xref: /freebsd/sys/netinet/tcp_stacks/rack_bbr_common.c (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 /*-
2  * Copyright (c) 2016-9
3  *	Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 #include "opt_kern_tls.h"
44 #include <sys/param.h>
45 #include <sys/arb.h>
46 #include <sys/module.h>
47 #include <sys/kernel.h>
48 #ifdef TCP_HHOOK
49 #include <sys/hhook.h>
50 #endif
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>
54 #include <sys/qmath.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #ifdef KERN_TLS
58 #include <sys/ktls.h>
59 #endif
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 #include <sys/tree.h>
63 #ifdef NETFLIX_STATS
64 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
65 #endif
66 #include <sys/refcount.h>
67 #include <sys/queue.h>
68 #include <sys/smp.h>
69 #include <sys/kthread.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/tim_filter.h>
73 #include <sys/time.h>
74 #include <vm/uma.h>
75 #include <sys/kern_prefetch.h>
76 
77 #include <net/route.h>
78 #include <net/vnet.h>
79 #include <net/ethernet.h>
80 #include <net/bpf.h>
81 
82 #define TCPSTATES		/* for logging */
83 
84 #include <netinet/in.h>
85 #include <netinet/in_kdtrace.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
89 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
90 #include <netinet/ip_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet/tcp.h>
95 #include <netinet/tcp_fsm.h>
96 #include <netinet/tcp_seq.h>
97 #include <netinet/tcp_timer.h>
98 #include <netinet/tcp_var.h>
99 #include <netinet/tcpip.h>
100 #include <netinet/tcp_hpts.h>
101 #include <netinet/cc/cc.h>
102 #include <netinet/tcp_log_buf.h>
103 #ifdef TCPDEBUG
104 #include <netinet/tcp_debug.h>
105 #endif				/* TCPDEBUG */
106 #ifdef TCP_OFFLOAD
107 #include <netinet/tcp_offload.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/tcp6_var.h>
111 #endif
112 #include <netinet/tcp_fastopen.h>
113 
114 #include <netipsec/ipsec_support.h>
115 #include <net/if.h>
116 #include <net/if_var.h>
117 
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif				/* IPSEC */
122 
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126 
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "rack_bbr_common.h"
131 
132 /*
133  * Common TCP Functions - These are shared by borth
134  * rack and BBR.
135  */
136 #ifdef KERN_TLS
137 uint32_t
138 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
139 {
140 	struct ktls_session *tls;
141 	uint32_t len;
142 
143 again:
144 	tls = so->so_snd.sb_tls_info;
145 	len = tls->params.max_frame_len;         /* max tls payload */
146 	len += tls->params.tls_hlen;      /* tls header len  */
147 	len += tls->params.tls_tlen;      /* tls trailer len */
148 	if ((len * 4) > rwnd) {
149 		/*
150 		 * Stroke this will suck counter and what
151 		 * else should we do Drew? From the
152 		 * TCP perspective I am not sure
153 		 * what should be done...
154 		 */
155 		if (tls->params.max_frame_len > 4096) {
156 			tls->params.max_frame_len -= 4096;
157 			if (tls->params.max_frame_len < 4096)
158 				tls->params.max_frame_len = 4096;
159 			goto again;
160 		}
161 	}
162 	return (len);
163 }
164 #endif
165 
166 
167 /*
168  * The function ctf_process_inbound_raw() is used by
169  * transport developers to do the steps needed to
170  * support MBUF Queuing i.e. the flags in
171  * inp->inp_flags2:
172  *
173  * - INP_SUPPORTS_MBUFQ
174  * - INP_MBUF_QUEUE_READY
175  * - INP_DONT_SACK_QUEUE
176  *
177  * These flags help control how LRO will deliver
178  * packets to the transport. You first set in inp_flags2
179  * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
180  * will gladly take a queue of packets instead of a compressed
181  * single packet. You also set in your t_fb pointer the
182  * tfb_do_queued_segments to point to ctf_process_inbound_raw.
