1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 #include <sys/random.h> 57 58 #include <vm/uma.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #define _IP_VHL 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #ifdef INET6 68 #include <netinet/ip6.h> 69 #endif 70 #include <netinet/in_pcb.h> 71 #ifdef INET6 72 #include <netinet6/in6_pcb.h> 73 #endif 74 #include <netinet/in_var.h> 75 #include <netinet/ip_var.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #endif 79 #include <netinet/tcp.h> 80 #include <netinet/tcp_fsm.h> 81 #include <netinet/tcp_seq.h> 82 #include <netinet/tcp_timer.h> 83 #include <netinet/tcp_var.h> 84 #ifdef INET6 85 #include <netinet6/tcp6_var.h> 86 #endif 87 #include <netinet/tcpip.h> 88 #ifdef TCPDEBUG 89 #include <netinet/tcp_debug.h> 90 #endif 91 #include <netinet6/ip6protosw.h> 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #ifdef INET6 96 #include <netinet6/ipsec6.h> 97 #endif 98 #endif /*IPSEC*/ 99 100 #include <machine/in_cksum.h> 101 #include <sys/md5.h> 102 103 int tcp_mssdflt = TCP_MSS; 104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 105 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 106 107 #ifdef INET6 108 int tcp_v6mssdflt = TCP6_MSS; 109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 110 CTLFLAG_RW, &tcp_v6mssdflt , 0, 111 "Default TCP Maximum Segment Size for IPv6"); 112 #endif 113 114 #if 0 115 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 117 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 118 #endif 119 120 int tcp_do_rfc1323 = 1; 121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 122 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 123 124 int tcp_do_rfc1644 = 0; 125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 126 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 127 128 static int tcp_tcbhashsize = 0; 129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 130 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 131 132 static int do_tcpdrain = 1; 133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 134 "Enable tcp_drain routine for extra help when low on mbufs"); 135 136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 137 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 138 139 static int icmp_may_rst = 1; 140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0, 141 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 142 143 static int tcp_isn_reseed_interval = 0; 144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 145 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret"); 146 147 static void tcp_cleartaocache(void); 148 static struct inpcb *tcp_notify(struct inpcb *, int); 149 150 /* 151 * Target size of TCP PCB hash tables. Must be a power of two. 152 * 153 * Note that this can be overridden by the kernel environment 154 * variable net.inet.tcp.tcbhashsize 155 */ 156 #ifndef TCBHASHSIZE 157 #define TCBHASHSIZE 512 158 #endif 159 160 /* 161 * This is the actual shape of what we allocate using the zone 162 * allocator. Doing it this way allows us to protect both structures 163 * using the same generation count, and also eliminates the overhead 164 * of allocating tcpcbs separately. By hiding the structure here, 165 * we avoid changing most of the rest of the code (although it needs 166 * to be changed, eventually, for greater efficiency). 167 */ 168 #define ALIGNMENT 32 169 #define ALIGNM1 (ALIGNMENT - 1) 170 struct inp_tp { 171 union { 172 struct inpcb inp; 173 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 174 } inp_tp_u; 175 struct tcpcb tcb; 176 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 177 struct callout inp_tp_delack; 178 }; 179 #undef ALIGNMENT 180 #undef ALIGNM1 181 182 /* 183 * Tcp initialization 184 */ 185 void 186 tcp_init() 187 { 188 int hashsize = TCBHASHSIZE; 189 190 tcp_ccgen = 1; 191 tcp_cleartaocache(); 192 193 tcp_delacktime = TCPTV_DELACK; 194 tcp_keepinit = TCPTV_KEEP_INIT; 195 tcp_keepidle = TCPTV_KEEP_IDLE; 196 tcp_keepintvl = TCPTV_KEEPINTVL; 197 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 198 tcp_msl = TCPTV_MSL; 199 200 INP_INFO_LOCK_INIT(&tcbinfo, "tcp"); 201 LIST_INIT(&tcb); 202 tcbinfo.listhead = &tcb; 203 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 204 if (!powerof2(hashsize)) { 205 printf("WARNING: TCB hash size not a power of 2\n"); 206 hashsize = 512; /* safe default */ 207 } 208 tcp_tcbhashsize = hashsize; 209 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 210 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 211 &tcbinfo.porthashmask); 212 tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 214 uma_zone_set_max(tcbinfo.ipi_zone, maxsockets); 215 #ifdef INET6 216 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 217 #else /* INET6 */ 218 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 219 #endif /* INET6 */ 220 if (max_protohdr < TCP_MINPROTOHDR) 221 max_protohdr = TCP_MINPROTOHDR; 222 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 223 panic("tcp_init"); 224 #undef TCP_MINPROTOHDR 225 226 syncache_init(); 227 } 228 229 /* 230 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 231 * tcp_template used to store this data in mbufs, but we now recopy it out 232 * of the tcpcb each time to conserve mbufs. 