xref: /freebsd/sys/netinet/tcp_subr.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_fib.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet6/scope6_var.h>
86 #include <netinet6/nd6.h>
87 #endif
88 
89 #ifdef TCP_RFC7413
90 #include <netinet/tcp_fastopen.h>
91 #endif
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet/tcp_syncache.h>
98 #include <netinet/cc/cc.h>
99 #ifdef INET6
100 #include <netinet6/tcp6_var.h>
101 #endif
102 #include <netinet/tcpip.h>
103 #ifdef TCPPCAP
104 #include <netinet/tcp_pcap.h>
105 #endif
106 #ifdef TCPDEBUG
107 #include <netinet/tcp_debug.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/ip6protosw.h>
111 #endif
112 #ifdef TCP_OFFLOAD
113 #include <netinet/tcp_offload.h>
114 #endif
115 
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/xform.h>
119 #ifdef INET6
120 #include <netipsec/ipsec6.h>
121 #endif
122 #include <netipsec/key.h>
123 #include <sys/syslog.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 #include <sys/md5.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
132 #ifdef INET6
133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
134 #endif
135 
136 struct rwlock tcp_function_lock;
137 
138 static int
139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
140 {
141 	int error, new;
142 
143 	new = V_tcp_mssdflt;
144 	error = sysctl_handle_int(oidp, &new, 0, req);
145 	if (error == 0 && req->newptr) {
146 		if (new < TCP_MINMSS)
147 			error = EINVAL;
148 		else
149 			V_tcp_mssdflt = new;
150 	}
151 	return (error);
152 }
153 
154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
155     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
156     &sysctl_net_inet_tcp_mss_check, "I",
157     "Default TCP Maximum Segment Size");
158 
159 #ifdef INET6
160 static int
161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, new;
164 
165 	new = V_tcp_v6mssdflt;
166 	error = sysctl_handle_int(oidp, &new, 0, req);
167 	if (error == 0 && req->newptr) {
168 		if (new < TCP_MINMSS)
169 			error = EINVAL;
170 		else
171 			V_tcp_v6mssdflt = new;
172 	}
173 	return (error);
174 }
175 
176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
177     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
178     &sysctl_net_inet_tcp_mss_v6_check, "I",
179    "Default TCP Maximum Segment Size for IPv6");
180 #endif /* INET6 */
181 
182 /*
183  * Minimum MSS we accept and use. This prevents DoS attacks where
184  * we are forced to a ridiculous low MSS like 20 and send hundreds
185  * of packets instead of one. The effect scales with the available
186  * bandwidth and quickly saturates the CPU and network interface
187  * with packet generation and sending. Set to zero to disable MINMSS
188  * checking. This setting prevents us from sending too small packets.
189  */
190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
192      &VNET_NAME(tcp_minmss), 0,
193     "Minimum TCP Maximum Segment Size");
194 
195 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_rfc1323), 0,
198     "Enable rfc1323 (high performance TCP) extensions");
199 
200 static int	tcp_log_debug = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
202     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
203 
204 static int	tcp_tcbhashsize;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
206     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
207 
208 static int	do_tcpdrain = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
210     "Enable tcp_drain routine for extra help when low on mbufs");
211 
212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
213     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
214 
215 static VNET_DEFINE(int, icmp_may_rst) = 1;
216 #define	V_icmp_may_rst			VNET(icmp_may_rst)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(icmp_may_rst), 0,
219     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
220 
221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
222 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_isn_reseed_interval), 0,
225     "Seconds between reseeding of ISN secret");
226 
227 static int	tcp_soreceive_stream;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
229     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
230 
231 #ifdef TCP_SIGNATURE
232 static int	tcp_sig_checksigs = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
234     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
235 #endif
236 
237 VNET_DEFINE(uma_zone_t, sack_hole_zone);
238 #define	V_sack_hole_zone		VNET(sack_hole_zone)
239 
240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
241 
242 static struct inpcb *tcp_notify(struct inpcb *, int);
243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
244 static void tcp_mtudisc(struct inpcb *, int);
245 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
246 		    void *ip4hdr, const void *ip6hdr);
247 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
248 
249 
250 static struct tcp_function_block tcp_def_funcblk = {
251 	"default",
252 	tcp_output,
253 	tcp_do_segment,
254 	tcp_default_ctloutput,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	NULL,
261 	NULL,
262 	0,
263 	0
264 };
265 
266 int t_functions_inited = 0;
267 struct tcp_funchead t_functions;
268 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
269 
270 static void
271 init_tcp_functions(void)
272 {
273 	if (t_functions_inited == 0) {
274 		TAILQ_INIT(&t_functions);
275 		rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
276 		t_functions_inited = 1;
277 	}
278 }
279 
280 static struct tcp_function_block *
281 find_tcp_functions_locked(struct tcp_function_set *fs)
282 {
283 	struct tcp_function *f;
284 	struct tcp_function_block *blk=NULL;
285 
286 	TAILQ_FOREACH(f, &t_functions, tf_next) {
287 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
288 			blk = f->tf_fb;
289 			break;
290 		}
291 	}
292 	return(blk);
293 }
294 
295 static struct tcp_function_block *
296 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
297 {
298 	struct tcp_function_block *rblk=NULL;
299 	struct tcp_function *f;
300 
301 	TAILQ_FOREACH(f, &t_functions, tf_next) {
302 		if (f->tf_fb == blk) {
303 			rblk = blk;
304 			if (s) {
305 				*s = f;
306 			}
307 			break;
308 		}
309 	}
310 	return (rblk);
311 }
312 
313 struct tcp_function_block *
314 find_and_ref_tcp_functions(struct tcp_function_set *fs)
315 {
316 	struct tcp_function_block *blk;
317 
318 	rw_rlock(&tcp_function_lock);
319 	blk = find_tcp_functions_locked(fs);
320 	if (blk)
321 		refcount_acquire(&blk->tfb_refcnt);
322 	rw_runlock(&tcp_function_lock);
323 	return(blk);
324 }
325 
326 struct tcp_function_block *
327 find_and_ref_tcp_fb(struct tcp_function_block *blk)
328 {
329 	struct tcp_function_block *rblk;
330 
331 	rw_rlock(&tcp_function_lock);
332 	rblk = find_tcp_fb_locked(blk, NULL);
333 	if (rblk)
334 		refcount_acquire(&rblk->tfb_refcnt);
335 	rw_runlock(&tcp_function_lock);
336 	return(rblk);
337 }
338 
339 
340 static int
341 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
342 {
343 	int error=ENOENT;
344 	struct tcp_function_set fs;
345 	struct tcp_function_block *blk;
346 
347 	memset(&fs, 0, sizeof(fs));
348 	rw_rlock(&tcp_function_lock);
349 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
350 	if (blk) {
351 		/* Found him */
352 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
353 		fs.pcbcnt = blk->tfb_refcnt;
354 	}
355 	rw_runlock(&tcp_function_lock);
356 	error = sysctl_handle_string(oidp, fs.function_set_name,
357 				     sizeof(fs.function_set_name), req);
358 
359 	/* Check for error or no change */
360 	if (error != 0 || req->newptr == NULL)
361 		return(error);
362 
363 	rw_wlock(&tcp_function_lock);
364 	blk = find_tcp_functions_locked(&fs);
365 	if ((blk == NULL) ||
366 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
367 		error = ENOENT;
368 		goto done;
369 	}
370 	tcp_func_set_ptr = blk;
371 done:
372 	rw_wunlock(&tcp_function_lock);
373 	return (error);
374 }
375 
376 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
377 	    CTLTYPE_STRING | CTLFLAG_RW,
378 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
379 	    "Set/get the default TCP functions");
380 
381 static int
382 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
383 {
384 	int error, cnt, linesz;
385 	struct tcp_function *f;
386 	char *buffer, *cp;
387 	size_t bufsz, outsz;
388 
389 	cnt = 0;
390 	rw_rlock(&tcp_function_lock);
391 	TAILQ_FOREACH(f, &t_functions, tf_next) {
392 		cnt++;
393 	}
394 	rw_runlock(&tcp_function_lock);
395 
396 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
397 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
398 
399 	error = 0;
400 	cp = buffer;
401 
402 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
403 	cp += linesz;
404 	bufsz -= linesz;
405 	outsz = linesz;
406 
407 	rw_rlock(&tcp_function_lock);
408 	TAILQ_FOREACH(f, &t_functions, tf_next) {
409 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
410 		    f->tf_fb->tfb_tcp_block_name,
411 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
412 		    f->tf_fb->tfb_refcnt);
413 		if (linesz >= bufsz) {
414 			error = EOVERFLOW;
415 			break;
416 		}
417 		cp += linesz;
418 		bufsz -= linesz;
419 		outsz += linesz;
420 	}
421 	rw_runlock(&tcp_function_lock);
422 	if (error == 0)
423 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
424 	free(buffer, M_TEMP);
425 	return (error);
426 }
427 
428 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
429 	    CTLTYPE_STRING|CTLFLAG_RD,
430 	    NULL, 0, sysctl_net_inet_list_available, "A",
431 	    "list available TCP Function sets");
432 
433 /*
434  * Target size of TCP PCB hash tables. Must be a power of two.
435  *
436  * Note that this can be overridden by the kernel environment
437  * variable net.inet.tcp.tcbhashsize
438  */
439 #ifndef TCBHASHSIZE
440 #define TCBHASHSIZE	0
441 #endif
442 
443 /*
444  * XXX
445  * Callouts should be moved into struct tcp directly.  They are currently
446  * separate because the tcpcb structure is exported to userland for sysctl
447  * parsing purposes, which do not know about callouts.
448  */
449 struct tcpcb_mem {
450 	struct	tcpcb		tcb;
451 	struct	tcp_timer	tt;
452 	struct	cc_var		ccv;
453 	struct	osd		osd;
454 };
455 
456 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
457 #define	V_tcpcb_zone			VNET(tcpcb_zone)
458 
459 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
460 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
461 
462 static struct mtx isn_mtx;
463 
464 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
465 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
466 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
467 
468 /*
469  * TCP initialization.
470  */
471 static void
472 tcp_zone_change(void *tag)
473 {
474 
475 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
476 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
477 	tcp_tw_zone_change();
478 }
479 
480 static int
481 tcp_inpcb_init(void *mem, int size, int flags)
482 {
483 	struct inpcb *inp = mem;
484 
485 	INP_LOCK_INIT(inp, "inp", "tcpinp");
486 	return (0);
487 }
488 
489 /*
490  * Take a value and get the next power of 2 that doesn't overflow.
491  * Used to size the tcp_inpcb hash buckets.
492  */
493 static int
494 maketcp_hashsize(int size)
495 {
496 	int hashsize;
497 
498 	/*
499 	 * auto tune.
500 	 * get the next power of 2 higher than maxsockets.