183  *
184  * This then gets you lists of inbound ACK's/Data instead
185  * of a condensed compressed ACK/DATA packet. Why would you
186  * want that? This will get you access to all the arrival
187  * times of at least LRO and possibly at the Hardware (if
188  * the interface card supports that) of the actual ACK/DATA.
189  * In some transport designs this is important since knowing
190  * the actual time we got the packet is useful information.
191  *
192  * Now there are some interesting Caveats that the transport
193  * designer needs to take into account when using this feature.
194  *
195  * 1) It is used with HPTS and pacing, when the pacing timer
196  *    for output calls it will first call the input.
197  * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
198  *    queue normal packets, I am busy pacing out data and
199  *    will process the queued packets before my tfb_tcp_output
200  *    call from pacing. If a non-normal packet arrives, (e.g. sack)
201  *    you will be awoken immediately.
202  * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
203  *    be awoken if a SACK has arrived. You would do this when
204  *    you were not only running a pacing for output timer
205  *    but a Rack timer as well i.e. you know you are in recovery
206  *    and are in the process (via the timers) of dealing with
207  *    the loss.
208  *
209  * Now a critical thing you must be aware of here is that the
210  * use of the flags has a far greater scope then just your
211  * typical LRO. Why? Well thats because in the normal compressed
212  * LRO case at the end of a driver interupt all packets are going
213  * to get presented to the transport no matter if there is one
214  * or 100. With the MBUF_QUEUE model, this is not true. You will
215  * only be awoken to process the queue of packets when:
216  *     a) The flags discussed above allow it.
217  *          <or>
218  *     b) You exceed a ack or data limit (by default the
219  *        ack limit is infinity (64k acks) and the data
220  *        limit is 64k of new TCP data)
221  *         <or>
222  *     c) The push bit has been set by the peer
223  */
224 
225 int
226 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
227 {
228 	/*
229 	 * We are passed a raw change of mbuf packets
230 	 * that arrived in LRO. They are linked via
231 	 * the m_nextpkt link in the pkt-headers.
232 	 *
233 	 * We process each one by:
234 	 * a) saving off the next
235 	 * b) stripping off the ether-header
236 	 * c) formulating the arguments for
237 	 *    the tfb_tcp_hpts_do_segment
238 	 * d) calling each mbuf to tfb_tcp_hpts_do_segment
239 	 *    after adjusting the time to match the arrival time.
240 	 * Note that the LRO code assures no IP options are present.
241 	 *
242 	 * The symantics for calling tfb_tcp_hpts_do_segment are the
243 	 * following:
244 	 * 1) It returns 0 if all went well and you (the caller) need
245 	 *    to release the lock.
246 	 * 2) If nxt_pkt is set, then the function will surpress calls
247 	 *    to tfb_tcp_output() since you are promising to call again
248 	 *    with another packet.
249 	 * 3) If it returns 1, then you must free all the packets being
250 	 *    shipped in, the tcb has been destroyed (or about to be destroyed).
251 	 */
252 	struct mbuf *m_save;
253 	struct ether_header *eh;
254 	struct tcphdr *th;
255 #ifdef INET6
256 	struct ip6_hdr *ip6 = NULL;	/* Keep compiler happy. */
257 #endif
258 #ifdef INET
259 	struct ip *ip = NULL;		/* Keep compiler happy. */
260 #endif
261 	struct ifnet *ifp;
262 	struct timeval tv;
263 	int32_t retval, nxt_pkt, tlen, off;
264 	uint16_t etype;
265 	uint16_t drop_hdrlen;
266 	uint8_t iptos, no_vn=0, bpf_req=0;
267 
268 	NET_EPOCH_ASSERT();
269 
270 	if (m && m->m_pkthdr.rcvif)
271 		ifp = m->m_pkthdr.rcvif;
272 	else
273 		ifp = NULL;
274 	if (ifp) {
275 		bpf_req = bpf_peers_present(ifp->if_bpf);
276 	} else  {
277 		/*
278 		 * We probably should not work around
279 		 * but kassert, since lro alwasy sets rcvif.
