1 /*- 2 * Copyright (c) 2016-2020 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_ipsec.h" 33 #include "opt_tcpdebug.h" 34 #include "opt_ratelimit.h" 35 #include "opt_kern_tls.h" 36 #include <sys/param.h> 37 #include <sys/arb.h> 38 #include <sys/module.h> 39 #include <sys/kernel.h> 40 #ifdef TCP_HHOOK 41 #include <sys/hhook.h> 42 #endif 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/proc.h> /* for proc0 declaration */ 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #ifdef STATS 54 #include <sys/qmath.h> 55 #include <sys/tree.h> 56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */ 57 #else 58 #include <sys/tree.h> 59 #endif 60 #include <sys/refcount.h> 61 #include <sys/queue.h> 62 #include <sys/tim_filter.h> 63 #include <sys/smp.h> 64 #include <sys/kthread.h> 65 #include <sys/kern_prefetch.h> 66 #include <sys/protosw.h> 67 #ifdef TCP_ACCOUNTING 68 #include <sys/sched.h> 69 #include <machine/cpu.h> 70 #endif 71 #include <vm/uma.h> 72 73 #include <net/route.h> 74 #include <net/route/nhop.h> 75 #include <net/vnet.h> 76 77 #define TCPSTATES /* for logging */ 78 79 #include <netinet/in.h> 80 #include <netinet/in_kdtrace.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 84 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 85 #include <netinet/ip_var.h> 86 #include <netinet/ip6.h> 87 #include <netinet6/in6_pcb.h> 88 #include <netinet6/ip6_var.h> 89 #include <netinet/tcp.h> 90 #define TCPOUTFLAGS 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_log_buf.h> 93 #include <netinet/tcp_seq.h> 94 #include <netinet/tcp_timer.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet/tcp_syncache.h> 97 #include <netinet/tcp_hpts.h> 98 #include <netinet/tcp_ratelimit.h> 99 #include <netinet/tcp_accounting.h> 100 #include <netinet/tcpip.h> 101 #include <netinet/cc/cc.h> 102 #include <netinet/cc/cc_newreno.h> 103 #include <netinet/tcp_fastopen.h> 104 #include <netinet/tcp_lro.h> 105 #ifdef NETFLIX_SHARED_CWND 106 #include <netinet/tcp_shared_cwnd.h> 107 #endif 108 #ifdef TCPDEBUG 109 #include <netinet/tcp_debug.h> 110 #endif /* TCPDEBUG */ 111 #ifdef TCP_OFFLOAD 112 #include <netinet/tcp_offload.h> 113 #endif 114 #ifdef INET6 115 #include <netinet6/tcp6_var.h> 116 #endif 117 #include <netinet/tcp_ecn.h> 118 119 #include <netipsec/ipsec_support.h> 120 121 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 122 #include <netipsec/ipsec.h> 123 #include <netipsec/ipsec6.h> 124 #endif /* IPSEC */ 125 126 #include <netinet/udp.h> 127 #include <netinet/udp_var.h> 128 #include <machine/in_cksum.h> 129 130 #ifdef MAC 131 #include <security/mac/mac_framework.h> 132 #endif 133 #include "sack_filter.h" 134 #include "tcp_rack.h" 135 #include "rack_bbr_common.h" 136 137 uma_zone_t rack_zone; 138 uma_zone_t rack_pcb_zone; 139 140 #ifndef TICKS2SBT 141 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) 142 #endif 143 144 VNET_DECLARE(uint32_t, newreno_beta); 145 VNET_DECLARE(uint32_t, newreno_beta_ecn); 146 #define V_newreno_beta VNET(newreno_beta) 147 #define V_newreno_beta_ecn VNET(newreno_beta_ecn) 148 149 150 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block"); 151 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options"); 152 153 struct sysctl_ctx_list rack_sysctl_ctx; 154 struct sysctl_oid *rack_sysctl_root; 155 156 #define CUM_ACKED 1 157 #define SACKED 2 158 159 /* 160 * The RACK module incorporates a number of 161 * TCP ideas that have been put out into the IETF 162 * over the last few years: 163 * - Matt Mathis's Rate Halving which slowly drops 164 * the congestion window so that the ack clock can 165 * be maintained during a recovery. 166 * - Yuchung Cheng's RACK TCP (for which its named) that 167 * will stop us using the number of dup acks and instead 168 * use time as the gage of when we retransmit. 169 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft 170 * of Dukkipati et.al. 171 * RACK depends on SACK, so if an endpoint arrives that 172 * cannot do SACK the state machine below will shuttle the 173 * connection back to using the "default" TCP stack that is 174 * in FreeBSD. 175 * 176 * To implement RACK the original TCP stack was first decomposed 177 * into a functional state machine with individual states 178 * for each of the possible TCP connection states. The do_segment 179 * functions role in life is to mandate the connection supports SACK 180 * initially and then assure that the RACK state matches the conenction 181 * state before calling the states do_segment function. Each 182 * state is simplified due to the fact that the original do_segment 183 * has been decomposed and we *know* what state we are in (no 184 * switches on the state) and all tests for SACK are gone. This 185 * greatly simplifies what each state does. 186 * 187 * TCP output is also over-written with a new version since it 188 * must maintain the new rack scoreboard. 189 * 190 */ 191 static int32_t rack_tlp_thresh = 1; 192 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ 193 static int32_t rack_tlp_use_greater = 1; 194 static int32_t rack_reorder_thresh = 2; 195 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000 196 * - 60 seconds */ 197 static uint8_t rack_req_measurements = 1; 198 /* Attack threshold detections */ 199 static uint32_t rack_highest_sack_thresh_seen = 0; 200 static uint32_t rack_highest_move_thresh_seen = 0; 201 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */ 202 static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */ 203 static int32_t rack_hw_rate_caps = 1; /* 1; */ 204 static int32_t rack_hw_rate_min = 0; /* 1500000;*/ 205 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */ 206 static int32_t rack_hw_up_only = 1; 207 static int32_t rack_stats_gets_ms_rtt = 1; 208 static int32_t rack_prr_addbackmax = 2; 209 static int32_t rack_do_hystart = 0; 210 static int32_t rack_apply_rtt_with_reduced_conf = 0; 211 212 static int32_t rack_pkt_delay = 1000; 213 static int32_t rack_send_a_lot_in_prr = 1; 214 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */ 215 static int32_t rack_verbose_logging = 0; 216 static int32_t rack_ignore_data_after_close = 1; 217 static int32_t rack_enable_shared_cwnd = 1; 218 static int32_t rack_use_cmp_acks = 1; 219 static int32_t rack_use_fsb = 1; 220 static int32_t rack_use_rfo = 1; 221 static int32_t rack_use_rsm_rfo = 1; 222 static int32_t rack_max_abc_post_recovery = 2; 223 static int32_t rack_client_low_buf = 0; 224 static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */ 225 #ifdef TCP_ACCOUNTING 226 static int32_t rack_tcp_accounting = 0; 227 #endif 228 static int32_t rack_limits_scwnd = 1; 229 static int32_t rack_enable_mqueue_for_nonpaced = 0; 230 static int32_t rack_disable_prr = 0; 231 static int32_t use_rack_rr = 1; 232 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ 233 static int32_t rack_persist_min = 250000; /* 250usec */ 234 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */ 235 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */ 236 static int32_t rack_default_init_window = 0; /* Use system default */ 237 static int32_t rack_limit_time_with_srtt = 0; 238 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */ 239 static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */ 240 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */ 241 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */ 242 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */ 243 244 /* 245 * Currently regular tcp has a rto_min of 30ms 246 * the backoff goes 12 times so that ends up 247 * being a total of 122.850 seconds before a 248 * connection is killed. 249 */ 250 static uint32_t rack_def_data_window = 20; 251 static uint32_t rack_goal_bdp = 2; 252 static uint32_t rack_min_srtts = 1; 253 static uint32_t rack_min_measure_usec = 0; 254 static int32_t rack_tlp_min = 10000; /* 10ms */ 255 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */ 256 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */ 257 static const int32_t rack_free_cache = 2; 258 static int32_t rack_hptsi_segments = 40; 259 static int32_t rack_rate_sample_method = USE_RTT_LOW; 260 static int32_t rack_pace_every_seg = 0; 261 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */ 262 static int32_t rack_slot_reduction = 4; 263 static int32_t rack_wma_divisor = 8; /* For WMA calculation */ 264 static int32_t rack_cwnd_block_ends_measure = 0; 265 static int32_t rack_rwnd_block_ends_measure = 0; 266 static int32_t rack_def_profile = 0; 267 268 static int32_t rack_lower_cwnd_at_tlp = 0; 269 static int32_t rack_limited_retran = 0; 270 static int32_t rack_always_send_oldest = 0; 271 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; 272 273 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ 274 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ 275 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ 276 277 /* Probertt */ 278 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ 279 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ 280 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ 281 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ 282 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ 283 284 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ 285 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ 286 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ 287 static uint32_t rack_probertt_use_min_rtt_exit = 0; 288 static uint32_t rack_probe_rtt_sets_cwnd = 0; 289 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ 290 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */ 291 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ 292 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ 293 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */ 294 static uint32_t rack_probertt_filter_life = 10000000; 295 static uint32_t rack_probertt_lower_within = 10; 296 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */ 297 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ 298 static int32_t rack_probertt_clear_is = 1; 299 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ 300 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ 301 302 /* Part of pacing */ 303 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ 304 305 /* Timely information */ 306 /* Combine these two gives the range of 'no change' to bw */ 307 /* ie the up/down provide the upper and lower bound */ 308 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ 309 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ 310 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ 311 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ 312 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ 313 static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multiplier */ 314 static int32_t rack_gp_increase_per = 2; /* 2% increase in multiplier */ 315 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ 316 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ 317 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ 318 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ 319 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ 320 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ 321 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ 322 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ 323 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ 324 static int32_t rack_use_max_for_nobackoff = 0; 325 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ 326 static int32_t rack_timely_no_stopping = 0; 327 static int32_t rack_down_raise_thresh = 100; 328 static int32_t rack_req_segs = 1; 329 static uint64_t rack_bw_rate_cap = 0; 330 static uint32_t rack_trace_point_config = 0; 331 static uint32_t rack_trace_point_bb_mode = 4; 332 static int32_t rack_trace_point_count = 0; 333 334 335 /* Weird delayed ack mode */ 336 static int32_t rack_use_imac_dack = 0; 337 /* Rack specific counters */ 338 counter_u64_t rack_saw_enobuf; 339 counter_u64_t rack_saw_enobuf_hw; 340 counter_u64_t rack_saw_enetunreach; 341 counter_u64_t rack_persists_sends; 342 counter_u64_t rack_persists_acks; 343 counter_u64_t rack_persists_loss; 344 counter_u64_t rack_persists_lost_ends; 345 #ifdef INVARIANTS 346 counter_u64_t rack_adjust_map_bw; 347 #endif 348 /* Tail loss probe counters */ 349 counter_u64_t rack_tlp_tot; 350 counter_u64_t rack_tlp_newdata; 351 counter_u64_t rack_tlp_retran; 352 counter_u64_t rack_tlp_retran_bytes; 353 counter_u64_t rack_to_tot; 354 counter_u64_t rack_hot_alloc; 355 counter_u64_t rack_to_alloc; 356 counter_u64_t rack_to_alloc_hard; 357 counter_u64_t rack_to_alloc_emerg; 358 counter_u64_t rack_to_alloc_limited; 359 counter_u64_t rack_alloc_limited_conns; 360 counter_u64_t rack_split_limited; 361 362 counter_u64_t rack_multi_single_eq; 363 counter_u64_t rack_proc_non_comp_ack; 364 365 counter_u64_t rack_fto_send; 366 counter_u64_t rack_fto_rsm_send; 367 counter_u64_t rack_nfto_resend; 368 counter_u64_t rack_non_fto_send; 369 counter_u64_t rack_extended_rfo; 370 371 counter_u64_t rack_sack_proc_all; 372 counter_u64_t rack_sack_proc_short; 373 counter_u64_t rack_sack_proc_restart; 374 counter_u64_t rack_sack_attacks_detected; 375 counter_u64_t rack_sack_attacks_reversed; 376 counter_u64_t rack_sack_used_next_merge; 377 counter_u64_t rack_sack_splits; 378 counter_u64_t rack_sack_used_prev_merge; 379 counter_u64_t rack_sack_skipped_acked; 380 counter_u64_t rack_ack_total; 381 counter_u64_t rack_express_sack; 382 counter_u64_t rack_sack_total; 383 counter_u64_t rack_move_none; 384 counter_u64_t rack_move_some; 385 386 counter_u64_t rack_input_idle_reduces; 387 counter_u64_t rack_collapsed_win; 388 counter_u64_t rack_collapsed_win_seen; 389 counter_u64_t rack_collapsed_win_rxt; 390 counter_u64_t rack_collapsed_win_rxt_bytes; 391 counter_u64_t rack_try_scwnd; 392 counter_u64_t rack_hw_pace_init_fail; 393 counter_u64_t rack_hw_pace_lost; 394 395 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; 396 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; 397 398 399 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2))) 400 401 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \ 402 (tv) = (value) + slop; \ 403 if ((u_long)(tv) < (u_long)(tvmin)) \ 404 (tv) = (tvmin); \ 405 if ((u_long)(tv) > (u_long)(tvmax)) \ 406 (tv) = (tvmax); \ 407 } while (0) 408 409 static void 410 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); 411 412 static int 413 rack_process_ack(struct mbuf *m, struct tcphdr *th, 414 struct socket *so, struct tcpcb *tp, struct tcpopt *to, 415 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); 416 static int 417 rack_process_data(struct mbuf *m, struct tcphdr *th, 418 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 419 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); 420 static void 421 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, 422 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery); 423 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); 424 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, 425 uint8_t limit_type); 426 static struct rack_sendmap * 427 rack_check_recovery_mode(struct tcpcb *tp, 428 uint32_t tsused); 429 static void 430 rack_cong_signal(struct tcpcb *tp, 431 uint32_t type, uint32_t ack, int ); 432 static void rack_counter_destroy(void); 433 static int 434 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt); 435 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); 436 static void 437 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override); 438 static void 439 rack_do_segment(struct mbuf *m, struct tcphdr *th, 440 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 441 uint8_t iptos); 442 static void rack_dtor(void *mem, int32_t size, void *arg); 443 static void 444 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 445 uint32_t flex1, uint32_t flex2, 446 uint32_t flex3, uint32_t flex4, 447 uint32_t flex5, uint32_t flex6, 448 uint16_t flex7, uint8_t mod); 449 450 static void 451 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 452 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, 453 struct rack_sendmap *rsm, uint8_t quality); 454 static struct rack_sendmap * 455 rack_find_high_nonack(struct tcp_rack *rack, 456 struct rack_sendmap *rsm); 457 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); 458 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); 459 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); 460 static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt); 461 static void 462 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 463 tcp_seq th_ack, int line, uint8_t quality); 464 static uint32_t 465 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); 466 static int32_t rack_handoff_ok(struct tcpcb *tp); 467 static int32_t rack_init(struct tcpcb *tp); 468 static void rack_init_sysctls(void); 469 static void 470 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, 471 struct tcphdr *th, int entered_rec, int dup_ack_struck); 472 static void 473 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 474 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts, 475 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls); 476 477 static void 478 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, 479 struct rack_sendmap *rsm); 480 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); 481 static int32_t rack_output(struct tcpcb *tp); 482 483 static uint32_t 484 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, 485 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, 486 uint32_t cts, int *moved_two); 487 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq); 488 static void rack_remxt_tmr(struct tcpcb *tp); 489 static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt); 490 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); 491 static int32_t rack_stopall(struct tcpcb *tp); 492 static void 493 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, 494 uint32_t delta); 495 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type); 496 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); 497 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type); 498 static uint32_t 499 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 500 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag); 501 static void 502 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 503 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag); 504 static int 505 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 506 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); 507 static int32_t tcp_addrack(module_t mod, int32_t type, void *data); 508 static int 509 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, 510 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 511 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 512 static int 513 rack_do_closing(struct mbuf *m, struct tcphdr *th, 514 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 515 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 516 static int 517 rack_do_established(struct mbuf *m, struct tcphdr *th, 518 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 519 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 520 static int 521 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, 522 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 523 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); 524 static int 525 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, 526 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 527 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 528 static int 529 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, 530 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 531 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 532 static int 533 rack_do_lastack(struct mbuf *m, struct tcphdr *th, 534 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 535 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 536 static int 537 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, 538 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 539 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 540 static int 541 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, 542 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 543 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 544 struct rack_sendmap * 545 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, 546 uint32_t tsused); 547 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, 548 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); 549 static void 550 tcp_rack_partialack(struct tcpcb *tp); 551 static int 552 rack_set_profile(struct tcp_rack *rack, int prof); 553 static void 554 rack_apply_deferred_options(struct tcp_rack *rack); 555 556 int32_t rack_clear_counter=0; 557 558 static inline void 559 rack_trace_point(struct tcp_rack *rack, int num) 560 { 561 if (((rack_trace_point_config == num) || 562 (rack_trace_point_config = 0xffffffff)) && 563 (rack_trace_point_bb_mode != 0) && 564 (rack_trace_point_count > 0) && 565 (rack->rc_tp->t_logstate == 0)) { 566 int res; 567 res = atomic_fetchadd_int(&rack_trace_point_count, -1); 568 if (res > 0) { 569 rack->rc_tp->t_logstate = rack_trace_point_bb_mode; 570 } else { 571 /* Loss a race assure its zero now */ 572 rack_trace_point_count = 0; 573 } 574 } 575 } 576 577 static void 578 rack_set_cc_pacing(struct tcp_rack *rack) 579 { 580 struct sockopt sopt; 581 struct cc_newreno_opts opt; 582 struct newreno old, *ptr; 583 struct tcpcb *tp; 584 int error; 585 586 if (rack->rc_pacing_cc_set) 587 return; 588 589 tp = rack->rc_tp; 590 if (tp->cc_algo == NULL) { 591 /* Tcb is leaving */ 592 return; 593 } 594 rack->rc_pacing_cc_set = 1; 595 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 596 /* Not new-reno we can't play games with beta! */ 597 goto out; 598 } 599 ptr = ((struct newreno *)tp->ccv->cc_data); 600 if (CC_ALGO(tp)->ctl_output == NULL) { 601 /* Huh, why does new_reno no longer have a set function? */ 602 goto out; 603 } 604 if (ptr == NULL) { 605 /* Just the default values */ 606 old.beta = V_newreno_beta_ecn; 607 old.beta_ecn = V_newreno_beta_ecn; 608 old.newreno_flags = 0; 609 } else { 610 old.beta = ptr->beta; 611 old.beta_ecn = ptr->beta_ecn; 612 old.newreno_flags = ptr->newreno_flags; 613 } 614 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 615 sopt.sopt_dir = SOPT_SET; 616 opt.name = CC_NEWRENO_BETA; 617 opt.val = rack->r_ctl.rc_saved_beta.beta; 618 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 619 if (error) { 620 goto out; 621 } 622 /* 623 * Hack alert we need to set in our newreno_flags 624 * so that Abe behavior is also applied. 625 */ 626 ((struct newreno *)tp->ccv->cc_data)->newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 627 opt.name = CC_NEWRENO_BETA_ECN; 628 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn; 629 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 630 if (error) { 631 goto out; 632 } 633 /* Save off the original values for restoral */ 634 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 635 out: 636 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 637 union tcp_log_stackspecific log; 638 struct timeval tv; 639 640 ptr = ((struct newreno *)tp->ccv->cc_data); 641 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 642 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 643 if (ptr) { 644 log.u_bbr.flex1 = ptr->beta; 645 log.u_bbr.flex2 = ptr->beta_ecn; 646 log.u_bbr.flex3 = ptr->newreno_flags; 647 } 648 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 649 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 650 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 651 log.u_bbr.flex7 = rack->gp_ready; 652 log.u_bbr.flex7 <<= 1; 653 log.u_bbr.flex7 |= rack->use_fixed_rate; 654 log.u_bbr.flex7 <<= 1; 655 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 656 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 657 log.u_bbr.flex8 = 3; 658 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error, 659 0, &log, false, NULL, NULL, 0, &tv); 660 } 661 } 662 663 static void 664 rack_undo_cc_pacing(struct tcp_rack *rack) 665 { 666 struct newreno old, *ptr; 667 struct tcpcb *tp; 668 669 if (rack->rc_pacing_cc_set == 0) 670 return; 671 tp = rack->rc_tp; 672 rack->rc_pacing_cc_set = 0; 673 if (tp->cc_algo == NULL) 674 /* Tcb is leaving */ 675 return; 676 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 677 /* Not new-reno nothing to do! */ 678 return; 679 } 680 ptr = ((struct newreno *)tp->ccv->cc_data); 681 if (ptr == NULL) { 682 /* 683 * This happens at rack_fini() if the 684 * cc module gets freed on us. In that 685 * case we loose our "new" settings but 686 * thats ok, since the tcb is going away anyway. 687 */ 688 return; 689 } 690 /* Grab out our set values */ 691 memcpy(&old, ptr, sizeof(struct newreno)); 692 /* Copy back in the original values */ 693 memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno)); 694 /* Now save back the values we had set in (for when pacing is restored) */ 695 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 696 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 697 union tcp_log_stackspecific log; 698 struct timeval tv; 699 700 ptr = ((struct newreno *)tp->ccv->cc_data); 701 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 702 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 703 log.u_bbr.flex1 = ptr->beta; 704 log.u_bbr.flex2 = ptr->beta_ecn; 705 log.u_bbr.flex3 = ptr->newreno_flags; 706 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 707 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 708 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 709 log.u_bbr.flex7 = rack->gp_ready; 710 log.u_bbr.flex7 <<= 1; 711 log.u_bbr.flex7 |= rack->use_fixed_rate; 712 log.u_bbr.flex7 <<= 1; 713 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 714 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 715 log.u_bbr.flex8 = 4; 716 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 717 0, &log, false, NULL, NULL, 0, &tv); 718 } 719 } 720 721 #ifdef NETFLIX_PEAKRATE 722 static inline void 723 rack_update_peakrate_thr(struct tcpcb *tp) 724 { 725 /* Keep in mind that t_maxpeakrate is in B/s. */ 726 uint64_t peak; 727 peak = uqmax((tp->t_maxseg * 2), 728 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC)); 729 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX); 730 } 731 #endif 732 733 static int 734 sysctl_rack_clear(SYSCTL_HANDLER_ARGS) 735 { 736 uint32_t stat; 737 int32_t error; 738 739 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); 740 if (error || req->newptr == NULL) 741 return error; 742 743 error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); 744 if (error) 745 return (error); 746 if (stat == 1) { 747 #ifdef INVARIANTS 748 printf("Clearing RACK counters\n"); 749 #endif 750 counter_u64_zero(rack_tlp_tot); 751 counter_u64_zero(rack_tlp_newdata); 752 counter_u64_zero(rack_tlp_retran); 753 counter_u64_zero(rack_tlp_retran_bytes); 754 counter_u64_zero(rack_to_tot); 755 counter_u64_zero(rack_saw_enobuf); 756 counter_u64_zero(rack_saw_enobuf_hw); 757 counter_u64_zero(rack_saw_enetunreach); 758 counter_u64_zero(rack_persists_sends); 759 counter_u64_zero(rack_persists_acks); 760 counter_u64_zero(rack_persists_loss); 761 counter_u64_zero(rack_persists_lost_ends); 762 #ifdef INVARIANTS 763 counter_u64_zero(rack_adjust_map_bw); 764 #endif 765 counter_u64_zero(rack_to_alloc_hard); 766 counter_u64_zero(rack_to_alloc_emerg); 767 counter_u64_zero(rack_sack_proc_all); 768 counter_u64_zero(rack_fto_send); 769 counter_u64_zero(rack_fto_rsm_send); 770 counter_u64_zero(rack_extended_rfo); 771 counter_u64_zero(rack_hw_pace_init_fail); 772 counter_u64_zero(rack_hw_pace_lost); 773 counter_u64_zero(rack_non_fto_send); 774 counter_u64_zero(rack_nfto_resend); 775 counter_u64_zero(rack_sack_proc_short); 776 counter_u64_zero(rack_sack_proc_restart); 777 counter_u64_zero(rack_to_alloc); 778 counter_u64_zero(rack_to_alloc_limited); 779 counter_u64_zero(rack_alloc_limited_conns); 780 counter_u64_zero(rack_split_limited); 781 counter_u64_zero(rack_multi_single_eq); 782 counter_u64_zero(rack_proc_non_comp_ack); 783 counter_u64_zero(rack_sack_attacks_detected); 784 counter_u64_zero(rack_sack_attacks_reversed); 785 counter_u64_zero(rack_sack_used_next_merge); 786 counter_u64_zero(rack_sack_used_prev_merge); 787 counter_u64_zero(rack_sack_splits); 788 counter_u64_zero(rack_sack_skipped_acked); 789 counter_u64_zero(rack_ack_total); 790 counter_u64_zero(rack_express_sack); 791 counter_u64_zero(rack_sack_total); 792 counter_u64_zero(rack_move_none); 793 counter_u64_zero(rack_move_some); 794 counter_u64_zero(rack_try_scwnd); 795 counter_u64_zero(rack_collapsed_win); 796 counter_u64_zero(rack_collapsed_win_rxt); 797 counter_u64_zero(rack_collapsed_win_seen); 798 counter_u64_zero(rack_collapsed_win_rxt_bytes); 799 } 800 rack_clear_counter = 0; 801 return (0); 802 } 803 804 static void 805 rack_init_sysctls(void) 806 { 807 struct sysctl_oid *rack_counters; 808 struct sysctl_oid *rack_attack; 809 struct sysctl_oid *rack_pacing; 810 struct sysctl_oid *rack_timely; 811 struct sysctl_oid *rack_timers; 812 struct sysctl_oid *rack_tlp; 813 struct sysctl_oid *rack_misc; 814 struct sysctl_oid *rack_features; 815 struct sysctl_oid *rack_measure; 816 struct sysctl_oid *rack_probertt; 817 struct sysctl_oid *rack_hw_pacing; 818 struct sysctl_oid *rack_tracepoint; 819 820 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 821 SYSCTL_CHILDREN(rack_sysctl_root), 822 OID_AUTO, 823 "sack_attack", 824 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 825 "Rack Sack Attack Counters and Controls"); 826 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 827 SYSCTL_CHILDREN(rack_sysctl_root), 828 OID_AUTO, 829 "stats", 830 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 831 "Rack Counters"); 832 SYSCTL_ADD_S32(&rack_sysctl_ctx, 833 SYSCTL_CHILDREN(rack_sysctl_root), 834 OID_AUTO, "rate_sample_method", CTLFLAG_RW, 835 &rack_rate_sample_method , USE_RTT_LOW, 836 "What method should we use for rate sampling 0=high, 1=low "); 837 /* Probe rtt related controls */ 838 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 839 SYSCTL_CHILDREN(rack_sysctl_root), 840 OID_AUTO, 841 "probertt", 842 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 843 "ProbeRTT related Controls"); 844 SYSCTL_ADD_U16(&rack_sysctl_ctx, 845 SYSCTL_CHILDREN(rack_probertt), 846 OID_AUTO, "exit_per_hpb", CTLFLAG_RW, 847 &rack_atexit_prtt_hbp, 130, 848 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); 849 SYSCTL_ADD_U16(&rack_sysctl_ctx, 850 SYSCTL_CHILDREN(rack_probertt), 851 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, 852 &rack_atexit_prtt, 130, 853 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); 854 SYSCTL_ADD_U16(&rack_sysctl_ctx, 855 SYSCTL_CHILDREN(rack_probertt), 856 OID_AUTO, "gp_per_mul", CTLFLAG_RW, 857 &rack_per_of_gp_probertt, 60, 858 "What percentage of goodput do we pace at in probertt"); 859 SYSCTL_ADD_U16(&rack_sysctl_ctx, 860 SYSCTL_CHILDREN(rack_probertt), 861 OID_AUTO, "gp_per_reduce", CTLFLAG_RW, 862 &rack_per_of_gp_probertt_reduce, 10, 863 "What percentage of goodput do we reduce every gp_srtt"); 864 SYSCTL_ADD_U16(&rack_sysctl_ctx, 865 SYSCTL_CHILDREN(rack_probertt), 866 OID_AUTO, "gp_per_low", CTLFLAG_RW, 867 &rack_per_of_gp_lowthresh, 40, 868 "What percentage of goodput do we allow the multiplier to fall to"); 869 SYSCTL_ADD_U32(&rack_sysctl_ctx, 870 SYSCTL_CHILDREN(rack_probertt), 871 OID_AUTO, "time_between", CTLFLAG_RW, 872 & rack_time_between_probertt, 96000000, 873 "How many useconds between the lowest rtt falling must past before we enter probertt"); 874 SYSCTL_ADD_U32(&rack_sysctl_ctx, 875 SYSCTL_CHILDREN(rack_probertt), 876 OID_AUTO, "safety", CTLFLAG_RW, 877 &rack_probe_rtt_safety_val, 2000000, 878 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); 879 SYSCTL_ADD_U32(&rack_sysctl_ctx, 880 SYSCTL_CHILDREN(rack_probertt), 881 OID_AUTO, "sets_cwnd", CTLFLAG_RW, 882 &rack_probe_rtt_sets_cwnd, 0, 883 "Do we set the cwnd too (if always_lower is on)"); 884 SYSCTL_ADD_U32(&rack_sysctl_ctx, 885 SYSCTL_CHILDREN(rack_probertt), 886 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, 887 &rack_max_drain_wait, 2, 888 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); 889 SYSCTL_ADD_U32(&rack_sysctl_ctx, 890 SYSCTL_CHILDREN(rack_probertt), 891 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, 892 &rack_must_drain, 1, 893 "We must drain this many gp_srtt's waiting for flight to reach goal"); 894 SYSCTL_ADD_U32(&rack_sysctl_ctx, 895 SYSCTL_CHILDREN(rack_probertt), 896 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, 897 &rack_probertt_use_min_rtt_entry, 1, 898 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); 899 SYSCTL_ADD_U32(&rack_sysctl_ctx, 900 SYSCTL_CHILDREN(rack_probertt), 901 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, 902 &rack_probertt_use_min_rtt_exit, 0, 903 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); 904 SYSCTL_ADD_U32(&rack_sysctl_ctx, 905 SYSCTL_CHILDREN(rack_probertt), 906 OID_AUTO, "length_div", CTLFLAG_RW, 907 &rack_probertt_gpsrtt_cnt_div, 0, 908 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); 909 SYSCTL_ADD_U32(&rack_sysctl_ctx, 910 SYSCTL_CHILDREN(rack_probertt), 911 OID_AUTO, "length_mul", CTLFLAG_RW, 912 &rack_probertt_gpsrtt_cnt_mul, 0, 913 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); 914 SYSCTL_ADD_U32(&rack_sysctl_ctx, 915 SYSCTL_CHILDREN(rack_probertt), 916 OID_AUTO, "holdtim_at_target", CTLFLAG_RW, 917 &rack_min_probertt_hold, 200000, 918 "What is the minimum time we hold probertt at target"); 919 SYSCTL_ADD_U32(&rack_sysctl_ctx, 920 SYSCTL_CHILDREN(rack_probertt), 921 OID_AUTO, "filter_life", CTLFLAG_RW, 922 &rack_probertt_filter_life, 10000000, 923 "What is the time for the filters life in useconds"); 924 SYSCTL_ADD_U32(&rack_sysctl_ctx, 925 SYSCTL_CHILDREN(rack_probertt), 926 OID_AUTO, "lower_within", CTLFLAG_RW, 927 &rack_probertt_lower_within, 10, 928 "If the rtt goes lower within this percentage of the time, go into probe-rtt"); 929 SYSCTL_ADD_U32(&rack_sysctl_ctx, 930 SYSCTL_CHILDREN(rack_probertt), 931 OID_AUTO, "must_move", CTLFLAG_RW, 932 &rack_min_rtt_movement, 250, 933 "How much is the minimum movement in rtt to count as a drop for probertt purposes"); 934 SYSCTL_ADD_U32(&rack_sysctl_ctx, 935 SYSCTL_CHILDREN(rack_probertt), 936 OID_AUTO, "clear_is_cnts", CTLFLAG_RW, 937 &rack_probertt_clear_is, 1, 938 "Do we clear I/S counts on exiting probe-rtt"); 939 SYSCTL_ADD_S32(&rack_sysctl_ctx, 940 SYSCTL_CHILDREN(rack_probertt), 941 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, 942 &rack_max_drain_hbp, 1, 943 "How many extra drain gpsrtt's do we get in highly buffered paths"); 944 SYSCTL_ADD_S32(&rack_sysctl_ctx, 945 SYSCTL_CHILDREN(rack_probertt), 946 OID_AUTO, "hbp_threshold", CTLFLAG_RW, 947 &rack_hbp_thresh, 3, 948 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); 949 950 rack_tracepoint = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 951 SYSCTL_CHILDREN(rack_sysctl_root), 952 OID_AUTO, 953 "tp", 954 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 955 "Rack tracepoint facility"); 956 SYSCTL_ADD_U32(&rack_sysctl_ctx, 957 SYSCTL_CHILDREN(rack_tracepoint), 958 OID_AUTO, "number", CTLFLAG_RW, 959 &rack_trace_point_config, 0, 960 "What is the trace point number to activate (0=none, 0xffffffff = all)?"); 961 SYSCTL_ADD_U32(&rack_sysctl_ctx, 962 SYSCTL_CHILDREN(rack_tracepoint), 963 OID_AUTO, "bbmode", CTLFLAG_RW, 964 &rack_trace_point_bb_mode, 4, 965 "What is BB logging mode that is activated?"); 966 SYSCTL_ADD_S32(&rack_sysctl_ctx, 967 SYSCTL_CHILDREN(rack_tracepoint), 968 OID_AUTO, "count", CTLFLAG_RW, 969 &rack_trace_point_count, 0, 970 "How many connections will have BB logging turned on that hit the tracepoint?"); 971 /* Pacing related sysctls */ 972 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 973 SYSCTL_CHILDREN(rack_sysctl_root), 974 OID_AUTO, 975 "pacing", 976 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 977 "Pacing related Controls"); 978 SYSCTL_ADD_S32(&rack_sysctl_ctx, 979 SYSCTL_CHILDREN(rack_pacing), 980 OID_AUTO, "max_pace_over", CTLFLAG_RW, 981 &rack_max_per_above, 30, 982 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); 983 SYSCTL_ADD_S32(&rack_sysctl_ctx, 984 SYSCTL_CHILDREN(rack_pacing), 985 OID_AUTO, "pace_to_one", CTLFLAG_RW, 986 &rack_pace_one_seg, 0, 987 "Do we allow low b/w pacing of 1MSS instead of two"); 988 SYSCTL_ADD_S32(&rack_sysctl_ctx, 989 SYSCTL_CHILDREN(rack_pacing), 990 OID_AUTO, "limit_wsrtt", CTLFLAG_RW, 991 &rack_limit_time_with_srtt, 0, 992 "Do we limit pacing time based on srtt"); 993 SYSCTL_ADD_S32(&rack_sysctl_ctx, 994 SYSCTL_CHILDREN(rack_pacing), 995 OID_AUTO, "init_win", CTLFLAG_RW, 996 &rack_default_init_window, 0, 997 "Do we have a rack initial window 0 = system default"); 998 SYSCTL_ADD_U16(&rack_sysctl_ctx, 999 SYSCTL_CHILDREN(rack_pacing), 1000 OID_AUTO, "gp_per_ss", CTLFLAG_RW, 1001 &rack_per_of_gp_ss, 250, 1002 "If non zero, what percentage of goodput to pace at in slow start"); 1003 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1004 SYSCTL_CHILDREN(rack_pacing), 1005 OID_AUTO, "gp_per_ca", CTLFLAG_RW, 1006 &rack_per_of_gp_ca, 150, 1007 "If non zero, what percentage of goodput to pace at in congestion avoidance"); 1008 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1009 SYSCTL_CHILDREN(rack_pacing), 1010 OID_AUTO, "gp_per_rec", CTLFLAG_RW, 1011 &rack_per_of_gp_rec, 200, 1012 "If non zero, what percentage of goodput to pace at in recovery"); 1013 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1014 SYSCTL_CHILDREN(rack_pacing), 1015 OID_AUTO, "pace_max_seg", CTLFLAG_RW, 1016 &rack_hptsi_segments, 40, 1017 "What size is the max for TSO segments in pacing and burst mitigation"); 1018 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1019 SYSCTL_CHILDREN(rack_pacing), 1020 OID_AUTO, "burst_reduces", CTLFLAG_RW, 1021 &rack_slot_reduction, 4, 1022 "When doing only burst mitigation what is the reduce divisor"); 1023 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1024 SYSCTL_CHILDREN(rack_sysctl_root), 1025 OID_AUTO, "use_pacing", CTLFLAG_RW, 1026 &rack_pace_every_seg, 0, 1027 "If set we use pacing, if clear we use only the original burst mitigation"); 1028 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1029 SYSCTL_CHILDREN(rack_pacing), 1030 OID_AUTO, "rate_cap", CTLFLAG_RW, 1031 &rack_bw_rate_cap, 0, 1032 "If set we apply this value to the absolute rate cap used by pacing"); 1033 SYSCTL_ADD_U8(&rack_sysctl_ctx, 1034 SYSCTL_CHILDREN(rack_sysctl_root), 1035 OID_AUTO, "req_measure_cnt", CTLFLAG_RW, 1036 &rack_req_measurements, 1, 1037 "If doing dynamic pacing, how many measurements must be in before we start pacing?"); 1038 /* Hardware pacing */ 1039 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1040 SYSCTL_CHILDREN(rack_sysctl_root), 1041 OID_AUTO, 1042 "hdwr_pacing", 1043 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1044 "Pacing related Controls"); 1045 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1046 SYSCTL_CHILDREN(rack_hw_pacing), 1047 OID_AUTO, "rwnd_factor", CTLFLAG_RW, 1048 &rack_hw_rwnd_factor, 2, 1049 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?"); 1050 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1051 SYSCTL_CHILDREN(rack_hw_pacing), 1052 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW, 1053 &rack_enobuf_hw_boost_mult, 2, 1054 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?"); 1055 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1056 SYSCTL_CHILDREN(rack_hw_pacing), 1057 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW, 1058 &rack_enobuf_hw_max, 2, 1059 "What is the max boost the pacing time if we see a ENOBUFS?"); 1060 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1061 SYSCTL_CHILDREN(rack_hw_pacing), 1062 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW, 1063 &rack_enobuf_hw_min, 2, 1064 "What is the min boost the pacing time if we see a ENOBUFS?"); 1065 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1066 SYSCTL_CHILDREN(rack_hw_pacing), 1067 OID_AUTO, "enable", CTLFLAG_RW, 1068 &rack_enable_hw_pacing, 0, 1069 "Should RACK attempt to use hw pacing?"); 1070 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1071 SYSCTL_CHILDREN(rack_hw_pacing), 1072 OID_AUTO, "rate_cap", CTLFLAG_RW, 1073 &rack_hw_rate_caps, 1, 1074 "Does the highest hardware pacing rate cap the rate we will send at??"); 1075 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1076 SYSCTL_CHILDREN(rack_hw_pacing), 1077 OID_AUTO, "rate_min", CTLFLAG_RW, 1078 &rack_hw_rate_min, 0, 1079 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?"); 1080 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1081 SYSCTL_CHILDREN(rack_hw_pacing), 1082 OID_AUTO, "rate_to_low", CTLFLAG_RW, 1083 &rack_hw_rate_to_low, 0, 1084 "If we fall below this rate, dis-engage hw pacing?"); 1085 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1086 SYSCTL_CHILDREN(rack_hw_pacing), 1087 OID_AUTO, "up_only", CTLFLAG_RW, 1088 &rack_hw_up_only, 1, 1089 "Do we allow hw pacing to lower the rate selected?"); 1090 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1091 SYSCTL_CHILDREN(rack_hw_pacing), 1092 OID_AUTO, "extra_mss_precise", CTLFLAG_RW, 1093 &rack_hw_pace_extra_slots, 2, 1094 "If the rates between software and hardware match precisely how many extra time_betweens do we get?"); 1095 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1096 SYSCTL_CHILDREN(rack_sysctl_root), 1097 OID_AUTO, 1098 "timely", 1099 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1100 "Rack Timely RTT Controls"); 1101 /* Timely based GP dynmics */ 1102 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1103 SYSCTL_CHILDREN(rack_timely), 1104 OID_AUTO, "upper", CTLFLAG_RW, 1105 &rack_gp_per_bw_mul_up, 2, 1106 "Rack timely upper range for equal b/w (in percentage)"); 1107 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1108 SYSCTL_CHILDREN(rack_timely), 1109 OID_AUTO, "lower", CTLFLAG_RW, 1110 &rack_gp_per_bw_mul_down, 4, 1111 "Rack timely lower range for equal b/w (in percentage)"); 1112 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1113 SYSCTL_CHILDREN(rack_timely), 1114 OID_AUTO, "rtt_max_mul", CTLFLAG_RW, 1115 &rack_gp_rtt_maxmul, 3, 1116 "Rack timely multiplier of lowest rtt for rtt_max"); 1117 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1118 SYSCTL_CHILDREN(rack_timely), 1119 OID_AUTO, "rtt_min_div", CTLFLAG_RW, 1120 &rack_gp_rtt_mindiv, 4, 1121 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1122 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1123 SYSCTL_CHILDREN(rack_timely), 1124 OID_AUTO, "rtt_min_mul", CTLFLAG_RW, 1125 &rack_gp_rtt_minmul, 1, 1126 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1127 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1128 SYSCTL_CHILDREN(rack_timely), 1129 OID_AUTO, "decrease", CTLFLAG_RW, 1130 &rack_gp_decrease_per, 20, 1131 "Rack timely decrease percentage of our GP multiplication factor"); 1132 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1133 SYSCTL_CHILDREN(rack_timely), 1134 OID_AUTO, "increase", CTLFLAG_RW, 1135 &rack_gp_increase_per, 2, 1136 "Rack timely increase perentage of our GP multiplication factor"); 1137 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1138 SYSCTL_CHILDREN(rack_timely), 1139 OID_AUTO, "lowerbound", CTLFLAG_RW, 1140 &rack_per_lower_bound, 50, 1141 "Rack timely lowest percentage we allow GP multiplier to fall to"); 1142 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1143 SYSCTL_CHILDREN(rack_timely), 1144 OID_AUTO, "upperboundss", CTLFLAG_RW, 1145 &rack_per_upper_bound_ss, 0, 1146 "Rack timely highest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); 1147 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1148 SYSCTL_CHILDREN(rack_timely), 1149 OID_AUTO, "upperboundca", CTLFLAG_RW, 1150 &rack_per_upper_bound_ca, 0, 1151 "Rack timely highest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); 1152 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1153 SYSCTL_CHILDREN(rack_timely), 1154 OID_AUTO, "dynamicgp", CTLFLAG_RW, 1155 &rack_do_dyn_mul, 0, 1156 "Rack timely do we enable dynmaic timely goodput by default"); 1157 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1158 SYSCTL_CHILDREN(rack_timely), 1159 OID_AUTO, "no_rec_red", CTLFLAG_RW, 1160 &rack_gp_no_rec_chg, 1, 1161 "Rack timely do we prohibit the recovery multiplier from being lowered"); 1162 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1163 SYSCTL_CHILDREN(rack_timely), 1164 OID_AUTO, "red_clear_cnt", CTLFLAG_RW, 1165 &rack_timely_dec_clear, 6, 1166 "Rack timely what threshold do we count to before another boost during b/w decent"); 1167 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1168 SYSCTL_CHILDREN(rack_timely), 1169 OID_AUTO, "max_push_rise", CTLFLAG_RW, 1170 &rack_timely_max_push_rise, 3, 1171 "Rack timely how many times do we push up with b/w increase"); 1172 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1173 SYSCTL_CHILDREN(rack_timely), 1174 OID_AUTO, "max_push_drop", CTLFLAG_RW, 1175 &rack_timely_max_push_drop, 3, 1176 "Rack timely how many times do we push back on b/w decent"); 1177 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1178 SYSCTL_CHILDREN(rack_timely), 1179 OID_AUTO, "min_segs", CTLFLAG_RW, 1180 &rack_timely_min_segs, 4, 1181 "Rack timely when setting the cwnd what is the min num segments"); 1182 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1183 SYSCTL_CHILDREN(rack_timely), 1184 OID_AUTO, "noback_max", CTLFLAG_RW, 1185 &rack_use_max_for_nobackoff, 0, 1186 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); 1187 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1188 SYSCTL_CHILDREN(rack_timely), 1189 OID_AUTO, "interim_timely_only", CTLFLAG_RW, 1190 &rack_timely_int_timely_only, 0, 1191 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); 1192 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1193 SYSCTL_CHILDREN(rack_timely), 1194 OID_AUTO, "nonstop", CTLFLAG_RW, 1195 &rack_timely_no_stopping, 0, 1196 "Rack timely don't stop increase"); 1197 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1198 SYSCTL_CHILDREN(rack_timely), 1199 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, 1200 &rack_down_raise_thresh, 100, 1201 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); 1202 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1203 SYSCTL_CHILDREN(rack_timely), 1204 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, 1205 &rack_req_segs, 1, 1206 "Bottom dragging if not these many segments outstanding and room"); 1207 1208 /* TLP and Rack related parameters */ 1209 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1210 SYSCTL_CHILDREN(rack_sysctl_root), 1211 OID_AUTO, 1212 "tlp", 1213 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1214 "TLP and Rack related Controls"); 1215 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1216 SYSCTL_CHILDREN(rack_tlp), 1217 OID_AUTO, "use_rrr", CTLFLAG_RW, 1218 &use_rack_rr, 1, 1219 "Do we use Rack Rapid Recovery"); 1220 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1221 SYSCTL_CHILDREN(rack_tlp), 1222 OID_AUTO, "post_rec_labc", CTLFLAG_RW, 1223 &rack_max_abc_post_recovery, 2, 1224 "Since we do early recovery, do we override the l_abc to a value, if so what?"); 1225 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1226 SYSCTL_CHILDREN(rack_tlp), 1227 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, 1228 &rack_non_rxt_use_cr, 0, 1229 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); 1230 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1231 SYSCTL_CHILDREN(rack_tlp), 1232 OID_AUTO, "tlpmethod", CTLFLAG_RW, 1233 &rack_tlp_threshold_use, TLP_USE_TWO_ONE, 1234 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); 1235 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1236 SYSCTL_CHILDREN(rack_tlp), 1237 OID_AUTO, "limit", CTLFLAG_RW, 1238 &rack_tlp_limit, 2, 1239 "How many TLP's can be sent without sending new data"); 1240 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1241 SYSCTL_CHILDREN(rack_tlp), 1242 OID_AUTO, "use_greater", CTLFLAG_RW, 1243 &rack_tlp_use_greater, 1, 1244 "Should we use the rack_rtt time if its greater than srtt"); 1245 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1246 SYSCTL_CHILDREN(rack_tlp), 1247 OID_AUTO, "tlpminto", CTLFLAG_RW, 1248 &rack_tlp_min, 10000, 1249 "TLP minimum timeout per the specification (in microseconds)"); 1250 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1251 SYSCTL_CHILDREN(rack_tlp), 1252 OID_AUTO, "send_oldest", CTLFLAG_RW, 1253 &rack_always_send_oldest, 0, 1254 "Should we always send the oldest TLP and RACK-TLP"); 1255 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1256 SYSCTL_CHILDREN(rack_tlp), 1257 OID_AUTO, "rack_tlimit", CTLFLAG_RW, 1258 &rack_limited_retran, 0, 1259 "How many times can a rack timeout drive out sends"); 1260 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1261 SYSCTL_CHILDREN(rack_tlp), 1262 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, 1263 &rack_lower_cwnd_at_tlp, 0, 1264 "When a TLP completes a retran should we enter recovery"); 1265 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1266 SYSCTL_CHILDREN(rack_tlp), 1267 OID_AUTO, "reorder_thresh", CTLFLAG_RW, 1268 &rack_reorder_thresh, 2, 1269 "What factor for rack will be added when seeing reordering (shift right)"); 1270 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1271 SYSCTL_CHILDREN(rack_tlp), 1272 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, 1273 &rack_tlp_thresh, 1, 1274 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); 1275 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1276 SYSCTL_CHILDREN(rack_tlp), 1277 OID_AUTO, "reorder_fade", CTLFLAG_RW, 1278 &rack_reorder_fade, 60000000, 1279 "Does reorder detection fade, if so how many microseconds (0 means never)"); 1280 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1281 SYSCTL_CHILDREN(rack_tlp), 1282 OID_AUTO, "pktdelay", CTLFLAG_RW, 1283 &rack_pkt_delay, 1000, 1284 "Extra RACK time (in microseconds) besides reordering thresh"); 1285 1286 /* Timer related controls */ 1287 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1288 SYSCTL_CHILDREN(rack_sysctl_root), 1289 OID_AUTO, 1290 "timers", 1291 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1292 "Timer related controls"); 1293 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1294 SYSCTL_CHILDREN(rack_timers), 1295 OID_AUTO, "persmin", CTLFLAG_RW, 1296 &rack_persist_min, 250000, 1297 "What is the minimum time in microseconds between persists"); 1298 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1299 SYSCTL_CHILDREN(rack_timers), 1300 OID_AUTO, "persmax", CTLFLAG_RW, 1301 &rack_persist_max, 2000000, 1302 "What is the largest delay in microseconds between persists"); 1303 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1304 SYSCTL_CHILDREN(rack_timers), 1305 OID_AUTO, "delayed_ack", CTLFLAG_RW, 1306 &rack_delayed_ack_time, 40000, 1307 "Delayed ack time (40ms in microseconds)"); 1308 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1309 SYSCTL_CHILDREN(rack_timers), 1310 OID_AUTO, "minrto", CTLFLAG_RW, 1311 &rack_rto_min, 30000, 1312 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP"); 1313 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1314 SYSCTL_CHILDREN(rack_timers), 1315 OID_AUTO, "maxrto", CTLFLAG_RW, 1316 &rack_rto_max, 4000000, 1317 "Maximum RTO in microseconds -- should be at least as large as min_rto"); 1318 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1319 SYSCTL_CHILDREN(rack_timers), 1320 OID_AUTO, "minto", CTLFLAG_RW, 1321 &rack_min_to, 1000, 1322 "Minimum rack timeout in microseconds"); 1323 /* Measure controls */ 1324 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1325 SYSCTL_CHILDREN(rack_sysctl_root), 1326 OID_AUTO, 1327 "measure", 1328 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1329 "Measure related controls"); 1330 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1331 SYSCTL_CHILDREN(rack_measure), 1332 OID_AUTO, "wma_divisor", CTLFLAG_RW, 1333 &rack_wma_divisor, 8, 1334 "When doing b/w calculation what is the divisor for the WMA"); 1335 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1336 SYSCTL_CHILDREN(rack_measure), 1337 OID_AUTO, "end_cwnd", CTLFLAG_RW, 1338 &rack_cwnd_block_ends_measure, 0, 1339 "Does a cwnd just-return end the measurement window (app limited)"); 1340 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1341 SYSCTL_CHILDREN(rack_measure), 1342 OID_AUTO, "end_rwnd", CTLFLAG_RW, 1343 &rack_rwnd_block_ends_measure, 0, 1344 "Does an rwnd just-return end the measurement window (app limited -- not persists)"); 1345 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1346 SYSCTL_CHILDREN(rack_measure), 1347 OID_AUTO, "min_target", CTLFLAG_RW, 1348 &rack_def_data_window, 20, 1349 "What is the minimum target window (in mss) for a GP measurements"); 1350 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1351 SYSCTL_CHILDREN(rack_measure), 1352 OID_AUTO, "goal_bdp", CTLFLAG_RW, 1353 &rack_goal_bdp, 2, 1354 "What is the goal BDP to measure"); 1355 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1356 SYSCTL_CHILDREN(rack_measure), 1357 OID_AUTO, "min_srtts", CTLFLAG_RW, 1358 &rack_min_srtts, 1, 1359 "What is the goal BDP to measure"); 1360 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1361 SYSCTL_CHILDREN(rack_measure), 1362 OID_AUTO, "min_measure_tim", CTLFLAG_RW, 1363 &rack_min_measure_usec, 0, 1364 "What is the Minimum time time for a measurement if 0, this is off"); 1365 /* Features */ 1366 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1367 SYSCTL_CHILDREN(rack_sysctl_root), 1368 OID_AUTO, 1369 "features", 1370 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1371 "Feature controls"); 1372 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1373 SYSCTL_CHILDREN(rack_features), 1374 OID_AUTO, "cmpack", CTLFLAG_RW, 1375 &rack_use_cmp_acks, 1, 1376 "Should RACK have LRO send compressed acks"); 1377 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1378 SYSCTL_CHILDREN(rack_features), 1379 OID_AUTO, "fsb", CTLFLAG_RW, 1380 &rack_use_fsb, 1, 1381 "Should RACK use the fast send block?"); 1382 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1383 SYSCTL_CHILDREN(rack_features), 1384 OID_AUTO, "rfo", CTLFLAG_RW, 1385 &rack_use_rfo, 1, 1386 "Should RACK use rack_fast_output()?"); 1387 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1388 SYSCTL_CHILDREN(rack_features), 1389 OID_AUTO, "rsmrfo", CTLFLAG_RW, 1390 &rack_use_rsm_rfo, 1, 1391 "Should RACK use rack_fast_rsm_output()?"); 1392 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1393 SYSCTL_CHILDREN(rack_features), 1394 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, 1395 &rack_enable_mqueue_for_nonpaced, 0, 1396 "Should RACK use mbuf queuing for non-paced connections"); 1397 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1398 SYSCTL_CHILDREN(rack_features), 1399 OID_AUTO, "hystartplusplus", CTLFLAG_RW, 1400 &rack_do_hystart, 0, 1401 "Should RACK enable HyStart++ on connections?"); 1402 /* Misc rack controls */ 1403 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1404 SYSCTL_CHILDREN(rack_sysctl_root), 1405 OID_AUTO, 1406 "misc", 1407 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1408 "Misc related controls"); 1409 #ifdef TCP_ACCOUNTING 1410 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1411 SYSCTL_CHILDREN(rack_misc), 1412 OID_AUTO, "tcp_acct", CTLFLAG_RW, 1413 &rack_tcp_accounting, 0, 1414 "Should we turn on TCP accounting for all rack sessions?"); 1415 #endif 1416 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1417 SYSCTL_CHILDREN(rack_misc), 1418 OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW, 1419 &rack_apply_rtt_with_reduced_conf, 0, 1420 "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?"); 1421 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1422 SYSCTL_CHILDREN(rack_misc), 1423 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW, 1424 &rack_dsack_std_based, 3, 1425 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?"); 1426 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1427 SYSCTL_CHILDREN(rack_misc), 1428 OID_AUTO, "prr_addback_max", CTLFLAG_RW, 1429 &rack_prr_addbackmax, 2, 1430 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?"); 1431 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1432 SYSCTL_CHILDREN(rack_misc), 1433 OID_AUTO, "stats_gets_ms", CTLFLAG_RW, 1434 &rack_stats_gets_ms_rtt, 1, 1435 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?"); 1436 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1437 SYSCTL_CHILDREN(rack_misc), 1438 OID_AUTO, "clientlowbuf", CTLFLAG_RW, 1439 &rack_client_low_buf, 0, 1440 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?"); 1441 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1442 SYSCTL_CHILDREN(rack_misc), 1443 OID_AUTO, "defprofile", CTLFLAG_RW, 1444 &rack_def_profile, 0, 1445 "Should RACK use a default profile (0=no, num == profile num)?"); 1446 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1447 SYSCTL_CHILDREN(rack_misc), 1448 OID_AUTO, "shared_cwnd", CTLFLAG_RW, 1449 &rack_enable_shared_cwnd, 1, 1450 "Should RACK try to use the shared cwnd on connections where allowed"); 1451 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1452 SYSCTL_CHILDREN(rack_misc), 1453 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, 1454 &rack_limits_scwnd, 1, 1455 "Should RACK place low end time limits on the shared cwnd feature"); 1456 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1457 SYSCTL_CHILDREN(rack_misc), 1458 OID_AUTO, "iMac_dack", CTLFLAG_RW, 1459 &rack_use_imac_dack, 0, 1460 "Should RACK try to emulate iMac delayed ack"); 1461 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1462 SYSCTL_CHILDREN(rack_misc), 1463 OID_AUTO, "no_prr", CTLFLAG_RW, 1464 &rack_disable_prr, 0, 1465 "Should RACK not use prr and only pace (must have pacing on)"); 1466 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1467 SYSCTL_CHILDREN(rack_misc), 1468 OID_AUTO, "bb_verbose", CTLFLAG_RW, 1469 &rack_verbose_logging, 0, 1470 "Should RACK black box logging be verbose"); 1471 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1472 SYSCTL_CHILDREN(rack_misc), 1473 OID_AUTO, "data_after_close", CTLFLAG_RW, 1474 &rack_ignore_data_after_close, 1, 1475 "Do we hold off sending a RST until all pending data is ack'd"); 1476 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1477 SYSCTL_CHILDREN(rack_misc), 1478 OID_AUTO, "no_sack_needed", CTLFLAG_RW, 1479 &rack_sack_not_required, 1, 1480 "Do we allow rack to run on connections not supporting SACK"); 1481 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1482 SYSCTL_CHILDREN(rack_misc), 1483 OID_AUTO, "prr_sendalot", CTLFLAG_RW, 1484 &rack_send_a_lot_in_prr, 1, 1485 "Send a lot in prr"); 1486 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1487 SYSCTL_CHILDREN(rack_misc), 1488 OID_AUTO, "autoscale", CTLFLAG_RW, 1489 &rack_autosndbuf_inc, 20, 1490 "What percentage should rack scale up its snd buffer by?"); 1491 /* Sack Attacker detection stuff */ 1492 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1493 SYSCTL_CHILDREN(rack_attack), 1494 OID_AUTO, "detect_highsackratio", CTLFLAG_RW, 1495 &rack_highest_sack_thresh_seen, 0, 1496 "Highest sack to ack ratio seen"); 1497 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1498 SYSCTL_CHILDREN(rack_attack), 1499 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, 1500 &rack_highest_move_thresh_seen, 0, 1501 "Highest move to non-move ratio seen"); 1502 rack_ack_total = counter_u64_alloc(M_WAITOK); 1503 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1504 SYSCTL_CHILDREN(rack_attack), 1505 OID_AUTO, "acktotal", CTLFLAG_RD, 1506 &rack_ack_total, 1507 "Total number of Ack's"); 1508 rack_express_sack = counter_u64_alloc(M_WAITOK); 1509 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1510 SYSCTL_CHILDREN(rack_attack), 1511 OID_AUTO, "exp_sacktotal", CTLFLAG_RD, 1512 &rack_express_sack, 1513 "Total expresss number of Sack's"); 1514 rack_sack_total = counter_u64_alloc(M_WAITOK); 1515 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1516 SYSCTL_CHILDREN(rack_attack), 1517 OID_AUTO, "sacktotal", CTLFLAG_RD, 1518 &rack_sack_total, 1519 "Total number of SACKs"); 1520 rack_move_none = counter_u64_alloc(M_WAITOK); 1521 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1522 SYSCTL_CHILDREN(rack_attack), 1523 OID_AUTO, "move_none", CTLFLAG_RD, 1524 &rack_move_none, 1525 "Total number of SACK index reuse of positions under threshold"); 1526 rack_move_some = counter_u64_alloc(M_WAITOK); 1527 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1528 SYSCTL_CHILDREN(rack_attack), 1529 OID_AUTO, "move_some", CTLFLAG_RD, 1530 &rack_move_some, 1531 "Total number of SACK index reuse of positions over threshold"); 1532 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); 1533 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1534 SYSCTL_CHILDREN(rack_attack), 1535 OID_AUTO, "attacks", CTLFLAG_RD, 1536 &rack_sack_attacks_detected, 1537 "Total number of SACK attackers that had sack disabled"); 1538 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); 1539 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1540 SYSCTL_CHILDREN(rack_attack), 