xref: /freebsd/sys/netinet/tcp_subr.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 #include <sys/md5.h>
102 
103 int 	tcp_mssdflt = TCP_MSS;
104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106 
107 #ifdef INET6
108 int	tcp_v6mssdflt = TCP6_MSS;
109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111 	"Default TCP Maximum Segment Size for IPv6");
112 #endif
113 
114 #if 0
115 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118 #endif
119 
120 int	tcp_do_rfc1323 = 1;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123 
124 int	tcp_do_rfc1644 = 0;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127 
128 static int	tcp_tcbhashsize = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131 
132 static int	do_tcpdrain = 1;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134      "Enable tcp_drain routine for extra help when low on mbufs");
135 
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137     &tcbinfo.ipi_count, 0, "Number of active PCBs");
138 
139 static int	icmp_may_rst = 1;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142 
143 static int	tcp_isn_reseed_interval = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
145     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
146 
147 static void	tcp_cleartaocache(void);
148 static struct inpcb *tcp_notify(struct inpcb *, int);
149 
150 /*
151  * Target size of TCP PCB hash tables. Must be a power of two.
152  *
153  * Note that this can be overridden by the kernel environment
154  * variable net.inet.tcp.tcbhashsize
155  */
156 #ifndef TCBHASHSIZE
157 #define TCBHASHSIZE	512
158 #endif
159 
160 /*
161  * This is the actual shape of what we allocate using the zone
162  * allocator.  Doing it this way allows us to protect both structures
163  * using the same generation count, and also eliminates the overhead
164  * of allocating tcpcbs separately.  By hiding the structure here,
165  * we avoid changing most of the rest of the code (although it needs
166  * to be changed, eventually, for greater efficiency).
167  */
168 #define	ALIGNMENT	32
169 #define	ALIGNM1		(ALIGNMENT - 1)
170 struct	inp_tp {
171 	union {
172 		struct	inpcb inp;
173 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
174 	} inp_tp_u;
175 	struct	tcpcb tcb;
176 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
177 	struct	callout inp_tp_delack;
178 };
179 #undef ALIGNMENT
180 #undef ALIGNM1
181 
182 /*
183  * Tcp initialization
184  */
185 void
186 tcp_init()
187 {
188 	int hashsize = TCBHASHSIZE;
189 
190 	tcp_ccgen = 1;
191 	tcp_cleartaocache();
192 
193 	tcp_delacktime = TCPTV_DELACK;
194 	tcp_keepinit = TCPTV_KEEP_INIT;
195 	tcp_keepidle = TCPTV_KEEP_IDLE;
196 	tcp_keepintvl = TCPTV_KEEPINTVL;
197 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
198 	tcp_msl = TCPTV_MSL;
199 
200 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
201 	LIST_INIT(&tcb);
202 	tcbinfo.listhead = &tcb;
203 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
204 	if (!powerof2(hashsize)) {
205 		printf("WARNING: TCB hash size not a power of 2\n");
206 		hashsize = 512; /* safe default */
207 	}
208 	tcp_tcbhashsize = hashsize;
209 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
210 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
211 					&tcbinfo.porthashmask);
212 	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
215 #ifdef INET6
216 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
217 #else /* INET6 */
218 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
219 #endif /* INET6 */
220 	if (max_protohdr < TCP_MINPROTOHDR)
221 		max_protohdr = TCP_MINPROTOHDR;
222 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
223 		panic("tcp_init");
224 #undef TCP_MINPROTOHDR
225 
226 	syncache_init();
227 }
228 
229 /*
230  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
231  * tcp_template used to store this data in mbufs, but we now recopy it out
232  * of the tcpcb each time to conserve mbufs.
233  */
234 void
235 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
236 	struct tcpcb *tp;
237 	void *ip_ptr;
238 	void *tcp_ptr;
239 {
240 	struct inpcb *inp = tp->t_inpcb;
241 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
242 
243 #ifdef INET6
244 	if ((inp->inp_vflag & INP_IPV6) != 0) {
245 		struct ip6_hdr *ip6;
246 
247 		ip6 = (struct ip6_hdr *)ip_ptr;
248 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
249 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
250 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
251 			(IPV6_VERSION & IPV6_VERSION_MASK);
252 		ip6->ip6_nxt = IPPROTO_TCP;
253 		ip6->ip6_plen = sizeof(struct tcphdr);
254 		ip6->ip6_src = inp->in6p_laddr;
255 		ip6->ip6_dst = inp->in6p_faddr;
256 		tcp_hdr->th_sum = 0;
257 	} else
258 #endif
259 	{
260 	struct ip *ip = (struct ip *) ip_ptr;
261 
262 	ip->ip_vhl = IP_VHL_BORING;
263 	ip->ip_tos = 0;
264 	ip->ip_len = 0;
265 	ip->ip_id = 0;
266 	ip->ip_off = 0;
267 	ip->ip_ttl = 0;
268 	ip->ip_sum = 0;
269 	ip->ip_p = IPPROTO_TCP;
270 	ip->ip_src = inp->inp_laddr;
271 	ip->ip_dst = inp->inp_faddr;
272 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
273 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
274 	}
275 
276 	tcp_hdr->th_sport = inp->inp_lport;
277 	tcp_hdr->th_dport = inp->inp_fport;
278 	tcp_hdr->th_seq = 0;
279 	tcp_hdr->th_ack = 0;
280 	tcp_hdr->th_x2 = 0;
281 	tcp_hdr->th_off = 5;
282 	tcp_hdr->th_flags = 0;
283 	tcp_hdr->th_win = 0;
284 	tcp_hdr->th_urp = 0;
285 }
286 
287 /*
288  * Create template to be used to send tcp packets on a connection.