280 		 */
281 		no_vn = 1;
282 		goto skip_vnet;
283 	}
284 	CURVNET_SET(ifp->if_vnet);
285 skip_vnet:
286 	while (m) {
287 		m_save = m->m_nextpkt;
288 		m->m_nextpkt = NULL;
289 		/* Now lets get the ether header */
290 		eh = mtod(m, struct ether_header *);
291 		etype = ntohs(eh->ether_type);
292 		/* Let the BPF see the packet */
293 		if (bpf_req && ifp)
294 			ETHER_BPF_MTAP(ifp, m);
295 		m_adj(m,  sizeof(*eh));
296 		/* Trim off the ethernet header */
297 		switch (etype) {
298 #ifdef INET6
299 		case ETHERTYPE_IPV6:
300 		{
301 			if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
302 				m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
303 				if (m == NULL) {
304 					KMOD_TCPSTAT_INC(tcps_rcvshort);
305 					m_freem(m);
306 					goto skipped_pkt;
307 				}
308 			}
309 			ip6 = (struct ip6_hdr *)(eh + 1);
310 			th = (struct tcphdr *)(ip6 + 1);
311 			tlen = ntohs(ip6->ip6_plen);
312 			drop_hdrlen = sizeof(*ip6);
313 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
314 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
315 					th->th_sum = m->m_pkthdr.csum_data;
316 				else
317 					th->th_sum = in6_cksum_pseudo(ip6, tlen,
318 								      IPPROTO_TCP, m->m_pkthdr.csum_data);
319 				th->th_sum ^= 0xffff;
320 			} else
321 				th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
322 			if (th->th_sum) {
323 				KMOD_TCPSTAT_INC(tcps_rcvbadsum);
324 				m_freem(m);
325 				goto skipped_pkt;
326 			}
327 			/*
328 			 * Be proactive about unspecified IPv6 address in source.
329 			 * As we use all-zero to indicate unbounded/unconnected pcb,
330 			 * unspecified IPv6 address can be used to confuse us.
331 			 *
332 			 * Note that packets with unspecified IPv6 destination is
333 			 * already dropped in ip6_input.
334 			 */
335 			if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
336 				/* XXX stat */
337 				m_freem(m);
338 				goto skipped_pkt;
339 			}
340 			iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
341 			break;
342 		}
343 #endif
344 #ifdef INET
345 		case ETHERTYPE_IP:
346 		{
347 			if (m->m_len < sizeof (struct tcpiphdr)) {
348 				if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
349 				    == NULL) {
350 					KMOD_TCPSTAT_INC(tcps_rcvshort);
351 					m_freem(m);
352 					goto skipped_pkt;
353 				}
354 			}
355 			ip = (struct ip *)(eh + 1);
356 			th = (struct tcphdr *)(ip + 1);
357 			drop_hdrlen = sizeof(*ip);
358 			iptos = ip->ip_tos;
359 			tlen = ntohs(ip->ip_len) - sizeof(struct ip);
360 			if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
361 				if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
362 					th->th_sum = m->m_pkthdr.csum_data;
363 				else
364 					th->th_sum = in_pseudo(ip->ip_src.s_addr,
365 							       ip->ip_dst.s_addr,
366 							       htonl(m->m_pkthdr.csum_data + tlen +
367 								     IPPROTO_TCP));
368 				th->th_sum ^= 0xffff;
369 			} else {
370 				int len;
371 				struct ipovly *ipov = (struct ipovly *)ip;
372 				/*
373 				 * Checksum extended TCP header and data.
374 				 */
375 				len = drop_hdrlen + tlen;
376 				bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
377 				ipov->ih_len = htons(tlen);
378 				th->th_sum = in_cksum(m, len);
379 				/* Reset length for SDT probes. */
380 				ip->ip_len = htons(len);
381 				/* Reset TOS bits */
382 				ip->ip_tos = iptos;
383 				/* Re-initialization for later version check */
384 				ip->ip_v = IPVERSION;
385 				ip->ip_hl = sizeof(*ip) >> 2;
386 			}
387 			if (th->th_sum) {
388 				KMOD_TCPSTAT_INC(tcps_rcvbadsum);
389 				m_freem(m);
390 				goto skipped_pkt;
391 			}
392 			break;
393 		}
394 #endif
395 		}
396 		/*
397 		 * Convert TCP protocol specific fields to host format.