1541 OID_AUTO, "reversed", CTLFLAG_RD, 1542 &rack_sack_attacks_reversed, 1543 "Total number of SACK attackers that were later determined false positive"); 1544 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); 1545 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1546 SYSCTL_CHILDREN(rack_attack), 1547 OID_AUTO, "nextmerge", CTLFLAG_RD, 1548 &rack_sack_used_next_merge, 1549 "Total number of times we used the next merge"); 1550 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); 1551 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1552 SYSCTL_CHILDREN(rack_attack), 1553 OID_AUTO, "prevmerge", CTLFLAG_RD, 1554 &rack_sack_used_prev_merge, 1555 "Total number of times we used the prev merge"); 1556 /* Counters */ 1557 rack_fto_send = counter_u64_alloc(M_WAITOK); 1558 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1559 SYSCTL_CHILDREN(rack_counters), 1560 OID_AUTO, "fto_send", CTLFLAG_RD, 1561 &rack_fto_send, "Total number of rack_fast_output sends"); 1562 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK); 1563 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1564 SYSCTL_CHILDREN(rack_counters), 1565 OID_AUTO, "fto_rsm_send", CTLFLAG_RD, 1566 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends"); 1567 rack_nfto_resend = counter_u64_alloc(M_WAITOK); 1568 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1569 SYSCTL_CHILDREN(rack_counters), 1570 OID_AUTO, "nfto_resend", CTLFLAG_RD, 1571 &rack_nfto_resend, "Total number of rack_output retransmissions"); 1572 rack_non_fto_send = counter_u64_alloc(M_WAITOK); 1573 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1574 SYSCTL_CHILDREN(rack_counters), 1575 OID_AUTO, "nfto_send", CTLFLAG_RD, 1576 &rack_non_fto_send, "Total number of rack_output first sends"); 1577 rack_extended_rfo = counter_u64_alloc(M_WAITOK); 1578 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1579 SYSCTL_CHILDREN(rack_counters), 1580 OID_AUTO, "rfo_extended", CTLFLAG_RD, 1581 &rack_extended_rfo, "Total number of times we extended rfo"); 1582 1583 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK); 1584 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1585 SYSCTL_CHILDREN(rack_counters), 1586 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD, 1587 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing"); 1588 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK); 1589 1590 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1591 SYSCTL_CHILDREN(rack_counters), 1592 OID_AUTO, "hwpace_lost", CTLFLAG_RD, 1593 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing"); 1594 rack_tlp_tot = counter_u64_alloc(M_WAITOK); 1595 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1596 SYSCTL_CHILDREN(rack_counters), 1597 OID_AUTO, "tlp_to_total", CTLFLAG_RD, 1598 &rack_tlp_tot, 1599 "Total number of tail loss probe expirations"); 1600 rack_tlp_newdata = counter_u64_alloc(M_WAITOK); 1601 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1602 SYSCTL_CHILDREN(rack_counters), 1603 OID_AUTO, "tlp_new", CTLFLAG_RD, 1604 &rack_tlp_newdata, 1605 "Total number of tail loss probe sending new data"); 1606 rack_tlp_retran = counter_u64_alloc(M_WAITOK); 1607 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1608 SYSCTL_CHILDREN(rack_counters), 1609 OID_AUTO, "tlp_retran", CTLFLAG_RD, 1610 &rack_tlp_retran, 1611 "Total number of tail loss probe sending retransmitted data"); 1612 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); 1613 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1614 SYSCTL_CHILDREN(rack_counters), 1615 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, 1616 &rack_tlp_retran_bytes, 1617 "Total bytes of tail loss probe sending retransmitted data"); 1618 rack_to_tot = counter_u64_alloc(M_WAITOK); 1619 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1620 SYSCTL_CHILDREN(rack_counters), 1621 OID_AUTO, "rack_to_tot", CTLFLAG_RD, 1622 &rack_to_tot, 1623 "Total number of times the rack to expired"); 1624 rack_saw_enobuf = counter_u64_alloc(M_WAITOK); 1625 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1626 SYSCTL_CHILDREN(rack_counters), 1627 OID_AUTO, "saw_enobufs", CTLFLAG_RD, 1628 &rack_saw_enobuf, 1629 "Total number of times a sends returned enobuf for non-hdwr paced connections"); 1630 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK); 1631 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1632 SYSCTL_CHILDREN(rack_counters), 1633 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD, 1634 &rack_saw_enobuf_hw, 1635 "Total number of times a send returned enobuf for hdwr paced connections"); 1636 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); 1637 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1638 SYSCTL_CHILDREN(rack_counters), 1639 OID_AUTO, "saw_enetunreach", CTLFLAG_RD, 1640 &rack_saw_enetunreach, 1641 "Total number of times a send received a enetunreachable"); 1642 rack_hot_alloc = counter_u64_alloc(M_WAITOK); 1643 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1644 SYSCTL_CHILDREN(rack_counters), 1645 OID_AUTO, "alloc_hot", CTLFLAG_RD, 1646 &rack_hot_alloc, 1647 "Total allocations from the top of our list"); 1648 rack_to_alloc = counter_u64_alloc(M_WAITOK); 1649 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1650 SYSCTL_CHILDREN(rack_counters), 1651 OID_AUTO, "allocs", CTLFLAG_RD, 1652 &rack_to_alloc, 1653 "Total allocations of tracking structures"); 1654 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); 1655 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1656 SYSCTL_CHILDREN(rack_counters), 1657 OID_AUTO, "allochard", CTLFLAG_RD, 1658 &rack_to_alloc_hard, 1659 "Total allocations done with sleeping the hard way"); 1660 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); 1661 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1662 SYSCTL_CHILDREN(rack_counters), 1663 OID_AUTO, "allocemerg", CTLFLAG_RD, 1664 &rack_to_alloc_emerg, 1665 "Total allocations done from emergency cache"); 1666 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); 1667 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1668 SYSCTL_CHILDREN(rack_counters), 1669 OID_AUTO, "alloc_limited", CTLFLAG_RD, 1670 &rack_to_alloc_limited, 1671 "Total allocations dropped due to limit"); 1672 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); 1673 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1674 SYSCTL_CHILDREN(rack_counters), 1675 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, 1676 &rack_alloc_limited_conns, 1677 "Connections with allocations dropped due to limit"); 1678 rack_split_limited = counter_u64_alloc(M_WAITOK); 1679 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1680 SYSCTL_CHILDREN(rack_counters), 1681 OID_AUTO, "split_limited", CTLFLAG_RD, 1682 &rack_split_limited, 1683 "Split allocations dropped due to limit"); 1684 rack_persists_sends = counter_u64_alloc(M_WAITOK); 1685 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1686 SYSCTL_CHILDREN(rack_counters), 1687 OID_AUTO, "persist_sends", CTLFLAG_RD, 1688 &rack_persists_sends, 1689 "Number of times we sent a persist probe"); 1690 rack_persists_acks = counter_u64_alloc(M_WAITOK); 1691 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1692 SYSCTL_CHILDREN(rack_counters), 1693 OID_AUTO, "persist_acks", CTLFLAG_RD, 1694 &rack_persists_acks, 1695 "Number of times a persist probe was acked"); 1696 rack_persists_loss = counter_u64_alloc(M_WAITOK); 1697 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1698 SYSCTL_CHILDREN(rack_counters), 1699 OID_AUTO, "persist_loss", CTLFLAG_RD, 1700 &rack_persists_loss, 1701 "Number of times we detected a lost persist probe (no ack)"); 1702 rack_persists_lost_ends = counter_u64_alloc(M_WAITOK); 1703 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1704 SYSCTL_CHILDREN(rack_counters), 1705 OID_AUTO, "persist_loss_ends", CTLFLAG_RD, 1706 &rack_persists_lost_ends, 1707 "Number of lost persist probe (no ack) that the run ended with a PERSIST abort"); 1708 #ifdef INVARIANTS 1709 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK); 1710 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1711 SYSCTL_CHILDREN(rack_counters), 1712 OID_AUTO, "map_adjust_req", CTLFLAG_RD, 1713 &rack_adjust_map_bw, 1714 "Number of times we hit the case where the sb went up and down on a sendmap entry"); 1715 #endif 1716 rack_multi_single_eq = counter_u64_alloc(M_WAITOK); 1717 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1718 SYSCTL_CHILDREN(rack_counters), 1719 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD, 1720 &rack_multi_single_eq, 1721 "Number of compressed acks total represented"); 1722 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK); 1723 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1724 SYSCTL_CHILDREN(rack_counters), 1725 OID_AUTO, "cmp_ack_not", CTLFLAG_RD, 1726 &rack_proc_non_comp_ack, 1727 "Number of non compresseds acks that we processed"); 1728 1729 1730 rack_sack_proc_all = counter_u64_alloc(M_WAITOK); 1731 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1732 SYSCTL_CHILDREN(rack_counters), 1733 OID_AUTO, "sack_long", CTLFLAG_RD, 1734 &rack_sack_proc_all, 1735 "Total times we had to walk whole list for sack processing"); 1736 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); 1737 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1738 SYSCTL_CHILDREN(rack_counters), 1739 OID_AUTO, "sack_restart", CTLFLAG_RD, 1740 &rack_sack_proc_restart, 1741 "Total times we had to walk whole list due to a restart"); 1742 rack_sack_proc_short = counter_u64_alloc(M_WAITOK); 1743 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1744 SYSCTL_CHILDREN(rack_counters), 1745 OID_AUTO, "sack_short", CTLFLAG_RD, 1746 &rack_sack_proc_short, 1747 "Total times we took shortcut for sack processing"); 1748 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); 1749 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1750 SYSCTL_CHILDREN(rack_attack), 1751 OID_AUTO, "skipacked", CTLFLAG_RD, 1752 &rack_sack_skipped_acked, 1753 "Total number of times we skipped previously sacked"); 1754 rack_sack_splits = counter_u64_alloc(M_WAITOK); 1755 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1756 SYSCTL_CHILDREN(rack_attack), 1757 OID_AUTO, "ofsplit", CTLFLAG_RD, 1758 &rack_sack_splits, 1759 "Total number of times we did the old fashion tree split"); 1760 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); 1761 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1762 SYSCTL_CHILDREN(rack_counters), 1763 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, 1764 &rack_input_idle_reduces, 1765 "Total number of idle reductions on input"); 1766 rack_collapsed_win_seen = counter_u64_alloc(M_WAITOK); 1767 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1768 SYSCTL_CHILDREN(rack_counters), 1769 OID_AUTO, "collapsed_win_seen", CTLFLAG_RD, 1770 &rack_collapsed_win_seen, 1771 "Total number of collapsed window events seen (where our window shrinks)"); 1772 1773 rack_collapsed_win = counter_u64_alloc(M_WAITOK); 1774 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1775 SYSCTL_CHILDREN(rack_counters), 1776 OID_AUTO, "collapsed_win", CTLFLAG_RD, 1777 &rack_collapsed_win, 1778 "Total number of collapsed window events where we mark packets"); 1779 rack_collapsed_win_rxt = counter_u64_alloc(M_WAITOK); 1780 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1781 SYSCTL_CHILDREN(rack_counters), 1782 OID_AUTO, "collapsed_win_rxt", CTLFLAG_RD, 1783 &rack_collapsed_win_rxt, 1784 "Total number of packets that were retransmitted"); 1785 rack_collapsed_win_rxt_bytes = counter_u64_alloc(M_WAITOK); 1786 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1787 SYSCTL_CHILDREN(rack_counters), 1788 OID_AUTO, "collapsed_win_bytes", CTLFLAG_RD, 1789 &rack_collapsed_win_rxt_bytes, 1790 "Total number of bytes that were retransmitted"); 1791 rack_try_scwnd = counter_u64_alloc(M_WAITOK); 1792 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1793 SYSCTL_CHILDREN(rack_counters), 1794 OID_AUTO, "tried_scwnd", CTLFLAG_RD, 1795 &rack_try_scwnd, 1796 "Total number of scwnd attempts"); 1797 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); 1798 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1799 OID_AUTO, "outsize", CTLFLAG_RD, 1800 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); 1801 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); 1802 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1803 OID_AUTO, "opts", CTLFLAG_RD, 1804 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); 1805 SYSCTL_ADD_PROC(&rack_sysctl_ctx, 1806 SYSCTL_CHILDREN(rack_sysctl_root), 1807 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1808 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); 1809 } 1810 1811 static __inline int 1812 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a) 1813 { 1814 if (SEQ_GEQ(b->r_start, a->r_start) && 1815 SEQ_LT(b->r_start, a->r_end)) { 1816 /* 1817 * The entry b is within the 1818 * block a. i.e.: 1819 * a -- |-------------| 1820 * b -- |----| 1821 * <or> 1822 * b -- |------| 1823 * <or> 1824 * b -- |-----------| 1825 */ 1826 return (0); 1827 } else if (SEQ_GEQ(b->r_start, a->r_end)) { 1828 /* 1829 * b falls as either the next 1830 * sequence block after a so a 1831 * is said to be smaller than b. 1832 * i.e: 1833 * a -- |------| 1834 * b -- |--------| 1835 * or 1836 * b -- |-----| 1837 */ 1838 return (1); 1839 } 1840 /* 1841 * Whats left is where a is 1842 * larger than b. i.e: 1843 * a -- |-------| 1844 * b -- |---| 1845 * or even possibly 1846 * b -- |--------------| 1847 */ 1848 return (-1); 1849 } 1850 1851 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1852 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1853 1854 static uint32_t 1855 rc_init_window(struct tcp_rack *rack) 1856 { 1857 uint32_t win; 1858 1859 if (rack->rc_init_win == 0) { 1860 /* 1861 * Nothing set by the user, use the system stack 1862 * default. 1863 */ 1864 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); 1865 } 1866 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; 1867 return (win); 1868 } 1869 1870 static uint64_t 1871 rack_get_fixed_pacing_bw(struct tcp_rack *rack) 1872 { 1873 if (IN_FASTRECOVERY(rack->rc_tp->t_flags)) 1874 return (rack->r_ctl.rc_fixed_pacing_rate_rec); 1875 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 1876 return (rack->r_ctl.rc_fixed_pacing_rate_ss); 1877 else 1878 return (rack->r_ctl.rc_fixed_pacing_rate_ca); 1879 } 1880 1881 static uint64_t 1882 rack_get_bw(struct tcp_rack *rack) 1883 { 1884 if (rack->use_fixed_rate) { 1885 /* Return the fixed pacing rate */ 1886 return (rack_get_fixed_pacing_bw(rack)); 1887 } 1888 if (rack->r_ctl.gp_bw == 0) { 1889 /* 1890 * We have yet no b/w measurement, 1891 * if we have a user set initial bw 1892 * return it. If we don't have that and 1893 * we have an srtt, use the tcp IW (10) to 1894 * calculate a fictional b/w over the SRTT 1895 * which is more or less a guess. Note 1896 * we don't use our IW from rack on purpose 1897 * so if we have like IW=30, we are not 1898 * calculating a "huge" b/w. 1899 */ 1900 uint64_t bw, srtt; 1901 if (rack->r_ctl.init_rate) 1902 return (rack->r_ctl.init_rate); 1903 1904 /* Has the user set a max peak rate? */ 1905 #ifdef NETFLIX_PEAKRATE 1906 if (rack->rc_tp->t_maxpeakrate) 1907 return (rack->rc_tp->t_maxpeakrate); 1908 #endif 1909 /* Ok lets come up with the IW guess, if we have a srtt */ 1910 if (rack->rc_tp->t_srtt == 0) { 1911 /* 1912 * Go with old pacing method 1913 * i.e. burst mitigation only. 1914 */ 1915 return (0); 1916 } 1917 /* Ok lets get the initial TCP win (not racks) */ 1918 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); 1919 srtt = (uint64_t)rack->rc_tp->t_srtt; 1920 bw *= (uint64_t)USECS_IN_SECOND; 1921 bw /= srtt; 1922 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 1923 bw = rack->r_ctl.bw_rate_cap; 1924 return (bw); 1925 } else { 1926 uint64_t bw; 1927 1928 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 1929 /* Averaging is done, we can return the value */ 1930 bw = rack->r_ctl.gp_bw; 1931 } else { 1932 /* Still doing initial average must calculate */ 1933 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements; 1934 } 1935 #ifdef NETFLIX_PEAKRATE 1936 if ((rack->rc_tp->t_maxpeakrate) && 1937 (bw > rack->rc_tp->t_maxpeakrate)) { 1938 /* The user has set a peak rate to pace at 1939 * don't allow us to pace faster than that. 1940 */ 1941 return (rack->rc_tp->t_maxpeakrate); 1942 } 1943 #endif 1944 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 1945 bw = rack->r_ctl.bw_rate_cap; 1946 return (bw); 1947 } 1948 } 1949 1950 static uint16_t 1951 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) 1952 { 1953 if (rack->use_fixed_rate) { 1954 return (100); 1955 } else if (rack->in_probe_rtt && (rsm == NULL)) 1956 return (rack->r_ctl.rack_per_of_gp_probertt); 1957 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) && 1958 rack->r_ctl.rack_per_of_gp_rec)) { 1959 if (rsm) { 1960 /* a retransmission always use the recovery rate */ 1961 return (rack->r_ctl.rack_per_of_gp_rec); 1962 } else if (rack->rack_rec_nonrxt_use_cr) { 1963 /* Directed to use the configured rate */ 1964 goto configured_rate; 1965 } else if (rack->rack_no_prr && 1966 (rack->r_ctl.rack_per_of_gp_rec > 100)) { 1967 /* No PRR, lets just use the b/w estimate only */ 1968 return (100); 1969 } else { 1970 /* 1971 * Here we may have a non-retransmit but we 1972 * have no overrides, so just use the recovery 1973 * rate (prr is in effect). 1974 */ 1975 return (rack->r_ctl.rack_per_of_gp_rec); 1976 } 1977 } 1978 configured_rate: 1979 /* For the configured rate we look at our cwnd vs the ssthresh */ 1980 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 1981 return (rack->r_ctl.rack_per_of_gp_ss); 1982 else 1983 return (rack->r_ctl.rack_per_of_gp_ca); 1984 } 1985 1986 static void 1987 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6) 1988 { 1989 /* 1990 * Types of logs (mod value) 1991 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit. 1992 * 2 = a dsack round begins, persist is reset to 16. 1993 * 3 = a dsack round ends 1994 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh 1995 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack 1996 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh. 1997 */ 1998 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 1999 union tcp_log_stackspecific log; 2000 struct timeval tv; 2001 2002 memset(&log, 0, sizeof(log)); 2003 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based; 2004 log.u_bbr.flex1 <<= 1; 2005 log.u_bbr.flex1 |= rack->rc_rack_use_dsack; 2006 log.u_bbr.flex1 <<= 1; 2007 log.u_bbr.flex1 |= rack->rc_dsack_round_seen; 2008 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end; 2009 log.u_bbr.flex3 = rack->r_ctl.num_dsack; 2010 log.u_bbr.flex4 = flex4; 2011 log.u_bbr.flex5 = flex5; 2012 log.u_bbr.flex6 = flex6; 2013 log.u_bbr.flex7 = rack->r_ctl.dsack_persist; 2014 log.u_bbr.flex8 = mod; 2015 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2016 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2017 &rack->rc_inp->inp_socket->so_rcv, 2018 &rack->rc_inp->inp_socket->so_snd, 2019 RACK_DSACK_HANDLING, 0, 2020 0, &log, false, &tv); 2021 } 2022 } 2023 2024 static void 2025 rack_log_hdwr_pacing(struct tcp_rack *rack, 2026 uint64_t rate, uint64_t hw_rate, int line, 2027 int error, uint16_t mod) 2028 { 2029 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2030 union tcp_log_stackspecific log; 2031 struct timeval tv; 2032 const struct ifnet *ifp; 2033 2034 memset(&log, 0, sizeof(log)); 2035 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); 2036 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); 2037 if (rack->r_ctl.crte) { 2038 ifp = rack->r_ctl.crte->ptbl->rs_ifp; 2039 } else if (rack->rc_inp->inp_route.ro_nh && 2040 rack->rc_inp->inp_route.ro_nh->nh_ifp) { 2041 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp; 2042 } else 2043 ifp = NULL; 2044 if (ifp) { 2045 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); 2046 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); 2047 } 2048 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2049 log.u_bbr.bw_inuse = rate; 2050 log.u_bbr.flex5 = line; 2051 log.u_bbr.flex6 = error; 2052 log.u_bbr.flex7 = mod; 2053 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; 2054 log.u_bbr.flex8 = rack->use_fixed_rate; 2055 log.u_bbr.flex8 <<= 1; 2056 log.u_bbr.flex8 |= rack->rack_hdrw_pacing; 2057 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 2058 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate; 2059 if (rack->r_ctl.crte) 2060 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate; 2061 else 2062 log.u_bbr.cur_del_rate = 0; 2063 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req; 2064 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2065 &rack->rc_inp->inp_socket->so_rcv, 2066 &rack->rc_inp->inp_socket->so_snd, 2067 BBR_LOG_HDWR_PACE, 0, 2068 0, &log, false, &tv); 2069 } 2070 } 2071 2072 static uint64_t 2073 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped) 2074 { 2075 /* 2076 * We allow rack_per_of_gp_xx to dictate our bw rate we want. 2077 */ 2078 uint64_t bw_est, high_rate; 2079 uint64_t gain; 2080 2081 gain = (uint64_t)rack_get_output_gain(rack, rsm); 2082 bw_est = bw * gain; 2083 bw_est /= (uint64_t)100; 2084 /* Never fall below the minimum (def 64kbps) */ 2085 if (bw_est < RACK_MIN_BW) 2086 bw_est = RACK_MIN_BW; 2087 if (rack->r_rack_hw_rate_caps) { 2088 /* Rate caps are in place */ 2089 if (rack->r_ctl.crte != NULL) { 2090 /* We have a hdwr rate already */ 2091 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 2092 if (bw_est >= high_rate) { 2093 /* We are capping bw at the highest rate table entry */ 2094 rack_log_hdwr_pacing(rack, 2095 bw_est, high_rate, __LINE__, 2096 0, 3); 2097 bw_est = high_rate; 2098 if (capped) 2099 *capped = 1; 2100 } 2101 } else if ((rack->rack_hdrw_pacing == 0) && 2102 (rack->rack_hdw_pace_ena) && 2103 (rack->rack_attempt_hdwr_pace == 0) && 2104 (rack->rc_inp->inp_route.ro_nh != NULL) && 2105 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 2106 /* 2107 * Special case, we have not yet attempted hardware 2108 * pacing, and yet we may, when we do, find out if we are 2109 * above the highest rate. We need to know the maxbw for the interface 2110 * in question (if it supports ratelimiting). We get back 2111 * a 0, if the interface is not found in the RL lists. 2112 */ 2113 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 2114 if (high_rate) { 2115 /* Yep, we have a rate is it above this rate? */ 2116 if (bw_est > high_rate) { 2117 bw_est = high_rate; 2118 if (capped) 2119 *capped = 1; 2120 } 2121 } 2122 } 2123 } 2124 return (bw_est); 2125 } 2126 2127 static void 2128 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) 2129 { 2130 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2131 union tcp_log_stackspecific log; 2132 struct timeval tv; 2133 2134 if ((mod != 1) && (rack_verbose_logging == 0)) { 2135 /* 2136 * We get 3 values currently for mod 2137 * 1 - We are retransmitting and this tells the reason. 2138 * 2 - We are clearing a dup-ack count. 2139 * 3 - We are incrementing a dup-ack count. 2140 * 2141 * The clear/increment are only logged 2142 * if you have BBverbose on. 2143 */ 2144 return; 2145 } 2146 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2147 log.u_bbr.flex1 = tsused; 2148 log.u_bbr.flex2 = thresh; 2149 log.u_bbr.flex3 = rsm->r_flags; 2150 log.u_bbr.flex4 = rsm->r_dupack; 2151 log.u_bbr.flex5 = rsm->r_start; 2152 log.u_bbr.flex6 = rsm->r_end; 2153 log.u_bbr.flex8 = mod; 2154 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2155 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2156 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2157 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2158 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2159 log.u_bbr.pacing_gain = rack->r_must_retran; 2160 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2161 &rack->rc_inp->inp_socket->so_rcv, 2162 &rack->rc_inp->inp_socket->so_snd, 2163 BBR_LOG_SETTINGS_CHG, 0, 2164 0, &log, false, &tv); 2165 } 2166 } 2167 2168 static void 2169 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) 2170 { 2171 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2172 union tcp_log_stackspecific log; 2173 struct timeval tv; 2174 2175 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2176 log.u_bbr.flex1 = rack->rc_tp->t_srtt; 2177 log.u_bbr.flex2 = to; 2178 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; 2179 log.u_bbr.flex4 = slot; 2180 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot; 2181 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2182 log.u_bbr.flex7 = rack->rc_in_persist; 2183 log.u_bbr.flex8 = which; 2184 if (rack->rack_no_prr) 2185 log.u_bbr.pkts_out = 0; 2186 else 2187 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 2188 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2189 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2190 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2191 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2192 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2193 log.u_bbr.pacing_gain = rack->r_must_retran; 2194 log.u_bbr.cwnd_gain = rack->rc_has_collapsed; 2195 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift; 2196 log.u_bbr.lost = rack_rto_min; 2197 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2198 &rack->rc_inp->inp_socket->so_rcv, 2199 &rack->rc_inp->inp_socket->so_snd, 2200 BBR_LOG_TIMERSTAR, 0, 2201 0, &log, false, &tv); 2202 } 2203 } 2204 2205 static void 2206 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) 2207 { 2208 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2209 union tcp_log_stackspecific log; 2210 struct timeval tv; 2211 2212 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2213 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2214 log.u_bbr.flex8 = to_num; 2215 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; 2216 log.u_bbr.flex2 = rack->rc_rack_rtt; 2217 if (rsm == NULL) 2218 log.u_bbr.flex3 = 0; 2219 else 2220 log.u_bbr.flex3 = rsm->r_end - rsm->r_start; 2221 if (rack->rack_no_prr) 2222 log.u_bbr.flex5 = 0; 2223 else 2224 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2225 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2226 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2227 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2228 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2229 log.u_bbr.pacing_gain = rack->r_must_retran; 2230 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2231 &rack->rc_inp->inp_socket->so_rcv, 2232 &rack->rc_inp->inp_socket->so_snd, 2233 BBR_LOG_RTO, 0, 2234 0, &log, false, &tv); 2235 } 2236 } 2237 2238 static void 2239 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, 2240 struct rack_sendmap *prev, 2241 struct rack_sendmap *rsm, 2242 struct rack_sendmap *next, 2243 int flag, uint32_t th_ack, int line) 2244 { 2245 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2246 union tcp_log_stackspecific log; 2247 struct timeval tv; 2248 2249 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2250 log.u_bbr.flex8 = flag; 2251 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2252 log.u_bbr.cur_del_rate = (uint64_t)prev; 2253 log.u_bbr.delRate = (uint64_t)rsm; 2254 log.u_bbr.rttProp = (uint64_t)next; 2255 log.u_bbr.flex7 = 0; 2256 if (prev) { 2257 log.u_bbr.flex1 = prev->r_start; 2258 log.u_bbr.flex2 = prev->r_end; 2259 log.u_bbr.flex7 |= 0x4; 2260 } 2261 if (rsm) { 2262 log.u_bbr.flex3 = rsm->r_start; 2263 log.u_bbr.flex4 = rsm->r_end; 2264 log.u_bbr.flex7 |= 0x2; 2265 } 2266 if (next) { 2267 log.u_bbr.flex5 = next->r_start; 2268 log.u_bbr.flex6 = next->r_end; 2269 log.u_bbr.flex7 |= 0x1; 2270 } 2271 log.u_bbr.applimited = line; 2272 log.u_bbr.pkts_out = th_ack; 2273 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2274 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2275 if (rack->rack_no_prr) 2276 log.u_bbr.lost = 0; 2277 else 2278 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt; 2279 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2280 &rack->rc_inp->inp_socket->so_rcv, 2281 &rack->rc_inp->inp_socket->so_snd, 2282 TCP_LOG_MAPCHG, 0, 2283 0, &log, false, &tv); 2284 } 2285 } 2286 2287 static void 2288 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, 2289 struct rack_sendmap *rsm, int conf) 2290 { 2291 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2292 union tcp_log_stackspecific log; 2293 struct timeval tv; 2294 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2295 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2296 log.u_bbr.flex1 = t; 2297 log.u_bbr.flex2 = len; 2298 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt; 2299 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest; 2300 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest; 2301 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2302 log.u_bbr.flex7 = conf; 2303 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot; 2304 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; 2305 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2306 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2307 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; 2308 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2309 if (rsm) { 2310 log.u_bbr.pkt_epoch = rsm->r_start; 2311 log.u_bbr.lost = rsm->r_end; 2312 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; 2313 /* We loose any upper of the 24 bits */ 2314 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags; 2315 } else { 2316 /* Its a SYN */ 2317 log.u_bbr.pkt_epoch = rack->rc_tp->iss; 2318 log.u_bbr.lost = 0; 2319 log.u_bbr.cwnd_gain = 0; 2320 log.u_bbr.pacing_gain = 0; 2321 } 2322 /* Write out general bits of interest rrs here */ 2323 log.u_bbr.use_lt_bw = rack->rc_highly_buffered; 2324 log.u_bbr.use_lt_bw <<= 1; 2325 log.u_bbr.use_lt_bw |= rack->forced_ack; 2326 log.u_bbr.use_lt_bw <<= 1; 2327 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; 2328 log.u_bbr.use_lt_bw <<= 1; 2329 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 2330 log.u_bbr.use_lt_bw <<= 1; 2331 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 2332 log.u_bbr.use_lt_bw <<= 1; 2333 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 2334 log.u_bbr.use_lt_bw <<= 1; 2335 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 2336 log.u_bbr.use_lt_bw <<= 1; 2337 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; 2338 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; 2339 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; 2340 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; 2341 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; 2342 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; 2343 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 2344 log.u_bbr.bw_inuse <<= 32; 2345 if (rsm) 2346 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); 2347 TCP_LOG_EVENTP(tp, NULL, 2348 &rack->rc_inp->inp_socket->so_rcv, 2349 &rack->rc_inp->inp_socket->so_snd, 2350 BBR_LOG_BBRRTT, 0, 2351 0, &log, false, &tv); 2352 2353 2354 } 2355 } 2356 2357 static void 2358 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) 2359 { 2360 /* 2361 * Log the rtt sample we are 2362 * applying to the srtt algorithm in 2363 * useconds. 