289  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
290  * use for this function is in keepalives, which use tcp_respond.
291  */
292 struct tcptemp *
293 tcp_maketemplate(tp)
294 	struct tcpcb *tp;
295 {
296 	struct mbuf *m;
297 	struct tcptemp *n;
298 
299 	m = m_get(M_DONTWAIT, MT_HEADER);
300 	if (m == NULL)
301 		return (0);
302 	m->m_len = sizeof(struct tcptemp);
303 	n = mtod(m, struct tcptemp *);
304 
305 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
306 	return (n);
307 }
308 
309 /*
310  * Send a single message to the TCP at address specified by
311  * the given TCP/IP header.  If m == 0, then we make a copy
312  * of the tcpiphdr at ti and send directly to the addressed host.
313  * This is used to force keep alive messages out using the TCP
314  * template for a connection.  If flags are given then we send
315  * a message back to the TCP which originated the * segment ti,
316  * and discard the mbuf containing it and any other attached mbufs.
317  *
318  * In any case the ack and sequence number of the transmitted
319  * segment are as specified by the parameters.
320  *
321  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
322  */
323 void
324 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
325 	struct tcpcb *tp;
326 	void *ipgen;
327 	register struct tcphdr *th;
328 	register struct mbuf *m;
329 	tcp_seq ack, seq;
330 	int flags;
331 {
332 	register int tlen;
333 	int win = 0;
334 	struct route *ro = 0;
335 	struct route sro;
336 	struct ip *ip;
337 	struct tcphdr *nth;
338 #ifdef INET6
339 	struct route_in6 *ro6 = 0;
340 	struct route_in6 sro6;
341 	struct ip6_hdr *ip6;
342 	int isipv6;
343 #endif /* INET6 */
344 	int ipflags = 0;
345 
346 #ifdef INET6
347 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
348 	ip6 = ipgen;
349 #endif /* INET6 */
350 	ip = ipgen;
351 
352 	if (tp) {
353 		if (!(flags & TH_RST)) {
354 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
355 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
356 				win = (long)TCP_MAXWIN << tp->rcv_scale;
357 		}
358 #ifdef INET6
359 		if (isipv6)
360 			ro6 = &tp->t_inpcb->in6p_route;
361 		else
362 #endif /* INET6 */
363 		ro = &tp->t_inpcb->inp_route;
364 	} else {
365 #ifdef INET6
366 		if (isipv6) {
367 			ro6 = &sro6;
368 			bzero(ro6, sizeof *ro6);
369 		} else
370 #endif /* INET6 */
371 	      {
372 		ro = &sro;
373 		bzero(ro, sizeof *ro);
374 	      }
375 	}
376 	if (m == 0) {
377 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
378 		if (m == NULL)
379 			return;
380 		tlen = 0;
381 		m->m_data += max_linkhdr;
382 #ifdef INET6
383 		if (isipv6) {
384 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
385 			      sizeof(struct ip6_hdr));
386 			ip6 = mtod(m, struct ip6_hdr *);
387 			nth = (struct tcphdr *)(ip6 + 1);
388 		} else
389 #endif /* INET6 */
390 	      {
391 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
392 		ip = mtod(m, struct ip *);
393 		nth = (struct tcphdr *)(ip + 1);
394 	      }
395 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
396 		flags = TH_ACK;
397 	} else {
398 		m_freem(m->m_next);
399 		m->m_next = 0;
400 		m->m_data = (caddr_t)ipgen;
401 		/* m_len is set later */
402 		tlen = 0;
403 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
404 #ifdef INET6
405 		if (isipv6) {
406 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
407 			nth = (struct tcphdr *)(ip6 + 1);
408 		} else
409 #endif /* INET6 */
410 	      {
411 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
412 		nth = (struct tcphdr *)(ip + 1);
413 	      }
414 		if (th != nth) {
415 			/*
416 			 * this is usually a case when an extension header
417 			 * exists between the IPv6 header and the
418 			 * TCP header.
419 			 */
420 			nth->th_sport = th->th_sport;
421 			nth->th_dport = th->th_dport;
422 		}
423 		xchg(nth->th_dport, nth->th_sport, n_short);
424 #undef xchg
425 	}
426 #ifdef INET6
427 	if (isipv6) {
428 		ip6->ip6_flow = 0;
429 		ip6->ip6_vfc = IPV6_VERSION;
430 		ip6->ip6_nxt = IPPROTO_TCP;
431 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
432 						tlen));
433 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
434 	} else
435 #endif
436       {
437 	tlen += sizeof (struct tcpiphdr);
438 	ip->ip_len = tlen;
439 	ip->ip_ttl = ip_defttl;
440       }
441 	m->m_len = tlen;
442 	m->m_pkthdr.len = tlen;
443 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
444 	nth->th_seq = htonl(seq);
445 	nth->th_ack = htonl(ack);
446 	nth->th_x2 = 0;
447 	nth->th_off = sizeof (struct tcphdr) >> 2;
448 	nth->th_flags = flags;
449 	if (tp)
450 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
451 	else
452 		nth->th_win = htons((u_short)win);
453 	nth->th_urp = 0;
454 #ifdef INET6
455 	if (isipv6) {
456 		nth->th_sum = 0;
457 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
458 					sizeof(struct ip6_hdr),
459 					tlen - sizeof(struct ip6_hdr));
460 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
461 					       ro6 && ro6->ro_rt ?
