1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <stddef.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kernel.h> 47 #include <sys/sysctl.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #ifdef INET6 51 #include <sys/domain.h> 52 #endif 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 58 #include <vm/vm_zone.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #define _IP_VHL 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #ifdef INET6 68 #include <netinet/ip6.h> 69 #endif 70 #include <netinet/in_pcb.h> 71 #ifdef INET6 72 #include <netinet6/in6_pcb.h> 73 #endif 74 #include <netinet/in_var.h> 75 #include <netinet/ip_var.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #endif 79 #include <netinet/tcp.h> 80 #include <netinet/tcp_fsm.h> 81 #include <netinet/tcp_seq.h> 82 #include <netinet/tcp_timer.h> 83 #include <netinet/tcp_var.h> 84 #ifdef INET6 85 #include <netinet6/tcp6_var.h> 86 #endif 87 #include <netinet/tcpip.h> 88 #ifdef TCPDEBUG 89 #include <netinet/tcp_debug.h> 90 #endif 91 #include <netinet6/ip6protosw.h> 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #endif /*IPSEC*/ 96 97 #include <machine/in_cksum.h> 98 99 int tcp_mssdflt = TCP_MSS; 100 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 101 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 102 103 #ifdef INET6 104 int tcp_v6mssdflt = TCP6_MSS; 105 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 106 CTLFLAG_RW, &tcp_v6mssdflt , 0, 107 "Default TCP Maximum Segment Size for IPv6"); 108 #endif 109 110 #if 0 111 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 112 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 113 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 114 #endif 115 116 static int tcp_do_rfc1323 = 1; 117 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 118 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 119 120 static int tcp_do_rfc1644 = 0; 121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 122 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 123 124 static int tcp_tcbhashsize = 0; 125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 126 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 127 128 static int do_tcpdrain = 1; 129 SYSCTL_INT(_debug, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 130 "Enable non Net3 compliant tcp_drain"); 131 132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 133 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 134 135 static void tcp_cleartaocache __P((void)); 136 static void tcp_notify __P((struct inpcb *, int)); 137 138 /* 139 * Target size of TCP PCB hash tables. Must be a power of two. 140 * 141 * Note that this can be overridden by the kernel environment 142 * variable net.inet.tcp.tcbhashsize 143 */ 144 #ifndef TCBHASHSIZE 145 #define TCBHASHSIZE 512 146 #endif 147 148 /* 149 * This is the actual shape of what we allocate using the zone 150 * allocator. Doing it this way allows us to protect both structures 151 * using the same generation count, and also eliminates the overhead 152 * of allocating tcpcbs separately. By hiding the structure here, 153 * we avoid changing most of the rest of the code (although it needs 154 * to be changed, eventually, for greater efficiency). 155 */ 156 #define ALIGNMENT 32 157 #define ALIGNM1 (ALIGNMENT - 1) 158 struct inp_tp { 159 union { 160 struct inpcb inp; 161 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 162 } inp_tp_u; 163 struct tcpcb tcb; 164 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 165 struct callout inp_tp_delack; 166 }; 167 #undef ALIGNMENT 168 #undef ALIGNM1 169 170 /* 171 * Tcp initialization 172 */ 173 void 174 tcp_init() 175 { 176 int hashsize; 177 178 tcp_iss = random(); /* wrong, but better than a constant */ 179 tcp_ccgen = 1; 180 tcp_cleartaocache(); 181 182 tcp_delacktime = TCPTV_DELACK; 183 tcp_keepinit = TCPTV_KEEP_INIT; 184 tcp_keepidle = TCPTV_KEEP_IDLE; 185 tcp_keepintvl = TCPTV_KEEPINTVL; 186 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 187 tcp_msl = TCPTV_MSL; 188 189 LIST_INIT(&tcb); 190 tcbinfo.listhead = &tcb; 191 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize); 192 if (!powerof2(hashsize)) { 193 printf("WARNING: TCB hash size not a power of 2\n"); 194 hashsize = 512; /* safe default */ 195 } 196 tcp_tcbhashsize = hashsize; 197 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 198 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 199 &tcbinfo.porthashmask); 200 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets, 201 ZONE_INTERRUPT, 0); 202 #ifdef INET6 203 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 204 #else /* INET6 */ 205 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 206 #endif /* INET6 */ 207 if (max_protohdr < TCP_MINPROTOHDR) 208 max_protohdr = TCP_MINPROTOHDR; 209 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 210 panic("tcp_init"); 211 #undef TCP_MINPROTOHDR 212 } 213 214 /* 215 * Create template to be used to send tcp packets on a connection. 