501 	 */
502 	hashsize = 1 << fls(size);
503 	/* catch overflow, and just go one power of 2 smaller */
504 	if (hashsize < size) {
505 		hashsize = 1 << (fls(size) - 1);
506 	}
507 	return (hashsize);
508 }
509 
510 int
511 register_tcp_functions(struct tcp_function_block *blk, int wait)
512 {
513 	struct tcp_function_block *lblk;
514 	struct tcp_function *n;
515 	struct tcp_function_set fs;
516 
517 	if (t_functions_inited == 0) {
518 		init_tcp_functions();
519 	}
520 	if ((blk->tfb_tcp_output == NULL) ||
521 	    (blk->tfb_tcp_do_segment == NULL) ||
522 	    (blk->tfb_tcp_ctloutput == NULL) ||
523 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
524 		/*
525 		 * These functions are required and you
526 		 * need a name.
527 		 */
528 		return (EINVAL);
529 	}
530 	if (blk->tfb_tcp_timer_stop_all ||
531 	    blk->tfb_tcp_timers_left ||
532 	    blk->tfb_tcp_timer_activate ||
533 	    blk->tfb_tcp_timer_active ||
534 	    blk->tfb_tcp_timer_stop) {
535 		/*
536 		 * If you define one timer function you
537 		 * must have them all.
538 		 */
539 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
540 		    (blk->tfb_tcp_timers_left  == NULL) ||
541 		    (blk->tfb_tcp_timer_activate == NULL) ||
542 		    (blk->tfb_tcp_timer_active == NULL) ||
543 		    (blk->tfb_tcp_timer_stop == NULL)) {
544 			return (EINVAL);
545 		}
546 	}
547 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
548 	if (n == NULL) {
549 		return (ENOMEM);
550 	}
551 	n->tf_fb = blk;
552 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
553 	rw_wlock(&tcp_function_lock);
554 	lblk = find_tcp_functions_locked(&fs);
555 	if (lblk) {
556 		/* Duplicate name space not allowed */
557 		rw_wunlock(&tcp_function_lock);
558 		free(n, M_TCPFUNCTIONS);
559 		return (EALREADY);
560 	}
561 	refcount_init(&blk->tfb_refcnt, 0);
562 	blk->tfb_flags = 0;
563 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
564 	rw_wunlock(&tcp_function_lock);
565 	return(0);
566 }
567 
568 int
569 deregister_tcp_functions(struct tcp_function_block *blk)
570 {
571 	struct tcp_function_block *lblk;
572 	struct tcp_function *f;
573 	int error=ENOENT;
574 
575 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
576 		/* You can't un-register the default */
577 		return (EPERM);
578 	}
579 	rw_wlock(&tcp_function_lock);
580 	if (blk == tcp_func_set_ptr) {
581 		/* You can't free the current default */
582 		rw_wunlock(&tcp_function_lock);
583 		return (EBUSY);
584 	}
585 	if (blk->tfb_refcnt) {
586 		/* Still tcb attached, mark it. */
587 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
588 		rw_wunlock(&tcp_function_lock);
589 		return (EBUSY);
590 	}
591 	lblk = find_tcp_fb_locked(blk, &f);
592 	if (lblk) {
593 		/* Found */
594 		TAILQ_REMOVE(&t_functions, f, tf_next);
595 		f->tf_fb = NULL;
596 		free(f, M_TCPFUNCTIONS);
597 		error = 0;
598 	}
599 	rw_wunlock(&tcp_function_lock);
600 	return (error);
601 }
602 
603 void
604 tcp_init(void)
605 {
606 	const char *tcbhash_tuneable;
607 	int hashsize;
608 
609 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
610 
611 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
612 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
613 		printf("%s: WARNING: unable to register helper hook\n", __func__);
614 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
615 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
616 		printf("%s: WARNING: unable to register helper hook\n", __func__);
617 	hashsize = TCBHASHSIZE;
618 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
619 	if (hashsize == 0) {
620 		/*
621 		 * Auto tune the hash size based on maxsockets.
622 		 * A perfect hash would have a 1:1 mapping
623 		 * (hashsize = maxsockets) however it's been
624 		 * suggested that O(2) average is better.
625 		 */
626 		hashsize = maketcp_hashsize(maxsockets / 4);
627 		/*
628 		 * Our historical default is 512,
629 		 * do not autotune lower than this.
630 		 */
631 		if (hashsize < 512)
632 			hashsize = 512;
633 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
634 			printf("%s: %s auto tuned to %d\n", __func__,
635 			    tcbhash_tuneable, hashsize);
636 	}
637 	/*
638 	 * We require a hashsize to be a power of two.
639 	 * Previously if it was not a power of two we would just reset it
640 	 * back to 512, which could be a nasty surprise if you did not notice
641 	 * the error message.
642 	 * Instead what we do is clip it to the closest power of two lower
643 	 * than the specified hash value.
644 	 */
645 	if (!powerof2(hashsize)) {
646 		int oldhashsize = hashsize;
647 
648 		hashsize = maketcp_hashsize(hashsize);
649 		/* prevent absurdly low value */
650 		if (hashsize < 16)
651 			hashsize = 16;
652 		printf("%s: WARNING: TCB hash size not a power of 2, "
653 		    "clipped from %d to %d.\n", __func__, oldhashsize,
654 		    hashsize);
655 	}
656 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
657 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
658 	    IPI_HASHFIELDS_4TUPLE);
659 
660 	/*
661 	 * These have to be type stable for the benefit of the timers.
662 	 */
663 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
664 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
665 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
666 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
667 
668 	tcp_tw_init();
669 	syncache_init();
670 	tcp_hc_init();
671 
672 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
673 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
674 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
675 
676 	/* Skip initialization of globals for non-default instances. */
677 	if (!IS_DEFAULT_VNET(curvnet))
678 		return;
679 
680 	tcp_reass_global_init();
681 
682 	/* XXX virtualize those bellow? */
683 	tcp_delacktime = TCPTV_DELACK;
684 	tcp_keepinit = TCPTV_KEEP_INIT;
685 	tcp_keepidle = TCPTV_KEEP_IDLE;
686 	tcp_keepintvl = TCPTV_KEEPINTVL;
687 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
688 	tcp_msl = TCPTV_MSL;
689 	tcp_rexmit_min = TCPTV_MIN;
690 	if (tcp_rexmit_min < 1)
691 		tcp_rexmit_min = 1;
692 	tcp_persmin = TCPTV_PERSMIN;
693 	tcp_persmax = TCPTV_PERSMAX;
694 	tcp_rexmit_slop = TCPTV_CPU_VAR;
695 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
696 	tcp_tcbhashsize = hashsize;
697 	/* Setup the tcp function block list */
698 	init_tcp_functions();
699 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
700 
701 	if (tcp_soreceive_stream) {
702 #ifdef INET
703 		tcp_usrreqs.pru_soreceive = soreceive_stream;
704 #endif
705 #ifdef INET6
706 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
707 #endif /* INET6 */
708 	}
709 
710 #ifdef INET6
711 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
712 #else /* INET6 */
713 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
714 #endif /* INET6 */
715 	if (max_protohdr < TCP_MINPROTOHDR)
716 		max_protohdr = TCP_MINPROTOHDR;
717 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
718 		panic("tcp_init");
719 #undef TCP_MINPROTOHDR
720 
721 	ISN_LOCK_INIT();
722 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
723 		SHUTDOWN_PRI_DEFAULT);
724 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
725 		EVENTHANDLER_PRI_ANY);
726 #ifdef TCPPCAP
727 	tcp_pcap_init();
728 #endif
729 
730 #ifdef TCP_RFC7413
731 	tcp_fastopen_init();
732 #endif
733 }
734 
735 #ifdef VIMAGE
736 void
737 tcp_destroy(void)
738 {
739 	int error;
740 
741 #ifdef TCP_RFC7413
742 	tcp_fastopen_destroy();
743 #endif
744 	tcp_hc_destroy();
745 	syncache_destroy();
746 	tcp_tw_destroy();
747 	in_pcbinfo_destroy(&V_tcbinfo);
748 	uma_zdestroy(V_sack_hole_zone);
749 	uma_zdestroy(V_tcpcb_zone);
750 
751 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
752 	if (error != 0) {
753 		printf("%s: WARNING: unable to deregister helper hook "
754 		    "type=%d, id=%d: error %d returned\n", __func__,
755 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
756 	}
757 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
758 	if (error != 0) {
759 		printf("%s: WARNING: unable to deregister helper hook "
760 		    "type=%d, id=%d: error %d returned\n", __func__,
761 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
762 	}
763 }
764 #endif
765 
766 void
767 tcp_fini(void *xtp)
768 {
769 
770 }
771 
772 /*
773  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
774  * tcp_template used to store this data in mbufs, but we now recopy it out
775  * of the tcpcb each time to conserve mbufs.
776  */
777 void
778 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
779 {
780 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
781 
782 	INP_WLOCK_ASSERT(inp);
783 
784 #ifdef INET6
785 	if ((inp->inp_vflag & INP_IPV6) != 0) {
786 		struct ip6_hdr *ip6;
787 
788 		ip6 = (struct ip6_hdr *)ip_ptr;
789 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
790 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
791 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
792 			(IPV6_VERSION & IPV6_VERSION_MASK);
793 		ip6->ip6_nxt = IPPROTO_TCP;
794 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
795 		ip6->ip6_src = inp->in6p_laddr;
796 		ip6->ip6_dst = inp->in6p_faddr;
797 	}
798 #endif /* INET6 */
799 #if defined(INET6) && defined(INET)
800 	else
801 #endif
802 #ifdef INET
803 	{
804 		struct ip *ip;
805 
806 		ip = (struct ip *)ip_ptr;
807 		ip->ip_v = IPVERSION;
808 		ip->ip_hl = 5;
809 		ip->ip_tos = inp->inp_ip_tos;
810 		ip->ip_len = 0;
811 		ip->ip_id = 0;
812 		ip->ip_off = 0;
813 		ip->ip_ttl = inp->inp_ip_ttl;
814 		ip->ip_sum = 0;
815 		ip->ip_p = IPPROTO_TCP;
816 		ip->ip_src = inp->inp_laddr;
817 		ip->ip_dst = inp->inp_faddr;
818 	}
819 #endif /* INET */
820 	th->th_sport = inp->inp_lport;
821 	th->th_dport = inp->inp_fport;
822 	th->th_seq = 0;
823 	th->th_ack = 0;
824 	th->th_x2 = 0;
825 	th->th_off = 5;
826 	th->th_flags = 0;
827 	th->th_win = 0;
828 	th->th_urp = 0;
829 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
830 }
831 
832 /*
833  * Create template to be used to send tcp packets on a connection.
834  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
835  * use for this function is in keepalives, which use tcp_respond.
836  */
837 struct tcptemp *
838 tcpip_maketemplate(struct inpcb *inp)
839 {
840 	struct tcptemp *t;
841 
842 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
843 	if (t == NULL)
844 		return (NULL);
845 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
846 	return (t);
847 }
848 
849 /*
850  * Send a single message to the TCP at address specified by
851  * the given TCP/IP header.  If m == NULL, then we make a copy
852  * of the tcpiphdr at th and send directly to the addressed host.
853  * This is used to force keep alive messages out using the TCP
854  * template for a connection.  If flags are given then we send
855  * a message back to the TCP which originated the segment th,
856  * and discard the mbuf containing it and any other attached mbufs.
