isn_tick fires once per clock tick
1322  * and increments isn_offset as necessary so that sequence numbers
1323  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1324  * random positive increments serve only to ensure that the same
1325  * exact sequence number is never sent out twice (as could otherwise
1326  * happen when a port is recycled in less than the system tick
1327  * interval.)
1328  *
1329  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1330  * between seeding of isn_secret.  This is normally set to zero,
1331  * as reseeding should not be necessary.
1332  *
1333  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1334  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1335  * general, this means holding an exclusive (write) lock.
1336  */
1337 
1338 #define ISN_BYTES_PER_SECOND 1048576
1339 #define ISN_STATIC_INCREMENT 4096
1340 #define ISN_RANDOM_INCREMENT (4096 - 1)
1341 
1342 static u_char isn_secret[32];
1343 static int isn_last_reseed;
1344 static u_int32_t isn_offset, isn_offset_old;
1345 static MD5_CTX isn_ctx;
1346 
1347 tcp_seq
1348 tcp_new_isn(tp)
1349 	struct tcpcb *tp;
1350 {
1351 	u_int32_t md5_buffer[4];
1352 	tcp_seq new_isn;
1353 
1354 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1355 	INP_LOCK_ASSERT(tp->t_inpcb);
1356 
1357 	/* Seed if this is the first use, reseed if requested. */
1358 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1359 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1360 		< (u_int)ticks))) {
1361 		read_random(&isn_secret, sizeof(isn_secret));
1362 		isn_last_reseed = ticks;
1363 	}
1364 
1365 	/* Compute the md5 hash and return the ISN. */
1366 	MD5Init(&isn_ctx);
1367 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1368 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1369 #ifdef INET6
1370 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1371 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1372 			  sizeof(struct in6_addr));
1373 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1374 			  sizeof(struct in6_addr));
1375 	} else
1376 #endif
1377 	{
1378 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1379 			  sizeof(struct in_addr));
1380 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1381 			  sizeof(struct in_addr));
1382 	}
1383 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1384 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1385 	new_isn = (tcp_seq) md5_buffer[0];
1386 	isn_offset += ISN_STATIC_INCREMENT +
1387 		(arc4random() & ISN_RANDOM_INCREMENT);
1388 	new_isn += isn_offset;
1389 	return (new_isn);
1390 }
1391 
1392 /*
1393  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1394  * to keep time flowing at a relatively constant rate.  If the random
1395  * increments have already pushed us past the projected offset, do nothing.
1396  */
1397 static void
1398 tcp_isn_tick(xtp)
1399 	void *xtp;
1400 {
1401 	u_int32_t projected_offset;
1402 
1403 	INP_INFO_WLOCK(&tcbinfo);
1404 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1405 
1406 	if (projected_offset > isn_offset)
1407 		isn_offset = projected_offset;
1408 
1409 	isn_offset_old = isn_offset;
1410 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1411 	INP_INFO_WUNLOCK(&tcbinfo);
1412 }
1413 
1414 /*
1415  * When a specific ICMP unreachable message is received and the
1416  * connection state is SYN-SENT, drop the connection.  This behavior
1417  * is controlled by the icmp_may_rst sysctl.
1418  */
1419 struct inpcb *
1420 tcp_drop_syn_sent(inp, errno)
1421 	struct inpcb *inp;
1422 	int errno;
1423 {
1424 	struct tcpcb *tp = intotcpcb(inp);
1425 
1426 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1427 	INP_LOCK_ASSERT(inp);
1428 
1429 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1430 		tcp_drop(tp, errno);
1431 		return (NULL);
1432 	}
1433 	return (inp);
1434 }
1435 
1436 /*
1437  * When `need fragmentation' ICMP is received, update our idea of the MSS
1438  * based on the new value in the route.  Also nudge TCP to send something,
1439  * since we know the packet we just sent was dropped.
