xref: /freebsd/sys/netinet/tcp_subr.c (revision 05c7a37afb48ddd5ee1bd921a5d46fe59cc70b15)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  *	$Id: tcp_subr.c,v 1.27 1996/03/22 18:11:25 wollman Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/queue.h>
39 #include <sys/proc.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/sysctl.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 
50 #include <net/route.h>
51 #include <net/if.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/ip.h>
56 #include <netinet/in_pcb.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_icmp.h>
60 #include <netinet/tcp.h>
61 #include <netinet/tcp_fsm.h>
62 #include <netinet/tcp_seq.h>
63 #include <netinet/tcp_timer.h>
64 #include <netinet/tcp_var.h>
65 #include <netinet/tcpip.h>
66 #ifdef TCPDEBUG
67 #include <netinet/tcp_debug.h>
68 #endif
69 
70 int 	tcp_mssdflt = TCP_MSS;
71 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
72 	CTLFLAG_RW, &tcp_mssdflt , 0, "");
73 
74 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
75 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt,
76 	CTLFLAG_RW, &tcp_rttdflt , 0, "");
77 
78 static int	tcp_do_rfc1323 = 1;
79 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
80 	CTLFLAG_RW, &tcp_do_rfc1323 , 0, "");
81 
82 static int	tcp_do_rfc1644 = 1;
83 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644,
84 	CTLFLAG_RW, &tcp_do_rfc1644 , 0, "");
85 
86 static void	tcp_cleartaocache(void);
87 static void	tcp_notify __P((struct inpcb *, int));
88 
89 /*
90  * Target size of TCP PCB hash table. Will be rounded down to a prime
91  * number.
92  */
93 #ifndef TCBHASHSIZE
94 #define TCBHASHSIZE	128
95 #endif
96 
97 /*
98  * Tcp initialization
99  */
100 void
101 tcp_init()
102 {
103 
104 	tcp_iss = random();	/* wrong, but better than a constant */
105 	tcp_ccgen = 1;
106 	tcp_cleartaocache();
107 	LIST_INIT(&tcb);
108 	tcbinfo.listhead = &tcb;
109 	tcbinfo.hashbase = phashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashsize);
110 	if (max_protohdr < sizeof(struct tcpiphdr))
111 		max_protohdr = sizeof(struct tcpiphdr);
112 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
113 		panic("tcp_init");
114 }
115 
116 /*
117  * Create template to be used to send tcp packets on a connection.
118  * Call after host entry created, allocates an mbuf and fills
119  * in a skeletal tcp/ip header, minimizing the amount of work
120  * necessary when the connection is used.
121  */
122 struct tcpiphdr *
123 tcp_template(tp)
124 	struct tcpcb *tp;
125 {
126 	register struct inpcb *inp = tp->t_inpcb;
127 	register struct mbuf *m;
128 	register struct tcpiphdr *n;
129 
130 	if ((n = tp->t_template) == 0) {
131 		m = m_get(M_DONTWAIT, MT_HEADER);
132 		if (m == NULL)
133 			return (0);
134 		m->m_len = sizeof (struct tcpiphdr);
135 		n = mtod(m, struct tcpiphdr *);
136 	}
137 	n->ti_next = n->ti_prev = 0;
138 	n->ti_x1 = 0;
139 	n->ti_pr = IPPROTO_TCP;
140 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
141 	n->ti_src = inp->inp_laddr;
142 	n->ti_dst = inp->inp_faddr;
143 	n->ti_sport = inp->inp_lport;
144 	n->ti_dport = inp->inp_fport;
145 	n->ti_seq = 0;
146 	n->ti_ack = 0;
147 	n->ti_x2 = 0;
148 	n->ti_off = 5;
149 	n->ti_flags = 0;
150 	n->ti_win = 0;
151 	n->ti_sum = 0;
152 	n->ti_urp = 0;
153 	return (n);
154 }
155 
156 /*
157  * Send a single message to the TCP at address specified by
158  * the given TCP/IP header.  If m == 0, then we make a copy
159  * of the tcpiphdr at ti and send directly to the addressed host.