398 		 */
399 		tcp_fields_to_host(th);
400 
401 		off = th->th_off << 2;
402 		if (off < sizeof (struct tcphdr) || off > tlen) {
403 			KMOD_TCPSTAT_INC(tcps_rcvbadoff);
404 				m_freem(m);
405 				goto skipped_pkt;
406 		}
407 		tlen -= off;
408 		drop_hdrlen += off;
409 		/*
410 		 * Now lets setup the timeval to be when we should
411 		 * have been called (if we can).
412 		 */
413 		m->m_pkthdr.lro_nsegs = 1;
414 		if (m->m_flags & M_TSTMP_LRO) {
415 			tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
416 			tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
417 		} else {
418 			/* Should not be should we kassert instead? */
419 			tcp_get_usecs(&tv);
420 		}
421 		/* Now what about next packet? */
422 		if (m_save || has_pkt)
423 			nxt_pkt = 1;
424 		else
425 			nxt_pkt = 0;
426 		retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
427 							      iptos, nxt_pkt, &tv);
428 		if (retval) {
429 			/* We lost the lock and tcb probably */
430 			m = m_save;
431 			while(m) {
432 				m_save = m->m_nextpkt;
433 				m->m_nextpkt = NULL;
434 				m_freem(m);
435 				m = m_save;
436 			}
437 			if (no_vn == 0)
438 				CURVNET_RESTORE();
439 			return(retval);
440 		}
441 skipped_pkt:
442 		m = m_save;
443 	}
444 	if (no_vn == 0)
445 		CURVNET_RESTORE();
446 	return(retval);
447 }
448 
449 int
450 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
451 {
452 	struct mbuf *m;
453 
454 	/* First lets see if we have old packets */
455 	if (tp->t_in_pkt) {
456 		m = tp->t_in_pkt;
457 		tp->t_in_pkt = NULL;
458 		tp->t_tail_pkt = NULL;
459 		if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
460 			/* We lost the tcpcb (maybe a RST came in)? */
461 			return(1);
462 		}
463 	}
464 	return (0);
465 }
466 
467 uint32_t
468 ctf_outstanding(struct tcpcb *tp)
469 {
470 	return(tp->snd_max - tp->snd_una);
471 }
472 
473 uint32_t
474 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
475 {
476 	if (rc_sacked <= ctf_outstanding(tp))
477 		return(ctf_outstanding(tp) - rc_sacked);
478 	else {
479 		/* TSNH */
480 #ifdef INVARIANTS
481 		panic("tp:%p rc_sacked:%d > out:%d",
482 		      tp, rc_sacked, ctf_outstanding(tp));
483 #endif
484 		return (0);
485 	}
486 }
487 
488 void
489 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
490     int32_t rstreason, int32_t tlen)
491 {
492 	if (tp != NULL) {
493 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
494 		INP_WUNLOCK(tp->t_inpcb);
495 	} else
496 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
497 }
498 
499 /*
500  * ctf_drop_checks returns 1 for you should not proceed. It places
501  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
502  * that the TCB is unlocked and probably dropped. The 0 indicates the
503  * TCB is still valid and locked.
504  */
505 int
506 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
507 {
508 	int32_t todrop;
509 	int32_t thflags;
510 	int32_t tlen;
511 
512 	thflags = *thf;
513 	tlen = *tlenp;
514 	todrop = tp->rcv_nxt - th->th_seq;
515 	if (todrop > 0) {
516 		if (thflags & TH_SYN) {
517 			thflags &= ~TH_SYN;
518 			th->th_seq++;
519 			if (th->th_urp > 1)
520 				th->th_urp--;
521 			else
522 				thflags &= ~TH_URG;
523 			todrop--;
524 		}
525 		/*
526 		 * Following if statement from Stevens, vol. 2, p. 960.
527 		 */
528 		if (todrop > tlen
529 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
530 			/*
531 			 * Any valid FIN must be to the left of the window.