1440  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1441  */
1442 struct inpcb *
1443 tcp_mtudisc(inp, errno)
1444 	struct inpcb *inp;
1445 	int errno;
1446 {
1447 	struct tcpcb *tp = intotcpcb(inp);
1448 	struct socket *so = inp->inp_socket;
1449 	u_int maxmtu;
1450 	u_int romtu;
1451 	int mss;
1452 #ifdef INET6
1453 	int isipv6;
1454 #endif /* INET6 */
1455 
1456 	INP_LOCK_ASSERT(inp);
1457 	if (tp != NULL) {
1458 #ifdef INET6
1459 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1460 #endif
1461 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1462 		romtu =
1463 #ifdef INET6
1464 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1465 #endif /* INET6 */
1466 		    tcp_maxmtu(&inp->inp_inc);
1467 		if (!maxmtu)
1468 			maxmtu = romtu;
1469 		else
1470 			maxmtu = min(maxmtu, romtu);
1471 		if (!maxmtu) {
1472 			tp->t_maxopd = tp->t_maxseg =
1473 #ifdef INET6
1474 				isipv6 ? tcp_v6mssdflt :
1475 #endif /* INET6 */
1476 				tcp_mssdflt;
1477 			return (inp);
1478 		}
1479 		mss = maxmtu -
1480 #ifdef INET6
1481 			(isipv6 ?
1482 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1483 #endif /* INET6 */
1484 			 sizeof(struct tcpiphdr)
1485 #ifdef INET6
1486 			 )
1487 #endif /* INET6 */
1488 			;
1489 
1490 		/*
1491 		 * XXX - The above conditional probably violates the TCP
1492 		 * spec.  The problem is that, since we don't know the
1493 		 * other end's MSS, we are supposed to use a conservative
1494 		 * default.  But, if we do that, then MTU discovery will
1495 		 * never actually take place, because the conservative
1496 		 * default is much less than the MTUs typically seen
1497 		 * on the Internet today.  For the moment, we'll sweep
1498 		 * this under the carpet.
1499 		 *
1500 		 * The conservative default might not actually be a problem
1501 		 * if the only case this occurs is when sending an initial
1502 		 * SYN with options and data to a host we've never talked
1503 		 * to before.  Then, they will reply with an MSS value which
1504 		 * will get recorded and the new parameters should get
1505 		 * recomputed.  For Further Study.
1506 		 */
1507 		if (tp->t_maxopd <= mss)
1508 			return (inp);
1509 		tp->t_maxopd = mss;
1510 
1511 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1512 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1513 			mss -= TCPOLEN_TSTAMP_APPA;
1514 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1515 		if (mss > MCLBYTES)
1516 			mss &= ~(MCLBYTES-1);
1517 #else
1518 		if (mss > MCLBYTES)
1519 			mss = mss / MCLBYTES * MCLBYTES;
1520 #endif
1521 		if (so->so_snd.sb_hiwat < mss)
1522 			mss = so->so_snd.sb_hiwat;
1523 
1524 		tp->t_maxseg = mss;
1525 
1526 		tcpstat.tcps_mturesent++;
1527 		tp->t_rtttime = 0;
1528 		tp->snd_nxt = tp->snd_una;
1529 		tcp_output(tp);
1530 	}
1531 	return (inp);
1532 }
1533 
1534 /*
1535  * Look-up the routing entry to the peer of this inpcb.  If no route
1536  * is found and it cannot be allocated, then return NULL.  This routine
1537  * is called by TCP routines that access the rmx structure and by tcp_mss
1538  * to get the interface MTU.