216 * Call after host entry created, allocates an mbuf and fills 217 * in a skeletal tcp/ip header, minimizing the amount of work 218 * necessary when the connection is used. 219 */ 220 struct tcptemp * 221 tcp_template(tp) 222 struct tcpcb *tp; 223 { 224 register struct inpcb *inp = tp->t_inpcb; 225 register struct mbuf *m; 226 register struct tcptemp *n; 227 228 if ((n = tp->t_template) == 0) { 229 m = m_get(M_DONTWAIT, MT_HEADER); 230 if (m == NULL) 231 return (0); 232 m->m_len = sizeof (struct tcptemp); 233 n = mtod(m, struct tcptemp *); 234 } 235 #ifdef INET6 236 if ((inp->inp_vflag & INP_IPV6) != 0) { 237 register struct ip6_hdr *ip6; 238 239 ip6 = (struct ip6_hdr *)n->tt_ipgen; 240 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 241 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 242 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 243 (IPV6_VERSION & IPV6_VERSION_MASK); 244 ip6->ip6_nxt = IPPROTO_TCP; 245 ip6->ip6_plen = sizeof(struct tcphdr); 246 ip6->ip6_src = inp->in6p_laddr; 247 ip6->ip6_dst = inp->in6p_faddr; 248 n->tt_t.th_sum = 0; 249 } else 250 #endif 251 { 252 struct ip *ip = (struct ip *)n->tt_ipgen; 253 254 bzero(ip, sizeof(struct ip)); /* XXX overkill? */ 255 ip->ip_vhl = IP_VHL_BORING; 256 ip->ip_p = IPPROTO_TCP; 257 ip->ip_src = inp->inp_laddr; 258 ip->ip_dst = inp->inp_faddr; 259 n->tt_t.th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 260 htons(sizeof(struct tcphdr) + IPPROTO_TCP)); 261 } 262 n->tt_t.th_sport = inp->inp_lport; 263 n->tt_t.th_dport = inp->inp_fport; 264 n->tt_t.th_seq = 0; 265 n->tt_t.th_ack = 0; 266 n->tt_t.th_x2 = 0; 267 n->tt_t.th_off = 5; 268 n->tt_t.th_flags = 0; 269 n->tt_t.th_win = 0; 270 n->tt_t.th_urp = 0; 271 return (n); 272 } 273 274 /* 275 * Send a single message to the TCP at address specified by 276 * the given TCP/IP header. If m == 0, then we make a copy 277 * of the tcpiphdr at ti and send directly to the addressed host. 278 * This is used to force keep alive messages out using the TCP 279 * template for a connection tp->t_template. If flags are given 280 * then we send a message back to the TCP which originated the 281 * segment ti, and discard the mbuf containing it and any other 282 * attached mbufs. 283 * 284 * In any case the ack and sequence number of the transmitted 285 * segment are as specified by the parameters. 286 * 287 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 288 */ 289 void 290 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 291 struct tcpcb *tp; 292 void *ipgen; 293 register struct tcphdr *th; 294 register struct mbuf *m; 295 tcp_seq ack, seq; 296 int flags; 297 { 298 register int tlen; 299 int win = 0; 300 struct route *ro = 0; 301 struct route sro; 302 struct ip *ip; 303 struct tcphdr *nth; 304 #ifdef INET6 305 struct route_in6 *ro6 = 0; 306 struct route_in6 sro6; 307 struct ip6_hdr *ip6; 308 int isipv6; 309 #endif /* INET6 */ 310 int ipflags = 0; 311 312 #ifdef INET6 313 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 314 ip6 = ipgen; 315 #endif /* INET6 */ 316 ip = ipgen; 317 318 if (tp) { 319 if (!(flags & TH_RST)) { 320 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 321 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 322 win = (long)TCP_MAXWIN << tp->rcv_scale; 323 } 324 #ifdef INET6 325 if (isipv6) 326 ro6 = &tp->t_inpcb->in6p_route; 327 else 328 #endif /* INET6 */ 329 ro = &tp->t_inpcb->inp_route; 330 } else { 331 #ifdef INET6 332 if (isipv6) { 333 ro6 = &sro6; 334 bzero(ro6, sizeof *ro6); 335 } else 336 #endif /* INET6 */ 337 { 338 ro = &sro; 339 bzero(ro, sizeof *ro); 340 } 341 } 342 if (m == 0) { 343 m = m_gethdr(M_DONTWAIT, MT_HEADER); 344 if (m == NULL) 345 return; 346 #ifdef TCP_COMPAT_42 347 tlen = 1; 348 #else 349 tlen = 0; 350 #endif 351 m->m_data += max_linkhdr; 352 #ifdef INET6 353 if (isipv6) { 354 bcopy((caddr_t)ip6, mtod(m, caddr_t), 