532 			 * At this point the FIN must be a duplicate or out
533 			 * of sequence; drop it.
534 			 */
535 			thflags &= ~TH_FIN;
536 			/*
537 			 * Send an ACK to resynchronize and drop any data.
538 			 * But keep on processing for RST or ACK.
539 			 */
540 			tp->t_flags |= TF_ACKNOW;
541 			todrop = tlen;
542 			KMOD_TCPSTAT_INC(tcps_rcvduppack);
543 			KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
544 		} else {
545 			KMOD_TCPSTAT_INC(tcps_rcvpartduppack);
546 			KMOD_TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
547 		}
548 		/*
549 		 * DSACK - add SACK block for dropped range
550 		 */
551 		if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
552 			tcp_update_sack_list(tp, th->th_seq,
553 			    th->th_seq + todrop);
554 			/*
555 			 * ACK now, as the next in-sequence segment
556 			 * will clear the DSACK block again
557 			 */
558 			tp->t_flags |= TF_ACKNOW;
559 		}
560 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
561 		th->th_seq += todrop;
562 		tlen -= todrop;
563 		if (th->th_urp > todrop)
564 			th->th_urp -= todrop;
565 		else {
566 			thflags &= ~TH_URG;
567 			th->th_urp = 0;
568 		}
569 	}
570 	/*
571 	 * If segment ends after window, drop trailing data (and PUSH and
572 	 * FIN); if nothing left, just ACK.
573 	 */
574 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
575 	if (todrop > 0) {
576 		KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
577 		if (todrop >= tlen) {
578 			KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
579 			/*
580 			 * If window is closed can only take segments at
581 			 * window edge, and have to drop data and PUSH from
582 			 * incoming segments.  Continue processing, but
583 			 * remember to ack.  Otherwise, drop segment and
584 			 * ack.
585 			 */
586 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
587 				tp->t_flags |= TF_ACKNOW;
588 				KMOD_TCPSTAT_INC(tcps_rcvwinprobe);
589 			} else {
590 				ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
591 				return (1);
592 			}
593 		} else
594 			KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
595 		m_adj(m, -todrop);
596 		tlen -= todrop;
597 		thflags &= ~(TH_PUSH | TH_FIN);
598 	}
599 	*thf = thflags;
600 	*tlenp = tlen;
601 	return (0);
602 }
603 
604 /*
605  * The value in ret_val informs the caller
606  * if we dropped the tcb (and lock) or not.
607  * 1 = we dropped it, 0 = the TCB is still locked
608  * and valid.
609  */
610 void
611 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
612 {
613 	/*
614 	 * Generate an ACK dropping incoming segment if it occupies sequence
615 	 * space, where the ACK reflects our state.
616 	 *
617 	 * We can now skip the test for the RST flag since all paths to this
618 	 * code happen after packets containing RST have been dropped.
619 	 *
620 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
621 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
622 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
623 	 * prevents an ACK storm between two listening ports that have been
624 	 * sent forged SYN segments, each with the source address of the
625 	 * other.
626 	 */
627 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
628 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
629 	    SEQ_GT(th->th_ack, tp->snd_max))) {
630 		*ret_val = 1;
631 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
632 		return;
633 	} else
634 		*ret_val = 0;
635 	tp->t_flags |= TF_ACKNOW;
636 	if (m)
637 		m_freem(m);
638 }
639 
640 void
641 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
642 {
643 
644 	/*
645 	 * Drop space held by incoming segment and return.
646 	 */
647 	if (tp != NULL)
648 		INP_WUNLOCK(tp->t_inpcb);
649 	if (m)
650 		m_freem(m);
651 }
652 
653 int
654 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
655 {
656 	/*
657 	 * RFC5961 Section 3.2
658 	 *
659 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
660 	 * window, we send challenge ACK.
661 	 *
662 	 * Note: to take into account delayed ACKs, we should test against
663 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
664 	 * of closed window, not covered by the RFC.