462 					       ro6->ro_rt->rt_ifp :
463 					       NULL);
464 	} else
465 #endif /* INET6 */
466       {
467         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
468 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
469         m->m_pkthdr.csum_flags = CSUM_TCP;
470         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
471       }
472 #ifdef TCPDEBUG
473 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
474 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
475 #endif
476 #ifdef IPSEC
477 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
478 		m_freem(m);
479 		return;
480 	}
481 #endif
482 #ifdef INET6
483 	if (isipv6) {
484 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
485 		if (ro6 == &sro6 && ro6->ro_rt) {
486 			RTFREE(ro6->ro_rt);
487 			ro6->ro_rt = NULL;
488 		}
489 	} else
490 #endif /* INET6 */
491       {
492 	(void) ip_output(m, NULL, ro, ipflags, NULL);
493 	if (ro == &sro && ro->ro_rt) {
494 		RTFREE(ro->ro_rt);
495 		ro->ro_rt = NULL;
496 	}
497       }
498 }
499 
500 /*
501  * Create a new TCP control block, making an
502  * empty reassembly queue and hooking it to the argument
503  * protocol control block.  The `inp' parameter must have
504  * come from the zone allocator set up in tcp_init().
505  */
506 struct tcpcb *
507 tcp_newtcpcb(inp)
508 	struct inpcb *inp;
509 {
510 	struct inp_tp *it;
511 	register struct tcpcb *tp;
512 #ifdef INET6
513 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
514 #endif /* INET6 */
515 
516 	it = (struct inp_tp *)inp;
517 	tp = &it->tcb;
518 	bzero((char *) tp, sizeof(struct tcpcb));
519 	LIST_INIT(&tp->t_segq);
520 	tp->t_maxseg = tp->t_maxopd =
521 #ifdef INET6
522 		isipv6 ? tcp_v6mssdflt :
523 #endif /* INET6 */
524 		tcp_mssdflt;
525 
526 	/* Set up our timeouts. */
527 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
528 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
529 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
530 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
531 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
532 
533 	if (tcp_do_rfc1323)
534 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
535 	if (tcp_do_rfc1644)
536 		tp->t_flags |= TF_REQ_CC;
537 	tp->t_inpcb = inp;	/* XXX */
538 	/*
539 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
540 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
541 	 * reasonable initial retransmit time.
542 	 */
543 	tp->t_srtt = TCPTV_SRTTBASE;
544 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
545 	tp->t_rttmin = TCPTV_MIN;
546 	tp->t_rxtcur = TCPTV_RTOBASE;
547 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
548 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
549 	tp->t_rcvtime = ticks;
550         /*
551 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
552 	 * because the socket may be bound to an IPv6 wildcard address,
553 	 * which may match an IPv4-mapped IPv6 address.
554 	 */
555 	inp->inp_ip_ttl = ip_defttl;
556 	inp->inp_ppcb = (caddr_t)tp;
557 	return (tp);		/* XXX */
558 }
559 
560 /*
561  * Drop a TCP connection, reporting
562  * the specified error.  If connection is synchronized,
563  * then send a RST to peer.
564  */
565 struct tcpcb *
566 tcp_drop(tp, errno)
567 	register struct tcpcb *tp;
568 	int errno;
569 {
570 	struct socket *so = tp->t_inpcb->inp_socket;
571 
572 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
573 		tp->t_state = TCPS_CLOSED;
574 		(void) tcp_output(tp);
575 		tcpstat.tcps_drops++;
576 	} else
577 		tcpstat.tcps_conndrops++;
578 	if (errno == ETIMEDOUT && tp->t_softerror)
579 		errno = tp->t_softerror;
580 	so->so_error = errno;
581 	return (tcp_close(tp));
582 }
583 
584 /*
585  * Close a TCP control block:
586  *	discard all space held by the tcp
587  *	discard internet protocol block
588  *	wake up any sleepers
589  */
590 struct tcpcb *
591 tcp_close(tp)
592 	register struct tcpcb *tp;
593 {
594 	register struct tseg_qent *q;
595 	struct inpcb *inp = tp->t_inpcb;
596 	struct socket *so = inp->inp_socket;
597 #ifdef INET6
598 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
599 #endif /* INET6 */
600 	register struct rtentry *rt;
601 	int dosavessthresh;
602 
603 	/*
604 	 * Make sure that all of our timers are stopped before we
605 	 * delete the PCB.
606 	 */
607 	callout_stop(tp->tt_rexmt);
608 	callout_stop(tp->tt_persist);
609 	callout_stop(tp->tt_keep);
610 	callout_stop(tp->tt_2msl);
611 	callout_stop(tp->tt_delack);
612 
613 	/*
614 	 * If we got enough samples through the srtt filter,
615 	 * save the rtt and rttvar in the routing entry.
616 	 * 'Enough' is arbitrarily defined as the 16 samples.
617 	 * 16 samples is enough for the srtt filter to converge
618 	 * to within 5% of the correct value; fewer samples and
619 	 * we could save a very bogus rtt.
620 	 *
621 	 * Don't update the default route's characteristics and don't
622 	 * update anything that the user "locked".
623 	 */
624 	if (tp->t_rttupdated >= 16) {
625 		register u_long i = 0;
626 #ifdef INET6
627 		if (isipv6) {
628 			struct sockaddr_in6 *sin6;
629 
630 			if ((rt = inp->in6p_route.ro_rt) == NULL)
631 				goto no_valid_rt;
632 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
633 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
634 				goto no_valid_rt;
635 		}
636 		else
637 #endif /* INET6 */
638 		if ((rt = inp->inp_route.ro_rt) == NULL ||
639 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
640 		    == INADDR_ANY)
641 			goto no_valid_rt;
642 
643 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
644 			i = tp->t_srtt *
645 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
646 			if (rt->rt_rmx.rmx_rtt && i)
647 				/*
648 				 * filter this update to half the old & half
649 				 * the new values, converting scale.