355 sizeof(struct ip6_hdr)); 356 ip6 = mtod(m, struct ip6_hdr *); 357 nth = (struct tcphdr *)(ip6 + 1); 358 } else 359 #endif /* INET6 */ 360 { 361 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 362 ip = mtod(m, struct ip *); 363 nth = (struct tcphdr *)(ip + 1); 364 } 365 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 366 flags = TH_ACK; 367 } else { 368 m_freem(m->m_next); 369 m->m_next = 0; 370 m->m_data = (caddr_t)ipgen; 371 /* m_len is set later */ 372 tlen = 0; 373 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 374 #ifdef INET6 375 if (isipv6) { 376 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 377 nth = (struct tcphdr *)(ip6 + 1); 378 } else 379 #endif /* INET6 */ 380 { 381 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 382 nth = (struct tcphdr *)(ip + 1); 383 } 384 if (th != nth) { 385 /* 386 * this is usually a case when an extension header 387 * exists between the IPv6 header and the 388 * TCP header. 389 */ 390 nth->th_sport = th->th_sport; 391 nth->th_dport = th->th_dport; 392 } 393 xchg(nth->th_dport, nth->th_sport, n_short); 394 #undef xchg 395 } 396 #ifdef INET6 397 if (isipv6) { 398 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 399 tlen)); 400 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 401 } else 402 #endif 403 { 404 tlen += sizeof (struct tcpiphdr); 405 ip->ip_len = tlen; 406 ip->ip_ttl = ip_defttl; 407 } 408 m->m_len = tlen; 409 m->m_pkthdr.len = tlen; 410 m->m_pkthdr.rcvif = (struct ifnet *) 0; 411 nth->th_seq = htonl(seq); 412 nth->th_ack = htonl(ack); 413 nth->th_x2 = 0; 414 nth->th_off = sizeof (struct tcphdr) >> 2; 415 nth->th_flags = flags; 416 if (tp) 417 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 418 else 419 nth->th_win = htons((u_short)win); 420 nth->th_urp = 0; 421 #ifdef INET6 422 if (isipv6) { 423 nth->th_sum = 0; 424 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 425 sizeof(struct ip6_hdr), 426 tlen - sizeof(struct ip6_hdr)); 427 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 428 ro6 && ro6->ro_rt ? 429 ro6->ro_rt->rt_ifp : 430 NULL); 431 } else 432 #endif /* INET6 */ 433 { 434 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 435 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 436 m->m_pkthdr.csum_flags = CSUM_TCP; 437 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 438 } 439 #ifdef TCPDEBUG 440 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 441 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 442 #endif 443 #ifdef IPSEC 444 if (tp != NULL) { 445 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket; 446 ipflags |= 447 #ifdef INET6 448 isipv6 ? IPV6_SOCKINMRCVIF : 449 #endif 450 IP_SOCKINMRCVIF; 451 } 452 #endif 453 #ifdef INET6 454 if (isipv6) { 455 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 456 if (ro6 == &sro6 && ro6->ro_rt) { 457 RTFREE(ro6->ro_rt); 458 ro6->ro_rt = NULL; 459 } 460 } else 461 #endif /* INET6 */ 462 { 463 (void) ip_output(m, NULL, ro, ipflags, NULL); 464 if (ro == &sro && ro->ro_rt) { 465 RTFREE(ro->ro_rt); 466 ro->ro_rt = NULL; 467 } 468 } 469 } 470 471 /* 472 * Create a new TCP control block, making an 473 * empty reassembly queue and hooking it to the argument 474 * protocol control block. The `inp' parameter must have 475 * come from the zone allocator set up in tcp_init(). 476 */ 477 struct tcpcb * 478 tcp_newtcpcb(inp) 479 struct inpcb *inp; 480 { 481 struct inp_tp *it; 482 register struct tcpcb *tp; 483 #ifdef INET6 484 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 485 #endif /* INET6 */ 486 487 it = (struct inp_tp *)inp; 488 tp = &it->tcb; 489 bzero((char *) tp, sizeof(struct tcpcb)); 490 LIST_INIT(&tp->t_segq); 491 tp->t_maxseg = tp->t_maxopd = 492 #ifdef INET6 493 isipv6 ? tcp_v6mssdflt : 494 #endif /* INET6 */ 495 tcp_mssdflt; 496 497 /* Set up our timeouts. */ 498 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt); 499 callout_init(tp->tt_persist = &it->inp_tp_persist); 500 callout_init(tp->tt_keep = &it->inp_tp_keep); 501 callout_init(tp->tt_2msl = &it->inp_tp_2msl); 502 callout_init(tp->tt_delack = &it->inp_tp_delack); 503 504 if (tcp_do_rfc1323) 505 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 506 if (tcp_do_rfc1644) 507 tp->t_flags |= TF_REQ_CC; 508 tp->t_inpcb = inp; /* XXX */ 509 /* 510 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 511 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 512 * reasonable initial retransmit time. 513 */ 514 tp->t_srtt = TCPTV_SRTTBASE; 515 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 516 tp->t_rttmin = TCPTV_MIN; 517 tp->t_rxtcur = TCPTV_RTOBASE; 518 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 519 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 520 tp->t_rcvtime = ticks; 521 /* 522 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 523 * because the socket may be bound to an IPv6 wildcard address, 524 * which may match an IPv4-mapped IPv6 address. 