857  *
858  * In any case the ack and sequence number of the transmitted
859  * segment are as specified by the parameters.
860  *
861  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
862  */
863 void
864 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
865     tcp_seq ack, tcp_seq seq, int flags)
866 {
867 	int tlen;
868 	int win = 0;
869 	struct ip *ip;
870 	struct tcphdr *nth;
871 #ifdef INET6
872 	struct ip6_hdr *ip6;
873 	int isipv6;
874 #endif /* INET6 */
875 	int ipflags = 0;
876 	struct inpcb *inp;
877 
878 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
879 
880 #ifdef INET6
881 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
882 	ip6 = ipgen;
883 #endif /* INET6 */
884 	ip = ipgen;
885 
886 	if (tp != NULL) {
887 		inp = tp->t_inpcb;
888 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
889 		INP_WLOCK_ASSERT(inp);
890 	} else
891 		inp = NULL;
892 
893 	if (tp != NULL) {
894 		if (!(flags & TH_RST)) {
895 			win = sbspace(&inp->inp_socket->so_rcv);
896 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
897 				win = (long)TCP_MAXWIN << tp->rcv_scale;
898 		}
899 	}
900 	if (m == NULL) {
901 		m = m_gethdr(M_NOWAIT, MT_DATA);
902 		if (m == NULL)
903 			return;
904 		tlen = 0;
905 		m->m_data += max_linkhdr;
906 #ifdef INET6
907 		if (isipv6) {
908 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
909 			      sizeof(struct ip6_hdr));
910 			ip6 = mtod(m, struct ip6_hdr *);
911 			nth = (struct tcphdr *)(ip6 + 1);
912 		} else
913 #endif /* INET6 */
914 		{
915 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
916 			ip = mtod(m, struct ip *);
917 			nth = (struct tcphdr *)(ip + 1);
918 		}
919 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
920 		flags = TH_ACK;
921 	} else {
922 		/*
923 		 *  reuse the mbuf.
924 		 * XXX MRT We inherrit the FIB, which is lucky.
925 		 */
926 		m_freem(m->m_next);
927 		m->m_next = NULL;
928 		m->m_data = (caddr_t)ipgen;
929 		/* m_len is set later */
930 		tlen = 0;
931 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
932 #ifdef INET6
933 		if (isipv6) {
934 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
935 			nth = (struct tcphdr *)(ip6 + 1);
936 		} else
937 #endif /* INET6 */
938 		{
939 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
940 			nth = (struct tcphdr *)(ip + 1);
941 		}
942 		if (th != nth) {
943 			/*
944 			 * this is usually a case when an extension header
945 			 * exists between the IPv6 header and the
946 			 * TCP header.
947 			 */
948 			nth->th_sport = th->th_sport;
949 			nth->th_dport = th->th_dport;
950 		}
951 		xchg(nth->th_dport, nth->th_sport, uint16_t);
952 #undef xchg
953 	}
954 #ifdef INET6
955 	if (isipv6) {
956 		ip6->ip6_flow = 0;
957 		ip6->ip6_vfc = IPV6_VERSION;
958 		ip6->ip6_nxt = IPPROTO_TCP;
959 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
960 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
961 	}
962 #endif
963 #if defined(INET) && defined(INET6)
964 	else
965 #endif
966 #ifdef INET
967 	{
968 		tlen += sizeof (struct tcpiphdr);
969 		ip->ip_len = htons(tlen);
970 		ip->ip_ttl = V_ip_defttl;
971 		if (V_path_mtu_discovery)
972 			ip->ip_off |= htons(IP_DF);
973 	}
974 #endif
975 	m->m_len = tlen;
976 	m->m_pkthdr.len = tlen;
977 	m->m_pkthdr.rcvif = NULL;
978 #ifdef MAC
979 	if (inp != NULL) {
980 		/*
981 		 * Packet is associated with a socket, so allow the
982 		 * label of the response to reflect the socket label.
983 		 */
984 		INP_WLOCK_ASSERT(inp);
985 		mac_inpcb_create_mbuf(inp, m);
986 	} else {
987 		/*
988 		 * Packet is not associated with a socket, so possibly
989 		 * update the label in place.
990 		 */
991 		mac_netinet_tcp_reply(m);
992 	}
993 #endif
994 	nth->th_seq = htonl(seq);
995 	nth->th_ack = htonl(ack);
996 	nth->th_x2 = 0;
997 	nth->th_off = sizeof (struct tcphdr) >> 2;
998 	nth->th_flags = flags;
999 	if (tp != NULL)
1000 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1001 	else
1002 		nth->th_win = htons((u_short)win);
1003 	nth->th_urp = 0;
1004 
1005 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1006 #ifdef INET6
1007 	if (isipv6) {
1008 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1009 		nth->th_sum = in6_cksum_pseudo(ip6,
1010 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1011 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1012 		    NULL, NULL);
1013 	}
1014 #endif /* INET6 */
1015 #if defined(INET6) && defined(INET)
1016 	else
1017 #endif
1018 #ifdef INET
1019 	{
1020 		m->m_pkthdr.csum_flags = CSUM_TCP;
1021 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1022 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1023 	}
1024 #endif /* INET */
1025 #ifdef TCPDEBUG
1026 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1027 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1028 #endif
1029 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1030 	if (flags & TH_RST)
1031 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1032 		    tp, nth);
1033 
1034 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1035 #ifdef INET6
1036 	if (isipv6)
1037 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
1038 #endif /* INET6 */
1039 #if defined(INET) && defined(INET6)
1040 	else
1041 #endif
1042 #ifdef INET
1043 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
1044 #endif
1045 }
1046 
1047 /*
1048  * Create a new TCP control block, making an
1049  * empty reassembly queue and hooking it to the argument
1050  * protocol control block.  The `inp' parameter must have
1051  * come from the zone allocator set up in tcp_init().
1052  */
1053 struct tcpcb *
1054 tcp_newtcpcb(struct inpcb *inp)
1055 {
1056 	struct tcpcb_mem *tm;
1057 	struct tcpcb *tp;
1058 #ifdef INET6
1059 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1060 #endif /* INET6 */
1061 
1062 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1063 	if (tm == NULL)
1064 		return (NULL);
1065 	tp = &tm->tcb;
1066 
1067 	/* Initialise cc_var struct for this tcpcb. */
1068 	tp->ccv = &tm->ccv;
1069 	tp->ccv->type = IPPROTO_TCP;
1070 	tp->ccv->ccvc.tcp = tp;
1071 	rw_rlock(&tcp_function_lock);
1072 	tp->t_fb = tcp_func_set_ptr;
1073 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1074 	rw_runlock(&tcp_function_lock);
1075 	if (tp->t_fb->tfb_tcp_fb_init) {
1076 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1077 	}
1078 	/*
1079 	 * Use the current system default CC algorithm.
1080 	 */
1081 	CC_LIST_RLOCK();
1082 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1083 	CC_ALGO(tp) = CC_DEFAULT();
1084 	CC_LIST_RUNLOCK();
1085 
1086 	if (CC_ALGO(tp)->cb_init != NULL)
1087 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1088 			if (tp->t_fb->tfb_tcp_fb_fini)
1089 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1090 			refcount_release(&tp->t_fb->tfb_refcnt);
1091 			uma_zfree(V_tcpcb_zone, tm);
1092 			return (NULL);
1093 		}
1094 
1095 	tp->osd = &tm->osd;
1096 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1097 		if (tp->t_fb->tfb_tcp_fb_fini)
1098 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1099 		refcount_release(&tp->t_fb->tfb_refcnt);
1100 		uma_zfree(V_tcpcb_zone, tm);
1101 		return (NULL);
1102 	}
1103 
1104 #ifdef VIMAGE
1105 	tp->t_vnet = inp->inp_vnet;
1106 #endif
1107 	tp->t_timers = &tm->tt;
1108 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1109 	tp->t_maxseg =
1110 #ifdef INET6
1111 		isipv6 ? V_tcp_v6mssdflt :
1112 #endif /* INET6 */
1113 		V_tcp_mssdflt;
1114 
1115 	/* Set up our timeouts. */
1116 	callout_init(&tp->t_timers->tt_rexmt, 1);
1117 	callout_init(&tp->t_timers->tt_persist, 1);
1118 	callout_init(&tp->t_timers->tt_keep, 1);
1119 	callout_init(&tp->t_timers->tt_2msl, 1);
1120 	callout_init(&tp->t_timers->tt_delack, 1);
1121 
1122 	if (V_tcp_do_rfc1323)
1123 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1124 	if (V_tcp_do_sack)
1125 		tp->t_flags |= TF_SACK_PERMIT;
1126 	TAILQ_INIT(&tp->snd_holes);
1127 	/*
1128 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1129 	 * is called.
1130 	 */
1131 	in_pcbref(inp);	/* Reference for tcpcb */
1132 	tp->t_inpcb = inp;
1133 
1134 	/*
1135 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1136 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1137 	 * reasonable initial retransmit time.
1138 	 */
1139 	tp->t_srtt = TCPTV_SRTTBASE;
1140 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1141 	tp->t_rttmin = tcp_rexmit_min;
1142 	tp->t_rxtcur = TCPTV_RTOBASE;
1143 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1144 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1145 	tp->t_rcvtime = ticks;
1146 	/*
1147 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1148 	 * because the socket may be bound to an IPv6 wildcard address,
1149 	 * which may match an IPv4-mapped IPv6 address.
1150 	 */
1151 	inp->inp_ip_ttl = V_ip_defttl;
1152 	inp->inp_ppcb = tp;
1153 #ifdef TCPPCAP
1154 	/*
1155 	 * Init the TCP PCAP queues.
1156 	 */
1157 	tcp_pcap_tcpcb_init(tp);
1158 #endif
1159 	return (tp);		/* XXX */
1160 }
1161 
1162 /*
1163  * Switch the congestion control algorithm back to NewReno for any active
1164  * control blocks using an algorithm which is about to go away.
1165  * This ensures the CC framework can allow the unload to proceed without leaving
1166  * any dangling pointers which would trigger a panic.
1167  * Returning non-zero would inform the CC framework that something went wrong
1168  * and it would be unsafe to allow the unload to proceed. However, there is no
1169  * way for this to occur with this implementation so we always return zero.
1170  */
1171 int
1172 tcp_ccalgounload(struct cc_algo *unload_algo)
1173 {
1174 	struct cc_algo *tmpalgo;
1175 	struct inpcb *inp;
1176 	struct tcpcb *tp;
1177 	VNET_ITERATOR_DECL(vnet_iter);
1178 
1179 	/*
1180 	 * Check all active control blocks across all network stacks and change
1181 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1182 	 * requires cleanup code to be run, call it.
1183 	 */
1184 	VNET_LIST_RLOCK();
1185 	VNET_FOREACH(vnet_iter) {
1186 		CURVNET_SET(vnet_iter);
1187 		INP_INFO_WLOCK(&V_tcbinfo);
1188 		/*
1189 		 * New connections already part way through being initialised
1190 		 * with the CC algo we're removing will not race with this code
1191 		 * because the INP_INFO_WLOCK is held during initialisation. We
1192 		 * therefore don't enter the loop below until the connection
1193 		 * list has stabilised.