233 */ 234 void 235 tcp_fillheaders(tp, ip_ptr, tcp_ptr) 236 struct tcpcb *tp; 237 void *ip_ptr; 238 void *tcp_ptr; 239 { 240 struct inpcb *inp = tp->t_inpcb; 241 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr; 242 243 #ifdef INET6 244 if ((inp->inp_vflag & INP_IPV6) != 0) { 245 struct ip6_hdr *ip6; 246 247 ip6 = (struct ip6_hdr *)ip_ptr; 248 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 249 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 250 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 251 (IPV6_VERSION & IPV6_VERSION_MASK); 252 ip6->ip6_nxt = IPPROTO_TCP; 253 ip6->ip6_plen = sizeof(struct tcphdr); 254 ip6->ip6_src = inp->in6p_laddr; 255 ip6->ip6_dst = inp->in6p_faddr; 256 tcp_hdr->th_sum = 0; 257 } else 258 #endif 259 { 260 struct ip *ip = (struct ip *) ip_ptr; 261 262 ip->ip_vhl = IP_VHL_BORING; 263 ip->ip_tos = 0; 264 ip->ip_len = 0; 265 ip->ip_id = 0; 266 ip->ip_off = 0; 267 ip->ip_ttl = 0; 268 ip->ip_sum = 0; 269 ip->ip_p = IPPROTO_TCP; 270 ip->ip_src = inp->inp_laddr; 271 ip->ip_dst = inp->inp_faddr; 272 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 273 htons(sizeof(struct tcphdr) + IPPROTO_TCP)); 274 } 275 276 tcp_hdr->th_sport = inp->inp_lport; 277 tcp_hdr->th_dport = inp->inp_fport; 278 tcp_hdr->th_seq = 0; 279 tcp_hdr->th_ack = 0; 280 tcp_hdr->th_x2 = 0; 281 tcp_hdr->th_off = 5; 282 tcp_hdr->th_flags = 0; 283 tcp_hdr->th_win = 0; 284 tcp_hdr->th_urp = 0; 285 } 286 287 /* 288 * Create template to be used to send tcp packets on a connection. 289 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 290 * use for this function is in keepalives, which use tcp_respond. 291 */ 292 struct tcptemp * 293 tcp_maketemplate(tp) 294 struct tcpcb *tp; 295 { 296 struct mbuf *m; 297 struct tcptemp *n; 298 299 m = m_get(M_DONTWAIT, MT_HEADER); 300 if (m == NULL) 301 return (0); 302 m->m_len = sizeof(struct tcptemp); 303 n = mtod(m, struct tcptemp *); 304 305 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t); 306 return (n); 307 } 308 309 /* 310 * Send a single message to the TCP at address specified by 311 * the given TCP/IP header. If m == 0, then we make a copy 312 * of the tcpiphdr at ti and send directly to the addressed host. 313 * This is used to force keep alive messages out using the TCP 314 * template for a connection. If flags are given then we send 315 * a message back to the TCP which originated the * segment ti, 316 * and discard the mbuf containing it and any other attached mbufs. 317 * 318 * In any case the ack and sequence number of the transmitted 319 * segment are as specified by the parameters. 320 * 321 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 322 */ 323 void 324 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 325 struct tcpcb *tp; 326 void *ipgen; 327 register struct tcphdr *th; 328 register struct mbuf *m; 329 tcp_seq ack, seq; 330 int flags; 331 { 332 register int tlen; 333 int win = 0; 334 struct route *ro = 0; 335 struct route sro; 336 struct ip *ip; 337 struct tcphdr *nth; 338 #ifdef INET6 339 struct route_in6 *ro6 = 0; 340 struct route_in6 sro6; 341 struct ip6_hdr *ip6; 342 int isipv6; 343 #endif /* INET6 */ 344 int ipflags = 0; 345 346 #ifdef INET6 347 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 348 ip6 = ipgen; 349 #endif /* INET6 */ 350 ip = ipgen; 351 352 if (tp) { 353 if (!(flags & TH_RST)) { 354 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 355 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 356 win = (long)TCP_MAXWIN << tp->rcv_scale; 357 } 358 #ifdef INET6 359 if (isipv6) 360 ro6 = &tp->t_inpcb->in6p_route; 361 else 362 #endif /* INET6 */ 363 ro = &tp->t_inpcb->inp_route; 364 } else { 365 #ifdef INET6 366 if (isipv6) { 367 ro6 = &sro6; 368 bzero(ro6, sizeof *ro6); 369 } else 370 #endif /* INET6 */ 371 { 372 ro = &sro; 373 bzero(ro, sizeof *ro); 374 } 375 } 376 if (m == 0) { 377 m = m_gethdr(M_DONTWAIT, MT_HEADER); 378 if (m == NULL) 379 return; 380 tlen = 0; 381 m->m_data += max_linkhdr; 382 #ifdef INET6 383 if (isipv6) { 384 bcopy((caddr_t)ip6, mtod(m, caddr_t), 385 sizeof(struct ip6_hdr)); 386 ip6 = mtod(m, struct ip6_hdr *); 387 nth = (struct tcphdr *)(ip6 + 1); 388 } else 389 #endif /* INET6 */ 390 { 391 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 392 ip = mtod(m, struct ip *); 393 nth = (struct tcphdr *)(ip + 1); 394 } 395 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 396 flags = TH_ACK; 397 } else { 398 m_freem(m->m_next); 399 m->m_next = 0; 400 m->m_data = (caddr_t)ipgen; 401 /* m_len is set later */ 402 tlen = 0; 403 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 404 #ifdef INET6 405 if (isipv6) { 406 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 407 nth = (struct tcphdr *)(ip6 + 1); 408 } else 409 #endif /* INET6 */ 410 { 411 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 412 nth = (struct tcphdr *)(ip + 1); 413 } 414 if (th != nth) { 415 /* 416 * this is usually a case when an extension header 417 * exists between the IPv6 header and the 418 * TCP header. 