525 */ 526 inp->inp_ip_ttl = ip_defttl; 527 inp->inp_ppcb = (caddr_t)tp; 528 return (tp); /* XXX */ 529 } 530 531 /* 532 * Drop a TCP connection, reporting 533 * the specified error. If connection is synchronized, 534 * then send a RST to peer. 535 */ 536 struct tcpcb * 537 tcp_drop(tp, errno) 538 register struct tcpcb *tp; 539 int errno; 540 { 541 struct socket *so = tp->t_inpcb->inp_socket; 542 543 if (TCPS_HAVERCVDSYN(tp->t_state)) { 544 tp->t_state = TCPS_CLOSED; 545 (void) tcp_output(tp); 546 tcpstat.tcps_drops++; 547 } else 548 tcpstat.tcps_conndrops++; 549 if (errno == ETIMEDOUT && tp->t_softerror) 550 errno = tp->t_softerror; 551 so->so_error = errno; 552 return (tcp_close(tp)); 553 } 554 555 /* 556 * Close a TCP control block: 557 * discard all space held by the tcp 558 * discard internet protocol block 559 * wake up any sleepers 560 */ 561 struct tcpcb * 562 tcp_close(tp) 563 register struct tcpcb *tp; 564 { 565 register struct tseg_qent *q; 566 struct inpcb *inp = tp->t_inpcb; 567 struct socket *so = inp->inp_socket; 568 #ifdef INET6 569 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 570 #endif /* INET6 */ 571 register struct rtentry *rt; 572 int dosavessthresh; 573 574 /* 575 * Make sure that all of our timers are stopped before we 576 * delete the PCB. 577 */ 578 callout_stop(tp->tt_rexmt); 579 callout_stop(tp->tt_persist); 580 callout_stop(tp->tt_keep); 581 callout_stop(tp->tt_2msl); 582 callout_stop(tp->tt_delack); 583 584 /* 585 * If we got enough samples through the srtt filter, 586 * save the rtt and rttvar in the routing entry. 587 * 'Enough' is arbitrarily defined as the 16 samples. 588 * 16 samples is enough for the srtt filter to converge 589 * to within 5% of the correct value; fewer samples and 590 * we could save a very bogus rtt. 591 * 592 * Don't update the default route's characteristics and don't 593 * update anything that the user "locked". 594 */ 595 if (tp->t_rttupdated >= 16) { 596 register u_long i = 0; 597 #ifdef INET6 598 if (isipv6) { 599 struct sockaddr_in6 *sin6; 600 601 if ((rt = inp->in6p_route.ro_rt) == NULL) 602 goto no_valid_rt; 603 sin6 = (struct sockaddr_in6 *)rt_key(rt); 604 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 605 goto no_valid_rt; 606 } 607 else 608 #endif /* INET6 */ 609 if ((rt = inp->inp_route.ro_rt) == NULL || 610 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 611 == INADDR_ANY) 612 goto no_valid_rt; 613 614 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 615 i = tp->t_srtt * 616 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 617 if (rt->rt_rmx.rmx_rtt && i) 618 /* 619 * filter this update to half the old & half 620 * the new values, converting scale. 621 * See route.h and tcp_var.h for a 622 * description of the scaling constants. 623 */ 624 rt->rt_rmx.rmx_rtt = 625 (rt->rt_rmx.rmx_rtt + i) / 2; 626 else 627 rt->rt_rmx.rmx_rtt = i; 628 tcpstat.tcps_cachedrtt++; 629 } 630 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 631 i = tp->t_rttvar * 632 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 633 if (rt->rt_rmx.rmx_rttvar && i) 634 rt->rt_rmx.rmx_rttvar = 635 (rt->rt_rmx.rmx_rttvar + i) / 2; 636 else 637 rt->rt_rmx.rmx_rttvar = i; 638 tcpstat.tcps_cachedrttvar++; 639 } 640 /* 641 * The old comment here said: 642 * update the pipelimit (ssthresh) if it has been updated 643 * already or if a pipesize was specified & the threshhold 644 * got below half the pipesize. I.e., wait for bad news 645 * before we start updating, then update on both good 646 * and bad news. 647 * 648 * But we want to save the ssthresh even if no pipesize is 649 * specified explicitly in the route, because such 650 * connections still have an implicit pipesize specified 651 * by the global tcp_sendspace. In the absence of a reliable 652 * way to calculate the pipesize, it will have to do. 653 */ 654 i = tp->snd_ssthresh; 655 if (rt->rt_rmx.rmx_sendpipe != 0) 656 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 657 else 658 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 659 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 660 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 661 || dosavessthresh) { 662 /* 663 * convert the limit from user data bytes to 664 * packets then to packet data bytes. 