xref: /freebsd/sys/netinet/tcp_subr.c (revision a9f5b68837094699a3d5204d79c1cbe59d93ae00)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipsec.h"
36 #include "opt_kern_tls.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/arb.h>
41 #include <sys/callout.h>
42 #include <sys/eventhandler.h>
43 #ifdef TCP_HHOOK
44 #include <sys/hhook.h>
45 #endif
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/khelp.h>
49 #endif
50 #ifdef KERN_TLS
51 #include <sys/ktls.h>
52 #endif
53 #include <sys/qmath.h>
54 #include <sys/stats.h>
55 #include <sys/sysctl.h>
56 #include <sys/jail.h>
57 #include <sys/malloc.h>
58 #include <sys/refcount.h>
59 #include <sys/mbuf.h>
60 #include <sys/priv.h>
61 #include <sys/sdt.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/protosw.h>
65 #include <sys/random.h>
66 
67 #include <vm/uma.h>
68 
69 #include <net/route.h>
70 #include <net/route/nhop.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/vnet.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_fib.h>
78 #include <netinet/in_kdtrace.h>
79 #include <netinet/in_pcb.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h>
84 #include <netinet/ip_var.h>
85 #include <netinet/icmp_var.h>
86 #ifdef INET6
87 #include <netinet/icmp6.h>
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_fib.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/scope6_var.h>
93 #include <netinet6/nd6.h>
94 #endif
95 
96 #include <netinet/tcp.h>
97 #ifdef INVARIANTS
98 #define TCPSTATES
99 #endif
100 #include <netinet/tcp_fsm.h>
101 #include <netinet/tcp_seq.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/tcp_ecn.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_syncache.h>
107 #include <netinet/tcp_hpts.h>
108 #include <netinet/tcp_lro.h>
109 #include <netinet/cc/cc.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/tcp_fastopen.h>
112 #include <netinet/tcp_accounting.h>
113 #ifdef TCP_OFFLOAD
114 #include <netinet/tcp_offload.h>
115 #endif
116 #include <netinet/udp.h>
117 #include <netinet/udp_var.h>
118 #ifdef INET6
119 #include <netinet6/tcp6_var.h>
120 #endif
121 
122 #include <netipsec/ipsec_support.h>
123 
124 #include <machine/in_cksum.h>
125 #include <crypto/siphash/siphash.h>
126 
127 #include <security/mac/mac_framework.h>
128 
129 #ifdef INET6
130 static ip6proto_ctlinput_t tcp6_ctlinput;
131 static udp_tun_icmp_t tcp6_ctlinput_viaudp;
132 #endif
133 
134 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
135 #ifdef INET6
136 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
137 #endif
138 
139 VNET_DEFINE(uint32_t, tcp_ack_war_time_window) = 1000;
140 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow,
141     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ack_war_time_window), 0,
142    "Time interval in ms used to limit the number (ack_war_cnt) of challenge ACKs sent per TCP connection");
143 VNET_DEFINE(uint32_t, tcp_ack_war_cnt) = 5;
144 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_ack_war_cnt), 0,
146    "Maximum number of challenge ACKs sent per TCP connection during the time interval (ack_war_timewindow)");
147 
148 struct rwlock tcp_function_lock;
149 
150 static int
sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)151 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
152 {
153 	int error, new;
154 
155 	new = V_tcp_mssdflt;
156 	error = sysctl_handle_int(oidp, &new, 0, req);
157 	if (error == 0 && req->newptr) {
158 		if (new < TCP_MINMSS)
159 			error = EINVAL;
160 		else
161 			V_tcp_mssdflt = new;
162 	}
163 	return (error);
164 }
165 
166 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
167     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
168     &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I",
169     "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 static int
sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)173 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
174 {
175 	int error, new;
176 
177 	new = V_tcp_v6mssdflt;
178 	error = sysctl_handle_int(oidp, &new, 0, req);
179 	if (error == 0 && req->newptr) {
180 		if (new < TCP_MINMSS)
181 			error = EINVAL;
182 		else
183 			V_tcp_v6mssdflt = new;
184 	}
185 	return (error);
186 }
187 
188 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
189     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
190     &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
191    "Default TCP Maximum Segment Size for IPv6");
192 #endif /* INET6 */
193 
194 /*
195  * Minimum MSS we accept and use. This prevents DoS attacks where
196  * we are forced to a ridiculous low MSS like 20 and send hundreds
197  * of packets instead of one. The effect scales with the available
198  * bandwidth and quickly saturates the CPU and network interface
199  * with packet generation and sending. Set to zero to disable MINMSS
200  * checking. This setting prevents us from sending too small packets.
201  */
202 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
204      &VNET_NAME(tcp_minmss), 0,
205     "Minimum TCP Maximum Segment Size");
206 
207 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
208 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
209     &VNET_NAME(tcp_do_rfc1323), 0,
210     "Enable rfc1323 (high performance TCP) extensions");
211 
212 /*
213  * As of June 2021, several TCP stacks violate RFC 7323 from September 2014.
214  * Some stacks negotiate TS, but never send them after connection setup. Some
215  * stacks negotiate TS, but don't send them when sending keep-alive segments.
216  * These include modern widely deployed TCP stacks.
217  * Therefore tolerating violations for now...
218  */
219 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW,
221     &VNET_NAME(tcp_tolerate_missing_ts), 0,
222     "Tolerate missing TCP timestamps");
223 
224 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
226     &VNET_NAME(tcp_ts_offset_per_conn), 0,
227     "Initialize TCP timestamps per connection instead of per host pair");
228 
229 /* How many connections are pacing */
230 static volatile uint32_t number_of_tcp_connections_pacing = 0;
231 static uint32_t shadow_num_connections = 0;
232 static counter_u64_t tcp_pacing_failures;
233 static counter_u64_t tcp_dgp_failures;
234 static uint32_t shadow_tcp_pacing_dgp = 0;
235 static volatile uint32_t number_of_dgp_connections = 0;
236 
237 static int tcp_pacing_limit = 10000;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW,
239     &tcp_pacing_limit, 1000,
240     "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)");
241 
242 static int tcp_dgp_limit = -1;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW,
244     &tcp_dgp_limit, -1,
245     "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)");
246 
247 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD,
248     &shadow_num_connections, 0, "Number of TCP connections being paced");
249 
250 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD,
251     &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit");
252 
253 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD,
254     &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit");
255 
256 static int	tcp_log_debug = 0;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
258     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
259 
260 /*
261  * Target size of TCP PCB hash tables. Must be a power of two.
262  *
263  * Note that this can be overridden by the kernel environment
264  * variable net.inet.tcp.tcbhashsize
265  */
266 #ifndef TCBHASHSIZE
267 #define TCBHASHSIZE	0
268 #endif
269 static int	tcp_tcbhashsize = TCBHASHSIZE;
270 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
271     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
272 
273 static int	do_tcpdrain = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
275     "Enable tcp_drain routine for extra help when low on mbufs");
276 
277 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
278     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
279 
280 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
281 #define	V_icmp_may_rst			VNET(icmp_may_rst)
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
283     &VNET_NAME(icmp_may_rst), 0,
284     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
285 
286 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
287 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
288 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
289     &VNET_NAME(tcp_isn_reseed_interval), 0,
290     "Seconds between reseeding of ISN secret");
291 
292 static int	tcp_soreceive_stream;
293 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
294     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
295 
296 VNET_DEFINE(uma_zone_t, sack_hole_zone);
297 #define	V_sack_hole_zone		VNET(sack_hole_zone)
298 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0;	/* unlimited */
299 static int
sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)300 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)
301 {
302 	int error;
303 	uint32_t new;
304 
305 	new = V_tcp_map_entries_limit;
306 	error = sysctl_handle_int(oidp, &new, 0, req);
307 	if (error == 0 && req->newptr) {
308 		/* only allow "0" and value > minimum */
309 		if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT)
310 			error = EINVAL;
311 		else
312 			V_tcp_map_entries_limit = new;
313 	}
314 	return (error);
315 }
316 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit,
317     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
318     &VNET_NAME(tcp_map_entries_limit), 0,
319     &sysctl_net_inet_tcp_map_limit_check, "IU",
320     "Total sendmap entries limit");
321 
322 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0;	/* unlimited */
323 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW,
324      &VNET_NAME(tcp_map_split_limit), 0,
325     "Total sendmap split entries limit");
326 
327 #ifdef TCP_HHOOK
328 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
329 #endif
330 
331 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH
332 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
333 #define	V_ts_offset_secret	VNET(ts_offset_secret)
334 
335 static int	tcp_default_fb_init(struct tcpcb *tp, void **ptr);
336 static void	tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
337 static int	tcp_default_handoff_ok(struct tcpcb *tp);
338 static struct inpcb *tcp_notify(struct inpcb *, int);
339 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
340 static struct inpcb *tcp_mtudisc(struct inpcb *, int);
341 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int);
342 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
343 		    const void *ip4hdr, const void *ip6hdr);
344 static void	tcp_default_switch_failed(struct tcpcb *tp);
345 static ipproto_ctlinput_t	tcp_ctlinput;
346 static udp_tun_icmp_t		tcp_ctlinput_viaudp;
347 
348 static struct tcp_function_block tcp_def_funcblk = {
349 	.tfb_tcp_block_name = "freebsd",
350 	.tfb_tcp_output = tcp_default_output,
351 	.tfb_tcp_do_segment = tcp_do_segment,
352 	.tfb_tcp_ctloutput = tcp_default_ctloutput,
353 	.tfb_tcp_handoff_ok = tcp_default_handoff_ok,
354 	.tfb_tcp_fb_init = tcp_default_fb_init,
355 	.tfb_tcp_fb_fini = tcp_default_fb_fini,
356 	.tfb_switch_failed = tcp_default_switch_failed,
357 	.tfb_flags = TCP_FUNC_DEFAULT_OK,
358 };
359 
360 static int tcp_fb_cnt = 0;
361 struct tcp_funchead t_functions;
362 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk;
363 #define	V_tcp_func_set_ptr VNET(tcp_func_set_ptr)
364 
365 void
tcp_record_dsack(struct tcpcb * tp,tcp_seq start,tcp_seq end,int tlp)366 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp)
367 {
368 	TCPSTAT_INC(tcps_dsack_count);
369 	tp->t_dsack_pack++;
370 	if (tlp == 0) {
371 		if (SEQ_GT(end, start)) {
372 			tp->t_dsack_bytes += (end - start);
373 			TCPSTAT_ADD(tcps_dsack_bytes, (end - start));
374 		} else {
375 			tp->t_dsack_tlp_bytes += (start - end);
376 			TCPSTAT_ADD(tcps_dsack_bytes, (start - end));
377 		}
378 	} else {
379 		if (SEQ_GT(end, start)) {
380 			tp->t_dsack_bytes += (end - start);
381 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start));
382 		} else {
383 			tp->t_dsack_tlp_bytes += (start - end);
384 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end));
385 		}
386 	}
387 }
388 
389 static struct tcp_function_block *
find_tcp_functions_locked(struct tcp_function_set * fs)390 find_tcp_functions_locked(struct tcp_function_set *fs)
391 {
392 	struct tcp_function *f;
393 	struct tcp_function_block *blk = NULL;
394 
395 	rw_assert(&tcp_function_lock, RA_LOCKED);
396 	TAILQ_FOREACH(f, &t_functions, tf_next) {
397 		if (strcmp(f->tf_name, fs->function_set_name) == 0) {
398 			blk = f->tf_fb;
399 			break;
400 		}
401 	}
402 	return (blk);
403 }
404 
405 static struct tcp_function_block *
find_tcp_fb_locked(struct tcp_function_block * blk,struct tcp_function ** s)406 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
407 {
408 	struct tcp_function_block *rblk = NULL;
409 	struct tcp_function *f;
410 
411 	rw_assert(&tcp_function_lock, RA_LOCKED);
412 	TAILQ_FOREACH(f, &t_functions, tf_next) {
413 		if (f->tf_fb == blk) {
414 			rblk = blk;
415 			if (s) {
416 				*s = f;
417 			}
418 			break;
419 		}
420 	}
421 	return (rblk);
422 }
423 
424 struct tcp_function_block *
find_and_ref_tcp_functions(struct tcp_function_set * fs)425 find_and_ref_tcp_functions(struct tcp_function_set *fs)
426 {
427 	struct tcp_function_block *blk;
428 
429 	rw_rlock(&tcp_function_lock);
430 	blk = find_tcp_functions_locked(fs);
431 	if (blk)
432 		refcount_acquire(&blk->tfb_refcnt);
433 	rw_runlock(&tcp_function_lock);
434 	return (blk);
435 }
436 
437 struct tcp_function_block *
find_and_ref_tcp_fb(struct tcp_function_block * blk)438 find_and_ref_tcp_fb(struct tcp_function_block *blk)
439 {
440 	struct tcp_function_block *rblk;
441 
442 	rw_rlock(&tcp_function_lock);
443 	rblk = find_tcp_fb_locked(blk, NULL);
444 	if (rblk)
445 		refcount_acquire(&rblk->tfb_refcnt);
446 	rw_runlock(&tcp_function_lock);
447 	return (rblk);
448 }
449 
450 /* Find a matching alias for the given tcp_function_block. */
451 int
find_tcp_function_alias(struct tcp_function_block * blk,struct tcp_function_set * fs)452 find_tcp_function_alias(struct tcp_function_block *blk,
453     struct tcp_function_set *fs)
454 {
455 	struct tcp_function *f;
456 	int found;
457 
458 	found = 0;
459 	rw_rlock(&tcp_function_lock);
460 	TAILQ_FOREACH(f, &t_functions, tf_next) {
461 		if ((f->tf_fb == blk) &&
462 		    (strncmp(f->tf_name, blk->tfb_tcp_block_name,
463 		        TCP_FUNCTION_NAME_LEN_MAX) != 0)) {
464 			/* Matching function block with different name. */
465 			strncpy(fs->function_set_name, f->tf_name,
466 			    TCP_FUNCTION_NAME_LEN_MAX);
467 			found = 1;
468 			break;
469 		}
470 	}
471 	/* Null terminate the string appropriately. */
472 	if (found) {
473 		fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0';
474 	} else {
475 		fs->function_set_name[0] = '\0';
476 	}
477 	rw_runlock(&tcp_function_lock);
478 	return (found);
479 }
480 
481 static struct tcp_function_block *
find_and_ref_tcp_default_fb(void)482 find_and_ref_tcp_default_fb(void)
483 {
484 	struct tcp_function_block *rblk;
485 
486 	rw_rlock(&tcp_function_lock);
487 	rblk = V_tcp_func_set_ptr;
488 	refcount_acquire(&rblk->tfb_refcnt);
489 	rw_runlock(&tcp_function_lock);
490 	return (rblk);
491 }
492 
493 void
tcp_switch_back_to_default(struct tcpcb * tp)494 tcp_switch_back_to_default(struct tcpcb *tp)
495 {
496 	struct tcp_function_block *tfb;
497 	void *ptr = NULL;
498 
499 	KASSERT(tp->t_fb != &tcp_def_funcblk,
500 	    ("%s: called by the built-in default stack", __func__));
501 
502 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
503 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
504 
505 	/*
506 	 * Now, we'll find a new function block to use.
507 	 * Start by trying the current user-selected
508 	 * default, unless this stack is the user-selected
509 	 * default.
510 	 */
511 	tfb = find_and_ref_tcp_default_fb();
512 	if (tfb == tp->t_fb) {
513 		refcount_release(&tfb->tfb_refcnt);
514 		tfb = NULL;
515 	}
516 	/* Does the stack accept this connection? */
517 	if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) {
518 		refcount_release(&tfb->tfb_refcnt);
519 		tfb = NULL;
520 	}
521 	/* Try to use that stack. */
522 	if (tfb != NULL) {
523 		/* Initialize the new stack. If it succeeds, we are done. */
524 		if (tfb->tfb_tcp_fb_init == NULL ||
525 		    (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) {
526 			/* Release the old stack */
527 			if (tp->t_fb->tfb_tcp_fb_fini != NULL)
528 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
529 			refcount_release(&tp->t_fb->tfb_refcnt);
530 			/* Now set in all the pointers */
531 			tp->t_fb = tfb;
532 			tp->t_fb_ptr = ptr;
533 			return;
534 		}
535 		/*
536 		 * Initialization failed. Release the reference count on
537 		 * the looked up default stack.
538 		 */
539 		refcount_release(&tfb->tfb_refcnt);
540 	}
541 
542 	/*
543 	 * If that wasn't feasible, use the built-in default
544 	 * stack which is not allowed to reject anyone.
545 	 */
546 	tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
547 	if (tfb == NULL) {
548 		/* there always should be a default */
549 		panic("Can't refer to tcp_def_funcblk");
550 	}
551 	if ((*tfb->tfb_tcp_handoff_ok)(tp)) {
552 		/* The default stack cannot say no */
553 		panic("Default stack rejects a new session?");
554 	}
555 	if (tfb->tfb_tcp_fb_init != NULL &&
556 	    (*tfb->tfb_tcp_fb_init)(tp, &ptr)) {
557 		/* The default stack cannot fail */
558 		panic("Default stack initialization failed");
559 	}
560 	/* Now release the old stack */
561 	if (tp->t_fb->tfb_tcp_fb_fini != NULL)
562 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
563 	refcount_release(&tp->t_fb->tfb_refcnt);
564 	/* And set in the pointers to the new */
565 	tp->t_fb = tfb;
566 	tp->t_fb_ptr = ptr;
567 }
568 
569 static bool
tcp_recv_udp_tunneled_packet(struct mbuf * m,int off,struct inpcb * inp,const struct sockaddr * sa,void * ctx)570 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp,
571     const struct sockaddr *sa, void *ctx)
572 {
573 	struct ip *iph;
574 #ifdef INET6
575 	struct ip6_hdr *ip6;
576 #endif
577 	struct udphdr *uh;
578 	struct tcphdr *th;
579 	int thlen;
580 	uint16_t port;
581 
582 	TCPSTAT_INC(tcps_tunneled_pkts);
583 	if ((m->m_flags & M_PKTHDR) == 0) {
584 		/* Can't handle one that is not a pkt hdr */
585 		TCPSTAT_INC(tcps_tunneled_errs);
586 		goto out;
587 	}
588 	thlen = sizeof(struct tcphdr);
589 	if (m->m_len < off + sizeof(struct udphdr) + thlen &&
590 	    (m =  m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) {
591 		TCPSTAT_INC(tcps_tunneled_errs);
592 		goto out;
593 	}
594 	iph = mtod(m, struct ip *);
595 	uh = (struct udphdr *)((caddr_t)iph + off);
596 	th = (struct tcphdr *)(uh + 1);
597 	thlen = th->th_off << 2;
598 	if (m->m_len < off + sizeof(struct udphdr) + thlen) {
599 		m =  m_pullup(m, off + sizeof(struct udphdr) + thlen);
600 		if (m == NULL) {
601 			TCPSTAT_INC(tcps_tunneled_errs);
602 			goto out;
603 		} else {
604 			iph = mtod(m, struct ip *);
605 			uh = (struct udphdr *)((caddr_t)iph + off);
606 			th = (struct tcphdr *)(uh + 1);
607 		}
608 	}
609 	m->m_pkthdr.tcp_tun_port = port = uh->uh_sport;
610 	bcopy(th, uh, m->m_len - off);
611 	m->m_len -= sizeof(struct udphdr);
612 	m->m_pkthdr.len -= sizeof(struct udphdr);
613 	/*
614 	 * We use the same algorithm for
615 	 * both UDP and TCP for c-sum. So
616 	 * the code in tcp_input will skip
617 	 * the checksum. So we do nothing
618 	 * with the flag (m->m_pkthdr.csum_flags).