2364 */ 2365 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2366 union tcp_log_stackspecific log; 2367 struct timeval tv; 2368 2369 /* Convert our ms to a microsecond */ 2370 memset(&log, 0, sizeof(log)); 2371 log.u_bbr.flex1 = rtt; 2372 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2373 log.u_bbr.flex3 = rack->r_ctl.sack_count; 2374 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2375 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; 2376 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2377 log.u_bbr.flex7 = 1; 2378 log.u_bbr.flex8 = rack->sack_attack_disable; 2379 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2380 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2381 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2382 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2383 log.u_bbr.pacing_gain = rack->r_must_retran; 2384 /* 2385 * We capture in delRate the upper 32 bits as 2386 * the confidence level we had declared, and the 2387 * lower 32 bits as the actual RTT using the arrival 2388 * timestamp. 2389 */ 2390 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence; 2391 log.u_bbr.delRate <<= 32; 2392 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt; 2393 /* Lets capture all the things that make up t_rtxcur */ 2394 log.u_bbr.applimited = rack_rto_min; 2395 log.u_bbr.epoch = rack_rto_max; 2396 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop; 2397 log.u_bbr.lost = rack_rto_min; 2398 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop); 2399 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp); 2400 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec; 2401 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC; 2402 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec; 2403 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2404 &rack->rc_inp->inp_socket->so_rcv, 2405 &rack->rc_inp->inp_socket->so_snd, 2406 TCP_LOG_RTT, 0, 2407 0, &log, false, &tv); 2408 } 2409 } 2410 2411 static void 2412 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where) 2413 { 2414 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 2415 union tcp_log_stackspecific log; 2416 struct timeval tv; 2417 2418 /* Convert our ms to a microsecond */ 2419 memset(&log, 0, sizeof(log)); 2420 log.u_bbr.flex1 = rtt; 2421 log.u_bbr.flex2 = send_time; 2422 log.u_bbr.flex3 = ack_time; 2423 log.u_bbr.flex4 = where; 2424 log.u_bbr.flex7 = 2; 2425 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2426 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2427 &rack->rc_inp->inp_socket->so_rcv, 2428 &rack->rc_inp->inp_socket->so_snd, 2429 TCP_LOG_RTT, 0, 2430 0, &log, false, &tv); 2431 } 2432 } 2433 2434 2435 2436 static inline void 2437 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) 2438 { 2439 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2440 union tcp_log_stackspecific log; 2441 struct timeval tv; 2442 2443 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2444 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2445 log.u_bbr.flex1 = line; 2446 log.u_bbr.flex2 = tick; 2447 log.u_bbr.flex3 = tp->t_maxunacktime; 2448 log.u_bbr.flex4 = tp->t_acktime; 2449 log.u_bbr.flex8 = event; 2450 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2451 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2452 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2453 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2454 log.u_bbr.pacing_gain = rack->r_must_retran; 2455 TCP_LOG_EVENTP(tp, NULL, 2456 &rack->rc_inp->inp_socket->so_rcv, 2457 &rack->rc_inp->inp_socket->so_snd, 2458 BBR_LOG_PROGRESS, 0, 2459 0, &log, false, &tv); 2460 } 2461 } 2462 2463 static void 2464 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv) 2465 { 2466 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2467 union tcp_log_stackspecific log; 2468 2469 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2470 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2471 log.u_bbr.flex1 = slot; 2472 if (rack->rack_no_prr) 2473 log.u_bbr.flex2 = 0; 2474 else 2475 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; 2476 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); 2477 log.u_bbr.flex8 = rack->rc_in_persist; 2478 log.u_bbr.timeStamp = cts; 2479 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2480 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2481 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2482 log.u_bbr.pacing_gain = rack->r_must_retran; 2483 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2484 &rack->rc_inp->inp_socket->so_rcv, 2485 &rack->rc_inp->inp_socket->so_snd, 2486 BBR_LOG_BBRSND, 0, 2487 0, &log, false, tv); 2488 } 2489 } 2490 2491 static void 2492 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs) 2493 { 2494 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2495 union tcp_log_stackspecific log; 2496 struct timeval tv; 2497 2498 memset(&log, 0, sizeof(log)); 2499 log.u_bbr.flex1 = did_out; 2500 log.u_bbr.flex2 = nxt_pkt; 2501 log.u_bbr.flex3 = way_out; 2502 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2503 if (rack->rack_no_prr) 2504 log.u_bbr.flex5 = 0; 2505 else 2506 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2507 log.u_bbr.flex6 = nsegs; 2508 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; 2509 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */ 2510 log.u_bbr.flex7 <<= 1; 2511 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */ 2512 log.u_bbr.flex7 <<= 1; 2513 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */ 2514 log.u_bbr.flex8 = rack->rc_in_persist; 2515 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2516 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2517 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2518 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2519 log.u_bbr.use_lt_bw <<= 1; 2520 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2521 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2522 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2523 log.u_bbr.pacing_gain = rack->r_must_retran; 2524 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2525 &rack->rc_inp->inp_socket->so_rcv, 2526 &rack->rc_inp->inp_socket->so_snd, 2527 BBR_LOG_DOSEG_DONE, 0, 2528 0, &log, false, &tv); 2529 } 2530 } 2531 2532 static void 2533 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm) 2534 { 2535 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2536 union tcp_log_stackspecific log; 2537 struct timeval tv; 2538 2539 memset(&log, 0, sizeof(log)); 2540 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; 2541 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 2542 log.u_bbr.flex4 = arg1; 2543 log.u_bbr.flex5 = arg2; 2544 log.u_bbr.flex6 = arg3; 2545 log.u_bbr.flex8 = frm; 2546 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2547 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2548 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2549 log.u_bbr.applimited = rack->r_ctl.rc_sacked; 2550 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2551 log.u_bbr.pacing_gain = rack->r_must_retran; 2552 TCP_LOG_EVENTP(tp, NULL, 2553 &tp->t_inpcb->inp_socket->so_rcv, 2554 &tp->t_inpcb->inp_socket->so_snd, 2555 TCP_HDWR_PACE_SIZE, 0, 2556 0, &log, false, &tv); 2557 } 2558 } 2559 2560 static void 2561 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, 2562 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) 2563 { 2564 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2565 union tcp_log_stackspecific log; 2566 struct timeval tv; 2567 2568 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2569 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2570 log.u_bbr.flex1 = slot; 2571 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; 2572 log.u_bbr.flex4 = reason; 2573 if (rack->rack_no_prr) 2574 log.u_bbr.flex5 = 0; 2575 else 2576 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2577 log.u_bbr.flex7 = hpts_calling; 2578 log.u_bbr.flex8 = rack->rc_in_persist; 2579 log.u_bbr.lt_epoch = cwnd_to_use; 2580 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2581 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2582 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2583 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2584 log.u_bbr.pacing_gain = rack->r_must_retran; 2585 log.u_bbr.cwnd_gain = rack->rc_has_collapsed; 2586 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2587 &rack->rc_inp->inp_socket->so_rcv, 2588 &rack->rc_inp->inp_socket->so_snd, 2589 BBR_LOG_JUSTRET, 0, 2590 tlen, &log, false, &tv); 2591 } 2592 } 2593 2594 static void 2595 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, 2596 struct timeval *tv, uint32_t flags_on_entry) 2597 { 2598 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2599 union tcp_log_stackspecific log; 2600 2601 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2602 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 2603 log.u_bbr.flex1 = line; 2604 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; 2605 log.u_bbr.flex3 = flags_on_entry; 2606 log.u_bbr.flex4 = us_cts; 2607 if (rack->rack_no_prr) 2608 log.u_bbr.flex5 = 0; 2609 else 2610 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2611 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2612 log.u_bbr.flex7 = hpts_removed; 2613 log.u_bbr.flex8 = 1; 2614 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; 2615 log.u_bbr.timeStamp = us_cts; 2616 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2617 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2618 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2619 log.u_bbr.pacing_gain = rack->r_must_retran; 2620 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2621 &rack->rc_inp->inp_socket->so_rcv, 2622 &rack->rc_inp->inp_socket->so_snd, 2623 BBR_LOG_TIMERCANC, 0, 2624 0, &log, false, tv); 2625 } 2626 } 2627 2628 static void 2629 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 2630 uint32_t flex1, uint32_t flex2, 2631 uint32_t flex3, uint32_t flex4, 2632 uint32_t flex5, uint32_t flex6, 2633 uint16_t flex7, uint8_t mod) 2634 { 2635 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2636 union tcp_log_stackspecific log; 2637 struct timeval tv; 2638 2639 if (mod == 1) { 2640 /* No you can't use 1, its for the real to cancel */ 2641 return; 2642 } 2643 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2644 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2645 log.u_bbr.flex1 = flex1; 2646 log.u_bbr.flex2 = flex2; 2647 log.u_bbr.flex3 = flex3; 2648 log.u_bbr.flex4 = flex4; 2649 log.u_bbr.flex5 = flex5; 2650 log.u_bbr.flex6 = flex6; 2651 log.u_bbr.flex7 = flex7; 2652 log.u_bbr.flex8 = mod; 2653 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2654 &rack->rc_inp->inp_socket->so_rcv, 2655 &rack->rc_inp->inp_socket->so_snd, 2656 BBR_LOG_TIMERCANC, 0, 2657 0, &log, false, &tv); 2658 } 2659 } 2660 2661 static void 2662 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) 2663 { 2664 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2665 union tcp_log_stackspecific log; 2666 struct timeval tv; 2667 2668 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2669 log.u_bbr.flex1 = timers; 2670 log.u_bbr.flex2 = ret; 2671 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; 2672 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2673 log.u_bbr.flex5 = cts; 2674 if (rack->rack_no_prr) 2675 log.u_bbr.flex6 = 0; 2676 else 2677 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; 2678 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2679 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2680 log.u_bbr.pacing_gain = rack->r_must_retran; 2681 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2682 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2683 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2684 &rack->rc_inp->inp_socket->so_rcv, 2685 &rack->rc_inp->inp_socket->so_snd, 2686 BBR_LOG_TO_PROCESS, 0, 2687 0, &log, false, &tv); 2688 } 2689 } 2690 2691 static void 2692 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd, int line) 2693 { 2694 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2695 union tcp_log_stackspecific log; 2696 struct timeval tv; 2697 2698 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2699 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; 2700 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; 2701 if (rack->rack_no_prr) 2702 log.u_bbr.flex3 = 0; 2703 else 2704 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; 2705 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; 2706 log.u_bbr.flex5 = rack->r_ctl.rc_sacked; 2707 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; 2708 log.u_bbr.flex7 = line; 2709 log.u_bbr.flex8 = frm; 2710 log.u_bbr.pkts_out = orig_cwnd; 2711 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2712 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2713 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2714 log.u_bbr.use_lt_bw <<= 1; 2715 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2716 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2717 &rack->rc_inp->inp_socket->so_rcv, 2718 &rack->rc_inp->inp_socket->so_snd, 2719 BBR_LOG_BBRUPD, 0, 2720 0, &log, false, &tv); 2721 } 2722 } 2723 2724 #ifdef NETFLIX_EXP_DETECTION 2725 static void 2726 rack_log_sad(struct tcp_rack *rack, int event) 2727 { 2728 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2729 union tcp_log_stackspecific log; 2730 struct timeval tv; 2731 2732 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2733 log.u_bbr.flex1 = rack->r_ctl.sack_count; 2734 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2735 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; 2736 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2737 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; 2738 log.u_bbr.flex6 = tcp_sack_to_ack_thresh; 2739 log.u_bbr.pkts_out = tcp_sack_to_move_thresh; 2740 log.u_bbr.lt_epoch = (tcp_force_detection << 8); 2741 log.u_bbr.lt_epoch |= rack->do_detection; 2742 log.u_bbr.applimited = tcp_map_minimum; 2743 log.u_bbr.flex7 = rack->sack_attack_disable; 2744 log.u_bbr.flex8 = event; 2745 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2746 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2747 log.u_bbr.delivered = tcp_sad_decay_val; 2748 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2749 &rack->rc_inp->inp_socket->so_rcv, 2750 &rack->rc_inp->inp_socket->so_snd, 2751 TCP_SAD_DETECTION, 0, 2752 0, &log, false, &tv); 2753 } 2754 } 2755 #endif 2756 2757 static void 2758 rack_counter_destroy(void) 2759 { 2760 counter_u64_free(rack_fto_send); 2761 counter_u64_free(rack_fto_rsm_send); 2762 counter_u64_free(rack_nfto_resend); 2763 counter_u64_free(rack_hw_pace_init_fail); 2764 counter_u64_free(rack_hw_pace_lost); 2765 counter_u64_free(rack_non_fto_send); 2766 counter_u64_free(rack_extended_rfo); 2767 counter_u64_free(rack_ack_total); 2768 counter_u64_free(rack_express_sack); 2769 counter_u64_free(rack_sack_total); 2770 counter_u64_free(rack_move_none); 2771 counter_u64_free(rack_move_some); 2772 counter_u64_free(rack_sack_attacks_detected); 2773 counter_u64_free(rack_sack_attacks_reversed); 2774 counter_u64_free(rack_sack_used_next_merge); 2775 counter_u64_free(rack_sack_used_prev_merge); 2776 counter_u64_free(rack_tlp_tot); 2777 counter_u64_free(rack_tlp_newdata); 2778 counter_u64_free(rack_tlp_retran); 2779 counter_u64_free(rack_tlp_retran_bytes); 2780 counter_u64_free(rack_to_tot); 2781 counter_u64_free(rack_saw_enobuf); 2782 counter_u64_free(rack_saw_enobuf_hw); 2783 counter_u64_free(rack_saw_enetunreach); 2784 counter_u64_free(rack_hot_alloc); 2785 counter_u64_free(rack_to_alloc); 2786 counter_u64_free(rack_to_alloc_hard); 2787 counter_u64_free(rack_to_alloc_emerg); 2788 counter_u64_free(rack_to_alloc_limited); 2789 counter_u64_free(rack_alloc_limited_conns); 2790 counter_u64_free(rack_split_limited); 2791 counter_u64_free(rack_multi_single_eq); 2792 counter_u64_free(rack_proc_non_comp_ack); 2793 counter_u64_free(rack_sack_proc_all); 2794 counter_u64_free(rack_sack_proc_restart); 2795 counter_u64_free(rack_sack_proc_short); 2796 counter_u64_free(rack_sack_skipped_acked); 2797 counter_u64_free(rack_sack_splits); 2798 counter_u64_free(rack_input_idle_reduces); 2799 counter_u64_free(rack_collapsed_win); 2800 counter_u64_free(rack_collapsed_win_rxt); 2801 counter_u64_free(rack_collapsed_win_rxt_bytes); 2802 counter_u64_free(rack_collapsed_win_seen); 2803 counter_u64_free(rack_try_scwnd); 2804 counter_u64_free(rack_persists_sends); 2805 counter_u64_free(rack_persists_acks); 2806 counter_u64_free(rack_persists_loss); 2807 counter_u64_free(rack_persists_lost_ends); 2808 #ifdef INVARIANTS 2809 counter_u64_free(rack_adjust_map_bw); 2810 #endif 2811 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); 2812 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); 2813 } 2814 2815 static struct rack_sendmap * 2816 rack_alloc(struct tcp_rack *rack) 2817 { 2818 struct rack_sendmap *rsm; 2819 2820 /* 2821 * First get the top of the list it in 2822 * theory is the "hottest" rsm we have, 2823 * possibly just freed by ack processing. 2824 */ 2825 if (rack->rc_free_cnt > rack_free_cache) { 2826 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2827 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2828 counter_u64_add(rack_hot_alloc, 1); 2829 rack->rc_free_cnt--; 2830 return (rsm); 2831 } 2832 /* 2833 * Once we get under our free cache we probably 2834 * no longer have a "hot" one available. Lets 2835 * get one from UMA. 2836 */ 2837 rsm = uma_zalloc(rack_zone, M_NOWAIT); 2838 if (rsm) { 2839 rack->r_ctl.rc_num_maps_alloced++; 2840 counter_u64_add(rack_to_alloc, 1); 2841 return (rsm); 2842 } 2843 /* 2844 * Dig in to our aux rsm's (the last two) since 2845 * UMA failed to get us one. 2846 */ 2847 if (rack->rc_free_cnt) { 2848 counter_u64_add(rack_to_alloc_emerg, 1); 2849 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2850 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2851 rack->rc_free_cnt--; 2852 return (rsm); 2853 } 2854 return (NULL); 2855 } 2856 2857 static struct rack_sendmap * 2858 rack_alloc_full_limit(struct tcp_rack *rack) 2859 { 2860 if ((V_tcp_map_entries_limit > 0) && 2861 (rack->do_detection == 0) && 2862 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 2863 counter_u64_add(rack_to_alloc_limited, 1); 2864 if (!rack->alloc_limit_reported) { 2865 rack->alloc_limit_reported = 1; 2866 counter_u64_add(rack_alloc_limited_conns, 1); 2867 } 2868 return (NULL); 2869 } 2870 return (rack_alloc(rack)); 2871 } 2872 2873 /* wrapper to allocate a sendmap entry, subject to a specific limit */ 2874 static struct rack_sendmap * 2875 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) 2876 { 2877 struct rack_sendmap *rsm; 2878 2879 if (limit_type) { 2880 /* currently there is only one limit type */ 2881 if (V_tcp_map_split_limit > 0 && 2882 (rack->do_detection == 0) && 2883 rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { 2884 counter_u64_add(rack_split_limited, 1); 2885 if (!rack->alloc_limit_reported) { 2886 rack->alloc_limit_reported = 1; 2887 counter_u64_add(rack_alloc_limited_conns, 1); 2888 } 2889 return (NULL); 2890 } 2891 } 2892 2893 /* allocate and mark in the limit type, if set */ 2894 rsm = rack_alloc(rack); 2895 if (rsm != NULL && limit_type) { 2896 rsm->r_limit_type = limit_type; 2897 rack->r_ctl.rc_num_split_allocs++; 2898 } 2899 return (rsm); 2900 } 2901 2902 static void 2903 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) 2904 { 2905 if (rsm->r_flags & RACK_APP_LIMITED) { 2906 if (rack->r_ctl.rc_app_limited_cnt > 0) { 2907 rack->r_ctl.rc_app_limited_cnt--; 2908 } 2909 } 2910 if (rsm->r_limit_type) { 2911 /* currently there is only one limit type */ 2912 rack->r_ctl.rc_num_split_allocs--; 2913 } 2914 if (rsm == rack->r_ctl.rc_first_appl) { 2915 if (rack->r_ctl.rc_app_limited_cnt == 0) 2916 rack->r_ctl.rc_first_appl = NULL; 2917 else { 2918 /* Follow the next one out */ 2919 struct rack_sendmap fe; 2920 2921 fe.r_start = rsm->r_nseq_appl; 2922 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 2923 } 2924 } 2925 if (rsm == rack->r_ctl.rc_resend) 2926 rack->r_ctl.rc_resend = NULL; 2927 if (rsm == rack->r_ctl.rc_end_appl) 2928 rack->r_ctl.rc_end_appl = NULL; 2929 if (rack->r_ctl.rc_tlpsend == rsm) 2930 rack->r_ctl.rc_tlpsend = NULL; 2931 if (rack->r_ctl.rc_sacklast == rsm) 2932 rack->r_ctl.rc_sacklast = NULL; 2933 memset(rsm, 0, sizeof(struct rack_sendmap)); 2934 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext); 2935 rack->rc_free_cnt++; 2936 } 2937 2938 static void 2939 rack_free_trim(struct tcp_rack *rack) 2940 { 2941 struct rack_sendmap *rsm; 2942 2943 /* 2944 * Free up all the tail entries until 2945 * we get our list down to the limit. 2946 */ 2947 while (rack->rc_free_cnt > rack_free_cache) { 2948 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head); 2949 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2950 rack->rc_free_cnt--; 2951 uma_zfree(rack_zone, rsm); 2952 } 2953 } 2954 2955 2956 static uint32_t 2957 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) 2958 { 2959 uint64_t srtt, bw, len, tim; 2960 uint32_t segsiz, def_len, minl; 2961 2962 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 2963 def_len = rack_def_data_window * segsiz; 2964 if (rack->rc_gp_filled == 0) { 2965 /* 2966 * We have no measurement (IW is in flight?) so 2967 * we can only guess using our data_window sysctl 2968 * value (usually 20MSS). 2969 */ 2970 return (def_len); 2971 } 2972 /* 2973 * Now we have a number of factors to consider. 2974 * 2975 * 1) We have a desired BDP which is usually 2976 * at least 2. 2977 * 2) We have a minimum number of rtt's usually 1 SRTT 2978 * but we allow it too to be more. 2979 * 3) We want to make sure a measurement last N useconds (if 2980 * we have set rack_min_measure_usec. 2981 * 2982 * We handle the first concern here by trying to create a data 2983 * window of max(rack_def_data_window, DesiredBDP). The 2984 * second concern we handle in not letting the measurement 2985 * window end normally until at least the required SRTT's 2986 * have gone by which is done further below in 2987 * rack_enough_for_measurement(). Finally the third concern 2988 * we also handle here by calculating how long that time 2989 * would take at the current BW and then return the 2990 * max of our first calculation and that length. Note 2991 * that if rack_min_measure_usec is 0, we don't deal 2992 * with concern 3. Also for both Concern 1 and 3 an 2993 * application limited period could end the measurement 2994 * earlier. 2995 * 2996 * So lets calculate the BDP with the "known" b/w using 2997 * the SRTT has our rtt and then multiply it by the 2998 * goal. 2999 */ 3000 bw = rack_get_bw(rack); 3001 srtt = (uint64_t)tp->t_srtt; 3002 len = bw * srtt; 3003 len /= (uint64_t)HPTS_USEC_IN_SEC; 3004 len *= max(1, rack_goal_bdp); 3005 /* Now we need to round up to the nearest MSS */ 3006 len = roundup(len, segsiz); 3007 if (rack_min_measure_usec) { 3008 /* Now calculate our min length for this b/w */ 3009 tim = rack_min_measure_usec; 3010 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; 3011 if (minl == 0) 3012 minl = 1; 3013 minl = roundup(minl, segsiz); 3014 if (len < minl) 3015 len = minl; 3016 } 3017 /* 3018 * Now if we have a very small window we want 3019 * to attempt to get the window that is 3020 * as small as possible. This happens on 3021 * low b/w connections and we don't want to 3022 * span huge numbers of rtt's between measurements. 3023 * 3024 * We basically include 2 over our "MIN window" so 3025 * that the measurement can be shortened (possibly) by 3026 * an ack'ed packet. 3027 */ 3028 if (len < def_len) 3029 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); 3030 else 3031 return (max((uint32_t)len, def_len)); 3032 3033 } 3034 3035 static int 3036 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality) 3037 { 3038 uint32_t tim, srtts, segsiz; 3039 3040 /* 3041 * Has enough time passed for the GP measurement to be valid? 3042 */ 3043 if ((tp->snd_max == tp->snd_una) || 3044 (th_ack == tp->snd_max)){ 3045 /* All is acked */ 3046 *quality = RACK_QUALITY_ALLACKED; 3047 return (1); 3048 } 3049 if (SEQ_LT(th_ack, tp->gput_seq)) { 3050 /* Not enough bytes yet */ 3051 return (0); 3052 } 3053 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3054 if (SEQ_LT(th_ack, tp->gput_ack) && 3055 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 3056 /* Not enough bytes yet */ 3057 return (0); 3058 } 3059 if (rack->r_ctl.rc_first_appl && 3060 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) { 3061 /* 3062 * We are up to the app limited send point 3063 * we have to measure irrespective of the time.. 3064 */ 3065 *quality = RACK_QUALITY_APPLIMITED; 3066 return (1); 3067 } 3068 /* Now what about time? */ 3069 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); 3070 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; 3071 if (tim >= srtts) { 3072 *quality = RACK_QUALITY_HIGH; 3073 return (1); 3074 } 3075 /* Nope not even a full SRTT has passed */ 3076 return (0); 3077 } 3078 3079 static void 3080 rack_log_timely(struct tcp_rack *rack, 3081 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, 3082 uint64_t up_bnd, int line, uint8_t method) 3083 { 3084 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3085 union tcp_log_stackspecific log; 3086 struct timeval tv; 3087 3088 memset(&log, 0, sizeof(log)); 3089 log.u_bbr.flex1 = logged; 3090 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; 3091 log.u_bbr.flex2 <<= 4; 3092 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; 3093 log.u_bbr.flex2 <<= 4; 3094 log.u_bbr.flex2 |= rack->rc_gp_incr; 3095 log.u_bbr.flex2 <<= 4; 3096 log.u_bbr.flex2 |= rack->rc_gp_bwred; 3097 log.u_bbr.flex3 = rack->rc_gp_incr; 3098 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3099 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; 3100 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; 3101 log.u_bbr.flex7 = rack->rc_gp_bwred; 3102 log.u_bbr.flex8 = method; 3103 log.u_bbr.cur_del_rate = cur_bw; 3104 log.u_bbr.delRate = low_bnd; 3105 log.u_bbr.bw_inuse = up_bnd; 3106 log.u_bbr.rttProp = rack_get_bw(rack); 3107 log.u_bbr.pkt_epoch = line; 3108 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3109 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3110 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3111 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3112 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3113 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; 3114 log.u_bbr.cwnd_gain <<= 1; 3115 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; 3116 log.u_bbr.cwnd_gain <<= 1; 3117 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 3118 log.u_bbr.cwnd_gain <<= 1; 3119 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 3120 log.u_bbr.lost = rack->r_ctl.rc_loss_count; 3121 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3122 &rack->rc_inp->inp_socket->so_rcv, 3123 &rack->rc_inp->inp_socket->so_snd, 3124 TCP_TIMELY_WORK, 0, 3125 0, &log, false, &tv); 3126 } 3127 } 3128 3129 static int 3130 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) 3131 { 3132 /* 3133 * Before we increase we need to know if 3134 * the estimate just made was less than 3135 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) 3136 * 3137 * If we already are pacing at a fast enough 3138 * rate to push us faster there is no sense of 3139 * increasing. 3140 * 3141 * We first caculate our actual pacing rate (ss or ca multiplier 3142 * times our cur_bw). 3143 * 3144 * Then we take the last measured rate and multipy by our 3145 * maximum pacing overage to give us a max allowable rate. 3146 * 3147 * If our act_rate is smaller than our max_allowable rate 3148 * then we should increase. Else we should hold steady. 3149 * 3150 */ 3151 uint64_t act_rate, max_allow_rate; 3152 3153 if (rack_timely_no_stopping) 3154 return (1); 3155 3156 if ((cur_bw == 0) || (last_bw_est == 0)) { 3157 /* 3158 * Initial startup case or 3159 * everything is acked case. 3160 */ 3161 rack_log_timely(rack, mult, cur_bw, 0, 0, 3162 __LINE__, 9); 3163 return (1); 3164 } 3165 if (mult <= 100) { 3166 /* 3167 * We can always pace at or slightly above our rate. 3168 */ 3169 rack_log_timely(rack, mult, cur_bw, 0, 0, 3170 __LINE__, 9); 3171 return (1); 3172 } 3173 act_rate = cur_bw * (uint64_t)mult; 3174 act_rate /= 100; 3175 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); 3176 max_allow_rate /= 100; 3177 if (act_rate < max_allow_rate) { 3178 /* 3179 * Here the rate we are actually pacing at 3180 * is smaller than 10% above our last measurement. 3181 * This means we are pacing below what we would 3182 * like to try to achieve (plus some wiggle room). 3183 */ 3184 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3185 __LINE__, 9); 3186 return (1); 3187 } else { 3188 /* 3189 * Here we are already pacing at least rack_max_per_above(10%) 3190 * what we are getting back. This indicates most likely 3191 * that we are being limited (cwnd/rwnd/app) and can't 3192 * get any more b/w. There is no sense of trying to 3193 * raise up the pacing rate its not speeding us up 3194 * and we already are pacing faster than we are getting. 