665 */ 666 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 667 if (i < 2) 668 i = 2; 669 i *= (u_long)(tp->t_maxseg + 670 #ifdef INET6 671 (isipv6 ? sizeof (struct ip6_hdr) + 672 sizeof (struct tcphdr) : 673 #endif 674 sizeof (struct tcpiphdr) 675 #ifdef INET6 676 ) 677 #endif 678 ); 679 if (rt->rt_rmx.rmx_ssthresh) 680 rt->rt_rmx.rmx_ssthresh = 681 (rt->rt_rmx.rmx_ssthresh + i) / 2; 682 else 683 rt->rt_rmx.rmx_ssthresh = i; 684 tcpstat.tcps_cachedssthresh++; 685 } 686 } 687 no_valid_rt: 688 /* free the reassembly queue, if any */ 689 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 690 LIST_REMOVE(q, tqe_q); 691 m_freem(q->tqe_m); 692 FREE(q, M_TSEGQ); 693 } 694 if (tp->t_template) 695 (void) m_free(dtom(tp->t_template)); 696 inp->inp_ppcb = NULL; 697 soisdisconnected(so); 698 #ifdef INET6 699 if (INP_CHECK_SOCKAF(so, AF_INET6)) 700 in6_pcbdetach(inp); 701 else 702 #endif /* INET6 */ 703 in_pcbdetach(inp); 704 tcpstat.tcps_closed++; 705 return ((struct tcpcb *)0); 706 } 707 708 void 709 tcp_drain() 710 { 711 if (do_tcpdrain) 712 { 713 struct inpcb *inpb; 714 struct tcpcb *tcpb; 715 struct tseg_qent *te; 716 717 /* 718 * Walk the tcpbs, if existing, and flush the reassembly queue, 719 * if there is one... 720 * XXX: The "Net/3" implementation doesn't imply that the TCP 721 * reassembly queue should be flushed, but in a situation 722 * where we're really low on mbufs, this is potentially 723 * usefull. 724 */ 725 for (inpb = tcbinfo.listhead->lh_first; inpb; 726 inpb = inpb->inp_list.le_next) { 727 if ((tcpb = intotcpcb(inpb))) { 728 while ((te = LIST_FIRST(&tcpb->t_segq)) 729 != NULL) { 730 LIST_REMOVE(te, tqe_q); 731 m_freem(te->tqe_m); 732 FREE(te, M_TSEGQ); 733 } 734 } 735 } 736 737 } 738 } 739 740 /* 741 * Notify a tcp user of an asynchronous error; 742 * store error as soft error, but wake up user 743 * (for now, won't do anything until can select for soft error). 744 */ 745 static void 746 tcp_notify(inp, error) 747 struct inpcb *inp; 748 int error; 749 { 750 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 751 register struct socket *so = inp->inp_socket; 752 753 /* 754 * Ignore some errors if we are hooked up. 755 * If connection hasn't completed, has retransmitted several times, 756 * and receives a second error, give up now. This is better 757 * than waiting a long time to establish a connection that 758 * can never complete. 759 */ 760 if (tp->t_state == TCPS_ESTABLISHED && 761 (error == EHOSTUNREACH || error == ENETUNREACH || 762 error == EHOSTDOWN)) { 763 return; 764 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 765 tp->t_softerror) 766 so->so_error = error; 767 else 768 tp->t_softerror = error; 769 wakeup((caddr_t) &so->so_timeo); 770 sorwakeup(so); 771 sowwakeup(so); 772 } 773 774 static int 775 tcp_pcblist SYSCTL_HANDLER_ARGS 776 { 777 int error, i, n, s; 778 struct inpcb *inp, **inp_list; 779 inp_gen_t gencnt; 780 struct xinpgen xig; 781 782 /* 783 * The process of preparing the TCB list is too time-consuming and 784 * resource-intensive to repeat twice on every request. 785 */ 786 if (req->oldptr == 0) { 787 n = tcbinfo.ipi_count; 788 req->oldidx = 2 * (sizeof xig) 789 + (n + n/8) * sizeof(struct xtcpcb); 790 return 0; 791 } 792 793 if (req->newptr != 0) 794 return EPERM; 795 796 /* 797 * OK, now we're committed to doing something. 798 */ 799 s = splnet(); 800 gencnt = tcbinfo.ipi_gencnt; 801 n = tcbinfo.ipi_count; 802 splx(s); 803 804 xig.xig_len = sizeof xig; 805 xig.xig_count = n; 806 xig.xig_gen = gencnt; 807 xig.xig_sogen = so_gencnt; 808 error = SYSCTL_OUT(req, &xig, sizeof xig); 809 if (error) 810 return error; 811 812 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 813 if (inp_list == 0) 814 return ENOMEM; 815 816 s = splnet(); 817 for (inp = tcbinfo.listhead->lh_first, i = 0; inp && i < n; 818 inp = inp->inp_list.le_next) { 819 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp)) 820 inp_list[i++] = inp; 821 } 822 splx(s); 823 n = i; 824 825 error = 0; 826 for (i = 0; i < n; i++) { 827 inp = inp_list[i]; 828 if (inp->inp_gencnt <= gencnt) { 829 struct xtcpcb xt; 830 caddr_t inp_ppcb; 831 xt.xt_len = sizeof xt; 832 /* XXX should avoid extra copy */ 833 bcopy(inp, &xt.xt_inp, sizeof *inp); 834 inp_ppcb = inp->inp_ppcb; 835 if (inp_ppcb != NULL) 836 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 837 else 838 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 839 if (inp->inp_socket) 840 sotoxsocket(inp->inp_socket, &xt.xt_socket); 841 error = SYSCTL_OUT(req, &xt, sizeof xt); 842 } 843 } 844 if (!error) { 845 /* 846 * Give the user an updated idea of our state. 