1194 		 */
1195 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1196 			INP_WLOCK(inp);
1197 			/* Important to skip tcptw structs. */
1198 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1199 			    (tp = intotcpcb(inp)) != NULL) {
1200 				/*
1201 				 * By holding INP_WLOCK here, we are assured
1202 				 * that the connection is not currently
1203 				 * executing inside the CC module's functions
1204 				 * i.e. it is safe to make the switch back to
1205 				 * NewReno.
1206 				 */
1207 				if (CC_ALGO(tp) == unload_algo) {
1208 					tmpalgo = CC_ALGO(tp);
1209 					/* NewReno does not require any init. */
1210 					CC_ALGO(tp) = &newreno_cc_algo;
1211 					if (tmpalgo->cb_destroy != NULL)
1212 						tmpalgo->cb_destroy(tp->ccv);
1213 				}
1214 			}
1215 			INP_WUNLOCK(inp);
1216 		}
1217 		INP_INFO_WUNLOCK(&V_tcbinfo);
1218 		CURVNET_RESTORE();
1219 	}
1220 	VNET_LIST_RUNLOCK();
1221 
1222 	return (0);
1223 }
1224 
1225 /*
1226  * Drop a TCP connection, reporting
1227  * the specified error.  If connection is synchronized,
1228  * then send a RST to peer.
1229  */
1230 struct tcpcb *
1231 tcp_drop(struct tcpcb *tp, int errno)
1232 {
1233 	struct socket *so = tp->t_inpcb->inp_socket;
1234 
1235 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1236 	INP_WLOCK_ASSERT(tp->t_inpcb);
1237 
1238 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1239 		tcp_state_change(tp, TCPS_CLOSED);
1240 		(void) tp->t_fb->tfb_tcp_output(tp);
1241 		TCPSTAT_INC(tcps_drops);
1242 	} else
1243 		TCPSTAT_INC(tcps_conndrops);
1244 	if (errno == ETIMEDOUT && tp->t_softerror)
1245 		errno = tp->t_softerror;
1246 	so->so_error = errno;
1247 	return (tcp_close(tp));
1248 }
1249 
1250 void
1251 tcp_discardcb(struct tcpcb *tp)
1252 {
1253 	struct inpcb *inp = tp->t_inpcb;
1254 	struct socket *so = inp->inp_socket;
1255 #ifdef INET6
1256 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1257 #endif /* INET6 */
1258 	int released;
1259 
1260 	INP_WLOCK_ASSERT(inp);
1261 
1262 	/*
1263 	 * Make sure that all of our timers are stopped before we delete the
1264 	 * PCB.
1265 	 *
1266 	 * If stopping a timer fails, we schedule a discard function in same
1267 	 * callout, and the last discard function called will take care of
1268 	 * deleting the tcpcb.
1269 	 */
1270 	tcp_timer_stop(tp, TT_REXMT);
1271 	tcp_timer_stop(tp, TT_PERSIST);
1272 	tcp_timer_stop(tp, TT_KEEP);
1273 	tcp_timer_stop(tp, TT_2MSL);
1274 	tcp_timer_stop(tp, TT_DELACK);
1275 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1276 		/* Call the stop-all function of the methods */
1277 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1278 	}
1279 
1280 	/*
1281 	 * If we got enough samples through the srtt filter,
1282 	 * save the rtt and rttvar in the routing entry.
1283 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1284 	 * 4 samples is enough for the srtt filter to converge
1285 	 * to within enough % of the correct value; fewer samples
1286 	 * and we could save a bogus rtt. The danger is not high
1287 	 * as tcp quickly recovers from everything.
1288 	 * XXX: Works very well but needs some more statistics!
1289 	 */
1290 	if (tp->t_rttupdated >= 4) {
1291 		struct hc_metrics_lite metrics;
1292 		u_long ssthresh;
1293 
1294 		bzero(&metrics, sizeof(metrics));
1295 		/*
1296 		 * Update the ssthresh always when the conditions below
1297 		 * are satisfied. This gives us better new start value
1298 		 * for the congestion avoidance for new connections.
1299 		 * ssthresh is only set if packet loss occured on a session.
1300 		 *
1301 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1302 		 * being torn down.  Ideally this code would not use 'so'.
1303 		 */
1304 		ssthresh = tp->snd_ssthresh;
1305 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1306 			/*
1307 			 * convert the limit from user data bytes to
1308 			 * packets then to packet data bytes.
1309 			 */
1310 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1311 			if (ssthresh < 2)
1312 				ssthresh = 2;
1313 			ssthresh *= (u_long)(tp->t_maxseg +
1314 #ifdef INET6
1315 			    (isipv6 ? sizeof (struct ip6_hdr) +
1316 				sizeof (struct tcphdr) :
1317 #endif
1318 				sizeof (struct tcpiphdr)
1319 #ifdef INET6
1320 			    )
1321 #endif
1322 			    );
1323 		} else
1324 			ssthresh = 0;
1325 		metrics.rmx_ssthresh = ssthresh;
1326 
1327 		metrics.rmx_rtt = tp->t_srtt;
1328 		metrics.rmx_rttvar = tp->t_rttvar;
1329 		metrics.rmx_cwnd = tp->snd_cwnd;
1330 		metrics.rmx_sendpipe = 0;
1331 		metrics.rmx_recvpipe = 0;
1332 
1333 		tcp_hc_update(&inp->inp_inc, &metrics);
1334 	}
1335 
1336 	/* free the reassembly queue, if any */
1337 	tcp_reass_flush(tp);
1338 
1339 #ifdef TCP_OFFLOAD
1340 	/* Disconnect offload device, if any. */
1341 	if (tp->t_flags & TF_TOE)
1342 		tcp_offload_detach(tp);
1343 #endif
1344 
1345 	tcp_free_sackholes(tp);
1346 
1347 #ifdef TCPPCAP
1348 	/* Free the TCP PCAP queues. */
1349 	tcp_pcap_drain(&(tp->t_inpkts));
1350 	tcp_pcap_drain(&(tp->t_outpkts));
1351 #endif
1352 
1353 	/* Allow the CC algorithm to clean up after itself. */
1354 	if (CC_ALGO(tp)->cb_destroy != NULL)
1355 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1356 
1357 	khelp_destroy_osd(tp->osd);
1358 
1359 	CC_ALGO(tp) = NULL;
1360 	inp->inp_ppcb = NULL;
1361 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1362 		/* We own the last reference on tcpcb, let's free it. */
1363 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1364 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1365 			    /* Some fb timers left running! */
1366 			    return;
1367 		}
1368 		if (tp->t_fb->tfb_tcp_fb_fini)
1369 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1370 		refcount_release(&tp->t_fb->tfb_refcnt);
1371 		tp->t_inpcb = NULL;
1372 		uma_zfree(V_tcpcb_zone, tp);
1373 		released = in_pcbrele_wlocked(inp);
1374 		KASSERT(!released, ("%s: inp %p should not have been released "
1375 			"here", __func__, inp));
1376 	}
1377 }
1378 
1379 void
1380 tcp_timer_2msl_discard(void *xtp)
1381 {
1382 
1383 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1384 }
1385 
1386 void
1387 tcp_timer_keep_discard(void *xtp)
1388 {
1389 
1390 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1391 }
1392 
1393 void
1394 tcp_timer_persist_discard(void *xtp)
1395 {
1396 
1397 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1398 }
1399 
1400 void
1401 tcp_timer_rexmt_discard(void *xtp)
1402 {
1403 
1404 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1405 }
1406 
1407 void
1408 tcp_timer_delack_discard(void *xtp)
1409 {
1410 
1411 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1412 }
1413 
1414 void
1415 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1416 {
1417 	struct inpcb *inp;
1418 
1419 	CURVNET_SET(tp->t_vnet);
1420 	INP_INFO_RLOCK(&V_tcbinfo);
1421 	inp = tp->t_inpcb;
1422 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1423 		__func__, tp));
1424 	INP_WLOCK(inp);
1425 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1426 		("%s: tcpcb has to be stopped here", __func__));
1427 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1428 		("%s: discard callout should be running", __func__));
1429 	tp->t_timers->tt_flags &= ~timer_type;
1430 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1431 		/* We own the last reference on this tcpcb, let's free it. */
1432 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1433 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1434 			    /* Some fb timers left running! */
1435 			    goto leave;
1436 		}
1437 		if (tp->t_fb->tfb_tcp_fb_fini)
1438 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1439 		refcount_release(&tp->t_fb->tfb_refcnt);
1440 		tp->t_inpcb = NULL;
1441 		uma_zfree(V_tcpcb_zone, tp);
1442 		if (in_pcbrele_wlocked(inp)) {
1443 			INP_INFO_RUNLOCK(&V_tcbinfo);
1444 			CURVNET_RESTORE();
1445 			return;
1446 		}
1447 	}
1448 leave:
1449 	INP_WUNLOCK(inp);
1450 	INP_INFO_RUNLOCK(&V_tcbinfo);
1451 	CURVNET_RESTORE();
1452 }
1453 
1454 /*
1455  * Attempt to close a TCP control block, marking it as dropped, and freeing
1456  * the socket if we hold the only reference.
1457  */
1458 struct tcpcb *
1459 tcp_close(struct tcpcb *tp)
1460 {
1461 	struct inpcb *inp = tp->t_inpcb;
1462 	struct socket *so;
1463 
1464 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1465 	INP_WLOCK_ASSERT(inp);
1466 
1467 #ifdef TCP_OFFLOAD
1468 	if (tp->t_state == TCPS_LISTEN)
1469 		tcp_offload_listen_stop(tp);
1470 #endif
1471 #ifdef TCP_RFC7413
1472 	/*
1473 	 * This releases the TFO pending counter resource for TFO listen
1474 	 * sockets as well as passively-created TFO sockets that transition
1475 	 * from SYN_RECEIVED to CLOSED.
1476 	 */
1477 	if (tp->t_tfo_pending) {
1478 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1479 		tp->t_tfo_pending = NULL;
1480 	}
1481 #endif
1482 	in_pcbdrop(inp);
1483 	TCPSTAT_INC(tcps_closed);
1484 	TCPSTAT_DEC(tcps_states[tp->t_state]);
1485 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1486 	so = inp->inp_socket;
1487 	soisdisconnected(so);
1488 	if (inp->inp_flags & INP_SOCKREF) {
1489 		KASSERT(so->so_state & SS_PROTOREF,
1490 		    ("tcp_close: !SS_PROTOREF"));
1491 		inp->inp_flags &= ~INP_SOCKREF;
1492 		INP_WUNLOCK(inp);
1493 		ACCEPT_LOCK();
1494 		SOCK_LOCK(so);
1495 		so->so_state &= ~SS_PROTOREF;
1496 		sofree(so);
1497 		return (NULL);
1498 	}
1499 	return (tp);
1500 }
1501 
1502 void
1503 tcp_drain(void)
1504 {
1505 	VNET_ITERATOR_DECL(vnet_iter);
1506 
1507 	if (!do_tcpdrain)
1508 		return;
1509 
1510 	VNET_LIST_RLOCK_NOSLEEP();
1511 	VNET_FOREACH(vnet_iter) {
1512 		CURVNET_SET(vnet_iter);
1513 		struct inpcb *inpb;
1514 		struct tcpcb *tcpb;
1515 
1516 	/*
1517 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1518 	 * if there is one...