419 */ 420 nth->th_sport = th->th_sport; 421 nth->th_dport = th->th_dport; 422 } 423 xchg(nth->th_dport, nth->th_sport, n_short); 424 #undef xchg 425 } 426 #ifdef INET6 427 if (isipv6) { 428 ip6->ip6_flow = 0; 429 ip6->ip6_vfc = IPV6_VERSION; 430 ip6->ip6_nxt = IPPROTO_TCP; 431 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 432 tlen)); 433 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 434 } else 435 #endif 436 { 437 tlen += sizeof (struct tcpiphdr); 438 ip->ip_len = tlen; 439 ip->ip_ttl = ip_defttl; 440 } 441 m->m_len = tlen; 442 m->m_pkthdr.len = tlen; 443 m->m_pkthdr.rcvif = (struct ifnet *) 0; 444 nth->th_seq = htonl(seq); 445 nth->th_ack = htonl(ack); 446 nth->th_x2 = 0; 447 nth->th_off = sizeof (struct tcphdr) >> 2; 448 nth->th_flags = flags; 449 if (tp) 450 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 451 else 452 nth->th_win = htons((u_short)win); 453 nth->th_urp = 0; 454 #ifdef INET6 455 if (isipv6) { 456 nth->th_sum = 0; 457 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 458 sizeof(struct ip6_hdr), 459 tlen - sizeof(struct ip6_hdr)); 460 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 461 ro6 && ro6->ro_rt ? 462 ro6->ro_rt->rt_ifp : 463 NULL); 464 } else 465 #endif /* INET6 */ 466 { 467 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 468 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 469 m->m_pkthdr.csum_flags = CSUM_TCP; 470 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 471 } 472 #ifdef TCPDEBUG 473 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 474 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 475 #endif 476 #ifdef IPSEC 477 if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) { 478 m_freem(m); 479 return; 480 } 481 #endif 482 #ifdef INET6 483 if (isipv6) { 484 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 485 if (ro6 == &sro6 && ro6->ro_rt) { 486 RTFREE(ro6->ro_rt); 487 ro6->ro_rt = NULL; 488 } 489 } else 490 #endif /* INET6 */ 491 { 492 (void) ip_output(m, NULL, ro, ipflags, NULL); 493 if (ro == &sro && ro->ro_rt) { 494 RTFREE(ro->ro_rt); 495 ro->ro_rt = NULL; 496 } 497 } 498 } 499 500 /* 501 * Create a new TCP control block, making an 502 * empty reassembly queue and hooking it to the argument 503 * protocol control block. The `inp' parameter must have 504 * come from the zone allocator set up in tcp_init(). 505 */ 506 struct tcpcb * 507 tcp_newtcpcb(inp) 508 struct inpcb *inp; 509 { 510 struct inp_tp *it; 511 register struct tcpcb *tp; 512 #ifdef INET6 513 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 514 #endif /* INET6 */ 515 516 it = (struct inp_tp *)inp; 517 tp = &it->tcb; 518 bzero((char *) tp, sizeof(struct tcpcb)); 519 LIST_INIT(&tp->t_segq); 520 tp->t_maxseg = tp->t_maxopd = 521 #ifdef INET6 522 isipv6 ? tcp_v6mssdflt : 523 #endif /* INET6 */ 524 tcp_mssdflt; 525 526 /* Set up our timeouts. */ 527 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0); 528 callout_init(tp->tt_persist = &it->inp_tp_persist, 0); 529 callout_init(tp->tt_keep = &it->inp_tp_keep, 0); 530 callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0); 531 callout_init(tp->tt_delack = &it->inp_tp_delack, 0); 532 533 if (tcp_do_rfc1323) 534 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 535 if (tcp_do_rfc1644) 536 tp->t_flags |= TF_REQ_CC; 537 tp->t_inpcb = inp; /* XXX */ 538 /* 539 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 540 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 541 * reasonable initial retransmit time. 542 */ 543 tp->t_srtt = TCPTV_SRTTBASE; 544 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 545 tp->t_rttmin = TCPTV_MIN; 546 tp->t_rxtcur = TCPTV_RTOBASE; 547 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 548 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 549 tp->t_rcvtime = ticks; 550 /* 551 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 552 * because the socket may be bound to an IPv6 wildcard address, 553 * which may match an IPv4-mapped IPv6 address. 554 */ 555 inp->inp_ip_ttl = ip_defttl; 556 inp->inp_ppcb = (caddr_t)tp; 557 return (tp); /* XXX */ 558 } 559 560 /* 561 * Drop a TCP connection, reporting 562 * the specified error. If connection is synchronized, 563 * then send a RST to peer. 564 */ 565 struct tcpcb * 566 tcp_drop(tp, errno) 567 register struct tcpcb *tp; 568 int errno; 569 { 570 struct socket *so = tp->t_inpcb->inp_socket; 571 572 if (TCPS_HAVERCVDSYN(tp->t_state)) { 573 tp->t_state = TCPS_CLOSED; 574 (void) tcp_output(tp); 575 tcpstat.tcps_drops++; 576 } else 577 tcpstat.tcps_conndrops++; 578 if (errno == ETIMEDOUT && tp->t_softerror) 579 errno = tp->t_softerror; 580 so->so_error = errno; 581 return (tcp_close(tp)); 582 } 583 584 /* 585 * Close a TCP control block: 586 * discard all space held by the tcp 587 * discard internet protocol block 588 * wake up any sleepers 589 */ 590 struct tcpcb * 591 tcp_close(tp) 592 register struct tcpcb *tp; 593 { 594 register struct tseg_qent *q; 595 struct inpcb *inp = tp->t_inpcb; 596 struct socket *so = inp->inp_socket; 597 #ifdef INET6 598 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 599 #endif /* INET6 */ 600 register struct rtentry *rt; 601 int dosavessthresh; 602 603 /* 604 * Make sure that all of our timers are stopped before we 605 * delete the PCB. 606 */ 607 callout_stop(tp->tt_rexmt); 608 callout_stop(tp->tt_persist); 609 callout_stop(tp->tt_keep); 610 callout_stop(tp->tt_2msl); 611 callout_stop(tp->tt_delack); 612 613 /* 614 * If we got enough samples through the srtt filter, 615 * save the rtt and rttvar in the routing entry. 