1539  */
1540 u_long
1541 tcp_maxmtu(inc)
1542 	struct in_conninfo *inc;
1543 {
1544 	struct route sro;
1545 	struct sockaddr_in *dst;
1546 	struct ifnet *ifp;
1547 	u_long maxmtu = 0;
1548 
1549 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1550 
1551 	bzero(&sro, sizeof(sro));
1552 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1553 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1554 		dst->sin_family = AF_INET;
1555 		dst->sin_len = sizeof(*dst);
1556 		dst->sin_addr = inc->inc_faddr;
1557 		rtalloc_ign(&sro, RTF_CLONING);
1558 	}
1559 	if (sro.ro_rt != NULL) {
1560 		ifp = sro.ro_rt->rt_ifp;
1561 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1562 			maxmtu = ifp->if_mtu;
1563 		else
1564 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1565 		RTFREE(sro.ro_rt);
1566 	}
1567 	return (maxmtu);
1568 }
1569 
1570 #ifdef INET6
1571 u_long
1572 tcp_maxmtu6(inc)
1573 	struct in_conninfo *inc;
1574 {
1575 	struct route_in6 sro6;
1576 	struct ifnet *ifp;
1577 	u_long maxmtu = 0;
1578 
1579 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1580 
1581 	bzero(&sro6, sizeof(sro6));
1582 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1583 		sro6.ro_dst.sin6_family = AF_INET6;
1584 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1585 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1586 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1587 	}
1588 	if (sro6.ro_rt != NULL) {
1589 		ifp = sro6.ro_rt->rt_ifp;
1590 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1591 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1592 		else
1593 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1594 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1595 		RTFREE(sro6.ro_rt);
1596 	}
1597 
1598 	return (maxmtu);
1599 }
1600 #endif /* INET6 */
1601 
1602 #ifdef IPSEC
1603 /* compute ESP/AH header size for TCP, including outer IP header. */
1604 size_t
1605 ipsec_hdrsiz_tcp(tp)
1606 	struct tcpcb *tp;
1607 {
1608 	struct inpcb *inp;
1609 	struct mbuf *m;
1610 	size_t hdrsiz;
1611 	struct ip *ip;
1612 #ifdef INET6
1613 	struct ip6_hdr *ip6;
1614 #endif
1615 	struct tcphdr *th;
1616 
1617 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1618 		return (0);
1619 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1620 	if (!m)
1621 		return (0);
1622 
1623 #ifdef INET6
1624 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1625 		ip6 = mtod(m, struct ip6_hdr *);
1626 		th = (struct tcphdr *)(ip6 + 1);
1627 		m->m_pkthdr.len = m->m_len =
1628 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1629 		tcpip_fillheaders(inp, ip6, th);
1630 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1631 	} else
1632 #endif /* INET6 */
1633 	{
1634 		ip = mtod(m, struct ip *);
1635 		th = (struct tcphdr *)(ip + 1);
1636 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1637 		tcpip_fillheaders(inp, ip, th);
1638 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1639 	}
1640 
1641 	m_free(m);
1642 	return (hdrsiz);
1643 }
1644 #endif /*IPSEC*/
1645 
1646 /*
1647  * Move a TCP connection into TIME_WAIT state.
1648  *    tcbinfo is locked.
1649  *    inp is locked, and is unlocked before returning.
1650  */
1651 void
1652 tcp_twstart(tp)
1653 	struct tcpcb *tp;
1654 {
1655 	struct tcptw *tw;
1656 	struct inpcb *inp;
1657 	int tw_time, acknow;
1658 	struct socket *so;
1659 
1660 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1661 	INP_LOCK_ASSERT(tp->t_inpcb);
1662 
1663 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1664 	if (tw == NULL) {
1665 		tw = tcp_timer_2msl_tw(1);
1666 		if (tw == NULL) {
1667 			tcp_close(tp);
1668 			return;
1669 		}
1670 	}
1671 	inp = tp->t_inpcb;
1672 	tw->tw_inpcb = inp;
1673 
1674 	/*
1675 	 * Recover last window size sent.
1676 	 */
1677 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1678 
1679 	/*
1680 	 * Set t_recent if timestamps are used on the connection.
1681 	 */
1682 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1683 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1684 		tw->t_recent = tp->ts_recent;
1685 	else
1686 		tw->t_recent = 0;
1687 
1688 	tw->snd_nxt = tp->snd_nxt;
1689 	tw->rcv_nxt = tp->rcv_nxt;
1690 	tw->iss     = tp->iss;
1691 	tw->irs     = tp->irs;
1692 	tw->t_starttime = tp->t_starttime;
1693 	tw->tw_time = 0;
1694 
1695 /* XXX
1696  * If this code will
1697  * be used for fin-wait-2 state also, then we may need
1698  * a ts_recent from the last segment.