1519 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1520 	 *      reassembly queue should be flushed, but in a situation
1521 	 *	where we're really low on mbufs, this is potentially
1522 	 *	useful.
1523 	 */
1524 		INP_INFO_WLOCK(&V_tcbinfo);
1525 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1526 			if (inpb->inp_flags & INP_TIMEWAIT)
1527 				continue;
1528 			INP_WLOCK(inpb);
1529 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1530 				tcp_reass_flush(tcpb);
1531 				tcp_clean_sackreport(tcpb);
1532 			}
1533 			INP_WUNLOCK(inpb);
1534 		}
1535 		INP_INFO_WUNLOCK(&V_tcbinfo);
1536 		CURVNET_RESTORE();
1537 	}
1538 	VNET_LIST_RUNLOCK_NOSLEEP();
1539 }
1540 
1541 /*
1542  * Notify a tcp user of an asynchronous error;
1543  * store error as soft error, but wake up user
1544  * (for now, won't do anything until can select for soft error).
1545  *
1546  * Do not wake up user since there currently is no mechanism for
1547  * reporting soft errors (yet - a kqueue filter may be added).
1548  */
1549 static struct inpcb *
1550 tcp_notify(struct inpcb *inp, int error)
1551 {
1552 	struct tcpcb *tp;
1553 
1554 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1555 	INP_WLOCK_ASSERT(inp);
1556 
1557 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1558 	    (inp->inp_flags & INP_DROPPED))
1559 		return (inp);
1560 
1561 	tp = intotcpcb(inp);
1562 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1563 
1564 	/*
1565 	 * Ignore some errors if we are hooked up.
1566 	 * If connection hasn't completed, has retransmitted several times,
1567 	 * and receives a second error, give up now.  This is better
1568 	 * than waiting a long time to establish a connection that
1569 	 * can never complete.
1570 	 */
1571 	if (tp->t_state == TCPS_ESTABLISHED &&
1572 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1573 	     error == EHOSTDOWN)) {
1574 		return (inp);
1575 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1576 	    tp->t_softerror) {
1577 		tp = tcp_drop(tp, error);
1578 		if (tp != NULL)
1579 			return (inp);
1580 		else
1581 			return (NULL);
1582 	} else {
1583 		tp->t_softerror = error;
1584 		return (inp);
1585 	}
1586 #if 0
1587 	wakeup( &so->so_timeo);
1588 	sorwakeup(so);
1589 	sowwakeup(so);
1590 #endif
1591 }
1592 
1593 static int
1594 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1595 {
1596 	int error, i, m, n, pcb_count;
1597 	struct inpcb *inp, **inp_list;
1598 	inp_gen_t gencnt;
1599 	struct xinpgen xig;
1600 
1601 	/*
1602 	 * The process of preparing the TCB list is too time-consuming and
1603 	 * resource-intensive to repeat twice on every request.
1604 	 */
1605 	if (req->oldptr == NULL) {
1606 		n = V_tcbinfo.ipi_count +
1607 		    TCPSTAT_FETCH(tcps_states[TCPS_SYN_RECEIVED]);
1608 		n += imax(n / 8, 10);
1609 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1610 		return (0);
1611 	}
1612 
1613 	if (req->newptr != NULL)
1614 		return (EPERM);
1615 
1616 	/*
1617 	 * OK, now we're committed to doing something.
1618 	 */
1619 	INP_LIST_RLOCK(&V_tcbinfo);
1620 	gencnt = V_tcbinfo.ipi_gencnt;
1621 	n = V_tcbinfo.ipi_count;
1622 	INP_LIST_RUNLOCK(&V_tcbinfo);
1623 
1624 	m = TCPSTAT_FETCH(tcps_states[TCPS_SYN_RECEIVED]);
1625 
1626 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1627 		+ (n + m) * sizeof(struct xtcpcb));
1628 	if (error != 0)
1629 		return (error);
1630 
1631 	xig.xig_len = sizeof xig;
1632 	xig.xig_count = n + m;
1633 	xig.xig_gen = gencnt;
1634 	xig.xig_sogen = so_gencnt;
1635 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1636 	if (error)
1637 		return (error);
1638 
1639 	error = syncache_pcblist(req, m, &pcb_count);
1640 	if (error)
1641 		return (error);
1642 
1643 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1644 	if (inp_list == NULL)
1645 		return (ENOMEM);
1646 
1647 	INP_INFO_WLOCK(&V_tcbinfo);
1648 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1649 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1650 		INP_WLOCK(inp);
1651 		if (inp->inp_gencnt <= gencnt) {
1652 			/*
1653 			 * XXX: This use of cr_cansee(), introduced with
1654 			 * TCP state changes, is not quite right, but for
1655 			 * now, better than nothing.
1656 			 */
1657 			if (inp->inp_flags & INP_TIMEWAIT) {
1658 				if (intotw(inp) != NULL)
1659 					error = cr_cansee(req->td->td_ucred,
1660 					    intotw(inp)->tw_cred);
1661 				else
1662 					error = EINVAL;	/* Skip this inp. */
1663 			} else
1664 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1665 			if (error == 0) {
1666 				in_pcbref(inp);
1667 				inp_list[i++] = inp;
1668 			}
1669 		}
1670 		INP_WUNLOCK(inp);
1671 	}
1672 	INP_INFO_WUNLOCK(&V_tcbinfo);
1673 	n = i;
1674 
1675 	error = 0;
1676 	for (i = 0; i < n; i++) {
1677 		inp = inp_list[i];
1678 		INP_RLOCK(inp);
1679 		if (inp->inp_gencnt <= gencnt) {
1680 			struct xtcpcb xt;
1681 			void *inp_ppcb;
1682 
1683 			bzero(&xt, sizeof(xt));
1684 			xt.xt_len = sizeof xt;
1685 			/* XXX should avoid extra copy */
1686 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1687 			inp_ppcb = inp->inp_ppcb;
1688 			if (inp_ppcb == NULL)
1689 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1690 			else if (inp->inp_flags & INP_TIMEWAIT) {
1691 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1692 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1693 			} else {
1694 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1695 				if (xt.xt_tp.t_timers)
1696 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1697 			}
1698 			if (inp->inp_socket != NULL)
1699 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1700 			else {
1701 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1702 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1703 			}
1704 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1705 			INP_RUNLOCK(inp);
1706 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1707 		} else
1708 			INP_RUNLOCK(inp);
1709 	}
1710 	INP_INFO_RLOCK(&V_tcbinfo);
1711 	for (i = 0; i < n; i++) {
1712 		inp = inp_list[i];
1713 		INP_RLOCK(inp);
1714 		if (!in_pcbrele_rlocked(inp))
1715 			INP_RUNLOCK(inp);
1716 	}
1717 	INP_INFO_RUNLOCK(&V_tcbinfo);
1718 
1719 	if (!error) {
1720 		/*
1721 		 * Give the user an updated idea of our state.
1722 		 * If the generation differs from what we told
1723 		 * her before, she knows that something happened
1724 		 * while we were processing this request, and it
1725 		 * might be necessary to retry.
1726 		 */
1727 		INP_LIST_RLOCK(&V_tcbinfo);
1728 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1729 		xig.xig_sogen = so_gencnt;
1730 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1731 		INP_LIST_RUNLOCK(&V_tcbinfo);
1732 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1733 	}
1734 	free(inp_list, M_TEMP);
1735 	return (error);
1736 }
1737 
1738 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1739     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1740     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1741 
1742 #ifdef INET
1743 static int
1744 tcp_getcred(SYSCTL_HANDLER_ARGS)
1745 {
1746 	struct xucred xuc;
1747 	struct sockaddr_in addrs[2];
1748 	struct inpcb *inp;
1749 	int error;
1750 
1751 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1752 	if (error)
1753 		return (error);
1754 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1755 	if (error)
1756 		return (error);
1757 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1758 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1759 	if (inp != NULL) {
1760 		if (inp->inp_socket == NULL)
1761 			error = ENOENT;
1762 		if (error == 0)
1763 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1764 		if (error == 0)
1765 			cru2x(inp->inp_cred, &xuc);
1766 		INP_RUNLOCK(inp);
1767 	} else
1768 		error = ENOENT;
1769 	if (error == 0)
1770 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1771 	return (error);
1772 }
1773 
1774 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1775     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1776     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1777 #endif /* INET */
1778 
1779 #ifdef INET6
1780 static int
1781 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1782 {
1783 	struct xucred xuc;
1784 	struct sockaddr_in6 addrs[2];
1785 	struct inpcb *inp;
1786 	int error;
1787 #ifdef INET
1788 	int mapped = 0;
1789 #endif
1790 
1791 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1792 	if (error)
1793 		return (error);
1794 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1795 	if (error)
1796 		return (error);
1797 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1798 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1799 		return (error);
1800 	}
1801 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1802 #ifdef INET
1803 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1804 			mapped = 1;
1805 		else
1806 #endif
1807 			return (EINVAL);
1808 	}
1809 
1810 #ifdef INET
1811 	if (mapped == 1)
1812 		inp = in_pcblookup(&V_tcbinfo,
1813 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1814 			addrs[1].sin6_port,
1815 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1816 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1817 	else
1818 #endif
1819 		inp = in6_pcblookup(&V_tcbinfo,
1820 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1821 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1822 			INPLOOKUP_RLOCKPCB, NULL);
1823 	if (inp != NULL) {
1824 		if (inp->inp_socket == NULL)
1825 			error = ENOENT;
1826 		if (error == 0)
1827 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1828 		if (error == 0)
1829 			cru2x(inp->inp_cred, &xuc);
1830 		INP_RUNLOCK(inp);
1831 	} else
1832 		error = ENOENT;
1833 	if (error == 0)
1834 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1835 	return (error);
1836 }
1837 
1838 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1839     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1840     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1841 #endif /* INET6 */
1842 
1843 
1844 #ifdef INET
1845 void
1846 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1847 {
1848 	struct ip *ip = vip;
1849 	struct tcphdr *th;
1850 	struct in_addr faddr;
1851 	struct inpcb *inp;
1852 	struct tcpcb *tp;
1853 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1854 	struct icmp *icp;
1855 	struct in_conninfo inc;
1856 	tcp_seq icmp_tcp_seq;
1857 	int mtu;
1858 
1859 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1860 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1861 		return;
1862 
1863 	if (cmd == PRC_MSGSIZE)
1864 		notify = tcp_mtudisc_notify;
1865 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1866 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1867 		notify = tcp_drop_syn_sent;
1868 	/*
1869 	 * Redirects don't need to be handled up here.
1870 	 */
1871 	else if (PRC_IS_REDIRECT(cmd))
1872 		return;
1873 	/*
1874 	 * Hostdead is ugly because it goes linearly through all PCBs.
1875 	 * XXX: We never get this from ICMP, otherwise it makes an
1876 	 * excellent DoS attack on machines with many connections.
