1 /*- 2 * Copyright (c) 2016-2020 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_ipsec.h" 33 #include "opt_tcpdebug.h" 34 #include "opt_ratelimit.h" 35 #include "opt_kern_tls.h" 36 #include <sys/param.h> 37 #include <sys/arb.h> 38 #include <sys/module.h> 39 #include <sys/kernel.h> 40 #ifdef TCP_HHOOK 41 #include <sys/hhook.h> 42 #endif 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/proc.h> /* for proc0 declaration */ 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #ifdef STATS 54 #include <sys/qmath.h> 55 #include <sys/tree.h> 56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */ 57 #else 58 #include <sys/tree.h> 59 #endif 60 #include <sys/refcount.h> 61 #include <sys/queue.h> 62 #include <sys/tim_filter.h> 63 #include <sys/smp.h> 64 #include <sys/kthread.h> 65 #include <sys/kern_prefetch.h> 66 #include <sys/protosw.h> 67 #ifdef TCP_ACCOUNTING 68 #include <sys/sched.h> 69 #include <machine/cpu.h> 70 #endif 71 #include <vm/uma.h> 72 73 #include <net/route.h> 74 #include <net/route/nhop.h> 75 #include <net/vnet.h> 76 77 #define TCPSTATES /* for logging */ 78 79 #include <netinet/in.h> 80 #include <netinet/in_kdtrace.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 84 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 85 #include <netinet/ip_var.h> 86 #include <netinet/ip6.h> 87 #include <netinet6/in6_pcb.h> 88 #include <netinet6/ip6_var.h> 89 #include <netinet/tcp.h> 90 #define TCPOUTFLAGS 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_log_buf.h> 93 #include <netinet/tcp_seq.h> 94 #include <netinet/tcp_timer.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet/tcp_syncache.h> 97 #include <netinet/tcp_hpts.h> 98 #include <netinet/tcp_ratelimit.h> 99 #include <netinet/tcp_accounting.h> 100 #include <netinet/tcpip.h> 101 #include <netinet/cc/cc.h> 102 #include <netinet/cc/cc_newreno.h> 103 #include <netinet/tcp_fastopen.h> 104 #include <netinet/tcp_lro.h> 105 #ifdef NETFLIX_SHARED_CWND 106 #include <netinet/tcp_shared_cwnd.h> 107 #endif 108 #ifdef TCPDEBUG 109 #include <netinet/tcp_debug.h> 110 #endif /* TCPDEBUG */ 111 #ifdef TCP_OFFLOAD 112 #include <netinet/tcp_offload.h> 113 #endif 114 #ifdef INET6 115 #include <netinet6/tcp6_var.h> 116 #endif 117 #include <netinet/tcp_ecn.h> 118 119 #include <netipsec/ipsec_support.h> 120 121 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 122 #include <netipsec/ipsec.h> 123 #include <netipsec/ipsec6.h> 124 #endif /* IPSEC */ 125 126 #include <netinet/udp.h> 127 #include <netinet/udp_var.h> 128 #include <machine/in_cksum.h> 129 130 #ifdef MAC 131 #include <security/mac/mac_framework.h> 132 #endif 133 #include "sack_filter.h" 134 #include "tcp_rack.h" 135 #include "rack_bbr_common.h" 136 137 uma_zone_t rack_zone; 138 uma_zone_t rack_pcb_zone; 139 140 #ifndef TICKS2SBT 141 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) 142 #endif 143 144 VNET_DECLARE(uint32_t, newreno_beta); 145 VNET_DECLARE(uint32_t, newreno_beta_ecn); 146 #define V_newreno_beta VNET(newreno_beta) 147 #define V_newreno_beta_ecn VNET(newreno_beta_ecn) 148 149 150 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block"); 151 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options"); 152 153 struct sysctl_ctx_list rack_sysctl_ctx; 154 struct sysctl_oid *rack_sysctl_root; 155 156 #define CUM_ACKED 1 157 #define SACKED 2 158 159 /* 160 * The RACK module incorporates a number of 161 * TCP ideas that have been put out into the IETF 162 * over the last few years: 163 * - Matt Mathis's Rate Halving which slowly drops 164 * the congestion window so that the ack clock can 165 * be maintained during a recovery. 166 * - Yuchung Cheng's RACK TCP (for which its named) that 167 * will stop us using the number of dup acks and instead 168 * use time as the gage of when we retransmit. 169 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft 170 * of Dukkipati et.al. 171 * RACK depends on SACK, so if an endpoint arrives that 172 * cannot do SACK the state machine below will shuttle the 173 * connection back to using the "default" TCP stack that is 174 * in FreeBSD. 175 * 176 * To implement RACK the original TCP stack was first decomposed 177 * into a functional state machine with individual states 178 * for each of the possible TCP connection states. The do_segment 179 * functions role in life is to mandate the connection supports SACK 180 * initially and then assure that the RACK state matches the conenction 181 * state before calling the states do_segment function. Each 182 * state is simplified due to the fact that the original do_segment 183 * has been decomposed and we *know* what state we are in (no 184 * switches on the state) and all tests for SACK are gone. This 185 * greatly simplifies what each state does. 186 * 187 * TCP output is also over-written with a new version since it 188 * must maintain the new rack scoreboard. 189 * 190 */ 191 static int32_t rack_tlp_thresh = 1; 192 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ 193 static int32_t rack_tlp_use_greater = 1; 194 static int32_t rack_reorder_thresh = 2; 195 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000 196 * - 60 seconds */ 197 static uint8_t rack_req_measurements = 1; 198 /* Attack threshold detections */ 199 static uint32_t rack_highest_sack_thresh_seen = 0; 200 static uint32_t rack_highest_move_thresh_seen = 0; 201 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */ 202 static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */ 203 static int32_t rack_hw_rate_caps = 1; /* 1; */ 204 static int32_t rack_hw_rate_min = 0; /* 1500000;*/ 205 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */ 206 static int32_t rack_hw_up_only = 1; 207 static int32_t rack_stats_gets_ms_rtt = 1; 208 static int32_t rack_prr_addbackmax = 2; 209 static int32_t rack_do_hystart = 0; 210 static int32_t rack_apply_rtt_with_reduced_conf = 0; 211 212 static int32_t rack_pkt_delay = 1000; 213 static int32_t rack_send_a_lot_in_prr = 1; 214 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */ 215 static int32_t rack_verbose_logging = 0; 216 static int32_t rack_ignore_data_after_close = 1; 217 static int32_t rack_enable_shared_cwnd = 1; 218 static int32_t rack_use_cmp_acks = 1; 219 static int32_t rack_use_fsb = 1; 220 static int32_t rack_use_rfo = 1; 221 static int32_t rack_use_rsm_rfo = 1; 222 static int32_t rack_max_abc_post_recovery = 2; 223 static int32_t rack_client_low_buf = 0; 224 static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */ 225 #ifdef TCP_ACCOUNTING 226 static int32_t rack_tcp_accounting = 0; 227 #endif 228 static int32_t rack_limits_scwnd = 1; 229 static int32_t rack_enable_mqueue_for_nonpaced = 0; 230 static int32_t rack_disable_prr = 0; 231 static int32_t use_rack_rr = 1; 232 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ 233 static int32_t rack_persist_min = 250000; /* 250usec */ 234 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */ 235 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */ 236 static int32_t rack_default_init_window = 0; /* Use system default */ 237 static int32_t rack_limit_time_with_srtt = 0; 238 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */ 239 static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */ 240 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */ 241 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */ 242 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */ 243 /* 244 * Currently regular tcp has a rto_min of 30ms 245 * the backoff goes 12 times so that ends up 246 * being a total of 122.850 seconds before a 247 * connection is killed. 248 */ 249 static uint32_t rack_def_data_window = 20; 250 static uint32_t rack_goal_bdp = 2; 251 static uint32_t rack_min_srtts = 1; 252 static uint32_t rack_min_measure_usec = 0; 253 static int32_t rack_tlp_min = 10000; /* 10ms */ 254 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */ 255 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */ 256 static const int32_t rack_free_cache = 2; 257 static int32_t rack_hptsi_segments = 40; 258 static int32_t rack_rate_sample_method = USE_RTT_LOW; 259 static int32_t rack_pace_every_seg = 0; 260 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */ 261 static int32_t rack_slot_reduction = 4; 262 static int32_t rack_wma_divisor = 8; /* For WMA calculation */ 263 static int32_t rack_cwnd_block_ends_measure = 0; 264 static int32_t rack_rwnd_block_ends_measure = 0; 265 static int32_t rack_def_profile = 0; 266 267 static int32_t rack_lower_cwnd_at_tlp = 0; 268 static int32_t rack_limited_retran = 0; 269 static int32_t rack_always_send_oldest = 0; 270 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; 271 272 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ 273 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ 274 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ 275 276 /* Probertt */ 277 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ 278 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ 279 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ 280 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ 281 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ 282 283 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ 284 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ 285 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ 286 static uint32_t rack_probertt_use_min_rtt_exit = 0; 287 static uint32_t rack_probe_rtt_sets_cwnd = 0; 288 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ 289 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */ 290 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ 291 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ 292 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */ 293 static uint32_t rack_probertt_filter_life = 10000000; 294 static uint32_t rack_probertt_lower_within = 10; 295 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */ 296 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ 297 static int32_t rack_probertt_clear_is = 1; 298 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ 299 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ 300 301 /* Part of pacing */ 302 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ 303 304 /* Timely information */ 305 /* Combine these two gives the range of 'no change' to bw */ 306 /* ie the up/down provide the upper and lower bound */ 307 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ 308 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ 309 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ 310 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ 311 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ 312 static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multipler */ 313 static int32_t rack_gp_increase_per = 2; /* 2% increase in multipler */ 314 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ 315 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ 316 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ 317 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ 318 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ 319 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ 320 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ 321 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ 322 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ 323 static int32_t rack_use_max_for_nobackoff = 0; 324 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ 325 static int32_t rack_timely_no_stopping = 0; 326 static int32_t rack_down_raise_thresh = 100; 327 static int32_t rack_req_segs = 1; 328 static uint64_t rack_bw_rate_cap = 0; 329 330 /* Weird delayed ack mode */ 331 static int32_t rack_use_imac_dack = 0; 332 /* Rack specific counters */ 333 counter_u64_t rack_badfr; 334 counter_u64_t rack_badfr_bytes; 335 counter_u64_t rack_rtm_prr_retran; 336 counter_u64_t rack_rtm_prr_newdata; 337 counter_u64_t rack_timestamp_mismatch; 338 counter_u64_t rack_reorder_seen; 339 counter_u64_t rack_paced_segments; 340 counter_u64_t rack_unpaced_segments; 341 counter_u64_t rack_calc_zero; 342 counter_u64_t rack_calc_nonzero; 343 counter_u64_t rack_saw_enobuf; 344 counter_u64_t rack_saw_enobuf_hw; 345 counter_u64_t rack_saw_enetunreach; 346 counter_u64_t rack_per_timer_hole; 347 counter_u64_t rack_large_ackcmp; 348 counter_u64_t rack_small_ackcmp; 349 counter_u64_t rack_persists_sends; 350 counter_u64_t rack_persists_acks; 351 counter_u64_t rack_persists_loss; 352 counter_u64_t rack_persists_lost_ends; 353 #ifdef INVARIANTS 354 counter_u64_t rack_adjust_map_bw; 355 #endif 356 /* Tail loss probe counters */ 357 counter_u64_t rack_tlp_tot; 358 counter_u64_t rack_tlp_newdata; 359 counter_u64_t rack_tlp_retran; 360 counter_u64_t rack_tlp_retran_bytes; 361 counter_u64_t rack_tlp_retran_fail; 362 counter_u64_t rack_to_tot; 363 counter_u64_t rack_to_arm_rack; 364 counter_u64_t rack_to_arm_tlp; 365 counter_u64_t rack_hot_alloc; 366 counter_u64_t rack_to_alloc; 367 counter_u64_t rack_to_alloc_hard; 368 counter_u64_t rack_to_alloc_emerg; 369 counter_u64_t rack_to_alloc_limited; 370 counter_u64_t rack_alloc_limited_conns; 371 counter_u64_t rack_split_limited; 372 373 #define MAX_NUM_OF_CNTS 13 374 counter_u64_t rack_proc_comp_ack[MAX_NUM_OF_CNTS]; 375 counter_u64_t rack_multi_single_eq; 376 counter_u64_t rack_proc_non_comp_ack; 377 378 counter_u64_t rack_fto_send; 379 counter_u64_t rack_fto_rsm_send; 380 counter_u64_t rack_nfto_resend; 381 counter_u64_t rack_non_fto_send; 382 counter_u64_t rack_extended_rfo; 383 384 counter_u64_t rack_sack_proc_all; 385 counter_u64_t rack_sack_proc_short; 386 counter_u64_t rack_sack_proc_restart; 387 counter_u64_t rack_sack_attacks_detected; 388 counter_u64_t rack_sack_attacks_reversed; 389 counter_u64_t rack_sack_used_next_merge; 390 counter_u64_t rack_sack_splits; 391 counter_u64_t rack_sack_used_prev_merge; 392 counter_u64_t rack_sack_skipped_acked; 393 counter_u64_t rack_ack_total; 394 counter_u64_t rack_express_sack; 395 counter_u64_t rack_sack_total; 396 counter_u64_t rack_move_none; 397 counter_u64_t rack_move_some; 398 399 counter_u64_t rack_used_tlpmethod; 400 counter_u64_t rack_used_tlpmethod2; 401 counter_u64_t rack_enter_tlp_calc; 402 counter_u64_t rack_input_idle_reduces; 403 counter_u64_t rack_collapsed_win; 404 counter_u64_t rack_tlp_does_nada; 405 counter_u64_t rack_try_scwnd; 406 counter_u64_t rack_hw_pace_init_fail; 407 counter_u64_t rack_hw_pace_lost; 408 counter_u64_t rack_sbsndptr_right; 409 counter_u64_t rack_sbsndptr_wrong; 410 411 /* Temp CPU counters */ 412 counter_u64_t rack_find_high; 413 414 counter_u64_t rack_progress_drops; 415 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; 416 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; 417 418 419 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2))) 420 421 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \ 422 (tv) = (value) + slop; \ 423 if ((u_long)(tv) < (u_long)(tvmin)) \ 424 (tv) = (tvmin); \ 425 if ((u_long)(tv) > (u_long)(tvmax)) \ 426 (tv) = (tvmax); \ 427 } while (0) 428 429 static void 430 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); 431 432 static int 433 rack_process_ack(struct mbuf *m, struct tcphdr *th, 434 struct socket *so, struct tcpcb *tp, struct tcpopt *to, 435 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); 436 static int 437 rack_process_data(struct mbuf *m, struct tcphdr *th, 438 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 439 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); 440 static void 441 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, 442 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery); 443 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); 444 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, 445 uint8_t limit_type); 446 static struct rack_sendmap * 447 rack_check_recovery_mode(struct tcpcb *tp, 448 uint32_t tsused); 449 static void 450 rack_cong_signal(struct tcpcb *tp, 451 uint32_t type, uint32_t ack); 452 static void rack_counter_destroy(void); 453 static int 454 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt); 455 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); 456 static void 457 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override); 458 static void 459 rack_do_segment(struct mbuf *m, struct tcphdr *th, 460 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 461 uint8_t iptos); 462 static void rack_dtor(void *mem, int32_t size, void *arg); 463 static void 464 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 465 uint32_t flex1, uint32_t flex2, 466 uint32_t flex3, uint32_t flex4, 467 uint32_t flex5, uint32_t flex6, 468 uint16_t flex7, uint8_t mod); 469 470 static void 471 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 472 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, 473 struct rack_sendmap *rsm, uint8_t quality); 474 static struct rack_sendmap * 475 rack_find_high_nonack(struct tcp_rack *rack, 476 struct rack_sendmap *rsm); 477 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); 478 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); 479 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); 480 static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt); 481 static void 482 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 483 tcp_seq th_ack, int line, uint8_t quality); 484 static uint32_t 485 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); 486 static int32_t rack_handoff_ok(struct tcpcb *tp); 487 static int32_t rack_init(struct tcpcb *tp); 488 static void rack_init_sysctls(void); 489 static void 490 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, 491 struct tcphdr *th, int entered_rec, int dup_ack_struck); 492 static void 493 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 494 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts, 495 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls); 496 497 static void 498 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, 499 struct rack_sendmap *rsm); 500 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); 501 static int32_t rack_output(struct tcpcb *tp); 502 503 static uint32_t 504 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, 505 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, 506 uint32_t cts, int *moved_two); 507 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq); 508 static void rack_remxt_tmr(struct tcpcb *tp); 509 static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt); 510 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); 511 static int32_t rack_stopall(struct tcpcb *tp); 512 static void 513 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, 514 uint32_t delta); 515 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type); 516 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); 517 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type); 518 static uint32_t 519 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 520 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag); 521 static void 522 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 523 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag); 524 static int 525 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 526 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); 527 static int32_t tcp_addrack(module_t mod, int32_t type, void *data); 528 static int 529 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, 530 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 531 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 532 static int 533 rack_do_closing(struct mbuf *m, struct tcphdr *th, 534 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 535 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 536 static int 537 rack_do_established(struct mbuf *m, struct tcphdr *th, 538 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 539 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 540 static int 541 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, 542 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 543 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); 544 static int 545 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, 546 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 547 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 548 static int 549 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, 550 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 551 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 552 static int 553 rack_do_lastack(struct mbuf *m, struct tcphdr *th, 554 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 555 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 556 static int 557 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, 558 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 559 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 560 static int 561 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, 562 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 563 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 564 struct rack_sendmap * 565 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, 566 uint32_t tsused); 567 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, 568 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); 569 static void 570 tcp_rack_partialack(struct tcpcb *tp); 571 static int 572 rack_set_profile(struct tcp_rack *rack, int prof); 573 static void 574 rack_apply_deferred_options(struct tcp_rack *rack); 575 576 int32_t rack_clear_counter=0; 577 578 static void 579 rack_set_cc_pacing(struct tcp_rack *rack) 580 { 581 struct sockopt sopt; 582 struct cc_newreno_opts opt; 583 struct newreno old, *ptr; 584 struct tcpcb *tp; 585 int error; 586 587 if (rack->rc_pacing_cc_set) 588 return; 589 590 tp = rack->rc_tp; 591 if (tp->cc_algo == NULL) { 592 /* Tcb is leaving */ 593 printf("No cc algorithm?\n"); 594 return; 595 } 596 rack->rc_pacing_cc_set = 1; 597 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 598 /* Not new-reno we can't play games with beta! */ 599 goto out; 600 } 601 ptr = ((struct newreno *)tp->ccv->cc_data); 602 if (CC_ALGO(tp)->ctl_output == NULL) { 603 /* Huh, why does new_reno no longer have a set function? */ 604 goto out; 605 } 606 if (ptr == NULL) { 607 /* Just the default values */ 608 old.beta = V_newreno_beta_ecn; 609 old.beta_ecn = V_newreno_beta_ecn; 610 old.newreno_flags = 0; 611 } else { 612 old.beta = ptr->beta; 613 old.beta_ecn = ptr->beta_ecn; 614 old.newreno_flags = ptr->newreno_flags; 615 } 616 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 617 sopt.sopt_dir = SOPT_SET; 618 opt.name = CC_NEWRENO_BETA; 619 opt.val = rack->r_ctl.rc_saved_beta.beta; 620 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 621 if (error) { 622 goto out; 623 } 624 /* 625 * Hack alert we need to set in our newreno_flags 626 * so that Abe behavior is also applied. 627 */ 628 ((struct newreno *)tp->ccv->cc_data)->newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 629 opt.name = CC_NEWRENO_BETA_ECN; 630 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn; 631 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 632 if (error) { 633 goto out; 634 } 635 /* Save off the original values for restoral */ 636 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 637 out: 638 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 639 union tcp_log_stackspecific log; 640 struct timeval tv; 641 642 ptr = ((struct newreno *)tp->ccv->cc_data); 643 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 644 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 645 if (ptr) { 646 log.u_bbr.flex1 = ptr->beta; 647 log.u_bbr.flex2 = ptr->beta_ecn; 648 log.u_bbr.flex3 = ptr->newreno_flags; 649 } 650 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 651 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 652 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 653 log.u_bbr.flex7 = rack->gp_ready; 654 log.u_bbr.flex7 <<= 1; 655 log.u_bbr.flex7 |= rack->use_fixed_rate; 656 log.u_bbr.flex7 <<= 1; 657 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 658 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 659 log.u_bbr.flex8 = 3; 660 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error, 661 0, &log, false, NULL, NULL, 0, &tv); 662 } 663 } 664 665 static void 666 rack_undo_cc_pacing(struct tcp_rack *rack) 667 { 668 struct newreno old, *ptr; 669 struct tcpcb *tp; 670 671 if (rack->rc_pacing_cc_set == 0) 672 return; 673 tp = rack->rc_tp; 674 rack->rc_pacing_cc_set = 0; 675 if (tp->cc_algo == NULL) 676 /* Tcb is leaving */ 677 return; 678 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 679 /* Not new-reno nothing to do! */ 680 return; 681 } 682 ptr = ((struct newreno *)tp->ccv->cc_data); 683 if (ptr == NULL) { 684 /* 685 * This happens at rack_fini() if the 686 * cc module gets freed on us. In that 687 * case we loose our "new" settings but 688 * thats ok, since the tcb is going away anyway. 689 */ 690 return; 691 } 692 /* Grab out our set values */ 693 memcpy(&old, ptr, sizeof(struct newreno)); 694 /* Copy back in the original values */ 695 memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno)); 696 /* Now save back the values we had set in (for when pacing is restored) */ 697 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 698 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 699 union tcp_log_stackspecific log; 700 struct timeval tv; 701 702 ptr = ((struct newreno *)tp->ccv->cc_data); 703 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 704 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 705 log.u_bbr.flex1 = ptr->beta; 706 log.u_bbr.flex2 = ptr->beta_ecn; 707 log.u_bbr.flex3 = ptr->newreno_flags; 708 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 709 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 710 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 711 log.u_bbr.flex7 = rack->gp_ready; 712 log.u_bbr.flex7 <<= 1; 713 log.u_bbr.flex7 |= rack->use_fixed_rate; 714 log.u_bbr.flex7 <<= 1; 715 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 716 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 717 log.u_bbr.flex8 = 4; 718 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 719 0, &log, false, NULL, NULL, 0, &tv); 720 } 721 } 722 723 #ifdef NETFLIX_PEAKRATE 724 static inline void 725 rack_update_peakrate_thr(struct tcpcb *tp) 726 { 727 /* Keep in mind that t_maxpeakrate is in B/s. */ 728 uint64_t peak; 729 peak = uqmax((tp->t_maxseg * 2), 730 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC)); 731 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX); 732 } 733 #endif 734 735 static int 736 sysctl_rack_clear(SYSCTL_HANDLER_ARGS) 737 { 738 uint32_t stat; 739 int32_t error; 740 int i; 741 742 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); 743 if (error || req->newptr == NULL) 744 return error; 745 746 error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); 747 if (error) 748 return (error); 749 if (stat == 1) { 750 #ifdef INVARIANTS 751 printf("Clearing RACK counters\n"); 752 #endif 753 counter_u64_zero(rack_badfr); 754 counter_u64_zero(rack_badfr_bytes); 755 counter_u64_zero(rack_rtm_prr_retran); 756 counter_u64_zero(rack_rtm_prr_newdata); 757 counter_u64_zero(rack_timestamp_mismatch); 758 counter_u64_zero(rack_reorder_seen); 759 counter_u64_zero(rack_tlp_tot); 760 counter_u64_zero(rack_tlp_newdata); 761 counter_u64_zero(rack_tlp_retran); 762 counter_u64_zero(rack_tlp_retran_bytes); 763 counter_u64_zero(rack_tlp_retran_fail); 764 counter_u64_zero(rack_to_tot); 765 counter_u64_zero(rack_to_arm_rack); 766 counter_u64_zero(rack_to_arm_tlp); 767 counter_u64_zero(rack_paced_segments); 768 counter_u64_zero(rack_calc_zero); 769 counter_u64_zero(rack_calc_nonzero); 770 counter_u64_zero(rack_unpaced_segments); 771 counter_u64_zero(rack_saw_enobuf); 772 counter_u64_zero(rack_saw_enobuf_hw); 773 counter_u64_zero(rack_saw_enetunreach); 774 counter_u64_zero(rack_per_timer_hole); 775 counter_u64_zero(rack_large_ackcmp); 776 counter_u64_zero(rack_small_ackcmp); 777 counter_u64_zero(rack_persists_sends); 778 counter_u64_zero(rack_persists_acks); 779 counter_u64_zero(rack_persists_loss); 780 counter_u64_zero(rack_persists_lost_ends); 781 #ifdef INVARIANTS 782 counter_u64_zero(rack_adjust_map_bw); 783 #endif 784 counter_u64_zero(rack_to_alloc_hard); 785 counter_u64_zero(rack_to_alloc_emerg); 786 counter_u64_zero(rack_sack_proc_all); 787 counter_u64_zero(rack_fto_send); 788 counter_u64_zero(rack_fto_rsm_send); 789 counter_u64_zero(rack_extended_rfo); 790 counter_u64_zero(rack_hw_pace_init_fail); 791 counter_u64_zero(rack_hw_pace_lost); 792 counter_u64_zero(rack_sbsndptr_wrong); 793 counter_u64_zero(rack_sbsndptr_right); 794 counter_u64_zero(rack_non_fto_send); 795 counter_u64_zero(rack_nfto_resend); 796 counter_u64_zero(rack_sack_proc_short); 797 counter_u64_zero(rack_sack_proc_restart); 798 counter_u64_zero(rack_to_alloc); 799 counter_u64_zero(rack_to_alloc_limited); 800 counter_u64_zero(rack_alloc_limited_conns); 801 counter_u64_zero(rack_split_limited); 802 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 803 counter_u64_zero(rack_proc_comp_ack[i]); 804 } 805 counter_u64_zero(rack_multi_single_eq); 806 counter_u64_zero(rack_proc_non_comp_ack); 807 counter_u64_zero(rack_find_high); 808 counter_u64_zero(rack_sack_attacks_detected); 809 counter_u64_zero(rack_sack_attacks_reversed); 810 counter_u64_zero(rack_sack_used_next_merge); 811 counter_u64_zero(rack_sack_used_prev_merge); 812 counter_u64_zero(rack_sack_splits); 813 counter_u64_zero(rack_sack_skipped_acked); 814 counter_u64_zero(rack_ack_total); 815 counter_u64_zero(rack_express_sack); 816 counter_u64_zero(rack_sack_total); 817 counter_u64_zero(rack_move_none); 818 counter_u64_zero(rack_move_some); 819 counter_u64_zero(rack_used_tlpmethod); 820 counter_u64_zero(rack_used_tlpmethod2); 821 counter_u64_zero(rack_enter_tlp_calc); 822 counter_u64_zero(rack_progress_drops); 823 counter_u64_zero(rack_tlp_does_nada); 824 counter_u64_zero(rack_try_scwnd); 825 counter_u64_zero(rack_collapsed_win); 826 } 827 rack_clear_counter = 0; 828 return (0); 829 } 830 831 static void 832 rack_init_sysctls(void) 833 { 834 int i; 835 struct sysctl_oid *rack_counters; 836 struct sysctl_oid *rack_attack; 837 struct sysctl_oid *rack_pacing; 838 struct sysctl_oid *rack_timely; 839 struct sysctl_oid *rack_timers; 840 struct sysctl_oid *rack_tlp; 841 struct sysctl_oid *rack_misc; 842 struct sysctl_oid *rack_features; 843 struct sysctl_oid *rack_measure; 844 struct sysctl_oid *rack_probertt; 845 struct sysctl_oid *rack_hw_pacing; 846 847 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 848 SYSCTL_CHILDREN(rack_sysctl_root), 849 OID_AUTO, 850 "sack_attack", 851 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 852 "Rack Sack Attack Counters and Controls"); 853 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 854 SYSCTL_CHILDREN(rack_sysctl_root), 855 OID_AUTO, 856 "stats", 857 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 858 "Rack Counters"); 859 SYSCTL_ADD_S32(&rack_sysctl_ctx, 860 SYSCTL_CHILDREN(rack_sysctl_root), 861 OID_AUTO, "rate_sample_method", CTLFLAG_RW, 862 &rack_rate_sample_method , USE_RTT_LOW, 863 "What method should we use for rate sampling 0=high, 1=low "); 864 /* Probe rtt related controls */ 865 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 866 SYSCTL_CHILDREN(rack_sysctl_root), 867 OID_AUTO, 868 "probertt", 869 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 870 "ProbeRTT related Controls"); 871 SYSCTL_ADD_U16(&rack_sysctl_ctx, 872 SYSCTL_CHILDREN(rack_probertt), 873 OID_AUTO, "exit_per_hpb", CTLFLAG_RW, 874 &rack_atexit_prtt_hbp, 130, 875 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); 876 SYSCTL_ADD_U16(&rack_sysctl_ctx, 877 SYSCTL_CHILDREN(rack_probertt), 878 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, 879 &rack_atexit_prtt, 130, 880 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); 881 SYSCTL_ADD_U16(&rack_sysctl_ctx, 882 SYSCTL_CHILDREN(rack_probertt), 883 OID_AUTO, "gp_per_mul", CTLFLAG_RW, 884 &rack_per_of_gp_probertt, 60, 885 "What percentage of goodput do we pace at in probertt"); 886 SYSCTL_ADD_U16(&rack_sysctl_ctx, 887 SYSCTL_CHILDREN(rack_probertt), 888 OID_AUTO, "gp_per_reduce", CTLFLAG_RW, 889 &rack_per_of_gp_probertt_reduce, 10, 890 "What percentage of goodput do we reduce every gp_srtt"); 891 SYSCTL_ADD_U16(&rack_sysctl_ctx, 892 SYSCTL_CHILDREN(rack_probertt), 893 OID_AUTO, "gp_per_low", CTLFLAG_RW, 894 &rack_per_of_gp_lowthresh, 40, 895 "What percentage of goodput do we allow the multiplier to fall to"); 896 SYSCTL_ADD_U32(&rack_sysctl_ctx, 897 SYSCTL_CHILDREN(rack_probertt), 898 OID_AUTO, "time_between", CTLFLAG_RW, 899 & rack_time_between_probertt, 96000000, 900 "How many useconds between the lowest rtt falling must past before we enter probertt"); 901 SYSCTL_ADD_U32(&rack_sysctl_ctx, 902 SYSCTL_CHILDREN(rack_probertt), 903 OID_AUTO, "safety", CTLFLAG_RW, 904 &rack_probe_rtt_safety_val, 2000000, 905 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); 906 SYSCTL_ADD_U32(&rack_sysctl_ctx, 907 SYSCTL_CHILDREN(rack_probertt), 908 OID_AUTO, "sets_cwnd", CTLFLAG_RW, 909 &rack_probe_rtt_sets_cwnd, 0, 910 "Do we set the cwnd too (if always_lower is on)"); 911 SYSCTL_ADD_U32(&rack_sysctl_ctx, 912 SYSCTL_CHILDREN(rack_probertt), 913 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, 914 &rack_max_drain_wait, 2, 915 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); 916 SYSCTL_ADD_U32(&rack_sysctl_ctx, 917 SYSCTL_CHILDREN(rack_probertt), 918 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, 919 &rack_must_drain, 1, 920 "We must drain this many gp_srtt's waiting for flight to reach goal"); 921 SYSCTL_ADD_U32(&rack_sysctl_ctx, 922 SYSCTL_CHILDREN(rack_probertt), 923 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, 924 &rack_probertt_use_min_rtt_entry, 1, 925 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); 926 SYSCTL_ADD_U32(&rack_sysctl_ctx, 927 SYSCTL_CHILDREN(rack_probertt), 928 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, 929 &rack_probertt_use_min_rtt_exit, 0, 930 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); 931 SYSCTL_ADD_U32(&rack_sysctl_ctx, 932 SYSCTL_CHILDREN(rack_probertt), 933 OID_AUTO, "length_div", CTLFLAG_RW, 934 &rack_probertt_gpsrtt_cnt_div, 0, 935 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); 936 SYSCTL_ADD_U32(&rack_sysctl_ctx, 937 SYSCTL_CHILDREN(rack_probertt), 938 OID_AUTO, "length_mul", CTLFLAG_RW, 939 &rack_probertt_gpsrtt_cnt_mul, 0, 940 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); 941 SYSCTL_ADD_U32(&rack_sysctl_ctx, 942 SYSCTL_CHILDREN(rack_probertt), 943 OID_AUTO, "holdtim_at_target", CTLFLAG_RW, 944 &rack_min_probertt_hold, 200000, 945 "What is the minimum time we hold probertt at target"); 946 SYSCTL_ADD_U32(&rack_sysctl_ctx, 947 SYSCTL_CHILDREN(rack_probertt), 948 OID_AUTO, "filter_life", CTLFLAG_RW, 949 &rack_probertt_filter_life, 10000000, 950 "What is the time for the filters life in useconds"); 951 SYSCTL_ADD_U32(&rack_sysctl_ctx, 952 SYSCTL_CHILDREN(rack_probertt), 953 OID_AUTO, "lower_within", CTLFLAG_RW, 954 &rack_probertt_lower_within, 10, 955 "If the rtt goes lower within this percentage of the time, go into probe-rtt"); 956 SYSCTL_ADD_U32(&rack_sysctl_ctx, 957 SYSCTL_CHILDREN(rack_probertt), 958 OID_AUTO, "must_move", CTLFLAG_RW, 959 &rack_min_rtt_movement, 250, 960 "How much is the minimum movement in rtt to count as a drop for probertt purposes"); 961 SYSCTL_ADD_U32(&rack_sysctl_ctx, 962 SYSCTL_CHILDREN(rack_probertt), 963 OID_AUTO, "clear_is_cnts", CTLFLAG_RW, 964 &rack_probertt_clear_is, 1, 965 "Do we clear I/S counts on exiting probe-rtt"); 966 SYSCTL_ADD_S32(&rack_sysctl_ctx, 967 SYSCTL_CHILDREN(rack_probertt), 968 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, 969 &rack_max_drain_hbp, 1, 970 "How many extra drain gpsrtt's do we get in highly buffered paths"); 971 SYSCTL_ADD_S32(&rack_sysctl_ctx, 972 SYSCTL_CHILDREN(rack_probertt), 973 OID_AUTO, "hbp_threshold", CTLFLAG_RW, 974 &rack_hbp_thresh, 3, 975 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); 976 /* Pacing related sysctls */ 977 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 978 SYSCTL_CHILDREN(rack_sysctl_root), 979 OID_AUTO, 980 "pacing", 981 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 982 "Pacing related Controls"); 983 SYSCTL_ADD_S32(&rack_sysctl_ctx, 984 SYSCTL_CHILDREN(rack_pacing), 985 OID_AUTO, "max_pace_over", CTLFLAG_RW, 986 &rack_max_per_above, 30, 987 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); 988 SYSCTL_ADD_S32(&rack_sysctl_ctx, 989 SYSCTL_CHILDREN(rack_pacing), 990 OID_AUTO, "pace_to_one", CTLFLAG_RW, 991 &rack_pace_one_seg, 0, 992 "Do we allow low b/w pacing of 1MSS instead of two"); 993 SYSCTL_ADD_S32(&rack_sysctl_ctx, 994 SYSCTL_CHILDREN(rack_pacing), 995 OID_AUTO, "limit_wsrtt", CTLFLAG_RW, 996 &rack_limit_time_with_srtt, 0, 997 "Do we limit pacing time based on srtt"); 998 SYSCTL_ADD_S32(&rack_sysctl_ctx, 999 SYSCTL_CHILDREN(rack_pacing), 1000 OID_AUTO, "init_win", CTLFLAG_RW, 1001 &rack_default_init_window, 0, 1002 "Do we have a rack initial window 0 = system default"); 1003 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1004 SYSCTL_CHILDREN(rack_pacing), 1005 OID_AUTO, "gp_per_ss", CTLFLAG_RW, 1006 &rack_per_of_gp_ss, 250, 1007 "If non zero, what percentage of goodput to pace at in slow start"); 1008 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1009 SYSCTL_CHILDREN(rack_pacing), 1010 OID_AUTO, "gp_per_ca", CTLFLAG_RW, 1011 &rack_per_of_gp_ca, 150, 1012 "If non zero, what percentage of goodput to pace at in congestion avoidance"); 1013 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1014 SYSCTL_CHILDREN(rack_pacing), 1015 OID_AUTO, "gp_per_rec", CTLFLAG_RW, 1016 &rack_per_of_gp_rec, 200, 1017 "If non zero, what percentage of goodput to pace at in recovery"); 1018 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1019 SYSCTL_CHILDREN(rack_pacing), 1020 OID_AUTO, "pace_max_seg", CTLFLAG_RW, 1021 &rack_hptsi_segments, 40, 1022 "What size is the max for TSO segments in pacing and burst mitigation"); 1023 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1024 SYSCTL_CHILDREN(rack_pacing), 1025 OID_AUTO, "burst_reduces", CTLFLAG_RW, 1026 &rack_slot_reduction, 4, 1027 "When doing only burst mitigation what is the reduce divisor"); 1028 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1029 SYSCTL_CHILDREN(rack_sysctl_root), 1030 OID_AUTO, "use_pacing", CTLFLAG_RW, 1031 &rack_pace_every_seg, 0, 1032 "If set we use pacing, if clear we use only the original burst mitigation"); 1033 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1034 SYSCTL_CHILDREN(rack_pacing), 1035 OID_AUTO, "rate_cap", CTLFLAG_RW, 1036 &rack_bw_rate_cap, 0, 1037 "If set we apply this value to the absolute rate cap used by pacing"); 1038 SYSCTL_ADD_U8(&rack_sysctl_ctx, 1039 SYSCTL_CHILDREN(rack_sysctl_root), 1040 OID_AUTO, "req_measure_cnt", CTLFLAG_RW, 1041 &rack_req_measurements, 1, 1042 "If doing dynamic pacing, how many measurements must be in before we start pacing?"); 1043 /* Hardware pacing */ 1044 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1045 SYSCTL_CHILDREN(rack_sysctl_root), 1046 OID_AUTO, 1047 "hdwr_pacing", 1048 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1049 "Pacing related Controls"); 1050 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1051 SYSCTL_CHILDREN(rack_hw_pacing), 1052 OID_AUTO, "rwnd_factor", CTLFLAG_RW, 1053 &rack_hw_rwnd_factor, 2, 1054 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?"); 1055 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1056 SYSCTL_CHILDREN(rack_hw_pacing), 1057 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW, 1058 &rack_enobuf_hw_boost_mult, 2, 1059 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?"); 1060 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1061 SYSCTL_CHILDREN(rack_hw_pacing), 1062 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW, 1063 &rack_enobuf_hw_max, 2, 1064 "What is the max boost the pacing time if we see a ENOBUFS?"); 1065 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1066 SYSCTL_CHILDREN(rack_hw_pacing), 1067 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW, 1068 &rack_enobuf_hw_min, 2, 1069 "What is the min boost the pacing time if we see a ENOBUFS?"); 1070 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1071 SYSCTL_CHILDREN(rack_hw_pacing), 1072 OID_AUTO, "enable", CTLFLAG_RW, 1073 &rack_enable_hw_pacing, 0, 1074 "Should RACK attempt to use hw pacing?"); 1075 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1076 SYSCTL_CHILDREN(rack_hw_pacing), 1077 OID_AUTO, "rate_cap", CTLFLAG_RW, 1078 &rack_hw_rate_caps, 1, 1079 "Does the highest hardware pacing rate cap the rate we will send at??"); 1080 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1081 SYSCTL_CHILDREN(rack_hw_pacing), 1082 OID_AUTO, "rate_min", CTLFLAG_RW, 1083 &rack_hw_rate_min, 0, 1084 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?"); 1085 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1086 SYSCTL_CHILDREN(rack_hw_pacing), 1087 OID_AUTO, "rate_to_low", CTLFLAG_RW, 1088 &rack_hw_rate_to_low, 0, 1089 "If we fall below this rate, dis-engage hw pacing?"); 1090 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1091 SYSCTL_CHILDREN(rack_hw_pacing), 1092 OID_AUTO, "up_only", CTLFLAG_RW, 1093 &rack_hw_up_only, 1, 1094 "Do we allow hw pacing to lower the rate selected?"); 1095 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1096 SYSCTL_CHILDREN(rack_hw_pacing), 1097 OID_AUTO, "extra_mss_precise", CTLFLAG_RW, 1098 &rack_hw_pace_extra_slots, 2, 1099 "If the rates between software and hardware match precisely how many extra time_betweens do we get?"); 1100 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1101 SYSCTL_CHILDREN(rack_sysctl_root), 1102 OID_AUTO, 1103 "timely", 1104 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1105 "Rack Timely RTT Controls"); 1106 /* Timely based GP dynmics */ 1107 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1108 SYSCTL_CHILDREN(rack_timely), 1109 OID_AUTO, "upper", CTLFLAG_RW, 1110 &rack_gp_per_bw_mul_up, 2, 1111 "Rack timely upper range for equal b/w (in percentage)"); 1112 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1113 SYSCTL_CHILDREN(rack_timely), 1114 OID_AUTO, "lower", CTLFLAG_RW, 1115 &rack_gp_per_bw_mul_down, 4, 1116 "Rack timely lower range for equal b/w (in percentage)"); 1117 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1118 SYSCTL_CHILDREN(rack_timely), 1119 OID_AUTO, "rtt_max_mul", CTLFLAG_RW, 1120 &rack_gp_rtt_maxmul, 3, 1121 "Rack timely multipler of lowest rtt for rtt_max"); 1122 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1123 SYSCTL_CHILDREN(rack_timely), 1124 OID_AUTO, "rtt_min_div", CTLFLAG_RW, 1125 &rack_gp_rtt_mindiv, 4, 1126 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1127 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1128 SYSCTL_CHILDREN(rack_timely), 1129 OID_AUTO, "rtt_min_mul", CTLFLAG_RW, 1130 &rack_gp_rtt_minmul, 1, 1131 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1132 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1133 SYSCTL_CHILDREN(rack_timely), 1134 OID_AUTO, "decrease", CTLFLAG_RW, 1135 &rack_gp_decrease_per, 20, 1136 "Rack timely decrease percentage of our GP multiplication factor"); 1137 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1138 SYSCTL_CHILDREN(rack_timely), 1139 OID_AUTO, "increase", CTLFLAG_RW, 1140 &rack_gp_increase_per, 2, 1141 "Rack timely increase perentage of our GP multiplication factor"); 1142 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1143 SYSCTL_CHILDREN(rack_timely), 1144 OID_AUTO, "lowerbound", CTLFLAG_RW, 1145 &rack_per_lower_bound, 50, 1146 "Rack timely lowest percentage we allow GP multiplier to fall to"); 1147 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1148 SYSCTL_CHILDREN(rack_timely), 1149 OID_AUTO, "upperboundss", CTLFLAG_RW, 1150 &rack_per_upper_bound_ss, 0, 1151 "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); 1152 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1153 SYSCTL_CHILDREN(rack_timely), 1154 OID_AUTO, "upperboundca", CTLFLAG_RW, 1155 &rack_per_upper_bound_ca, 0, 1156 "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); 1157 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1158 SYSCTL_CHILDREN(rack_timely), 1159 OID_AUTO, "dynamicgp", CTLFLAG_RW, 1160 &rack_do_dyn_mul, 0, 1161 "Rack timely do we enable dynmaic timely goodput by default"); 1162 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1163 SYSCTL_CHILDREN(rack_timely), 1164 OID_AUTO, "no_rec_red", CTLFLAG_RW, 1165 &rack_gp_no_rec_chg, 1, 1166 "Rack timely do we prohibit the recovery multiplier from being lowered"); 1167 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1168 SYSCTL_CHILDREN(rack_timely), 1169 OID_AUTO, "red_clear_cnt", CTLFLAG_RW, 1170 &rack_timely_dec_clear, 6, 1171 "Rack timely what threshold do we count to before another boost during b/w decent"); 1172 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1173 SYSCTL_CHILDREN(rack_timely), 1174 OID_AUTO, "max_push_rise", CTLFLAG_RW, 1175 &rack_timely_max_push_rise, 3, 1176 "Rack timely how many times do we push up with b/w increase"); 1177 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1178 SYSCTL_CHILDREN(rack_timely), 1179 OID_AUTO, "max_push_drop", CTLFLAG_RW, 1180 &rack_timely_max_push_drop, 3, 1181 "Rack timely how many times do we push back on b/w decent"); 1182 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1183 SYSCTL_CHILDREN(rack_timely), 1184 OID_AUTO, "min_segs", CTLFLAG_RW, 1185 &rack_timely_min_segs, 4, 1186 "Rack timely when setting the cwnd what is the min num segments"); 1187 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1188 SYSCTL_CHILDREN(rack_timely), 1189 OID_AUTO, "noback_max", CTLFLAG_RW, 1190 &rack_use_max_for_nobackoff, 0, 1191 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); 1192 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1193 SYSCTL_CHILDREN(rack_timely), 1194 OID_AUTO, "interim_timely_only", CTLFLAG_RW, 1195 &rack_timely_int_timely_only, 0, 1196 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); 1197 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1198 SYSCTL_CHILDREN(rack_timely), 1199 OID_AUTO, "nonstop", CTLFLAG_RW, 1200 &rack_timely_no_stopping, 0, 1201 "Rack timely don't stop increase"); 1202 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1203 SYSCTL_CHILDREN(rack_timely), 1204 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, 1205 &rack_down_raise_thresh, 100, 1206 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); 1207 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1208 SYSCTL_CHILDREN(rack_timely), 1209 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, 1210 &rack_req_segs, 1, 1211 "Bottom dragging if not these many segments outstanding and room"); 1212 1213 /* TLP and Rack related parameters */ 1214 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1215 SYSCTL_CHILDREN(rack_sysctl_root), 1216 OID_AUTO, 1217 "tlp", 1218 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1219 "TLP and Rack related Controls"); 1220 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1221 SYSCTL_CHILDREN(rack_tlp), 1222 OID_AUTO, "use_rrr", CTLFLAG_RW, 1223 &use_rack_rr, 1, 1224 "Do we use Rack Rapid Recovery"); 1225 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1226 SYSCTL_CHILDREN(rack_tlp), 1227 OID_AUTO, "post_rec_labc", CTLFLAG_RW, 1228 &rack_max_abc_post_recovery, 2, 1229 "Since we do early recovery, do we override the l_abc to a value, if so what?"); 1230 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1231 SYSCTL_CHILDREN(rack_tlp), 1232 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, 1233 &rack_non_rxt_use_cr, 0, 1234 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); 1235 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1236 SYSCTL_CHILDREN(rack_tlp), 1237 OID_AUTO, "tlpmethod", CTLFLAG_RW, 1238 &rack_tlp_threshold_use, TLP_USE_TWO_ONE, 1239 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); 1240 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1241 SYSCTL_CHILDREN(rack_tlp), 1242 OID_AUTO, "limit", CTLFLAG_RW, 1243 &rack_tlp_limit, 2, 1244 "How many TLP's can be sent without sending new data"); 1245 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1246 SYSCTL_CHILDREN(rack_tlp), 1247 OID_AUTO, "use_greater", CTLFLAG_RW, 1248 &rack_tlp_use_greater, 1, 1249 "Should we use the rack_rtt time if its greater than srtt"); 1250 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1251 SYSCTL_CHILDREN(rack_tlp), 1252 OID_AUTO, "tlpminto", CTLFLAG_RW, 1253 &rack_tlp_min, 10000, 1254 "TLP minimum timeout per the specification (in microseconds)"); 1255 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1256 SYSCTL_CHILDREN(rack_tlp), 1257 OID_AUTO, "send_oldest", CTLFLAG_RW, 1258 &rack_always_send_oldest, 0, 1259 "Should we always send the oldest TLP and RACK-TLP"); 1260 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1261 SYSCTL_CHILDREN(rack_tlp), 1262 OID_AUTO, "rack_tlimit", CTLFLAG_RW, 1263 &rack_limited_retran, 0, 1264 "How many times can a rack timeout drive out sends"); 1265 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1266 SYSCTL_CHILDREN(rack_tlp), 1267 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, 1268 &rack_lower_cwnd_at_tlp, 0, 1269 "When a TLP completes a retran should we enter recovery"); 1270 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1271 SYSCTL_CHILDREN(rack_tlp), 1272 OID_AUTO, "reorder_thresh", CTLFLAG_RW, 1273 &rack_reorder_thresh, 2, 1274 "What factor for rack will be added when seeing reordering (shift right)"); 1275 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1276 SYSCTL_CHILDREN(rack_tlp), 1277 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, 1278 &rack_tlp_thresh, 1, 1279 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); 1280 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1281 SYSCTL_CHILDREN(rack_tlp), 1282 OID_AUTO, "reorder_fade", CTLFLAG_RW, 1283 &rack_reorder_fade, 60000000, 1284 "Does reorder detection fade, if so how many microseconds (0 means never)"); 1285 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1286 SYSCTL_CHILDREN(rack_tlp), 1287 OID_AUTO, "pktdelay", CTLFLAG_RW, 1288 &rack_pkt_delay, 1000, 1289 "Extra RACK time (in microseconds) besides reordering thresh"); 1290 1291 /* Timer related controls */ 1292 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1293 SYSCTL_CHILDREN(rack_sysctl_root), 1294 OID_AUTO, 1295 "timers", 1296 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1297 "Timer related controls"); 1298 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1299 SYSCTL_CHILDREN(rack_timers), 1300 OID_AUTO, "persmin", CTLFLAG_RW, 1301 &rack_persist_min, 250000, 1302 "What is the minimum time in microseconds between persists"); 1303 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1304 SYSCTL_CHILDREN(rack_timers), 1305 OID_AUTO, "persmax", CTLFLAG_RW, 1306 &rack_persist_max, 2000000, 1307 "What is the largest delay in microseconds between persists"); 1308 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1309 SYSCTL_CHILDREN(rack_timers), 1310 OID_AUTO, "delayed_ack", CTLFLAG_RW, 1311 &rack_delayed_ack_time, 40000, 1312 "Delayed ack time (40ms in microseconds)"); 1313 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1314 SYSCTL_CHILDREN(rack_timers), 1315 OID_AUTO, "minrto", CTLFLAG_RW, 1316 &rack_rto_min, 30000, 1317 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP"); 1318 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1319 SYSCTL_CHILDREN(rack_timers), 1320 OID_AUTO, "maxrto", CTLFLAG_RW, 1321 &rack_rto_max, 4000000, 1322 "Maximum RTO in microseconds -- should be at least as large as min_rto"); 1323 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1324 SYSCTL_CHILDREN(rack_timers), 1325 OID_AUTO, "minto", CTLFLAG_RW, 1326 &rack_min_to, 1000, 1327 "Minimum rack timeout in microseconds"); 1328 /* Measure controls */ 1329 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1330 SYSCTL_CHILDREN(rack_sysctl_root), 1331 OID_AUTO, 1332 "measure", 1333 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1334 "Measure related controls"); 1335 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1336 SYSCTL_CHILDREN(rack_measure), 1337 OID_AUTO, "wma_divisor", CTLFLAG_RW, 1338 &rack_wma_divisor, 8, 1339 "When doing b/w calculation what is the divisor for the WMA"); 1340 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1341 SYSCTL_CHILDREN(rack_measure), 1342 OID_AUTO, "end_cwnd", CTLFLAG_RW, 1343 &rack_cwnd_block_ends_measure, 0, 1344 "Does a cwnd just-return end the measurement window (app limited)"); 1345 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1346 SYSCTL_CHILDREN(rack_measure), 1347 OID_AUTO, "end_rwnd", CTLFLAG_RW, 1348 &rack_rwnd_block_ends_measure, 0, 1349 "Does an rwnd just-return end the measurement window (app limited -- not persists)"); 1350 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1351 SYSCTL_CHILDREN(rack_measure), 1352 OID_AUTO, "min_target", CTLFLAG_RW, 1353 &rack_def_data_window, 20, 1354 "What is the minimum target window (in mss) for a GP measurements"); 1355 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1356 SYSCTL_CHILDREN(rack_measure), 1357 OID_AUTO, "goal_bdp", CTLFLAG_RW, 1358 &rack_goal_bdp, 2, 1359 "What is the goal BDP to measure"); 1360 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1361 SYSCTL_CHILDREN(rack_measure), 1362 OID_AUTO, "min_srtts", CTLFLAG_RW, 1363 &rack_min_srtts, 1, 1364 "What is the goal BDP to measure"); 1365 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1366 SYSCTL_CHILDREN(rack_measure), 1367 OID_AUTO, "min_measure_tim", CTLFLAG_RW, 1368 &rack_min_measure_usec, 0, 1369 "What is the Minimum time time for a measurement if 0, this is off"); 1370 /* Features */ 1371 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1372 SYSCTL_CHILDREN(rack_sysctl_root), 1373 OID_AUTO, 1374 "features", 1375 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1376 "Feature controls"); 1377 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1378 SYSCTL_CHILDREN(rack_features), 1379 OID_AUTO, "cmpack", CTLFLAG_RW, 1380 &rack_use_cmp_acks, 1, 1381 "Should RACK have LRO send compressed acks"); 1382 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1383 SYSCTL_CHILDREN(rack_features), 1384 OID_AUTO, "fsb", CTLFLAG_RW, 1385 &rack_use_fsb, 1, 1386 "Should RACK use the fast send block?"); 1387 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1388 SYSCTL_CHILDREN(rack_features), 1389 OID_AUTO, "rfo", CTLFLAG_RW, 1390 &rack_use_rfo, 1, 1391 "Should RACK use rack_fast_output()?"); 1392 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1393 SYSCTL_CHILDREN(rack_features), 1394 OID_AUTO, "rsmrfo", CTLFLAG_RW, 1395 &rack_use_rsm_rfo, 1, 1396 "Should RACK use rack_fast_rsm_output()?"); 1397 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1398 SYSCTL_CHILDREN(rack_features), 1399 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, 1400 &rack_enable_mqueue_for_nonpaced, 0, 1401 "Should RACK use mbuf queuing for non-paced connections"); 1402 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1403 SYSCTL_CHILDREN(rack_features), 1404 OID_AUTO, "hystartplusplus", CTLFLAG_RW, 1405 &rack_do_hystart, 0, 1406 "Should RACK enable HyStart++ on connections?"); 1407 /* Misc rack controls */ 1408 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1409 SYSCTL_CHILDREN(rack_sysctl_root), 1410 OID_AUTO, 1411 "misc", 1412 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1413 "Misc related controls"); 1414 #ifdef TCP_ACCOUNTING 1415 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1416 SYSCTL_CHILDREN(rack_misc), 1417 OID_AUTO, "tcp_acct", CTLFLAG_RW, 1418 &rack_tcp_accounting, 0, 1419 "Should we turn on TCP accounting for all rack sessions?"); 1420 #endif 1421 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1422 SYSCTL_CHILDREN(rack_misc), 1423 OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW, 1424 &rack_apply_rtt_with_reduced_conf, 0, 1425 "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?"); 1426 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1427 SYSCTL_CHILDREN(rack_misc), 1428 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW, 1429 &rack_dsack_std_based, 3, 1430 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?"); 1431 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1432 SYSCTL_CHILDREN(rack_misc), 1433 OID_AUTO, "prr_addback_max", CTLFLAG_RW, 1434 &rack_prr_addbackmax, 2, 1435 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?"); 1436 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1437 SYSCTL_CHILDREN(rack_misc), 1438 OID_AUTO, "stats_gets_ms", CTLFLAG_RW, 1439 &rack_stats_gets_ms_rtt, 1, 1440 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?"); 1441 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1442 SYSCTL_CHILDREN(rack_misc), 1443 OID_AUTO, "clientlowbuf", CTLFLAG_RW, 1444 &rack_client_low_buf, 0, 1445 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?"); 1446 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1447 SYSCTL_CHILDREN(rack_misc), 1448 OID_AUTO, "defprofile", CTLFLAG_RW, 1449 &rack_def_profile, 0, 1450 "Should RACK use a default profile (0=no, num == profile num)?"); 1451 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1452 SYSCTL_CHILDREN(rack_misc), 1453 OID_AUTO, "shared_cwnd", CTLFLAG_RW, 1454 &rack_enable_shared_cwnd, 1, 1455 "Should RACK try to use the shared cwnd on connections where allowed"); 1456 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1457 SYSCTL_CHILDREN(rack_misc), 1458 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, 1459 &rack_limits_scwnd, 1, 1460 "Should RACK place low end time limits on the shared cwnd feature"); 1461 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1462 SYSCTL_CHILDREN(rack_misc), 1463 OID_AUTO, "iMac_dack", CTLFLAG_RW, 1464 &rack_use_imac_dack, 0, 1465 "Should RACK try to emulate iMac delayed ack"); 1466 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1467 SYSCTL_CHILDREN(rack_misc), 1468 OID_AUTO, "no_prr", CTLFLAG_RW, 1469 &rack_disable_prr, 0, 1470 "Should RACK not use prr and only pace (must have pacing on)"); 1471 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1472 SYSCTL_CHILDREN(rack_misc), 1473 OID_AUTO, "bb_verbose", CTLFLAG_RW, 1474 &rack_verbose_logging, 0, 1475 "Should RACK black box logging be verbose"); 1476 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1477 SYSCTL_CHILDREN(rack_misc), 1478 OID_AUTO, "data_after_close", CTLFLAG_RW, 1479 &rack_ignore_data_after_close, 1, 1480 "Do we hold off sending a RST until all pending data is ack'd"); 1481 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1482 SYSCTL_CHILDREN(rack_misc), 1483 OID_AUTO, "no_sack_needed", CTLFLAG_RW, 1484 &rack_sack_not_required, 1, 1485 "Do we allow rack to run on connections not supporting SACK"); 1486 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1487 SYSCTL_CHILDREN(rack_misc), 1488 OID_AUTO, "prr_sendalot", CTLFLAG_RW, 1489 &rack_send_a_lot_in_prr, 1, 1490 "Send a lot in prr"); 1491 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1492 SYSCTL_CHILDREN(rack_misc), 1493 OID_AUTO, "autoscale", CTLFLAG_RW, 1494 &rack_autosndbuf_inc, 20, 1495 "What percentage should rack scale up its snd buffer by?"); 1496 /* Sack Attacker detection stuff */ 1497 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1498 SYSCTL_CHILDREN(rack_attack), 1499 OID_AUTO, "detect_highsackratio", CTLFLAG_RW, 1500 &rack_highest_sack_thresh_seen, 0, 1501 "Highest sack to ack ratio seen"); 1502 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1503 SYSCTL_CHILDREN(rack_attack), 1504 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, 1505 &rack_highest_move_thresh_seen, 0, 1506 "Highest move to non-move ratio seen"); 1507 rack_ack_total = counter_u64_alloc(M_WAITOK); 1508 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1509 SYSCTL_CHILDREN(rack_attack), 1510 OID_AUTO, "acktotal", CTLFLAG_RD, 1511 &rack_ack_total, 1512 "Total number of Ack's"); 1513 rack_express_sack = counter_u64_alloc(M_WAITOK); 1514 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1515 SYSCTL_CHILDREN(rack_attack), 1516 OID_AUTO, "exp_sacktotal", CTLFLAG_RD, 1517 &rack_express_sack, 1518 "Total expresss number of Sack's"); 1519 rack_sack_total = counter_u64_alloc(M_WAITOK); 1520 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1521 SYSCTL_CHILDREN(rack_attack), 1522 OID_AUTO, "sacktotal", CTLFLAG_RD, 1523 &rack_sack_total, 1524 "Total number of SACKs"); 1525 rack_move_none = counter_u64_alloc(M_WAITOK); 1526 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1527 SYSCTL_CHILDREN(rack_attack), 1528 OID_AUTO, "move_none", CTLFLAG_RD, 1529 &rack_move_none, 1530 "Total number of SACK index reuse of postions under threshold"); 1531 rack_move_some = counter_u64_alloc(M_WAITOK); 1532 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1533 SYSCTL_CHILDREN(rack_attack), 1534 OID_AUTO, "move_some", CTLFLAG_RD, 1535 &rack_move_some, 1536 "Total number of SACK index reuse of postions over threshold"); 1537 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); 1538 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1539 SYSCTL_CHILDREN(rack_attack), 1540 OID_AUTO, "attacks", CTLFLAG_RD, 1541 &rack_sack_attacks_detected, 1542 "Total number of SACK attackers that had sack disabled"); 1543 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); 1544 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1545 SYSCTL_CHILDREN(rack_attack), 1546 OID_AUTO, "reversed", CTLFLAG_RD, 1547 &rack_sack_attacks_reversed, 1548 "Total number of SACK attackers that were later determined false positive"); 1549 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); 1550 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1551 SYSCTL_CHILDREN(rack_attack), 1552 OID_AUTO, "nextmerge", CTLFLAG_RD, 1553 &rack_sack_used_next_merge, 1554 "Total number of times we used the next merge"); 1555 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); 1556 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1557 SYSCTL_CHILDREN(rack_attack), 1558 OID_AUTO, "prevmerge", CTLFLAG_RD, 1559 &rack_sack_used_prev_merge, 1560 "Total number of times we used the prev merge"); 1561 /* Counters */ 1562 rack_fto_send = counter_u64_alloc(M_WAITOK); 1563 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1564 SYSCTL_CHILDREN(rack_counters), 1565 OID_AUTO, "fto_send", CTLFLAG_RD, 1566 &rack_fto_send, "Total number of rack_fast_output sends"); 1567 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK); 1568 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1569 SYSCTL_CHILDREN(rack_counters), 1570 OID_AUTO, "fto_rsm_send", CTLFLAG_RD, 1571 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends"); 1572 rack_nfto_resend = counter_u64_alloc(M_WAITOK); 1573 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1574 SYSCTL_CHILDREN(rack_counters), 1575 OID_AUTO, "nfto_resend", CTLFLAG_RD, 1576 &rack_nfto_resend, "Total number of rack_output retransmissions"); 1577 rack_non_fto_send = counter_u64_alloc(M_WAITOK); 1578 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1579 SYSCTL_CHILDREN(rack_counters), 1580 OID_AUTO, "nfto_send", CTLFLAG_RD, 1581 &rack_non_fto_send, "Total number of rack_output first sends"); 1582 rack_extended_rfo = counter_u64_alloc(M_WAITOK); 1583 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1584 SYSCTL_CHILDREN(rack_counters), 1585 OID_AUTO, "rfo_extended", CTLFLAG_RD, 1586 &rack_extended_rfo, "Total number of times we extended rfo"); 1587 1588 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK); 1589 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1590 SYSCTL_CHILDREN(rack_counters), 1591 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD, 1592 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing"); 1593 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK); 1594 1595 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1596 SYSCTL_CHILDREN(rack_counters), 1597 OID_AUTO, "hwpace_lost", CTLFLAG_RD, 1598 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing"); 1599 rack_badfr = counter_u64_alloc(M_WAITOK); 1600 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1601 SYSCTL_CHILDREN(rack_counters), 1602 OID_AUTO, "badfr", CTLFLAG_RD, 1603 &rack_badfr, "Total number of bad FRs"); 1604 rack_badfr_bytes = counter_u64_alloc(M_WAITOK); 1605 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1606 SYSCTL_CHILDREN(rack_counters), 1607 OID_AUTO, "badfr_bytes", CTLFLAG_RD, 1608 &rack_badfr_bytes, "Total number of bad FRs"); 1609 rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK); 1610 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1611 SYSCTL_CHILDREN(rack_counters), 1612 OID_AUTO, "prrsndret", CTLFLAG_RD, 1613 &rack_rtm_prr_retran, 1614 "Total number of prr based retransmits"); 1615 rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK); 1616 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1617 SYSCTL_CHILDREN(rack_counters), 1618 OID_AUTO, "prrsndnew", CTLFLAG_RD, 1619 &rack_rtm_prr_newdata, 1620 "Total number of prr based new transmits"); 1621 rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK); 1622 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1623 SYSCTL_CHILDREN(rack_counters), 1624 OID_AUTO, "tsnf", CTLFLAG_RD, 1625 &rack_timestamp_mismatch, 1626 "Total number of timestamps that we could not find the reported ts"); 1627 rack_find_high = counter_u64_alloc(M_WAITOK); 1628 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1629 SYSCTL_CHILDREN(rack_counters), 1630 OID_AUTO, "findhigh", CTLFLAG_RD, 1631 &rack_find_high, 1632 "Total number of FIN causing find-high"); 1633 rack_reorder_seen = counter_u64_alloc(M_WAITOK); 1634 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1635 SYSCTL_CHILDREN(rack_counters), 1636 OID_AUTO, "reordering", CTLFLAG_RD, 1637 &rack_reorder_seen, 1638 "Total number of times we added delay due to reordering"); 1639 rack_tlp_tot = counter_u64_alloc(M_WAITOK); 1640 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1641 SYSCTL_CHILDREN(rack_counters), 1642 OID_AUTO, "tlp_to_total", CTLFLAG_RD, 1643 &rack_tlp_tot, 1644 "Total number of tail loss probe expirations"); 1645 rack_tlp_newdata = counter_u64_alloc(M_WAITOK); 1646 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1647 SYSCTL_CHILDREN(rack_counters), 1648 OID_AUTO, "tlp_new", CTLFLAG_RD, 1649 &rack_tlp_newdata, 1650 "Total number of tail loss probe sending new data"); 1651 rack_tlp_retran = counter_u64_alloc(M_WAITOK); 1652 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1653 SYSCTL_CHILDREN(rack_counters), 1654 OID_AUTO, "tlp_retran", CTLFLAG_RD, 1655 &rack_tlp_retran, 1656 "Total number of tail loss probe sending retransmitted data"); 1657 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); 1658 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1659 SYSCTL_CHILDREN(rack_counters), 1660 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, 1661 &rack_tlp_retran_bytes, 1662 "Total bytes of tail loss probe sending retransmitted data"); 1663 rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK); 1664 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1665 SYSCTL_CHILDREN(rack_counters), 1666 OID_AUTO, "tlp_retran_fail", CTLFLAG_RD, 1667 &rack_tlp_retran_fail, 1668 "Total number of tail loss probe sending retransmitted data that failed (wait for t3)"); 1669 rack_to_tot = counter_u64_alloc(M_WAITOK); 1670 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1671 SYSCTL_CHILDREN(rack_counters), 1672 OID_AUTO, "rack_to_tot", CTLFLAG_RD, 1673 &rack_to_tot, 1674 "Total number of times the rack to expired"); 1675 rack_to_arm_rack = counter_u64_alloc(M_WAITOK); 1676 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1677 SYSCTL_CHILDREN(rack_counters), 1678 OID_AUTO, "arm_rack", CTLFLAG_RD, 1679 &rack_to_arm_rack, 1680 "Total number of times the rack timer armed"); 1681 rack_to_arm_tlp = counter_u64_alloc(M_WAITOK); 1682 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1683 SYSCTL_CHILDREN(rack_counters), 1684 OID_AUTO, "arm_tlp", CTLFLAG_RD, 1685 &rack_to_arm_tlp, 1686 "Total number of times the tlp timer armed"); 1687 rack_calc_zero = counter_u64_alloc(M_WAITOK); 1688 rack_calc_nonzero = counter_u64_alloc(M_WAITOK); 1689 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1690 SYSCTL_CHILDREN(rack_counters), 1691 OID_AUTO, "calc_zero", CTLFLAG_RD, 1692 &rack_calc_zero, 1693 "Total number of times pacing time worked out to zero"); 1694 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1695 SYSCTL_CHILDREN(rack_counters), 1696 OID_AUTO, "calc_nonzero", CTLFLAG_RD, 1697 &rack_calc_nonzero, 1698 "Total number of times pacing time worked out to non-zero"); 1699 rack_paced_segments = counter_u64_alloc(M_WAITOK); 1700 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1701 SYSCTL_CHILDREN(rack_counters), 1702 OID_AUTO, "paced", CTLFLAG_RD, 1703 &rack_paced_segments, 1704 "Total number of times a segment send caused hptsi"); 1705 rack_unpaced_segments = counter_u64_alloc(M_WAITOK); 1706 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1707 SYSCTL_CHILDREN(rack_counters), 1708 OID_AUTO, "unpaced", CTLFLAG_RD, 1709 &rack_unpaced_segments, 1710 "Total number of times a segment did not cause hptsi"); 1711 rack_saw_enobuf = counter_u64_alloc(M_WAITOK); 1712 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1713 SYSCTL_CHILDREN(rack_counters), 1714 OID_AUTO, "saw_enobufs", CTLFLAG_RD, 1715 &rack_saw_enobuf, 1716 "Total number of times a sends returned enobuf for non-hdwr paced connections"); 1717 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK); 1718 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1719 SYSCTL_CHILDREN(rack_counters), 1720 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD, 1721 &rack_saw_enobuf_hw, 1722 "Total number of times a send returned enobuf for hdwr paced connections"); 1723 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); 1724 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1725 SYSCTL_CHILDREN(rack_counters), 1726 OID_AUTO, "saw_enetunreach", CTLFLAG_RD, 1727 &rack_saw_enetunreach, 1728 "Total number of times a send received a enetunreachable"); 1729 rack_hot_alloc = counter_u64_alloc(M_WAITOK); 1730 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1731 SYSCTL_CHILDREN(rack_counters), 1732 OID_AUTO, "alloc_hot", CTLFLAG_RD, 1733 &rack_hot_alloc, 1734 "Total allocations from the top of our list"); 1735 rack_to_alloc = counter_u64_alloc(M_WAITOK); 1736 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1737 SYSCTL_CHILDREN(rack_counters), 1738 OID_AUTO, "allocs", CTLFLAG_RD, 1739 &rack_to_alloc, 1740 "Total allocations of tracking structures"); 1741 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); 1742 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1743 SYSCTL_CHILDREN(rack_counters), 1744 OID_AUTO, "allochard", CTLFLAG_RD, 1745 &rack_to_alloc_hard, 1746 "Total allocations done with sleeping the hard way"); 1747 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); 1748 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1749 SYSCTL_CHILDREN(rack_counters), 1750 OID_AUTO, "allocemerg", CTLFLAG_RD, 1751 &rack_to_alloc_emerg, 1752 "Total allocations done from emergency cache"); 1753 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); 1754 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1755 SYSCTL_CHILDREN(rack_counters), 1756 OID_AUTO, "alloc_limited", CTLFLAG_RD, 1757 &rack_to_alloc_limited, 1758 "Total allocations dropped due to limit"); 1759 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); 1760 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1761 SYSCTL_CHILDREN(rack_counters), 1762 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, 1763 &rack_alloc_limited_conns, 1764 "Connections with allocations dropped due to limit"); 1765 rack_split_limited = counter_u64_alloc(M_WAITOK); 1766 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1767 SYSCTL_CHILDREN(rack_counters), 1768 OID_AUTO, "split_limited", CTLFLAG_RD, 1769 &rack_split_limited, 1770 "Split allocations dropped due to limit"); 1771 1772 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 1773 char name[32]; 1774 sprintf(name, "cmp_ack_cnt_%d", i); 1775 rack_proc_comp_ack[i] = counter_u64_alloc(M_WAITOK); 1776 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1777 SYSCTL_CHILDREN(rack_counters), 1778 OID_AUTO, name, CTLFLAG_RD, 1779 &rack_proc_comp_ack[i], 1780 "Number of compressed acks we processed"); 1781 } 1782 rack_large_ackcmp = counter_u64_alloc(M_WAITOK); 1783 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1784 SYSCTL_CHILDREN(rack_counters), 1785 OID_AUTO, "cmp_large_mbufs", CTLFLAG_RD, 1786 &rack_large_ackcmp, 1787 "Number of TCP connections with large mbuf's for compressed acks"); 1788 rack_persists_sends = counter_u64_alloc(M_WAITOK); 1789 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1790 SYSCTL_CHILDREN(rack_counters), 1791 OID_AUTO, "persist_sends", CTLFLAG_RD, 1792 &rack_persists_sends, 1793 "Number of times we sent a persist probe"); 1794 rack_persists_acks = counter_u64_alloc(M_WAITOK); 1795 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1796 SYSCTL_CHILDREN(rack_counters), 1797 OID_AUTO, "persist_acks", CTLFLAG_RD, 1798 &rack_persists_acks, 1799 "Number of times a persist probe was acked"); 1800 rack_persists_loss = counter_u64_alloc(M_WAITOK); 1801 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1802 SYSCTL_CHILDREN(rack_counters), 1803 OID_AUTO, "persist_loss", CTLFLAG_RD, 1804 &rack_persists_loss, 1805 "Number of times we detected a lost persist probe (no ack)"); 1806 rack_persists_lost_ends = counter_u64_alloc(M_WAITOK); 1807 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1808 SYSCTL_CHILDREN(rack_counters), 1809 OID_AUTO, "persist_loss_ends", CTLFLAG_RD, 1810 &rack_persists_lost_ends, 1811 "Number of lost persist probe (no ack) that the run ended with a PERSIST abort"); 1812 rack_small_ackcmp = counter_u64_alloc(M_WAITOK); 1813 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1814 SYSCTL_CHILDREN(rack_counters), 1815 OID_AUTO, "cmp_small_mbufs", CTLFLAG_RD, 1816 &rack_small_ackcmp, 1817 "Number of TCP connections with small mbuf's for compressed acks"); 1818 #ifdef INVARIANTS 1819 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK); 1820 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1821 SYSCTL_CHILDREN(rack_counters), 1822 OID_AUTO, "map_adjust_req", CTLFLAG_RD, 1823 &rack_adjust_map_bw, 1824 "Number of times we hit the case where the sb went up and down on a sendmap entry"); 1825 #endif 1826 rack_multi_single_eq = counter_u64_alloc(M_WAITOK); 1827 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1828 SYSCTL_CHILDREN(rack_counters), 1829 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD, 1830 &rack_multi_single_eq, 1831 "Number of compressed acks total represented"); 1832 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK); 1833 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1834 SYSCTL_CHILDREN(rack_counters), 1835 OID_AUTO, "cmp_ack_not", CTLFLAG_RD, 1836 &rack_proc_non_comp_ack, 1837 "Number of non compresseds acks that we processed"); 1838 1839 1840 rack_sack_proc_all = counter_u64_alloc(M_WAITOK); 1841 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1842 SYSCTL_CHILDREN(rack_counters), 1843 OID_AUTO, "sack_long", CTLFLAG_RD, 1844 &rack_sack_proc_all, 1845 "Total times we had to walk whole list for sack processing"); 1846 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); 1847 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1848 SYSCTL_CHILDREN(rack_counters), 1849 OID_AUTO, "sack_restart", CTLFLAG_RD, 1850 &rack_sack_proc_restart, 1851 "Total times we had to walk whole list due to a restart"); 1852 rack_sack_proc_short = counter_u64_alloc(M_WAITOK); 1853 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1854 SYSCTL_CHILDREN(rack_counters), 1855 OID_AUTO, "sack_short", CTLFLAG_RD, 1856 &rack_sack_proc_short, 1857 "Total times we took shortcut for sack processing"); 1858 rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK); 1859 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1860 SYSCTL_CHILDREN(rack_counters), 1861 OID_AUTO, "tlp_calc_entered", CTLFLAG_RD, 1862 &rack_enter_tlp_calc, 1863 "Total times we called calc-tlp"); 1864 rack_used_tlpmethod = counter_u64_alloc(M_WAITOK); 1865 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1866 SYSCTL_CHILDREN(rack_counters), 1867 OID_AUTO, "hit_tlp_method", CTLFLAG_RD, 1868 &rack_used_tlpmethod, 1869 "Total number of runt sacks"); 1870 rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK); 1871 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1872 SYSCTL_CHILDREN(rack_counters), 1873 OID_AUTO, "hit_tlp_method2", CTLFLAG_RD, 1874 &rack_used_tlpmethod2, 1875 "Total number of times we hit TLP method 2"); 1876 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); 1877 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1878 SYSCTL_CHILDREN(rack_attack), 1879 OID_AUTO, "skipacked", CTLFLAG_RD, 1880 &rack_sack_skipped_acked, 1881 "Total number of times we skipped previously sacked"); 1882 rack_sack_splits = counter_u64_alloc(M_WAITOK); 1883 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1884 SYSCTL_CHILDREN(rack_attack), 1885 OID_AUTO, "ofsplit", CTLFLAG_RD, 1886 &rack_sack_splits, 1887 "Total number of times we did the old fashion tree split"); 1888 rack_progress_drops = counter_u64_alloc(M_WAITOK); 1889 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1890 SYSCTL_CHILDREN(rack_counters), 1891 OID_AUTO, "prog_drops", CTLFLAG_RD, 1892 &rack_progress_drops, 1893 "Total number of progress drops"); 1894 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); 1895 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1896 SYSCTL_CHILDREN(rack_counters), 1897 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, 1898 &rack_input_idle_reduces, 1899 "Total number of idle reductions on input"); 1900 rack_collapsed_win = counter_u64_alloc(M_WAITOK); 1901 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1902 SYSCTL_CHILDREN(rack_counters), 1903 OID_AUTO, "collapsed_win", CTLFLAG_RD, 1904 &rack_collapsed_win, 1905 "Total number of collapsed windows"); 1906 rack_tlp_does_nada = counter_u64_alloc(M_WAITOK); 1907 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1908 SYSCTL_CHILDREN(rack_counters), 1909 OID_AUTO, "tlp_nada", CTLFLAG_RD, 1910 &rack_tlp_does_nada, 1911 "Total number of nada tlp calls"); 1912 rack_try_scwnd = counter_u64_alloc(M_WAITOK); 1913 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1914 SYSCTL_CHILDREN(rack_counters), 1915 OID_AUTO, "tried_scwnd", CTLFLAG_RD, 1916 &rack_try_scwnd, 1917 "Total number of scwnd attempts"); 1918 1919 rack_per_timer_hole = counter_u64_alloc(M_WAITOK); 1920 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1921 SYSCTL_CHILDREN(rack_counters), 1922 OID_AUTO, "timer_hole", CTLFLAG_RD, 1923 &rack_per_timer_hole, 1924 "Total persists start in timer hole"); 1925 1926 rack_sbsndptr_wrong = counter_u64_alloc(M_WAITOK); 1927 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1928 SYSCTL_CHILDREN(rack_counters), 1929 OID_AUTO, "sndptr_wrong", CTLFLAG_RD, 1930 &rack_sbsndptr_wrong, "Total number of times the saved sbsndptr was incorrect"); 1931 rack_sbsndptr_right = counter_u64_alloc(M_WAITOK); 1932 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1933 SYSCTL_CHILDREN(rack_counters), 1934 OID_AUTO, "sndptr_right", CTLFLAG_RD, 1935 &rack_sbsndptr_right, "Total number of times the saved sbsndptr was correct"); 1936 1937 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); 1938 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1939 OID_AUTO, "outsize", CTLFLAG_RD, 1940 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); 1941 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); 1942 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1943 OID_AUTO, "opts", CTLFLAG_RD, 1944 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); 1945 SYSCTL_ADD_PROC(&rack_sysctl_ctx, 1946 SYSCTL_CHILDREN(rack_sysctl_root), 1947 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1948 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); 1949 } 1950 1951 static __inline int 1952 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a) 1953 { 1954 if (SEQ_GEQ(b->r_start, a->r_start) && 1955 SEQ_LT(b->r_start, a->r_end)) { 1956 /* 1957 * The entry b is within the 1958 * block a. i.e.: 1959 * a -- |-------------| 1960 * b -- |----| 1961 * <or> 1962 * b -- |------| 1963 * <or> 1964 * b -- |-----------| 1965 */ 1966 return (0); 1967 } else if (SEQ_GEQ(b->r_start, a->r_end)) { 1968 /* 1969 * b falls as either the next 1970 * sequence block after a so a 1971 * is said to be smaller than b. 1972 * i.e: 1973 * a -- |------| 1974 * b -- |--------| 1975 * or 1976 * b -- |-----| 1977 */ 1978 return (1); 1979 } 1980 /* 1981 * Whats left is where a is 1982 * larger than b. i.e: 1983 * a -- |-------| 1984 * b -- |---| 1985 * or even possibly 1986 * b -- |--------------| 1987 */ 1988 return (-1); 1989 } 1990 1991 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1992 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1993 1994 static uint32_t 1995 rc_init_window(struct tcp_rack *rack) 1996 { 1997 uint32_t win; 1998 1999 if (rack->rc_init_win == 0) { 2000 /* 2001 * Nothing set by the user, use the system stack 2002 * default. 2003 */ 2004 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); 2005 } 2006 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; 2007 return (win); 2008 } 2009 2010 static uint64_t 2011 rack_get_fixed_pacing_bw(struct tcp_rack *rack) 2012 { 2013 if (IN_FASTRECOVERY(rack->rc_tp->t_flags)) 2014 return (rack->r_ctl.rc_fixed_pacing_rate_rec); 2015 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 2016 return (rack->r_ctl.rc_fixed_pacing_rate_ss); 2017 else 2018 return (rack->r_ctl.rc_fixed_pacing_rate_ca); 2019 } 2020 2021 static uint64_t 2022 rack_get_bw(struct tcp_rack *rack) 2023 { 2024 if (rack->use_fixed_rate) { 2025 /* Return the fixed pacing rate */ 2026 return (rack_get_fixed_pacing_bw(rack)); 2027 } 2028 if (rack->r_ctl.gp_bw == 0) { 2029 /* 2030 * We have yet no b/w measurement, 2031 * if we have a user set initial bw 2032 * return it. If we don't have that and 2033 * we have an srtt, use the tcp IW (10) to 2034 * calculate a fictional b/w over the SRTT 2035 * which is more or less a guess. Note 2036 * we don't use our IW from rack on purpose 2037 * so if we have like IW=30, we are not 2038 * calculating a "huge" b/w. 2039 */ 2040 uint64_t bw, srtt; 2041 if (rack->r_ctl.init_rate) 2042 return (rack->r_ctl.init_rate); 2043 2044 /* Has the user set a max peak rate? */ 2045 #ifdef NETFLIX_PEAKRATE 2046 if (rack->rc_tp->t_maxpeakrate) 2047 return (rack->rc_tp->t_maxpeakrate); 2048 #endif 2049 /* Ok lets come up with the IW guess, if we have a srtt */ 2050 if (rack->rc_tp->t_srtt == 0) { 2051 /* 2052 * Go with old pacing method 2053 * i.e. burst mitigation only. 2054 */ 2055 return (0); 2056 } 2057 /* Ok lets get the initial TCP win (not racks) */ 2058 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); 2059 srtt = (uint64_t)rack->rc_tp->t_srtt; 2060 bw *= (uint64_t)USECS_IN_SECOND; 2061 bw /= srtt; 2062 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2063 bw = rack->r_ctl.bw_rate_cap; 2064 return (bw); 2065 } else { 2066 uint64_t bw; 2067 2068 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 2069 /* Averaging is done, we can return the value */ 2070 bw = rack->r_ctl.gp_bw; 2071 } else { 2072 /* Still doing initial average must calculate */ 2073 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements; 2074 } 2075 #ifdef NETFLIX_PEAKRATE 2076 if ((rack->rc_tp->t_maxpeakrate) && 2077 (bw > rack->rc_tp->t_maxpeakrate)) { 2078 /* The user has set a peak rate to pace at 2079 * don't allow us to pace faster than that. 2080 */ 2081 return (rack->rc_tp->t_maxpeakrate); 2082 } 2083 #endif 2084 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2085 bw = rack->r_ctl.bw_rate_cap; 2086 return (bw); 2087 } 2088 } 2089 2090 static uint16_t 2091 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) 2092 { 2093 if (rack->use_fixed_rate) { 2094 return (100); 2095 } else if (rack->in_probe_rtt && (rsm == NULL)) 2096 return (rack->r_ctl.rack_per_of_gp_probertt); 2097 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) && 2098 rack->r_ctl.rack_per_of_gp_rec)) { 2099 if (rsm) { 2100 /* a retransmission always use the recovery rate */ 2101 return (rack->r_ctl.rack_per_of_gp_rec); 2102 } else if (rack->rack_rec_nonrxt_use_cr) { 2103 /* Directed to use the configured rate */ 2104 goto configured_rate; 2105 } else if (rack->rack_no_prr && 2106 (rack->r_ctl.rack_per_of_gp_rec > 100)) { 2107 /* No PRR, lets just use the b/w estimate only */ 2108 return (100); 2109 } else { 2110 /* 2111 * Here we may have a non-retransmit but we 2112 * have no overrides, so just use the recovery 2113 * rate (prr is in effect). 2114 */ 2115 return (rack->r_ctl.rack_per_of_gp_rec); 2116 } 2117 } 2118 configured_rate: 2119 /* For the configured rate we look at our cwnd vs the ssthresh */ 2120 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 2121 return (rack->r_ctl.rack_per_of_gp_ss); 2122 else 2123 return (rack->r_ctl.rack_per_of_gp_ca); 2124 } 2125 2126 static void 2127 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6) 2128 { 2129 /* 2130 * Types of logs (mod value) 2131 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit. 2132 * 2 = a dsack round begins, persist is reset to 16. 2133 * 3 = a dsack round ends 2134 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh 2135 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack 2136 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh. 2137 */ 2138 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2139 union tcp_log_stackspecific log; 2140 struct timeval tv; 2141 2142 memset(&log, 0, sizeof(log)); 2143 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based; 2144 log.u_bbr.flex1 <<= 1; 2145 log.u_bbr.flex1 |= rack->rc_rack_use_dsack; 2146 log.u_bbr.flex1 <<= 1; 2147 log.u_bbr.flex1 |= rack->rc_dsack_round_seen; 2148 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end; 2149 log.u_bbr.flex3 = rack->r_ctl.num_dsack; 2150 log.u_bbr.flex4 = flex4; 2151 log.u_bbr.flex5 = flex5; 2152 log.u_bbr.flex6 = flex6; 2153 log.u_bbr.flex7 = rack->r_ctl.dsack_persist; 2154 log.u_bbr.flex8 = mod; 2155 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2156 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2157 &rack->rc_inp->inp_socket->so_rcv, 2158 &rack->rc_inp->inp_socket->so_snd, 2159 RACK_DSACK_HANDLING, 0, 2160 0, &log, false, &tv); 2161 } 2162 } 2163 2164 static void 2165 rack_log_hdwr_pacing(struct tcp_rack *rack, 2166 uint64_t rate, uint64_t hw_rate, int line, 2167 int error, uint16_t mod) 2168 { 2169 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2170 union tcp_log_stackspecific log; 2171 struct timeval tv; 2172 const struct ifnet *ifp; 2173 2174 memset(&log, 0, sizeof(log)); 2175 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); 2176 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); 2177 if (rack->r_ctl.crte) { 2178 ifp = rack->r_ctl.crte->ptbl->rs_ifp; 2179 } else if (rack->rc_inp->inp_route.ro_nh && 2180 rack->rc_inp->inp_route.ro_nh->nh_ifp) { 2181 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp; 2182 } else 2183 ifp = NULL; 2184 if (ifp) { 2185 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); 2186 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); 2187 } 2188 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2189 log.u_bbr.bw_inuse = rate; 2190 log.u_bbr.flex5 = line; 2191 log.u_bbr.flex6 = error; 2192 log.u_bbr.flex7 = mod; 2193 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; 2194 log.u_bbr.flex8 = rack->use_fixed_rate; 2195 log.u_bbr.flex8 <<= 1; 2196 log.u_bbr.flex8 |= rack->rack_hdrw_pacing; 2197 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 2198 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate; 2199 if (rack->r_ctl.crte) 2200 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate; 2201 else 2202 log.u_bbr.cur_del_rate = 0; 2203 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req; 2204 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2205 &rack->rc_inp->inp_socket->so_rcv, 2206 &rack->rc_inp->inp_socket->so_snd, 2207 BBR_LOG_HDWR_PACE, 0, 2208 0, &log, false, &tv); 2209 } 2210 } 2211 2212 static uint64_t 2213 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped) 2214 { 2215 /* 2216 * We allow rack_per_of_gp_xx to dictate our bw rate we want. 2217 */ 2218 uint64_t bw_est, high_rate; 2219 uint64_t gain; 2220 2221 gain = (uint64_t)rack_get_output_gain(rack, rsm); 2222 bw_est = bw * gain; 2223 bw_est /= (uint64_t)100; 2224 /* Never fall below the minimum (def 64kbps) */ 2225 if (bw_est < RACK_MIN_BW) 2226 bw_est = RACK_MIN_BW; 2227 if (rack->r_rack_hw_rate_caps) { 2228 /* Rate caps are in place */ 2229 if (rack->r_ctl.crte != NULL) { 2230 /* We have a hdwr rate already */ 2231 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 2232 if (bw_est >= high_rate) { 2233 /* We are capping bw at the highest rate table entry */ 2234 rack_log_hdwr_pacing(rack, 2235 bw_est, high_rate, __LINE__, 2236 0, 3); 2237 bw_est = high_rate; 2238 if (capped) 2239 *capped = 1; 2240 } 2241 } else if ((rack->rack_hdrw_pacing == 0) && 2242 (rack->rack_hdw_pace_ena) && 2243 (rack->rack_attempt_hdwr_pace == 0) && 2244 (rack->rc_inp->inp_route.ro_nh != NULL) && 2245 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 2246 /* 2247 * Special case, we have not yet attempted hardware 2248 * pacing, and yet we may, when we do, find out if we are 2249 * above the highest rate. We need to know the maxbw for the interface 2250 * in question (if it supports ratelimiting). We get back 2251 * a 0, if the interface is not found in the RL lists. 