616 * 'Enough' is arbitrarily defined as the 16 samples. 617 * 16 samples is enough for the srtt filter to converge 618 * to within 5% of the correct value; fewer samples and 619 * we could save a very bogus rtt. 620 * 621 * Don't update the default route's characteristics and don't 622 * update anything that the user "locked". 623 */ 624 if (tp->t_rttupdated >= 16) { 625 register u_long i = 0; 626 #ifdef INET6 627 if (isipv6) { 628 struct sockaddr_in6 *sin6; 629 630 if ((rt = inp->in6p_route.ro_rt) == NULL) 631 goto no_valid_rt; 632 sin6 = (struct sockaddr_in6 *)rt_key(rt); 633 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 634 goto no_valid_rt; 635 } 636 else 637 #endif /* INET6 */ 638 if ((rt = inp->inp_route.ro_rt) == NULL || 639 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 640 == INADDR_ANY) 641 goto no_valid_rt; 642 643 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 644 i = tp->t_srtt * 645 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 646 if (rt->rt_rmx.rmx_rtt && i) 647 /* 648 * filter this update to half the old & half 649 * the new values, converting scale. 650 * See route.h and tcp_var.h for a 651 * description of the scaling constants. 652 */ 653 rt->rt_rmx.rmx_rtt = 654 (rt->rt_rmx.rmx_rtt + i) / 2; 655 else 656 rt->rt_rmx.rmx_rtt = i; 657 tcpstat.tcps_cachedrtt++; 658 } 659 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 660 i = tp->t_rttvar * 661 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 662 if (rt->rt_rmx.rmx_rttvar && i) 663 rt->rt_rmx.rmx_rttvar = 664 (rt->rt_rmx.rmx_rttvar + i) / 2; 665 else 666 rt->rt_rmx.rmx_rttvar = i; 667 tcpstat.tcps_cachedrttvar++; 668 } 669 /* 670 * The old comment here said: 671 * update the pipelimit (ssthresh) if it has been updated 672 * already or if a pipesize was specified & the threshhold 673 * got below half the pipesize. I.e., wait for bad news 674 * before we start updating, then update on both good 675 * and bad news. 676 * 677 * But we want to save the ssthresh even if no pipesize is 678 * specified explicitly in the route, because such 679 * connections still have an implicit pipesize specified 680 * by the global tcp_sendspace. In the absence of a reliable 681 * way to calculate the pipesize, it will have to do. 682 */ 683 i = tp->snd_ssthresh; 684 if (rt->rt_rmx.rmx_sendpipe != 0) 685 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 686 else 687 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 688 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 689 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 690 || dosavessthresh) { 691 /* 692 * convert the limit from user data bytes to 693 * packets then to packet data bytes. 694 */ 695 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 696 if (i < 2) 697 i = 2; 698 i *= (u_long)(tp->t_maxseg + 699 #ifdef INET6 700 (isipv6 ? sizeof (struct ip6_hdr) + 701 sizeof (struct tcphdr) : 702 #endif 703 sizeof (struct tcpiphdr) 704 #ifdef INET6 705 ) 706 #endif 707 ); 708 if (rt->rt_rmx.rmx_ssthresh) 709 rt->rt_rmx.rmx_ssthresh = 710 (rt->rt_rmx.rmx_ssthresh + i) / 2; 711 else 712 rt->rt_rmx.rmx_ssthresh = i; 713 tcpstat.tcps_cachedssthresh++; 714 } 715 } 716 no_valid_rt: 717 /* free the reassembly queue, if any */ 718 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 719 LIST_REMOVE(q, tqe_q); 720 m_freem(q->tqe_m); 721 FREE(q, M_TSEGQ); 722 } 723 inp->inp_ppcb = NULL; 724 soisdisconnected(so); 725 #ifdef INET6 726 if (INP_CHECK_SOCKAF(so, AF_INET6)) 727 in6_pcbdetach(inp); 728 else 729 #endif /* INET6 */ 730 in_pcbdetach(inp); 731 tcpstat.tcps_closed++; 732 return ((struct tcpcb *)0); 733 } 734 735 void 736 tcp_drain() 737 { 738 if (do_tcpdrain) 739 { 740 struct inpcb *inpb; 741 struct tcpcb *tcpb; 742 struct tseg_qent *te; 743 744 /* 745 * Walk the tcpbs, if existing, and flush the reassembly queue, 746 * if there is one... 747 * XXX: The "Net/3" implementation doesn't imply that the TCP 748 * reassembly queue should be flushed, but in a situation 749 * where we're really low on mbufs, this is potentially 750 * usefull. 751 */ 752 INP_INFO_RLOCK(&tcbinfo); 753 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) { 754 INP_LOCK(inpb); 755 if ((tcpb = intotcpcb(inpb))) { 756 while ((te = LIST_FIRST(&tcpb->t_segq)) 757 != NULL) { 758 LIST_REMOVE(te, tqe_q); 759 m_freem(te->tqe_m); 760 FREE(te, M_TSEGQ); 761 } 762 } 763 INP_UNLOCK(inpb); 764 } 765 INP_INFO_RUNLOCK(&tcbinfo); 766 } 767 } 768 769 /* 770 * Notify a tcp user of an asynchronous error; 771 * store error as soft error, but wake up user 772 * (for now, won't do anything until can select for soft error). 