650 				 * See route.h and tcp_var.h for a
651 				 * description of the scaling constants.
652 				 */
653 				rt->rt_rmx.rmx_rtt =
654 				    (rt->rt_rmx.rmx_rtt + i) / 2;
655 			else
656 				rt->rt_rmx.rmx_rtt = i;
657 			tcpstat.tcps_cachedrtt++;
658 		}
659 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
660 			i = tp->t_rttvar *
661 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
662 			if (rt->rt_rmx.rmx_rttvar && i)
663 				rt->rt_rmx.rmx_rttvar =
664 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
665 			else
666 				rt->rt_rmx.rmx_rttvar = i;
667 			tcpstat.tcps_cachedrttvar++;
668 		}
669 		/*
670 		 * The old comment here said:
671 		 * update the pipelimit (ssthresh) if it has been updated
672 		 * already or if a pipesize was specified & the threshhold
673 		 * got below half the pipesize.  I.e., wait for bad news
674 		 * before we start updating, then update on both good
675 		 * and bad news.
676 		 *
677 		 * But we want to save the ssthresh even if no pipesize is
678 		 * specified explicitly in the route, because such
679 		 * connections still have an implicit pipesize specified
680 		 * by the global tcp_sendspace.  In the absence of a reliable
681 		 * way to calculate the pipesize, it will have to do.
682 		 */
683 		i = tp->snd_ssthresh;
684 		if (rt->rt_rmx.rmx_sendpipe != 0)
685 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
686 		else
687 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
688 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
689 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
690 		    || dosavessthresh) {
691 			/*
692 			 * convert the limit from user data bytes to
693 			 * packets then to packet data bytes.
694 			 */
695 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
696 			if (i < 2)
697 				i = 2;
698 			i *= (u_long)(tp->t_maxseg +
699 #ifdef INET6
700 				      (isipv6 ? sizeof (struct ip6_hdr) +
701 					       sizeof (struct tcphdr) :
702 #endif
703 				       sizeof (struct tcpiphdr)
704 #ifdef INET6
705 				       )
706 #endif
707 				      );
708 			if (rt->rt_rmx.rmx_ssthresh)
709 				rt->rt_rmx.rmx_ssthresh =
710 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
711 			else
712 				rt->rt_rmx.rmx_ssthresh = i;
713 			tcpstat.tcps_cachedssthresh++;
714 		}
715 	}
716     no_valid_rt:
717 	/* free the reassembly queue, if any */
718 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
719 		LIST_REMOVE(q, tqe_q);
720 		m_freem(q->tqe_m);
721 		FREE(q, M_TSEGQ);
722 	}
723 	inp->inp_ppcb = NULL;
724 	soisdisconnected(so);
725 #ifdef INET6
726 	if (INP_CHECK_SOCKAF(so, AF_INET6))
727 		in6_pcbdetach(inp);
728 	else
729 #endif /* INET6 */
730 	in_pcbdetach(inp);
731 	tcpstat.tcps_closed++;
732 	return ((struct tcpcb *)0);
733 }
734 
735 void
736 tcp_drain()
737 {
738 	if (do_tcpdrain)
739 	{
740 		struct inpcb *inpb;
741 		struct tcpcb *tcpb;
742 		struct tseg_qent *te;
743 
744 	/*
745 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
746 	 * if there is one...
747 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
748 	 *      reassembly queue should be flushed, but in a situation
749 	 * 	where we're really low on mbufs, this is potentially
750 	 *  	usefull.
751 	 */
752 		INP_INFO_RLOCK(&tcbinfo);
753 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
754 			INP_LOCK(inpb);
755 			if ((tcpb = intotcpcb(inpb))) {
756 				while ((te = LIST_FIRST(&tcpb->t_segq))
757 			            != NULL) {
758 					LIST_REMOVE(te, tqe_q);
759 					m_freem(te->tqe_m);
760 					FREE(te, M_TSEGQ);
761 				}
762 			}
763 			INP_UNLOCK(inpb);
764 		}
765 		INP_INFO_RUNLOCK(&tcbinfo);
766 	}
767 }
768 
769 /*
770  * Notify a tcp user of an asynchronous error;
771  * store error as soft error, but wake up user
772  * (for now, won't do anything until can select for soft error).
773  *
774  * Do not wake up user since there currently is no mechanism for
775  * reporting soft errors (yet - a kqueue filter may be added).
776  */
777 static struct inpcb *
778 tcp_notify(inp, error)
779 	struct inpcb *inp;
780 	int error;
781 {
782 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
783 
784 	/*
785 	 * Ignore some errors if we are hooked up.
786 	 * If connection hasn't completed, has retransmitted several times,
787 	 * and receives a second error, give up now.  This is better
788 	 * than waiting a long time to establish a connection that
789 	 * can never complete.
790 	 */
791 	if (tp->t_state == TCPS_ESTABLISHED &&
792 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
793 	      error == EHOSTDOWN)) {
794 		return inp;
795 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
796 	    tp->t_softerror) {
797 		tcp_drop(tp, error);
798 		return (struct inpcb *)0;
799 	} else {
800 		tp->t_softerror = error;
801 		return inp;
802 	}
803 #if 0
804 	wakeup((caddr_t) &so->so_timeo);
805 	sorwakeup(so);
806 	sowwakeup(so);
807 #endif
808 }
809 
810 static int
811 tcp_pcblist(SYSCTL_HANDLER_ARGS)
812 {
813 	int error, i, n, s;
814 	struct inpcb *inp, **inp_list;
815 	inp_gen_t gencnt;
816 	struct xinpgen xig;
817 
818 	/*
819 	 * The process of preparing the TCB list is too time-consuming and
820 	 * resource-intensive to repeat twice on every request.