2252 */ 2253 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 2254 if (high_rate) { 2255 /* Yep, we have a rate is it above this rate? */ 2256 if (bw_est > high_rate) { 2257 bw_est = high_rate; 2258 if (capped) 2259 *capped = 1; 2260 } 2261 } 2262 } 2263 } 2264 return (bw_est); 2265 } 2266 2267 static void 2268 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) 2269 { 2270 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2271 union tcp_log_stackspecific log; 2272 struct timeval tv; 2273 2274 if ((mod != 1) && (rack_verbose_logging == 0)) { 2275 /* 2276 * We get 3 values currently for mod 2277 * 1 - We are retransmitting and this tells the reason. 2278 * 2 - We are clearing a dup-ack count. 2279 * 3 - We are incrementing a dup-ack count. 2280 * 2281 * The clear/increment are only logged 2282 * if you have BBverbose on. 2283 */ 2284 return; 2285 } 2286 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2287 log.u_bbr.flex1 = tsused; 2288 log.u_bbr.flex2 = thresh; 2289 log.u_bbr.flex3 = rsm->r_flags; 2290 log.u_bbr.flex4 = rsm->r_dupack; 2291 log.u_bbr.flex5 = rsm->r_start; 2292 log.u_bbr.flex6 = rsm->r_end; 2293 log.u_bbr.flex8 = mod; 2294 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2295 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2296 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2297 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2298 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2299 log.u_bbr.pacing_gain = rack->r_must_retran; 2300 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2301 &rack->rc_inp->inp_socket->so_rcv, 2302 &rack->rc_inp->inp_socket->so_snd, 2303 BBR_LOG_SETTINGS_CHG, 0, 2304 0, &log, false, &tv); 2305 } 2306 } 2307 2308 static void 2309 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) 2310 { 2311 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2312 union tcp_log_stackspecific log; 2313 struct timeval tv; 2314 2315 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2316 log.u_bbr.flex1 = rack->rc_tp->t_srtt; 2317 log.u_bbr.flex2 = to; 2318 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; 2319 log.u_bbr.flex4 = slot; 2320 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot; 2321 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2322 log.u_bbr.flex7 = rack->rc_in_persist; 2323 log.u_bbr.flex8 = which; 2324 if (rack->rack_no_prr) 2325 log.u_bbr.pkts_out = 0; 2326 else 2327 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 2328 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2329 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2330 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2331 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2332 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2333 log.u_bbr.pacing_gain = rack->r_must_retran; 2334 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift; 2335 log.u_bbr.lost = rack_rto_min; 2336 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2337 &rack->rc_inp->inp_socket->so_rcv, 2338 &rack->rc_inp->inp_socket->so_snd, 2339 BBR_LOG_TIMERSTAR, 0, 2340 0, &log, false, &tv); 2341 } 2342 } 2343 2344 static void 2345 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) 2346 { 2347 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2348 union tcp_log_stackspecific log; 2349 struct timeval tv; 2350 2351 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2352 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2353 log.u_bbr.flex8 = to_num; 2354 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; 2355 log.u_bbr.flex2 = rack->rc_rack_rtt; 2356 if (rsm == NULL) 2357 log.u_bbr.flex3 = 0; 2358 else 2359 log.u_bbr.flex3 = rsm->r_end - rsm->r_start; 2360 if (rack->rack_no_prr) 2361 log.u_bbr.flex5 = 0; 2362 else 2363 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2364 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2365 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2366 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2367 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2368 log.u_bbr.pacing_gain = rack->r_must_retran; 2369 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2370 &rack->rc_inp->inp_socket->so_rcv, 2371 &rack->rc_inp->inp_socket->so_snd, 2372 BBR_LOG_RTO, 0, 2373 0, &log, false, &tv); 2374 } 2375 } 2376 2377 static void 2378 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, 2379 struct rack_sendmap *prev, 2380 struct rack_sendmap *rsm, 2381 struct rack_sendmap *next, 2382 int flag, uint32_t th_ack, int line) 2383 { 2384 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2385 union tcp_log_stackspecific log; 2386 struct timeval tv; 2387 2388 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2389 log.u_bbr.flex8 = flag; 2390 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2391 log.u_bbr.cur_del_rate = (uint64_t)prev; 2392 log.u_bbr.delRate = (uint64_t)rsm; 2393 log.u_bbr.rttProp = (uint64_t)next; 2394 log.u_bbr.flex7 = 0; 2395 if (prev) { 2396 log.u_bbr.flex1 = prev->r_start; 2397 log.u_bbr.flex2 = prev->r_end; 2398 log.u_bbr.flex7 |= 0x4; 2399 } 2400 if (rsm) { 2401 log.u_bbr.flex3 = rsm->r_start; 2402 log.u_bbr.flex4 = rsm->r_end; 2403 log.u_bbr.flex7 |= 0x2; 2404 } 2405 if (next) { 2406 log.u_bbr.flex5 = next->r_start; 2407 log.u_bbr.flex6 = next->r_end; 2408 log.u_bbr.flex7 |= 0x1; 2409 } 2410 log.u_bbr.applimited = line; 2411 log.u_bbr.pkts_out = th_ack; 2412 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2413 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2414 if (rack->rack_no_prr) 2415 log.u_bbr.lost = 0; 2416 else 2417 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt; 2418 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2419 &rack->rc_inp->inp_socket->so_rcv, 2420 &rack->rc_inp->inp_socket->so_snd, 2421 TCP_LOG_MAPCHG, 0, 2422 0, &log, false, &tv); 2423 } 2424 } 2425 2426 static void 2427 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, 2428 struct rack_sendmap *rsm, int conf) 2429 { 2430 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2431 union tcp_log_stackspecific log; 2432 struct timeval tv; 2433 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2434 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2435 log.u_bbr.flex1 = t; 2436 log.u_bbr.flex2 = len; 2437 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt; 2438 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest; 2439 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest; 2440 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2441 log.u_bbr.flex7 = conf; 2442 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot; 2443 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; 2444 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2445 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2446 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; 2447 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2448 if (rsm) { 2449 log.u_bbr.pkt_epoch = rsm->r_start; 2450 log.u_bbr.lost = rsm->r_end; 2451 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; 2452 /* We loose any upper of the 24 bits */ 2453 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags; 2454 } else { 2455 /* Its a SYN */ 2456 log.u_bbr.pkt_epoch = rack->rc_tp->iss; 2457 log.u_bbr.lost = 0; 2458 log.u_bbr.cwnd_gain = 0; 2459 log.u_bbr.pacing_gain = 0; 2460 } 2461 /* Write out general bits of interest rrs here */ 2462 log.u_bbr.use_lt_bw = rack->rc_highly_buffered; 2463 log.u_bbr.use_lt_bw <<= 1; 2464 log.u_bbr.use_lt_bw |= rack->forced_ack; 2465 log.u_bbr.use_lt_bw <<= 1; 2466 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; 2467 log.u_bbr.use_lt_bw <<= 1; 2468 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 2469 log.u_bbr.use_lt_bw <<= 1; 2470 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 2471 log.u_bbr.use_lt_bw <<= 1; 2472 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 2473 log.u_bbr.use_lt_bw <<= 1; 2474 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 2475 log.u_bbr.use_lt_bw <<= 1; 2476 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; 2477 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; 2478 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; 2479 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; 2480 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; 2481 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; 2482 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 2483 log.u_bbr.bw_inuse <<= 32; 2484 if (rsm) 2485 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); 2486 TCP_LOG_EVENTP(tp, NULL, 2487 &rack->rc_inp->inp_socket->so_rcv, 2488 &rack->rc_inp->inp_socket->so_snd, 2489 BBR_LOG_BBRRTT, 0, 2490 0, &log, false, &tv); 2491 2492 2493 } 2494 } 2495 2496 static void 2497 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) 2498 { 2499 /* 2500 * Log the rtt sample we are 2501 * applying to the srtt algorithm in 2502 * useconds. 2503 */ 2504 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2505 union tcp_log_stackspecific log; 2506 struct timeval tv; 2507 2508 /* Convert our ms to a microsecond */ 2509 memset(&log, 0, sizeof(log)); 2510 log.u_bbr.flex1 = rtt; 2511 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2512 log.u_bbr.flex3 = rack->r_ctl.sack_count; 2513 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2514 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; 2515 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2516 log.u_bbr.flex7 = 1; 2517 log.u_bbr.flex8 = rack->sack_attack_disable; 2518 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2519 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2520 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2521 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2522 log.u_bbr.pacing_gain = rack->r_must_retran; 2523 /* 2524 * We capture in delRate the upper 32 bits as 2525 * the confidence level we had declared, and the 2526 * lower 32 bits as the actual RTT using the arrival 2527 * timestamp. 2528 */ 2529 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence; 2530 log.u_bbr.delRate <<= 32; 2531 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt; 2532 /* Lets capture all the things that make up t_rtxcur */ 2533 log.u_bbr.applimited = rack_rto_min; 2534 log.u_bbr.epoch = rack_rto_max; 2535 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop; 2536 log.u_bbr.lost = rack_rto_min; 2537 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop); 2538 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp); 2539 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec; 2540 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC; 2541 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec; 2542 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2543 &rack->rc_inp->inp_socket->so_rcv, 2544 &rack->rc_inp->inp_socket->so_snd, 2545 TCP_LOG_RTT, 0, 2546 0, &log, false, &tv); 2547 } 2548 } 2549 2550 static void 2551 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where) 2552 { 2553 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 2554 union tcp_log_stackspecific log; 2555 struct timeval tv; 2556 2557 /* Convert our ms to a microsecond */ 2558 memset(&log, 0, sizeof(log)); 2559 log.u_bbr.flex1 = rtt; 2560 log.u_bbr.flex2 = send_time; 2561 log.u_bbr.flex3 = ack_time; 2562 log.u_bbr.flex4 = where; 2563 log.u_bbr.flex7 = 2; 2564 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2565 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2566 &rack->rc_inp->inp_socket->so_rcv, 2567 &rack->rc_inp->inp_socket->so_snd, 2568 TCP_LOG_RTT, 0, 2569 0, &log, false, &tv); 2570 } 2571 } 2572 2573 2574 2575 static inline void 2576 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) 2577 { 2578 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2579 union tcp_log_stackspecific log; 2580 struct timeval tv; 2581 2582 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2583 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2584 log.u_bbr.flex1 = line; 2585 log.u_bbr.flex2 = tick; 2586 log.u_bbr.flex3 = tp->t_maxunacktime; 2587 log.u_bbr.flex4 = tp->t_acktime; 2588 log.u_bbr.flex8 = event; 2589 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2590 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2591 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2592 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2593 log.u_bbr.pacing_gain = rack->r_must_retran; 2594 TCP_LOG_EVENTP(tp, NULL, 2595 &rack->rc_inp->inp_socket->so_rcv, 2596 &rack->rc_inp->inp_socket->so_snd, 2597 BBR_LOG_PROGRESS, 0, 2598 0, &log, false, &tv); 2599 } 2600 } 2601 2602 static void 2603 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv) 2604 { 2605 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2606 union tcp_log_stackspecific log; 2607 2608 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2609 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2610 log.u_bbr.flex1 = slot; 2611 if (rack->rack_no_prr) 2612 log.u_bbr.flex2 = 0; 2613 else 2614 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; 2615 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); 2616 log.u_bbr.flex8 = rack->rc_in_persist; 2617 log.u_bbr.timeStamp = cts; 2618 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2619 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2620 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2621 log.u_bbr.pacing_gain = rack->r_must_retran; 2622 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2623 &rack->rc_inp->inp_socket->so_rcv, 2624 &rack->rc_inp->inp_socket->so_snd, 2625 BBR_LOG_BBRSND, 0, 2626 0, &log, false, tv); 2627 } 2628 } 2629 2630 static void 2631 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs) 2632 { 2633 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2634 union tcp_log_stackspecific log; 2635 struct timeval tv; 2636 2637 memset(&log, 0, sizeof(log)); 2638 log.u_bbr.flex1 = did_out; 2639 log.u_bbr.flex2 = nxt_pkt; 2640 log.u_bbr.flex3 = way_out; 2641 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2642 if (rack->rack_no_prr) 2643 log.u_bbr.flex5 = 0; 2644 else 2645 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2646 log.u_bbr.flex6 = nsegs; 2647 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; 2648 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */ 2649 log.u_bbr.flex7 <<= 1; 2650 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */ 2651 log.u_bbr.flex7 <<= 1; 2652 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */ 2653 log.u_bbr.flex8 = rack->rc_in_persist; 2654 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2655 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2656 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2657 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2658 log.u_bbr.use_lt_bw <<= 1; 2659 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2660 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2661 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2662 log.u_bbr.pacing_gain = rack->r_must_retran; 2663 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2664 &rack->rc_inp->inp_socket->so_rcv, 2665 &rack->rc_inp->inp_socket->so_snd, 2666 BBR_LOG_DOSEG_DONE, 0, 2667 0, &log, false, &tv); 2668 } 2669 } 2670 2671 static void 2672 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm) 2673 { 2674 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2675 union tcp_log_stackspecific log; 2676 struct timeval tv; 2677 2678 memset(&log, 0, sizeof(log)); 2679 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; 2680 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 2681 log.u_bbr.flex4 = arg1; 2682 log.u_bbr.flex5 = arg2; 2683 log.u_bbr.flex6 = arg3; 2684 log.u_bbr.flex8 = frm; 2685 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2686 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2687 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2688 log.u_bbr.applimited = rack->r_ctl.rc_sacked; 2689 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2690 log.u_bbr.pacing_gain = rack->r_must_retran; 2691 TCP_LOG_EVENTP(tp, NULL, 2692 &tp->t_inpcb->inp_socket->so_rcv, 2693 &tp->t_inpcb->inp_socket->so_snd, 2694 TCP_HDWR_PACE_SIZE, 0, 2695 0, &log, false, &tv); 2696 } 2697 } 2698 2699 static void 2700 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, 2701 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) 2702 { 2703 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2704 union tcp_log_stackspecific log; 2705 struct timeval tv; 2706 2707 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2708 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2709 log.u_bbr.flex1 = slot; 2710 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; 2711 log.u_bbr.flex4 = reason; 2712 if (rack->rack_no_prr) 2713 log.u_bbr.flex5 = 0; 2714 else 2715 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2716 log.u_bbr.flex7 = hpts_calling; 2717 log.u_bbr.flex8 = rack->rc_in_persist; 2718 log.u_bbr.lt_epoch = cwnd_to_use; 2719 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2720 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2721 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2722 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2723 log.u_bbr.pacing_gain = rack->r_must_retran; 2724 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2725 &rack->rc_inp->inp_socket->so_rcv, 2726 &rack->rc_inp->inp_socket->so_snd, 2727 BBR_LOG_JUSTRET, 0, 2728 tlen, &log, false, &tv); 2729 } 2730 } 2731 2732 static void 2733 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, 2734 struct timeval *tv, uint32_t flags_on_entry) 2735 { 2736 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2737 union tcp_log_stackspecific log; 2738 2739 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2740 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2741 log.u_bbr.flex1 = line; 2742 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; 2743 log.u_bbr.flex3 = flags_on_entry; 2744 log.u_bbr.flex4 = us_cts; 2745 if (rack->rack_no_prr) 2746 log.u_bbr.flex5 = 0; 2747 else 2748 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2749 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2750 log.u_bbr.flex7 = hpts_removed; 2751 log.u_bbr.flex8 = 1; 2752 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; 2753 log.u_bbr.timeStamp = us_cts; 2754 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2755 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2756 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2757 log.u_bbr.pacing_gain = rack->r_must_retran; 2758 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2759 &rack->rc_inp->inp_socket->so_rcv, 2760 &rack->rc_inp->inp_socket->so_snd, 2761 BBR_LOG_TIMERCANC, 0, 2762 0, &log, false, tv); 2763 } 2764 } 2765 2766 static void 2767 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 2768 uint32_t flex1, uint32_t flex2, 2769 uint32_t flex3, uint32_t flex4, 2770 uint32_t flex5, uint32_t flex6, 2771 uint16_t flex7, uint8_t mod) 2772 { 2773 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2774 union tcp_log_stackspecific log; 2775 struct timeval tv; 2776 2777 if (mod == 1) { 2778 /* No you can't use 1, its for the real to cancel */ 2779 return; 2780 } 2781 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2782 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2783 log.u_bbr.flex1 = flex1; 2784 log.u_bbr.flex2 = flex2; 2785 log.u_bbr.flex3 = flex3; 2786 log.u_bbr.flex4 = flex4; 2787 log.u_bbr.flex5 = flex5; 2788 log.u_bbr.flex6 = flex6; 2789 log.u_bbr.flex7 = flex7; 2790 log.u_bbr.flex8 = mod; 2791 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2792 &rack->rc_inp->inp_socket->so_rcv, 2793 &rack->rc_inp->inp_socket->so_snd, 2794 BBR_LOG_TIMERCANC, 0, 2795 0, &log, false, &tv); 2796 } 2797 } 2798 2799 static void 2800 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) 2801 { 2802 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2803 union tcp_log_stackspecific log; 2804 struct timeval tv; 2805 2806 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2807 log.u_bbr.flex1 = timers; 2808 log.u_bbr.flex2 = ret; 2809 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; 2810 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2811 log.u_bbr.flex5 = cts; 2812 if (rack->rack_no_prr) 2813 log.u_bbr.flex6 = 0; 2814 else 2815 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; 2816 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2817 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2818 log.u_bbr.pacing_gain = rack->r_must_retran; 2819 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2820 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2821 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2822 &rack->rc_inp->inp_socket->so_rcv, 2823 &rack->rc_inp->inp_socket->so_snd, 2824 BBR_LOG_TO_PROCESS, 0, 2825 0, &log, false, &tv); 2826 } 2827 } 2828 2829 static void 2830 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd) 2831 { 2832 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2833 union tcp_log_stackspecific log; 2834 struct timeval tv; 2835 2836 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2837 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; 2838 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; 2839 if (rack->rack_no_prr) 2840 log.u_bbr.flex3 = 0; 2841 else 2842 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; 2843 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; 2844 log.u_bbr.flex5 = rack->r_ctl.rc_sacked; 2845 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; 2846 log.u_bbr.flex8 = frm; 2847 log.u_bbr.pkts_out = orig_cwnd; 2848 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2849 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2850 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2851 log.u_bbr.use_lt_bw <<= 1; 2852 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2853 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2854 &rack->rc_inp->inp_socket->so_rcv, 2855 &rack->rc_inp->inp_socket->so_snd, 2856 BBR_LOG_BBRUPD, 0, 2857 0, &log, false, &tv); 2858 } 2859 } 2860 2861 #ifdef NETFLIX_EXP_DETECTION 2862 static void 2863 rack_log_sad(struct tcp_rack *rack, int event) 2864 { 2865 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2866 union tcp_log_stackspecific log; 2867 struct timeval tv; 2868 2869 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2870 log.u_bbr.flex1 = rack->r_ctl.sack_count; 2871 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2872 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; 2873 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2874 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; 2875 log.u_bbr.flex6 = tcp_sack_to_ack_thresh; 2876 log.u_bbr.pkts_out = tcp_sack_to_move_thresh; 2877 log.u_bbr.lt_epoch = (tcp_force_detection << 8); 2878 log.u_bbr.lt_epoch |= rack->do_detection; 2879 log.u_bbr.applimited = tcp_map_minimum; 2880 log.u_bbr.flex7 = rack->sack_attack_disable; 2881 log.u_bbr.flex8 = event; 2882 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2883 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2884 log.u_bbr.delivered = tcp_sad_decay_val; 2885 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2886 &rack->rc_inp->inp_socket->so_rcv, 2887 &rack->rc_inp->inp_socket->so_snd, 2888 TCP_SAD_DETECTION, 0, 2889 0, &log, false, &tv); 2890 } 2891 } 2892 #endif 2893 2894 static void 2895 rack_counter_destroy(void) 2896 { 2897 int i; 2898 2899 counter_u64_free(rack_fto_send); 2900 counter_u64_free(rack_fto_rsm_send); 2901 counter_u64_free(rack_nfto_resend); 2902 counter_u64_free(rack_hw_pace_init_fail); 2903 counter_u64_free(rack_hw_pace_lost); 2904 counter_u64_free(rack_non_fto_send); 2905 counter_u64_free(rack_extended_rfo); 2906 counter_u64_free(rack_ack_total); 2907 counter_u64_free(rack_express_sack); 2908 counter_u64_free(rack_sack_total); 2909 counter_u64_free(rack_move_none); 2910 counter_u64_free(rack_move_some); 2911 counter_u64_free(rack_sack_attacks_detected); 2912 counter_u64_free(rack_sack_attacks_reversed); 2913 counter_u64_free(rack_sack_used_next_merge); 2914 counter_u64_free(rack_sack_used_prev_merge); 2915 counter_u64_free(rack_badfr); 2916 counter_u64_free(rack_badfr_bytes); 2917 counter_u64_free(rack_rtm_prr_retran); 2918 counter_u64_free(rack_rtm_prr_newdata); 2919 counter_u64_free(rack_timestamp_mismatch); 2920 counter_u64_free(rack_find_high); 2921 counter_u64_free(rack_reorder_seen); 2922 counter_u64_free(rack_tlp_tot); 2923 counter_u64_free(rack_tlp_newdata); 2924 counter_u64_free(rack_tlp_retran); 2925 counter_u64_free(rack_tlp_retran_bytes); 2926 counter_u64_free(rack_tlp_retran_fail); 2927 counter_u64_free(rack_to_tot); 2928 counter_u64_free(rack_to_arm_rack); 2929 counter_u64_free(rack_to_arm_tlp); 2930 counter_u64_free(rack_calc_zero); 2931 counter_u64_free(rack_calc_nonzero); 2932 counter_u64_free(rack_paced_segments); 2933 counter_u64_free(rack_unpaced_segments); 2934 counter_u64_free(rack_saw_enobuf); 2935 counter_u64_free(rack_saw_enobuf_hw); 2936 counter_u64_free(rack_saw_enetunreach); 2937 counter_u64_free(rack_hot_alloc); 2938 counter_u64_free(rack_to_alloc); 2939 counter_u64_free(rack_to_alloc_hard); 2940 counter_u64_free(rack_to_alloc_emerg); 2941 counter_u64_free(rack_to_alloc_limited); 2942 counter_u64_free(rack_alloc_limited_conns); 2943 counter_u64_free(rack_split_limited); 2944 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 2945 counter_u64_free(rack_proc_comp_ack[i]); 2946 } 2947 counter_u64_free(rack_multi_single_eq); 2948 counter_u64_free(rack_proc_non_comp_ack); 2949 counter_u64_free(rack_sack_proc_all); 2950 counter_u64_free(rack_sack_proc_restart); 2951 counter_u64_free(rack_sack_proc_short); 2952 counter_u64_free(rack_enter_tlp_calc); 2953 counter_u64_free(rack_used_tlpmethod); 2954 counter_u64_free(rack_used_tlpmethod2); 2955 counter_u64_free(rack_sack_skipped_acked); 2956 counter_u64_free(rack_sack_splits); 2957 counter_u64_free(rack_progress_drops); 2958 counter_u64_free(rack_input_idle_reduces); 2959 counter_u64_free(rack_collapsed_win); 2960 counter_u64_free(rack_tlp_does_nada); 2961 counter_u64_free(rack_try_scwnd); 2962 counter_u64_free(rack_per_timer_hole); 2963 counter_u64_free(rack_large_ackcmp); 2964 counter_u64_free(rack_small_ackcmp); 2965 counter_u64_free(rack_persists_sends); 2966 counter_u64_free(rack_persists_acks); 2967 counter_u64_free(rack_persists_loss); 2968 counter_u64_free(rack_persists_lost_ends); 2969 #ifdef INVARIANTS 2970 counter_u64_free(rack_adjust_map_bw); 2971 #endif 2972 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); 2973 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); 2974 } 2975 2976 static struct rack_sendmap * 2977 rack_alloc(struct tcp_rack *rack) 2978 { 2979 struct rack_sendmap *rsm; 2980 2981 /* 2982 * First get the top of the list it in 2983 * theory is the "hottest" rsm we have, 2984 * possibly just freed by ack processing. 2985 */ 2986 if (rack->rc_free_cnt > rack_free_cache) { 2987 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2988 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2989 counter_u64_add(rack_hot_alloc, 1); 2990 rack->rc_free_cnt--; 2991 return (rsm); 2992 } 2993 /* 2994 * Once we get under our free cache we probably 2995 * no longer have a "hot" one available. Lets 2996 * get one from UMA. 2997 */ 2998 rsm = uma_zalloc(rack_zone, M_NOWAIT); 2999 if (rsm) { 3000 rack->r_ctl.rc_num_maps_alloced++; 3001 counter_u64_add(rack_to_alloc, 1); 3002 return (rsm); 3003 } 3004 /* 3005 * Dig in to our aux rsm's (the last two) since 3006 * UMA failed to get us one. 3007 */ 3008 if (rack->rc_free_cnt) { 3009 counter_u64_add(rack_to_alloc_emerg, 1); 3010 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 3011 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3012 rack->rc_free_cnt--; 3013 return (rsm); 3014 } 3015 return (NULL); 3016 } 3017 3018 static struct rack_sendmap * 3019 rack_alloc_full_limit(struct tcp_rack *rack) 3020 { 3021 if ((V_tcp_map_entries_limit > 0) && 3022 (rack->do_detection == 0) && 3023 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 3024 counter_u64_add(rack_to_alloc_limited, 1); 3025 if (!rack->alloc_limit_reported) { 3026 rack->alloc_limit_reported = 1; 3027 counter_u64_add(rack_alloc_limited_conns, 1); 3028 } 3029 return (NULL); 3030 } 3031 return (rack_alloc(rack)); 3032 } 3033 3034 /* wrapper to allocate a sendmap entry, subject to a specific limit */ 3035 static struct rack_sendmap * 3036 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) 3037 { 3038 struct rack_sendmap *rsm; 3039 3040 if (limit_type) { 3041 /* currently there is only one limit type */ 3042 if (V_tcp_map_split_limit > 0 && 3043 (rack->do_detection == 0) && 3044 rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { 3045 counter_u64_add(rack_split_limited, 1); 3046 if (!rack->alloc_limit_reported) { 3047 rack->alloc_limit_reported = 1; 3048 counter_u64_add(rack_alloc_limited_conns, 1); 3049 } 3050 return (NULL); 3051 } 3052 } 3053 3054 /* allocate and mark in the limit type, if set */ 3055 rsm = rack_alloc(rack); 3056 if (rsm != NULL && limit_type) { 3057 rsm->r_limit_type = limit_type; 3058 rack->r_ctl.rc_num_split_allocs++; 3059 } 3060 return (rsm); 3061 } 3062 3063 static void 3064 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) 3065 { 3066 if (rsm->r_flags & RACK_APP_LIMITED) { 3067 if (rack->r_ctl.rc_app_limited_cnt > 0) { 3068 rack->r_ctl.rc_app_limited_cnt--; 3069 } 3070 } 3071 if (rsm->r_limit_type) { 3072 /* currently there is only one limit type */ 3073 rack->r_ctl.rc_num_split_allocs--; 3074 } 3075 if (rsm == rack->r_ctl.rc_first_appl) { 3076 if (rack->r_ctl.rc_app_limited_cnt == 0) 3077 rack->r_ctl.rc_first_appl = NULL; 3078 else { 3079 /* Follow the next one out */ 3080 struct rack_sendmap fe; 3081 3082 fe.r_start = rsm->r_nseq_appl; 3083 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 3084 } 3085 } 3086 if (rsm == rack->r_ctl.rc_resend) 3087 rack->r_ctl.rc_resend = NULL; 3088 if (rsm == rack->r_ctl.rc_rsm_at_retran) 3089 rack->r_ctl.rc_rsm_at_retran = NULL; 3090 if (rsm == rack->r_ctl.rc_end_appl) 3091 rack->r_ctl.rc_end_appl = NULL; 3092 if (rack->r_ctl.rc_tlpsend == rsm) 3093 rack->r_ctl.rc_tlpsend = NULL; 3094 if (rack->r_ctl.rc_sacklast == rsm) 3095 rack->r_ctl.rc_sacklast = NULL; 3096 memset(rsm, 0, sizeof(struct rack_sendmap)); 3097 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext); 3098 rack->rc_free_cnt++; 3099 } 3100 3101 static void 3102 rack_free_trim(struct tcp_rack *rack) 3103 { 3104 struct rack_sendmap *rsm; 3105 3106 /* 3107 * Free up all the tail entries until 3108 * we get our list down to the limit. 3109 */ 3110 while (rack->rc_free_cnt > rack_free_cache) { 3111 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head); 3112 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3113 rack->rc_free_cnt--; 3114 uma_zfree(rack_zone, rsm); 3115 } 3116 } 3117 3118 3119 static uint32_t 3120 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) 3121 { 3122 uint64_t srtt, bw, len, tim; 3123 uint32_t segsiz, def_len, minl; 3124 3125 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3126 def_len = rack_def_data_window * segsiz; 3127 if (rack->rc_gp_filled == 0) { 3128 /* 3129 * We have no measurement (IW is in flight?) so 3130 * we can only guess using our data_window sysctl 3131 * value (usually 20MSS). 3132 */ 3133 return (def_len); 3134 } 3135 /* 3136 * Now we have a number of factors to consider. 3137 * 3138 * 1) We have a desired BDP which is usually 3139 * at least 2. 3140 * 2) We have a minimum number of rtt's usually 1 SRTT 3141 * but we allow it too to be more. 3142 * 3) We want to make sure a measurement last N useconds (if 3143 * we have set rack_min_measure_usec. 3144 * 3145 * We handle the first concern here by trying to create a data 3146 * window of max(rack_def_data_window, DesiredBDP). The 3147 * second concern we handle in not letting the measurement 3148 * window end normally until at least the required SRTT's 3149 * have gone by which is done further below in 3150 * rack_enough_for_measurement(). Finally the third concern 3151 * we also handle here by calculating how long that time 3152 * would take at the current BW and then return the 3153 * max of our first calculation and that length. Note 3154 * that if rack_min_measure_usec is 0, we don't deal 3155 * with concern 3. Also for both Concern 1 and 3 an 3156 * application limited period could end the measurement 3157 * earlier. 3158 * 3159 * So lets calculate the BDP with the "known" b/w using 3160 * the SRTT has our rtt and then multiply it by the 3161 * goal. 3162 */ 3163 bw = rack_get_bw(rack); 3164 srtt = (uint64_t)tp->t_srtt; 3165 len = bw * srtt; 3166 len /= (uint64_t)HPTS_USEC_IN_SEC; 3167 len *= max(1, rack_goal_bdp); 3168 /* Now we need to round up to the nearest MSS */ 3169 len = roundup(len, segsiz); 3170 if (rack_min_measure_usec) { 3171 /* Now calculate our min length for this b/w */ 3172 tim = rack_min_measure_usec; 3173 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; 3174 if (minl == 0) 3175 minl = 1; 3176 minl = roundup(minl, segsiz); 3177 if (len < minl) 3178 len = minl; 3179 } 3180 /* 3181 * Now if we have a very small window we want 3182 * to attempt to get the window that is 3183 * as small as possible. This happens on 3184 * low b/w connections and we don't want to 3185 * span huge numbers of rtt's between measurements. 3186 * 3187 * We basically include 2 over our "MIN window" so 3188 * that the measurement can be shortened (possibly) by 3189 * an ack'ed packet. 3190 */ 3191 if (len < def_len) 3192 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); 3193 else 3194 return (max((uint32_t)len, def_len)); 3195 3196 } 3197 3198 static int 3199 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality) 3200 { 3201 uint32_t tim, srtts, segsiz; 3202 3203 /* 3204 * Has enough time passed for the GP measurement to be valid? 3205 */ 3206 if ((tp->snd_max == tp->snd_una) || 3207 (th_ack == tp->snd_max)){ 3208 /* All is acked */ 3209 *quality = RACK_QUALITY_ALLACKED; 3210 return (1); 3211 } 3212 if (SEQ_LT(th_ack, tp->gput_seq)) { 3213 /* Not enough bytes yet */ 3214 return (0); 3215 } 3216 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3217 if (SEQ_LT(th_ack, tp->gput_ack) && 3218 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 3219 /* Not enough bytes yet */ 3220 return (0); 3221 } 3222 if (rack->r_ctl.rc_first_appl && 3223 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) { 3224 /* 3225 * We are up to the app limited send point 3226 * we have to measure irrespective of the time.. 3227 */ 3228 *quality = RACK_QUALITY_APPLIMITED; 3229 return (1); 3230 } 3231 /* Now what about time? */ 3232 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); 3233 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; 3234 if (tim >= srtts) { 3235 *quality = RACK_QUALITY_HIGH; 3236 return (1); 3237 } 3238 /* Nope not even a full SRTT has passed */ 3239 return (0); 3240 } 3241 3242 static void 3243 rack_log_timely(struct tcp_rack *rack, 3244 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, 3245 uint64_t up_bnd, int line, uint8_t method) 3246 { 3247 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3248 union tcp_log_stackspecific log; 3249 struct timeval tv; 3250 3251 memset(&log, 0, sizeof(log)); 3252 log.u_bbr.flex1 = logged; 3253 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; 3254 log.u_bbr.flex2 <<= 4; 3255 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; 3256 log.u_bbr.flex2 <<= 4; 3257 log.u_bbr.flex2 |= rack->rc_gp_incr; 3258 log.u_bbr.flex2 <<= 4; 3259 log.u_bbr.flex2 |= rack->rc_gp_bwred; 3260 log.u_bbr.flex3 = rack->rc_gp_incr; 3261 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3262 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; 3263 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; 3264 log.u_bbr.flex7 = rack->rc_gp_bwred; 3265 log.u_bbr.flex8 = method; 3266 log.u_bbr.cur_del_rate = cur_bw; 3267 log.u_bbr.delRate = low_bnd; 3268 log.u_bbr.bw_inuse = up_bnd; 3269 log.u_bbr.rttProp = rack_get_bw(rack); 3270 log.u_bbr.pkt_epoch = line; 3271 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3272 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3273 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3274 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3275 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3276 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; 3277 log.u_bbr.cwnd_gain <<= 1; 3278 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; 3279 log.u_bbr.cwnd_gain <<= 1; 3280 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 3281 log.u_bbr.cwnd_gain <<= 1; 3282 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 3283 log.u_bbr.lost = rack->r_ctl.rc_loss_count; 3284 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3285 &rack->rc_inp->inp_socket->so_rcv, 3286 &rack->rc_inp->inp_socket->so_snd, 3287 TCP_TIMELY_WORK, 0, 3288 0, &log, false, &tv); 3289 } 3290 } 3291 3292 static int 3293 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) 3294 { 3295 /* 3296 * Before we increase we need to know if 3297 * the estimate just made was less than 3298 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) 3299 * 3300 * If we already are pacing at a fast enough 3301 * rate to push us faster there is no sense of 3302 * increasing. 3303 * 3304 * We first caculate our actual pacing rate (ss or ca multipler 3305 * times our cur_bw). 3306 * 3307 * Then we take the last measured rate and multipy by our 3308 * maximum pacing overage to give us a max allowable rate. 3309 * 3310 * If our act_rate is smaller than our max_allowable rate 3311 * then we should increase. Else we should hold steady. 3312 * 3313 */ 3314 uint64_t act_rate, max_allow_rate; 3315 3316 if (rack_timely_no_stopping) 3317 return (1); 3318 3319 if ((cur_bw == 0) || (last_bw_est == 0)) { 3320 /* 3321 * Initial startup case or 3322 * everything is acked case. 3323 */ 3324 rack_log_timely(rack, mult, cur_bw, 0, 0, 3325 __LINE__, 9); 3326 return (1); 3327 } 3328 if (mult <= 100) { 3329 /* 3330 * We can always pace at or slightly above our rate. 3331 */ 3332 rack_log_timely(rack, mult, cur_bw, 0, 0, 3333 __LINE__, 9); 3334 return (1); 3335 } 3336 act_rate = cur_bw * (uint64_t)mult; 3337 act_rate /= 100; 3338 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); 3339 max_allow_rate /= 100; 3340 if (act_rate < max_allow_rate) { 3341 /* 3342 * Here the rate we are actually pacing at 3343 * is smaller than 10% above our last measurement. 3344 * This means we are pacing below what we would 3345 * like to try to achieve (plus some wiggle room). 3346 */ 3347 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3348 __LINE__, 9); 3349 return (1); 3350 } else { 3351 /* 3352 * Here we are already pacing at least rack_max_per_above(10%) 3353 * what we are getting back. This indicates most likely 3354 * that we are being limited (cwnd/rwnd/app) and can't 3355 * get any more b/w. There is no sense of trying to 3356 * raise up the pacing rate its not speeding us up 3357 * and we already are pacing faster than we are getting. 3358 */ 3359 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3360 __LINE__, 8); 3361 return (0); 3362 } 3363 } 3364 3365 static void 3366 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) 3367 { 3368 /* 3369 * When we drag bottom, we want to assure 3370 * that no multiplier is below 1.0, if so 3371 * we want to restore it to at least that. 3372 */ 3373 if (rack->r_ctl.rack_per_of_gp_rec < 100) { 3374 /* This is unlikely we usually do not touch recovery */ 3375 rack->r_ctl.rack_per_of_gp_rec = 100; 3376 } 3377 if (rack->r_ctl.rack_per_of_gp_ca < 100) { 3378 rack->r_ctl.rack_per_of_gp_ca = 100; 3379 } 3380 if (rack->r_ctl.rack_per_of_gp_ss < 100) { 3381 rack->r_ctl.rack_per_of_gp_ss = 100; 3382 } 3383 } 3384 3385 static void 3386 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) 3387 { 3388 if (rack->r_ctl.rack_per_of_gp_ca > 100) { 3389 rack->r_ctl.rack_per_of_gp_ca = 100; 3390 } 3391 if (rack->r_ctl.rack_per_of_gp_ss > 100) { 3392 rack->r_ctl.rack_per_of_gp_ss = 100; 3393 } 3394 } 3395 3396 static void 3397 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) 3398 { 3399 int32_t calc, logged, plus; 3400 3401 logged = 0; 3402 3403 if (override) { 3404 /* 3405 * override is passed when we are 3406 * loosing b/w and making one last 3407 * gasp at trying to not loose out 3408 * to a new-reno flow. 3409 */ 3410 goto extra_boost; 3411 } 3412 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ 3413 if (rack->rc_gp_incr && 3414 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { 3415 /* 3416 * Reset and get 5 strokes more before the boost. Note 3417 * that the count is 0 based so we have to add one. 3418 */ 3419 extra_boost: 3420 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; 3421 rack->rc_gp_timely_inc_cnt = 0; 3422 } else 3423 plus = (uint32_t)rack_gp_increase_per; 3424 /* Must be at least 1% increase for true timely increases */ 3425 if ((plus < 1) && 3426 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) 3427 plus = 1; 3428 if (rack->rc_gp_saw_rec && 3429 (rack->rc_gp_no_rec_chg == 0) && 3430 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3431 rack->r_ctl.rack_per_of_gp_rec)) { 3432 /* We have been in recovery ding it too */ 3433 calc = rack->r_ctl.rack_per_of_gp_rec + plus; 3434 if (calc > 0xffff) 3435 calc = 0xffff; 3436 logged |= 1; 3437 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; 3438 if (rack_per_upper_bound_ss && 3439 (rack->rc_dragged_bottom == 0) && 3440 (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss)) 3441 rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss; 3442 } 3443 if (rack->rc_gp_saw_ca && 3444 (rack->rc_gp_saw_ss == 0) && 3445 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3446 rack->r_ctl.rack_per_of_gp_ca)) { 3447 /* In CA */ 3448 calc = rack->r_ctl.rack_per_of_gp_ca + plus; 3449 if (calc > 0xffff) 3450 calc = 0xffff; 3451 logged |= 2; 3452 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; 3453 if (rack_per_upper_bound_ca && 3454 (rack->rc_dragged_bottom == 0) && 3455 (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca)) 3456 rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca; 3457 } 3458 if (rack->rc_gp_saw_ss && 3459 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3460 rack->r_ctl.rack_per_of_gp_ss)) { 3461 /* In SS */ 3462 calc = rack->r_ctl.rack_per_of_gp_ss + plus; 3463 if (calc > 0xffff) 3464 calc = 0xffff; 3465 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; 3466 if (rack_per_upper_bound_ss && 3467 (rack->rc_dragged_bottom == 0) && 3468 (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss)) 3469 rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss; 3470 logged |= 4; 3471 } 3472 if (logged && 3473 (rack->rc_gp_incr == 0)){ 3474 /* Go into increment mode */ 3475 rack->rc_gp_incr = 1; 3476 rack->rc_gp_timely_inc_cnt = 0; 3477 } 3478 if (rack->rc_gp_incr && 3479 logged && 3480 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { 3481 rack->rc_gp_timely_inc_cnt++; 3482 } 3483 rack_log_timely(rack, logged, plus, 0, 0, 3484 __LINE__, 1); 3485 } 3486 3487 static uint32_t 3488 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) 3489 { 3490 /* 3491 * norm_grad = rtt_diff / minrtt; 3492 * new_per = curper * (1 - B * norm_grad) 3493 * 3494 * B = rack_gp_decrease_per (default 10%) 3495 * rtt_dif = input var current rtt-diff 3496 * curper = input var current percentage 3497 * minrtt = from rack filter 3498 * 3499 */ 3500 uint64_t perf; 3501 3502 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3503 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * 3504 (((uint64_t)rtt_diff * (uint64_t)1000000)/ 3505 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ 3506 (uint64_t)1000000)) / 3507 (uint64_t)1000000); 3508 if (perf > curper) { 3509 /* TSNH */ 3510 perf = curper - 1; 3511 } 3512 return ((uint32_t)perf); 3513 } 3514 3515 static uint32_t 3516 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) 3517 { 3518 /* 3519 * highrttthresh 3520 * result = curper * (1 - (B * ( 1 - ------ )) 3521 * gp_srtt 3522 * 3523 * B = rack_gp_decrease_per (default 10%) 3524 * highrttthresh = filter_min * rack_gp_rtt_maxmul 3525 */ 3526 uint64_t perf; 3527 uint32_t highrttthresh; 3528 3529 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 3530 3531 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3532 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - 3533 ((uint64_t)highrttthresh * (uint64_t)1000000) / 3534 (uint64_t)rtt)) / 100)) /(uint64_t)1000000); 3535 return (perf); 3536 } 3537 3538 static void 3539 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) 3540 { 3541 uint64_t logvar, logvar2, logvar3; 3542 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; 3543 3544 if (rack->rc_gp_incr) { 3545 /* Turn off increment counting */ 3546 rack->rc_gp_incr = 0; 3547 rack->rc_gp_timely_inc_cnt = 0; 3548 } 3549 ss_red = ca_red = rec_red = 0; 3550 logged = 0; 3551 /* Calculate the reduction value */ 3552 if (rtt_diff < 0) { 3553 rtt_diff *= -1; 3554 } 3555 /* Must be at least 1% reduction */ 3556 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { 3557 /* We have been in recovery ding it too */ 3558 if (timely_says == 2) { 3559 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); 3560 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3561 if (alt < new_per) 3562 val = alt; 3563 else 3564 val = new_per; 3565 } else 3566 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3567 if (rack->r_ctl.rack_per_of_gp_rec > val) { 3568 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); 3569 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; 3570 } else { 3571 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3572 rec_red = 0; 3573 } 3574 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) 3575 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3576 logged |= 1; 3577 } 3578 if (rack->rc_gp_saw_ss) { 3579 /* Sent in SS */ 3580 if (timely_says == 2) { 3581 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); 3582 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3583 if (alt < new_per) 3584 val = alt; 3585 else 3586 val = new_per; 3587 } else 3588 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 3589 if (rack->r_ctl.rack_per_of_gp_ss > new_per) { 3590 ss_red = rack->r_ctl.rack_per_of_gp_ss - val; 3591 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; 3592 } else { 3593 ss_red = new_per; 3594 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3595 logvar = new_per; 3596 logvar <<= 32; 3597 logvar |= alt; 3598 logvar2 = (uint32_t)rtt; 3599 logvar2 <<= 32; 3600 logvar2 |= (uint32_t)rtt_diff; 3601 logvar3 = rack_gp_rtt_maxmul; 3602 logvar3 <<= 32; 3603 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3604 rack_log_timely(rack, timely_says, 3605 logvar2, logvar3, 3606 logvar, __LINE__, 10); 3607 } 3608 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) 3609 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3610 logged |= 4; 3611 } else if (rack->rc_gp_saw_ca) { 3612 /* Sent in CA */ 3613 if (timely_says == 2) { 3614 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); 3615 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3616 if (alt < new_per) 3617 val = alt; 3618 else 3619 val = new_per; 3620 } else 3621 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 3622 if (rack->r_ctl.rack_per_of_gp_ca > val) { 3623 ca_red = rack->r_ctl.rack_per_of_gp_ca - val; 3624 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; 3625 } else { 3626 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3627 ca_red = 0; 3628 logvar = new_per; 3629 logvar <<= 32; 3630 logvar |= alt; 3631 logvar2 = (uint32_t)rtt; 3632 logvar2 <<= 32; 3633 logvar2 |= (uint32_t)rtt_diff; 3634 logvar3 = rack_gp_rtt_maxmul; 3635 logvar3 <<= 32; 3636 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3637 rack_log_timely(rack, timely_says, 3638 logvar2, logvar3, 3639 logvar, __LINE__, 10); 3640 } 3641 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) 3642 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3643 logged |= 2; 3644 } 3645 if (rack->rc_gp_timely_dec_cnt < 0x7) { 3646 rack->rc_gp_timely_dec_cnt++; 3647 if (rack_timely_dec_clear && 3648 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) 3649 rack->rc_gp_timely_dec_cnt = 0; 3650 } 3651 logvar = ss_red; 3652 logvar <<= 32; 3653 logvar |= ca_red; 3654 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, 3655 __LINE__, 2); 3656 } 3657 3658 static void 3659 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, 3660 uint32_t rtt, uint32_t line, uint8_t reas) 3661 { 3662 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3663 union tcp_log_stackspecific log; 3664 struct timeval tv; 3665 3666 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3667 log.u_bbr.flex1 = line; 3668 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; 3669 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; 3670 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3671 log.u_bbr.flex5 = rtt; 3672 log.u_bbr.flex6 = rack->rc_highly_buffered; 3673 log.u_bbr.flex6 <<= 1; 3674 log.u_bbr.flex6 |= rack->forced_ack; 3675 log.u_bbr.flex6 <<= 1; 3676 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; 3677 log.u_bbr.flex6 <<= 1; 3678 log.u_bbr.flex6 |= rack->in_probe_rtt; 3679 log.u_bbr.flex6 <<= 1; 3680 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; 3681 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; 3682 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; 3683 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; 3684 log.u_bbr.flex8 = reas; 3685 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3686 log.u_bbr.delRate = rack_get_bw(rack); 3687 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; 3688 log.u_bbr.cur_del_rate <<= 32; 3689 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; 3690 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; 3691 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3692 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3693 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3694 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3695 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; 3696 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; 3697 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3698 log.u_bbr.rttProp = us_cts; 3699 log.u_bbr.rttProp <<= 32; 3700 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; 3701 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3702 &rack->rc_inp->inp_socket->so_rcv, 3703 &rack->rc_inp->inp_socket->so_snd, 3704 BBR_LOG_RTT_SHRINKS, 0, 3705 0, &log, false, &rack->r_ctl.act_rcv_time); 3706 } 3707 } 3708 3709 static void 3710 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) 3711 { 3712 uint64_t bwdp; 3713 3714 bwdp = rack_get_bw(rack); 3715 bwdp *= (uint64_t)rtt; 3716 bwdp /= (uint64_t)HPTS_USEC_IN_SEC; 3717 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); 3718 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { 3719 /* 3720 * A window protocol must be able to have 4 packets 3721 * outstanding as the floor in order to function 3722 * (especially considering delayed ack :D). 3723 */ 3724 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); 3725 } 3726 } 3727 3728 static void 3729 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) 3730 { 3731 /** 3732 * ProbeRTT is a bit different in rack_pacing than in 3733 * BBR. It is like BBR in that it uses the lowering of 3734 * the RTT as a signal that we saw something new and 3735 * counts from there for how long between. But it is 3736 * different in that its quite simple. It does not 3737 * play with the cwnd and wait until we get down 3738 * to N segments outstanding and hold that for 3739 * 200ms. Instead it just sets the pacing reduction 3740 * rate to a set percentage (70 by default) and hold 3741 * that for a number of recent GP Srtt's. 3742 */ 3743 uint32_t segsiz; 3744 3745 if (rack->rc_gp_dyn_mul == 0) 3746 return; 3747 3748 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { 3749 /* We are idle */ 3750 return; 3751 } 3752 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3753 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3754 /* 3755 * Stop the goodput now, the idea here is 3756 * that future measurements with in_probe_rtt 3757 * won't register if they are not greater so 3758 * we want to get what info (if any) is available 3759 * now. 3760 */ 3761 rack_do_goodput_measurement(rack->rc_tp, rack, 3762 rack->rc_tp->snd_una, __LINE__, 3763 RACK_QUALITY_PROBERTT); 3764 } 3765 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3766 rack->r_ctl.rc_time_probertt_entered = us_cts; 3767 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3768 rack->r_ctl.rc_pace_min_segs); 3769 rack->in_probe_rtt = 1; 3770 rack->measure_saw_probe_rtt = 1; 3771 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3772 rack->r_ctl.rc_time_probertt_starts = 0; 3773 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; 3774 if (rack_probertt_use_min_rtt_entry) 3775 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3776 else 3777 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); 3778 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3779 __LINE__, RACK_RTTS_ENTERPROBE); 3780 } 3781 3782 static void 3783 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) 3784 { 3785 struct rack_sendmap *rsm; 3786 uint32_t segsiz; 3787 3788 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3789 rack->r_ctl.rc_pace_min_segs); 3790 rack->in_probe_rtt = 0; 3791 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3792 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3793 /* 3794 * Stop the goodput now, the idea here is 3795 * that future measurements with in_probe_rtt 3796 * won't register if they are not greater so 3797 * we want to get what info (if any) is available 3798 * now. 3799 */ 3800 rack_do_goodput_measurement(rack->rc_tp, rack, 3801 rack->rc_tp->snd_una, __LINE__, 3802 RACK_QUALITY_PROBERTT); 3803 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 3804 /* 3805 * We don't have enough data to make a measurement. 3806 * So lets just stop and start here after exiting 3807 * probe-rtt. We probably are not interested in 3808 * the results anyway. 3809 */ 3810 rack->rc_tp->t_flags &= ~TF_GPUTINPROG; 3811 } 3812 /* 3813 * Measurements through the current snd_max are going 3814 * to be limited by the slower pacing rate. 3815 * 3816 * We need to mark these as app-limited so we 3817 * don't collapse the b/w. 3818 */ 3819 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 3820 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 3821 if (rack->r_ctl.rc_app_limited_cnt == 0) 3822 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 3823 else { 3824 /* 3825 * Go out to the end app limited and mark 3826 * this new one as next and move the end_appl up 3827 * to this guy. 3828 */ 3829 if (rack->r_ctl.rc_end_appl) 3830 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 3831 rack->r_ctl.rc_end_appl = rsm; 3832 } 3833 rsm->r_flags |= RACK_APP_LIMITED; 3834 rack->r_ctl.rc_app_limited_cnt++; 3835 } 3836 /* 3837 * Now, we need to examine our pacing rate multipliers. 3838 * If its under 100%, we need to kick it back up to 3839 * 100%. We also don't let it be over our "max" above 3840 * the actual rate i.e. 100% + rack_clamp_atexit_prtt. 3841 * Note setting clamp_atexit_prtt to 0 has the effect 3842 * of setting CA/SS to 100% always at exit (which is 3843 * the default behavior). 3844 */ 3845 if (rack_probertt_clear_is) { 3846 rack->rc_gp_incr = 0; 3847 rack->rc_gp_bwred = 0; 3848 rack->rc_gp_timely_inc_cnt = 0; 3849 rack->rc_gp_timely_dec_cnt = 0; 3850 } 3851 /* Do we do any clamping at exit? */ 3852 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { 3853 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; 3854 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; 3855 } 3856 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { 3857 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; 3858 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; 3859 } 3860 /* 3861 * Lets set rtt_diff to 0, so that we will get a "boost" 3862 * after exiting. 3863 */ 3864 rack->r_ctl.rc_rtt_diff = 0; 3865 3866 /* Clear all flags so we start fresh */ 3867 rack->rc_tp->t_bytes_acked = 0; 3868 rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND; 3869 /* 3870 * If configured to, set the cwnd and ssthresh to 3871 * our targets. 3872 */ 3873 if (rack_probe_rtt_sets_cwnd) { 3874 uint64_t ebdp; 3875 uint32_t setto; 3876 3877 /* Set ssthresh so we get into CA once we hit our target */ 3878 if (rack_probertt_use_min_rtt_exit == 1) { 3879 /* Set to min rtt */ 3880 rack_set_prtt_target(rack, segsiz, 3881 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3882 } else if (rack_probertt_use_min_rtt_exit == 2) { 3883 /* Set to current gp rtt */ 3884 rack_set_prtt_target(rack, segsiz, 3885 rack->r_ctl.rc_gp_srtt); 3886 } else if (rack_probertt_use_min_rtt_exit == 3) { 3887 /* Set to entry gp rtt */ 3888 rack_set_prtt_target(rack, segsiz, 3889 rack->r_ctl.rc_entry_gp_rtt); 3890 } else { 3891 uint64_t sum; 3892 uint32_t setval; 3893 3894 sum = rack->r_ctl.rc_entry_gp_rtt; 3895 sum *= 10; 3896 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); 3897 if (sum >= 20) { 3898 /* 3899 * A highly buffered path needs 3900 * cwnd space for timely to work. 3901 * Lets set things up as if 3902 * we are heading back here again. 3903 */ 3904 setval = rack->r_ctl.rc_entry_gp_rtt; 3905 } else if (sum >= 15) { 3906 /* 3907 * Lets take the smaller of the 3908 * two since we are just somewhat 3909 * buffered. 3910 */ 3911 setval = rack->r_ctl.rc_gp_srtt; 3912 if (setval > rack->r_ctl.rc_entry_gp_rtt) 3913 setval = rack->r_ctl.rc_entry_gp_rtt; 3914 } else { 3915 /* 3916 * Here we are not highly buffered 3917 * and should pick the min we can to 3918 * keep from causing loss. 3919 */ 3920 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3921 } 3922 rack_set_prtt_target(rack, segsiz, 3923 setval); 3924 } 3925 if (rack_probe_rtt_sets_cwnd > 1) { 3926 /* There is a percentage here to boost */ 3927 ebdp = rack->r_ctl.rc_target_probertt_flight; 3928 ebdp *= rack_probe_rtt_sets_cwnd; 3929 ebdp /= 100; 3930 setto = rack->r_ctl.rc_target_probertt_flight + ebdp; 3931 } else 3932 setto = rack->r_ctl.rc_target_probertt_flight; 3933 rack->rc_tp->snd_cwnd = roundup(setto, segsiz); 3934 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { 3935 /* Enforce a min */ 3936 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; 3937 } 3938 /* If we set in the cwnd also set the ssthresh point so we are in CA */ 3939 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); 3940 } 3941 rack_log_rtt_shrinks(rack, us_cts, 3942 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3943 __LINE__, RACK_RTTS_EXITPROBE); 3944 /* Clear times last so log has all the info */ 3945 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; 3946 rack->r_ctl.rc_time_probertt_entered = us_cts; 3947 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3948 rack->r_ctl.rc_time_of_last_probertt = us_cts; 3949 } 3950 3951 static void 3952 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) 3953 { 3954 /* Check in on probe-rtt */ 3955 if (rack->rc_gp_filled == 0) { 3956 /* We do not do p-rtt unless we have gp measurements */ 3957 return; 3958 } 3959 if (rack->in_probe_rtt) { 3960 uint64_t no_overflow; 3961 uint32_t endtime, must_stay; 3962 3963 if (rack->r_ctl.rc_went_idle_time && 3964 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { 3965 /* 3966 * We went idle during prtt, just exit now. 3967 */ 3968 rack_exit_probertt(rack, us_cts); 3969 } else if (rack_probe_rtt_safety_val && 3970 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && 3971 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { 3972 /* 3973 * Probe RTT safety value triggered! 3974 */ 3975 rack_log_rtt_shrinks(rack, us_cts, 3976 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3977 __LINE__, RACK_RTTS_SAFETY); 3978 rack_exit_probertt(rack, us_cts); 3979 } 3980 /* Calculate the max we will wait */ 3981 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); 3982 if (rack->rc_highly_buffered) 3983 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); 3984 /* Calculate the min we must wait */ 3985 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); 3986 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && 3987 TSTMP_LT(us_cts, endtime)) { 3988 uint32_t calc; 3989 /* Do we lower more? */ 3990 no_exit: 3991 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) 3992 calc = us_cts - rack->r_ctl.rc_time_probertt_entered; 3993 else 3994 calc = 0; 3995 calc /= max(rack->r_ctl.rc_gp_srtt, 1); 3996 if (calc) { 3997 /* Maybe */ 3998 calc *= rack_per_of_gp_probertt_reduce; 3999 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; 4000 /* Limit it too */ 4001 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) 4002 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; 4003 } 4004 /* We must reach target or the time set */ 4005 return; 4006 } 4007 if (rack->r_ctl.rc_time_probertt_starts == 0) { 4008 if ((TSTMP_LT(us_cts, must_stay) && 4009 rack->rc_highly_buffered) || 4010 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > 4011 rack->r_ctl.rc_target_probertt_flight)) { 4012 /* We are not past the must_stay time */ 4013 goto no_exit; 4014 } 4015 rack_log_rtt_shrinks(rack, us_cts, 4016 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4017 __LINE__, RACK_RTTS_REACHTARGET); 4018 rack->r_ctl.rc_time_probertt_starts = us_cts; 4019 if (rack->r_ctl.rc_time_probertt_starts == 0) 4020 rack->r_ctl.rc_time_probertt_starts = 1; 4021 /* Restore back to our rate we want to pace at in prtt */ 4022 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 4023 } 4024 /* 4025 * Setup our end time, some number of gp_srtts plus 200ms. 4026 */ 4027 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * 4028 (uint64_t)rack_probertt_gpsrtt_cnt_mul); 4029 if (rack_probertt_gpsrtt_cnt_div) 4030 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); 4031 else 4032 endtime = 0; 4033 endtime += rack_min_probertt_hold; 4034 endtime += rack->r_ctl.rc_time_probertt_starts; 4035 if (TSTMP_GEQ(us_cts, endtime)) { 4036 /* yes, exit probertt */ 4037 rack_exit_probertt(rack, us_cts); 4038 } 4039 4040 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { 4041 /* Go into probertt, its been too long since we went lower */ 4042 rack_enter_probertt(rack, us_cts); 4043 } 4044 } 4045 4046 static void 4047 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, 4048 uint32_t rtt, int32_t rtt_diff) 4049 { 4050 uint64_t cur_bw, up_bnd, low_bnd, subfr; 4051 uint32_t losses; 4052 4053 if ((rack->rc_gp_dyn_mul == 0) || 4054 (rack->use_fixed_rate) || 4055 (rack->in_probe_rtt) || 4056 (rack->rc_always_pace == 0)) { 4057 /* No dynamic GP multipler in play */ 4058 return; 4059 } 4060 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; 4061 cur_bw = rack_get_bw(rack); 4062 /* Calculate our up and down range */ 4063 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; 4064 up_bnd /= 100; 4065 up_bnd += rack->r_ctl.last_gp_comp_bw; 4066 4067 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; 4068 subfr /= 100; 4069 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; 4070 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { 4071 /* 4072 * This is the case where our RTT is above 4073 * the max target and we have been configured 4074 * to just do timely no bonus up stuff in that case. 4075 * 4076 * There are two configurations, set to 1, and we 4077 * just do timely if we are over our max. If its 4078 * set above 1 then we slam the multipliers down 4079 * to 100 and then decrement per timely. 4080 */ 4081 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4082 __LINE__, 3); 4083 if (rack->r_ctl.rc_no_push_at_mrtt > 1) 4084 rack_validate_multipliers_at_or_below_100(rack); 4085 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4086 } else if ((last_bw_est < low_bnd) && !losses) { 4087 /* 4088 * We are decreasing this is a bit complicated this 4089 * means we are loosing ground. This could be 4090 * because another flow entered and we are competing 4091 * for b/w with it. This will push the RTT up which 4092 * makes timely unusable unless we want to get shoved 4093 * into a corner and just be backed off (the age 4094 * old problem with delay based CC). 4095 * 4096 * On the other hand if it was a route change we 4097 * would like to stay somewhat contained and not 4098 * blow out the buffers. 4099 */ 4100 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4101 __LINE__, 3); 4102 rack->r_ctl.last_gp_comp_bw = cur_bw; 4103 if (rack->rc_gp_bwred == 0) { 4104 /* Go into reduction counting */ 4105 rack->rc_gp_bwred = 1; 4106 rack->rc_gp_timely_dec_cnt = 0; 4107 } 4108 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) || 4109 (timely_says == 0)) { 4110 /* 4111 * Push another time with a faster pacing 4112 * to try to gain back (we include override to 4113 * get a full raise factor). 4114 */ 4115 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || 4116 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || 4117 (timely_says == 0) || 4118 (rack_down_raise_thresh == 0)) { 4119 /* 4120 * Do an override up in b/w if we were 4121 * below the threshold or if the threshold 4122 * is zero we always do the raise. 4123 */ 4124 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); 4125 } else { 4126 /* Log it stays the same */ 4127 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, 4128 __LINE__, 11); 4129 } 4130 rack->rc_gp_timely_dec_cnt++; 4131 /* We are not incrementing really no-count */ 4132 rack->rc_gp_incr = 0; 4133 rack->rc_gp_timely_inc_cnt = 0; 4134 } else { 4135 /* 4136 * Lets just use the RTT 4137 * information and give up 4138 * pushing. 4139 */ 4140 goto use_timely; 4141 } 4142 } else if ((timely_says != 2) && 4143 !losses && 4144 (last_bw_est > up_bnd)) { 4145 /* 4146 * We are increasing b/w lets keep going, updating 4147 * our b/w and ignoring any timely input, unless 4148 * of course we are at our max raise (if there is one). 4149 */ 4150 4151 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4152 __LINE__, 3); 4153 rack->r_ctl.last_gp_comp_bw = cur_bw; 4154 if (rack->rc_gp_saw_ss && 4155 rack_per_upper_bound_ss && 4156 (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) { 4157 /* 4158 * In cases where we can't go higher 4159 * we should just use timely. 4160 */ 4161 goto use_timely; 4162 } 4163 if (rack->rc_gp_saw_ca && 4164 rack_per_upper_bound_ca && 4165 (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) { 4166 /* 4167 * In cases where we can't go higher 4168 * we should just use timely. 4169 */ 4170 goto use_timely; 4171 } 4172 rack->rc_gp_bwred = 0; 4173 rack->rc_gp_timely_dec_cnt = 0; 4174 /* You get a set number of pushes if timely is trying to reduce */ 4175 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { 4176 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4177 } else { 4178 /* Log it stays the same */ 4179 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, 4180 __LINE__, 12); 4181 } 4182 return; 4183 } else { 4184 /* 4185 * We are staying between the lower and upper range bounds 4186 * so use timely to decide. 4187 */ 4188 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4189 __LINE__, 3); 4190 use_timely: 4191 if (timely_says) { 4192 rack->rc_gp_incr = 0; 4193 rack->rc_gp_timely_inc_cnt = 0; 4194 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && 4195 !losses && 4196 (last_bw_est < low_bnd)) { 4197 /* We are loosing ground */ 4198 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4199 rack->rc_gp_timely_dec_cnt++; 4200 /* We are not incrementing really no-count */ 4201 rack->rc_gp_incr = 0; 4202 rack->rc_gp_timely_inc_cnt = 0; 4203 } else 4204 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4205 } else { 4206 rack->rc_gp_bwred = 0; 4207 rack->rc_gp_timely_dec_cnt = 0; 4208 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4209 } 4210 } 4211 } 4212 4213 static int32_t 4214 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) 4215 { 4216 int32_t timely_says; 4217 uint64_t log_mult, log_rtt_a_diff; 4218 4219 log_rtt_a_diff = rtt; 4220 log_rtt_a_diff <<= 32; 4221 log_rtt_a_diff |= (uint32_t)rtt_diff; 4222 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * 4223 rack_gp_rtt_maxmul)) { 4224 /* Reduce the b/w multipler */ 4225 timely_says = 2; 4226 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 4227 log_mult <<= 32; 4228 log_mult |= prev_rtt; 4229 rack_log_timely(rack, timely_says, log_mult, 4230 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4231 log_rtt_a_diff, __LINE__, 4); 4232 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4233 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4234 max(rack_gp_rtt_mindiv , 1)))) { 4235 /* Increase the b/w multipler */ 4236 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4237 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4238 max(rack_gp_rtt_mindiv , 1)); 4239 log_mult <<= 32; 4240 log_mult |= prev_rtt; 4241 timely_says = 0; 4242 rack_log_timely(rack, timely_says, log_mult , 4243 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4244 log_rtt_a_diff, __LINE__, 5); 4245 } else { 4246 /* 4247 * Use a gradient to find it the timely gradient 4248 * is: 4249 * grad = rc_rtt_diff / min_rtt; 4250 * 4251 * anything below or equal to 0 will be 4252 * a increase indication. Anything above 4253 * zero is a decrease. Note we take care 4254 * of the actual gradient calculation 4255 * in the reduction (its not needed for 4256 * increase). 4257 */ 4258 log_mult = prev_rtt; 4259 if (rtt_diff <= 0) { 4260 /* 4261 * Rttdiff is less than zero, increase the 4262 * b/w multipler (its 0 or negative) 4263 */ 4264 timely_says = 0; 4265 rack_log_timely(rack, timely_says, log_mult, 4266 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); 4267 } else { 4268 /* Reduce the b/w multipler */ 4269 timely_says = 1; 4270 rack_log_timely(rack, timely_says, log_mult, 4271 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); 4272 } 4273 } 4274 return (timely_says); 4275 } 4276 4277 static void 4278 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 4279 tcp_seq th_ack, int line, uint8_t quality) 4280 { 4281 uint64_t tim, bytes_ps, ltim, stim, utim; 4282 uint32_t segsiz, bytes, reqbytes, us_cts; 4283 int32_t gput, new_rtt_diff, timely_says; 4284 uint64_t resid_bw, subpart = 0, addpart = 0, srtt; 4285 int did_add = 0; 4286 4287 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4288 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 4289 if (TSTMP_GEQ(us_cts, tp->gput_ts)) 4290 tim = us_cts - tp->gput_ts; 4291 else 4292 tim = 0; 4293 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts) 4294 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; 4295 else 4296 stim = 0; 4297 /* 4298 * Use the larger of the send time or ack time. This prevents us 4299 * from being influenced by ack artifacts to come up with too 4300 * high of measurement. Note that since we are spanning over many more 4301 * bytes in most of our measurements hopefully that is less likely to 4302 * occur. 4303 */ 4304 if (tim > stim) 4305 utim = max(tim, 1); 4306 else 4307 utim = max(stim, 1); 4308 /* Lets get a msec time ltim too for the old stuff */ 4309 ltim = max(1, (utim / HPTS_USEC_IN_MSEC)); 4310 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim; 4311 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); 4312 if ((tim == 0) && (stim == 0)) { 4313 /* 4314 * Invalid measurement time, maybe 4315 * all on one ack/one send? 4316 */ 4317 bytes = 0; 4318 bytes_ps = 0; 4319 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4320 0, 0, 0, 10, __LINE__, NULL, quality); 4321 goto skip_measurement; 4322 } 4323 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { 4324 /* We never made a us_rtt measurement? */ 4325 bytes = 0; 4326 bytes_ps = 0; 4327 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4328 0, 0, 0, 10, __LINE__, NULL, quality); 4329 goto skip_measurement; 4330 } 4331 /* 4332 * Calculate the maximum possible b/w this connection 4333 * could have. We base our calculation on the lowest 4334 * rtt we have seen during the measurement and the 4335 * largest rwnd the client has given us in that time. This 4336 * forms a BDP that is the maximum that we could ever 4337 * get to the client. Anything larger is not valid. 4338 * 4339 * I originally had code here that rejected measurements 4340 * where the time was less than 1/2 the latest us_rtt. 4341 * But after thinking on that I realized its wrong since 4342 * say you had a 150Mbps or even 1Gbps link, and you 4343 * were a long way away.. example I am in Europe (100ms rtt) 4344 * talking to my 1Gbps link in S.C. Now measuring say 150,000 4345 * bytes my time would be 1.2ms, and yet my rtt would say 4346 * the measurement was invalid the time was < 50ms. The 4347 * same thing is true for 150Mb (8ms of time). 4348 * 4349 * A better way I realized is to look at what the maximum 4350 * the connection could possibly do. This is gated on 4351 * the lowest RTT we have seen and the highest rwnd. 4352 * We should in theory never exceed that, if we are 4353 * then something on the path is storing up packets 4354 * and then feeding them all at once to our endpoint 4355 * messing up our measurement. 4356 */ 4357 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; 4358 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; 4359 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; 4360 if (SEQ_LT(th_ack, tp->gput_seq)) { 4361 /* No measurement can be made */ 4362 bytes = 0; 4363 bytes_ps = 0; 4364 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4365 0, 0, 0, 10, __LINE__, NULL, quality); 4366 goto skip_measurement; 4367 } else 4368 bytes = (th_ack - tp->gput_seq); 4369 bytes_ps = (uint64_t)bytes; 4370 /* 4371 * Don't measure a b/w for pacing unless we have gotten at least 4372 * an initial windows worth of data in this measurement interval. 4373 * 4374 * Small numbers of bytes get badly influenced by delayed ack and 4375 * other artifacts. Note we take the initial window or our 4376 * defined minimum GP (defaulting to 10 which hopefully is the 4377 * IW). 4378 */ 4379 if (rack->rc_gp_filled == 0) { 4380 /* 4381 * The initial estimate is special. We 4382 * have blasted out an IW worth of packets 4383 * without a real valid ack ts results. We 4384 * then setup the app_limited_needs_set flag, 4385 * this should get the first ack in (probably 2 4386 * MSS worth) to be recorded as the timestamp. 4387 * We thus allow a smaller number of bytes i.e. 4388 * IW - 2MSS. 4389 */ 4390 reqbytes -= (2 * segsiz); 4391 /* Also lets fill previous for our first measurement to be neutral */ 4392 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4393 } 4394 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { 4395 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4396 rack->r_ctl.rc_app_limited_cnt, 4397 0, 0, 10, __LINE__, NULL, quality); 4398 goto skip_measurement; 4399 } 4400 /* 4401 * We now need to calculate the Timely like status so 4402 * we can update (possibly) the b/w multipliers. 4403 */ 4404 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; 4405 if (rack->rc_gp_filled == 0) { 4406 /* No previous reading */ 4407 rack->r_ctl.rc_rtt_diff = new_rtt_diff; 4408 } else { 4409 if (rack->measure_saw_probe_rtt == 0) { 4410 /* 4411 * We don't want a probertt to be counted 4412 * since it will be negative incorrectly. We 4413 * expect to be reducing the RTT when we 4414 * pace at a slower rate. 4415 */ 4416 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); 4417 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); 4418 } 4419 } 4420 timely_says = rack_make_timely_judgement(rack, 4421 rack->r_ctl.rc_gp_srtt, 4422 rack->r_ctl.rc_rtt_diff, 4423 rack->r_ctl.rc_prev_gp_srtt 4424 ); 4425 bytes_ps *= HPTS_USEC_IN_SEC; 4426 bytes_ps /= utim; 4427 if (bytes_ps > rack->r_ctl.last_max_bw) { 4428 /* 4429 * Something is on path playing 4430 * since this b/w is not possible based 4431 * on our BDP (highest rwnd and lowest rtt 4432 * we saw in the measurement window). 4433 * 4434 * Another option here would be to 4435 * instead skip the measurement. 4436 */ 4437 rack_log_pacing_delay_calc(rack, bytes, reqbytes, 4438 bytes_ps, rack->r_ctl.last_max_bw, 0, 4439 11, __LINE__, NULL, quality); 4440 bytes_ps = rack->r_ctl.last_max_bw; 4441 } 4442 /* We store gp for b/w in bytes per second */ 4443 if (rack->rc_gp_filled == 0) { 4444 /* Initial measurement */ 4445 if (bytes_ps) { 4446 rack->r_ctl.gp_bw = bytes_ps; 4447 rack->rc_gp_filled = 1; 4448 rack->r_ctl.num_measurements = 1; 4449 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 4450 } else { 4451 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4452 rack->r_ctl.rc_app_limited_cnt, 4453 0, 0, 10, __LINE__, NULL, quality); 4454 } 4455 if (tcp_in_hpts(rack->rc_inp) && 4456 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 4457 /* 4458 * Ok we can't trust the pacer in this case 4459 * where we transition from un-paced to paced. 4460 * Or for that matter when the burst mitigation 4461 * was making a wild guess and got it wrong. 4462 * Stop the pacer and clear up all the aggregate 4463 * delays etc. 4464 */ 4465 tcp_hpts_remove(rack->rc_inp); 4466 rack->r_ctl.rc_hpts_flags = 0; 4467 rack->r_ctl.rc_last_output_to = 0; 4468 } 4469 did_add = 2; 4470 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) { 4471 /* Still a small number run an average */ 4472 rack->r_ctl.gp_bw += bytes_ps; 4473 addpart = rack->r_ctl.num_measurements; 4474 rack->r_ctl.num_measurements++; 4475 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 4476 /* We have collected enought to move forward */ 4477 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements; 4478 } 4479 did_add = 3; 4480 } else { 4481 /* 4482 * We want to take 1/wma of the goodput and add in to 7/8th 4483 * of the old value weighted by the srtt. So if your measurement 4484 * period is say 2 SRTT's long you would get 1/4 as the 4485 * value, if it was like 1/2 SRTT then you would get 1/16th. 4486 * 4487 * But we must be careful not to take too much i.e. if the 4488 * srtt is say 20ms and the measurement is taken over 4489 * 400ms our weight would be 400/20 i.e. 20. On the 4490 * other hand if we get a measurement over 1ms with a 4491 * 10ms rtt we only want to take a much smaller portion. 4492 */ 4493 if (rack->r_ctl.num_measurements < 0xff) { 4494 rack->r_ctl.num_measurements++; 4495 } 4496 srtt = (uint64_t)tp->t_srtt; 4497 if (srtt == 0) { 4498 /* 4499 * Strange why did t_srtt go back to zero? 4500 */ 4501 if (rack->r_ctl.rc_rack_min_rtt) 4502 srtt = rack->r_ctl.rc_rack_min_rtt; 4503 else 4504 srtt = HPTS_USEC_IN_MSEC; 4505 } 4506 /* 4507 * XXXrrs: Note for reviewers, in playing with 4508 * dynamic pacing I discovered this GP calculation 4509 * as done originally leads to some undesired results. 4510 * Basically you can get longer measurements contributing 4511 * too much to the WMA. Thus I changed it if you are doing 4512 * dynamic adjustments to only do the aportioned adjustment 4513 * if we have a very small (time wise) measurement. Longer 4514 * measurements just get there weight (defaulting to 1/8) 4515 * add to the WMA. We may want to think about changing 4516 * this to always do that for both sides i.e. dynamic 4517 * and non-dynamic... but considering lots of folks 4518 * were playing with this I did not want to change the 4519 * calculation per.se. without your thoughts.. Lawerence? 4520 * Peter?? 4521 */ 4522 if (rack->rc_gp_dyn_mul == 0) { 4523 subpart = rack->r_ctl.gp_bw * utim; 4524 subpart /= (srtt * 8); 4525 if (subpart < (rack->r_ctl.gp_bw / 2)) { 4526 /* 4527 * The b/w update takes no more 4528 * away then 1/2 our running total 4529 * so factor it in. 4530 */ 4531 addpart = bytes_ps * utim; 4532 addpart /= (srtt * 8); 4533 } else { 4534 /* 4535 * Don't allow a single measurement 4536 * to account for more than 1/2 of the 4537 * WMA. This could happen on a retransmission 4538 * where utim becomes huge compared to 4539 * srtt (multiple retransmissions when using 4540 * the sending rate which factors in all the 4541 * transmissions from the first one). 4542 */ 4543 subpart = rack->r_ctl.gp_bw / 2; 4544 addpart = bytes_ps / 2; 4545 } 4546 resid_bw = rack->r_ctl.gp_bw - subpart; 4547 rack->r_ctl.gp_bw = resid_bw + addpart; 4548 did_add = 1; 4549 } else { 4550 if ((utim / srtt) <= 1) { 4551 /* 4552 * The b/w update was over a small period 4553 * of time. The idea here is to prevent a small 4554 * measurement time period from counting 4555 * too much. So we scale it based on the 4556 * time so it attributes less than 1/rack_wma_divisor 4557 * of its measurement. 4558 */ 4559 subpart = rack->r_ctl.gp_bw * utim; 4560 subpart /= (srtt * rack_wma_divisor); 4561 addpart = bytes_ps * utim; 4562 addpart /= (srtt * rack_wma_divisor); 4563 } else { 4564 /* 4565 * The scaled measurement was long 4566 * enough so lets just add in the 4567 * portion of the measurement i.e. 1/rack_wma_divisor 4568 */ 4569 subpart = rack->r_ctl.gp_bw / rack_wma_divisor; 4570 addpart = bytes_ps / rack_wma_divisor; 4571 } 4572 if ((rack->measure_saw_probe_rtt == 0) || 4573 (bytes_ps > rack->r_ctl.gp_bw)) { 4574 /* 4575 * For probe-rtt we only add it in 4576 * if its larger, all others we just 4577 * add in. 4578 */ 4579 did_add = 1; 4580 resid_bw = rack->r_ctl.gp_bw - subpart; 4581 rack->r_ctl.gp_bw = resid_bw + addpart; 4582 } 4583 } 4584 } 4585 if ((rack->gp_ready == 0) && 4586 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 4587 /* We have enough measurements now */ 4588 rack->gp_ready = 1; 4589 rack_set_cc_pacing(rack); 4590 if (rack->defer_options) 4591 rack_apply_deferred_options(rack); 4592 } 4593 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim, 4594 rack_get_bw(rack), 22, did_add, NULL, quality); 4595 /* We do not update any multipliers if we are in or have seen a probe-rtt */ 4596 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) 4597 rack_update_multiplier(rack, timely_says, bytes_ps, 4598 rack->r_ctl.rc_gp_srtt, 4599 rack->r_ctl.rc_rtt_diff); 4600 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, 4601 rack_get_bw(rack), 3, line, NULL, quality); 4602 /* reset the gp srtt and setup the new prev */ 4603 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4604 /* Record the lost count for the next measurement */ 4605 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; 4606 /* 4607 * We restart our diffs based on the gpsrtt in the 4608 * measurement window. 4609 */ 4610 rack->rc_gp_rtt_set = 0; 4611 rack->rc_gp_saw_rec = 0; 4612 rack->rc_gp_saw_ca = 0; 4613 rack->rc_gp_saw_ss = 0; 4614 rack->rc_dragged_bottom = 0; 4615 skip_measurement: 4616 4617 #ifdef STATS 4618 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 4619 gput); 4620 /* 4621 * XXXLAS: This is a temporary hack, and should be 4622 * chained off VOI_TCP_GPUT when stats(9) grows an 4623 * API to deal with chained VOIs. 4624 */ 4625 if (tp->t_stats_gput_prev > 0) 4626 stats_voi_update_abs_s32(tp->t_stats, 4627 VOI_TCP_GPUT_ND, 4628 ((gput - tp->t_stats_gput_prev) * 100) / 4629 tp->t_stats_gput_prev); 4630 #endif 4631 tp->t_flags &= ~TF_GPUTINPROG; 4632 tp->t_stats_gput_prev = gput; 4633 /* 4634 * Now are we app limited now and there is space from where we 4635 * were to where we want to go? 4636 * 4637 * We don't do the other case i.e. non-applimited here since 4638 * the next send will trigger us picking up the missing data. 4639 */ 4640 if (rack->r_ctl.rc_first_appl && 4641 TCPS_HAVEESTABLISHED(tp->t_state) && 4642 rack->r_ctl.rc_app_limited_cnt && 4643 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && 4644 ((rack->r_ctl.rc_first_appl->r_end - th_ack) > 4645 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 4646 /* 4647 * Yep there is enough outstanding to make a measurement here. 4648 */ 4649 struct rack_sendmap *rsm, fe; 4650 4651 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 4652 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 4653 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4654 rack->app_limited_needs_set = 0; 4655 tp->gput_seq = th_ack; 4656 if (rack->in_probe_rtt) 4657 rack->measure_saw_probe_rtt = 1; 4658 else if ((rack->measure_saw_probe_rtt) && 4659 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 4660 rack->measure_saw_probe_rtt = 0; 4661 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) { 4662 /* There is a full window to gain info from */ 4663 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 4664 } else { 4665 /* We can only measure up to the applimited point */ 4666 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack); 4667 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 4668 /* 4669 * We don't have enough to make a measurement. 4670 */ 4671 tp->t_flags &= ~TF_GPUTINPROG; 4672 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 4673 0, 0, 0, 6, __LINE__, NULL, quality); 4674 return; 4675 } 4676 } 4677 if (tp->t_state >= TCPS_FIN_WAIT_1) { 4678 /* 4679 * We will get no more data into the SB 4680 * this means we need to have the data available 4681 * before we start a measurement. 4682 */ 4683 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < (tp->gput_ack - tp->gput_seq)) { 4684 /* Nope not enough data. */ 4685 return; 4686 } 4687 } 4688 tp->t_flags |= TF_GPUTINPROG; 4689 /* 4690 * Now we need to find the timestamp of the send at tp->gput_seq 4691 * for the send based measurement. 4692 */ 4693 fe.r_start = tp->gput_seq; 4694 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 4695 if (rsm) { 4696 /* Ok send-based limit is set */ 4697 if (SEQ_LT(rsm->r_start, tp->gput_seq)) { 4698 /* 4699 * Move back to include the earlier part 4700 * so our ack time lines up right (this may 4701 * make an overlapping measurement but thats 4702 * ok). 4703 */ 4704 tp->gput_seq = rsm->r_start; 4705 } 4706 if (rsm->r_flags & RACK_ACKED) 4707 tp->gput_ts = (uint32_t)rsm->r_ack_arrival; 4708 else 4709 rack->app_limited_needs_set = 1; 4710 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 4711 } else { 4712 /* 4713 * If we don't find the rsm due to some 4714 * send-limit set the current time, which 4715 * basically disables the send-limit. 4716 */ 4717 struct timeval tv; 4718 4719 microuptime(&tv); 4720 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 4721 } 4722 rack_log_pacing_delay_calc(rack, 4723 tp->gput_seq, 4724 tp->gput_ack, 4725 (uint64_t)rsm, 4726 tp->gput_ts, 4727 rack->r_ctl.rc_app_limited_cnt, 4728 9, 4729 __LINE__, NULL, quality); 4730 } 4731 } 4732 4733 /* 4734 * CC wrapper hook functions 4735 */ 4736 static void 4737 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, 4738 uint16_t type, int32_t recovery) 4739 { 4740 uint32_t prior_cwnd, acked; 4741 struct tcp_log_buffer *lgb = NULL; 4742 uint8_t labc_to_use, quality; 4743 4744 INP_WLOCK_ASSERT(tp->t_inpcb); 4745 tp->ccv->nsegs = nsegs; 4746 acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una); 4747 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { 4748 uint32_t max; 4749 4750 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); 4751 if (tp->ccv->bytes_this_ack > max) { 4752 tp->ccv->bytes_this_ack = max; 4753 } 4754 } 4755 #ifdef STATS 4756 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 4757 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); 4758 #endif 4759 quality = RACK_QUALITY_NONE; 4760 if ((tp->t_flags & TF_GPUTINPROG) && 4761 rack_enough_for_measurement(tp, rack, th_ack, &quality)) { 4762 /* Measure the Goodput */ 4763 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality); 4764 #ifdef NETFLIX_PEAKRATE 4765 if ((type == CC_ACK) && 4766 (tp->t_maxpeakrate)) { 4767 /* 4768 * We update t_peakrate_thr. This gives us roughly 4769 * one update per round trip time. Note 4770 * it will only be used if pace_always is off i.e 4771 * we don't do this for paced flows. 