1877 	 */
1878 	else if (cmd == PRC_HOSTDEAD)
1879 		ip = NULL;
1880 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1881 		return;
1882 
1883 	if (ip == NULL) {
1884 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1885 		return;
1886 	}
1887 
1888 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1889 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1890 	INP_INFO_RLOCK(&V_tcbinfo);
1891 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1892 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1893 	if (inp != NULL)  {
1894 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1895 		    !(inp->inp_flags & INP_DROPPED) &&
1896 		    !(inp->inp_socket == NULL)) {
1897 			icmp_tcp_seq = ntohl(th->th_seq);
1898 			tp = intotcpcb(inp);
1899 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1900 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1901 				if (cmd == PRC_MSGSIZE) {
1902 					/*
1903 					 * MTU discovery:
1904 					 * If we got a needfrag set the MTU
1905 					 * in the route to the suggested new
1906 					 * value (if given) and then notify.
1907 					 */
1908 				    	mtu = ntohs(icp->icmp_nextmtu);
1909 					/*
1910 					 * If no alternative MTU was
1911 					 * proposed, try the next smaller
1912 					 * one.
1913 					 */
1914 					if (!mtu)
1915 						mtu = ip_next_mtu(
1916 						    ntohs(ip->ip_len), 1);
1917 					if (mtu < V_tcp_minmss +
1918 					    sizeof(struct tcpiphdr))
1919 						mtu = V_tcp_minmss +
1920 						    sizeof(struct tcpiphdr);
1921 					/*
1922 					 * Only process the offered MTU if it
1923 					 * is smaller than the current one.
1924 					 */
1925 					if (mtu < tp->t_maxseg +
1926 					    sizeof(struct tcpiphdr)) {
1927 						bzero(&inc, sizeof(inc));
1928 						inc.inc_faddr = faddr;
1929 						inc.inc_fibnum =
1930 						    inp->inp_inc.inc_fibnum;
1931 						tcp_hc_updatemtu(&inc, mtu);
1932 						tcp_mtudisc(inp, mtu);
1933 					}
1934 				} else
1935 					inp = (*notify)(inp,
1936 					    inetctlerrmap[cmd]);
1937 			}
1938 		}
1939 		if (inp != NULL)
1940 			INP_WUNLOCK(inp);
1941 	} else {
1942 		bzero(&inc, sizeof(inc));
1943 		inc.inc_fport = th->th_dport;
1944 		inc.inc_lport = th->th_sport;
1945 		inc.inc_faddr = faddr;
1946 		inc.inc_laddr = ip->ip_src;
1947 		syncache_unreach(&inc, th);
1948 	}
1949 	INP_INFO_RUNLOCK(&V_tcbinfo);
1950 }
1951 #endif /* INET */
1952 
1953 #ifdef INET6
1954 void
1955 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1956 {
1957 	struct tcphdr th;
1958 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1959 	struct ip6_hdr *ip6;
1960 	struct mbuf *m;
1961 	struct ip6ctlparam *ip6cp = NULL;
1962 	const struct sockaddr_in6 *sa6_src = NULL;
1963 	int off;
1964 	struct tcp_portonly {
1965 		u_int16_t th_sport;
1966 		u_int16_t th_dport;
1967 	} *thp;
1968 
1969 	if (sa->sa_family != AF_INET6 ||
1970 	    sa->sa_len != sizeof(struct sockaddr_in6))
1971 		return;
1972 
1973 	if (cmd == PRC_MSGSIZE)
1974 		notify = tcp_mtudisc_notify;
1975 	else if (!PRC_IS_REDIRECT(cmd) &&
1976 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1977 		return;
1978 
1979 	/* if the parameter is from icmp6, decode it. */
1980 	if (d != NULL) {
1981 		ip6cp = (struct ip6ctlparam *)d;
1982 		m = ip6cp->ip6c_m;
1983 		ip6 = ip6cp->ip6c_ip6;
1984 		off = ip6cp->ip6c_off;
1985 		sa6_src = ip6cp->ip6c_src;
1986 	} else {
1987 		m = NULL;
1988 		ip6 = NULL;
1989 		off = 0;	/* fool gcc */
1990 		sa6_src = &sa6_any;
1991 	}
1992 
1993 	if (ip6 != NULL) {
1994 		struct in_conninfo inc;
1995 		/*
1996 		 * XXX: We assume that when IPV6 is non NULL,
1997 		 * M and OFF are valid.
1998 		 */
1999 
2000 		/* check if we can safely examine src and dst ports */
2001 		if (m->m_pkthdr.len < off + sizeof(*thp))
2002 			return;
2003 
2004 		bzero(&th, sizeof(th));
2005 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
2006 
2007 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
2008 		    (struct sockaddr *)ip6cp->ip6c_src,
2009 		    th.th_sport, cmd, NULL, notify);
2010 
2011 		bzero(&inc, sizeof(inc));
2012 		inc.inc_fport = th.th_dport;
2013 		inc.inc_lport = th.th_sport;
2014 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
2015 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
2016 		inc.inc_flags |= INC_ISIPV6;
2017 		INP_INFO_RLOCK(&V_tcbinfo);
2018 		syncache_unreach(&inc, &th);
2019 		INP_INFO_RUNLOCK(&V_tcbinfo);
2020 	} else
2021 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2022 			      0, cmd, NULL, notify);
2023 }
2024 #endif /* INET6 */
2025 
2026 
2027 /*
2028  * Following is where TCP initial sequence number generation occurs.
2029  *
2030  * There are two places where we must use initial sequence numbers:
2031  * 1.  In SYN-ACK packets.
2032  * 2.  In SYN packets.
2033  *
2034  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2035  * tcp_syncache.c for details.
2036  *
2037  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2038  * depends on this property.  In addition, these ISNs should be
2039  * unguessable so as to prevent connection hijacking.  To satisfy
2040  * the requirements of this situation, the algorithm outlined in
2041  * RFC 1948 is used, with only small modifications.
2042  *
2043  * Implementation details:
2044  *
2045  * Time is based off the system timer, and is corrected so that it
2046  * increases by one megabyte per second.  This allows for proper
2047  * recycling on high speed LANs while still leaving over an hour
2048  * before rollover.
2049  *
2050  * As reading the *exact* system time is too expensive to be done
2051  * whenever setting up a TCP connection, we increment the time
2052  * offset in two ways.  First, a small random positive increment
2053  * is added to isn_offset for each connection that is set up.
2054  * Second, the function tcp_isn_tick fires once per clock tick
2055  * and increments isn_offset as necessary so that sequence numbers
2056  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2057  * random positive increments serve only to ensure that the same
2058  * exact sequence number is never sent out twice (as could otherwise
2059  * happen when a port is recycled in less than the system tick
2060  * interval.)
2061  *
2062  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2063  * between seeding of isn_secret.  This is normally set to zero,
2064  * as reseeding should not be necessary.
2065  *
2066  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2067  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2068  * general, this means holding an exclusive (write) lock.
2069  */
2070 
2071 #define ISN_BYTES_PER_SECOND 1048576
2072 #define ISN_STATIC_INCREMENT 4096
2073 #define ISN_RANDOM_INCREMENT (4096 - 1)
2074 
2075 static VNET_DEFINE(u_char, isn_secret[32]);
2076 static VNET_DEFINE(int, isn_last);
2077 static VNET_DEFINE(int, isn_last_reseed);
2078 static VNET_DEFINE(u_int32_t, isn_offset);
2079 static VNET_DEFINE(u_int32_t, isn_offset_old);
2080 
2081 #define	V_isn_secret			VNET(isn_secret)
2082 #define	V_isn_last			VNET(isn_last)
2083 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2084 #define	V_isn_offset			VNET(isn_offset)
2085 #define	V_isn_offset_old		VNET(isn_offset_old)
2086 
2087 tcp_seq
2088 tcp_new_isn(struct tcpcb *tp)
2089 {
2090 	MD5_CTX isn_ctx;
2091 	u_int32_t md5_buffer[4];
2092 	tcp_seq new_isn;
2093 	u_int32_t projected_offset;
2094 
2095 	INP_WLOCK_ASSERT(tp->t_inpcb);
2096 
2097 	ISN_LOCK();
2098 	/* Seed if this is the first use, reseed if requested. */
2099 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2100 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2101 		< (u_int)ticks))) {
2102 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2103 		V_isn_last_reseed = ticks;
2104 	}
2105 
2106 	/* Compute the md5 hash and return the ISN. */
2107 	MD5Init(&isn_ctx);
2108 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2109 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2110 #ifdef INET6
2111 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2112 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2113 			  sizeof(struct in6_addr));
2114 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2115 			  sizeof(struct in6_addr));
2116 	} else
2117 #endif
2118 	{
2119 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2120 			  sizeof(struct in_addr));
2121 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2122 			  sizeof(struct in_addr));
2123 	}
2124 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2125 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2126 	new_isn = (tcp_seq) md5_buffer[0];
2127 	V_isn_offset += ISN_STATIC_INCREMENT +
2128 		(arc4random() & ISN_RANDOM_INCREMENT);
2129 	if (ticks != V_isn_last) {
2130 		projected_offset = V_isn_offset_old +
2131 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2132 		if (SEQ_GT(projected_offset, V_isn_offset))
2133 			V_isn_offset = projected_offset;
2134 		V_isn_offset_old = V_isn_offset;
2135 		V_isn_last = ticks;
2136 	}
2137 	new_isn += V_isn_offset;
2138 	ISN_UNLOCK();
2139 	return (new_isn);
2140 }
2141 
2142 /*
2143  * When a specific ICMP unreachable message is received and the
2144  * connection state is SYN-SENT, drop the connection.  This behavior
2145  * is controlled by the icmp_may_rst sysctl.
2146  */
2147 struct inpcb *
2148 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2149 {
2150 	struct tcpcb *tp;
2151 
2152 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2153 	INP_WLOCK_ASSERT(inp);
2154 
2155 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2156 	    (inp->inp_flags & INP_DROPPED))
2157 		return (inp);
2158 
2159 	tp = intotcpcb(inp);
2160 	if (tp->t_state != TCPS_SYN_SENT)
2161 		return (inp);
2162 
2163 	tp = tcp_drop(tp, errno);
2164 	if (tp != NULL)
2165 		return (inp);
2166 	else
2167 		return (NULL);
2168 }
2169 
2170 /*
2171  * When `need fragmentation' ICMP is received, update our idea of the MSS
2172  * based on the new value. Also nudge TCP to send something, since we
2173  * know the packet we just sent was dropped.