821 	 */
822 	if (req->oldptr == 0) {
823 		n = tcbinfo.ipi_count;
824 		req->oldidx = 2 * (sizeof xig)
825 			+ (n + n/8) * sizeof(struct xtcpcb);
826 		return 0;
827 	}
828 
829 	if (req->newptr != 0)
830 		return EPERM;
831 
832 	/*
833 	 * OK, now we're committed to doing something.
834 	 */
835 	s = splnet();
836 	INP_INFO_RLOCK(&tcbinfo);
837 	gencnt = tcbinfo.ipi_gencnt;
838 	n = tcbinfo.ipi_count;
839 	INP_INFO_RUNLOCK(&tcbinfo);
840 	splx(s);
841 
842 	xig.xig_len = sizeof xig;
843 	xig.xig_count = n;
844 	xig.xig_gen = gencnt;
845 	xig.xig_sogen = so_gencnt;
846 	error = SYSCTL_OUT(req, &xig, sizeof xig);
847 	if (error)
848 		return error;
849 
850 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
851 	if (inp_list == 0)
852 		return ENOMEM;
853 
854 	s = splnet();
855 	INP_INFO_RLOCK(&tcbinfo);
856 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
857 	     inp = LIST_NEXT(inp, inp_list)) {
858 		INP_LOCK(inp);
859 		if (inp->inp_gencnt <= gencnt &&
860 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
861 			inp_list[i++] = inp;
862 		INP_UNLOCK(inp);
863 	}
864 	INP_INFO_RUNLOCK(&tcbinfo);
865 	splx(s);
866 	n = i;
867 
868 	error = 0;
869 	for (i = 0; i < n; i++) {
870 		inp = inp_list[i];
871 		INP_LOCK(inp);
872 		if (inp->inp_gencnt <= gencnt) {
873 			struct xtcpcb xt;
874 			caddr_t inp_ppcb;
875 			xt.xt_len = sizeof xt;
876 			/* XXX should avoid extra copy */
877 			bcopy(inp, &xt.xt_inp, sizeof *inp);
878 			inp_ppcb = inp->inp_ppcb;
879 			if (inp_ppcb != NULL)
880 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
881 			else
882 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
883 			if (inp->inp_socket)
884 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
885 			error = SYSCTL_OUT(req, &xt, sizeof xt);
886 		}
887 		INP_UNLOCK(inp);
888 	}
889 	if (!error) {
890 		/*
891 		 * Give the user an updated idea of our state.
892 		 * If the generation differs from what we told
893 		 * her before, she knows that something happened
894 		 * while we were processing this request, and it
895 		 * might be necessary to retry.
896 		 */
897 		s = splnet();
898 		INP_INFO_RLOCK(&tcbinfo);
899 		xig.xig_gen = tcbinfo.ipi_gencnt;
900 		xig.xig_sogen = so_gencnt;
901 		xig.xig_count = tcbinfo.ipi_count;
902 		INP_INFO_RUNLOCK(&tcbinfo);
903 		splx(s);
904 		error = SYSCTL_OUT(req, &xig, sizeof xig);
905 	}
906 	free(inp_list, M_TEMP);
907 	return error;
908 }
909 
910 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
911 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
912 
913 static int
914 tcp_getcred(SYSCTL_HANDLER_ARGS)
915 {
916 	struct xucred xuc;
917 	struct sockaddr_in addrs[2];
918 	struct inpcb *inp;
919 	int error, s;
920 
921 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
922 	if (error)
923 		return (error);
924 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
925 	if (error)
926 		return (error);
927 	s = splnet();
928 	INP_INFO_RLOCK(&tcbinfo);
929 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
930 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
931 	if (inp == NULL) {
932 		error = ENOENT;
933 		goto outunlocked;
934 	} else {
935 		INP_LOCK(inp);
936 		if (inp->inp_socket == NULL) {
937 			error = ENOENT;
938 			goto out;
939 		}
940 	}
941 
942 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
943 	if (error)
944 		goto out;
945 	cru2x(inp->inp_socket->so_cred, &xuc);
946 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
947 out:
948 	INP_UNLOCK(inp);
949 outunlocked:
950 	INP_INFO_RUNLOCK(&tcbinfo);
951 	splx(s);
952 	return (error);
953 }
954 
955 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
956     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
957     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
958 
959 #ifdef INET6
960 static int
961 tcp6_getcred(SYSCTL_HANDLER_ARGS)
962 {
963 	struct xucred xuc;
964 	struct sockaddr_in6 addrs[2];
965 	struct inpcb *inp;
966 	int error, s, mapped = 0;
967 
968 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
969 	if (error)
970 		return (error);
971 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
972 	if (error)
973 		return (error);
974 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
975 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
976 			mapped = 1;
977 		else
978 			return (EINVAL);
979 	}
980 	s = splnet();
981 	INP_INFO_RLOCK(&tcbinfo);
982 	if (mapped == 1)
983 		inp = in_pcblookup_hash(&tcbinfo,
984 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
985 			addrs[1].sin6_port,
986 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
987 			addrs[0].sin6_port,
988 			0, NULL);
989 	else
990 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
991 				 addrs[1].sin6_port,
992 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
993 				 0, NULL);
994 	if (inp == NULL) {
995 		error = ENOENT;