4772 */ 4773 rack_update_peakrate_thr(tp); 4774 } 4775 #endif 4776 } 4777 /* Which way our we limited, if not cwnd limited no advance in CA */ 4778 if (tp->snd_cwnd <= tp->snd_wnd) 4779 tp->ccv->flags |= CCF_CWND_LIMITED; 4780 else 4781 tp->ccv->flags &= ~CCF_CWND_LIMITED; 4782 if (tp->snd_cwnd > tp->snd_ssthresh) { 4783 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, 4784 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); 4785 /* For the setting of a window past use the actual scwnd we are using */ 4786 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { 4787 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; 4788 tp->ccv->flags |= CCF_ABC_SENTAWND; 4789 } 4790 } else { 4791 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 4792 tp->t_bytes_acked = 0; 4793 } 4794 prior_cwnd = tp->snd_cwnd; 4795 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec || 4796 (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf))) 4797 labc_to_use = rack->rc_labc; 4798 else 4799 labc_to_use = rack_max_abc_post_recovery; 4800 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4801 union tcp_log_stackspecific log; 4802 struct timeval tv; 4803 4804 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4805 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4806 log.u_bbr.flex1 = th_ack; 4807 log.u_bbr.flex2 = tp->ccv->flags; 4808 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4809 log.u_bbr.flex4 = tp->ccv->nsegs; 4810 log.u_bbr.flex5 = labc_to_use; 4811 log.u_bbr.flex6 = prior_cwnd; 4812 log.u_bbr.flex7 = V_tcp_do_newsack; 4813 log.u_bbr.flex8 = 1; 4814 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4815 0, &log, false, NULL, NULL, 0, &tv); 4816 } 4817 if (CC_ALGO(tp)->ack_received != NULL) { 4818 /* XXXLAS: Find a way to live without this */ 4819 tp->ccv->curack = th_ack; 4820 tp->ccv->labc = labc_to_use; 4821 tp->ccv->flags |= CCF_USE_LOCAL_ABC; 4822 CC_ALGO(tp)->ack_received(tp->ccv, type); 4823 } 4824 if (lgb) { 4825 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd; 4826 } 4827 if (rack->r_must_retran) { 4828 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) { 4829 /* 4830 * We now are beyond the rxt point so lets disable 4831 * the flag. 4832 */ 4833 rack->r_ctl.rc_out_at_rto = 0; 4834 rack->r_must_retran = 0; 4835 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) { 4836 /* 4837 * Only decrement the rc_out_at_rto if the cwnd advances 4838 * at least a whole segment. Otherwise next time the peer 4839 * acks, we won't be able to send this generaly happens 4840 * when we are in Congestion Avoidance. 4841 */ 4842 if (acked <= rack->r_ctl.rc_out_at_rto){ 4843 rack->r_ctl.rc_out_at_rto -= acked; 4844 } else { 4845 rack->r_ctl.rc_out_at_rto = 0; 4846 } 4847 } 4848 } 4849 #ifdef STATS 4850 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); 4851 #endif 4852 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { 4853 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; 4854 } 4855 #ifdef NETFLIX_PEAKRATE 4856 /* we enforce max peak rate if it is set and we are not pacing */ 4857 if ((rack->rc_always_pace == 0) && 4858 tp->t_peakrate_thr && 4859 (tp->snd_cwnd > tp->t_peakrate_thr)) { 4860 tp->snd_cwnd = tp->t_peakrate_thr; 4861 } 4862 #endif 4863 } 4864 4865 static void 4866 tcp_rack_partialack(struct tcpcb *tp) 4867 { 4868 struct tcp_rack *rack; 4869 4870 rack = (struct tcp_rack *)tp->t_fb_ptr; 4871 INP_WLOCK_ASSERT(tp->t_inpcb); 4872 /* 4873 * If we are doing PRR and have enough 4874 * room to send <or> we are pacing and prr 4875 * is disabled we will want to see if we 4876 * can send data (by setting r_wanted_output to 4877 * true). 4878 */ 4879 if ((rack->r_ctl.rc_prr_sndcnt > 0) || 4880 rack->rack_no_prr) 4881 rack->r_wanted_output = 1; 4882 } 4883 4884 static void 4885 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack) 4886 { 4887 struct tcp_rack *rack; 4888 uint32_t orig_cwnd; 4889 4890 orig_cwnd = tp->snd_cwnd; 4891 INP_WLOCK_ASSERT(tp->t_inpcb); 4892 rack = (struct tcp_rack *)tp->t_fb_ptr; 4893 /* only alert CC if we alerted when we entered */ 4894 if (CC_ALGO(tp)->post_recovery != NULL) { 4895 tp->ccv->curack = th_ack; 4896 CC_ALGO(tp)->post_recovery(tp->ccv); 4897 if (tp->snd_cwnd < tp->snd_ssthresh) { 4898 /* 4899 * Rack has burst control and pacing 4900 * so lets not set this any lower than 4901 * snd_ssthresh per RFC-6582 (option 2). 4902 */ 4903 tp->snd_cwnd = tp->snd_ssthresh; 4904 } 4905 } 4906 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4907 union tcp_log_stackspecific log; 4908 struct timeval tv; 4909 4910 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4911 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4912 log.u_bbr.flex1 = th_ack; 4913 log.u_bbr.flex2 = tp->ccv->flags; 4914 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4915 log.u_bbr.flex4 = tp->ccv->nsegs; 4916 log.u_bbr.flex5 = V_tcp_abc_l_var; 4917 log.u_bbr.flex6 = orig_cwnd; 4918 log.u_bbr.flex7 = V_tcp_do_newsack; 4919 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 4920 log.u_bbr.flex8 = 2; 4921 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4922 0, &log, false, NULL, NULL, 0, &tv); 4923 } 4924 if ((rack->rack_no_prr == 0) && 4925 (rack->no_prr_addback == 0) && 4926 (rack->r_ctl.rc_prr_sndcnt > 0)) { 4927 /* 4928 * Suck the next prr cnt back into cwnd, but 4929 * only do that if we are not application limited. 4930 */ 4931 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 4932 /* 4933 * We are allowed to add back to the cwnd the amount we did 4934 * not get out if: 4935 * a) no_prr_addback is off. 4936 * b) we are not app limited 4937 * c) we are doing prr 4938 * <and> 4939 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none). 4940 */ 4941 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax), 4942 rack->r_ctl.rc_prr_sndcnt); 4943 } 4944 rack->r_ctl.rc_prr_sndcnt = 0; 4945 rack_log_to_prr(rack, 1, 0); 4946 } 4947 rack_log_to_prr(rack, 14, orig_cwnd); 4948 tp->snd_recover = tp->snd_una; 4949 if (rack->r_ctl.dsack_persist) { 4950 rack->r_ctl.dsack_persist--; 4951 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 4952 rack->r_ctl.num_dsack = 0; 4953 } 4954 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 4955 } 4956 EXIT_RECOVERY(tp->t_flags); 4957 } 4958 4959 static void 4960 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack) 4961 { 4962 struct tcp_rack *rack; 4963 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd; 4964 4965 INP_WLOCK_ASSERT(tp->t_inpcb); 4966 #ifdef STATS 4967 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 4968 #endif 4969 if (IN_RECOVERY(tp->t_flags) == 0) { 4970 in_rec_at_entry = 0; 4971 ssthresh_enter = tp->snd_ssthresh; 4972 cwnd_enter = tp->snd_cwnd; 4973 } else 4974 in_rec_at_entry = 1; 4975 rack = (struct tcp_rack *)tp->t_fb_ptr; 4976 switch (type) { 4977 case CC_NDUPACK: 4978 tp->t_flags &= ~TF_WASFRECOVERY; 4979 tp->t_flags &= ~TF_WASCRECOVERY; 4980 if (!IN_FASTRECOVERY(tp->t_flags)) { 4981 rack->r_ctl.rc_prr_delivered = 0; 4982 rack->r_ctl.rc_prr_out = 0; 4983 if (rack->rack_no_prr == 0) { 4984 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 4985 rack_log_to_prr(rack, 2, in_rec_at_entry); 4986 } 4987 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; 4988 tp->snd_recover = tp->snd_max; 4989 if (tp->t_flags2 & TF2_ECN_PERMIT) 4990 tp->t_flags2 |= TF2_ECN_SND_CWR; 4991 } 4992 break; 4993 case CC_ECN: 4994 if (!IN_CONGRECOVERY(tp->t_flags) || 4995 /* 4996 * Allow ECN reaction on ACK to CWR, if 4997 * that data segment was also CE marked. 4998 */ 4999 SEQ_GEQ(ack, tp->snd_recover)) { 5000 EXIT_CONGRECOVERY(tp->t_flags); 5001 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); 5002 tp->snd_recover = tp->snd_max + 1; 5003 if (tp->t_flags2 & TF2_ECN_PERMIT) 5004 tp->t_flags2 |= TF2_ECN_SND_CWR; 5005 } 5006 break; 5007 case CC_RTO: 5008 tp->t_dupacks = 0; 5009 tp->t_bytes_acked = 0; 5010 EXIT_RECOVERY(tp->t_flags); 5011 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / 5012 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); 5013 orig_cwnd = tp->snd_cwnd; 5014 tp->snd_cwnd = ctf_fixed_maxseg(tp); 5015 rack_log_to_prr(rack, 16, orig_cwnd); 5016 if (tp->t_flags2 & TF2_ECN_PERMIT) 5017 tp->t_flags2 |= TF2_ECN_SND_CWR; 5018 break; 5019 case CC_RTO_ERR: 5020 KMOD_TCPSTAT_INC(tcps_sndrexmitbad); 5021 /* RTO was unnecessary, so reset everything. */ 5022 tp->snd_cwnd = tp->snd_cwnd_prev; 5023 tp->snd_ssthresh = tp->snd_ssthresh_prev; 5024 tp->snd_recover = tp->snd_recover_prev; 5025 if (tp->t_flags & TF_WASFRECOVERY) { 5026 ENTER_FASTRECOVERY(tp->t_flags); 5027 tp->t_flags &= ~TF_WASFRECOVERY; 5028 } 5029 if (tp->t_flags & TF_WASCRECOVERY) { 5030 ENTER_CONGRECOVERY(tp->t_flags); 5031 tp->t_flags &= ~TF_WASCRECOVERY; 5032 } 5033 tp->snd_nxt = tp->snd_max; 5034 tp->t_badrxtwin = 0; 5035 break; 5036 } 5037 if ((CC_ALGO(tp)->cong_signal != NULL) && 5038 (type != CC_RTO)){ 5039 tp->ccv->curack = ack; 5040 CC_ALGO(tp)->cong_signal(tp->ccv, type); 5041 } 5042 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) { 5043 rack_log_to_prr(rack, 15, cwnd_enter); 5044 rack->r_ctl.dsack_byte_cnt = 0; 5045 rack->r_ctl.retran_during_recovery = 0; 5046 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter; 5047 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter; 5048 rack->r_ent_rec_ns = 1; 5049 } 5050 } 5051 5052 static inline void 5053 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) 5054 { 5055 uint32_t i_cwnd; 5056 5057 INP_WLOCK_ASSERT(tp->t_inpcb); 5058 5059 #ifdef NETFLIX_STATS 5060 KMOD_TCPSTAT_INC(tcps_idle_restarts); 5061 if (tp->t_state == TCPS_ESTABLISHED) 5062 KMOD_TCPSTAT_INC(tcps_idle_estrestarts); 5063 #endif 5064 if (CC_ALGO(tp)->after_idle != NULL) 5065 CC_ALGO(tp)->after_idle(tp->ccv); 5066 5067 if (tp->snd_cwnd == 1) 5068 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 5069 else 5070 i_cwnd = rc_init_window(rack); 5071 5072 /* 5073 * Being idle is no different than the initial window. If the cc 5074 * clamps it down below the initial window raise it to the initial 5075 * window. 5076 */ 5077 if (tp->snd_cwnd < i_cwnd) { 5078 tp->snd_cwnd = i_cwnd; 5079 } 5080 } 5081 5082 /* 5083 * Indicate whether this ack should be delayed. We can delay the ack if 5084 * following conditions are met: 5085 * - There is no delayed ack timer in progress. 5086 * - Our last ack wasn't a 0-sized window. We never want to delay 5087 * the ack that opens up a 0-sized window. 5088 * - LRO wasn't used for this segment. We make sure by checking that the 5089 * segment size is not larger than the MSS. 5090 * - Delayed acks are enabled or this is a half-synchronized T/TCP 5091 * connection. 5092 */ 5093 #define DELAY_ACK(tp, tlen) \ 5094 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ 5095 ((tp->t_flags & TF_DELACK) == 0) && \ 5096 (tlen <= tp->t_maxseg) && \ 5097 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) 5098 5099 static struct rack_sendmap * 5100 rack_find_lowest_rsm(struct tcp_rack *rack) 5101 { 5102 struct rack_sendmap *rsm; 5103 5104 /* 5105 * Walk the time-order transmitted list looking for an rsm that is 5106 * not acked. This will be the one that was sent the longest time 5107 * ago that is still outstanding. 5108 */ 5109 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 5110 if (rsm->r_flags & RACK_ACKED) { 5111 continue; 5112 } 5113 goto finish; 5114 } 5115 finish: 5116 return (rsm); 5117 } 5118 5119 static struct rack_sendmap * 5120 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) 5121 { 5122 struct rack_sendmap *prsm; 5123 5124 /* 5125 * Walk the sequence order list backward until we hit and arrive at 5126 * the highest seq not acked. In theory when this is called it 5127 * should be the last segment (which it was not). 5128 */ 5129 counter_u64_add(rack_find_high, 1); 5130 prsm = rsm; 5131 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) { 5132 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { 5133 continue; 5134 } 5135 return (prsm); 5136 } 5137 return (NULL); 5138 } 5139 5140 static uint32_t 5141 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) 5142 { 5143 int32_t lro; 5144 uint32_t thresh; 5145 5146 /* 5147 * lro is the flag we use to determine if we have seen reordering. 5148 * If it gets set we have seen reordering. The reorder logic either 5149 * works in one of two ways: 5150 * 5151 * If reorder-fade is configured, then we track the last time we saw 5152 * re-ordering occur. If we reach the point where enough time as 5153 * passed we no longer consider reordering has occuring. 5154 * 5155 * Or if reorder-face is 0, then once we see reordering we consider 5156 * the connection to alway be subject to reordering and just set lro 5157 * to 1. 5158 * 5159 * In the end if lro is non-zero we add the extra time for 5160 * reordering in. 5161 */ 5162 if (srtt == 0) 5163 srtt = 1; 5164 if (rack->r_ctl.rc_reorder_ts) { 5165 if (rack->r_ctl.rc_reorder_fade) { 5166 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { 5167 lro = cts - rack->r_ctl.rc_reorder_ts; 5168 if (lro == 0) { 5169 /* 5170 * No time as passed since the last 5171 * reorder, mark it as reordering. 5172 */ 5173 lro = 1; 5174 } 5175 } else { 5176 /* Negative time? */ 5177 lro = 0; 5178 } 5179 if (lro > rack->r_ctl.rc_reorder_fade) { 5180 /* Turn off reordering seen too */ 5181 rack->r_ctl.rc_reorder_ts = 0; 5182 lro = 0; 5183 } 5184 } else { 5185 /* Reodering does not fade */ 5186 lro = 1; 5187 } 5188 } else { 5189 lro = 0; 5190 } 5191 if (rack->rc_rack_tmr_std_based == 0) { 5192 thresh = srtt + rack->r_ctl.rc_pkt_delay; 5193 } else { 5194 /* Standards based pkt-delay is 1/4 srtt */ 5195 thresh = srtt + (srtt >> 2); 5196 } 5197 if (lro && (rack->rc_rack_tmr_std_based == 0)) { 5198 /* It must be set, if not you get 1/4 rtt */ 5199 if (rack->r_ctl.rc_reorder_shift) 5200 thresh += (srtt >> rack->r_ctl.rc_reorder_shift); 5201 else 5202 thresh += (srtt >> 2); 5203 } 5204 if (rack->rc_rack_use_dsack && 5205 lro && 5206 (rack->r_ctl.num_dsack > 0)) { 5207 /* 5208 * We only increase the reordering window if we 5209 * have seen reordering <and> we have a DSACK count. 5210 */ 5211 thresh += rack->r_ctl.num_dsack * (srtt >> 2); 5212 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh); 5213 } 5214 /* SRTT * 2 is the ceiling */ 5215 if (thresh > (srtt * 2)) { 5216 thresh = srtt * 2; 5217 } 5218 /* And we don't want it above the RTO max either */ 5219 if (thresh > rack_rto_max) { 5220 thresh = rack_rto_max; 5221 } 5222 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh); 5223 return (thresh); 5224 } 5225 5226 static uint32_t 5227 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, 5228 struct rack_sendmap *rsm, uint32_t srtt) 5229 { 5230 struct rack_sendmap *prsm; 5231 uint32_t thresh, len; 5232 int segsiz; 5233 5234 if (srtt == 0) 5235 srtt = 1; 5236 if (rack->r_ctl.rc_tlp_threshold) 5237 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); 5238 else 5239 thresh = (srtt * 2); 5240 5241 /* Get the previous sent packet, if any */ 5242 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 5243 counter_u64_add(rack_enter_tlp_calc, 1); 5244 len = rsm->r_end - rsm->r_start; 5245 if (rack->rack_tlp_threshold_use == TLP_USE_ID) { 5246 /* Exactly like the ID */ 5247 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { 5248 uint32_t alt_thresh; 5249 /* 5250 * Compensate for delayed-ack with the d-ack time. 5251 */ 5252 counter_u64_add(rack_used_tlpmethod, 1); 5253 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5254 if (alt_thresh > thresh) 5255 thresh = alt_thresh; 5256 } 5257 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { 5258 /* 2.1 behavior */ 5259 prsm = TAILQ_PREV(rsm, rack_head, r_tnext); 5260 if (prsm && (len <= segsiz)) { 5261 /* 5262 * Two packets outstanding, thresh should be (2*srtt) + 5263 * possible inter-packet delay (if any). 5264 */ 5265 uint32_t inter_gap = 0; 5266 int idx, nidx; 5267 5268 counter_u64_add(rack_used_tlpmethod, 1); 5269 idx = rsm->r_rtr_cnt - 1; 5270 nidx = prsm->r_rtr_cnt - 1; 5271 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) { 5272 /* Yes it was sent later (or at the same time) */ 5273 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; 5274 } 5275 thresh += inter_gap; 5276 } else if (len <= segsiz) { 5277 /* 5278 * Possibly compensate for delayed-ack. 5279 */ 5280 uint32_t alt_thresh; 5281 5282 counter_u64_add(rack_used_tlpmethod2, 1); 5283 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5284 if (alt_thresh > thresh) 5285 thresh = alt_thresh; 5286 } 5287 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { 5288 /* 2.2 behavior */ 5289 if (len <= segsiz) { 5290 uint32_t alt_thresh; 5291 /* 5292 * Compensate for delayed-ack with the d-ack time. 5293 */ 5294 counter_u64_add(rack_used_tlpmethod, 1); 5295 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5296 if (alt_thresh > thresh) 5297 thresh = alt_thresh; 5298 } 5299 } 5300 /* Not above an RTO */ 5301 if (thresh > tp->t_rxtcur) { 5302 thresh = tp->t_rxtcur; 5303 } 5304 /* Not above a RTO max */ 5305 if (thresh > rack_rto_max) { 5306 thresh = rack_rto_max; 5307 } 5308 /* Apply user supplied min TLP */ 5309 if (thresh < rack_tlp_min) { 5310 thresh = rack_tlp_min; 5311 } 5312 return (thresh); 5313 } 5314 5315 static uint32_t 5316 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) 5317 { 5318 /* 5319 * We want the rack_rtt which is the 5320 * last rtt we measured. However if that 5321 * does not exist we fallback to the srtt (which 5322 * we probably will never do) and then as a last 5323 * resort we use RACK_INITIAL_RTO if no srtt is 5324 * yet set. 5325 */ 5326 if (rack->rc_rack_rtt) 5327 return (rack->rc_rack_rtt); 5328 else if (tp->t_srtt == 0) 5329 return (RACK_INITIAL_RTO); 5330 return (tp->t_srtt); 5331 } 5332 5333 static struct rack_sendmap * 5334 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) 5335 { 5336 /* 5337 * Check to see that we don't need to fall into recovery. We will 5338 * need to do so if our oldest transmit is past the time we should 5339 * have had an ack. 5340 */ 5341 struct tcp_rack *rack; 5342 struct rack_sendmap *rsm; 5343 int32_t idx; 5344 uint32_t srtt, thresh; 5345 5346 rack = (struct tcp_rack *)tp->t_fb_ptr; 5347 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 5348 return (NULL); 5349 } 5350 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5351 if (rsm == NULL) 5352 return (NULL); 5353 5354 if (rsm->r_flags & RACK_ACKED) { 5355 rsm = rack_find_lowest_rsm(rack); 5356 if (rsm == NULL) 5357 return (NULL); 5358 } 5359 idx = rsm->r_rtr_cnt - 1; 5360 srtt = rack_grab_rtt(tp, rack); 5361 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 5362 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) { 5363 return (NULL); 5364 } 5365 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) { 5366 return (NULL); 5367 } 5368 /* Ok if we reach here we are over-due and this guy can be sent */ 5369 if (IN_RECOVERY(tp->t_flags) == 0) { 5370 /* 5371 * For the one that enters us into recovery record undo 5372 * info. 5373 */ 5374 rack->r_ctl.rc_rsm_start = rsm->r_start; 5375 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 5376 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 5377 } 5378 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 5379 return (rsm); 5380 } 5381 5382 static uint32_t 5383 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) 5384 { 5385 int32_t t; 5386 int32_t tt; 5387 uint32_t ret_val; 5388 5389 t = (tp->t_srtt + (tp->t_rttvar << 2)); 5390 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], 5391 rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop); 5392 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; 5393 ret_val = (uint32_t)tt; 5394 return (ret_val); 5395 } 5396 5397 static uint32_t 5398 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) 5399 { 5400 /* 5401 * Start the FR timer, we do this based on getting the first one in 5402 * the rc_tmap. Note that if its NULL we must stop the timer. in all 5403 * events we need to stop the running timer (if its running) before 5404 * starting the new one. 5405 */ 5406 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; 5407 uint32_t srtt_cur; 5408 int32_t idx; 5409 int32_t is_tlp_timer = 0; 5410 struct rack_sendmap *rsm; 5411 5412 if (rack->t_timers_stopped) { 5413 /* All timers have been stopped none are to run */ 5414 return (0); 5415 } 5416 if (rack->rc_in_persist) { 5417 /* We can't start any timer in persists */ 5418 return (rack_get_persists_timer_val(tp, rack)); 5419 } 5420 rack->rc_on_min_to = 0; 5421 if ((tp->t_state < TCPS_ESTABLISHED) || 5422 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 5423 goto activate_rxt; 5424 } 5425 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5426 if ((rsm == NULL) || sup_rack) { 5427 /* Nothing on the send map or no rack */ 5428 activate_rxt: 5429 time_since_sent = 0; 5430 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5431 if (rsm) { 5432 /* 5433 * Should we discount the RTX timer any? 5434 * 5435 * We want to discount it the smallest amount. 5436 * If a timer (Rack/TLP or RXT) has gone off more 5437 * recently thats the discount we want to use (now - timer time). 5438 * If the retransmit of the oldest packet was more recent then 5439 * we want to use that (now - oldest-packet-last_transmit_time). 5440 * 5441 */ 5442 idx = rsm->r_rtr_cnt - 1; 5443 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx]))) 5444 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5445 else 5446 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5447 if (TSTMP_GT(cts, tstmp_touse)) 5448 time_since_sent = cts - tstmp_touse; 5449 } 5450 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 5451 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; 5452 to = tp->t_rxtcur; 5453 if (to > time_since_sent) 5454 to -= time_since_sent; 5455 else 5456 to = rack->r_ctl.rc_min_to; 5457 if (to == 0) 5458 to = 1; 5459 /* Special case for KEEPINIT */ 5460 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 5461 (TP_KEEPINIT(tp) != 0) && 5462 rsm) { 5463 /* 5464 * We have to put a ceiling on the rxt timer 5465 * of the keep-init timeout. 5466 */ 5467 uint32_t max_time, red; 5468 5469 max_time = TICKS_2_USEC(TP_KEEPINIT(tp)); 5470 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) { 5471 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]); 5472 if (red < max_time) 5473 max_time -= red; 5474 else 5475 max_time = 1; 5476 } 5477 /* Reduce timeout to the keep value if needed */ 5478 if (max_time < to) 5479 to = max_time; 5480 } 5481 return (to); 5482 } 5483 return (0); 5484 } 5485 if (rsm->r_flags & RACK_ACKED) { 5486 rsm = rack_find_lowest_rsm(rack); 5487 if (rsm == NULL) { 5488 /* No lowest? */ 5489 goto activate_rxt; 5490 } 5491 } 5492 if (rack->sack_attack_disable) { 5493 /* 5494 * We don't want to do 5495 * any TLP's if you are an attacker. 5496 * Though if you are doing what 5497 * is expected you may still have 5498 * SACK-PASSED marks. 5499 */ 5500 goto activate_rxt; 5501 } 5502 /* Convert from ms to usecs */ 5503 if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 5504 if ((tp->t_flags & TF_SENTFIN) && 5505 ((tp->snd_max - tp->snd_una) == 1) && 5506 (rsm->r_flags & RACK_HAS_FIN)) { 5507 /* 5508 * We don't start a rack timer if all we have is a 5509 * FIN outstanding. 5510 */ 5511 goto activate_rxt; 5512 } 5513 if ((rack->use_rack_rr == 0) && 5514 (IN_FASTRECOVERY(tp->t_flags)) && 5515 (rack->rack_no_prr == 0) && 5516 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { 5517 /* 5518 * We are not cheating, in recovery and 5519 * not enough ack's to yet get our next 5520 * retransmission out. 5521 * 5522 * Note that classified attackers do not 5523 * get to use the rack-cheat. 5524 */ 5525 goto activate_tlp; 5526 } 5527 srtt = rack_grab_rtt(tp, rack); 5528 thresh = rack_calc_thresh_rack(rack, srtt, cts); 5529 idx = rsm->r_rtr_cnt - 1; 5530 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh; 5531 if (SEQ_GEQ(exp, cts)) { 5532 to = exp - cts; 5533 if (to < rack->r_ctl.rc_min_to) { 5534 to = rack->r_ctl.rc_min_to; 5535 if (rack->r_rr_config == 3) 5536 rack->rc_on_min_to = 1; 5537 } 5538 } else { 5539 to = rack->r_ctl.rc_min_to; 5540 if (rack->r_rr_config == 3) 5541 rack->rc_on_min_to = 1; 5542 } 5543 } else { 5544 /* Ok we need to do a TLP not RACK */ 5545 activate_tlp: 5546 if ((rack->rc_tlp_in_progress != 0) && 5547 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { 5548 /* 5549 * The previous send was a TLP and we have sent 5550 * N TLP's without sending new data. 5551 */ 5552 goto activate_rxt; 5553 } 5554 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 5555 if (rsm == NULL) { 5556 /* We found no rsm to TLP with. */ 5557 goto activate_rxt; 5558 } 5559 if (rsm->r_flags & RACK_HAS_FIN) { 5560 /* If its a FIN we dont do TLP */ 5561 rsm = NULL; 5562 goto activate_rxt; 5563 } 5564 idx = rsm->r_rtr_cnt - 1; 5565 time_since_sent = 0; 5566 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time)) 5567 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5568 else 5569 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5570 if (TSTMP_GT(cts, tstmp_touse)) 5571 time_since_sent = cts - tstmp_touse; 5572 is_tlp_timer = 1; 5573 if (tp->t_srtt) { 5574 if ((rack->rc_srtt_measure_made == 0) && 5575 (tp->t_srtt == 1)) { 5576 /* 5577 * If another stack as run and set srtt to 1, 5578 * then the srtt was 0, so lets use the initial. 5579 */ 5580 srtt = RACK_INITIAL_RTO; 5581 } else { 5582 srtt_cur = tp->t_srtt; 5583 srtt = srtt_cur; 5584 } 5585 } else 5586 srtt = RACK_INITIAL_RTO; 5587 /* 5588 * If the SRTT is not keeping up and the 5589 * rack RTT has spiked we want to use 5590 * the last RTT not the smoothed one. 5591 */ 5592 if (rack_tlp_use_greater && 5593 tp->t_srtt && 5594 (srtt < rack_grab_rtt(tp, rack))) { 5595 srtt = rack_grab_rtt(tp, rack); 5596 } 5597 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); 5598 if (thresh > time_since_sent) { 5599 to = thresh - time_since_sent; 5600 } else { 5601 to = rack->r_ctl.rc_min_to; 5602 rack_log_alt_to_to_cancel(rack, 5603 thresh, /* flex1 */ 5604 time_since_sent, /* flex2 */ 5605 tstmp_touse, /* flex3 */ 5606 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ 5607 (uint32_t)rsm->r_tim_lastsent[idx], 5608 srtt, 5609 idx, 99); 5610 } 5611 if (to < rack_tlp_min) { 5612 to = rack_tlp_min; 5613 } 5614 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) { 5615 /* 5616 * If the TLP time works out to larger than the max 5617 * RTO lets not do TLP.. just RTO. 5618 */ 5619 goto activate_rxt; 5620 } 5621 } 5622 if (is_tlp_timer == 0) { 5623 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; 5624 } else { 5625 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; 5626 } 5627 if (to == 0) 5628 to = 1; 5629 return (to); 5630 } 5631 5632 static void 5633 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5634 { 5635 if (rack->rc_in_persist == 0) { 5636 if (tp->t_flags & TF_GPUTINPROG) { 5637 /* 5638 * Stop the goodput now, the calling of the 5639 * measurement function clears the flag. 5640 */ 5641 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__, 5642 RACK_QUALITY_PERSIST); 5643 } 5644 #ifdef NETFLIX_SHARED_CWND 5645 if (rack->r_ctl.rc_scw) { 5646 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5647 rack->rack_scwnd_is_idle = 1; 5648 } 5649 #endif 5650 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 5651 if (rack->r_ctl.rc_went_idle_time == 0) 5652 rack->r_ctl.rc_went_idle_time = 1; 5653 rack_timer_cancel(tp, rack, cts, __LINE__); 5654 rack->r_ctl.persist_lost_ends = 0; 5655 rack->probe_not_answered = 0; 5656 rack->forced_ack = 0; 5657 tp->t_rxtshift = 0; 5658 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5659 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5660 rack->rc_in_persist = 1; 5661 } 5662 } 5663 5664 static void 5665 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5666 { 5667 if (tcp_in_hpts(rack->rc_inp)) { 5668 tcp_hpts_remove(rack->rc_inp); 5669 rack->r_ctl.rc_hpts_flags = 0; 5670 } 5671 #ifdef NETFLIX_SHARED_CWND 5672 if (rack->r_ctl.rc_scw) { 5673 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5674 rack->rack_scwnd_is_idle = 0; 5675 } 5676 #endif 5677 if (rack->rc_gp_dyn_mul && 5678 (rack->use_fixed_rate == 0) && 5679 (rack->rc_always_pace)) { 5680 /* 5681 * Do we count this as if a probe-rtt just 5682 * finished? 5683 */ 5684 uint32_t time_idle, idle_min; 5685 5686 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time; 5687 idle_min = rack_min_probertt_hold; 5688 if (rack_probertt_gpsrtt_cnt_div) { 5689 uint64_t extra; 5690 extra = (uint64_t)rack->r_ctl.rc_gp_srtt * 5691 (uint64_t)rack_probertt_gpsrtt_cnt_mul; 5692 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; 5693 idle_min += (uint32_t)extra; 5694 } 5695 if (time_idle >= idle_min) { 5696 /* Yes, we count it as a probe-rtt. */ 5697 uint32_t us_cts; 5698 5699 us_cts = tcp_get_usecs(NULL); 5700 if (rack->in_probe_rtt == 0) { 5701 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 5702 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 5703 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 5704 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 5705 } else { 5706 rack_exit_probertt(rack, us_cts); 5707 } 5708 } 5709 } 5710 rack->rc_in_persist = 0; 5711 rack->r_ctl.rc_went_idle_time = 0; 5712 tp->t_rxtshift = 0; 5713 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5714 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5715 rack->r_ctl.rc_agg_delayed = 0; 5716 rack->r_early = 0; 5717 rack->r_late = 0; 5718 rack->r_ctl.rc_agg_early = 0; 5719 } 5720 5721 static void 5722 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, 5723 struct hpts_diag *diag, struct timeval *tv) 5724 { 5725 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5726 union tcp_log_stackspecific log; 5727 5728 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5729 log.u_bbr.flex1 = diag->p_nxt_slot; 5730 log.u_bbr.flex2 = diag->p_cur_slot; 5731 log.u_bbr.flex3 = diag->slot_req; 5732 log.u_bbr.flex4 = diag->inp_hptsslot; 5733 log.u_bbr.flex5 = diag->slot_remaining; 5734 log.u_bbr.flex6 = diag->need_new_to; 5735 log.u_bbr.flex7 = diag->p_hpts_active; 5736 log.u_bbr.flex8 = diag->p_on_min_sleep; 5737 /* Hijack other fields as needed */ 5738 log.u_bbr.epoch = diag->have_slept; 5739 log.u_bbr.lt_epoch = diag->yet_to_sleep; 5740 log.u_bbr.pkts_out = diag->co_ret; 5741 log.u_bbr.applimited = diag->hpts_sleep_time; 5742 log.u_bbr.delivered = diag->p_prev_slot; 5743 log.u_bbr.inflight = diag->p_runningslot; 5744 log.u_bbr.bw_inuse = diag->wheel_slot; 5745 log.u_bbr.rttProp = diag->wheel_cts; 5746 log.u_bbr.timeStamp = cts; 5747 log.u_bbr.delRate = diag->maxslots; 5748 log.u_bbr.cur_del_rate = diag->p_curtick; 5749 log.u_bbr.cur_del_rate <<= 32; 5750 log.u_bbr.cur_del_rate |= diag->p_lasttick; 5751 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5752 &rack->rc_inp->inp_socket->so_rcv, 5753 &rack->rc_inp->inp_socket->so_snd, 5754 BBR_LOG_HPTSDIAG, 0, 5755 0, &log, false, tv); 5756 } 5757 5758 } 5759 5760 static void 5761 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type) 5762 { 5763 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5764 union tcp_log_stackspecific log; 5765 struct timeval tv; 5766 5767 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5768 log.u_bbr.flex1 = sb->sb_flags; 5769 log.u_bbr.flex2 = len; 5770 log.u_bbr.flex3 = sb->sb_state; 5771 log.u_bbr.flex8 = type; 5772 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5773 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5774 &rack->rc_inp->inp_socket->so_rcv, 5775 &rack->rc_inp->inp_socket->so_snd, 5776 TCP_LOG_SB_WAKE, 0, 5777 len, &log, false, &tv); 5778 } 5779 } 5780 5781 static void 5782 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, 5783 int32_t slot, uint32_t tot_len_this_send, int sup_rack) 5784 { 5785 struct hpts_diag diag; 5786 struct inpcb *inp; 5787 struct timeval tv; 5788 uint32_t delayed_ack = 0; 5789 uint32_t hpts_timeout; 5790 uint32_t entry_slot = slot; 5791 uint8_t stopped; 5792 uint32_t left = 0; 5793 uint32_t us_cts; 5794 5795 inp = tp->t_inpcb; 5796 if ((tp->t_state == TCPS_CLOSED) || 5797 (tp->t_state == TCPS_LISTEN)) { 5798 return; 5799 } 5800 if (tcp_in_hpts(inp)) { 5801 /* Already on the pacer */ 5802 return; 5803 } 5804 stopped = rack->rc_tmr_stopped; 5805 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 5806 left = rack->r_ctl.rc_timer_exp - cts; 5807 } 5808 rack->r_ctl.rc_timer_exp = 0; 5809 rack->r_ctl.rc_hpts_flags = 0; 5810 us_cts = tcp_get_usecs(&tv); 5811 /* Now early/late accounting */ 5812 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0); 5813 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) { 5814 /* 5815 * We have a early carry over set, 5816 * we can always add more time so we 5817 * can always make this compensation. 5818 * 5819 * Note if ack's are allowed to wake us do not 5820 * penalize the next timer for being awoke 5821 * by an ack aka the rc_agg_early (non-paced mode). 5822 */ 5823 slot += rack->r_ctl.rc_agg_early; 5824 rack->r_early = 0; 5825 rack->r_ctl.rc_agg_early = 0; 5826 } 5827 if (rack->r_late) { 5828 /* 5829 * This is harder, we can 5830 * compensate some but it 5831 * really depends on what 5832 * the current pacing time is. 5833 */ 5834 if (rack->r_ctl.rc_agg_delayed >= slot) { 5835 /* 5836 * We can't compensate for it all. 5837 * And we have to have some time 5838 * on the clock. We always have a min 5839 * 10 slots (10 x 10 i.e. 100 usecs). 5840 */ 5841 if (slot <= HPTS_TICKS_PER_SLOT) { 5842 /* We gain delay */ 5843 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot); 5844 slot = HPTS_TICKS_PER_SLOT; 5845 } else { 5846 /* We take off some */ 5847 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT); 5848 slot = HPTS_TICKS_PER_SLOT; 5849 } 5850 } else { 5851 slot -= rack->r_ctl.rc_agg_delayed; 5852 rack->r_ctl.rc_agg_delayed = 0; 5853 /* Make sure we have 100 useconds at minimum */ 5854 if (slot < HPTS_TICKS_PER_SLOT) { 5855 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot; 5856 slot = HPTS_TICKS_PER_SLOT; 5857 } 5858 if (rack->r_ctl.rc_agg_delayed == 0) 5859 rack->r_late = 0; 5860 } 5861 } 5862 if (slot) { 5863 /* We are pacing too */ 5864 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; 5865 } 5866 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); 5867 #ifdef NETFLIX_EXP_DETECTION 5868 if (rack->sack_attack_disable && 5869 (slot < tcp_sad_pacing_interval)) { 5870 /* 5871 * We have a potential attacker on 5872 * the line. We have possibly some 5873 * (or now) pacing time set. We want to 5874 * slow down the processing of sacks by some 5875 * amount (if it is an attacker). Set the default 5876 * slot for attackers in place (unless the orginal 5877 * interval is longer). Its stored in 5878 * micro-seconds, so lets convert to msecs. 5879 */ 5880 slot = tcp_sad_pacing_interval; 5881 } 5882 #endif 5883 if (tp->t_flags & TF_DELACK) { 5884 delayed_ack = TICKS_2_USEC(tcp_delacktime); 5885 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; 5886 } 5887 if (delayed_ack && ((hpts_timeout == 0) || 5888 (delayed_ack < hpts_timeout))) 5889 hpts_timeout = delayed_ack; 5890 else 5891 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 5892 /* 5893 * If no timers are going to run and we will fall off the hptsi 5894 * wheel, we resort to a keep-alive timer if its configured. 5895 */ 5896 if ((hpts_timeout == 0) && 5897 (slot == 0)) { 5898 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 5899 (tp->t_state <= TCPS_CLOSING)) { 5900 /* 5901 * Ok we have no timer (persists, rack, tlp, rxt or 5902 * del-ack), we don't have segments being paced. So 5903 * all that is left is the keepalive timer. 5904 */ 5905 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 5906 /* Get the established keep-alive time */ 5907 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); 5908 } else { 5909 /* 5910 * Get the initial setup keep-alive time, 5911 * note that this is probably not going to 5912 * happen, since rack will be running a rxt timer 5913 * if a SYN of some sort is outstanding. It is 5914 * actually handled in rack_timeout_rxt(). 5915 */ 5916 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); 5917 } 5918 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; 5919 if (rack->in_probe_rtt) { 5920 /* 5921 * We want to instead not wake up a long time from 5922 * now but to wake up about the time we would 5923 * exit probe-rtt and initiate a keep-alive ack. 5924 * This will get us out of probe-rtt and update 5925 * our min-rtt. 5926 */ 5927 hpts_timeout = rack_min_probertt_hold; 5928 } 5929 } 5930 } 5931 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == 5932 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { 5933 /* 5934 * RACK, TLP, persists and RXT timers all are restartable 5935 * based on actions input .. i.e we received a packet (ack 5936 * or sack) and that changes things (rw, or snd_una etc). 5937 * Thus we can restart them with a new value. For 5938 * keep-alive, delayed_ack we keep track of what was left 5939 * and restart the timer with a smaller value. 5940 */ 5941 if (left < hpts_timeout) 5942 hpts_timeout = left; 5943 } 5944 if (hpts_timeout) { 5945 /* 5946 * Hack alert for now we can't time-out over 2,147,483 5947 * seconds (a bit more than 596 hours), which is probably ok 5948 * :). 5949 */ 5950 if (hpts_timeout > 0x7ffffffe) 5951 hpts_timeout = 0x7ffffffe; 5952 rack->r_ctl.rc_timer_exp = cts + hpts_timeout; 5953 } 5954 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0); 5955 if ((rack->gp_ready == 0) && 5956 (rack->use_fixed_rate == 0) && 5957 (hpts_timeout < slot) && 5958 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { 5959 /* 5960 * We have no good estimate yet for the 5961 * old clunky burst mitigation or the 5962 * real pacing. And the tlp or rxt is smaller 5963 * than the pacing calculation. Lets not 5964 * pace that long since we know the calculation 5965 * so far is not accurate. 5966 */ 5967 slot = hpts_timeout; 5968 } 5969 rack->r_ctl.last_pacing_time = slot; 5970 /** 5971 * Turn off all the flags for queuing by default. The 5972 * flags have important meanings to what happens when 5973 * LRO interacts with the transport. Most likely (by default now) 5974 * mbuf_queueing and ack compression are on. So the transport 5975 * has a couple of flags that control what happens (if those 5976 * are not on then these flags won't have any effect since it 5977 * won't go through the queuing LRO path). 5978 * 5979 * INP_MBUF_QUEUE_READY - This flags says that I am busy 5980 * pacing output, so don't disturb. But 5981 * it also means LRO can wake me if there 5982 * is a SACK arrival. 5983 * 5984 * INP_DONT_SACK_QUEUE - This flag is used in conjunction 5985 * with the above flag (QUEUE_READY) and 5986 * when present it says don't even wake me 5987 * if a SACK arrives. 5988 * 5989 * The idea behind these flags is that if we are pacing we 5990 * set the MBUF_QUEUE_READY and only get woken up if 5991 * a SACK arrives (which could change things) or if 5992 * our pacing timer expires. If, however, we have a rack 5993 * timer running, then we don't even want a sack to wake 5994 * us since the rack timer has to expire before we can send. 5995 * 5996 * Other cases should usually have none of the flags set 5997 * so LRO can call into us. 5998 */ 5999 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 6000 if (slot) { 6001 rack->r_ctl.rc_last_output_to = us_cts + slot; 6002 /* 6003 * A pacing timer (slot) is being set, in 6004 * such a case we cannot send (we are blocked by 6005 * the timer). So lets tell LRO that it should not 6006 * wake us unless there is a SACK. Note this only 6007 * will be effective if mbuf queueing is on or 6008 * compressed acks are being processed. 6009 */ 6010 inp->inp_flags2 |= INP_MBUF_QUEUE_READY; 6011 /* 6012 * But wait if we have a Rack timer running 6013 * even a SACK should not disturb us (with 6014 * the exception of r_rr_config 3). 6015 */ 6016 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && 6017 (rack->r_rr_config != 3)) 6018 inp->inp_flags2 |= INP_DONT_SACK_QUEUE; 6019 if (rack->rc_ack_can_sendout_data) { 6020 /* 6021 * Ahh but wait, this is that special case 6022 * where the pacing timer can be disturbed 6023 * backout the changes (used for non-paced 6024 * burst limiting). 6025 */ 6026 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 6027 } 6028 if ((rack->use_rack_rr) && 6029 (rack->r_rr_config < 2) && 6030 ((hpts_timeout) && (hpts_timeout < slot))) { 6031 /* 6032 * Arrange for the hpts to kick back in after the 6033 * t-o if the t-o does not cause a send. 6034 */ 6035 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 6036 __LINE__, &diag); 6037 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6038 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 6039 } else { 6040 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), 6041 __LINE__, &diag); 6042 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6043 rack_log_to_start(rack, cts, hpts_timeout, slot, 1); 6044 } 6045 } else if (hpts_timeout) { 6046 /* 6047 * With respect to inp_flags2 here, lets let any new acks wake 6048 * us up here. Since we are not pacing (no pacing timer), output 6049 * can happen so we should let it. If its a Rack timer, then any inbound 6050 * packet probably won't change the sending (we will be blocked) 6051 * but it may change the prr stats so letting it in (the set defaults 6052 * at the start of this block) are good enough. 6053 */ 6054 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 6055 __LINE__, &diag); 6056 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6057 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 6058 } else { 6059 /* No timer starting */ 6060 #ifdef INVARIANTS 6061 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 6062 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", 6063 tp, rack, tot_len_this_send, cts, slot, hpts_timeout); 6064 } 6065 #endif 6066 } 6067 rack->rc_tmr_stopped = 0; 6068 if (slot) 6069 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv); 6070 } 6071 6072 /* 6073 * RACK Timer, here we simply do logging and house keeping. 6074 * the normal rack_output() function will call the 6075 * appropriate thing to check if we need to do a RACK retransmit. 6076 * We return 1, saying don't proceed with rack_output only 6077 * when all timers have been stopped (destroyed PCB?). 6078 */ 6079 static int 6080 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6081 { 6082 /* 6083 * This timer simply provides an internal trigger to send out data. 6084 * The check_recovery_mode call will see if there are needed 6085 * retransmissions, if so we will enter fast-recovery. The output 6086 * call may or may not do the same thing depending on sysctl 6087 * settings. 6088 */ 6089 struct rack_sendmap *rsm; 6090 6091 if (tp->t_timers->tt_flags & TT_STOPPED) { 6092 return (1); 6093 } 6094 counter_u64_add(rack_to_tot, 1); 6095 if (rack->r_state && (rack->r_state != tp->t_state)) 6096 rack_set_state(tp, rack); 6097 rack->rc_on_min_to = 0; 6098 rsm = rack_check_recovery_mode(tp, cts); 6099 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); 6100 if (rsm) { 6101 rack->r_ctl.rc_resend = rsm; 6102 rack->r_timer_override = 1; 6103 if (rack->use_rack_rr) { 6104 /* 6105 * Don't accumulate extra pacing delay 6106 * we are allowing the rack timer to 6107 * over-ride pacing i.e. rrr takes precedence 6108 * if the pacing interval is longer than the rrr 6109 * time (in other words we get the min pacing 6110 * time versus rrr pacing time). 6111 */ 6112 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 6113 } 6114 } 6115 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; 6116 if (rsm == NULL) { 6117 /* restart a timer and return 1 */ 6118 rack_start_hpts_timer(rack, tp, cts, 6119 0, 0, 0); 6120 return (1); 6121 } 6122 return (0); 6123 } 6124 6125 static void 6126 rack_adjust_orig_mlen(struct rack_sendmap *rsm) 6127 { 6128 if (rsm->m->m_len > rsm->orig_m_len) { 6129 /* 6130 * Mbuf grew, caused by sbcompress, our offset does 6131 * not change. 6132 */ 6133 rsm->orig_m_len = rsm->m->m_len; 6134 } else if (rsm->m->m_len < rsm->orig_m_len) { 6135 /* 6136 * Mbuf shrank, trimmed off the top by an ack, our 6137 * offset changes. 6138 */ 6139 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len); 6140 rsm->orig_m_len = rsm->m->m_len; 6141 } 6142 } 6143 6144 static void 6145 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm) 6146 { 6147 struct mbuf *m; 6148 uint32_t soff; 6149 6150 if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) { 6151 /* Fix up the orig_m_len and possibly the mbuf offset */ 6152 rack_adjust_orig_mlen(src_rsm); 6153 } 6154 m = src_rsm->m; 6155 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start); 6156 while (soff >= m->m_len) { 6157 /* Move out past this mbuf */ 6158 soff -= m->m_len; 6159 m = m->m_next; 6160 KASSERT((m != NULL), 6161 ("rsm:%p nrsm:%p hit at soff:%u null m", 6162 src_rsm, rsm, soff)); 6163 } 6164 rsm->m = m; 6165 rsm->soff = soff; 6166 rsm->orig_m_len = m->m_len; 6167 } 6168 6169 static __inline void 6170 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, 6171 struct rack_sendmap *rsm, uint32_t start) 6172 { 6173 int idx; 6174 6175 nrsm->r_start = start; 6176 nrsm->r_end = rsm->r_end; 6177 nrsm->r_rtr_cnt = rsm->r_rtr_cnt; 6178 nrsm->r_flags = rsm->r_flags; 6179 nrsm->r_dupack = rsm->r_dupack; 6180 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed; 6181 nrsm->r_rtr_bytes = 0; 6182 nrsm->r_fas = rsm->r_fas; 6183 rsm->r_end = nrsm->r_start; 6184 nrsm->r_just_ret = rsm->r_just_ret; 6185 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { 6186 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; 6187 } 6188 /* Now if we have SYN flag we keep it on the left edge */ 6189 if (nrsm->r_flags & RACK_HAS_SYN) 6190 nrsm->r_flags &= ~RACK_HAS_SYN; 6191 /* Now if we have a FIN flag we keep it on the right edge */ 6192 if (rsm->r_flags & RACK_HAS_FIN) 6193 rsm->r_flags &= ~RACK_HAS_FIN; 6194 /* Push bit must go to the right edge as well */ 6195 if (rsm->r_flags & RACK_HAD_PUSH) 6196 rsm->r_flags &= ~RACK_HAD_PUSH; 6197 /* Clone over the state of the hw_tls flag */ 6198 nrsm->r_hw_tls = rsm->r_hw_tls; 6199 /* 6200 * Now we need to find nrsm's new location in the mbuf chain 6201 * we basically calculate a new offset, which is soff + 6202 * how much is left in original rsm. Then we walk out the mbuf 6203 * chain to find the righ postion, it may be the same mbuf 6204 * or maybe not. 6205 */ 6206 KASSERT(((rsm->m != NULL) || 6207 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))), 6208 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack)); 6209 if (rsm->m) 6210 rack_setup_offset_for_rsm(rsm, nrsm); 6211 } 6212 6213 static struct rack_sendmap * 6214 rack_merge_rsm(struct tcp_rack *rack, 6215 struct rack_sendmap *l_rsm, 6216 struct rack_sendmap *r_rsm) 6217 { 6218 /* 6219 * We are merging two ack'd RSM's, 6220 * the l_rsm is on the left (lower seq 6221 * values) and the r_rsm is on the right 6222 * (higher seq value). The simplest way 6223 * to merge these is to move the right 6224 * one into the left. I don't think there 6225 * is any reason we need to try to find 6226 * the oldest (or last oldest retransmitted). 6227 */ 6228 #ifdef INVARIANTS 6229 struct rack_sendmap *rm; 6230 #endif 6231 rack_log_map_chg(rack->rc_tp, rack, NULL, 6232 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__); 6233 l_rsm->r_end = r_rsm->r_end; 6234 if (l_rsm->r_dupack < r_rsm->r_dupack) 6235 l_rsm->r_dupack = r_rsm->r_dupack; 6236 if (r_rsm->r_rtr_bytes) 6237 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; 6238 if (r_rsm->r_in_tmap) { 6239 /* This really should not happen */ 6240 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); 6241 r_rsm->r_in_tmap = 0; 6242 } 6243 6244 /* Now the flags */ 6245 if (r_rsm->r_flags & RACK_HAS_FIN) 6246 l_rsm->r_flags |= RACK_HAS_FIN; 6247 if (r_rsm->r_flags & RACK_TLP) 6248 l_rsm->r_flags |= RACK_TLP; 6249 if (r_rsm->r_flags & RACK_RWND_COLLAPSED) 6250 l_rsm->r_flags |= RACK_RWND_COLLAPSED; 6251 if ((r_rsm->r_flags & RACK_APP_LIMITED) && 6252 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { 6253 /* 6254 * If both are app-limited then let the 6255 * free lower the count. If right is app 6256 * limited and left is not, transfer. 6257 */ 6258 l_rsm->r_flags |= RACK_APP_LIMITED; 6259 r_rsm->r_flags &= ~RACK_APP_LIMITED; 6260 if (r_rsm == rack->r_ctl.rc_first_appl) 6261 rack->r_ctl.rc_first_appl = l_rsm; 6262 } 6263 #ifndef INVARIANTS 6264 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6265 #else 6266 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6267 if (rm != r_rsm) { 6268 panic("removing head in rack:%p rsm:%p rm:%p", 6269 rack, r_rsm, rm); 6270 } 6271 #endif 6272 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { 6273 /* Transfer the split limit to the map we free */ 6274 r_rsm->r_limit_type = l_rsm->r_limit_type; 6275 l_rsm->r_limit_type = 0; 6276 } 6277 rack_free(rack, r_rsm); 6278 return (l_rsm); 6279 } 6280 6281 /* 6282 * TLP Timer, here we simply setup what segment we want to 6283 * have the TLP expire on, the normal rack_output() will then 6284 * send it out. 6285 * 6286 * We return 1, saying don't proceed with rack_output only 6287 * when all timers have been stopped (destroyed PCB?). 6288 */ 6289 static int 6290 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp) 6291 { 6292 /* 6293 * Tail Loss Probe. 6294 */ 6295 struct rack_sendmap *rsm = NULL; 6296 #ifdef INVARIANTS 6297 struct rack_sendmap *insret; 6298 #endif 6299 struct socket *so; 6300 uint32_t amm; 6301 uint32_t out, avail; 6302 int collapsed_win = 0; 6303 6304 if (tp->t_timers->tt_flags & TT_STOPPED) { 6305 return (1); 6306 } 6307 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6308 /* Its not time yet */ 6309 return (0); 6310 } 6311 if (ctf_progress_timeout_check(tp, true)) { 6312 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6313 return (-ETIMEDOUT); /* tcp_drop() */ 6314 } 6315 /* 6316 * A TLP timer has expired. We have been idle for 2 rtts. So we now 6317 * need to figure out how to force a full MSS segment out. 6318 */ 6319 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); 6320 rack->r_ctl.retran_during_recovery = 0; 6321 rack->r_ctl.dsack_byte_cnt = 0; 6322 counter_u64_add(rack_tlp_tot, 1); 6323 if (rack->r_state && (rack->r_state != tp->t_state)) 6324 rack_set_state(tp, rack); 6325 so = tp->t_inpcb->inp_socket; 6326 avail = sbavail(&so->so_snd); 6327 out = tp->snd_max - tp->snd_una; 6328 if (out > tp->snd_wnd) { 6329 /* special case, we need a retransmission */ 6330 collapsed_win = 1; 6331 goto need_retran; 6332 } 6333 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) { 6334 rack->r_ctl.dsack_persist--; 6335 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6336 rack->r_ctl.num_dsack = 0; 6337 } 6338 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6339 } 6340 if ((tp->t_flags & TF_GPUTINPROG) && 6341 (rack->r_ctl.rc_tlp_cnt_out == 1)) { 6342 /* 6343 * If this is the second in a row 6344 * TLP and we are doing a measurement 6345 * its time to abandon the measurement. 6346 * Something is likely broken on 6347 * the clients network and measuring a 6348 * broken network does us no good. 6349 */ 6350 tp->t_flags &= ~TF_GPUTINPROG; 6351 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6352 rack->r_ctl.rc_gp_srtt /*flex1*/, 6353 tp->gput_seq, 6354 0, 0, 18, __LINE__, NULL, 0); 6355 } 6356 /* 6357 * Check our send oldest always settings, and if 6358 * there is an oldest to send jump to the need_retran. 6359 */ 6360 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) 6361 goto need_retran; 6362 6363 if (avail > out) { 6364 /* New data is available */ 6365 amm = avail - out; 6366 if (amm > ctf_fixed_maxseg(tp)) { 6367 amm = ctf_fixed_maxseg(tp); 6368 if ((amm + out) > tp->snd_wnd) { 6369 /* We are rwnd limited */ 6370 goto need_retran; 6371 } 6372 } else if (amm < ctf_fixed_maxseg(tp)) { 6373 /* not enough to fill a MTU */ 6374 goto need_retran; 6375 } 6376 if (IN_FASTRECOVERY(tp->t_flags)) { 6377 /* Unlikely */ 6378 if (rack->rack_no_prr == 0) { 6379 if (out + amm <= tp->snd_wnd) { 6380 rack->r_ctl.rc_prr_sndcnt = amm; 6381 rack->r_ctl.rc_tlp_new_data = amm; 6382 rack_log_to_prr(rack, 4, 0); 6383 } 6384 } else 6385 goto need_retran; 6386 } else { 6387 /* Set the send-new override */ 6388 if (out + amm <= tp->snd_wnd) 6389 rack->r_ctl.rc_tlp_new_data = amm; 6390 else 6391 goto need_retran; 6392 } 6393 rack->r_ctl.rc_tlpsend = NULL; 6394 counter_u64_add(rack_tlp_newdata, 1); 6395 goto send; 6396 } 6397 need_retran: 6398 /* 6399 * Ok we need to arrange the last un-acked segment to be re-sent, or 6400 * optionally the first un-acked segment. 6401 */ 6402 if (collapsed_win == 0) { 6403 if (rack_always_send_oldest) 6404 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6405 else { 6406 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6407 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { 6408 rsm = rack_find_high_nonack(rack, rsm); 6409 } 6410 } 6411 if (rsm == NULL) { 6412 counter_u64_add(rack_tlp_does_nada, 1); 6413 #ifdef TCP_BLACKBOX 6414 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6415 #endif 6416 goto out; 6417 } 6418 } else { 6419 /* 6420 * We must find the last segment 6421 * that was acceptable by the client. 6422 */ 6423 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6424 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) { 6425 /* Found one */ 6426 break; 6427 } 6428 } 6429 if (rsm == NULL) { 6430 /* None? if so send the first */ 6431 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6432 if (rsm == NULL) { 6433 counter_u64_add(rack_tlp_does_nada, 1); 6434 #ifdef TCP_BLACKBOX 6435 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6436 #endif 6437 goto out; 6438 } 6439 } 6440 } 6441 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { 6442 /* 6443 * We need to split this the last segment in two. 6444 */ 6445 struct rack_sendmap *nrsm; 6446 6447 nrsm = rack_alloc_full_limit(rack); 6448 if (nrsm == NULL) { 6449 /* 6450 * No memory to split, we will just exit and punt 6451 * off to the RXT timer. 6452 */ 6453 counter_u64_add(rack_tlp_does_nada, 1); 6454 goto out; 6455 } 6456 rack_clone_rsm(rack, nrsm, rsm, 6457 (rsm->r_end - ctf_fixed_maxseg(tp))); 6458 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 6459 #ifndef INVARIANTS 6460 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6461 #else 6462 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6463 if (insret != NULL) { 6464 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 6465 nrsm, insret, rack, rsm); 6466 } 6467 #endif 6468 if (rsm->r_in_tmap) { 6469 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 6470 nrsm->r_in_tmap = 1; 6471 } 6472 rsm = nrsm; 6473 } 6474 rack->r_ctl.rc_tlpsend = rsm; 6475 send: 6476 /* Make sure output path knows we are doing a TLP */ 6477 *doing_tlp = 1; 6478 rack->r_timer_override = 1; 6479 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6480 return (0); 6481 out: 6482 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6483 return (0); 6484 } 6485 6486 /* 6487 * Delayed ack Timer, here we simply need to setup the 6488 * ACK_NOW flag and remove the DELACK flag. From there 6489 * the output routine will send the ack out. 6490 * 6491 * We only return 1, saying don't proceed, if all timers 6492 * are stopped (destroyed PCB?). 6493 */ 6494 static int 6495 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6496 { 6497 if (tp->t_timers->tt_flags & TT_STOPPED) { 6498 return (1); 6499 } 6500 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); 6501 tp->t_flags &= ~TF_DELACK; 6502 tp->t_flags |= TF_ACKNOW; 6503 KMOD_TCPSTAT_INC(tcps_delack); 6504 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 6505 return (0); 6506 } 6507 6508 /* 6509 * Persists timer, here we simply send the 6510 * same thing as a keepalive will. 6511 * the one byte send. 6512 * 6513 * We only return 1, saying don't proceed, if all timers 6514 * are stopped (destroyed PCB?). 6515 */ 6516 static int 6517 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6518 { 6519 struct tcptemp *t_template; 6520 struct inpcb *inp; 6521 int32_t retval = 1; 6522 6523 inp = tp->t_inpcb; 6524 6525 if (tp->t_timers->tt_flags & TT_STOPPED) { 6526 return (1); 6527 } 6528 if (rack->rc_in_persist == 0) 6529 return (0); 6530 if (ctf_progress_timeout_check(tp, false)) { 6531 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6532 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6533 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6534 return (-ETIMEDOUT); /* tcp_drop() */ 6535 } 6536 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); 6537 /* 6538 * Persistence timer into zero window. Force a byte to be output, if 6539 * possible. 6540 */ 6541 KMOD_TCPSTAT_INC(tcps_persisttimeo); 6542 /* 6543 * Hack: if the peer is dead/unreachable, we do not time out if the 6544 * window is closed. After a full backoff, drop the connection if 6545 * the idle time (no responses to probes) reaches the maximum 6546 * backoff that we would use if retransmitting. 6547 */ 6548 if (tp->t_rxtshift == TCP_MAXRXTSHIFT && 6549 (ticks - tp->t_rcvtime >= tcp_maxpersistidle || 6550 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) { 6551 KMOD_TCPSTAT_INC(tcps_persistdrop); 6552 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6553 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6554 retval = -ETIMEDOUT; /* tcp_drop() */ 6555 goto out; 6556 } 6557 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && 6558 tp->snd_una == tp->snd_max) 6559 rack_exit_persist(tp, rack, cts); 6560 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; 6561 /* 6562 * If the user has closed the socket then drop a persisting 6563 * connection after a much reduced timeout. 6564 */ 6565 if (tp->t_state > TCPS_CLOSE_WAIT && 6566 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { 6567 KMOD_TCPSTAT_INC(tcps_persistdrop); 6568 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6569 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6570 retval = -ETIMEDOUT; /* tcp_drop() */ 6571 goto out; 6572 } 6573 t_template = tcpip_maketemplate(rack->rc_inp); 6574 if (t_template) { 6575 /* only set it if we were answered */ 6576 if (rack->forced_ack == 0) { 6577 rack->forced_ack = 1; 6578 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6579 } else { 6580 rack->probe_not_answered = 1; 6581 counter_u64_add(rack_persists_loss, 1); 6582 rack->r_ctl.persist_lost_ends++; 6583 } 6584 counter_u64_add(rack_persists_sends, 1); 6585 tcp_respond(tp, t_template->tt_ipgen, 6586 &t_template->tt_t, (struct mbuf *)NULL, 6587 tp->rcv_nxt, tp->snd_una - 1, 0); 6588 /* This sends an ack */ 6589 if (tp->t_flags & TF_DELACK) 6590 tp->t_flags &= ~TF_DELACK; 6591 free(t_template, M_TEMP); 6592 } 6593 if (tp->t_rxtshift < TCP_MAXRXTSHIFT) 6594 tp->t_rxtshift++; 6595 out: 6596 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); 6597 rack_start_hpts_timer(rack, tp, cts, 6598 0, 0, 0); 6599 return (retval); 6600 } 6601 6602 /* 6603 * If a keepalive goes off, we had no other timers 6604 * happening. We always return 1 here since this 6605 * routine either drops the connection or sends 6606 * out a segment with respond. 6607 */ 6608 static int 6609 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6610 { 6611 struct tcptemp *t_template; 6612 struct inpcb *inp; 6613 6614 if (tp->t_timers->tt_flags & TT_STOPPED) { 6615 return (1); 6616 } 6617 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; 6618 inp = tp->t_inpcb; 6619 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); 6620 /* 6621 * Keep-alive timer went off; send something or drop connection if 6622 * idle for too long. 6623 */ 6624 KMOD_TCPSTAT_INC(tcps_keeptimeo); 6625 if (tp->t_state < TCPS_ESTABLISHED) 6626 goto dropit; 6627 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 6628 tp->t_state <= TCPS_CLOSING) { 6629 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) 6630 goto dropit; 6631 /* 6632 * Send a packet designed to force a response if the peer is 6633 * up and reachable: either an ACK if the connection is 6634 * still alive, or an RST if the peer has closed the 6635 * connection due to timeout or reboot. Using sequence 6636 * number tp->snd_una-1 causes the transmitted zero-length 6637 * segment to lie outside the receive window; by the 6638 * protocol spec, this requires the correspondent TCP to 6639 * respond. 6640 */ 6641 KMOD_TCPSTAT_INC(tcps_keepprobe); 6642 t_template = tcpip_maketemplate(inp); 6643 if (t_template) { 6644 if (rack->forced_ack == 0) { 6645 rack->forced_ack = 1; 6646 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6647 } else { 6648 rack->probe_not_answered = 1; 6649 } 6650 tcp_respond(tp, t_template->tt_ipgen, 6651 &t_template->tt_t, (struct mbuf *)NULL, 6652 tp->rcv_nxt, tp->snd_una - 1, 0); 6653 free(t_template, M_TEMP); 6654 } 6655 } 6656 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 6657 return (1); 6658 dropit: 6659 KMOD_TCPSTAT_INC(tcps_keepdrops); 6660 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6661 return (-ETIMEDOUT); /* tcp_drop() */ 6662 } 6663 6664 /* 6665 * Retransmit helper function, clear up all the ack 6666 * flags and take care of important book keeping. 6667 */ 6668 static void 6669 rack_remxt_tmr(struct tcpcb *tp) 6670 { 6671 /* 6672 * The retransmit timer went off, all sack'd blocks must be 6673 * un-acked. 6674 */ 6675 struct rack_sendmap *rsm, *trsm = NULL; 6676 struct tcp_rack *rack; 6677 6678 rack = (struct tcp_rack *)tp->t_fb_ptr; 6679 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__); 6680 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); 6681 if (rack->r_state && (rack->r_state != tp->t_state)) 6682 rack_set_state(tp, rack); 6683 /* 6684 * Ideally we would like to be able to 6685 * mark SACK-PASS on anything not acked here. 6686 * 6687 * However, if we do that we would burst out 6688 * all that data 1ms apart. This would be unwise, 6689 * so for now we will just let the normal rxt timer 6690 * and tlp timer take care of it. 6691 * 6692 * Also we really need to stick them back in sequence 6693 * order. This way we send in the proper order and any 6694 * sacks that come floating in will "re-ack" the data. 6695 * To do this we zap the tmap with an INIT and then 6696 * walk through and place every rsm in the RB tree 6697 * back in its seq ordered place. 6698 */ 6699 TAILQ_INIT(&rack->r_ctl.rc_tmap); 6700 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6701 rsm->r_dupack = 0; 6702 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 6703 /* We must re-add it back to the tlist */ 6704 if (trsm == NULL) { 6705 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 6706 } else { 6707 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 6708 } 6709 rsm->r_in_tmap = 1; 6710 trsm = rsm; 6711 if (rsm->r_flags & RACK_ACKED) 6712 rsm->r_flags |= RACK_WAS_ACKED; 6713 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS); 6714 rsm->r_flags |= RACK_MUST_RXT; 6715 } 6716 /* Clear the count (we just un-acked them) */ 6717 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una; 6718 rack->r_ctl.rc_sacked = 0; 6719 rack->r_ctl.rc_sacklast = NULL; 6720 rack->r_ctl.rc_agg_delayed = 0; 6721 rack->r_early = 0; 6722 rack->r_ctl.rc_agg_early = 0; 6723 rack->r_late = 0; 6724 /* Clear the tlp rtx mark */ 6725 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6726 if (rack->r_ctl.rc_resend != NULL) 6727 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT; 6728 rack->r_ctl.rc_prr_sndcnt = 0; 6729 rack_log_to_prr(rack, 6, 0); 6730 rack->r_timer_override = 1; 6731 if ((((tp->t_flags & TF_SACK_PERMIT) == 0) 6732 #ifdef NETFLIX_EXP_DETECTION 6733 || (rack->sack_attack_disable != 0) 6734 #endif 6735 ) && ((tp->t_flags & TF_SENTFIN) == 0)) { 6736 /* 6737 * For non-sack customers new data 6738 * needs to go out as retransmits until 6739 * we retransmit up to snd_max. 6740 */ 6741 rack->r_must_retran = 1; 6742 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp, 6743 rack->r_ctl.rc_sacked); 6744 } 6745 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 6746 } 6747 6748 static void 6749 rack_convert_rtts(struct tcpcb *tp) 6750 { 6751 if (tp->t_srtt > 1) { 6752 uint32_t val, frac; 6753 6754 val = tp->t_srtt >> TCP_RTT_SHIFT; 6755 frac = tp->t_srtt & 0x1f; 6756 tp->t_srtt = TICKS_2_USEC(val); 6757 /* 6758 * frac is the fractional part of the srtt (if any) 6759 * but its in ticks and every bit represents 6760 * 1/32nd of a hz. 6761 */ 6762 if (frac) { 6763 if (hz == 1000) { 6764 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6765 } else { 6766 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6767 } 6768 tp->t_srtt += frac; 6769 } 6770 } 6771 if (tp->t_rttvar) { 6772 uint32_t val, frac; 6773 6774 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 6775 frac = tp->t_rttvar & 0x1f; 6776 tp->t_rttvar = TICKS_2_USEC(val); 6777 /* 6778 * frac is the fractional part of the srtt (if any) 6779 * but its in ticks and every bit represents 6780 * 1/32nd of a hz. 6781 */ 6782 if (frac) { 6783 if (hz == 1000) { 6784 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6785 } else { 6786 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6787 } 6788 tp->t_rttvar += frac; 6789 } 6790 } 6791 tp->t_rxtcur = RACK_REXMTVAL(tp); 6792 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 6793 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop); 6794 } 6795 if (tp->t_rxtcur > rack_rto_max) { 6796 tp->t_rxtcur = rack_rto_max; 6797 } 6798 } 6799 6800 static void 6801 rack_cc_conn_init(struct tcpcb *tp) 6802 { 6803 struct tcp_rack *rack; 6804 uint32_t srtt; 6805 6806 rack = (struct tcp_rack *)tp->t_fb_ptr; 6807 srtt = tp->t_srtt; 6808 cc_conn_init(tp); 6809 /* 6810 * Now convert to rack's internal format, 6811 * if required. 6812 */ 6813 if ((srtt == 0) && (tp->t_srtt != 0)) 6814 rack_convert_rtts(tp); 6815 /* 6816 * We want a chance to stay in slowstart as 6817 * we create a connection. TCP spec says that 6818 * initially ssthresh is infinite. For our 6819 * purposes that is the snd_wnd. 6820 */ 6821 if (tp->snd_ssthresh < tp->snd_wnd) { 6822 tp->snd_ssthresh = tp->snd_wnd; 6823 } 6824 /* 6825 * We also want to assure a IW worth of 6826 * data can get inflight. 6827 */ 6828 if (rc_init_window(rack) < tp->snd_cwnd) 6829 tp->snd_cwnd = rc_init_window(rack); 6830 } 6831 6832 /* 6833 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise 6834 * we will setup to retransmit the lowest seq number outstanding. 6835 */ 6836 static int 6837 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6838 { 6839 int32_t rexmt; 6840 int32_t retval = 0; 6841 bool isipv6; 6842 6843 if (tp->t_timers->tt_flags & TT_STOPPED) { 6844 return (1); 6845 } 6846 if ((tp->t_flags & TF_GPUTINPROG) && 6847 (tp->t_rxtshift)) { 6848 /* 6849 * We have had a second timeout 6850 * measurements on successive rxt's are not profitable. 6851 * It is unlikely to be of any use (the network is 6852 * broken or the client went away). 6853 */ 6854 tp->t_flags &= ~TF_GPUTINPROG; 6855 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6856 rack->r_ctl.rc_gp_srtt /*flex1*/, 6857 tp->gput_seq, 6858 0, 0, 18, __LINE__, NULL, 0); 6859 } 6860 if (ctf_progress_timeout_check(tp, false)) { 6861 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6862 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6863 return (-ETIMEDOUT); /* tcp_drop() */ 6864 } 6865 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; 6866 rack->r_ctl.retran_during_recovery = 0; 6867 rack->r_ctl.dsack_byte_cnt = 0; 6868 if (IN_FASTRECOVERY(tp->t_flags)) 6869 tp->t_flags |= TF_WASFRECOVERY; 6870 else 6871 tp->t_flags &= ~TF_WASFRECOVERY; 6872 if (IN_CONGRECOVERY(tp->t_flags)) 6873 tp->t_flags |= TF_WASCRECOVERY; 6874 else 6875 tp->t_flags &= ~TF_WASCRECOVERY; 6876 if (TCPS_HAVEESTABLISHED(tp->t_state) && 6877 (tp->snd_una == tp->snd_max)) { 6878 /* Nothing outstanding .. nothing to do */ 6879 return (0); 6880 } 6881 if (rack->r_ctl.dsack_persist) { 6882 rack->r_ctl.dsack_persist--; 6883 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6884 rack->r_ctl.num_dsack = 0; 6885 } 6886 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6887 } 6888 /* 6889 * Rack can only run one timer at a time, so we cannot 6890 * run a KEEPINIT (gating SYN sending) and a retransmit 6891 * timer for the SYN. So if we are in a front state and 6892 * have a KEEPINIT timer we need to check the first transmit 6893 * against now to see if we have exceeded the KEEPINIT time 6894 * (if one is set). 6895 */ 6896 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 6897 (TP_KEEPINIT(tp) != 0)) { 6898 struct rack_sendmap *rsm; 6899 6900 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6901 if (rsm) { 6902 /* Ok we have something outstanding to test keepinit with */ 6903 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) && 6904 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) { 6905 /* We have exceeded the KEEPINIT time */ 6906 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6907 goto drop_it; 6908 } 6909 } 6910 } 6911 /* 6912 * Retransmission timer went off. Message has not been acked within 6913 * retransmit interval. Back off to a longer retransmit interval 6914 * and retransmit one segment. 6915 */ 6916 rack_remxt_tmr(tp); 6917 if ((rack->r_ctl.rc_resend == NULL) || 6918 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { 6919 /* 6920 * If the rwnd collapsed on 6921 * the one we are retransmitting 6922 * it does not count against the 6923 * rxt count. 6924 */ 6925 tp->t_rxtshift++; 6926 } 6927 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { 6928 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6929 drop_it: 6930 tp->t_rxtshift = TCP_MAXRXTSHIFT; 6931 KMOD_TCPSTAT_INC(tcps_timeoutdrop); 6932 /* XXXGL: previously t_softerror was casted to uint16_t */ 6933 MPASS(tp->t_softerror >= 0); 6934 retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT; 6935 goto out; /* tcp_drop() */ 6936 } 6937 if (tp->t_state == TCPS_SYN_SENT) { 6938 /* 6939 * If the SYN was retransmitted, indicate CWND to be limited 6940 * to 1 segment in cc_conn_init(). 6941 */ 6942 tp->snd_cwnd = 1; 6943 } else if (tp->t_rxtshift == 1) { 6944 /* 6945 * first retransmit; record ssthresh and cwnd so they can be 6946 * recovered if this turns out to be a "bad" retransmit. A 6947 * retransmit is considered "bad" if an ACK for this segment 6948 * is received within RTT/2 interval; the assumption here is 6949 * that the ACK was already in flight. See "On Estimating 6950 * End-to-End Network Path Properties" by Allman and Paxson 6951 * for more details. 6952 */ 6953 tp->snd_cwnd_prev = tp->snd_cwnd; 6954 tp->snd_ssthresh_prev = tp->snd_ssthresh; 6955 tp->snd_recover_prev = tp->snd_recover; 6956 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2); 6957 tp->t_flags |= TF_PREVVALID; 6958 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0) 6959 tp->t_flags &= ~TF_PREVVALID; 6960 KMOD_TCPSTAT_INC(tcps_rexmttimeo); 6961 if ((tp->t_state == TCPS_SYN_SENT) || 6962 (tp->t_state == TCPS_SYN_RECEIVED)) 6963 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]; 6964 else 6965 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift]; 6966 6967 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt, 6968 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop); 6969 /* 6970 * We enter the path for PLMTUD if connection is established or, if 6971 * connection is FIN_WAIT_1 status, reason for the last is that if 6972 * amount of data we send is very small, we could send it in couple 6973 * of packets and process straight to FIN. In that case we won't 6974 * catch ESTABLISHED state. 6975 */ 6976 #ifdef INET6 6977 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false; 6978 #else 6979 isipv6 = false; 6980 #endif 6981 if (((V_tcp_pmtud_blackhole_detect == 1) || 6982 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || 6983 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && 6984 ((tp->t_state == TCPS_ESTABLISHED) || 6985 (tp->t_state == TCPS_FIN_WAIT_1))) { 6986 /* 6987 * Idea here is that at each stage of mtu probe (usually, 6988 * 1448 -> 1188 -> 524) should be given 2 chances to recover 6989 * before further clamping down. 'tp->t_rxtshift % 2 == 0' 6990 * should take care of that. 6991 */ 6992 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == 6993 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && 6994 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && 6995 tp->t_rxtshift % 2 == 0)) { 6996 /* 6997 * Enter Path MTU Black-hole Detection mechanism: - 6998 * Disable Path MTU Discovery (IP "DF" bit). - 6999 * Reduce MTU to lower value than what we negotiated 7000 * with peer. 7001 */ 7002 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { 7003 /* Record that we may have found a black hole. */ 7004 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; 7005 /* Keep track of previous MSS. */ 7006 tp->t_pmtud_saved_maxseg = tp->t_maxseg; 7007 } 7008 7009 /* 7010 * Reduce the MSS to blackhole value or to the 7011 * default in an attempt to retransmit. 7012 */ 7013 #ifdef INET6 7014 if (isipv6 && 7015 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { 7016 /* Use the sysctl tuneable blackhole MSS. */ 7017 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; 7018 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 7019 } else if (isipv6) { 7020 /* Use the default MSS. */ 7021 tp->t_maxseg = V_tcp_v6mssdflt; 7022 /* 7023 * Disable Path MTU Discovery when we switch 7024 * to minmss. 7025 */ 7026 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 7027 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 7028 } 7029 #endif 7030 #if defined(INET6) && defined(INET) 7031 else 7032 #endif 7033 #ifdef INET 7034 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { 7035 /* Use the sysctl tuneable blackhole MSS. */ 7036 tp->t_maxseg = V_tcp_pmtud_blackhole_mss; 7037 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 7038 } else { 7039 /* Use the default MSS. */ 7040 tp->t_maxseg = V_tcp_mssdflt; 7041 /* 7042 * Disable Path MTU Discovery when we switch 7043 * to minmss. 7044 */ 7045 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 7046 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 7047 } 7048 #endif 7049 } else { 7050 /* 7051 * If further retransmissions are still unsuccessful 7052 * with a lowered MTU, maybe this isn't a blackhole 7053 * and we restore the previous MSS and blackhole 7054 * detection flags. The limit '6' is determined by 7055 * giving each probe stage (1448, 1188, 524) 2 7056 * chances to recover. 7057 */ 7058 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && 7059 (tp->t_rxtshift >= 6)) { 7060 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 7061 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; 7062 tp->t_maxseg = tp->t_pmtud_saved_maxseg; 7063 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); 7064 } 7065 } 7066 } 7067 /* 7068 * Disable RFC1323 and SACK if we haven't got any response to 7069 * our third SYN to work-around some broken terminal servers 7070 * (most of which have hopefully been retired) that have bad VJ 7071 * header compression code which trashes TCP segments containing 7072 * unknown-to-them TCP options. 7073 */ 7074 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && 7075 (tp->t_rxtshift == 3)) 7076 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT); 7077 /* 7078 * If we backed off this far, our srtt estimate is probably bogus. 7079 * Clobber it so we'll take the next rtt measurement as our srtt; 7080 * move the current srtt into rttvar to keep the current retransmit 7081 * times until then. 7082 */ 7083 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { 7084 #ifdef INET6 7085 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 7086 in6_losing(tp->t_inpcb); 7087 else 7088 #endif 7089 in_losing(tp->t_inpcb); 7090 tp->t_rttvar += tp->t_srtt; 7091 tp->t_srtt = 0; 7092 } 7093 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 7094 tp->snd_recover = tp->snd_max; 7095 tp->t_flags |= TF_ACKNOW; 7096 tp->t_rtttime = 0; 7097 rack_cong_signal(tp, CC_RTO, tp->snd_una); 7098 out: 7099 return (retval); 7100 } 7101 7102 static int 7103 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp) 7104 { 7105 int32_t ret = 0; 7106 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); 7107 7108 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 7109 (tp->t_flags & TF_GPUTINPROG)) { 7110 /* 7111 * We have a goodput in progress 7112 * and we have entered a late state. 7113 * Do we have enough data in the sb 7114 * to handle the GPUT request? 7115 */ 7116 uint32_t bytes; 7117 7118 bytes = tp->gput_ack - tp->gput_seq; 7119 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 7120 bytes += tp->gput_seq - tp->snd_una; 7121 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 7122 /* 7123 * There are not enough bytes in the socket 7124 * buffer that have been sent to cover this 7125 * measurement. Cancel it. 7126 */ 7127 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 7128 rack->r_ctl.rc_gp_srtt /*flex1*/, 7129 tp->gput_seq, 7130 0, 0, 18, __LINE__, NULL, 0); 7131 tp->t_flags &= ~TF_GPUTINPROG; 7132 } 7133 } 7134 if (timers == 0) { 7135 return (0); 7136 } 7137 if (tp->t_state == TCPS_LISTEN) { 7138 /* no timers on listen sockets */ 7139 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) 7140 return (0); 7141 return (1); 7142 } 7143 if ((timers & PACE_TMR_RACK) && 7144 rack->rc_on_min_to) { 7145 /* 7146 * For the rack timer when we 7147 * are on a min-timeout (which means rrr_conf = 3) 7148 * we don't want to check the timer. It may 7149 * be going off for a pace and thats ok we 7150 * want to send the retransmit (if its ready). 7151 * 7152 * If its on a normal rack timer (non-min) then 7153 * we will check if its expired. 7154 */ 7155 goto skip_time_check; 7156 } 7157 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 7158 uint32_t left; 7159 7160 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 7161 ret = -1; 7162 rack_log_to_processing(rack, cts, ret, 0); 7163 return (0); 7164 } 7165 if (hpts_calling == 0) { 7166 /* 7167 * A user send or queued mbuf (sack) has called us? We 7168 * return 0 and let the pacing guards 7169 * deal with it if they should or 7170 * should not cause a send. 7171 */ 7172 ret = -2; 7173 rack_log_to_processing(rack, cts, ret, 0); 7174 return (0); 7175 } 7176 /* 7177 * Ok our timer went off early and we are not paced false 7178 * alarm, go back to sleep. 7179 */ 7180 ret = -3; 7181 left = rack->r_ctl.rc_timer_exp - cts; 7182 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left)); 7183 rack_log_to_processing(rack, cts, ret, left); 7184 return (1); 7185 } 7186 skip_time_check: 7187 rack->rc_tmr_stopped = 0; 7188 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; 7189 if (timers & PACE_TMR_DELACK) { 7190 ret = rack_timeout_delack(tp, rack, cts); 7191 } else if (timers & PACE_TMR_RACK) { 7192 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7193 rack->r_fast_output = 0; 7194 ret = rack_timeout_rack(tp, rack, cts); 7195 } else if (timers & PACE_TMR_TLP) { 7196 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7197 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp); 7198 } else if (timers & PACE_TMR_RXT) { 7199 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7200 rack->r_fast_output = 0; 7201 ret = rack_timeout_rxt(tp, rack, cts); 7202 } else if (timers & PACE_TMR_PERSIT) { 7203 ret = rack_timeout_persist(tp, rack, cts); 7204 } else if (timers & PACE_TMR_KEEP) { 7205 ret = rack_timeout_keepalive(tp, rack, cts); 7206 } 7207 rack_log_to_processing(rack, cts, ret, timers); 7208 return (ret); 7209 } 7210 7211 static void 7212 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) 7213 { 7214 struct timeval tv; 7215 uint32_t us_cts, flags_on_entry; 7216 uint8_t hpts_removed = 0; 7217 7218 flags_on_entry = rack->r_ctl.rc_hpts_flags; 7219 us_cts = tcp_get_usecs(&tv); 7220 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 7221 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || 7222 ((tp->snd_max - tp->snd_una) == 0))) { 7223 tcp_hpts_remove(rack->rc_inp); 7224 hpts_removed = 1; 7225 /* If we were not delayed cancel out the flag. */ 7226 if ((tp->snd_max - tp->snd_una) == 0) 7227 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7228 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7229 } 7230 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 7231 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 7232 if (tcp_in_hpts(rack->rc_inp) && 7233 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { 7234 /* 7235 * Canceling timer's when we have no output being 7236 * paced. We also must remove ourselves from the 7237 * hpts. 7238 */ 7239 tcp_hpts_remove(rack->rc_inp); 7240 hpts_removed = 1; 7241 } 7242 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); 7243 } 7244 if (hpts_removed == 0) 7245 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7246 } 7247 7248 static void 7249 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type) 7250 { 7251 return; 7252 } 7253 7254 static int 7255 rack_stopall(struct tcpcb *tp) 7256 { 7257 struct tcp_rack *rack; 7258 rack = (struct tcp_rack *)tp->t_fb_ptr; 7259 rack->t_timers_stopped = 1; 7260 return (0); 7261 } 7262 7263 static void 7264 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) 7265 { 7266 return; 7267 } 7268 7269 static int 7270 rack_timer_active(struct tcpcb *tp, uint32_t timer_type) 7271 { 7272 return (0); 7273 } 7274 7275 static void 7276 rack_stop_all_timers(struct tcpcb *tp) 7277 { 7278 struct tcp_rack *rack; 7279 7280 /* 7281 * Assure no timers are running. 7282 */ 7283 if (tcp_timer_active(tp, TT_PERSIST)) { 7284 /* We enter in persists, set the flag appropriately */ 7285 rack = (struct tcp_rack *)tp->t_fb_ptr; 7286 rack->rc_in_persist = 1; 7287 } 7288 tcp_timer_suspend(tp, TT_PERSIST); 7289 tcp_timer_suspend(tp, TT_REXMT); 7290 tcp_timer_suspend(tp, TT_KEEP); 7291 tcp_timer_suspend(tp, TT_DELACK); 7292 } 7293 7294 static void 7295 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 7296 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag) 7297 { 7298 int32_t idx; 7299 7300 rsm->r_rtr_cnt++; 7301 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7302 rsm->r_dupack = 0; 7303 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { 7304 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; 7305 rsm->r_flags |= RACK_OVERMAX; 7306 } 7307 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { 7308 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); 7309 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); 7310 } 7311 idx = rsm->r_rtr_cnt - 1; 7312 rsm->r_tim_lastsent[idx] = ts; 7313 /* 7314 * Here we don't add in the len of send, since its already 7315 * in snduna <->snd_max. 7316 */ 7317 rsm->r_fas = ctf_flight_size(rack->rc_tp, 7318 rack->r_ctl.rc_sacked); 7319 if (rsm->r_flags & RACK_ACKED) { 7320 /* Problably MTU discovery messing with us */ 7321 rsm->r_flags &= ~RACK_ACKED; 7322 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 7323 } 7324 if (rsm->r_in_tmap) { 7325 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7326 rsm->r_in_tmap = 0; 7327 } 7328 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7329 rsm->r_in_tmap = 1; 7330 if (rsm->r_flags & RACK_SACK_PASSED) { 7331 /* We have retransmitted due to the SACK pass */ 7332 rsm->r_flags &= ~RACK_SACK_PASSED; 7333 rsm->r_flags |= RACK_WAS_SACKPASS; 7334 } 7335 } 7336 7337 static uint32_t 7338 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 7339 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag) 7340 { 7341 /* 7342 * We (re-)transmitted starting at rsm->r_start for some length 7343 * (possibly less than r_end. 7344 */ 7345 struct rack_sendmap *nrsm; 7346 #ifdef INVARIANTS 7347 struct rack_sendmap *insret; 7348 #endif 7349 uint32_t c_end; 7350 int32_t len; 7351 7352 len = *lenp; 7353 c_end = rsm->r_start + len; 7354 if (SEQ_GEQ(c_end, rsm->r_end)) { 7355 /* 7356 * We retransmitted the whole piece or more than the whole 7357 * slopping into the next rsm. 7358 */ 7359 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7360 if (c_end == rsm->r_end) { 7361 *lenp = 0; 7362 return (0); 7363 } else { 7364 int32_t act_len; 7365 7366 /* Hangs over the end return whats left */ 7367 act_len = rsm->r_end - rsm->r_start; 7368 *lenp = (len - act_len); 7369 return (rsm->r_end); 7370 } 7371 /* We don't get out of this block. */ 7372 } 7373 /* 7374 * Here we retransmitted less than the whole thing which means we 7375 * have to split this into what was transmitted and what was not. 7376 */ 7377 nrsm = rack_alloc_full_limit(rack); 7378 if (nrsm == NULL) { 7379 /* 7380 * We can't get memory, so lets not proceed. 7381 */ 7382 *lenp = 0; 7383 return (0); 7384 } 7385 /* 7386 * So here we are going to take the original rsm and make it what we 7387 * retransmitted. nrsm will be the tail portion we did not 7388 * retransmit. For example say the chunk was 1, 11 (10 bytes). And 7389 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to 7390 * 1, 6 and the new piece will be 6, 11. 7391 */ 7392 rack_clone_rsm(rack, nrsm, rsm, c_end); 7393 nrsm->r_dupack = 0; 7394 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 7395 #ifndef INVARIANTS 7396 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7397 #else 7398 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7399 if (insret != NULL) { 7400 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7401 nrsm, insret, rack, rsm); 7402 } 7403 #endif 7404 if (rsm->r_in_tmap) { 7405 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7406 nrsm->r_in_tmap = 1; 7407 } 7408 rsm->r_flags &= (~RACK_HAS_FIN); 7409 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7410 /* Log a split of rsm into rsm and nrsm */ 7411 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7412 *lenp = 0; 7413 return (0); 7414 } 7415 7416 static void 7417 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 7418 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts, 7419 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls) 7420 { 7421 struct tcp_rack *rack; 7422 struct rack_sendmap *rsm, *nrsm, fe; 7423 #ifdef INVARIANTS 7424 struct rack_sendmap *insret; 7425 #endif 7426 register uint32_t snd_max, snd_una; 7427 7428 /* 7429 * Add to the RACK log of packets in flight or retransmitted. If 7430 * there is a TS option we will use the TS echoed, if not we will 7431 * grab a TS. 7432 * 7433 * Retransmissions will increment the count and move the ts to its 7434 * proper place. Note that if options do not include TS's then we 7435 * won't be able to effectively use the ACK for an RTT on a retran. 7436 * 7437 * Notes about r_start and r_end. Lets consider a send starting at 7438 * sequence 1 for 10 bytes. In such an example the r_start would be 7439 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. 7440 * This means that r_end is actually the first sequence for the next 7441 * slot (11). 7442 * 7443 */ 7444 /* 7445 * If err is set what do we do XXXrrs? should we not add the thing? 7446 * -- i.e. return if err != 0 or should we pretend we sent it? -- 7447 * i.e. proceed with add ** do this for now. 7448 */ 7449 INP_WLOCK_ASSERT(tp->t_inpcb); 7450 if (err) 7451 /* 7452 * We don't log errors -- we could but snd_max does not 7453 * advance in this case either. 7454 */ 7455 return; 7456 7457 if (th_flags & TH_RST) { 7458 /* 7459 * We don't log resets and we return immediately from 7460 * sending 7461 */ 7462 return; 7463 } 7464 rack = (struct tcp_rack *)tp->t_fb_ptr; 7465 snd_una = tp->snd_una; 7466 snd_max = tp->snd_max; 7467 if (th_flags & (TH_SYN | TH_FIN)) { 7468 /* 7469 * The call to rack_log_output is made before bumping 7470 * snd_max. This means we can record one extra byte on a SYN 7471 * or FIN if seq_out is adding more on and a FIN is present 7472 * (and we are not resending). 7473 */ 7474 if ((th_flags & TH_SYN) && (seq_out == tp->iss)) 7475 len++; 7476 if (th_flags & TH_FIN) 7477 len++; 7478 if (SEQ_LT(snd_max, tp->snd_nxt)) { 7479 /* 7480 * The add/update as not been done for the FIN/SYN 7481 * yet. 7482 */ 7483 snd_max = tp->snd_nxt; 7484 } 7485 } 7486 if (SEQ_LEQ((seq_out + len), snd_una)) { 7487 /* Are sending an old segment to induce an ack (keep-alive)? */ 7488 return; 7489 } 7490 if (SEQ_LT(seq_out, snd_una)) { 7491 /* huh? should we panic? */ 7492 uint32_t end; 7493 7494 end = seq_out + len; 7495 seq_out = snd_una; 7496 if (SEQ_GEQ(end, seq_out)) 7497 len = end - seq_out; 7498 else 7499 len = 0; 7500 } 7501 if (len == 0) { 7502 /* We don't log zero window probes */ 7503 return; 7504 } 7505 rack->r_ctl.rc_time_last_sent = cts; 7506 if (IN_FASTRECOVERY(tp->t_flags)) { 7507 rack->r_ctl.rc_prr_out += len; 7508 } 7509 /* First question is it a retransmission or new? */ 7510 if (seq_out == snd_max) { 7511 /* Its new */ 7512 again: 7513 rsm = rack_alloc(rack); 7514 if (rsm == NULL) { 7515 /* 7516 * Hmm out of memory and the tcb got destroyed while 7517 * we tried to wait. 7518 */ 7519 return; 7520 } 7521 if (th_flags & TH_FIN) { 7522 rsm->r_flags = RACK_HAS_FIN|add_flag; 7523 } else { 7524 rsm->r_flags = add_flag; 7525 } 7526 if (hw_tls) 7527 rsm->r_hw_tls = 1; 7528 rsm->r_tim_lastsent[0] = cts; 7529 rsm->r_rtr_cnt = 1; 7530 rsm->r_rtr_bytes = 0; 7531 if (th_flags & TH_SYN) { 7532 /* The data space is one beyond snd_una */ 7533 rsm->r_flags |= RACK_HAS_SYN; 7534 } 7535 rsm->r_start = seq_out; 7536 rsm->r_end = rsm->r_start + len; 7537 rsm->r_dupack = 0; 7538 /* 7539 * save off the mbuf location that 7540 * sndmbuf_noadv returned (which is 7541 * where we started copying from).. 