619 	 */
620 	switch (iph->ip_v) {
621 #ifdef INET
622 	case IPVERSION:
623 		iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr));
624 		tcp_input_with_port(&m, &off, IPPROTO_TCP, port);
625 		break;
626 #endif
627 #ifdef INET6
628 	case IPV6_VERSION >> 4:
629 		ip6 = mtod(m, struct ip6_hdr *);
630 		ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr));
631 		tcp6_input_with_port(&m, &off, IPPROTO_TCP, port);
632 		break;
633 #endif
634 	default:
635 		goto out;
636 		break;
637 	}
638 	return (true);
639 out:
640 	m_freem(m);
641 
642 	return (true);
643 }
644 
645 static int
sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)646 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
647 {
648 	int error = ENOENT;
649 	struct tcp_function_set fs;
650 	struct tcp_function_block *blk;
651 
652 	memset(&fs, 0, sizeof(fs));
653 	rw_rlock(&tcp_function_lock);
654 	blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL);
655 	if (blk) {
656 		/* Found him */
657 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
658 		fs.pcbcnt = blk->tfb_refcnt;
659 	}
660 	rw_runlock(&tcp_function_lock);
661 	error = sysctl_handle_string(oidp, fs.function_set_name,
662 				     sizeof(fs.function_set_name), req);
663 
664 	/* Check for error or no change */
665 	if (error != 0 || req->newptr == NULL)
666 		return (error);
667 
668 	rw_wlock(&tcp_function_lock);
669 	blk = find_tcp_functions_locked(&fs);
670 	if ((blk == NULL) ||
671 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
672 		error = ENOENT;
673 		goto done;
674 	}
675 	if ((blk->tfb_flags & TCP_FUNC_DEFAULT_OK) == 0) {
676 		error = EINVAL;
677 		goto done;
678 	}
679 	V_tcp_func_set_ptr = blk;
680 done:
681 	rw_wunlock(&tcp_function_lock);
682 	return (error);
683 }
684 
685 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
686     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
687     NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
688     "Set/get the default TCP functions");
689 
690 static int
sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)691 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
692 {
693 	int error, cnt, linesz;
694 	struct tcp_function *f;
695 	char *buffer, *cp;
696 	size_t bufsz, outsz;
697 	bool alias;
698 
699 	cnt = 0;
700 	rw_rlock(&tcp_function_lock);
701 	TAILQ_FOREACH(f, &t_functions, tf_next) {
702 		cnt++;
703 	}
704 	rw_runlock(&tcp_function_lock);
705 
706 	bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
707 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
708 
709 	error = 0;
710 	cp = buffer;
711 
712 	linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
713 	    "Alias", "PCB count");
714 	cp += linesz;
715 	bufsz -= linesz;
716 	outsz = linesz;
717 
718 	rw_rlock(&tcp_function_lock);
719 	TAILQ_FOREACH(f, &t_functions, tf_next) {
720 		alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
721 		linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
722 		    f->tf_fb->tfb_tcp_block_name,
723 		    (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ',
724 		    alias ? f->tf_name : "-",
725 		    f->tf_fb->tfb_refcnt);
726 		if (linesz >= bufsz) {
727 			error = EOVERFLOW;
728 			break;
729 		}
730 		cp += linesz;
731 		bufsz -= linesz;
732 		outsz += linesz;
733 	}
734 	rw_runlock(&tcp_function_lock);
735 	if (error == 0)
736 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
737 	free(buffer, M_TEMP);
738 	return (error);
739 }
740 
741 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
742     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
743     NULL, 0, sysctl_net_inet_list_available, "A",
744     "list available TCP Function sets");
745 
746 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT;
747 
748 #ifdef INET
749 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL;
750 #define	V_udp4_tun_socket	VNET(udp4_tun_socket)
751 #endif
752 #ifdef INET6
753 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL;
754 #define	V_udp6_tun_socket	VNET(udp6_tun_socket)
755 #endif
756 
757 static struct sx tcpoudp_lock;
758 
759 static void
tcp_over_udp_stop(void)760 tcp_over_udp_stop(void)
761 {
762 
763 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
764 
765 #ifdef INET
766 	if (V_udp4_tun_socket != NULL) {
767 		soclose(V_udp4_tun_socket);
768 		V_udp4_tun_socket = NULL;
769 	}
770 #endif
771 #ifdef INET6
772 	if (V_udp6_tun_socket != NULL) {
773 		soclose(V_udp6_tun_socket);
774 		V_udp6_tun_socket = NULL;
775 	}
776 #endif
777 }
778 
779 static int
tcp_over_udp_start(void)780 tcp_over_udp_start(void)
781 {
782 	uint16_t port;
783 	int ret;
784 #ifdef INET
785 	struct sockaddr_in sin;
786 #endif
787 #ifdef INET6
788 	struct sockaddr_in6 sin6;
789 #endif
790 
791 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
792 
793 	port = V_tcp_udp_tunneling_port;
794 	if (ntohs(port) == 0) {
795 		/* Must have a port set */
796 		return (EINVAL);
797 	}
798 #ifdef INET
799 	if (V_udp4_tun_socket != NULL) {
800 		/* Already running -- must stop first */
801 		return (EALREADY);
802 	}
803 #endif
804 #ifdef INET6
805 	if (V_udp6_tun_socket != NULL) {
806 		/* Already running -- must stop first */
807 		return (EALREADY);
808 	}
809 #endif
810 #ifdef INET
811 	if ((ret = socreate(PF_INET, &V_udp4_tun_socket,
812 	    SOCK_DGRAM, IPPROTO_UDP,
813 	    curthread->td_ucred, curthread))) {
814 		tcp_over_udp_stop();
815 		return (ret);
816 	}
817 	/* Call the special UDP hook. */
818 	if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket,
819 	    tcp_recv_udp_tunneled_packet,
820 	    tcp_ctlinput_viaudp,
821 	    NULL))) {
822 		tcp_over_udp_stop();
823 		return (ret);
824 	}
825 	/* Ok, we have a socket, bind it to the port. */
826 	memset(&sin, 0, sizeof(struct sockaddr_in));
827 	sin.sin_len = sizeof(struct sockaddr_in);
828 	sin.sin_family = AF_INET;
829 	sin.sin_port = htons(port);
830 	if ((ret = sobind(V_udp4_tun_socket,
831 	    (struct sockaddr *)&sin, curthread))) {
832 		tcp_over_udp_stop();
833 		return (ret);
834 	}
835 #endif
836 #ifdef INET6
837 	if ((ret = socreate(PF_INET6, &V_udp6_tun_socket,
838 	    SOCK_DGRAM, IPPROTO_UDP,
839 	    curthread->td_ucred, curthread))) {
840 		tcp_over_udp_stop();
841 		return (ret);
842 	}
843 	/* Call the special UDP hook. */
844 	if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket,
845 	    tcp_recv_udp_tunneled_packet,
846 	    tcp6_ctlinput_viaudp,
847 	    NULL))) {
848 		tcp_over_udp_stop();
849 		return (ret);
850 	}
851 	/* Ok, we have a socket, bind it to the port. */
852 	memset(&sin6, 0, sizeof(struct sockaddr_in6));
853 	sin6.sin6_len = sizeof(struct sockaddr_in6);
854 	sin6.sin6_family = AF_INET6;
855 	sin6.sin6_port = htons(port);
856 	if ((ret = sobind(V_udp6_tun_socket,
857 	    (struct sockaddr *)&sin6, curthread))) {
858 		tcp_over_udp_stop();
859 		return (ret);
860 	}
861 #endif
862 	return (0);
863 }
864 
865 static int
sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)866 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)
867 {
868 	int error;
869 	uint32_t old, new;
870 
871 	old = V_tcp_udp_tunneling_port;
872 	new = old;
873 	error = sysctl_handle_int(oidp, &new, 0, req);
874 	if ((error == 0) &&
875 	    (req->newptr != NULL)) {
876 		if ((new < TCP_TUNNELING_PORT_MIN) ||
877 		    (new > TCP_TUNNELING_PORT_MAX)) {
878 			error = EINVAL;
879 		} else {
880 			sx_xlock(&tcpoudp_lock);
881 			V_tcp_udp_tunneling_port = new;
882 			if (old != 0) {
883 				tcp_over_udp_stop();
884 			}
885 			if (new != 0) {
886 				error = tcp_over_udp_start();
887 				if (error != 0) {
888 					V_tcp_udp_tunneling_port = 0;
889 				}
890 			}
891 			sx_xunlock(&tcpoudp_lock);
892 		}
893 	}
894 	return (error);
895 }
896 
897 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port,
898     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
899     &VNET_NAME(tcp_udp_tunneling_port),
900     0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU",
901     "Tunneling port for tcp over udp");
902 
903 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT;
904 
905 static int
sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)906 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)
907 {
908 	int error, new;
909 
910 	new = V_tcp_udp_tunneling_overhead;
911 	error = sysctl_handle_int(oidp, &new, 0, req);
912 	if (error == 0 && req->newptr) {
913 		if ((new < TCP_TUNNELING_OVERHEAD_MIN) ||
914 		    (new > TCP_TUNNELING_OVERHEAD_MAX))
915 			error = EINVAL;
916 		else
917 			V_tcp_udp_tunneling_overhead = new;
918 	}
919 	return (error);
920 }
921 
922 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead,
923     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
924     &VNET_NAME(tcp_udp_tunneling_overhead),
925     0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU",
926     "MSS reduction when using tcp over udp");
927 
928 /*
929  * Exports one (struct tcp_function_info) for each alias/name.
930  */
931 static int
sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)932 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
933 {
934 	int cnt, error;
935 	struct tcp_function *f;
936 	struct tcp_function_info tfi;
937 
938 	/*
939 	 * We don't allow writes.
940 	 */
941 	if (req->newptr != NULL)
942 		return (EINVAL);
943 
944 	/*
945 	 * Wire the old buffer so we can directly copy the functions to
946 	 * user space without dropping the lock.
947 	 */
948 	if (req->oldptr != NULL) {
949 		error = sysctl_wire_old_buffer(req, 0);
950 		if (error)
951 			return (error);
952 	}
953 
954 	/*
955 	 * Walk the list and copy out matching entries. If INVARIANTS
956 	 * is compiled in, also walk the list to verify the length of
957 	 * the list matches what we have recorded.
958 	 */
959 	rw_rlock(&tcp_function_lock);
960 
961 	cnt = 0;
962 #ifndef INVARIANTS
963 	if (req->oldptr == NULL) {
964 		cnt = tcp_fb_cnt;
965 		goto skip_loop;
966 	}
967 #endif
968 	TAILQ_FOREACH(f, &t_functions, tf_next) {
969 #ifdef INVARIANTS
970 		cnt++;
971 #endif
972 		if (req->oldptr != NULL) {
973 			bzero(&tfi, sizeof(tfi));
974 			tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
975 			tfi.tfi_id = f->tf_fb->tfb_id;
976 			(void)strlcpy(tfi.tfi_alias, f->tf_name,
977 			    sizeof(tfi.tfi_alias));
978 			(void)strlcpy(tfi.tfi_name,
979 			    f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
980 			error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
981 			/*
982 			 * Don't stop on error, as that is the
983 			 * mechanism we use to accumulate length
984 			 * information if the buffer was too short.
985 			 */
986 		}
987 	}
988 	KASSERT(cnt == tcp_fb_cnt,
989 	    ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
990 #ifndef INVARIANTS
991 skip_loop:
992 #endif
993 	rw_runlock(&tcp_function_lock);
994 	if (req->oldptr == NULL)
995 		error = SYSCTL_OUT(req, NULL,
996 		    (cnt + 1) * sizeof(struct tcp_function_info));
997 
998 	return (error);
999 }
1000 
1001 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
1002 	    CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
1003 	    NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
1004 	    "List TCP function block name-to-ID mappings");
1005 
1006 /*
1007  * tfb_tcp_handoff_ok() function for the default stack.
1008  * Note that we'll basically try to take all comers.
1009  */
1010 static int
tcp_default_handoff_ok(struct tcpcb * tp)1011 tcp_default_handoff_ok(struct tcpcb *tp)
1012 {
1013 
1014 	return (0);
1015 }
1016 
1017 /*
1018  * tfb_tcp_fb_init() function for the default stack.
1019  *
1020  * This handles making sure we have appropriate timers set if you are
1021  * transitioning a socket that has some amount of setup done.
1022  *
1023  * The init() fuction from the default can *never* return non-zero i.e.
1024  * it is required to always succeed since it is the stack of last resort!
1025  */
1026 static int
tcp_default_fb_init(struct tcpcb * tp,void ** ptr)1027 tcp_default_fb_init(struct tcpcb *tp, void **ptr)
1028 {
1029 	struct socket *so = tptosocket(tp);
1030 	int rexmt;
1031 
1032 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1033 	/* We don't use the pointer */
1034 	*ptr = NULL;
1035 
1036 	/* Make sure we get no interesting mbuf queuing behavior */
1037 	/* All mbuf queue/ack compress flags should be off */
1038 	tcp_lro_features_off(tp);
1039 
1040 	/* Cancel the GP measurement in progress */
1041 	tp->t_flags &= ~TF_GPUTINPROG;
1042 	/* Validate the timers are not in usec, if they are convert */
1043 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
1044 	if ((tp->t_state == TCPS_SYN_SENT) ||
1045 	    (tp->t_state == TCPS_SYN_RECEIVED))
1046 		rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift];
1047 	else
1048 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
1049 	if (tp->t_rxtshift == 0)
1050 		tp->t_rxtcur = rexmt;
1051 	else
1052 		TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin,
1053 		    tcp_rexmit_max);
1054 
1055 	/*
1056 	 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
1057 	 * know what to do for unexpected states (which includes TIME_WAIT).
1058 	 */
1059 	if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
1060 		return (0);
1061 
1062 	/*
1063 	 * Make sure some kind of transmission timer is set if there is
1064 	 * outstanding data.
1065 	 */
1066 	if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
1067 	    tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
1068 	    tcp_timer_active(tp, TT_PERSIST))) {
1069 		/*
1070 		 * If the session has established and it looks like it should
1071 		 * be in the persist state, set the persist timer. Otherwise,
1072 		 * set the retransmit timer.
1073 		 */
1074 		if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
1075 		    (int32_t)(tp->snd_nxt - tp->snd_una) <
1076 		    (int32_t)sbavail(&so->so_snd))
1077 			tcp_setpersist(tp);
1078 		else
1079 			tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
1080 	}
1081 
1082 	/* All non-embryonic sessions get a keepalive timer. */
1083 	if (!tcp_timer_active(tp, TT_KEEP))
1084 		tcp_timer_activate(tp, TT_KEEP,
1085 		    TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
1086 		    TP_KEEPINIT(tp));
1087 
1088 	/*
1089 	 * Make sure critical variables are initialized
1090 	 * if transitioning while in Recovery.
1091 	 */
1092 	if IN_FASTRECOVERY(tp->t_flags) {
1093 		if (tp->sackhint.recover_fs == 0)
1094 			tp->sackhint.recover_fs = max(1,
1095 			    tp->snd_nxt - tp->snd_una);
1096 	}
1097 
1098 	return (0);
1099 }
1100 
1101 /*
1102  * tfb_tcp_fb_fini() function for the default stack.
1103  *
1104  * This changes state as necessary (or prudent) to prepare for another stack
1105  * to assume responsibility for the connection.
1106  */
1107 static void
tcp_default_fb_fini(struct tcpcb * tp,int tcb_is_purged)1108 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
1109 {
1110 
1111 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1112 
1113 #ifdef TCP_BLACKBOX
1114 	tcp_log_flowend(tp);
1115 #endif
1116 	tp->t_acktime = 0;
1117 	return;
1118 }
1119 
1120 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
1121 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
1122 
1123 static struct mtx isn_mtx;
1124 
1125 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
1126 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
1127 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
1128 
1129 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash");
1130 
1131 /*
1132  * Take a value and get the next power of 2 that doesn't overflow.
1133  * Used to size the tcp_inpcb hash buckets.
1134  */
1135 static int
maketcp_hashsize(int size)1136 maketcp_hashsize(int size)
1137 {
1138 	int hashsize;
1139 
1140 	/*
1141 	 * auto tune.
1142 	 * get the next power of 2 higher than maxsockets.
1143 	 */
1144 	hashsize = 1 << fls(size);
1145 	/* catch overflow, and just go one power of 2 smaller */
1146 	if (hashsize < size) {
1147 		hashsize = 1 << (fls(size) - 1);
1148 	}
1149 	return (hashsize);
1150 }
1151 
1152 static volatile int next_tcp_stack_id = 1;
1153 
1154 /*
1155  * Register a TCP function block with the name provided in the names
1156  * array.  (Note that this function does NOT automatically register
1157  * blk->tfb_tcp_block_name as a stack name.  Therefore, you should
1158  * explicitly include blk->tfb_tcp_block_name in the list of names if
1159  * you wish to register the stack with that name.)
1160  *
1161  * Either all name registrations will succeed or all will fail.  If
1162  * a name registration fails, the function will update the num_names
1163  * argument to point to the array index of the name that encountered
1164  * the failure.
1165  *
1166  * Returns 0 on success, or an error code on failure.
1167  */
1168 int
register_tcp_functions_as_names(struct tcp_function_block * blk,int wait,const char * names[],int * num_names)1169 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
1170     const char *names[], int *num_names)
1171 {
1172 	struct tcp_function *f[TCP_FUNCTION_NAME_NUM_MAX];
1173 	struct tcp_function_set fs;
1174 	int error, i, num_registered;
1175 
1176 	KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
1177 	KASSERT(*num_names > 0,
1178 	    ("%s: Called with non-positive length of name list", __func__));
1179 	KASSERT(rw_initialized(&tcp_function_lock),
1180 	    ("%s: called too early", __func__));
1181 
1182 	if (*num_names > TCP_FUNCTION_NAME_NUM_MAX) {
1183 		/* Too many names. */
1184 		*num_names = 0;
1185 		return (E2BIG);
1186 	}
1187 	if ((blk->tfb_tcp_output == NULL) ||
1188 	    (blk->tfb_tcp_do_segment == NULL) ||
1189 	    (blk->tfb_tcp_ctloutput == NULL) ||
1190 	    (blk->tfb_tcp_handoff_ok == NULL) ||
1191 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
1192 		/* These functions are required and a name is needed. */
1193 		*num_names = 0;
1194 		return (EINVAL);
1195 	}
1196 
1197 	for (i = 0; i < *num_names; i++) {
1198 		f[i] = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
1199 		if (f[i] == NULL) {
1200 			while (--i >= 0)
1201 				free(f[i], M_TCPFUNCTIONS);
1202 			*num_names = 0;
1203 			return (ENOMEM);
1204 		}
1205 	}
1206 
1207 	num_registered = 0;
1208 	rw_wlock(&tcp_function_lock);
1209 	if (find_tcp_fb_locked(blk, NULL) != NULL) {
1210 		/* A TCP function block can only be registered once. */
1211 		error = EALREADY;
1212 		goto cleanup;
1213 	}
1214 	if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
1215 		error = EINVAL;
1216 		goto cleanup;
1217 	}
1218 	refcount_init(&blk->tfb_refcnt, 0);
1219 	blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
1220 	for (i = 0; i < *num_names; i++) {
1221 		(void)strlcpy(fs.function_set_name, names[i],
1222 		    sizeof(fs.function_set_name));
1223 		if (find_tcp_functions_locked(&fs) != NULL) {
1224 			/* Duplicate name space not allowed */
1225 			error = EALREADY;
1226 			goto cleanup;
1227 		}
1228 		f[i]->tf_fb = blk;
1229 		(void)strlcpy(f[i]->tf_name, names[i], sizeof(f[i]->tf_name));
1230 		TAILQ_INSERT_TAIL(&t_functions, f[i], tf_next);
1231 		tcp_fb_cnt++;
1232 		num_registered++;
1233 	}
1234 	rw_wunlock(&tcp_function_lock);
1235 	return (0);
1236 
1237 cleanup:
1238 	/* Remove the entries just added. */
1239 	for (i = 0; i < *num_names; i++) {
1240 		if (i < num_registered) {
1241 			TAILQ_REMOVE(&t_functions, f[i], tf_next);
1242 			tcp_fb_cnt--;
1243 		}
1244 		f[i]->tf_fb = NULL;
1245 		free(f[i], M_TCPFUNCTIONS);
1246 	}
1247 	rw_wunlock(&tcp_function_lock);
1248 	*num_names = num_registered;
1249 	return (error);
1250 }
1251 
1252 /*
1253  * Register a TCP function block using the name provided in the name
1254  * argument.
1255  *
1256  * Returns 0 on success, or an error code on failure.
1257  */
1258 int
register_tcp_functions_as_name(struct tcp_function_block * blk,const char * name,int wait)1259 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
1260     int wait)
1261 {
1262 	const char *name_list[1];
1263 	int num_names, rv;
1264 
1265 	num_names = 1;
1266 	if (name != NULL)
1267 		name_list[0] = name;
1268 	else
1269 		name_list[0] = blk->tfb_tcp_block_name;
1270 	rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
1271 	return (rv);
1272 }
1273 
1274 /*
1275  * Register a TCP function block using the name defined in
1276  * blk->tfb_tcp_block_name.
1277  *
1278  * Returns 0 on success, or an error code on failure.
1279  */
1280 int
register_tcp_functions(struct tcp_function_block * blk,int wait)1281 register_tcp_functions(struct tcp_function_block *blk, int wait)
1282 {
1283 
1284 	return (register_tcp_functions_as_name(blk, NULL, wait));
1285 }
1286 
1287 /*
1288  * Deregister all names associated with a function block. This
1289  * functionally removes the function block from use within the system.
1290  *
1291  * When called with a true quiesce argument, mark the function block
1292  * as being removed so no more stacks will use it and determine
1293  * whether the removal would succeed.
1294  *
1295  * When called with a false quiesce argument, actually attempt the
1296  * removal.
1297  *
1298  * When called with a force argument, attempt to switch all TCBs to
1299  * use the default stack instead of returning EBUSY.
1300  *
1301  * Returns 0 on success (or if the removal would succeed), or an error
1302  * code on failure.
1303  */
1304 int
deregister_tcp_functions(struct tcp_function_block * blk,bool quiesce,bool force)1305 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
1306     bool force)
1307 {
1308 	struct tcp_function *f;
1309 	VNET_ITERATOR_DECL(vnet_iter);
1310 
1311 	if (blk == &tcp_def_funcblk) {
1312 		/* You can't un-register the default */
1313 		return (EPERM);
1314 	}
1315 	rw_wlock(&tcp_function_lock);
1316 	VNET_LIST_RLOCK_NOSLEEP();
1317 	VNET_FOREACH(vnet_iter) {
1318 		CURVNET_SET(vnet_iter);
1319 		if (blk == V_tcp_func_set_ptr) {
1320 			/* You can't free the current default in some vnet. */
1321 			CURVNET_RESTORE();
1322 			VNET_LIST_RUNLOCK_NOSLEEP();
1323 			rw_wunlock(&tcp_function_lock);
1324 			return (EBUSY);
1325 		}
1326 		CURVNET_RESTORE();
1327 	}
1328 	VNET_LIST_RUNLOCK_NOSLEEP();
1329 	/* Mark the block so no more stacks can use it. */
1330 	blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
1331 	/*
1332 	 * If TCBs are still attached to the stack, attempt to switch them
1333 	 * to the default stack.