1699  */
1700 	tw_time = 2 * tcp_msl;
1701 	acknow = tp->t_flags & TF_ACKNOW;
1702 	tcp_discardcb(tp);
1703 	so = inp->inp_socket;
1704 	ACCEPT_LOCK();
1705 	SOCK_LOCK(so);
1706 	so->so_pcb = NULL;
1707 	tw->tw_cred = crhold(so->so_cred);
1708 	tw->tw_so_options = so->so_options;
1709 	sotryfree(so);
1710 	inp->inp_socket = NULL;
1711 	if (acknow)
1712 		tcp_twrespond(tw, TH_ACK);
1713 	inp->inp_ppcb = (caddr_t)tw;
1714 	inp->inp_vflag |= INP_TIMEWAIT;
1715 	tcp_timer_2msl_reset(tw, tw_time);
1716 	INP_UNLOCK(inp);
1717 }
1718 
1719 /*
1720  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1721  * the actual rate is slightly higher due to the addition of
1722  * random positive increments.
1723  *
1724  * Most other new OSes use semi-randomized ISN values, so we
1725  * do not need to worry about them.
1726  */
1727 #define MS_ISN_BYTES_PER_SECOND		250000
1728 
1729 /*
1730  * Determine if the ISN we will generate has advanced beyond the last
1731  * sequence number used by the previous connection.  If so, indicate
1732  * that it is safe to recycle this tw socket by returning 1.
1733  *
1734  * XXXRW: This function should assert the inpcb lock as it does multiple
1735  * non-atomic reads from the tcptw, but is currently called without it from
1736  * in_pcb.c:in_pcblookup_local().
1737  */
1738 int
1739 tcp_twrecycleable(struct tcptw *tw)
1740 {
1741 	tcp_seq new_iss = tw->iss;
1742 	tcp_seq new_irs = tw->irs;
1743 
1744 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1745 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1746 
1747 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1748 		return (1);
1749 	else
1750 		return (0);
1751 }
1752 
1753 struct tcptw *
1754 tcp_twclose(struct tcptw *tw, int reuse)
1755 {
1756 	struct inpcb *inp;
1757 
1758 	inp = tw->tw_inpcb;
1759 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1760 	INP_LOCK_ASSERT(inp);
1761 
1762 	tw->tw_inpcb = NULL;
1763 	tcp_timer_2msl_stop(tw);
1764 	inp->inp_ppcb = NULL;
1765 #ifdef INET6
1766 	if (inp->inp_vflag & INP_IPV6PROTO)
1767 		in6_pcbdetach(inp);
1768 	else
1769 #endif
1770 		in_pcbdetach(inp);
1771 	tcpstat.tcps_closed++;
1772 	crfree(tw->tw_cred);
1773 	tw->tw_cred = NULL;
1774 	if (reuse)
1775 		return (tw);
1776 	uma_zfree(tcptw_zone, tw);
1777 	return (NULL);
1778 }
1779 
1780 int
1781 tcp_twrespond(struct tcptw *tw, int flags)
1782 {
1783 	struct inpcb *inp = tw->tw_inpcb;
1784 	struct tcphdr *th;
1785 	struct mbuf *m;
1786 	struct ip *ip = NULL;
1787 	u_int8_t *optp;
1788 	u_int hdrlen, optlen;
1789 	int error;
1790 #ifdef INET6
1791 	struct ip6_hdr *ip6 = NULL;
1792 	int isipv6 = inp->inp_inc.inc_isipv6;
1793 #endif
1794 
1795 	INP_LOCK_ASSERT(inp);
1796 
1797 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1798 	if (m == NULL)
1799 		return (ENOBUFS);
1800 	m->m_data += max_linkhdr;
1801 
1802 #ifdef MAC
1803 	mac_create_mbuf_from_inpcb(inp, m);
1804 #endif
1805 
1806 #ifdef INET6
1807 	if (isipv6) {
1808 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1809 		ip6 = mtod(m, struct ip6_hdr *);
1810 		th = (struct tcphdr *)(ip6 + 1);
1811 		tcpip_fillheaders(inp, ip6, th);
1812 	} else
1813 #endif
1814 	{
1815 		hdrlen = sizeof(struct tcpiphdr);
1816 		ip = mtod(m, struct ip *);
1817 		th = (struct tcphdr *)(ip + 1);
1818 		tcpip_fillheaders(inp, ip, th);
1819 	}
1820 	optp = (u_int8_t *)(th + 1);
1821 
1822 	/*
1823 	 * Send a timestamp and echo-reply if both our side and our peer
1824 	 * have sent timestamps in our SYN's and this is not a RST.