7542 */ 7543 rsm->m = s_mb; 7544 rsm->soff = s_moff; 7545 /* 7546 * Here we do add in the len of send, since its not yet 7547 * reflected in in snduna <->snd_max 7548 */ 7549 rsm->r_fas = (ctf_flight_size(rack->rc_tp, 7550 rack->r_ctl.rc_sacked) + 7551 (rsm->r_end - rsm->r_start)); 7552 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */ 7553 if (rsm->m) { 7554 if (rsm->m->m_len <= rsm->soff) { 7555 /* 7556 * XXXrrs Question, will this happen? 7557 * 7558 * If sbsndptr is set at the correct place 7559 * then s_moff should always be somewhere 7560 * within rsm->m. But if the sbsndptr was 7561 * off then that won't be true. If it occurs 7562 * we need to walkout to the correct location. 7563 */ 7564 struct mbuf *lm; 7565 7566 lm = rsm->m; 7567 while (lm->m_len <= rsm->soff) { 7568 rsm->soff -= lm->m_len; 7569 lm = lm->m_next; 7570 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u", 7571 __func__, rack, s_moff, s_mb, rsm->soff)); 7572 } 7573 rsm->m = lm; 7574 counter_u64_add(rack_sbsndptr_wrong, 1); 7575 } else 7576 counter_u64_add(rack_sbsndptr_right, 1); 7577 rsm->orig_m_len = rsm->m->m_len; 7578 } else 7579 rsm->orig_m_len = 0; 7580 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7581 /* Log a new rsm */ 7582 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__); 7583 #ifndef INVARIANTS 7584 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7585 #else 7586 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7587 if (insret != NULL) { 7588 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7589 nrsm, insret, rack, rsm); 7590 } 7591 #endif 7592 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7593 rsm->r_in_tmap = 1; 7594 /* 7595 * Special case detection, is there just a single 7596 * packet outstanding when we are not in recovery? 7597 * 7598 * If this is true mark it so. 7599 */ 7600 if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 7601 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { 7602 struct rack_sendmap *prsm; 7603 7604 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7605 if (prsm) 7606 prsm->r_one_out_nr = 1; 7607 } 7608 return; 7609 } 7610 /* 7611 * If we reach here its a retransmission and we need to find it. 7612 */ 7613 memset(&fe, 0, sizeof(fe)); 7614 more: 7615 if (hintrsm && (hintrsm->r_start == seq_out)) { 7616 rsm = hintrsm; 7617 hintrsm = NULL; 7618 } else { 7619 /* No hints sorry */ 7620 rsm = NULL; 7621 } 7622 if ((rsm) && (rsm->r_start == seq_out)) { 7623 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7624 if (len == 0) { 7625 return; 7626 } else { 7627 goto more; 7628 } 7629 } 7630 /* Ok it was not the last pointer go through it the hard way. */ 7631 refind: 7632 fe.r_start = seq_out; 7633 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 7634 if (rsm) { 7635 if (rsm->r_start == seq_out) { 7636 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7637 if (len == 0) { 7638 return; 7639 } else { 7640 goto refind; 7641 } 7642 } 7643 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { 7644 /* Transmitted within this piece */ 7645 /* 7646 * Ok we must split off the front and then let the 7647 * update do the rest 7648 */ 7649 nrsm = rack_alloc_full_limit(rack); 7650 if (nrsm == NULL) { 7651 rack_update_rsm(tp, rack, rsm, cts, add_flag); 7652 return; 7653 } 7654 /* 7655 * copy rsm to nrsm and then trim the front of rsm 7656 * to not include this part. 7657 */ 7658 rack_clone_rsm(rack, nrsm, rsm, seq_out); 7659 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7660 #ifndef INVARIANTS 7661 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7662 #else 7663 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7664 if (insret != NULL) { 7665 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7666 nrsm, insret, rack, rsm); 7667 } 7668 #endif 7669 if (rsm->r_in_tmap) { 7670 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7671 nrsm->r_in_tmap = 1; 7672 } 7673 rsm->r_flags &= (~RACK_HAS_FIN); 7674 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag); 7675 if (len == 0) { 7676 return; 7677 } else if (len > 0) 7678 goto refind; 7679 } 7680 } 7681 /* 7682 * Hmm not found in map did they retransmit both old and on into the 7683 * new? 7684 */ 7685 if (seq_out == tp->snd_max) { 7686 goto again; 7687 } else if (SEQ_LT(seq_out, tp->snd_max)) { 7688 #ifdef INVARIANTS 7689 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", 7690 seq_out, len, tp->snd_una, tp->snd_max); 7691 printf("Starting Dump of all rack entries\n"); 7692 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 7693 printf("rsm:%p start:%u end:%u\n", 7694 rsm, rsm->r_start, rsm->r_end); 7695 } 7696 printf("Dump complete\n"); 7697 panic("seq_out not found rack:%p tp:%p", 7698 rack, tp); 7699 #endif 7700 } else { 7701 #ifdef INVARIANTS 7702 /* 7703 * Hmm beyond sndmax? (only if we are using the new rtt-pack 7704 * flag) 7705 */ 7706 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", 7707 seq_out, len, tp->snd_max, tp); 7708 #endif 7709 } 7710 } 7711 7712 /* 7713 * Record one of the RTT updates from an ack into 7714 * our sample structure. 7715 */ 7716 7717 static void 7718 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, 7719 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) 7720 { 7721 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7722 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { 7723 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; 7724 } 7725 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7726 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { 7727 rack->r_ctl.rack_rs.rs_rtt_highest = rtt; 7728 } 7729 if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 7730 if (us_rtt < rack->r_ctl.rc_gp_lowrtt) 7731 rack->r_ctl.rc_gp_lowrtt = us_rtt; 7732 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) 7733 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 7734 } 7735 if ((confidence == 1) && 7736 ((rsm == NULL) || 7737 (rsm->r_just_ret) || 7738 (rsm->r_one_out_nr && 7739 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { 7740 /* 7741 * If the rsm had a just return 7742 * hit it then we can't trust the 7743 * rtt measurement for buffer deterimination 7744 * Note that a confidence of 2, indicates 7745 * SACK'd which overrides the r_just_ret or 7746 * the r_one_out_nr. If it was a CUM-ACK and 7747 * we had only two outstanding, but get an 7748 * ack for only 1. Then that also lowers our 7749 * confidence. 7750 */ 7751 confidence = 0; 7752 } 7753 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7754 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { 7755 if (rack->r_ctl.rack_rs.confidence == 0) { 7756 /* 7757 * We take anything with no current confidence 7758 * saved. 7759 */ 7760 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7761 rack->r_ctl.rack_rs.confidence = confidence; 7762 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7763 } else if (confidence || rack->r_ctl.rack_rs.confidence) { 7764 /* 7765 * Once we have a confident number, 7766 * we can update it with a smaller 7767 * value since this confident number 7768 * may include the DSACK time until 7769 * the next segment (the second one) arrived. 7770 */ 7771 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7772 rack->r_ctl.rack_rs.confidence = confidence; 7773 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7774 } 7775 } 7776 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); 7777 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; 7778 rack->r_ctl.rack_rs.rs_rtt_tot += rtt; 7779 rack->r_ctl.rack_rs.rs_rtt_cnt++; 7780 } 7781 7782 /* 7783 * Collect new round-trip time estimate 7784 * and update averages and current timeout. 7785 */ 7786 static void 7787 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) 7788 { 7789 int32_t delta; 7790 int32_t rtt; 7791 7792 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) 7793 /* No valid sample */ 7794 return; 7795 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { 7796 /* We are to use the lowest RTT seen in a single ack */ 7797 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 7798 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { 7799 /* We are to use the highest RTT seen in a single ack */ 7800 rtt = rack->r_ctl.rack_rs.rs_rtt_highest; 7801 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { 7802 /* We are to use the average RTT seen in a single ack */ 7803 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / 7804 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); 7805 } else { 7806 #ifdef INVARIANTS 7807 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); 7808 #endif 7809 return; 7810 } 7811 if (rtt == 0) 7812 rtt = 1; 7813 if (rack->rc_gp_rtt_set == 0) { 7814 /* 7815 * With no RTT we have to accept 7816 * even one we are not confident of. 7817 */ 7818 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; 7819 rack->rc_gp_rtt_set = 1; 7820 } else if (rack->r_ctl.rack_rs.confidence) { 7821 /* update the running gp srtt */ 7822 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); 7823 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; 7824 } 7825 if (rack->r_ctl.rack_rs.confidence) { 7826 /* 7827 * record the low and high for highly buffered path computation, 7828 * we only do this if we are confident (not a retransmission). 7829 */ 7830 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { 7831 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7832 } 7833 if (rack->rc_highly_buffered == 0) { 7834 /* 7835 * Currently once we declare a path has 7836 * highly buffered there is no going 7837 * back, which may be a problem... 7838 */ 7839 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { 7840 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, 7841 rack->r_ctl.rc_highest_us_rtt, 7842 rack->r_ctl.rc_lowest_us_rtt, 7843 RACK_RTTS_SEEHBP); 7844 rack->rc_highly_buffered = 1; 7845 } 7846 } 7847 } 7848 if ((rack->r_ctl.rack_rs.confidence) || 7849 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { 7850 /* 7851 * If we are highly confident of it <or> it was 7852 * never retransmitted we accept it as the last us_rtt. 7853 */ 7854 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7855 /* The lowest rtt can be set if its was not retransmited */ 7856 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { 7857 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7858 if (rack->r_ctl.rc_lowest_us_rtt == 0) 7859 rack->r_ctl.rc_lowest_us_rtt = 1; 7860 } 7861 } 7862 rack = (struct tcp_rack *)tp->t_fb_ptr; 7863 if (tp->t_srtt != 0) { 7864 /* 7865 * We keep a simple srtt in microseconds, like our rtt 7866 * measurement. We don't need to do any tricks with shifting 7867 * etc. Instead we just add in 1/8th of the new measurement 7868 * and subtract out 1/8 of the old srtt. We do the same with 7869 * the variance after finding the absolute value of the 7870 * difference between this sample and the current srtt. 7871 */ 7872 delta = tp->t_srtt - rtt; 7873 /* Take off 1/8th of the current sRTT */ 7874 tp->t_srtt -= (tp->t_srtt >> 3); 7875 /* Add in 1/8th of the new RTT just measured */ 7876 tp->t_srtt += (rtt >> 3); 7877 if (tp->t_srtt <= 0) 7878 tp->t_srtt = 1; 7879 /* Now lets make the absolute value of the variance */ 7880 if (delta < 0) 7881 delta = -delta; 7882 /* Subtract out 1/8th */ 7883 tp->t_rttvar -= (tp->t_rttvar >> 3); 7884 /* Add in 1/8th of the new variance we just saw */ 7885 tp->t_rttvar += (delta >> 3); 7886 if (tp->t_rttvar <= 0) 7887 tp->t_rttvar = 1; 7888 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 7889 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7890 } else { 7891 /* 7892 * No rtt measurement yet - use the unsmoothed rtt. Set the 7893 * variance to half the rtt (so our first retransmit happens 7894 * at 3*rtt). 7895 */ 7896 tp->t_srtt = rtt; 7897 tp->t_rttvar = rtt >> 1; 7898 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7899 } 7900 rack->rc_srtt_measure_made = 1; 7901 KMOD_TCPSTAT_INC(tcps_rttupdated); 7902 tp->t_rttupdated++; 7903 #ifdef STATS 7904 if (rack_stats_gets_ms_rtt == 0) { 7905 /* Send in the microsecond rtt used for rxt timeout purposes */ 7906 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); 7907 } else if (rack_stats_gets_ms_rtt == 1) { 7908 /* Send in the millisecond rtt used for rxt timeout purposes */ 7909 int32_t ms_rtt; 7910 7911 /* Round up */ 7912 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7913 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7914 } else if (rack_stats_gets_ms_rtt == 2) { 7915 /* Send in the millisecond rtt has close to the path RTT as we can get */ 7916 int32_t ms_rtt; 7917 7918 /* Round up */ 7919 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7920 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7921 } else { 7922 /* Send in the microsecond rtt has close to the path RTT as we can get */ 7923 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 7924 } 7925 7926 #endif 7927 /* 7928 * the retransmit should happen at rtt + 4 * rttvar. Because of the 7929 * way we do the smoothing, srtt and rttvar will each average +1/2 7930 * tick of bias. When we compute the retransmit timer, we want 1/2 7931 * tick of rounding and 1 extra tick because of +-1/2 tick 7932 * uncertainty in the firing of the timer. The bias will give us 7933 * exactly the 1.5 tick we need. But, because the bias is 7934 * statistical, we have to test that we don't drop below the minimum 7935 * feasible timer (which is 2 ticks). 7936 */ 7937 tp->t_rxtshift = 0; 7938 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7939 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop); 7940 rack_log_rtt_sample(rack, rtt); 7941 tp->t_softerror = 0; 7942 } 7943 7944 7945 static void 7946 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) 7947 { 7948 /* 7949 * Apply to filter the inbound us-rtt at us_cts. 7950 */ 7951 uint32_t old_rtt; 7952 7953 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 7954 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, 7955 us_rtt, us_cts); 7956 if (rack->r_ctl.last_pacing_time && 7957 rack->rc_gp_dyn_mul && 7958 (rack->r_ctl.last_pacing_time > us_rtt)) 7959 rack->pacing_longer_than_rtt = 1; 7960 else 7961 rack->pacing_longer_than_rtt = 0; 7962 if (old_rtt > us_rtt) { 7963 /* We just hit a new lower rtt time */ 7964 rack_log_rtt_shrinks(rack, us_cts, old_rtt, 7965 __LINE__, RACK_RTTS_NEWRTT); 7966 /* 7967 * Only count it if its lower than what we saw within our 7968 * calculated range. 7969 */ 7970 if ((old_rtt - us_rtt) > rack_min_rtt_movement) { 7971 if (rack_probertt_lower_within && 7972 rack->rc_gp_dyn_mul && 7973 (rack->use_fixed_rate == 0) && 7974 (rack->rc_always_pace)) { 7975 /* 7976 * We are seeing a new lower rtt very close 7977 * to the time that we would have entered probe-rtt. 7978 * This is probably due to the fact that a peer flow 7979 * has entered probe-rtt. Lets go in now too. 7980 */ 7981 uint32_t val; 7982 7983 val = rack_probertt_lower_within * rack_time_between_probertt; 7984 val /= 100; 7985 if ((rack->in_probe_rtt == 0) && 7986 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { 7987 rack_enter_probertt(rack, us_cts); 7988 } 7989 } 7990 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 7991 } 7992 } 7993 } 7994 7995 static int 7996 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 7997 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) 7998 { 7999 uint32_t us_rtt; 8000 int32_t i, all; 8001 uint32_t t, len_acked; 8002 8003 if ((rsm->r_flags & RACK_ACKED) || 8004 (rsm->r_flags & RACK_WAS_ACKED)) 8005 /* Already done */ 8006 return (0); 8007 if (rsm->r_no_rtt_allowed) { 8008 /* Not allowed */ 8009 return (0); 8010 } 8011 if (ack_type == CUM_ACKED) { 8012 if (SEQ_GT(th_ack, rsm->r_end)) { 8013 len_acked = rsm->r_end - rsm->r_start; 8014 all = 1; 8015 } else { 8016 len_acked = th_ack - rsm->r_start; 8017 all = 0; 8018 } 8019 } else { 8020 len_acked = rsm->r_end - rsm->r_start; 8021 all = 0; 8022 } 8023 if (rsm->r_rtr_cnt == 1) { 8024 8025 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8026 if ((int)t <= 0) 8027 t = 1; 8028 if (!tp->t_rttlow || tp->t_rttlow > t) 8029 tp->t_rttlow = t; 8030 if (!rack->r_ctl.rc_rack_min_rtt || 8031 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8032 rack->r_ctl.rc_rack_min_rtt = t; 8033 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8034 rack->r_ctl.rc_rack_min_rtt = 1; 8035 } 8036 } 8037 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) 8038 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8039 else 8040 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8041 if (us_rtt == 0) 8042 us_rtt = 1; 8043 if (CC_ALGO(tp)->rttsample != NULL) { 8044 /* Kick the RTT to the CC */ 8045 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 8046 } 8047 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 8048 if (ack_type == SACKED) { 8049 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1); 8050 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); 8051 } else { 8052 /* 8053 * We need to setup what our confidence 8054 * is in this ack. 8055 * 8056 * If the rsm was app limited and it is 8057 * less than a mss in length (the end 8058 * of the send) then we have a gap. If we 8059 * were app limited but say we were sending 8060 * multiple MSS's then we are more confident 8061 * int it. 8062 * 8063 * When we are not app-limited then we see if 8064 * the rsm is being included in the current 8065 * measurement, we tell this by the app_limited_needs_set 8066 * flag. 8067 * 8068 * Note that being cwnd blocked is not applimited 8069 * as well as the pacing delay between packets which 8070 * are sending only 1 or 2 MSS's also will show up 8071 * in the RTT. We probably need to examine this algorithm 8072 * a bit more and enhance it to account for the delay 8073 * between rsm's. We could do that by saving off the 8074 * pacing delay of each rsm (in an rsm) and then 8075 * factoring that in somehow though for now I am 8076 * not sure how :) 8077 */ 8078 int calc_conf = 0; 8079 8080 if (rsm->r_flags & RACK_APP_LIMITED) { 8081 if (all && (len_acked <= ctf_fixed_maxseg(tp))) 8082 calc_conf = 0; 8083 else 8084 calc_conf = 1; 8085 } else if (rack->app_limited_needs_set == 0) { 8086 calc_conf = 1; 8087 } else { 8088 calc_conf = 0; 8089 } 8090 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2); 8091 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 8092 calc_conf, rsm, rsm->r_rtr_cnt); 8093 } 8094 if ((rsm->r_flags & RACK_TLP) && 8095 (!IN_FASTRECOVERY(tp->t_flags))) { 8096 /* Segment was a TLP and our retrans matched */ 8097 if (rack->r_ctl.rc_tlp_cwnd_reduce) { 8098 rack->r_ctl.rc_rsm_start = tp->snd_max; 8099 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 8100 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 8101 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 8102 } 8103 } 8104 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 8105 /* New more recent rack_tmit_time */ 8106 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8107 rack->rc_rack_rtt = t; 8108 } 8109 return (1); 8110 } 8111 /* 8112 * We clear the soft/rxtshift since we got an ack. 8113 * There is no assurance we will call the commit() function 8114 * so we need to clear these to avoid incorrect handling. 8115 */ 8116 tp->t_rxtshift = 0; 8117 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 8118 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 8119 tp->t_softerror = 0; 8120 if (to && (to->to_flags & TOF_TS) && 8121 (ack_type == CUM_ACKED) && 8122 (to->to_tsecr) && 8123 ((rsm->r_flags & RACK_OVERMAX) == 0)) { 8124 /* 8125 * Now which timestamp does it match? In this block the ACK 8126 * must be coming from a previous transmission. 8127 */ 8128 for (i = 0; i < rsm->r_rtr_cnt; i++) { 8129 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) { 8130 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 8131 if ((int)t <= 0) 8132 t = 1; 8133 if (CC_ALGO(tp)->rttsample != NULL) { 8134 /* 8135 * Kick the RTT to the CC, here 8136 * we lie a bit in that we know the 8137 * retransmission is correct even though 8138 * we retransmitted. This is because 8139 * we match the timestamps. 8140 */ 8141 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i])) 8142 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i]; 8143 else 8144 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i]; 8145 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 8146 } 8147 if ((i + 1) < rsm->r_rtr_cnt) { 8148 /* 8149 * The peer ack'd from our previous 8150 * transmission. We have a spurious 8151 * retransmission and thus we dont 8152 * want to update our rack_rtt. 8153 * 8154 * Hmm should there be a CC revert here? 8155 * 8156 */ 8157 return (0); 8158 } 8159 if (!tp->t_rttlow || tp->t_rttlow > t) 8160 tp->t_rttlow = t; 8161 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8162 rack->r_ctl.rc_rack_min_rtt = t; 8163 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8164 rack->r_ctl.rc_rack_min_rtt = 1; 8165 } 8166 } 8167 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 8168 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 8169 /* New more recent rack_tmit_time */ 8170 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8171 rack->rc_rack_rtt = t; 8172 } 8173 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3); 8174 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm, 8175 rsm->r_rtr_cnt); 8176 return (1); 8177 } 8178 } 8179 goto ts_not_found; 8180 } else { 8181 /* 8182 * Ok its a SACK block that we retransmitted. or a windows 8183 * machine without timestamps. We can tell nothing from the 8184 * time-stamp since its not there or the time the peer last 8185 * recieved a segment that moved forward its cum-ack point. 8186 */ 8187 ts_not_found: 8188 i = rsm->r_rtr_cnt - 1; 8189 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 8190 if ((int)t <= 0) 8191 t = 1; 8192 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8193 /* 8194 * We retransmitted and the ack came back in less 8195 * than the smallest rtt we have observed. We most 8196 * likely did an improper retransmit as outlined in 8197 * 6.2 Step 2 point 2 in the rack-draft so we 8198 * don't want to update our rack_rtt. We in 8199 * theory (in future) might want to think about reverting our 8200 * cwnd state but we won't for now. 8201 */ 8202 return (0); 8203 } else if (rack->r_ctl.rc_rack_min_rtt) { 8204 /* 8205 * We retransmitted it and the retransmit did the 8206 * job. 8207 */ 8208 if (!rack->r_ctl.rc_rack_min_rtt || 8209 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8210 rack->r_ctl.rc_rack_min_rtt = t; 8211 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8212 rack->r_ctl.rc_rack_min_rtt = 1; 8213 } 8214 } 8215 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) { 8216 /* New more recent rack_tmit_time */ 8217 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i]; 8218 rack->rc_rack_rtt = t; 8219 } 8220 return (1); 8221 } 8222 } 8223 return (0); 8224 } 8225 8226 /* 8227 * Mark the SACK_PASSED flag on all entries prior to rsm send wise. 8228 */ 8229 static void 8230 rack_log_sack_passed(struct tcpcb *tp, 8231 struct tcp_rack *rack, struct rack_sendmap *rsm) 8232 { 8233 struct rack_sendmap *nrsm; 8234 8235 nrsm = rsm; 8236 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, 8237 rack_head, r_tnext) { 8238 if (nrsm == rsm) { 8239 /* Skip orginal segment he is acked */ 8240 continue; 8241 } 8242 if (nrsm->r_flags & RACK_ACKED) { 8243 /* 8244 * Skip ack'd segments, though we 8245 * should not see these, since tmap 8246 * should not have ack'd segments. 8247 */ 8248 continue; 8249 } 8250 if (nrsm->r_flags & RACK_SACK_PASSED) { 8251 /* 8252 * We found one that is already marked 8253 * passed, we have been here before and 8254 * so all others below this are marked. 8255 */ 8256 break; 8257 } 8258 nrsm->r_flags |= RACK_SACK_PASSED; 8259 nrsm->r_flags &= ~RACK_WAS_SACKPASS; 8260 } 8261 } 8262 8263 static void 8264 rack_need_set_test(struct tcpcb *tp, 8265 struct tcp_rack *rack, 8266 struct rack_sendmap *rsm, 8267 tcp_seq th_ack, 8268 int line, 8269 int use_which) 8270 { 8271 8272 if ((tp->t_flags & TF_GPUTINPROG) && 8273 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8274 /* 8275 * We were app limited, and this ack 8276 * butts up or goes beyond the point where we want 8277 * to start our next measurement. We need 8278 * to record the new gput_ts as here and 8279 * possibly update the start sequence. 8280 */ 8281 uint32_t seq, ts; 8282 8283 if (rsm->r_rtr_cnt > 1) { 8284 /* 8285 * This is a retransmit, can we 8286 * really make any assessment at this 8287 * point? We are not really sure of 8288 * the timestamp, is it this or the 8289 * previous transmission? 8290 * 8291 * Lets wait for something better that 8292 * is not retransmitted. 8293 */ 8294 return; 8295 } 8296 seq = tp->gput_seq; 8297 ts = tp->gput_ts; 8298 rack->app_limited_needs_set = 0; 8299 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 8300 /* Do we start at a new end? */ 8301 if ((use_which == RACK_USE_BEG) && 8302 SEQ_GEQ(rsm->r_start, tp->gput_seq)) { 8303 /* 8304 * When we get an ACK that just eats 8305 * up some of the rsm, we set RACK_USE_BEG 8306 * since whats at r_start (i.e. th_ack) 8307 * is left unacked and thats where the 8308 * measurement not starts. 8309 */ 8310 tp->gput_seq = rsm->r_start; 8311 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8312 } 8313 if ((use_which == RACK_USE_END) && 8314 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8315 /* 8316 * We use the end when the cumack 8317 * is moving forward and completely 8318 * deleting the rsm passed so basically 8319 * r_end holds th_ack. 8320 * 8321 * For SACK's we also want to use the end 8322 * since this piece just got sacked and 8323 * we want to target anything after that 8324 * in our measurement. 8325 */ 8326 tp->gput_seq = rsm->r_end; 8327 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8328 } 8329 if (use_which == RACK_USE_END_OR_THACK) { 8330 /* 8331 * special case for ack moving forward, 8332 * not a sack, we need to move all the 8333 * way up to where this ack cum-ack moves 8334 * to. 8335 */ 8336 if (SEQ_GT(th_ack, rsm->r_end)) 8337 tp->gput_seq = th_ack; 8338 else 8339 tp->gput_seq = rsm->r_end; 8340 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8341 } 8342 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { 8343 /* 8344 * We moved beyond this guy's range, re-calculate 8345 * the new end point. 8346 */ 8347 if (rack->rc_gp_filled == 0) { 8348 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 8349 } else { 8350 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 8351 } 8352 } 8353 /* 8354 * We are moving the goal post, we may be able to clear the 8355 * measure_saw_probe_rtt flag. 8356 */ 8357 if ((rack->in_probe_rtt == 0) && 8358 (rack->measure_saw_probe_rtt) && 8359 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 8360 rack->measure_saw_probe_rtt = 0; 8361 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, 8362 seq, tp->gput_seq, 0, 5, line, NULL, 0); 8363 if (rack->rc_gp_filled && 8364 ((tp->gput_ack - tp->gput_seq) < 8365 max(rc_init_window(rack), (MIN_GP_WIN * 8366 ctf_fixed_maxseg(tp))))) { 8367 uint32_t ideal_amount; 8368 8369 ideal_amount = rack_get_measure_window(tp, rack); 8370 if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 8371 /* 8372 * There is no sense of continuing this measurement 8373 * because its too small to gain us anything we 8374 * trust. Skip it and that way we can start a new 8375 * measurement quicker. 8376 */ 8377 tp->t_flags &= ~TF_GPUTINPROG; 8378 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 8379 0, 0, 0, 6, __LINE__, NULL, 0); 8380 } else { 8381 /* 8382 * Reset the window further out. 8383 */ 8384 tp->gput_ack = tp->gput_seq + ideal_amount; 8385 } 8386 } 8387 } 8388 } 8389 8390 static inline int 8391 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm) 8392 { 8393 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) { 8394 /* Behind our TLP definition or right at */ 8395 return (0); 8396 } 8397 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) { 8398 /* The start is beyond or right at our end of TLP definition */ 8399 return (0); 8400 } 8401 /* It has to be a sub-part of the original TLP recorded */ 8402 return (1); 8403 } 8404 8405 8406 static uint32_t 8407 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, 8408 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two) 8409 { 8410 uint32_t start, end, changed = 0; 8411 struct rack_sendmap stack_map; 8412 struct rack_sendmap *rsm, *nrsm, fe, *prev, *next; 8413 #ifdef INVARIANTS 8414 struct rack_sendmap *insret; 8415 #endif 8416 int32_t used_ref = 1; 8417 int moved = 0; 8418 8419 start = sack->start; 8420 end = sack->end; 8421 rsm = *prsm; 8422 memset(&fe, 0, sizeof(fe)); 8423 do_rest_ofb: 8424 if ((rsm == NULL) || 8425 (SEQ_LT(end, rsm->r_start)) || 8426 (SEQ_GEQ(start, rsm->r_end)) || 8427 (SEQ_LT(start, rsm->r_start))) { 8428 /* 8429 * We are not in the right spot, 8430 * find the correct spot in the tree. 8431 */ 8432 used_ref = 0; 8433 fe.r_start = start; 8434 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 8435 moved++; 8436 } 8437 if (rsm == NULL) { 8438 /* TSNH */ 8439 goto out; 8440 } 8441 /* Ok we have an ACK for some piece of this rsm */ 8442 if (rsm->r_start != start) { 8443 if ((rsm->r_flags & RACK_ACKED) == 0) { 8444 /* 8445 * Before any splitting or hookery is 8446 * done is it a TLP of interest i.e. rxt? 8447 */ 8448 if ((rsm->r_flags & RACK_TLP) && 8449 (rsm->r_rtr_cnt > 1)) { 8450 /* 8451 * We are splitting a rxt TLP, check 8452 * if we need to save off the start/end 8453 */ 8454 if (rack->rc_last_tlp_acked_set && 8455 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8456 /* 8457 * We already turned this on since we are inside 8458 * the previous one was a partially sack now we 8459 * are getting another one (maybe all of it). 8460 * 8461 */ 8462 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8463 /* 8464 * Lets make sure we have all of it though. 8465 */ 8466 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8467 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8468 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8469 rack->r_ctl.last_tlp_acked_end); 8470 } 8471 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8472 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8473 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8474 rack->r_ctl.last_tlp_acked_end); 8475 } 8476 } else { 8477 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8478 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8479 rack->rc_last_tlp_past_cumack = 0; 8480 rack->rc_last_tlp_acked_set = 1; 8481 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8482 } 8483 } 8484 /** 8485 * Need to split this in two pieces the before and after, 8486 * the before remains in the map, the after must be 8487 * added. In other words we have: 8488 * rsm |--------------| 8489 * sackblk |-------> 8490 * rsm will become 8491 * rsm |---| 8492 * and nrsm will be the sacked piece 8493 * nrsm |----------| 8494 * 8495 * But before we start down that path lets 8496 * see if the sack spans over on top of 8497 * the next guy and it is already sacked. 8498 * 8499 */ 8500 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8501 if (next && (next->r_flags & RACK_ACKED) && 8502 SEQ_GEQ(end, next->r_start)) { 8503 /** 8504 * So the next one is already acked, and 8505 * we can thus by hookery use our stack_map 8506 * to reflect the piece being sacked and 8507 * then adjust the two tree entries moving 8508 * the start and ends around. So we start like: 8509 * rsm |------------| (not-acked) 8510 * next |-----------| (acked) 8511 * sackblk |--------> 8512 * We want to end like so: 8513 * rsm |------| (not-acked) 8514 * next |-----------------| (acked) 8515 * nrsm |-----| 8516 * Where nrsm is a temporary stack piece we 8517 * use to update all the gizmos. 8518 */ 8519 /* Copy up our fudge block */ 8520 nrsm = &stack_map; 8521 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8522 /* Now adjust our tree blocks */ 8523 rsm->r_end = start; 8524 next->r_start = start; 8525 /* Now we must adjust back where next->m is */ 8526 rack_setup_offset_for_rsm(rsm, next); 8527 8528 /* We don't need to adjust rsm, it did not change */ 8529 /* Clear out the dup ack count of the remainder */ 8530 rsm->r_dupack = 0; 8531 rsm->r_just_ret = 0; 8532 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8533 /* Now lets make sure our fudge block is right */ 8534 nrsm->r_start = start; 8535 /* Now lets update all the stats and such */ 8536 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8537 if (rack->app_limited_needs_set) 8538 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8539 changed += (nrsm->r_end - nrsm->r_start); 8540 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8541 if (nrsm->r_flags & RACK_SACK_PASSED) { 8542 counter_u64_add(rack_reorder_seen, 1); 8543 rack->r_ctl.rc_reorder_ts = cts; 8544 } 8545 /* 8546 * Now we want to go up from rsm (the 8547 * one left un-acked) to the next one 8548 * in the tmap. We do this so when 8549 * we walk backwards we include marking 8550 * sack-passed on rsm (The one passed in 8551 * is skipped since it is generally called 8552 * on something sacked before removing it 8553 * from the tmap). 8554 */ 8555 if (rsm->r_in_tmap) { 8556 nrsm = TAILQ_NEXT(rsm, r_tnext); 8557 /* 8558 * Now that we have the next 8559 * one walk backwards from there. 8560 */ 8561 if (nrsm && nrsm->r_in_tmap) 8562 rack_log_sack_passed(tp, rack, nrsm); 8563 } 8564 /* Now are we done? */ 8565 if (SEQ_LT(end, next->r_end) || 8566 (end == next->r_end)) { 8567 /* Done with block */ 8568 goto out; 8569 } 8570 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__); 8571 counter_u64_add(rack_sack_used_next_merge, 1); 8572 /* Postion for the next block */ 8573 start = next->r_end; 8574 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next); 8575 if (rsm == NULL) 8576 goto out; 8577 } else { 8578 /** 8579 * We can't use any hookery here, so we 8580 * need to split the map. We enter like 8581 * so: 8582 * rsm |--------| 8583 * sackblk |-----> 8584 * We will add the new block nrsm and 8585 * that will be the new portion, and then 8586 * fall through after reseting rsm. So we 8587 * split and look like this: 8588 * rsm |----| 8589 * sackblk |-----> 8590 * nrsm |---| 8591 * We then fall through reseting 8592 * rsm to nrsm, so the next block 8593 * picks it up. 8594 */ 8595 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8596 if (nrsm == NULL) { 8597 /* 8598 * failed XXXrrs what can we do but loose the sack 8599 * info? 8600 */ 8601 goto out; 8602 } 8603 counter_u64_add(rack_sack_splits, 1); 8604 rack_clone_rsm(rack, nrsm, rsm, start); 8605 rsm->r_just_ret = 0; 8606 #ifndef INVARIANTS 8607 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8608 #else 8609 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8610 if (insret != NULL) { 8611 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8612 nrsm, insret, rack, rsm); 8613 } 8614 #endif 8615 if (rsm->r_in_tmap) { 8616 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8617 nrsm->r_in_tmap = 1; 8618 } 8619 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__); 8620 rsm->r_flags &= (~RACK_HAS_FIN); 8621 /* Position us to point to the new nrsm that starts the sack blk */ 8622 rsm = nrsm; 8623 } 8624 } else { 8625 /* Already sacked this piece */ 8626 counter_u64_add(rack_sack_skipped_acked, 1); 8627 moved++; 8628 if (end == rsm->r_end) { 8629 /* Done with block */ 8630 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8631 goto out; 8632 } else if (SEQ_LT(end, rsm->r_end)) { 8633 /* A partial sack to a already sacked block */ 8634 moved++; 8635 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8636 goto out; 8637 } else { 8638 /* 8639 * The end goes beyond this guy 8640 * repostion the start to the 8641 * next block. 8642 */ 8643 start = rsm->r_end; 8644 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8645 if (rsm == NULL) 8646 goto out; 8647 } 8648 } 8649 } 8650 if (SEQ_GEQ(end, rsm->r_end)) { 8651 /** 8652 * The end of this block is either beyond this guy or right 8653 * at this guy. I.e.: 8654 * rsm --- |-----| 8655 * end |-----| 8656 * <or> 8657 * end |---------| 8658 */ 8659 if ((rsm->r_flags & RACK_ACKED) == 0) { 8660 /* 8661 * Is it a TLP of interest? 8662 */ 8663 if ((rsm->r_flags & RACK_TLP) && 8664 (rsm->r_rtr_cnt > 1)) { 8665 /* 8666 * We are splitting a rxt TLP, check 8667 * if we need to save off the start/end 8668 */ 8669 if (rack->rc_last_tlp_acked_set && 8670 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8671 /* 8672 * We already turned this on since we are inside 8673 * the previous one was a partially sack now we 8674 * are getting another one (maybe all of it). 8675 */ 8676 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8677 /* 8678 * Lets make sure we have all of it though. 8679 */ 8680 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8681 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8682 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8683 rack->r_ctl.last_tlp_acked_end); 8684 } 8685 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8686 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8687 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8688 rack->r_ctl.last_tlp_acked_end); 8689 } 8690 } else { 8691 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8692 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8693 rack->rc_last_tlp_past_cumack = 0; 8694 rack->rc_last_tlp_acked_set = 1; 8695 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8696 } 8697 } 8698 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8699 changed += (rsm->r_end - rsm->r_start); 8700 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8701 if (rsm->r_in_tmap) /* should be true */ 8702 rack_log_sack_passed(tp, rack, rsm); 8703 /* Is Reordering occuring? */ 8704 if (rsm->r_flags & RACK_SACK_PASSED) { 8705 rsm->r_flags &= ~RACK_SACK_PASSED; 8706 counter_u64_add(rack_reorder_seen, 1); 8707 rack->r_ctl.rc_reorder_ts = cts; 8708 } 8709 if (rack->app_limited_needs_set) 8710 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8711 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8712 rsm->r_flags |= RACK_ACKED; 8713 if (rsm->r_in_tmap) { 8714 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8715 rsm->r_in_tmap = 0; 8716 } 8717 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__); 8718 } else { 8719 counter_u64_add(rack_sack_skipped_acked, 1); 8720 moved++; 8721 } 8722 if (end == rsm->r_end) { 8723 /* This block only - done, setup for next */ 8724 goto out; 8725 } 8726 /* 8727 * There is more not coverend by this rsm move on 8728 * to the next block in the RB tree. 8729 */ 8730 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8731 start = rsm->r_end; 8732 rsm = nrsm; 8733 if (rsm == NULL) 8734 goto out; 8735 goto do_rest_ofb; 8736 } 8737 /** 8738 * The end of this sack block is smaller than 8739 * our rsm i.e.: 8740 * rsm --- |-----| 8741 * end |--| 8742 */ 8743 if ((rsm->r_flags & RACK_ACKED) == 0) { 8744 /* 8745 * Is it a TLP of interest? 8746 */ 8747 if ((rsm->r_flags & RACK_TLP) && 8748 (rsm->r_rtr_cnt > 1)) { 8749 /* 8750 * We are splitting a rxt TLP, check 8751 * if we need to save off the start/end 8752 */ 8753 if (rack->rc_last_tlp_acked_set && 8754 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8755 /* 8756 * We already turned this on since we are inside 8757 * the previous one was a partially sack now we 8758 * are getting another one (maybe all of it). 8759 */ 8760 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8761 /* 8762 * Lets make sure we have all of it though. 8763 */ 8764 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8765 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8766 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8767 rack->r_ctl.last_tlp_acked_end); 8768 } 8769 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8770 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8771 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8772 rack->r_ctl.last_tlp_acked_end); 8773 } 8774 } else { 8775 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8776 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8777 rack->rc_last_tlp_past_cumack = 0; 8778 rack->rc_last_tlp_acked_set = 1; 8779 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8780 } 8781 } 8782 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8783 if (prev && 8784 (prev->r_flags & RACK_ACKED)) { 8785 /** 8786 * Goal, we want the right remainder of rsm to shrink 8787 * in place and span from (rsm->r_start = end) to rsm->r_end. 8788 * We want to expand prev to go all the way 8789 * to prev->r_end <- end. 8790 * so in the tree we have before: 8791 * prev |--------| (acked) 8792 * rsm |-------| (non-acked) 8793 * sackblk |-| 8794 * We churn it so we end up with 8795 * prev |----------| (acked) 8796 * rsm |-----| (non-acked) 8797 * nrsm |-| (temporary) 8798 * 8799 * Note if either prev/rsm is a TLP we don't 8800 * do this. 8801 */ 8802 nrsm = &stack_map; 8803 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8804 prev->r_end = end; 8805 rsm->r_start = end; 8806 /* Now adjust nrsm (stack copy) to be 8807 * the one that is the small 8808 * piece that was "sacked". 8809 */ 8810 nrsm->r_end = end; 8811 rsm->r_dupack = 0; 8812 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8813 /* 8814 * Now that the rsm has had its start moved forward 8815 * lets go ahead and get its new place in the world. 8816 */ 8817 rack_setup_offset_for_rsm(prev, rsm); 8818 /* 8819 * Now nrsm is our new little piece 8820 * that is acked (which was merged 8821 * to prev). Update the rtt and changed 8822 * based on that. Also check for reordering. 8823 */ 8824 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8825 if (rack->app_limited_needs_set) 8826 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8827 changed += (nrsm->r_end - nrsm->r_start); 8828 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8829 if (nrsm->r_flags & RACK_SACK_PASSED) { 8830 counter_u64_add(rack_reorder_seen, 1); 8831 rack->r_ctl.rc_reorder_ts = cts; 8832 } 8833 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__); 8834 rsm = prev; 8835 counter_u64_add(rack_sack_used_prev_merge, 1); 8836 } else { 8837 /** 8838 * This is the case where our previous 8839 * block is not acked either, so we must 8840 * split the block in two. 8841 */ 8842 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8843 if (nrsm == NULL) { 8844 /* failed rrs what can we do but loose the sack info? */ 8845 goto out; 8846 } 8847 if ((rsm->r_flags & RACK_TLP) && 8848 (rsm->r_rtr_cnt > 1)) { 8849 /* 8850 * We are splitting a rxt TLP, check 8851 * if we need to save off the start/end 8852 */ 8853 if (rack->rc_last_tlp_acked_set && 8854 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8855 /* 8856 * We already turned this on since this block is inside 8857 * the previous one was a partially sack now we 8858 * are getting another one (maybe all of it). 8859 */ 8860 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8861 /* 8862 * Lets make sure we have all of it though. 8863 */ 8864 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8865 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8866 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8867 rack->r_ctl.last_tlp_acked_end); 8868 } 8869 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8870 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8871 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8872 rack->r_ctl.last_tlp_acked_end); 8873 } 8874 } else { 8875 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8876 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8877 rack->rc_last_tlp_acked_set = 1; 8878 rack->rc_last_tlp_past_cumack = 0; 8879 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8880 } 8881 } 8882 /** 8883 * In this case nrsm becomes 8884 * nrsm->r_start = end; 8885 * nrsm->r_end = rsm->r_end; 8886 * which is un-acked. 8887 * <and> 8888 * rsm->r_end = nrsm->r_start; 8889 * i.e. the remaining un-acked 8890 * piece is left on the left 8891 * hand side. 8892 * 8893 * So we start like this 8894 * rsm |----------| (not acked) 8895 * sackblk |---| 8896 * build it so we have 8897 * rsm |---| (acked) 8898 * nrsm |------| (not acked) 8899 */ 8900 counter_u64_add(rack_sack_splits, 1); 8901 rack_clone_rsm(rack, nrsm, rsm, end); 8902 rsm->r_flags &= (~RACK_HAS_FIN); 8903 rsm->r_just_ret = 0; 8904 #ifndef INVARIANTS 8905 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8906 #else 8907 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8908 if (insret != NULL) { 8909 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8910 nrsm, insret, rack, rsm); 8911 } 8912 #endif 8913 if (rsm->r_in_tmap) { 8914 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8915 nrsm->r_in_tmap = 1; 8916 } 8917 nrsm->r_dupack = 0; 8918 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 8919 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8920 changed += (rsm->r_end - rsm->r_start); 8921 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8922 if (rsm->r_in_tmap) /* should be true */ 8923 rack_log_sack_passed(tp, rack, rsm); 8924 /* Is Reordering occuring? */ 8925 if (rsm->r_flags & RACK_SACK_PASSED) { 8926 rsm->r_flags &= ~RACK_SACK_PASSED; 8927 counter_u64_add(rack_reorder_seen, 1); 8928 rack->r_ctl.rc_reorder_ts = cts; 8929 } 8930 if (rack->app_limited_needs_set) 8931 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8932 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8933 rsm->r_flags |= RACK_ACKED; 8934 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__); 8935 if (rsm->r_in_tmap) { 8936 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8937 rsm->r_in_tmap = 0; 8938 } 8939 } 8940 } else if (start != end){ 8941 /* 8942 * The block was already acked. 8943 */ 8944 counter_u64_add(rack_sack_skipped_acked, 1); 8945 moved++; 8946 } 8947 out: 8948 if (rsm && 8949 ((rsm->r_flags & RACK_TLP) == 0) && 8950 (rsm->r_flags & RACK_ACKED)) { 8951 /* 8952 * Now can we merge where we worked 8953 * with either the previous or 8954 * next block? 8955 */ 8956 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8957 while (next) { 8958 if (next->r_flags & RACK_TLP) 8959 break; 8960 if (next->r_flags & RACK_ACKED) { 8961 /* yep this and next can be merged */ 8962 rsm = rack_merge_rsm(rack, rsm, next); 8963 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8964 } else 8965 break; 8966 } 8967 /* Now what about the previous? */ 8968 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8969 while (prev) { 8970 if (prev->r_flags & RACK_TLP) 8971 break; 8972 if (prev->r_flags & RACK_ACKED) { 8973 /* yep the previous and this can be merged */ 8974 rsm = rack_merge_rsm(rack, prev, rsm); 8975 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8976 } else 8977 break; 8978 } 8979 } 8980 if (used_ref == 0) { 8981 counter_u64_add(rack_sack_proc_all, 1); 8982 } else { 8983 counter_u64_add(rack_sack_proc_short, 1); 8984 } 8985 /* Save off the next one for quick reference. */ 8986 if (rsm) 8987 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8988 else 8989 nrsm = NULL; 8990 *prsm = rack->r_ctl.rc_sacklast = nrsm; 8991 /* Pass back the moved. */ 8992 *moved_two = moved; 8993 return (changed); 8994 } 8995 8996 static void inline 8997 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) 8998 { 8999 struct rack_sendmap *tmap; 9000 9001 tmap = NULL; 9002 while (rsm && (rsm->r_flags & RACK_ACKED)) { 9003 /* Its no longer sacked, mark it so */ 9004 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 9005 #ifdef INVARIANTS 9006 if (rsm->r_in_tmap) { 9007 panic("rack:%p rsm:%p flags:0x%x in tmap?", 9008 rack, rsm, rsm->r_flags); 9009 } 9010 #endif 9011 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); 9012 /* Rebuild it into our tmap */ 9013 if (tmap == NULL) { 9014 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 9015 tmap = rsm; 9016 } else { 9017 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); 9018 tmap = rsm; 9019 } 9020 tmap->r_in_tmap = 1; 9021 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9022 } 9023 /* 9024 * Now lets possibly clear the sack filter so we start 9025 * recognizing sacks that cover this area. 9026 */ 9027 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); 9028 9029 } 9030 9031 static void 9032 rack_do_decay(struct tcp_rack *rack) 9033 { 9034 struct timeval res; 9035 9036 #define timersub(tvp, uvp, vvp) \ 9037 do { \ 9038 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 9039 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 9040 if ((vvp)->tv_usec < 0) { \ 9041 (vvp)->tv_sec--; \ 9042 (vvp)->tv_usec += 1000000; \ 9043 } \ 9044 } while (0) 9045 9046 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); 9047 #undef timersub 9048 9049 rack->r_ctl.input_pkt++; 9050 if ((rack->rc_in_persist) || 9051 (res.tv_sec >= 1) || 9052 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { 9053 /* 9054 * Check for decay of non-SAD, 9055 * we want all SAD detection metrics to 9056 * decay 1/4 per second (or more) passed. 9057 */ 9058 #ifdef NETFLIX_EXP_DETECTION 9059 uint32_t pkt_delta; 9060 9061 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; 9062 #endif 9063 /* Update our saved tracking values */ 9064 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; 9065 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 9066 /* Now do we escape without decay? */ 9067 #ifdef NETFLIX_EXP_DETECTION 9068 if (rack->rc_in_persist || 9069 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || 9070 (pkt_delta < tcp_sad_low_pps)){ 9071 /* 9072 * We don't decay idle connections 9073 * or ones that have a low input pps. 9074 */ 9075 return; 9076 } 9077 /* Decay the counters */ 9078 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, 9079 tcp_sad_decay_val); 9080 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, 9081 tcp_sad_decay_val); 9082 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, 9083 tcp_sad_decay_val); 9084 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, 9085 tcp_sad_decay_val); 9086 #endif 9087 } 9088 } 9089 9090 static void 9091 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to) 9092 { 9093 struct rack_sendmap *rsm; 9094 #ifdef INVARIANTS 9095 struct rack_sendmap *rm; 9096 #endif 9097 9098 /* 9099 * The ACK point is advancing to th_ack, we must drop off 9100 * the packets in the rack log and calculate any eligble 9101 * RTT's. 9102 */ 9103 rack->r_wanted_output = 1; 9104 9105 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */ 9106 if ((rack->rc_last_tlp_acked_set == 1)&& 9107 (rack->rc_last_tlp_past_cumack == 1) && 9108 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) { 9109 /* 9110 * We have reached the point where our last rack 9111 * tlp retransmit sequence is ahead of the cum-ack. 9112 * This can only happen when the cum-ack moves all 9113 * the way around (its been a full 2^^31+1 bytes 9114 * or more since we sent a retransmitted TLP). Lets 9115 * turn off the valid flag since its not really valid. 9116 * 9117 * Note since sack's also turn on this event we have 9118 * a complication, we have to wait to age it out until 9119 * the cum-ack is by the TLP before checking which is 9120 * what the next else clause does. 9121 */ 9122 rack_log_dsack_event(rack, 9, __LINE__, 9123 rack->r_ctl.last_tlp_acked_start, 9124 rack->r_ctl.last_tlp_acked_end); 9125 rack->rc_last_tlp_acked_set = 0; 9126 rack->rc_last_tlp_past_cumack = 0; 9127 } else if ((rack->rc_last_tlp_acked_set == 1) && 9128 (rack->rc_last_tlp_past_cumack == 0) && 9129 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) { 9130 /* 9131 * It is safe to start aging TLP's out. 9132 */ 9133 rack->rc_last_tlp_past_cumack = 1; 9134 } 9135 /* We do the same for the tlp send seq as well */ 9136 if ((rack->rc_last_sent_tlp_seq_valid == 1) && 9137 (rack->rc_last_sent_tlp_past_cumack == 1) && 9138 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) { 9139 rack_log_dsack_event(rack, 9, __LINE__, 9140 rack->r_ctl.last_sent_tlp_seq, 9141 (rack->r_ctl.last_sent_tlp_seq + 9142 rack->r_ctl.last_sent_tlp_len)); 9143 rack->rc_last_sent_tlp_seq_valid = 0; 9144 rack->rc_last_sent_tlp_past_cumack = 0; 9145 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) && 9146 (rack->rc_last_sent_tlp_past_cumack == 0) && 9147 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) { 9148 /* 9149 * It is safe to start aging TLP's send. 9150 */ 9151 rack->rc_last_sent_tlp_past_cumack = 1; 9152 } 9153 more: 9154 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9155 if (rsm == NULL) { 9156 if ((th_ack - 1) == tp->iss) { 9157 /* 9158 * For the SYN incoming case we will not 9159 * have called tcp_output for the sending of 9160 * the SYN, so there will be no map. All 9161 * other cases should probably be a panic. 9162 */ 9163 return; 9164 } 9165 if (tp->t_flags & TF_SENTFIN) { 9166 /* if we sent a FIN we often will not have map */ 9167 return; 9168 } 9169 #ifdef INVARIANTS 9170 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n", 9171 tp, 9172 tp->t_state, th_ack, rack, 9173 tp->snd_una, tp->snd_max, tp->snd_nxt); 9174 #endif 9175 return; 9176 } 9177 if (SEQ_LT(th_ack, rsm->r_start)) { 9178 /* Huh map is missing this */ 9179 #ifdef INVARIANTS 9180 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", 9181 rsm->r_start, 9182 th_ack, tp->t_state, rack->r_state); 9183 #endif 9184 return; 9185 } 9186 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); 9187 9188 /* Now was it a retransmitted TLP? */ 9189 if ((rsm->r_flags & RACK_TLP) && 9190 (rsm->r_rtr_cnt > 1)) { 9191 /* 9192 * Yes, this rsm was a TLP and retransmitted, remember that 9193 * since if a DSACK comes back on this we don't want 9194 * to think of it as a reordered segment. This may 9195 * get updated again with possibly even other TLPs 9196 * in flight, but thats ok. Only when we don't send 9197 * a retransmitted TLP for 1/2 the sequences space 9198 * will it get turned off (above). 9199 */ 9200 if (rack->rc_last_tlp_acked_set && 9201 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9202 /* 9203 * We already turned this on since the end matches, 9204 * the previous one was a partially ack now we 9205 * are getting another one (maybe all of it). 9206 */ 9207 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9208 /* 9209 * Lets make sure we have all of it though. 9210 */ 9211 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9212 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9213 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9214 rack->r_ctl.last_tlp_acked_end); 9215 } 9216 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9217 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9218 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9219 rack->r_ctl.last_tlp_acked_end); 9220 } 9221 } else { 9222 rack->rc_last_tlp_past_cumack = 1; 9223 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9224 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9225 rack->rc_last_tlp_acked_set = 1; 9226 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9227 } 9228 } 9229 /* Now do we consume the whole thing? */ 9230 if (SEQ_GEQ(th_ack, rsm->r_end)) { 9231 /* Its all consumed. */ 9232 uint32_t left; 9233 uint8_t newly_acked; 9234 9235 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__); 9236 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; 9237 rsm->r_rtr_bytes = 0; 9238 /* Record the time of highest cumack sent */ 9239 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9240 #ifndef INVARIANTS 9241 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9242 #else 9243 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9244 if (rm != rsm) { 9245 panic("removing head in rack:%p rsm:%p rm:%p", 9246 rack, rsm, rm); 9247 } 9248 #endif 9249 if (rsm->r_in_tmap) { 9250 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 9251 rsm->r_in_tmap = 0; 9252 } 9253 newly_acked = 1; 9254 if (rsm->r_flags & RACK_ACKED) { 9255 /* 9256 * It was acked on the scoreboard -- remove 9257 * it from total 9258 */ 9259 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 9260 newly_acked = 0; 9261 } else if (rsm->r_flags & RACK_SACK_PASSED) { 9262 /* 9263 * There are segments ACKED on the 9264 * scoreboard further up. We are seeing 9265 * reordering. 9266 */ 9267 rsm->r_flags &= ~RACK_SACK_PASSED; 9268 counter_u64_add(rack_reorder_seen, 1); 9269 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 9270 rsm->r_flags |= RACK_ACKED; 9271 rack->r_ctl.rc_reorder_ts = cts; 9272 if (rack->r_ent_rec_ns) { 9273 /* 9274 * We have sent no more, and we saw an sack 9275 * then ack arrive. 9276 */ 9277 rack->r_might_revert = 1; 9278 } 9279 } 9280 if ((rsm->r_flags & RACK_TO_REXT) && 9281 (tp->t_flags & TF_RCVD_TSTMP) && 9282 (to->to_flags & TOF_TS) && 9283 (to->to_tsecr != 0) && 9284 (tp->t_flags & TF_PREVVALID)) { 9285 /* 9286 * We can use the timestamp to see 9287 * if this retransmission was from the 9288 * first transmit. If so we made a mistake. 9289 */ 9290 tp->t_flags &= ~TF_PREVVALID; 9291 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) { 9292 /* The first transmit is what this ack is for */ 9293 rack_cong_signal(tp, CC_RTO_ERR, th_ack); 9294 } 9295 } 9296 left = th_ack - rsm->r_end; 9297 if (rack->app_limited_needs_set && newly_acked) 9298 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); 9299 /* Free back to zone */ 9300 rack_free(rack, rsm); 9301 if (left) { 9302 goto more; 9303 } 9304 /* Check for reneging */ 9305 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9306 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { 9307 /* 9308 * The peer has moved snd_una up to 9309 * the edge of this send, i.e. one 9310 * that it had previously acked. The only 9311 * way that can be true if the peer threw 9312 * away data (space issues) that it had 9313 * previously sacked (else it would have 9314 * given us snd_una up to (rsm->r_end). 9315 * We need to undo the acked markings here. 9316 * 9317 * Note we have to look to make sure th_ack is 9318 * our rsm->r_start in case we get an old ack 9319 * where th_ack is behind snd_una. 9320 */ 9321 rack_peer_reneges(rack, rsm, th_ack); 9322 } 9323 return; 9324 } 9325 if (rsm->r_flags & RACK_ACKED) { 9326 /* 9327 * It was acked on the scoreboard -- remove it from 9328 * total for the part being cum-acked. 9329 */ 9330 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); 9331 } 9332 /* 9333 * Clear the dup ack count for 9334 * the piece that remains. 9335 */ 9336 rsm->r_dupack = 0; 9337 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 9338 if (rsm->r_rtr_bytes) { 9339 /* 9340 * It was retransmitted adjust the 9341 * sack holes for what was acked. 9342 */ 9343 int ack_am; 9344 9345 ack_am = (th_ack - rsm->r_start); 9346 if (ack_am >= rsm->r_rtr_bytes) { 9347 rack->r_ctl.rc_holes_rxt -= ack_am; 9348 rsm->r_rtr_bytes -= ack_am; 9349 } 9350 } 9351 /* 9352 * Update where the piece starts and record 9353 * the time of send of highest cumack sent. 9354 */ 9355 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9356 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__); 9357 /* Now we need to move our offset forward too */ 9358 if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) { 9359 /* Fix up the orig_m_len and possibly the mbuf offset */ 9360 rack_adjust_orig_mlen(rsm); 9361 } 9362 rsm->soff += (th_ack - rsm->r_start); 9363 rsm->r_start = th_ack; 9364 /* Now do we need to move the mbuf fwd too? */ 9365 if (rsm->m) { 9366 while (rsm->soff >= rsm->m->m_len) { 9367 rsm->soff -= rsm->m->m_len; 9368 rsm->m = rsm->m->m_next; 9369 KASSERT((rsm->m != NULL), 9370 (" nrsm:%p hit at soff:%u null m", 9371 rsm, rsm->soff)); 9372 } 9373 rsm->orig_m_len = rsm->m->m_len; 9374 } 9375 if (rack->app_limited_needs_set) 9376 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); 9377 } 9378 9379 static void 9380 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack) 9381 { 9382 struct rack_sendmap *rsm; 9383 int sack_pass_fnd = 0; 9384 9385 if (rack->r_might_revert) { 9386 /* 9387 * Ok we have reordering, have not sent anything, we 9388 * might want to revert the congestion state if nothing 9389 * further has SACK_PASSED on it. Lets check. 9390 * 9391 * We also get here when we have DSACKs come in for 9392 * all the data that we FR'd. Note that a rxt or tlp 9393 * timer clears this from happening. 9394 */ 9395 9396 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 9397 if (rsm->r_flags & RACK_SACK_PASSED) { 9398 sack_pass_fnd = 1; 9399 break; 9400 } 9401 } 9402 if (sack_pass_fnd == 0) { 9403 /* 9404 * We went into recovery 9405 * incorrectly due to reordering! 9406 */ 9407 int orig_cwnd; 9408 9409 rack->r_ent_rec_ns = 0; 9410 orig_cwnd = tp->snd_cwnd; 9411 tp->snd_cwnd = rack->r_ctl.rc_cwnd_at_erec; 9412 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec; 9413 tp->snd_recover = tp->snd_una; 9414 rack_log_to_prr(rack, 14, orig_cwnd); 9415 EXIT_RECOVERY(tp->t_flags); 9416 } 9417 rack->r_might_revert = 0; 9418 } 9419 } 9420 9421 #ifdef NETFLIX_EXP_DETECTION 9422 static void 9423 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz) 9424 { 9425 if ((rack->do_detection || tcp_force_detection) && 9426 tcp_sack_to_ack_thresh && 9427 tcp_sack_to_move_thresh && 9428 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) { 9429 /* 9430 * We have thresholds set to find 9431 * possible attackers and disable sack. 9432 * Check them. 9433 */ 9434 uint64_t ackratio, moveratio, movetotal; 9435 9436 /* Log detecting */ 9437 rack_log_sad(rack, 1); 9438 ackratio = (uint64_t)(rack->r_ctl.sack_count); 9439 ackratio *= (uint64_t)(1000); 9440 if (rack->r_ctl.ack_count) 9441 ackratio /= (uint64_t)(rack->r_ctl.ack_count); 9442 else { 9443 /* We really should not hit here */ 9444 ackratio = 1000; 9445 } 9446 if ((rack->sack_attack_disable == 0) && 9447 (ackratio > rack_highest_sack_thresh_seen)) 9448 rack_highest_sack_thresh_seen = (uint32_t)ackratio; 9449 movetotal = rack->r_ctl.sack_moved_extra; 9450 movetotal += rack->r_ctl.sack_noextra_move; 9451 moveratio = rack->r_ctl.sack_moved_extra; 9452 moveratio *= (uint64_t)1000; 9453 if (movetotal) 9454 moveratio /= movetotal; 9455 else { 9456 /* No moves, thats pretty good */ 9457 moveratio = 0; 9458 } 9459 if ((rack->sack_attack_disable == 0) && 9460 (moveratio > rack_highest_move_thresh_seen)) 9461 rack_highest_move_thresh_seen = (uint32_t)moveratio; 9462 if (rack->sack_attack_disable == 0) { 9463 if ((ackratio > tcp_sack_to_ack_thresh) && 9464 (moveratio > tcp_sack_to_move_thresh)) { 9465 /* Disable sack processing */ 9466 rack->sack_attack_disable = 1; 9467 if (rack->r_rep_attack == 0) { 9468 rack->r_rep_attack = 1; 9469 counter_u64_add(rack_sack_attacks_detected, 1); 9470 } 9471 if (tcp_attack_on_turns_on_logging) { 9472 /* 9473 * Turn on logging, used for debugging 9474 * false positives. 9475 */ 9476 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging; 9477 } 9478 /* Clamp the cwnd at flight size */ 9479 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; 9480 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 9481 rack_log_sad(rack, 2); 9482 } 9483 } else { 9484 /* We are sack-disabled check for false positives */ 9485 if ((ackratio <= tcp_restoral_thresh) || 9486 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) { 9487 rack->sack_attack_disable = 0; 9488 rack_log_sad(rack, 3); 9489 /* Restart counting */ 9490 rack->r_ctl.sack_count = 0; 9491 rack->r_ctl.sack_moved_extra = 0; 9492 rack->r_ctl.sack_noextra_move = 1; 9493 rack->r_ctl.ack_count = max(1, 9494 (bytes_this_ack / segsiz)); 9495 9496 if (rack->r_rep_reverse == 0) { 9497 rack->r_rep_reverse = 1; 9498 counter_u64_add(rack_sack_attacks_reversed, 1); 9499 } 9500 /* Restore the cwnd */ 9501 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) 9502 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; 9503 } 9504 } 9505 } 9506 } 9507 #endif 9508 9509 static int 9510 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end) 9511 { 9512 9513 uint32_t am, l_end; 9514 int was_tlp = 0; 9515 9516 if (SEQ_GT(end, start)) 9517 am = end - start; 9518 else 9519 am = 0; 9520 if ((rack->rc_last_tlp_acked_set ) && 9521 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) && 9522 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) { 9523 /* 9524 * The DSACK is because of a TLP which we don't 9525 * do anything with the reordering window over since 9526 * it was not reordering that caused the DSACK but 9527 * our previous retransmit TLP. 9528 */ 9529 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9530 was_tlp = 1; 9531 goto skip_dsack_round; 9532 } 9533 if (rack->rc_last_sent_tlp_seq_valid) { 9534 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len; 9535 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) && 9536 (SEQ_LEQ(end, l_end))) { 9537 /* 9538 * This dsack is from the last sent TLP, ignore it 9539 * for reordering purposes. 9540 */ 9541 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9542 was_tlp = 1; 9543 goto skip_dsack_round; 9544 } 9545 } 9546 if (rack->rc_dsack_round_seen == 0) { 9547 rack->rc_dsack_round_seen = 1; 9548 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max; 9549 rack->r_ctl.num_dsack++; 9550 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */ 9551 rack_log_dsack_event(rack, 2, __LINE__, 0, 0); 9552 } 9553 skip_dsack_round: 9554 /* 9555 * We keep track of how many DSACK blocks we get 9556 * after a recovery incident. 9557 */ 9558 rack->r_ctl.dsack_byte_cnt += am; 9559 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) && 9560 rack->r_ctl.retran_during_recovery && 9561 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) { 9562 /* 9563 * False recovery most likely culprit is reordering. If 9564 * nothing else is missing we need to revert. 9565 */ 9566 rack->r_might_revert = 1; 9567 rack_handle_might_revert(rack->rc_tp, rack); 9568 rack->r_might_revert = 0; 9569 rack->r_ctl.retran_during_recovery = 0; 9570 rack->r_ctl.dsack_byte_cnt = 0; 9571 } 9572 return (was_tlp); 9573 } 9574 9575 static void 9576 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack) 9577 { 9578 /* Deal with changed and PRR here (in recovery only) */ 9579 uint32_t pipe, snd_una; 9580 9581 rack->r_ctl.rc_prr_delivered += changed; 9582 9583 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) { 9584 /* 9585 * It is all outstanding, we are application limited 9586 * and thus we don't need more room to send anything. 9587 * Note we use tp->snd_una here and not th_ack because 9588 * the data as yet not been cut from the sb. 9589 */ 9590 rack->r_ctl.rc_prr_sndcnt = 0; 9591 return; 9592 } 9593 /* Compute prr_sndcnt */ 9594 if (SEQ_GT(tp->snd_una, th_ack)) { 9595 snd_una = tp->snd_una; 9596 } else { 9597 snd_una = th_ack; 9598 } 9599 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt; 9600 if (pipe > tp->snd_ssthresh) { 9601 long sndcnt; 9602 9603 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; 9604 if (rack->r_ctl.rc_prr_recovery_fs > 0) 9605 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; 9606 else { 9607 rack->r_ctl.rc_prr_sndcnt = 0; 9608 rack_log_to_prr(rack, 9, 0); 9609 sndcnt = 0; 9610 } 9611 sndcnt++; 9612 if (sndcnt > (long)rack->r_ctl.rc_prr_out) 9613 sndcnt -= rack->r_ctl.rc_prr_out; 9614 else 9615 sndcnt = 0; 9616 rack->r_ctl.rc_prr_sndcnt = sndcnt; 9617 rack_log_to_prr(rack, 10, 0); 9618 } else { 9619 uint32_t limit; 9620 9621 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) 9622 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); 9623 else 9624 limit = 0; 9625 if (changed > limit) 9626 limit = changed; 9627 limit += ctf_fixed_maxseg(tp); 9628 if (tp->snd_ssthresh > pipe) { 9629 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); 9630 rack_log_to_prr(rack, 11, 0); 9631 } else { 9632 rack->r_ctl.rc_prr_sndcnt = min(0, limit); 9633 rack_log_to_prr(rack, 12, 0); 9634 } 9635 } 9636 } 9637 9638 static void 9639 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck) 9640 { 9641 uint32_t changed; 9642 struct tcp_rack *rack; 9643 struct rack_sendmap *rsm; 9644 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; 9645 register uint32_t th_ack; 9646 int32_t i, j, k, num_sack_blks = 0; 9647 uint32_t cts, acked, ack_point; 9648 int loop_start = 0, moved_two = 0; 9649 uint32_t tsused; 9650 9651 9652 INP_WLOCK_ASSERT(tp->t_inpcb); 9653 if (tcp_get_flags(th) & TH_RST) { 9654 /* We don't log resets */ 9655 return; 9656 } 9657 rack = (struct tcp_rack *)tp->t_fb_ptr; 9658 cts = tcp_get_usecs(NULL); 9659 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9660 changed = 0; 9661 th_ack = th->th_ack; 9662 if (rack->sack_attack_disable == 0) 9663 rack_do_decay(rack); 9664 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) { 9665 /* 9666 * You only get credit for 9667 * MSS and greater (and you get extra 9668 * credit for larger cum-ack moves). 9669 */ 9670 int ac; 9671 9672 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); 9673 rack->r_ctl.ack_count += ac; 9674 counter_u64_add(rack_ack_total, ac); 9675 } 9676 if (rack->r_ctl.ack_count > 0xfff00000) { 9677 /* 9678 * reduce the number to keep us under 9679 * a uint32_t. 9680 */ 9681 rack->r_ctl.ack_count /= 2; 9682 rack->r_ctl.sack_count /= 2; 9683 } 9684 if (SEQ_GT(th_ack, tp->snd_una)) { 9685 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); 9686 tp->t_acktime = ticks; 9687 } 9688 if (rsm && SEQ_GT(th_ack, rsm->r_start)) 9689 changed = th_ack - rsm->r_start; 9690 if (changed) { 9691 rack_process_to_cumack(tp, rack, th_ack, cts, to); 9692 } 9693 if ((to->to_flags & TOF_SACK) == 0) { 9694 /* We are done nothing left and no sack. */ 9695 rack_handle_might_revert(tp, rack); 9696 /* 9697 * For cases where we struck a dup-ack 9698 * with no SACK, add to the changes so 9699 * PRR will work right. 9700 */ 9701 if (dup_ack_struck && (changed == 0)) { 9702 changed += ctf_fixed_maxseg(rack->rc_tp); 9703 } 9704 goto out; 9705 } 9706 /* Sack block processing */ 9707 if (SEQ_GT(th_ack, tp->snd_una)) 9708 ack_point = th_ack; 9709 else 9710 ack_point = tp->snd_una; 9711 for (i = 0; i < to->to_nsacks; i++) { 9712 bcopy((to->to_sacks + i * TCPOLEN_SACK), 9713 &sack, sizeof(sack)); 9714 sack.start = ntohl(sack.start); 9715 sack.end = ntohl(sack.end); 9716 if (SEQ_GT(sack.end, sack.start) && 9717 SEQ_GT(sack.start, ack_point) && 9718 SEQ_LT(sack.start, tp->snd_max) && 9719 SEQ_GT(sack.end, ack_point) && 9720 SEQ_LEQ(sack.end, tp->snd_max)) { 9721 sack_blocks[num_sack_blks] = sack; 9722 num_sack_blks++; 9723 } else if (SEQ_LEQ(sack.start, th_ack) && 9724 SEQ_LEQ(sack.end, th_ack)) { 9725 int was_tlp; 9726 9727 was_tlp = rack_note_dsack(rack, sack.start, sack.end); 9728 /* 9729 * Its a D-SACK block. 9730 */ 9731 tcp_record_dsack(tp, sack.start, sack.end, was_tlp); 9732 } 9733 } 9734 if (rack->rc_dsack_round_seen) { 9735 /* Is the dsack roound over? */ 9736 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) { 9737 /* Yes it is */ 9738 rack->rc_dsack_round_seen = 0; 9739 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 9740 } 9741 } 9742 /* 9743 * Sort the SACK blocks so we can update the rack scoreboard with 9744 * just one pass. 9745 */ 9746 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, 9747 num_sack_blks, th->th_ack); 9748 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); 9749 if (num_sack_blks == 0) { 9750 /* Nothing to sack (DSACKs?) */ 9751 goto out_with_totals; 9752 } 9753 if (num_sack_blks < 2) { 9754 /* Only one, we don't need to sort */ 9755 goto do_sack_work; 9756 } 9757 /* Sort the sacks */ 9758 for (i = 0; i < num_sack_blks; i++) { 9759 for (j = i + 1; j < num_sack_blks; j++) { 9760 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { 9761 sack = sack_blocks[i]; 9762 sack_blocks[i] = sack_blocks[j]; 9763 sack_blocks[j] = sack; 9764 } 9765 } 9766 } 9767 /* 9768 * Now are any of the sack block ends the same (yes some 9769 * implementations send these)? 9770 */ 9771 again: 9772 if (num_sack_blks == 0) 9773 goto out_with_totals; 9774 if (num_sack_blks > 1) { 9775 for (i = 0; i < num_sack_blks; i++) { 9776 for (j = i + 1; j < num_sack_blks; j++) { 9777 if (sack_blocks[i].end == sack_blocks[j].end) { 9778 /* 9779 * Ok these two have the same end we 9780 * want the smallest end and then 9781 * throw away the larger and start 9782 * again. 9783 */ 9784 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { 9785 /* 9786 * The second block covers 9787 * more area use that 9788 */ 9789 sack_blocks[i].start = sack_blocks[j].start; 9790 } 9791 /* 9792 * Now collapse out the dup-sack and 9793 * lower the count 9794 */ 9795 for (k = (j + 1); k < num_sack_blks; k++) { 9796 sack_blocks[j].start = sack_blocks[k].start; 9797 sack_blocks[j].end = sack_blocks[k].end; 9798 j++; 9799 } 9800 num_sack_blks--; 9801 goto again; 9802 } 9803 } 9804 } 9805 } 9806 do_sack_work: 9807 /* 9808 * First lets look to see if 9809 * we have retransmitted and 9810 * can use the transmit next? 9811 */ 9812 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9813 if (rsm && 9814 SEQ_GT(sack_blocks[0].end, rsm->r_start) && 9815 SEQ_LT(sack_blocks[0].start, rsm->r_end)) { 9816 /* 9817 * We probably did the FR and the next 9818 * SACK in continues as we would expect. 9819 */ 9820 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two); 9821 if (acked) { 9822 rack->r_wanted_output = 1; 9823 changed += acked; 9824 } 9825 if (num_sack_blks == 1) { 9826 /* 9827 * This is what we would expect from 9828 * a normal implementation to happen 9829 * after we have retransmitted the FR, 9830 * i.e the sack-filter pushes down 9831 * to 1 block and the next to be retransmitted 9832 * is the sequence in the sack block (has more 9833 * are acked). Count this as ACK'd data to boost 9834 * up the chances of recovering any false positives. 9835 */ 9836 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); 9837 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); 9838 counter_u64_add(rack_express_sack, 1); 9839 if (rack->r_ctl.ack_count > 0xfff00000) { 9840 /* 9841 * reduce the number to keep us under 9842 * a uint32_t. 9843 */ 9844 rack->r_ctl.ack_count /= 2; 9845 rack->r_ctl.sack_count /= 2; 9846 } 9847 goto out_with_totals; 9848 } else { 9849 /* 9850 * Start the loop through the 9851 * rest of blocks, past the first block. 9852 */ 9853 moved_two = 0; 9854 loop_start = 1; 9855 } 9856 } 9857 /* Its a sack of some sort */ 9858 rack->r_ctl.sack_count++; 9859 if (rack->r_ctl.sack_count > 0xfff00000) { 9860 /* 9861 * reduce the number to keep us under 9862 * a uint32_t. 9863 */ 9864 rack->r_ctl.ack_count /= 2; 9865 rack->r_ctl.sack_count /= 2; 9866 } 9867 counter_u64_add(rack_sack_total, 1); 9868 if (rack->sack_attack_disable) { 9869 /* An attacker disablement is in place */ 9870 if (num_sack_blks > 1) { 9871 rack->r_ctl.sack_count += (num_sack_blks - 1); 9872 rack->r_ctl.sack_moved_extra++; 9873 counter_u64_add(rack_move_some, 1); 9874 if (rack->r_ctl.sack_moved_extra > 0xfff00000) { 9875 rack->r_ctl.sack_moved_extra /= 2; 9876 rack->r_ctl.sack_noextra_move /= 2; 9877 } 9878 } 9879 goto out; 9880 } 9881 rsm = rack->r_ctl.rc_sacklast; 9882 for (i = loop_start; i < num_sack_blks; i++) { 9883 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two); 9884 if (acked) { 9885 rack->r_wanted_output = 1; 9886 changed += acked; 9887 } 9888 if (moved_two) { 9889 /* 9890 * If we did not get a SACK for at least a MSS and 9891 * had to move at all, or if we moved more than our 9892 * threshold, it counts against the "extra" move. 9893 */ 9894 rack->r_ctl.sack_moved_extra += moved_two; 9895 counter_u64_add(rack_move_some, 1); 9896 } else { 9897 /* 9898 * else we did not have to move 9899 * any more than we would expect. 9900 */ 9901 rack->r_ctl.sack_noextra_move++; 9902 counter_u64_add(rack_move_none, 1); 9903 } 9904 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { 9905 /* 9906 * If the SACK was not a full MSS then 9907 * we add to sack_count the number of 9908 * MSS's (or possibly more than 9909 * a MSS if its a TSO send) we had to skip by. 9910 */ 9911 rack->r_ctl.sack_count += moved_two; 9912 counter_u64_add(rack_sack_total, moved_two); 9913 } 9914 /* 9915 * Now we need to setup for the next 9916 * round. First we make sure we won't 9917 * exceed the size of our uint32_t on 9918 * the various counts, and then clear out 9919 * moved_two. 9920 */ 9921 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 9922 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 9923 rack->r_ctl.sack_moved_extra /= 2; 9924 rack->r_ctl.sack_noextra_move /= 2; 9925 } 9926 if (rack->r_ctl.sack_count > 0xfff00000) { 9927 rack->r_ctl.ack_count /= 2; 9928 rack->r_ctl.sack_count /= 2; 9929 } 9930 moved_two = 0; 9931 } 9932 out_with_totals: 9933 if (num_sack_blks > 1) { 9934 /* 9935 * You get an extra stroke if 9936 * you have more than one sack-blk, this 9937 * could be where we are skipping forward 9938 * and the sack-filter is still working, or 9939 * it could be an attacker constantly 9940 * moving us. 9941 */ 9942 rack->r_ctl.sack_moved_extra++; 9943 counter_u64_add(rack_move_some, 1); 9944 } 9945 out: 9946 #ifdef NETFLIX_EXP_DETECTION 9947 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp)); 9948 #endif 9949 if (changed) { 9950 /* Something changed cancel the rack timer */ 9951 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9952 } 9953 tsused = tcp_get_usecs(NULL); 9954 rsm = tcp_rack_output(tp, rack, tsused); 9955 if ((!IN_FASTRECOVERY(tp->t_flags)) && 9956 rsm) { 9957 /* Enter recovery */ 9958 rack->r_ctl.rc_rsm_start = rsm->r_start; 9959 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 9960 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 9961 entered_recovery = 1; 9962 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 9963 /* 9964 * When we enter recovery we need to assure we send 9965 * one packet. 9966 */ 9967 if (rack->rack_no_prr == 0) { 9968 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 9969 rack_log_to_prr(rack, 8, 0); 9970 } 9971 rack->r_timer_override = 1; 9972 rack->r_early = 0; 9973 rack->r_ctl.rc_agg_early = 0; 9974 } else if (IN_FASTRECOVERY(tp->t_flags) && 9975 rsm && 9976 (rack->r_rr_config == 3)) { 9977 /* 9978 * Assure we can output and we get no 9979 * remembered pace time except the retransmit. 9980 */ 9981 rack->r_timer_override = 1; 9982 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 9983 rack->r_ctl.rc_resend = rsm; 9984 } 9985 if (IN_FASTRECOVERY(tp->t_flags) && 9986 (rack->rack_no_prr == 0) && 9987 (entered_recovery == 0)) { 9988 rack_update_prr(tp, rack, changed, th_ack); 9989 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && 9990 ((tcp_in_hpts(rack->rc_inp) == 0) && 9991 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { 9992 /* 9993 * If you are pacing output you don't want 9994 * to override. 9995 */ 9996 rack->r_early = 0; 9997 rack->r_ctl.rc_agg_early = 0; 9998 rack->r_timer_override = 1; 9999 } 10000 } 10001 } 10002 10003 static void 10004 rack_strike_dupack(struct tcp_rack *rack) 10005 { 10006 struct rack_sendmap *rsm; 10007 10008 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 10009 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 10010 rsm = TAILQ_NEXT(rsm, r_tnext); 10011 } 10012 if (rsm && (rsm->r_dupack < 0xff)) { 10013 rsm->r_dupack++; 10014 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { 10015 struct timeval tv; 10016 uint32_t cts; 10017 /* 10018 * Here we see if we need to retransmit. For 10019 * a SACK type connection if enough time has passed 10020 * we will get a return of the rsm. For a non-sack 10021 * connection we will get the rsm returned if the 10022 * dupack value is 3 or more. 10023 */ 10024 cts = tcp_get_usecs(&tv); 10025 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts); 10026 if (rack->r_ctl.rc_resend != NULL) { 10027 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) { 10028 rack_cong_signal(rack->rc_tp, CC_NDUPACK, 10029 rack->rc_tp->snd_una); 10030 } 10031 rack->r_wanted_output = 1; 10032 rack->r_timer_override = 1; 10033 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); 10034 } 10035 } else { 10036 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); 10037 } 10038 } 10039 } 10040 10041 static void 10042 rack_check_bottom_drag(struct tcpcb *tp, 10043 struct tcp_rack *rack, 10044 struct socket *so, int32_t acked) 10045 { 10046 uint32_t segsiz, minseg; 10047 10048 segsiz = ctf_fixed_maxseg(tp); 10049 minseg = segsiz; 10050 10051 if (tp->snd_max == tp->snd_una) { 10052 /* 10053 * We are doing dynamic pacing and we are way 10054 * under. Basically everything got acked while 10055 * we were still waiting on the pacer to expire. 10056 * 10057 * This means we need to boost the b/w in 10058 * addition to any earlier boosting of 10059 * the multipler. 10060 */ 10061 rack->rc_dragged_bottom = 1; 10062 rack_validate_multipliers_at_or_above100(rack); 10063 /* 10064 * Lets use the segment bytes acked plus 10065 * the lowest RTT seen as the basis to 10066 * form a b/w estimate. This will be off 10067 * due to the fact that the true estimate 10068 * should be around 1/2 the time of the RTT 10069 * but we can settle for that. 10070 */ 10071 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && 10072 acked) { 10073 uint64_t bw, calc_bw, rtt; 10074 10075 rtt = rack->r_ctl.rack_rs.rs_us_rtt; 10076 if (rtt == 0) { 10077 /* no us sample is there a ms one? */ 10078 if (rack->r_ctl.rack_rs.rs_rtt_lowest) { 10079 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 10080 } else { 10081 goto no_measurement; 10082 } 10083 } 10084 bw = acked; 10085 calc_bw = bw * 1000000; 10086 calc_bw /= rtt; 10087 if (rack->r_ctl.last_max_bw && 10088 (rack->r_ctl.last_max_bw < calc_bw)) { 10089 /* 10090 * If we have a last calculated max bw 10091 * enforce it. 10092 */ 10093 calc_bw = rack->r_ctl.last_max_bw; 10094 } 10095 /* now plop it in */ 10096 if (rack->rc_gp_filled == 0) { 10097 if (calc_bw > ONE_POINT_TWO_MEG) { 10098 /* 10099 * If we have no measurement 10100 * don't let us set in more than 10101 * 1.2Mbps. If we are still too 10102 * low after pacing with this we 10103 * will hopefully have a max b/w 10104 * available to sanity check things. 10105 */ 10106 calc_bw = ONE_POINT_TWO_MEG; 10107 } 10108 rack->r_ctl.rc_rtt_diff = 0; 10109 rack->r_ctl.gp_bw = calc_bw; 10110 rack->rc_gp_filled = 1; 10111 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 10112 rack->r_ctl.num_measurements = RACK_REQ_AVG; 10113 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 10114 } else if (calc_bw > rack->r_ctl.gp_bw) { 10115 rack->r_ctl.rc_rtt_diff = 0; 10116 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 10117 rack->r_ctl.num_measurements = RACK_REQ_AVG; 10118 rack->r_ctl.gp_bw = calc_bw; 10119 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 10120 } else 10121 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10122 if ((rack->gp_ready == 0) && 10123 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 10124 /* We have enough measurements now */ 10125 rack->gp_ready = 1; 10126 rack_set_cc_pacing(rack); 10127 if (rack->defer_options) 10128 rack_apply_deferred_options(rack); 10129 } 10130 /* 10131 * For acks over 1mss we do a extra boost to simulate 10132 * where we would get 2 acks (we want 110 for the mul). 10133 */ 10134 if (acked > segsiz) 10135 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10136 } else { 10137 /* 10138 * zero rtt possibly?, settle for just an old increase. 10139 */ 10140 no_measurement: 10141 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10142 } 10143 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 10144 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), 10145 minseg)) && 10146 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && 10147 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && 10148 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= 10149 (segsiz * rack_req_segs))) { 10150 /* 10151 * We are doing dynamic GP pacing and 10152 * we have everything except 1MSS or less 10153 * bytes left out. We are still pacing away. 10154 * And there is data that could be sent, This 10155 * means we are inserting delayed ack time in 10156 * our measurements because we are pacing too slow. 10157 */ 10158 rack_validate_multipliers_at_or_above100(rack); 10159 rack->rc_dragged_bottom = 1; 10160 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10161 } 10162 } 10163 10164 10165 10166 static void 10167 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount) 10168 { 10169 /* 10170 * The fast output path is enabled and we 10171 * have moved the cumack forward. Lets see if 10172 * we can expand forward the fast path length by 10173 * that amount. What we would ideally like to 10174 * do is increase the number of bytes in the 10175 * fast path block (left_to_send) by the 10176 * acked amount. However we have to gate that 10177 * by two factors: 10178 * 1) The amount outstanding and the rwnd of the peer 10179 * (i.e. we don't want to exceed the rwnd of the peer). 10180 * <and> 10181 * 2) The amount of data left in the socket buffer (i.e. 10182 * we can't send beyond what is in the buffer). 10183 * 10184 * Note that this does not take into account any increase 10185 * in the cwnd. We will only extend the fast path by 10186 * what was acked. 10187 */ 10188 uint32_t new_total, gating_val; 10189 10190 new_total = acked_amount + rack->r_ctl.fsb.left_to_send; 10191 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)), 10192 (tp->snd_wnd - (tp->snd_max - tp->snd_una))); 10193 if (new_total <= gating_val) { 10194 /* We can increase left_to_send by the acked amount */ 10195 counter_u64_add(rack_extended_rfo, 1); 10196 rack->r_ctl.fsb.left_to_send = new_total; 10197 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))), 10198 ("rack:%p left_to_send:%u sbavail:%u out:%u", 10199 rack, rack->r_ctl.fsb.left_to_send, 10200 sbavail(&rack->rc_inp->inp_socket->so_snd), 10201 (tp->snd_max - tp->snd_una))); 10202 10203 } 10204 } 10205 10206 static void 10207 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una) 10208 { 10209 /* 10210 * Here any sendmap entry that points to the 10211 * beginning mbuf must be adjusted to the correct 10212 * offset. This must be called with: 10213 * 1) The socket buffer locked 10214 * 2) snd_una adjusted to its new postion. 10215 * 10216 * Note that (2) implies rack_ack_received has also 10217 * been called. 10218 * 10219 * We grab the first mbuf in the socket buffer and 10220 * then go through the front of the sendmap, recalculating 10221 * the stored offset for any sendmap entry that has 10222 * that mbuf. We must use the sb functions to do this 10223 * since its possible an add was done has well as 10224 * the subtraction we may have just completed. This should 10225 * not be a penalty though, since we just referenced the sb 10226 * to go in and trim off the mbufs that we freed (of course 10227 * there will be a penalty for the sendmap references though). 10228 */ 10229 struct mbuf *m; 10230 struct rack_sendmap *rsm; 10231 10232 SOCKBUF_LOCK_ASSERT(sb); 10233 m = sb->sb_mb; 10234 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 10235 if ((rsm == NULL) || (m == NULL)) { 10236 /* Nothing outstanding */ 10237 return; 10238 } 10239 while (rsm->m && (rsm->m == m)) { 10240 /* one to adjust */ 10241 #ifdef INVARIANTS 10242 struct mbuf *tm; 10243 uint32_t soff; 10244 10245 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff); 10246 if (rsm->orig_m_len != m->m_len) { 10247 rack_adjust_orig_mlen(rsm); 10248 } 10249 if (rsm->soff != soff) { 10250 /* 10251 * This is not a fatal error, we anticipate it 10252 * might happen (the else code), so we count it here 10253 * so that under invariant we can see that it really 10254 * does happen. 10255 */ 10256 counter_u64_add(rack_adjust_map_bw, 1); 10257 } 10258 rsm->m = tm; 10259 rsm->soff = soff; 10260 if (tm) 10261 rsm->orig_m_len = rsm->m->m_len; 10262 else 10263 rsm->orig_m_len = 0; 10264 #else 10265 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff); 10266 if (rsm->m) 10267 rsm->orig_m_len = rsm->m->m_len; 10268 else 10269 rsm->orig_m_len = 0; 10270 #endif 10271 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 10272 rsm); 10273 if (rsm == NULL) 10274 break; 10275 } 10276 } 10277 10278 /* 10279 * Return value of 1, we do not need to call rack_process_data(). 10280 * return value of 0, rack_process_data can be called. 