3195 */ 3196 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3197 __LINE__, 8); 3198 return (0); 3199 } 3200 } 3201 3202 static void 3203 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) 3204 { 3205 /* 3206 * When we drag bottom, we want to assure 3207 * that no multiplier is below 1.0, if so 3208 * we want to restore it to at least that. 3209 */ 3210 if (rack->r_ctl.rack_per_of_gp_rec < 100) { 3211 /* This is unlikely we usually do not touch recovery */ 3212 rack->r_ctl.rack_per_of_gp_rec = 100; 3213 } 3214 if (rack->r_ctl.rack_per_of_gp_ca < 100) { 3215 rack->r_ctl.rack_per_of_gp_ca = 100; 3216 } 3217 if (rack->r_ctl.rack_per_of_gp_ss < 100) { 3218 rack->r_ctl.rack_per_of_gp_ss = 100; 3219 } 3220 } 3221 3222 static void 3223 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) 3224 { 3225 if (rack->r_ctl.rack_per_of_gp_ca > 100) { 3226 rack->r_ctl.rack_per_of_gp_ca = 100; 3227 } 3228 if (rack->r_ctl.rack_per_of_gp_ss > 100) { 3229 rack->r_ctl.rack_per_of_gp_ss = 100; 3230 } 3231 } 3232 3233 static void 3234 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) 3235 { 3236 int32_t calc, logged, plus; 3237 3238 logged = 0; 3239 3240 if (override) { 3241 /* 3242 * override is passed when we are 3243 * loosing b/w and making one last 3244 * gasp at trying to not loose out 3245 * to a new-reno flow. 3246 */ 3247 goto extra_boost; 3248 } 3249 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ 3250 if (rack->rc_gp_incr && 3251 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { 3252 /* 3253 * Reset and get 5 strokes more before the boost. Note 3254 * that the count is 0 based so we have to add one. 3255 */ 3256 extra_boost: 3257 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; 3258 rack->rc_gp_timely_inc_cnt = 0; 3259 } else 3260 plus = (uint32_t)rack_gp_increase_per; 3261 /* Must be at least 1% increase for true timely increases */ 3262 if ((plus < 1) && 3263 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) 3264 plus = 1; 3265 if (rack->rc_gp_saw_rec && 3266 (rack->rc_gp_no_rec_chg == 0) && 3267 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3268 rack->r_ctl.rack_per_of_gp_rec)) { 3269 /* We have been in recovery ding it too */ 3270 calc = rack->r_ctl.rack_per_of_gp_rec + plus; 3271 if (calc > 0xffff) 3272 calc = 0xffff; 3273 logged |= 1; 3274 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; 3275 if (rack_per_upper_bound_ss && 3276 (rack->rc_dragged_bottom == 0) && 3277 (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss)) 3278 rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss; 3279 } 3280 if (rack->rc_gp_saw_ca && 3281 (rack->rc_gp_saw_ss == 0) && 3282 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3283 rack->r_ctl.rack_per_of_gp_ca)) { 3284 /* In CA */ 3285 calc = rack->r_ctl.rack_per_of_gp_ca + plus; 3286 if (calc > 0xffff) 3287 calc = 0xffff; 3288 logged |= 2; 3289 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; 3290 if (rack_per_upper_bound_ca && 3291 (rack->rc_dragged_bottom == 0) && 3292 (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca)) 3293 rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca; 3294 } 3295 if (rack->rc_gp_saw_ss && 3296 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3297 rack->r_ctl.rack_per_of_gp_ss)) { 3298 /* In SS */ 3299 calc = rack->r_ctl.rack_per_of_gp_ss + plus; 3300 if (calc > 0xffff) 3301 calc = 0xffff; 3302 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; 3303 if (rack_per_upper_bound_ss && 3304 (rack->rc_dragged_bottom == 0) && 3305 (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss)) 3306 rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss; 3307 logged |= 4; 3308 } 3309 if (logged && 3310 (rack->rc_gp_incr == 0)){ 3311 /* Go into increment mode */ 3312 rack->rc_gp_incr = 1; 3313 rack->rc_gp_timely_inc_cnt = 0; 3314 } 3315 if (rack->rc_gp_incr && 3316 logged && 3317 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { 3318 rack->rc_gp_timely_inc_cnt++; 3319 } 3320 rack_log_timely(rack, logged, plus, 0, 0, 3321 __LINE__, 1); 3322 } 3323 3324 static uint32_t 3325 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) 3326 { 3327 /* 3328 * norm_grad = rtt_diff / minrtt; 3329 * new_per = curper * (1 - B * norm_grad) 3330 * 3331 * B = rack_gp_decrease_per (default 10%) 3332 * rtt_dif = input var current rtt-diff 3333 * curper = input var current percentage 3334 * minrtt = from rack filter 3335 * 3336 */ 3337 uint64_t perf; 3338 3339 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3340 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * 3341 (((uint64_t)rtt_diff * (uint64_t)1000000)/ 3342 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ 3343 (uint64_t)1000000)) / 3344 (uint64_t)1000000); 3345 if (perf > curper) { 3346 /* TSNH */ 3347 perf = curper - 1; 3348 } 3349 return ((uint32_t)perf); 3350 } 3351 3352 static uint32_t 3353 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) 3354 { 3355 /* 3356 * highrttthresh 3357 * result = curper * (1 - (B * ( 1 - ------ )) 3358 * gp_srtt 3359 * 3360 * B = rack_gp_decrease_per (default 10%) 3361 * highrttthresh = filter_min * rack_gp_rtt_maxmul 3362 */ 3363 uint64_t perf; 3364 uint32_t highrttthresh; 3365 3366 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 3367 3368 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3369 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - 3370 ((uint64_t)highrttthresh * (uint64_t)1000000) / 3371 (uint64_t)rtt)) / 100)) /(uint64_t)1000000); 3372 return (perf); 3373 } 3374 3375 static void 3376 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) 3377 { 3378 uint64_t logvar, logvar2, logvar3; 3379 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; 3380 3381 if (rack->rc_gp_incr) { 3382 /* Turn off increment counting */ 3383 rack->rc_gp_incr = 0; 3384 rack->rc_gp_timely_inc_cnt = 0; 3385 } 3386 ss_red = ca_red = rec_red = 0; 3387 logged = 0; 3388 /* Calculate the reduction value */ 3389 if (rtt_diff < 0) { 3390 rtt_diff *= -1; 3391 } 3392 /* Must be at least 1% reduction */ 3393 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { 3394 /* We have been in recovery ding it too */ 3395 if (timely_says == 2) { 3396 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); 3397 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3398 if (alt < new_per) 3399 val = alt; 3400 else 3401 val = new_per; 3402 } else 3403 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3404 if (rack->r_ctl.rack_per_of_gp_rec > val) { 3405 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); 3406 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; 3407 } else { 3408 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3409 rec_red = 0; 3410 } 3411 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) 3412 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3413 logged |= 1; 3414 } 3415 if (rack->rc_gp_saw_ss) { 3416 /* Sent in SS */ 3417 if (timely_says == 2) { 3418 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); 3419 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3420 if (alt < new_per) 3421 val = alt; 3422 else 3423 val = new_per; 3424 } else 3425 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 3426 if (rack->r_ctl.rack_per_of_gp_ss > new_per) { 3427 ss_red = rack->r_ctl.rack_per_of_gp_ss - val; 3428 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; 3429 } else { 3430 ss_red = new_per; 3431 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3432 logvar = new_per; 3433 logvar <<= 32; 3434 logvar |= alt; 3435 logvar2 = (uint32_t)rtt; 3436 logvar2 <<= 32; 3437 logvar2 |= (uint32_t)rtt_diff; 3438 logvar3 = rack_gp_rtt_maxmul; 3439 logvar3 <<= 32; 3440 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3441 rack_log_timely(rack, timely_says, 3442 logvar2, logvar3, 3443 logvar, __LINE__, 10); 3444 } 3445 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) 3446 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3447 logged |= 4; 3448 } else if (rack->rc_gp_saw_ca) { 3449 /* Sent in CA */ 3450 if (timely_says == 2) { 3451 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); 3452 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3453 if (alt < new_per) 3454 val = alt; 3455 else 3456 val = new_per; 3457 } else 3458 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 3459 if (rack->r_ctl.rack_per_of_gp_ca > val) { 3460 ca_red = rack->r_ctl.rack_per_of_gp_ca - val; 3461 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; 3462 } else { 3463 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3464 ca_red = 0; 3465 logvar = new_per; 3466 logvar <<= 32; 3467 logvar |= alt; 3468 logvar2 = (uint32_t)rtt; 3469 logvar2 <<= 32; 3470 logvar2 |= (uint32_t)rtt_diff; 3471 logvar3 = rack_gp_rtt_maxmul; 3472 logvar3 <<= 32; 3473 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3474 rack_log_timely(rack, timely_says, 3475 logvar2, logvar3, 3476 logvar, __LINE__, 10); 3477 } 3478 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) 3479 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3480 logged |= 2; 3481 } 3482 if (rack->rc_gp_timely_dec_cnt < 0x7) { 3483 rack->rc_gp_timely_dec_cnt++; 3484 if (rack_timely_dec_clear && 3485 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) 3486 rack->rc_gp_timely_dec_cnt = 0; 3487 } 3488 logvar = ss_red; 3489 logvar <<= 32; 3490 logvar |= ca_red; 3491 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, 3492 __LINE__, 2); 3493 } 3494 3495 static void 3496 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, 3497 uint32_t rtt, uint32_t line, uint8_t reas) 3498 { 3499 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3500 union tcp_log_stackspecific log; 3501 struct timeval tv; 3502 3503 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3504 log.u_bbr.flex1 = line; 3505 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; 3506 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; 3507 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3508 log.u_bbr.flex5 = rtt; 3509 log.u_bbr.flex6 = rack->rc_highly_buffered; 3510 log.u_bbr.flex6 <<= 1; 3511 log.u_bbr.flex6 |= rack->forced_ack; 3512 log.u_bbr.flex6 <<= 1; 3513 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; 3514 log.u_bbr.flex6 <<= 1; 3515 log.u_bbr.flex6 |= rack->in_probe_rtt; 3516 log.u_bbr.flex6 <<= 1; 3517 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; 3518 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; 3519 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; 3520 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; 3521 log.u_bbr.flex8 = reas; 3522 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3523 log.u_bbr.delRate = rack_get_bw(rack); 3524 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; 3525 log.u_bbr.cur_del_rate <<= 32; 3526 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; 3527 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; 3528 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3529 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3530 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3531 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3532 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; 3533 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; 3534 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3535 log.u_bbr.rttProp = us_cts; 3536 log.u_bbr.rttProp <<= 32; 3537 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; 3538 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3539 &rack->rc_inp->inp_socket->so_rcv, 3540 &rack->rc_inp->inp_socket->so_snd, 3541 BBR_LOG_RTT_SHRINKS, 0, 3542 0, &log, false, &rack->r_ctl.act_rcv_time); 3543 } 3544 } 3545 3546 static void 3547 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) 3548 { 3549 uint64_t bwdp; 3550 3551 bwdp = rack_get_bw(rack); 3552 bwdp *= (uint64_t)rtt; 3553 bwdp /= (uint64_t)HPTS_USEC_IN_SEC; 3554 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); 3555 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { 3556 /* 3557 * A window protocol must be able to have 4 packets 3558 * outstanding as the floor in order to function 3559 * (especially considering delayed ack :D). 3560 */ 3561 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); 3562 } 3563 } 3564 3565 static void 3566 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) 3567 { 3568 /** 3569 * ProbeRTT is a bit different in rack_pacing than in 3570 * BBR. It is like BBR in that it uses the lowering of 3571 * the RTT as a signal that we saw something new and 3572 * counts from there for how long between. But it is 3573 * different in that its quite simple. It does not 3574 * play with the cwnd and wait until we get down 3575 * to N segments outstanding and hold that for 3576 * 200ms. Instead it just sets the pacing reduction 3577 * rate to a set percentage (70 by default) and hold 3578 * that for a number of recent GP Srtt's. 3579 */ 3580 uint32_t segsiz; 3581 3582 if (rack->rc_gp_dyn_mul == 0) 3583 return; 3584 3585 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { 3586 /* We are idle */ 3587 return; 3588 } 3589 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3590 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3591 /* 3592 * Stop the goodput now, the idea here is 3593 * that future measurements with in_probe_rtt 3594 * won't register if they are not greater so 3595 * we want to get what info (if any) is available 3596 * now. 3597 */ 3598 rack_do_goodput_measurement(rack->rc_tp, rack, 3599 rack->rc_tp->snd_una, __LINE__, 3600 RACK_QUALITY_PROBERTT); 3601 } 3602 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3603 rack->r_ctl.rc_time_probertt_entered = us_cts; 3604 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3605 rack->r_ctl.rc_pace_min_segs); 3606 rack->in_probe_rtt = 1; 3607 rack->measure_saw_probe_rtt = 1; 3608 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3609 rack->r_ctl.rc_time_probertt_starts = 0; 3610 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; 3611 if (rack_probertt_use_min_rtt_entry) 3612 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3613 else 3614 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); 3615 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3616 __LINE__, RACK_RTTS_ENTERPROBE); 3617 } 3618 3619 static void 3620 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) 3621 { 3622 struct rack_sendmap *rsm; 3623 uint32_t segsiz; 3624 3625 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3626 rack->r_ctl.rc_pace_min_segs); 3627 rack->in_probe_rtt = 0; 3628 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3629 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3630 /* 3631 * Stop the goodput now, the idea here is 3632 * that future measurements with in_probe_rtt 3633 * won't register if they are not greater so 3634 * we want to get what info (if any) is available 3635 * now. 3636 */ 3637 rack_do_goodput_measurement(rack->rc_tp, rack, 3638 rack->rc_tp->snd_una, __LINE__, 3639 RACK_QUALITY_PROBERTT); 3640 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 3641 /* 3642 * We don't have enough data to make a measurement. 3643 * So lets just stop and start here after exiting 3644 * probe-rtt. We probably are not interested in 3645 * the results anyway. 3646 */ 3647 rack->rc_tp->t_flags &= ~TF_GPUTINPROG; 3648 } 3649 /* 3650 * Measurements through the current snd_max are going 3651 * to be limited by the slower pacing rate. 3652 * 3653 * We need to mark these as app-limited so we 3654 * don't collapse the b/w. 3655 */ 3656 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 3657 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 3658 if (rack->r_ctl.rc_app_limited_cnt == 0) 3659 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 3660 else { 3661 /* 3662 * Go out to the end app limited and mark 3663 * this new one as next and move the end_appl up 3664 * to this guy. 3665 */ 3666 if (rack->r_ctl.rc_end_appl) 3667 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 3668 rack->r_ctl.rc_end_appl = rsm; 3669 } 3670 rsm->r_flags |= RACK_APP_LIMITED; 3671 rack->r_ctl.rc_app_limited_cnt++; 3672 } 3673 /* 3674 * Now, we need to examine our pacing rate multipliers. 3675 * If its under 100%, we need to kick it back up to 3676 * 100%. We also don't let it be over our "max" above 3677 * the actual rate i.e. 100% + rack_clamp_atexit_prtt. 3678 * Note setting clamp_atexit_prtt to 0 has the effect 3679 * of setting CA/SS to 100% always at exit (which is 3680 * the default behavior). 3681 */ 3682 if (rack_probertt_clear_is) { 3683 rack->rc_gp_incr = 0; 3684 rack->rc_gp_bwred = 0; 3685 rack->rc_gp_timely_inc_cnt = 0; 3686 rack->rc_gp_timely_dec_cnt = 0; 3687 } 3688 /* Do we do any clamping at exit? */ 3689 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { 3690 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; 3691 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; 3692 } 3693 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { 3694 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; 3695 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; 3696 } 3697 /* 3698 * Lets set rtt_diff to 0, so that we will get a "boost" 3699 * after exiting. 3700 */ 3701 rack->r_ctl.rc_rtt_diff = 0; 3702 3703 /* Clear all flags so we start fresh */ 3704 rack->rc_tp->t_bytes_acked = 0; 3705 rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND; 3706 /* 3707 * If configured to, set the cwnd and ssthresh to 3708 * our targets. 3709 */ 3710 if (rack_probe_rtt_sets_cwnd) { 3711 uint64_t ebdp; 3712 uint32_t setto; 3713 3714 /* Set ssthresh so we get into CA once we hit our target */ 3715 if (rack_probertt_use_min_rtt_exit == 1) { 3716 /* Set to min rtt */ 3717 rack_set_prtt_target(rack, segsiz, 3718 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3719 } else if (rack_probertt_use_min_rtt_exit == 2) { 3720 /* Set to current gp rtt */ 3721 rack_set_prtt_target(rack, segsiz, 3722 rack->r_ctl.rc_gp_srtt); 3723 } else if (rack_probertt_use_min_rtt_exit == 3) { 3724 /* Set to entry gp rtt */ 3725 rack_set_prtt_target(rack, segsiz, 3726 rack->r_ctl.rc_entry_gp_rtt); 3727 } else { 3728 uint64_t sum; 3729 uint32_t setval; 3730 3731 sum = rack->r_ctl.rc_entry_gp_rtt; 3732 sum *= 10; 3733 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); 3734 if (sum >= 20) { 3735 /* 3736 * A highly buffered path needs 3737 * cwnd space for timely to work. 3738 * Lets set things up as if 3739 * we are heading back here again. 3740 */ 3741 setval = rack->r_ctl.rc_entry_gp_rtt; 3742 } else if (sum >= 15) { 3743 /* 3744 * Lets take the smaller of the 3745 * two since we are just somewhat 3746 * buffered. 3747 */ 3748 setval = rack->r_ctl.rc_gp_srtt; 3749 if (setval > rack->r_ctl.rc_entry_gp_rtt) 3750 setval = rack->r_ctl.rc_entry_gp_rtt; 3751 } else { 3752 /* 3753 * Here we are not highly buffered 3754 * and should pick the min we can to 3755 * keep from causing loss. 3756 */ 3757 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3758 } 3759 rack_set_prtt_target(rack, segsiz, 3760 setval); 3761 } 3762 if (rack_probe_rtt_sets_cwnd > 1) { 3763 /* There is a percentage here to boost */ 3764 ebdp = rack->r_ctl.rc_target_probertt_flight; 3765 ebdp *= rack_probe_rtt_sets_cwnd; 3766 ebdp /= 100; 3767 setto = rack->r_ctl.rc_target_probertt_flight + ebdp; 3768 } else 3769 setto = rack->r_ctl.rc_target_probertt_flight; 3770 rack->rc_tp->snd_cwnd = roundup(setto, segsiz); 3771 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { 3772 /* Enforce a min */ 3773 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; 3774 } 3775 /* If we set in the cwnd also set the ssthresh point so we are in CA */ 3776 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); 3777 } 3778 rack_log_rtt_shrinks(rack, us_cts, 3779 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3780 __LINE__, RACK_RTTS_EXITPROBE); 3781 /* Clear times last so log has all the info */ 3782 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; 3783 rack->r_ctl.rc_time_probertt_entered = us_cts; 3784 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3785 rack->r_ctl.rc_time_of_last_probertt = us_cts; 3786 } 3787 3788 static void 3789 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) 3790 { 3791 /* Check in on probe-rtt */ 3792 if (rack->rc_gp_filled == 0) { 3793 /* We do not do p-rtt unless we have gp measurements */ 3794 return; 3795 } 3796 if (rack->in_probe_rtt) { 3797 uint64_t no_overflow; 3798 uint32_t endtime, must_stay; 3799 3800 if (rack->r_ctl.rc_went_idle_time && 3801 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { 3802 /* 3803 * We went idle during prtt, just exit now. 3804 */ 3805 rack_exit_probertt(rack, us_cts); 3806 } else if (rack_probe_rtt_safety_val && 3807 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && 3808 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { 3809 /* 3810 * Probe RTT safety value triggered! 3811 */ 3812 rack_log_rtt_shrinks(rack, us_cts, 3813 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3814 __LINE__, RACK_RTTS_SAFETY); 3815 rack_exit_probertt(rack, us_cts); 3816 } 3817 /* Calculate the max we will wait */ 3818 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); 3819 if (rack->rc_highly_buffered) 3820 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); 3821 /* Calculate the min we must wait */ 3822 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); 3823 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && 3824 TSTMP_LT(us_cts, endtime)) { 3825 uint32_t calc; 3826 /* Do we lower more? */ 3827 no_exit: 3828 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) 3829 calc = us_cts - rack->r_ctl.rc_time_probertt_entered; 3830 else 3831 calc = 0; 3832 calc /= max(rack->r_ctl.rc_gp_srtt, 1); 3833 if (calc) { 3834 /* Maybe */ 3835 calc *= rack_per_of_gp_probertt_reduce; 3836 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; 3837 /* Limit it too */ 3838 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) 3839 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; 3840 } 3841 /* We must reach target or the time set */ 3842 return; 3843 } 3844 if (rack->r_ctl.rc_time_probertt_starts == 0) { 3845 if ((TSTMP_LT(us_cts, must_stay) && 3846 rack->rc_highly_buffered) || 3847 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > 3848 rack->r_ctl.rc_target_probertt_flight)) { 3849 /* We are not past the must_stay time */ 3850 goto no_exit; 3851 } 3852 rack_log_rtt_shrinks(rack, us_cts, 3853 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3854 __LINE__, RACK_RTTS_REACHTARGET); 3855 rack->r_ctl.rc_time_probertt_starts = us_cts; 3856 if (rack->r_ctl.rc_time_probertt_starts == 0) 3857 rack->r_ctl.rc_time_probertt_starts = 1; 3858 /* Restore back to our rate we want to pace at in prtt */ 3859 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3860 } 3861 /* 3862 * Setup our end time, some number of gp_srtts plus 200ms. 3863 */ 3864 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * 3865 (uint64_t)rack_probertt_gpsrtt_cnt_mul); 3866 if (rack_probertt_gpsrtt_cnt_div) 3867 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); 3868 else 3869 endtime = 0; 3870 endtime += rack_min_probertt_hold; 3871 endtime += rack->r_ctl.rc_time_probertt_starts; 3872 if (TSTMP_GEQ(us_cts, endtime)) { 3873 /* yes, exit probertt */ 3874 rack_exit_probertt(rack, us_cts); 3875 } 3876 3877 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { 3878 /* Go into probertt, its been too long since we went lower */ 3879 rack_enter_probertt(rack, us_cts); 3880 } 3881 } 3882 3883 static void 3884 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, 3885 uint32_t rtt, int32_t rtt_diff) 3886 { 3887 uint64_t cur_bw, up_bnd, low_bnd, subfr; 3888 uint32_t losses; 3889 3890 if ((rack->rc_gp_dyn_mul == 0) || 3891 (rack->use_fixed_rate) || 3892 (rack->in_probe_rtt) || 3893 (rack->rc_always_pace == 0)) { 3894 /* No dynamic GP multiplier in play */ 3895 return; 3896 } 3897 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; 3898 cur_bw = rack_get_bw(rack); 3899 /* Calculate our up and down range */ 3900 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; 3901 up_bnd /= 100; 3902 up_bnd += rack->r_ctl.last_gp_comp_bw; 3903 3904 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; 3905 subfr /= 100; 3906 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; 3907 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { 3908 /* 3909 * This is the case where our RTT is above 3910 * the max target and we have been configured 3911 * to just do timely no bonus up stuff in that case. 3912 * 3913 * There are two configurations, set to 1, and we 3914 * just do timely if we are over our max. If its 3915 * set above 1 then we slam the multipliers down 3916 * to 100 and then decrement per timely. 3917 */ 3918 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 3919 __LINE__, 3); 3920 if (rack->r_ctl.rc_no_push_at_mrtt > 1) 3921 rack_validate_multipliers_at_or_below_100(rack); 3922 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 3923 } else if ((last_bw_est < low_bnd) && !losses) { 3924 /* 3925 * We are decreasing this is a bit complicated this 3926 * means we are loosing ground. This could be 3927 * because another flow entered and we are competing 3928 * for b/w with it. This will push the RTT up which 3929 * makes timely unusable unless we want to get shoved 3930 * into a corner and just be backed off (the age 3931 * old problem with delay based CC). 3932 * 3933 * On the other hand if it was a route change we 3934 * would like to stay somewhat contained and not 3935 * blow out the buffers. 3936 */ 3937 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 3938 __LINE__, 3); 3939 rack->r_ctl.last_gp_comp_bw = cur_bw; 3940 if (rack->rc_gp_bwred == 0) { 3941 /* Go into reduction counting */ 3942 rack->rc_gp_bwred = 1; 3943 rack->rc_gp_timely_dec_cnt = 0; 3944 } 3945 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) || 3946 (timely_says == 0)) { 3947 /* 3948 * Push another time with a faster pacing 3949 * to try to gain back (we include override to 3950 * get a full raise factor). 3951 */ 3952 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || 3953 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || 3954 (timely_says == 0) || 3955 (rack_down_raise_thresh == 0)) { 3956 /* 3957 * Do an override up in b/w if we were 3958 * below the threshold or if the threshold 3959 * is zero we always do the raise. 3960 */ 3961 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); 3962 } else { 3963 /* Log it stays the same */ 3964 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, 3965 __LINE__, 11); 3966 } 3967 rack->rc_gp_timely_dec_cnt++; 3968 /* We are not incrementing really no-count */ 3969 rack->rc_gp_incr = 0; 3970 rack->rc_gp_timely_inc_cnt = 0; 3971 } else { 3972 /* 3973 * Lets just use the RTT 3974 * information and give up 3975 * pushing. 3976 */ 3977 goto use_timely; 3978 } 3979 } else if ((timely_says != 2) && 3980 !losses && 3981 (last_bw_est > up_bnd)) { 3982 /* 3983 * We are increasing b/w lets keep going, updating 3984 * our b/w and ignoring any timely input, unless 3985 * of course we are at our max raise (if there is one). 3986 */ 3987 3988 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 3989 __LINE__, 3); 3990 rack->r_ctl.last_gp_comp_bw = cur_bw; 3991 if (rack->rc_gp_saw_ss && 3992 rack_per_upper_bound_ss && 3993 (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) { 3994 /* 3995 * In cases where we can't go higher 3996 * we should just use timely. 3997 */ 3998 goto use_timely; 3999 } 4000 if (rack->rc_gp_saw_ca && 4001 rack_per_upper_bound_ca && 4002 (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) { 4003 /* 4004 * In cases where we can't go higher 4005 * we should just use timely. 4006 */ 4007 goto use_timely; 4008 } 4009 rack->rc_gp_bwred = 0; 4010 rack->rc_gp_timely_dec_cnt = 0; 4011 /* You get a set number of pushes if timely is trying to reduce */ 4012 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { 4013 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4014 } else { 4015 /* Log it stays the same */ 4016 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, 4017 __LINE__, 12); 4018 } 4019 return; 4020 } else { 4021 /* 4022 * We are staying between the lower and upper range bounds 4023 * so use timely to decide. 4024 */ 4025 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4026 __LINE__, 3); 4027 use_timely: 4028 if (timely_says) { 4029 rack->rc_gp_incr = 0; 4030 rack->rc_gp_timely_inc_cnt = 0; 4031 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && 4032 !losses && 4033 (last_bw_est < low_bnd)) { 4034 /* We are loosing ground */ 4035 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4036 rack->rc_gp_timely_dec_cnt++; 4037 /* We are not incrementing really no-count */ 4038 rack->rc_gp_incr = 0; 4039 rack->rc_gp_timely_inc_cnt = 0; 4040 } else 4041 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4042 } else { 4043 rack->rc_gp_bwred = 0; 4044 rack->rc_gp_timely_dec_cnt = 0; 4045 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4046 } 4047 } 4048 } 4049 4050 static int32_t 4051 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) 4052 { 4053 int32_t timely_says; 4054 uint64_t log_mult, log_rtt_a_diff; 4055 4056 log_rtt_a_diff = rtt; 4057 log_rtt_a_diff <<= 32; 4058 log_rtt_a_diff |= (uint32_t)rtt_diff; 4059 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * 4060 rack_gp_rtt_maxmul)) { 4061 /* Reduce the b/w multiplier */ 4062 timely_says = 2; 4063 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 4064 log_mult <<= 32; 4065 log_mult |= prev_rtt; 4066 rack_log_timely(rack, timely_says, log_mult, 4067 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4068 log_rtt_a_diff, __LINE__, 4); 4069 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4070 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4071 max(rack_gp_rtt_mindiv , 1)))) { 4072 /* Increase the b/w multiplier */ 4073 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4074 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4075 max(rack_gp_rtt_mindiv , 1)); 4076 log_mult <<= 32; 4077 log_mult |= prev_rtt; 4078 timely_says = 0; 4079 rack_log_timely(rack, timely_says, log_mult , 4080 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4081 log_rtt_a_diff, __LINE__, 5); 4082 } else { 4083 /* 4084 * Use a gradient to find it the timely gradient 4085 * is: 4086 * grad = rc_rtt_diff / min_rtt; 4087 * 4088 * anything below or equal to 0 will be 4089 * a increase indication. Anything above 4090 * zero is a decrease. Note we take care 4091 * of the actual gradient calculation 4092 * in the reduction (its not needed for 4093 * increase). 4094 */ 4095 log_mult = prev_rtt; 4096 if (rtt_diff <= 0) { 4097 /* 4098 * Rttdiff is less than zero, increase the 4099 * b/w multiplier (its 0 or negative) 4100 */ 4101 timely_says = 0; 4102 rack_log_timely(rack, timely_says, log_mult, 4103 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); 4104 } else { 4105 /* Reduce the b/w multiplier */ 4106 timely_says = 1; 4107 rack_log_timely(rack, timely_says, log_mult, 4108 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); 4109 } 4110 } 4111 return (timely_says); 4112 } 4113 4114 static void 4115 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 4116 tcp_seq th_ack, int line, uint8_t quality) 4117 { 4118 uint64_t tim, bytes_ps, ltim, stim, utim; 4119 uint32_t segsiz, bytes, reqbytes, us_cts; 4120 int32_t gput, new_rtt_diff, timely_says; 4121 uint64_t resid_bw, subpart = 0, addpart = 0, srtt; 4122 int did_add = 0; 4123 4124 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4125 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 4126 if (TSTMP_GEQ(us_cts, tp->gput_ts)) 4127 tim = us_cts - tp->gput_ts; 4128 else 4129 tim = 0; 4130 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts) 4131 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; 4132 else 4133 stim = 0; 4134 /* 4135 * Use the larger of the send time or ack time. This prevents us 4136 * from being influenced by ack artifacts to come up with too 4137 * high of measurement. Note that since we are spanning over many more 4138 * bytes in most of our measurements hopefully that is less likely to 4139 * occur. 