996 		goto outunlocked;
997 	} else {
998 		INP_LOCK(inp);
999 		if (inp->inp_socket == NULL) {
1000 			error = ENOENT;
1001 			goto out;
1002 		}
1003 	}
1004 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1005 	if (error)
1006 		goto out;
1007 	cru2x(inp->inp_socket->so_cred, &xuc);
1008 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1009 out:
1010 	INP_UNLOCK(inp);
1011 outunlocked:
1012 	INP_INFO_RUNLOCK(&tcbinfo);
1013 	splx(s);
1014 	return (error);
1015 }
1016 
1017 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1018     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1019     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1020 #endif
1021 
1022 
1023 void
1024 tcp_ctlinput(cmd, sa, vip)
1025 	int cmd;
1026 	struct sockaddr *sa;
1027 	void *vip;
1028 {
1029 	struct ip *ip = vip;
1030 	struct tcphdr *th;
1031 	struct in_addr faddr;
1032 	struct inpcb *inp;
1033 	struct tcpcb *tp;
1034 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1035 	tcp_seq icmp_seq;
1036 	int s;
1037 
1038 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1039 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1040 		return;
1041 
1042 	if (cmd == PRC_QUENCH)
1043 		notify = tcp_quench;
1044 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1045 		cmd == PRC_UNREACH_PORT) && ip)
1046 		notify = tcp_drop_syn_sent;
1047 	else if (cmd == PRC_MSGSIZE)
1048 		notify = tcp_mtudisc;
1049 	else if (PRC_IS_REDIRECT(cmd)) {
1050 		ip = 0;
1051 		notify = in_rtchange;
1052 	} else if (cmd == PRC_HOSTDEAD)
1053 		ip = 0;
1054 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1055 		return;
1056 	if (ip) {
1057 		s = splnet();
1058 		th = (struct tcphdr *)((caddr_t)ip
1059 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1060 		INP_INFO_WLOCK(&tcbinfo);
1061 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1062 		    ip->ip_src, th->th_sport, 0, NULL);
1063 		if (inp != NULL)  {
1064 			INP_LOCK(inp);
1065 			if (inp->inp_socket != NULL) {
1066 				icmp_seq = htonl(th->th_seq);
1067 				tp = intotcpcb(inp);
1068 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1069 			    		SEQ_LT(icmp_seq, tp->snd_max))
1070 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1071 			}
1072 			if (inp)
1073 				INP_UNLOCK(inp);
1074 		} else {
1075 			struct in_conninfo inc;
1076 
1077 			inc.inc_fport = th->th_dport;
1078 			inc.inc_lport = th->th_sport;
1079 			inc.inc_faddr = faddr;
1080 			inc.inc_laddr = ip->ip_src;
1081 #ifdef INET6
1082 			inc.inc_isipv6 = 0;
1083 #endif
1084 			syncache_unreach(&inc, th);
1085 		}
1086 		INP_INFO_WUNLOCK(&tcbinfo);
1087 		splx(s);
1088 	} else
1089 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1090 }
1091 
1092 #ifdef INET6
1093 void
1094 tcp6_ctlinput(cmd, sa, d)
1095 	int cmd;
1096 	struct sockaddr *sa;
1097 	void *d;
1098 {
1099 	struct tcphdr th;
1100 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1101 	struct ip6_hdr *ip6;
1102 	struct mbuf *m;
1103 	struct ip6ctlparam *ip6cp = NULL;
1104 	const struct sockaddr_in6 *sa6_src = NULL;
1105 	int off;
1106 	struct tcp_portonly {
1107 		u_int16_t th_sport;
1108 		u_int16_t th_dport;
1109 	} *thp;
1110 
1111 	if (sa->sa_family != AF_INET6 ||
1112 	    sa->sa_len != sizeof(struct sockaddr_in6))
1113 		return;
1114 
1115 	if (cmd == PRC_QUENCH)
1116 		notify = tcp_quench;
1117 	else if (cmd == PRC_MSGSIZE)
1118 		notify = tcp_mtudisc;
1119 	else if (!PRC_IS_REDIRECT(cmd) &&
1120 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1121 		return;
1122 
1123 	/* if the parameter is from icmp6, decode it. */
1124 	if (d != NULL) {
1125 		ip6cp = (struct ip6ctlparam *)d;
1126 		m = ip6cp->ip6c_m;
1127 		ip6 = ip6cp->ip6c_ip6;
1128 		off = ip6cp->ip6c_off;
1129 		sa6_src = ip6cp->ip6c_src;
1130 	} else {
1131 		m = NULL;
1132 		ip6 = NULL;
1133 		off = 0;	/* fool gcc */
1134 		sa6_src = &sa6_any;
1135 	}
1136 
1137 	if (ip6) {
1138 		struct in_conninfo inc;
1139 		/*
1140 		 * XXX: We assume that when IPV6 is non NULL,
1141 		 * M and OFF are valid.
1142 		 */
1143 
1144 		/* check if we can safely examine src and dst ports */
1145 		if (m->m_pkthdr.len < off + sizeof(*thp))
1146 			return;
1147 
1148 		bzero(&th, sizeof(th));
1149 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1150 
1151 		in6_pcbnotify(&tcb, sa, th.th_dport,
1152 		    (struct sockaddr *)ip6cp->ip6c_src,
1153 		    th.th_sport, cmd, notify);
1154 
1155 		inc.inc_fport = th.th_dport;
1156 		inc.inc_lport = th.th_sport;
1157 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1158 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1159 		inc.inc_isipv6 = 1;
1160 		syncache_unreach(&inc, &th);
1161 	} else
1162 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1163 			      0, cmd, notify);
1164 }
1165 #endif /* INET6 */
1166 
1167 
1168 /*
1169  * Following is where TCP initial sequence number generation occurs.