10281 * For ret_val if its 0 the TCP is locked, if its non-zero 10282 * its unlocked and probably unsafe to touch the TCB. 10283 */ 10284 static int 10285 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, 10286 struct tcpcb *tp, struct tcpopt *to, 10287 uint32_t tiwin, int32_t tlen, 10288 int32_t * ofia, int32_t thflags, int32_t *ret_val) 10289 { 10290 int32_t ourfinisacked = 0; 10291 int32_t nsegs, acked_amount; 10292 int32_t acked; 10293 struct mbuf *mfree; 10294 struct tcp_rack *rack; 10295 int32_t under_pacing = 0; 10296 int32_t recovery = 0; 10297 10298 rack = (struct tcp_rack *)tp->t_fb_ptr; 10299 if (SEQ_GT(th->th_ack, tp->snd_max)) { 10300 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, 10301 &rack->r_ctl.challenge_ack_ts, 10302 &rack->r_ctl.challenge_ack_cnt); 10303 rack->r_wanted_output = 1; 10304 return (1); 10305 } 10306 if (rack->gp_ready && 10307 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 10308 under_pacing = 1; 10309 } 10310 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { 10311 int in_rec, dup_ack_struck = 0; 10312 10313 in_rec = IN_FASTRECOVERY(tp->t_flags); 10314 if (rack->rc_in_persist) { 10315 tp->t_rxtshift = 0; 10316 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10317 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10318 } 10319 if ((th->th_ack == tp->snd_una) && 10320 (tiwin == tp->snd_wnd) && 10321 ((to->to_flags & TOF_SACK) == 0)) { 10322 rack_strike_dupack(rack); 10323 dup_ack_struck = 1; 10324 } 10325 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck); 10326 } 10327 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 10328 /* 10329 * Old ack, behind (or duplicate to) the last one rcv'd 10330 * Note: We mark reordering is occuring if its 10331 * less than and we have not closed our window. 10332 */ 10333 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) { 10334 counter_u64_add(rack_reorder_seen, 1); 10335 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 10336 } 10337 return (0); 10338 } 10339 /* 10340 * If we reach this point, ACK is not a duplicate, i.e., it ACKs 10341 * something we sent. 10342 */ 10343 if (tp->t_flags & TF_NEEDSYN) { 10344 /* 10345 * T/TCP: Connection was half-synchronized, and our SYN has 10346 * been ACK'd (so connection is now fully synchronized). Go 10347 * to non-starred state, increment snd_una for ACK of SYN, 10348 * and check if we can do window scaling. 10349 */ 10350 tp->t_flags &= ~TF_NEEDSYN; 10351 tp->snd_una++; 10352 /* Do window scaling? */ 10353 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 10354 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 10355 tp->rcv_scale = tp->request_r_scale; 10356 /* Send window already scaled. */ 10357 } 10358 } 10359 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10360 INP_WLOCK_ASSERT(tp->t_inpcb); 10361 10362 acked = BYTES_THIS_ACK(tp, th); 10363 if (acked) { 10364 /* 10365 * Any time we move the cum-ack forward clear 10366 * keep-alive tied probe-not-answered. The 10367 * persists clears its own on entry. 10368 */ 10369 rack->probe_not_answered = 0; 10370 } 10371 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 10372 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 10373 /* 10374 * If we just performed our first retransmit, and the ACK arrives 10375 * within our recovery window, then it was a mistake to do the 10376 * retransmit in the first place. Recover our original cwnd and 10377 * ssthresh, and proceed to transmit where we left off. 10378 */ 10379 if ((tp->t_flags & TF_PREVVALID) && 10380 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 10381 tp->t_flags &= ~TF_PREVVALID; 10382 if (tp->t_rxtshift == 1 && 10383 (int)(ticks - tp->t_badrxtwin) < 0) 10384 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 10385 } 10386 if (acked) { 10387 /* assure we are not backed off */ 10388 tp->t_rxtshift = 0; 10389 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10390 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10391 rack->rc_tlp_in_progress = 0; 10392 rack->r_ctl.rc_tlp_cnt_out = 0; 10393 /* 10394 * If it is the RXT timer we want to 10395 * stop it, so we can restart a TLP. 10396 */ 10397 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 10398 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10399 #ifdef NETFLIX_HTTP_LOGGING 10400 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 10401 #endif 10402 } 10403 /* 10404 * If we have a timestamp reply, update smoothed round trip time. If 10405 * no timestamp is present but transmit timer is running and timed 10406 * sequence number was acked, update smoothed round trip time. Since 10407 * we now have an rtt measurement, cancel the timer backoff (cf., 10408 * Phil Karn's retransmit alg.). Recompute the initial retransmit 10409 * timer. 10410 * 10411 * Some boxes send broken timestamp replies during the SYN+ACK 10412 * phase, ignore timestamps of 0 or we could calculate a huge RTT 10413 * and blow up the retransmit timer. 10414 */ 10415 /* 10416 * If all outstanding data is acked, stop retransmit timer and 10417 * remember to restart (more output or persist). If there is more 10418 * data to be acked, restart retransmit timer, using current 10419 * (possibly backed-off) value. 10420 */ 10421 if (acked == 0) { 10422 if (ofia) 10423 *ofia = ourfinisacked; 10424 return (0); 10425 } 10426 if (IN_RECOVERY(tp->t_flags)) { 10427 if (SEQ_LT(th->th_ack, tp->snd_recover) && 10428 (SEQ_LT(th->th_ack, tp->snd_max))) { 10429 tcp_rack_partialack(tp); 10430 } else { 10431 rack_post_recovery(tp, th->th_ack); 10432 recovery = 1; 10433 } 10434 } 10435 /* 10436 * Let the congestion control algorithm update congestion control 10437 * related information. This typically means increasing the 10438 * congestion window. 10439 */ 10440 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery); 10441 SOCKBUF_LOCK(&so->so_snd); 10442 acked_amount = min(acked, (int)sbavail(&so->so_snd)); 10443 tp->snd_wnd -= acked_amount; 10444 mfree = sbcut_locked(&so->so_snd, acked_amount); 10445 if ((sbused(&so->so_snd) == 0) && 10446 (acked > acked_amount) && 10447 (tp->t_state >= TCPS_FIN_WAIT_1) && 10448 (tp->t_flags & TF_SENTFIN)) { 10449 /* 10450 * We must be sure our fin 10451 * was sent and acked (we can be 10452 * in FIN_WAIT_1 without having 10453 * sent the fin). 10454 */ 10455 ourfinisacked = 1; 10456 } 10457 tp->snd_una = th->th_ack; 10458 if (acked_amount && sbavail(&so->so_snd)) 10459 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 10460 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 10461 /* NB: sowwakeup_locked() does an implicit unlock. */ 10462 sowwakeup_locked(so); 10463 m_freem(mfree); 10464 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 10465 tp->snd_recover = tp->snd_una; 10466 10467 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { 10468 tp->snd_nxt = tp->snd_una; 10469 } 10470 if (under_pacing && 10471 (rack->use_fixed_rate == 0) && 10472 (rack->in_probe_rtt == 0) && 10473 rack->rc_gp_dyn_mul && 10474 rack->rc_always_pace) { 10475 /* Check if we are dragging bottom */ 10476 rack_check_bottom_drag(tp, rack, so, acked); 10477 } 10478 if (tp->snd_una == tp->snd_max) { 10479 /* Nothing left outstanding */ 10480 tp->t_flags &= ~TF_PREVVALID; 10481 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 10482 rack->r_ctl.retran_during_recovery = 0; 10483 rack->r_ctl.dsack_byte_cnt = 0; 10484 if (rack->r_ctl.rc_went_idle_time == 0) 10485 rack->r_ctl.rc_went_idle_time = 1; 10486 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 10487 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 10488 tp->t_acktime = 0; 10489 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10490 /* Set need output so persist might get set */ 10491 rack->r_wanted_output = 1; 10492 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 10493 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 10494 (sbavail(&so->so_snd) == 0) && 10495 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 10496 /* 10497 * The socket was gone and the 10498 * peer sent data (now or in the past), time to 10499 * reset him. 10500 */ 10501 *ret_val = 1; 10502 /* tcp_close will kill the inp pre-log the Reset */ 10503 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 10504 tp = tcp_close(tp); 10505 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); 10506 return (1); 10507 } 10508 } 10509 if (ofia) 10510 *ofia = ourfinisacked; 10511 return (0); 10512 } 10513 10514 static void 10515 rack_collapsed_window(struct tcp_rack *rack) 10516 { 10517 /* 10518 * Now we must walk the 10519 * send map and divide the 10520 * ones left stranded. These 10521 * guys can't cause us to abort 10522 * the connection and are really 10523 * "unsent". However if a buggy 10524 * client actually did keep some 10525 * of the data i.e. collapsed the win 10526 * and refused to ack and then opened 10527 * the win and acked that data. We would 10528 * get into an ack war, the simplier 10529 * method then of just pretending we 10530 * did not send those segments something 10531 * won't work. 10532 */ 10533 struct rack_sendmap *rsm, *nrsm, fe; 10534 #ifdef INVARIANTS 10535 struct rack_sendmap *insret; 10536 #endif 10537 tcp_seq max_seq; 10538 10539 max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd; 10540 memset(&fe, 0, sizeof(fe)); 10541 fe.r_start = max_seq; 10542 /* Find the first seq past or at maxseq */ 10543 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 10544 if (rsm == NULL) { 10545 /* Nothing to do strange */ 10546 rack->rc_has_collapsed = 0; 10547 return; 10548 } 10549 /* 10550 * Now do we need to split at 10551 * the collapse point? 10552 */ 10553 if (SEQ_GT(max_seq, rsm->r_start)) { 10554 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 10555 if (nrsm == NULL) { 10556 /* We can't get a rsm, mark all? */ 10557 nrsm = rsm; 10558 goto no_split; 10559 } 10560 /* Clone it */ 10561 rack_clone_rsm(rack, nrsm, rsm, max_seq); 10562 #ifndef INVARIANTS 10563 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 10564 #else 10565 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 10566 if (insret != NULL) { 10567 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 10568 nrsm, insret, rack, rsm); 10569 } 10570 #endif 10571 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__); 10572 if (rsm->r_in_tmap) { 10573 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 10574 nrsm->r_in_tmap = 1; 10575 } 10576 /* 10577 * Set in the new RSM as the 10578 * collapsed starting point 10579 */ 10580 rsm = nrsm; 10581 } 10582 no_split: 10583 counter_u64_add(rack_collapsed_win, 1); 10584 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) { 10585 nrsm->r_flags |= RACK_RWND_COLLAPSED; 10586 } 10587 rack->rc_has_collapsed = 1; 10588 } 10589 10590 static void 10591 rack_un_collapse_window(struct tcp_rack *rack) 10592 { 10593 struct rack_sendmap *rsm; 10594 10595 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 10596 if (rsm->r_flags & RACK_RWND_COLLAPSED) 10597 rsm->r_flags &= ~RACK_RWND_COLLAPSED; 10598 else 10599 break; 10600 } 10601 rack->rc_has_collapsed = 0; 10602 } 10603 10604 static void 10605 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, 10606 int32_t tlen, int32_t tfo_syn) 10607 { 10608 if (DELAY_ACK(tp, tlen) || tfo_syn) { 10609 if (rack->rc_dack_mode && 10610 (tlen > 500) && 10611 (rack->rc_dack_toggle == 1)) { 10612 goto no_delayed_ack; 10613 } 10614 rack_timer_cancel(tp, rack, 10615 rack->r_ctl.rc_rcvtime, __LINE__); 10616 tp->t_flags |= TF_DELACK; 10617 } else { 10618 no_delayed_ack: 10619 rack->r_wanted_output = 1; 10620 tp->t_flags |= TF_ACKNOW; 10621 if (rack->rc_dack_mode) { 10622 if (tp->t_flags & TF_DELACK) 10623 rack->rc_dack_toggle = 1; 10624 else 10625 rack->rc_dack_toggle = 0; 10626 } 10627 } 10628 } 10629 10630 static void 10631 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack) 10632 { 10633 /* 10634 * If fast output is in progress, lets validate that 10635 * the new window did not shrink on us and make it 10636 * so fast output should end. 10637 */ 10638 if (rack->r_fast_output) { 10639 uint32_t out; 10640 10641 /* 10642 * Calculate what we will send if left as is 10643 * and compare that to our send window. 10644 */ 10645 out = ctf_outstanding(tp); 10646 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) { 10647 /* ok we have an issue */ 10648 if (out >= tp->snd_wnd) { 10649 /* Turn off fast output the window is met or collapsed */ 10650 rack->r_fast_output = 0; 10651 } else { 10652 /* we have some room left */ 10653 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out; 10654 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) { 10655 /* If not at least 1 full segment never mind */ 10656 rack->r_fast_output = 0; 10657 } 10658 } 10659 } 10660 } 10661 } 10662 10663 10664 /* 10665 * Return value of 1, the TCB is unlocked and most 10666 * likely gone, return value of 0, the TCP is still 10667 * locked. 10668 */ 10669 static int 10670 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, 10671 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 10672 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) 10673 { 10674 /* 10675 * Update window information. Don't look at window if no ACK: TAC's 10676 * send garbage on first SYN. 10677 */ 10678 int32_t nsegs; 10679 int32_t tfo_syn; 10680 struct tcp_rack *rack; 10681 10682 rack = (struct tcp_rack *)tp->t_fb_ptr; 10683 INP_WLOCK_ASSERT(tp->t_inpcb); 10684 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10685 if ((thflags & TH_ACK) && 10686 (SEQ_LT(tp->snd_wl1, th->th_seq) || 10687 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 10688 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 10689 /* keep track of pure window updates */ 10690 if (tlen == 0 && 10691 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 10692 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 10693 tp->snd_wnd = tiwin; 10694 rack_validate_fo_sendwin_up(tp, rack); 10695 tp->snd_wl1 = th->th_seq; 10696 tp->snd_wl2 = th->th_ack; 10697 if (tp->snd_wnd > tp->max_sndwnd) 10698 tp->max_sndwnd = tp->snd_wnd; 10699 rack->r_wanted_output = 1; 10700 } else if (thflags & TH_ACK) { 10701 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { 10702 tp->snd_wnd = tiwin; 10703 rack_validate_fo_sendwin_up(tp, rack); 10704 tp->snd_wl1 = th->th_seq; 10705 tp->snd_wl2 = th->th_ack; 10706 } 10707 } 10708 if (tp->snd_wnd < ctf_outstanding(tp)) 10709 /* The peer collapsed the window */ 10710 rack_collapsed_window(rack); 10711 else if (rack->rc_has_collapsed) 10712 rack_un_collapse_window(rack); 10713 /* Was persist timer active and now we have window space? */ 10714 if ((rack->rc_in_persist != 0) && 10715 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 10716 rack->r_ctl.rc_pace_min_segs))) { 10717 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10718 tp->snd_nxt = tp->snd_max; 10719 /* Make sure we output to start the timer */ 10720 rack->r_wanted_output = 1; 10721 } 10722 /* Do we enter persists? */ 10723 if ((rack->rc_in_persist == 0) && 10724 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 10725 TCPS_HAVEESTABLISHED(tp->t_state) && 10726 (tp->snd_max == tp->snd_una) && 10727 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 10728 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 10729 /* 10730 * Here the rwnd is less than 10731 * the pacing size, we are established, 10732 * nothing is outstanding, and there is 10733 * data to send. Enter persists. 10734 */ 10735 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10736 } 10737 if (tp->t_flags2 & TF2_DROP_AF_DATA) { 10738 m_freem(m); 10739 return (0); 10740 } 10741 /* 10742 * don't process the URG bit, ignore them drag 10743 * along the up. 10744 */ 10745 tp->rcv_up = tp->rcv_nxt; 10746 INP_WLOCK_ASSERT(tp->t_inpcb); 10747 10748 /* 10749 * Process the segment text, merging it into the TCP sequencing 10750 * queue, and arranging for acknowledgment of receipt if necessary. 10751 * This process logically involves adjusting tp->rcv_wnd as data is 10752 * presented to the user (this happens in tcp_usrreq.c, case 10753 * PRU_RCVD). If a FIN has already been received on this connection 10754 * then we just ignore the text. 10755 */ 10756 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 10757 IS_FASTOPEN(tp->t_flags)); 10758 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 10759 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10760 tcp_seq save_start = th->th_seq; 10761 tcp_seq save_rnxt = tp->rcv_nxt; 10762 int save_tlen = tlen; 10763 10764 m_adj(m, drop_hdrlen); /* delayed header drop */ 10765 /* 10766 * Insert segment which includes th into TCP reassembly 10767 * queue with control block tp. Set thflags to whether 10768 * reassembly now includes a segment with FIN. This handles 10769 * the common case inline (segment is the next to be 10770 * received on an established connection, and the queue is 10771 * empty), avoiding linkage into and removal from the queue 10772 * and repetition of various conversions. Set DELACK for 10773 * segments received in order, but ack immediately when 10774 * segments are out of order (so fast retransmit can work). 10775 */ 10776 if (th->th_seq == tp->rcv_nxt && 10777 SEGQ_EMPTY(tp) && 10778 (TCPS_HAVEESTABLISHED(tp->t_state) || 10779 tfo_syn)) { 10780 #ifdef NETFLIX_SB_LIMITS 10781 u_int mcnt, appended; 10782 10783 if (so->so_rcv.sb_shlim) { 10784 mcnt = m_memcnt(m); 10785 appended = 0; 10786 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10787 CFO_NOSLEEP, NULL) == false) { 10788 counter_u64_add(tcp_sb_shlim_fails, 1); 10789 m_freem(m); 10790 return (0); 10791 } 10792 } 10793 #endif 10794 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); 10795 tp->rcv_nxt += tlen; 10796 if (tlen && 10797 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10798 (tp->t_fbyte_in == 0)) { 10799 tp->t_fbyte_in = ticks; 10800 if (tp->t_fbyte_in == 0) 10801 tp->t_fbyte_in = 1; 10802 if (tp->t_fbyte_out && tp->t_fbyte_in) 10803 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10804 } 10805 thflags = tcp_get_flags(th) & TH_FIN; 10806 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10807 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10808 SOCKBUF_LOCK(&so->so_rcv); 10809 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10810 m_freem(m); 10811 } else 10812 #ifdef NETFLIX_SB_LIMITS 10813 appended = 10814 #endif 10815 sbappendstream_locked(&so->so_rcv, m, 0); 10816 10817 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10818 /* NB: sorwakeup_locked() does an implicit unlock. */ 10819 sorwakeup_locked(so); 10820 #ifdef NETFLIX_SB_LIMITS 10821 if (so->so_rcv.sb_shlim && appended != mcnt) 10822 counter_fo_release(so->so_rcv.sb_shlim, 10823 mcnt - appended); 10824 #endif 10825 } else { 10826 /* 10827 * XXX: Due to the header drop above "th" is 10828 * theoretically invalid by now. Fortunately 10829 * m_adj() doesn't actually frees any mbufs when 10830 * trimming from the head. 10831 */ 10832 tcp_seq temp = save_start; 10833 10834 thflags = tcp_reass(tp, th, &temp, &tlen, m); 10835 tp->t_flags |= TF_ACKNOW; 10836 if (tp->t_flags & TF_WAKESOR) { 10837 tp->t_flags &= ~TF_WAKESOR; 10838 /* NB: sorwakeup_locked() does an implicit unlock. */ 10839 sorwakeup_locked(so); 10840 } 10841 } 10842 if ((tp->t_flags & TF_SACK_PERMIT) && 10843 (save_tlen > 0) && 10844 TCPS_HAVEESTABLISHED(tp->t_state)) { 10845 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 10846 /* 10847 * DSACK actually handled in the fastpath 10848 * above. 10849 */ 10850 RACK_OPTS_INC(tcp_sack_path_1); 10851 tcp_update_sack_list(tp, save_start, 10852 save_start + save_tlen); 10853 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 10854 if ((tp->rcv_numsacks >= 1) && 10855 (tp->sackblks[0].end == save_start)) { 10856 /* 10857 * Partial overlap, recorded at todrop 10858 * above. 10859 */ 10860 RACK_OPTS_INC(tcp_sack_path_2a); 10861 tcp_update_sack_list(tp, 10862 tp->sackblks[0].start, 10863 tp->sackblks[0].end); 10864 } else { 10865 RACK_OPTS_INC(tcp_sack_path_2b); 10866 tcp_update_dsack_list(tp, save_start, 10867 save_start + save_tlen); 10868 } 10869 } else if (tlen >= save_tlen) { 10870 /* Update of sackblks. */ 10871 RACK_OPTS_INC(tcp_sack_path_3); 10872 tcp_update_dsack_list(tp, save_start, 10873 save_start + save_tlen); 10874 } else if (tlen > 0) { 10875 RACK_OPTS_INC(tcp_sack_path_4); 10876 tcp_update_dsack_list(tp, save_start, 10877 save_start + tlen); 10878 } 10879 } 10880 } else { 10881 m_freem(m); 10882 thflags &= ~TH_FIN; 10883 } 10884 10885 /* 10886 * If FIN is received ACK the FIN and let the user know that the 10887 * connection is closing. 10888 */ 10889 if (thflags & TH_FIN) { 10890 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10891 /* The socket upcall is handled by socantrcvmore. */ 10892 socantrcvmore(so); 10893 /* 10894 * If connection is half-synchronized (ie NEEDSYN 10895 * flag on) then delay ACK, so it may be piggybacked 10896 * when SYN is sent. Otherwise, since we received a 10897 * FIN then no more input can be expected, send ACK 10898 * now. 10899 */ 10900 if (tp->t_flags & TF_NEEDSYN) { 10901 rack_timer_cancel(tp, rack, 10902 rack->r_ctl.rc_rcvtime, __LINE__); 10903 tp->t_flags |= TF_DELACK; 10904 } else { 10905 tp->t_flags |= TF_ACKNOW; 10906 } 10907 tp->rcv_nxt++; 10908 } 10909 switch (tp->t_state) { 10910 /* 10911 * In SYN_RECEIVED and ESTABLISHED STATES enter the 10912 * CLOSE_WAIT state. 10913 */ 10914 case TCPS_SYN_RECEIVED: 10915 tp->t_starttime = ticks; 10916 /* FALLTHROUGH */ 10917 case TCPS_ESTABLISHED: 10918 rack_timer_cancel(tp, rack, 10919 rack->r_ctl.rc_rcvtime, __LINE__); 10920 tcp_state_change(tp, TCPS_CLOSE_WAIT); 10921 break; 10922 10923 /* 10924 * If still in FIN_WAIT_1 STATE FIN has not been 10925 * acked so enter the CLOSING state. 10926 */ 10927 case TCPS_FIN_WAIT_1: 10928 rack_timer_cancel(tp, rack, 10929 rack->r_ctl.rc_rcvtime, __LINE__); 10930 tcp_state_change(tp, TCPS_CLOSING); 10931 break; 10932 10933 /* 10934 * In FIN_WAIT_2 state enter the TIME_WAIT state, 10935 * starting the time-wait timer, turning off the 10936 * other standard timers. 10937 */ 10938 case TCPS_FIN_WAIT_2: 10939 rack_timer_cancel(tp, rack, 10940 rack->r_ctl.rc_rcvtime, __LINE__); 10941 tcp_twstart(tp); 10942 return (1); 10943 } 10944 } 10945 /* 10946 * Return any desired output. 10947 */ 10948 if ((tp->t_flags & TF_ACKNOW) || 10949 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { 10950 rack->r_wanted_output = 1; 10951 } 10952 INP_WLOCK_ASSERT(tp->t_inpcb); 10953 return (0); 10954 } 10955 10956 /* 10957 * Here nothing is really faster, its just that we 10958 * have broken out the fast-data path also just like 10959 * the fast-ack. 10960 */ 10961 static int 10962 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, 10963 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10964 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) 10965 { 10966 int32_t nsegs; 10967 int32_t newsize = 0; /* automatic sockbuf scaling */ 10968 struct tcp_rack *rack; 10969 #ifdef NETFLIX_SB_LIMITS 10970 u_int mcnt, appended; 10971 #endif 10972 #ifdef TCPDEBUG 10973 /* 10974 * The size of tcp_saveipgen must be the size of the max ip header, 10975 * now IPv6. 10976 */ 10977 u_char tcp_saveipgen[IP6_HDR_LEN]; 10978 struct tcphdr tcp_savetcp; 10979 short ostate = 0; 10980 10981 #endif 10982 /* 10983 * If last ACK falls within this segment's sequence numbers, record 10984 * the timestamp. NOTE that the test is modified according to the 10985 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 10986 */ 10987 if (__predict_false(th->th_seq != tp->rcv_nxt)) { 10988 return (0); 10989 } 10990 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10991 return (0); 10992 } 10993 if (tiwin && tiwin != tp->snd_wnd) { 10994 return (0); 10995 } 10996 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { 10997 return (0); 10998 } 10999 if (__predict_false((to->to_flags & TOF_TS) && 11000 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { 11001 return (0); 11002 } 11003 if (__predict_false((th->th_ack != tp->snd_una))) { 11004 return (0); 11005 } 11006 if (__predict_false(tlen > sbspace(&so->so_rcv))) { 11007 return (0); 11008 } 11009 if ((to->to_flags & TOF_TS) != 0 && 11010 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 11011 tp->ts_recent_age = tcp_ts_getticks(); 11012 tp->ts_recent = to->to_tsval; 11013 } 11014 rack = (struct tcp_rack *)tp->t_fb_ptr; 11015 /* 11016 * This is a pure, in-sequence data packet with nothing on the 11017 * reassembly queue and we have enough buffer space to take it. 11018 */ 11019 nsegs = max(1, m->m_pkthdr.lro_nsegs); 11020 11021 #ifdef NETFLIX_SB_LIMITS 11022 if (so->so_rcv.sb_shlim) { 11023 mcnt = m_memcnt(m); 11024 appended = 0; 11025 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 11026 CFO_NOSLEEP, NULL) == false) { 11027 counter_u64_add(tcp_sb_shlim_fails, 1); 11028 m_freem(m); 11029 return (1); 11030 } 11031 } 11032 #endif 11033 /* Clean receiver SACK report if present */ 11034 if (tp->rcv_numsacks) 11035 tcp_clean_sackreport(tp); 11036 KMOD_TCPSTAT_INC(tcps_preddat); 11037 tp->rcv_nxt += tlen; 11038 if (tlen && 11039 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 11040 (tp->t_fbyte_in == 0)) { 11041 tp->t_fbyte_in = ticks; 11042 if (tp->t_fbyte_in == 0) 11043 tp->t_fbyte_in = 1; 11044 if (tp->t_fbyte_out && tp->t_fbyte_in) 11045 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 11046 } 11047 /* 11048 * Pull snd_wl1 up to prevent seq wrap relative to th_seq. 11049 */ 11050 tp->snd_wl1 = th->th_seq; 11051 /* 11052 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. 11053 */ 11054 tp->rcv_up = tp->rcv_nxt; 11055 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 11056 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 11057 #ifdef TCPDEBUG 11058 if (so->so_options & SO_DEBUG) 11059 tcp_trace(TA_INPUT, ostate, tp, 11060 (void *)tcp_saveipgen, &tcp_savetcp, 0); 11061 #endif 11062 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 11063 11064 /* Add data to socket buffer. */ 11065 SOCKBUF_LOCK(&so->so_rcv); 11066 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11067 m_freem(m); 11068 } else { 11069 /* 11070 * Set new socket buffer size. Give up when limit is 11071 * reached. 11072 */ 11073 if (newsize) 11074 if (!sbreserve_locked(&so->so_rcv, 11075 newsize, so, NULL)) 11076 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 11077 m_adj(m, drop_hdrlen); /* delayed header drop */ 11078 #ifdef NETFLIX_SB_LIMITS 11079 appended = 11080 #endif 11081 sbappendstream_locked(&so->so_rcv, m, 0); 11082 ctf_calc_rwin(so, tp); 11083 } 11084 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 11085 /* NB: sorwakeup_locked() does an implicit unlock. */ 11086 sorwakeup_locked(so); 11087 #ifdef NETFLIX_SB_LIMITS 11088 if (so->so_rcv.sb_shlim && mcnt != appended) 11089 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); 11090 #endif 11091 rack_handle_delayed_ack(tp, rack, tlen, 0); 11092 if (tp->snd_una == tp->snd_max) 11093 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 11094 return (1); 11095 } 11096 11097 /* 11098 * This subfunction is used to try to highly optimize the 11099 * fast path. We again allow window updates that are 11100 * in sequence to remain in the fast-path. We also add 11101 * in the __predict's to attempt to help the compiler. 11102 * Note that if we return a 0, then we can *not* process 11103 * it and the caller should push the packet into the 11104 * slow-path. 11105 */ 11106 static int 11107 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 11108 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11109 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) 11110 { 11111 int32_t acked; 11112 int32_t nsegs; 11113 #ifdef TCPDEBUG 11114 /* 11115 * The size of tcp_saveipgen must be the size of the max ip header, 11116 * now IPv6. 11117 */ 11118 u_char tcp_saveipgen[IP6_HDR_LEN]; 11119 struct tcphdr tcp_savetcp; 11120 short ostate = 0; 11121 #endif 11122 int32_t under_pacing = 0; 11123 struct tcp_rack *rack; 11124 11125 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 11126 /* Old ack, behind (or duplicate to) the last one rcv'd */ 11127 return (0); 11128 } 11129 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { 11130 /* Above what we have sent? */ 11131 return (0); 11132 } 11133 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 11134 /* We are retransmitting */ 11135 return (0); 11136 } 11137 if (__predict_false(tiwin == 0)) { 11138 /* zero window */ 11139 return (0); 11140 } 11141 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { 11142 /* We need a SYN or a FIN, unlikely.. */ 11143 return (0); 11144 } 11145 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { 11146 /* Timestamp is behind .. old ack with seq wrap? */ 11147 return (0); 11148 } 11149 if (__predict_false(IN_RECOVERY(tp->t_flags))) { 11150 /* Still recovering */ 11151 return (0); 11152 } 11153 rack = (struct tcp_rack *)tp->t_fb_ptr; 11154 if (rack->r_ctl.rc_sacked) { 11155 /* We have sack holes on our scoreboard */ 11156 return (0); 11157 } 11158 /* Ok if we reach here, we can process a fast-ack */ 11159 if (rack->gp_ready && 11160 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 11161 under_pacing = 1; 11162 } 11163 nsegs = max(1, m->m_pkthdr.lro_nsegs); 11164 rack_log_ack(tp, to, th, 0, 0); 11165 /* Did the window get updated? */ 11166 if (tiwin != tp->snd_wnd) { 11167 tp->snd_wnd = tiwin; 11168 rack_validate_fo_sendwin_up(tp, rack); 11169 tp->snd_wl1 = th->th_seq; 11170 if (tp->snd_wnd > tp->max_sndwnd) 11171 tp->max_sndwnd = tp->snd_wnd; 11172 } 11173 /* Do we exit persists? */ 11174 if ((rack->rc_in_persist != 0) && 11175 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 11176 rack->r_ctl.rc_pace_min_segs))) { 11177 rack_exit_persist(tp, rack, cts); 11178 } 11179 /* Do we enter persists? */ 11180 if ((rack->rc_in_persist == 0) && 11181 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 11182 TCPS_HAVEESTABLISHED(tp->t_state) && 11183 (tp->snd_max == tp->snd_una) && 11184 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 11185 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 11186 /* 11187 * Here the rwnd is less than 11188 * the pacing size, we are established, 11189 * nothing is outstanding, and there is 11190 * data to send. Enter persists. 11191 */ 11192 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 11193 } 11194 /* 11195 * If last ACK falls within this segment's sequence numbers, record 11196 * the timestamp. NOTE that the test is modified according to the 11197 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 11198 */ 11199 if ((to->to_flags & TOF_TS) != 0 && 11200 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 11201 tp->ts_recent_age = tcp_ts_getticks(); 11202 tp->ts_recent = to->to_tsval; 11203 } 11204 /* 11205 * This is a pure ack for outstanding data. 11206 */ 11207 KMOD_TCPSTAT_INC(tcps_predack); 11208 11209 /* 11210 * "bad retransmit" recovery. 11211 */ 11212 if ((tp->t_flags & TF_PREVVALID) && 11213 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 11214 tp->t_flags &= ~TF_PREVVALID; 11215 if (tp->t_rxtshift == 1 && 11216 (int)(ticks - tp->t_badrxtwin) < 0) 11217 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 11218 } 11219 /* 11220 * Recalculate the transmit timer / rtt. 11221 * 11222 * Some boxes send broken timestamp replies during the SYN+ACK 11223 * phase, ignore timestamps of 0 or we could calculate a huge RTT 11224 * and blow up the retransmit timer. 11225 */ 11226 acked = BYTES_THIS_ACK(tp, th); 11227 11228 #ifdef TCP_HHOOK 11229 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 11230 hhook_run_tcp_est_in(tp, th, to); 11231 #endif 11232 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 11233 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 11234 if (acked) { 11235 struct mbuf *mfree; 11236 11237 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0); 11238 SOCKBUF_LOCK(&so->so_snd); 11239 mfree = sbcut_locked(&so->so_snd, acked); 11240 tp->snd_una = th->th_ack; 11241 /* Note we want to hold the sb lock through the sendmap adjust */ 11242 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 11243 /* Wake up the socket if we have room to write more */ 11244 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 11245 sowwakeup_locked(so); 11246 m_freem(mfree); 11247 tp->t_rxtshift = 0; 11248 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 11249 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 11250 rack->rc_tlp_in_progress = 0; 11251 rack->r_ctl.rc_tlp_cnt_out = 0; 11252 /* 11253 * If it is the RXT timer we want to 11254 * stop it, so we can restart a TLP. 11255 */ 11256 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 11257 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11258 #ifdef NETFLIX_HTTP_LOGGING 11259 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 11260 #endif 11261 } 11262 /* 11263 * Let the congestion control algorithm update congestion control 11264 * related information. This typically means increasing the 11265 * congestion window. 11266 */ 11267 if (tp->snd_wnd < ctf_outstanding(tp)) { 11268 /* The peer collapsed the window */ 11269 rack_collapsed_window(rack); 11270 } else if (rack->rc_has_collapsed) 11271 rack_un_collapse_window(rack); 11272 11273 /* 11274 * Pull snd_wl2 up to prevent seq wrap relative to th_ack. 11275 */ 11276 tp->snd_wl2 = th->th_ack; 11277 tp->t_dupacks = 0; 11278 m_freem(m); 11279 /* ND6_HINT(tp); *//* Some progress has been made. */ 11280 11281 /* 11282 * If all outstanding data are acked, stop retransmit timer, 11283 * otherwise restart timer using current (possibly backed-off) 11284 * value. If process is waiting for space, wakeup/selwakeup/signal. 11285 * If data are ready to send, let tcp_output decide between more 11286 * output or persist. 11287 */ 11288 #ifdef TCPDEBUG 11289 if (so->so_options & SO_DEBUG) 11290 tcp_trace(TA_INPUT, ostate, tp, 11291 (void *)tcp_saveipgen, 11292 &tcp_savetcp, 0); 11293 #endif 11294 if (under_pacing && 11295 (rack->use_fixed_rate == 0) && 11296 (rack->in_probe_rtt == 0) && 11297 rack->rc_gp_dyn_mul && 11298 rack->rc_always_pace) { 11299 /* Check if we are dragging bottom */ 11300 rack_check_bottom_drag(tp, rack, so, acked); 11301 } 11302 if (tp->snd_una == tp->snd_max) { 11303 tp->t_flags &= ~TF_PREVVALID; 11304 rack->r_ctl.retran_during_recovery = 0; 11305 rack->r_ctl.dsack_byte_cnt = 0; 11306 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 11307 if (rack->r_ctl.rc_went_idle_time == 0) 11308 rack->r_ctl.rc_went_idle_time = 1; 11309 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 11310 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 11311 tp->t_acktime = 0; 11312 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11313 } 11314 if (acked && rack->r_fast_output) 11315 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked); 11316 if (sbavail(&so->so_snd)) { 11317 rack->r_wanted_output = 1; 11318 } 11319 return (1); 11320 } 11321 11322 /* 11323 * Return value of 1, the TCB is unlocked and most 11324 * likely gone, return value of 0, the TCP is still 11325 * locked. 11326 */ 11327 static int 11328 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, 11329 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11330 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11331 { 11332 int32_t ret_val = 0; 11333 int32_t todrop; 11334 int32_t ourfinisacked = 0; 11335 struct tcp_rack *rack; 11336 11337 ctf_calc_rwin(so, tp); 11338 /* 11339 * If the state is SYN_SENT: if seg contains an ACK, but not for our 11340 * SYN, drop the input. if seg contains a RST, then drop the 11341 * connection. if seg does not contain SYN, then drop it. Otherwise 11342 * this is an acceptable SYN segment initialize tp->rcv_nxt and 11343 * tp->irs if seg contains ack then advance tp->snd_una if seg 11344 * contains an ECE and ECN support is enabled, the stream is ECN 11345 * capable. if SYN has been acked change to ESTABLISHED else 11346 * SYN_RCVD state arrange for segment to be acked (eventually) 11347 * continue processing rest of data/controls. 11348 */ 11349 if ((thflags & TH_ACK) && 11350 (SEQ_LEQ(th->th_ack, tp->iss) || 11351 SEQ_GT(th->th_ack, tp->snd_max))) { 11352 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11353 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11354 return (1); 11355 } 11356 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { 11357 TCP_PROBE5(connect__refused, NULL, tp, 11358 mtod(m, const char *), tp, th); 11359 tp = tcp_drop(tp, ECONNREFUSED); 11360 ctf_do_drop(m, tp); 11361 return (1); 11362 } 11363 if (thflags & TH_RST) { 11364 ctf_do_drop(m, tp); 11365 return (1); 11366 } 11367 if (!(thflags & TH_SYN)) { 11368 ctf_do_drop(m, tp); 11369 return (1); 11370 } 11371 tp->irs = th->th_seq; 11372 tcp_rcvseqinit(tp); 11373 rack = (struct tcp_rack *)tp->t_fb_ptr; 11374 if (thflags & TH_ACK) { 11375 int tfo_partial = 0; 11376 11377 KMOD_TCPSTAT_INC(tcps_connects); 11378 soisconnected(so); 11379 #ifdef MAC 11380 mac_socketpeer_set_from_mbuf(m, so); 11381 #endif 11382 /* Do window scaling on this connection? */ 11383 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11384 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11385 tp->rcv_scale = tp->request_r_scale; 11386 } 11387 tp->rcv_adv += min(tp->rcv_wnd, 11388 TCP_MAXWIN << tp->rcv_scale); 11389 /* 11390 * If not all the data that was sent in the TFO SYN 11391 * has been acked, resend the remainder right away. 11392 */ 11393 if (IS_FASTOPEN(tp->t_flags) && 11394 (tp->snd_una != tp->snd_max)) { 11395 tp->snd_nxt = th->th_ack; 11396 tfo_partial = 1; 11397 } 11398 /* 11399 * If there's data, delay ACK; if there's also a FIN ACKNOW 11400 * will be turned on later. 11401 */ 11402 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { 11403 rack_timer_cancel(tp, rack, 11404 rack->r_ctl.rc_rcvtime, __LINE__); 11405 tp->t_flags |= TF_DELACK; 11406 } else { 11407 rack->r_wanted_output = 1; 11408 tp->t_flags |= TF_ACKNOW; 11409 rack->rc_dack_toggle = 0; 11410 } 11411 11412 tcp_ecn_input_syn_sent(tp, thflags, iptos); 11413 11414 if (SEQ_GT(th->th_ack, tp->snd_una)) { 11415 /* 11416 * We advance snd_una for the 11417 * fast open case. If th_ack is 11418 * acknowledging data beyond 11419 * snd_una we can't just call 11420 * ack-processing since the 11421 * data stream in our send-map 11422 * will start at snd_una + 1 (one 11423 * beyond the SYN). If its just 11424 * equal we don't need to do that 11425 * and there is no send_map. 11426 */ 11427 tp->snd_una++; 11428 } 11429 /* 11430 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions: 11431 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 11432 */ 11433 tp->t_starttime = ticks; 11434 if (tp->t_flags & TF_NEEDFIN) { 11435 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11436 tp->t_flags &= ~TF_NEEDFIN; 11437 thflags &= ~TH_SYN; 11438 } else { 11439 tcp_state_change(tp, TCPS_ESTABLISHED); 11440 TCP_PROBE5(connect__established, NULL, tp, 11441 mtod(m, const char *), tp, th); 11442 rack_cc_conn_init(tp); 11443 } 11444 } else { 11445 /* 11446 * Received initial SYN in SYN-SENT[*] state => simultaneous 11447 * open. If segment contains CC option and there is a 11448 * cached CC, apply TAO test. If it succeeds, connection is * 11449 * half-synchronized. Otherwise, do 3-way handshake: 11450 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If 11451 * there was no CC option, clear cached CC value. 11452 */ 11453 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 11454 tcp_state_change(tp, TCPS_SYN_RECEIVED); 11455 } 11456 INP_WLOCK_ASSERT(tp->t_inpcb); 11457 /* 11458 * Advance th->th_seq to correspond to first data byte. If data, 11459 * trim to stay within window, dropping FIN if necessary. 11460 */ 11461 th->th_seq++; 11462 if (tlen > tp->rcv_wnd) { 11463 todrop = tlen - tp->rcv_wnd; 11464 m_adj(m, -todrop); 11465 tlen = tp->rcv_wnd; 11466 thflags &= ~TH_FIN; 11467 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); 11468 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 11469 } 11470 tp->snd_wl1 = th->th_seq - 1; 11471 tp->rcv_up = th->th_seq; 11472 /* 11473 * Client side of transaction: already sent SYN and data. If the 11474 * remote host used T/TCP to validate the SYN, our data will be 11475 * ACK'd; if so, enter normal data segment processing in the middle 11476 * of step 5, ack processing. Otherwise, goto step 6. 11477 */ 11478 if (thflags & TH_ACK) { 11479 /* For syn-sent we need to possibly update the rtt */ 11480 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11481 uint32_t t, mcts; 11482 11483 mcts = tcp_ts_getticks(); 11484 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11485 if (!tp->t_rttlow || tp->t_rttlow > t) 11486 tp->t_rttlow = t; 11487 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4); 11488 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11489 tcp_rack_xmit_timer_commit(rack, tp); 11490 } 11491 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) 11492 return (ret_val); 11493 /* We may have changed to FIN_WAIT_1 above */ 11494 if (tp->t_state == TCPS_FIN_WAIT_1) { 11495 /* 11496 * In FIN_WAIT_1 STATE in addition to the processing 11497 * for the ESTABLISHED state if our FIN is now 11498 * acknowledged then enter FIN_WAIT_2. 11499 */ 11500 if (ourfinisacked) { 11501 /* 11502 * If we can't receive any more data, then 11503 * closing user can proceed. Starting the 11504 * timer is contrary to the specification, 11505 * but if we don't get a FIN we'll hang 11506 * forever. 11507 * 11508 * XXXjl: we should release the tp also, and 11509 * use a compressed state. 11510 */ 11511 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11512 soisdisconnected(so); 11513 tcp_timer_activate(tp, TT_2MSL, 11514 (tcp_fast_finwait2_recycle ? 11515 tcp_finwait2_timeout : 11516 TP_MAXIDLE(tp))); 11517 } 11518 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11519 } 11520 } 11521 } 11522 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11523 tiwin, thflags, nxt_pkt)); 11524 } 11525 11526 /* 11527 * Return value of 1, the TCB is unlocked and most 11528 * likely gone, return value of 0, the TCP is still 11529 * locked. 11530 */ 11531 static int 11532 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, 11533 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11534 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11535 { 11536 struct tcp_rack *rack; 11537 int32_t ret_val = 0; 11538 int32_t ourfinisacked = 0; 11539 11540 ctf_calc_rwin(so, tp); 11541 if ((thflags & TH_ACK) && 11542 (SEQ_LEQ(th->th_ack, tp->snd_una) || 11543 SEQ_GT(th->th_ack, tp->snd_max))) { 11544 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11545 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11546 return (1); 11547 } 11548 rack = (struct tcp_rack *)tp->t_fb_ptr; 11549 if (IS_FASTOPEN(tp->t_flags)) { 11550 /* 11551 * When a TFO connection is in SYN_RECEIVED, the 11552 * only valid packets are the initial SYN, a 11553 * retransmit/copy of the initial SYN (possibly with 11554 * a subset of the original data), a valid ACK, a 11555 * FIN, or a RST. 11556 */ 11557 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { 11558 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11559 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11560 return (1); 11561 } else if (thflags & TH_SYN) { 11562 /* non-initial SYN is ignored */ 11563 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || 11564 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || 11565 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { 11566 ctf_do_drop(m, NULL); 11567 return (0); 11568 } 11569 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { 11570 ctf_do_drop(m, NULL); 11571 return (0); 11572 } 11573 } 11574 11575 if ((thflags & TH_RST) || 11576 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11577 return (__ctf_process_rst(m, th, so, tp, 11578 &rack->r_ctl.challenge_ack_ts, 11579 &rack->r_ctl.challenge_ack_cnt)); 11580 /* 11581 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11582 * it's less than ts_recent, drop it. 11583 */ 11584 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11585 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11586 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11587 return (ret_val); 11588 } 11589 /* 11590 * In the SYN-RECEIVED state, validate that the packet belongs to 11591 * this connection before trimming the data to fit the receive 11592 * window. Check the sequence number versus IRS since we know the 11593 * sequence numbers haven't wrapped. This is a partial fix for the 11594 * "LAND" DoS attack. 11595 */ 11596 if (SEQ_LT(th->th_seq, tp->irs)) { 11597 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11598 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11599 return (1); 11600 } 11601 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11602 &rack->r_ctl.challenge_ack_ts, 11603 &rack->r_ctl.challenge_ack_cnt)) { 11604 return (ret_val); 11605 } 11606 /* 11607 * If last ACK falls within this segment's sequence numbers, record 11608 * its timestamp. NOTE: 1) That the test incorporates suggestions 11609 * from the latest proposal of the tcplw@cray.com list (Braden 11610 * 1993/04/26). 2) That updating only on newer timestamps interferes 11611 * with our earlier PAWS tests, so this check should be solely 11612 * predicated on the sequence space of this segment. 3) That we 11613 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11614 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11615 * SEG.Len, This modified check allows us to overcome RFC1323's 11616 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11617 * p.869. In such cases, we can still calculate the RTT correctly 11618 * when RCV.NXT == Last.ACK.Sent. 11619 */ 11620 if ((to->to_flags & TOF_TS) != 0 && 11621 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11622 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11623 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11624 tp->ts_recent_age = tcp_ts_getticks(); 11625 tp->ts_recent = to->to_tsval; 11626 } 11627 tp->snd_wnd = tiwin; 11628 rack_validate_fo_sendwin_up(tp, rack); 11629 /* 11630 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11631 * is on (half-synchronized state), then queue data for later 11632 * processing; else drop segment and return. 11633 */ 11634 if ((thflags & TH_ACK) == 0) { 11635 if (IS_FASTOPEN(tp->t_flags)) { 11636 rack_cc_conn_init(tp); 11637 } 11638 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11639 tiwin, thflags, nxt_pkt)); 11640 } 11641 KMOD_TCPSTAT_INC(tcps_connects); 11642 soisconnected(so); 11643 /* Do window scaling? */ 11644 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11645 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11646 tp->rcv_scale = tp->request_r_scale; 11647 } 11648 /* 11649 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> 11650 * FIN-WAIT-1 11651 */ 11652 tp->t_starttime = ticks; 11653 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 11654 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 11655 tp->t_tfo_pending = NULL; 11656 } 11657 if (tp->t_flags & TF_NEEDFIN) { 11658 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11659 tp->t_flags &= ~TF_NEEDFIN; 11660 } else { 11661 tcp_state_change(tp, TCPS_ESTABLISHED); 11662 TCP_PROBE5(accept__established, NULL, tp, 11663 mtod(m, const char *), tp, th); 11664 /* 11665 * TFO connections call cc_conn_init() during SYN 11666 * processing. Calling it again here for such connections 11667 * is not harmless as it would undo the snd_cwnd reduction 11668 * that occurs when a TFO SYN|ACK is retransmitted. 11669 */ 11670 if (!IS_FASTOPEN(tp->t_flags)) 11671 rack_cc_conn_init(tp); 11672 } 11673 /* 11674 * Account for the ACK of our SYN prior to 11675 * regular ACK processing below, except for 11676 * simultaneous SYN, which is handled later. 11677 */ 11678 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 11679 tp->snd_una++; 11680 /* 11681 * If segment contains data or ACK, will call tcp_reass() later; if 11682 * not, do so now to pass queued data to user. 11683 */ 11684 if (tlen == 0 && (thflags & TH_FIN) == 0) { 11685 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 11686 (struct mbuf *)0); 11687 if (tp->t_flags & TF_WAKESOR) { 11688 tp->t_flags &= ~TF_WAKESOR; 11689 /* NB: sorwakeup_locked() does an implicit unlock. */ 11690 sorwakeup_locked(so); 11691 } 11692 } 11693 tp->snd_wl1 = th->th_seq - 1; 11694 /* For syn-recv we need to possibly update the rtt */ 11695 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11696 uint32_t t, mcts; 11697 11698 mcts = tcp_ts_getticks(); 11699 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11700 if (!tp->t_rttlow || tp->t_rttlow > t) 11701 tp->t_rttlow = t; 11702 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5); 11703 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11704 tcp_rack_xmit_timer_commit(rack, tp); 11705 } 11706 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11707 return (ret_val); 11708 } 11709 if (tp->t_state == TCPS_FIN_WAIT_1) { 11710 /* We could have went to FIN_WAIT_1 (or EST) above */ 11711 /* 11712 * In FIN_WAIT_1 STATE in addition to the processing for the 11713 * ESTABLISHED state if our FIN is now acknowledged then 11714 * enter FIN_WAIT_2. 11715 */ 11716 if (ourfinisacked) { 11717 /* 11718 * If we can't receive any more data, then closing 11719 * user can proceed. Starting the timer is contrary 11720 * to the specification, but if we don't get a FIN 11721 * we'll hang forever. 11722 * 11723 * XXXjl: we should release the tp also, and use a 11724 * compressed state. 11725 */ 11726 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11727 soisdisconnected(so); 11728 tcp_timer_activate(tp, TT_2MSL, 11729 (tcp_fast_finwait2_recycle ? 11730 tcp_finwait2_timeout : 11731 TP_MAXIDLE(tp))); 11732 } 11733 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11734 } 11735 } 11736 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11737 tiwin, thflags, nxt_pkt)); 11738 } 11739 11740 /* 11741 * Return value of 1, the TCB is unlocked and most 11742 * likely gone, return value of 0, the TCP is still 11743 * locked. 11744 */ 11745 static int 11746 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, 11747 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11748 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11749 { 11750 int32_t ret_val = 0; 11751 struct tcp_rack *rack; 11752 11753 /* 11754 * Header prediction: check for the two common cases of a 11755 * uni-directional data xfer. If the packet has no control flags, 11756 * is in-sequence, the window didn't change and we're not 11757 * retransmitting, it's a candidate. If the length is zero and the 11758 * ack moved forward, we're the sender side of the xfer. Just free 11759 * the data acked & wake any higher level process that was blocked 11760 * waiting for space. If the length is non-zero and the ack didn't 11761 * move, we're the receiver side. If we're getting packets in-order 11762 * (the reassembly queue is empty), add the data toc The socket 11763 * buffer and note that we need a delayed ack. Make sure that the 11764 * hidden state-flags are also off. Since we check for 11765 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. 11766 */ 11767 rack = (struct tcp_rack *)tp->t_fb_ptr; 11768 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && 11769 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && 11770 __predict_true(SEGQ_EMPTY(tp)) && 11771 __predict_true(th->th_seq == tp->rcv_nxt)) { 11772 if (tlen == 0) { 11773 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, 11774 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { 11775 return (0); 11776 } 11777 } else { 11778 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, 11779 tiwin, nxt_pkt, iptos)) { 11780 return (0); 11781 } 11782 } 11783 } 11784 ctf_calc_rwin(so, tp); 11785 11786 if ((thflags & TH_RST) || 11787 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11788 return (__ctf_process_rst(m, th, so, tp, 11789 &rack->r_ctl.challenge_ack_ts, 11790 &rack->r_ctl.challenge_ack_cnt)); 11791 11792 /* 11793 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11794 * synchronized state. 11795 */ 11796 if (thflags & TH_SYN) { 11797 ctf_challenge_ack(m, th, tp, &ret_val); 11798 return (ret_val); 11799 } 11800 /* 11801 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11802 * it's less than ts_recent, drop it. 11803 */ 11804 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11805 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11806 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11807 return (ret_val); 11808 } 11809 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11810 &rack->r_ctl.challenge_ack_ts, 11811 &rack->r_ctl.challenge_ack_cnt)) { 11812 return (ret_val); 11813 } 11814 /* 11815 * If last ACK falls within this segment's sequence numbers, record 11816 * its timestamp. NOTE: 1) That the test incorporates suggestions 11817 * from the latest proposal of the tcplw@cray.com list (Braden 11818 * 1993/04/26). 2) That updating only on newer timestamps interferes 11819 * with our earlier PAWS tests, so this check should be solely 11820 * predicated on the sequence space of this segment. 3) That we 11821 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11822 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11823 * SEG.Len, This modified check allows us to overcome RFC1323's 11824 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11825 * p.869. In such cases, we can still calculate the RTT correctly 11826 * when RCV.NXT == Last.ACK.Sent. 11827 */ 11828 if ((to->to_flags & TOF_TS) != 0 && 11829 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11830 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11831 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11832 tp->ts_recent_age = tcp_ts_getticks(); 11833 tp->ts_recent = to->to_tsval; 11834 } 11835 /* 11836 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11837 * is on (half-synchronized state), then queue data for later 11838 * processing; else drop segment and return. 11839 */ 11840 if ((thflags & TH_ACK) == 0) { 11841 if (tp->t_flags & TF_NEEDSYN) { 11842 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11843 tiwin, thflags, nxt_pkt)); 11844 11845 } else if (tp->t_flags & TF_ACKNOW) { 11846 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11847 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11848 return (ret_val); 11849 } else { 11850 ctf_do_drop(m, NULL); 11851 return (0); 11852 } 11853 } 11854 /* 11855 * Ack processing. 11856 */ 11857 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11858 return (ret_val); 11859 } 11860 if (sbavail(&so->so_snd)) { 11861 if (ctf_progress_timeout_check(tp, true)) { 11862 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 11863 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11864 return (1); 11865 } 11866 } 11867 /* State changes only happen in rack_process_data() */ 11868 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11869 tiwin, thflags, nxt_pkt)); 11870 } 11871 11872 /* 11873 * Return value of 1, the TCB is unlocked and most 11874 * likely gone, return value of 0, the TCP is still 11875 * locked. 11876 */ 11877 static int 11878 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, 11879 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11880 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11881 { 11882 int32_t ret_val = 0; 11883 struct tcp_rack *rack; 11884 11885 rack = (struct tcp_rack *)tp->t_fb_ptr; 11886 ctf_calc_rwin(so, tp); 11887 if ((thflags & TH_RST) || 11888 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11889 return (__ctf_process_rst(m, th, so, tp, 11890 &rack->r_ctl.challenge_ack_ts, 11891 &rack->r_ctl.challenge_ack_cnt)); 11892 /* 11893 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11894 * synchronized state. 11895 */ 11896 if (thflags & TH_SYN) { 11897 ctf_challenge_ack(m, th, tp, &ret_val); 11898 return (ret_val); 11899 } 11900 /* 11901 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11902 * it's less than ts_recent, drop it. 11903 */ 11904 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11905 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11906 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11907 return (ret_val); 11908 } 11909 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11910 &rack->r_ctl.challenge_ack_ts, 11911 &rack->r_ctl.challenge_ack_cnt)) { 11912 return (ret_val); 11913 } 11914 /* 11915 * If last ACK falls within this segment's sequence numbers, record 11916 * its timestamp. NOTE: 1) That the test incorporates suggestions 11917 * from the latest proposal of the tcplw@cray.com list (Braden 11918 * 1993/04/26). 2) That updating only on newer timestamps interferes 11919 * with our earlier PAWS tests, so this check should be solely 11920 * predicated on the sequence space of this segment. 3) That we 11921 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11922 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11923 * SEG.Len, This modified check allows us to overcome RFC1323's 11924 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11925 * p.869. In such cases, we can still calculate the RTT correctly 11926 * when RCV.NXT == Last.ACK.Sent. 11927 */ 11928 if ((to->to_flags & TOF_TS) != 0 && 11929 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11930 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11931 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11932 tp->ts_recent_age = tcp_ts_getticks(); 11933 tp->ts_recent = to->to_tsval; 11934 } 11935 /* 11936 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11937 * is on (half-synchronized state), then queue data for later 11938 * processing; else drop segment and return. 11939 */ 11940 if ((thflags & TH_ACK) == 0) { 11941 if (tp->t_flags & TF_NEEDSYN) { 11942 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11943 tiwin, thflags, nxt_pkt)); 11944 11945 } else if (tp->t_flags & TF_ACKNOW) { 11946 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11947 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11948 return (ret_val); 11949 } else { 11950 ctf_do_drop(m, NULL); 11951 return (0); 11952 } 11953 } 11954 /* 11955 * Ack processing. 11956 */ 11957 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11958 return (ret_val); 11959 } 11960 if (sbavail(&so->so_snd)) { 11961 if (ctf_progress_timeout_check(tp, true)) { 11962 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11963 tp, tick, PROGRESS_DROP, __LINE__); 11964 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11965 return (1); 11966 } 11967 } 11968 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11969 tiwin, thflags, nxt_pkt)); 11970 } 11971 11972 static int 11973 rack_check_data_after_close(struct mbuf *m, 11974 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) 11975 { 11976 struct tcp_rack *rack; 11977 11978 rack = (struct tcp_rack *)tp->t_fb_ptr; 11979 if (rack->rc_allow_data_af_clo == 0) { 11980 close_now: 11981 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11982 /* tcp_close will kill the inp pre-log the Reset */ 11983 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 11984 tp = tcp_close(tp); 11985 KMOD_TCPSTAT_INC(tcps_rcvafterclose); 11986 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); 11987 return (1); 11988 } 11989 if (sbavail(&so->so_snd) == 0) 11990 goto close_now; 11991 /* Ok we allow data that is ignored and a followup reset */ 11992 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11993 tp->rcv_nxt = th->th_seq + *tlen; 11994 tp->t_flags2 |= TF2_DROP_AF_DATA; 11995 rack->r_wanted_output = 1; 11996 *tlen = 0; 11997 return (0); 11998 } 11999 12000 /* 12001 * Return value of 1, the TCB is unlocked and most 12002 * likely gone, return value of 0, the TCP is still 12003 * locked. 12004 */ 12005 static int 12006 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, 12007 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12008 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12009 { 12010 int32_t ret_val = 0; 12011 int32_t ourfinisacked = 0; 12012 struct tcp_rack *rack; 12013 12014 rack = (struct tcp_rack *)tp->t_fb_ptr; 12015 ctf_calc_rwin(so, tp); 12016 12017 if ((thflags & TH_RST) || 12018 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12019 return (__ctf_process_rst(m, th, so, tp, 12020 &rack->r_ctl.challenge_ack_ts, 12021 &rack->r_ctl.challenge_ack_cnt)); 12022 /* 12023 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12024 * synchronized state. 12025 */ 12026 if (thflags & TH_SYN) { 12027 ctf_challenge_ack(m, th, tp, &ret_val); 12028 return (ret_val); 12029 } 12030 /* 12031 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12032 * it's less than ts_recent, drop it. 12033 */ 12034 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12035 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12036 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12037 return (ret_val); 12038 } 12039 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12040 &rack->r_ctl.challenge_ack_ts, 12041 &rack->r_ctl.challenge_ack_cnt)) { 12042 return (ret_val); 12043 } 12044 /* 12045 * If new data are received on a connection after the user processes 12046 * are gone, then RST the other end. 12047 */ 12048 if ((so->so_state & SS_NOFDREF) && tlen) { 12049 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12050 return (1); 12051 } 12052 /* 12053 * If last ACK falls within this segment's sequence numbers, record 12054 * its timestamp. NOTE: 1) That the test incorporates suggestions 12055 * from the latest proposal of the tcplw@cray.com list (Braden 12056 * 1993/04/26). 2) That updating only on newer timestamps interferes 12057 * with our earlier PAWS tests, so this check should be solely 12058 * predicated on the sequence space of this segment. 3) That we 12059 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12060 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12061 * SEG.Len, This modified check allows us to overcome RFC1323's 12062 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12063 * p.869. In such cases, we can still calculate the RTT correctly 12064 * when RCV.NXT == Last.ACK.Sent. 12065 */ 12066 if ((to->to_flags & TOF_TS) != 0 && 12067 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12068 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12069 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12070 tp->ts_recent_age = tcp_ts_getticks(); 12071 tp->ts_recent = to->to_tsval; 12072 } 12073 /* 12074 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12075 * is on (half-synchronized state), then queue data for later 12076 * processing; else drop segment and return. 12077 */ 12078 if ((thflags & TH_ACK) == 0) { 12079 if (tp->t_flags & TF_NEEDSYN) { 12080 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12081 tiwin, thflags, nxt_pkt)); 12082 } else if (tp->t_flags & TF_ACKNOW) { 12083 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12084 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12085 return (ret_val); 12086 } else { 12087 ctf_do_drop(m, NULL); 12088 return (0); 12089 } 12090 } 12091 /* 12092 * Ack processing. 12093 */ 12094 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12095 return (ret_val); 12096 } 12097 if (ourfinisacked) { 12098 /* 12099 * If we can't receive any more data, then closing user can 12100 * proceed. Starting the timer is contrary to the 12101 * specification, but if we don't get a FIN we'll hang 12102 * forever. 12103 * 12104 * XXXjl: we should release the tp also, and use a 12105 * compressed state. 12106 */ 12107 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 12108 soisdisconnected(so); 12109 tcp_timer_activate(tp, TT_2MSL, 12110 (tcp_fast_finwait2_recycle ? 12111 tcp_finwait2_timeout : 12112 TP_MAXIDLE(tp))); 12113 } 12114 tcp_state_change(tp, TCPS_FIN_WAIT_2); 12115 } 12116 if (sbavail(&so->so_snd)) { 12117 if (ctf_progress_timeout_check(tp, true)) { 12118 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12119 tp, tick, PROGRESS_DROP, __LINE__); 12120 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12121 return (1); 12122 } 12123 } 12124 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12125 tiwin, thflags, nxt_pkt)); 12126 } 12127 12128 /* 12129 * Return value of 1, the TCB is unlocked and most 12130 * likely gone, return value of 0, the TCP is still 12131 * locked. 12132 */ 12133 static int 12134 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, 12135 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12136 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12137 { 12138 int32_t ret_val = 0; 12139 int32_t ourfinisacked = 0; 12140 struct tcp_rack *rack; 12141 12142 rack = (struct tcp_rack *)tp->t_fb_ptr; 12143 ctf_calc_rwin(so, tp); 12144 12145 if ((thflags & TH_RST) || 12146 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12147 return (__ctf_process_rst(m, th, so, tp, 12148 &rack->r_ctl.challenge_ack_ts, 12149 &rack->r_ctl.challenge_ack_cnt)); 12150 /* 12151 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12152 * synchronized state. 12153 */ 12154 if (thflags & TH_SYN) { 12155 ctf_challenge_ack(m, th, tp, &ret_val); 12156 return (ret_val); 12157 } 12158 /* 12159 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12160 * it's less than ts_recent, drop it. 12161 */ 12162 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12163 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12164 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12165 return (ret_val); 12166 } 12167 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12168 &rack->r_ctl.challenge_ack_ts, 12169 &rack->r_ctl.challenge_ack_cnt)) { 12170 return (ret_val); 12171 } 12172 /* 12173 * If new data are received on a connection after the user processes 12174 * are gone, then RST the other end. 12175 */ 12176 if ((so->so_state & SS_NOFDREF) && tlen) { 12177 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12178 return (1); 12179 } 12180 /* 12181 * If last ACK falls within this segment's sequence numbers, record 12182 * its timestamp. NOTE: 1) That the test incorporates suggestions 12183 * from the latest proposal of the tcplw@cray.com list (Braden 12184 * 1993/04/26). 2) That updating only on newer timestamps interferes 12185 * with our earlier PAWS tests, so this check should be solely 12186 * predicated on the sequence space of this segment. 3) That we 12187 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12188 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12189 * SEG.Len, This modified check allows us to overcome RFC1323's 12190 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12191 * p.869. In such cases, we can still calculate the RTT correctly 12192 * when RCV.NXT == Last.ACK.Sent. 12193 */ 12194 if ((to->to_flags & TOF_TS) != 0 && 12195 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12196 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12197 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12198 tp->ts_recent_age = tcp_ts_getticks(); 12199 tp->ts_recent = to->to_tsval; 12200 } 12201 /* 12202 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12203 * is on (half-synchronized state), then queue data for later 12204 * processing; else drop segment and return. 12205 */ 12206 if ((thflags & TH_ACK) == 0) { 12207 if (tp->t_flags & TF_NEEDSYN) { 12208 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12209 tiwin, thflags, nxt_pkt)); 12210 } else if (tp->t_flags & TF_ACKNOW) { 12211 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12212 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12213 return (ret_val); 12214 } else { 12215 ctf_do_drop(m, NULL); 12216 return (0); 12217 } 12218 } 12219 /* 12220 * Ack processing. 12221 */ 12222 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12223 return (ret_val); 12224 } 12225 if (ourfinisacked) { 12226 tcp_twstart(tp); 12227 m_freem(m); 12228 return (1); 12229 } 12230 if (sbavail(&so->so_snd)) { 12231 if (ctf_progress_timeout_check(tp, true)) { 12232 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12233 tp, tick, PROGRESS_DROP, __LINE__); 12234 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12235 return (1); 12236 } 12237 } 12238 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12239 tiwin, thflags, nxt_pkt)); 12240 } 12241 12242 /* 12243 * Return value of 1, the TCB is unlocked and most 12244 * likely gone, return value of 0, the TCP is still 12245 * locked. 12246 */ 12247 static int 12248 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 12249 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12250 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12251 { 12252 int32_t ret_val = 0; 12253 int32_t ourfinisacked = 0; 12254 struct tcp_rack *rack; 12255 12256 rack = (struct tcp_rack *)tp->t_fb_ptr; 12257 ctf_calc_rwin(so, tp); 12258 12259 if ((thflags & TH_RST) || 12260 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12261 return (__ctf_process_rst(m, th, so, tp, 12262 &rack->r_ctl.challenge_ack_ts, 12263 &rack->r_ctl.challenge_ack_cnt)); 12264 /* 12265 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12266 * synchronized state. 12267 */ 12268 if (thflags & TH_SYN) { 12269 ctf_challenge_ack(m, th, tp, &ret_val); 12270 return (ret_val); 12271 } 12272 /* 12273 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12274 * it's less than ts_recent, drop it. 12275 */ 12276 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12277 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12278 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12279 return (ret_val); 12280 } 12281 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12282 &rack->r_ctl.challenge_ack_ts, 12283 &rack->r_ctl.challenge_ack_cnt)) { 12284 return (ret_val); 12285 } 12286 /* 12287 * If new data are received on a connection after the user processes 12288 * are gone, then RST the other end. 12289 */ 12290 if ((so->so_state & SS_NOFDREF) && tlen) { 12291 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12292 return (1); 12293 } 12294 /* 12295 * If last ACK falls within this segment's sequence numbers, record 12296 * its timestamp. NOTE: 1) That the test incorporates suggestions 12297 * from the latest proposal of the tcplw@cray.com list (Braden 12298 * 1993/04/26). 2) That updating only on newer timestamps interferes 12299 * with our earlier PAWS tests, so this check should be solely 12300 * predicated on the sequence space of this segment. 3) That we 12301 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12302 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12303 * SEG.Len, This modified check allows us to overcome RFC1323's 12304 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12305 * p.869. In such cases, we can still calculate the RTT correctly 12306 * when RCV.NXT == Last.ACK.Sent. 12307 */ 12308 if ((to->to_flags & TOF_TS) != 0 && 12309 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12310 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12311 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12312 tp->ts_recent_age = tcp_ts_getticks(); 12313 tp->ts_recent = to->to_tsval; 12314 } 12315 /* 12316 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12317 * is on (half-synchronized state), then queue data for later 12318 * processing; else drop segment and return. 12319 */ 12320 if ((thflags & TH_ACK) == 0) { 12321 if (tp->t_flags & TF_NEEDSYN) { 12322 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12323 tiwin, thflags, nxt_pkt)); 12324 } else if (tp->t_flags & TF_ACKNOW) { 12325 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12326 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12327 return (ret_val); 12328 } else { 12329 ctf_do_drop(m, NULL); 12330 return (0); 12331 } 12332 } 12333 /* 12334 * case TCPS_LAST_ACK: Ack processing. 12335 */ 12336 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12337 return (ret_val); 12338 } 12339 if (ourfinisacked) { 12340 tp = tcp_close(tp); 12341 ctf_do_drop(m, tp); 12342 return (1); 12343 } 12344 if (sbavail(&so->so_snd)) { 12345 if (ctf_progress_timeout_check(tp, true)) { 12346 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12347 tp, tick, PROGRESS_DROP, __LINE__); 12348 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12349 return (1); 12350 } 12351 } 12352 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12353 tiwin, thflags, nxt_pkt)); 12354 } 12355 12356 /* 12357 * Return value of 1, the TCB is unlocked and most 12358 * likely gone, return value of 0, the TCP is still 12359 * locked. 12360 */ 12361 static int 12362 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, 12363 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12364 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12365 { 12366 int32_t ret_val = 0; 12367 int32_t ourfinisacked = 0; 12368 struct tcp_rack *rack; 12369 12370 rack = (struct tcp_rack *)tp->t_fb_ptr; 12371 ctf_calc_rwin(so, tp); 12372 12373 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 12374 if ((thflags & TH_RST) || 12375 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12376 return (__ctf_process_rst(m, th, so, tp, 12377 &rack->r_ctl.challenge_ack_ts, 12378 &rack->r_ctl.challenge_ack_cnt)); 12379 /* 12380 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12381 * synchronized state. 12382 */ 12383 if (thflags & TH_SYN) { 12384 ctf_challenge_ack(m, th, tp, &ret_val); 12385 return (ret_val); 12386 } 12387 /* 12388 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12389 * it's less than ts_recent, drop it. 12390 */ 12391 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12392 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12393 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12394 return (ret_val); 12395 } 12396 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12397 &rack->r_ctl.challenge_ack_ts, 12398 &rack->r_ctl.challenge_ack_cnt)) { 12399 return (ret_val); 12400 } 12401 /* 12402 * If new data are received on a connection after the user processes 12403 * are gone, then RST the other end. 12404 */ 12405 if ((so->so_state & SS_NOFDREF) && 12406 tlen) { 12407 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12408 return (1); 12409 } 12410 /* 12411 * If last ACK falls within this segment's sequence numbers, record 12412 * its timestamp. NOTE: 1) That the test incorporates suggestions 12413 * from the latest proposal of the tcplw@cray.com list (Braden 12414 * 1993/04/26). 2) That updating only on newer timestamps interferes 12415 * with our earlier PAWS tests, so this check should be solely 12416 * predicated on the sequence space of this segment. 3) That we 12417 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12418 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12419 * SEG.Len, This modified check allows us to overcome RFC1323's 12420 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12421 * p.869. In such cases, we can still calculate the RTT correctly 12422 * when RCV.NXT == Last.ACK.Sent. 12423 */ 12424 if ((to->to_flags & TOF_TS) != 0 && 12425 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12426 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12427 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12428 tp->ts_recent_age = tcp_ts_getticks(); 12429 tp->ts_recent = to->to_tsval; 12430 } 12431 /* 12432 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12433 * is on (half-synchronized state), then queue data for later 12434 * processing; else drop segment and return. 12435 */ 12436 if ((thflags & TH_ACK) == 0) { 12437 if (tp->t_flags & TF_NEEDSYN) { 12438 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12439 tiwin, thflags, nxt_pkt)); 12440 } else if (tp->t_flags & TF_ACKNOW) { 12441 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12442 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12443 return (ret_val); 12444 } else { 12445 ctf_do_drop(m, NULL); 12446 return (0); 12447 } 12448 } 12449 /* 12450 * Ack processing. 12451 */ 12452 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12453 return (ret_val); 12454 } 12455 if (sbavail(&so->so_snd)) { 12456 if (ctf_progress_timeout_check(tp, true)) { 12457 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12458 tp, tick, PROGRESS_DROP, __LINE__); 12459 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12460 return (1); 12461 } 12462 } 12463 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12464 tiwin, thflags, nxt_pkt)); 12465 } 12466 12467 static void inline 12468 rack_clear_rate_sample(struct tcp_rack *rack) 12469 { 12470 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; 12471 rack->r_ctl.rack_rs.rs_rtt_cnt = 0; 12472 rack->r_ctl.rack_rs.rs_rtt_tot = 0; 12473 } 12474 12475 static void 12476 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override) 12477 { 12478 uint64_t bw_est, rate_wanted; 12479 int chged = 0; 12480 uint32_t user_max, orig_min, orig_max; 12481 12482 orig_min = rack->r_ctl.rc_pace_min_segs; 12483 orig_max = rack->r_ctl.rc_pace_max_segs; 12484 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; 12485 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) 12486 chged = 1; 12487 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); 12488 if (rack->use_fixed_rate || rack->rc_force_max_seg) { 12489 if (user_max != rack->r_ctl.rc_pace_max_segs) 12490 chged = 1; 12491 } 12492 if (rack->rc_force_max_seg) { 12493 rack->r_ctl.rc_pace_max_segs = user_max; 12494 } else if (rack->use_fixed_rate) { 12495 bw_est = rack_get_bw(rack); 12496 if ((rack->r_ctl.crte == NULL) || 12497 (bw_est != rack->r_ctl.crte->rate)) { 12498 rack->r_ctl.rc_pace_max_segs = user_max; 12499 } else { 12500 /* We are pacing right at the hardware rate */ 12501 uint32_t segsiz; 12502 12503 segsiz = min(ctf_fixed_maxseg(tp), 12504 rack->r_ctl.rc_pace_min_segs); 12505 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size( 12506 tp, bw_est, segsiz, 0, 12507 rack->r_ctl.crte, NULL); 12508 } 12509 } else if (rack->rc_always_pace) { 12510 if (rack->r_ctl.gp_bw || 12511 #ifdef NETFLIX_PEAKRATE 12512 rack->rc_tp->t_maxpeakrate || 12513 #endif 12514 rack->r_ctl.init_rate) { 12515 /* We have a rate of some sort set */ 12516 uint32_t orig; 12517 12518 bw_est = rack_get_bw(rack); 12519 orig = rack->r_ctl.rc_pace_max_segs; 12520 if (fill_override) 12521 rate_wanted = *fill_override; 12522 else 12523 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL); 12524 if (rate_wanted) { 12525 /* We have something */ 12526 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, 12527 rate_wanted, 12528 ctf_fixed_maxseg(rack->rc_tp)); 12529 } else 12530 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; 12531 if (orig != rack->r_ctl.rc_pace_max_segs) 12532 chged = 1; 12533 } else if ((rack->r_ctl.gp_bw == 0) && 12534 (rack->r_ctl.rc_pace_max_segs == 0)) { 12535 /* 12536 * If we have nothing limit us to bursting 12537 * out IW sized pieces. 12538 */ 12539 chged = 1; 12540 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); 12541 } 12542 } 12543 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { 12544 chged = 1; 12545 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; 12546 } 12547 if (chged) 12548 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2); 12549 } 12550 12551 12552 static void 12553 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack) 12554 { 12555 #ifdef INET6 12556 struct ip6_hdr *ip6 = NULL; 12557 #endif 12558 #ifdef INET 12559 struct ip *ip = NULL; 12560 #endif 12561 struct udphdr *udp = NULL; 12562 12563 /* Ok lets fill in the fast block, it can only be used with no IP options! */ 12564 #ifdef INET6 12565 if (rack->r_is_v6) { 12566 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 12567 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 12568 if (tp->t_port) { 12569 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12570 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 12571 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12572 udp->uh_dport = tp->t_port; 12573 rack->r_ctl.fsb.udp = udp; 12574 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12575 } else 12576 { 12577 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1); 12578 rack->r_ctl.fsb.udp = NULL; 12579 } 12580 tcpip_fillheaders(rack->rc_inp, 12581 tp->t_port, 12582 ip6, rack->r_ctl.fsb.th); 12583 } else 12584 #endif /* INET6 */ 12585 { 12586 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr); 12587 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 12588 if (tp->t_port) { 12589 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12590 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 12591 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12592 udp->uh_dport = tp->t_port; 12593 rack->r_ctl.fsb.udp = udp; 12594 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12595 } else 12596 { 12597 rack->r_ctl.fsb.udp = NULL; 12598 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1); 12599 } 12600 tcpip_fillheaders(rack->rc_inp, 12601 tp->t_port, 12602 ip, rack->r_ctl.fsb.th); 12603 } 12604 rack->r_fsb_inited = 1; 12605 } 12606 12607 static int 12608 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack) 12609 { 12610 /* 12611 * Allocate the larger of spaces V6 if available else just 12612 * V4 and include udphdr (overbook) 12613 */ 12614 #ifdef INET6 12615 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr); 12616 #else 12617 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr); 12618 #endif 12619 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len, 12620 M_TCPFSB, M_NOWAIT|M_ZERO); 12621 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) { 12622 return (ENOMEM); 12623 } 12624 rack->r_fsb_inited = 0; 12625 return (0); 12626 } 12627 12628 static int 12629 rack_init(struct tcpcb *tp) 12630 { 12631 struct tcp_rack *rack = NULL; 12632 #ifdef INVARIANTS 12633 struct rack_sendmap *insret; 12634 #endif 12635 uint32_t iwin, snt, us_cts; 12636 int err; 12637 12638 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); 12639 if (tp->t_fb_ptr == NULL) { 12640 /* 12641 * We need to allocate memory but cant. The INP and INP_INFO 12642 * locks and they are recusive (happens during setup. So a 12643 * scheme to drop the locks fails :( 12644 * 12645 */ 12646 return (ENOMEM); 12647 } 12648 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack)); 12649 12650 rack = (struct tcp_rack *)tp->t_fb_ptr; 12651 RB_INIT(&rack->r_ctl.rc_mtree); 12652 TAILQ_INIT(&rack->r_ctl.rc_free); 12653 TAILQ_INIT(&rack->r_ctl.rc_tmap); 12654 rack->rc_tp = tp; 12655 rack->rc_inp = tp->t_inpcb; 12656 /* Set the flag */ 12657 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 12658 /* Probably not needed but lets be sure */ 12659 rack_clear_rate_sample(rack); 12660 /* 12661 * Save off the default values, socket options will poke 12662 * at these if pacing is not on or we have not yet 12663 * reached where pacing is on (gp_ready/fixed enabled). 12664 * When they get set into the CC module (when gp_ready 12665 * is enabled or we enable fixed) then we will set these 12666 * values into the CC and place in here the old values 12667 * so we have a restoral. Then we will set the flag 12668 * rc_pacing_cc_set. That way whenever we turn off pacing 12669 * or switch off this stack, we will know to go restore 12670 * the saved values. 12671 */ 12672 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn; 12673 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn; 12674 /* We want abe like behavior as well */ 12675 rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 12676 rack->r_ctl.rc_reorder_fade = rack_reorder_fade; 12677 rack->rc_allow_data_af_clo = rack_ignore_data_after_close; 12678 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; 12679 rack->r_ctl.roundends = tp->snd_max; 12680 if (use_rack_rr) 12681 rack->use_rack_rr = 1; 12682 if (V_tcp_delack_enabled) 12683 tp->t_delayed_ack = 1; 12684 else 12685 tp->t_delayed_ack = 0; 12686 #ifdef TCP_ACCOUNTING 12687 if (rack_tcp_accounting) { 12688 tp->t_flags2 |= TF2_TCP_ACCOUNTING; 12689 } 12690 #endif 12691 if (rack_enable_shared_cwnd) 12692 rack->rack_enable_scwnd = 1; 12693 rack->rc_user_set_max_segs = rack_hptsi_segments; 12694 rack->rc_force_max_seg = 0; 12695 if (rack_use_imac_dack) 12696 rack->rc_dack_mode = 1; 12697 TAILQ_INIT(&rack->r_ctl.opt_list); 12698 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; 12699 rack->r_ctl.rc_pkt_delay = rack_pkt_delay; 12700 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; 12701 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; 12702 rack->r_ctl.rc_highest_us_rtt = 0; 12703 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap; 12704 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop); 12705 if (rack_use_cmp_acks) 12706 rack->r_use_cmp_ack = 1; 12707 if (rack_disable_prr) 12708 rack->rack_no_prr = 1; 12709 if (rack_gp_no_rec_chg) 12710 rack->rc_gp_no_rec_chg = 1; 12711 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 12712 rack->rc_always_pace = 1; 12713 if (rack->use_fixed_rate || rack->gp_ready) 12714 rack_set_cc_pacing(rack); 12715 } else 12716 rack->rc_always_pace = 0; 12717 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) 12718 rack->r_mbuf_queue = 1; 12719 else 12720 rack->r_mbuf_queue = 0; 12721 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 12722 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 12723 else 12724 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12725 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12726 if (rack_limits_scwnd) 12727 rack->r_limit_scw = 1; 12728 else 12729 rack->r_limit_scw = 0; 12730 rack->rc_labc = V_tcp_abc_l_var; 12731 rack->r_ctl.rc_high_rwnd = tp->snd_wnd; 12732 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 12733 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; 12734 rack->rack_tlp_threshold_use = rack_tlp_threshold_use; 12735 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; 12736 rack->r_ctl.rc_min_to = rack_min_to; 12737 microuptime(&rack->r_ctl.act_rcv_time); 12738 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 12739 rack->r_running_late = 0; 12740 rack->r_running_early = 0; 12741 rack->rc_init_win = rack_default_init_window; 12742 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; 12743 if (rack_hw_up_only) 12744 rack->r_up_only = 1; 12745 if (rack_do_dyn_mul) { 12746 /* When dynamic adjustment is on CA needs to start at 100% */ 12747 rack->rc_gp_dyn_mul = 1; 12748 if (rack_do_dyn_mul >= 100) 12749 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 12750 } else 12751 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 12752 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; 12753 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 12754 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); 12755 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, 12756 rack_probertt_filter_life); 12757 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12758 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 12759 rack->r_ctl.rc_time_of_last_probertt = us_cts; 12760 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks(); 12761 rack->r_ctl.rc_time_probertt_starts = 0; 12762 if (rack_dsack_std_based & 0x1) { 12763 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 12764 rack->rc_rack_tmr_std_based = 1; 12765 } 12766 if (rack_dsack_std_based & 0x2) { 12767 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 12768 rack->rc_rack_use_dsack = 1; 12769 } 12770 /* We require at least one measurement, even if the sysctl is 0 */ 12771 if (rack_req_measurements) 12772 rack->r_ctl.req_measurements = rack_req_measurements; 12773 else 12774 rack->r_ctl.req_measurements = 1; 12775 if (rack_enable_hw_pacing) 12776 rack->rack_hdw_pace_ena = 1; 12777 if (rack_hw_rate_caps) 12778 rack->r_rack_hw_rate_caps = 1; 12779 /* Do we force on detection? */ 12780 #ifdef NETFLIX_EXP_DETECTION 12781 if (tcp_force_detection) 12782 rack->do_detection = 1; 12783 else 12784 #endif 12785 rack->do_detection = 0; 12786 if (rack_non_rxt_use_cr) 12787 rack->rack_rec_nonrxt_use_cr = 1; 12788 err = rack_init_fsb(tp, rack); 12789 if (err) { 12790 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12791 tp->t_fb_ptr = NULL; 12792 return (err); 12793 } 12794 if (tp->snd_una != tp->snd_max) { 12795 /* Create a send map for the current outstanding data */ 12796 struct rack_sendmap *rsm; 12797 12798 rsm = rack_alloc(rack); 12799 if (rsm == NULL) { 12800 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12801 tp->t_fb_ptr = NULL; 12802 return (ENOMEM); 12803 } 12804 rsm->r_no_rtt_allowed = 1; 12805 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 12806 rsm->r_rtr_cnt = 1; 12807 rsm->r_rtr_bytes = 0; 12808 if (tp->t_flags & TF_SENTFIN) { 12809 rsm->r_end = tp->snd_max - 1; 12810 rsm->r_flags |= RACK_HAS_FIN; 12811 } else { 12812 rsm->r_end = tp->snd_max; 12813 } 12814 if (tp->snd_una == tp->iss) { 12815 /* The data space is one beyond snd_una */ 12816 rsm->r_flags |= RACK_HAS_SYN; 12817 rsm->r_start = tp->iss; 12818 rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una); 12819 } else 12820 rsm->r_start = tp->snd_una; 12821 rsm->r_dupack = 0; 12822 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) { 12823 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff); 12824 if (rsm->m) 12825 rsm->orig_m_len = rsm->m->m_len; 12826 else 12827 rsm->orig_m_len = 0; 12828 } else { 12829 /* 12830 * This can happen if we have a stand-alone FIN or 12831 * SYN. 12832 */ 12833 rsm->m = NULL; 12834 rsm->orig_m_len = 0; 12835 rsm->soff = 0; 12836 } 12837 #ifndef INVARIANTS 12838 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12839 #else 12840 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12841 if (insret != NULL) { 12842 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p", 12843 insret, rack, rsm); 12844 } 12845 #endif 12846 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 12847 rsm->r_in_tmap = 1; 12848 } 12849 /* 12850 * Timers in Rack are kept in microseconds so lets 12851 * convert any initial incoming variables 12852 * from ticks into usecs. Note that we 12853 * also change the values of t_srtt and t_rttvar, if 12854 * they are non-zero. They are kept with a 5 12855 * bit decimal so we have to carefully convert 12856 * these to get the full precision. 