1825 	 */
1826 	if (tw->t_recent && flags == TH_ACK) {
1827 		u_int32_t *lp = (u_int32_t *)optp;
1828 
1829 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1830 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1831 		*lp++ = htonl(ticks);
1832 		*lp   = htonl(tw->t_recent);
1833 		optp += TCPOLEN_TSTAMP_APPA;
1834 	}
1835 
1836 	optlen = optp - (u_int8_t *)(th + 1);
1837 
1838 	m->m_len = hdrlen + optlen;
1839 	m->m_pkthdr.len = m->m_len;
1840 
1841 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1842 
1843 	th->th_seq = htonl(tw->snd_nxt);
1844 	th->th_ack = htonl(tw->rcv_nxt);
1845 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1846 	th->th_flags = flags;
1847 	th->th_win = htons(tw->last_win);
1848 
1849 #ifdef INET6
1850 	if (isipv6) {
1851 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1852 		    sizeof(struct tcphdr) + optlen);
1853 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1854 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1855 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1856 	} else
1857 #endif
1858 	{
1859 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1860 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1861 		m->m_pkthdr.csum_flags = CSUM_TCP;
1862 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1863 		ip->ip_len = m->m_pkthdr.len;
1864 		if (path_mtu_discovery)
1865 			ip->ip_off |= IP_DF;
1866 		error = ip_output(m, inp->inp_options, NULL,
1867 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1868 		    NULL, inp);
1869 	}
1870 	if (flags & TH_ACK)
1871 		tcpstat.tcps_sndacks++;
1872 	else
1873 		tcpstat.tcps_sndctrl++;
1874 	tcpstat.tcps_sndtotal++;
1875 	return (error);
1876 }
1877 
1878 /*
1879  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1880  *
1881  * This code attempts to calculate the bandwidth-delay product as a
1882  * means of determining the optimal window size to maximize bandwidth,
1883  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1884  * routers.  This code also does a fairly good job keeping RTTs in check
1885  * across slow links like modems.  We implement an algorithm which is very
1886  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1887  * transmitter side of a TCP connection and so only effects the transmit
1888  * side of the connection.
1889  *
1890  * BACKGROUND:  TCP makes no provision for the management of buffer space
1891  * at the end points or at the intermediate routers and switches.  A TCP
1892  * stream, whether using NewReno or not, will eventually buffer as
1893  * many packets as it is able and the only reason this typically works is
1894  * due to the fairly small default buffers made available for a connection
1895  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1896  * scaling it is now fairly easy for even a single TCP connection to blow-out
1897  * all available buffer space not only on the local interface, but on
1898  * intermediate routers and switches as well.  NewReno makes a misguided
1899  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1900  * then backing off, then steadily increasing the window again until another
1901  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1902  * is only made worse as network loads increase and the idea of intentionally
1903  * blowing out network buffers is, frankly, a terrible way to manage network
1904  * resources.