665 	 */
666 	int dropped = 0;
667 
668 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
669 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
670 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
671 
672 		KASSERT(tp->t_state != TCPS_SYN_SENT,
673 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
674 		    __func__, th, tp));
675 
676 		if (V_tcp_insecure_rst ||
677 		    (tp->last_ack_sent == th->th_seq) ||
678 		    (tp->rcv_nxt == th->th_seq) ||
679 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
680 			KMOD_TCPSTAT_INC(tcps_drops);
681 			/* Drop the connection. */
682 			switch (tp->t_state) {
683 			case TCPS_SYN_RECEIVED:
684 				so->so_error = ECONNREFUSED;
685 				goto close;
686 			case TCPS_ESTABLISHED:
687 			case TCPS_FIN_WAIT_1:
688 			case TCPS_FIN_WAIT_2:
689 			case TCPS_CLOSE_WAIT:
690 			case TCPS_CLOSING:
691 			case TCPS_LAST_ACK:
692 				so->so_error = ECONNRESET;
693 		close:
694 				tcp_state_change(tp, TCPS_CLOSED);
695 				/* FALLTHROUGH */
696 			default:
697 				tp = tcp_close(tp);
698 			}
699 			dropped = 1;
700 			ctf_do_drop(m, tp);
701 		} else {
702 			KMOD_TCPSTAT_INC(tcps_badrst);
703 			/* Send challenge ACK. */
704 			tcp_respond(tp, mtod(m, void *), th, m,
705 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
706 			tp->last_ack_sent = tp->rcv_nxt;
707 		}
708 	} else {
709 		m_freem(m);
710 	}
711 	return (dropped);
712 }
713 
714 /*
715  * The value in ret_val informs the caller
716  * if we dropped the tcb (and lock) or not.
717  * 1 = we dropped it, 0 = the TCB is still locked
718  * and valid.
719  */
720 void
721 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
722 {
723 
724 	NET_EPOCH_ASSERT();
725 
726 	KMOD_TCPSTAT_INC(tcps_badsyn);
727 	if (V_tcp_insecure_syn &&
728 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
729 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
730 		tp = tcp_drop(tp, ECONNRESET);
731 		*ret_val = 1;
732 		ctf_do_drop(m, tp);
733 	} else {
734 		/* Send challenge ACK. */
735 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
736 		    tp->snd_nxt, TH_ACK);
737 		tp->last_ack_sent = tp->rcv_nxt;
738 		m = NULL;
739 		*ret_val = 0;
740 		ctf_do_drop(m, NULL);
741 	}
742 }
743 
744 /*
745  * bbr_ts_check returns 1 for you should not proceed, the state
746  * machine should return. It places in ret_val what should
747  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
748  * that the TCB is unlocked and probably dropped. The 0 indicates the
749  * TCB is still valid and locked.
750  */
751 int
752 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
753     int32_t tlen, int32_t thflags, int32_t * ret_val)
754 {
755 
756 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
757 		/*
758 		 * Invalidate ts_recent.  If this segment updates ts_recent,
759 		 * the age will be reset later and ts_recent will get a
760 		 * valid value.  If it does not, setting ts_recent to zero
761 		 * will at least satisfy the requirement that zero be placed
762 		 * in the timestamp echo reply when ts_recent isn't valid.
763 		 * The age isn't reset until we get a valid ts_recent
764 		 * because we don't want out-of-order segments to be dropped
765 		 * when ts_recent is old.
766 		 */
767 		tp->ts_recent = 0;
768 	} else {
769 		KMOD_TCPSTAT_INC(tcps_rcvduppack);
770 		KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
771 		KMOD_TCPSTAT_INC(tcps_pawsdrop);
772 		*ret_val = 0;
773 		if (tlen) {
774 			ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
775 		} else {
776 			ctf_do_drop(m, NULL);
777 		}
778 		return (1);
779 	}
780 	return (0);
781 }
782 
783 void
784 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
785 {
786 	int32_t win;
787 
788 	/*
789 	 * Calculate amount of space in receive window, and then do TCP
790 	 * input processing. Receive window is amount of space in rcv queue,
791 	 * but not less than advertised window.