12857 */ 12858 rack_convert_rtts(tp); 12859 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 12860 if (rack_do_hystart) { 12861 struct sockopt sopt; 12862 struct cc_newreno_opts opt; 12863 12864 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 12865 sopt.sopt_dir = SOPT_SET; 12866 opt.name = CC_NEWRENO_ENABLE_HYSTART; 12867 opt.val = rack_do_hystart; 12868 if (CC_ALGO(tp)->ctl_output != NULL) 12869 (void)CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 12870 } 12871 if (rack_def_profile) 12872 rack_set_profile(rack, rack_def_profile); 12873 /* Cancel the GP measurement in progress */ 12874 tp->t_flags &= ~TF_GPUTINPROG; 12875 if (SEQ_GT(tp->snd_max, tp->iss)) 12876 snt = tp->snd_max - tp->iss; 12877 else 12878 snt = 0; 12879 iwin = rc_init_window(rack); 12880 if (snt < iwin) { 12881 /* We are not past the initial window 12882 * so we need to make sure cwnd is 12883 * correct. 12884 */ 12885 if (tp->snd_cwnd < iwin) 12886 tp->snd_cwnd = iwin; 12887 /* 12888 * If we are within the initial window 12889 * we want ssthresh to be unlimited. Setting 12890 * it to the rwnd (which the default stack does 12891 * and older racks) is not really a good idea 12892 * since we want to be in SS and grow both the 12893 * cwnd and the rwnd (via dynamic rwnd growth). If 12894 * we set it to the rwnd then as the peer grows its 12895 * rwnd we will be stuck in CA and never hit SS. 12896 * 12897 * Its far better to raise it up high (this takes the 12898 * risk that there as been a loss already, probably 12899 * we should have an indicator in all stacks of loss 12900 * but we don't), but considering the normal use this 12901 * is a risk worth taking. The consequences of not 12902 * hitting SS are far worse than going one more time 12903 * into it early on (before we have sent even a IW). 12904 * It is highly unlikely that we will have had a loss 12905 * before getting the IW out. 12906 */ 12907 tp->snd_ssthresh = 0xffffffff; 12908 } 12909 rack_stop_all_timers(tp); 12910 /* Lets setup the fsb block */ 12911 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 12912 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur, 12913 __LINE__, RACK_RTTS_INIT); 12914 return (0); 12915 } 12916 12917 static int 12918 rack_handoff_ok(struct tcpcb *tp) 12919 { 12920 if ((tp->t_state == TCPS_CLOSED) || 12921 (tp->t_state == TCPS_LISTEN)) { 12922 /* Sure no problem though it may not stick */ 12923 return (0); 12924 } 12925 if ((tp->t_state == TCPS_SYN_SENT) || 12926 (tp->t_state == TCPS_SYN_RECEIVED)) { 12927 /* 12928 * We really don't know if you support sack, 12929 * you have to get to ESTAB or beyond to tell. 12930 */ 12931 return (EAGAIN); 12932 } 12933 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) { 12934 /* 12935 * Rack will only send a FIN after all data is acknowledged. 12936 * So in this case we have more data outstanding. We can't 12937 * switch stacks until either all data and only the FIN 12938 * is left (in which case rack_init() now knows how 12939 * to deal with that) <or> all is acknowledged and we 12940 * are only left with incoming data, though why you 12941 * would want to switch to rack after all data is acknowledged 12942 * I have no idea (rrs)! 12943 */ 12944 return (EAGAIN); 12945 } 12946 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ 12947 return (0); 12948 } 12949 /* 12950 * If we reach here we don't do SACK on this connection so we can 12951 * never do rack. 12952 */ 12953 return (EINVAL); 12954 } 12955 12956 12957 static void 12958 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) 12959 { 12960 int ack_cmp = 0; 12961 12962 if (tp->t_fb_ptr) { 12963 struct tcp_rack *rack; 12964 struct rack_sendmap *rsm, *nrsm; 12965 #ifdef INVARIANTS 12966 struct rack_sendmap *rm; 12967 #endif 12968 12969 rack = (struct tcp_rack *)tp->t_fb_ptr; 12970 if (tp->t_in_pkt) { 12971 /* 12972 * It is unsafe to process the packets since a 12973 * reset may be lurking in them (its rare but it 12974 * can occur). If we were to find a RST, then we 12975 * would end up dropping the connection and the 12976 * INP lock, so when we return the caller (tcp_usrreq) 12977 * will blow up when it trys to unlock the inp. 12978 */ 12979 struct mbuf *save, *m; 12980 12981 m = tp->t_in_pkt; 12982 tp->t_in_pkt = NULL; 12983 tp->t_tail_pkt = NULL; 12984 while (m) { 12985 save = m->m_nextpkt; 12986 m->m_nextpkt = NULL; 12987 m_freem(m); 12988 m = save; 12989 } 12990 if ((tp->t_inpcb) && 12991 (tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP)) 12992 ack_cmp = 1; 12993 if (ack_cmp) { 12994 /* Total if we used large or small (if ack-cmp was used). */ 12995 if (rack->rc_inp->inp_flags2 & INP_MBUF_L_ACKS) 12996 counter_u64_add(rack_large_ackcmp, 1); 12997 else 12998 counter_u64_add(rack_small_ackcmp, 1); 12999 } 13000 } 13001 tp->t_flags &= ~TF_FORCEDATA; 13002 #ifdef NETFLIX_SHARED_CWND 13003 if (rack->r_ctl.rc_scw) { 13004 uint32_t limit; 13005 13006 if (rack->r_limit_scw) 13007 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 13008 else 13009 limit = 0; 13010 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 13011 rack->r_ctl.rc_scw_index, 13012 limit); 13013 rack->r_ctl.rc_scw = NULL; 13014 } 13015 #endif 13016 if (rack->r_ctl.fsb.tcp_ip_hdr) { 13017 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB); 13018 rack->r_ctl.fsb.tcp_ip_hdr = NULL; 13019 rack->r_ctl.fsb.th = NULL; 13020 } 13021 /* Convert back to ticks, with */ 13022 if (tp->t_srtt > 1) { 13023 uint32_t val, frac; 13024 13025 val = USEC_2_TICKS(tp->t_srtt); 13026 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 13027 tp->t_srtt = val << TCP_RTT_SHIFT; 13028 /* 13029 * frac is the fractional part here is left 13030 * over from converting to hz and shifting. 13031 * We need to convert this to the 5 bit 13032 * remainder. 13033 */ 13034 if (frac) { 13035 if (hz == 1000) { 13036 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 13037 } else { 13038 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 13039 } 13040 tp->t_srtt += frac; 13041 } 13042 } 13043 if (tp->t_rttvar) { 13044 uint32_t val, frac; 13045 13046 val = USEC_2_TICKS(tp->t_rttvar); 13047 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 13048 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 13049 /* 13050 * frac is the fractional part here is left 13051 * over from converting to hz and shifting. 13052 * We need to convert this to the 5 bit 13053 * remainder. 13054 */ 13055 if (frac) { 13056 if (hz == 1000) { 13057 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 13058 } else { 13059 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 13060 } 13061 tp->t_rttvar += frac; 13062 } 13063 } 13064 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur); 13065 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 13066 if (rack->rc_always_pace) { 13067 tcp_decrement_paced_conn(); 13068 rack_undo_cc_pacing(rack); 13069 rack->rc_always_pace = 0; 13070 } 13071 /* Clean up any options if they were not applied */ 13072 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) { 13073 struct deferred_opt_list *dol; 13074 13075 dol = TAILQ_FIRST(&rack->r_ctl.opt_list); 13076 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 13077 free(dol, M_TCPDO); 13078 } 13079 /* rack does not use force data but other stacks may clear it */ 13080 if (rack->r_ctl.crte != NULL) { 13081 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 13082 rack->rack_hdrw_pacing = 0; 13083 rack->r_ctl.crte = NULL; 13084 } 13085 #ifdef TCP_BLACKBOX 13086 tcp_log_flowend(tp); 13087 #endif 13088 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) { 13089 #ifndef INVARIANTS 13090 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 13091 #else 13092 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 13093 if (rm != rsm) { 13094 panic("At fini, rack:%p rsm:%p rm:%p", 13095 rack, rsm, rm); 13096 } 13097 #endif 13098 uma_zfree(rack_zone, rsm); 13099 } 13100 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 13101 while (rsm) { 13102 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 13103 uma_zfree(rack_zone, rsm); 13104 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 13105 } 13106 rack->rc_free_cnt = 0; 13107 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 13108 tp->t_fb_ptr = NULL; 13109 } 13110 if (tp->t_inpcb) { 13111 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 13112 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; 13113 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE; 13114 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP; 13115 /* Cancel the GP measurement in progress */ 13116 tp->t_flags &= ~TF_GPUTINPROG; 13117 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS; 13118 } 13119 /* Make sure snd_nxt is correctly set */ 13120 tp->snd_nxt = tp->snd_max; 13121 } 13122 13123 static void 13124 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) 13125 { 13126 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) { 13127 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 13128 } 13129 switch (tp->t_state) { 13130 case TCPS_SYN_SENT: 13131 rack->r_state = TCPS_SYN_SENT; 13132 rack->r_substate = rack_do_syn_sent; 13133 break; 13134 case TCPS_SYN_RECEIVED: 13135 rack->r_state = TCPS_SYN_RECEIVED; 13136 rack->r_substate = rack_do_syn_recv; 13137 break; 13138 case TCPS_ESTABLISHED: 13139 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13140 rack->r_state = TCPS_ESTABLISHED; 13141 rack->r_substate = rack_do_established; 13142 break; 13143 case TCPS_CLOSE_WAIT: 13144 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13145 rack->r_state = TCPS_CLOSE_WAIT; 13146 rack->r_substate = rack_do_close_wait; 13147 break; 13148 case TCPS_FIN_WAIT_1: 13149 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13150 rack->r_state = TCPS_FIN_WAIT_1; 13151 rack->r_substate = rack_do_fin_wait_1; 13152 break; 13153 case TCPS_CLOSING: 13154 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13155 rack->r_state = TCPS_CLOSING; 13156 rack->r_substate = rack_do_closing; 13157 break; 13158 case TCPS_LAST_ACK: 13159 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13160 rack->r_state = TCPS_LAST_ACK; 13161 rack->r_substate = rack_do_lastack; 13162 break; 13163 case TCPS_FIN_WAIT_2: 13164 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13165 rack->r_state = TCPS_FIN_WAIT_2; 13166 rack->r_substate = rack_do_fin_wait_2; 13167 break; 13168 case TCPS_LISTEN: 13169 case TCPS_CLOSED: 13170 case TCPS_TIME_WAIT: 13171 default: 13172 break; 13173 }; 13174 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 13175 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 13176 13177 } 13178 13179 static void 13180 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) 13181 { 13182 /* 13183 * We received an ack, and then did not 13184 * call send or were bounced out due to the 13185 * hpts was running. Now a timer is up as well, is 13186 * it the right timer? 13187 */ 13188 struct rack_sendmap *rsm; 13189 int tmr_up; 13190 13191 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 13192 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) 13193 return; 13194 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 13195 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && 13196 (tmr_up == PACE_TMR_RXT)) { 13197 /* Should be an RXT */ 13198 return; 13199 } 13200 if (rsm == NULL) { 13201 /* Nothing outstanding? */ 13202 if (tp->t_flags & TF_DELACK) { 13203 if (tmr_up == PACE_TMR_DELACK) 13204 /* We are supposed to have delayed ack up and we do */ 13205 return; 13206 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { 13207 /* 13208 * if we hit enobufs then we would expect the possiblity 13209 * of nothing outstanding and the RXT up (and the hptsi timer). 13210 */ 13211 return; 13212 } else if (((V_tcp_always_keepalive || 13213 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 13214 (tp->t_state <= TCPS_CLOSING)) && 13215 (tmr_up == PACE_TMR_KEEP) && 13216 (tp->snd_max == tp->snd_una)) { 13217 /* We should have keep alive up and we do */ 13218 return; 13219 } 13220 } 13221 if (SEQ_GT(tp->snd_max, tp->snd_una) && 13222 ((tmr_up == PACE_TMR_TLP) || 13223 (tmr_up == PACE_TMR_RACK) || 13224 (tmr_up == PACE_TMR_RXT))) { 13225 /* 13226 * Either a Rack, TLP or RXT is fine if we 13227 * have outstanding data. 13228 */ 13229 return; 13230 } else if (tmr_up == PACE_TMR_DELACK) { 13231 /* 13232 * If the delayed ack was going to go off 13233 * before the rtx/tlp/rack timer were going to 13234 * expire, then that would be the timer in control. 13235 * Note we don't check the time here trusting the 13236 * code is correct. 13237 */ 13238 return; 13239 } 13240 /* 13241 * Ok the timer originally started is not what we want now. 13242 * We will force the hpts to be stopped if any, and restart 13243 * with the slot set to what was in the saved slot. 13244 */ 13245 if (tcp_in_hpts(rack->rc_inp)) { 13246 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 13247 uint32_t us_cts; 13248 13249 us_cts = tcp_get_usecs(NULL); 13250 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 13251 rack->r_early = 1; 13252 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 13253 } 13254 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 13255 } 13256 tcp_hpts_remove(tp->t_inpcb); 13257 } 13258 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13259 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 13260 } 13261 13262 13263 static void 13264 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq) 13265 { 13266 if ((SEQ_LT(tp->snd_wl1, seq) || 13267 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) || 13268 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) { 13269 /* keep track of pure window updates */ 13270 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd)) 13271 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 13272 tp->snd_wnd = tiwin; 13273 rack_validate_fo_sendwin_up(tp, rack); 13274 tp->snd_wl1 = seq; 13275 tp->snd_wl2 = ack; 13276 if (tp->snd_wnd > tp->max_sndwnd) 13277 tp->max_sndwnd = tp->snd_wnd; 13278 rack->r_wanted_output = 1; 13279 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) { 13280 tp->snd_wnd = tiwin; 13281 rack_validate_fo_sendwin_up(tp, rack); 13282 tp->snd_wl1 = seq; 13283 tp->snd_wl2 = ack; 13284 } else { 13285 /* Not a valid win update */ 13286 return; 13287 } 13288 if (tp->snd_wnd > tp->max_sndwnd) 13289 tp->max_sndwnd = tp->snd_wnd; 13290 if (tp->snd_wnd < (tp->snd_max - high_seq)) { 13291 /* The peer collapsed the window */ 13292 rack_collapsed_window(rack); 13293 } else if (rack->rc_has_collapsed) 13294 rack_un_collapse_window(rack); 13295 /* Do we exit persists? */ 13296 if ((rack->rc_in_persist != 0) && 13297 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 13298 rack->r_ctl.rc_pace_min_segs))) { 13299 rack_exit_persist(tp, rack, cts); 13300 } 13301 /* Do we enter persists? */ 13302 if ((rack->rc_in_persist == 0) && 13303 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 13304 TCPS_HAVEESTABLISHED(tp->t_state) && 13305 (tp->snd_max == tp->snd_una) && 13306 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 13307 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 13308 /* 13309 * Here the rwnd is less than 13310 * the pacing size, we are established, 13311 * nothing is outstanding, and there is 13312 * data to send. Enter persists. 13313 */ 13314 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 13315 } 13316 } 13317 13318 static void 13319 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq) 13320 { 13321 13322 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 13323 union tcp_log_stackspecific log; 13324 struct timeval ltv; 13325 char tcp_hdr_buf[60]; 13326 struct tcphdr *th; 13327 struct timespec ts; 13328 uint32_t orig_snd_una; 13329 uint8_t xx = 0; 13330 13331 #ifdef NETFLIX_HTTP_LOGGING 13332 struct http_sendfile_track *http_req; 13333 13334 if (SEQ_GT(ae->ack, tp->snd_una)) { 13335 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1)); 13336 } else { 13337 http_req = tcp_http_find_req_for_seq(tp, ae->ack); 13338 } 13339 #endif 13340 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 13341 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 13342 if (rack->rack_no_prr == 0) 13343 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 13344 else 13345 log.u_bbr.flex1 = 0; 13346 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 13347 log.u_bbr.use_lt_bw <<= 1; 13348 log.u_bbr.use_lt_bw |= rack->r_might_revert; 13349 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 13350 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 13351 log.u_bbr.pkts_out = tp->t_maxseg; 13352 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 13353 log.u_bbr.flex7 = 1; 13354 log.u_bbr.lost = ae->flags; 13355 log.u_bbr.cwnd_gain = ackval; 13356 log.u_bbr.pacing_gain = 0x2; 13357 if (ae->flags & TSTMP_HDWR) { 13358 /* Record the hardware timestamp if present */ 13359 log.u_bbr.flex3 = M_TSTMP; 13360 ts.tv_sec = ae->timestamp / 1000000000; 13361 ts.tv_nsec = ae->timestamp % 1000000000; 13362 ltv.tv_sec = ts.tv_sec; 13363 ltv.tv_usec = ts.tv_nsec / 1000; 13364 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 13365 } else if (ae->flags & TSTMP_LRO) { 13366 /* Record the LRO the arrival timestamp */ 13367 log.u_bbr.flex3 = M_TSTMP_LRO; 13368 ts.tv_sec = ae->timestamp / 1000000000; 13369 ts.tv_nsec = ae->timestamp % 1000000000; 13370 ltv.tv_sec = ts.tv_sec; 13371 ltv.tv_usec = ts.tv_nsec / 1000; 13372 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 13373 } 13374 log.u_bbr.timeStamp = tcp_get_usecs(<v); 13375 /* Log the rcv time */ 13376 log.u_bbr.delRate = ae->timestamp; 13377 #ifdef NETFLIX_HTTP_LOGGING 13378 log.u_bbr.applimited = tp->t_http_closed; 13379 log.u_bbr.applimited <<= 8; 13380 log.u_bbr.applimited |= tp->t_http_open; 13381 log.u_bbr.applimited <<= 8; 13382 log.u_bbr.applimited |= tp->t_http_req; 13383 if (http_req) { 13384 /* Copy out any client req info */ 13385 /* seconds */ 13386 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 13387 /* useconds */ 13388 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 13389 log.u_bbr.rttProp = http_req->timestamp; 13390 log.u_bbr.cur_del_rate = http_req->start; 13391 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 13392 log.u_bbr.flex8 |= 1; 13393 } else { 13394 log.u_bbr.flex8 |= 2; 13395 log.u_bbr.bw_inuse = http_req->end; 13396 } 13397 log.u_bbr.flex6 = http_req->start_seq; 13398 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 13399 log.u_bbr.flex8 |= 4; 13400 log.u_bbr.epoch = http_req->end_seq; 13401 } 13402 } 13403 #endif 13404 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf)); 13405 th = (struct tcphdr *)tcp_hdr_buf; 13406 th->th_seq = ae->seq; 13407 th->th_ack = ae->ack; 13408 th->th_win = ae->win; 13409 /* Now fill in the ports */ 13410 th->th_sport = tp->t_inpcb->inp_fport; 13411 th->th_dport = tp->t_inpcb->inp_lport; 13412 tcp_set_flags(th, ae->flags); 13413 /* Now do we have a timestamp option? */ 13414 if (ae->flags & HAS_TSTMP) { 13415 u_char *cp; 13416 uint32_t val; 13417 13418 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2); 13419 cp = (u_char *)(th + 1); 13420 *cp = TCPOPT_NOP; 13421 cp++; 13422 *cp = TCPOPT_NOP; 13423 cp++; 13424 *cp = TCPOPT_TIMESTAMP; 13425 cp++; 13426 *cp = TCPOLEN_TIMESTAMP; 13427 cp++; 13428 val = htonl(ae->ts_value); 13429 bcopy((char *)&val, 13430 (char *)cp, sizeof(uint32_t)); 13431 val = htonl(ae->ts_echo); 13432 bcopy((char *)&val, 13433 (char *)(cp + 4), sizeof(uint32_t)); 13434 } else 13435 th->th_off = (sizeof(struct tcphdr) >> 2); 13436 13437 /* 13438 * For sane logging we need to play a little trick. 13439 * If the ack were fully processed we would have moved 13440 * snd_una to high_seq, but since compressed acks are 13441 * processed in two phases, at this point (logging) snd_una 13442 * won't be advanced. So we would see multiple acks showing 13443 * the advancement. We can prevent that by "pretending" that 13444 * snd_una was advanced and then un-advancing it so that the 13445 * logging code has the right value for tlb_snd_una. 13446 */ 13447 if (tp->snd_una != high_seq) { 13448 orig_snd_una = tp->snd_una; 13449 tp->snd_una = high_seq; 13450 xx = 1; 13451 } else 13452 xx = 0; 13453 TCP_LOG_EVENTP(tp, th, 13454 &tp->t_inpcb->inp_socket->so_rcv, 13455 &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0, 13456 0, &log, true, <v); 13457 if (xx) { 13458 tp->snd_una = orig_snd_una; 13459 } 13460 } 13461 13462 } 13463 13464 static void 13465 rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts) 13466 { 13467 uint32_t us_rtt; 13468 /* 13469 * A persist or keep-alive was forced out, update our 13470 * min rtt time. Note now worry about lost responses. 13471 * When a subsequent keep-alive or persist times out 13472 * and forced_ack is still on, then the last probe 13473 * was not responded to. In such cases we have a 13474 * sysctl that controls the behavior. Either we apply 13475 * the rtt but with reduced confidence (0). Or we just 13476 * plain don't apply the rtt estimate. Having data flow 13477 * will clear the probe_not_answered flag i.e. cum-ack 13478 * move forward <or> exiting and reentering persists. 13479 */ 13480 13481 rack->forced_ack = 0; 13482 rack->rc_tp->t_rxtshift = 0; 13483 if ((rack->rc_in_persist && 13484 (tiwin == rack->rc_tp->snd_wnd)) || 13485 (rack->rc_in_persist == 0)) { 13486 /* 13487 * In persists only apply the RTT update if this is 13488 * a response to our window probe. And that 13489 * means the rwnd sent must match the current 13490 * snd_wnd. If it does not, then we got a 13491 * window update ack instead. For keepalive 13492 * we allow the answer no matter what the window. 13493 * 13494 * Note that if the probe_not_answered is set then 13495 * the forced_ack_ts is the oldest one i.e. the first 13496 * probe sent that might have been lost. This assures 13497 * us that if we do calculate an RTT it is longer not 13498 * some short thing. 13499 */ 13500 if (rack->rc_in_persist) 13501 counter_u64_add(rack_persists_acks, 1); 13502 us_rtt = us_cts - rack->r_ctl.forced_ack_ts; 13503 if (us_rtt == 0) 13504 us_rtt = 1; 13505 if (rack->probe_not_answered == 0) { 13506 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 13507 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1); 13508 } else { 13509 /* We have a retransmitted probe here too */ 13510 if (rack_apply_rtt_with_reduced_conf) { 13511 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 13512 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1); 13513 } 13514 } 13515 } 13516 } 13517 13518 13519 static int 13520 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv) 13521 { 13522 /* 13523 * Handle a "special" compressed ack mbuf. Each incoming 13524 * ack has only four possible dispositions: 13525 * 13526 * A) It moves the cum-ack forward 13527 * B) It is behind the cum-ack. 13528 * C) It is a window-update ack. 13529 * D) It is a dup-ack. 13530 * 13531 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES 13532 * in the incoming mbuf. We also need to still pay attention 13533 * to nxt_pkt since there may be another packet after this 13534 * one. 13535 */ 13536 #ifdef TCP_ACCOUNTING 13537 uint64_t ts_val; 13538 uint64_t rdstc; 13539 #endif 13540 int segsiz; 13541 struct timespec ts; 13542 struct tcp_rack *rack; 13543 struct tcp_ackent *ae; 13544 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack; 13545 int cnt, i, did_out, ourfinisacked = 0; 13546 struct tcpopt to_holder, *to = NULL; 13547 #ifdef TCP_ACCOUNTING 13548 int win_up_req = 0; 13549 #endif 13550 int nsegs = 0; 13551 int under_pacing = 1; 13552 int recovery = 0; 13553 int idx; 13554 #ifdef TCP_ACCOUNTING 13555 sched_pin(); 13556 #endif 13557 rack = (struct tcp_rack *)tp->t_fb_ptr; 13558 if (rack->gp_ready && 13559 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) 13560 under_pacing = 0; 13561 else 13562 under_pacing = 1; 13563 13564 if (rack->r_state != tp->t_state) 13565 rack_set_state(tp, rack); 13566 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13567 (tp->t_flags & TF_GPUTINPROG)) { 13568 /* 13569 * We have a goodput in progress 13570 * and we have entered a late state. 13571 * Do we have enough data in the sb 13572 * to handle the GPUT request? 13573 */ 13574 uint32_t bytes; 13575 13576 bytes = tp->gput_ack - tp->gput_seq; 13577 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 13578 bytes += tp->gput_seq - tp->snd_una; 13579 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 13580 /* 13581 * There are not enough bytes in the socket 13582 * buffer that have been sent to cover this 13583 * measurement. Cancel it. 13584 */ 13585 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 13586 rack->r_ctl.rc_gp_srtt /*flex1*/, 13587 tp->gput_seq, 13588 0, 0, 18, __LINE__, NULL, 0); 13589 tp->t_flags &= ~TF_GPUTINPROG; 13590 } 13591 } 13592 to = &to_holder; 13593 to->to_flags = 0; 13594 KASSERT((m->m_len >= sizeof(struct tcp_ackent)), 13595 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len)); 13596 cnt = m->m_len / sizeof(struct tcp_ackent); 13597 idx = cnt / 5; 13598 if (idx >= MAX_NUM_OF_CNTS) 13599 idx = MAX_NUM_OF_CNTS - 1; 13600 counter_u64_add(rack_proc_comp_ack[idx], 1); 13601 counter_u64_add(rack_multi_single_eq, cnt); 13602 high_seq = tp->snd_una; 13603 the_win = tp->snd_wnd; 13604 win_seq = tp->snd_wl1; 13605 win_upd_ack = tp->snd_wl2; 13606 cts = tcp_tv_to_usectick(tv); 13607 ms_cts = tcp_tv_to_mssectick(tv); 13608 segsiz = ctf_fixed_maxseg(tp); 13609 if ((rack->rc_gp_dyn_mul) && 13610 (rack->use_fixed_rate == 0) && 13611 (rack->rc_always_pace)) { 13612 /* Check in on probertt */ 13613 rack_check_probe_rtt(rack, cts); 13614 } 13615 for (i = 0; i < cnt; i++) { 13616 #ifdef TCP_ACCOUNTING 13617 ts_val = get_cyclecount(); 13618 #endif 13619 rack_clear_rate_sample(rack); 13620 ae = ((mtod(m, struct tcp_ackent *)) + i); 13621 /* Setup the window */ 13622 tiwin = ae->win << tp->snd_scale; 13623 /* figure out the type of ack */ 13624 if (SEQ_LT(ae->ack, high_seq)) { 13625 /* Case B*/ 13626 ae->ack_val_set = ACK_BEHIND; 13627 } else if (SEQ_GT(ae->ack, high_seq)) { 13628 /* Case A */ 13629 ae->ack_val_set = ACK_CUMACK; 13630 } else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){ 13631 /* Case D */ 13632 ae->ack_val_set = ACK_DUPACK; 13633 } else { 13634 /* Case C */ 13635 ae->ack_val_set = ACK_RWND; 13636 } 13637 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq); 13638 /* Validate timestamp */ 13639 if (ae->flags & HAS_TSTMP) { 13640 /* Setup for a timestamp */ 13641 to->to_flags = TOF_TS; 13642 ae->ts_echo -= tp->ts_offset; 13643 to->to_tsecr = ae->ts_echo; 13644 to->to_tsval = ae->ts_value; 13645 /* 13646 * If echoed timestamp is later than the current time, fall back to 13647 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 13648 * were used when this connection was established. 13649 */ 13650 if (TSTMP_GT(ae->ts_echo, ms_cts)) 13651 to->to_tsecr = 0; 13652 if (tp->ts_recent && 13653 TSTMP_LT(ae->ts_value, tp->ts_recent)) { 13654 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) { 13655 #ifdef TCP_ACCOUNTING 13656 rdstc = get_cyclecount(); 13657 if (rdstc > ts_val) { 13658 counter_u64_add(tcp_proc_time[ae->ack_val_set] , 13659 (rdstc - ts_val)); 13660 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13661 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13662 } 13663 } 13664 #endif 13665 continue; 13666 } 13667 } 13668 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) && 13669 SEQ_LEQ(tp->last_ack_sent, ae->seq)) { 13670 tp->ts_recent_age = tcp_ts_getticks(); 13671 tp->ts_recent = ae->ts_value; 13672 } 13673 } else { 13674 /* Setup for a no options */ 13675 to->to_flags = 0; 13676 } 13677 /* Update the rcv time and perform idle reduction possibly */ 13678 if (tp->t_idle_reduce && 13679 (tp->snd_max == tp->snd_una) && 13680 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 13681 counter_u64_add(rack_input_idle_reduces, 1); 13682 rack_cc_after_idle(rack, tp); 13683 } 13684 tp->t_rcvtime = ticks; 13685 /* Now what about ECN? */ 13686 if (tcp_ecn_input_segment(tp, ae->flags, ae->codepoint)) 13687 rack_cong_signal(tp, CC_ECN, ae->ack); 13688 #ifdef TCP_ACCOUNTING 13689 /* Count for the specific type of ack in */ 13690 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1); 13691 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13692 tp->tcp_cnt_counters[ae->ack_val_set]++; 13693 } 13694 #endif 13695 /* 13696 * Note how we could move up these in the determination 13697 * above, but we don't so that way the timestamp checks (and ECN) 13698 * is done first before we do any processing on the ACK. 13699 * The non-compressed path through the code has this 13700 * weakness (noted by @jtl) that it actually does some 13701 * processing before verifying the timestamp information. 13702 * We don't take that path here which is why we set 13703 * the ack_val_set first, do the timestamp and ecn 13704 * processing, and then look at what we have setup. 13705 */ 13706 if (ae->ack_val_set == ACK_BEHIND) { 13707 /* 13708 * Case B flag reordering, if window is not closed 13709 * or it could be a keep-alive or persists 13710 */ 13711 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) { 13712 counter_u64_add(rack_reorder_seen, 1); 13713 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 13714 } 13715 } else if (ae->ack_val_set == ACK_DUPACK) { 13716 /* Case D */ 13717 rack_strike_dupack(rack); 13718 } else if (ae->ack_val_set == ACK_RWND) { 13719 /* Case C */ 13720 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13721 ts.tv_sec = ae->timestamp / 1000000000; 13722 ts.tv_nsec = ae->timestamp % 1000000000; 13723 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13724 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13725 } else { 13726 rack->r_ctl.act_rcv_time = *tv; 13727 } 13728 if (rack->forced_ack) { 13729 rack_handle_probe_response(rack, tiwin, 13730 tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 13731 } 13732 #ifdef TCP_ACCOUNTING 13733 win_up_req = 1; 13734 #endif 13735 win_upd_ack = ae->ack; 13736 win_seq = ae->seq; 13737 the_win = tiwin; 13738 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13739 } else { 13740 /* Case A */ 13741 if (SEQ_GT(ae->ack, tp->snd_max)) { 13742 /* 13743 * We just send an ack since the incoming 13744 * ack is beyond the largest seq we sent. 13745 */ 13746 if ((tp->t_flags & TF_ACKNOW) == 0) { 13747 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt); 13748 if (tp->t_flags && TF_ACKNOW) 13749 rack->r_wanted_output = 1; 13750 } 13751 } else { 13752 nsegs++; 13753 /* If the window changed setup to update */ 13754 if (tiwin != tp->snd_wnd) { 13755 win_upd_ack = ae->ack; 13756 win_seq = ae->seq; 13757 the_win = tiwin; 13758 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13759 } 13760 #ifdef TCP_ACCOUNTING 13761 /* Account for the acks */ 13762 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13763 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz); 13764 } 13765 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN], 13766 (((ae->ack - high_seq) + segsiz - 1) / segsiz)); 13767 #endif 13768 high_seq = ae->ack; 13769 if (SEQ_GEQ(high_seq, rack->r_ctl.roundends)) { 13770 rack->r_ctl.current_round++; 13771 rack->r_ctl.roundends = tp->snd_max; 13772 if (CC_ALGO(tp)->newround != NULL) { 13773 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 13774 } 13775 } 13776 /* Setup our act_rcv_time */ 13777 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13778 ts.tv_sec = ae->timestamp / 1000000000; 13779 ts.tv_nsec = ae->timestamp % 1000000000; 13780 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13781 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13782 } else { 13783 rack->r_ctl.act_rcv_time = *tv; 13784 } 13785 rack_process_to_cumack(tp, rack, ae->ack, cts, to); 13786 if (rack->rc_dsack_round_seen) { 13787 /* Is the dsack round over? */ 13788 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) { 13789 /* Yes it is */ 13790 rack->rc_dsack_round_seen = 0; 13791 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 13792 } 13793 } 13794 } 13795 } 13796 /* And lets be sure to commit the rtt measurements for this ack */ 13797 tcp_rack_xmit_timer_commit(rack, tp); 13798 #ifdef TCP_ACCOUNTING 13799 rdstc = get_cyclecount(); 13800 if (rdstc > ts_val) { 13801 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val)); 13802 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13803 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13804 if (ae->ack_val_set == ACK_CUMACK) 13805 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val); 13806 } 13807 } 13808 #endif 13809 } 13810 #ifdef TCP_ACCOUNTING 13811 ts_val = get_cyclecount(); 13812 #endif 13813 acked_amount = acked = (high_seq - tp->snd_una); 13814 if (acked) { 13815 /* 13816 * Clear the probe not answered flag 13817 * since cum-ack moved forward. 13818 */ 13819 rack->probe_not_answered = 0; 13820 if (rack->sack_attack_disable == 0) 13821 rack_do_decay(rack); 13822 if (acked >= segsiz) { 13823 /* 13824 * You only get credit for 13825 * MSS and greater (and you get extra 13826 * credit for larger cum-ack moves). 13827 */ 13828 int ac; 13829 13830 ac = acked / segsiz; 13831 rack->r_ctl.ack_count += ac; 13832 counter_u64_add(rack_ack_total, ac); 13833 } 13834 if (rack->r_ctl.ack_count > 0xfff00000) { 13835 /* 13836 * reduce the number to keep us under 13837 * a uint32_t. 13838 */ 13839 rack->r_ctl.ack_count /= 2; 13840 rack->r_ctl.sack_count /= 2; 13841 } 13842 if (tp->t_flags & TF_NEEDSYN) { 13843 /* 13844 * T/TCP: Connection was half-synchronized, and our SYN has 13845 * been ACK'd (so connection is now fully synchronized). Go 13846 * to non-starred state, increment snd_una for ACK of SYN, 13847 * and check if we can do window scaling. 13848 */ 13849 tp->t_flags &= ~TF_NEEDSYN; 13850 tp->snd_una++; 13851 acked_amount = acked = (high_seq - tp->snd_una); 13852 } 13853 if (acked > sbavail(&so->so_snd)) 13854 acked_amount = sbavail(&so->so_snd); 13855 #ifdef NETFLIX_EXP_DETECTION 13856 /* 13857 * We only care on a cum-ack move if we are in a sack-disabled 13858 * state. We have already added in to the ack_count, and we never 13859 * would disable on a cum-ack move, so we only care to do the 13860 * detection if it may "undo" it, i.e. we were in disabled already. 13861 */ 13862 if (rack->sack_attack_disable) 13863 rack_do_detection(tp, rack, acked_amount, segsiz); 13864 #endif 13865 if (IN_FASTRECOVERY(tp->t_flags) && 13866 (rack->rack_no_prr == 0)) 13867 rack_update_prr(tp, rack, acked_amount, high_seq); 13868 if (IN_RECOVERY(tp->t_flags)) { 13869 if (SEQ_LT(high_seq, tp->snd_recover) && 13870 (SEQ_LT(high_seq, tp->snd_max))) { 13871 tcp_rack_partialack(tp); 13872 } else { 13873 rack_post_recovery(tp, high_seq); 13874 recovery = 1; 13875 } 13876 } 13877 /* Handle the rack-log-ack part (sendmap) */ 13878 if ((sbused(&so->so_snd) == 0) && 13879 (acked > acked_amount) && 13880 (tp->t_state >= TCPS_FIN_WAIT_1) && 13881 (tp->t_flags & TF_SENTFIN)) { 13882 /* 13883 * We must be sure our fin 13884 * was sent and acked (we can be 13885 * in FIN_WAIT_1 without having 13886 * sent the fin). 13887 */ 13888 ourfinisacked = 1; 13889 /* 13890 * Lets make sure snd_una is updated 13891 * since most likely acked_amount = 0 (it 13892 * should be). 13893 */ 13894 tp->snd_una = high_seq; 13895 } 13896 /* Did we make a RTO error? */ 13897 if ((tp->t_flags & TF_PREVVALID) && 13898 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 13899 tp->t_flags &= ~TF_PREVVALID; 13900 if (tp->t_rxtshift == 1 && 13901 (int)(ticks - tp->t_badrxtwin) < 0) 13902 rack_cong_signal(tp, CC_RTO_ERR, high_seq); 13903 } 13904 /* Handle the data in the socket buffer */ 13905 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1); 13906 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 13907 if (acked_amount > 0) { 13908 struct mbuf *mfree; 13909 13910 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery); 13911 SOCKBUF_LOCK(&so->so_snd); 13912 mfree = sbcut_locked(&so->so_snd, acked_amount); 13913 tp->snd_una = high_seq; 13914 /* Note we want to hold the sb lock through the sendmap adjust */ 13915 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 13916 /* Wake up the socket if we have room to write more */ 13917 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 13918 sowwakeup_locked(so); 13919 m_freem(mfree); 13920 } 13921 /* update progress */ 13922 tp->t_acktime = ticks; 13923 rack_log_progress_event(rack, tp, tp->t_acktime, 13924 PROGRESS_UPDATE, __LINE__); 13925 /* Clear out shifts and such */ 13926 tp->t_rxtshift = 0; 13927 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 13928 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 13929 rack->rc_tlp_in_progress = 0; 13930 rack->r_ctl.rc_tlp_cnt_out = 0; 13931 /* Send recover and snd_nxt must be dragged along */ 13932 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 13933 tp->snd_recover = tp->snd_una; 13934 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 13935 tp->snd_nxt = tp->snd_una; 13936 /* 13937 * If the RXT timer is running we want to 13938 * stop it, so we can restart a TLP (or new RXT). 13939 */ 13940 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 13941 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13942 #ifdef NETFLIX_HTTP_LOGGING 13943 tcp_http_check_for_comp(rack->rc_tp, high_seq); 13944 #endif 13945 tp->snd_wl2 = high_seq; 13946 tp->t_dupacks = 0; 13947 if (under_pacing && 13948 (rack->use_fixed_rate == 0) && 13949 (rack->in_probe_rtt == 0) && 13950 rack->rc_gp_dyn_mul && 13951 rack->rc_always_pace) { 13952 /* Check if we are dragging bottom */ 13953 rack_check_bottom_drag(tp, rack, so, acked); 13954 } 13955 if (tp->snd_una == tp->snd_max) { 13956 tp->t_flags &= ~TF_PREVVALID; 13957 rack->r_ctl.retran_during_recovery = 0; 13958 rack->r_ctl.dsack_byte_cnt = 0; 13959 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 13960 if (rack->r_ctl.rc_went_idle_time == 0) 13961 rack->r_ctl.rc_went_idle_time = 1; 13962 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 13963 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 13964 tp->t_acktime = 0; 13965 /* Set so we might enter persists... */ 13966 rack->r_wanted_output = 1; 13967 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13968 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 13969 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13970 (sbavail(&so->so_snd) == 0) && 13971 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 13972 /* 13973 * The socket was gone and the 13974 * peer sent data (not now in the past), time to 13975 * reset him. 13976 */ 13977 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13978 /* tcp_close will kill the inp pre-log the Reset */ 13979 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 13980 #ifdef TCP_ACCOUNTING 13981 rdstc = get_cyclecount(); 13982 if (rdstc > ts_val) { 13983 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13984 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13985 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13986 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13987 } 13988 } 13989 #endif 13990 m_freem(m); 13991 tp = tcp_close(tp); 13992 if (tp == NULL) { 13993 #ifdef TCP_ACCOUNTING 13994 sched_unpin(); 13995 #endif 13996 return (1); 13997 } 13998 /* 13999 * We would normally do drop-with-reset which would 14000 * send back a reset. We can't since we don't have 14001 * all the needed bits. Instead lets arrange for 14002 * a call to tcp_output(). That way since we 14003 * are in the closed state we will generate a reset. 14004 * 14005 * Note if tcp_accounting is on we don't unpin since 14006 * we do that after the goto label. 14007 */ 14008 goto send_out_a_rst; 14009 } 14010 if ((sbused(&so->so_snd) == 0) && 14011 (tp->t_state >= TCPS_FIN_WAIT_1) && 14012 (tp->t_flags & TF_SENTFIN)) { 14013 /* 14014 * If we can't receive any more data, then closing user can 14015 * proceed. Starting the timer is contrary to the 14016 * specification, but if we don't get a FIN we'll hang 14017 * forever. 14018 * 14019 */ 14020 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 14021 soisdisconnected(so); 14022 tcp_timer_activate(tp, TT_2MSL, 14023 (tcp_fast_finwait2_recycle ? 14024 tcp_finwait2_timeout : 14025 TP_MAXIDLE(tp))); 14026 } 14027 if (ourfinisacked == 0) { 14028 /* 14029 * We don't change to fin-wait-2 if we have our fin acked 14030 * which means we are probably in TCPS_CLOSING. 14031 */ 14032 tcp_state_change(tp, TCPS_FIN_WAIT_2); 14033 } 14034 } 14035 } 14036 /* Wake up the socket if we have room to write more */ 14037 if (sbavail(&so->so_snd)) { 14038 rack->r_wanted_output = 1; 14039 if (ctf_progress_timeout_check(tp, true)) { 14040 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 14041 tp, tick, PROGRESS_DROP, __LINE__); 14042 /* 14043 * We cheat here and don't send a RST, we should send one 14044 * when the pacer drops the connection. 14045 */ 14046 #ifdef TCP_ACCOUNTING 14047 rdstc = get_cyclecount(); 14048 if (rdstc > ts_val) { 14049 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 14050 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14051 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 14052 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14053 } 14054 } 14055 sched_unpin(); 14056 #endif 14057 (void)tcp_drop(tp, ETIMEDOUT); 14058 m_freem(m); 14059 return (1); 14060 } 14061 } 14062 if (ourfinisacked) { 14063 switch(tp->t_state) { 14064 case TCPS_CLOSING: 14065 #ifdef TCP_ACCOUNTING 14066 rdstc = get_cyclecount(); 14067 if (rdstc > ts_val) { 14068 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 14069 (rdstc - ts_val)); 14070 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14071 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 14072 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14073 } 14074 } 14075 sched_unpin(); 14076 #endif 14077 tcp_twstart(tp); 14078 m_freem(m); 14079 return (1); 14080 break; 14081 case TCPS_LAST_ACK: 14082 #ifdef TCP_ACCOUNTING 14083 rdstc = get_cyclecount(); 14084 if (rdstc > ts_val) { 14085 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 14086 (rdstc - ts_val)); 14087 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14088 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 14089 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14090 } 14091 } 14092 sched_unpin(); 14093 #endif 14094 tp = tcp_close(tp); 14095 ctf_do_drop(m, tp); 14096 return (1); 14097 break; 14098 case TCPS_FIN_WAIT_1: 14099 #ifdef TCP_ACCOUNTING 14100 rdstc = get_cyclecount(); 14101 if (rdstc > ts_val) { 14102 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 14103 (rdstc - ts_val)); 14104 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14105 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 14106 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14107 } 14108 } 14109 #endif 14110 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 14111 soisdisconnected(so); 14112 tcp_timer_activate(tp, TT_2MSL, 14113 (tcp_fast_finwait2_recycle ? 14114 tcp_finwait2_timeout : 14115 TP_MAXIDLE(tp))); 14116 } 14117 tcp_state_change(tp, TCPS_FIN_WAIT_2); 14118 break; 14119 default: 14120 break; 14121 } 14122 } 14123 if (rack->r_fast_output) { 14124 /* 14125 * We re doing fast output.. can we expand that? 14126 */ 14127 rack_gain_for_fastoutput(rack, tp, so, acked_amount); 14128 } 14129 #ifdef TCP_ACCOUNTING 14130 rdstc = get_cyclecount(); 14131 if (rdstc > ts_val) { 14132 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 14133 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14134 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 14135 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14136 } 14137 } 14138 14139 } else if (win_up_req) { 14140 rdstc = get_cyclecount(); 14141 if (rdstc > ts_val) { 14142 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val)); 14143 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14144 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val); 14145 } 14146 } 14147 #endif 14148 } 14149 /* Now is there a next packet, if so we are done */ 14150 m_freem(m); 14151 did_out = 0; 14152 if (nxt_pkt) { 14153 #ifdef TCP_ACCOUNTING 14154 sched_unpin(); 14155 #endif 14156 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs); 14157 return (0); 14158 } 14159 rack_handle_might_revert(tp, rack); 14160 ctf_calc_rwin(so, tp); 14161 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14162 send_out_a_rst: 14163 if (tcp_output(tp) < 0) { 14164 #ifdef TCP_ACCOUNTING 14165 sched_unpin(); 14166 #endif 14167 return (1); 14168 } 14169 did_out = 1; 14170 } 14171 rack_free_trim(rack); 14172 #ifdef TCP_ACCOUNTING 14173 sched_unpin(); 14174 #endif 14175 rack_timer_audit(tp, rack, &so->so_snd); 14176 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs); 14177 return (0); 14178 } 14179 14180 14181 static int 14182 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, 14183 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, 14184 int32_t nxt_pkt, struct timeval *tv) 14185 { 14186 #ifdef TCP_ACCOUNTING 14187 uint64_t ts_val; 14188 #endif 14189 int32_t thflags, retval, did_out = 0; 14190 int32_t way_out = 0; 14191 /* 14192 * cts - is the current time from tv (caller gets ts) in microseconds. 14193 * ms_cts - is the current time from tv in milliseconds. 14194 * us_cts - is the time that LRO or hardware actually got the packet in microseconds. 14195 */ 14196 uint32_t cts, us_cts, ms_cts; 14197 uint32_t tiwin; 14198 struct timespec ts; 14199 struct tcpopt to; 14200 struct tcp_rack *rack; 14201 struct rack_sendmap *rsm; 14202 int32_t prev_state = 0; 14203 #ifdef TCP_ACCOUNTING 14204 int ack_val_set = 0xf; 14205 #endif 14206 int nsegs; 14207 /* 14208 * tv passed from common code is from either M_TSTMP_LRO or 14209 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. 14210 */ 14211 rack = (struct tcp_rack *)tp->t_fb_ptr; 14212 if (m->m_flags & M_ACKCMP) { 14213 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv)); 14214 } 14215 if (m->m_flags & M_ACKCMP) { 14216 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp); 14217 } 14218 cts = tcp_tv_to_usectick(tv); 14219 ms_cts = tcp_tv_to_mssectick(tv); 14220 nsegs = m->m_pkthdr.lro_nsegs; 14221 counter_u64_add(rack_proc_non_comp_ack, 1); 14222 thflags = tcp_get_flags(th); 14223 #ifdef TCP_ACCOUNTING 14224 sched_pin(); 14225 if (thflags & TH_ACK) 14226 ts_val = get_cyclecount(); 14227 #endif 14228 if ((m->m_flags & M_TSTMP) || 14229 (m->m_flags & M_TSTMP_LRO)) { 14230 mbuf_tstmp2timespec(m, &ts); 14231 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 14232 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 14233 } else 14234 rack->r_ctl.act_rcv_time = *tv; 14235 kern_prefetch(rack, &prev_state); 14236 prev_state = 0; 14237 /* 14238 * Unscale the window into a 32-bit value. For the SYN_SENT state 14239 * the scale is zero. 14240 */ 14241 tiwin = th->th_win << tp->snd_scale; 14242 #ifdef TCP_ACCOUNTING 14243 if (thflags & TH_ACK) { 14244 /* 14245 * We have a tradeoff here. We can either do what we are 14246 * doing i.e. pinning to this CPU and then doing the accounting 14247 * <or> we could do a critical enter, setup the rdtsc and cpu 14248 * as in below, and then validate we are on the same CPU on 14249 * exit. I have choosen to not do the critical enter since 14250 * that often will gain you a context switch, and instead lock 14251 * us (line above this if) to the same CPU with sched_pin(). This 14252 * means we may be context switched out for a higher priority 14253 * interupt but we won't be moved to another CPU. 14254 * 14255 * If this occurs (which it won't very often since we most likely 14256 * are running this code in interupt context and only a higher 14257 * priority will bump us ... clock?) we will falsely add in 14258 * to the time the interupt processing time plus the ack processing 14259 * time. This is ok since its a rare event. 14260 */ 14261 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin, 14262 ctf_fixed_maxseg(tp)); 14263 } 14264 #endif 14265 /* 14266 * Parse options on any incoming segment. 14267 */ 14268 memset(&to, 0, sizeof(to)); 14269 tcp_dooptions(&to, (u_char *)(th + 1), 14270 (th->th_off << 2) - sizeof(struct tcphdr), 14271 (thflags & TH_SYN) ? TO_SYN : 0); 14272 NET_EPOCH_ASSERT(); 14273 INP_WLOCK_ASSERT(tp->t_inpcb); 14274 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 14275 __func__)); 14276 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 14277 __func__)); 14278 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 14279 (tp->t_flags & TF_GPUTINPROG)) { 14280 /* 14281 * We have a goodput in progress 14282 * and we have entered a late state. 14283 * Do we have enough data in the sb 14284 * to handle the GPUT request? 14285 */ 14286 uint32_t bytes; 14287 14288 bytes = tp->gput_ack - tp->gput_seq; 14289 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 14290 bytes += tp->gput_seq - tp->snd_una; 14291 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 14292 /* 14293 * There are not enough bytes in the socket 14294 * buffer that have been sent to cover this 14295 * measurement. Cancel it. 14296 */ 14297 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 14298 rack->r_ctl.rc_gp_srtt /*flex1*/, 14299 tp->gput_seq, 14300 0, 0, 18, __LINE__, NULL, 0); 14301 tp->t_flags &= ~TF_GPUTINPROG; 14302 } 14303 } 14304 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 14305 union tcp_log_stackspecific log; 14306 struct timeval ltv; 14307 #ifdef NETFLIX_HTTP_LOGGING 14308 struct http_sendfile_track *http_req; 14309 14310 if (SEQ_GT(th->th_ack, tp->snd_una)) { 14311 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1)); 14312 } else { 14313 http_req = tcp_http_find_req_for_seq(tp, th->th_ack); 14314 } 14315 #endif 14316 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14317 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 14318 if (rack->rack_no_prr == 0) 14319 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 14320 else 14321 log.u_bbr.flex1 = 0; 14322 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 14323 log.u_bbr.use_lt_bw <<= 1; 14324 log.u_bbr.use_lt_bw |= rack->r_might_revert; 14325 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 14326 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14327 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 14328 log.u_bbr.flex3 = m->m_flags; 14329 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 14330 log.u_bbr.lost = thflags; 14331 log.u_bbr.pacing_gain = 0x1; 14332 #ifdef TCP_ACCOUNTING 14333 log.u_bbr.cwnd_gain = ack_val_set; 14334 #endif 14335 log.u_bbr.flex7 = 2; 14336 if (m->m_flags & M_TSTMP) { 14337 /* Record the hardware timestamp if present */ 14338 mbuf_tstmp2timespec(m, &ts); 14339 ltv.tv_sec = ts.tv_sec; 14340 ltv.tv_usec = ts.tv_nsec / 1000; 14341 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 14342 } else if (m->m_flags & M_TSTMP_LRO) { 14343 /* Record the LRO the arrival timestamp */ 14344 mbuf_tstmp2timespec(m, &ts); 14345 ltv.tv_sec = ts.tv_sec; 14346 ltv.tv_usec = ts.tv_nsec / 1000; 14347 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 14348 } 14349 log.u_bbr.timeStamp = tcp_get_usecs(<v); 14350 /* Log the rcv time */ 14351 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; 14352 #ifdef NETFLIX_HTTP_LOGGING 14353 log.u_bbr.applimited = tp->t_http_closed; 14354 log.u_bbr.applimited <<= 8; 14355 log.u_bbr.applimited |= tp->t_http_open; 14356 log.u_bbr.applimited <<= 8; 14357 log.u_bbr.applimited |= tp->t_http_req; 14358 if (http_req) { 14359 /* Copy out any client req info */ 14360 /* seconds */ 14361 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 14362 /* useconds */ 14363 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 14364 log.u_bbr.rttProp = http_req->timestamp; 14365 log.u_bbr.cur_del_rate = http_req->start; 14366 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 14367 log.u_bbr.flex8 |= 1; 14368 } else { 14369 log.u_bbr.flex8 |= 2; 14370 log.u_bbr.bw_inuse = http_req->end; 14371 } 14372 log.u_bbr.flex6 = http_req->start_seq; 14373 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 14374 log.u_bbr.flex8 |= 4; 14375 log.u_bbr.epoch = http_req->end_seq; 14376 } 14377 } 14378 #endif 14379 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 14380 tlen, &log, true, <v); 14381 } 14382 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 14383 way_out = 4; 14384 retval = 0; 14385 m_freem(m); 14386 goto done_with_input; 14387 } 14388 /* 14389 * If a segment with the ACK-bit set arrives in the SYN-SENT state 14390 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. 14391 */ 14392 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 14393 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 14394 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 14395 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14396 #ifdef TCP_ACCOUNTING 14397 sched_unpin(); 14398 #endif 14399 return (1); 14400 } 14401 /* 14402 * If timestamps were negotiated during SYN/ACK and a 14403 * segment without a timestamp is received, silently drop 14404 * the segment, unless it is a RST segment or missing timestamps are 14405 * tolerated. 14406 * See section 3.2 of RFC 7323. 14407 */ 14408 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) && 14409 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) { 14410 way_out = 5; 14411 retval = 0; 14412 m_freem(m); 14413 goto done_with_input; 14414 } 14415 14416 /* 14417 * Segment received on connection. Reset idle time and keep-alive 14418 * timer. XXX: This should be done after segment validation to 14419 * ignore broken/spoofed segs. 14420 */ 14421 if (tp->t_idle_reduce && 14422 (tp->snd_max == tp->snd_una) && 14423 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 14424 counter_u64_add(rack_input_idle_reduces, 1); 14425 rack_cc_after_idle(rack, tp); 14426 } 14427 tp->t_rcvtime = ticks; 14428 #ifdef STATS 14429 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 14430 #endif 14431 if (tiwin > rack->r_ctl.rc_high_rwnd) 14432 rack->r_ctl.rc_high_rwnd = tiwin; 14433 /* 14434 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move 14435 * this to occur after we've validated the segment. 14436 */ 14437 if (tcp_ecn_input_segment(tp, thflags, iptos)) 14438 rack_cong_signal(tp, CC_ECN, th->th_ack); 14439 14440 /* 14441 * If echoed timestamp is later than the current time, fall back to 14442 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 14443 * were used when this connection was established. 14444 */ 14445 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 14446 to.to_tsecr -= tp->ts_offset; 14447 if (TSTMP_GT(to.to_tsecr, ms_cts)) 14448 to.to_tsecr = 0; 14449 } 14450 14451 /* 14452 * If its the first time in we need to take care of options and 14453 * verify we can do SACK for rack! 14454 */ 14455 if (rack->r_state == 0) { 14456 /* Should be init'd by rack_init() */ 14457 KASSERT(rack->rc_inp != NULL, 14458 ("%s: rack->rc_inp unexpectedly NULL", __func__)); 14459 if (rack->rc_inp == NULL) { 14460 rack->rc_inp = tp->t_inpcb; 14461 } 14462 14463 /* 14464 * Process options only when we get SYN/ACK back. The SYN 14465 * case for incoming connections is handled in tcp_syncache. 14466 * According to RFC1323 the window field in a SYN (i.e., a 14467 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX 14468 * this is traditional behavior, may need to be cleaned up. 14469 */ 14470 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 14471 /* Handle parallel SYN for ECN */ 14472 tcp_ecn_input_parallel_syn(tp, thflags, iptos); 14473 if ((to.to_flags & TOF_SCALE) && 14474 (tp->t_flags & TF_REQ_SCALE)) { 14475 tp->t_flags |= TF_RCVD_SCALE; 14476 tp->snd_scale = to.to_wscale; 14477 } else 14478 tp->t_flags &= ~TF_REQ_SCALE; 14479 /* 14480 * Initial send window. It will be updated with the 14481 * next incoming segment to the scaled value. 14482 */ 14483 tp->snd_wnd = th->th_win; 14484 rack_validate_fo_sendwin_up(tp, rack); 14485 if ((to.to_flags & TOF_TS) && 14486 (tp->t_flags & TF_REQ_TSTMP)) { 14487 tp->t_flags |= TF_RCVD_TSTMP; 14488 tp->ts_recent = to.to_tsval; 14489 tp->ts_recent_age = cts; 14490 } else 14491 tp->t_flags &= ~TF_REQ_TSTMP; 14492 if (to.to_flags & TOF_MSS) { 14493 tcp_mss(tp, to.to_mss); 14494 } 14495 if ((tp->t_flags & TF_SACK_PERMIT) && 14496 (to.to_flags & TOF_SACKPERM) == 0) 14497 tp->t_flags &= ~TF_SACK_PERMIT; 14498 if (IS_FASTOPEN(tp->t_flags)) { 14499 if (to.to_flags & TOF_FASTOPEN) { 14500 uint16_t mss; 14501 14502 if (to.to_flags & TOF_MSS) 14503 mss = to.to_mss; 14504 else 14505 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 14506 mss = TCP6_MSS; 14507 else 14508 mss = TCP_MSS; 14509 tcp_fastopen_update_cache(tp, mss, 14510 to.to_tfo_len, to.to_tfo_cookie); 14511 } else 14512 tcp_fastopen_disable_path(tp); 14513 } 14514 } 14515 /* 14516 * At this point we are at the initial call. Here we decide 14517 * if we are doing RACK or not. We do this by seeing if 14518 * TF_SACK_PERMIT is set and the sack-not-required is clear. 14519 * The code now does do dup-ack counting so if you don't 14520 * switch back you won't get rack & TLP, but you will still 14521 * get this stack. 14522 */ 14523 14524 if ((rack_sack_not_required == 0) && 14525 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 14526 tcp_switch_back_to_default(tp); 14527 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, 14528 tlen, iptos); 14529 #ifdef TCP_ACCOUNTING 14530 sched_unpin(); 14531 #endif 14532 return (1); 14533 } 14534 tcp_set_hpts(tp->t_inpcb); 14535 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); 14536 } 14537 if (thflags & TH_FIN) 14538 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 14539 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 14540 if ((rack->rc_gp_dyn_mul) && 14541 (rack->use_fixed_rate == 0) && 14542 (rack->rc_always_pace)) { 14543 /* Check in on probertt */ 14544 rack_check_probe_rtt(rack, us_cts); 14545 } 14546 rack_clear_rate_sample(rack); 14547 if ((rack->forced_ack) && 14548 ((tcp_get_flags(th) & TH_RST) == 0)) { 14549 rack_handle_probe_response(rack, tiwin, us_cts); 14550 } 14551 /* 14552 * This is the one exception case where we set the rack state 14553 * always. All other times (timers etc) we must have a rack-state 14554 * set (so we assure we have done the checks above for SACK). 14555 */ 14556 rack->r_ctl.rc_rcvtime = cts; 14557 if (rack->r_state != tp->t_state) 14558 rack_set_state(tp, rack); 14559 if (SEQ_GT(th->th_ack, tp->snd_una) && 14560 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL) 14561 kern_prefetch(rsm, &prev_state); 14562 prev_state = rack->r_state; 14563 retval = (*rack->r_substate) (m, th, so, 14564 tp, &to, drop_hdrlen, 14565 tlen, tiwin, thflags, nxt_pkt, iptos); 14566 #ifdef INVARIANTS 14567 if ((retval == 0) && 14568 (tp->t_inpcb == NULL)) { 14569 panic("retval:%d tp:%p t_inpcb:NULL state:%d", 14570 retval, tp, prev_state); 14571 } 14572 #endif 14573 if (retval == 0) { 14574 /* 14575 * If retval is 1 the tcb is unlocked and most likely the tp 14576 * is gone. 14577 */ 14578 INP_WLOCK_ASSERT(tp->t_inpcb); 14579 if ((rack->rc_gp_dyn_mul) && 14580 (rack->rc_always_pace) && 14581 (rack->use_fixed_rate == 0) && 14582 rack->in_probe_rtt && 14583 (rack->r_ctl.rc_time_probertt_starts == 0)) { 14584 /* 14585 * If we are going for target, lets recheck before 14586 * we output. 14587 */ 14588 rack_check_probe_rtt(rack, us_cts); 14589 } 14590 if (rack->set_pacing_done_a_iw == 0) { 14591 /* How much has been acked? */ 14592 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { 14593 /* We have enough to set in the pacing segment size */ 14594 rack->set_pacing_done_a_iw = 1; 14595 rack_set_pace_segments(tp, rack, __LINE__, NULL); 14596 } 14597 } 14598 tcp_rack_xmit_timer_commit(rack, tp); 14599 #ifdef TCP_ACCOUNTING 14600 /* 14601 * If we set the ack_val_se to what ack processing we are doing 14602 * we also want to track how many cycles we burned. Note 14603 * the bits after tcp_output we let be "free". This is because 14604 * we are also tracking the tcp_output times as well. Note the 14605 * use of 0xf here since we only have 11 counter (0 - 0xa) and 14606 * 0xf cannot be returned and is what we initialize it too to 14607 * indicate we are not doing the tabulations. 14608 */ 14609 if (ack_val_set != 0xf) { 14610 uint64_t crtsc; 14611 14612 crtsc = get_cyclecount(); 14613 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14614 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14615 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val); 14616 } 14617 } 14618 #endif 14619 if (nxt_pkt == 0) { 14620 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14621 do_output_now: 14622 if (tcp_output(tp) < 0) 14623 return (1); 14624 did_out = 1; 14625 } 14626 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 14627 rack_free_trim(rack); 14628 } 14629 /* Update any rounds needed */ 14630 if (SEQ_GEQ(tp->snd_una, rack->r_ctl.roundends)) { 14631 rack->r_ctl.current_round++; 14632 rack->r_ctl.roundends = tp->snd_max; 14633 if (CC_ALGO(tp)->newround != NULL) { 14634 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 14635 } 14636 } 14637 if ((nxt_pkt == 0) && 14638 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && 14639 (SEQ_GT(tp->snd_max, tp->snd_una) || 14640 (tp->t_flags & TF_DELACK) || 14641 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 14642 (tp->t_state <= TCPS_CLOSING)))) { 14643 /* We could not send (probably in the hpts but stopped the timer earlier)? */ 14644 if ((tp->snd_max == tp->snd_una) && 14645 ((tp->t_flags & TF_DELACK) == 0) && 14646 (tcp_in_hpts(rack->rc_inp)) && 14647 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 14648 /* keep alive not needed if we are hptsi output yet */ 14649 ; 14650 } else { 14651 int late = 0; 14652 if (tcp_in_hpts(rack->rc_inp)) { 14653 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 14654 us_cts = tcp_get_usecs(NULL); 14655 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 14656 rack->r_early = 1; 14657 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 14658 } else 14659 late = 1; 14660 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 14661 } 14662 tcp_hpts_remove(tp->t_inpcb); 14663 } 14664 if (late && (did_out == 0)) { 14665 /* 14666 * We are late in the sending 14667 * and we did not call the output 14668 * (this probably should not happen). 14669 */ 14670 goto do_output_now; 14671 } 14672 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 14673 } 14674 way_out = 1; 14675 } else if (nxt_pkt == 0) { 14676 /* Do we have the correct timer running? */ 14677 rack_timer_audit(tp, rack, &so->so_snd); 14678 way_out = 2; 14679 } 14680 done_with_input: 14681 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs)); 14682 if (did_out) 14683 rack->r_wanted_output = 0; 14684 #ifdef INVARIANTS 14685 if (tp->t_inpcb == NULL) { 14686 panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", 14687 did_out, 14688 retval, tp, prev_state); 14689 } 14690 #endif 14691 #ifdef TCP_ACCOUNTING 14692 } else { 14693 /* 14694 * Track the time (see above). 14695 */ 14696 if (ack_val_set != 0xf) { 14697 uint64_t crtsc; 14698 14699 crtsc = get_cyclecount(); 14700 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14701 /* 14702 * Note we *DO NOT* increment the per-tcb counters since 14703 * in the else the TP may be gone!! 14704 */ 14705 } 14706 #endif 14707 } 14708 #ifdef TCP_ACCOUNTING 14709 sched_unpin(); 14710 #endif 14711 return (retval); 14712 } 14713 14714 void 14715 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 14716 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) 14717 { 14718 struct timeval tv; 14719 14720 /* First lets see if we have old packets */ 14721 if (tp->t_in_pkt) { 14722 if (ctf_do_queued_segments(so, tp, 1)) { 14723 m_freem(m); 14724 return; 14725 } 14726 } 14727 if (m->m_flags & M_TSTMP_LRO) { 14728 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; 14729 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; 14730 } else { 14731 /* Should not be should we kassert instead? */ 14732 tcp_get_usecs(&tv); 14733 } 14734 if (rack_do_segment_nounlock(m, th, so, tp, 14735 drop_hdrlen, tlen, iptos, 0, &tv) == 0) { 14736 INP_WUNLOCK(tp->t_inpcb); 14737 } 14738 } 14739 14740 struct rack_sendmap * 14741 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) 14742 { 14743 struct rack_sendmap *rsm = NULL; 14744 int32_t idx; 14745 uint32_t srtt = 0, thresh = 0, ts_low = 0; 14746 14747 /* Return the next guy to be re-transmitted */ 14748 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 14749 return (NULL); 14750 } 14751 if (tp->t_flags & TF_SENTFIN) { 14752 /* retran the end FIN? */ 14753 return (NULL); 14754 } 14755 /* ok lets look at this one */ 14756 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 14757 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { 14758 goto check_it; 14759 } 14760 rsm = rack_find_lowest_rsm(rack); 14761 if (rsm == NULL) { 14762 return (NULL); 14763 } 14764 check_it: 14765 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) && 14766 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 14767 /* 14768 * No sack so we automatically do the 3 strikes and 14769 * retransmit (no rack timer would be started). 14770 */ 14771 14772 return (rsm); 14773 } 14774 if (rsm->r_flags & RACK_ACKED) { 14775 return (NULL); 14776 } 14777 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && 14778 (rsm->r_dupack < DUP_ACK_THRESHOLD)) { 14779 /* Its not yet ready */ 14780 return (NULL); 14781 } 14782 srtt = rack_grab_rtt(tp, rack); 14783 idx = rsm->r_rtr_cnt - 1; 14784 ts_low = (uint32_t)rsm->r_tim_lastsent[idx]; 14785 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 14786 if ((tsused == ts_low) || 14787 (TSTMP_LT(tsused, ts_low))) { 14788 /* No time since sending */ 14789 return (NULL); 14790 } 14791 if ((tsused - ts_low) < thresh) { 14792 /* It has not been long enough yet */ 14793 return (NULL); 14794 } 14795 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 14796 ((rsm->r_flags & RACK_SACK_PASSED) && 14797 (rack->sack_attack_disable == 0))) { 14798 /* 14799 * We have passed the dup-ack threshold <or> 14800 * a SACK has indicated this is missing. 14801 * Note that if you are a declared attacker 14802 * it is only the dup-ack threshold that 14803 * will cause retransmits. 14804 */ 14805 /* log retransmit reason */ 14806 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); 14807 rack->r_fast_output = 0; 14808 return (rsm); 14809 } 14810 return (NULL); 14811 } 14812 14813 static void 14814 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 14815 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, 14816 int line, struct rack_sendmap *rsm, uint8_t quality) 14817 { 14818 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 14819 union tcp_log_stackspecific log; 14820 struct timeval tv; 14821 14822 memset(&log, 0, sizeof(log)); 14823 log.u_bbr.flex1 = slot; 14824 log.u_bbr.flex2 = len; 14825 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; 14826 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; 14827 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; 14828 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; 14829 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data; 14830 log.u_bbr.use_lt_bw <<= 1; 14831 log.u_bbr.use_lt_bw |= rack->r_late; 14832 log.u_bbr.use_lt_bw <<= 1; 14833 log.u_bbr.use_lt_bw |= rack->r_early; 14834 log.u_bbr.use_lt_bw <<= 1; 14835 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 14836 log.u_bbr.use_lt_bw <<= 1; 14837 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 14838 log.u_bbr.use_lt_bw <<= 1; 14839 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 14840 log.u_bbr.use_lt_bw <<= 1; 14841 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 14842 log.u_bbr.use_lt_bw <<= 1; 14843 log.u_bbr.use_lt_bw |= rack->gp_ready; 14844 log.u_bbr.pkt_epoch = line; 14845 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed; 14846 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early; 14847 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; 14848 log.u_bbr.bw_inuse = bw_est; 14849 log.u_bbr.delRate = bw; 14850 if (rack->r_ctl.gp_bw == 0) 14851 log.u_bbr.cur_del_rate = 0; 14852 else 14853 log.u_bbr.cur_del_rate = rack_get_bw(rack); 14854 log.u_bbr.rttProp = len_time; 14855 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; 14856 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; 14857 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 14858 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { 14859 /* We are in slow start */ 14860 log.u_bbr.flex7 = 1; 14861 } else { 14862 /* we are on congestion avoidance */ 14863 log.u_bbr.flex7 = 0; 14864 } 14865 log.u_bbr.flex8 = method; 14866 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14867 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14868 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; 14869 log.u_bbr.cwnd_gain <<= 1; 14870 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 14871 log.u_bbr.cwnd_gain <<= 1; 14872 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 14873 log.u_bbr.bbr_substate = quality; 14874 TCP_LOG_EVENTP(rack->rc_tp, NULL, 14875 &rack->rc_inp->inp_socket->so_rcv, 14876 &rack->rc_inp->inp_socket->so_snd, 14877 BBR_LOG_HPTSI_CALC, 0, 14878 0, &log, false, &tv); 14879 } 14880 } 14881 14882 static uint32_t 14883 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) 14884 { 14885 uint32_t new_tso, user_max; 14886 14887 user_max = rack->rc_user_set_max_segs * mss; 14888 if (rack->rc_force_max_seg) { 14889 return (user_max); 14890 } 14891 if (rack->use_fixed_rate && 14892 ((rack->r_ctl.crte == NULL) || 14893 (bw != rack->r_ctl.crte->rate))) { 14894 /* Use the user mss since we are not exactly matched */ 14895 return (user_max); 14896 } 14897 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL); 14898 if (new_tso > user_max) 14899 new_tso = user_max; 14900 return (new_tso); 14901 } 14902 14903 static int32_t 14904 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced) 14905 { 14906 uint64_t lentim, fill_bw; 14907 14908 /* Lets first see if we are full, if so continue with normal rate */ 14909 rack->r_via_fill_cw = 0; 14910 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) 14911 return (slot); 14912 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) 14913 return (slot); 14914 if (rack->r_ctl.rc_last_us_rtt == 0) 14915 return (slot); 14916 if (rack->rc_pace_fill_if_rttin_range && 14917 (rack->r_ctl.rc_last_us_rtt >= 14918 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { 14919 /* The rtt is huge, N * smallest, lets not fill */ 14920 return (slot); 14921 } 14922 /* 14923 * first lets calculate the b/w based on the last us-rtt 14924 * and the sndwnd. 14925 */ 14926 fill_bw = rack->r_ctl.cwnd_to_use; 14927 /* Take the rwnd if its smaller */ 14928 if (fill_bw > rack->rc_tp->snd_wnd) 14929 fill_bw = rack->rc_tp->snd_wnd; 14930 if (rack->r_fill_less_agg) { 14931 /* 14932 * Now take away the inflight (this will reduce our 14933 * aggressiveness and yeah, if we get that much out in 1RTT 14934 * we will have had acks come back and still be behind). 14935 */ 14936 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14937 } 14938 /* Now lets make it into a b/w */ 14939 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; 14940 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 14941 /* We are below the min b/w */ 14942 if (non_paced) 14943 *rate_wanted = fill_bw; 14944 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted)) 14945 return (slot); 14946 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap)) 14947 fill_bw = rack->r_ctl.bw_rate_cap; 14948 rack->r_via_fill_cw = 1; 14949 if (rack->r_rack_hw_rate_caps && 14950 (rack->r_ctl.crte != NULL)) { 14951 uint64_t high_rate; 14952 14953 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 14954 if (fill_bw > high_rate) { 14955 /* We are capping bw at the highest rate table entry */ 14956 if (*rate_wanted > high_rate) { 14957 /* The original rate was also capped */ 14958 rack->r_via_fill_cw = 0; 14959 } 14960 rack_log_hdwr_pacing(rack, 14961 fill_bw, high_rate, __LINE__, 14962 0, 3); 14963 fill_bw = high_rate; 14964 if (capped) 14965 *capped = 1; 14966 } 14967 } else if ((rack->r_ctl.crte == NULL) && 14968 (rack->rack_hdrw_pacing == 0) && 14969 (rack->rack_hdw_pace_ena) && 14970 rack->r_rack_hw_rate_caps && 14971 (rack->rack_attempt_hdwr_pace == 0) && 14972 (rack->rc_inp->inp_route.ro_nh != NULL) && 14973 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 14974 /* 14975 * Ok we may have a first attempt that is greater than our top rate 14976 * lets check. 14977 */ 14978 uint64_t high_rate; 14979 14980 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 14981 if (high_rate) { 14982 if (fill_bw > high_rate) { 14983 fill_bw = high_rate; 14984 if (capped) 14985 *capped = 1; 14986 } 14987 } 14988 } 14989 /* 14990 * Ok fill_bw holds our mythical b/w to fill the cwnd 14991 * in a rtt, what does that time wise equate too? 14992 */ 14993 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; 14994 lentim /= fill_bw; 14995 *rate_wanted = fill_bw; 14996 if (non_paced || (lentim < slot)) { 14997 rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 14998 0, lentim, 12, __LINE__, NULL, 0); 14999 return ((int32_t)lentim); 15000 } else 15001 return (slot); 15002 } 15003 15004 static int32_t 15005 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) 15006 { 15007 uint64_t srtt; 15008 int32_t slot = 0; 15009 int can_start_hw_pacing = 1; 15010 int err; 15011 15012 if (rack->rc_always_pace == 0) { 15013 /* 15014 * We use the most optimistic possible cwnd/srtt for 15015 * sending calculations. This will make our 15016 * calculation anticipate getting more through 15017 * quicker then possible. But thats ok we don't want 15018 * the peer to have a gap in data sending. 15019 */ 15020 uint64_t cwnd, tr_perms = 0; 15021 int32_t reduce = 0; 15022 15023 old_method: 15024 /* 15025 * We keep no precise pacing with the old method 15026 * instead we use the pacer to mitigate bursts. 15027 */ 15028 if (rack->r_ctl.rc_rack_min_rtt) 15029 srtt = rack->r_ctl.rc_rack_min_rtt; 15030 else 15031 srtt = max(tp->t_srtt, 1); 15032 if (rack->r_ctl.rc_rack_largest_cwnd) 15033 cwnd = rack->r_ctl.rc_rack_largest_cwnd; 15034 else 15035 cwnd = rack->r_ctl.cwnd_to_use; 15036 /* Inflate cwnd by 1000 so srtt of usecs is in ms */ 15037 tr_perms = (cwnd * 1000) / srtt; 15038 if (tr_perms == 0) { 15039 tr_perms = ctf_fixed_maxseg(tp); 15040 } 15041 /* 15042 * Calculate how long this will take to drain, if 15043 * the calculation comes out to zero, thats ok we 15044 * will use send_a_lot to possibly spin around for 15045 * more increasing tot_len_this_send to the point 15046 * that its going to require a pace, or we hit the 15047 * cwnd. Which in that case we are just waiting for 15048 * a ACK. 15049 */ 15050 slot = len / tr_perms; 15051 /* Now do we reduce the time so we don't run dry? */ 15052 if (slot && rack_slot_reduction) { 15053 reduce = (slot / rack_slot_reduction); 15054 if (reduce < slot) { 15055 slot -= reduce; 15056 } else 15057 slot = 0; 15058 } 15059 slot *= HPTS_USEC_IN_MSEC; 15060 if (rack->rc_pace_to_cwnd) { 15061 uint64_t rate_wanted = 0; 15062 15063 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1); 15064 rack->rc_ack_can_sendout_data = 1; 15065 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0); 15066 } else 15067 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0); 15068 } else { 15069 uint64_t bw_est, res, lentim, rate_wanted; 15070 uint32_t orig_val, segs, oh; 15071 int capped = 0; 15072 int prev_fill; 15073 15074 if ((rack->r_rr_config == 1) && rsm) { 15075 return (rack->r_ctl.rc_min_to); 15076 } 15077 if (rack->use_fixed_rate) { 15078 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); 15079 } else if ((rack->r_ctl.init_rate == 0) && 15080 #ifdef NETFLIX_PEAKRATE 15081 (rack->rc_tp->t_maxpeakrate == 0) && 15082 #endif 15083 (rack->r_ctl.gp_bw == 0)) { 15084 /* no way to yet do an estimate */ 15085 bw_est = rate_wanted = 0; 15086 } else { 15087 bw_est = rack_get_bw(rack); 15088 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped); 15089 } 15090 if ((bw_est == 0) || (rate_wanted == 0) || 15091 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) { 15092 /* 15093 * No way yet to make a b/w estimate or 15094 * our raise is set incorrectly. 15095 */ 15096 goto old_method; 15097 } 15098 /* We need to account for all the overheads */ 15099 segs = (len + segsiz - 1) / segsiz; 15100 /* 15101 * We need the diff between 1514 bytes (e-mtu with e-hdr) 15102 * and how much data we put in each packet. Yes this 15103 * means we may be off if we are larger than 1500 bytes 15104 * or smaller. But this just makes us more conservative. 15105 */ 15106 if (rack_hw_rate_min && 15107 (bw_est < rack_hw_rate_min)) 15108 can_start_hw_pacing = 0; 15109 if (ETHERNET_SEGMENT_SIZE > segsiz) 15110 oh = ETHERNET_SEGMENT_SIZE - segsiz; 15111 else 15112 oh = 0; 15113 segs *= oh; 15114 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; 15115 res = lentim / rate_wanted; 15116 slot = (uint32_t)res; 15117 orig_val = rack->r_ctl.rc_pace_max_segs; 15118 if (rack->r_ctl.crte == NULL) { 15119 /* 15120 * Only do this if we are not hardware pacing 15121 * since if we are doing hw-pacing below we will 15122 * set make a call after setting up or changing 15123 * the rate. 15124 */ 15125 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 15126 } else if (rack->rc_inp->inp_snd_tag == NULL) { 15127 /* 15128 * We lost our rate somehow, this can happen 15129 * if the interface changed underneath us. 15130 */ 15131 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15132 rack->r_ctl.crte = NULL; 15133 /* Lets re-allow attempting to setup pacing */ 15134 rack->rack_hdrw_pacing = 0; 15135 rack->rack_attempt_hdwr_pace = 0; 15136 rack_log_hdwr_pacing(rack, 15137 rate_wanted, bw_est, __LINE__, 15138 0, 6); 15139 } 15140 /* Did we change the TSO size, if so log it */ 15141 if (rack->r_ctl.rc_pace_max_segs != orig_val) 15142 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0); 15143 prev_fill = rack->r_via_fill_cw; 15144 if ((rack->rc_pace_to_cwnd) && 15145 (capped == 0) && 15146 (rack->use_fixed_rate == 0) && 15147 (rack->in_probe_rtt == 0) && 15148 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) { 15149 /* 15150 * We want to pace at our rate *or* faster to 15151 * fill the cwnd to the max if its not full. 15152 */ 15153 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0); 15154 } 15155 if ((rack->rc_inp->inp_route.ro_nh != NULL) && 15156 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 15157 if ((rack->rack_hdw_pace_ena) && 15158 (can_start_hw_pacing > 0) && 15159 (rack->rack_hdrw_pacing == 0) && 15160 (rack->rack_attempt_hdwr_pace == 0)) { 15161 /* 15162 * Lets attempt to turn on hardware pacing 15163 * if we can. 15164 */ 15165 rack->rack_attempt_hdwr_pace = 1; 15166 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, 15167 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15168 rate_wanted, 15169 RS_PACING_GEQ, 15170 &err, &rack->r_ctl.crte_prev_rate); 15171 if (rack->r_ctl.crte) { 15172 rack->rack_hdrw_pacing = 1; 15173 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz, 15174 0, rack->r_ctl.crte, 15175 NULL); 15176 rack_log_hdwr_pacing(rack, 15177 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15178 err, 0); 15179 rack->r_ctl.last_hw_bw_req = rate_wanted; 15180 } else { 15181 counter_u64_add(rack_hw_pace_init_fail, 1); 15182 } 15183 } else if (rack->rack_hdrw_pacing && 15184 (rack->r_ctl.last_hw_bw_req != rate_wanted)) { 15185 /* Do we need to adjust our rate? */ 15186 const struct tcp_hwrate_limit_table *nrte; 15187 15188 if (rack->r_up_only && 15189 (rate_wanted < rack->r_ctl.crte->rate)) { 15190 /** 15191 * We have four possible states here 15192 * having to do with the previous time 15193 * and this time. 15194 * previous | this-time 15195 * A) 0 | 0 -- fill_cw not in the picture 15196 * B) 1 | 0 -- we were doing a fill-cw but now are not 15197 * C) 1 | 1 -- all rates from fill_cw 15198 * D) 0 | 1 -- we were doing non-fill and now we are filling 15199 * 15200 * For case A, C and D we don't allow a drop. But for 15201 * case B where we now our on our steady rate we do 15202 * allow a drop. 15203 * 15204 */ 15205 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0))) 15206 goto done_w_hdwr; 15207 } 15208 if ((rate_wanted > rack->r_ctl.crte->rate) || 15209 (rate_wanted <= rack->r_ctl.crte_prev_rate)) { 15210 if (rack_hw_rate_to_low && 15211 (bw_est < rack_hw_rate_to_low)) { 15212 /* 15213 * The pacing rate is too low for hardware, but 15214 * do allow hardware pacing to be restarted. 15215 */ 15216 rack_log_hdwr_pacing(rack, 15217 bw_est, rack->r_ctl.crte->rate, __LINE__, 15218 0, 5); 15219 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15220 rack->r_ctl.crte = NULL; 15221 rack->rack_attempt_hdwr_pace = 0; 15222 rack->rack_hdrw_pacing = 0; 15223 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15224 goto done_w_hdwr; 15225 } 15226 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, 15227 rack->rc_tp, 15228 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15229 rate_wanted, 15230 RS_PACING_GEQ, 15231 &err, &rack->r_ctl.crte_prev_rate); 15232 if (nrte == NULL) { 15233 /* Lost the rate */ 15234 rack->rack_hdrw_pacing = 0; 15235 rack->r_ctl.crte = NULL; 15236 rack_log_hdwr_pacing(rack, 15237 rate_wanted, 0, __LINE__, 15238 err, 1); 15239 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15240 counter_u64_add(rack_hw_pace_lost, 1); 15241 } else if (nrte != rack->r_ctl.crte) { 15242 rack->r_ctl.crte = nrte; 15243 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, 15244 segsiz, 0, 15245 rack->r_ctl.crte, 15246 NULL); 15247 rack_log_hdwr_pacing(rack, 15248 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15249 err, 2); 15250 rack->r_ctl.last_hw_bw_req = rate_wanted; 15251 } 15252 } else { 15253 /* We just need to adjust the segment size */ 15254 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15255 rack_log_hdwr_pacing(rack, 15256 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15257 0, 4); 15258 rack->r_ctl.last_hw_bw_req = rate_wanted; 15259 } 15260 } 15261 } 15262 if ((rack->r_ctl.crte != NULL) && 15263 (rack->r_ctl.crte->rate == rate_wanted)) { 15264 /* 15265 * We need to add a extra if the rates 15266 * are exactly matched. The idea is 15267 * we want the software to make sure the 15268 * queue is empty before adding more, this 15269 * gives us N MSS extra pace times where 15270 * N is our sysctl 15271 */ 15272 slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots); 15273 } 15274 done_w_hdwr: 15275 if (rack_limit_time_with_srtt && 15276 (rack->use_fixed_rate == 0) && 15277 #ifdef NETFLIX_PEAKRATE 15278 (rack->rc_tp->t_maxpeakrate == 0) && 15279 #endif 15280 (rack->rack_hdrw_pacing == 0)) { 15281 /* 15282 * Sanity check, we do not allow the pacing delay 15283 * to be longer than the SRTT of the path. If it is 15284 * a slow path, then adding a packet should increase 15285 * the RTT and compensate for this i.e. the srtt will 15286 * be greater so the allowed pacing time will be greater. 15287 * 15288 * Note this restriction is not for where a peak rate 15289 * is set, we are doing fixed pacing or hardware pacing. 15290 */ 15291 if (rack->rc_tp->t_srtt) 15292 srtt = rack->rc_tp->t_srtt; 15293 else 15294 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ 15295 if (srtt < (uint64_t)slot) { 15296 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0); 15297 slot = srtt; 15298 } 15299 } 15300 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0); 15301 } 15302 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) { 15303 /* 15304 * If this rate is seeing enobufs when it 15305 * goes to send then either the nic is out 15306 * of gas or we are mis-estimating the time 15307 * somehow and not letting the queue empty 15308 * completely. Lets add to the pacing time. 15309 */ 15310 int hw_boost_delay; 15311 15312 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult; 15313 if (hw_boost_delay > rack_enobuf_hw_max) 15314 hw_boost_delay = rack_enobuf_hw_max; 15315 else if (hw_boost_delay < rack_enobuf_hw_min) 15316 hw_boost_delay = rack_enobuf_hw_min; 15317 slot += hw_boost_delay; 15318 } 15319 if (slot) 15320 counter_u64_add(rack_calc_nonzero, 1); 15321 else 15322 counter_u64_add(rack_calc_zero, 1); 15323 return (slot); 15324 } 15325 15326 static void 15327 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, 15328 tcp_seq startseq, uint32_t sb_offset) 15329 { 15330 struct rack_sendmap *my_rsm = NULL; 15331 struct rack_sendmap fe; 15332 15333 if (tp->t_state < TCPS_ESTABLISHED) { 15334 /* 15335 * We don't start any measurements if we are 15336 * not at least established. 15337 */ 15338 return; 15339 } 15340 if (tp->t_state >= TCPS_FIN_WAIT_1) { 15341 /* 15342 * We will get no more data into the SB 15343 * this means we need to have the data available 15344 * before we start a measurement. 15345 */ 15346 15347 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < 15348 max(rc_init_window(rack), 15349 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) { 15350 /* Nope not enough data */ 15351 return; 15352 } 15353 } 15354 tp->t_flags |= TF_GPUTINPROG; 15355 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 15356 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 15357 tp->gput_seq = startseq; 15358 rack->app_limited_needs_set = 0; 15359 if (rack->in_probe_rtt) 15360 rack->measure_saw_probe_rtt = 1; 15361 else if ((rack->measure_saw_probe_rtt) && 15362 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 15363 rack->measure_saw_probe_rtt = 0; 15364 if (rack->rc_gp_filled) 15365 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 15366 else { 15367 /* Special case initial measurement */ 15368 struct timeval tv; 15369 15370 tp->gput_ts = tcp_get_usecs(&tv); 15371 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15372 } 15373 /* 15374 * We take a guess out into the future, 15375 * if we have no measurement and no 15376 * initial rate, we measure the first 15377 * initial-windows worth of data to 15378 * speed up getting some GP measurement and 15379 * thus start pacing. 15380 */ 15381 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { 15382 rack->app_limited_needs_set = 1; 15383 tp->gput_ack = startseq + max(rc_init_window(rack), 15384 (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 15385 rack_log_pacing_delay_calc(rack, 15386 tp->gput_seq, 15387 tp->gput_ack, 15388 0, 15389 tp->gput_ts, 15390 rack->r_ctl.rc_app_limited_cnt, 15391 9, 15392 __LINE__, NULL, 0); 15393 return; 15394 } 15395 if (sb_offset) { 15396 /* 15397 * We are out somewhere in the sb 15398 * can we use the already outstanding data? 15399 */ 15400 if (rack->r_ctl.rc_app_limited_cnt == 0) { 15401 /* 15402 * Yes first one is good and in this case 15403 * the tp->gput_ts is correctly set based on 15404 * the last ack that arrived (no need to 15405 * set things up when an ack comes in). 15406 */ 15407 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 15408 if ((my_rsm == NULL) || 15409 (my_rsm->r_rtr_cnt != 1)) { 15410 /* retransmission? */ 15411 goto use_latest; 15412 } 15413 } else { 15414 if (rack->r_ctl.rc_first_appl == NULL) { 15415 /* 15416 * If rc_first_appl is NULL 15417 * then the cnt should be 0. 15418 * This is probably an error, maybe 15419 * a KASSERT would be approprate. 15420 */ 15421 goto use_latest; 15422 } 15423 /* 15424 * If we have a marker pointer to the last one that is 15425 * app limited we can use that, but we need to set 15426 * things up so that when it gets ack'ed we record 15427 * the ack time (if its not already acked). 15428 */ 15429 rack->app_limited_needs_set = 1; 15430 /* 15431 * We want to get to the rsm that is either 15432 * next with space i.e. over 1 MSS or the one 15433 * after that (after the app-limited). 