847 * If the generation differs from what we told 848 * her before, she knows that something happened 849 * while we were processing this request, and it 850 * might be necessary to retry. 851 */ 852 s = splnet(); 853 xig.xig_gen = tcbinfo.ipi_gencnt; 854 xig.xig_sogen = so_gencnt; 855 xig.xig_count = tcbinfo.ipi_count; 856 splx(s); 857 error = SYSCTL_OUT(req, &xig, sizeof xig); 858 } 859 free(inp_list, M_TEMP); 860 return error; 861 } 862 863 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 864 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 865 866 static int 867 tcp_getcred SYSCTL_HANDLER_ARGS 868 { 869 struct sockaddr_in addrs[2]; 870 struct inpcb *inp; 871 int error, s; 872 873 error = suser(req->p); 874 if (error) 875 return (error); 876 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 877 if (error) 878 return (error); 879 s = splnet(); 880 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 881 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 882 if (inp == NULL || inp->inp_socket == NULL) { 883 error = ENOENT; 884 goto out; 885 } 886 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred)); 887 out: 888 splx(s); 889 return (error); 890 } 891 892 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 893 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection"); 894 895 #ifdef INET6 896 static int 897 tcp6_getcred SYSCTL_HANDLER_ARGS 898 { 899 struct sockaddr_in6 addrs[2]; 900 struct inpcb *inp; 901 int error, s, mapped = 0; 902 903 error = suser(req->p); 904 if (error) 905 return (error); 906 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 907 if (error) 908 return (error); 909 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 910 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 911 mapped = 1; 912 else 913 return (EINVAL); 914 } 915 s = splnet(); 916 if (mapped == 1) 917 inp = in_pcblookup_hash(&tcbinfo, 918 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 919 addrs[1].sin6_port, 920 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 921 addrs[0].sin6_port, 922 0, NULL); 923 else 924 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 925 addrs[1].sin6_port, 926 &addrs[0].sin6_addr, addrs[0].sin6_port, 927 0, NULL); 928 if (inp == NULL || inp->inp_socket == NULL) { 929 error = ENOENT; 930 goto out; 931 } 932 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, 933 sizeof(struct ucred)); 934 out: 935 splx(s); 936 return (error); 937 } 938 939 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 940 0, 0, 941 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection"); 942 #endif 943 944 945 void 946 tcp_ctlinput(cmd, sa, vip) 947 int cmd; 948 struct sockaddr *sa; 949 void *vip; 950 { 951 register struct ip *ip = vip; 952 register struct tcphdr *th; 953 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 954 955 if (cmd == PRC_QUENCH) 956 notify = tcp_quench; 957 else if (cmd == PRC_MSGSIZE) 958 notify = tcp_mtudisc; 959 else if (!PRC_IS_REDIRECT(cmd) && 960 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)) 961 return; 962 if (ip) { 963 th = (struct tcphdr *)((caddr_t)ip 964 + (IP_VHL_HL(ip->ip_vhl) << 2)); 965 in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport, 966 cmd, notify); 967 } else 968 in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify); 969 } 970 971 #ifdef INET6 972 void 973 tcp6_ctlinput(cmd, sa, d) 974 int cmd; 975 struct sockaddr *sa; 976 void *d; 977 { 978 register struct tcphdr *thp; 979 struct tcphdr th; 980 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 981 struct sockaddr_in6 sa6; 982 struct ip6_hdr *ip6; 983 struct mbuf *m; 984 int off; 985 986 if (sa->sa_family != AF_INET6 || 987 sa->sa_len != sizeof(struct sockaddr_in6)) 988 return; 989 990 if (cmd == PRC_QUENCH) 991 notify = tcp_quench; 992 else if (cmd == PRC_MSGSIZE) 993 notify = tcp_mtudisc; 994 else if (!PRC_IS_REDIRECT(cmd) && 995 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 996 return; 997 998 /* if the parameter is from icmp6, decode it. */ 999 if (d != NULL) { 1000 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d; 1001 m = ip6cp->ip6c_m; 1002 ip6 = ip6cp->ip6c_ip6; 1003 off = ip6cp->ip6c_off; 1004 } else { 1005 m = NULL; 1006 ip6 = NULL; 1007 } 1008 1009 /* 1010 * Translate addresses into internal form. 1011 * Sa check if it is AF_INET6 is done at the top of this funciton. 