773 * 774 * Do not wake up user since there currently is no mechanism for 775 * reporting soft errors (yet - a kqueue filter may be added). 776 */ 777 static struct inpcb * 778 tcp_notify(inp, error) 779 struct inpcb *inp; 780 int error; 781 { 782 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 783 784 /* 785 * Ignore some errors if we are hooked up. 786 * If connection hasn't completed, has retransmitted several times, 787 * and receives a second error, give up now. This is better 788 * than waiting a long time to establish a connection that 789 * can never complete. 790 */ 791 if (tp->t_state == TCPS_ESTABLISHED && 792 (error == EHOSTUNREACH || error == ENETUNREACH || 793 error == EHOSTDOWN)) { 794 return inp; 795 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 796 tp->t_softerror) { 797 tcp_drop(tp, error); 798 return (struct inpcb *)0; 799 } else { 800 tp->t_softerror = error; 801 return inp; 802 } 803 #if 0 804 wakeup((caddr_t) &so->so_timeo); 805 sorwakeup(so); 806 sowwakeup(so); 807 #endif 808 } 809 810 static int 811 tcp_pcblist(SYSCTL_HANDLER_ARGS) 812 { 813 int error, i, n, s; 814 struct inpcb *inp, **inp_list; 815 inp_gen_t gencnt; 816 struct xinpgen xig; 817 818 /* 819 * The process of preparing the TCB list is too time-consuming and 820 * resource-intensive to repeat twice on every request. 821 */ 822 if (req->oldptr == 0) { 823 n = tcbinfo.ipi_count; 824 req->oldidx = 2 * (sizeof xig) 825 + (n + n/8) * sizeof(struct xtcpcb); 826 return 0; 827 } 828 829 if (req->newptr != 0) 830 return EPERM; 831 832 /* 833 * OK, now we're committed to doing something. 834 */ 835 s = splnet(); 836 INP_INFO_RLOCK(&tcbinfo); 837 gencnt = tcbinfo.ipi_gencnt; 838 n = tcbinfo.ipi_count; 839 INP_INFO_RUNLOCK(&tcbinfo); 840 splx(s); 841 842 xig.xig_len = sizeof xig; 843 xig.xig_count = n; 844 xig.xig_gen = gencnt; 845 xig.xig_sogen = so_gencnt; 846 error = SYSCTL_OUT(req, &xig, sizeof xig); 847 if (error) 848 return error; 849 850 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 851 if (inp_list == 0) 852 return ENOMEM; 853 854 s = splnet(); 855 INP_INFO_RLOCK(&tcbinfo); 856 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n; 857 inp = LIST_NEXT(inp, inp_list)) { 858 INP_LOCK(inp); 859 if (inp->inp_gencnt <= gencnt && 860 cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0) 861 inp_list[i++] = inp; 862 INP_UNLOCK(inp); 863 } 864 INP_INFO_RUNLOCK(&tcbinfo); 865 splx(s); 866 n = i; 867 868 error = 0; 869 for (i = 0; i < n; i++) { 870 inp = inp_list[i]; 871 INP_LOCK(inp); 872 if (inp->inp_gencnt <= gencnt) { 873 struct xtcpcb xt; 874 caddr_t inp_ppcb; 875 xt.xt_len = sizeof xt; 876 /* XXX should avoid extra copy */ 877 bcopy(inp, &xt.xt_inp, sizeof *inp); 878 inp_ppcb = inp->inp_ppcb; 879 if (inp_ppcb != NULL) 880 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 881 else 882 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 883 if (inp->inp_socket) 884 sotoxsocket(inp->inp_socket, &xt.xt_socket); 885 error = SYSCTL_OUT(req, &xt, sizeof xt); 886 } 887 INP_UNLOCK(inp); 888 } 889 if (!error) { 890 /* 891 * Give the user an updated idea of our state. 892 * If the generation differs from what we told 893 * her before, she knows that something happened 894 * while we were processing this request, and it 895 * might be necessary to retry. 896 */ 897 s = splnet(); 898 INP_INFO_RLOCK(&tcbinfo); 899 xig.xig_gen = tcbinfo.ipi_gencnt; 900 xig.xig_sogen = so_gencnt; 901 xig.xig_count = tcbinfo.ipi_count; 902 INP_INFO_RUNLOCK(&tcbinfo); 903 splx(s); 904 error = SYSCTL_OUT(req, &xig, sizeof xig); 905 } 906 free(inp_list, M_TEMP); 907 return error; 908 } 909 910 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 911 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 912 913 static int 914 tcp_getcred(SYSCTL_HANDLER_ARGS) 915 { 916 struct xucred xuc; 917 struct sockaddr_in addrs[2]; 918 struct inpcb *inp; 919 int error, s; 920 921 error = suser_cred(req->td->td_ucred, PRISON_ROOT); 922 if (error) 923 return (error); 924 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 925 if (error) 926 return (error); 927 s = splnet(); 928 INP_INFO_RLOCK(&tcbinfo); 929 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 930 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 931 if (inp == NULL) { 932 error = ENOENT; 933 goto outunlocked; 934 } else { 935 INP_LOCK(inp); 936 if (inp->inp_socket == NULL) { 937 error = ENOENT; 938 goto out; 939 } 940 } 941 942 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 943 if (error) 944 goto out; 945 cru2x(inp->inp_socket->so_cred, &xuc); 946 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 947 out: 948 INP_UNLOCK(inp); 949 outunlocked: 950 INP_INFO_RUNLOCK(&tcbinfo); 951 splx(s); 952 return (error); 953 } 954 955 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 956 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 957 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 958 959 #ifdef INET6 960 static int 961 tcp6_getcred(SYSCTL_HANDLER_ARGS) 962 { 963 struct xucred xuc; 964 struct sockaddr_in6 addrs[2]; 965 struct inpcb *inp; 966 int error, s, mapped = 0; 967 968 error = suser_cred(req->td->td_ucred, PRISON_ROOT); 969 if (error) 970 