1334 	 */
1335 	if (force && blk->tfb_refcnt) {
1336 		struct inpcb *inp;
1337 		struct tcpcb *tp;
1338 		VNET_ITERATOR_DECL(vnet_iter);
1339 
1340 		rw_wunlock(&tcp_function_lock);
1341 
1342 		VNET_LIST_RLOCK();
1343 		VNET_FOREACH(vnet_iter) {
1344 			CURVNET_SET(vnet_iter);
1345 			struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1346 			    INPLOOKUP_WLOCKPCB);
1347 
1348 			while ((inp = inp_next(&inpi)) != NULL) {
1349 				tp = intotcpcb(inp);
1350 				if (tp == NULL || tp->t_fb != blk)
1351 					continue;
1352 				tcp_switch_back_to_default(tp);
1353 			}
1354 			CURVNET_RESTORE();
1355 		}
1356 		VNET_LIST_RUNLOCK();
1357 
1358 		rw_wlock(&tcp_function_lock);
1359 	}
1360 	if (blk->tfb_refcnt) {
1361 		/* TCBs still attached. */
1362 		rw_wunlock(&tcp_function_lock);
1363 		return (EBUSY);
1364 	}
1365 	if (quiesce) {
1366 		/* Skip removal. */
1367 		rw_wunlock(&tcp_function_lock);
1368 		return (0);
1369 	}
1370 	/* Remove any function names that map to this function block. */
1371 	while (find_tcp_fb_locked(blk, &f) != NULL) {
1372 		TAILQ_REMOVE(&t_functions, f, tf_next);
1373 		tcp_fb_cnt--;
1374 		f->tf_fb = NULL;
1375 		free(f, M_TCPFUNCTIONS);
1376 	}
1377 	rw_wunlock(&tcp_function_lock);
1378 	return (0);
1379 }
1380 
1381 static void
tcp_drain(void * ctx __unused,int flags __unused)1382 tcp_drain(void *ctx __unused, int flags __unused)
1383 {
1384 	struct epoch_tracker et;
1385 	VNET_ITERATOR_DECL(vnet_iter);
1386 
1387 	if (!do_tcpdrain)
1388 		return;
1389 
1390 	NET_EPOCH_ENTER(et);
1391 	VNET_LIST_RLOCK_NOSLEEP();
1392 	VNET_FOREACH(vnet_iter) {
1393 		CURVNET_SET(vnet_iter);
1394 		struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1395 		    INPLOOKUP_WLOCKPCB);
1396 		struct inpcb *inpb;
1397 		struct tcpcb *tcpb;
1398 
1399 	/*
1400 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1401 	 * if there is one...
1402 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1403 	 *      reassembly queue should be flushed, but in a situation
1404 	 *	where we're really low on mbufs, this is potentially
1405 	 *	useful.
1406 	 */
1407 		while ((inpb = inp_next(&inpi)) != NULL) {
1408 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1409 				tcp_reass_flush(tcpb);
1410 				tcp_clean_sackreport(tcpb);
1411 #ifdef TCP_BLACKBOX
1412 				tcp_log_drain(tcpb);
1413 #endif
1414 			}
1415 		}
1416 		CURVNET_RESTORE();
1417 	}
1418 	VNET_LIST_RUNLOCK_NOSLEEP();
1419 	NET_EPOCH_EXIT(et);
1420 }
1421 
1422 static void
tcp_vnet_init(void * arg __unused)1423 tcp_vnet_init(void *arg __unused)
1424 {
1425 
1426 #ifdef TCP_HHOOK
1427 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
1428 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1429 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1430 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
1431 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1432 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1433 #endif
1434 #ifdef STATS
1435 	if (tcp_stats_init())
1436 		printf("%s: WARNING: unable to initialise TCP stats\n",
1437 		    __func__);
1438 #endif
1439 	in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize,
1440 	    tcp_tcbhashsize);
1441 
1442 	syncache_init();
1443 	tcp_hc_init();
1444 
1445 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
1446 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
1447 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1448 
1449 	tcp_fastopen_init();
1450 
1451 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
1452 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
1453 
1454 	V_tcp_msl = TCPTV_MSL;
1455 	V_tcp_msl_local = TCPTV_MSL_LOCAL;
1456 	arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
1457 }
1458 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
1459     tcp_vnet_init, NULL);
1460 
1461 static void
tcp_init(void * arg __unused)1462 tcp_init(void *arg __unused)
1463 {
1464 	int hashsize;
1465 
1466 	tcp_reass_global_init();
1467 
1468 	/* XXX virtualize those below? */
1469 	tcp_delacktime = TCPTV_DELACK;
1470 	tcp_keepinit = TCPTV_KEEP_INIT;
1471 	tcp_keepidle = TCPTV_KEEP_IDLE;
1472 	tcp_keepintvl = TCPTV_KEEPINTVL;
1473 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
1474 	tcp_rexmit_initial = TCPTV_RTOBASE;
1475 	tcp_rexmit_min = TCPTV_MIN;
1476 	tcp_rexmit_max = TCPTV_REXMTMAX;
1477 	tcp_persmin = TCPTV_PERSMIN;
1478 	tcp_persmax = TCPTV_PERSMAX;
1479 	tcp_rexmit_slop = TCPTV_CPU_VAR;
1480 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
1481 
1482 	/* Setup the tcp function block list */
1483 	TAILQ_INIT(&t_functions);
1484 	rw_init(&tcp_function_lock, "tcp_func_lock");
1485 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
1486 	sx_init(&tcpoudp_lock, "TCP over UDP configuration");
1487 #ifdef TCP_BLACKBOX
1488 	/* Initialize the TCP logging data. */
1489 	tcp_log_init();
1490 #endif
1491 
1492 	if (tcp_soreceive_stream) {
1493 #ifdef INET
1494 		tcp_protosw.pr_soreceive = soreceive_stream;
1495 #endif
1496 #ifdef INET6
1497 		tcp6_protosw.pr_soreceive = soreceive_stream;
1498 #endif /* INET6 */
1499 	}
1500 
1501 #ifdef INET6
1502 	max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1503 #else /* INET6 */
1504 	max_protohdr_grow(sizeof(struct tcpiphdr));
1505 #endif /* INET6 */
1506 
1507 	ISN_LOCK_INIT();
1508 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
1509 		SHUTDOWN_PRI_DEFAULT);
1510 	EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1511 	EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1512 
1513 	tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
1514 	tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
1515 	tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
1516 	tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
1517 	tcp_extra_mbuf = counter_u64_alloc(M_WAITOK);
1518 	tcp_would_have_but = counter_u64_alloc(M_WAITOK);
1519 	tcp_comp_total = counter_u64_alloc(M_WAITOK);
1520 	tcp_uncomp_total = counter_u64_alloc(M_WAITOK);
1521 	tcp_bad_csums = counter_u64_alloc(M_WAITOK);
1522 	tcp_pacing_failures = counter_u64_alloc(M_WAITOK);
1523 	tcp_dgp_failures = counter_u64_alloc(M_WAITOK);
1524 
1525 	hashsize = tcp_tcbhashsize;
1526 	if (hashsize == 0) {
1527 		/*
1528 		 * Auto tune the hash size based on maxsockets.
1529 		 * A perfect hash would have a 1:1 mapping
1530 		 * (hashsize = maxsockets) however it's been
1531 		 * suggested that O(2) average is better.
1532 		 */
1533 		hashsize = maketcp_hashsize(maxsockets / 4);
1534 		/*
1535 		 * Our historical default is 512,
1536 		 * do not autotune lower than this.
1537 		 */
1538 		if (hashsize < 512)
1539 			hashsize = 512;
1540 		if (bootverbose)
1541 			printf("%s: %s auto tuned to %d\n", __func__,
1542 			    "net.inet.tcp.tcbhashsize", hashsize);
1543 	}
1544 	/*
1545 	 * We require a hashsize to be a power of two.
1546 	 * Previously if it was not a power of two we would just reset it
1547 	 * back to 512, which could be a nasty surprise if you did not notice
1548 	 * the error message.
1549 	 * Instead what we do is clip it to the closest power of two lower
1550 	 * than the specified hash value.
1551 	 */
1552 	if (!powerof2(hashsize)) {
1553 		int oldhashsize = hashsize;
1554 
1555 		hashsize = maketcp_hashsize(hashsize);
1556 		/* prevent absurdly low value */
1557 		if (hashsize < 16)
1558 			hashsize = 16;
1559 		printf("%s: WARNING: TCB hash size not a power of 2, "
1560 		    "clipped from %d to %d.\n", __func__, oldhashsize,
1561 		    hashsize);
1562 	}
1563 	tcp_tcbhashsize = hashsize;
1564 
1565 #ifdef INET
1566 	IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput);
1567 #endif
1568 #ifdef INET6
1569 	IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput);
1570 #endif
1571 }
1572 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL);
1573 
1574 #ifdef VIMAGE
1575 static void
tcp_destroy(void * unused __unused)1576 tcp_destroy(void *unused __unused)
1577 {
1578 #ifdef TCP_HHOOK
1579 	int error;
1580 #endif
1581 
1582 	tcp_hc_destroy();
1583 	syncache_destroy();
1584 	in_pcbinfo_destroy(&V_tcbinfo);
1585 	/* tcp_discardcb() clears the sack_holes up. */
1586 	uma_zdestroy(V_sack_hole_zone);
1587 
1588 	/*
1589 	 * Cannot free the zone until all tcpcbs are released as we attach
1590 	 * the allocations to them.
1591 	 */
1592 	tcp_fastopen_destroy();
1593 
1594 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
1595 	VNET_PCPUSTAT_FREE(tcpstat);
1596 
1597 #ifdef TCP_HHOOK
1598 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
1599 	if (error != 0) {
1600 		printf("%s: WARNING: unable to deregister helper hook "
1601 		    "type=%d, id=%d: error %d returned\n", __func__,
1602 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
1603 	}
1604 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
1605 	if (error != 0) {
1606 		printf("%s: WARNING: unable to deregister helper hook "
1607 		    "type=%d, id=%d: error %d returned\n", __func__,
1608 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
1609 	}
1610 #endif
1611 }
1612 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
1613 #endif
1614 
1615 void
tcp_fini(void * xtp)1616 tcp_fini(void *xtp)
1617 {
1618 
1619 }
1620 
1621 /*
1622  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
1623  * tcp_template used to store this data in mbufs, but we now recopy it out
1624  * of the tcpcb each time to conserve mbufs.
1625  */
1626 void
tcpip_fillheaders(struct inpcb * inp,uint16_t port,void * ip_ptr,void * tcp_ptr)1627 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr)
1628 {
1629 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
1630 
1631 	INP_WLOCK_ASSERT(inp);
1632 
1633 #ifdef INET6
1634 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1635 		struct ip6_hdr *ip6;
1636 
1637 		ip6 = (struct ip6_hdr *)ip_ptr;
1638 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
1639 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
1640 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
1641 			(IPV6_VERSION & IPV6_VERSION_MASK);
1642 		if (port == 0)
1643 			ip6->ip6_nxt = IPPROTO_TCP;
1644 		else
1645 			ip6->ip6_nxt = IPPROTO_UDP;
1646 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1647 		ip6->ip6_src = inp->in6p_laddr;
1648 		ip6->ip6_dst = inp->in6p_faddr;
1649 	}
1650 #endif /* INET6 */
1651 #if defined(INET6) && defined(INET)
1652 	else
1653 #endif
1654 #ifdef INET
1655 	{
1656 		struct ip *ip;
1657 
1658 		ip = (struct ip *)ip_ptr;
1659 		ip->ip_v = IPVERSION;
1660 		ip->ip_hl = 5;
1661 		ip->ip_tos = inp->inp_ip_tos;
1662 		ip->ip_len = 0;
1663 		ip->ip_id = 0;
1664 		ip->ip_off = 0;
1665 		ip->ip_ttl = inp->inp_ip_ttl;
1666 		ip->ip_sum = 0;
1667 		if (port == 0)
1668 			ip->ip_p = IPPROTO_TCP;
1669 		else
1670 			ip->ip_p = IPPROTO_UDP;
1671 		ip->ip_src = inp->inp_laddr;
1672 		ip->ip_dst = inp->inp_faddr;
1673 	}
1674 #endif /* INET */
1675 	th->th_sport = inp->inp_lport;
1676 	th->th_dport = inp->inp_fport;
1677 	th->th_seq = 0;
1678 	th->th_ack = 0;
1679 	th->th_off = 5;
1680 	tcp_set_flags(th, 0);
1681 	th->th_win = 0;
1682 	th->th_urp = 0;
1683 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
1684 }
1685 
1686 /*
1687  * Create template to be used to send tcp packets on a connection.
1688  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
1689  * use for this function is in keepalives, which use tcp_respond.
1690  */
1691 struct tcptemp *
tcpip_maketemplate(struct inpcb * inp)1692 tcpip_maketemplate(struct inpcb *inp)
1693 {
1694 	struct tcptemp *t;
1695 
1696 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
1697 	if (t == NULL)
1698 		return (NULL);
1699 	tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t);
1700 	return (t);
1701 }
1702 
1703 /*
1704  * Send a single message to the TCP at address specified by
1705  * the given TCP/IP header.  If m == NULL, then we make a copy
1706  * of the tcpiphdr at th and send directly to the addressed host.
1707  * This is used to force keep alive messages out using the TCP
1708  * template for a connection.  If flags are given then we send
1709  * a message back to the TCP which originated the segment th,
1710  * and discard the mbuf containing it and any other attached mbufs.
1711  *
1712  * In any case the ack and sequence number of the transmitted
1713  * segment are as specified by the parameters.
1714  *
1715  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
1716  */
1717 
1718 void
tcp_respond(struct tcpcb * tp,void * ipgen,struct tcphdr * th,struct mbuf * m,tcp_seq ack,tcp_seq seq,uint16_t flags)1719 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
1720     tcp_seq ack, tcp_seq seq, uint16_t flags)
1721 {
1722 	struct tcpopt to;
1723 	struct inpcb *inp;
1724 	struct ip *ip;
1725 	struct mbuf *optm;
1726 	struct udphdr *uh = NULL;
1727 	struct tcphdr *nth;
1728 	struct tcp_log_buffer *lgb;
1729 	u_char *optp;
1730 #ifdef INET6
1731 	struct ip6_hdr *ip6;
1732 	int isipv6;
1733 #endif /* INET6 */
1734 	int optlen, tlen, win, ulen;
1735 	int ect = 0;
1736 	bool incl_opts;
1737 	uint16_t port;
1738 	int output_ret;
1739 #ifdef INVARIANTS
1740 	int thflags = tcp_get_flags(th);
1741 #endif
1742 
1743 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
1744 	NET_EPOCH_ASSERT();
1745 
1746 #ifdef INET6
1747 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
1748 	ip6 = ipgen;
1749 #endif /* INET6 */
1750 	ip = ipgen;
1751 
1752 	if (tp != NULL) {
1753 		inp = tptoinpcb(tp);
1754 		INP_LOCK_ASSERT(inp);
1755 	} else
1756 		inp = NULL;
1757 
1758 	if (m != NULL) {
1759 #ifdef INET6
1760 		if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP))
1761 			port = m->m_pkthdr.tcp_tun_port;
1762 		else
1763 #endif
1764 		if (ip && (ip->ip_p == IPPROTO_UDP))
1765 			port = m->m_pkthdr.tcp_tun_port;
1766 		else
1767 			port = 0;
1768 	} else
1769 		port = tp->t_port;
1770 
1771 	incl_opts = false;
1772 	win = 0;
1773 	if (tp != NULL) {
1774 		if (!(flags & TH_RST)) {
1775 			win = sbspace(&inp->inp_socket->so_rcv);
1776 			if (win > TCP_MAXWIN << tp->rcv_scale)
1777 				win = TCP_MAXWIN << tp->rcv_scale;
1778 		}
1779 		if ((tp->t_flags & TF_NOOPT) == 0)
1780 			incl_opts = true;
1781 	}
1782 	if (m == NULL) {
1783 		m = m_gethdr(M_NOWAIT, MT_DATA);
1784 		if (m == NULL)
1785 			return;
1786 		m->m_data += max_linkhdr;
1787 #ifdef INET6
1788 		if (isipv6) {
1789 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
1790 			      sizeof(struct ip6_hdr));
1791 			ip6 = mtod(m, struct ip6_hdr *);
1792 			nth = (struct tcphdr *)(ip6 + 1);
1793 			if (port) {
1794 				/* Insert a UDP header */
1795 				uh = (struct udphdr *)nth;
1796 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1797 				uh->uh_dport = port;
1798 				nth = (struct tcphdr *)(uh + 1);
1799 			}
1800 		} else
1801 #endif /* INET6 */
1802 		{
1803 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1804 			ip = mtod(m, struct ip *);
1805 			nth = (struct tcphdr *)(ip + 1);
1806 			if (port) {
1807 				/* Insert a UDP header */
1808 				uh = (struct udphdr *)nth;
1809 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1810 				uh->uh_dport = port;
1811 				nth = (struct tcphdr *)(uh + 1);
1812 			}
1813 		}
1814 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1815 		flags = TH_ACK;
1816 	} else if ((!M_WRITABLE(m)) || (port != 0)) {
1817 		struct mbuf *n;
1818 
1819 		/* Can't reuse 'm', allocate a new mbuf. */
1820 		n = m_gethdr(M_NOWAIT, MT_DATA);
1821 		if (n == NULL) {
1822 			m_freem(m);
1823 			return;
1824 		}
1825 
1826 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
1827 			m_freem(m);
1828 			m_freem(n);
1829 			return;
1830 		}
1831 
1832 		n->m_data += max_linkhdr;
1833 		/* m_len is set later */
1834 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
1835 #ifdef INET6
1836 		if (isipv6) {
1837 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
1838 			      sizeof(struct ip6_hdr));
1839 			ip6 = mtod(n, struct ip6_hdr *);
1840 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1841 			nth = (struct tcphdr *)(ip6 + 1);
1842 			if (port) {
1843 				/* Insert a UDP header */
1844 				uh = (struct udphdr *)nth;
1845 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1846 				uh->uh_dport = port;
1847 				nth = (struct tcphdr *)(uh + 1);
1848 			}
1849 		} else
1850 #endif /* INET6 */
1851 		{
1852 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
1853 			ip = mtod(n, struct ip *);
1854 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1855 			nth = (struct tcphdr *)(ip + 1);
1856 			if (port) {
1857 				/* Insert a UDP header */
1858 				uh = (struct udphdr *)nth;
1859 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1860 				uh->uh_dport = port;
1861 				nth = (struct tcphdr *)(uh + 1);
1862 			}
1863 		}
1864 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1865 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1866 		th = nth;
1867 		m_freem(m);
1868 		m = n;
1869 	} else {
1870 		/*
1871 		 *  reuse the mbuf.
1872 		 * XXX MRT We inherit the FIB, which is lucky.
1873 		 */
1874 		m_freem(m->m_next);
1875 		m->m_next = NULL;
1876 		m->m_data = (caddr_t)ipgen;
1877 		/* clear any receive flags for proper bpf timestamping */
1878 		m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO);
1879 		/* m_len is set later */
1880 #ifdef INET6
1881 		if (isipv6) {
1882 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1883 			nth = (struct tcphdr *)(ip6 + 1);
1884 		} else
1885 #endif /* INET6 */
1886 		{
1887 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1888 			nth = (struct tcphdr *)(ip + 1);
1889 		}
1890 		if (th != nth) {
1891 			/*
1892 			 * this is usually a case when an extension header
1893 			 * exists between the IPv6 header and the
1894 			 * TCP header.
1895 			 */
1896 			nth->th_sport = th->th_sport;
1897 			nth->th_dport = th->th_dport;
1898 		}
1899 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1900 #undef xchg
1901 	}
1902 	tlen = 0;
1903 #ifdef INET6
1904 	if (isipv6)
1905 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1906 #endif
1907 #if defined(INET) && defined(INET6)
1908 	else
1909 #endif
1910 #ifdef INET
1911 		tlen = sizeof (struct tcpiphdr);
1912 #endif
1913 	if (port)
1914 		tlen += sizeof (struct udphdr);
1915 #ifdef INVARIANTS
1916 	m->m_len = 0;
1917 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1918 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1919 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1920 #endif
1921 	m->m_len = tlen;
1922 	to.to_flags = 0;
1923 	if (incl_opts) {
1924 		ect = tcp_ecn_output_established(tp, &flags, 0, false);
1925 		/* Make sure we have room. */
1926 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1927 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1928 			if (m->m_next) {
1929 				optp = mtod(m->m_next, u_char *);
1930 				optm = m->m_next;
1931 			} else
1932 				incl_opts = false;
1933 		} else {
1934 			optp = (u_char *) (nth + 1);
1935 			optm = m;
1936 		}
1937 	}
1938 	if (incl_opts) {
1939 		/* Timestamps. */
1940 		if (tp->t_flags & TF_RCVD_TSTMP) {
1941 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1942 			to.to_tsecr = tp->ts_recent;
1943 			to.to_flags |= TOF_TS;
1944 		}
1945 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1946 		/* TCP-MD5 (RFC2385). */
1947 		if (tp->t_flags & TF_SIGNATURE)
1948 			to.to_flags |= TOF_SIGNATURE;
1949 #endif
1950 		/* Add the options. */
1951 		tlen += optlen = tcp_addoptions(&to, optp);
1952 
1953 		/* Update m_len in the correct mbuf. */
1954 		optm->m_len += optlen;
1955 	} else
1956 		optlen = 0;
1957 #ifdef INET6
1958 	if (isipv6) {
1959 		if (uh) {
1960 			ulen = tlen - sizeof(struct ip6_hdr);
1961 			uh->uh_ulen = htons(ulen);
1962 		}
1963 		ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN);
1964 		ip6->ip6_vfc = IPV6_VERSION;
1965 		if (port)
1966 			ip6->ip6_nxt = IPPROTO_UDP;
1967 		else
1968 			ip6->ip6_nxt = IPPROTO_TCP;
1969 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1970 	}
1971 #endif
1972 #if defined(INET) && defined(INET6)
1973 	else
1974 #endif
1975 #ifdef INET
1976 	{
1977 		if (uh) {
1978 			ulen = tlen - sizeof(struct ip);
1979 			uh->uh_ulen = htons(ulen);
1980 		}
1981 		ip->ip_len = htons(tlen);
1982 		if (inp != NULL) {
1983 			ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK;
1984 			ip->ip_ttl = inp->inp_ip_ttl;
1985 		} else {
1986 			ip->ip_tos = 0;
1987 			ip->ip_ttl = V_ip_defttl;
1988 		}
1989 		ip->ip_tos |= ect;
1990 		if (port) {
1991 			ip->ip_p = IPPROTO_UDP;
1992 		} else {
1993 			ip->ip_p = IPPROTO_TCP;
1994 		}
1995 		if (V_path_mtu_discovery)
1996 			ip->ip_off |= htons(IP_DF);
1997 	}
1998 #endif
1999 	m->m_pkthdr.len = tlen;
2000 	m->m_pkthdr.rcvif = NULL;
2001 #ifdef MAC
2002 	if (inp != NULL) {
2003 		/*
2004 		 * Packet is associated with a socket, so allow the
2005 		 * label of the response to reflect the socket label.