4140 */ 4141 if (tim > stim) 4142 utim = max(tim, 1); 4143 else 4144 utim = max(stim, 1); 4145 /* Lets get a msec time ltim too for the old stuff */ 4146 ltim = max(1, (utim / HPTS_USEC_IN_MSEC)); 4147 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim; 4148 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); 4149 if ((tim == 0) && (stim == 0)) { 4150 /* 4151 * Invalid measurement time, maybe 4152 * all on one ack/one send? 4153 */ 4154 bytes = 0; 4155 bytes_ps = 0; 4156 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4157 0, 0, 0, 10, __LINE__, NULL, quality); 4158 goto skip_measurement; 4159 } 4160 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { 4161 /* We never made a us_rtt measurement? */ 4162 bytes = 0; 4163 bytes_ps = 0; 4164 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4165 0, 0, 0, 10, __LINE__, NULL, quality); 4166 goto skip_measurement; 4167 } 4168 /* 4169 * Calculate the maximum possible b/w this connection 4170 * could have. We base our calculation on the lowest 4171 * rtt we have seen during the measurement and the 4172 * largest rwnd the client has given us in that time. This 4173 * forms a BDP that is the maximum that we could ever 4174 * get to the client. Anything larger is not valid. 4175 * 4176 * I originally had code here that rejected measurements 4177 * where the time was less than 1/2 the latest us_rtt. 4178 * But after thinking on that I realized its wrong since 4179 * say you had a 150Mbps or even 1Gbps link, and you 4180 * were a long way away.. example I am in Europe (100ms rtt) 4181 * talking to my 1Gbps link in S.C. Now measuring say 150,000 4182 * bytes my time would be 1.2ms, and yet my rtt would say 4183 * the measurement was invalid the time was < 50ms. The 4184 * same thing is true for 150Mb (8ms of time). 4185 * 4186 * A better way I realized is to look at what the maximum 4187 * the connection could possibly do. This is gated on 4188 * the lowest RTT we have seen and the highest rwnd. 4189 * We should in theory never exceed that, if we are 4190 * then something on the path is storing up packets 4191 * and then feeding them all at once to our endpoint 4192 * messing up our measurement. 4193 */ 4194 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; 4195 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; 4196 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; 4197 if (SEQ_LT(th_ack, tp->gput_seq)) { 4198 /* No measurement can be made */ 4199 bytes = 0; 4200 bytes_ps = 0; 4201 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4202 0, 0, 0, 10, __LINE__, NULL, quality); 4203 goto skip_measurement; 4204 } else 4205 bytes = (th_ack - tp->gput_seq); 4206 bytes_ps = (uint64_t)bytes; 4207 /* 4208 * Don't measure a b/w for pacing unless we have gotten at least 4209 * an initial windows worth of data in this measurement interval. 4210 * 4211 * Small numbers of bytes get badly influenced by delayed ack and 4212 * other artifacts. Note we take the initial window or our 4213 * defined minimum GP (defaulting to 10 which hopefully is the 4214 * IW). 4215 */ 4216 if (rack->rc_gp_filled == 0) { 4217 /* 4218 * The initial estimate is special. We 4219 * have blasted out an IW worth of packets 4220 * without a real valid ack ts results. We 4221 * then setup the app_limited_needs_set flag, 4222 * this should get the first ack in (probably 2 4223 * MSS worth) to be recorded as the timestamp. 4224 * We thus allow a smaller number of bytes i.e. 4225 * IW - 2MSS. 4226 */ 4227 reqbytes -= (2 * segsiz); 4228 /* Also lets fill previous for our first measurement to be neutral */ 4229 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4230 } 4231 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { 4232 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4233 rack->r_ctl.rc_app_limited_cnt, 4234 0, 0, 10, __LINE__, NULL, quality); 4235 goto skip_measurement; 4236 } 4237 /* 4238 * We now need to calculate the Timely like status so 4239 * we can update (possibly) the b/w multipliers. 4240 */ 4241 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; 4242 if (rack->rc_gp_filled == 0) { 4243 /* No previous reading */ 4244 rack->r_ctl.rc_rtt_diff = new_rtt_diff; 4245 } else { 4246 if (rack->measure_saw_probe_rtt == 0) { 4247 /* 4248 * We don't want a probertt to be counted 4249 * since it will be negative incorrectly. We 4250 * expect to be reducing the RTT when we 4251 * pace at a slower rate. 4252 */ 4253 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); 4254 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); 4255 } 4256 } 4257 timely_says = rack_make_timely_judgement(rack, 4258 rack->r_ctl.rc_gp_srtt, 4259 rack->r_ctl.rc_rtt_diff, 4260 rack->r_ctl.rc_prev_gp_srtt 4261 ); 4262 bytes_ps *= HPTS_USEC_IN_SEC; 4263 bytes_ps /= utim; 4264 if (bytes_ps > rack->r_ctl.last_max_bw) { 4265 /* 4266 * Something is on path playing 4267 * since this b/w is not possible based 4268 * on our BDP (highest rwnd and lowest rtt 4269 * we saw in the measurement window). 4270 * 4271 * Another option here would be to 4272 * instead skip the measurement. 4273 */ 4274 rack_log_pacing_delay_calc(rack, bytes, reqbytes, 4275 bytes_ps, rack->r_ctl.last_max_bw, 0, 4276 11, __LINE__, NULL, quality); 4277 bytes_ps = rack->r_ctl.last_max_bw; 4278 } 4279 /* We store gp for b/w in bytes per second */ 4280 if (rack->rc_gp_filled == 0) { 4281 /* Initial measurement */ 4282 if (bytes_ps) { 4283 rack->r_ctl.gp_bw = bytes_ps; 4284 rack->rc_gp_filled = 1; 4285 rack->r_ctl.num_measurements = 1; 4286 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 4287 } else { 4288 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4289 rack->r_ctl.rc_app_limited_cnt, 4290 0, 0, 10, __LINE__, NULL, quality); 4291 } 4292 if (tcp_in_hpts(rack->rc_inp) && 4293 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 4294 /* 4295 * Ok we can't trust the pacer in this case 4296 * where we transition from un-paced to paced. 4297 * Or for that matter when the burst mitigation 4298 * was making a wild guess and got it wrong. 4299 * Stop the pacer and clear up all the aggregate 4300 * delays etc. 4301 */ 4302 tcp_hpts_remove(rack->rc_inp); 4303 rack->r_ctl.rc_hpts_flags = 0; 4304 rack->r_ctl.rc_last_output_to = 0; 4305 } 4306 did_add = 2; 4307 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) { 4308 /* Still a small number run an average */ 4309 rack->r_ctl.gp_bw += bytes_ps; 4310 addpart = rack->r_ctl.num_measurements; 4311 rack->r_ctl.num_measurements++; 4312 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 4313 /* We have collected enough to move forward */ 4314 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements; 4315 } 4316 did_add = 3; 4317 } else { 4318 /* 4319 * We want to take 1/wma of the goodput and add in to 7/8th 4320 * of the old value weighted by the srtt. So if your measurement 4321 * period is say 2 SRTT's long you would get 1/4 as the 4322 * value, if it was like 1/2 SRTT then you would get 1/16th. 4323 * 4324 * But we must be careful not to take too much i.e. if the 4325 * srtt is say 20ms and the measurement is taken over 4326 * 400ms our weight would be 400/20 i.e. 20. On the 4327 * other hand if we get a measurement over 1ms with a 4328 * 10ms rtt we only want to take a much smaller portion. 4329 */ 4330 if (rack->r_ctl.num_measurements < 0xff) { 4331 rack->r_ctl.num_measurements++; 4332 } 4333 srtt = (uint64_t)tp->t_srtt; 4334 if (srtt == 0) { 4335 /* 4336 * Strange why did t_srtt go back to zero? 4337 */ 4338 if (rack->r_ctl.rc_rack_min_rtt) 4339 srtt = rack->r_ctl.rc_rack_min_rtt; 4340 else 4341 srtt = HPTS_USEC_IN_MSEC; 4342 } 4343 /* 4344 * XXXrrs: Note for reviewers, in playing with 4345 * dynamic pacing I discovered this GP calculation 4346 * as done originally leads to some undesired results. 4347 * Basically you can get longer measurements contributing 4348 * too much to the WMA. Thus I changed it if you are doing 4349 * dynamic adjustments to only do the aportioned adjustment 4350 * if we have a very small (time wise) measurement. Longer 4351 * measurements just get there weight (defaulting to 1/8) 4352 * add to the WMA. We may want to think about changing 4353 * this to always do that for both sides i.e. dynamic 4354 * and non-dynamic... but considering lots of folks 4355 * were playing with this I did not want to change the 4356 * calculation per.se. without your thoughts.. Lawerence? 4357 * Peter?? 4358 */ 4359 if (rack->rc_gp_dyn_mul == 0) { 4360 subpart = rack->r_ctl.gp_bw * utim; 4361 subpart /= (srtt * 8); 4362 if (subpart < (rack->r_ctl.gp_bw / 2)) { 4363 /* 4364 * The b/w update takes no more 4365 * away then 1/2 our running total 4366 * so factor it in. 4367 */ 4368 addpart = bytes_ps * utim; 4369 addpart /= (srtt * 8); 4370 } else { 4371 /* 4372 * Don't allow a single measurement 4373 * to account for more than 1/2 of the 4374 * WMA. This could happen on a retransmission 4375 * where utim becomes huge compared to 4376 * srtt (multiple retransmissions when using 4377 * the sending rate which factors in all the 4378 * transmissions from the first one). 4379 */ 4380 subpart = rack->r_ctl.gp_bw / 2; 4381 addpart = bytes_ps / 2; 4382 } 4383 resid_bw = rack->r_ctl.gp_bw - subpart; 4384 rack->r_ctl.gp_bw = resid_bw + addpart; 4385 did_add = 1; 4386 } else { 4387 if ((utim / srtt) <= 1) { 4388 /* 4389 * The b/w update was over a small period 4390 * of time. The idea here is to prevent a small 4391 * measurement time period from counting 4392 * too much. So we scale it based on the 4393 * time so it attributes less than 1/rack_wma_divisor 4394 * of its measurement. 4395 */ 4396 subpart = rack->r_ctl.gp_bw * utim; 4397 subpart /= (srtt * rack_wma_divisor); 4398 addpart = bytes_ps * utim; 4399 addpart /= (srtt * rack_wma_divisor); 4400 } else { 4401 /* 4402 * The scaled measurement was long 4403 * enough so lets just add in the 4404 * portion of the measurement i.e. 1/rack_wma_divisor 4405 */ 4406 subpart = rack->r_ctl.gp_bw / rack_wma_divisor; 4407 addpart = bytes_ps / rack_wma_divisor; 4408 } 4409 if ((rack->measure_saw_probe_rtt == 0) || 4410 (bytes_ps > rack->r_ctl.gp_bw)) { 4411 /* 4412 * For probe-rtt we only add it in 4413 * if its larger, all others we just 4414 * add in. 4415 */ 4416 did_add = 1; 4417 resid_bw = rack->r_ctl.gp_bw - subpart; 4418 rack->r_ctl.gp_bw = resid_bw + addpart; 4419 } 4420 } 4421 } 4422 if ((rack->gp_ready == 0) && 4423 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 4424 /* We have enough measurements now */ 4425 rack->gp_ready = 1; 4426 rack_set_cc_pacing(rack); 4427 if (rack->defer_options) 4428 rack_apply_deferred_options(rack); 4429 } 4430 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim, 4431 rack_get_bw(rack), 22, did_add, NULL, quality); 4432 /* We do not update any multipliers if we are in or have seen a probe-rtt */ 4433 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) 4434 rack_update_multiplier(rack, timely_says, bytes_ps, 4435 rack->r_ctl.rc_gp_srtt, 4436 rack->r_ctl.rc_rtt_diff); 4437 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, 4438 rack_get_bw(rack), 3, line, NULL, quality); 4439 /* reset the gp srtt and setup the new prev */ 4440 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4441 /* Record the lost count for the next measurement */ 4442 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; 4443 /* 4444 * We restart our diffs based on the gpsrtt in the 4445 * measurement window. 4446 */ 4447 rack->rc_gp_rtt_set = 0; 4448 rack->rc_gp_saw_rec = 0; 4449 rack->rc_gp_saw_ca = 0; 4450 rack->rc_gp_saw_ss = 0; 4451 rack->rc_dragged_bottom = 0; 4452 skip_measurement: 4453 4454 #ifdef STATS 4455 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 4456 gput); 4457 /* 4458 * XXXLAS: This is a temporary hack, and should be 4459 * chained off VOI_TCP_GPUT when stats(9) grows an 4460 * API to deal with chained VOIs. 4461 */ 4462 if (tp->t_stats_gput_prev > 0) 4463 stats_voi_update_abs_s32(tp->t_stats, 4464 VOI_TCP_GPUT_ND, 4465 ((gput - tp->t_stats_gput_prev) * 100) / 4466 tp->t_stats_gput_prev); 4467 #endif 4468 tp->t_flags &= ~TF_GPUTINPROG; 4469 tp->t_stats_gput_prev = gput; 4470 /* 4471 * Now are we app limited now and there is space from where we 4472 * were to where we want to go? 4473 * 4474 * We don't do the other case i.e. non-applimited here since 4475 * the next send will trigger us picking up the missing data. 4476 */ 4477 if (rack->r_ctl.rc_first_appl && 4478 TCPS_HAVEESTABLISHED(tp->t_state) && 4479 rack->r_ctl.rc_app_limited_cnt && 4480 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && 4481 ((rack->r_ctl.rc_first_appl->r_end - th_ack) > 4482 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 4483 /* 4484 * Yep there is enough outstanding to make a measurement here. 4485 */ 4486 struct rack_sendmap *rsm, fe; 4487 4488 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 4489 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 4490 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4491 rack->app_limited_needs_set = 0; 4492 tp->gput_seq = th_ack; 4493 if (rack->in_probe_rtt) 4494 rack->measure_saw_probe_rtt = 1; 4495 else if ((rack->measure_saw_probe_rtt) && 4496 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 4497 rack->measure_saw_probe_rtt = 0; 4498 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) { 4499 /* There is a full window to gain info from */ 4500 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 4501 } else { 4502 /* We can only measure up to the applimited point */ 4503 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack); 4504 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 4505 /* 4506 * We don't have enough to make a measurement. 4507 */ 4508 tp->t_flags &= ~TF_GPUTINPROG; 4509 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 4510 0, 0, 0, 6, __LINE__, NULL, quality); 4511 return; 4512 } 4513 } 4514 if (tp->t_state >= TCPS_FIN_WAIT_1) { 4515 /* 4516 * We will get no more data into the SB 4517 * this means we need to have the data available 4518 * before we start a measurement. 4519 */ 4520 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < (tp->gput_ack - tp->gput_seq)) { 4521 /* Nope not enough data. */ 4522 return; 4523 } 4524 } 4525 tp->t_flags |= TF_GPUTINPROG; 4526 /* 4527 * Now we need to find the timestamp of the send at tp->gput_seq 4528 * for the send based measurement. 4529 */ 4530 fe.r_start = tp->gput_seq; 4531 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 4532 if (rsm) { 4533 /* Ok send-based limit is set */ 4534 if (SEQ_LT(rsm->r_start, tp->gput_seq)) { 4535 /* 4536 * Move back to include the earlier part 4537 * so our ack time lines up right (this may 4538 * make an overlapping measurement but thats 4539 * ok). 4540 */ 4541 tp->gput_seq = rsm->r_start; 4542 } 4543 if (rsm->r_flags & RACK_ACKED) 4544 tp->gput_ts = (uint32_t)rsm->r_ack_arrival; 4545 else 4546 rack->app_limited_needs_set = 1; 4547 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 4548 } else { 4549 /* 4550 * If we don't find the rsm due to some 4551 * send-limit set the current time, which 4552 * basically disables the send-limit. 4553 */ 4554 struct timeval tv; 4555 4556 microuptime(&tv); 4557 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 4558 } 4559 rack_log_pacing_delay_calc(rack, 4560 tp->gput_seq, 4561 tp->gput_ack, 4562 (uint64_t)rsm, 4563 tp->gput_ts, 4564 rack->r_ctl.rc_app_limited_cnt, 4565 9, 4566 __LINE__, NULL, quality); 4567 } 4568 } 4569 4570 /* 4571 * CC wrapper hook functions 4572 */ 4573 static void 4574 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, 4575 uint16_t type, int32_t recovery) 4576 { 4577 uint32_t prior_cwnd, acked; 4578 struct tcp_log_buffer *lgb = NULL; 4579 uint8_t labc_to_use, quality; 4580 4581 INP_WLOCK_ASSERT(tp->t_inpcb); 4582 tp->ccv->nsegs = nsegs; 4583 acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una); 4584 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { 4585 uint32_t max; 4586 4587 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); 4588 if (tp->ccv->bytes_this_ack > max) { 4589 tp->ccv->bytes_this_ack = max; 4590 } 4591 } 4592 #ifdef STATS 4593 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 4594 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); 4595 #endif 4596 quality = RACK_QUALITY_NONE; 4597 if ((tp->t_flags & TF_GPUTINPROG) && 4598 rack_enough_for_measurement(tp, rack, th_ack, &quality)) { 4599 /* Measure the Goodput */ 4600 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality); 4601 #ifdef NETFLIX_PEAKRATE 4602 if ((type == CC_ACK) && 4603 (tp->t_maxpeakrate)) { 4604 /* 4605 * We update t_peakrate_thr. This gives us roughly 4606 * one update per round trip time. Note 4607 * it will only be used if pace_always is off i.e 4608 * we don't do this for paced flows. 4609 */ 4610 rack_update_peakrate_thr(tp); 4611 } 4612 #endif 4613 } 4614 /* Which way our we limited, if not cwnd limited no advance in CA */ 4615 if (tp->snd_cwnd <= tp->snd_wnd) 4616 tp->ccv->flags |= CCF_CWND_LIMITED; 4617 else 4618 tp->ccv->flags &= ~CCF_CWND_LIMITED; 4619 if (tp->snd_cwnd > tp->snd_ssthresh) { 4620 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, 4621 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); 4622 /* For the setting of a window past use the actual scwnd we are using */ 4623 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { 4624 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; 4625 tp->ccv->flags |= CCF_ABC_SENTAWND; 4626 } 4627 } else { 4628 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 4629 tp->t_bytes_acked = 0; 4630 } 4631 prior_cwnd = tp->snd_cwnd; 4632 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec || 4633 (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf))) 4634 labc_to_use = rack->rc_labc; 4635 else 4636 labc_to_use = rack_max_abc_post_recovery; 4637 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4638 union tcp_log_stackspecific log; 4639 struct timeval tv; 4640 4641 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4642 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4643 log.u_bbr.flex1 = th_ack; 4644 log.u_bbr.flex2 = tp->ccv->flags; 4645 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4646 log.u_bbr.flex4 = tp->ccv->nsegs; 4647 log.u_bbr.flex5 = labc_to_use; 4648 log.u_bbr.flex6 = prior_cwnd; 4649 log.u_bbr.flex7 = V_tcp_do_newsack; 4650 log.u_bbr.flex8 = 1; 4651 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4652 0, &log, false, NULL, NULL, 0, &tv); 4653 } 4654 if (CC_ALGO(tp)->ack_received != NULL) { 4655 /* XXXLAS: Find a way to live without this */ 4656 tp->ccv->curack = th_ack; 4657 tp->ccv->labc = labc_to_use; 4658 tp->ccv->flags |= CCF_USE_LOCAL_ABC; 4659 CC_ALGO(tp)->ack_received(tp->ccv, type); 4660 } 4661 if (lgb) { 4662 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd; 4663 } 4664 if (rack->r_must_retran) { 4665 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) { 4666 /* 4667 * We now are beyond the rxt point so lets disable 4668 * the flag. 4669 */ 4670 rack->r_ctl.rc_out_at_rto = 0; 4671 rack->r_must_retran = 0; 4672 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) { 4673 /* 4674 * Only decrement the rc_out_at_rto if the cwnd advances 4675 * at least a whole segment. Otherwise next time the peer 4676 * acks, we won't be able to send this generaly happens 4677 * when we are in Congestion Avoidance. 4678 */ 4679 if (acked <= rack->r_ctl.rc_out_at_rto){ 4680 rack->r_ctl.rc_out_at_rto -= acked; 4681 } else { 4682 rack->r_ctl.rc_out_at_rto = 0; 4683 } 4684 } 4685 } 4686 #ifdef STATS 4687 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); 4688 #endif 4689 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { 4690 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; 4691 } 4692 #ifdef NETFLIX_PEAKRATE 4693 /* we enforce max peak rate if it is set and we are not pacing */ 4694 if ((rack->rc_always_pace == 0) && 4695 tp->t_peakrate_thr && 4696 (tp->snd_cwnd > tp->t_peakrate_thr)) { 4697 tp->snd_cwnd = tp->t_peakrate_thr; 4698 } 4699 #endif 4700 } 4701 4702 static void 4703 tcp_rack_partialack(struct tcpcb *tp) 4704 { 4705 struct tcp_rack *rack; 4706 4707 rack = (struct tcp_rack *)tp->t_fb_ptr; 4708 INP_WLOCK_ASSERT(tp->t_inpcb); 4709 /* 4710 * If we are doing PRR and have enough 4711 * room to send <or> we are pacing and prr 4712 * is disabled we will want to see if we 4713 * can send data (by setting r_wanted_output to 4714 * true). 4715 */ 4716 if ((rack->r_ctl.rc_prr_sndcnt > 0) || 4717 rack->rack_no_prr) 4718 rack->r_wanted_output = 1; 4719 } 4720 4721 static void 4722 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack) 4723 { 4724 struct tcp_rack *rack; 4725 uint32_t orig_cwnd; 4726 4727 orig_cwnd = tp->snd_cwnd; 4728 INP_WLOCK_ASSERT(tp->t_inpcb); 4729 rack = (struct tcp_rack *)tp->t_fb_ptr; 4730 /* only alert CC if we alerted when we entered */ 4731 if (CC_ALGO(tp)->post_recovery != NULL) { 4732 tp->ccv->curack = th_ack; 4733 CC_ALGO(tp)->post_recovery(tp->ccv); 4734 if (tp->snd_cwnd < tp->snd_ssthresh) { 4735 /* 4736 * Rack has burst control and pacing 4737 * so lets not set this any lower than 4738 * snd_ssthresh per RFC-6582 (option 2). 4739 */ 4740 tp->snd_cwnd = tp->snd_ssthresh; 4741 } 4742 } 4743 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4744 union tcp_log_stackspecific log; 4745 struct timeval tv; 4746 4747 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4748 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4749 log.u_bbr.flex1 = th_ack; 4750 log.u_bbr.flex2 = tp->ccv->flags; 4751 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4752 log.u_bbr.flex4 = tp->ccv->nsegs; 4753 log.u_bbr.flex5 = V_tcp_abc_l_var; 4754 log.u_bbr.flex6 = orig_cwnd; 4755 log.u_bbr.flex7 = V_tcp_do_newsack; 4756 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 4757 log.u_bbr.flex8 = 2; 4758 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4759 0, &log, false, NULL, NULL, 0, &tv); 4760 } 4761 if ((rack->rack_no_prr == 0) && 4762 (rack->no_prr_addback == 0) && 4763 (rack->r_ctl.rc_prr_sndcnt > 0)) { 4764 /* 4765 * Suck the next prr cnt back into cwnd, but 4766 * only do that if we are not application limited. 4767 */ 4768 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 4769 /* 4770 * We are allowed to add back to the cwnd the amount we did 4771 * not get out if: 4772 * a) no_prr_addback is off. 4773 * b) we are not app limited 4774 * c) we are doing prr 4775 * <and> 4776 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none). 4777 */ 4778 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax), 4779 rack->r_ctl.rc_prr_sndcnt); 4780 } 4781 rack->r_ctl.rc_prr_sndcnt = 0; 4782 rack_log_to_prr(rack, 1, 0, __LINE__); 4783 } 4784 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__); 4785 tp->snd_recover = tp->snd_una; 4786 if (rack->r_ctl.dsack_persist) { 4787 rack->r_ctl.dsack_persist--; 4788 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 4789 rack->r_ctl.num_dsack = 0; 4790 } 4791 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 4792 } 4793 EXIT_RECOVERY(tp->t_flags); 4794 } 4795 4796 static void 4797 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack, int line) 4798 { 4799 struct tcp_rack *rack; 4800 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd; 4801 4802 INP_WLOCK_ASSERT(tp->t_inpcb); 4803 #ifdef STATS 4804 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 4805 #endif 4806 if (IN_RECOVERY(tp->t_flags) == 0) { 4807 in_rec_at_entry = 0; 4808 ssthresh_enter = tp->snd_ssthresh; 4809 cwnd_enter = tp->snd_cwnd; 4810 } else 4811 in_rec_at_entry = 1; 4812 rack = (struct tcp_rack *)tp->t_fb_ptr; 4813 switch (type) { 4814 case CC_NDUPACK: 4815 tp->t_flags &= ~TF_WASFRECOVERY; 4816 tp->t_flags &= ~TF_WASCRECOVERY; 4817 if (!IN_FASTRECOVERY(tp->t_flags)) { 4818 rack->r_ctl.rc_prr_delivered = 0; 4819 rack->r_ctl.rc_prr_out = 0; 4820 if (rack->rack_no_prr == 0) { 4821 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 4822 rack_log_to_prr(rack, 2, in_rec_at_entry, line); 4823 } 4824 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; 4825 tp->snd_recover = tp->snd_max; 4826 if (tp->t_flags2 & TF2_ECN_PERMIT) 4827 tp->t_flags2 |= TF2_ECN_SND_CWR; 4828 } 4829 break; 4830 case CC_ECN: 4831 if (!IN_CONGRECOVERY(tp->t_flags) || 4832 /* 4833 * Allow ECN reaction on ACK to CWR, if 4834 * that data segment was also CE marked. 4835 */ 4836 SEQ_GEQ(ack, tp->snd_recover)) { 4837 EXIT_CONGRECOVERY(tp->t_flags); 4838 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); 4839 tp->snd_recover = tp->snd_max + 1; 4840 if (tp->t_flags2 & TF2_ECN_PERMIT) 4841 tp->t_flags2 |= TF2_ECN_SND_CWR; 4842 } 4843 break; 4844 case CC_RTO: 4845 tp->t_dupacks = 0; 4846 tp->t_bytes_acked = 0; 4847 EXIT_RECOVERY(tp->t_flags); 4848 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / 4849 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); 4850 orig_cwnd = tp->snd_cwnd; 4851 tp->snd_cwnd = ctf_fixed_maxseg(tp); 4852 rack_log_to_prr(rack, 16, orig_cwnd, line); 4853 if (tp->t_flags2 & TF2_ECN_PERMIT) 4854 tp->t_flags2 |= TF2_ECN_SND_CWR; 4855 break; 4856 case CC_RTO_ERR: 4857 KMOD_TCPSTAT_INC(tcps_sndrexmitbad); 4858 /* RTO was unnecessary, so reset everything. */ 4859 tp->snd_cwnd = tp->snd_cwnd_prev; 4860 tp->snd_ssthresh = tp->snd_ssthresh_prev; 4861 tp->snd_recover = tp->snd_recover_prev; 4862 if (tp->t_flags & TF_WASFRECOVERY) { 4863 ENTER_FASTRECOVERY(tp->t_flags); 4864 tp->t_flags &= ~TF_WASFRECOVERY; 4865 } 4866 if (tp->t_flags & TF_WASCRECOVERY) { 4867 ENTER_CONGRECOVERY(tp->t_flags); 4868 tp->t_flags &= ~TF_WASCRECOVERY; 4869 } 4870 tp->snd_nxt = tp->snd_max; 4871 tp->t_badrxtwin = 0; 4872 break; 4873 } 4874 if ((CC_ALGO(tp)->cong_signal != NULL) && 4875 (type != CC_RTO)){ 4876 tp->ccv->curack = ack; 4877 CC_ALGO(tp)->cong_signal(tp->ccv, type); 4878 } 4879 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) { 4880 rack_log_to_prr(rack, 15, cwnd_enter, line); 4881 rack->r_ctl.dsack_byte_cnt = 0; 4882 rack->r_ctl.retran_during_recovery = 0; 4883 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter; 4884 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter; 4885 rack->r_ent_rec_ns = 1; 4886 } 4887 } 4888 4889 static inline void 4890 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) 4891 { 4892 uint32_t i_cwnd; 4893 4894 INP_WLOCK_ASSERT(tp->t_inpcb); 4895 4896 #ifdef NETFLIX_STATS 4897 KMOD_TCPSTAT_INC(tcps_idle_restarts); 4898 if (tp->t_state == TCPS_ESTABLISHED) 4899 KMOD_TCPSTAT_INC(tcps_idle_estrestarts); 4900 #endif 4901 if (CC_ALGO(tp)->after_idle != NULL) 4902 CC_ALGO(tp)->after_idle(tp->ccv); 4903 4904 if (tp->snd_cwnd == 1) 4905 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 4906 else 4907 i_cwnd = rc_init_window(rack); 4908 4909 /* 4910 * Being idle is no different than the initial window. If the cc 4911 * clamps it down below the initial window raise it to the initial 4912 * window. 4913 */ 4914 if (tp->snd_cwnd < i_cwnd) { 4915 tp->snd_cwnd = i_cwnd; 4916 } 4917 } 4918 4919 /* 4920 * Indicate whether this ack should be delayed. We can delay the ack if 4921 * following conditions are met: 4922 * - There is no delayed ack timer in progress. 4923 * - Our last ack wasn't a 0-sized window. We never want to delay 4924 * the ack that opens up a 0-sized window. 4925 * - LRO wasn't used for this segment. We make sure by checking that the 4926 * segment size is not larger than the MSS. 4927 * - Delayed acks are enabled or this is a half-synchronized T/TCP 4928 * connection. 4929 */ 4930 #define DELAY_ACK(tp, tlen) \ 4931 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ 4932 ((tp->t_flags & TF_DELACK) == 0) && \ 4933 (tlen <= tp->t_maxseg) && \ 4934 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) 4935 4936 static struct rack_sendmap * 4937 rack_find_lowest_rsm(struct tcp_rack *rack) 4938 { 4939 struct rack_sendmap *rsm; 4940 4941 /* 4942 * Walk the time-order transmitted list looking for an rsm that is 4943 * not acked. This will be the one that was sent the longest time 4944 * ago that is still outstanding. 4945 */ 4946 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 4947 if (rsm->r_flags & RACK_ACKED) { 4948 continue; 4949 } 4950 goto finish; 4951 } 4952 finish: 4953 return (rsm); 4954 } 4955 4956 static struct rack_sendmap * 4957 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) 4958 { 4959 struct rack_sendmap *prsm; 4960 4961 /* 4962 * Walk the sequence order list backward until we hit and arrive at 4963 * the highest seq not acked. In theory when this is called it 4964 * should be the last segment (which it was not). 4965 */ 4966 prsm = rsm; 4967 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) { 4968 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { 4969 continue; 4970 } 4971 return (prsm); 4972 } 4973 return (NULL); 4974 } 4975 4976 static uint32_t 4977 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) 4978 { 4979 int32_t lro; 4980 uint32_t thresh; 4981 4982 /* 4983 * lro is the flag we use to determine if we have seen reordering. 4984 * If it gets set we have seen reordering. The reorder logic either 4985 * works in one of two ways: 4986 * 4987 * If reorder-fade is configured, then we track the last time we saw 4988 * re-ordering occur. If we reach the point where enough time as 4989 * passed we no longer consider reordering has occuring. 4990 * 4991 * Or if reorder-face is 0, then once we see reordering we consider 4992 * the connection to alway be subject to reordering and just set lro 4993 * to 1. 4994 * 4995 * In the end if lro is non-zero we add the extra time for 4996 * reordering in. 4997 */ 4998 if (srtt == 0) 4999 srtt = 1; 5000 if (rack->r_ctl.rc_reorder_ts) { 5001 if (rack->r_ctl.rc_reorder_fade) { 5002 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { 5003 lro = cts - rack->r_ctl.rc_reorder_ts; 5004 if (lro == 0) { 5005 /* 5006 * No time as passed since the last 5007 * reorder, mark it as reordering. 