1012 */ 1013 sa6 = *(struct sockaddr_in6 *)sa; 1014 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL && 1015 m->m_pkthdr.rcvif != NULL) 1016 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1017 1018 if (ip6) { 1019 /* 1020 * XXX: We assume that when IPV6 is non NULL, 1021 * M and OFF are valid. 1022 */ 1023 struct in6_addr s; 1024 1025 /* translate addresses into internal form */ 1026 memcpy(&s, &ip6->ip6_src, sizeof(s)); 1027 if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL && 1028 m->m_pkthdr.rcvif != NULL) 1029 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1030 1031 if (m->m_len < off + sizeof(*thp)) { 1032 /* 1033 * this should be rare case 1034 * because now MINCLSIZE is "(MHLEN + 1)", 1035 * so we compromise on this copy... 1036 */ 1037 m_copydata(m, off, sizeof(th), (caddr_t)&th); 1038 thp = &th; 1039 } else 1040 thp = (struct tcphdr *)(mtod(m, caddr_t) + off); 1041 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport, 1042 &s, thp->th_sport, cmd, notify); 1043 } else 1044 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr, 1045 0, cmd, notify); 1046 } 1047 #endif /* INET6 */ 1048 1049 /* 1050 * When a source quench is received, close congestion window 1051 * to one segment. We will gradually open it again as we proceed. 1052 */ 1053 void 1054 tcp_quench(inp, errno) 1055 struct inpcb *inp; 1056 int errno; 1057 { 1058 struct tcpcb *tp = intotcpcb(inp); 1059 1060 if (tp) 1061 tp->snd_cwnd = tp->t_maxseg; 1062 } 1063 1064 /* 1065 * When `need fragmentation' ICMP is received, update our idea of the MSS 1066 * based on the new value in the route. Also nudge TCP to send something, 1067 * since we know the packet we just sent was dropped. 1068 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1069 */ 1070 void 1071 tcp_mtudisc(inp, errno) 1072 struct inpcb *inp; 1073 int errno; 1074 { 1075 struct tcpcb *tp = intotcpcb(inp); 1076 struct rtentry *rt; 1077 struct rmxp_tao *taop; 1078 struct socket *so = inp->inp_socket; 1079 int offered; 1080 int mss; 1081 #ifdef INET6 1082 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1083 #endif /* INET6 */ 1084 1085 if (tp) { 1086 #ifdef INET6 1087 if (isipv6) 1088 rt = tcp_rtlookup6(inp); 1089 else 1090 #endif /* INET6 */ 1091 rt = tcp_rtlookup(inp); 1092 if (!rt || !rt->rt_rmx.rmx_mtu) { 1093 tp->t_maxopd = tp->t_maxseg = 1094 #ifdef INET6 1095 isipv6 ? tcp_v6mssdflt : 1096 #endif /* INET6 */ 1097 tcp_mssdflt; 1098 return; 1099 } 1100 taop = rmx_taop(rt->rt_rmx); 1101 offered = taop->tao_mssopt; 1102 mss = rt->rt_rmx.rmx_mtu - 1103 #ifdef INET6 1104 (isipv6 ? 1105 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1106 #endif /* INET6 */ 1107 sizeof(struct tcpiphdr) 1108 #ifdef INET6 1109 ) 1110 #endif /* INET6 */ 1111 ; 1112 1113 if (offered) 1114 mss = min(mss, offered); 1115 /* 1116 * XXX - The above conditional probably violates the TCP 1117 * spec. The problem is that, since we don't know the 1118 * other end's MSS, we are supposed to use a conservative 1119 * default. But, if we do that, then MTU discovery will 1120 * never actually take place, because the conservative 1121 * default is much less than the MTUs typically seen 1122 * on the Internet today. For the moment, we'll sweep 1123 * this under the carpet. 1124 * 1125 * The conservative default might not actually be a problem 1126 * if the only case this occurs is when sending an initial 1127 * SYN with options and data to a host we've never talked 1128 * to before. Then, they will reply with an MSS value which 1129 * will get recorded and the new parameters should get 1130 * recomputed. For Further Study. 