1905  *
1906  * It is far better to limit the transmit window prior to the failure
1907  * condition being achieved.  There are two general ways to do this:  First
1908  * you can 'scan' through different transmit window sizes and locate the
1909  * point where the RTT stops increasing, indicating that you have filled the
1910  * pipe, then scan backwards until you note that RTT stops decreasing, then
1911  * repeat ad-infinitum.  This method works in principle but has severe
1912  * implementation issues due to RTT variances, timer granularity, and
1913  * instability in the algorithm which can lead to many false positives and
1914  * create oscillations as well as interact badly with other TCP streams
1915  * implementing the same algorithm.
1916  *
1917  * The second method is to limit the window to the bandwidth delay product
1918  * of the link.  This is the method we implement.  RTT variances and our
1919  * own manipulation of the congestion window, bwnd, can potentially
1920  * destabilize the algorithm.  For this reason we have to stabilize the
1921  * elements used to calculate the window.  We do this by using the minimum
1922  * observed RTT, the long term average of the observed bandwidth, and
1923  * by adding two segments worth of slop.  It isn't perfect but it is able
1924  * to react to changing conditions and gives us a very stable basis on
1925  * which to extend the algorithm.
1926  */
1927 void
1928 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1929 {
1930 	u_long bw;
1931 	u_long bwnd;
1932 	int save_ticks;
1933 
1934 	INP_LOCK_ASSERT(tp->t_inpcb);
1935 
1936 	/*
1937 	 * If inflight_enable is disabled in the middle of a tcp connection,
1938 	 * make sure snd_bwnd is effectively disabled.
1939 	 */
1940 	if (tcp_inflight_enable == 0) {
1941 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1942 		tp->snd_bandwidth = 0;
1943 		return;
1944 	}
1945 
1946 	/*
1947 	 * Figure out the bandwidth.  Due to the tick granularity this
1948 	 * is a very rough number and it MUST be averaged over a fairly
1949 	 * long period of time.  XXX we need to take into account a link
1950 	 * that is not using all available bandwidth, but for now our
1951 	 * slop will ramp us up if this case occurs and the bandwidth later
1952 	 * increases.
1953 	 *
1954 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1955 	 * effectively reset t_bw_rtttime for this case.
1956 	 */
1957 	save_ticks = ticks;
1958 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1959 		return;
1960 
1961 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1962 	    (save_ticks - tp->t_bw_rtttime);
1963 	tp->t_bw_rtttime = save_ticks;
1964 	tp->t_bw_rtseq = ack_seq;
1965 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1966 		return;
1967 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1968 
1969 	tp->snd_bandwidth = bw;
1970 
1971 	/*
1972 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1973 	 * segments.  The additional slop puts us squarely in the sweet
1974 	 * spot and also handles the bandwidth run-up case and stabilization.
1975 	 * Without the slop we could be locking ourselves into a lower
1976 	 * bandwidth.
1977 	 *
1978 	 * Situations Handled:
1979 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1980 	 *	    high speed LANs, allowing larger TCP buffers to be
1981 	 *	    specified, and also does a good job preventing
1982 	 *	    over-queueing of packets over choke points like modems
1983 	 *	    (at least for the transmit side).
1984 	 *
1985 	 *	(2) Is able to handle changing network loads (bandwidth
1986 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1987 	 *	    increases).
1988 	 *
1989 	 *	(3) Theoretically should stabilize in the face of multiple
1990 	 *	    connections implementing the same algorithm (this may need
1991 	 *	    a little work).
1992 	 *
1993 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1994 	 *	    be adjusted with a sysctl but typically only needs to be
1995 	 *	    on very slow connections.  A value no smaller then 5
1996 	 *	    should be used, but only reduce this default if you have
1997 	 *	    no other choice.
1998 	 */
1999 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2000 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2001 #undef USERTT
2002 
2003 	if (tcp_inflight_debug > 0) {
2004 		static int ltime;
2005 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2006 			ltime = ticks;
2007 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2008 			    tp,
2009 			    bw,
2010 			    tp->t_rttbest,
2011 			    tp->t_srtt,
2012 			    bwnd
2013 			);
2014 		}
2015 	}
2016 	if ((long)bwnd < tcp_inflight_min)
2017 		bwnd = tcp_inflight_min;
2018 	if (bwnd > tcp_inflight_max)
2019 		bwnd = tcp_inflight_max;
2020 	if ((long)bwnd < tp->t_maxseg * 2)
2021 		bwnd = tp->t_maxseg * 2;
2022 	tp->snd_bwnd = bwnd;
2023 }
2024 
2025 #ifdef TCP_SIGNATURE
2026 /*
2027  * Callback function invoked by m_apply() to digest TCP segment data
2028  * contained within an mbuf chain.