160  * This is used to force keep alive messages out using the TCP
161  * template for a connection tp->t_template.  If flags are given
162  * then we send a message back to the TCP which originated the
163  * segment ti, and discard the mbuf containing it and any other
164  * attached mbufs.
165  *
166  * In any case the ack and sequence number of the transmitted
167  * segment are as specified by the parameters.
168  */
169 void
170 tcp_respond(tp, ti, m, ack, seq, flags)
171 	struct tcpcb *tp;
172 	register struct tcpiphdr *ti;
173 	register struct mbuf *m;
174 	tcp_seq ack, seq;
175 	int flags;
176 {
177 	register int tlen;
178 	int win = 0;
179 	struct route *ro = 0;
180 	struct route sro;
181 
182 	if (tp) {
183 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
184 		ro = &tp->t_inpcb->inp_route;
185 	} else {
186 		ro = &sro;
187 		bzero(ro, sizeof *ro);
188 	}
189 	if (m == 0) {
190 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
191 		if (m == NULL)
192 			return;
193 #ifdef TCP_COMPAT_42
194 		tlen = 1;
195 #else
196 		tlen = 0;
197 #endif
198 		m->m_data += max_linkhdr;
199 		*mtod(m, struct tcpiphdr *) = *ti;
200 		ti = mtod(m, struct tcpiphdr *);
201 		flags = TH_ACK;
202 	} else {
203 		m_freem(m->m_next);
204 		m->m_next = 0;
205 		m->m_data = (caddr_t)ti;
206 		m->m_len = sizeof (struct tcpiphdr);
207 		tlen = 0;
208 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
209 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
210 		xchg(ti->ti_dport, ti->ti_sport, u_short);
211 #undef xchg
212 	}
213 	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
214 	tlen += sizeof (struct tcpiphdr);
215 	m->m_len = tlen;
216 	m->m_pkthdr.len = tlen;
217 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
218 	ti->ti_next = ti->ti_prev = 0;
219 	ti->ti_x1 = 0;
220 	ti->ti_seq = htonl(seq);
221 	ti->ti_ack = htonl(ack);
222 	ti->ti_x2 = 0;
223 	ti->ti_off = sizeof (struct tcphdr) >> 2;
224 	ti->ti_flags = flags;
225 	if (tp)
226 		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
227 	else
228 		ti->ti_win = htons((u_short)win);
229 	ti->ti_urp = 0;
230 	ti->ti_sum = 0;
231 	ti->ti_sum = in_cksum(m, tlen);
232 	((struct ip *)ti)->ip_len = tlen;
233 	((struct ip *)ti)->ip_ttl = ip_defttl;
234 #ifdef TCPDEBUG
235 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
236 		tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
237 #endif
238 	(void) ip_output(m, NULL, ro, 0, NULL);
239 	if (ro == &sro && ro->ro_rt) {
240 		RTFREE(ro->ro_rt);
241 	}
242 }
243 
244 /*
245  * Create a new TCP control block, making an
246  * empty reassembly queue and hooking it to the argument
247  * protocol control block.
248  */
249 struct tcpcb *
250 tcp_newtcpcb(inp)
251 	struct inpcb *inp;
252 {
253 	register struct tcpcb *tp;
254 
255 	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
256 	if (tp == NULL)
257 		return ((struct tcpcb *)0);
258 	bzero((char *) tp, sizeof(struct tcpcb));
259 	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
260 	tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
261 
262 	if (tcp_do_rfc1323)
263 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
264 	if (tcp_do_rfc1644)
265 		tp->t_flags |= TF_REQ_CC;
266 	tp->t_inpcb = inp;
267 	/*
268 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
269 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
270 	 * reasonable initial retransmit time.