2006 		 */
2007 		INP_LOCK_ASSERT(inp);
2008 		mac_inpcb_create_mbuf(inp, m);
2009 	} else {
2010 		/*
2011 		 * Packet is not associated with a socket, so possibly
2012 		 * update the label in place.
2013 		 */
2014 		mac_netinet_tcp_reply(m);
2015 	}
2016 #endif
2017 	nth->th_seq = htonl(seq);
2018 	nth->th_ack = htonl(ack);
2019 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
2020 	tcp_set_flags(nth, flags);
2021 	if (tp && (flags & TH_RST)) {
2022 		/* Log the reset */
2023 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2024 	}
2025 	if (tp != NULL)
2026 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
2027 	else
2028 		nth->th_win = htons((u_short)win);
2029 	nth->th_urp = 0;
2030 
2031 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2032 	if (to.to_flags & TOF_SIGNATURE) {
2033 		if (!TCPMD5_ENABLED() ||
2034 		    TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
2035 			m_freem(m);
2036 			return;
2037 		}
2038 	}
2039 #endif
2040 
2041 #ifdef INET6
2042 	if (isipv6) {
2043 		if (port) {
2044 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2045 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2046 			uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
2047 			nth->th_sum = 0;
2048 		} else {
2049 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2050 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2051 			nth->th_sum = in6_cksum_pseudo(ip6,
2052 			    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
2053 		}
2054 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2055 	}
2056 #endif /* INET6 */
2057 #if defined(INET6) && defined(INET)
2058 	else
2059 #endif
2060 #ifdef INET
2061 	{
2062 		if (port) {
2063 			uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2064 			    htons(ulen + IPPROTO_UDP));
2065 			m->m_pkthdr.csum_flags = CSUM_UDP;
2066 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2067 			nth->th_sum = 0;
2068 		} else {
2069 			m->m_pkthdr.csum_flags = CSUM_TCP;
2070 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2071 			nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2072 			    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
2073 		}
2074 	}
2075 #endif /* INET */
2076 	TCP_PROBE3(debug__output, tp, th, m);
2077 	if (flags & TH_RST)
2078 		TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
2079 	lgb = NULL;
2080 	if ((tp != NULL) && tcp_bblogging_on(tp)) {
2081 		if (INP_WLOCKED(inp)) {
2082 			union tcp_log_stackspecific log;
2083 			struct timeval tv;
2084 
2085 			memset(&log, 0, sizeof(log));
2086 			log.u_bbr.inhpts = tcp_in_hpts(tp);
2087 			log.u_bbr.flex8 = 4;
2088 			log.u_bbr.pkts_out = tp->t_maxseg;
2089 			log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2090 			log.u_bbr.delivered = 0;
2091 			lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT,
2092 			    ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv);
2093 		} else {
2094 			/*
2095 			 * We can not log the packet, since we only own the
2096 			 * read lock, but a write lock is needed. The read lock
2097 			 * is not upgraded to a write lock, since only getting
2098 			 * the read lock was done intentionally to improve the
2099 			 * handling of SYN flooding attacks.
2100 			 * This happens only for pure SYN segments received in
2101 			 * the initial CLOSED state, or received in a more
2102 			 * advanced state than listen and the UDP encapsulation
2103 			 * port is unexpected.
2104 			 * The incoming SYN segments do not really belong to
2105 			 * the TCP connection and the handling does not change
2106 			 * the state of the TCP connection. Therefore, the
2107 			 * sending of the RST segments is not logged. Please
2108 			 * note that also the incoming SYN segments are not
2109 			 * logged.
2110 			 *
2111 			 * The following code ensures that the above description
2112 			 * is and stays correct.
2113 			 */
2114 			KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN &&
2115 			    (tp->t_state == TCPS_CLOSED ||
2116 			    (tp->t_state > TCPS_LISTEN && tp->t_port != port)),
2117 			    ("%s: Logging of TCP segment with flags 0x%b and "
2118 			    "UDP encapsulation port %u skipped in state %s",
2119 			    __func__, thflags, PRINT_TH_FLAGS,
2120 			    ntohs(port), tcpstates[tp->t_state]));
2121 		}
2122 	}
2123 
2124 	if (flags & TH_ACK)
2125 		TCPSTAT_INC(tcps_sndacks);
2126 	else if (flags & (TH_SYN|TH_FIN|TH_RST))
2127 		TCPSTAT_INC(tcps_sndctrl);
2128 	TCPSTAT_INC(tcps_sndtotal);
2129 
2130 #ifdef INET6
2131 	if (isipv6) {
2132 		TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
2133 		output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL,
2134 		    NULL, 0, NULL, NULL, inp);
2135 	}
2136 #endif /* INET6 */
2137 #if defined(INET) && defined(INET6)
2138 	else
2139 #endif
2140 #ifdef INET
2141 	{
2142 		TCP_PROBE5(send, NULL, tp, ip, tp, nth);
2143 		output_ret = ip_output(m, NULL, NULL, 0, NULL, inp);
2144 	}
2145 #endif
2146 	if (lgb != NULL)
2147 		lgb->tlb_errno = output_ret;
2148 }
2149 
2150 /*
2151  * Send a challenge ack (no data, no SACK option), but not more than
2152  * V_tcp_ack_war_cnt per V_tcp_ack_war_time_window (per TCP connection).
2153  */
2154 void
tcp_send_challenge_ack(struct tcpcb * tp,struct tcphdr * th,struct mbuf * m)2155 tcp_send_challenge_ack(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m)
2156 {
2157 	sbintime_t now;
2158 	bool send_challenge_ack;
2159 
2160 	/*
2161 	 * The sending of a challenge ACK could be triggered by a blind attacker
2162 	 * to detect an existing TCP connection. To mitigate that, increment
2163 	 * also the global counter which would be incremented if the attacker
2164 	 * would have guessed wrongly.
2165 	 */
2166 	(void)badport_bandlim(BANDLIM_TCP_RST);
2167 	if (V_tcp_ack_war_time_window == 0 || V_tcp_ack_war_cnt == 0) {
2168 		/* ACK war protection is disabled. */
2169 		send_challenge_ack = true;
2170 	} else {
2171 		/* Start new epoch, if the previous one is already over. */
2172 		now = getsbinuptime();
2173 		if (tp->t_challenge_ack_end < now) {
2174 			tp->t_challenge_ack_cnt = 0;
2175 			tp->t_challenge_ack_end = now +
2176 			    V_tcp_ack_war_time_window * SBT_1MS;
2177 		}
2178 		/*
2179 		 * Send a challenge ACK, if less than tcp_ack_war_cnt have been
2180 		 * sent in the current epoch.
2181 		 */
2182 		if (tp->t_challenge_ack_cnt < V_tcp_ack_war_cnt) {
2183 			send_challenge_ack = true;
2184 			tp->t_challenge_ack_cnt++;
2185 		} else {
2186 			send_challenge_ack = false;
2187 		}
2188 	}
2189 	if (send_challenge_ack) {
2190 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2191 		    tp->snd_nxt, TH_ACK);
2192 		tp->last_ack_sent = tp->rcv_nxt;
2193 	}
2194 }
2195 
2196 /*
2197  * Create a new TCP control block, making an empty reassembly queue and hooking
2198  * it to the argument protocol control block.  The `inp' parameter must have
2199  * come from the zone allocator set up by tcpcbstor declaration.
2200  * The caller can provide a pointer to a tcpcb of the listener to inherit the
2201  * TCP function block from the listener.
2202  */
2203 struct tcpcb *
tcp_newtcpcb(struct inpcb * inp,struct tcpcb * listening_tcb)2204 tcp_newtcpcb(struct inpcb *inp, struct tcpcb *listening_tcb)
2205 {
2206 	struct tcpcb *tp = intotcpcb(inp);
2207 #ifdef INET6
2208 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2209 #endif /* INET6 */
2210 
2211 	/*
2212 	 * Historically allocation was done with M_ZERO.  There is a lot of
2213 	 * code that rely on that.  For now take safe approach and zero whole
2214 	 * tcpcb.  This definitely can be optimized.
2215 	 */
2216 	bzero(&tp->t_start_zero, t_zero_size);
2217 
2218 	/* Initialise cc_var struct for this tcpcb. */
2219 	tp->t_ccv.tp = tp;
2220 	rw_rlock(&tcp_function_lock);
2221 	if (listening_tcb != NULL) {
2222 		INP_LOCK_ASSERT(tptoinpcb(listening_tcb));
2223 		KASSERT(listening_tcb->t_fb != NULL,
2224 		    ("tcp_newtcpcb: listening_tcb->t_fb is NULL"));
2225 		if (listening_tcb->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) {
2226 			rw_runlock(&tcp_function_lock);
2227 			return (NULL);
2228 		}
2229 		tp->t_fb = listening_tcb->t_fb;
2230 	} else {
2231 		tp->t_fb = V_tcp_func_set_ptr;
2232 	}
2233 	refcount_acquire(&tp->t_fb->tfb_refcnt);
2234 	KASSERT((tp->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) == 0,
2235 	    ("tcp_newtcpcb: using TFB being removed"));
2236 	rw_runlock(&tcp_function_lock);
2237 	CC_LIST_RLOCK();
2238 	if (listening_tcb != NULL) {
2239 		if (CC_ALGO(listening_tcb)->flags & CC_MODULE_BEING_REMOVED) {
2240 			CC_LIST_RUNLOCK();
2241 			if (tp->t_fb->tfb_tcp_fb_fini)
2242 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2243 			refcount_release(&tp->t_fb->tfb_refcnt);
2244 			return (NULL);
2245 		}
2246 		CC_ALGO(tp) = CC_ALGO(listening_tcb);
2247 	} else
2248 		CC_ALGO(tp) = CC_DEFAULT_ALGO();
2249 	cc_refer(CC_ALGO(tp));
2250 	CC_LIST_RUNLOCK();
2251 	if (CC_ALGO(tp)->cb_init != NULL)
2252 		if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) {
2253 			cc_detach(tp);
2254 			if (tp->t_fb->tfb_tcp_fb_fini)
2255 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2256 			refcount_release(&tp->t_fb->tfb_refcnt);
2257 			return (NULL);
2258 		}
2259 
2260 #ifdef TCP_HHOOK
2261 	if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) {
2262 		if (CC_ALGO(tp)->cb_destroy != NULL)
2263 			CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2264 		CC_DATA(tp) = NULL;
2265 		cc_detach(tp);
2266 		if (tp->t_fb->tfb_tcp_fb_fini)
2267 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2268 		refcount_release(&tp->t_fb->tfb_refcnt);
2269 		return (NULL);
2270 	}
2271 #endif
2272 
2273 	TAILQ_INIT(&tp->t_segq);
2274 	STAILQ_INIT(&tp->t_inqueue);
2275 	tp->t_maxseg =
2276 #ifdef INET6
2277 		isipv6 ? V_tcp_v6mssdflt :
2278 #endif /* INET6 */
2279 		V_tcp_mssdflt;
2280 
2281 	/* All mbuf queue/ack compress flags should be off */
2282 	tcp_lro_features_off(tp);
2283 
2284 	tp->t_hpts_cpu = HPTS_CPU_NONE;
2285 	tp->t_lro_cpu = HPTS_CPU_NONE;
2286 
2287 	callout_init_rw(&tp->t_callout, &inp->inp_lock,
2288 	    CALLOUT_TRYLOCK | CALLOUT_RETURNUNLOCKED);
2289 	for (int i = 0; i < TT_N; i++)
2290 		tp->t_timers[i] = SBT_MAX;
2291 
2292 	switch (V_tcp_do_rfc1323) {
2293 		case 0:
2294 			break;
2295 		default:
2296 		case 1:
2297 			tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
2298 			break;
2299 		case 2:
2300 			tp->t_flags = TF_REQ_SCALE;
2301 			break;
2302 		case 3:
2303 			tp->t_flags = TF_REQ_TSTMP;
2304 			break;
2305 	}
2306 	if (V_tcp_do_sack)
2307 		tp->t_flags |= TF_SACK_PERMIT;
2308 	TAILQ_INIT(&tp->snd_holes);
2309 
2310 	/*
2311 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
2312 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
2313 	 * reasonable initial retransmit time.
2314 	 */
2315 	tp->t_srtt = TCPTV_SRTTBASE;
2316 	tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
2317 	tp->t_rttmin = tcp_rexmit_min;
2318 	tp->t_rxtcur = tcp_rexmit_initial;
2319 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2320 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2321 	tp->t_rcvtime = ticks;
2322 	/* We always start with ticks granularity */
2323 	tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
2324 	/*
2325 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
2326 	 * because the socket may be bound to an IPv6 wildcard address,
2327 	 * which may match an IPv4-mapped IPv6 address.
2328 	 */
2329 	inp->inp_ip_ttl = V_ip_defttl;
2330 #ifdef TCP_BLACKBOX
2331 	/* Initialize the per-TCPCB log data. */
2332 	tcp_log_tcpcbinit(tp);
2333 #endif
2334 	tp->t_pacing_rate = -1;
2335 	if (tp->t_fb->tfb_tcp_fb_init) {
2336 		if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) {
2337 			if (CC_ALGO(tp)->cb_destroy != NULL)
2338 				CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2339 			CC_DATA(tp) = NULL;
2340 			cc_detach(tp);
2341 #ifdef TCP_HHOOK
2342 			khelp_destroy_osd(&tp->t_osd);
2343 #endif
2344 			refcount_release(&tp->t_fb->tfb_refcnt);
2345 			return (NULL);
2346 		}
2347 	}
2348 #ifdef STATS
2349 	if (V_tcp_perconn_stats_enable == 1)
2350 		tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0);
2351 #endif
2352 	if (V_tcp_do_lrd)
2353 		tp->t_flags |= TF_LRD;
2354 
2355 	return (tp);
2356 }
2357 
2358 /*
2359  * Drop a TCP connection, reporting
2360  * the specified error.  If connection is synchronized,
2361  * then send a RST to peer.
2362  */
2363 struct tcpcb *
tcp_drop(struct tcpcb * tp,int errno)2364 tcp_drop(struct tcpcb *tp, int errno)
2365 {
2366 	struct socket *so = tptosocket(tp);
2367 
2368 	NET_EPOCH_ASSERT();
2369 	INP_WLOCK_ASSERT(tptoinpcb(tp));
2370 
2371 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
2372 		tcp_state_change(tp, TCPS_CLOSED);
2373 		/* Don't use tcp_output() here due to possible recursion. */
2374 		(void)tcp_output_nodrop(tp);
2375 		TCPSTAT_INC(tcps_drops);
2376 	} else
2377 		TCPSTAT_INC(tcps_conndrops);
2378 	if (errno == ETIMEDOUT && tp->t_softerror)
2379 		errno = tp->t_softerror;
2380 	so->so_error = errno;
2381 	return (tcp_close(tp));
2382 }
2383 
2384 void
tcp_discardcb(struct tcpcb * tp)2385 tcp_discardcb(struct tcpcb *tp)
2386 {
2387 	struct inpcb *inp = tptoinpcb(tp);
2388 	struct socket *so = tptosocket(tp);
2389 	struct mbuf *m;
2390 #ifdef INET6
2391 	bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2392 #endif
2393 
2394 	INP_WLOCK_ASSERT(inp);
2395 	MPASS(!callout_active(&tp->t_callout));
2396 	MPASS(TAILQ_EMPTY(&tp->snd_holes));
2397 
2398 	/* free the reassembly queue, if any */
2399 	tcp_reass_flush(tp);
2400 
2401 #ifdef TCP_OFFLOAD
2402 	/* Disconnect offload device, if any. */
2403 	if (tp->t_flags & TF_TOE)
2404 		tcp_offload_detach(tp);
2405 #endif
2406 
2407 	/* Allow the CC algorithm to clean up after itself. */
2408 	if (CC_ALGO(tp)->cb_destroy != NULL)
2409 		CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2410 	CC_DATA(tp) = NULL;
2411 	/* Detach from the CC algorithm */
2412 	cc_detach(tp);
2413 
2414 #ifdef TCP_HHOOK
2415 	khelp_destroy_osd(&tp->t_osd);
2416 #endif
2417 #ifdef STATS
2418 	stats_blob_destroy(tp->t_stats);
2419 #endif
2420 
2421 	CC_ALGO(tp) = NULL;
2422 	if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) {
2423 		struct mbuf *prev;
2424 
2425 		STAILQ_INIT(&tp->t_inqueue);
2426 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev)
2427 			m_freem(m);
2428 	}
2429 	TCPSTATES_DEC(tp->t_state);
2430 
2431 	if (tp->t_fb->tfb_tcp_fb_fini)
2432 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2433 	MPASS(!tcp_in_hpts(tp));
2434 #ifdef TCP_BLACKBOX
2435 	tcp_log_tcpcbfini(tp);
2436 #endif
2437 
2438 	/*
2439 	 * If we got enough samples through the srtt filter,
2440 	 * save the rtt and rttvar in the routing entry.
2441 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
2442 	 * 4 samples is enough for the srtt filter to converge
2443 	 * to within enough % of the correct value; fewer samples
2444 	 * and we could save a bogus rtt. The danger is not high
2445 	 * as tcp quickly recovers from everything.
2446 	 * XXX: Works very well but needs some more statistics!
2447 	 *
2448 	 * XXXRRS: Updating must be after the stack fini() since
2449 	 * that may be converting some internal representation of
2450 	 * say srtt etc into the general one used by other stacks.
2451 	 */
2452 	if (tp->t_rttupdated >= 4) {
2453 		struct hc_metrics_lite metrics;
2454 		uint32_t ssthresh;
2455 
2456 		bzero(&metrics, sizeof(metrics));
2457 		/*
2458 		 * Update the ssthresh always when the conditions below
2459 		 * are satisfied. This gives us better new start value
2460 		 * for the congestion avoidance for new connections.
2461 		 * ssthresh is only set if packet loss occurred on a session.
2462 		 */
2463 		ssthresh = tp->snd_ssthresh;
2464 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
2465 			/*
2466 			 * convert the limit from user data bytes to
2467 			 * packets then to packet data bytes.
2468 			 */
2469 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
2470 			if (ssthresh < 2)
2471 				ssthresh = 2;
2472 			ssthresh *= (tp->t_maxseg +
2473 #ifdef INET6
2474 			    (isipv6 ? sizeof (struct ip6_hdr) +
2475 			    sizeof (struct tcphdr) :
2476 #endif
2477 			    sizeof (struct tcpiphdr)
2478 #ifdef INET6
2479 			    )
2480 #endif
2481 			    );
2482 		} else
2483 			ssthresh = 0;
2484 		metrics.hc_ssthresh = ssthresh;
2485 
2486 		metrics.hc_rtt = tp->t_srtt;
2487 		metrics.hc_rttvar = tp->t_rttvar;
2488 		metrics.hc_cwnd = tp->snd_cwnd;
2489 		metrics.hc_sendpipe = 0;
2490 		metrics.hc_recvpipe = 0;
2491 
2492 		tcp_hc_update(&inp->inp_inc, &metrics);
2493 	}
2494 
2495 	refcount_release(&tp->t_fb->tfb_refcnt);
2496 }
2497 
2498 /*
2499  * Attempt to close a TCP control block, marking it as dropped, and freeing
2500  * the socket if we hold the only reference.
2501  */
2502 struct tcpcb *
tcp_close(struct tcpcb * tp)2503 tcp_close(struct tcpcb *tp)
2504 {
2505 	struct inpcb *inp = tptoinpcb(tp);
2506 	struct socket *so = tptosocket(tp);
2507 
2508 	INP_WLOCK_ASSERT(inp);
2509 
2510 #ifdef TCP_OFFLOAD
2511 	if (tp->t_state == TCPS_LISTEN)
2512 		tcp_offload_listen_stop(tp);
2513 #endif
2514 	/*
2515 	 * This releases the TFO pending counter resource for TFO listen
2516 	 * sockets as well as passively-created TFO sockets that transition
2517 	 * from SYN_RECEIVED to CLOSED.
2518 	 */
2519 	if (tp->t_tfo_pending) {
2520 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2521 		tp->t_tfo_pending = NULL;
2522 	}
2523 	tcp_timer_stop(tp);
2524 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
2525 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
2526 	in_pcbdrop(inp);
2527 	TCPSTAT_INC(tcps_closed);
2528 	if (tp->t_state != TCPS_CLOSED)
2529 		tcp_state_change(tp, TCPS_CLOSED);
2530 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
2531 	tcp_free_sackholes(tp);
2532 	soisdisconnected(so);
2533 	if (inp->inp_flags & INP_SOCKREF) {
2534 		inp->inp_flags &= ~INP_SOCKREF;
2535 		INP_WUNLOCK(inp);
2536 		sorele(so);
2537 		return (NULL);
2538 	}
2539 	return (tp);
2540 }
2541 
2542 /*
2543  * Notify a tcp user of an asynchronous error;
2544  * store error as soft error, but wake up user
2545  * (for now, won't do anything until can select for soft error).
2546  *
2547  * Do not wake up user since there currently is no mechanism for
2548  * reporting soft errors (yet - a kqueue filter may be added).
2549  */
2550 static struct inpcb *
tcp_notify(struct inpcb * inp,int error)2551 tcp_notify(struct inpcb *inp, int error)
2552 {
2553 	struct tcpcb *tp;
2554 
2555 	INP_WLOCK_ASSERT(inp);
2556 
2557 	tp = intotcpcb(inp);
2558 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
2559 
2560 	/*
2561 	 * Ignore some errors if we are hooked up.