2029  */
2030 static int
2031 tcp_signature_apply(void *fstate, void *data, u_int len)
2032 {
2033 
2034 	MD5Update(fstate, (u_char *)data, len);
2035 	return (0);
2036 }
2037 
2038 /*
2039  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2040  *
2041  * Parameters:
2042  * m		pointer to head of mbuf chain
2043  * off0		offset to TCP header within the mbuf chain
2044  * len		length of TCP segment data, excluding options
2045  * optlen	length of TCP segment options
2046  * buf		pointer to storage for computed MD5 digest
2047  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2048  *
2049  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2050  * When called from tcp_input(), we can be sure that th_sum has been
2051  * zeroed out and verified already.
2052  *
2053  * This function is for IPv4 use only. Calling this function with an
2054  * IPv6 packet in the mbuf chain will yield undefined results.
2055  *
2056  * Return 0 if successful, otherwise return -1.
2057  *
2058  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2059  * search with the destination IP address, and a 'magic SPI' to be
2060  * determined by the application. This is hardcoded elsewhere to 1179
2061  * right now. Another branch of this code exists which uses the SPD to
2062  * specify per-application flows but it is unstable.
2063  */
2064 int
2065 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2066     u_char *buf, u_int direction)
2067 {
2068 	union sockaddr_union dst;
2069 	struct ippseudo ippseudo;
2070 	MD5_CTX ctx;
2071 	int doff;
2072 	struct ip *ip;
2073 	struct ipovly *ipovly;
2074 	struct secasvar *sav;
2075 	struct tcphdr *th;
2076 	u_short savecsum;
2077 
2078 	KASSERT(m != NULL, ("NULL mbuf chain"));
2079 	KASSERT(buf != NULL, ("NULL signature pointer"));
2080 
2081 	/* Extract the destination from the IP header in the mbuf. */
2082 	ip = mtod(m, struct ip *);
2083 	bzero(&dst, sizeof(union sockaddr_union));
2084 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2085 	dst.sa.sa_family = AF_INET;
2086 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2087 	    ip->ip_src : ip->ip_dst;
2088 
2089 	/* Look up an SADB entry which matches the address of the peer. */
2090 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2091 	if (sav == NULL) {
2092 		printf("%s: SADB lookup failed for %s\n", __func__,
2093 		    inet_ntoa(dst.sin.sin_addr));
2094 		return (EINVAL);
2095 	}
2096 
2097 	MD5Init(&ctx);
2098 	ipovly = (struct ipovly *)ip;
2099 	th = (struct tcphdr *)((u_char *)ip + off0);
2100 	doff = off0 + sizeof(struct tcphdr) + optlen;
2101 
2102 	/*
2103 	 * Step 1: Update MD5 hash with IP pseudo-header.
2104 	 *
2105 	 * XXX The ippseudo header MUST be digested in network byte order,
2106 	 * or else we'll fail the regression test. Assume all fields we've
2107 	 * been doing arithmetic on have been in host byte order.
2108 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2109 	 * tcp_output(), the underlying ip_len member has not yet been set.
2110 	 */
2111 	ippseudo.ippseudo_src = ipovly->ih_src;
2112 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2113 	ippseudo.ippseudo_pad = 0;
2114 	ippseudo.ippseudo_p = IPPROTO_TCP;
2115 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2116 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2117 
2118 	/*
2119 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2120 	 * The TCP checksum must be set to zero.
2121 	 */
2122 	savecsum = th->th_sum;
2123 	th->th_sum = 0;
2124 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2125 	th->th_sum = savecsum;
2126 
2127 	/*
2128 	 * Step 3: Update MD5 hash with TCP segment data.