1170  *
1171  * There are two places where we must use initial sequence numbers:
1172  * 1.  In SYN-ACK packets.
1173  * 2.  In SYN packets.
1174  *
1175  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1176  * tcp_syncache.c for details.
1177  *
1178  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1179  * depends on this property.  In addition, these ISNs should be
1180  * unguessable so as to prevent connection hijacking.  To satisfy
1181  * the requirements of this situation, the algorithm outlined in
1182  * RFC 1948 is used to generate sequence numbers.
1183  *
1184  * Implementation details:
1185  *
1186  * Time is based off the system timer, and is corrected so that it
1187  * increases by one megabyte per second.  This allows for proper
1188  * recycling on high speed LANs while still leaving over an hour
1189  * before rollover.
1190  *
1191  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1192  * between seeding of isn_secret.  This is normally set to zero,
1193  * as reseeding should not be necessary.
1194  *
1195  */
1196 
1197 #define ISN_BYTES_PER_SECOND 1048576
1198 
1199 u_char isn_secret[32];
1200 int isn_last_reseed;
1201 MD5_CTX isn_ctx;
1202 
1203 tcp_seq
1204 tcp_new_isn(tp)
1205 	struct tcpcb *tp;
1206 {
1207 	u_int32_t md5_buffer[4];
1208 	tcp_seq new_isn;
1209 
1210 	/* Seed if this is the first use, reseed if requested. */
1211 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1212 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1213 		< (u_int)ticks))) {
1214 		read_random(&isn_secret, sizeof(isn_secret));
1215 		isn_last_reseed = ticks;
1216 	}
1217 
1218 	/* Compute the md5 hash and return the ISN. */
1219 	MD5Init(&isn_ctx);
1220 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1221 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1222 #ifdef INET6
1223 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1224 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1225 			  sizeof(struct in6_addr));
1226 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1227 			  sizeof(struct in6_addr));
1228 	} else
1229 #endif
1230 	{
1231 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1232 			  sizeof(struct in_addr));
1233 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1234 			  sizeof(struct in_addr));
1235 	}
1236 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1237 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1238 	new_isn = (tcp_seq) md5_buffer[0];
1239 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1240 	return new_isn;
1241 }
1242 
1243 /*
1244  * When a source quench is received, close congestion window
1245  * to one segment.  We will gradually open it again as we proceed.
1246  */
1247 struct inpcb *
1248 tcp_quench(inp, errno)
1249 	struct inpcb *inp;
1250 	int errno;
1251 {
1252 	struct tcpcb *tp = intotcpcb(inp);
1253 
1254 	if (tp)
1255 		tp->snd_cwnd = tp->t_maxseg;
1256 	return (inp);
1257 }
1258 
1259 /*
1260  * When a specific ICMP unreachable message is received and the
1261  * connection state is SYN-SENT, drop the connection.  This behavior
1262  * is controlled by the icmp_may_rst sysctl.
1263  */
1264 struct inpcb *
1265 tcp_drop_syn_sent(inp, errno)
1266 	struct inpcb *inp;
1267 	int errno;
1268 {
1269 	struct tcpcb *tp = intotcpcb(inp);
1270 
1271 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1272 		tcp_drop(tp, errno);
1273 		return (struct inpcb *)0;
1274 	}
1275 	return inp;
1276 }
1277 
1278 /*
1279  * When `need fragmentation' ICMP is received, update our idea of the MSS
1280  * based on the new value in the route.  Also nudge TCP to send something,
1281  * since we know the packet we just sent was dropped.
1282  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1283  */
1284 struct inpcb *
1285 tcp_mtudisc(inp, errno)
1286 	struct inpcb *inp;
1287 	int errno;
1288 {
1289 	struct tcpcb *tp = intotcpcb(inp);
1290 	struct rtentry *rt;
1291 	struct rmxp_tao *taop;
1292 	struct socket *so = inp->inp_socket;
1293 	int offered;
1294 	int mss;
1295 #ifdef INET6
1296 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1297 #endif /* INET6 */
1298 
1299 	if (tp) {
1300 #ifdef INET6
1301 		if (isipv6)
1302 			rt = tcp_rtlookup6(&inp->inp_inc);
1303 		else
1304 #endif /* INET6 */
1305 		rt = tcp_rtlookup(&inp->inp_inc);
1306 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1307 			tp->t_maxopd = tp->t_maxseg =
1308 #ifdef INET6
1309 				isipv6 ? tcp_v6mssdflt :
1310 #endif /* INET6 */
1311 				tcp_mssdflt;
1312 			return inp;
1313 		}
1314 		taop = rmx_taop(rt->rt_rmx);
1315 		offered = taop->tao_mssopt;
1316 		mss = rt->rt_rmx.rmx_mtu -
1317 #ifdef INET6
1318 			(isipv6 ?
1319 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1320 #endif /* INET6 */
1321 			 sizeof(struct tcpiphdr)
1322 #ifdef INET6
1323 			 )
1324 #endif /* INET6 */
1325 			;
1326 
1327 		if (offered)
1328 			mss = min(mss, offered);
1329 		/*
1330 		 * XXX - The above conditional probably violates the TCP
1331 		 * spec.  The problem is that, since we don't know the
1332 		 * other end's MSS, we are supposed to use a conservative
1333 		 * default.  But, if we do that, then MTU discovery will
1334 		 * never actually take place, because the conservative
1335 		 * default is much less than the MTUs typically seen
1336 		 * on the Internet today.  For the moment, we'll sweep
1337 		 * this under the carpet.