2562 	 * If connection hasn't completed, has retransmitted several times,
2563 	 * and receives a second error, give up now.  This is better
2564 	 * than waiting a long time to establish a connection that
2565 	 * can never complete.
2566 	 */
2567 	if (tp->t_state == TCPS_ESTABLISHED &&
2568 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
2569 	     error == EHOSTDOWN)) {
2570 		if (inp->inp_route.ro_nh) {
2571 			NH_FREE(inp->inp_route.ro_nh);
2572 			inp->inp_route.ro_nh = (struct nhop_object *)NULL;
2573 		}
2574 		return (inp);
2575 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
2576 	    tp->t_softerror) {
2577 		tp = tcp_drop(tp, error);
2578 		if (tp != NULL)
2579 			return (inp);
2580 		else
2581 			return (NULL);
2582 	} else {
2583 		tp->t_softerror = error;
2584 		return (inp);
2585 	}
2586 #if 0
2587 	wakeup( &so->so_timeo);
2588 	sorwakeup(so);
2589 	sowwakeup(so);
2590 #endif
2591 }
2592 
2593 static int
tcp_pcblist(SYSCTL_HANDLER_ARGS)2594 tcp_pcblist(SYSCTL_HANDLER_ARGS)
2595 {
2596 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2597 	    INPLOOKUP_RLOCKPCB);
2598 	struct xinpgen xig;
2599 	struct inpcb *inp;
2600 	int error;
2601 
2602 	if (req->newptr != NULL)
2603 		return (EPERM);
2604 
2605 	if (req->oldptr == NULL) {
2606 		int n;
2607 
2608 		n = V_tcbinfo.ipi_count +
2609 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2610 		n += imax(n / 8, 10);
2611 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
2612 		return (0);
2613 	}
2614 
2615 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2616 		return (error);
2617 
2618 	bzero(&xig, sizeof(xig));
2619 	xig.xig_len = sizeof xig;
2620 	xig.xig_count = V_tcbinfo.ipi_count +
2621 	    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2622 	xig.xig_gen = V_tcbinfo.ipi_gencnt;
2623 	xig.xig_sogen = so_gencnt;
2624 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2625 	if (error)
2626 		return (error);
2627 
2628 	error = syncache_pcblist(req);
2629 	if (error)
2630 		return (error);
2631 
2632 	while ((inp = inp_next(&inpi)) != NULL) {
2633 		if (inp->inp_gencnt <= xig.xig_gen &&
2634 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
2635 			struct xtcpcb xt;
2636 
2637 			tcp_inptoxtp(inp, &xt);
2638 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2639 			if (error) {
2640 				INP_RUNLOCK(inp);
2641 				break;
2642 			} else
2643 				continue;
2644 		}
2645 	}
2646 
2647 	if (!error) {
2648 		/*
2649 		 * Give the user an updated idea of our state.
2650 		 * If the generation differs from what we told
2651 		 * her before, she knows that something happened
2652 		 * while we were processing this request, and it
2653 		 * might be necessary to retry.
2654 		 */
2655 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
2656 		xig.xig_sogen = so_gencnt;
2657 		xig.xig_count = V_tcbinfo.ipi_count +
2658 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2659 		error = SYSCTL_OUT(req, &xig, sizeof xig);
2660 	}
2661 
2662 	return (error);
2663 }
2664 
2665 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
2666     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2667     NULL, 0, tcp_pcblist, "S,xtcpcb",
2668     "List of active TCP connections");
2669 
2670 #define SND_TAG_STATUS_MAXLEN	128
2671 
2672 #ifdef KERN_TLS
2673 
2674 static struct sx ktlslist_lock;
2675 SX_SYSINIT(ktlslistlock, &ktlslist_lock, "ktlslist");
2676 static uint64_t ktls_glob_gen = 1;
2677 
2678 static int
tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS,bool export_keys)2679 tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS, bool export_keys)
2680 {
2681 	struct xinpgen xig;
2682 	struct inpcb *inp;
2683 	struct socket *so;
2684 	struct ktls_session *ksr, *kss;
2685 	char *buf;
2686 	struct xktls_session *xktls;
2687 	uint64_t ipi_gencnt;
2688 	size_t buflen, len, sz;
2689 	u_int cnt;
2690 	int error;
2691 	bool ek, p;
2692 
2693 	sx_assert(&ktlslist_lock, SA_XLOCKED);
2694 	if (req->newptr != NULL)
2695 		return (EPERM);
2696 
2697 	len = 0;
2698 	cnt = 0;
2699 	ipi_gencnt = V_tcbinfo.ipi_gencnt;
2700 	bzero(&xig, sizeof(xig));
2701 	xig.xig_len = sizeof(xig);
2702 	xig.xig_gen = ktls_glob_gen++;
2703 	xig.xig_sogen = so_gencnt;
2704 
2705 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2706 	    INPLOOKUP_RLOCKPCB);
2707 	while ((inp = inp_next(&inpi)) != NULL) {
2708 		if (inp->inp_gencnt > ipi_gencnt ||
2709 		    cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2710 			continue;
2711 
2712 		so = inp->inp_socket;
2713 		if (so != NULL && so->so_gencnt <= xig.xig_sogen) {
2714 			p = false;
2715 			ek = export_keys && cr_canexport_ktlskeys(
2716 			    req->td, inp);
2717 			ksr = so->so_rcv.sb_tls_info;
2718 			if (ksr != NULL) {
2719 				ksr->gen = xig.xig_gen;
2720 				p = true;
2721 				if (ek) {
2722 					sz = SIZE_T_MAX;
2723 					ktls_session_copy_keys(ksr,
2724 					    NULL, &sz);
2725 					len += sz;
2726 				}
2727 				if (ksr->snd_tag != NULL &&
2728 				    ksr->snd_tag->sw->snd_tag_status_str !=
2729 				    NULL) {
2730 					sz = SND_TAG_STATUS_MAXLEN;
2731 					in_pcbref(inp);
2732 					INP_RUNLOCK(inp);
2733 					error = ksr->snd_tag->sw->
2734 					    snd_tag_status_str(
2735 					    ksr->snd_tag, NULL, &sz);
2736 					if (in_pcbrele_rlock(inp))
2737 						return (EDEADLK);
2738 					if (error == 0)
2739 						len += sz;
2740 				}
2741 			}
2742 			kss = so->so_snd.sb_tls_info;
2743 			if (kss != NULL) {
2744 				kss->gen = xig.xig_gen;
2745 				p = true;
2746 				if (ek) {
2747 					sz = SIZE_T_MAX;
2748 					ktls_session_copy_keys(kss,
2749 					    NULL, &sz);
2750 					len += sz;
2751 				}
2752 				if (kss->snd_tag != NULL &&
2753 				    kss->snd_tag->sw->snd_tag_status_str !=
2754 				    NULL) {
2755 					sz = SND_TAG_STATUS_MAXLEN;
2756 					in_pcbref(inp);
2757 					INP_RUNLOCK(inp);
2758 					error = kss->snd_tag->sw->
2759 					    snd_tag_status_str(
2760 					    kss->snd_tag, NULL, &sz);
2761 					if (in_pcbrele_rlock(inp))
2762 						return (EDEADLK);
2763 					if (error == 0)
2764 						len += sz;
2765 				}
2766 			}
2767 			if (p) {
2768 				len += sizeof(*xktls);
2769 				len = roundup2(len, __alignof(struct
2770 				    xktls_session));
2771 			}
2772 		}
2773 	}
2774 	if (req->oldptr == NULL) {
2775 		len += 2 * sizeof(xig);
2776 		len += 3 * len / 4;
2777 		req->oldidx = len;
2778 		return (0);
2779 	}
2780 
2781 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2782 		return (error);
2783 
2784 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2785 	if (error != 0)
2786 		return (error);
2787 
2788 	buflen = roundup2(sizeof(*xktls) + 2 * TLS_MAX_PARAM_SIZE +
2789 	    2 * SND_TAG_STATUS_MAXLEN, __alignof(struct xktls_session));
2790 	buf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
2791 	struct inpcb_iterator inpi1 = INP_ALL_ITERATOR(&V_tcbinfo,
2792 	    INPLOOKUP_RLOCKPCB);
2793 	while ((inp = inp_next(&inpi1)) != NULL) {
2794 		if (inp->inp_gencnt > ipi_gencnt ||
2795 		    cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2796 			continue;
2797 
2798 		so = inp->inp_socket;
2799 		if (so == NULL)
2800 			continue;
2801 
2802 		p = false;
2803 		ek = export_keys && cr_canexport_ktlskeys(req->td, inp);
2804 		ksr = so->so_rcv.sb_tls_info;
2805 		kss = so->so_snd.sb_tls_info;
2806 		xktls = (struct xktls_session *)buf;
2807 		if (ksr != NULL && ksr->gen == xig.xig_gen) {
2808 			p = true;
2809 			ktls_session_to_xktls_onedir(ksr, ek, &xktls->rcv);
2810 		}
2811 		if (kss != NULL && kss->gen == xig.xig_gen) {
2812 			p = true;
2813 			ktls_session_to_xktls_onedir(kss, ek, &xktls->snd);
2814 		}
2815 		if (!p)
2816 			continue;
2817 
2818 		xktls->inp_gencnt = inp->inp_gencnt;
2819 		xktls->so_pcb = (kvaddr_t)inp;
2820 		memcpy(&xktls->coninf, &inp->inp_inc, sizeof(xktls->coninf));
2821 		len = sizeof(*xktls);
2822 		if (ksr != NULL && ksr->gen == xig.xig_gen) {
2823 			if (ek) {
2824 				sz = buflen - len;
2825 				ktls_session_copy_keys(ksr, buf + len, &sz);
2826 				len += sz;
2827 			} else {
2828 				xktls->rcv.cipher_key_len = 0;
2829 				xktls->rcv.auth_key_len = 0;
2830 			}
2831 			if (ksr->snd_tag != NULL &&
2832 			    ksr->snd_tag->sw->snd_tag_status_str != NULL) {
2833 				sz = SND_TAG_STATUS_MAXLEN;
2834 				in_pcbref(inp);
2835 				INP_RUNLOCK(inp);
2836 				error = ksr->snd_tag->sw->snd_tag_status_str(
2837 				    ksr->snd_tag, buf + len, &sz);
2838 				if (in_pcbrele_rlock(inp))
2839 					return (EDEADLK);
2840 				if (error == 0) {
2841 					xktls->rcv.drv_st_len = sz;
2842 					len += sz;
2843 				}
2844 			}
2845 		}
2846 		if (kss != NULL && kss->gen == xig.xig_gen) {
2847 			if (ek) {
2848 				sz = buflen - len;
2849 				ktls_session_copy_keys(kss, buf + len, &sz);
2850 				len += sz;
2851 			} else {
2852 				xktls->snd.cipher_key_len = 0;
2853 				xktls->snd.auth_key_len = 0;
2854 			}
2855 			if (kss->snd_tag != NULL &&
2856 			    kss->snd_tag->sw->snd_tag_status_str != NULL) {
2857 				sz = SND_TAG_STATUS_MAXLEN;
2858 				in_pcbref(inp);
2859 				INP_RUNLOCK(inp);
2860 				error = kss->snd_tag->sw->snd_tag_status_str(
2861 				    kss->snd_tag, buf + len, &sz);
2862 				if (in_pcbrele_rlock(inp))
2863 					return (EDEADLK);
2864 				if (error == 0) {
2865 					xktls->snd.drv_st_len = sz;
2866 					len += sz;
2867 				}
2868 			}
2869 		}
2870 		len = roundup2(len, __alignof(*xktls));
2871 		xktls->tsz = len;
2872 		xktls->fsz = sizeof(*xktls);
2873 
2874 		error = SYSCTL_OUT(req, xktls, len);
2875 		if (error != 0) {
2876 			INP_RUNLOCK(inp);
2877 			break;
2878 		}
2879 		cnt++;
2880 	}
2881 
2882 	if (error == 0) {
2883 		xig.xig_sogen = so_gencnt;
2884 		xig.xig_count = cnt;
2885 		error = SYSCTL_OUT(req, &xig, sizeof(xig));
2886 	}
2887 
2888 	zfree(buf, M_TEMP);
2889 	return (error);
2890 }
2891 
2892 static int
tcp_ktlslist1(SYSCTL_HANDLER_ARGS,bool export_keys)2893 tcp_ktlslist1(SYSCTL_HANDLER_ARGS, bool export_keys)
2894 {
2895 	int repeats, error;
2896 
2897 	for (repeats = 0; repeats < 100; repeats++) {
2898 		if (sx_xlock_sig(&ktlslist_lock))
2899 			return (EINTR);
2900 		error = tcp_ktlslist_locked(oidp, arg1, arg2, req,
2901 		    export_keys);
2902 		sx_xunlock(&ktlslist_lock);
2903 		if (error != EDEADLK)
2904 			break;
2905 		if (sig_intr() != 0) {
2906 			error = EINTR;
2907 			break;
2908 		}
2909 		req->oldidx = 0;
2910 	}
2911 	return (error);
2912 }
2913 
2914 static int
tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)2915 tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)
2916 {
2917 	return (tcp_ktlslist1(oidp, arg1, arg2, req, false));
2918 }
2919 
2920 static int
tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)2921 tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)
2922 {
2923 	return (tcp_ktlslist1(oidp, arg1, arg2, req, true));
2924 }
2925 
2926 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST, ktlslist,
2927     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2928     NULL, 0, tcp_ktlslist_nokeys, "S,xktls_session",
2929     "List of active kTLS sessions for TCP connections");
2930 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST_WKEYS, ktlslist_wkeys,
2931     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2932     NULL, 0, tcp_ktlslist_wkeys, "S,xktls_session",
2933     "List of active kTLS sessions for TCP connections with keys");
2934 #endif /* KERN_TLS */
2935 
2936 #ifdef INET
2937 static int
tcp_getcred(SYSCTL_HANDLER_ARGS)2938 tcp_getcred(SYSCTL_HANDLER_ARGS)
2939 {
2940 	struct xucred xuc;
2941 	struct sockaddr_in addrs[2];
2942 	struct epoch_tracker et;
2943 	struct inpcb *inp;
2944 	int error;
2945 
2946 	if (req->newptr == NULL)
2947 		return (EINVAL);
2948 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2949 	if (error)
2950 		return (error);
2951 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2952 	if (error)
2953 		return (error);
2954 	NET_EPOCH_ENTER(et);
2955 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
2956 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
2957 	NET_EPOCH_EXIT(et);
2958 	if (inp != NULL) {
2959 		if (error == 0)
2960 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2961 		if (error == 0)
2962 			cru2x(inp->inp_cred, &xuc);
2963 		INP_RUNLOCK(inp);
2964 	} else
2965 		error = ENOENT;
2966 	if (error == 0)
2967 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2968 	return (error);
2969 }
2970 
2971 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
2972     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
2973     0, 0, tcp_getcred, "S,xucred",
2974     "Get the xucred of a TCP connection");
2975 #endif /* INET */
2976 
2977 #ifdef INET6
2978 static int
tcp6_getcred(SYSCTL_HANDLER_ARGS)2979 tcp6_getcred(SYSCTL_HANDLER_ARGS)
2980 {
2981 	struct epoch_tracker et;
2982 	struct xucred xuc;
2983 	struct sockaddr_in6 addrs[2];
2984 	struct inpcb *inp;
2985 	int error;
2986 #ifdef INET
2987 	int mapped = 0;
2988 #endif
2989 
2990 	if (req->newptr == NULL)
2991 		return (EINVAL);
2992 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2993 	if (error)
2994 		return (error);
2995 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2996 	if (error)
2997 		return (error);
2998 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
2999 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
3000 		return (error);
3001 	}
3002 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
3003 #ifdef INET
3004 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
3005 			mapped = 1;
3006 		else
3007 #endif
3008 			return (EINVAL);
3009 	}
3010 
3011 	NET_EPOCH_ENTER(et);
3012 #ifdef INET
3013 	if (mapped == 1)
3014 		inp = in_pcblookup(&V_tcbinfo,
3015 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
3016 			addrs[1].sin6_port,
3017 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
3018 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
3019 	else
3020 #endif
3021 		inp = in6_pcblookup(&V_tcbinfo,
3022 			&addrs[1].sin6_addr, addrs[1].sin6_port,
3023 			&addrs[0].sin6_addr, addrs[0].sin6_port,
3024 			INPLOOKUP_RLOCKPCB, NULL);
3025 	NET_EPOCH_EXIT(et);
3026 	if (inp != NULL) {
3027 		if (error == 0)
3028 			error = cr_canseeinpcb(req->td->td_ucred, inp);
3029 		if (error == 0)
3030 			cru2x(inp->inp_cred, &xuc);
3031 		INP_RUNLOCK(inp);
3032 	} else
3033 		error = ENOENT;
3034 	if (error == 0)
3035 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
3036 	return (error);
3037 }
3038 
3039 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
3040     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
3041     0, 0, tcp6_getcred, "S,xucred",
3042     "Get the xucred of a TCP6 connection");
3043 #endif /* INET6 */
3044 
3045 #ifdef INET
3046 /* Path MTU to try next when a fragmentation-needed message is received. */
3047 static inline int
tcp_next_pmtu(const struct icmp * icp,const struct ip * ip)3048 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip)
3049 {
3050 	int mtu = ntohs(icp->icmp_nextmtu);
3051 
3052 	/* If no alternative MTU was proposed, try the next smaller one. */
3053 	if (!mtu)
3054 		mtu = ip_next_mtu(ntohs(ip->ip_len), 1);
3055 	if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr))
3056 		mtu = V_tcp_minmss + sizeof(struct tcpiphdr);
3057 
3058 	return (mtu);
3059 }
3060 
3061 static void
tcp_ctlinput_with_port(struct icmp * icp,uint16_t port)3062 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port)
3063 {
3064 	struct ip *ip;
3065 	struct tcphdr *th;
3066 	struct inpcb *inp;
3067 	struct tcpcb *tp;
3068 	struct inpcb *(*notify)(struct inpcb *, int);
3069 	struct in_conninfo inc;
3070 	tcp_seq icmp_tcp_seq;
3071 	int errno, mtu;
3072 
3073 	errno = icmp_errmap(icp);
3074 	switch (errno) {
3075 	case 0:
3076 		return;
3077 	case EMSGSIZE:
3078 		notify = tcp_mtudisc_notify;
3079 		break;
3080 	case ECONNREFUSED:
3081 		if (V_icmp_may_rst)
3082 			notify = tcp_drop_syn_sent;
3083 		else
3084 			notify = tcp_notify;
3085 		break;
3086 	case EHOSTUNREACH:
3087 		if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED)
3088 			notify = tcp_drop_syn_sent;
3089 		else
3090 			notify = tcp_notify;
3091 		break;
3092 	default:
3093 		notify = tcp_notify;
3094 	}
3095 
3096 	ip = &icp->icmp_ip;
3097 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3098 	icmp_tcp_seq = th->th_seq;
3099 	inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src,
3100 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
3101 	if (inp != NULL)  {
3102 		tp = intotcpcb(inp);
3103 #ifdef TCP_OFFLOAD
3104 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3105 			/*
3106 			 * MTU discovery for offloaded connections.  Let
3107 			 * the TOE driver verify seq# and process it.
3108 			 */
3109 			mtu = tcp_next_pmtu(icp, ip);
3110 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3111 			goto out;
3112 		}
3113 #endif
3114 		if (tp->t_port != port)
3115 			goto out;
3116 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3117 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3118 			if (errno == EMSGSIZE) {
3119 				/*
3120 				 * MTU discovery: we got a needfrag and
3121 				 * will potentially try a lower MTU.
3122 				 */
3123 				mtu = tcp_next_pmtu(icp, ip);
3124 
3125 				/*
3126 				 * Only process the offered MTU if it
3127 				 * is smaller than the current one.
3128 				 */
3129 				if (mtu < tp->t_maxseg +
3130 				    sizeof(struct tcpiphdr)) {
3131 					bzero(&inc, sizeof(inc));
3132 					inc.inc_faddr = ip->ip_dst;
3133 					inc.inc_fibnum =
3134 					    inp->inp_inc.inc_fibnum;
3135 					tcp_hc_updatemtu(&inc, mtu);
3136 					inp = tcp_mtudisc(inp, mtu);
3137 				}
3138 			} else
3139 				inp = (*notify)(inp, errno);
3140 		}
3141 	} else {
3142 		bzero(&inc, sizeof(inc));
3143 		inc.inc_fport = th->th_dport;
3144 		inc.inc_lport = th->th_sport;
3145 		inc.inc_faddr = ip->ip_dst;
3146 		inc.inc_laddr = ip->ip_src;
3147 		syncache_unreach(&inc, icmp_tcp_seq, port);
3148 	}
3149 out:
3150 	if (inp != NULL)
3151 		INP_WUNLOCK(inp);
3152 }
3153 
3154 static void
tcp_ctlinput(struct icmp * icmp)3155 tcp_ctlinput(struct icmp *icmp)
3156 {
3157 	tcp_ctlinput_with_port(icmp, htons(0));
3158 }
3159 
3160 static void
tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)3161 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)
3162 {
3163 	/* Its a tunneled TCP over UDP icmp */
3164 	struct icmp *icmp = param.icmp;
3165 	struct ip *outer_ip, *inner_ip;
3166 	struct udphdr *udp;
3167 	struct tcphdr *th, ttemp;
3168 	int i_hlen, o_len;
3169 	uint16_t port;
3170 
3171 	outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip));
3172 	inner_ip = &icmp->icmp_ip;
3173 	i_hlen = inner_ip->ip_hl << 2;
3174 	o_len = ntohs(outer_ip->ip_len);
3175 	if (o_len <
3176 	    (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) {
3177 		/* Not enough data present */
3178 		return;
3179 	}
3180 	/* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */
3181 	udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen);
3182 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3183 		return;
3184 	}
3185 	port = udp->uh_dport;
3186 	th = (struct tcphdr *)(udp + 1);
3187 	memcpy(&ttemp, th, sizeof(struct tcphdr));
3188 	memcpy(udp, &ttemp, sizeof(struct tcphdr));
3189 	/* Now adjust down the size of the outer IP header */
3190 	o_len -= sizeof(struct udphdr);
3191 	outer_ip->ip_len = htons(o_len);
3192 	/* Now call in to the normal handling code */
3193 	tcp_ctlinput_with_port(icmp, port);
3194 }
3195 #endif /* INET */
3196 
3197 #ifdef INET6
3198 static inline int
tcp6_next_pmtu(const struct icmp6_hdr * icmp6)3199 tcp6_next_pmtu(const struct icmp6_hdr *icmp6)
3200 {
3201 	int mtu = ntohl(icmp6->icmp6_mtu);
3202 
3203 	/*
3204 	 * If no alternative MTU was proposed, or the proposed MTU was too
3205 	 * small, set to the min.