return (error); 971 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 972 if (error) 973 return (error); 974 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 975 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 976 mapped = 1; 977 else 978 return (EINVAL); 979 } 980 s = splnet(); 981 INP_INFO_RLOCK(&tcbinfo); 982 if (mapped == 1) 983 inp = in_pcblookup_hash(&tcbinfo, 984 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 985 addrs[1].sin6_port, 986 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 987 addrs[0].sin6_port, 988 0, NULL); 989 else 990 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 991 addrs[1].sin6_port, 992 &addrs[0].sin6_addr, addrs[0].sin6_port, 993 0, NULL); 994 if (inp == NULL) { 995 error = ENOENT; 996 goto outunlocked; 997 } else { 998 INP_LOCK(inp); 999 if (inp->inp_socket == NULL) { 1000 error = ENOENT; 1001 goto out; 1002 } 1003 } 1004 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 1005 if (error) 1006 goto out; 1007 cru2x(inp->inp_socket->so_cred, &xuc); 1008 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1009 out: 1010 INP_UNLOCK(inp); 1011 outunlocked: 1012 INP_INFO_RUNLOCK(&tcbinfo); 1013 splx(s); 1014 return (error); 1015 } 1016 1017 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1018 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1019 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1020 #endif 1021 1022 1023 void 1024 tcp_ctlinput(cmd, sa, vip) 1025 int cmd; 1026 struct sockaddr *sa; 1027 void *vip; 1028 { 1029 struct ip *ip = vip; 1030 struct tcphdr *th; 1031 struct in_addr faddr; 1032 struct inpcb *inp; 1033 struct tcpcb *tp; 1034 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1035 tcp_seq icmp_seq; 1036 int s; 1037 1038 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1039 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1040 return; 1041 1042 if (cmd == PRC_QUENCH) 1043 notify = tcp_quench; 1044 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1045 cmd == PRC_UNREACH_PORT) && ip) 1046 notify = tcp_drop_syn_sent; 1047 else if (cmd == PRC_MSGSIZE) 1048 notify = tcp_mtudisc; 1049 else if (PRC_IS_REDIRECT(cmd)) { 1050 ip = 0; 1051 notify = in_rtchange; 1052 } else if (cmd == PRC_HOSTDEAD) 1053 ip = 0; 1054 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0) 1055 return; 1056 if (ip) { 1057 s = splnet(); 1058 th = (struct tcphdr *)((caddr_t)ip 1059 + (IP_VHL_HL(ip->ip_vhl) << 2)); 1060 INP_INFO_WLOCK(&tcbinfo); 1061 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport, 1062 ip->ip_src, th->th_sport, 0, NULL); 1063 if (inp != NULL) { 1064 INP_LOCK(inp); 1065 if (inp->inp_socket != NULL) { 1066 icmp_seq = htonl(th->th_seq); 1067 tp = intotcpcb(inp); 1068 if (SEQ_GEQ(icmp_seq, tp->snd_una) && 1069 SEQ_LT(icmp_seq, tp->snd_max)) 1070 inp = (*notify)(inp, inetctlerrmap[cmd]); 1071 } 1072 if (inp) 1073 INP_UNLOCK(inp); 1074 } else { 1075 struct in_conninfo inc; 1076 1077 inc.inc_fport = th->th_dport; 1078 inc.inc_lport = th->th_sport; 1079 inc.inc_faddr = faddr; 1080 inc.inc_laddr = ip->ip_src; 1081 #ifdef INET6 1082 inc.inc_isipv6 = 0; 1083 #endif 1084 syncache_unreach(&inc, th); 1085 } 1086 INP_INFO_WUNLOCK(&tcbinfo); 1087 splx(s); 1088 } else 1089 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify); 1090 } 1091 1092 #ifdef INET6 1093 void 1094 tcp6_ctlinput(cmd, sa, d) 1095 int cmd; 1096 struct sockaddr *sa; 1097 void *d; 1098 { 1099 struct tcphdr th; 1100 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1101 struct ip6_hdr *ip6; 1102 struct mbuf *m; 1103 struct ip6ctlparam *ip6cp = NULL; 1104 const struct sockaddr_in6 *sa6_src = NULL; 1105 int off; 1106 struct tcp_portonly { 1107 u_int16_t th_sport; 1108 u_int16_t th_dport; 1109 } *thp; 1110 1111 if (sa->sa_family != AF_INET6 || 1112 sa->sa_len != sizeof(struct sockaddr_in6)) 1113 return; 1114 1115 if (cmd == PRC_QUENCH) 1116 notify = tcp_quench; 1117 else if (cmd == PRC_MSGSIZE) 1118 notify = tcp_mtudisc; 1119 else if (!PRC_IS_REDIRECT(cmd) && 1120 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1121 return; 1122 1123 /* if the parameter is from icmp6, decode it. */ 1124 if (d != NULL) { 1125 ip6cp = (struct ip6ctlparam *)d; 1126 m = ip6cp->ip6c_m; 1127 ip6 = ip6cp->ip6c_ip6; 1128 off = ip6cp->ip6c_off; 1129 sa6_src = ip6cp->ip6c_src; 1130 } else { 1131 m = NULL; 1132 ip6 = NULL; 1133 off = 0; /* fool gcc */ 1134 sa6_src = &sa6_any; 1135 } 1136 1137 if (ip6) { 1138 struct in_conninfo inc; 1139 /* 1140 * XXX: We assume that when IPV6 is non NULL, 1141 * M and OFF are valid. 1142 */ 1143 1144 /* check if we can safely examine src and dst ports */ 1145 if (m->m_pkthdr.len < off + sizeof(*thp)) 1146 return; 1147 1148 bzero(&th, sizeof(th)); 1149 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1150 1151 in6_pcbnotify(&tcb, sa, th.th_dport, 1152 (struct sockaddr *)ip6cp->ip6c_src, 1153 th.th_sport, cmd, notify); 1154 1155 inc.inc_fport = th.th_dport; 1156 inc.inc_lport = th.th_sport; 1157 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1158 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1159 inc.inc_isipv6 = 1; 1160 syncache_unreach(&inc, &th); 1161 } else 1162 in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src, 1163 0, cmd, notify); 1164 } 1165 #endif /* INET6 */ 1166 1167 1168 /* 1169 * Following is where TCP initial sequence number generation occurs. 