271 	 */
272 	tp->t_srtt = TCPTV_SRTTBASE;
273 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
274 	tp->t_rttmin = TCPTV_MIN;
275 	TCPT_RANGESET(tp->t_rxtcur,
276 	    ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
277 	    TCPTV_MIN, TCPTV_REXMTMAX);
278 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
279 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
280 	inp->inp_ip.ip_ttl = ip_defttl;
281 	inp->inp_ppcb = (caddr_t)tp;
282 	return (tp);
283 }
284 
285 /*
286  * Drop a TCP connection, reporting
287  * the specified error.  If connection is synchronized,
288  * then send a RST to peer.
289  */
290 struct tcpcb *
291 tcp_drop(tp, errno)
292 	register struct tcpcb *tp;
293 	int errno;
294 {
295 	struct socket *so = tp->t_inpcb->inp_socket;
296 
297 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
298 		tp->t_state = TCPS_CLOSED;
299 		(void) tcp_output(tp);
300 		tcpstat.tcps_drops++;
301 	} else
302 		tcpstat.tcps_conndrops++;
303 	if (errno == ETIMEDOUT && tp->t_softerror)
304 		errno = tp->t_softerror;
305 	so->so_error = errno;
306 	return (tcp_close(tp));
307 }
308 
309 /*
310  * Close a TCP control block:
311  *	discard all space held by the tcp
312  *	discard internet protocol block
313  *	wake up any sleepers
314  */
315 struct tcpcb *
316 tcp_close(tp)
317 	register struct tcpcb *tp;
318 {
319 	register struct tcpiphdr *t;
320 	struct inpcb *inp = tp->t_inpcb;
321 	struct socket *so = inp->inp_socket;
322 	register struct mbuf *m;
323 #ifdef RTV_RTT
324 	register struct rtentry *rt;
325 
326 	/*
327 	 * If we got enough samples through the srtt filter,
328 	 * save the rtt and rttvar in the routing entry.
329 	 * 'Enough' is arbitrarily defined as the 16 samples.
330 	 * 16 samples is enough for the srtt filter to converge
331 	 * to within 5% of the correct value; fewer samples and
332 	 * we could save a very bogus rtt.
333 	 *
334 	 * Don't update the default route's characteristics and don't
335 	 * update anything that the user "locked".
336 	 */
337 	if (tp->t_rttupdated >= 16 &&
338 	    (rt = inp->inp_route.ro_rt) &&
339 	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
340 		register u_long i = 0;
341 
342 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
343 			i = tp->t_srtt *
344 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
345 			if (rt->rt_rmx.rmx_rtt && i)
346 				/*
347 				 * filter this update to half the old & half
348 				 * the new values, converting scale.
349 				 * See route.h and tcp_var.h for a
350 				 * description of the scaling constants.
351 				 */
352 				rt->rt_rmx.rmx_rtt =
353 				    (rt->rt_rmx.rmx_rtt + i) / 2;
354 			else
355 				rt->rt_rmx.rmx_rtt = i;
356 			tcpstat.tcps_cachedrtt++;
357 		}
358 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
359 			i = tp->t_rttvar *
360 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
361 			if (rt->rt_rmx.rmx_rttvar && i)
362 				rt->rt_rmx.rmx_rttvar =
363 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
364 			else
365 				rt->rt_rmx.rmx_rttvar = i;
366 			tcpstat.tcps_cachedrttvar++;
367 		}
368 		/*
369 		 * update the pipelimit (ssthresh) if it has been updated
370 		 * already or if a pipesize was specified & the threshhold
371 		 * got below half the pipesize.  I.e., wait for bad news
372 		 * before we start updating, then update on both good
373 		 * and bad news.
374 		 */
375 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
376 		    ((i = tp->snd_ssthresh) != 0) && rt->rt_rmx.rmx_ssthresh) ||
377 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
378 			/*
379 			 * convert the limit from user data bytes to
380 			 * packets then to packet data bytes.