3206 	 */
3207 	if (mtu < IPV6_MMTU)
3208 		mtu = IPV6_MMTU;
3209 	return (mtu);
3210 }
3211 
3212 static void
tcp6_ctlinput_with_port(struct ip6ctlparam * ip6cp,uint16_t port)3213 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port)
3214 {
3215 	struct in6_addr *dst;
3216 	struct inpcb *(*notify)(struct inpcb *, int);
3217 	struct ip6_hdr *ip6;
3218 	struct mbuf *m;
3219 	struct inpcb *inp;
3220 	struct tcpcb *tp;
3221 	struct icmp6_hdr *icmp6;
3222 	struct in_conninfo inc;
3223 	struct tcp_ports {
3224 		uint16_t th_sport;
3225 		uint16_t th_dport;
3226 	} t_ports;
3227 	tcp_seq icmp_tcp_seq;
3228 	unsigned int mtu;
3229 	unsigned int off;
3230 	int errno;
3231 
3232 	icmp6 = ip6cp->ip6c_icmp6;
3233 	m = ip6cp->ip6c_m;
3234 	ip6 = ip6cp->ip6c_ip6;
3235 	off = ip6cp->ip6c_off;
3236 	dst = &ip6cp->ip6c_finaldst->sin6_addr;
3237 
3238 	errno = icmp6_errmap(icmp6);
3239 	switch (errno) {
3240 	case 0:
3241 		return;
3242 	case EMSGSIZE:
3243 		notify = tcp_mtudisc_notify;
3244 		break;
3245 	case ECONNREFUSED:
3246 		if (V_icmp_may_rst)
3247 			notify = tcp_drop_syn_sent;
3248 		else
3249 			notify = tcp_notify;
3250 		break;
3251 	case EHOSTUNREACH:
3252 		/*
3253 		 * There are only four ICMPs that may reset connection:
3254 		 * - administratively prohibited
3255 		 * - port unreachable
3256 		 * - time exceeded in transit
3257 		 * - unknown next header
3258 		 */
3259 		if (V_icmp_may_rst &&
3260 		    ((icmp6->icmp6_type == ICMP6_DST_UNREACH &&
3261 		     (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN ||
3262 		      icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) ||
3263 		    (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED &&
3264 		      icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) ||
3265 		    (icmp6->icmp6_type == ICMP6_PARAM_PROB &&
3266 		      icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER)))
3267 			notify = tcp_drop_syn_sent;
3268 		else
3269 			notify = tcp_notify;
3270 		break;
3271 	default:
3272 		notify = tcp_notify;
3273 	}
3274 
3275 	/* Check if we can safely get the ports from the tcp hdr */
3276 	if (m == NULL ||
3277 	    (m->m_pkthdr.len <
3278 		(int32_t) (off + sizeof(struct tcp_ports)))) {
3279 		return;
3280 	}
3281 	bzero(&t_ports, sizeof(struct tcp_ports));
3282 	m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
3283 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
3284 	    &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
3285 	off += sizeof(struct tcp_ports);
3286 	if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
3287 		goto out;
3288 	}
3289 	m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
3290 	if (inp != NULL)  {
3291 		tp = intotcpcb(inp);
3292 #ifdef TCP_OFFLOAD
3293 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3294 			/* MTU discovery for offloaded connections. */
3295 			mtu = tcp6_next_pmtu(icmp6);
3296 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3297 			goto out;
3298 		}
3299 #endif
3300 		if (tp->t_port != port)
3301 			goto out;
3302 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3303 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3304 			if (errno == EMSGSIZE) {
3305 				/*
3306 				 * MTU discovery:
3307 				 * If we got a needfrag set the MTU
3308 				 * in the route to the suggested new
3309 				 * value (if given) and then notify.
3310 				 */
3311 				mtu = tcp6_next_pmtu(icmp6);
3312 
3313 				bzero(&inc, sizeof(inc));
3314 				inc.inc_fibnum = M_GETFIB(m);
3315 				inc.inc_flags |= INC_ISIPV6;
3316 				inc.inc6_faddr = *dst;
3317 				if (in6_setscope(&inc.inc6_faddr,
3318 					m->m_pkthdr.rcvif, NULL))
3319 					goto out;
3320 				/*
3321 				 * Only process the offered MTU if it
3322 				 * is smaller than the current one.
3323 				 */
3324 				if (mtu < tp->t_maxseg +
3325 				    sizeof (struct tcphdr) +
3326 				    sizeof (struct ip6_hdr)) {
3327 					tcp_hc_updatemtu(&inc, mtu);
3328 					tcp_mtudisc(inp, mtu);
3329 					ICMP6STAT_INC(icp6s_pmtuchg);
3330 				}
3331 			} else
3332 				inp = (*notify)(inp, errno);
3333 		}
3334 	} else {
3335 		bzero(&inc, sizeof(inc));
3336 		inc.inc_fibnum = M_GETFIB(m);
3337 		inc.inc_flags |= INC_ISIPV6;
3338 		inc.inc_fport = t_ports.th_dport;
3339 		inc.inc_lport = t_ports.th_sport;
3340 		inc.inc6_faddr = *dst;
3341 		inc.inc6_laddr = ip6->ip6_src;
3342 		syncache_unreach(&inc, icmp_tcp_seq, port);
3343 	}
3344 out:
3345 	if (inp != NULL)
3346 		INP_WUNLOCK(inp);
3347 }
3348 
3349 static void
tcp6_ctlinput(struct ip6ctlparam * ctl)3350 tcp6_ctlinput(struct ip6ctlparam *ctl)
3351 {
3352 	tcp6_ctlinput_with_port(ctl, htons(0));
3353 }
3354 
3355 static void
tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)3356 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)
3357 {
3358 	struct ip6ctlparam *ip6cp = param.ip6cp;
3359 	struct mbuf *m;
3360 	struct udphdr *udp;
3361 	uint16_t port;
3362 
3363 	m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL);
3364 	if (m == NULL) {
3365 		return;
3366 	}
3367 	udp = mtod(m, struct udphdr *);
3368 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3369 		return;
3370 	}
3371 	port = udp->uh_dport;
3372 	m_adj(m, sizeof(struct udphdr));
3373 	if ((m->m_flags & M_PKTHDR) == 0) {
3374 		ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr);
3375 	}
3376 	/* Now call in to the normal handling code */
3377 	tcp6_ctlinput_with_port(ip6cp, port);
3378 }
3379 
3380 #endif /* INET6 */
3381 
3382 static uint32_t
tcp_keyed_hash(struct in_conninfo * inc,u_char * key,u_int len)3383 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
3384 {
3385 	SIPHASH_CTX ctx;
3386 	uint32_t hash[2];
3387 
3388 	KASSERT(len >= SIPHASH_KEY_LENGTH,
3389 	    ("%s: keylen %u too short ", __func__, len));
3390 	SipHash24_Init(&ctx);
3391 	SipHash_SetKey(&ctx, (uint8_t *)key);
3392 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
3393 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
3394 	switch (inc->inc_flags & INC_ISIPV6) {
3395 #ifdef INET
3396 	case 0:
3397 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
3398 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
3399 		break;
3400 #endif
3401 #ifdef INET6
3402 	case INC_ISIPV6:
3403 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
3404 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
3405 		break;
3406 #endif
3407 	}
3408 	SipHash_Final((uint8_t *)hash, &ctx);
3409 
3410 	return (hash[0] ^ hash[1]);
3411 }
3412 
3413 uint32_t
tcp_new_ts_offset(struct in_conninfo * inc)3414 tcp_new_ts_offset(struct in_conninfo *inc)
3415 {
3416 	struct in_conninfo inc_store, *local_inc;
3417 
3418 	if (!V_tcp_ts_offset_per_conn) {
3419 		memcpy(&inc_store, inc, sizeof(struct in_conninfo));
3420 		inc_store.inc_lport = 0;
3421 		inc_store.inc_fport = 0;
3422 		local_inc = &inc_store;
3423 	} else {
3424 		local_inc = inc;
3425 	}
3426 	return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
3427 	    sizeof(V_ts_offset_secret)));
3428 }
3429 
3430 /*
3431  * Following is where TCP initial sequence number generation occurs.
3432  *
3433  * There are two places where we must use initial sequence numbers:
3434  * 1.  In SYN-ACK packets.
3435  * 2.  In SYN packets.
3436  *
3437  * All ISNs for SYN-ACK packets are generated by the syncache.  See
3438  * tcp_syncache.c for details.
3439  *
3440  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
3441  * depends on this property.  In addition, these ISNs should be
3442  * unguessable so as to prevent connection hijacking.  To satisfy
3443  * the requirements of this situation, the algorithm outlined in
3444  * RFC 1948 is used, with only small modifications.
3445  *
3446  * Implementation details:
3447  *
3448  * Time is based off the system timer, and is corrected so that it
3449  * increases by one megabyte per second.  This allows for proper
3450  * recycling on high speed LANs while still leaving over an hour
3451  * before rollover.
3452  *
3453  * As reading the *exact* system time is too expensive to be done
3454  * whenever setting up a TCP connection, we increment the time
3455  * offset in two ways.  First, a small random positive increment
3456  * is added to isn_offset for each connection that is set up.
3457  * Second, the function tcp_isn_tick fires once per clock tick
3458  * and increments isn_offset as necessary so that sequence numbers
3459  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
3460  * random positive increments serve only to ensure that the same
3461  * exact sequence number is never sent out twice (as could otherwise
3462  * happen when a port is recycled in less than the system tick
3463  * interval.)
3464  *
3465  * net.inet.tcp.isn_reseed_interval controls the number of seconds
3466  * between seeding of isn_secret.  This is normally set to zero,
3467  * as reseeding should not be necessary.
3468  *
3469  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
3470  * isn_offset_old, and isn_ctx is performed using the ISN lock.  In
3471  * general, this means holding an exclusive (write) lock.
3472  */
3473 
3474 #define ISN_BYTES_PER_SECOND 1048576
3475 #define ISN_STATIC_INCREMENT 4096
3476 #define ISN_RANDOM_INCREMENT (4096 - 1)
3477 #define ISN_SECRET_LENGTH    SIPHASH_KEY_LENGTH
3478 
3479 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
3480 VNET_DEFINE_STATIC(int, isn_last);
3481 VNET_DEFINE_STATIC(int, isn_last_reseed);
3482 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
3483 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
3484 
3485 #define	V_isn_secret			VNET(isn_secret)
3486 #define	V_isn_last			VNET(isn_last)
3487 #define	V_isn_last_reseed		VNET(isn_last_reseed)
3488 #define	V_isn_offset			VNET(isn_offset)
3489 #define	V_isn_offset_old		VNET(isn_offset_old)
3490 
3491 tcp_seq
tcp_new_isn(struct in_conninfo * inc)3492 tcp_new_isn(struct in_conninfo *inc)
3493 {
3494 	tcp_seq new_isn;
3495 	u_int32_t projected_offset;
3496 
3497 	ISN_LOCK();
3498 	/* Seed if this is the first use, reseed if requested. */
3499 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
3500 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
3501 		< (u_int)ticks))) {
3502 		arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
3503 		V_isn_last_reseed = ticks;
3504 	}
3505 
3506 	/* Compute the hash and return the ISN. */
3507 	new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
3508 	    sizeof(V_isn_secret));
3509 	V_isn_offset += ISN_STATIC_INCREMENT +
3510 		(arc4random() & ISN_RANDOM_INCREMENT);
3511 	if (ticks != V_isn_last) {
3512 		projected_offset = V_isn_offset_old +
3513 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
3514 		if (SEQ_GT(projected_offset, V_isn_offset))
3515 			V_isn_offset = projected_offset;
3516 		V_isn_offset_old = V_isn_offset;
3517 		V_isn_last = ticks;
3518 	}
3519 	new_isn += V_isn_offset;
3520 	ISN_UNLOCK();
3521 	return (new_isn);
3522 }
3523 
3524 /*
3525  * When a specific ICMP unreachable message is received and the
3526  * connection state is SYN-SENT, drop the connection.  This behavior
3527  * is controlled by the icmp_may_rst sysctl.
3528  */
3529 static struct inpcb *
tcp_drop_syn_sent(struct inpcb * inp,int errno)3530 tcp_drop_syn_sent(struct inpcb *inp, int errno)
3531 {
3532 	struct tcpcb *tp;
3533 
3534 	NET_EPOCH_ASSERT();
3535 	INP_WLOCK_ASSERT(inp);
3536 
3537 	tp = intotcpcb(inp);
3538 	if (tp->t_state != TCPS_SYN_SENT)
3539 		return (inp);
3540 
3541 	if (tp->t_flags & TF_FASTOPEN)
3542 		tcp_fastopen_disable_path(tp);
3543 
3544 	tp = tcp_drop(tp, errno);
3545 	if (tp != NULL)
3546 		return (inp);
3547 	else
3548 		return (NULL);
3549 }
3550 
3551 /*
3552  * When `need fragmentation' ICMP is received, update our idea of the MSS
3553  * based on the new value. Also nudge TCP to send something, since we
3554  * know the packet we just sent was dropped.
3555  * This duplicates some code in the tcp_mss() function in tcp_input.c.
3556  */
3557 static struct inpcb *
tcp_mtudisc_notify(struct inpcb * inp,int error)3558 tcp_mtudisc_notify(struct inpcb *inp, int error)
3559 {
3560 
3561 	return (tcp_mtudisc(inp, -1));
3562 }
3563 
3564 static struct inpcb *
tcp_mtudisc(struct inpcb * inp,int mtuoffer)3565 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
3566 {
3567 	struct tcpcb *tp;
3568 	struct socket *so;
3569 
3570 	INP_WLOCK_ASSERT(inp);
3571 
3572 	tp = intotcpcb(inp);
3573 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
3574 
3575 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
3576 
3577 	so = inp->inp_socket;
3578 	SOCK_SENDBUF_LOCK(so);
3579 	/* If the mss is larger than the socket buffer, decrease the mss. */
3580 	if (so->so_snd.sb_hiwat < tp->t_maxseg) {
3581 		tp->t_maxseg = so->so_snd.sb_hiwat;
3582 		if (tp->t_maxseg < V_tcp_mssdflt) {
3583 			/*
3584 			 * The MSS is so small we should not process incoming
3585 			 * SACK's since we are subject to attack in such a
3586 			 * case.
3587 			 */
3588 			tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3589 		} else {
3590 			tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3591 		}
3592 	}
3593 	SOCK_SENDBUF_UNLOCK(so);
3594 
3595 	TCPSTAT_INC(tcps_mturesent);
3596 	tp->t_rtttime = 0;
3597 	tp->snd_nxt = tp->snd_una;
3598 	tcp_free_sackholes(tp);
3599 	tp->snd_recover = tp->snd_max;
3600 	if (tp->t_flags & TF_SACK_PERMIT)
3601 		EXIT_FASTRECOVERY(tp->t_flags);
3602 	if (tp->t_fb->tfb_tcp_mtu_chg != NULL) {
3603 		/*
3604 		 * Conceptually the snd_nxt setting
3605 		 * and freeing sack holes should
3606 		 * be done by the default stacks
3607 		 * own tfb_tcp_mtu_chg().
3608 		 */
3609 		tp->t_fb->tfb_tcp_mtu_chg(tp);
3610 	}
3611 	if (tcp_output(tp) < 0)
3612 		return (NULL);
3613 	else
3614 		return (inp);
3615 }
3616 
3617 #ifdef INET
3618 /*
3619  * Look-up the routing entry to the peer of this inpcb.  If no route
3620  * is found and it cannot be allocated, then return 0.  This routine
3621  * is called by TCP routines that access the rmx structure and by
3622  * tcp_mss_update to get the peer/interface MTU.
3623  */
3624 uint32_t
tcp_maxmtu(struct in_conninfo * inc,struct tcp_ifcap * cap)3625 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
3626 {
3627 	struct nhop_object *nh;
3628 	struct ifnet *ifp;
3629 	uint32_t maxmtu = 0;
3630 
3631 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
3632 
3633 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
3634 		nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0);
3635 		if (nh == NULL)
3636 			return (0);
3637 
3638 		ifp = nh->nh_ifp;
3639 		maxmtu = nh->nh_mtu;
3640 
3641 		/* Report additional interface capabilities. */
3642 		if (cap != NULL) {
3643 			if (ifp->if_capenable & IFCAP_TSO4 &&
3644 			    ifp->if_hwassist & CSUM_TSO) {
3645 				cap->ifcap |= CSUM_TSO;
3646 				cap->tsomax = ifp->if_hw_tsomax;
3647 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3648 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3649 				/* XXXKIB IFCAP2_IPSEC_OFFLOAD_TSO */
3650 				cap->ipsec_tso =  (ifp->if_capenable2 &
3651 				    IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD)) != 0;
3652 			}
3653 		}
3654 	}
3655 	return (maxmtu);
3656 }
3657 #endif /* INET */
3658 
3659 #ifdef INET6
3660 uint32_t
tcp_maxmtu6(struct in_conninfo * inc,struct tcp_ifcap * cap)3661 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
3662 {
3663 	struct nhop_object *nh;
3664 	struct in6_addr dst6;
3665 	uint32_t scopeid;
3666 	struct ifnet *ifp;
3667 	uint32_t maxmtu = 0;
3668 
3669 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
3670 
3671 	if (inc->inc_flags & INC_IPV6MINMTU)
3672 		return (IPV6_MMTU);
3673 
3674 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
3675 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
3676 		nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0);
3677 		if (nh == NULL)
3678 			return (0);
3679 
3680 		ifp = nh->nh_ifp;
3681 		maxmtu = nh->nh_mtu;
3682 
3683 		/* Report additional interface capabilities. */
3684 		if (cap != NULL) {
3685 			if (ifp->if_capenable & IFCAP_TSO6 &&
3686 			    ifp->if_hwassist & CSUM_TSO) {
3687 				cap->ifcap |= CSUM_TSO;
3688 				cap->tsomax = ifp->if_hw_tsomax;
3689 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3690 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3691 				cap->ipsec_tso = false; /* XXXKIB */
3692 			}
3693 		}
3694 	}
3695 
3696 	return (maxmtu);
3697 }
3698 
3699 /*
3700  * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack.
3701  *
3702  * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag.
3703  * The right place to do that is ip6_setpktopt() that has just been
3704  * executed.  By the way it just filled ip6po_minmtu for us.
3705  */
3706 void
tcp6_use_min_mtu(struct tcpcb * tp)3707 tcp6_use_min_mtu(struct tcpcb *tp)
3708 {
3709 	struct inpcb *inp = tptoinpcb(tp);
3710 
3711 	INP_WLOCK_ASSERT(inp);
3712 	/*
3713 	 * In case of the IPV6_USE_MIN_MTU socket
3714 	 * option, the INC_IPV6MINMTU flag to announce
3715 	 * a corresponding MSS during the initial
3716 	 * handshake.  If the TCP connection is not in
3717 	 * the front states, just reduce the MSS being
3718 	 * used.  This avoids the sending of TCP
3719 	 * segments which will be fragmented at the
3720 	 * IPv6 layer.
3721 	 */
3722 	inp->inp_inc.inc_flags |= INC_IPV6MINMTU;
3723 	if ((tp->t_state >= TCPS_SYN_SENT) &&
3724 	    (inp->inp_inc.inc_flags & INC_ISIPV6)) {
3725 		struct ip6_pktopts *opt;
3726 
3727 		opt = inp->in6p_outputopts;
3728 		if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL &&
3729 		    tp->t_maxseg > TCP6_MSS) {
3730 			tp->t_maxseg = TCP6_MSS;
3731 			if (tp->t_maxseg < V_tcp_mssdflt) {
3732 				/*
3733 				 * The MSS is so small we should not process incoming
3734 				 * SACK's since we are subject to attack in such a
3735 				 * case.
3736 				 */
3737 				tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3738 			} else {
3739 				tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3740 			}
3741 		}
3742 	}
3743 }
3744 #endif /* INET6 */
3745 
3746 /*
3747  * Calculate effective SMSS per RFC5681 definition for a given TCP
3748  * connection at its current state, taking into account SACK and etc.
3749  */
3750 u_int
tcp_maxseg(const struct tcpcb * tp)3751 tcp_maxseg(const struct tcpcb *tp)
3752 {
3753 	u_int optlen;
3754 
3755 	if (tp->t_flags & TF_NOOPT)
3756 		return (tp->t_maxseg);
3757 
3758 	/*
3759 	 * Here we have a simplified code from tcp_addoptions(),
3760 	 * without a proper loop, and having most of paddings hardcoded.
3761 	 * We might make mistakes with padding here in some edge cases,
3762 	 * but this is harmless, since result of tcp_maxseg() is used
3763 	 * only in cwnd and ssthresh estimations.