1170 * 1171 * There are two places where we must use initial sequence numbers: 1172 * 1. In SYN-ACK packets. 1173 * 2. In SYN packets. 1174 * 1175 * All ISNs for SYN-ACK packets are generated by the syncache. See 1176 * tcp_syncache.c for details. 1177 * 1178 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1179 * depends on this property. In addition, these ISNs should be 1180 * unguessable so as to prevent connection hijacking. To satisfy 1181 * the requirements of this situation, the algorithm outlined in 1182 * RFC 1948 is used to generate sequence numbers. 1183 * 1184 * Implementation details: 1185 * 1186 * Time is based off the system timer, and is corrected so that it 1187 * increases by one megabyte per second. This allows for proper 1188 * recycling on high speed LANs while still leaving over an hour 1189 * before rollover. 1190 * 1191 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1192 * between seeding of isn_secret. This is normally set to zero, 1193 * as reseeding should not be necessary. 1194 * 1195 */ 1196 1197 #define ISN_BYTES_PER_SECOND 1048576 1198 1199 u_char isn_secret[32]; 1200 int isn_last_reseed; 1201 MD5_CTX isn_ctx; 1202 1203 tcp_seq 1204 tcp_new_isn(tp) 1205 struct tcpcb *tp; 1206 { 1207 u_int32_t md5_buffer[4]; 1208 tcp_seq new_isn; 1209 1210 /* Seed if this is the first use, reseed if requested. */ 1211 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) && 1212 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz) 1213 < (u_int)ticks))) { 1214 read_random(&isn_secret, sizeof(isn_secret)); 1215 isn_last_reseed = ticks; 1216 } 1217 1218 /* Compute the md5 hash and return the ISN. */ 1219 MD5Init(&isn_ctx); 1220 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1221 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1222 #ifdef INET6 1223 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1224 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1225 sizeof(struct in6_addr)); 1226 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1227 sizeof(struct in6_addr)); 1228 } else 1229 #endif 1230 { 1231 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1232 sizeof(struct in_addr)); 1233 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1234 sizeof(struct in_addr)); 1235 } 1236 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret)); 1237 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1238 new_isn = (tcp_seq) md5_buffer[0]; 1239 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz); 1240 return new_isn; 1241 } 1242 1243 /* 1244 * When a source quench is received, close congestion window 1245 * to one segment. We will gradually open it again as we proceed. 1246 */ 1247 struct inpcb * 1248 tcp_quench(inp, errno) 1249 struct inpcb *inp; 1250 int errno; 1251 { 1252 struct tcpcb *tp = intotcpcb(inp); 1253 1254 if (tp) 1255 tp->snd_cwnd = tp->t_maxseg; 1256 return (inp); 1257 } 1258 1259 /* 1260 * When a specific ICMP unreachable message is received and the 1261 * connection state is SYN-SENT, drop the connection. This behavior 1262 * is controlled by the icmp_may_rst sysctl. 1263 */ 1264 struct inpcb * 1265 tcp_drop_syn_sent(inp, errno) 1266 struct inpcb *inp; 1267 int errno; 1268 { 1269 struct tcpcb *tp = intotcpcb(inp); 1270 1271 if (tp && tp->t_state == TCPS_SYN_SENT) { 1272 tcp_drop(tp, errno); 1273 return (struct inpcb *)0; 1274 } 1275 return inp; 1276 } 1277 1278 /* 1279 * When `need fragmentation' ICMP is received, update our idea of the MSS 1280 * based on the new value in the route. Also nudge TCP to send something, 1281 * since we know the packet we just sent was dropped. 1282 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1283 */ 1284 struct inpcb * 1285 tcp_mtudisc(inp, errno) 1286 struct inpcb *inp; 1287 int errno; 1288 { 1289 struct tcpcb *tp = intotcpcb(inp); 1290 struct rtentry *rt; 1291 struct rmxp_tao *taop; 1292 struct socket *so = inp->inp_socket; 1293 int offered; 1294 int mss; 1295 #ifdef INET6 1296 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1297 #endif /* INET6 */ 1298 1299 if (tp) { 1300 #ifdef INET6 1301 if (isipv6) 1302 rt = tcp_rtlookup6(&inp->inp_inc); 1303 else 1304 #endif /* INET6 */ 1305 rt = tcp_rtlookup(&inp->inp_inc); 1306 if (!rt || !rt->rt_rmx.rmx_mtu) { 1307 tp->t_maxopd = tp->t_maxseg = 1308 #ifdef INET6 1309 isipv6 ? tcp_v6mssdflt : 1310 #endif /* INET6 */ 1311 tcp_mssdflt; 1312 return inp; 1313 } 1314 taop = rmx_taop(rt->rt_rmx); 1315 offered = taop->tao_mssopt; 1316 mss = rt->rt_rmx.rmx_mtu - 1317 #ifdef INET6 1318 (isipv6 ? 1319 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1320 #endif /* INET6 */ 1321 sizeof(struct tcpiphdr) 1322 #ifdef INET6 1323 ) 1324 #endif /* INET6 */ 1325 ; 1326 1327 if (offered) 1328 mss = min(mss, offered); 1329 /* 1330 * XXX - The above conditional probably violates the TCP 1331 * spec. The problem is that, since we don't know the 1332 * other end's MSS, we are supposed to use a conservative 1333 * default. But, if we do that, then MTU discovery will 1334 * never actually take place, because the conservative 1335 * default is much less than the MTUs typically seen 1336 * on the Internet today. For the moment, we'll sweep 1337 * this under the carpet. 