1338 		 *
1339 		 * The conservative default might not actually be a problem
1340 		 * if the only case this occurs is when sending an initial
1341 		 * SYN with options and data to a host we've never talked
1342 		 * to before.  Then, they will reply with an MSS value which
1343 		 * will get recorded and the new parameters should get
1344 		 * recomputed.  For Further Study.
1345 		 */
1346 		if (tp->t_maxopd <= mss)
1347 			return inp;
1348 		tp->t_maxopd = mss;
1349 
1350 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1351 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1352 			mss -= TCPOLEN_TSTAMP_APPA;
1353 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1354 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1355 			mss -= TCPOLEN_CC_APPA;
1356 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1357 		if (mss > MCLBYTES)
1358 			mss &= ~(MCLBYTES-1);
1359 #else
1360 		if (mss > MCLBYTES)
1361 			mss = mss / MCLBYTES * MCLBYTES;
1362 #endif
1363 		if (so->so_snd.sb_hiwat < mss)
1364 			mss = so->so_snd.sb_hiwat;
1365 
1366 		tp->t_maxseg = mss;
1367 
1368 		tcpstat.tcps_mturesent++;
1369 		tp->t_rtttime = 0;
1370 		tp->snd_nxt = tp->snd_una;
1371 		tcp_output(tp);
1372 	}
1373 	return inp;
1374 }
1375 
1376 /*
1377  * Look-up the routing entry to the peer of this inpcb.  If no route
1378  * is found and it cannot be allocated the return NULL.  This routine
1379  * is called by TCP routines that access the rmx structure and by tcp_mss
1380  * to get the interface MTU.
1381  */
1382 struct rtentry *
1383 tcp_rtlookup(inc)
1384 	struct in_conninfo *inc;
1385 {
1386 	struct route *ro;
1387 	struct rtentry *rt;
1388 
1389 	ro = &inc->inc_route;
1390 	rt = ro->ro_rt;
1391 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1392 		/* No route yet, so try to acquire one */
1393 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1394 			ro->ro_dst.sa_family = AF_INET;
1395 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1396 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1397 			    inc->inc_faddr;
1398 			rtalloc(ro);
1399 			rt = ro->ro_rt;
1400 		}
1401 	}
1402 	return rt;
1403 }
1404 
1405 #ifdef INET6
1406 struct rtentry *
1407 tcp_rtlookup6(inc)
1408 	struct in_conninfo *inc;
1409 {
1410 	struct route_in6 *ro6;
1411 	struct rtentry *rt;
1412 
1413 	ro6 = &inc->inc6_route;
1414 	rt = ro6->ro_rt;
1415 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1416 		/* No route yet, so try to acquire one */
1417 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1418 			ro6->ro_dst.sin6_family = AF_INET6;
1419 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1420 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1421 			rtalloc((struct route *)ro6);
1422 			rt = ro6->ro_rt;
1423 		}
1424 	}
1425 	return rt;
1426 }
1427 #endif /* INET6 */
1428 
1429 #ifdef IPSEC
1430 /* compute ESP/AH header size for TCP, including outer IP header. */
1431 size_t
1432 ipsec_hdrsiz_tcp(tp)
1433 	struct tcpcb *tp;
1434 {
1435 	struct inpcb *inp;
1436 	struct mbuf *m;
1437 	size_t hdrsiz;
1438 	struct ip *ip;
1439 #ifdef INET6
1440 	struct ip6_hdr *ip6;
1441 #endif /* INET6 */
1442 	struct tcphdr *th;
1443 
1444 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1445 		return 0;
1446 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1447 	if (!m)
1448 		return 0;
1449 
1450 #ifdef INET6
1451 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1452 		ip6 = mtod(m, struct ip6_hdr *);
1453 		th = (struct tcphdr *)(ip6 + 1);
1454 		m->m_pkthdr.len = m->m_len =
1455 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1456 		tcp_fillheaders(tp, ip6, th);
1457 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1458 	} else
1459 #endif /* INET6 */
1460       {
1461 	ip = mtod(m, struct ip *);
1462 	th = (struct tcphdr *)(ip + 1);
1463 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1464 	tcp_fillheaders(tp, ip, th);
1465 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1466       }
1467 
1468 	m_free(m);
1469 	return hdrsiz;
1470 }
1471 #endif /*IPSEC*/
1472 
1473 /*
1474  * Return a pointer to the cached information about the remote host.
1475  * The cached information is stored in the protocol specific part of
1476  * the route metrics.
1477  */
1478 struct rmxp_tao *
1479 tcp_gettaocache(inc)
1480 	struct in_conninfo *inc;
1481 {
1482 	struct rtentry *rt;
1483 
1484 #ifdef INET6
1485 	if (inc->inc_isipv6)
1486 		rt = tcp_rtlookup6(inc);
1487 	else
1488 #endif /* INET6 */
1489 	rt = tcp_rtlookup(inc);
1490 
1491 	/* Make sure this is a host route and is up. */
1492 	if (rt == NULL ||
1493 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1494 		return NULL;
1495 
1496 	return rmx_taop(rt->rt_rmx);
1497 }
1498 
1499 /*
1500  * Clear all the TAO cache entries, called from tcp_init.
1501  *
1502  * XXX
1503  * This routine is just an empty one, because we assume that the routing
1504  * routing tables are initialized at the same time when TCP, so there is
1505  * nothing in the cache left over.
1506  */
1507 static void
1508 tcp_cleartaocache()
1509 {
1510 }
1511