2174  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2175  */
2176 static struct inpcb *
2177 tcp_mtudisc_notify(struct inpcb *inp, int error)
2178 {
2179 
2180 	tcp_mtudisc(inp, -1);
2181 	return (inp);
2182 }
2183 
2184 static void
2185 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2186 {
2187 	struct tcpcb *tp;
2188 	struct socket *so;
2189 
2190 	INP_WLOCK_ASSERT(inp);
2191 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2192 	    (inp->inp_flags & INP_DROPPED))
2193 		return;
2194 
2195 	tp = intotcpcb(inp);
2196 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2197 
2198 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2199 
2200 	so = inp->inp_socket;
2201 	SOCKBUF_LOCK(&so->so_snd);
2202 	/* If the mss is larger than the socket buffer, decrease the mss. */
2203 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2204 		tp->t_maxseg = so->so_snd.sb_hiwat;
2205 	SOCKBUF_UNLOCK(&so->so_snd);
2206 
2207 	TCPSTAT_INC(tcps_mturesent);
2208 	tp->t_rtttime = 0;
2209 	tp->snd_nxt = tp->snd_una;
2210 	tcp_free_sackholes(tp);
2211 	tp->snd_recover = tp->snd_max;
2212 	if (tp->t_flags & TF_SACK_PERMIT)
2213 		EXIT_FASTRECOVERY(tp->t_flags);
2214 	tp->t_fb->tfb_tcp_output(tp);
2215 }
2216 
2217 #ifdef INET
2218 /*
2219  * Look-up the routing entry to the peer of this inpcb.  If no route
2220  * is found and it cannot be allocated, then return 0.  This routine
2221  * is called by TCP routines that access the rmx structure and by
2222  * tcp_mss_update to get the peer/interface MTU.
2223  */
2224 u_long
2225 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2226 {
2227 	struct nhop4_extended nh4;
2228 	struct ifnet *ifp;
2229 	u_long maxmtu = 0;
2230 
2231 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2232 
2233 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2234 
2235 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2236 		    NHR_REF, 0, &nh4) != 0)
2237 			return (0);
2238 
2239 		ifp = nh4.nh_ifp;
2240 		maxmtu = nh4.nh_mtu;
2241 
2242 		/* Report additional interface capabilities. */
2243 		if (cap != NULL) {
2244 			if (ifp->if_capenable & IFCAP_TSO4 &&
2245 			    ifp->if_hwassist & CSUM_TSO) {
2246 				cap->ifcap |= CSUM_TSO;
2247 				cap->tsomax = ifp->if_hw_tsomax;
2248 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2249 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2250 			}
2251 		}
2252 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2253 	}
2254 	return (maxmtu);
2255 }
2256 #endif /* INET */
2257 
2258 #ifdef INET6
2259 u_long
2260 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2261 {
2262 	struct nhop6_extended nh6;
2263 	struct in6_addr dst6;
2264 	uint32_t scopeid;
2265 	struct ifnet *ifp;
2266 	u_long maxmtu = 0;
2267 
2268 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2269 
2270 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2271 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2272 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2273 		    0, &nh6) != 0)
2274 			return (0);
2275 
2276 		ifp = nh6.nh_ifp;
2277 		maxmtu = nh6.nh_mtu;
2278 
2279 		/* Report additional interface capabilities. */
2280 		if (cap != NULL) {
2281 			if (ifp->if_capenable & IFCAP_TSO6 &&
2282 			    ifp->if_hwassist & CSUM_TSO) {
2283 				cap->ifcap |= CSUM_TSO;
2284 				cap->tsomax = ifp->if_hw_tsomax;
2285 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2286 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2287 			}
2288 		}
2289 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2290 	}
2291 
2292 	return (maxmtu);
2293 }
2294 #endif /* INET6 */
2295 
2296 /*
2297  * Calculate effective SMSS per RFC5681 definition for a given TCP
2298  * connection at its current state, taking into account SACK and etc.
2299  */
2300 u_int
2301 tcp_maxseg(const struct tcpcb *tp)
2302 {
2303 	u_int optlen;
2304 
2305 	if (tp->t_flags & TF_NOOPT)
2306 		return (tp->t_maxseg);
2307 
2308 	/*
2309 	 * Here we have a simplified code from tcp_addoptions(),
2310 	 * without a proper loop, and having most of paddings hardcoded.
2311 	 * We might make mistakes with padding here in some edge cases,
2312 	 * but this is harmless, since result of tcp_maxseg() is used
2313 	 * only in cwnd and ssthresh estimations.
2314 	 */
2315 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2316 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2317 		if (tp->t_flags & TF_RCVD_TSTMP)
2318 			optlen = TCPOLEN_TSTAMP_APPA;
2319 		else
2320 			optlen = 0;
2321 #ifdef TCP_SIGNATURE
2322 		if (tp->t_flags & TF_SIGNATURE)
2323 			optlen += PAD(TCPOLEN_SIGNATURE);
2324 #endif
2325 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2326 			optlen += TCPOLEN_SACKHDR;
2327 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2328 			optlen = PAD(optlen);
2329 		}
2330 	} else {
2331 		if (tp->t_flags & TF_REQ_TSTMP)
2332 			optlen = TCPOLEN_TSTAMP_APPA;
2333 		else
2334 			optlen = PAD(TCPOLEN_MAXSEG);
2335 		if (tp->t_flags & TF_REQ_SCALE)
2336 			optlen += PAD(TCPOLEN_WINDOW);
2337 #ifdef TCP_SIGNATURE
2338 		if (tp->t_flags & TF_SIGNATURE)
2339 			optlen += PAD(TCPOLEN_SIGNATURE);
2340 #endif
2341 		if (tp->t_flags & TF_SACK_PERMIT)
2342 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2343 	}
2344 #undef PAD
2345 	optlen = min(optlen, TCP_MAXOLEN);
2346 	return (tp->t_maxseg - optlen);
2347 }
2348 
2349 #ifdef IPSEC
2350 /* compute ESP/AH header size for TCP, including outer IP header. */
2351 size_t
2352 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2353 {
2354 	struct inpcb *inp;
2355 	struct mbuf *m;
2356 	size_t hdrsiz;
2357 	struct ip *ip;
2358 #ifdef INET6
2359 	struct ip6_hdr *ip6;
2360 #endif
2361 	struct tcphdr *th;
2362 
2363 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2364 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2365 		return (0);
2366 	m = m_gethdr(M_NOWAIT, MT_DATA);
2367 	if (!m)
2368 		return (0);
2369 
2370 #ifdef INET6
2371 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2372 		ip6 = mtod(m, struct ip6_hdr *);
2373 		th = (struct tcphdr *)(ip6 + 1);
2374 		m->m_pkthdr.len = m->m_len =
2375 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2376 		tcpip_fillheaders(inp, ip6, th);
2377 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2378 	} else
2379 #endif /* INET6 */
2380 	{
2381 		ip = mtod(m, struct ip *);
2382 		th = (struct tcphdr *)(ip + 1);
2383 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2384 		tcpip_fillheaders(inp, ip, th);
2385 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2386 	}
2387 
2388 	m_free(m);
2389 	return (hdrsiz);
2390 }
2391 #endif /* IPSEC */
2392 
2393 #ifdef TCP_SIGNATURE
2394 /*
2395  * Callback function invoked by m_apply() to digest TCP segment data
2396  * contained within an mbuf chain.
2397  */
2398 static int
2399 tcp_signature_apply(void *fstate, void *data, u_int len)
2400 {
2401 
2402 	MD5Update(fstate, (u_char *)data, len);
2403 	return (0);
2404 }
2405 
2406 /*
2407  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2408  * search with the destination IP address, and a 'magic SPI' to be
2409  * determined by the application. This is hardcoded elsewhere to 1179
2410 */
2411 struct secasvar *
2412 tcp_get_sav(struct mbuf *m, u_int direction)
2413 {
2414 	union sockaddr_union dst;
2415 	struct secasvar *sav;
2416 	struct ip *ip;
2417 #ifdef INET6
2418 	struct ip6_hdr *ip6;
2419 	char ip6buf[INET6_ADDRSTRLEN];
2420 #endif
2421 
2422 	/* Extract the destination from the IP header in the mbuf. */
2423 	bzero(&dst, sizeof(union sockaddr_union));
2424 	ip = mtod(m, struct ip *);
2425 #ifdef INET6
2426 	ip6 = NULL;	/* Make the compiler happy. */
2427 #endif
2428 	switch (ip->ip_v) {
2429 #ifdef INET
2430 	case IPVERSION:
2431 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2432 		dst.sa.sa_family = AF_INET;
2433 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2434 		    ip->ip_src : ip->ip_dst;
2435 		break;
2436 #endif
2437 #ifdef INET6
2438 	case (IPV6_VERSION >> 4):
2439 		ip6 = mtod(m, struct ip6_hdr *);
2440 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2441 		dst.sa.sa_family = AF_INET6;
2442 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2443 		    ip6->ip6_src : ip6->ip6_dst;
2444 		break;
2445 #endif
2446 	default:
2447 		return (NULL);
2448 		/* NOTREACHED */
2449 		break;
2450 	}
2451 
2452 	/* Look up an SADB entry which matches the address of the peer. */
2453 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2454 	if (sav == NULL) {
2455 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2456 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2457 #ifdef INET6
2458 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2459 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2460 #endif
2461 			"(unsupported)"));
2462 	}
2463 
2464 	return (sav);
2465 }
2466 
2467 /*
2468  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2469  *
2470  * Parameters:
2471  * m		pointer to head of mbuf chain
2472  * len		length of TCP segment data, excluding options
2473  * optlen	length of TCP segment options
2474  * buf		pointer to storage for computed MD5 digest
2475  * sav		pointer to security assosiation
2476  *
2477  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2478  * When called from tcp_input(), we can be sure that th_sum has been
2479  * zeroed out and verified already.
2480  *
2481  * Releases reference to SADB key before return.
2482  *
2483  * Return 0 if successful, otherwise return -1.
2484  *
2485  */
2486 int
2487 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2488     u_char *buf, struct secasvar *sav)
2489 {
2490 #ifdef INET
2491 	struct ippseudo ippseudo;
2492 #endif
2493 	MD5_CTX ctx;
2494 	int doff;
2495 	struct ip *ip;
2496 #ifdef INET
2497 	struct ipovly *ipovly;
2498 #endif
2499 	struct tcphdr *th;
2500 #ifdef INET6
2501 	struct ip6_hdr *ip6;
2502 	struct in6_addr in6;
2503 	uint32_t plen;
2504 	uint16_t nhdr;
2505 #endif
2506 	u_short savecsum;
2507 
2508 	KASSERT(m != NULL, ("NULL mbuf chain"));
2509 	KASSERT(buf != NULL, ("NULL signature pointer"));
2510 
2511 	/* Extract the destination from the IP header in the mbuf. */
2512 	ip = mtod(m, struct ip *);
2513 #ifdef INET6
2514 	ip6 = NULL;	/* Make the compiler happy. */
2515 #endif
2516 
2517 	MD5Init(&ctx);
2518 	/*
2519 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2520 	 *
2521 	 * XXX The ippseudo header MUST be digested in network byte order,
2522 	 * or else we'll fail the regression test. Assume all fields we've
2523 	 * been doing arithmetic on have been in host byte order.
2524 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2525 	 * tcp_output(), the underlying ip_len member has not yet been set.
2526 	 */
2527 	switch (ip->ip_v) {
2528 #ifdef INET
2529 	case IPVERSION:
2530 		ipovly = (struct ipovly *)ip;
2531 		ippseudo.ippseudo_src = ipovly->ih_src;
2532 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2533 		ippseudo.ippseudo_pad = 0;
2534 		ippseudo.ippseudo_p = IPPROTO_TCP;
2535 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2536 		    optlen);
2537 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2538 
2539 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2540 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2541 		break;
2542 #endif
2543 #ifdef INET6
2544 	/*
2545 	 * RFC 2385, 2.0  Proposal
2546 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2547 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2548 	 * extended next header value (to form 32 bits), and 32-bit segment
2549 	 * length.