2129 	 *         Use m_apply() to avoid an early m_pullup().
2130 	 */
2131 	if (len > 0)
2132 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2133 
2134 	/*
2135 	 * Step 4: Update MD5 hash with shared secret.
2136 	 */
2137 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2138 	MD5Final(buf, &ctx);
2139 
2140 	key_sa_recordxfer(sav, m);
2141 	KEY_FREESAV(&sav);
2142 	return (0);
2143 }
2144 #endif /* TCP_SIGNATURE */
2145 
2146 static int
2147 sysctl_drop(SYSCTL_HANDLER_ARGS)
2148 {
2149 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2150 	struct sockaddr_storage addrs[2];
2151 	struct inpcb *inp;
2152 	struct tcpcb *tp;
2153 	struct tcptw *tw;
2154 	struct sockaddr_in *fin, *lin;
2155 #ifdef INET6
2156 	struct sockaddr_in6 *fin6, *lin6;
2157 	struct in6_addr f6, l6;
2158 #endif
2159 	int error;
2160 
2161 	inp = NULL;
2162 	fin = lin = NULL;
2163 #ifdef INET6
2164 	fin6 = lin6 = NULL;
2165 #endif
2166 	error = 0;
2167 
2168 	if (req->oldptr != NULL || req->oldlen != 0)
2169 		return (EINVAL);
2170 	if (req->newptr == NULL)
2171 		return (EPERM);
2172 	if (req->newlen < sizeof(addrs))
2173 		return (ENOMEM);
2174 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2175 	if (error)
2176 		return (error);
2177 
2178 	switch (addrs[0].ss_family) {
2179 #ifdef INET6
2180 	case AF_INET6:
2181 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2182 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2183 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2184 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2185 			return (EINVAL);
2186 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2187 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2188 				return (EINVAL);
2189 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2190 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2191 			fin = (struct sockaddr_in *)&addrs[0];
2192 			lin = (struct sockaddr_in *)&addrs[1];
2193 			break;
2194 		}
2195 		error = sa6_embedscope(fin6, ip6_use_defzone);
2196 		if (error)
2197 			return (error);
2198 		error = sa6_embedscope(lin6, ip6_use_defzone);
2199 		if (error)
2200 			return (error);
2201 		break;
2202 #endif
2203 	case AF_INET:
2204 		fin = (struct sockaddr_in *)&addrs[0];
2205 		lin = (struct sockaddr_in *)&addrs[1];
2206 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2207 		    lin->sin_len != sizeof(struct sockaddr_in))
2208 			return (EINVAL);
2209 		break;
2210 	default:
2211 		return (EINVAL);
2212 	}
2213 	INP_INFO_WLOCK(&tcbinfo);
2214 	switch (addrs[0].ss_family) {
2215 #ifdef INET6
2216 	case AF_INET6:
2217 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2218 		    &l6, lin6->sin6_port, 0, NULL);
2219 		break;
2220 #endif
2221 	case AF_INET:
2222 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2223 		    lin->sin_addr, lin->sin_port, 0, NULL);
2224 		break;
2225 	}
2226 	if (inp != NULL) {
2227 		INP_LOCK(inp);
2228 		if ((tw = intotw(inp)) &&
2229 		    (inp->inp_vflag & INP_TIMEWAIT) != 0) {
2230 			(void) tcp_twclose(tw, 0);
2231 		} else if ((tp = intotcpcb(inp)) &&
2232 		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2233 			tp = tcp_drop(tp, ECONNABORTED);
2234 			if (tp != NULL)
2235 				INP_UNLOCK(inp);
2236 		} else
2237 			INP_UNLOCK(inp);
2238 	} else
2239 		error = ESRCH;
2240 	INP_INFO_WUNLOCK(&tcbinfo);
2241 	return (error);
2242 }
2243 
2244 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2245     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2246     0, sysctl_drop, "", "Drop TCP connection");
2247