5008 */ 5009 lro = 1; 5010 } 5011 } else { 5012 /* Negative time? */ 5013 lro = 0; 5014 } 5015 if (lro > rack->r_ctl.rc_reorder_fade) { 5016 /* Turn off reordering seen too */ 5017 rack->r_ctl.rc_reorder_ts = 0; 5018 lro = 0; 5019 } 5020 } else { 5021 /* Reodering does not fade */ 5022 lro = 1; 5023 } 5024 } else { 5025 lro = 0; 5026 } 5027 if (rack->rc_rack_tmr_std_based == 0) { 5028 thresh = srtt + rack->r_ctl.rc_pkt_delay; 5029 } else { 5030 /* Standards based pkt-delay is 1/4 srtt */ 5031 thresh = srtt + (srtt >> 2); 5032 } 5033 if (lro && (rack->rc_rack_tmr_std_based == 0)) { 5034 /* It must be set, if not you get 1/4 rtt */ 5035 if (rack->r_ctl.rc_reorder_shift) 5036 thresh += (srtt >> rack->r_ctl.rc_reorder_shift); 5037 else 5038 thresh += (srtt >> 2); 5039 } 5040 if (rack->rc_rack_use_dsack && 5041 lro && 5042 (rack->r_ctl.num_dsack > 0)) { 5043 /* 5044 * We only increase the reordering window if we 5045 * have seen reordering <and> we have a DSACK count. 5046 */ 5047 thresh += rack->r_ctl.num_dsack * (srtt >> 2); 5048 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh); 5049 } 5050 /* SRTT * 2 is the ceiling */ 5051 if (thresh > (srtt * 2)) { 5052 thresh = srtt * 2; 5053 } 5054 /* And we don't want it above the RTO max either */ 5055 if (thresh > rack_rto_max) { 5056 thresh = rack_rto_max; 5057 } 5058 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh); 5059 return (thresh); 5060 } 5061 5062 static uint32_t 5063 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, 5064 struct rack_sendmap *rsm, uint32_t srtt) 5065 { 5066 struct rack_sendmap *prsm; 5067 uint32_t thresh, len; 5068 int segsiz; 5069 5070 if (srtt == 0) 5071 srtt = 1; 5072 if (rack->r_ctl.rc_tlp_threshold) 5073 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); 5074 else 5075 thresh = (srtt * 2); 5076 5077 /* Get the previous sent packet, if any */ 5078 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 5079 len = rsm->r_end - rsm->r_start; 5080 if (rack->rack_tlp_threshold_use == TLP_USE_ID) { 5081 /* Exactly like the ID */ 5082 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { 5083 uint32_t alt_thresh; 5084 /* 5085 * Compensate for delayed-ack with the d-ack time. 5086 */ 5087 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5088 if (alt_thresh > thresh) 5089 thresh = alt_thresh; 5090 } 5091 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { 5092 /* 2.1 behavior */ 5093 prsm = TAILQ_PREV(rsm, rack_head, r_tnext); 5094 if (prsm && (len <= segsiz)) { 5095 /* 5096 * Two packets outstanding, thresh should be (2*srtt) + 5097 * possible inter-packet delay (if any). 5098 */ 5099 uint32_t inter_gap = 0; 5100 int idx, nidx; 5101 5102 idx = rsm->r_rtr_cnt - 1; 5103 nidx = prsm->r_rtr_cnt - 1; 5104 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) { 5105 /* Yes it was sent later (or at the same time) */ 5106 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; 5107 } 5108 thresh += inter_gap; 5109 } else if (len <= segsiz) { 5110 /* 5111 * Possibly compensate for delayed-ack. 5112 */ 5113 uint32_t alt_thresh; 5114 5115 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5116 if (alt_thresh > thresh) 5117 thresh = alt_thresh; 5118 } 5119 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { 5120 /* 2.2 behavior */ 5121 if (len <= segsiz) { 5122 uint32_t alt_thresh; 5123 /* 5124 * Compensate for delayed-ack with the d-ack time. 5125 */ 5126 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5127 if (alt_thresh > thresh) 5128 thresh = alt_thresh; 5129 } 5130 } 5131 /* Not above an RTO */ 5132 if (thresh > tp->t_rxtcur) { 5133 thresh = tp->t_rxtcur; 5134 } 5135 /* Not above a RTO max */ 5136 if (thresh > rack_rto_max) { 5137 thresh = rack_rto_max; 5138 } 5139 /* Apply user supplied min TLP */ 5140 if (thresh < rack_tlp_min) { 5141 thresh = rack_tlp_min; 5142 } 5143 return (thresh); 5144 } 5145 5146 static uint32_t 5147 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) 5148 { 5149 /* 5150 * We want the rack_rtt which is the 5151 * last rtt we measured. However if that 5152 * does not exist we fallback to the srtt (which 5153 * we probably will never do) and then as a last 5154 * resort we use RACK_INITIAL_RTO if no srtt is 5155 * yet set. 5156 */ 5157 if (rack->rc_rack_rtt) 5158 return (rack->rc_rack_rtt); 5159 else if (tp->t_srtt == 0) 5160 return (RACK_INITIAL_RTO); 5161 return (tp->t_srtt); 5162 } 5163 5164 static struct rack_sendmap * 5165 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) 5166 { 5167 /* 5168 * Check to see that we don't need to fall into recovery. We will 5169 * need to do so if our oldest transmit is past the time we should 5170 * have had an ack. 5171 */ 5172 struct tcp_rack *rack; 5173 struct rack_sendmap *rsm; 5174 int32_t idx; 5175 uint32_t srtt, thresh; 5176 5177 rack = (struct tcp_rack *)tp->t_fb_ptr; 5178 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 5179 return (NULL); 5180 } 5181 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5182 if (rsm == NULL) 5183 return (NULL); 5184 5185 5186 if (rsm->r_flags & RACK_ACKED) { 5187 rsm = rack_find_lowest_rsm(rack); 5188 if (rsm == NULL) 5189 return (NULL); 5190 } 5191 idx = rsm->r_rtr_cnt - 1; 5192 srtt = rack_grab_rtt(tp, rack); 5193 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 5194 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) { 5195 return (NULL); 5196 } 5197 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) { 5198 return (NULL); 5199 } 5200 /* Ok if we reach here we are over-due and this guy can be sent */ 5201 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 5202 return (rsm); 5203 } 5204 5205 static uint32_t 5206 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) 5207 { 5208 int32_t t; 5209 int32_t tt; 5210 uint32_t ret_val; 5211 5212 t = (tp->t_srtt + (tp->t_rttvar << 2)); 5213 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], 5214 rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop); 5215 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; 5216 ret_val = (uint32_t)tt; 5217 return (ret_val); 5218 } 5219 5220 static uint32_t 5221 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) 5222 { 5223 /* 5224 * Start the FR timer, we do this based on getting the first one in 5225 * the rc_tmap. Note that if its NULL we must stop the timer. in all 5226 * events we need to stop the running timer (if its running) before 5227 * starting the new one. 5228 */ 5229 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; 5230 uint32_t srtt_cur; 5231 int32_t idx; 5232 int32_t is_tlp_timer = 0; 5233 struct rack_sendmap *rsm; 5234 5235 if (rack->t_timers_stopped) { 5236 /* All timers have been stopped none are to run */ 5237 return (0); 5238 } 5239 if (rack->rc_in_persist) { 5240 /* We can't start any timer in persists */ 5241 return (rack_get_persists_timer_val(tp, rack)); 5242 } 5243 rack->rc_on_min_to = 0; 5244 if ((tp->t_state < TCPS_ESTABLISHED) || 5245 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 5246 goto activate_rxt; 5247 } 5248 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5249 if ((rsm == NULL) || sup_rack) { 5250 /* Nothing on the send map or no rack */ 5251 activate_rxt: 5252 time_since_sent = 0; 5253 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5254 if (rsm) { 5255 /* 5256 * Should we discount the RTX timer any? 5257 * 5258 * We want to discount it the smallest amount. 5259 * If a timer (Rack/TLP or RXT) has gone off more 5260 * recently thats the discount we want to use (now - timer time). 5261 * If the retransmit of the oldest packet was more recent then 5262 * we want to use that (now - oldest-packet-last_transmit_time). 5263 * 5264 */ 5265 idx = rsm->r_rtr_cnt - 1; 5266 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx]))) 5267 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5268 else 5269 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5270 if (TSTMP_GT(cts, tstmp_touse)) 5271 time_since_sent = cts - tstmp_touse; 5272 } 5273 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 5274 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; 5275 to = tp->t_rxtcur; 5276 if (to > time_since_sent) 5277 to -= time_since_sent; 5278 else 5279 to = rack->r_ctl.rc_min_to; 5280 if (to == 0) 5281 to = 1; 5282 /* Special case for KEEPINIT */ 5283 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 5284 (TP_KEEPINIT(tp) != 0) && 5285 rsm) { 5286 /* 5287 * We have to put a ceiling on the rxt timer 5288 * of the keep-init timeout. 5289 */ 5290 uint32_t max_time, red; 5291 5292 max_time = TICKS_2_USEC(TP_KEEPINIT(tp)); 5293 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) { 5294 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]); 5295 if (red < max_time) 5296 max_time -= red; 5297 else 5298 max_time = 1; 5299 } 5300 /* Reduce timeout to the keep value if needed */ 5301 if (max_time < to) 5302 to = max_time; 5303 } 5304 return (to); 5305 } 5306 return (0); 5307 } 5308 if (rsm->r_flags & RACK_ACKED) { 5309 rsm = rack_find_lowest_rsm(rack); 5310 if (rsm == NULL) { 5311 /* No lowest? */ 5312 goto activate_rxt; 5313 } 5314 } 5315 if (rack->sack_attack_disable) { 5316 /* 5317 * We don't want to do 5318 * any TLP's if you are an attacker. 5319 * Though if you are doing what 5320 * is expected you may still have 5321 * SACK-PASSED marks. 5322 */ 5323 goto activate_rxt; 5324 } 5325 /* Convert from ms to usecs */ 5326 if ((rsm->r_flags & RACK_SACK_PASSED) || 5327 (rsm->r_flags & RACK_RWND_COLLAPSED) || 5328 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 5329 if ((tp->t_flags & TF_SENTFIN) && 5330 ((tp->snd_max - tp->snd_una) == 1) && 5331 (rsm->r_flags & RACK_HAS_FIN)) { 5332 /* 5333 * We don't start a rack timer if all we have is a 5334 * FIN outstanding. 5335 */ 5336 goto activate_rxt; 5337 } 5338 if ((rack->use_rack_rr == 0) && 5339 (IN_FASTRECOVERY(tp->t_flags)) && 5340 (rack->rack_no_prr == 0) && 5341 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { 5342 /* 5343 * We are not cheating, in recovery and 5344 * not enough ack's to yet get our next 5345 * retransmission out. 5346 * 5347 * Note that classified attackers do not 5348 * get to use the rack-cheat. 5349 */ 5350 goto activate_tlp; 5351 } 5352 srtt = rack_grab_rtt(tp, rack); 5353 thresh = rack_calc_thresh_rack(rack, srtt, cts); 5354 idx = rsm->r_rtr_cnt - 1; 5355 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh; 5356 if (SEQ_GEQ(exp, cts)) { 5357 to = exp - cts; 5358 if (to < rack->r_ctl.rc_min_to) { 5359 to = rack->r_ctl.rc_min_to; 5360 if (rack->r_rr_config == 3) 5361 rack->rc_on_min_to = 1; 5362 } 5363 } else { 5364 to = rack->r_ctl.rc_min_to; 5365 if (rack->r_rr_config == 3) 5366 rack->rc_on_min_to = 1; 5367 } 5368 } else { 5369 /* Ok we need to do a TLP not RACK */ 5370 activate_tlp: 5371 if ((rack->rc_tlp_in_progress != 0) && 5372 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { 5373 /* 5374 * The previous send was a TLP and we have sent 5375 * N TLP's without sending new data. 5376 */ 5377 goto activate_rxt; 5378 } 5379 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 5380 if (rsm == NULL) { 5381 /* We found no rsm to TLP with. */ 5382 goto activate_rxt; 5383 } 5384 if (rsm->r_flags & RACK_HAS_FIN) { 5385 /* If its a FIN we dont do TLP */ 5386 rsm = NULL; 5387 goto activate_rxt; 5388 } 5389 idx = rsm->r_rtr_cnt - 1; 5390 time_since_sent = 0; 5391 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time)) 5392 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5393 else 5394 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5395 if (TSTMP_GT(cts, tstmp_touse)) 5396 time_since_sent = cts - tstmp_touse; 5397 is_tlp_timer = 1; 5398 if (tp->t_srtt) { 5399 if ((rack->rc_srtt_measure_made == 0) && 5400 (tp->t_srtt == 1)) { 5401 /* 5402 * If another stack as run and set srtt to 1, 5403 * then the srtt was 0, so lets use the initial. 5404 */ 5405 srtt = RACK_INITIAL_RTO; 5406 } else { 5407 srtt_cur = tp->t_srtt; 5408 srtt = srtt_cur; 5409 } 5410 } else 5411 srtt = RACK_INITIAL_RTO; 5412 /* 5413 * If the SRTT is not keeping up and the 5414 * rack RTT has spiked we want to use 5415 * the last RTT not the smoothed one. 5416 */ 5417 if (rack_tlp_use_greater && 5418 tp->t_srtt && 5419 (srtt < rack_grab_rtt(tp, rack))) { 5420 srtt = rack_grab_rtt(tp, rack); 5421 } 5422 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); 5423 if (thresh > time_since_sent) { 5424 to = thresh - time_since_sent; 5425 } else { 5426 to = rack->r_ctl.rc_min_to; 5427 rack_log_alt_to_to_cancel(rack, 5428 thresh, /* flex1 */ 5429 time_since_sent, /* flex2 */ 5430 tstmp_touse, /* flex3 */ 5431 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ 5432 (uint32_t)rsm->r_tim_lastsent[idx], 5433 srtt, 5434 idx, 99); 5435 } 5436 if (to < rack_tlp_min) { 5437 to = rack_tlp_min; 5438 } 5439 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) { 5440 /* 5441 * If the TLP time works out to larger than the max 5442 * RTO lets not do TLP.. just RTO. 5443 */ 5444 goto activate_rxt; 5445 } 5446 } 5447 if (is_tlp_timer == 0) { 5448 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; 5449 } else { 5450 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; 5451 } 5452 if (to == 0) 5453 to = 1; 5454 return (to); 5455 } 5456 5457 static void 5458 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5459 { 5460 if (rack->rc_in_persist == 0) { 5461 if (tp->t_flags & TF_GPUTINPROG) { 5462 /* 5463 * Stop the goodput now, the calling of the 5464 * measurement function clears the flag. 5465 */ 5466 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__, 5467 RACK_QUALITY_PERSIST); 5468 } 5469 #ifdef NETFLIX_SHARED_CWND 5470 if (rack->r_ctl.rc_scw) { 5471 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5472 rack->rack_scwnd_is_idle = 1; 5473 } 5474 #endif 5475 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 5476 if (rack->r_ctl.rc_went_idle_time == 0) 5477 rack->r_ctl.rc_went_idle_time = 1; 5478 rack_timer_cancel(tp, rack, cts, __LINE__); 5479 rack->r_ctl.persist_lost_ends = 0; 5480 rack->probe_not_answered = 0; 5481 rack->forced_ack = 0; 5482 tp->t_rxtshift = 0; 5483 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5484 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5485 rack->rc_in_persist = 1; 5486 } 5487 } 5488 5489 static void 5490 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5491 { 5492 if (tcp_in_hpts(rack->rc_inp)) { 5493 tcp_hpts_remove(rack->rc_inp); 5494 rack->r_ctl.rc_hpts_flags = 0; 5495 } 5496 #ifdef NETFLIX_SHARED_CWND 5497 if (rack->r_ctl.rc_scw) { 5498 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5499 rack->rack_scwnd_is_idle = 0; 5500 } 5501 #endif 5502 if (rack->rc_gp_dyn_mul && 5503 (rack->use_fixed_rate == 0) && 5504 (rack->rc_always_pace)) { 5505 /* 5506 * Do we count this as if a probe-rtt just 5507 * finished? 5508 */ 5509 uint32_t time_idle, idle_min; 5510 5511 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time; 5512 idle_min = rack_min_probertt_hold; 5513 if (rack_probertt_gpsrtt_cnt_div) { 5514 uint64_t extra; 5515 extra = (uint64_t)rack->r_ctl.rc_gp_srtt * 5516 (uint64_t)rack_probertt_gpsrtt_cnt_mul; 5517 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; 5518 idle_min += (uint32_t)extra; 5519 } 5520 if (time_idle >= idle_min) { 5521 /* Yes, we count it as a probe-rtt. */ 5522 uint32_t us_cts; 5523 5524 us_cts = tcp_get_usecs(NULL); 5525 if (rack->in_probe_rtt == 0) { 5526 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 5527 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 5528 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 5529 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 5530 } else { 5531 rack_exit_probertt(rack, us_cts); 5532 } 5533 } 5534 } 5535 rack->rc_in_persist = 0; 5536 rack->r_ctl.rc_went_idle_time = 0; 5537 tp->t_rxtshift = 0; 5538 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5539 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5540 rack->r_ctl.rc_agg_delayed = 0; 5541 rack->r_early = 0; 5542 rack->r_late = 0; 5543 rack->r_ctl.rc_agg_early = 0; 5544 } 5545 5546 static void 5547 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, 5548 struct hpts_diag *diag, struct timeval *tv) 5549 { 5550 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5551 union tcp_log_stackspecific log; 5552 5553 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5554 log.u_bbr.flex1 = diag->p_nxt_slot; 5555 log.u_bbr.flex2 = diag->p_cur_slot; 5556 log.u_bbr.flex3 = diag->slot_req; 5557 log.u_bbr.flex4 = diag->inp_hptsslot; 5558 log.u_bbr.flex5 = diag->slot_remaining; 5559 log.u_bbr.flex6 = diag->need_new_to; 5560 log.u_bbr.flex7 = diag->p_hpts_active; 5561 log.u_bbr.flex8 = diag->p_on_min_sleep; 5562 /* Hijack other fields as needed */ 5563 log.u_bbr.epoch = diag->have_slept; 5564 log.u_bbr.lt_epoch = diag->yet_to_sleep; 5565 log.u_bbr.pkts_out = diag->co_ret; 5566 log.u_bbr.applimited = diag->hpts_sleep_time; 5567 log.u_bbr.delivered = diag->p_prev_slot; 5568 log.u_bbr.inflight = diag->p_runningslot; 5569 log.u_bbr.bw_inuse = diag->wheel_slot; 5570 log.u_bbr.rttProp = diag->wheel_cts; 5571 log.u_bbr.timeStamp = cts; 5572 log.u_bbr.delRate = diag->maxslots; 5573 log.u_bbr.cur_del_rate = diag->p_curtick; 5574 log.u_bbr.cur_del_rate <<= 32; 5575 log.u_bbr.cur_del_rate |= diag->p_lasttick; 5576 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5577 &rack->rc_inp->inp_socket->so_rcv, 5578 &rack->rc_inp->inp_socket->so_snd, 5579 BBR_LOG_HPTSDIAG, 0, 5580 0, &log, false, tv); 5581 } 5582 5583 } 5584 5585 static void 5586 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type) 5587 { 5588 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5589 union tcp_log_stackspecific log; 5590 struct timeval tv; 5591 5592 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5593 log.u_bbr.flex1 = sb->sb_flags; 5594 log.u_bbr.flex2 = len; 5595 log.u_bbr.flex3 = sb->sb_state; 5596 log.u_bbr.flex8 = type; 5597 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5598 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5599 &rack->rc_inp->inp_socket->so_rcv, 5600 &rack->rc_inp->inp_socket->so_snd, 5601 TCP_LOG_SB_WAKE, 0, 5602 len, &log, false, &tv); 5603 } 5604 } 5605 5606 static void 5607 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, 5608 int32_t slot, uint32_t tot_len_this_send, int sup_rack) 5609 { 5610 struct hpts_diag diag; 5611 struct inpcb *inp; 5612 struct timeval tv; 5613 uint32_t delayed_ack = 0; 5614 uint32_t hpts_timeout; 5615 uint32_t entry_slot = slot; 5616 uint8_t stopped; 5617 uint32_t left = 0; 5618 uint32_t us_cts; 5619 5620 inp = tp->t_inpcb; 5621 if ((tp->t_state == TCPS_CLOSED) || 5622 (tp->t_state == TCPS_LISTEN)) { 5623 return; 5624 } 5625 if (tcp_in_hpts(inp)) { 5626 /* Already on the pacer */ 5627 return; 5628 } 5629 stopped = rack->rc_tmr_stopped; 5630 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 5631 left = rack->r_ctl.rc_timer_exp - cts; 5632 } 5633 rack->r_ctl.rc_timer_exp = 0; 5634 rack->r_ctl.rc_hpts_flags = 0; 5635 us_cts = tcp_get_usecs(&tv); 5636 /* Now early/late accounting */ 5637 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0); 5638 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) { 5639 /* 5640 * We have a early carry over set, 5641 * we can always add more time so we 5642 * can always make this compensation. 5643 * 5644 * Note if ack's are allowed to wake us do not 5645 * penalize the next timer for being awoke 5646 * by an ack aka the rc_agg_early (non-paced mode). 5647 */ 5648 slot += rack->r_ctl.rc_agg_early; 5649 rack->r_early = 0; 5650 rack->r_ctl.rc_agg_early = 0; 5651 } 5652 if (rack->r_late) { 5653 /* 5654 * This is harder, we can 5655 * compensate some but it 5656 * really depends on what 5657 * the current pacing time is. 5658 */ 5659 if (rack->r_ctl.rc_agg_delayed >= slot) { 5660 /* 5661 * We can't compensate for it all. 5662 * And we have to have some time 5663 * on the clock. We always have a min 5664 * 10 slots (10 x 10 i.e. 100 usecs). 5665 */ 5666 if (slot <= HPTS_TICKS_PER_SLOT) { 5667 /* We gain delay */ 5668 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot); 5669 slot = HPTS_TICKS_PER_SLOT; 5670 } else { 5671 /* We take off some */ 5672 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT); 5673 slot = HPTS_TICKS_PER_SLOT; 5674 } 5675 } else { 5676 slot -= rack->r_ctl.rc_agg_delayed; 5677 rack->r_ctl.rc_agg_delayed = 0; 5678 /* Make sure we have 100 useconds at minimum */ 5679 if (slot < HPTS_TICKS_PER_SLOT) { 5680 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot; 5681 slot = HPTS_TICKS_PER_SLOT; 5682 } 5683 if (rack->r_ctl.rc_agg_delayed == 0) 5684 rack->r_late = 0; 5685 } 5686 } 5687 if (slot) { 5688 /* We are pacing too */ 5689 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; 5690 } 5691 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); 5692 #ifdef NETFLIX_EXP_DETECTION 5693 if (rack->sack_attack_disable && 5694 (slot < tcp_sad_pacing_interval)) { 5695 /* 5696 * We have a potential attacker on 5697 * the line. We have possibly some 5698 * (or now) pacing time set. We want to 5699 * slow down the processing of sacks by some 5700 * amount (if it is an attacker). Set the default 5701 * slot for attackers in place (unless the orginal 5702 * interval is longer). Its stored in 5703 * micro-seconds, so lets convert to msecs. 5704 */ 5705 slot = tcp_sad_pacing_interval; 5706 } 5707 #endif 5708 if (tp->t_flags & TF_DELACK) { 5709 delayed_ack = TICKS_2_USEC(tcp_delacktime); 5710 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; 5711 } 5712 if (delayed_ack && ((hpts_timeout == 0) || 5713 (delayed_ack < hpts_timeout))) 5714 hpts_timeout = delayed_ack; 5715 else 5716 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 5717 /* 5718 * If no timers are going to run and we will fall off the hptsi 5719 * wheel, we resort to a keep-alive timer if its configured. 5720 */ 5721 if ((hpts_timeout == 0) && 5722 (slot == 0)) { 5723 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 5724 (tp->t_state <= TCPS_CLOSING)) { 5725 /* 5726 * Ok we have no timer (persists, rack, tlp, rxt or 5727 * del-ack), we don't have segments being paced. So 5728 * all that is left is the keepalive timer. 5729 */ 5730 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 5731 /* Get the established keep-alive time */ 5732 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); 5733 } else { 5734 /* 5735 * Get the initial setup keep-alive time, 5736 * note that this is probably not going to 5737 * happen, since rack will be running a rxt timer 5738 * if a SYN of some sort is outstanding. It is 5739 * actually handled in rack_timeout_rxt(). 5740 */ 5741 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); 5742 } 5743 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; 5744 if (rack->in_probe_rtt) { 5745 /* 5746 * We want to instead not wake up a long time from 5747 * now but to wake up about the time we would 5748 * exit probe-rtt and initiate a keep-alive ack. 5749 * This will get us out of probe-rtt and update 5750 * our min-rtt. 5751 */ 5752 hpts_timeout = rack_min_probertt_hold; 5753 } 5754 } 5755 } 5756 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == 5757 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { 5758 /* 5759 * RACK, TLP, persists and RXT timers all are restartable 5760 * based on actions input .. i.e we received a packet (ack 5761 * or sack) and that changes things (rw, or snd_una etc). 5762 * Thus we can restart them with a new value. For 5763 * keep-alive, delayed_ack we keep track of what was left 5764 * and restart the timer with a smaller value. 5765 */ 5766 if (left < hpts_timeout) 5767 hpts_timeout = left; 5768 } 5769 if (hpts_timeout) { 5770 /* 5771 * Hack alert for now we can't time-out over 2,147,483 5772 * seconds (a bit more than 596 hours), which is probably ok 5773 * :). 5774 */ 5775 if (hpts_timeout > 0x7ffffffe) 5776 hpts_timeout = 0x7ffffffe; 5777 rack->r_ctl.rc_timer_exp = cts + hpts_timeout; 5778 } 5779 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0); 5780 if ((rack->gp_ready == 0) && 5781 (rack->use_fixed_rate == 0) && 5782 (hpts_timeout < slot) && 5783 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { 5784 /* 5785 * We have no good estimate yet for the 5786 * old clunky burst mitigation or the 5787 * real pacing. And the tlp or rxt is smaller 5788 * than the pacing calculation. Lets not 5789 * pace that long since we know the calculation 5790 * so far is not accurate. 5791 */ 5792 slot = hpts_timeout; 5793 } 5794 /** 5795 * Turn off all the flags for queuing by default. The 5796 * flags have important meanings to what happens when 5797 * LRO interacts with the transport. Most likely (by default now) 5798 * mbuf_queueing and ack compression are on. So the transport 5799 * has a couple of flags that control what happens (if those 5800 * are not on then these flags won't have any effect since it 5801 * won't go through the queuing LRO path). 5802 * 5803 * INP_MBUF_QUEUE_READY - This flags says that I am busy 5804 * pacing output, so don't disturb. But 5805 * it also means LRO can wake me if there 5806 * is a SACK arrival. 5807 * 5808 * INP_DONT_SACK_QUEUE - This flag is used in conjunction 5809 * with the above flag (QUEUE_READY) and 5810 * when present it says don't even wake me 5811 * if a SACK arrives. 5812 * 5813 * The idea behind these flags is that if we are pacing we 5814 * set the MBUF_QUEUE_READY and only get woken up if 5815 * a SACK arrives (which could change things) or if 5816 * our pacing timer expires. If, however, we have a rack 5817 * timer running, then we don't even want a sack to wake 5818 * us since the rack timer has to expire before we can send. 5819 * 5820 * Other cases should usually have none of the flags set 5821 * so LRO can call into us. 5822 */ 5823 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5824 if (slot) { 5825 rack->r_ctl.rc_last_output_to = us_cts + slot; 5826 /* 5827 * A pacing timer (slot) is being set, in 5828 * such a case we cannot send (we are blocked by 5829 * the timer). So lets tell LRO that it should not 5830 * wake us unless there is a SACK. Note this only 5831 * will be effective if mbuf queueing is on or 5832 * compressed acks are being processed. 5833 */ 5834 inp->inp_flags2 |= INP_MBUF_QUEUE_READY; 5835 /* 5836 * But wait if we have a Rack timer running 5837 * even a SACK should not disturb us (with 5838 * the exception of r_rr_config 3). 5839 */ 5840 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && 5841 (rack->r_rr_config != 3)) 5842 inp->inp_flags2 |= INP_DONT_SACK_QUEUE; 5843 if (rack->rc_ack_can_sendout_data) { 5844 /* 5845 * Ahh but wait, this is that special case 5846 * where the pacing timer can be disturbed 5847 * backout the changes (used for non-paced 5848 * burst limiting). 5849 */ 5850 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5851 } 5852 if ((rack->use_rack_rr) && 5853 (rack->r_rr_config < 2) && 5854 ((hpts_timeout) && (hpts_timeout < slot))) { 5855 /* 5856 * Arrange for the hpts to kick back in after the 5857 * t-o if the t-o does not cause a send. 5858 */ 5859 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 5860 __LINE__, &diag); 5861 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5862 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 5863 } else { 5864 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), 5865 __LINE__, &diag); 5866 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5867 rack_log_to_start(rack, cts, hpts_timeout, slot, 1); 5868 } 5869 } else if (hpts_timeout) { 5870 /* 5871 * With respect to inp_flags2 here, lets let any new acks wake 5872 * us up here. Since we are not pacing (no pacing timer), output 5873 * can happen so we should let it. If its a Rack timer, then any inbound 5874 * packet probably won't change the sending (we will be blocked) 5875 * but it may change the prr stats so letting it in (the set defaults 5876 * at the start of this block) are good enough. 5877 */ 5878 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 5879 __LINE__, &diag); 5880 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5881 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 5882 } else { 5883 /* No timer starting */ 5884 #ifdef INVARIANTS 5885 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 5886 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", 5887 tp, rack, tot_len_this_send, cts, slot, hpts_timeout); 5888 } 5889 #endif 5890 } 5891 rack->rc_tmr_stopped = 0; 5892 if (slot) 5893 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv); 5894 } 5895 5896 /* 5897 * RACK Timer, here we simply do logging and house keeping. 5898 * the normal rack_output() function will call the 5899 * appropriate thing to check if we need to do a RACK retransmit. 5900 * We return 1, saying don't proceed with rack_output only 5901 * when all timers have been stopped (destroyed PCB?). 5902 */ 5903 static int 5904 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5905 { 5906 /* 5907 * This timer simply provides an internal trigger to send out data. 5908 * The check_recovery_mode call will see if there are needed 5909 * retransmissions, if so we will enter fast-recovery. The output 5910 * call may or may not do the same thing depending on sysctl 5911 * settings. 5912 */ 5913 struct rack_sendmap *rsm; 5914 5915 if (tp->t_timers->tt_flags & TT_STOPPED) { 5916 return (1); 5917 } 5918 counter_u64_add(rack_to_tot, 1); 5919 if (rack->r_state && (rack->r_state != tp->t_state)) 5920 rack_set_state(tp, rack); 5921 rack->rc_on_min_to = 0; 5922 rsm = rack_check_recovery_mode(tp, cts); 5923 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); 5924 if (rsm) { 5925 rack->r_ctl.rc_resend = rsm; 5926 rack->r_timer_override = 1; 5927 if (rack->use_rack_rr) { 5928 /* 5929 * Don't accumulate extra pacing delay 5930 * we are allowing the rack timer to 5931 * over-ride pacing i.e. rrr takes precedence 5932 * if the pacing interval is longer than the rrr 5933 * time (in other words we get the min pacing 5934 * time versus rrr pacing time). 5935 */ 5936 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 5937 } 5938 } 5939 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; 5940 if (rsm == NULL) { 5941 /* restart a timer and return 1 */ 5942 rack_start_hpts_timer(rack, tp, cts, 5943 0, 0, 0); 5944 return (1); 5945 } 5946 return (0); 5947 } 5948 5949 static void 5950 rack_adjust_orig_mlen(struct rack_sendmap *rsm) 5951 { 5952 if (rsm->m->m_len > rsm->orig_m_len) { 5953 /* 5954 * Mbuf grew, caused by sbcompress, our offset does 5955 * not change. 5956 */ 5957 rsm->orig_m_len = rsm->m->m_len; 5958 } else if (rsm->m->m_len < rsm->orig_m_len) { 5959 /* 5960 * Mbuf shrank, trimmed off the top by an ack, our 5961 * offset changes. 