1131 */ 1132 if (tp->t_maxopd <= mss) 1133 return; 1134 tp->t_maxopd = mss; 1135 1136 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1137 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1138 mss -= TCPOLEN_TSTAMP_APPA; 1139 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1140 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1141 mss -= TCPOLEN_CC_APPA; 1142 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1143 if (mss > MCLBYTES) 1144 mss &= ~(MCLBYTES-1); 1145 #else 1146 if (mss > MCLBYTES) 1147 mss = mss / MCLBYTES * MCLBYTES; 1148 #endif 1149 if (so->so_snd.sb_hiwat < mss) 1150 mss = so->so_snd.sb_hiwat; 1151 1152 tp->t_maxseg = mss; 1153 1154 tcpstat.tcps_mturesent++; 1155 tp->t_rtttime = 0; 1156 tp->snd_nxt = tp->snd_una; 1157 tcp_output(tp); 1158 } 1159 } 1160 1161 /* 1162 * Look-up the routing entry to the peer of this inpcb. If no route 1163 * is found and it cannot be allocated the return NULL. This routine 1164 * is called by TCP routines that access the rmx structure and by tcp_mss 1165 * to get the interface MTU. 1166 */ 1167 struct rtentry * 1168 tcp_rtlookup(inp) 1169 struct inpcb *inp; 1170 { 1171 struct route *ro; 1172 struct rtentry *rt; 1173 1174 ro = &inp->inp_route; 1175 rt = ro->ro_rt; 1176 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1177 /* No route yet, so try to acquire one */ 1178 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1179 ro->ro_dst.sa_family = AF_INET; 1180 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1181 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1182 inp->inp_faddr; 1183 rtalloc(ro); 1184 rt = ro->ro_rt; 1185 } 1186 } 1187 return rt; 1188 } 1189 1190 #ifdef INET6 1191 struct rtentry * 1192 tcp_rtlookup6(inp) 1193 struct inpcb *inp; 1194 { 1195 struct route_in6 *ro6; 1196 struct rtentry *rt; 1197 1198 ro6 = &inp->in6p_route; 1199 rt = ro6->ro_rt; 1200 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1201 /* No route yet, so try to acquire one */ 1202 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { 1203 ro6->ro_dst.sin6_family = AF_INET6; 1204 ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst); 1205 ro6->ro_dst.sin6_addr = inp->in6p_faddr; 1206 rtalloc((struct route *)ro6); 1207 rt = ro6->ro_rt; 1208 } 1209 } 1210 return rt; 1211 } 1212 #endif /* INET6 */ 1213 1214 #ifdef IPSEC 1215 /* compute ESP/AH header size for TCP, including outer IP header. */ 1216 size_t 1217 ipsec_hdrsiz_tcp(tp) 1218 struct tcpcb *tp; 1219 { 1220 struct inpcb *inp; 1221 struct mbuf *m; 1222 size_t hdrsiz; 1223 struct ip *ip; 1224 #ifdef INET6 1225 struct ip6_hdr *ip6; 1226 #endif /* INET6 */ 1227 struct tcphdr *th; 1228 1229 if (!tp || !tp->t_template || !(inp = tp->t_inpcb)) 1230 return 0; 1231 MGETHDR(m, M_DONTWAIT, MT_DATA); 1232 if (!m) 1233 return 0; 1234 1235 #ifdef INET6 1236 if ((inp->inp_vflag & INP_IPV6) != 0) { 1237 ip6 = mtod(m, struct ip6_hdr *); 1238 th = (struct tcphdr *)(ip6 + 1); 1239 m->m_pkthdr.len = m->m_len = 1240 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1241 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6, 1242 sizeof(struct ip6_hdr)); 1243 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1244 sizeof(struct tcphdr)); 1245 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1246 } else 1247 #endif /* INET6 */ 1248 { 1249 ip = mtod(m, struct ip *); 1250 th = (struct tcphdr *)(ip + 1); 1251 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1252 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip, 1253 sizeof(struct ip)); 1254 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1255 sizeof(struct tcphdr)); 1256 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1257 } 1258 1259 m_free(m); 1260 return hdrsiz; 1261 } 1262 #endif /*IPSEC*/ 1263 1264 /* 1265 * Return a pointer to the cached information about the remote host. 1266 * The cached information is stored in the protocol specific part of 1267 * the route metrics. 1268 */ 1269 struct rmxp_tao * 1270 tcp_gettaocache(inp) 1271 struct inpcb *inp; 1272 { 1273 struct rtentry *rt; 1274 1275 #ifdef INET6 1276 if ((inp->inp_vflag & INP_IPV6) != 0) 1277 rt = tcp_rtlookup6(inp); 1278 else 1279 #endif /* INET6 */ 1280 rt = tcp_rtlookup(inp); 1281 1282 /* Make sure this is a host route and is up. */ 1283 if (rt == NULL || 1284 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1285 return NULL; 1286 1287 return rmx_taop(rt->rt_rmx); 1288 } 1289 1290 /* 1291 * Clear all the TAO cache entries, called from tcp_init. 1292 * 1293 * XXX 1294 * This routine is just an empty one, because we assume that the routing 1295 * routing tables are initialized at the same time when TCP, so there is 1296 * nothing in the cache left over. 1297 */ 1298 static void 1299 tcp_cleartaocache() 1300 { 1301 } 1302