1338 * 1339 * The conservative default might not actually be a problem 1340 * if the only case this occurs is when sending an initial 1341 * SYN with options and data to a host we've never talked 1342 * to before. Then, they will reply with an MSS value which 1343 * will get recorded and the new parameters should get 1344 * recomputed. For Further Study. 1345 */ 1346 if (tp->t_maxopd <= mss) 1347 return inp; 1348 tp->t_maxopd = mss; 1349 1350 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1351 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1352 mss -= TCPOLEN_TSTAMP_APPA; 1353 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1354 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1355 mss -= TCPOLEN_CC_APPA; 1356 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1357 if (mss > MCLBYTES) 1358 mss &= ~(MCLBYTES-1); 1359 #else 1360 if (mss > MCLBYTES) 1361 mss = mss / MCLBYTES * MCLBYTES; 1362 #endif 1363 if (so->so_snd.sb_hiwat < mss) 1364 mss = so->so_snd.sb_hiwat; 1365 1366 tp->t_maxseg = mss; 1367 1368 tcpstat.tcps_mturesent++; 1369 tp->t_rtttime = 0; 1370 tp->snd_nxt = tp->snd_una; 1371 tcp_output(tp); 1372 } 1373 return inp; 1374 } 1375 1376 /* 1377 * Look-up the routing entry to the peer of this inpcb. If no route 1378 * is found and it cannot be allocated the return NULL. This routine 1379 * is called by TCP routines that access the rmx structure and by tcp_mss 1380 * to get the interface MTU. 1381 */ 1382 struct rtentry * 1383 tcp_rtlookup(inc) 1384 struct in_conninfo *inc; 1385 { 1386 struct route *ro; 1387 struct rtentry *rt; 1388 1389 ro = &inc->inc_route; 1390 rt = ro->ro_rt; 1391 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1392 /* No route yet, so try to acquire one */ 1393 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1394 ro->ro_dst.sa_family = AF_INET; 1395 ro->ro_dst.sa_len = sizeof(struct sockaddr_in); 1396 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1397 inc->inc_faddr; 1398 rtalloc(ro); 1399 rt = ro->ro_rt; 1400 } 1401 } 1402 return rt; 1403 } 1404 1405 #ifdef INET6 1406 struct rtentry * 1407 tcp_rtlookup6(inc) 1408 struct in_conninfo *inc; 1409 { 1410 struct route_in6 *ro6; 1411 struct rtentry *rt; 1412 1413 ro6 = &inc->inc6_route; 1414 rt = ro6->ro_rt; 1415 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1416 /* No route yet, so try to acquire one */ 1417 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1418 ro6->ro_dst.sin6_family = AF_INET6; 1419 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1420 ro6->ro_dst.sin6_addr = inc->inc6_faddr; 1421 rtalloc((struct route *)ro6); 1422 rt = ro6->ro_rt; 1423 } 1424 } 1425 return rt; 1426 } 1427 #endif /* INET6 */ 1428 1429 #ifdef IPSEC 1430 /* compute ESP/AH header size for TCP, including outer IP header. */ 1431 size_t 1432 ipsec_hdrsiz_tcp(tp) 1433 struct tcpcb *tp; 1434 { 1435 struct inpcb *inp; 1436 struct mbuf *m; 1437 size_t hdrsiz; 1438 struct ip *ip; 1439 #ifdef INET6 1440 struct ip6_hdr *ip6; 1441 #endif /* INET6 */ 1442 struct tcphdr *th; 1443 1444 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1445 return 0; 1446 MGETHDR(m, M_DONTWAIT, MT_DATA); 1447 if (!m) 1448 return 0; 1449 1450 #ifdef INET6 1451 if ((inp->inp_vflag & INP_IPV6) != 0) { 1452 ip6 = mtod(m, struct ip6_hdr *); 1453 th = (struct tcphdr *)(ip6 + 1); 1454 m->m_pkthdr.len = m->m_len = 1455 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1456 tcp_fillheaders(tp, ip6, th); 1457 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1458 } else 1459 #endif /* INET6 */ 1460 { 1461 ip = mtod(m, struct ip *); 1462 th = (struct tcphdr *)(ip + 1); 1463 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1464 tcp_fillheaders(tp, ip, th); 1465 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1466 } 1467 1468 m_free(m); 1469 return hdrsiz; 1470 } 1471 #endif /*IPSEC*/ 1472 1473 /* 1474 * Return a pointer to the cached information about the remote host. 1475 * The cached information is stored in the protocol specific part of 1476 * the route metrics. 1477 */ 1478 struct rmxp_tao * 1479 tcp_gettaocache(inc) 1480 struct in_conninfo *inc; 1481 { 1482 struct rtentry *rt; 1483 1484 #ifdef INET6 1485 if (inc->inc_isipv6) 1486 rt = tcp_rtlookup6(inc); 1487 else 1488 #endif /* INET6 */ 1489 rt = tcp_rtlookup(inc); 1490 1491 /* Make sure this is a host route and is up. */ 1492 if (rt == NULL || 1493 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1494 return NULL; 1495 1496 return rmx_taop(rt->rt_rmx); 1497 } 1498 1499 /* 1500 * Clear all the TAO cache entries, called from tcp_init. 1501 * 1502 * XXX 1503 * This routine is just an empty one, because we assume that the routing 1504 * routing tables are initialized at the same time when TCP, so there is 1505 * nothing in the cache left over. 1506 */ 1507 static void 1508 tcp_cleartaocache() 1509 { 1510 } 1511