381 			 */
382 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
383 			if (i < 2)
384 				i = 2;
385 			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
386 			if (rt->rt_rmx.rmx_ssthresh)
387 				rt->rt_rmx.rmx_ssthresh =
388 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
389 			else
390 				rt->rt_rmx.rmx_ssthresh = i;
391 			tcpstat.tcps_cachedssthresh++;
392 		}
393 	}
394 #endif /* RTV_RTT */
395 	/* free the reassembly queue, if any */
396 	t = tp->seg_next;
397 	while (t != (struct tcpiphdr *)tp) {
398 		t = (struct tcpiphdr *)t->ti_next;
399 		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
400 		remque(t->ti_prev);
401 		m_freem(m);
402 	}
403 	if (tp->t_template)
404 		(void) m_free(dtom(tp->t_template));
405 	free(tp, M_PCB);
406 	inp->inp_ppcb = 0;
407 	soisdisconnected(so);
408 	in_pcbdetach(inp);
409 	tcpstat.tcps_closed++;
410 	return ((struct tcpcb *)0);
411 }
412 
413 void
414 tcp_drain()
415 {
416 
417 }
418 
419 /*
420  * Notify a tcp user of an asynchronous error;
421  * store error as soft error, but wake up user
422  * (for now, won't do anything until can select for soft error).
423  */
424 static void
425 tcp_notify(inp, error)
426 	struct inpcb *inp;
427 	int error;
428 {
429 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
430 	register struct socket *so = inp->inp_socket;
431 
432 	/*
433 	 * Ignore some errors if we are hooked up.
434 	 * If connection hasn't completed, has retransmitted several times,
435 	 * and receives a second error, give up now.  This is better
436 	 * than waiting a long time to establish a connection that
437 	 * can never complete.
438 	 */
439 	if (tp->t_state == TCPS_ESTABLISHED &&
440 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
441 	      error == EHOSTDOWN)) {
442 		return;
443 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
444 	    tp->t_softerror)
445 		so->so_error = error;
446 	else
447 		tp->t_softerror = error;
448 	wakeup((caddr_t) &so->so_timeo);
449 	sorwakeup(so);
450 	sowwakeup(so);
451 }
452 
453 void
454 tcp_ctlinput(cmd, sa, vip)
455 	int cmd;
456 	struct sockaddr *sa;
457 	void *vip;
458 {
459 	register struct ip *ip = vip;
460 	register struct tcphdr *th;
461 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
462 
463 	if (cmd == PRC_QUENCH)
464 		notify = tcp_quench;
465 #if 1
466 	else if (cmd == PRC_MSGSIZE)
467 		notify = tcp_mtudisc;
468 #endif
469 	else if (!PRC_IS_REDIRECT(cmd) &&
470 		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
471 		return;
472 	if (ip) {
473 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
474 		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
475 			cmd, notify);
476 	} else
477 		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
478 }
479 
480 /*
481  * When a source quench is received, close congestion window
482  * to one segment.  We will gradually open it again as we proceed.
483  */
484 void
485 tcp_quench(inp, errno)
486 	struct inpcb *inp;
487 	int errno;
488 {
489 	struct tcpcb *tp = intotcpcb(inp);
490 
491 	if (tp)
492 		tp->snd_cwnd = tp->t_maxseg;
493 }
494 
495 #if 1
496 /*
497  * When `need fragmentation' ICMP is received, update our idea of the MSS
498  * based on the new value in the route.  Also nudge TCP to send something,
499  * since we know the packet we just sent was dropped.
500  * This duplicates some code in the tcp_mss() function in tcp_input.c.