792 	 */
793 	win = sbspace(&so->so_rcv);
794 	if (win < 0)
795 		win = 0;
796 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
797 }
798 
799 void
800 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
801     int32_t rstreason, int32_t tlen)
802 {
803 
804 	if (tp->t_inpcb) {
805 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
806 	}
807 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
808 	INP_WUNLOCK(tp->t_inpcb);
809 }
810 
811 uint32_t
812 ctf_fixed_maxseg(struct tcpcb *tp)
813 {
814 	int optlen;
815 
816 	if (tp->t_flags & TF_NOOPT)
817 		return (tp->t_maxseg);
818 
819 	/*
820 	 * Here we have a simplified code from tcp_addoptions(),
821 	 * without a proper loop, and having most of paddings hardcoded.
822 	 * We only consider fixed options that we would send every
823 	 * time I.e. SACK is not considered.
824 	 *
825 	 */
826 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
827 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
828 		if (tp->t_flags & TF_RCVD_TSTMP)
829 			optlen = TCPOLEN_TSTAMP_APPA;
830 		else
831 			optlen = 0;
832 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
833 		if (tp->t_flags & TF_SIGNATURE)
834 			optlen += PAD(TCPOLEN_SIGNATURE);
835 #endif
836 	} else {
837 		if (tp->t_flags & TF_REQ_TSTMP)
838 			optlen = TCPOLEN_TSTAMP_APPA;
839 		else
840 			optlen = PAD(TCPOLEN_MAXSEG);
841 		if (tp->t_flags & TF_REQ_SCALE)
842 			optlen += PAD(TCPOLEN_WINDOW);
843 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
844 		if (tp->t_flags & TF_SIGNATURE)
845 			optlen += PAD(TCPOLEN_SIGNATURE);
846 #endif
847 		if (tp->t_flags & TF_SACK_PERMIT)
848 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
849 	}
850 #undef PAD
851 	optlen = min(optlen, TCP_MAXOLEN);
852 	return (tp->t_maxseg - optlen);
853 }
854 
855 void
856 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
857 {
858 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
859 		union tcp_log_stackspecific log;
860 		struct timeval tv;
861 
862 		memset(&log, 0, sizeof(log));
863 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
864 		log.u_bbr.flex8 = num_sack_blks;
865 		if (num_sack_blks > 0) {
866 			log.u_bbr.flex1 = sack_blocks[0].start;
867 			log.u_bbr.flex2 = sack_blocks[0].end;
868 		}
869 		if (num_sack_blks > 1) {
870 			log.u_bbr.flex3 = sack_blocks[1].start;
871 			log.u_bbr.flex4 = sack_blocks[1].end;
872 		}
873 		if (num_sack_blks > 2) {
874 			log.u_bbr.flex5 = sack_blocks[2].start;
875 			log.u_bbr.flex6 = sack_blocks[2].end;
876 		}
877 		if (num_sack_blks > 3) {
878 			log.u_bbr.applimited = sack_blocks[3].start;
879 			log.u_bbr.pkts_out = sack_blocks[3].end;
880 		}
881 		TCP_LOG_EVENTP(tp, NULL,
882 		    &tp->t_inpcb->inp_socket->so_rcv,
883 		    &tp->t_inpcb->inp_socket->so_snd,
884 		    TCP_SACK_FILTER_RES, 0,
885 		    0, &log, false, &tv);
886 	}
887 }
888 
889 uint32_t
890 ctf_decay_count(uint32_t count, uint32_t decay)
891 {
892 	/*
893 	 * Given a count, decay it by a set percentage. The
894 	 * percentage is in thousands i.e. 100% = 1000,
895 	 * 19.3% = 193.
896 	 */
897 	uint64_t perc_count, decay_per;
898 	uint32_t decayed_count;
899 	if (decay > 1000) {
900 		/* We don't raise it */
901 		return (count);
902 	}
903 	perc_count = count;
904 	decay_per = decay;
905 	perc_count *= decay_per;
906 	perc_count /= 1000;
907 	/*
908 	 * So now perc_count holds the
909 	 * count decay value.
910 	 */
911 	decayed_count = count - (uint32_t)perc_count;
912 	return(decayed_count);
913 }
914