15434 */ 15435 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15436 rack->r_ctl.rc_first_appl); 15437 if (my_rsm) { 15438 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) 15439 /* Have to use the next one */ 15440 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15441 my_rsm); 15442 else { 15443 /* Use after the first MSS of it is acked */ 15444 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); 15445 goto start_set; 15446 } 15447 } 15448 if ((my_rsm == NULL) || 15449 (my_rsm->r_rtr_cnt != 1)) { 15450 /* 15451 * Either its a retransmit or 15452 * the last is the app-limited one. 15453 */ 15454 goto use_latest; 15455 } 15456 } 15457 tp->gput_seq = my_rsm->r_start; 15458 start_set: 15459 if (my_rsm->r_flags & RACK_ACKED) { 15460 /* 15461 * This one has been acked use the arrival ack time 15462 */ 15463 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15464 rack->app_limited_needs_set = 0; 15465 } 15466 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15467 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 15468 rack_log_pacing_delay_calc(rack, 15469 tp->gput_seq, 15470 tp->gput_ack, 15471 (uint64_t)my_rsm, 15472 tp->gput_ts, 15473 rack->r_ctl.rc_app_limited_cnt, 15474 9, 15475 __LINE__, NULL, 0); 15476 return; 15477 } 15478 15479 use_latest: 15480 /* 15481 * We don't know how long we may have been 15482 * idle or if this is the first-send. Lets 15483 * setup the flag so we will trim off 15484 * the first ack'd data so we get a true 15485 * measurement. 15486 */ 15487 rack->app_limited_needs_set = 1; 15488 tp->gput_ack = startseq + rack_get_measure_window(tp, rack); 15489 /* Find this guy so we can pull the send time */ 15490 fe.r_start = startseq; 15491 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 15492 if (my_rsm) { 15493 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15494 if (my_rsm->r_flags & RACK_ACKED) { 15495 /* 15496 * Unlikely since its probably what was 15497 * just transmitted (but I am paranoid). 15498 */ 15499 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15500 rack->app_limited_needs_set = 0; 15501 } 15502 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { 15503 /* This also is unlikely */ 15504 tp->gput_seq = my_rsm->r_start; 15505 } 15506 } else { 15507 /* 15508 * TSNH unless we have some send-map limit, 15509 * and even at that it should not be hitting 15510 * that limit (we should have stopped sending). 15511 */ 15512 struct timeval tv; 15513 15514 microuptime(&tv); 15515 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15516 } 15517 rack_log_pacing_delay_calc(rack, 15518 tp->gput_seq, 15519 tp->gput_ack, 15520 (uint64_t)my_rsm, 15521 tp->gput_ts, 15522 rack->r_ctl.rc_app_limited_cnt, 15523 9, __LINE__, NULL, 0); 15524 } 15525 15526 static inline uint32_t 15527 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, 15528 uint32_t avail, int32_t sb_offset) 15529 { 15530 uint32_t len; 15531 uint32_t sendwin; 15532 15533 if (tp->snd_wnd > cwnd_to_use) 15534 sendwin = cwnd_to_use; 15535 else 15536 sendwin = tp->snd_wnd; 15537 if (ctf_outstanding(tp) >= tp->snd_wnd) { 15538 /* We never want to go over our peers rcv-window */ 15539 len = 0; 15540 } else { 15541 uint32_t flight; 15542 15543 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 15544 if (flight >= sendwin) { 15545 /* 15546 * We have in flight what we are allowed by cwnd (if 15547 * it was rwnd blocking it would have hit above out 15548 * >= tp->snd_wnd). 15549 */ 15550 return (0); 15551 } 15552 len = sendwin - flight; 15553 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { 15554 /* We would send too much (beyond the rwnd) */ 15555 len = tp->snd_wnd - ctf_outstanding(tp); 15556 } 15557 if ((len + sb_offset) > avail) { 15558 /* 15559 * We don't have that much in the SB, how much is 15560 * there? 15561 */ 15562 len = avail - sb_offset; 15563 } 15564 } 15565 return (len); 15566 } 15567 15568 static void 15569 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, 15570 unsigned ipoptlen, int32_t orig_len, int32_t len, int error, 15571 int rsm_is_null, int optlen, int line, uint16_t mode) 15572 { 15573 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15574 union tcp_log_stackspecific log; 15575 struct timeval tv; 15576 15577 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15578 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 15579 log.u_bbr.flex1 = error; 15580 log.u_bbr.flex2 = flags; 15581 log.u_bbr.flex3 = rsm_is_null; 15582 log.u_bbr.flex4 = ipoptlen; 15583 log.u_bbr.flex5 = tp->rcv_numsacks; 15584 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 15585 log.u_bbr.flex7 = optlen; 15586 log.u_bbr.flex8 = rack->r_fsb_inited; 15587 log.u_bbr.applimited = rack->r_fast_output; 15588 log.u_bbr.bw_inuse = rack_get_bw(rack); 15589 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 15590 log.u_bbr.cwnd_gain = mode; 15591 log.u_bbr.pkts_out = orig_len; 15592 log.u_bbr.lt_epoch = len; 15593 log.u_bbr.delivered = line; 15594 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 15595 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15596 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0, 15597 len, &log, false, NULL, NULL, 0, &tv); 15598 } 15599 } 15600 15601 15602 static struct mbuf * 15603 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, 15604 struct rack_fast_send_blk *fsb, 15605 int32_t seglimit, int32_t segsize, int hw_tls) 15606 { 15607 #ifdef KERN_TLS 15608 struct ktls_session *tls, *ntls; 15609 #ifdef INVARIANTS 15610 struct mbuf *start; 15611 #endif 15612 #endif 15613 struct mbuf *m, *n, **np, *smb; 15614 struct mbuf *top; 15615 int32_t off, soff; 15616 int32_t len = *plen; 15617 int32_t fragsize; 15618 int32_t len_cp = 0; 15619 uint32_t mlen, frags; 15620 15621 soff = off = the_off; 15622 smb = m = the_m; 15623 np = ⊤ 15624 top = NULL; 15625 #ifdef KERN_TLS 15626 if (hw_tls && (m->m_flags & M_EXTPG)) 15627 tls = m->m_epg_tls; 15628 else 15629 tls = NULL; 15630 #ifdef INVARIANTS 15631 start = m; 15632 #endif 15633 #endif 15634 while (len > 0) { 15635 if (m == NULL) { 15636 *plen = len_cp; 15637 break; 15638 } 15639 #ifdef KERN_TLS 15640 if (hw_tls) { 15641 if (m->m_flags & M_EXTPG) 15642 ntls = m->m_epg_tls; 15643 else 15644 ntls = NULL; 15645 15646 /* 15647 * Avoid mixing TLS records with handshake 15648 * data or TLS records from different 15649 * sessions. 15650 */ 15651 if (tls != ntls) { 15652 MPASS(m != start); 15653 *plen = len_cp; 15654 break; 15655 } 15656 } 15657 #endif 15658 mlen = min(len, m->m_len - off); 15659 if (seglimit) { 15660 /* 15661 * For M_EXTPG mbufs, add 3 segments 15662 * + 1 in case we are crossing page boundaries 15663 * + 2 in case the TLS hdr/trailer are used 15664 * It is cheaper to just add the segments 15665 * than it is to take the cache miss to look 15666 * at the mbuf ext_pgs state in detail. 15667 */ 15668 if (m->m_flags & M_EXTPG) { 15669 fragsize = min(segsize, PAGE_SIZE); 15670 frags = 3; 15671 } else { 15672 fragsize = segsize; 15673 frags = 0; 15674 } 15675 15676 /* Break if we really can't fit anymore. */ 15677 if ((frags + 1) >= seglimit) { 15678 *plen = len_cp; 15679 break; 15680 } 15681 15682 /* 15683 * Reduce size if you can't copy the whole 15684 * mbuf. If we can't copy the whole mbuf, also 15685 * adjust len so the loop will end after this 15686 * mbuf. 15687 */ 15688 if ((frags + howmany(mlen, fragsize)) >= seglimit) { 15689 mlen = (seglimit - frags - 1) * fragsize; 15690 len = mlen; 15691 *plen = len_cp + len; 15692 } 15693 frags += howmany(mlen, fragsize); 15694 if (frags == 0) 15695 frags++; 15696 seglimit -= frags; 15697 KASSERT(seglimit > 0, 15698 ("%s: seglimit went too low", __func__)); 15699 } 15700 n = m_get(M_NOWAIT, m->m_type); 15701 *np = n; 15702 if (n == NULL) 15703 goto nospace; 15704 n->m_len = mlen; 15705 soff += mlen; 15706 len_cp += n->m_len; 15707 if (m->m_flags & (M_EXT|M_EXTPG)) { 15708 n->m_data = m->m_data + off; 15709 mb_dupcl(n, m); 15710 } else { 15711 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 15712 (u_int)n->m_len); 15713 } 15714 len -= n->m_len; 15715 off = 0; 15716 m = m->m_next; 15717 np = &n->m_next; 15718 if (len || (soff == smb->m_len)) { 15719 /* 15720 * We have more so we move forward or 15721 * we have consumed the entire mbuf and 15722 * len has fell to 0. 15723 */ 15724 soff = 0; 15725 smb = m; 15726 } 15727 15728 } 15729 if (fsb != NULL) { 15730 fsb->m = smb; 15731 fsb->off = soff; 15732 if (smb) { 15733 /* 15734 * Save off the size of the mbuf. We do 15735 * this so that we can recognize when it 15736 * has been trimmed by sbcut() as acks 15737 * come in. 15738 */ 15739 fsb->o_m_len = smb->m_len; 15740 } else { 15741 /* 15742 * This is the case where the next mbuf went to NULL. This 15743 * means with this copy we have sent everything in the sb. 15744 * In theory we could clear the fast_output flag, but lets 15745 * not since its possible that we could get more added 15746 * and acks that call the extend function which would let 15747 * us send more. 15748 */ 15749 fsb->o_m_len = 0; 15750 } 15751 } 15752 return (top); 15753 nospace: 15754 if (top) 15755 m_freem(top); 15756 return (NULL); 15757 15758 } 15759 15760 /* 15761 * This is a copy of m_copym(), taking the TSO segment size/limit 15762 * constraints into account, and advancing the sndptr as it goes. 15763 */ 15764 static struct mbuf * 15765 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, 15766 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff) 15767 { 15768 struct mbuf *m, *n; 15769 int32_t soff; 15770 15771 soff = rack->r_ctl.fsb.off; 15772 m = rack->r_ctl.fsb.m; 15773 if (rack->r_ctl.fsb.o_m_len > m->m_len) { 15774 /* 15775 * The mbuf had the front of it chopped off by an ack 15776 * we need to adjust the soff/off by that difference. 15777 */ 15778 uint32_t delta; 15779 15780 delta = rack->r_ctl.fsb.o_m_len - m->m_len; 15781 soff -= delta; 15782 } else if (rack->r_ctl.fsb.o_m_len < m->m_len) { 15783 /* 15784 * The mbuf was expanded probably by 15785 * a m_compress. Just update o_m_len. 15786 */ 15787 rack->r_ctl.fsb.o_m_len = m->m_len; 15788 } 15789 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff)); 15790 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen)); 15791 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?", 15792 __FUNCTION__, 15793 rack, *plen, m, m->m_len)); 15794 /* Save off the right location before we copy and advance */ 15795 *s_soff = soff; 15796 *s_mb = rack->r_ctl.fsb.m; 15797 n = rack_fo_base_copym(m, soff, plen, 15798 &rack->r_ctl.fsb, 15799 seglimit, segsize, rack->r_ctl.fsb.hw_tls); 15800 return (n); 15801 } 15802 15803 static int 15804 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, 15805 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp) 15806 { 15807 /* 15808 * Enter the fast retransmit path. We are given that a sched_pin is 15809 * in place (if accounting is compliled in) and the cycle count taken 15810 * at the entry is in the ts_val. The concept her is that the rsm 15811 * now holds the mbuf offsets and such so we can directly transmit 15812 * without a lot of overhead, the len field is already set for 15813 * us to prohibit us from sending too much (usually its 1MSS). 15814 */ 15815 struct ip *ip = NULL; 15816 struct udphdr *udp = NULL; 15817 struct tcphdr *th = NULL; 15818 struct mbuf *m = NULL; 15819 struct inpcb *inp; 15820 uint8_t *cpto; 15821 struct tcp_log_buffer *lgb; 15822 #ifdef TCP_ACCOUNTING 15823 uint64_t crtsc; 15824 int cnt_thru = 1; 15825 #endif 15826 struct tcpopt to; 15827 u_char opt[TCP_MAXOLEN]; 15828 uint32_t hdrlen, optlen; 15829 int32_t slot, segsiz, max_val, tso = 0, error, ulen = 0; 15830 uint16_t flags; 15831 uint32_t if_hw_tsomaxsegcount = 0, startseq; 15832 uint32_t if_hw_tsomaxsegsize; 15833 15834 #ifdef INET6 15835 struct ip6_hdr *ip6 = NULL; 15836 15837 if (rack->r_is_v6) { 15838 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 15839 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 15840 } else 15841 #endif /* INET6 */ 15842 { 15843 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 15844 hdrlen = sizeof(struct tcpiphdr); 15845 } 15846 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 15847 goto failed; 15848 } 15849 if (doing_tlp) { 15850 /* Its a TLP add the flag, it may already be there but be sure */ 15851 rsm->r_flags |= RACK_TLP; 15852 } else { 15853 /* If it was a TLP it is not not on this retransmit */ 15854 rsm->r_flags &= ~RACK_TLP; 15855 } 15856 startseq = rsm->r_start; 15857 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 15858 inp = rack->rc_inp; 15859 to.to_flags = 0; 15860 flags = tcp_outflags[tp->t_state]; 15861 if (flags & (TH_SYN|TH_RST)) { 15862 goto failed; 15863 } 15864 if (rsm->r_flags & RACK_HAS_FIN) { 15865 /* We can't send a FIN here */ 15866 goto failed; 15867 } 15868 if (flags & TH_FIN) { 15869 /* We never send a FIN */ 15870 flags &= ~TH_FIN; 15871 } 15872 if (tp->t_flags & TF_RCVD_TSTMP) { 15873 to.to_tsval = ms_cts + tp->ts_offset; 15874 to.to_tsecr = tp->ts_recent; 15875 to.to_flags = TOF_TS; 15876 } 15877 optlen = tcp_addoptions(&to, opt); 15878 hdrlen += optlen; 15879 udp = rack->r_ctl.fsb.udp; 15880 if (udp) 15881 hdrlen += sizeof(struct udphdr); 15882 if (rack->r_ctl.rc_pace_max_segs) 15883 max_val = rack->r_ctl.rc_pace_max_segs; 15884 else if (rack->rc_user_set_max_segs) 15885 max_val = rack->rc_user_set_max_segs * segsiz; 15886 else 15887 max_val = len; 15888 if ((tp->t_flags & TF_TSO) && 15889 V_tcp_do_tso && 15890 (len > segsiz) && 15891 (tp->t_port == 0)) 15892 tso = 1; 15893 #ifdef INET6 15894 if (MHLEN < hdrlen + max_linkhdr) 15895 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 15896 else 15897 #endif 15898 m = m_gethdr(M_NOWAIT, MT_DATA); 15899 if (m == NULL) 15900 goto failed; 15901 m->m_data += max_linkhdr; 15902 m->m_len = hdrlen; 15903 th = rack->r_ctl.fsb.th; 15904 /* Establish the len to send */ 15905 if (len > max_val) 15906 len = max_val; 15907 if ((tso) && (len + optlen > tp->t_maxseg)) { 15908 uint32_t if_hw_tsomax; 15909 int32_t max_len; 15910 15911 /* extract TSO information */ 15912 if_hw_tsomax = tp->t_tsomax; 15913 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 15914 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 15915 /* 15916 * Check if we should limit by maximum payload 15917 * length: 15918 */ 15919 if (if_hw_tsomax != 0) { 15920 /* compute maximum TSO length */ 15921 max_len = (if_hw_tsomax - hdrlen - 15922 max_linkhdr); 15923 if (max_len <= 0) { 15924 goto failed; 15925 } else if (len > max_len) { 15926 len = max_len; 15927 } 15928 } 15929 if (len <= segsiz) { 15930 /* 15931 * In case there are too many small fragments don't 15932 * use TSO: 15933 */ 15934 tso = 0; 15935 } 15936 } else { 15937 tso = 0; 15938 } 15939 if ((tso == 0) && (len > segsiz)) 15940 len = segsiz; 15941 if ((len == 0) || 15942 (len <= MHLEN - hdrlen - max_linkhdr)) { 15943 goto failed; 15944 } 15945 th->th_seq = htonl(rsm->r_start); 15946 th->th_ack = htonl(tp->rcv_nxt); 15947 /* 15948 * The PUSH bit should only be applied 15949 * if the full retransmission is made. If 15950 * we are sending less than this is the 15951 * left hand edge and should not have 15952 * the PUSH bit. 15953 */ 15954 if ((rsm->r_flags & RACK_HAD_PUSH) && 15955 (len == (rsm->r_end - rsm->r_start))) 15956 flags |= TH_PUSH; 15957 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 15958 if (th->th_win == 0) { 15959 tp->t_sndzerowin++; 15960 tp->t_flags |= TF_RXWIN0SENT; 15961 } else 15962 tp->t_flags &= ~TF_RXWIN0SENT; 15963 if (rsm->r_flags & RACK_TLP) { 15964 /* 15965 * TLP should not count in retran count, but 15966 * in its own bin 15967 */ 15968 counter_u64_add(rack_tlp_retran, 1); 15969 counter_u64_add(rack_tlp_retran_bytes, len); 15970 } else { 15971 tp->t_sndrexmitpack++; 15972 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 15973 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 15974 } 15975 #ifdef STATS 15976 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 15977 len); 15978 #endif 15979 if (rsm->m == NULL) 15980 goto failed; 15981 if (rsm->orig_m_len != rsm->m->m_len) { 15982 /* Fix up the orig_m_len and possibly the mbuf offset */ 15983 rack_adjust_orig_mlen(rsm); 15984 } 15985 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls); 15986 if (len <= segsiz) { 15987 /* 15988 * Must have ran out of mbufs for the copy 15989 * shorten it to no longer need tso. Lets 15990 * not put on sendalot since we are low on 15991 * mbufs. 15992 */ 15993 tso = 0; 15994 } 15995 if ((m->m_next == NULL) || (len <= 0)){ 15996 goto failed; 15997 } 15998 if (udp) { 15999 if (rack->r_is_v6) 16000 ulen = hdrlen + len - sizeof(struct ip6_hdr); 16001 else 16002 ulen = hdrlen + len - sizeof(struct ip); 16003 udp->uh_ulen = htons(ulen); 16004 } 16005 m->m_pkthdr.rcvif = (struct ifnet *)0; 16006 if (TCPS_HAVERCVDSYN(tp->t_state) && 16007 (tp->t_flags2 & TF2_ECN_PERMIT)) { 16008 int ect = tcp_ecn_output_established(tp, &flags, len); 16009 if ((tp->t_state == TCPS_SYN_RECEIVED) && 16010 (tp->t_flags2 & TF2_ECN_SND_ECE)) 16011 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 16012 #ifdef INET6 16013 if (rack->r_is_v6) { 16014 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 16015 ip6->ip6_flow |= htonl(ect << 20); 16016 } 16017 else 16018 #endif 16019 { 16020 ip->ip_tos &= ~IPTOS_ECN_MASK; 16021 ip->ip_tos |= ect; 16022 } 16023 } 16024 tcp_set_flags(th, flags); 16025 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 16026 #ifdef INET6 16027 if (rack->r_is_v6) { 16028 if (tp->t_port) { 16029 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 16030 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16031 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 16032 th->th_sum = htons(0); 16033 UDPSTAT_INC(udps_opackets); 16034 } else { 16035 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 16036 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16037 th->th_sum = in6_cksum_pseudo(ip6, 16038 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 16039 0); 16040 } 16041 } 16042 #endif 16043 #if defined(INET6) && defined(INET) 16044 else 16045 #endif 16046 #ifdef INET 16047 { 16048 if (tp->t_port) { 16049 m->m_pkthdr.csum_flags = CSUM_UDP; 16050 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16051 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 16052 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 16053 th->th_sum = htons(0); 16054 UDPSTAT_INC(udps_opackets); 16055 } else { 16056 m->m_pkthdr.csum_flags = CSUM_TCP; 16057 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16058 th->th_sum = in_pseudo(ip->ip_src.s_addr, 16059 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 16060 IPPROTO_TCP + len + optlen)); 16061 } 16062 /* IP version must be set here for ipv4/ipv6 checking later */ 16063 KASSERT(ip->ip_v == IPVERSION, 16064 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 16065 } 16066 #endif 16067 if (tso) { 16068 KASSERT(len > tp->t_maxseg - optlen, 16069 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 16070 m->m_pkthdr.csum_flags |= CSUM_TSO; 16071 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 16072 } 16073 #ifdef INET6 16074 if (rack->r_is_v6) { 16075 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 16076 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 16077 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 16078 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16079 else 16080 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16081 } 16082 #endif 16083 #if defined(INET) && defined(INET6) 16084 else 16085 #endif 16086 #ifdef INET 16087 { 16088 ip->ip_len = htons(m->m_pkthdr.len); 16089 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 16090 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 16091 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16092 if (tp->t_port == 0 || len < V_tcp_minmss) { 16093 ip->ip_off |= htons(IP_DF); 16094 } 16095 } else { 16096 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16097 } 16098 } 16099 #endif 16100 /* Time to copy in our header */ 16101 cpto = mtod(m, uint8_t *); 16102 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 16103 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 16104 if (optlen) { 16105 bcopy(opt, th + 1, optlen); 16106 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 16107 } else { 16108 th->th_off = sizeof(struct tcphdr) >> 2; 16109 } 16110 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 16111 union tcp_log_stackspecific log; 16112 16113 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16114 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 16115 if (rack->rack_no_prr) 16116 log.u_bbr.flex1 = 0; 16117 else 16118 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16119 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16120 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16121 log.u_bbr.flex4 = max_val; 16122 log.u_bbr.flex5 = 0; 16123 /* Save off the early/late values */ 16124 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16125 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16126 log.u_bbr.bw_inuse = rack_get_bw(rack); 16127 if (doing_tlp == 0) 16128 log.u_bbr.flex8 = 1; 16129 else 16130 log.u_bbr.flex8 = 2; 16131 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16132 log.u_bbr.flex7 = 55; 16133 log.u_bbr.pkts_out = tp->t_maxseg; 16134 log.u_bbr.timeStamp = cts; 16135 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16136 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16137 log.u_bbr.delivered = 0; 16138 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16139 len, &log, false, NULL, NULL, 0, tv); 16140 } else 16141 lgb = NULL; 16142 #ifdef INET6 16143 if (rack->r_is_v6) { 16144 error = ip6_output(m, NULL, 16145 &inp->inp_route6, 16146 0, NULL, NULL, inp); 16147 } 16148 #endif 16149 #if defined(INET) && defined(INET6) 16150 else 16151 #endif 16152 #ifdef INET 16153 { 16154 error = ip_output(m, NULL, 16155 &inp->inp_route, 16156 0, 0, inp); 16157 } 16158 #endif 16159 m = NULL; 16160 if (lgb) { 16161 lgb->tlb_errno = error; 16162 lgb = NULL; 16163 } 16164 if (error) { 16165 goto failed; 16166 } 16167 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv), 16168 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls); 16169 if (doing_tlp && (rack->fast_rsm_hack == 0)) { 16170 rack->rc_tlp_in_progress = 1; 16171 rack->r_ctl.rc_tlp_cnt_out++; 16172 } 16173 if (error == 0) { 16174 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls); 16175 if (doing_tlp) { 16176 rack->rc_last_sent_tlp_past_cumack = 0; 16177 rack->rc_last_sent_tlp_seq_valid = 1; 16178 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 16179 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 16180 } 16181 } 16182 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16183 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16184 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 16185 rack->r_ctl.retran_during_recovery += len; 16186 { 16187 int idx; 16188 16189 idx = (len / segsiz) + 3; 16190 if (idx >= TCP_MSS_ACCT_ATIMER) 16191 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16192 else 16193 counter_u64_add(rack_out_size[idx], 1); 16194 } 16195 if (tp->t_rtttime == 0) { 16196 tp->t_rtttime = ticks; 16197 tp->t_rtseq = startseq; 16198 KMOD_TCPSTAT_INC(tcps_segstimed); 16199 } 16200 counter_u64_add(rack_fto_rsm_send, 1); 16201 if (error && (error == ENOBUFS)) { 16202 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 16203 if (rack->rc_enobuf < 0x7f) 16204 rack->rc_enobuf++; 16205 if (slot < (10 * HPTS_USEC_IN_MSEC)) 16206 slot = 10 * HPTS_USEC_IN_MSEC; 16207 } else 16208 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz); 16209 if ((slot == 0) || 16210 (rack->rc_always_pace == 0) || 16211 (rack->r_rr_config == 1)) { 16212 /* 16213 * We have no pacing set or we 16214 * are using old-style rack or 16215 * we are overriden to use the old 1ms pacing. 16216 */ 16217 slot = rack->r_ctl.rc_min_to; 16218 } 16219 rack_start_hpts_timer(rack, tp, cts, slot, len, 0); 16220 if (rack->r_must_retran) { 16221 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 16222 if ((SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) || 16223 ((rsm->r_flags & RACK_MUST_RXT) == 0)) { 16224 /* 16225 * We have retransmitted all we need. If 16226 * RACK_MUST_RXT is not set then we need to 16227 * not retransmit this guy. 16228 */ 16229 rack->r_must_retran = 0; 16230 rack->r_ctl.rc_out_at_rto = 0; 16231 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 16232 /* Not one we should rxt */ 16233 goto failed; 16234 } else { 16235 /* Clear the flag */ 16236 rsm->r_flags &= ~RACK_MUST_RXT; 16237 } 16238 } else { 16239 /* Remove the flag */ 16240 rsm->r_flags &= ~RACK_MUST_RXT; 16241 } 16242 } 16243 #ifdef TCP_ACCOUNTING 16244 crtsc = get_cyclecount(); 16245 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16246 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16247 } 16248 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16249 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16250 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16251 } 16252 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16253 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16254 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz); 16255 } 16256 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz)); 16257 sched_unpin(); 16258 #endif 16259 return (0); 16260 failed: 16261 if (m) 16262 m_free(m); 16263 return (-1); 16264 } 16265 16266 static void 16267 rack_sndbuf_autoscale(struct tcp_rack *rack) 16268 { 16269 /* 16270 * Automatic sizing of send socket buffer. Often the send buffer 16271 * size is not optimally adjusted to the actual network conditions 16272 * at hand (delay bandwidth product). Setting the buffer size too 16273 * small limits throughput on links with high bandwidth and high 16274 * delay (eg. trans-continental/oceanic links). Setting the 16275 * buffer size too big consumes too much real kernel memory, 16276 * especially with many connections on busy servers. 16277 * 16278 * The criteria to step up the send buffer one notch are: 16279 * 1. receive window of remote host is larger than send buffer 16280 * (with a fudge factor of 5/4th); 16281 * 2. send buffer is filled to 7/8th with data (so we actually 16282 * have data to make use of it); 16283 * 3. send buffer fill has not hit maximal automatic size; 16284 * 4. our send window (slow start and cogestion controlled) is 16285 * larger than sent but unacknowledged data in send buffer. 16286 * 16287 * Note that the rack version moves things much faster since 16288 * we want to avoid hitting cache lines in the rack_fast_output() 16289 * path so this is called much less often and thus moves 16290 * the SB forward by a percentage. 16291 */ 16292 struct socket *so; 16293 struct tcpcb *tp; 16294 uint32_t sendwin, scaleup; 16295 16296 tp = rack->rc_tp; 16297 so = rack->rc_inp->inp_socket; 16298 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd); 16299 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) { 16300 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && 16301 sbused(&so->so_snd) >= 16302 (so->so_snd.sb_hiwat / 8 * 7) && 16303 sbused(&so->so_snd) < V_tcp_autosndbuf_max && 16304 sendwin >= (sbused(&so->so_snd) - 16305 (tp->snd_nxt - tp->snd_una))) { 16306 if (rack_autosndbuf_inc) 16307 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100; 16308 else 16309 scaleup = V_tcp_autosndbuf_inc; 16310 if (scaleup < V_tcp_autosndbuf_inc) 16311 scaleup = V_tcp_autosndbuf_inc; 16312 scaleup += so->so_snd.sb_hiwat; 16313 if (scaleup > V_tcp_autosndbuf_max) 16314 scaleup = V_tcp_autosndbuf_max; 16315 if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread)) 16316 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 16317 } 16318 } 16319 } 16320 16321 static int 16322 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, 16323 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err) 16324 { 16325 /* 16326 * Enter to do fast output. We are given that the sched_pin is 16327 * in place (if accounting is compiled in) and the cycle count taken 16328 * at entry is in place in ts_val. The idea here is that 16329 * we know how many more bytes needs to be sent (presumably either 16330 * during pacing or to fill the cwnd and that was greater than 16331 * the max-burst). We have how much to send and all the info we 16332 * need to just send. 16333 */ 16334 struct ip *ip = NULL; 16335 struct udphdr *udp = NULL; 16336 struct tcphdr *th = NULL; 16337 struct mbuf *m, *s_mb; 16338 struct inpcb *inp; 16339 uint8_t *cpto; 16340 struct tcp_log_buffer *lgb; 16341 #ifdef TCP_ACCOUNTING 16342 uint64_t crtsc; 16343 #endif 16344 struct tcpopt to; 16345 u_char opt[TCP_MAXOLEN]; 16346 uint32_t hdrlen, optlen; 16347 int cnt_thru = 1; 16348 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0; 16349 uint16_t flags; 16350 uint32_t s_soff; 16351 uint32_t if_hw_tsomaxsegcount = 0, startseq; 16352 uint32_t if_hw_tsomaxsegsize; 16353 uint16_t add_flag = RACK_SENT_FP; 16354 #ifdef INET6 16355 struct ip6_hdr *ip6 = NULL; 16356 16357 if (rack->r_is_v6) { 16358 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 16359 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 16360 } else 16361 #endif /* INET6 */ 16362 { 16363 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 16364 hdrlen = sizeof(struct tcpiphdr); 16365 } 16366 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 16367 m = NULL; 16368 goto failed; 16369 } 16370 startseq = tp->snd_max; 16371 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16372 inp = rack->rc_inp; 16373 len = rack->r_ctl.fsb.left_to_send; 16374 to.to_flags = 0; 16375 flags = rack->r_ctl.fsb.tcp_flags; 16376 if (tp->t_flags & TF_RCVD_TSTMP) { 16377 to.to_tsval = ms_cts + tp->ts_offset; 16378 to.to_tsecr = tp->ts_recent; 16379 to.to_flags = TOF_TS; 16380 } 16381 optlen = tcp_addoptions(&to, opt); 16382 hdrlen += optlen; 16383 udp = rack->r_ctl.fsb.udp; 16384 if (udp) 16385 hdrlen += sizeof(struct udphdr); 16386 if (rack->r_ctl.rc_pace_max_segs) 16387 max_val = rack->r_ctl.rc_pace_max_segs; 16388 else if (rack->rc_user_set_max_segs) 16389 max_val = rack->rc_user_set_max_segs * segsiz; 16390 else 16391 max_val = len; 16392 if ((tp->t_flags & TF_TSO) && 16393 V_tcp_do_tso && 16394 (len > segsiz) && 16395 (tp->t_port == 0)) 16396 tso = 1; 16397 again: 16398 #ifdef INET6 16399 if (MHLEN < hdrlen + max_linkhdr) 16400 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 16401 else 16402 #endif 16403 m = m_gethdr(M_NOWAIT, MT_DATA); 16404 if (m == NULL) 16405 goto failed; 16406 m->m_data += max_linkhdr; 16407 m->m_len = hdrlen; 16408 th = rack->r_ctl.fsb.th; 16409 /* Establish the len to send */ 16410 if (len > max_val) 16411 len = max_val; 16412 if ((tso) && (len + optlen > tp->t_maxseg)) { 16413 uint32_t if_hw_tsomax; 16414 int32_t max_len; 16415 16416 /* extract TSO information */ 16417 if_hw_tsomax = tp->t_tsomax; 16418 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 16419 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 16420 /* 16421 * Check if we should limit by maximum payload 16422 * length: 16423 */ 16424 if (if_hw_tsomax != 0) { 16425 /* compute maximum TSO length */ 16426 max_len = (if_hw_tsomax - hdrlen - 16427 max_linkhdr); 16428 if (max_len <= 0) { 16429 goto failed; 16430 } else if (len > max_len) { 16431 len = max_len; 16432 } 16433 } 16434 if (len <= segsiz) { 16435 /* 16436 * In case there are too many small fragments don't 16437 * use TSO: 16438 */ 16439 tso = 0; 16440 } 16441 } else { 16442 tso = 0; 16443 } 16444 if ((tso == 0) && (len > segsiz)) 16445 len = segsiz; 16446 if ((len == 0) || 16447 (len <= MHLEN - hdrlen - max_linkhdr)) { 16448 goto failed; 16449 } 16450 sb_offset = tp->snd_max - tp->snd_una; 16451 th->th_seq = htonl(tp->snd_max); 16452 th->th_ack = htonl(tp->rcv_nxt); 16453 tcp_set_flags(th, flags); 16454 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 16455 if (th->th_win == 0) { 16456 tp->t_sndzerowin++; 16457 tp->t_flags |= TF_RXWIN0SENT; 16458 } else 16459 tp->t_flags &= ~TF_RXWIN0SENT; 16460 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 16461 KMOD_TCPSTAT_INC(tcps_sndpack); 16462 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 16463 #ifdef STATS 16464 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 16465 len); 16466 #endif 16467 if (rack->r_ctl.fsb.m == NULL) 16468 goto failed; 16469 16470 /* s_mb and s_soff are saved for rack_log_output */ 16471 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, 16472 &s_mb, &s_soff); 16473 if (len <= segsiz) { 16474 /* 16475 * Must have ran out of mbufs for the copy 16476 * shorten it to no longer need tso. Lets 16477 * not put on sendalot since we are low on 16478 * mbufs. 16479 */ 16480 tso = 0; 16481 } 16482 if (rack->r_ctl.fsb.rfo_apply_push && 16483 (len == rack->r_ctl.fsb.left_to_send)) { 16484 tcp_set_flags(th, flags | TH_PUSH); 16485 add_flag |= RACK_HAD_PUSH; 16486 } 16487 if ((m->m_next == NULL) || (len <= 0)){ 16488 goto failed; 16489 } 16490 if (udp) { 16491 if (rack->r_is_v6) 16492 ulen = hdrlen + len - sizeof(struct ip6_hdr); 16493 else 16494 ulen = hdrlen + len - sizeof(struct ip); 16495 udp->uh_ulen = htons(ulen); 16496 } 16497 m->m_pkthdr.rcvif = (struct ifnet *)0; 16498 if (TCPS_HAVERCVDSYN(tp->t_state) && 16499 (tp->t_flags2 & TF2_ECN_PERMIT)) { 16500 int ect = tcp_ecn_output_established(tp, &flags, len); 16501 if ((tp->t_state == TCPS_SYN_RECEIVED) && 16502 (tp->t_flags2 & TF2_ECN_SND_ECE)) 16503 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 16504 #ifdef INET6 16505 if (rack->r_is_v6) { 16506 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 16507 ip6->ip6_flow |= htonl(ect << 20); 16508 } 16509 else 16510 #endif 16511 { 16512 ip->ip_tos &= ~IPTOS_ECN_MASK; 16513 ip->ip_tos |= ect; 16514 } 16515 } 16516 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 16517 #ifdef INET6 16518 if (rack->r_is_v6) { 16519 if (tp->t_port) { 16520 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 16521 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16522 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 16523 th->th_sum = htons(0); 16524 UDPSTAT_INC(udps_opackets); 16525 } else { 16526 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 16527 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16528 th->th_sum = in6_cksum_pseudo(ip6, 16529 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 16530 0); 16531 } 16532 } 16533 #endif 16534 #if defined(INET6) && defined(INET) 16535 else 16536 #endif 16537 #ifdef INET 16538 { 16539 if (tp->t_port) { 16540 m->m_pkthdr.csum_flags = CSUM_UDP; 16541 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16542 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 16543 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 16544 th->th_sum = htons(0); 16545 UDPSTAT_INC(udps_opackets); 16546 } else { 16547 m->m_pkthdr.csum_flags = CSUM_TCP; 16548 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16549 th->th_sum = in_pseudo(ip->ip_src.s_addr, 16550 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 16551 IPPROTO_TCP + len + optlen)); 16552 } 16553 /* IP version must be set here for ipv4/ipv6 checking later */ 16554 KASSERT(ip->ip_v == IPVERSION, 16555 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 16556 } 16557 #endif 16558 if (tso) { 16559 KASSERT(len > tp->t_maxseg - optlen, 16560 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 16561 m->m_pkthdr.csum_flags |= CSUM_TSO; 16562 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 16563 } 16564 #ifdef INET6 16565 if (rack->r_is_v6) { 16566 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 16567 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 16568 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 16569 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16570 else 16571 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16572 } 16573 #endif 16574 #if defined(INET) && defined(INET6) 16575 else 16576 #endif 16577 #ifdef INET 16578 { 16579 ip->ip_len = htons(m->m_pkthdr.len); 16580 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 16581 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 16582 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16583 if (tp->t_port == 0 || len < V_tcp_minmss) { 16584 ip->ip_off |= htons(IP_DF); 16585 } 16586 } else { 16587 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16588 } 16589 } 16590 #endif 16591 /* Time to copy in our header */ 16592 cpto = mtod(m, uint8_t *); 16593 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 16594 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 16595 if (optlen) { 16596 bcopy(opt, th + 1, optlen); 16597 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 16598 } else { 16599 th->th_off = sizeof(struct tcphdr) >> 2; 16600 } 16601 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 16602 union tcp_log_stackspecific log; 16603 16604 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16605 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 16606 if (rack->rack_no_prr) 16607 log.u_bbr.flex1 = 0; 16608 else 16609 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16610 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16611 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16612 log.u_bbr.flex4 = max_val; 16613 log.u_bbr.flex5 = 0; 16614 /* Save off the early/late values */ 16615 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16616 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16617 log.u_bbr.bw_inuse = rack_get_bw(rack); 16618 log.u_bbr.flex8 = 0; 16619 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16620 log.u_bbr.flex7 = 44; 16621 log.u_bbr.pkts_out = tp->t_maxseg; 16622 log.u_bbr.timeStamp = cts; 16623 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16624 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16625 log.u_bbr.delivered = 0; 16626 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16627 len, &log, false, NULL, NULL, 0, tv); 16628 } else 16629 lgb = NULL; 16630 #ifdef INET6 16631 if (rack->r_is_v6) { 16632 error = ip6_output(m, NULL, 16633 &inp->inp_route6, 16634 0, NULL, NULL, inp); 16635 } 16636 #endif 16637 #if defined(INET) && defined(INET6) 16638 else 16639 #endif 16640 #ifdef INET 16641 { 16642 error = ip_output(m, NULL, 16643 &inp->inp_route, 16644 0, 0, inp); 16645 } 16646 #endif 16647 if (lgb) { 16648 lgb->tlb_errno = error; 16649 lgb = NULL; 16650 } 16651 if (error) { 16652 *send_err = error; 16653 m = NULL; 16654 goto failed; 16655 } 16656 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv), 16657 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls); 16658 m = NULL; 16659 if (tp->snd_una == tp->snd_max) { 16660 rack->r_ctl.rc_tlp_rxt_last_time = cts; 16661 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 16662 tp->t_acktime = ticks; 16663 } 16664 if (error == 0) 16665 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls); 16666 16667 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16668 tot_len += len; 16669 if ((tp->t_flags & TF_GPUTINPROG) == 0) 16670 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset); 16671 tp->snd_max += len; 16672 tp->snd_nxt = tp->snd_max; 16673 { 16674 int idx; 16675 16676 idx = (len / segsiz) + 3; 16677 if (idx >= TCP_MSS_ACCT_ATIMER) 16678 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16679 else 16680 counter_u64_add(rack_out_size[idx], 1); 16681 } 16682 if (len <= rack->r_ctl.fsb.left_to_send) 16683 rack->r_ctl.fsb.left_to_send -= len; 16684 else 16685 rack->r_ctl.fsb.left_to_send = 0; 16686 if (rack->r_ctl.fsb.left_to_send < segsiz) { 16687 rack->r_fast_output = 0; 16688 rack->r_ctl.fsb.left_to_send = 0; 16689 /* At the end of fast_output scale up the sb */ 16690 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd); 16691 rack_sndbuf_autoscale(rack); 16692 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd); 16693 } 16694 if (tp->t_rtttime == 0) { 16695 tp->t_rtttime = ticks; 16696 tp->t_rtseq = startseq; 16697 KMOD_TCPSTAT_INC(tcps_segstimed); 16698 } 16699 if ((rack->r_ctl.fsb.left_to_send >= segsiz) && 16700 (max_val > len) && 16701 (tso == 0)) { 16702 max_val -= len; 16703 len = segsiz; 16704 th = rack->r_ctl.fsb.th; 16705 cnt_thru++; 16706 goto again; 16707 } 16708 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16709 counter_u64_add(rack_fto_send, 1); 16710 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz); 16711 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0); 16712 #ifdef TCP_ACCOUNTING 16713 crtsc = get_cyclecount(); 16714 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16715 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16716 } 16717 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16718 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16719 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16720 } 16721 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16722 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16723 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz); 16724 } 16725 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz)); 16726 sched_unpin(); 16727 #endif 16728 return (0); 16729 failed: 16730 if (m) 16731 m_free(m); 16732 rack->r_fast_output = 0; 16733 return (-1); 16734 } 16735 16736 static int 16737 rack_output(struct tcpcb *tp) 16738 { 16739 struct socket *so; 16740 uint32_t recwin; 16741 uint32_t sb_offset, s_moff = 0; 16742 int32_t len, error = 0; 16743 uint16_t flags; 16744 struct mbuf *m, *s_mb = NULL; 16745 struct mbuf *mb; 16746 uint32_t if_hw_tsomaxsegcount = 0; 16747 uint32_t if_hw_tsomaxsegsize; 16748 int32_t segsiz, minseg; 16749 long tot_len_this_send = 0; 16750 #ifdef INET 16751 struct ip *ip = NULL; 16752 #endif 16753 #ifdef TCPDEBUG 16754 struct ipovly *ipov = NULL; 16755 #endif 16756 struct udphdr *udp = NULL; 16757 struct tcp_rack *rack; 16758 struct tcphdr *th; 16759 uint8_t pass = 0; 16760 uint8_t mark = 0; 16761 uint8_t wanted_cookie = 0; 16762 u_char opt[TCP_MAXOLEN]; 16763 unsigned ipoptlen, optlen, hdrlen, ulen=0; 16764 uint32_t rack_seq; 16765 16766 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 16767 unsigned ipsec_optlen = 0; 16768 16769 #endif 16770 int32_t idle, sendalot; 16771 int32_t sub_from_prr = 0; 16772 volatile int32_t sack_rxmit; 16773 struct rack_sendmap *rsm = NULL; 16774 int32_t tso, mtu; 16775 struct tcpopt to; 16776 int32_t slot = 0; 16777 int32_t sup_rack = 0; 16778 uint32_t cts, ms_cts, delayed, early; 16779 uint16_t add_flag = RACK_SENT_SP; 16780 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */ 16781 uint8_t hpts_calling, doing_tlp = 0; 16782 uint32_t cwnd_to_use, pace_max_seg; 16783 int32_t do_a_prefetch = 0; 16784 int32_t prefetch_rsm = 0; 16785 int32_t orig_len = 0; 16786 struct timeval tv; 16787 int32_t prefetch_so_done = 0; 16788 struct tcp_log_buffer *lgb; 16789 struct inpcb *inp; 16790 struct sockbuf *sb; 16791 uint64_t ts_val = 0; 16792 #ifdef TCP_ACCOUNTING 16793 uint64_t crtsc; 16794 #endif 16795 #ifdef INET6 16796 struct ip6_hdr *ip6 = NULL; 16797 int32_t isipv6; 16798 #endif 16799 uint8_t filled_all = 0; 16800 bool hw_tls = false; 16801 16802 /* setup and take the cache hits here */ 16803 rack = (struct tcp_rack *)tp->t_fb_ptr; 16804 #ifdef TCP_ACCOUNTING 16805 sched_pin(); 16806 ts_val = get_cyclecount(); 16807 #endif 16808 hpts_calling = rack->rc_inp->inp_hpts_calls; 16809 NET_EPOCH_ASSERT(); 16810 INP_WLOCK_ASSERT(rack->rc_inp); 16811 #ifdef TCP_OFFLOAD 16812 if (tp->t_flags & TF_TOE) { 16813 #ifdef TCP_ACCOUNTING 16814 sched_unpin(); 16815 #endif 16816 return (tcp_offload_output(tp)); 16817 } 16818 #endif 16819 /* 16820 * For TFO connections in SYN_RECEIVED, only allow the initial 16821 * SYN|ACK and those sent by the retransmit timer. 16822 */ 16823 if (IS_FASTOPEN(tp->t_flags) && 16824 (tp->t_state == TCPS_SYN_RECEIVED) && 16825 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ 16826 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */ 16827 #ifdef TCP_ACCOUNTING 16828 sched_unpin(); 16829 #endif 16830 return (0); 16831 } 16832 #ifdef INET6 16833 if (rack->r_state) { 16834 /* Use the cache line loaded if possible */ 16835 isipv6 = rack->r_is_v6; 16836 } else { 16837 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0; 16838 } 16839 #endif 16840 early = 0; 16841 cts = tcp_get_usecs(&tv); 16842 ms_cts = tcp_tv_to_mssectick(&tv); 16843 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && 16844 tcp_in_hpts(rack->rc_inp)) { 16845 /* 16846 * We are on the hpts for some timer but not hptsi output. 16847 * Remove from the hpts unconditionally. 16848 */ 16849 rack_timer_cancel(tp, rack, cts, __LINE__); 16850 } 16851 /* Are we pacing and late? */ 16852 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16853 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) { 16854 /* We are delayed */ 16855 delayed = cts - rack->r_ctl.rc_last_output_to; 16856 } else { 16857 delayed = 0; 16858 } 16859 /* Do the timers, which may override the pacer */ 16860 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 16861 int retval; 16862 16863 retval = rack_process_timers(tp, rack, cts, hpts_calling, 16864 &doing_tlp); 16865 if (retval != 0) { 16866 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); 16867 #ifdef TCP_ACCOUNTING 16868 sched_unpin(); 16869 #endif 16870 /* 16871 * If timers want tcp_drop(), then pass error out, 16872 * otherwise suppress it. 16873 */ 16874 return (retval < 0 ? retval : 0); 16875 } 16876 } 16877 if (rack->rc_in_persist) { 16878 if (tcp_in_hpts(rack->rc_inp) == 0) { 16879 /* Timer is not running */ 16880 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 16881 } 16882 #ifdef TCP_ACCOUNTING 16883 sched_unpin(); 16884 #endif 16885 return (0); 16886 } 16887 if ((rack->r_timer_override) || 16888 (rack->rc_ack_can_sendout_data) || 16889 (delayed) || 16890 (tp->t_state < TCPS_ESTABLISHED)) { 16891 rack->rc_ack_can_sendout_data = 0; 16892 if (tcp_in_hpts(rack->rc_inp)) 16893 tcp_hpts_remove(rack->rc_inp); 16894 } else if (tcp_in_hpts(rack->rc_inp)) { 16895 /* 16896 * On the hpts you can't pass even if ACKNOW is on, we will 16897 * when the hpts fires. 16898 */ 16899 #ifdef TCP_ACCOUNTING 16900 crtsc = get_cyclecount(); 16901 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16902 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val); 16903 } 16904 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val)); 16905 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16906 tp->tcp_cnt_counters[SND_BLOCKED]++; 16907 } 16908 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1); 16909 sched_unpin(); 16910 #endif 16911 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); 16912 return (0); 16913 } 16914 rack->rc_inp->inp_hpts_calls = 0; 16915 /* Finish out both pacing early and late accounting */ 16916 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16917 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 16918 early = rack->r_ctl.rc_last_output_to - cts; 16919 } else 16920 early = 0; 16921 if (delayed) { 16922 rack->r_ctl.rc_agg_delayed += delayed; 16923 rack->r_late = 1; 16924 } else if (early) { 16925 rack->r_ctl.rc_agg_early += early; 16926 rack->r_early = 1; 16927 } 16928 /* Now that early/late accounting is done turn off the flag */ 16929 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 16930 rack->r_wanted_output = 0; 16931 rack->r_timer_override = 0; 16932 if ((tp->t_state != rack->r_state) && 16933 TCPS_HAVEESTABLISHED(tp->t_state)) { 16934 rack_set_state(tp, rack); 16935 } 16936 if ((rack->r_fast_output) && 16937 (doing_tlp == 0) && 16938 (tp->rcv_numsacks == 0)) { 16939 int ret; 16940 16941 error = 0; 16942 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 16943 if (ret >= 0) 16944 return(ret); 16945 else if (error) { 16946 inp = rack->rc_inp; 16947 so = inp->inp_socket; 16948 sb = &so->so_snd; 16949 goto nomore; 16950 } 16951 } 16952 inp = rack->rc_inp; 16953 /* 16954 * For TFO connections in SYN_SENT or SYN_RECEIVED, 16955 * only allow the initial SYN or SYN|ACK and those sent 16956 * by the retransmit timer. 16957 */ 16958 if (IS_FASTOPEN(tp->t_flags) && 16959 ((tp->t_state == TCPS_SYN_RECEIVED) || 16960 (tp->t_state == TCPS_SYN_SENT)) && 16961 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ 16962 (tp->t_rxtshift == 0)) { /* not a retransmit */ 16963 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16964 so = inp->inp_socket; 16965 sb = &so->so_snd; 16966 goto just_return_nolock; 16967 } 16968 /* 16969 * Determine length of data that should be transmitted, and flags 16970 * that will be used. If there is some data or critical controls 16971 * (SYN, RST) to send, then transmit; otherwise, investigate 16972 * further. 16973 */ 16974 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); 16975 if (tp->t_idle_reduce) { 16976 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 16977 rack_cc_after_idle(rack, tp); 16978 } 16979 tp->t_flags &= ~TF_LASTIDLE; 16980 if (idle) { 16981 if (tp->t_flags & TF_MORETOCOME) { 16982 tp->t_flags |= TF_LASTIDLE; 16983 idle = 0; 16984 } 16985 } 16986 if ((tp->snd_una == tp->snd_max) && 16987 rack->r_ctl.rc_went_idle_time && 16988 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) { 16989 idle = cts - rack->r_ctl.rc_went_idle_time; 16990 if (idle > rack_min_probertt_hold) { 16991 /* Count as a probe rtt */ 16992 if (rack->in_probe_rtt == 0) { 16993 rack->r_ctl.rc_lower_rtt_us_cts = cts; 16994 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 16995 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 16996 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 16997 } else { 16998 rack_exit_probertt(rack, cts); 16999 } 17000 } 17001 idle = 0; 17002 } 17003 if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED)) 17004 rack_init_fsb_block(tp, rack); 17005 again: 17006 /* 17007 * If we've recently taken a timeout, snd_max will be greater than 17008 * snd_nxt. There may be SACK information that allows us to avoid 17009 * resending already delivered data. Adjust snd_nxt accordingly. 17010 */ 17011 sendalot = 0; 17012 cts = tcp_get_usecs(&tv); 17013 ms_cts = tcp_tv_to_mssectick(&tv); 17014 tso = 0; 17015 mtu = 0; 17016 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 17017 minseg = segsiz; 17018 if (rack->r_ctl.rc_pace_max_segs == 0) 17019 pace_max_seg = rack->rc_user_set_max_segs * segsiz; 17020 else 17021 pace_max_seg = rack->r_ctl.rc_pace_max_segs; 17022 sb_offset = tp->snd_max - tp->snd_una; 17023 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 17024 flags = tcp_outflags[tp->t_state]; 17025 while (rack->rc_free_cnt < rack_free_cache) { 17026 rsm = rack_alloc(rack); 17027 if (rsm == NULL) { 17028 if (inp->inp_hpts_calls) 17029 /* Retry in a ms */ 17030 slot = (1 * HPTS_USEC_IN_MSEC); 17031 so = inp->inp_socket; 17032 sb = &so->so_snd; 17033 goto just_return_nolock; 17034 } 17035 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); 17036 rack->rc_free_cnt++; 17037 rsm = NULL; 17038 } 17039 if (inp->inp_hpts_calls) 17040 inp->inp_hpts_calls = 0; 17041 sack_rxmit = 0; 17042 len = 0; 17043 rsm = NULL; 17044 if (flags & TH_RST) { 17045 SOCKBUF_LOCK(&inp->inp_socket->so_snd); 17046 so = inp->inp_socket; 17047 sb = &so->so_snd; 17048 goto send; 17049 } 17050 if (rack->r_ctl.rc_resend) { 17051 /* Retransmit timer */ 17052 rsm = rack->r_ctl.rc_resend; 17053 rack->r_ctl.rc_resend = NULL; 17054 len = rsm->r_end - rsm->r_start; 17055 sack_rxmit = 1; 17056 sendalot = 0; 17057 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17058 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17059 __func__, __LINE__, 17060 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17061 sb_offset = rsm->r_start - tp->snd_una; 17062 if (len >= segsiz) 17063 len = segsiz; 17064 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) { 17065 /* We have a retransmit that takes precedence */ 17066 if ((!IN_FASTRECOVERY(tp->t_flags)) && 17067 ((tp->t_flags & TF_WASFRECOVERY) == 0)) { 17068 /* Enter recovery if not induced by a time-out */ 17069 rack->r_ctl.rc_rsm_start = rsm->r_start; 17070 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 17071 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 17072 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 17073 } 17074 #ifdef INVARIANTS 17075 if (SEQ_LT(rsm->r_start, tp->snd_una)) { 17076 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", 17077 tp, rack, rsm, rsm->r_start, tp->snd_una); 17078 } 17079 #endif 17080 len = rsm->r_end - rsm->r_start; 17081 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17082 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17083 __func__, __LINE__, 17084 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17085 sb_offset = rsm->r_start - tp->snd_una; 17086 sendalot = 0; 17087 if (len >= segsiz) 17088 len = segsiz; 17089 if (len > 0) { 17090 sack_rxmit = 1; 17091 KMOD_TCPSTAT_INC(tcps_sack_rexmits); 17092 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, 17093 min(len, segsiz)); 17094 counter_u64_add(rack_rtm_prr_retran, 1); 17095 } 17096 } else if (rack->r_ctl.rc_tlpsend) { 17097 /* Tail loss probe */ 17098 long cwin; 17099 long tlen; 17100 17101 /* 17102 * Check if we can do a TLP with a RACK'd packet 17103 * this can happen if we are not doing the rack 17104 * cheat and we skipped to a TLP and it 17105 * went off. 17106 */ 17107 rsm = rack->r_ctl.rc_tlpsend; 17108 /* We are doing a TLP make sure the flag is preent */ 17109 rsm->r_flags |= RACK_TLP; 17110 rack->r_ctl.rc_tlpsend = NULL; 17111 sack_rxmit = 1; 17112 tlen = rsm->r_end - rsm->r_start; 17113 if (tlen > segsiz) 17114 tlen = segsiz; 17115 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17116 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17117 __func__, __LINE__, 17118 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17119 sb_offset = rsm->r_start - tp->snd_una; 17120 cwin = min(tp->snd_wnd, tlen); 17121 len = cwin; 17122 } 17123 if (rack->r_must_retran && 17124 (doing_tlp == 0) && 17125 (rsm == NULL)) { 17126 /* 17127 * Non-Sack and we had a RTO or Sack/non-Sack and a 17128 * MTU change, we need to retransmit until we reach 17129 * the former snd_max (rack->r_ctl.rc_snd_max_at_rto). 17130 */ 17131 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 17132 int sendwin, flight; 17133 17134 sendwin = min(tp->snd_wnd, tp->snd_cwnd); 17135 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto); 17136 if (flight >= sendwin) { 17137 so = inp->inp_socket; 17138 sb = &so->so_snd; 17139 goto just_return_nolock; 17140 } 17141 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 17142 if (rsm == NULL) { 17143 /* TSNH */ 17144 rack->r_must_retran = 0; 17145 rack->r_ctl.rc_out_at_rto = 0; 17146 rack->r_must_retran = 0; 17147 so = inp->inp_socket; 17148 sb = &so->so_snd; 17149 goto just_return_nolock; 17150 } 17151 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 17152 /* It does not have the flag, we are done */ 17153 rack->r_must_retran = 0; 17154 rack->r_ctl.rc_out_at_rto = 0; 17155 } else { 17156 sack_rxmit = 1; 17157 len = rsm->r_end - rsm->r_start; 17158 sendalot = 0; 17159 sb_offset = rsm->r_start - tp->snd_una; 17160 if (len >= segsiz) 17161 len = segsiz; 17162 /* 17163 * Delay removing the flag RACK_MUST_RXT so 17164 * that the fastpath for retransmit will 17165 * work with this rsm. 17166 */ 17167 17168 } 17169 } else { 17170 /* We must be done if there is nothing outstanding */ 17171 rack->r_must_retran = 0; 17172 rack->r_ctl.rc_out_at_rto = 0; 17173 } 17174 } 17175 /* 17176 * Enforce a connection sendmap count limit if set 17177 * as long as we are not retransmiting. 17178 */ 17179 if ((rsm == NULL) && 17180 (rack->do_detection == 0) && 17181 (V_tcp_map_entries_limit > 0) && 17182 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 17183 counter_u64_add(rack_to_alloc_limited, 1); 17184 if (!rack->alloc_limit_reported) { 17185 rack->alloc_limit_reported = 1; 17186 counter_u64_add(rack_alloc_limited_conns, 1); 17187 } 17188 so = inp->inp_socket; 17189 sb = &so->so_snd; 17190 goto just_return_nolock; 17191 } 17192 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { 17193 /* we are retransmitting the fin */ 17194 len--; 17195 if (len) { 17196 /* 17197 * When retransmitting data do *not* include the 17198 * FIN. This could happen from a TLP probe. 17199 */ 17200 flags &= ~TH_FIN; 17201 } 17202 } 17203 #ifdef INVARIANTS 17204 /* For debugging */ 17205 rack->r_ctl.rc_rsm_at_retran = rsm; 17206 #endif 17207 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo && 17208 ((rsm->r_flags & RACK_HAS_FIN) == 0)) { 17209 int ret; 17210 17211 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp); 17212 if (ret == 0) 17213 return (0); 17214 } 17215 if (rsm && (rsm->r_flags & RACK_MUST_RXT)) { 17216 /* 17217 * Clear the flag in prep for the send 17218 * note that if we can't get an mbuf 17219 * and fail, we won't retransmit this 17220 * rsm but that should be ok (its rare). 17221 */ 17222 rsm->r_flags &= ~RACK_MUST_RXT; 17223 } 17224 so = inp->inp_socket; 17225 sb = &so->so_snd; 17226 if (do_a_prefetch == 0) { 17227 kern_prefetch(sb, &do_a_prefetch); 17228 do_a_prefetch = 1; 17229 } 17230 #ifdef NETFLIX_SHARED_CWND 17231 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && 17232 rack->rack_enable_scwnd) { 17233 /* We are doing cwnd sharing */ 17234 if (rack->gp_ready && 17235 (rack->rack_attempted_scwnd == 0) && 17236 (rack->r_ctl.rc_scw == NULL) && 17237 tp->t_lib) { 17238 /* The pcbid is in, lets make an attempt */ 17239 counter_u64_add(rack_try_scwnd, 1); 17240 rack->rack_attempted_scwnd = 1; 17241 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, 17242 &rack->r_ctl.rc_scw_index, 17243 segsiz); 17244 } 17245 if (rack->r_ctl.rc_scw && 17246 (rack->rack_scwnd_is_idle == 1) && 17247 sbavail(&so->so_snd)) { 17248 /* we are no longer out of data */ 17249 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17250 rack->rack_scwnd_is_idle = 0; 17251 } 17252 if (rack->r_ctl.rc_scw) { 17253 /* First lets update and get the cwnd */ 17254 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, 17255 rack->r_ctl.rc_scw_index, 17256 tp->snd_cwnd, tp->snd_wnd, segsiz); 17257 } 17258 } 17259 #endif 17260 /* 17261 * Get standard flags, and add SYN or FIN if requested by 'hidden' 17262 * state flags. 17263 */ 17264 if (tp->t_flags & TF_NEEDFIN) 17265 flags |= TH_FIN; 17266 if (tp->t_flags & TF_NEEDSYN) 17267 flags |= TH_SYN; 17268 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { 17269 void *end_rsm; 17270 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 17271 if (end_rsm) 17272 kern_prefetch(end_rsm, &prefetch_rsm); 17273 prefetch_rsm = 1; 17274 } 17275 SOCKBUF_LOCK(sb); 17276 /* 17277 * If snd_nxt == snd_max and we have transmitted a FIN, the 17278 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a 17279 * negative length. This can also occur when TCP opens up its 17280 * congestion window while receiving additional duplicate acks after 17281 * fast-retransmit because TCP will reset snd_nxt to snd_max after 17282 * the fast-retransmit. 17283 * 17284 * In the normal retransmit-FIN-only case, however, snd_nxt will be 17285 * set to snd_una, the sb_offset will be 0, and the length may wind 17286 * up 0. 17287 * 17288 * If sack_rxmit is true we are retransmitting from the scoreboard 17289 * in which case len is already set. 17290 */ 17291 if ((sack_rxmit == 0) && 17292 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) { 17293 uint32_t avail; 17294 17295 avail = sbavail(sb); 17296 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) 17297 sb_offset = tp->snd_nxt - tp->snd_una; 17298 else 17299 sb_offset = 0; 17300 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { 17301 if (rack->r_ctl.rc_tlp_new_data) { 17302 /* TLP is forcing out new data */ 17303 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { 17304 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); 17305 } 17306 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) { 17307 if (tp->snd_wnd > sb_offset) 17308 len = tp->snd_wnd - sb_offset; 17309 else 17310 len = 0; 17311 } else { 17312 len = rack->r_ctl.rc_tlp_new_data; 17313 } 17314 rack->r_ctl.rc_tlp_new_data = 0; 17315 } else { 17316 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); 17317 } 17318 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) { 17319 /* 17320 * For prr=off, we need to send only 1 MSS 17321 * at a time. We do this because another sack could 17322 * be arriving that causes us to send retransmits and 17323 * we don't want to be on a long pace due to a larger send 17324 * that keeps us from sending out the retransmit. 17325 */ 17326 len = segsiz; 17327 } 17328 } else { 17329 uint32_t outstanding; 17330 /* 17331 * We are inside of a Fast recovery episode, this 17332 * is caused by a SACK or 3 dup acks. At this point 17333 * we have sent all the retransmissions and we rely 17334 * on PRR to dictate what we will send in the form of 17335 * new data. 17336 */ 17337 17338 outstanding = tp->snd_max - tp->snd_una; 17339 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { 17340 if (tp->snd_wnd > outstanding) { 17341 len = tp->snd_wnd - outstanding; 17342 /* Check to see if we have the data */ 17343 if ((sb_offset + len) > avail) { 17344 /* It does not all fit */ 17345 if (avail > sb_offset) 17346 len = avail - sb_offset; 17347 else 17348 len = 0; 17349 } 17350 } else { 17351 len = 0; 17352 } 17353 } else if (avail > sb_offset) { 17354 len = avail - sb_offset; 17355 } else { 17356 len = 0; 17357 } 17358 if (len > 0) { 17359 if (len > rack->r_ctl.rc_prr_sndcnt) { 17360 len = rack->r_ctl.rc_prr_sndcnt; 17361 } 17362 if (len > 0) { 17363 sub_from_prr = 1; 17364 counter_u64_add(rack_rtm_prr_newdata, 1); 17365 } 17366 } 17367 if (len > segsiz) { 17368 /* 17369 * We should never send more than a MSS when 17370 * retransmitting or sending new data in prr 17371 * mode unless the override flag is on. Most 17372 * likely the PRR algorithm is not going to 17373 * let us send a lot as well :-) 17374 */ 17375 if (rack->r_ctl.rc_prr_sendalot == 0) { 17376 len = segsiz; 17377 } 17378 } else if (len < segsiz) { 17379 /* 17380 * Do we send any? The idea here is if the 17381 * send empty's the socket buffer we want to 17382 * do it. However if not then lets just wait 17383 * for our prr_sndcnt to get bigger. 17384 */ 17385 long leftinsb; 17386 17387 leftinsb = sbavail(sb) - sb_offset; 17388 if (leftinsb > len) { 17389 /* This send does not empty the sb */ 17390 len = 0; 17391 } 17392 } 17393 } 17394 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { 17395 /* 17396 * If you have not established 17397 * and are not doing FAST OPEN 17398 * no data please. 17399 */ 17400 if ((sack_rxmit == 0) && 17401 (!IS_FASTOPEN(tp->t_flags))){ 17402 len = 0; 17403 sb_offset = 0; 17404 } 17405 } 17406 if (prefetch_so_done == 0) { 17407 kern_prefetch(so, &prefetch_so_done); 17408 prefetch_so_done = 1; 17409 } 17410 /* 17411 * Lop off SYN bit if it has already been sent. However, if this is 17412 * SYN-SENT state and if segment contains data and if we don't know 17413 * that foreign host supports TAO, suppress sending segment. 17414 */ 17415 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && 17416 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { 17417 /* 17418 * When sending additional segments following a TFO SYN|ACK, 17419 * do not include the SYN bit. 17420 */ 17421 if (IS_FASTOPEN(tp->t_flags) && 17422 (tp->t_state == TCPS_SYN_RECEIVED)) 17423 flags &= ~TH_SYN; 17424 } 17425 /* 17426 * Be careful not to send data and/or FIN on SYN segments. This 17427 * measure is needed to prevent interoperability problems with not 17428 * fully conformant TCP implementations. 17429 */ 17430 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { 17431 len = 0; 17432 flags &= ~TH_FIN; 17433 } 17434 /* 17435 * On TFO sockets, ensure no data is sent in the following cases: 17436 * 17437 * - When retransmitting SYN|ACK on a passively-created socket 17438 * 17439 * - When retransmitting SYN on an actively created socket 17440 * 17441 * - When sending a zero-length cookie (cookie request) on an 17442 * actively created socket 17443 * 17444 * - When the socket is in the CLOSED state (RST is being sent) 17445 */ 17446 if (IS_FASTOPEN(tp->t_flags) && 17447 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || 17448 ((tp->t_state == TCPS_SYN_SENT) && 17449 (tp->t_tfo_client_cookie_len == 0)) || 17450 (flags & TH_RST))) { 17451 sack_rxmit = 0; 17452 len = 0; 17453 } 17454 /* Without fast-open there should never be data sent on a SYN */ 17455 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { 17456 tp->snd_nxt = tp->iss; 17457 len = 0; 17458 } 17459 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) { 17460 /* We only send 1 MSS if we have a DSACK block */ 17461 add_flag |= RACK_SENT_W_DSACK; 17462 len = segsiz; 17463 } 17464 orig_len = len; 17465 if (len <= 0) { 17466 /* 17467 * If FIN has been sent but not acked, but we haven't been 17468 * called to retransmit, len will be < 0. Otherwise, window 17469 * shrank after we sent into it. If window shrank to 0, 17470 * cancel pending retransmit, pull snd_nxt back to (closed) 17471 * window, and set the persist timer if it isn't already 17472 * going. If the window didn't close completely, just wait 17473 * for an ACK. 17474 * 17475 * We also do a general check here to ensure that we will 17476 * set the persist timer when we have data to send, but a 17477 * 0-byte window. This makes sure the persist timer is set 17478 * even if the packet hits one of the "goto send" lines 17479 * below. 17480 */ 17481 len = 0; 17482 if ((tp->snd_wnd == 0) && 17483 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17484 (tp->snd_una == tp->snd_max) && 17485 (sb_offset < (int)sbavail(sb))) { 17486 rack_enter_persist(tp, rack, cts); 17487 } 17488 } else if ((rsm == NULL) && 17489 (doing_tlp == 0) && 17490 (len < pace_max_seg)) { 17491 /* 17492 * We are not sending a maximum sized segment for 17493 * some reason. Should we not send anything (think 17494 * sws or persists)? 17495 */ 17496 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17497 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17498 (len < minseg) && 17499 (len < (int)(sbavail(sb) - sb_offset))) { 17500 /* 17501 * Here the rwnd is less than 17502 * the minimum pacing size, this is not a retransmit, 17503 * we are established and 17504 * the send is not the last in the socket buffer 17505 * we send nothing, and we may enter persists 17506 * if nothing is outstanding. 17507 */ 17508 len = 0; 17509 if (tp->snd_max == tp->snd_una) { 17510 /* 17511 * Nothing out we can 17512 * go into persists. 17513 */ 17514 rack_enter_persist(tp, rack, cts); 17515 } 17516 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && 17517 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17518 (len < (int)(sbavail(sb) - sb_offset)) && 17519 (len < minseg)) { 17520 /* 17521 * Here we are not retransmitting, and 17522 * the cwnd is not so small that we could 17523 * not send at least a min size (rxt timer 17524 * not having gone off), We have 2 segments or 17525 * more already in flight, its not the tail end 17526 * of the socket buffer and the cwnd is blocking 17527 * us from sending out a minimum pacing segment size. 17528 * Lets not send anything. 17529 */ 17530 len = 0; 17531 } else if (((tp->snd_wnd - ctf_outstanding(tp)) < 17532 min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17533 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17534 (len < (int)(sbavail(sb) - sb_offset)) && 17535 (TCPS_HAVEESTABLISHED(tp->t_state))) { 17536 /* 17537 * Here we have a send window but we have 17538 * filled it up and we can't send another pacing segment. 17539 * We also have in flight more than 2 segments 17540 * and we are not completing the sb i.e. we allow 17541 * the last bytes of the sb to go out even if 17542 * its not a full pacing segment. 17543 */ 17544 len = 0; 17545 } else if ((rack->r_ctl.crte != NULL) && 17546 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) && 17547 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) && 17548 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) && 17549 (len < (int)(sbavail(sb) - sb_offset))) { 17550 /* 17551 * Here we are doing hardware pacing, this is not a TLP, 17552 * we are not sending a pace max segment size, there is rwnd 17553 * room to send at least N pace_max_seg, the cwnd is greater 17554 * than or equal to a full pacing segments plus 4 mss and we have 2 or 17555 * more segments in flight and its not the tail of the socket buffer. 17556 * 17557 * We don't want to send instead we need to get more ack's in to 17558 * allow us to send a full pacing segment. Normally, if we are pacing 17559 * about the right speed, we should have finished our pacing 17560 * send as most of the acks have come back if we are at the 17561 * right rate. This is a bit fuzzy since return path delay 17562 * can delay the acks, which is why we want to make sure we 17563 * have cwnd space to have a bit more than a max pace segments in flight. 17564 * 17565 * If we have not gotten our acks back we are pacing at too high a 17566 * rate delaying will not hurt and will bring our GP estimate down by 17567 * injecting the delay. If we don't do this we will send 17568 * 2 MSS out in response to the acks being clocked in which 17569 * defeats the point of hw-pacing (i.e. to help us get 17570 * larger TSO's out). 17571 */ 17572 len = 0; 17573 17574 } 17575 17576 } 17577 /* len will be >= 0 after this point. */ 17578 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 17579 rack_sndbuf_autoscale(rack); 17580 /* 17581 * Decide if we can use TCP Segmentation Offloading (if supported by 17582 * hardware). 17583 * 17584 * TSO may only be used if we are in a pure bulk sending state. The 17585 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP 17586 * options prevent using TSO. With TSO the TCP header is the same 17587 * (except for the sequence number) for all generated packets. This 17588 * makes it impossible to transmit any options which vary per 17589 * generated segment or packet. 17590 * 17591 * IPv4 handling has a clear separation of ip options and ip header 17592 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does 17593 * the right thing below to provide length of just ip options and thus 17594 * checking for ipoptlen is enough to decide if ip options are present. 17595 */ 17596 ipoptlen = 0; 17597 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17598 /* 17599 * Pre-calculate here as we save another lookup into the darknesses 17600 * of IPsec that way and can actually decide if TSO is ok. 17601 */ 17602 #ifdef INET6 17603 if (isipv6 && IPSEC_ENABLED(ipv6)) 17604 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb); 17605 #ifdef INET 17606 else 17607 #endif 17608 #endif /* INET6 */ 17609 #ifdef INET 17610 if (IPSEC_ENABLED(ipv4)) 17611 ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb); 17612 #endif /* INET */ 17613 #endif 17614 17615 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17616 ipoptlen += ipsec_optlen; 17617 #endif 17618 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && 17619 (tp->t_port == 0) && 17620 ((tp->t_flags & TF_SIGNATURE) == 0) && 17621 tp->rcv_numsacks == 0 && sack_rxmit == 0 && 17622 ipoptlen == 0) 17623 tso = 1; 17624 { 17625 uint32_t outstanding; 17626 17627 outstanding = tp->snd_max - tp->snd_una; 17628 if (tp->t_flags & TF_SENTFIN) { 17629 /* 17630 * If we sent a fin, snd_max is 1 higher than 17631 * snd_una 17632 */ 17633 outstanding--; 17634 } 17635 if (sack_rxmit) { 17636 if ((rsm->r_flags & RACK_HAS_FIN) == 0) 17637 flags &= ~TH_FIN; 17638 } else { 17639 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + 17640 sbused(sb))) 17641 flags &= ~TH_FIN; 17642 } 17643 } 17644 recwin = lmin(lmax(sbspace(&so->so_rcv), 0), 17645 (long)TCP_MAXWIN << tp->rcv_scale); 17646 17647 /* 17648 * Sender silly window avoidance. We transmit under the following 17649 * conditions when len is non-zero: 17650 * 17651 * - We have a full segment (or more with TSO) - This is the last 17652 * buffer in a write()/send() and we are either idle or running 17653 * NODELAY - we've timed out (e.g. persist timer) - we have more 17654 * then 1/2 the maximum send window's worth of data (receiver may be 17655 * limited the window size) - we need to retransmit 17656 */ 17657 if (len) { 17658 if (len >= segsiz) { 17659 goto send; 17660 } 17661 /* 17662 * NOTE! on localhost connections an 'ack' from the remote 17663 * end may occur synchronously with the output and cause us 17664 * to flush a buffer queued with moretocome. XXX 17665 * 17666 */ 17667 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ 17668 (idle || (tp->t_flags & TF_NODELAY)) && 17669 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17670 (tp->t_flags & TF_NOPUSH) == 0) { 17671 pass = 2; 17672 goto send; 17673 } 17674 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ 17675 pass = 22; 17676 goto send; 17677 } 17678 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { 17679 pass = 4; 17680 goto send; 17681 } 17682 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ 17683 pass = 5; 17684 goto send; 17685 } 17686 if (sack_rxmit) { 17687 pass = 6; 17688 goto send; 17689 } 17690 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && 17691 (ctf_outstanding(tp) < (segsiz * 2))) { 17692 /* 17693 * We have less than two MSS outstanding (delayed ack) 17694 * and our rwnd will not let us send a full sized 17695 * MSS. Lets go ahead and let this small segment 17696 * out because we want to try to have at least two 17697 * packets inflight to not be caught by delayed ack. 17698 */ 17699 pass = 12; 17700 goto send; 17701 } 17702 } 17703 /* 17704 * Sending of standalone window updates. 17705 * 17706 * Window updates are important when we close our window due to a 17707 * full socket buffer and are opening it again after the application 17708 * reads data from it. Once the window has opened again and the 17709 * remote end starts to send again the ACK clock takes over and 17710 * provides the most current window information. 17711 * 17712 * We must avoid the silly window syndrome whereas every read from 17713 * the receive buffer, no matter how small, causes a window update 17714 * to be sent. We also should avoid sending a flurry of window 17715 * updates when the socket buffer had queued a lot of data and the 17716 * application is doing small reads. 17717 * 17718 * Prevent a flurry of pointless window updates by only sending an 17719 * update when we can increase the advertized window by more than 17720 * 1/4th of the socket buffer capacity. When the buffer is getting 17721 * full or is very small be more aggressive and send an update 17722 * whenever we can increase by two mss sized segments. In all other 17723 * situations the ACK's to new incoming data will carry further 17724 * window increases. 17725 * 17726 * Don't send an independent window update if a delayed ACK is 17727 * pending (it will get piggy-backed on it) or the remote side 17728 * already has done a half-close and won't send more data. Skip 17729 * this if the connection is in T/TCP half-open state. 17730 */ 17731 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && 17732 !(tp->t_flags & TF_DELACK) && 17733 !TCPS_HAVERCVDFIN(tp->t_state)) { 17734 /* 17735 * "adv" is the amount we could increase the window, taking 17736 * into account that we are limited by TCP_MAXWIN << 17737 * tp->rcv_scale. 17738 */ 17739 int32_t adv; 17740 int oldwin; 17741 17742 adv = recwin; 17743 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { 17744 oldwin = (tp->rcv_adv - tp->rcv_nxt); 17745 if (adv > oldwin) 17746 adv -= oldwin; 17747 else { 17748 /* We can't increase the window */ 17749 adv = 0; 17750 } 17751 } else 17752 oldwin = 0; 17753 17754 /* 17755 * If the new window size ends up being the same as or less 17756 * than the old size when it is scaled, then don't force 17757 * a window update. 17758 */ 17759 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) 17760 goto dontupdate; 17761 17762 if (adv >= (int32_t)(2 * segsiz) && 17763 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || 17764 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || 17765 so->so_rcv.sb_hiwat <= 8 * segsiz)) { 17766 pass = 7; 17767 goto send; 17768 } 17769 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { 17770 pass = 23; 17771 goto send; 17772 } 17773 } 17774 dontupdate: 17775 17776 /* 17777 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW 17778 * is also a catch-all for the retransmit timer timeout case. 17779 */ 17780 if (tp->t_flags & TF_ACKNOW) { 17781 pass = 8; 17782 goto send; 17783 } 17784 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { 17785 pass = 9; 17786 goto send; 17787 } 17788 /* 17789 * If our state indicates that FIN should be sent and we have not 17790 * yet done so, then we need to send. 17791 */ 17792 if ((flags & TH_FIN) && 17793 (tp->snd_nxt == tp->snd_una)) { 17794 pass = 11; 17795 goto send; 17796 } 17797 /* 17798 * No reason to send a segment, just return. 17799 */ 17800 just_return: 17801 SOCKBUF_UNLOCK(sb); 17802 just_return_nolock: 17803 { 17804 int app_limited = CTF_JR_SENT_DATA; 17805 17806 if (tot_len_this_send > 0) { 17807 /* Make sure snd_nxt is up to max */ 17808 rack->r_ctl.fsb.recwin = recwin; 17809 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); 17810 if ((error == 0) && 17811 rack_use_rfo && 17812 ((flags & (TH_SYN|TH_FIN)) == 0) && 17813 (ipoptlen == 0) && 17814 (tp->snd_nxt == tp->snd_max) && 17815 (tp->rcv_numsacks == 0) && 17816 rack->r_fsb_inited && 17817 TCPS_HAVEESTABLISHED(tp->t_state) && 17818 (rack->r_must_retran == 0) && 17819 ((tp->t_flags & TF_NEEDFIN) == 0) && 17820 (len > 0) && (orig_len > 0) && 17821 (orig_len > len) && 17822 ((orig_len - len) >= segsiz) && 17823 ((optlen == 0) || 17824 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 17825 /* We can send at least one more MSS using our fsb */ 17826 17827 rack->r_fast_output = 1; 17828 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 17829 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 17830 rack->r_ctl.fsb.tcp_flags = flags; 17831 rack->r_ctl.fsb.left_to_send = orig_len - len; 17832 if (hw_tls) 17833 rack->r_ctl.fsb.hw_tls = 1; 17834 else 17835 rack->r_ctl.fsb.hw_tls = 0; 17836 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 17837 ("rack:%p left_to_send:%u sbavail:%u out:%u", 17838 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 17839 (tp->snd_max - tp->snd_una))); 17840 if (rack->r_ctl.fsb.left_to_send < segsiz) 17841 rack->r_fast_output = 0; 17842 else { 17843 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 17844 rack->r_ctl.fsb.rfo_apply_push = 1; 17845 else 17846 rack->r_ctl.fsb.rfo_apply_push = 0; 17847 } 17848 } else 17849 rack->r_fast_output = 0; 17850 17851 17852 rack_log_fsb(rack, tp, so, flags, 17853 ipoptlen, orig_len, len, 0, 17854 1, optlen, __LINE__, 1); 17855 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 17856 tp->snd_nxt = tp->snd_max; 17857 } else { 17858 int end_window = 0; 17859 uint32_t seq = tp->gput_ack; 17860 17861 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17862 if (rsm) { 17863 /* 17864 * Mark the last sent that we just-returned (hinting 17865 * that delayed ack may play a role in any rtt measurement). 17866 */ 17867 rsm->r_just_ret = 1; 17868 } 17869 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); 17870 rack->r_ctl.rc_agg_delayed = 0; 17871 rack->r_early = 0; 17872 rack->r_late = 0; 17873 rack->r_ctl.rc_agg_early = 0; 17874 if ((ctf_outstanding(tp) + 17875 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), 17876 minseg)) >= tp->snd_wnd) { 17877 /* We are limited by the rwnd */ 17878 app_limited = CTF_JR_RWND_LIMITED; 17879 if (IN_FASTRECOVERY(tp->t_flags)) 17880 rack->r_ctl.rc_prr_sndcnt = 0; 17881 } else if (ctf_outstanding(tp) >= sbavail(sb)) { 17882 /* We are limited by whats available -- app limited */ 17883 app_limited = CTF_JR_APP_LIMITED; 17884 if (IN_FASTRECOVERY(tp->t_flags)) 17885 rack->r_ctl.rc_prr_sndcnt = 0; 17886 } else if ((idle == 0) && 17887 ((tp->t_flags & TF_NODELAY) == 0) && 17888 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17889 (len < segsiz)) { 17890 /* 17891 * No delay is not on and the 17892 * user is sending less than 1MSS. This 17893 * brings out SWS avoidance so we 17894 * don't send. Another app-limited case. 17895 */ 17896 app_limited = CTF_JR_APP_LIMITED; 17897 } else if (tp->t_flags & TF_NOPUSH) { 17898 /* 17899 * The user has requested no push of 17900 * the last segment and we are 17901 * at the last segment. Another app 17902 * limited case. 17903 */ 17904 app_limited = CTF_JR_APP_LIMITED; 17905 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { 17906 /* Its the cwnd */ 17907 app_limited = CTF_JR_CWND_LIMITED; 17908 } else if (IN_FASTRECOVERY(tp->t_flags) && 17909 (rack->rack_no_prr == 0) && 17910 (rack->r_ctl.rc_prr_sndcnt < segsiz)) { 17911 app_limited = CTF_JR_PRR; 17912 } else { 17913 /* Now why here are we not sending? */ 17914 #ifdef NOW 17915 #ifdef INVARIANTS 17916 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); 17917 #endif 17918 #endif 17919 app_limited = CTF_JR_ASSESSING; 17920 } 17921 /* 17922 * App limited in some fashion, for our pacing GP 17923 * measurements we don't want any gap (even cwnd). 17924 * Close down the measurement window. 17925 */ 17926 if (rack_cwnd_block_ends_measure && 17927 ((app_limited == CTF_JR_CWND_LIMITED) || 17928 (app_limited == CTF_JR_PRR))) { 17929 /* 17930 * The reason we are not sending is 17931 * the cwnd (or prr). We have been configured 17932 * to end the measurement window in 17933 * this case. 17934 */ 17935 end_window = 1; 17936 } else if (rack_rwnd_block_ends_measure && 17937 (app_limited == CTF_JR_RWND_LIMITED)) { 17938 /* 17939 * We are rwnd limited and have been 17940 * configured to end the measurement 17941 * window in this case. 17942 */ 17943 end_window = 1; 17944 } else if (app_limited == CTF_JR_APP_LIMITED) { 17945 /* 17946 * A true application limited period, we have 17947 * ran out of data. 17948 */ 17949 end_window = 1; 17950 } else if (app_limited == CTF_JR_ASSESSING) { 17951 /* 17952 * In the assessing case we hit the end of 17953 * the if/else and had no known reason 17954 * This will panic us under invariants.. 17955 * 17956 * If we get this out in logs we need to 17957 * investagate which reason we missed. 17958 */ 17959 end_window = 1; 17960 } 17961 if (end_window) { 17962 uint8_t log = 0; 17963 17964 /* Adjust the Gput measurement */ 17965 if ((tp->t_flags & TF_GPUTINPROG) && 17966 SEQ_GT(tp->gput_ack, tp->snd_max)) { 17967 tp->gput_ack = tp->snd_max; 17968 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 17969 /* 17970 * There is not enough to measure. 17971 */ 17972 tp->t_flags &= ~TF_GPUTINPROG; 17973 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 17974 rack->r_ctl.rc_gp_srtt /*flex1*/, 17975 tp->gput_seq, 17976 0, 0, 18, __LINE__, NULL, 0); 17977 } else 17978 log = 1; 17979 } 17980 /* Mark the last packet has app limited */ 17981 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17982 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 17983 if (rack->r_ctl.rc_app_limited_cnt == 0) 17984 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 17985 else { 17986 /* 17987 * Go out to the end app limited and mark 17988 * this new one as next and move the end_appl up 17989 * to this guy. 17990 */ 17991 if (rack->r_ctl.rc_end_appl) 17992 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 17993 rack->r_ctl.rc_end_appl = rsm; 17994 } 17995 rsm->r_flags |= RACK_APP_LIMITED; 17996 rack->r_ctl.rc_app_limited_cnt++; 17997 } 17998 if (log) 17999 rack_log_pacing_delay_calc(rack, 18000 rack->r_ctl.rc_app_limited_cnt, seq, 18001 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0); 18002 } 18003 } 18004 if (slot) { 18005 /* set the rack tcb into the slot N */ 18006 counter_u64_add(rack_paced_segments, 1); 18007 } else if (tot_len_this_send) { 18008 counter_u64_add(rack_unpaced_segments, 1); 18009 } 18010 /* Check if we need to go into persists or not */ 18011 if ((tp->snd_max == tp->snd_una) && 18012 TCPS_HAVEESTABLISHED(tp->t_state) && 18013 sbavail(sb) && 18014 (sbavail(sb) > tp->snd_wnd) && 18015 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { 18016 /* Yes lets make sure to move to persist before timer-start */ 18017 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 18018 } 18019 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); 18020 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); 18021 } 18022 #ifdef NETFLIX_SHARED_CWND 18023 if ((sbavail(sb) == 0) && 18024 rack->r_ctl.rc_scw) { 18025 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 18026 rack->rack_scwnd_is_idle = 1; 18027 } 18028 #endif 18029 #ifdef TCP_ACCOUNTING 18030 if (tot_len_this_send > 0) { 18031 crtsc = get_cyclecount(); 18032 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18033 tp->tcp_cnt_counters[SND_OUT_DATA]++; 18034 } 18035 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 18036 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18037 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 18038 } 18039 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 18040 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18041 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz); 18042 } 18043 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz)); 18044 } else { 18045 crtsc = get_cyclecount(); 18046 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18047 tp->tcp_cnt_counters[SND_LIMITED]++; 18048 } 18049 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1); 18050 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18051 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val); 18052 } 18053 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val)); 18054 } 18055 sched_unpin(); 18056 #endif 18057 return (0); 18058 18059 send: 18060 if (rsm || sack_rxmit) 18061 counter_u64_add(rack_nfto_resend, 1); 18062 else 18063 counter_u64_add(rack_non_fto_send, 1); 18064 if ((flags & TH_FIN) && 18065 sbavail(sb)) { 18066 /* 18067 * We do not transmit a FIN 18068 * with data outstanding. We 18069 * need to make it so all data 18070 * is acked first. 18071 */ 18072 flags &= ~TH_FIN; 18073 } 18074 /* Enforce stack imposed max seg size if we have one */ 18075 if (rack->r_ctl.rc_pace_max_segs && 18076 (len > rack->r_ctl.rc_pace_max_segs)) { 18077 mark = 1; 18078 len = rack->r_ctl.rc_pace_max_segs; 18079 } 18080 SOCKBUF_LOCK_ASSERT(sb); 18081 if (len > 0) { 18082 if (len >= segsiz) 18083 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; 18084 else 18085 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; 18086 } 18087 /* 18088 * Before ESTABLISHED, force sending of initial options unless TCP 18089 * set not to do any options. NOTE: we assume that the IP/TCP header 18090 * plus TCP options always fit in a single mbuf, leaving room for a 18091 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) 18092 * + optlen <= MCLBYTES 18093 */ 18094 optlen = 0; 18095 #ifdef INET6 18096 if (isipv6) 18097 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 18098 else 18099 #endif 18100 hdrlen = sizeof(struct tcpiphdr); 18101 18102 /* 18103 * Compute options for segment. We only have to care about SYN and 18104 * established connection segments. Options for SYN-ACK segments 18105 * are handled in TCP syncache. 18106 */ 18107 to.to_flags = 0; 18108 if ((tp->t_flags & TF_NOOPT) == 0) { 18109 /* Maximum segment size. */ 18110 if (flags & TH_SYN) { 18111 tp->snd_nxt = tp->iss; 18112 to.to_mss = tcp_mssopt(&inp->inp_inc); 18113 if (tp->t_port) 18114 to.to_mss -= V_tcp_udp_tunneling_overhead; 18115 to.to_flags |= TOF_MSS; 18116 18117 /* 18118 * On SYN or SYN|ACK transmits on TFO connections, 18119 * only include the TFO option if it is not a 18120 * retransmit, as the presence of the TFO option may 18121 * have caused the original SYN or SYN|ACK to have 18122 * been dropped by a middlebox. 18123 */ 18124 if (IS_FASTOPEN(tp->t_flags) && 18125 (tp->t_rxtshift == 0)) { 18126 if (tp->t_state == TCPS_SYN_RECEIVED) { 18127 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; 18128 to.to_tfo_cookie = 18129 (u_int8_t *)&tp->t_tfo_cookie.server; 18130 to.to_flags |= TOF_FASTOPEN; 18131 wanted_cookie = 1; 18132 } else if (tp->t_state == TCPS_SYN_SENT) { 18133 to.to_tfo_len = 18134 tp->t_tfo_client_cookie_len; 18135 to.to_tfo_cookie = 18136 tp->t_tfo_cookie.client; 18137 to.to_flags |= TOF_FASTOPEN; 18138 wanted_cookie = 1; 18139 /* 18140 * If we wind up having more data to 18141 * send with the SYN than can fit in 18142 * one segment, don't send any more 18143 * until the SYN|ACK comes back from 18144 * the other end. 18145 */ 18146 sendalot = 0; 18147 } 18148 } 18149 } 18150 /* Window scaling. */ 18151 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { 18152 to.to_wscale = tp->request_r_scale; 18153 to.to_flags |= TOF_SCALE; 18154 } 18155 /* Timestamps. */ 18156 if ((tp->t_flags & TF_RCVD_TSTMP) || 18157 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { 18158 to.to_tsval = ms_cts + tp->ts_offset; 18159 to.to_tsecr = tp->ts_recent; 18160 to.to_flags |= TOF_TS; 18161 } 18162 /* Set receive buffer autosizing timestamp. */ 18163 if (tp->rfbuf_ts == 0 && 18164 (so->so_rcv.sb_flags & SB_AUTOSIZE)) 18165 tp->rfbuf_ts = tcp_ts_getticks(); 18166 /* Selective ACK's. */ 18167 if (tp->t_flags & TF_SACK_PERMIT) { 18168 if (flags & TH_SYN) 18169 to.to_flags |= TOF_SACKPERM; 18170 else if (TCPS_HAVEESTABLISHED(tp->t_state) && 18171 tp->rcv_numsacks > 0) { 18172 to.to_flags |= TOF_SACK; 18173 to.to_nsacks = tp->rcv_numsacks; 18174 to.to_sacks = (u_char *)tp->sackblks; 18175 } 18176 } 18177 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18178 /* TCP-MD5 (RFC2385). */ 18179 if (tp->t_flags & TF_SIGNATURE) 18180 to.to_flags |= TOF_SIGNATURE; 18181 #endif /* TCP_SIGNATURE */ 18182 18183 /* Processing the options. */ 18184 hdrlen += optlen = tcp_addoptions(&to, opt); 18185 /* 18186 * If we wanted a TFO option to be added, but it was unable 18187 * to fit, ensure no data is sent. 18188 */ 18189 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && 18190 !