501  */
502 void
503 tcp_mtudisc(inp, errno)
504 	struct inpcb *inp;
505 	int errno;
506 {
507 	struct tcpcb *tp = intotcpcb(inp);
508 	struct rtentry *rt;
509 	struct rmxp_tao *taop;
510 	struct socket *so = inp->inp_socket;
511 	int offered;
512 	int mss;
513 
514 	if (tp) {
515 		rt = tcp_rtlookup(inp);
516 		if (!rt || !rt->rt_rmx.rmx_mtu) {
517 			tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
518 			return;
519 		}
520 		taop = rmx_taop(rt->rt_rmx);
521 		offered = taop->tao_mssopt;
522 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
523 		if (offered)
524 			mss = min(mss, offered);
525 		/*
526 		 * XXX - The above conditional probably violates the TCP
527 		 * spec.  The problem is that, since we don't know the
528 		 * other end's MSS, we are supposed to use a conservative
529 		 * default.  But, if we do that, then MTU discovery will
530 		 * never actually take place, because the conservative
531 		 * default is much less than the MTUs typically seen
532 		 * on the Internet today.  For the moment, we'll sweep
533 		 * this under the carpet.
534 		 *
535 		 * The conservative default might not actually be a problem
536 		 * if the only case this occurs is when sending an initial
537 		 * SYN with options and data to a host we've never talked
538 		 * to before.  Then, they will reply with an MSS value which
539 		 * will get recorded and the new parameters should get
540 		 * recomputed.  For Further Study.
541 		 */
542 		if (tp->t_maxopd <= mss)
543 			return;
544 		tp->t_maxopd = mss;
545 
546 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
547 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
548 			mss -= TCPOLEN_TSTAMP_APPA;
549 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
550 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
551 			mss -= TCPOLEN_CC_APPA;
552 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
553 		if (mss > MCLBYTES)
554 			mss &= ~(MCLBYTES-1);
555 #else
556 		if (mss > MCLBYTES)
557 			mss = mss / MCLBYTES * MCLBYTES;
558 #endif
559 		if (so->so_snd.sb_hiwat < mss)
560 			mss = so->so_snd.sb_hiwat;
561 
562 		tp->t_maxseg = mss;
563 
564 		tcpstat.tcps_mturesent++;
565 		tp->t_rtt = 0;
566 		tp->snd_nxt = tp->snd_una;
567 		tcp_output(tp);
568 	}
569 }
570 #endif
571 
572 /*
573  * Look-up the routing entry to the peer of this inpcb.  If no route
574  * is found and it cannot be allocated the return NULL.  This routine
575  * is called by TCP routines that access the rmx structure and by tcp_mss
576  * to get the interface MTU.
577  */
578 struct rtentry *
579 tcp_rtlookup(inp)
580 	struct inpcb *inp;
581 {
582 	struct route *ro;
583 	struct rtentry *rt;
584 
585 	ro = &inp->inp_route;
586 	rt = ro->ro_rt;
587 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
588 		/* No route yet, so try to acquire one */
589 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
590 			ro->ro_dst.sa_family = AF_INET;
591 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
592 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
593 				inp->inp_faddr;
594 			rtalloc(ro);
595 			rt = ro->ro_rt;
596 		}
597 	}
598 	return rt;
599 }
600 
601 /*
602  * Return a pointer to the cached information about the remote host.
603  * The cached information is stored in the protocol specific part of
604  * the route metrics.
605  */
606 struct rmxp_tao *
607 tcp_gettaocache(inp)
608 	struct inpcb *inp;
609 {
610 	struct rtentry *rt = tcp_rtlookup(inp);
611 
612 	/* Make sure this is a host route and is up. */
613 	if (rt == NULL ||
614 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
615 		return NULL;
616 
617 	return rmx_taop(rt->rt_rmx);
618 }
619 
620 /*
621  * Clear all the TAO cache entries, called from tcp_init.
622  *
623  * XXX
624  * This routine is just an empty one, because we assume that the routing
625  * routing tables are initialized at the same time when TCP, so there is
626  * nothing in the cache left over.
627  */
628 static void
629 tcp_cleartaocache(void)
630 { }
631