3764 	 */
3765 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3766 		if (tp->t_flags & TF_RCVD_TSTMP)
3767 			optlen = TCPOLEN_TSTAMP_APPA;
3768 		else
3769 			optlen = 0;
3770 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3771 		if (tp->t_flags & TF_SIGNATURE)
3772 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3773 #endif
3774 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
3775 			optlen += TCPOLEN_SACKHDR;
3776 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
3777 			optlen = PADTCPOLEN(optlen);
3778 		}
3779 	} else {
3780 		if (tp->t_flags & TF_REQ_TSTMP)
3781 			optlen = TCPOLEN_TSTAMP_APPA;
3782 		else
3783 			optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3784 		if (tp->t_flags & TF_REQ_SCALE)
3785 			optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3786 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3787 		if (tp->t_flags & TF_SIGNATURE)
3788 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3789 #endif
3790 		if (tp->t_flags & TF_SACK_PERMIT)
3791 			optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3792 	}
3793 	optlen = min(optlen, TCP_MAXOLEN);
3794 	return (tp->t_maxseg - optlen);
3795 }
3796 
3797 
3798 u_int
tcp_fixed_maxseg(const struct tcpcb * tp)3799 tcp_fixed_maxseg(const struct tcpcb *tp)
3800 {
3801 	int optlen;
3802 
3803 	if (tp->t_flags & TF_NOOPT)
3804 		return (tp->t_maxseg);
3805 
3806 	/*
3807 	 * Here we have a simplified code from tcp_addoptions(),
3808 	 * without a proper loop, and having most of paddings hardcoded.
3809 	 * We only consider fixed options that we would send every
3810 	 * time I.e. SACK is not considered. This is important
3811 	 * for cc modules to figure out what the modulo of the
3812 	 * cwnd should be.
3813 	 */
3814 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3815 		if (tp->t_flags & TF_RCVD_TSTMP)
3816 			optlen = TCPOLEN_TSTAMP_APPA;
3817 		else
3818 			optlen = 0;
3819 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3820 		if (tp->t_flags & TF_SIGNATURE)
3821 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3822 #endif
3823 	} else {
3824 		if (tp->t_flags & TF_REQ_TSTMP)
3825 			optlen = TCPOLEN_TSTAMP_APPA;
3826 		else
3827 			optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3828 		if (tp->t_flags & TF_REQ_SCALE)
3829 			optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3830 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3831 		if (tp->t_flags & TF_SIGNATURE)
3832 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3833 #endif
3834 		if (tp->t_flags & TF_SACK_PERMIT)
3835 			optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3836 	}
3837 	optlen = min(optlen, TCP_MAXOLEN);
3838 	return (tp->t_maxseg - optlen);
3839 }
3840 
3841 
3842 
3843 static int
sysctl_drop(SYSCTL_HANDLER_ARGS)3844 sysctl_drop(SYSCTL_HANDLER_ARGS)
3845 {
3846 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3847 	struct sockaddr_storage addrs[2];
3848 	struct inpcb *inp;
3849 	struct tcpcb *tp;
3850 #ifdef INET
3851 	struct sockaddr_in *fin = NULL, *lin = NULL;
3852 #endif
3853 	struct epoch_tracker et;
3854 #ifdef INET6
3855 	struct sockaddr_in6 *fin6, *lin6;
3856 #endif
3857 	int error;
3858 
3859 	inp = NULL;
3860 #ifdef INET6
3861 	fin6 = lin6 = NULL;
3862 #endif
3863 	error = 0;
3864 
3865 	if (req->oldptr != NULL || req->oldlen != 0)
3866 		return (EINVAL);
3867 	if (req->newptr == NULL)
3868 		return (EPERM);
3869 	if (req->newlen < sizeof(addrs))
3870 		return (ENOMEM);
3871 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3872 	if (error)
3873 		return (error);
3874 
3875 	switch (addrs[0].ss_family) {
3876 #ifdef INET6
3877 	case AF_INET6:
3878 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3879 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3880 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3881 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3882 			return (EINVAL);
3883 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3884 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3885 				return (EINVAL);
3886 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3887 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3888 #ifdef INET
3889 			fin = (struct sockaddr_in *)&addrs[0];
3890 			lin = (struct sockaddr_in *)&addrs[1];
3891 #endif
3892 			break;
3893 		}
3894 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3895 		if (error)
3896 			return (error);
3897 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3898 		if (error)
3899 			return (error);
3900 		break;
3901 #endif
3902 #ifdef INET
3903 	case AF_INET:
3904 		fin = (struct sockaddr_in *)&addrs[0];
3905 		lin = (struct sockaddr_in *)&addrs[1];
3906 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3907 		    lin->sin_len != sizeof(struct sockaddr_in))
3908 			return (EINVAL);
3909 		break;
3910 #endif
3911 	default:
3912 		return (EINVAL);
3913 	}
3914 	NET_EPOCH_ENTER(et);
3915 	switch (addrs[0].ss_family) {
3916 #ifdef INET6
3917 	case AF_INET6:
3918 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3919 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3920 		    INPLOOKUP_WLOCKPCB, NULL);
3921 		break;
3922 #endif
3923 #ifdef INET
3924 	case AF_INET:
3925 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3926 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3927 		break;
3928 #endif
3929 	}
3930 	if (inp != NULL) {
3931 		if (!SOLISTENING(inp->inp_socket)) {
3932 			tp = intotcpcb(inp);
3933 			tp = tcp_drop(tp, ECONNABORTED);
3934 			if (tp != NULL)
3935 				INP_WUNLOCK(inp);
3936 		} else
3937 			INP_WUNLOCK(inp);
3938 	} else
3939 		error = ESRCH;
3940 	NET_EPOCH_EXIT(et);
3941 	return (error);
3942 }
3943 
3944 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
3945     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3946     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "",
3947     "Drop TCP connection");
3948 
3949 static int
tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)3950 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)
3951 {
3952 	return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo,
3953 	    &tcp_ctloutput_set));
3954 }
3955 
3956 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt,
3957     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3958     CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "",
3959     "Set socket option for TCP endpoint");
3960 
3961 #ifdef KERN_TLS
3962 static int
sysctl_switch_tls(SYSCTL_HANDLER_ARGS)3963 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
3964 {
3965 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3966 	struct sockaddr_storage addrs[2];
3967 	struct inpcb *inp;
3968 #ifdef INET
3969 	struct sockaddr_in *fin = NULL, *lin = NULL;
3970 #endif
3971 	struct epoch_tracker et;
3972 #ifdef INET6
3973 	struct sockaddr_in6 *fin6, *lin6;
3974 #endif
3975 	int error;
3976 
3977 	inp = NULL;
3978 #ifdef INET6
3979 	fin6 = lin6 = NULL;
3980 #endif
3981 	error = 0;
3982 
3983 	if (req->oldptr != NULL || req->oldlen != 0)
3984 		return (EINVAL);
3985 	if (req->newptr == NULL)
3986 		return (EPERM);
3987 	if (req->newlen < sizeof(addrs))
3988 		return (ENOMEM);
3989 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3990 	if (error)
3991 		return (error);
3992 
3993 	switch (addrs[0].ss_family) {
3994 #ifdef INET6
3995 	case AF_INET6:
3996 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3997 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3998 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3999 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
4000 			return (EINVAL);
4001 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
4002 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
4003 				return (EINVAL);
4004 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
4005 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
4006 #ifdef INET
4007 			fin = (struct sockaddr_in *)&addrs[0];
4008 			lin = (struct sockaddr_in *)&addrs[1];
4009 #endif
4010 			break;
4011 		}
4012 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
4013 		if (error)
4014 			return (error);
4015 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
4016 		if (error)
4017 			return (error);
4018 		break;
4019 #endif
4020 #ifdef INET
4021 	case AF_INET:
4022 		fin = (struct sockaddr_in *)&addrs[0];
4023 		lin = (struct sockaddr_in *)&addrs[1];
4024 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
4025 		    lin->sin_len != sizeof(struct sockaddr_in))
4026 			return (EINVAL);
4027 		break;
4028 #endif
4029 	default:
4030 		return (EINVAL);
4031 	}
4032 	NET_EPOCH_ENTER(et);
4033 	switch (addrs[0].ss_family) {
4034 #ifdef INET6
4035 	case AF_INET6:
4036 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
4037 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
4038 		    INPLOOKUP_WLOCKPCB, NULL);
4039 		break;
4040 #endif
4041 #ifdef INET
4042 	case AF_INET:
4043 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
4044 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
4045 		break;
4046 #endif
4047 	}
4048 	NET_EPOCH_EXIT(et);
4049 	if (inp != NULL) {
4050 		struct socket *so;
4051 
4052 		so = inp->inp_socket;
4053 		soref(so);
4054 		error = ktls_set_tx_mode(so,
4055 		    arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
4056 		INP_WUNLOCK(inp);
4057 		sorele(so);
4058 	} else
4059 		error = ESRCH;
4060 	return (error);
4061 }
4062 
4063 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
4064     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4065     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "",
4066     "Switch TCP connection to SW TLS");
4067 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
4068     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4069     CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "",
4070     "Switch TCP connection to ifnet TLS");
4071 #endif
4072 
4073 /*
4074  * Generate a standardized TCP log line for use throughout the
4075  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
4076  * allow use in the interrupt context.
4077  *
4078  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
4079  * NB: The function may return NULL if memory allocation failed.
4080  *
4081  * Due to header inclusion and ordering limitations the struct ip
4082  * and ip6_hdr pointers have to be passed as void pointers.
4083  */
4084 char *
tcp_log_vain(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4085 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4086     const void *ip6hdr)
4087 {
4088 
4089 	/* Is logging enabled? */
4090 	if (V_tcp_log_in_vain == 0)
4091 		return (NULL);
4092 
4093 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4094 }
4095 
4096 char *
tcp_log_addrs(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4097 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4098     const void *ip6hdr)
4099 {
4100 
4101 	/* Is logging enabled? */
4102 	if (tcp_log_debug == 0)
4103 		return (NULL);
4104 
4105 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4106 }
4107 
4108 static char *
tcp_log_addr(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4109 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4110     const void *ip6hdr)
4111 {
4112 	char *s, *sp;
4113 	size_t size;
4114 #ifdef INET
4115 	const struct ip *ip = (const struct ip *)ip4hdr;
4116 #endif
4117 #ifdef INET6
4118 	const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr;
4119 #endif /* INET6 */
4120 
4121 	/*
4122 	 * The log line looks like this:
4123 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
4124 	 */
4125 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
4126 	    sizeof(PRINT_TH_FLAGS) + 1 +
4127 #ifdef INET6
4128 	    2 * INET6_ADDRSTRLEN;
4129 #else
4130 	    2 * INET_ADDRSTRLEN;
4131 #endif /* INET6 */
4132 
4133 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
4134 	if (s == NULL)
4135 		return (NULL);
4136 
4137 	strcat(s, "TCP: [");
4138 	sp = s + strlen(s);
4139 
4140 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
4141 		inet_ntoa_r(inc->inc_faddr, sp);
4142 		sp = s + strlen(s);
4143 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4144 		sp = s + strlen(s);
4145 		inet_ntoa_r(inc->inc_laddr, sp);
4146 		sp = s + strlen(s);
4147 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4148 #ifdef INET6
4149 	} else if (inc) {
4150 		ip6_sprintf(sp, &inc->inc6_faddr);
4151 		sp = s + strlen(s);
4152 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4153 		sp = s + strlen(s);
4154 		ip6_sprintf(sp, &inc->inc6_laddr);
4155 		sp = s + strlen(s);
4156 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4157 	} else if (ip6 && th) {
4158 		ip6_sprintf(sp, &ip6->ip6_src);
4159 		sp = s + strlen(s);
4160 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4161 		sp = s + strlen(s);
4162 		ip6_sprintf(sp, &ip6->ip6_dst);
4163 		sp = s + strlen(s);
4164 		sprintf(sp, "]:%i", ntohs(th->th_dport));
4165 #endif /* INET6 */
4166 #ifdef INET
4167 	} else if (ip && th) {
4168 		inet_ntoa_r(ip->ip_src, sp);
4169 		sp = s + strlen(s);
4170 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4171 		sp = s + strlen(s);
4172 		inet_ntoa_r(ip->ip_dst, sp);
4173 		sp = s + strlen(s);
4174 		sprintf(sp, "]:%i", ntohs(th->th_dport));
4175 #endif /* INET */
4176 	} else {
4177 		free(s, M_TCPLOG);
4178 		return (NULL);
4179 	}
4180 	sp = s + strlen(s);
4181 	if (th)
4182 		sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS);
4183 	if (*(s + size - 1) != '\0')
4184 		panic("%s: string too long", __func__);
4185 	return (s);
4186 }
4187 
4188 /*
4189  * A subroutine which makes it easy to track TCP state changes with DTrace.
4190  * This function shouldn't be called for t_state initializations that don't
4191  * correspond to actual TCP state transitions.
4192  */
4193 void
tcp_state_change(struct tcpcb * tp,int newstate)4194 tcp_state_change(struct tcpcb *tp, int newstate)
4195 {
4196 #if defined(KDTRACE_HOOKS)
4197 	int pstate = tp->t_state;
4198 #endif
4199 
4200 	TCPSTATES_DEC(tp->t_state);
4201 	TCPSTATES_INC(newstate);
4202 	tp->t_state = newstate;
4203 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
4204 }
4205 
4206 /*
4207  * Create an external-format (``xtcpcb'') structure using the information in
4208  * the kernel-format tcpcb structure pointed to by tp.  This is done to
4209  * reduce the spew of irrelevant information over this interface, to isolate
4210  * user code from changes in the kernel structure, and potentially to provide
4211  * information-hiding if we decide that some of this information should be
4212  * hidden from users.
4213  */
4214 void
tcp_inptoxtp(const struct inpcb * inp,struct xtcpcb * xt)4215 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
4216 {
4217 	struct tcpcb *tp = intotcpcb(inp);
4218 	sbintime_t now;
4219 
4220 	bzero(xt, sizeof(*xt));
4221 	xt->t_state = tp->t_state;
4222 	xt->t_logstate = tcp_get_bblog_state(tp);
4223 	xt->t_flags = tp->t_flags;
4224 	xt->t_sndzerowin = tp->t_sndzerowin;
4225 	xt->t_sndrexmitpack = tp->t_sndrexmitpack;
4226 	xt->t_rcvoopack = tp->t_rcvoopack;
4227 	xt->t_rcv_wnd = tp->rcv_wnd;
4228 	xt->t_snd_wnd = tp->snd_wnd;
4229 	xt->t_snd_cwnd = tp->snd_cwnd;
4230 	xt->t_snd_ssthresh = tp->snd_ssthresh;
4231 	xt->t_dsack_bytes = tp->t_dsack_bytes;
4232 	xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes;
4233 	xt->t_dsack_pack = tp->t_dsack_pack;
4234 	xt->t_maxseg = tp->t_maxseg;
4235 	xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 +
4236 		     (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0;
4237 
4238 	now = getsbinuptime();
4239 #define	COPYTIMER(which,where)	do {					\
4240 	if (tp->t_timers[which] != SBT_MAX)				\
4241 		xt->where = (tp->t_timers[which] - now) / SBT_1MS;	\
4242 	else								\
4243 		xt->where = 0;						\
4244 } while (0)
4245 	COPYTIMER(TT_DELACK, tt_delack);
4246 	COPYTIMER(TT_REXMT, tt_rexmt);
4247 	COPYTIMER(TT_PERSIST, tt_persist);
4248 	COPYTIMER(TT_KEEP, tt_keep);
4249 	COPYTIMER(TT_2MSL, tt_2msl);
4250 #undef COPYTIMER
4251 	xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
4252 
4253 	xt->xt_encaps_port = tp->t_port;
4254 	bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
4255 	    TCP_FUNCTION_NAME_LEN_MAX);
4256 	bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX);
4257 #ifdef TCP_BLACKBOX
4258 	(void)tcp_log_get_id(tp, xt->xt_logid);
4259 #endif
4260 
4261 	xt->xt_len = sizeof(struct xtcpcb);
4262 	in_pcbtoxinpcb(inp, &xt->xt_inp);
4263 }
4264 
4265 void
tcp_log_end_status(struct tcpcb * tp,uint8_t status)4266 tcp_log_end_status(struct tcpcb *tp, uint8_t status)
4267 {
4268 	uint32_t bit, i;
4269 
4270 	if ((tp == NULL) ||
4271 	    (status > TCP_EI_STATUS_MAX_VALUE) ||
4272 	    (status == 0)) {
4273 		/* Invalid */
4274 		return;
4275 	}
4276 	if (status > (sizeof(uint32_t) * 8)) {
4277 		/* Should this be a KASSERT? */
4278 		return;
4279 	}
4280 	bit = 1U << (status - 1);
4281 	if (bit & tp->t_end_info_status) {
4282 		/* already logged */
4283 		return;
4284 	}
4285 	for (i = 0; i < TCP_END_BYTE_INFO; i++) {
4286 		if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) {
4287 			tp->t_end_info_bytes[i] = status;
4288 			tp->t_end_info_status |= bit;
4289 			break;
4290 		}
4291 	}
4292 }
4293 
4294 int
tcp_can_enable_pacing(void)4295 tcp_can_enable_pacing(void)
4296 {
4297 
4298 	if ((tcp_pacing_limit == -1) ||
4299 	    (tcp_pacing_limit > number_of_tcp_connections_pacing)) {
4300 		atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1);
4301 		shadow_num_connections = number_of_tcp_connections_pacing;
4302 		return (1);
4303 	} else {
4304 		counter_u64_add(tcp_pacing_failures, 1);
4305 		return (0);
4306 	}
4307 }
4308 
4309 int
tcp_incr_dgp_pacing_cnt(void)4310 tcp_incr_dgp_pacing_cnt(void)
4311 {
4312 	if ((tcp_dgp_limit == -1) ||
4313 	    (tcp_dgp_limit > number_of_dgp_connections)) {
4314 		atomic_fetchadd_int(&number_of_dgp_connections, 1);
4315 		shadow_tcp_pacing_dgp = number_of_dgp_connections;
4316 		return (1);
4317 	} else {
4318 		counter_u64_add(tcp_dgp_failures, 1);
4319 		return (0);
4320 	}
4321 }
4322 
4323 static uint8_t tcp_dgp_warning = 0;
4324 
4325 void
tcp_dec_dgp_pacing_cnt(void)4326 tcp_dec_dgp_pacing_cnt(void)
4327 {
4328 	uint32_t ret;
4329 
4330 	ret = atomic_fetchadd_int(&number_of_dgp_connections, -1);
4331 	shadow_tcp_pacing_dgp = number_of_dgp_connections;
4332 	KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?"));
4333 	if (ret == 0) {
4334 		if (tcp_dgp_limit != -1) {
4335 			printf("Warning all DGP is now disabled, count decrements invalidly!\n");
4336 			tcp_dgp_limit = 0;
4337 			tcp_dgp_warning = 1;
4338 		} else if (tcp_dgp_warning == 0) {
4339 			printf("Warning DGP pacing is invalid, invalid decrement\n");
4340 			tcp_dgp_warning = 1;
4341 		}
4342 	}
4343 
4344 }
4345 
4346 static uint8_t tcp_pacing_warning = 0;
4347 
4348 void
tcp_decrement_paced_conn(void)4349 tcp_decrement_paced_conn(void)
4350 {
4351 	uint32_t ret;
4352 
4353 	ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1);
4354 	shadow_num_connections = number_of_tcp_connections_pacing;
4355 	KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?"));
4356 	if (ret == 0) {
4357 		if (tcp_pacing_limit != -1) {
4358 			printf("Warning all pacing is now disabled, count decrements invalidly!\n");
4359 			tcp_pacing_limit = 0;
4360 		} else if (tcp_pacing_warning == 0) {
4361 			printf("Warning pacing count is invalid, invalid decrement\n");
4362 			tcp_pacing_warning = 1;
4363 		}
4364 	}
4365 }
4366 
4367 static void
tcp_default_switch_failed(struct tcpcb * tp)4368 tcp_default_switch_failed(struct tcpcb *tp)
4369 {
4370 	/*
4371 	 * If a switch fails we only need to
4372 	 * care about two things:
4373 	 * a) The t_flags2
4374 	 * and
4375 	 * b) The timer granularity.
4376 	 * Timeouts, at least for now, don't use the
4377 	 * old callout system in the other stacks so
4378 	 * those are hopefully safe.
4379 	 */
4380 	tcp_lro_features_off(tp);
4381 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
4382 }
4383 
4384 #ifdef TCP_ACCOUNTING
4385 int
tcp_do_ack_accounting(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,uint32_t tiwin,int mss)4386 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss)
4387 {
4388 	if (SEQ_LT(th->th_ack, tp->snd_una)) {
4389 		/* Do we have a SACK? */
4390 		if (to->to_flags & TOF_SACK) {
4391 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4392 				tp->tcp_cnt_counters[ACK_SACK]++;
4393 			}
4394 			return (ACK_SACK);
4395 		} else {
4396 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4397 				tp->tcp_cnt_counters[ACK_BEHIND]++;
4398 			}
4399 			return (ACK_BEHIND);
4400 		}
4401 	} else if (th->th_ack == tp->snd_una) {
4402 		/* Do we have a SACK? */
4403 		if (to->to_flags & TOF_SACK) {
4404 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4405 				tp->tcp_cnt_counters[ACK_SACK]++;
4406 			}
4407 			return (ACK_SACK);
4408 		} else if (tiwin != tp->snd_wnd) {
4409 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4410 				tp->tcp_cnt_counters[ACK_RWND]++;
4411 			}
4412 			return (ACK_RWND);
4413 		} else {
4414 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4415 				tp->tcp_cnt_counters[ACK_DUPACK]++;
4416 			}
4417 			return (ACK_DUPACK);
4418 		}
4419 	} else {
4420 		if (!SEQ_GT(th->th_ack, tp->snd_max)) {
4421 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4422 				tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss);
4423 			}
4424 		}
4425 		if (to->to_flags & TOF_SACK) {
4426 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4427 				tp->tcp_cnt_counters[ACK_CUMACK_SACK]++;
4428 			}
4429 			return (ACK_CUMACK_SACK);
4430 		} else {
4431 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4432 				tp->tcp_cnt_counters[ACK_CUMACK]++;
4433 			}
4434 			return (ACK_CUMACK);
4435 		}
4436 	}
4437 }
4438 #endif
4439 
4440 void
tcp_change_time_units(struct tcpcb * tp,int granularity)4441 tcp_change_time_units(struct tcpcb *tp, int granularity)
4442 {
4443 	if (tp->t_tmr_granularity == granularity) {
4444 		/* We are there */
4445 		return;
4446 	}
4447 	if (granularity == TCP_TMR_GRANULARITY_USEC) {
4448 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS),
4449 			("Granularity is not TICKS its %u in tp:%p",
4450 			 tp->t_tmr_granularity, tp));
4451 		tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
4452 		if (tp->t_srtt > 1) {
4453 			uint32_t val, frac;
4454 
4455 			val = tp->t_srtt >> TCP_RTT_SHIFT;
4456 			frac = tp->t_srtt & 0x1f;
4457 			tp->t_srtt = TICKS_2_USEC(val);
4458 			/*
4459 			 * frac is the fractional part of the srtt (if any)
4460 			 * but its in ticks and every bit represents
4461 			 * 1/32nd of a hz.