(to.to_flags & TOF_FASTOPEN)) 18191 len = 0; 18192 } 18193 if (tp->t_port) { 18194 if (V_tcp_udp_tunneling_port == 0) { 18195 /* The port was removed?? */ 18196 SOCKBUF_UNLOCK(&so->so_snd); 18197 #ifdef TCP_ACCOUNTING 18198 crtsc = get_cyclecount(); 18199 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18200 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18201 } 18202 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18203 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18204 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18205 } 18206 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18207 sched_unpin(); 18208 #endif 18209 return (EHOSTUNREACH); 18210 } 18211 hdrlen += sizeof(struct udphdr); 18212 } 18213 #ifdef INET6 18214 if (isipv6) 18215 ipoptlen = ip6_optlen(tp->t_inpcb); 18216 else 18217 #endif 18218 if (tp->t_inpcb->inp_options) 18219 ipoptlen = tp->t_inpcb->inp_options->m_len - 18220 offsetof(struct ipoption, ipopt_list); 18221 else 18222 ipoptlen = 0; 18223 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18224 ipoptlen += ipsec_optlen; 18225 #endif 18226 18227 /* 18228 * Adjust data length if insertion of options will bump the packet 18229 * length beyond the t_maxseg length. Clear the FIN bit because we 18230 * cut off the tail of the segment. 18231 */ 18232 if (len + optlen + ipoptlen > tp->t_maxseg) { 18233 if (tso) { 18234 uint32_t if_hw_tsomax; 18235 uint32_t moff; 18236 int32_t max_len; 18237 18238 /* extract TSO information */ 18239 if_hw_tsomax = tp->t_tsomax; 18240 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 18241 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 18242 KASSERT(ipoptlen == 0, 18243 ("%s: TSO can't do IP options", __func__)); 18244 18245 /* 18246 * Check if we should limit by maximum payload 18247 * length: 18248 */ 18249 if (if_hw_tsomax != 0) { 18250 /* compute maximum TSO length */ 18251 max_len = (if_hw_tsomax - hdrlen - 18252 max_linkhdr); 18253 if (max_len <= 0) { 18254 len = 0; 18255 } else if (len > max_len) { 18256 sendalot = 1; 18257 len = max_len; 18258 mark = 2; 18259 } 18260 } 18261 /* 18262 * Prevent the last segment from being fractional 18263 * unless the send sockbuf can be emptied: 18264 */ 18265 max_len = (tp->t_maxseg - optlen); 18266 if ((sb_offset + len) < sbavail(sb)) { 18267 moff = len % (u_int)max_len; 18268 if (moff != 0) { 18269 mark = 3; 18270 len -= moff; 18271 } 18272 } 18273 /* 18274 * In case there are too many small fragments don't 18275 * use TSO: 18276 */ 18277 if (len <= segsiz) { 18278 mark = 4; 18279 tso = 0; 18280 } 18281 /* 18282 * Send the FIN in a separate segment after the bulk 18283 * sending is done. We don't trust the TSO 18284 * implementations to clear the FIN flag on all but 18285 * the last segment. 18286 */ 18287 if (tp->t_flags & TF_NEEDFIN) { 18288 sendalot = 4; 18289 } 18290 } else { 18291 mark = 5; 18292 if (optlen + ipoptlen >= tp->t_maxseg) { 18293 /* 18294 * Since we don't have enough space to put 18295 * the IP header chain and the TCP header in 18296 * one packet as required by RFC 7112, don't 18297 * send it. Also ensure that at least one 18298 * byte of the payload can be put into the 18299 * TCP segment. 18300 */ 18301 SOCKBUF_UNLOCK(&so->so_snd); 18302 error = EMSGSIZE; 18303 sack_rxmit = 0; 18304 goto out; 18305 } 18306 len = tp->t_maxseg - optlen - ipoptlen; 18307 sendalot = 5; 18308 } 18309 } else { 18310 tso = 0; 18311 mark = 6; 18312 } 18313 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, 18314 ("%s: len > IP_MAXPACKET", __func__)); 18315 #ifdef DIAGNOSTIC 18316 #ifdef INET6 18317 if (max_linkhdr + hdrlen > MCLBYTES) 18318 #else 18319 if (max_linkhdr + hdrlen > MHLEN) 18320 #endif 18321 panic("tcphdr too big"); 18322 #endif 18323 18324 /* 18325 * This KASSERT is here to catch edge cases at a well defined place. 18326 * Before, those had triggered (random) panic conditions further 18327 * down. 18328 */ 18329 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 18330 if ((len == 0) && 18331 (flags & TH_FIN) && 18332 (sbused(sb))) { 18333 /* 18334 * We have outstanding data, don't send a fin by itself!. 18335 */ 18336 goto just_return; 18337 } 18338 /* 18339 * Grab a header mbuf, attaching a copy of data to be transmitted, 18340 * and initialize the header from the template for sends on this 18341 * connection. 18342 */ 18343 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0; 18344 if (len) { 18345 uint32_t max_val; 18346 uint32_t moff; 18347 18348 if (rack->r_ctl.rc_pace_max_segs) 18349 max_val = rack->r_ctl.rc_pace_max_segs; 18350 else if (rack->rc_user_set_max_segs) 18351 max_val = rack->rc_user_set_max_segs * segsiz; 18352 else 18353 max_val = len; 18354 /* 18355 * We allow a limit on sending with hptsi. 18356 */ 18357 if (len > max_val) { 18358 mark = 7; 18359 len = max_val; 18360 } 18361 #ifdef INET6 18362 if (MHLEN < hdrlen + max_linkhdr) 18363 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 18364 else 18365 #endif 18366 m = m_gethdr(M_NOWAIT, MT_DATA); 18367 18368 if (m == NULL) { 18369 SOCKBUF_UNLOCK(sb); 18370 error = ENOBUFS; 18371 sack_rxmit = 0; 18372 goto out; 18373 } 18374 m->m_data += max_linkhdr; 18375 m->m_len = hdrlen; 18376 18377 /* 18378 * Start the m_copy functions from the closest mbuf to the 18379 * sb_offset in the socket buffer chain. 18380 */ 18381 mb = sbsndptr_noadv(sb, sb_offset, &moff); 18382 s_mb = mb; 18383 s_moff = moff; 18384 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { 18385 m_copydata(mb, moff, (int)len, 18386 mtod(m, caddr_t)+hdrlen); 18387 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18388 sbsndptr_adv(sb, mb, len); 18389 m->m_len += len; 18390 } else { 18391 struct sockbuf *msb; 18392 18393 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18394 msb = NULL; 18395 else 18396 msb = sb; 18397 m->m_next = tcp_m_copym( 18398 mb, moff, &len, 18399 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, 18400 ((rsm == NULL) ? hw_tls : 0) 18401 #ifdef NETFLIX_COPY_ARGS 18402 , &filled_all 18403 #endif 18404 ); 18405 if (len <= (tp->t_maxseg - optlen)) { 18406 /* 18407 * Must have ran out of mbufs for the copy 18408 * shorten it to no longer need tso. Lets 18409 * not put on sendalot since we are low on 18410 * mbufs. 18411 */ 18412 tso = 0; 18413 } 18414 if (m->m_next == NULL) { 18415 SOCKBUF_UNLOCK(sb); 18416 (void)m_free(m); 18417 error = ENOBUFS; 18418 sack_rxmit = 0; 18419 goto out; 18420 } 18421 } 18422 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { 18423 if (rsm && (rsm->r_flags & RACK_TLP)) { 18424 /* 18425 * TLP should not count in retran count, but 18426 * in its own bin 18427 */ 18428 counter_u64_add(rack_tlp_retran, 1); 18429 counter_u64_add(rack_tlp_retran_bytes, len); 18430 } else { 18431 tp->t_sndrexmitpack++; 18432 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 18433 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 18434 } 18435 #ifdef STATS 18436 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 18437 len); 18438 #endif 18439 } else { 18440 KMOD_TCPSTAT_INC(tcps_sndpack); 18441 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 18442 #ifdef STATS 18443 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 18444 len); 18445 #endif 18446 } 18447 /* 18448 * If we're sending everything we've got, set PUSH. (This 18449 * will keep happy those implementations which only give 18450 * data to the user when a buffer fills or a PUSH comes in.) 18451 */ 18452 if (sb_offset + len == sbused(sb) && 18453 sbused(sb) && 18454 !(flags & TH_SYN)) { 18455 flags |= TH_PUSH; 18456 add_flag |= RACK_HAD_PUSH; 18457 } 18458 18459 SOCKBUF_UNLOCK(sb); 18460 } else { 18461 SOCKBUF_UNLOCK(sb); 18462 if (tp->t_flags & TF_ACKNOW) 18463 KMOD_TCPSTAT_INC(tcps_sndacks); 18464 else if (flags & (TH_SYN | TH_FIN | TH_RST)) 18465 KMOD_TCPSTAT_INC(tcps_sndctrl); 18466 else 18467 KMOD_TCPSTAT_INC(tcps_sndwinup); 18468 18469 m = m_gethdr(M_NOWAIT, MT_DATA); 18470 if (m == NULL) { 18471 error = ENOBUFS; 18472 sack_rxmit = 0; 18473 goto out; 18474 } 18475 #ifdef INET6 18476 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && 18477 MHLEN >= hdrlen) { 18478 M_ALIGN(m, hdrlen); 18479 } else 18480 #endif 18481 m->m_data += max_linkhdr; 18482 m->m_len = hdrlen; 18483 } 18484 SOCKBUF_UNLOCK_ASSERT(sb); 18485 m->m_pkthdr.rcvif = (struct ifnet *)0; 18486 #ifdef MAC 18487 mac_inpcb_create_mbuf(inp, m); 18488 #endif 18489 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18490 #ifdef INET6 18491 if (isipv6) 18492 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 18493 else 18494 #endif /* INET6 */ 18495 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 18496 th = rack->r_ctl.fsb.th; 18497 udp = rack->r_ctl.fsb.udp; 18498 if (udp) { 18499 #ifdef INET6 18500 if (isipv6) 18501 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18502 else 18503 #endif /* INET6 */ 18504 ulen = hdrlen + len - sizeof(struct ip); 18505 udp->uh_ulen = htons(ulen); 18506 } 18507 } else { 18508 #ifdef INET6 18509 if (isipv6) { 18510 ip6 = mtod(m, struct ip6_hdr *); 18511 if (tp->t_port) { 18512 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 18513 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18514 udp->uh_dport = tp->t_port; 18515 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18516 udp->uh_ulen = htons(ulen); 18517 th = (struct tcphdr *)(udp + 1); 18518 } else 18519 th = (struct tcphdr *)(ip6 + 1); 18520 tcpip_fillheaders(inp, tp->t_port, ip6, th); 18521 } else 18522 #endif /* INET6 */ 18523 { 18524 ip = mtod(m, struct ip *); 18525 #ifdef TCPDEBUG 18526 ipov = (struct ipovly *)ip; 18527 #endif 18528 if (tp->t_port) { 18529 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 18530 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18531 udp->uh_dport = tp->t_port; 18532 ulen = hdrlen + len - sizeof(struct ip); 18533 udp->uh_ulen = htons(ulen); 18534 th = (struct tcphdr *)(udp + 1); 18535 } else 18536 th = (struct tcphdr *)(ip + 1); 18537 tcpip_fillheaders(inp, tp->t_port, ip, th); 18538 } 18539 } 18540 /* 18541 * Fill in fields, remembering maximum advertised window for use in 18542 * delaying messages about window sizes. If resending a FIN, be sure 18543 * not to use a new sequence number. 18544 */ 18545 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && 18546 tp->snd_nxt == tp->snd_max) 18547 tp->snd_nxt--; 18548 /* 18549 * If we are starting a connection, send ECN setup SYN packet. If we 18550 * are on a retransmit, we may resend those bits a number of times 18551 * as per RFC 3168. 18552 */ 18553 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) { 18554 flags |= tcp_ecn_output_syn_sent(tp); 18555 } 18556 /* Also handle parallel SYN for ECN */ 18557 if (TCPS_HAVERCVDSYN(tp->t_state) && 18558 (tp->t_flags2 & TF2_ECN_PERMIT)) { 18559 int ect = tcp_ecn_output_established(tp, &flags, len); 18560 if ((tp->t_state == TCPS_SYN_RECEIVED) && 18561 (tp->t_flags2 & TF2_ECN_SND_ECE)) 18562 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 18563 #ifdef INET6 18564 if (isipv6) { 18565 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 18566 ip6->ip6_flow |= htonl(ect << 20); 18567 } 18568 else 18569 #endif 18570 { 18571 ip->ip_tos &= ~IPTOS_ECN_MASK; 18572 ip->ip_tos |= ect; 18573 } 18574 } 18575 /* 18576 * If we are doing retransmissions, then snd_nxt will not reflect 18577 * the first unsent octet. For ACK only packets, we do not want the 18578 * sequence number of the retransmitted packet, we want the sequence 18579 * number of the next unsent octet. So, if there is no data (and no 18580 * SYN or FIN), use snd_max instead of snd_nxt when filling in 18581 * ti_seq. But if we are in persist state, snd_max might reflect 18582 * one byte beyond the right edge of the window, so use snd_nxt in 18583 * that case, since we know we aren't doing a retransmission. 18584 * (retransmit and persist are mutually exclusive...) 18585 */ 18586 if (sack_rxmit == 0) { 18587 if (len || (flags & (TH_SYN | TH_FIN))) { 18588 th->th_seq = htonl(tp->snd_nxt); 18589 rack_seq = tp->snd_nxt; 18590 } else { 18591 th->th_seq = htonl(tp->snd_max); 18592 rack_seq = tp->snd_max; 18593 } 18594 } else { 18595 th->th_seq = htonl(rsm->r_start); 18596 rack_seq = rsm->r_start; 18597 } 18598 th->th_ack = htonl(tp->rcv_nxt); 18599 tcp_set_flags(th, flags); 18600 /* 18601 * Calculate receive window. Don't shrink window, but avoid silly 18602 * window syndrome. 18603 * If a RST segment is sent, advertise a window of zero. 18604 */ 18605 if (flags & TH_RST) { 18606 recwin = 0; 18607 } else { 18608 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && 18609 recwin < (long)segsiz) { 18610 recwin = 0; 18611 } 18612 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && 18613 recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) 18614 recwin = (long)(tp->rcv_adv - tp->rcv_nxt); 18615 } 18616 18617 /* 18618 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or 18619 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is 18620 * handled in syncache. 18621 */ 18622 if (flags & TH_SYN) 18623 th->th_win = htons((u_short) 18624 (min(sbspace(&so->so_rcv), TCP_MAXWIN))); 18625 else { 18626 /* Avoid shrinking window with window scaling. */ 18627 recwin = roundup2(recwin, 1 << tp->rcv_scale); 18628 th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); 18629 } 18630 /* 18631 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 18632 * window. This may cause the remote transmitter to stall. This 18633 * flag tells soreceive() to disable delayed acknowledgements when 18634 * draining the buffer. This can occur if the receiver is 18635 * attempting to read more data than can be buffered prior to 18636 * transmitting on the connection. 18637 */ 18638 if (th->th_win == 0) { 18639 tp->t_sndzerowin++; 18640 tp->t_flags |= TF_RXWIN0SENT; 18641 } else 18642 tp->t_flags &= ~TF_RXWIN0SENT; 18643 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 18644 /* Now are we using fsb?, if so copy the template data to the mbuf */ 18645 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18646 uint8_t *cpto; 18647 18648 cpto = mtod(m, uint8_t *); 18649 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 18650 /* 18651 * We have just copied in: 18652 * IP/IP6 18653 * <optional udphdr> 18654 * tcphdr (no options) 18655 * 18656 * We need to grab the correct pointers into the mbuf 18657 * for both the tcp header, and possibly the udp header (if tunneling). 18658 * We do this by using the offset in the copy buffer and adding it 18659 * to the mbuf base pointer (cpto). 18660 */ 18661 #ifdef INET6 18662 if (isipv6) 18663 ip6 = mtod(m, struct ip6_hdr *); 18664 else 18665 #endif /* INET6 */ 18666 ip = mtod(m, struct ip *); 18667 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 18668 /* If we have a udp header lets set it into the mbuf as well */ 18669 if (udp) 18670 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr)); 18671 } 18672 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18673 if (to.to_flags & TOF_SIGNATURE) { 18674 /* 18675 * Calculate MD5 signature and put it into the place 18676 * determined before. 18677 * NOTE: since TCP options buffer doesn't point into 18678 * mbuf's data, calculate offset and use it. 18679 */ 18680 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 18681 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 18682 /* 18683 * Do not send segment if the calculation of MD5 18684 * digest has failed. 18685 */ 18686 goto out; 18687 } 18688 } 18689 #endif 18690 if (optlen) { 18691 bcopy(opt, th + 1, optlen); 18692 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 18693 } 18694 /* 18695 * Put TCP length in extended header, and then checksum extended 18696 * header and data. 18697 */ 18698 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 18699 #ifdef INET6 18700 if (isipv6) { 18701 /* 18702 * ip6_plen is not need to be filled now, and will be filled 18703 * in ip6_output. 18704 */ 18705 if (tp->t_port) { 18706 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 18707 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18708 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 18709 th->th_sum = htons(0); 18710 UDPSTAT_INC(udps_opackets); 18711 } else { 18712 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 18713 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18714 th->th_sum = in6_cksum_pseudo(ip6, 18715 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 18716 0); 18717 } 18718 } 18719 #endif 18720 #if defined(INET6) && defined(INET) 18721 else 18722 #endif 18723 #ifdef INET 18724 { 18725 if (tp->t_port) { 18726 m->m_pkthdr.csum_flags = CSUM_UDP; 18727 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18728 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 18729 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 18730 th->th_sum = htons(0); 18731 UDPSTAT_INC(udps_opackets); 18732 } else { 18733 m->m_pkthdr.csum_flags = CSUM_TCP; 18734 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18735 th->th_sum = in_pseudo(ip->ip_src.s_addr, 18736 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 18737 IPPROTO_TCP + len + optlen)); 18738 } 18739 /* IP version must be set here for ipv4/ipv6 checking later */ 18740 KASSERT(ip->ip_v == IPVERSION, 18741 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 18742 } 18743 #endif 18744 /* 18745 * Enable TSO and specify the size of the segments. The TCP pseudo 18746 * header checksum is always provided. XXX: Fixme: This is currently 18747 * not the case for IPv6. 18748 */ 18749 if (tso) { 18750 KASSERT(len > tp->t_maxseg - optlen, 18751 ("%s: len <= tso_segsz", __func__)); 18752 m->m_pkthdr.csum_flags |= CSUM_TSO; 18753 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 18754 } 18755 KASSERT(len + hdrlen == m_length(m, NULL), 18756 ("%s: mbuf chain different than expected: %d + %u != %u", 18757 __func__, len, hdrlen, m_length(m, NULL))); 18758 18759 #ifdef TCP_HHOOK 18760 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ 18761 hhook_run_tcp_est_out(tp, th, &to, len, tso); 18762 #endif 18763 /* We're getting ready to send; log now. */ 18764 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 18765 union tcp_log_stackspecific log; 18766 18767 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 18768 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 18769 if (rack->rack_no_prr) 18770 log.u_bbr.flex1 = 0; 18771 else 18772 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 18773 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 18774 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 18775 log.u_bbr.flex4 = orig_len; 18776 if (filled_all) 18777 log.u_bbr.flex5 = 0x80000000; 18778 else 18779 log.u_bbr.flex5 = 0; 18780 /* Save off the early/late values */ 18781 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 18782 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 18783 log.u_bbr.bw_inuse = rack_get_bw(rack); 18784 if (rsm || sack_rxmit) { 18785 if (doing_tlp) 18786 log.u_bbr.flex8 = 2; 18787 else 18788 log.u_bbr.flex8 = 1; 18789 } else { 18790 if (doing_tlp) 18791 log.u_bbr.flex8 = 3; 18792 else 18793 log.u_bbr.flex8 = 0; 18794 } 18795 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 18796 log.u_bbr.flex7 = mark; 18797 log.u_bbr.flex7 <<= 8; 18798 log.u_bbr.flex7 |= pass; 18799 log.u_bbr.pkts_out = tp->t_maxseg; 18800 log.u_bbr.timeStamp = cts; 18801 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18802 log.u_bbr.lt_epoch = cwnd_to_use; 18803 log.u_bbr.delivered = sendalot; 18804 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, 18805 len, &log, false, NULL, NULL, 0, &tv); 18806 } else 18807 lgb = NULL; 18808 18809 /* 18810 * Fill in IP length and desired time to live and send to IP level. 18811 * There should be a better way to handle ttl and tos; we could keep 18812 * them in the template, but need a way to checksum without them. 18813 */ 18814 /* 18815 * m->m_pkthdr.len should have been set before cksum calcuration, 18816 * because in6_cksum() need it. 18817 */ 18818 #ifdef INET6 18819 if (isipv6) { 18820 /* 18821 * we separately set hoplimit for every segment, since the 18822 * user might want to change the value via setsockopt. Also, 18823 * desired default hop limit might be changed via Neighbor 18824 * Discovery. 18825 */ 18826 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL); 18827 18828 /* 18829 * Set the packet size here for the benefit of DTrace 18830 * probes. ip6_output() will set it properly; it's supposed 18831 * to include the option header lengths as well. 18832 */ 18833 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 18834 18835 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 18836 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18837 else 18838 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18839 18840 if (tp->t_state == TCPS_SYN_SENT) 18841 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); 18842 18843 TCP_PROBE5(send, NULL, tp, ip6, tp, th); 18844 /* TODO: IPv6 IP6TOS_ECT bit on */ 18845 error = ip6_output(m, 18846 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18847 inp->in6p_outputopts, 18848 #else 18849 NULL, 18850 #endif 18851 &inp->inp_route6, 18852 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 18853 NULL, NULL, inp); 18854 18855 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) 18856 mtu = inp->inp_route6.ro_nh->nh_mtu; 18857 } 18858 #endif /* INET6 */ 18859 #if defined(INET) && defined(INET6) 18860 else 18861 #endif 18862 #ifdef INET 18863 { 18864 ip->ip_len = htons(m->m_pkthdr.len); 18865 #ifdef INET6 18866 if (inp->inp_vflag & INP_IPV6PROTO) 18867 ip->ip_ttl = in6_selecthlim(inp, NULL); 18868 #endif /* INET6 */ 18869 rack->r_ctl.fsb.hoplimit = ip->ip_ttl; 18870 /* 18871 * If we do path MTU discovery, then we set DF on every 18872 * packet. This might not be the best thing to do according 18873 * to RFC3390 Section 2. However the tcp hostcache migitates 18874 * the problem so it affects only the first tcp connection 18875 * with a host. 18876 * 18877 * NB: Don't set DF on small MTU/MSS to have a safe 18878 * fallback. 18879 */ 18880 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 18881 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18882 if (tp->t_port == 0 || len < V_tcp_minmss) { 18883 ip->ip_off |= htons(IP_DF); 18884 } 18885 } else { 18886 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18887 } 18888 18889 if (tp->t_state == TCPS_SYN_SENT) 18890 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); 18891 18892 TCP_PROBE5(send, NULL, tp, ip, tp, th); 18893 18894 error = ip_output(m, 18895 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18896 inp->inp_options, 18897 #else 18898 NULL, 18899 #endif 18900 &inp->inp_route, 18901 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, 18902 inp); 18903 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) 18904 mtu = inp->inp_route.ro_nh->nh_mtu; 18905 } 18906 #endif /* INET */ 18907 18908 out: 18909 if (lgb) { 18910 lgb->tlb_errno = error; 18911 lgb = NULL; 18912 } 18913 /* 18914 * In transmit state, time the transmission and arrange for the 18915 * retransmit. In persist state, just set snd_max. 18916 */ 18917 if (error == 0) { 18918 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls); 18919 if (rsm && doing_tlp) { 18920 rack->rc_last_sent_tlp_past_cumack = 0; 18921 rack->rc_last_sent_tlp_seq_valid = 1; 18922 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 18923 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 18924 } 18925 rack->forced_ack = 0; /* If we send something zap the FA flag */ 18926 if (rsm && (doing_tlp == 0)) { 18927 /* Set we retransmitted */ 18928 rack->rc_gp_saw_rec = 1; 18929 } else { 18930 if (cwnd_to_use > tp->snd_ssthresh) { 18931 /* Set we sent in CA */ 18932 rack->rc_gp_saw_ca = 1; 18933 } else { 18934 /* Set we sent in SS */ 18935 rack->rc_gp_saw_ss = 1; 18936 } 18937 } 18938 if (TCPS_HAVEESTABLISHED(tp->t_state) && 18939 (tp->t_flags & TF_SACK_PERMIT) && 18940 tp->rcv_numsacks > 0) 18941 tcp_clean_dsack_blocks(tp); 18942 tot_len_this_send += len; 18943 if (len == 0) 18944 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); 18945 else if (len == 1) { 18946 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); 18947 } else if (len > 1) { 18948 int idx; 18949 18950 idx = (len / segsiz) + 3; 18951 if (idx >= TCP_MSS_ACCT_ATIMER) 18952 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 18953 else 18954 counter_u64_add(rack_out_size[idx], 1); 18955 } 18956 } 18957 if ((rack->rack_no_prr == 0) && 18958 sub_from_prr && 18959 (error == 0)) { 18960 if (rack->r_ctl.rc_prr_sndcnt >= len) 18961 rack->r_ctl.rc_prr_sndcnt -= len; 18962 else 18963 rack->r_ctl.rc_prr_sndcnt = 0; 18964 } 18965 sub_from_prr = 0; 18966 if (doing_tlp) { 18967 /* Make sure the TLP is added */ 18968 add_flag |= RACK_TLP; 18969 } else if (rsm) { 18970 /* If its a resend without TLP then it must not have the flag */ 18971 rsm->r_flags &= ~RACK_TLP; 18972 } 18973 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, 18974 rack_to_usec_ts(&tv), 18975 rsm, add_flag, s_mb, s_moff, hw_tls); 18976 18977 18978 if ((error == 0) && 18979 (len > 0) && 18980 (tp->snd_una == tp->snd_max)) 18981 rack->r_ctl.rc_tlp_rxt_last_time = cts; 18982 { 18983 tcp_seq startseq = tp->snd_nxt; 18984 18985 /* Track our lost count */ 18986 if (rsm && (doing_tlp == 0)) 18987 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; 18988 /* 18989 * Advance snd_nxt over sequence space of this segment. 18990 */ 18991 if (error) 18992 /* We don't log or do anything with errors */ 18993 goto nomore; 18994 if (doing_tlp == 0) { 18995 if (rsm == NULL) { 18996 /* 18997 * Not a retransmission of some 18998 * sort, new data is going out so 18999 * clear our TLP count and flag. 19000 */ 19001 rack->rc_tlp_in_progress = 0; 19002 rack->r_ctl.rc_tlp_cnt_out = 0; 19003 } 19004 } else { 19005 /* 19006 * We have just sent a TLP, mark that it is true 19007 * and make sure our in progress is set so we 19008 * continue to check the count. 19009 */ 19010 rack->rc_tlp_in_progress = 1; 19011 rack->r_ctl.rc_tlp_cnt_out++; 19012 } 19013 if (flags & (TH_SYN | TH_FIN)) { 19014 if (flags & TH_SYN) 19015 tp->snd_nxt++; 19016 if (flags & TH_FIN) { 19017 tp->snd_nxt++; 19018 tp->t_flags |= TF_SENTFIN; 19019 } 19020 } 19021 /* In the ENOBUFS case we do *not* update snd_max */ 19022 if (sack_rxmit) 19023 goto nomore; 19024 19025 tp->snd_nxt += len; 19026 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { 19027 if (tp->snd_una == tp->snd_max) { 19028 /* 19029 * Update the time we just added data since 19030 * none was outstanding. 19031 */ 19032 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 19033 tp->t_acktime = ticks; 19034 } 19035 tp->snd_max = tp->snd_nxt; 19036 /* 19037 * Time this transmission if not a retransmission and 19038 * not currently timing anything. 19039 * This is only relevant in case of switching back to 19040 * the base stack. 19041 */ 19042 if (tp->t_rtttime == 0) { 19043 tp->t_rtttime = ticks; 19044 tp->t_rtseq = startseq; 19045 KMOD_TCPSTAT_INC(tcps_segstimed); 19046 } 19047 if (len && 19048 ((tp->t_flags & TF_GPUTINPROG) == 0)) 19049 rack_start_gp_measurement(tp, rack, startseq, sb_offset); 19050 } 19051 /* 19052 * If we are doing FO we need to update the mbuf position and subtract 19053 * this happens when the peer sends us duplicate information and 19054 * we thus want to send a DSACK. 19055 * 19056 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO 19057 * turned off? If not then we are going to echo multiple DSACK blocks 19058 * out (with the TSO), which we should not be doing. 19059 */ 19060 if (rack->r_fast_output && len) { 19061 if (rack->r_ctl.fsb.left_to_send > len) 19062 rack->r_ctl.fsb.left_to_send -= len; 19063 else 19064 rack->r_ctl.fsb.left_to_send = 0; 19065 if (rack->r_ctl.fsb.left_to_send < segsiz) 19066 rack->r_fast_output = 0; 19067 if (rack->r_fast_output) { 19068 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19069 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19070 } 19071 } 19072 } 19073 nomore: 19074 if (error) { 19075 rack->r_ctl.rc_agg_delayed = 0; 19076 rack->r_early = 0; 19077 rack->r_late = 0; 19078 rack->r_ctl.rc_agg_early = 0; 19079 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ 19080 /* 19081 * Failures do not advance the seq counter above. For the 19082 * case of ENOBUFS we will fall out and retry in 1ms with 19083 * the hpts. Everything else will just have to retransmit 19084 * with the timer. 19085 * 19086 * In any case, we do not want to loop around for another 19087 * send without a good reason. 19088 */ 19089 sendalot = 0; 19090 switch (error) { 19091 case EPERM: 19092 tp->t_softerror = error; 19093 #ifdef TCP_ACCOUNTING 19094 crtsc = get_cyclecount(); 19095 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19096 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19097 } 19098 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19099 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19100 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19101 } 19102 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19103 sched_unpin(); 19104 #endif 19105 return (error); 19106 case ENOBUFS: 19107 /* 19108 * Pace us right away to retry in a some 19109 * time 19110 */ 19111 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 19112 if (rack->rc_enobuf < 0x7f) 19113 rack->rc_enobuf++; 19114 if (slot < (10 * HPTS_USEC_IN_MSEC)) 19115 slot = 10 * HPTS_USEC_IN_MSEC; 19116 if (rack->r_ctl.crte != NULL) { 19117 counter_u64_add(rack_saw_enobuf_hw, 1); 19118 tcp_rl_log_enobuf(rack->r_ctl.crte); 19119 } 19120 counter_u64_add(rack_saw_enobuf, 1); 19121 goto enobufs; 19122 case EMSGSIZE: 19123 /* 19124 * For some reason the interface we used initially 19125 * to send segments changed to another or lowered 19126 * its MTU. If TSO was active we either got an 19127 * interface without TSO capabilits or TSO was 19128 * turned off. If we obtained mtu from ip_output() 19129 * then update it and try again. 19130 */ 19131 if (tso) 19132 tp->t_flags &= ~TF_TSO; 19133 if (mtu != 0) { 19134 tcp_mss_update(tp, -1, mtu, NULL, NULL); 19135 goto again; 19136 } 19137 slot = 10 * HPTS_USEC_IN_MSEC; 19138 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19139 #ifdef TCP_ACCOUNTING 19140 crtsc = get_cyclecount(); 19141 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19142 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19143 } 19144 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19145 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19146 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19147 } 19148 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19149 sched_unpin(); 19150 #endif 19151 return (error); 19152 case ENETUNREACH: 19153 counter_u64_add(rack_saw_enetunreach, 1); 19154 case EHOSTDOWN: 19155 case EHOSTUNREACH: 19156 case ENETDOWN: 19157 if (TCPS_HAVERCVDSYN(tp->t_state)) { 19158 tp->t_softerror = error; 19159 } 19160 /* FALLTHROUGH */ 19161 default: 19162 slot = 10 * HPTS_USEC_IN_MSEC; 19163 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19164 #ifdef TCP_ACCOUNTING 19165 crtsc = get_cyclecount(); 19166 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19167 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19168 } 19169 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19170 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19171 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19172 } 19173 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19174 sched_unpin(); 19175 #endif 19176 return (error); 19177 } 19178 } else { 19179 rack->rc_enobuf = 0; 19180 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 19181 rack->r_ctl.retran_during_recovery += len; 19182 } 19183 KMOD_TCPSTAT_INC(tcps_sndtotal); 19184 19185 /* 19186 * Data sent (as far as we can tell). If this advertises a larger 19187 * window than any other segment, then remember the size of the 19188 * advertised window. Any pending ACK has now been sent. 19189 */ 19190 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) 19191 tp->rcv_adv = tp->rcv_nxt + recwin; 19192 19193 tp->last_ack_sent = tp->rcv_nxt; 19194 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 19195 enobufs: 19196 if (sendalot) { 19197 /* Do we need to turn off sendalot? */ 19198 if (rack->r_ctl.rc_pace_max_segs && 19199 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { 19200 /* We hit our max. */ 19201 sendalot = 0; 19202 } else if ((rack->rc_user_set_max_segs) && 19203 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { 19204 /* We hit the user defined max */ 19205 sendalot = 0; 19206 } 19207 } 19208 if ((error == 0) && (flags & TH_FIN)) 19209 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); 19210 if (flags & TH_RST) { 19211 /* 19212 * We don't send again after sending a RST. 19213 */ 19214 slot = 0; 19215 sendalot = 0; 19216 if (error == 0) 19217 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 19218 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { 19219 /* 19220 * Get our pacing rate, if an error 19221 * occurred in sending (ENOBUF) we would 19222 * hit the else if with slot preset. Other 19223 * errors return. 19224 */ 19225 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); 19226 } 19227 if (rsm && 19228 (rsm->r_flags & RACK_HAS_SYN) == 0 && 19229 rack->use_rack_rr) { 19230 /* Its a retransmit and we use the rack cheat? */ 19231 if ((slot == 0) || 19232 (rack->rc_always_pace == 0) || 19233 (rack->r_rr_config == 1)) { 19234 /* 19235 * We have no pacing set or we 19236 * are using old-style rack or 19237 * we are overriden to use the old 1ms pacing. 19238 */ 19239 slot = rack->r_ctl.rc_min_to; 19240 } 19241 } 19242 /* We have sent clear the flag */ 19243 rack->r_ent_rec_ns = 0; 19244 if (rack->r_must_retran) { 19245 if (rsm) { 19246 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 19247 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 19248 /* 19249 * We have retransmitted all. 19250 */ 19251 rack->r_must_retran = 0; 19252 rack->r_ctl.rc_out_at_rto = 0; 19253 } 19254 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19255 /* 19256 * Sending new data will also kill 19257 * the loop. 19258 */ 19259 rack->r_must_retran = 0; 19260 rack->r_ctl.rc_out_at_rto = 0; 19261 } 19262 } 19263 rack->r_ctl.fsb.recwin = recwin; 19264 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) && 19265 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19266 /* 19267 * We hit an RTO and now have past snd_max at the RTO 19268 * clear all the WAS flags. 19269 */ 19270 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY); 19271 } 19272 if (slot) { 19273 /* set the rack tcb into the slot N */ 19274 counter_u64_add(rack_paced_segments, 1); 19275 if ((error == 0) && 19276 rack_use_rfo && 19277 ((flags & (TH_SYN|TH_FIN)) == 0) && 19278 (rsm == NULL) && 19279 (tp->snd_nxt == tp->snd_max) && 19280 (ipoptlen == 0) && 19281 (tp->rcv_numsacks == 0) && 19282 rack->r_fsb_inited && 19283 TCPS_HAVEESTABLISHED(tp->t_state) && 19284 (rack->r_must_retran == 0) && 19285 ((tp->t_flags & TF_NEEDFIN) == 0) && 19286 (len > 0) && (orig_len > 0) && 19287 (orig_len > len) && 19288 ((orig_len - len) >= segsiz) && 19289 ((optlen == 0) || 19290 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19291 /* We can send at least one more MSS using our fsb */ 19292 19293 rack->r_fast_output = 1; 19294 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19295 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19296 rack->r_ctl.fsb.tcp_flags = flags; 19297 rack->r_ctl.fsb.left_to_send = orig_len - len; 19298 if (hw_tls) 19299 rack->r_ctl.fsb.hw_tls = 1; 19300 else 19301 rack->r_ctl.fsb.hw_tls = 0; 19302 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19303 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19304 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19305 (tp->snd_max - tp->snd_una))); 19306 if (rack->r_ctl.fsb.left_to_send < segsiz) 19307 rack->r_fast_output = 0; 19308 else { 19309 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19310 rack->r_ctl.fsb.rfo_apply_push = 1; 19311 else 19312 rack->r_ctl.fsb.rfo_apply_push = 0; 19313 } 19314 } else 19315 rack->r_fast_output = 0; 19316 rack_log_fsb(rack, tp, so, flags, 19317 ipoptlen, orig_len, len, error, 19318 (rsm == NULL), optlen, __LINE__, 2); 19319 } else if (sendalot) { 19320 int ret; 19321 19322 if (len) 19323 counter_u64_add(rack_unpaced_segments, 1); 19324 sack_rxmit = 0; 19325 if ((error == 0) && 19326 rack_use_rfo && 19327 ((flags & (TH_SYN|TH_FIN)) == 0) && 19328 (rsm == NULL) && 19329 (ipoptlen == 0) && 19330 (tp->rcv_numsacks == 0) && 19331 (tp->snd_nxt == tp->snd_max) && 19332 (rack->r_must_retran == 0) && 19333 rack->r_fsb_inited && 19334 TCPS_HAVEESTABLISHED(tp->t_state) && 19335 ((tp->t_flags & TF_NEEDFIN) == 0) && 19336 (len > 0) && (orig_len > 0) && 19337 (orig_len > len) && 19338 ((orig_len - len) >= segsiz) && 19339 ((optlen == 0) || 19340 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19341 /* we can use fast_output for more */ 19342 19343 rack->r_fast_output = 1; 19344 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19345 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19346 rack->r_ctl.fsb.tcp_flags = flags; 19347 rack->r_ctl.fsb.left_to_send = orig_len - len; 19348 if (hw_tls) 19349 rack->r_ctl.fsb.hw_tls = 1; 19350 else 19351 rack->r_ctl.fsb.hw_tls = 0; 19352 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19353 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19354 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19355 (tp->snd_max - tp->snd_una))); 19356 if (rack->r_ctl.fsb.left_to_send < segsiz) { 19357 rack->r_fast_output = 0; 19358 } 19359 if (rack->r_fast_output) { 19360 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19361 rack->r_ctl.fsb.rfo_apply_push = 1; 19362 else 19363 rack->r_ctl.fsb.rfo_apply_push = 0; 19364 rack_log_fsb(rack, tp, so, flags, 19365 ipoptlen, orig_len, len, error, 19366 (rsm == NULL), optlen, __LINE__, 3); 19367 error = 0; 19368 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 19369 if (ret >= 0) 19370 return (ret); 19371 else if (error) 19372 goto nomore; 19373 19374 } 19375 } 19376 goto again; 19377 } else if (len) { 19378 counter_u64_add(rack_unpaced_segments, 1); 19379 } 19380 /* Assure when we leave that snd_nxt will point to top */ 19381 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 19382 tp->snd_nxt = tp->snd_max; 19383 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); 19384 #ifdef TCP_ACCOUNTING 19385 crtsc = get_cyclecount() - ts_val; 19386 if (tot_len_this_send) { 19387 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19388 tp->tcp_cnt_counters[SND_OUT_DATA]++; 19389 } 19390 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 19391 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19392 tp->tcp_proc_time[SND_OUT_DATA] += crtsc; 19393 } 19394 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc); 19395 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19396 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz); 19397 } 19398 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz)); 19399 } else { 19400 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19401 tp->tcp_cnt_counters[SND_OUT_ACK]++; 19402 } 19403 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1); 19404 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19405 tp->tcp_proc_time[SND_OUT_ACK] += crtsc; 19406 } 19407 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc); 19408 } 19409 sched_unpin(); 19410 #endif 19411 if (error == ENOBUFS) 19412 error = 0; 19413 return (error); 19414 } 19415 19416 static void 19417 rack_update_seg(struct tcp_rack *rack) 19418 { 19419 uint32_t orig_val; 19420 19421 orig_val = rack->r_ctl.rc_pace_max_segs; 19422 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 19423 if (orig_val != rack->r_ctl.rc_pace_max_segs) 19424 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0); 19425 } 19426 19427 static void 19428 rack_mtu_change(struct tcpcb *tp) 19429 { 19430 /* 19431 * The MSS may have changed 19432 */ 19433 struct tcp_rack *rack; 19434 struct rack_sendmap *rsm; 19435 19436 rack = (struct tcp_rack *)tp->t_fb_ptr; 19437 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) { 19438 /* 19439 * The MTU has changed we need to resend everything 19440 * since all we have sent is lost. We first fix 19441 * up the mtu though. 19442 */ 19443 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19444 /* We treat this like a full retransmit timeout without the cwnd adjustment */ 19445 rack_remxt_tmr(tp); 19446 rack->r_fast_output = 0; 19447 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp, 19448 rack->r_ctl.rc_sacked); 19449 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 19450 rack->r_must_retran = 1; 19451 /* Mark all inflight to needing to be rxt'd */ 19452 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 19453 rsm->r_flags |= RACK_MUST_RXT; 19454 } 19455 } 19456 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 19457 /* We don't use snd_nxt to retransmit */ 19458 tp->snd_nxt = tp->snd_max; 19459 } 19460 19461 static int 19462 rack_set_profile(struct tcp_rack *rack, int prof) 19463 { 19464 int err = EINVAL; 19465 if (prof == 1) { 19466 /* pace_always=1 */ 19467 if (rack->rc_always_pace == 0) { 19468 if (tcp_can_enable_pacing() == 0) 19469 return (EBUSY); 19470 } 19471 rack->rc_always_pace = 1; 19472 if (rack->use_fixed_rate || rack->gp_ready) 19473 rack_set_cc_pacing(rack); 19474 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19475 rack->rack_attempt_hdwr_pace = 0; 19476 /* cmpack=1 */ 19477 if (rack_use_cmp_acks) 19478 rack->r_use_cmp_ack = 1; 19479 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19480 rack->r_use_cmp_ack) 19481 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19482 /* scwnd=1 */ 19483 rack->rack_enable_scwnd = 1; 19484 /* dynamic=100 */ 19485 rack->rc_gp_dyn_mul = 1; 19486 /* gp_inc_ca */ 19487 rack->r_ctl.rack_per_of_gp_ca = 100; 19488 /* rrr_conf=3 */ 19489 rack->r_rr_config = 3; 19490 /* npush=2 */ 19491 rack->r_ctl.rc_no_push_at_mrtt = 2; 19492 /* fillcw=1 */ 19493 rack->rc_pace_to_cwnd = 1; 19494 rack->rc_pace_fill_if_rttin_range = 0; 19495 rack->rtt_limit_mul = 0; 19496 /* noprr=1 */ 19497 rack->rack_no_prr = 1; 19498 /* lscwnd=1 */ 19499 rack->r_limit_scw = 1; 19500 /* gp_inc_rec */ 19501 rack->r_ctl.rack_per_of_gp_rec = 90; 19502 err = 0; 19503 19504 } else if (prof == 3) { 19505 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */ 19506 /* pace_always=1 */ 19507 if (rack->rc_always_pace == 0) { 19508 if (tcp_can_enable_pacing() == 0) 19509 return (EBUSY); 19510 } 19511 rack->rc_always_pace = 1; 19512 if (rack->use_fixed_rate || rack->gp_ready) 19513 rack_set_cc_pacing(rack); 19514 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19515 rack->rack_attempt_hdwr_pace = 0; 19516 /* cmpack=1 */ 19517 if (rack_use_cmp_acks) 19518 rack->r_use_cmp_ack = 1; 19519 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19520 rack->r_use_cmp_ack) 19521 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19522 /* scwnd=1 */ 19523 rack->rack_enable_scwnd = 1; 19524 /* dynamic=100 */ 19525 rack->rc_gp_dyn_mul = 1; 19526 /* gp_inc_ca */ 19527 rack->r_ctl.rack_per_of_gp_ca = 100; 19528 /* rrr_conf=3 */ 19529 rack->r_rr_config = 3; 19530 /* npush=2 */ 19531 rack->r_ctl.rc_no_push_at_mrtt = 2; 19532 /* fillcw=2 */ 19533 rack->rc_pace_to_cwnd = 1; 19534 rack->r_fill_less_agg = 1; 19535 rack->rc_pace_fill_if_rttin_range = 0; 19536 rack->rtt_limit_mul = 0; 19537 /* noprr=1 */ 19538 rack->rack_no_prr = 1; 19539 /* lscwnd=1 */ 19540 rack->r_limit_scw = 1; 19541 /* gp_inc_rec */ 19542 rack->r_ctl.rack_per_of_gp_rec = 90; 19543 err = 0; 19544 19545 19546 } else if (prof == 2) { 19547 /* cmpack=1 */ 19548 if (rack->rc_always_pace == 0) { 19549 if (tcp_can_enable_pacing() == 0) 19550 return (EBUSY); 19551 } 19552 rack->rc_always_pace = 1; 19553 if (rack->use_fixed_rate || rack->gp_ready) 19554 rack_set_cc_pacing(rack); 19555 rack->r_use_cmp_ack = 1; 19556 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19557 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19558 /* pace_always=1 */ 19559 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19560 /* scwnd=1 */ 19561 rack->rack_enable_scwnd = 1; 19562 /* dynamic=100 */ 19563 rack->rc_gp_dyn_mul = 1; 19564 rack->r_ctl.rack_per_of_gp_ca = 100; 19565 /* rrr_conf=3 */ 19566 rack->r_rr_config = 3; 19567 /* npush=2 */ 19568 rack->r_ctl.rc_no_push_at_mrtt = 2; 19569 /* fillcw=1 */ 19570 rack->rc_pace_to_cwnd = 1; 19571 rack->rc_pace_fill_if_rttin_range = 0; 19572 rack->rtt_limit_mul = 0; 19573 /* noprr=1 */ 19574 rack->rack_no_prr = 1; 19575 /* lscwnd=0 */ 19576 rack->r_limit_scw = 0; 19577 err = 0; 19578 } else if (prof == 0) { 19579 /* This changes things back to the default settings */ 19580 err = 0; 19581 if (rack->rc_always_pace) { 19582 tcp_decrement_paced_conn(); 19583 rack_undo_cc_pacing(rack); 19584 rack->rc_always_pace = 0; 19585 } 19586 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 19587 rack->rc_always_pace = 1; 19588 if (rack->use_fixed_rate || rack->gp_ready) 19589 rack_set_cc_pacing(rack); 19590 } else 19591 rack->rc_always_pace = 0; 19592 if (rack_dsack_std_based & 0x1) { 19593 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 19594 rack->rc_rack_tmr_std_based = 1; 19595 } 19596 if (rack_dsack_std_based & 0x2) { 19597 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 19598 rack->rc_rack_use_dsack = 1; 19599 } 19600 if (rack_use_cmp_acks) 19601 rack->r_use_cmp_ack = 1; 19602 else 19603 rack->r_use_cmp_ack = 0; 19604 if (rack_disable_prr) 19605 rack->rack_no_prr = 1; 19606 else 19607 rack->rack_no_prr = 0; 19608 if (rack_gp_no_rec_chg) 19609 rack->rc_gp_no_rec_chg = 1; 19610 else 19611 rack->rc_gp_no_rec_chg = 0; 19612 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) { 19613 rack->r_mbuf_queue = 1; 19614 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19615 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19616 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19617 } else { 19618 rack->r_mbuf_queue = 0; 19619 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19620 } 19621 if (rack_enable_shared_cwnd) 19622 rack->rack_enable_scwnd = 1; 19623 else 19624 rack->rack_enable_scwnd = 0; 19625 if (rack_do_dyn_mul) { 19626 /* When dynamic adjustment is on CA needs to start at 100% */ 19627 rack->rc_gp_dyn_mul = 1; 19628 if (rack_do_dyn_mul >= 100) 19629 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 19630 } else { 19631 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 19632 rack->rc_gp_dyn_mul = 0; 19633 } 19634 rack->r_rr_config = 0; 19635 rack->r_ctl.rc_no_push_at_mrtt = 0; 19636 rack->rc_pace_to_cwnd = 0; 19637 rack->rc_pace_fill_if_rttin_range = 0; 19638 rack->rtt_limit_mul = 0; 19639 19640 if (rack_enable_hw_pacing) 19641 rack->rack_hdw_pace_ena = 1; 19642 else 19643 rack->rack_hdw_pace_ena = 0; 19644 if (rack_disable_prr) 19645 rack->rack_no_prr = 1; 19646 else 19647 rack->rack_no_prr = 0; 19648 if (rack_limits_scwnd) 19649 rack->r_limit_scw = 1; 19650 else 19651 rack->r_limit_scw = 0; 19652 err = 0; 19653 } 19654 return (err); 19655 } 19656 19657 static int 19658 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval) 19659 { 19660 struct deferred_opt_list *dol; 19661 19662 dol = malloc(sizeof(struct deferred_opt_list), 19663 M_TCPFSB, M_NOWAIT|M_ZERO); 19664 if (dol == NULL) { 19665 /* 19666 * No space yikes -- fail out.. 19667 */ 19668 return (0); 19669 } 19670 dol->optname = sopt_name; 19671 dol->optval = loptval; 19672 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next); 19673 return (1); 19674 } 19675 19676 static int 19677 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, 19678 uint32_t optval, uint64_t loptval) 19679 { 19680 struct epoch_tracker et; 19681 struct sockopt sopt; 19682 struct cc_newreno_opts opt; 19683 uint64_t val; 19684 int error = 0; 19685 uint16_t ca, ss; 19686 19687 switch (sopt_name) { 19688 19689 case TCP_RACK_DSACK_OPT: 19690 RACK_OPTS_INC(tcp_rack_dsack_opt); 19691 if (optval & 0x1) { 19692 rack->rc_rack_tmr_std_based = 1; 19693 } else { 19694 rack->rc_rack_tmr_std_based = 0; 19695 } 19696 if (optval & 0x2) { 19697 rack->rc_rack_use_dsack = 1; 19698 } else { 19699 rack->rc_rack_use_dsack = 0; 19700 } 19701 rack_log_dsack_event(rack, 5, __LINE__, 0, 0); 19702 break; 19703 case TCP_RACK_PACING_BETA: 19704 RACK_OPTS_INC(tcp_rack_beta); 19705 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19706 /* This only works for newreno. */ 19707 error = EINVAL; 19708 break; 19709 } 19710 if (rack->rc_pacing_cc_set) { 19711 /* 19712 * Set them into the real CC module 19713 * whats in the rack pcb is the old values 19714 * to be used on restoral/ 19715 */ 19716 sopt.sopt_dir = SOPT_SET; 19717 opt.name = CC_NEWRENO_BETA; 19718 opt.val = optval; 19719 if (CC_ALGO(tp)->ctl_output != NULL) 19720 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19721 else { 19722 error = ENOENT; 19723 break; 19724 } 19725 } else { 19726 /* 19727 * Not pacing yet so set it into our local 19728 * rack pcb storage. 19729 */ 19730 rack->r_ctl.rc_saved_beta.beta = optval; 19731 } 19732 break; 19733 case TCP_RACK_TIMER_SLOP: 19734 RACK_OPTS_INC(tcp_rack_timer_slop); 19735 rack->r_ctl.timer_slop = optval; 19736 if (rack->rc_tp->t_srtt) { 19737 /* 19738 * If we have an SRTT lets update t_rxtcur 19739 * to have the new slop. 19740 */ 19741 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 19742 rack_rto_min, rack_rto_max, 19743 rack->r_ctl.timer_slop); 19744 } 19745 break; 19746 case TCP_RACK_PACING_BETA_ECN: 19747 RACK_OPTS_INC(tcp_rack_beta_ecn); 19748 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19749 /* This only works for newreno. */ 19750 error = EINVAL; 19751 break; 19752 } 19753 if (rack->rc_pacing_cc_set) { 19754 /* 19755 * Set them into the real CC module 19756 * whats in the rack pcb is the old values 19757 * to be used on restoral/ 19758 */ 19759 sopt.sopt_dir = SOPT_SET; 19760 opt.name = CC_NEWRENO_BETA_ECN; 19761 opt.val = optval; 19762 if (CC_ALGO(tp)->ctl_output != NULL) 19763 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19764 else 19765 error = ENOENT; 19766 } else { 19767 /* 19768 * Not pacing yet so set it into our local 19769 * rack pcb storage. 19770 */ 19771 rack->r_ctl.rc_saved_beta.beta_ecn = optval; 19772 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED; 19773 } 19774 break; 19775 case TCP_DEFER_OPTIONS: 19776 RACK_OPTS_INC(tcp_defer_opt); 19777 if (optval) { 19778 if (rack->gp_ready) { 19779 /* Too late */ 19780 error = EINVAL; 19781 break; 19782 } 19783 rack->defer_options = 1; 19784 } else 19785 rack->defer_options = 0; 19786 break; 19787 case TCP_RACK_MEASURE_CNT: 19788 RACK_OPTS_INC(tcp_rack_measure_cnt); 19789 if (optval && (optval <= 0xff)) { 19790 rack->r_ctl.req_measurements = optval; 19791 } else 19792 error = EINVAL; 19793 break; 19794 case TCP_REC_ABC_VAL: 19795 RACK_OPTS_INC(tcp_rec_abc_val); 19796 if (optval > 0) 19797 rack->r_use_labc_for_rec = 1; 19798 else 19799 rack->r_use_labc_for_rec = 0; 19800 break; 19801 case TCP_RACK_ABC_VAL: 19802 RACK_OPTS_INC(tcp_rack_abc_val); 19803 if ((optval > 0) && (optval < 255)) 19804 rack->rc_labc = optval; 19805 else 19806 error = EINVAL; 19807 break; 19808 case TCP_HDWR_UP_ONLY: 19809 RACK_OPTS_INC(tcp_pacing_up_only); 19810 if (optval) 19811 rack->r_up_only = 1; 19812 else 19813 rack->r_up_only = 0; 19814 break; 19815 case TCP_PACING_RATE_CAP: 19816 RACK_OPTS_INC(tcp_pacing_rate_cap); 19817 rack->r_ctl.bw_rate_cap = loptval; 19818 break; 19819 case TCP_RACK_PROFILE: 19820 RACK_OPTS_INC(tcp_profile); 19821 error = rack_set_profile(rack, optval); 19822 break; 19823 case TCP_USE_CMP_ACKS: 19824 RACK_OPTS_INC(tcp_use_cmp_acks); 19825 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) { 19826 /* You can't turn it off once its on! */ 19827 error = EINVAL; 19828 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) { 19829 rack->r_use_cmp_ack = 1; 19830 rack->r_mbuf_queue = 1; 19831 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19832 } 19833 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 19834 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19835 break; 19836 case TCP_SHARED_CWND_TIME_LIMIT: 19837 RACK_OPTS_INC(tcp_lscwnd); 19838 if (optval) 19839 rack->r_limit_scw = 1; 19840 else 19841 rack->r_limit_scw = 0; 19842 break; 19843 case TCP_RACK_PACE_TO_FILL: 19844 RACK_OPTS_INC(tcp_fillcw); 19845 if (optval == 0) 19846 rack->rc_pace_to_cwnd = 0; 19847 else { 19848 rack->rc_pace_to_cwnd = 1; 19849 if (optval > 1) 19850 rack->r_fill_less_agg = 1; 19851 } 19852 if ((optval >= rack_gp_rtt_maxmul) && 19853 rack_gp_rtt_maxmul && 19854 (optval < 0xf)) { 19855 rack->rc_pace_fill_if_rttin_range = 1; 19856 rack->rtt_limit_mul = optval; 19857 } else { 19858 rack->rc_pace_fill_if_rttin_range = 0; 19859 rack->rtt_limit_mul = 0; 19860 } 19861 break; 19862 case TCP_RACK_NO_PUSH_AT_MAX: 19863 RACK_OPTS_INC(tcp_npush); 19864 if (optval == 0) 19865 rack->r_ctl.rc_no_push_at_mrtt = 0; 19866 else if (optval < 0xff) 19867 rack->r_ctl.rc_no_push_at_mrtt = optval; 19868 else 19869 error = EINVAL; 19870 break; 19871 case TCP_SHARED_CWND_ENABLE: 19872 RACK_OPTS_INC(tcp_rack_scwnd); 19873 if (optval == 0) 19874 rack->rack_enable_scwnd = 0; 19875 else 19876 rack->rack_enable_scwnd = 1; 19877 break; 19878 case TCP_RACK_MBUF_QUEUE: 19879 /* Now do we use the LRO mbuf-queue feature */ 19880 RACK_OPTS_INC(tcp_rack_mbufq); 19881 if (optval || rack->r_use_cmp_ack) 19882 rack->r_mbuf_queue = 1; 19883 else 19884 rack->r_mbuf_queue = 0; 19885 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19886 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19887 else 19888 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19889 break; 19890 case TCP_RACK_NONRXT_CFG_RATE: 19891 RACK_OPTS_INC(tcp_rack_cfg_rate); 19892 if (optval == 0) 19893 rack->rack_rec_nonrxt_use_cr = 0; 19894 else 19895 rack->rack_rec_nonrxt_use_cr = 1; 19896 break; 19897 case TCP_NO_PRR: 19898 RACK_OPTS_INC(tcp_rack_noprr); 19899 if (optval == 0) 19900 rack->rack_no_prr = 0; 19901 else if (optval == 1) 19902 rack->rack_no_prr = 1; 19903 else if (optval == 2) 19904 rack->no_prr_addback = 1; 19905 else 19906 error = EINVAL; 19907 break; 19908 case TCP_TIMELY_DYN_ADJ: 19909 RACK_OPTS_INC(tcp_timely_dyn); 19910 if (optval == 0) 19911 rack->rc_gp_dyn_mul = 0; 19912 else { 19913 rack->rc_gp_dyn_mul = 1; 19914 if (optval >= 100) { 19915 /* 19916 * If the user sets something 100 or more 19917 * its the gp_ca value. 19918 */ 19919 rack->r_ctl.rack_per_of_gp_ca = optval; 19920 } 19921 } 19922 break; 19923 case TCP_RACK_DO_DETECTION: 19924 RACK_OPTS_INC(tcp_rack_do_detection); 19925 if (optval == 0) 19926 rack->do_detection = 0; 19927 else 19928 rack->do_detection = 1; 19929 break; 19930 case TCP_RACK_TLP_USE: 19931 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { 19932 error = EINVAL; 19933 break; 19934 } 19935 RACK_OPTS_INC(tcp_tlp_use); 19936 rack->rack_tlp_threshold_use = optval; 19937 break; 19938 case TCP_RACK_TLP_REDUCE: 19939 /* RACK TLP cwnd reduction (bool) */ 19940 RACK_OPTS_INC(tcp_rack_tlp_reduce); 19941 rack->r_ctl.rc_tlp_cwnd_reduce = optval; 19942 break; 19943 /* Pacing related ones */ 19944 case TCP_RACK_PACE_ALWAYS: 19945 /* 19946 * zero is old rack method, 1 is new 19947 * method using a pacing rate. 19948 */ 19949 RACK_OPTS_INC(tcp_rack_pace_always); 19950 if (optval > 0) { 19951 if (rack->rc_always_pace) { 19952 error = EALREADY; 19953 break; 19954 } else if (tcp_can_enable_pacing()) { 19955 rack->rc_always_pace = 1; 19956 if (rack->use_fixed_rate || rack->gp_ready) 19957 rack_set_cc_pacing(rack); 19958 } 19959 else { 19960 error = ENOSPC; 19961 break; 19962 } 19963 } else { 19964 if (rack->rc_always_pace) { 19965 tcp_decrement_paced_conn(); 19966 rack->rc_always_pace = 0; 19967 rack_undo_cc_pacing(rack); 19968 } 19969 } 19970 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19971 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19972 else 19973 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19974 /* A rate may be set irate or other, if so set seg size */ 19975 rack_update_seg(rack); 19976 break; 19977 case TCP_BBR_RACK_INIT_RATE: 19978 RACK_OPTS_INC(tcp_initial_rate); 19979 val = optval; 19980 /* Change from kbits per second to bytes per second */ 19981 val *= 1000; 19982 val /= 8; 19983 rack->r_ctl.init_rate = val; 19984 if (rack->rc_init_win != rack_default_init_window) { 19985 uint32_t win, snt; 19986 19987 /* 19988 * Options don't always get applied 19989 * in the order you think. So in order 19990 * to assure we update a cwnd we need 19991 * to check and see if we are still 19992 * where we should raise the cwnd. 19993 */ 19994 win = rc_init_window(rack); 19995 if (SEQ_GT(tp->snd_max, tp->iss)) 19996 snt = tp->snd_max - tp->iss; 19997 else 19998 snt = 0; 19999 if ((snt < win) && 20000 (tp->snd_cwnd < win)) 20001 tp->snd_cwnd = win; 20002 } 20003 if (rack->rc_always_pace) 20004 rack_update_seg(rack); 20005 break; 20006 case TCP_BBR_IWINTSO: 20007 RACK_OPTS_INC(tcp_initial_win); 20008 if (optval && (optval <= 0xff)) { 20009 uint32_t win, snt; 20010 20011 rack->rc_init_win = optval; 20012 win = rc_init_window(rack); 20013 if (SEQ_GT(tp->snd_max, tp->iss)) 20014 snt = tp->snd_max - tp->iss; 20015 else 20016 snt = 0; 20017 if ((snt < win) && 20018 (tp->t_srtt | 20019 #ifdef NETFLIX_PEAKRATE 20020 tp->t_maxpeakrate | 20021 #endif 20022 rack->r_ctl.init_rate)) { 20023 /* 20024 * We are not past the initial window 20025 * and we have some bases for pacing, 20026 * so we need to possibly adjust up 20027 * the cwnd. Note even if we don't set 20028 * the cwnd, its still ok to raise the rc_init_win 20029 * which can be used coming out of idle when we 20030 * would have a rate. 20031 */ 20032 if (tp->snd_cwnd < win) 20033 tp->snd_cwnd = win; 20034 } 20035 if (rack->rc_always_pace) 20036 rack_update_seg(rack); 20037 } else 20038 error = EINVAL; 20039 break; 20040 case TCP_RACK_FORCE_MSEG: 20041 RACK_OPTS_INC(tcp_rack_force_max_seg); 20042 if (optval) 20043 rack->rc_force_max_seg = 1; 20044 else 20045 rack->rc_force_max_seg = 0; 20046 break; 20047 case TCP_RACK_PACE_MAX_SEG: 20048 /* Max segments size in a pace in bytes */ 20049 RACK_OPTS_INC(tcp_rack_max_seg); 20050 rack->rc_user_set_max_segs = optval; 20051 rack_set_pace_segments(tp, rack, __LINE__, NULL); 20052 break; 20053 case TCP_RACK_PACE_RATE_REC: 20054 /* Set the fixed pacing rate in Bytes per second ca */ 20055 RACK_OPTS_INC(tcp_rack_pace_rate_rec); 20056 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20057 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 20058 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20059 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 20060 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20061 rack->use_fixed_rate = 1; 20062 if (rack->rc_always_pace) 20063 rack_set_cc_pacing(rack); 20064 rack_log_pacing_delay_calc(rack, 20065 rack->r_ctl.rc_fixed_pacing_rate_ss, 20066 rack->r_ctl.rc_fixed_pacing_rate_ca, 20067 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20068 __LINE__, NULL,0); 20069 break; 20070 20071 case TCP_RACK_PACE_RATE_SS: 20072 /* Set the fixed pacing rate in Bytes per second ca */ 20073 RACK_OPTS_INC(tcp_rack_pace_rate_ss); 20074 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20075 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 20076 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20077 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 20078 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20079 rack->use_fixed_rate = 1; 20080 if (rack->rc_always_pace) 20081 rack_set_cc_pacing(rack); 20082 rack_log_pacing_delay_calc(rack, 20083 rack->r_ctl.rc_fixed_pacing_rate_ss, 20084 rack->r_ctl.rc_fixed_pacing_rate_ca, 20085 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20086 __LINE__, NULL, 0); 20087 break; 20088 20089 case TCP_RACK_PACE_RATE_CA: 20090 /* Set the fixed pacing rate in Bytes per second ca */ 20091 RACK_OPTS_INC(tcp_rack_pace_rate_ca); 20092 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20093 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 20094 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20095 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 20096 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20097 rack->use_fixed_rate = 1; 20098 if (rack->rc_always_pace) 20099 rack_set_cc_pacing(rack); 20100 rack_log_pacing_delay_calc(rack, 20101 rack->r_ctl.rc_fixed_pacing_rate_ss, 20102 rack->r_ctl.rc_fixed_pacing_rate_ca, 20103 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20104 __LINE__, NULL, 0); 20105 break; 20106 case TCP_RACK_GP_INCREASE_REC: 20107 RACK_OPTS_INC(tcp_gp_inc_rec); 20108 rack->r_ctl.rack_per_of_gp_rec = optval; 20109 rack_log_pacing_delay_calc(rack, 20110 rack->r_ctl.rack_per_of_gp_ss, 20111 rack->r_ctl.rack_per_of_gp_ca, 20112 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20113 __LINE__, NULL, 0); 20114 break; 20115 case TCP_RACK_GP_INCREASE_CA: 20116 RACK_OPTS_INC(tcp_gp_inc_ca); 20117 ca = optval; 20118 if (ca < 100) { 20119 /* 20120 * We don't allow any reduction 20121 * over the GP b/w. 20122 */ 20123 error = EINVAL; 20124 break; 20125 } 20126 rack->r_ctl.rack_per_of_gp_ca = ca; 20127 rack_log_pacing_delay_calc(rack, 20128 rack->r_ctl.rack_per_of_gp_ss, 20129 rack->r_ctl.rack_per_of_gp_ca, 20130 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20131 __LINE__, NULL, 0); 20132 break; 20133 case TCP_RACK_GP_INCREASE_SS: 20134 RACK_OPTS_INC(tcp_gp_inc_ss); 20135 ss = optval; 20136 if (ss < 100) { 20137 /* 20138 * We don't allow any reduction 20139 * over the GP b/w. 20140 */ 20141 error = EINVAL; 20142 break; 20143 } 20144 rack->r_ctl.rack_per_of_gp_ss = ss; 20145 rack_log_pacing_delay_calc(rack, 20146 rack->r_ctl.rack_per_of_gp_ss, 20147 rack->r_ctl.rack_per_of_gp_ca, 20148 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20149 __LINE__, NULL, 0); 20150 break; 20151 case TCP_RACK_RR_CONF: 20152 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); 20153 if (optval && optval <= 3) 20154 rack->r_rr_config = optval; 20155 else 20156 rack->r_rr_config = 0; 20157 break; 20158 case TCP_HDWR_RATE_CAP: 20159 RACK_OPTS_INC(tcp_hdwr_rate_cap); 20160 if (optval) { 20161 if (rack->r_rack_hw_rate_caps == 0) 20162 rack->r_rack_hw_rate_caps = 1; 20163 else 20164 error = EALREADY; 20165 } else { 20166 rack->r_rack_hw_rate_caps = 0; 20167 } 20168 break; 20169 case TCP_BBR_HDWR_PACE: 20170 RACK_OPTS_INC(tcp_hdwr_pacing); 20171 if (optval){ 20172 if (rack->rack_hdrw_pacing == 0) { 20173 rack->rack_hdw_pace_ena = 1; 20174 rack->rack_attempt_hdwr_pace = 0; 20175 } else 20176 error = EALREADY; 20177 } else { 20178 rack->rack_hdw_pace_ena = 0; 20179 #ifdef RATELIMIT 20180 if (rack->r_ctl.crte != NULL) { 20181 rack->rack_hdrw_pacing = 0; 20182 rack->rack_attempt_hdwr_pace = 0; 20183 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 20184 rack->r_ctl.crte = NULL; 20185 } 20186 #endif 20187 } 20188 break; 20189 /* End Pacing related ones */ 20190 case TCP_RACK_PRR_SENDALOT: 20191 /* Allow PRR to send more than one seg */ 20192 RACK_OPTS_INC(tcp_rack_prr_sendalot); 20193 rack->r_ctl.rc_prr_sendalot = optval; 20194 break; 20195 case TCP_RACK_MIN_TO: 20196 /* Minimum time between rack t-o's in ms */ 20197 RACK_OPTS_INC(tcp_rack_min_to); 20198 rack->r_ctl.rc_min_to = optval; 20199 break; 20200 case TCP_RACK_EARLY_SEG: 20201 /* If early recovery max segments */ 20202 RACK_OPTS_INC(tcp_rack_early_seg); 20203 rack->r_ctl.rc_early_recovery_segs = optval; 20204 break; 20205 case TCP_RACK_ENABLE_HYSTART: 20206 { 20207 struct sockopt sopt; 20208 struct cc_newreno_opts opt; 20209 20210 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 20211 sopt.sopt_dir = SOPT_SET; 20212 opt.name = CC_NEWRENO_ENABLE_HYSTART; 20213 opt.val = optval; 20214 if (CC_ALGO(tp)->ctl_output != NULL) 20215 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 20216 else 20217 error = EINVAL; 20218 } 20219 break; 20220 case TCP_RACK_REORD_THRESH: 20221 /* RACK reorder threshold (shift amount) */ 20222 RACK_OPTS_INC(tcp_rack_reord_thresh); 20223 if ((optval > 0) && (optval < 31)) 20224 rack->r_ctl.rc_reorder_shift = optval; 20225 else 20226 error = EINVAL; 20227 break; 20228 case TCP_RACK_REORD_FADE: 20229 /* Does reordering fade after ms time */ 20230 RACK_OPTS_INC(tcp_rack_reord_fade); 20231 rack->r_ctl.rc_reorder_fade = optval; 20232 break; 20233 case TCP_RACK_TLP_THRESH: 20234 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20235 RACK_OPTS_INC(tcp_rack_tlp_thresh); 20236 if (optval) 20237 rack->r_ctl.rc_tlp_threshold = optval; 20238 else 20239 error = EINVAL; 20240 break; 20241 case TCP_BBR_USE_RACK_RR: 20242 RACK_OPTS_INC(tcp_rack_rr); 20243 if (optval) 20244 rack->use_rack_rr = 1; 20245 else 20246 rack->use_rack_rr = 0; 20247 break; 20248 case TCP_FAST_RSM_HACK: 20249 RACK_OPTS_INC(tcp_rack_fastrsm_hack); 20250 if (optval) 20251 rack->fast_rsm_hack = 1; 20252 else 20253 rack->fast_rsm_hack = 0; 20254 break; 20255 case TCP_RACK_PKT_DELAY: 20256 /* RACK added ms i.e. rack-rtt + reord + N */ 20257 RACK_OPTS_INC(tcp_rack_pkt_delay); 20258 rack->r_ctl.rc_pkt_delay = optval; 20259 break; 20260 case TCP_DELACK: 20261 RACK_OPTS_INC(tcp_rack_delayed_ack); 20262 if (optval == 0) 20263 tp->t_delayed_ack = 0; 20264 else 20265 tp->t_delayed_ack = 1; 20266 if (tp->t_flags & TF_DELACK) { 20267 tp->t_flags &= ~TF_DELACK; 20268 tp->t_flags |= TF_ACKNOW; 20269 NET_EPOCH_ENTER(et); 20270 rack_output(tp); 20271 NET_EPOCH_EXIT(et); 20272 } 20273 break; 20274 20275 case TCP_BBR_RACK_RTT_USE: 20276 RACK_OPTS_INC(tcp_rack_rtt_use); 20277 if ((optval != USE_RTT_HIGH) && 20278 (optval != USE_RTT_LOW) && 20279 (optval != USE_RTT_AVG)) 20280 error = EINVAL; 20281 else 20282 rack->r_ctl.rc_rate_sample_method = optval; 20283 break; 20284 case TCP_DATA_AFTER_CLOSE: 20285 RACK_OPTS_INC(tcp_data_after_close); 20286 if (optval) 20287 rack->rc_allow_data_af_clo = 1; 20288 else 20289 rack->rc_allow_data_af_clo = 0; 20290 break; 20291 default: 20292 break; 20293 } 20294 #ifdef NETFLIX_STATS 20295 tcp_log_socket_option(tp, sopt_name, optval, error); 20296 #endif 20297 return (error); 20298 } 20299 20300 20301 static void 20302 rack_apply_deferred_options(struct tcp_rack *rack) 20303 { 20304 struct deferred_opt_list *dol, *sdol; 20305 uint32_t s_optval; 20306 20307 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) { 20308 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 20309 /* Disadvantage of deferal is you loose the error return */ 20310 s_optval = (uint32_t)dol->optval; 20311 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval); 20312 free(dol, M_TCPDO); 20313 } 20314 } 20315 20316 static void 20317 rack_hw_tls_change(struct tcpcb *tp, int chg) 20318 { 20319 /* 20320 * HW tls state has changed.. fix all 20321 * rsm's in flight. 20322 */ 20323 struct tcp_rack *rack; 20324 struct rack_sendmap *rsm; 20325 20326 rack = (struct tcp_rack *)tp->t_fb_ptr; 20327 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 20328 if (chg) 20329 rsm->r_hw_tls = 1; 20330 else 20331 rsm->r_hw_tls = 0; 20332 } 20333 if (chg) 20334 rack->r_ctl.fsb.hw_tls = 1; 20335 else 20336 rack->r_ctl.fsb.hw_tls = 0; 20337 } 20338 20339 static int 20340 rack_pru_options(struct tcpcb *tp, int flags) 20341 { 20342 if (flags & PRUS_OOB) 20343 return (EOPNOTSUPP); 20344 return (0); 20345 } 20346 20347 static struct tcp_function_block __tcp_rack = { 20348 .tfb_tcp_block_name = __XSTRING(STACKNAME), 20349 .tfb_tcp_output = rack_output, 20350 .tfb_do_queued_segments = ctf_do_queued_segments, 20351 .tfb_do_segment_nounlock = rack_do_segment_nounlock, 20352 .tfb_tcp_do_segment = rack_do_segment, 20353 .tfb_tcp_ctloutput = rack_ctloutput, 20354 .tfb_tcp_fb_init = rack_init, 20355 .tfb_tcp_fb_fini = rack_fini, 20356 .tfb_tcp_timer_stop_all = rack_stopall, 20357 .tfb_tcp_timer_activate = rack_timer_activate, 20358 .tfb_tcp_timer_active = rack_timer_active, 20359 .tfb_tcp_timer_stop = rack_timer_stop, 20360 .tfb_tcp_rexmit_tmr = rack_remxt_tmr, 20361 .tfb_tcp_handoff_ok = rack_handoff_ok, 20362 .tfb_tcp_mtu_chg = rack_mtu_change, 20363 .tfb_pru_options = rack_pru_options, 20364 .tfb_hwtls_change = rack_hw_tls_change, 20365 .tfb_flags = TCP_FUNC_OUTPUT_CANDROP, 20366 }; 20367 20368 /* 20369 * rack_ctloutput() must drop the inpcb lock before performing copyin on 20370 * socket option arguments. When it re-acquires the lock after the copy, it 20371 * has to revalidate that the connection is still valid for the socket 20372 * option. 20373 */ 20374 static int 20375 rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt) 20376 { 20377 #ifdef INET6 20378 struct ip6_hdr *ip6; 20379 #endif 20380 #ifdef INET 20381 struct ip *ip; 20382 #endif 20383 struct tcpcb *tp; 20384 struct tcp_rack *rack; 20385 uint64_t loptval; 20386 int32_t error = 0, optval; 20387 20388 tp = intotcpcb(inp); 20389 rack = (struct tcp_rack *)tp->t_fb_ptr; 20390 if (rack == NULL) { 20391 INP_WUNLOCK(inp); 20392 return (EINVAL); 20393 } 20394 #ifdef INET6 20395 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 20396 #endif 20397 #ifdef INET 20398 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 20399 #endif 20400 20401 switch (sopt->sopt_level) { 20402 #ifdef INET6 20403 case IPPROTO_IPV6: 20404 MPASS(inp->inp_vflag & INP_IPV6PROTO); 20405 switch (sopt->sopt_name) { 20406 case IPV6_USE_MIN_MTU: 20407 tcp6_use_min_mtu(tp); 20408 break; 20409 case IPV6_TCLASS: 20410 /* 20411 * The DSCP codepoint has changed, update the fsb. 20412 */ 20413 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 20414 (rack->rc_inp->inp_flow & IPV6_FLOWINFO_MASK); 20415 break; 20416 } 20417 INP_WUNLOCK(inp); 20418 return (0); 20419 #endif 20420 #ifdef INET 20421 case IPPROTO_IP: 20422 switch (sopt->sopt_name) { 20423 case IP_TOS: 20424 /* 20425 * The DSCP codepoint has changed, update the fsb. 20426 */ 20427 ip->ip_tos = rack->rc_inp->inp_ip_tos; 20428 break; 20429 case IP_TTL: 20430 /* 20431 * The TTL has changed, update the fsb. 20432 */ 20433 ip->ip_ttl = rack->rc_inp->inp_ip_ttl; 20434 break; 20435 } 20436 INP_WUNLOCK(inp); 20437 return (0); 20438 #endif 20439 } 20440 20441 switch (sopt->sopt_name) { 20442 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ 20443 /* Pacing related ones */ 20444 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ 20445 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ 20446 case TCP_BBR_IWINTSO: /* URL:tso_iwin */ 20447 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ 20448 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ 20449 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ 20450 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ 20451 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ 20452 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ 20453 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ 20454 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ 20455 case TCP_RACK_RR_CONF: /* URL:rrr_conf */ 20456 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ 20457 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */ 20458 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */ 20459 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */ 20460 /* End pacing related */ 20461 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */ 20462 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */ 20463 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ 20464 case TCP_RACK_MIN_TO: /* URL:min_to */ 20465 case TCP_RACK_EARLY_SEG: /* URL:early_seg */ 20466 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ 20467 case TCP_RACK_REORD_FADE: /* URL:reord_fade */ 20468 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ 20469 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ 20470 case TCP_RACK_TLP_USE: /* URL:tlp_use */ 20471 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ 20472 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ 20473 case TCP_RACK_DO_DETECTION: /* URL:detect */ 20474 case TCP_NO_PRR: /* URL:noprr */ 20475 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ 20476 case TCP_DATA_AFTER_CLOSE: /* no URL */ 20477 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ 20478 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ 20479 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ 20480 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ 20481 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ 20482 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ 20483 case TCP_RACK_PROFILE: /* URL:profile */ 20484 case TCP_USE_CMP_ACKS: /* URL:cmpack */ 20485 case TCP_RACK_ABC_VAL: /* URL:labc */ 20486 case TCP_REC_ABC_VAL: /* URL:reclabc */ 20487 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */ 20488 case TCP_DEFER_OPTIONS: /* URL:defer */ 20489 case TCP_RACK_DSACK_OPT: /* URL:dsack */ 20490 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */ 20491 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */ 20492 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */ 20493 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */ 20494 break; 20495 default: 20496 /* Filter off all unknown options to the base stack */ 20497 return (tcp_default_ctloutput(inp, sopt)); 20498 break; 20499 } 20500 INP_WUNLOCK(inp); 20501 if (sopt->sopt_name == TCP_PACING_RATE_CAP) { 20502 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval)); 20503 /* 20504 * We truncate it down to 32 bits for the socket-option trace this 20505 * means rates > 34Gbps won't show right, but thats probably ok. 20506 */ 20507 optval = (uint32_t)loptval; 20508 } else { 20509 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); 20510 /* Save it in 64 bit form too */ 20511 loptval = optval; 20512 } 20513 if (error) 20514 return (error); 20515 INP_WLOCK(inp); 20516 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 20517 INP_WUNLOCK(inp); 20518 return (ECONNRESET); 20519 } 20520 if (tp->t_fb != &__tcp_rack) { 20521 INP_WUNLOCK(inp); 20522 return (ENOPROTOOPT); 20523 } 20524 if (rack->defer_options && (rack->gp_ready == 0) && 20525 (sopt->sopt_name != TCP_DEFER_OPTIONS) && 20526 (sopt->sopt_name != TCP_RACK_PACING_BETA) && 20527 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) && 20528 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) { 20529 /* Options are beind deferred */ 20530 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) { 20531 INP_WUNLOCK(inp); 20532 return (0); 20533 } else { 20534 /* No memory to defer, fail */ 20535 INP_WUNLOCK(inp); 20536 return (ENOMEM); 20537 } 20538 } 20539 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval); 20540 INP_WUNLOCK(inp); 20541 return (error); 20542 } 20543 20544 static void 20545 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti) 20546 { 20547 20548 INP_WLOCK_ASSERT(tp->t_inpcb); 20549 bzero(ti, sizeof(*ti)); 20550 20551 ti->tcpi_state = tp->t_state; 20552 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) 20553 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; 20554 if (tp->t_flags & TF_SACK_PERMIT) 20555 ti->tcpi_options |= TCPI_OPT_SACK; 20556 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { 20557 ti->tcpi_options |= TCPI_OPT_WSCALE; 20558 ti->tcpi_snd_wscale = tp->snd_scale; 20559 ti->tcpi_rcv_wscale = tp->rcv_scale; 20560 } 20561 if (tp->t_flags2 & TF2_ECN_PERMIT) 20562 ti->tcpi_options |= TCPI_OPT_ECN; 20563 if (tp->t_flags & TF_FASTOPEN) 20564 ti->tcpi_options |= TCPI_OPT_TFO; 20565 /* still kept in ticks is t_rcvtime */ 20566 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; 20567 /* Since we hold everything in precise useconds this is easy */ 20568 ti->tcpi_rtt = tp->t_srtt; 20569 ti->tcpi_rttvar = tp->t_rttvar; 20570 ti->tcpi_rto = tp->t_rxtcur; 20571 ti->tcpi_snd_ssthresh = tp->snd_ssthresh; 20572 ti->tcpi_snd_cwnd = tp->snd_cwnd; 20573 /* 20574 * FreeBSD-specific extension fields for tcp_info. 20575 */ 20576 ti->tcpi_rcv_space = tp->rcv_wnd; 20577 ti->tcpi_rcv_nxt = tp->rcv_nxt; 20578 ti->tcpi_snd_wnd = tp->snd_wnd; 20579 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ 20580 ti->tcpi_snd_nxt = tp->snd_nxt; 20581 ti->tcpi_snd_mss = tp->t_maxseg; 20582 ti->tcpi_rcv_mss = tp->t_maxseg; 20583 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; 20584 ti->tcpi_rcv_ooopack = tp->t_rcvoopack; 20585 ti->tcpi_snd_zerowin = tp->t_sndzerowin; 20586 #ifdef NETFLIX_STATS 20587 ti->tcpi_total_tlp = tp->t_sndtlppack; 20588 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte; 20589 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo)); 20590 #endif 20591 #ifdef TCP_OFFLOAD 20592 if (tp->t_flags & TF_TOE) { 20593 ti->tcpi_options |= TCPI_OPT_TOE; 20594 tcp_offload_tcp_info(tp, ti); 20595 } 20596 #endif 20597 } 20598 20599 static int 20600 rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt) 20601 { 20602 struct tcpcb *tp; 20603 struct tcp_rack *rack; 20604 int32_t error, optval; 20605 uint64_t val, loptval; 20606 struct tcp_info ti; 20607 /* 20608 * Because all our options are either boolean or an int, we can just 20609 * pull everything into optval and then unlock and copy. If we ever 20610 * add a option that is not a int, then this will have quite an 20611 * impact to this routine. 20612 */ 20613 error = 0; 20614 tp = intotcpcb(inp); 20615 rack = (struct tcp_rack *)tp->t_fb_ptr; 20616 if (rack == NULL) { 20617 INP_WUNLOCK(inp); 20618 return (EINVAL); 20619 } 20620 switch (sopt->sopt_name) { 20621 case TCP_INFO: 20622 /* First get the info filled */ 20623 rack_fill_info(tp, &ti); 20624 /* Fix up the rtt related fields if needed */ 20625 INP_WUNLOCK(inp); 20626 error = sooptcopyout(sopt, &ti, sizeof ti); 20627 return (error); 20628 /* 20629 * Beta is the congestion control value for NewReno that influences how 20630 * much of a backoff happens when loss is detected. It is normally set 20631 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value 20632 * when you exit recovery. 20633 */ 20634 case TCP_RACK_PACING_BETA: 20635 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20636 error = EINVAL; 20637 else if (rack->rc_pacing_cc_set == 0) 20638 optval = rack->r_ctl.rc_saved_beta.beta; 20639 else { 20640 /* 20641 * Reach out into the CC data and report back what 20642 * I have previously set. Yeah it looks hackish but 20643 * we don't want to report the saved values. 20644 */ 20645 if (tp->ccv->cc_data) 20646 optval = ((struct newreno *)tp->ccv->cc_data)->beta; 20647 else 20648 error = EINVAL; 20649 } 20650 break; 20651 /* 20652 * Beta_ecn is the congestion control value for NewReno that influences how 20653 * much of a backoff happens when a ECN mark is detected. It is normally set 20654 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when 20655 * you exit recovery. Note that classic ECN has a beta of 50, it is only 20656 * ABE Ecn that uses this "less" value, but we do too with pacing :) 20657 */ 20658 20659 case TCP_RACK_PACING_BETA_ECN: 20660 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20661 error = EINVAL; 20662 else if (rack->rc_pacing_cc_set == 0) 20663 optval = rack->r_ctl.rc_saved_beta.beta_ecn; 20664 else { 20665 /* 20666 * Reach out into the CC data and report back what 20667 * I have previously set. Yeah it looks hackish but 20668 * we don't want to report the saved values. 20669 */ 20670 if (tp->ccv->cc_data) 20671 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn; 20672 else 20673 error = EINVAL; 20674 } 20675 break; 20676 case TCP_RACK_DSACK_OPT: 20677 optval = 0; 20678 if (rack->rc_rack_tmr_std_based) { 20679 optval |= 1; 20680 } 20681 if (rack->rc_rack_use_dsack) { 20682 optval |= 2; 20683 } 20684 break; 20685 case TCP_RACK_ENABLE_HYSTART: 20686 { 20687 struct sockopt sopt; 20688 struct cc_newreno_opts opt; 20689 20690 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 20691 sopt.sopt_dir = SOPT_GET; 20692 opt.name = CC_NEWRENO_ENABLE_HYSTART; 20693 if (CC_ALGO(tp)->ctl_output != NULL) 20694 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 20695 else 20696 error = EINVAL; 20697 optval = opt.val; 20698 } 20699 break; 20700 case TCP_FAST_RSM_HACK: 20701 optval = rack->fast_rsm_hack; 20702 break; 20703 case TCP_DEFER_OPTIONS: 20704 optval = rack->defer_options; 20705 break; 20706 case TCP_RACK_MEASURE_CNT: 20707 optval = rack->r_ctl.req_measurements; 20708 break; 20709 case TCP_REC_ABC_VAL: 20710 optval = rack->r_use_labc_for_rec; 20711 break; 20712 case TCP_RACK_ABC_VAL: 20713 optval = rack->rc_labc; 20714 break; 20715 case TCP_HDWR_UP_ONLY: 20716 optval= rack->r_up_only; 20717 break; 20718 case TCP_PACING_RATE_CAP: 20719 loptval = rack->r_ctl.bw_rate_cap; 20720 break; 20721 case TCP_RACK_PROFILE: 20722 /* You cannot retrieve a profile, its write only */ 20723 error = EINVAL; 20724 break; 20725 case TCP_USE_CMP_ACKS: 20726 optval = rack->r_use_cmp_ack; 20727 break; 20728 case TCP_RACK_PACE_TO_FILL: 20729 optval = rack->rc_pace_to_cwnd; 20730 if (optval && rack->r_fill_less_agg) 20731 optval++; 20732 break; 20733 case TCP_RACK_NO_PUSH_AT_MAX: 20734 optval = rack->r_ctl.rc_no_push_at_mrtt; 20735 break; 20736 case TCP_SHARED_CWND_ENABLE: 20737 optval = rack->rack_enable_scwnd; 20738 break; 20739 case TCP_RACK_NONRXT_CFG_RATE: 20740 optval = rack->rack_rec_nonrxt_use_cr; 20741 break; 20742 case TCP_NO_PRR: 20743 if (rack->rack_no_prr == 1) 20744 optval = 1; 20745 else if (rack->no_prr_addback == 1) 20746 optval = 2; 20747 else 20748 optval = 0; 20749 break; 20750 case TCP_RACK_DO_DETECTION: 20751 optval = rack->do_detection; 20752 break; 20753 case TCP_RACK_MBUF_QUEUE: 20754 /* Now do we use the LRO mbuf-queue feature */ 20755 optval = rack->r_mbuf_queue; 20756 break; 20757 case TCP_TIMELY_DYN_ADJ: 20758 optval = rack->rc_gp_dyn_mul; 20759 break; 20760 case TCP_BBR_IWINTSO: 20761 optval = rack->rc_init_win; 20762 break; 20763 case TCP_RACK_TLP_REDUCE: 20764 /* RACK TLP cwnd reduction (bool) */ 20765 optval = rack->r_ctl.rc_tlp_cwnd_reduce; 20766 break; 20767 case TCP_BBR_RACK_INIT_RATE: 20768 val = rack->r_ctl.init_rate; 20769 /* convert to kbits per sec */ 20770 val *= 8; 20771 val /= 1000; 20772 optval = (uint32_t)val; 20773 break; 20774 case TCP_RACK_FORCE_MSEG: 20775 optval = rack->rc_force_max_seg; 20776 break; 20777 case TCP_RACK_PACE_MAX_SEG: 20778 /* Max segments in a pace */ 20779 optval = rack->rc_user_set_max_segs; 20780 break; 20781 case TCP_RACK_PACE_ALWAYS: 20782 /* Use the always pace method */ 20783 optval = rack->rc_always_pace; 20784 break; 20785 case TCP_RACK_PRR_SENDALOT: 20786 /* Allow PRR to send more than one seg */ 20787 optval = rack->r_ctl.rc_prr_sendalot; 20788 break; 20789 case TCP_RACK_MIN_TO: 20790 /* Minimum time between rack t-o's in ms */ 20791 optval = rack->r_ctl.rc_min_to; 20792 break; 20793 case TCP_RACK_EARLY_SEG: 20794 /* If early recovery max segments */ 20795 optval = rack->r_ctl.rc_early_recovery_segs; 20796 break; 20797 case TCP_RACK_REORD_THRESH: 20798 /* RACK reorder threshold (shift amount) */ 20799 optval = rack->r_ctl.rc_reorder_shift; 20800 break; 20801 case TCP_RACK_REORD_FADE: 20802 /* Does reordering fade after ms time */ 20803 optval = rack->r_ctl.rc_reorder_fade; 20804 break; 20805 case TCP_BBR_USE_RACK_RR: 20806 /* Do we use the rack cheat for rxt */ 20807 optval = rack->use_rack_rr; 20808 break; 20809 case TCP_RACK_RR_CONF: 20810 optval = rack->r_rr_config; 20811 break; 20812 case TCP_HDWR_RATE_CAP: 20813 optval = rack->r_rack_hw_rate_caps; 20814 break; 20815 case TCP_BBR_HDWR_PACE: 20816 optval = rack->rack_hdw_pace_ena; 20817 break; 20818 case TCP_RACK_TLP_THRESH: 20819 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20820 optval = rack->r_ctl.rc_tlp_threshold; 20821 break; 20822 case TCP_RACK_PKT_DELAY: 20823 /* RACK added ms i.e. rack-rtt + reord + N */ 20824 optval = rack->r_ctl.rc_pkt_delay; 20825 break; 20826 case TCP_RACK_TLP_USE: 20827 optval = rack->rack_tlp_threshold_use; 20828 break; 20829 case TCP_RACK_PACE_RATE_CA: 20830 optval = rack->r_ctl.rc_fixed_pacing_rate_ca; 20831 break; 20832 case TCP_RACK_PACE_RATE_SS: 20833 optval = rack->r_ctl.rc_fixed_pacing_rate_ss; 20834 break; 20835 case TCP_RACK_PACE_RATE_REC: 20836 optval = rack->r_ctl.rc_fixed_pacing_rate_rec; 20837 break; 20838 case TCP_RACK_GP_INCREASE_SS: 20839 optval = rack->r_ctl.rack_per_of_gp_ca; 20840 break; 20841 case TCP_RACK_GP_INCREASE_CA: 20842 optval = rack->r_ctl.rack_per_of_gp_ss; 20843 break; 20844 case TCP_BBR_RACK_RTT_USE: 20845 optval = rack->r_ctl.rc_rate_sample_method; 20846 break; 20847 case TCP_DELACK: 20848 optval = tp->t_delayed_ack; 20849 break; 20850 case TCP_DATA_AFTER_CLOSE: 20851 optval = rack->rc_allow_data_af_clo; 20852 break; 20853 case TCP_SHARED_CWND_TIME_LIMIT: 20854 optval = rack->r_limit_scw; 20855 break; 20856 case TCP_RACK_TIMER_SLOP: 20857 optval = rack->r_ctl.timer_slop; 20858 break; 20859 default: 20860 return (tcp_default_ctloutput(inp, sopt)); 20861 break; 20862 } 20863 INP_WUNLOCK(inp); 20864 if (error == 0) { 20865 if (TCP_PACING_RATE_CAP) 20866 error = sooptcopyout(sopt, &loptval, sizeof loptval); 20867 else 20868 error = sooptcopyout(sopt, &optval, sizeof optval); 20869 } 20870 return (error); 20871 } 20872 20873 static int 20874 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt) 20875 { 20876 if (sopt->sopt_dir == SOPT_SET) { 20877 return (rack_set_sockopt(inp, sopt)); 20878 } else if (sopt->sopt_dir == SOPT_GET) { 20879 return (rack_get_sockopt(inp, sopt)); 20880 } else { 20881 panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir); 20882 } 20883 } 20884 20885 static const char *rack_stack_names[] = { 20886 __XSTRING(STACKNAME), 20887 #ifdef STACKALIAS 20888 __XSTRING(STACKALIAS), 20889 #endif 20890 }; 20891 20892 static int 20893 rack_ctor(void *mem, int32_t size, void *arg, int32_t how) 20894 { 20895 memset(mem, 0, size); 20896 return (0); 20897 } 20898 20899 static void 20900 rack_dtor(void *mem, int32_t size, void *arg) 20901 { 20902 20903 } 20904 20905 static bool rack_mod_inited = false; 20906 20907 static int 20908 tcp_addrack(module_t mod, int32_t type, void *data) 20909 { 20910 int32_t err = 0; 20911 int num_stacks; 20912 20913 switch (type) { 20914 case MOD_LOAD: 20915 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", 20916 sizeof(struct rack_sendmap), 20917 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 20918 20919 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", 20920 sizeof(struct tcp_rack), 20921 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 20922 20923 sysctl_ctx_init(&rack_sysctl_ctx); 20924 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 20925 SYSCTL_STATIC_CHILDREN(_net_inet_tcp), 20926 OID_AUTO, 20927 #ifdef STACKALIAS 20928 __XSTRING(STACKALIAS), 20929 #else 20930 __XSTRING(STACKNAME), 20931 #endif 20932 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 20933 ""); 20934 if (rack_sysctl_root == NULL) { 20935 printf("Failed to add sysctl node\n"); 20936 err = EFAULT; 20937 goto free_uma; 20938 } 20939 rack_init_sysctls(); 20940 num_stacks = nitems(rack_stack_names); 20941 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, 20942 rack_stack_names, &num_stacks); 20943 if (err) { 20944 printf("Failed to register %s stack name for " 20945 "%s module\n", rack_stack_names[num_stacks], 20946 __XSTRING(MODNAME)); 20947 sysctl_ctx_free(&rack_sysctl_ctx); 20948 free_uma: 20949 uma_zdestroy(rack_zone); 20950 uma_zdestroy(rack_pcb_zone); 20951 rack_counter_destroy(); 20952 printf("Failed to register rack module -- err:%d\n", err); 20953 return (err); 20954 } 20955 tcp_lro_reg_mbufq(); 20956 rack_mod_inited = true; 20957 break; 20958 case MOD_QUIESCE: 20959 err = deregister_tcp_functions(&__tcp_rack, true, false); 20960 break; 20961 case MOD_UNLOAD: 20962 err = deregister_tcp_functions(&__tcp_rack, false, true); 20963 if (err == EBUSY) 20964 break; 20965 if (rack_mod_inited) { 20966 uma_zdestroy(rack_zone); 20967 uma_zdestroy(rack_pcb_zone); 20968 sysctl_ctx_free(&rack_sysctl_ctx); 20969 rack_counter_destroy(); 20970 rack_mod_inited = false; 20971 } 20972 tcp_lro_dereg_mbufq(); 20973 err = 0; 20974 break; 20975 default: 20976 return (EOPNOTSUPP); 20977 } 20978 return (err); 20979 } 20980 20981 static moduledata_t tcp_rack = { 20982 .name = __XSTRING(MODNAME), 20983 .evhand = tcp_addrack, 20984 .priv = 0 20985 }; 20986 20987 MODULE_VERSION(MODNAME, 1); 20988 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); 20989 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1); 20990