2550 	 * Note: Upper-Layer Packet Length comes before Next Header.
2551 	 */
2552 	case (IPV6_VERSION >> 4):
2553 		in6 = ip6->ip6_src;
2554 		in6_clearscope(&in6);
2555 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2556 		in6 = ip6->ip6_dst;
2557 		in6_clearscope(&in6);
2558 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2559 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2560 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2561 		nhdr = 0;
2562 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2563 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2564 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2565 		nhdr = IPPROTO_TCP;
2566 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2567 
2568 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2569 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2570 		break;
2571 #endif
2572 	default:
2573 		KEY_FREESAV(&sav);
2574 		return (-1);
2575 		/* NOTREACHED */
2576 		break;
2577 	}
2578 
2579 
2580 	/*
2581 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2582 	 * The TCP checksum must be set to zero.
2583 	 */
2584 	savecsum = th->th_sum;
2585 	th->th_sum = 0;
2586 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2587 	th->th_sum = savecsum;
2588 
2589 	/*
2590 	 * Step 3: Update MD5 hash with TCP segment data.
2591 	 *         Use m_apply() to avoid an early m_pullup().
2592 	 */
2593 	if (len > 0)
2594 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2595 
2596 	/*
2597 	 * Step 4: Update MD5 hash with shared secret.
2598 	 */
2599 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2600 	MD5Final(buf, &ctx);
2601 
2602 	key_sa_recordxfer(sav, m);
2603 	KEY_FREESAV(&sav);
2604 	return (0);
2605 }
2606 
2607 /*
2608  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2609  *
2610  * Return 0 if successful, otherwise return -1.
2611  */
2612 int
2613 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2614     u_char *buf, u_int direction)
2615 {
2616 	struct secasvar *sav;
2617 
2618 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2619 		return (-1);
2620 
2621 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2622 }
2623 
2624 /*
2625  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2626  *
2627  * Parameters:
2628  * m		pointer to head of mbuf chain
2629  * len		length of TCP segment data, excluding options
2630  * optlen	length of TCP segment options
2631  * buf		pointer to storage for computed MD5 digest
2632  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2633  *
2634  * Return 1 if successful, otherwise return 0.
2635  */
2636 int
2637 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2638     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2639 {
2640 	char tmpdigest[TCP_SIGLEN];
2641 
2642 	if (tcp_sig_checksigs == 0)
2643 		return (1);
2644 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2645 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2646 
2647 			/*
2648 			 * If this socket is not expecting signature but
2649 			 * the segment contains signature just fail.
2650 			 */
2651 			TCPSTAT_INC(tcps_sig_err_sigopt);
2652 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2653 			return (0);
2654 		}
2655 
2656 		/* Signature is not expected, and not present in segment. */
2657 		return (1);
2658 	}
2659 
2660 	/*
2661 	 * If this socket is expecting signature but the segment does not
2662 	 * contain any just fail.
2663 	 */
2664 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2665 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2666 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2667 		return (0);
2668 	}
2669 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2670 	    IPSEC_DIR_INBOUND) == -1) {
2671 		TCPSTAT_INC(tcps_sig_err_buildsig);
2672 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2673 		return (0);
2674 	}
2675 
2676 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2677 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2678 		return (0);
2679 	}
2680 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2681 	return (1);
2682 }
2683 #endif /* TCP_SIGNATURE */
2684 
2685 static int
2686 sysctl_drop(SYSCTL_HANDLER_ARGS)
2687 {
2688 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2689 	struct sockaddr_storage addrs[2];
2690 	struct inpcb *inp;
2691 	struct tcpcb *tp;
2692 	struct tcptw *tw;
2693 	struct sockaddr_in *fin, *lin;
2694 #ifdef INET6
2695 	struct sockaddr_in6 *fin6, *lin6;
2696 #endif
2697 	int error;
2698 
2699 	inp = NULL;
2700 	fin = lin = NULL;
2701 #ifdef INET6
2702 	fin6 = lin6 = NULL;
2703 #endif
2704 	error = 0;
2705 
2706 	if (req->oldptr != NULL || req->oldlen != 0)
2707 		return (EINVAL);
2708 	if (req->newptr == NULL)
2709 		return (EPERM);
2710 	if (req->newlen < sizeof(addrs))
2711 		return (ENOMEM);
2712 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2713 	if (error)
2714 		return (error);
2715 
2716 	switch (addrs[0].ss_family) {
2717 #ifdef INET6
2718 	case AF_INET6:
2719 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2720 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2721 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2722 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2723 			return (EINVAL);
2724 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2725 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2726 				return (EINVAL);
2727 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2728 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2729 			fin = (struct sockaddr_in *)&addrs[0];
2730 			lin = (struct sockaddr_in *)&addrs[1];
2731 			break;
2732 		}
2733 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2734 		if (error)
2735 			return (error);
2736 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2737 		if (error)
2738 			return (error);
2739 		break;
2740 #endif
2741 #ifdef INET
2742 	case AF_INET:
2743 		fin = (struct sockaddr_in *)&addrs[0];
2744 		lin = (struct sockaddr_in *)&addrs[1];
2745 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2746 		    lin->sin_len != sizeof(struct sockaddr_in))
2747 			return (EINVAL);
2748 		break;
2749 #endif
2750 	default:
2751 		return (EINVAL);
2752 	}
2753 	INP_INFO_RLOCK(&V_tcbinfo);
2754 	switch (addrs[0].ss_family) {
2755 #ifdef INET6
2756 	case AF_INET6:
2757 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2758 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2759 		    INPLOOKUP_WLOCKPCB, NULL);
2760 		break;
2761 #endif
2762 #ifdef INET
2763 	case AF_INET:
2764 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2765 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2766 		break;
2767 #endif
2768 	}
2769 	if (inp != NULL) {
2770 		if (inp->inp_flags & INP_TIMEWAIT) {
2771 			/*
2772 			 * XXXRW: There currently exists a state where an
2773 			 * inpcb is present, but its timewait state has been
2774 			 * discarded.  For now, don't allow dropping of this
2775 			 * type of inpcb.
2776 			 */
2777 			tw = intotw(inp);
2778 			if (tw != NULL)
2779 				tcp_twclose(tw, 0);
2780 			else
2781 				INP_WUNLOCK(inp);
2782 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2783 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2784 			tp = intotcpcb(inp);
2785 			tp = tcp_drop(tp, ECONNABORTED);
2786 			if (tp != NULL)
2787 				INP_WUNLOCK(inp);
2788 		} else
2789 			INP_WUNLOCK(inp);
2790 	} else
2791 		error = ESRCH;
2792 	INP_INFO_RUNLOCK(&V_tcbinfo);
2793 	return (error);
2794 }
2795 
2796 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2797     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2798     0, sysctl_drop, "", "Drop TCP connection");
2799 
2800 /*
2801  * Generate a standardized TCP log line for use throughout the
2802  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2803  * allow use in the interrupt context.
2804  *
2805  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2806  * NB: The function may return NULL if memory allocation failed.
2807  *
2808  * Due to header inclusion and ordering limitations the struct ip
2809  * and ip6_hdr pointers have to be passed as void pointers.
2810  */
2811 char *
2812 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2813     const void *ip6hdr)
2814 {
2815 
2816 	/* Is logging enabled? */
2817 	if (tcp_log_in_vain == 0)
2818 		return (NULL);
2819 
2820 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2821 }
2822 
2823 char *
2824 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2825     const void *ip6hdr)
2826 {
2827 
2828 	/* Is logging enabled? */
2829 	if (tcp_log_debug == 0)
2830 		return (NULL);
2831 
2832 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2833 }
2834 
2835 static char *
2836 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2837     const void *ip6hdr)
2838 {
2839 	char *s, *sp;
2840 	size_t size;
2841 	struct ip *ip;
2842 #ifdef INET6
2843 	const struct ip6_hdr *ip6;
2844 
2845 	ip6 = (const struct ip6_hdr *)ip6hdr;
2846 #endif /* INET6 */
2847 	ip = (struct ip *)ip4hdr;
2848 
2849 	/*
2850 	 * The log line looks like this:
2851 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2852 	 */
2853 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2854 	    sizeof(PRINT_TH_FLAGS) + 1 +
2855 #ifdef INET6
2856 	    2 * INET6_ADDRSTRLEN;
2857 #else
2858 	    2 * INET_ADDRSTRLEN;
2859 #endif /* INET6 */
2860 
2861 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2862 	if (s == NULL)
2863 		return (NULL);
2864 
2865 	strcat(s, "TCP: [");
2866 	sp = s + strlen(s);
2867 
2868 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2869 		inet_ntoa_r(inc->inc_faddr, sp);
2870 		sp = s + strlen(s);
2871 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2872 		sp = s + strlen(s);
2873 		inet_ntoa_r(inc->inc_laddr, sp);
2874 		sp = s + strlen(s);
2875 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2876 #ifdef INET6
2877 	} else if (inc) {
2878 		ip6_sprintf(sp, &inc->inc6_faddr);
2879 		sp = s + strlen(s);
2880 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2881 		sp = s + strlen(s);
2882 		ip6_sprintf(sp, &inc->inc6_laddr);
2883 		sp = s + strlen(s);
2884 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2885 	} else if (ip6 && th) {
2886 		ip6_sprintf(sp, &ip6->ip6_src);
2887 		sp = s + strlen(s);
2888 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2889 		sp = s + strlen(s);
2890 		ip6_sprintf(sp, &ip6->ip6_dst);
2891 		sp = s + strlen(s);
2892 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2893 #endif /* INET6 */
2894 #ifdef INET
2895 	} else if (ip && th) {
2896 		inet_ntoa_r(ip->ip_src, sp);
2897 		sp = s + strlen(s);
2898 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2899 		sp = s + strlen(s);
2900 		inet_ntoa_r(ip->ip_dst, sp);
2901 		sp = s + strlen(s);
2902 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2903 #endif /* INET */
2904 	} else {
2905 		free(s, M_TCPLOG);
2906 		return (NULL);
2907 	}
2908 	sp = s + strlen(s);
2909 	if (th)
2910 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2911 	if (*(s + size - 1) != '\0')
2912 		panic("%s: string too long", __func__);
2913 	return (s);
2914 }
2915 
2916 /*
2917  * A subroutine which makes it easy to track TCP state changes with DTrace.
2918  * This function shouldn't be called for t_state initializations that don't
2919  * correspond to actual TCP state transitions.
2920  */
2921 void
2922 tcp_state_change(struct tcpcb *tp, int newstate)
2923 {
2924 #if defined(KDTRACE_HOOKS)
2925 	int pstate = tp->t_state;
2926 #endif
2927 
2928 	TCPSTAT_DEC(tcps_states[tp->t_state]);
2929 	TCPSTAT_INC(tcps_states[newstate]);
2930 	tp->t_state = newstate;
2931 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2932 }
2933