4462 			 */
4463 			if (frac) {
4464 				if (hz == 1000) {
4465 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4466 				} else {
4467 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4468 				}
4469 				tp->t_srtt += frac;
4470 			}
4471 		}
4472 		if (tp->t_rttvar) {
4473 			uint32_t val, frac;
4474 
4475 			val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
4476 			frac = tp->t_rttvar & 0x1f;
4477 			tp->t_rttvar = TICKS_2_USEC(val);
4478 			/*
4479 			 * frac is the fractional part of the srtt (if any)
4480 			 * but its in ticks and every bit represents
4481 			 * 1/32nd of a hz.
4482 			 */
4483 			if (frac) {
4484 				if (hz == 1000) {
4485 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4486 				} else {
4487 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4488 				}
4489 				tp->t_rttvar += frac;
4490 			}
4491 		}
4492 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC;
4493 	} else if (granularity == TCP_TMR_GRANULARITY_TICKS) {
4494 		/* Convert back to ticks, with  */
4495 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC),
4496 			("Granularity is not USEC its %u in tp:%p",
4497 			 tp->t_tmr_granularity, tp));
4498 		if (tp->t_srtt > 1) {
4499 			uint32_t val, frac;
4500 
4501 			val = USEC_2_TICKS(tp->t_srtt);
4502 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
4503 			tp->t_srtt = val << TCP_RTT_SHIFT;
4504 			/*
4505 			 * frac is the fractional part here is left
4506 			 * over from converting to hz and shifting.
4507 			 * We need to convert this to the 5 bit
4508 			 * remainder.
4509 			 */
4510 			if (frac) {
4511 				if (hz == 1000) {
4512 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4513 				} else {
4514 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4515 				}
4516 				tp->t_srtt += frac;
4517 			}
4518 		}
4519 		if (tp->t_rttvar) {
4520 			uint32_t val, frac;
4521 
4522 			val = USEC_2_TICKS(tp->t_rttvar);
4523 			frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz);
4524 			tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
4525 			/*
4526 			 * frac is the fractional part here is left
4527 			 * over from converting to hz and shifting.
4528 			 * We need to convert this to the 4 bit
4529 			 * remainder.
4530 			 */
4531 			if (frac) {
4532 				if (hz == 1000) {
4533 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4534 				} else {
4535 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4536 				}
4537 				tp->t_rttvar += frac;
4538 			}
4539 		}
4540 		tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
4541 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
4542 	}
4543 #ifdef INVARIANTS
4544 	else {
4545 		panic("Unknown granularity:%d tp:%p",
4546 		      granularity, tp);
4547 	}
4548 #endif
4549 }
4550 
4551 void
tcp_handle_orphaned_packets(struct tcpcb * tp)4552 tcp_handle_orphaned_packets(struct tcpcb *tp)
4553 {
4554 	struct mbuf *save, *m, *prev;
4555 	/*
4556 	 * Called when a stack switch is occuring from the fini()
4557 	 * of the old stack. We assue the init() as already been
4558 	 * run of the new stack and it has set the t_flags2 to
4559 	 * what it supports. This function will then deal with any
4560 	 * differences i.e. cleanup packets that maybe queued that
4561 	 * the newstack does not support.
4562 	 */
4563 
4564 	if (tp->t_flags2 & TF2_MBUF_L_ACKS)
4565 		return;
4566 	if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 &&
4567 	    !STAILQ_EMPTY(&tp->t_inqueue)) {
4568 		/*
4569 		 * It is unsafe to process the packets since a
4570 		 * reset may be lurking in them (its rare but it
4571 		 * can occur). If we were to find a RST, then we
4572 		 * would end up dropping the connection and the
4573 		 * INP lock, so when we return the caller (tcp_usrreq)
4574 		 * will blow up when it trys to unlock the inp.
4575 		 * This new stack does not do any fancy LRO features
4576 		 * so all we can do is toss the packets.
4577 		 */
4578 		m = STAILQ_FIRST(&tp->t_inqueue);
4579 		STAILQ_INIT(&tp->t_inqueue);
4580 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save)
4581 			m_freem(m);
4582 	} else {
4583 		/*
4584 		 * Here we have a stack that does mbuf queuing but
4585 		 * does not support compressed ack's. We must
4586 		 * walk all the mbufs and discard any compressed acks.
4587 		 */
4588 		STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) {
4589 			if (m->m_flags & M_ACKCMP) {
4590 				if (m == STAILQ_FIRST(&tp->t_inqueue))
4591 					STAILQ_REMOVE_HEAD(&tp->t_inqueue,
4592 					    m_stailqpkt);
4593 				else
4594 					STAILQ_REMOVE_AFTER(&tp->t_inqueue,
4595 					    prev, m_stailqpkt);
4596 				m_freem(m);
4597 			} else
4598 				prev = m;
4599 		}
4600 	}
4601 }
4602 
4603 #ifdef TCP_REQUEST_TRK
4604 uint32_t
tcp_estimate_tls_overhead(struct socket * so,uint64_t tls_usr_bytes)4605 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes)
4606 {
4607 #ifdef KERN_TLS
4608 	struct ktls_session *tls;
4609 	uint32_t rec_oh, records;
4610 
4611 	tls = so->so_snd.sb_tls_info;
4612 	if (tls == NULL)
4613 	    return (0);
4614 
4615 	rec_oh = tls->params.tls_hlen + tls->params.tls_tlen;
4616 	records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len);
4617 	return (records * rec_oh);
4618 #else
4619 	return (0);
4620 #endif
4621 }
4622 
4623 extern uint32_t tcp_stale_entry_time;
4624 uint32_t tcp_stale_entry_time = 250000;
4625 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW,
4626     &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out");
4627 
4628 void
tcp_req_log_req_info(struct tcpcb * tp,struct tcp_sendfile_track * req,uint16_t slot,uint8_t val,uint64_t offset,uint64_t nbytes)4629 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req,
4630     uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes)
4631 {
4632 	if (tcp_bblogging_on(tp)) {
4633 		union tcp_log_stackspecific log;
4634 		struct timeval tv;
4635 
4636 		memset(&log, 0, sizeof(log));
4637 		log.u_bbr.inhpts = tcp_in_hpts(tp);
4638 		log.u_bbr.flex8 = val;
4639 		log.u_bbr.rttProp = req->timestamp;
4640 		log.u_bbr.delRate = req->start;
4641 		log.u_bbr.cur_del_rate = req->end;
4642 		log.u_bbr.flex1 = req->start_seq;
4643 		log.u_bbr.flex2 = req->end_seq;
4644 		log.u_bbr.flex3 = req->flags;
4645 		log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff);
4646 		log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff);
4647 		log.u_bbr.flex7 = slot;
4648 		log.u_bbr.bw_inuse = offset;
4649 		/* nbytes = flex6 | epoch */
4650 		log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff);
4651 		log.u_bbr.epoch = (nbytes & 0x00000000ffffffff);
4652 		/* cspr =  lt_epoch | pkts_out */
4653 		log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff);
4654 		log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff);
4655 		log.u_bbr.applimited = tp->t_tcpreq_closed;
4656 		log.u_bbr.applimited <<= 8;
4657 		log.u_bbr.applimited |= tp->t_tcpreq_open;
4658 		log.u_bbr.applimited <<= 8;
4659 		log.u_bbr.applimited |= tp->t_tcpreq_req;
4660 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4661 		TCP_LOG_EVENTP(tp, NULL,
4662 		    &tptosocket(tp)->so_rcv,
4663 		    &tptosocket(tp)->so_snd,
4664 		    TCP_LOG_REQ_T, 0,
4665 		    0, &log, false, &tv);
4666 	}
4667 }
4668 
4669 void
tcp_req_free_a_slot(struct tcpcb * tp,struct tcp_sendfile_track * ent)4670 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent)
4671 {
4672 	if (tp->t_tcpreq_req > 0)
4673 		tp->t_tcpreq_req--;
4674 	if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4675 		if (tp->t_tcpreq_open > 0)
4676 			tp->t_tcpreq_open--;
4677 	} else {
4678 		if (tp->t_tcpreq_closed > 0)
4679 			tp->t_tcpreq_closed--;
4680 	}
4681 	ent->flags = TCP_TRK_TRACK_FLG_EMPTY;
4682 }
4683 
4684 static void
tcp_req_check_for_stale_entries(struct tcpcb * tp,uint64_t ts,int rm_oldest)4685 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest)
4686 {
4687 	struct tcp_sendfile_track *ent;
4688 	uint64_t time_delta, oldest_delta;
4689 	int i, oldest, oldest_set = 0, cnt_rm = 0;
4690 
4691 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4692 		ent = &tp->t_tcpreq_info[i];
4693 		if (ent->flags != TCP_TRK_TRACK_FLG_USED) {
4694 			/*
4695 			 * We only care about closed end ranges
4696 			 * that are allocated and have no sendfile
4697 			 * ever touching them. They would be in
4698 			 * state USED.
4699 			 */
4700 			continue;
4701 		}
4702 		if (ts >= ent->localtime)
4703 			time_delta = ts - ent->localtime;
4704 		else
4705 			time_delta = 0;
4706 		if (time_delta &&
4707 		    ((oldest_delta < time_delta) || (oldest_set == 0))) {
4708 			oldest_set = 1;
4709 			oldest = i;
4710 			oldest_delta = time_delta;
4711 		}
4712 		if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) {
4713 			/*
4714 			 * No sendfile in a our time-limit
4715 			 * time to purge it.
4716 			 */
4717 			cnt_rm++;
4718 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4719 					      time_delta, 0);
4720 			tcp_req_free_a_slot(tp, ent);
4721 		}
4722 	}
4723 	if ((cnt_rm == 0) && rm_oldest && oldest_set) {
4724 		ent = &tp->t_tcpreq_info[oldest];
4725 		tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4726 				      oldest_delta, 1);
4727 		tcp_req_free_a_slot(tp, ent);
4728 	}
4729 }
4730 
4731 int
tcp_req_check_for_comp(struct tcpcb * tp,tcp_seq ack_point)4732 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point)
4733 {
4734 	int i, ret = 0;
4735 	struct tcp_sendfile_track *ent;
4736 
4737 	/* Clean up any old closed end requests that are now completed */
4738 	if (tp->t_tcpreq_req == 0)
4739 		return (0);
4740 	if (tp->t_tcpreq_closed == 0)
4741 		return (0);
4742 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4743 		ent = &tp->t_tcpreq_info[i];
4744 		/* Skip empty ones */
4745 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4746 			continue;
4747 		/* Skip open ones */
4748 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN)
4749 			continue;
4750 		if (SEQ_GEQ(ack_point, ent->end_seq)) {
4751 			/* We are past it -- free it */
4752 			tcp_req_log_req_info(tp, ent,
4753 					      i, TCP_TRK_REQ_LOG_FREED, 0, 0);
4754 			tcp_req_free_a_slot(tp, ent);
4755 			ret++;
4756 		}
4757 	}
4758 	return (ret);
4759 }
4760 
4761 int
tcp_req_is_entry_comp(struct tcpcb * tp,struct tcp_sendfile_track * ent,tcp_seq ack_point)4762 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point)
4763 {
4764 	if (tp->t_tcpreq_req == 0)
4765 		return (-1);
4766 	if (tp->t_tcpreq_closed == 0)
4767 		return (-1);
4768 	if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4769 		return (-1);
4770 	if (SEQ_GEQ(ack_point, ent->end_seq)) {
4771 		return (1);
4772 	}
4773 	return (0);
4774 }
4775 
4776 struct tcp_sendfile_track *
tcp_req_find_a_req_that_is_completed_by(struct tcpcb * tp,tcp_seq th_ack,int * ip)4777 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip)
4778 {
4779 	/*
4780 	 * Given an ack point (th_ack) walk through our entries and
4781 	 * return the first one found that th_ack goes past the
4782 	 * end_seq.
4783 	 */
4784 	struct tcp_sendfile_track *ent;
4785 	int i;
4786 
4787 	if (tp->t_tcpreq_req == 0) {
4788 		/* none open */
4789 		return (NULL);
4790 	}
4791 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4792 		ent = &tp->t_tcpreq_info[i];
4793 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4794 			continue;
4795 		if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) {
4796 			if (SEQ_GEQ(th_ack, ent->end_seq)) {
4797 				*ip = i;
4798 				return (ent);
4799 			}
4800 		}
4801 	}
4802 	return (NULL);
4803 }
4804 
4805 struct tcp_sendfile_track *
tcp_req_find_req_for_seq(struct tcpcb * tp,tcp_seq seq)4806 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq)
4807 {
4808 	struct tcp_sendfile_track *ent;
4809 	int i;
4810 
4811 	if (tp->t_tcpreq_req == 0) {
4812 		/* none open */
4813 		return (NULL);
4814 	}
4815 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4816 		ent = &tp->t_tcpreq_info[i];
4817 		tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH,
4818 				      (uint64_t)seq, 0);
4819 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4820 			continue;
4821 		}
4822 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4823 			/*
4824 			 * An open end request only needs to
4825 			 * match the beginning seq or be
4826 			 * all we have (once we keep going on
4827 			 * a open end request we may have a seq
4828 			 * wrap).
4829 			 */
4830 			if ((SEQ_GEQ(seq, ent->start_seq)) ||
4831 			    (tp->t_tcpreq_closed == 0))
4832 				return (ent);
4833 		} else {
4834 			/*
4835 			 * For this one we need to
4836 			 * be a bit more careful if its
4837 			 * completed at least.
4838 			 */
4839 			if ((SEQ_GEQ(seq, ent->start_seq)) &&
4840 			    (SEQ_LT(seq, ent->end_seq))) {
4841 				return (ent);
4842 			}
4843 		}
4844 	}
4845 	return (NULL);
4846 }
4847 
4848 /* Should this be in its own file tcp_req.c ? */
4849 struct tcp_sendfile_track *
tcp_req_alloc_req_full(struct tcpcb * tp,struct tcp_snd_req * req,uint64_t ts,int rec_dups)4850 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups)
4851 {
4852 	struct tcp_sendfile_track *fil;
4853 	int i, allocated;
4854 
4855 	/* In case the stack does not check for completions do so now */
4856 	tcp_req_check_for_comp(tp, tp->snd_una);
4857 	/* Check for stale entries */
4858 	if (tp->t_tcpreq_req)
4859 		tcp_req_check_for_stale_entries(tp, ts,
4860 		    (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ));
4861 	/* Check to see if this is a duplicate of one not started */
4862 	if (tp->t_tcpreq_req) {
4863 		for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4864 			fil = &tp->t_tcpreq_info[i];
4865 			if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0)
4866 				continue;
4867 			if ((fil->timestamp == req->timestamp) &&
4868 			    (fil->start == req->start) &&
4869 			    ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) ||
4870 			     (fil->end == req->end))) {
4871 				/*
4872 				 * We already have this request
4873 				 * and it has not been started with sendfile.
4874 				 * This probably means the user was returned
4875 				 * a 4xx of some sort and its going to age
4876 				 * out, lets not duplicate it.
4877 				 */
4878 				return (fil);
4879 			}
4880 		}
4881 	}
4882 	/* Ok if there is no room at the inn we are in trouble */
4883 	if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) {
4884 		tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL);
4885 		for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4886 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i],
4887 			    i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0);
4888 		}
4889 		return (NULL);
4890 	}
4891 	for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4892 		fil = &tp->t_tcpreq_info[i];
4893 		if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4894 			allocated = 1;
4895 			fil->flags = TCP_TRK_TRACK_FLG_USED;
4896 			fil->timestamp = req->timestamp;
4897 			fil->playout_ms = req->playout_ms;
4898 			fil->localtime = ts;
4899 			fil->start = req->start;
4900 			if (req->flags & TCP_LOG_HTTPD_RANGE_END) {
4901 				fil->end = req->end;
4902 			} else {
4903 				fil->end = 0;
4904 				fil->flags |= TCP_TRK_TRACK_FLG_OPEN;
4905 			}
4906 			/*
4907 			 * We can set the min boundaries to the TCP Sequence space,
4908 			 * but it might be found to be further up when sendfile
4909 			 * actually runs on this range (if it ever does).
4910 			 */
4911 			fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc;
4912 			fil->start_seq = tp->snd_una +
4913 			    tptosocket(tp)->so_snd.sb_ccc;
4914 			if (req->flags & TCP_LOG_HTTPD_RANGE_END)
4915 				fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start)));
4916 			else
4917 				fil->end_seq = 0;
4918 			if (tptosocket(tp)->so_snd.sb_tls_info) {
4919 				/*
4920 				 * This session is doing TLS. Take a swag guess
4921 				 * at the overhead.
4922 				 */
4923 				fil->end_seq += tcp_estimate_tls_overhead(
4924 				    tptosocket(tp), (fil->end - fil->start));
4925 			}
4926 			tp->t_tcpreq_req++;
4927 			if (fil->flags & TCP_TRK_TRACK_FLG_OPEN)
4928 				tp->t_tcpreq_open++;
4929 			else
4930 				tp->t_tcpreq_closed++;
4931 			tcp_req_log_req_info(tp, fil, i,
4932 			    TCP_TRK_REQ_LOG_NEW, 0, 0);
4933 			break;
4934 		} else
4935 			fil = NULL;
4936 	}
4937 	return (fil);
4938 }
4939 
4940 void
tcp_req_alloc_req(struct tcpcb * tp,union tcp_log_userdata * user,uint64_t ts)4941 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts)
4942 {
4943 	(void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1);
4944 }
4945 #endif
4946 
4947 void
tcp_log_socket_option(struct tcpcb * tp,uint32_t option_num,uint32_t option_val,int err)4948 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err)
4949 {
4950 	if (tcp_bblogging_on(tp)) {
4951 		struct tcp_log_buffer *l;
4952 
4953 		l = tcp_log_event(tp, NULL,
4954 		        &tptosocket(tp)->so_rcv,
4955 		        &tptosocket(tp)->so_snd,
4956 		        TCP_LOG_SOCKET_OPT,
4957 		        err, 0, NULL, 1,
4958 		        NULL, NULL, 0, NULL);
4959 		if (l) {
4960 			l->tlb_flex1 = option_num;
4961 			l->tlb_flex2 = option_val;
4962 		}
4963 	}
4964 }
4965 
4966 uint32_t
tcp_get_srtt(struct tcpcb * tp,int granularity)4967 tcp_get_srtt(struct tcpcb *tp, int granularity)
4968 {
4969 	uint32_t srtt;
4970 
4971 	KASSERT(granularity == TCP_TMR_GRANULARITY_USEC ||
4972 	    granularity == TCP_TMR_GRANULARITY_TICKS,
4973 	    ("%s: called with unexpected granularity %d", __func__,
4974 	    granularity));
4975 
4976 	srtt = tp->t_srtt;
4977 
4978 	/*
4979 	 * We only support two granularities. If the stored granularity
4980 	 * does not match the granularity requested by the caller,
4981 	 * convert the stored value to the requested unit of granularity.
4982 	 */
4983 	if (tp->t_tmr_granularity != granularity) {
4984 		if (granularity == TCP_TMR_GRANULARITY_USEC)
4985 			srtt = TICKS_2_USEC(srtt);
4986 		else
4987 			srtt = USEC_2_TICKS(srtt);
4988 	}
4989 
4990 	/*
4991 	 * If the srtt is stored with ticks granularity, we need to
4992 	 * unshift to get the actual value. We do this after the
4993 	 * conversion above (if one was necessary) in order to maximize
4994 	 * precision.
4995 	 */
4996 	if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS)
4997 		srtt = srtt >> TCP_RTT_SHIFT;
4998 
4999 	return (srtt);
5000 }
5001 
5002 void
tcp_account_for_send(struct tcpcb * tp,uint32_t len,uint8_t is_rxt,uint8_t is_tlp,bool hw_tls)5003 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt,
5004     uint8_t is_tlp, bool hw_tls)
5005 {
5006 
5007 	if (is_tlp) {
5008 		tp->t_sndtlppack++;
5009 		tp->t_sndtlpbyte += len;
5010 	}
5011 	/* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */
5012 	if (is_rxt)
5013 		tp->t_snd_rxt_bytes += len;
5014 	else
5015 		tp->t_sndbytes += len;
5016 
5017 #ifdef KERN_TLS
5018 	if (hw_tls && is_rxt && len != 0) {
5019 		uint64_t rexmit_percent;
5020 
5021 		rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) /
5022 		    (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes));
5023 		if (rexmit_percent > ktls_ifnet_max_rexmit_pct)
5024 			ktls_disable_ifnet(tp);
5025 	}
5026 #endif
5027 }
5028