5962 */ 5963 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len); 5964 rsm->orig_m_len = rsm->m->m_len; 5965 } 5966 } 5967 5968 static void 5969 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm) 5970 { 5971 struct mbuf *m; 5972 uint32_t soff; 5973 5974 if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) { 5975 /* Fix up the orig_m_len and possibly the mbuf offset */ 5976 rack_adjust_orig_mlen(src_rsm); 5977 } 5978 m = src_rsm->m; 5979 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start); 5980 while (soff >= m->m_len) { 5981 /* Move out past this mbuf */ 5982 soff -= m->m_len; 5983 m = m->m_next; 5984 KASSERT((m != NULL), 5985 ("rsm:%p nrsm:%p hit at soff:%u null m", 5986 src_rsm, rsm, soff)); 5987 } 5988 rsm->m = m; 5989 rsm->soff = soff; 5990 rsm->orig_m_len = m->m_len; 5991 } 5992 5993 static __inline void 5994 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, 5995 struct rack_sendmap *rsm, uint32_t start) 5996 { 5997 int idx; 5998 5999 nrsm->r_start = start; 6000 nrsm->r_end = rsm->r_end; 6001 nrsm->r_rtr_cnt = rsm->r_rtr_cnt; 6002 nrsm->r_flags = rsm->r_flags; 6003 nrsm->r_dupack = rsm->r_dupack; 6004 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed; 6005 nrsm->r_rtr_bytes = 0; 6006 nrsm->r_fas = rsm->r_fas; 6007 rsm->r_end = nrsm->r_start; 6008 nrsm->r_just_ret = rsm->r_just_ret; 6009 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { 6010 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; 6011 } 6012 /* Now if we have SYN flag we keep it on the left edge */ 6013 if (nrsm->r_flags & RACK_HAS_SYN) 6014 nrsm->r_flags &= ~RACK_HAS_SYN; 6015 /* Now if we have a FIN flag we keep it on the right edge */ 6016 if (rsm->r_flags & RACK_HAS_FIN) 6017 rsm->r_flags &= ~RACK_HAS_FIN; 6018 /* Push bit must go to the right edge as well */ 6019 if (rsm->r_flags & RACK_HAD_PUSH) 6020 rsm->r_flags &= ~RACK_HAD_PUSH; 6021 /* Clone over the state of the hw_tls flag */ 6022 nrsm->r_hw_tls = rsm->r_hw_tls; 6023 /* 6024 * Now we need to find nrsm's new location in the mbuf chain 6025 * we basically calculate a new offset, which is soff + 6026 * how much is left in original rsm. Then we walk out the mbuf 6027 * chain to find the righ position, it may be the same mbuf 6028 * or maybe not. 6029 */ 6030 KASSERT(((rsm->m != NULL) || 6031 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))), 6032 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack)); 6033 if (rsm->m) 6034 rack_setup_offset_for_rsm(rsm, nrsm); 6035 } 6036 6037 static struct rack_sendmap * 6038 rack_merge_rsm(struct tcp_rack *rack, 6039 struct rack_sendmap *l_rsm, 6040 struct rack_sendmap *r_rsm) 6041 { 6042 /* 6043 * We are merging two ack'd RSM's, 6044 * the l_rsm is on the left (lower seq 6045 * values) and the r_rsm is on the right 6046 * (higher seq value). The simplest way 6047 * to merge these is to move the right 6048 * one into the left. I don't think there 6049 * is any reason we need to try to find 6050 * the oldest (or last oldest retransmitted). 6051 */ 6052 #ifdef INVARIANTS 6053 struct rack_sendmap *rm; 6054 #endif 6055 rack_log_map_chg(rack->rc_tp, rack, NULL, 6056 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__); 6057 l_rsm->r_end = r_rsm->r_end; 6058 if (l_rsm->r_dupack < r_rsm->r_dupack) 6059 l_rsm->r_dupack = r_rsm->r_dupack; 6060 if (r_rsm->r_rtr_bytes) 6061 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; 6062 if (r_rsm->r_in_tmap) { 6063 /* This really should not happen */ 6064 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); 6065 r_rsm->r_in_tmap = 0; 6066 } 6067 6068 /* Now the flags */ 6069 if (r_rsm->r_flags & RACK_HAS_FIN) 6070 l_rsm->r_flags |= RACK_HAS_FIN; 6071 if (r_rsm->r_flags & RACK_TLP) 6072 l_rsm->r_flags |= RACK_TLP; 6073 if (r_rsm->r_flags & RACK_RWND_COLLAPSED) 6074 l_rsm->r_flags |= RACK_RWND_COLLAPSED; 6075 if ((r_rsm->r_flags & RACK_APP_LIMITED) && 6076 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { 6077 /* 6078 * If both are app-limited then let the 6079 * free lower the count. If right is app 6080 * limited and left is not, transfer. 6081 */ 6082 l_rsm->r_flags |= RACK_APP_LIMITED; 6083 r_rsm->r_flags &= ~RACK_APP_LIMITED; 6084 if (r_rsm == rack->r_ctl.rc_first_appl) 6085 rack->r_ctl.rc_first_appl = l_rsm; 6086 } 6087 #ifndef INVARIANTS 6088 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6089 #else 6090 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6091 if (rm != r_rsm) { 6092 panic("removing head in rack:%p rsm:%p rm:%p", 6093 rack, r_rsm, rm); 6094 } 6095 #endif 6096 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { 6097 /* Transfer the split limit to the map we free */ 6098 r_rsm->r_limit_type = l_rsm->r_limit_type; 6099 l_rsm->r_limit_type = 0; 6100 } 6101 rack_free(rack, r_rsm); 6102 return (l_rsm); 6103 } 6104 6105 /* 6106 * TLP Timer, here we simply setup what segment we want to 6107 * have the TLP expire on, the normal rack_output() will then 6108 * send it out. 6109 * 6110 * We return 1, saying don't proceed with rack_output only 6111 * when all timers have been stopped (destroyed PCB?). 6112 */ 6113 static int 6114 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp) 6115 { 6116 /* 6117 * Tail Loss Probe. 6118 */ 6119 struct rack_sendmap *rsm = NULL; 6120 #ifdef INVARIANTS 6121 struct rack_sendmap *insret; 6122 #endif 6123 struct socket *so; 6124 uint32_t amm; 6125 uint32_t out, avail; 6126 int collapsed_win = 0; 6127 6128 if (tp->t_timers->tt_flags & TT_STOPPED) { 6129 return (1); 6130 } 6131 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6132 /* Its not time yet */ 6133 return (0); 6134 } 6135 if (ctf_progress_timeout_check(tp, true)) { 6136 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6137 return (-ETIMEDOUT); /* tcp_drop() */ 6138 } 6139 /* 6140 * A TLP timer has expired. We have been idle for 2 rtts. So we now 6141 * need to figure out how to force a full MSS segment out. 6142 */ 6143 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); 6144 rack->r_ctl.retran_during_recovery = 0; 6145 rack->r_ctl.dsack_byte_cnt = 0; 6146 counter_u64_add(rack_tlp_tot, 1); 6147 if (rack->r_state && (rack->r_state != tp->t_state)) 6148 rack_set_state(tp, rack); 6149 so = tp->t_inpcb->inp_socket; 6150 avail = sbavail(&so->so_snd); 6151 out = tp->snd_max - tp->snd_una; 6152 if ((out > tp->snd_wnd) || rack->rc_has_collapsed) { 6153 /* special case, we need a retransmission */ 6154 collapsed_win = 1; 6155 goto need_retran; 6156 } 6157 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) { 6158 rack->r_ctl.dsack_persist--; 6159 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6160 rack->r_ctl.num_dsack = 0; 6161 } 6162 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6163 } 6164 if ((tp->t_flags & TF_GPUTINPROG) && 6165 (rack->r_ctl.rc_tlp_cnt_out == 1)) { 6166 /* 6167 * If this is the second in a row 6168 * TLP and we are doing a measurement 6169 * its time to abandon the measurement. 6170 * Something is likely broken on 6171 * the clients network and measuring a 6172 * broken network does us no good. 6173 */ 6174 tp->t_flags &= ~TF_GPUTINPROG; 6175 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6176 rack->r_ctl.rc_gp_srtt /*flex1*/, 6177 tp->gput_seq, 6178 0, 0, 18, __LINE__, NULL, 0); 6179 } 6180 /* 6181 * Check our send oldest always settings, and if 6182 * there is an oldest to send jump to the need_retran. 6183 */ 6184 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) 6185 goto need_retran; 6186 6187 if (avail > out) { 6188 /* New data is available */ 6189 amm = avail - out; 6190 if (amm > ctf_fixed_maxseg(tp)) { 6191 amm = ctf_fixed_maxseg(tp); 6192 if ((amm + out) > tp->snd_wnd) { 6193 /* We are rwnd limited */ 6194 goto need_retran; 6195 } 6196 } else if (amm < ctf_fixed_maxseg(tp)) { 6197 /* not enough to fill a MTU */ 6198 goto need_retran; 6199 } 6200 if (IN_FASTRECOVERY(tp->t_flags)) { 6201 /* Unlikely */ 6202 if (rack->rack_no_prr == 0) { 6203 if (out + amm <= tp->snd_wnd) { 6204 rack->r_ctl.rc_prr_sndcnt = amm; 6205 rack->r_ctl.rc_tlp_new_data = amm; 6206 rack_log_to_prr(rack, 4, 0, __LINE__); 6207 } 6208 } else 6209 goto need_retran; 6210 } else { 6211 /* Set the send-new override */ 6212 if (out + amm <= tp->snd_wnd) 6213 rack->r_ctl.rc_tlp_new_data = amm; 6214 else 6215 goto need_retran; 6216 } 6217 rack->r_ctl.rc_tlpsend = NULL; 6218 counter_u64_add(rack_tlp_newdata, 1); 6219 goto send; 6220 } 6221 need_retran: 6222 /* 6223 * Ok we need to arrange the last un-acked segment to be re-sent, or 6224 * optionally the first un-acked segment. 6225 */ 6226 if (collapsed_win == 0) { 6227 if (rack_always_send_oldest) 6228 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6229 else { 6230 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6231 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { 6232 rsm = rack_find_high_nonack(rack, rsm); 6233 } 6234 } 6235 if (rsm == NULL) { 6236 #ifdef TCP_BLACKBOX 6237 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6238 #endif 6239 goto out; 6240 } 6241 } else { 6242 /* 6243 * We must find the last segment 6244 * that was acceptable by the client. 6245 */ 6246 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6247 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) { 6248 /* Found one */ 6249 break; 6250 } 6251 } 6252 if (rsm == NULL) { 6253 /* None? if so send the first */ 6254 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6255 if (rsm == NULL) { 6256 #ifdef TCP_BLACKBOX 6257 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6258 #endif 6259 goto out; 6260 } 6261 } 6262 } 6263 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { 6264 /* 6265 * We need to split this the last segment in two. 6266 */ 6267 struct rack_sendmap *nrsm; 6268 6269 nrsm = rack_alloc_full_limit(rack); 6270 if (nrsm == NULL) { 6271 /* 6272 * No memory to split, we will just exit and punt 6273 * off to the RXT timer. 6274 */ 6275 goto out; 6276 } 6277 rack_clone_rsm(rack, nrsm, rsm, 6278 (rsm->r_end - ctf_fixed_maxseg(tp))); 6279 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 6280 #ifndef INVARIANTS 6281 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6282 #else 6283 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6284 if (insret != NULL) { 6285 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 6286 nrsm, insret, rack, rsm); 6287 } 6288 #endif 6289 if (rsm->r_in_tmap) { 6290 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 6291 nrsm->r_in_tmap = 1; 6292 } 6293 rsm = nrsm; 6294 } 6295 rack->r_ctl.rc_tlpsend = rsm; 6296 send: 6297 /* Make sure output path knows we are doing a TLP */ 6298 *doing_tlp = 1; 6299 rack->r_timer_override = 1; 6300 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6301 return (0); 6302 out: 6303 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6304 return (0); 6305 } 6306 6307 /* 6308 * Delayed ack Timer, here we simply need to setup the 6309 * ACK_NOW flag and remove the DELACK flag. From there 6310 * the output routine will send the ack out. 6311 * 6312 * We only return 1, saying don't proceed, if all timers 6313 * are stopped (destroyed PCB?). 6314 */ 6315 static int 6316 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6317 { 6318 if (tp->t_timers->tt_flags & TT_STOPPED) { 6319 return (1); 6320 } 6321 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); 6322 tp->t_flags &= ~TF_DELACK; 6323 tp->t_flags |= TF_ACKNOW; 6324 KMOD_TCPSTAT_INC(tcps_delack); 6325 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 6326 return (0); 6327 } 6328 6329 /* 6330 * Persists timer, here we simply send the 6331 * same thing as a keepalive will. 6332 * the one byte send. 6333 * 6334 * We only return 1, saying don't proceed, if all timers 6335 * are stopped (destroyed PCB?). 6336 */ 6337 static int 6338 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6339 { 6340 struct tcptemp *t_template; 6341 #ifdef INVARIANTS 6342 struct inpcb *inp = tp->t_inpcb; 6343 #endif 6344 int32_t retval = 1; 6345 6346 if (tp->t_timers->tt_flags & TT_STOPPED) { 6347 return (1); 6348 } 6349 if (rack->rc_in_persist == 0) 6350 return (0); 6351 if (ctf_progress_timeout_check(tp, false)) { 6352 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6353 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6354 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6355 return (-ETIMEDOUT); /* tcp_drop() */ 6356 } 6357 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); 6358 /* 6359 * Persistence timer into zero window. Force a byte to be output, if 6360 * possible. 6361 */ 6362 KMOD_TCPSTAT_INC(tcps_persisttimeo); 6363 /* 6364 * Hack: if the peer is dead/unreachable, we do not time out if the 6365 * window is closed. After a full backoff, drop the connection if 6366 * the idle time (no responses to probes) reaches the maximum 6367 * backoff that we would use if retransmitting. 6368 */ 6369 if (tp->t_rxtshift == TCP_MAXRXTSHIFT && 6370 (ticks - tp->t_rcvtime >= tcp_maxpersistidle || 6371 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) { 6372 KMOD_TCPSTAT_INC(tcps_persistdrop); 6373 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6374 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6375 retval = -ETIMEDOUT; /* tcp_drop() */ 6376 goto out; 6377 } 6378 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && 6379 tp->snd_una == tp->snd_max) 6380 rack_exit_persist(tp, rack, cts); 6381 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; 6382 /* 6383 * If the user has closed the socket then drop a persisting 6384 * connection after a much reduced timeout. 6385 */ 6386 if (tp->t_state > TCPS_CLOSE_WAIT && 6387 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { 6388 KMOD_TCPSTAT_INC(tcps_persistdrop); 6389 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6390 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 6391 retval = -ETIMEDOUT; /* tcp_drop() */ 6392 goto out; 6393 } 6394 t_template = tcpip_maketemplate(rack->rc_inp); 6395 if (t_template) { 6396 /* only set it if we were answered */ 6397 if (rack->forced_ack == 0) { 6398 rack->forced_ack = 1; 6399 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6400 } else { 6401 rack->probe_not_answered = 1; 6402 counter_u64_add(rack_persists_loss, 1); 6403 rack->r_ctl.persist_lost_ends++; 6404 } 6405 counter_u64_add(rack_persists_sends, 1); 6406 tcp_respond(tp, t_template->tt_ipgen, 6407 &t_template->tt_t, (struct mbuf *)NULL, 6408 tp->rcv_nxt, tp->snd_una - 1, 0); 6409 /* This sends an ack */ 6410 if (tp->t_flags & TF_DELACK) 6411 tp->t_flags &= ~TF_DELACK; 6412 free(t_template, M_TEMP); 6413 } 6414 if (tp->t_rxtshift < TCP_MAXRXTSHIFT) 6415 tp->t_rxtshift++; 6416 out: 6417 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); 6418 rack_start_hpts_timer(rack, tp, cts, 6419 0, 0, 0); 6420 return (retval); 6421 } 6422 6423 /* 6424 * If a keepalive goes off, we had no other timers 6425 * happening. We always return 1 here since this 6426 * routine either drops the connection or sends 6427 * out a segment with respond. 6428 */ 6429 static int 6430 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6431 { 6432 struct tcptemp *t_template; 6433 struct inpcb *inp; 6434 6435 if (tp->t_timers->tt_flags & TT_STOPPED) { 6436 return (1); 6437 } 6438 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; 6439 inp = tp->t_inpcb; 6440 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); 6441 /* 6442 * Keep-alive timer went off; send something or drop connection if 6443 * idle for too long. 6444 */ 6445 KMOD_TCPSTAT_INC(tcps_keeptimeo); 6446 if (tp->t_state < TCPS_ESTABLISHED) 6447 goto dropit; 6448 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 6449 tp->t_state <= TCPS_CLOSING) { 6450 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) 6451 goto dropit; 6452 /* 6453 * Send a packet designed to force a response if the peer is 6454 * up and reachable: either an ACK if the connection is 6455 * still alive, or an RST if the peer has closed the 6456 * connection due to timeout or reboot. Using sequence 6457 * number tp->snd_una-1 causes the transmitted zero-length 6458 * segment to lie outside the receive window; by the 6459 * protocol spec, this requires the correspondent TCP to 6460 * respond. 6461 */ 6462 KMOD_TCPSTAT_INC(tcps_keepprobe); 6463 t_template = tcpip_maketemplate(inp); 6464 if (t_template) { 6465 if (rack->forced_ack == 0) { 6466 rack->forced_ack = 1; 6467 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6468 } else { 6469 rack->probe_not_answered = 1; 6470 } 6471 tcp_respond(tp, t_template->tt_ipgen, 6472 &t_template->tt_t, (struct mbuf *)NULL, 6473 tp->rcv_nxt, tp->snd_una - 1, 0); 6474 free(t_template, M_TEMP); 6475 } 6476 } 6477 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 6478 return (1); 6479 dropit: 6480 KMOD_TCPSTAT_INC(tcps_keepdrops); 6481 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6482 return (-ETIMEDOUT); /* tcp_drop() */ 6483 } 6484 6485 /* 6486 * Retransmit helper function, clear up all the ack 6487 * flags and take care of important book keeping. 6488 */ 6489 static void 6490 rack_remxt_tmr(struct tcpcb *tp) 6491 { 6492 /* 6493 * The retransmit timer went off, all sack'd blocks must be 6494 * un-acked. 6495 */ 6496 struct rack_sendmap *rsm, *trsm = NULL; 6497 struct tcp_rack *rack; 6498 6499 rack = (struct tcp_rack *)tp->t_fb_ptr; 6500 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__); 6501 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); 6502 if (rack->r_state && (rack->r_state != tp->t_state)) 6503 rack_set_state(tp, rack); 6504 /* 6505 * Ideally we would like to be able to 6506 * mark SACK-PASS on anything not acked here. 6507 * 6508 * However, if we do that we would burst out 6509 * all that data 1ms apart. This would be unwise, 6510 * so for now we will just let the normal rxt timer 6511 * and tlp timer take care of it. 6512 * 6513 * Also we really need to stick them back in sequence 6514 * order. This way we send in the proper order and any 6515 * sacks that come floating in will "re-ack" the data. 6516 * To do this we zap the tmap with an INIT and then 6517 * walk through and place every rsm in the RB tree 6518 * back in its seq ordered place. 6519 */ 6520 TAILQ_INIT(&rack->r_ctl.rc_tmap); 6521 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6522 rsm->r_dupack = 0; 6523 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 6524 /* We must re-add it back to the tlist */ 6525 if (trsm == NULL) { 6526 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 6527 } else { 6528 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 6529 } 6530 rsm->r_in_tmap = 1; 6531 trsm = rsm; 6532 if (rsm->r_flags & RACK_ACKED) 6533 rsm->r_flags |= RACK_WAS_ACKED; 6534 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS | RACK_RWND_COLLAPSED); 6535 rsm->r_flags |= RACK_MUST_RXT; 6536 } 6537 /* Clear the count (we just un-acked them) */ 6538 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una; 6539 rack->r_ctl.rc_sacked = 0; 6540 rack->r_ctl.rc_sacklast = NULL; 6541 rack->r_ctl.rc_agg_delayed = 0; 6542 rack->r_early = 0; 6543 rack->r_ctl.rc_agg_early = 0; 6544 rack->r_late = 0; 6545 /* Clear the tlp rtx mark */ 6546 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6547 if (rack->r_ctl.rc_resend != NULL) 6548 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT; 6549 rack->r_ctl.rc_prr_sndcnt = 0; 6550 rack_log_to_prr(rack, 6, 0, __LINE__); 6551 rack->r_timer_override = 1; 6552 if ((((tp->t_flags & TF_SACK_PERMIT) == 0) 6553 #ifdef NETFLIX_EXP_DETECTION 6554 || (rack->sack_attack_disable != 0) 6555 #endif 6556 ) && ((tp->t_flags & TF_SENTFIN) == 0)) { 6557 /* 6558 * For non-sack customers new data 6559 * needs to go out as retransmits until 6560 * we retransmit up to snd_max. 6561 */ 6562 rack->r_must_retran = 1; 6563 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp, 6564 rack->r_ctl.rc_sacked); 6565 } 6566 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 6567 } 6568 6569 static void 6570 rack_convert_rtts(struct tcpcb *tp) 6571 { 6572 if (tp->t_srtt > 1) { 6573 uint32_t val, frac; 6574 6575 val = tp->t_srtt >> TCP_RTT_SHIFT; 6576 frac = tp->t_srtt & 0x1f; 6577 tp->t_srtt = TICKS_2_USEC(val); 6578 /* 6579 * frac is the fractional part of the srtt (if any) 6580 * but its in ticks and every bit represents 6581 * 1/32nd of a hz. 6582 */ 6583 if (frac) { 6584 if (hz == 1000) { 6585 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6586 } else { 6587 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6588 } 6589 tp->t_srtt += frac; 6590 } 6591 } 6592 if (tp->t_rttvar) { 6593 uint32_t val, frac; 6594 6595 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 6596 frac = tp->t_rttvar & 0x1f; 6597 tp->t_rttvar = TICKS_2_USEC(val); 6598 /* 6599 * frac is the fractional part of the srtt (if any) 6600 * but its in ticks and every bit represents 6601 * 1/32nd of a hz. 6602 */ 6603 if (frac) { 6604 if (hz == 1000) { 6605 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6606 } else { 6607 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6608 } 6609 tp->t_rttvar += frac; 6610 } 6611 } 6612 tp->t_rxtcur = RACK_REXMTVAL(tp); 6613 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 6614 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop); 6615 } 6616 if (tp->t_rxtcur > rack_rto_max) { 6617 tp->t_rxtcur = rack_rto_max; 6618 } 6619 } 6620 6621 static void 6622 rack_cc_conn_init(struct tcpcb *tp) 6623 { 6624 struct tcp_rack *rack; 6625 uint32_t srtt; 6626 6627 rack = (struct tcp_rack *)tp->t_fb_ptr; 6628 srtt = tp->t_srtt; 6629 cc_conn_init(tp); 6630 /* 6631 * Now convert to rack's internal format, 6632 * if required. 6633 */ 6634 if ((srtt == 0) && (tp->t_srtt != 0)) 6635 rack_convert_rtts(tp); 6636 /* 6637 * We want a chance to stay in slowstart as 6638 * we create a connection. TCP spec says that 6639 * initially ssthresh is infinite. For our 6640 * purposes that is the snd_wnd. 6641 */ 6642 if (tp->snd_ssthresh < tp->snd_wnd) { 6643 tp->snd_ssthresh = tp->snd_wnd; 6644 } 6645 /* 6646 * We also want to assure a IW worth of 6647 * data can get inflight. 6648 */ 6649 if (rc_init_window(rack) < tp->snd_cwnd) 6650 tp->snd_cwnd = rc_init_window(rack); 6651 } 6652 6653 /* 6654 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise 6655 * we will setup to retransmit the lowest seq number outstanding. 6656 */ 6657 static int 6658 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6659 { 6660 int32_t rexmt; 6661 int32_t retval = 0; 6662 bool isipv6; 6663 6664 if (tp->t_timers->tt_flags & TT_STOPPED) { 6665 return (1); 6666 } 6667 if ((tp->t_flags & TF_GPUTINPROG) && 6668 (tp->t_rxtshift)) { 6669 /* 6670 * We have had a second timeout 6671 * measurements on successive rxt's are not profitable. 6672 * It is unlikely to be of any use (the network is 6673 * broken or the client went away). 6674 */ 6675 tp->t_flags &= ~TF_GPUTINPROG; 6676 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6677 rack->r_ctl.rc_gp_srtt /*flex1*/, 6678 tp->gput_seq, 6679 0, 0, 18, __LINE__, NULL, 0); 6680 } 6681 if (ctf_progress_timeout_check(tp, false)) { 6682 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6683 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6684 return (-ETIMEDOUT); /* tcp_drop() */ 6685 } 6686 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; 6687 rack->r_ctl.retran_during_recovery = 0; 6688 rack->r_ctl.dsack_byte_cnt = 0; 6689 if (IN_FASTRECOVERY(tp->t_flags)) 6690 tp->t_flags |= TF_WASFRECOVERY; 6691 else 6692 tp->t_flags &= ~TF_WASFRECOVERY; 6693 if (IN_CONGRECOVERY(tp->t_flags)) 6694 tp->t_flags |= TF_WASCRECOVERY; 6695 else 6696 tp->t_flags &= ~TF_WASCRECOVERY; 6697 if (TCPS_HAVEESTABLISHED(tp->t_state) && 6698 (tp->snd_una == tp->snd_max)) { 6699 /* Nothing outstanding .. nothing to do */ 6700 return (0); 6701 } 6702 if (rack->r_ctl.dsack_persist) { 6703 rack->r_ctl.dsack_persist--; 6704 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6705 rack->r_ctl.num_dsack = 0; 6706 } 6707 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6708 } 6709 /* 6710 * Rack can only run one timer at a time, so we cannot 6711 * run a KEEPINIT (gating SYN sending) and a retransmit 6712 * timer for the SYN. So if we are in a front state and 6713 * have a KEEPINIT timer we need to check the first transmit 6714 * against now to see if we have exceeded the KEEPINIT time 6715 * (if one is set). 6716 */ 6717 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 6718 (TP_KEEPINIT(tp) != 0)) { 6719 struct rack_sendmap *rsm; 6720 6721 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6722 if (rsm) { 6723 /* Ok we have something outstanding to test keepinit with */ 6724 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) && 6725 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) { 6726 /* We have exceeded the KEEPINIT time */ 6727 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6728 goto drop_it; 6729 } 6730 } 6731 } 6732 /* 6733 * Retransmission timer went off. Message has not been acked within 6734 * retransmit interval. Back off to a longer retransmit interval 6735 * and retransmit one segment. 6736 */ 6737 rack_remxt_tmr(tp); 6738 if ((rack->r_ctl.rc_resend == NULL) || 6739 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { 6740 /* 6741 * If the rwnd collapsed on 6742 * the one we are retransmitting 6743 * it does not count against the 6744 * rxt count. 6745 */ 6746 tp->t_rxtshift++; 6747 } 6748 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { 6749 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6750 drop_it: 6751 tp->t_rxtshift = TCP_MAXRXTSHIFT; 6752 KMOD_TCPSTAT_INC(tcps_timeoutdrop); 6753 /* XXXGL: previously t_softerror was casted to uint16_t */ 6754 MPASS(tp->t_softerror >= 0); 6755 retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT; 6756 goto out; /* tcp_drop() */ 6757 } 6758 if (tp->t_state == TCPS_SYN_SENT) { 6759 /* 6760 * If the SYN was retransmitted, indicate CWND to be limited 6761 * to 1 segment in cc_conn_init(). 6762 */ 6763 tp->snd_cwnd = 1; 6764 } else if (tp->t_rxtshift == 1) { 6765 /* 6766 * first retransmit; record ssthresh and cwnd so they can be 6767 * recovered if this turns out to be a "bad" retransmit. A 6768 * retransmit is considered "bad" if an ACK for this segment 6769 * is received within RTT/2 interval; the assumption here is 6770 * that the ACK was already in flight. See "On Estimating 6771 * End-to-End Network Path Properties" by Allman and Paxson 6772 * for more details. 6773 */ 6774 tp->snd_cwnd_prev = tp->snd_cwnd; 6775 tp->snd_ssthresh_prev = tp->snd_ssthresh; 6776 tp->snd_recover_prev = tp->snd_recover; 6777 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2); 6778 tp->t_flags |= TF_PREVVALID; 6779 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0) 6780 tp->t_flags &= ~TF_PREVVALID; 6781 KMOD_TCPSTAT_INC(tcps_rexmttimeo); 6782 if ((tp->t_state == TCPS_SYN_SENT) || 6783 (tp->t_state == TCPS_SYN_RECEIVED)) 6784 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]; 6785 else 6786 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift]; 6787 6788 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt, 6789 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop); 6790 /* 6791 * We enter the path for PLMTUD if connection is established or, if 6792 * connection is FIN_WAIT_1 status, reason for the last is that if 6793 * amount of data we send is very small, we could send it in couple 6794 * of packets and process straight to FIN. In that case we won't 6795 * catch ESTABLISHED state. 6796 */ 6797 #ifdef INET6 6798 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false; 6799 #else 6800 isipv6 = false; 6801 #endif 6802 if (((V_tcp_pmtud_blackhole_detect == 1) || 6803 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || 6804 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && 6805 ((tp->t_state == TCPS_ESTABLISHED) || 6806 (tp->t_state == TCPS_FIN_WAIT_1))) { 6807 /* 6808 * Idea here is that at each stage of mtu probe (usually, 6809 * 1448 -> 1188 -> 524) should be given 2 chances to recover 6810 * before further clamping down. 'tp->t_rxtshift % 2 == 0' 6811 * should take care of that. 6812 */ 6813 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == 6814 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && 6815 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && 6816 tp->t_rxtshift % 2 == 0)) { 6817 /* 6818 * Enter Path MTU Black-hole Detection mechanism: - 6819 * Disable Path MTU Discovery (IP "DF" bit). - 6820 * Reduce MTU to lower value than what we negotiated 6821 * with peer. 6822 */ 6823 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { 6824 /* Record that we may have found a black hole. */ 6825 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; 6826 /* Keep track of previous MSS. */ 6827 tp->t_pmtud_saved_maxseg = tp->t_maxseg; 6828 } 6829 6830 /* 6831 * Reduce the MSS to blackhole value or to the 6832 * default in an attempt to retransmit. 6833 */ 6834 #ifdef INET6 6835 if (isipv6 && 6836 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { 6837 /* Use the sysctl tuneable blackhole MSS. */ 6838 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; 6839 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 6840 } else if (isipv6) { 6841 /* Use the default MSS. */ 6842 tp->t_maxseg = V_tcp_v6mssdflt; 6843 /* 6844 * Disable Path MTU Discovery when we switch 6845 * to minmss. 6846 */ 6847 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 6848 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 6849 } 6850 #endif 6851 #if defined(INET6) && defined(INET) 6852 else 6853 #endif 6854 #ifdef INET 6855 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { 6856 /* Use the sysctl tuneable blackhole MSS. */ 6857 tp->t_maxseg = V_tcp_pmtud_blackhole_mss; 6858 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 6859 } else { 6860 /* Use the default MSS. */ 6861 tp->t_maxseg = V_tcp_mssdflt; 6862 /* 6863 * Disable Path MTU Discovery when we switch 6864 * to minmss. 6865 */ 6866 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 6867 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 6868 } 6869 #endif 6870 } else { 6871 /* 6872 * If further retransmissions are still unsuccessful 6873 * with a lowered MTU, maybe this isn't a blackhole 6874 * and we restore the previous MSS and blackhole 6875 * detection flags. The limit '6' is determined by 6876 * giving each probe stage (1448, 1188, 524) 2 6877 * chances to recover. 6878 */ 6879 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && 6880 (tp->t_rxtshift >= 6)) { 6881 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 6882 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; 6883 tp->t_maxseg = tp->t_pmtud_saved_maxseg; 6884 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); 6885 } 6886 } 6887 } 6888 /* 6889 * Disable RFC1323 and SACK if we haven't got any response to 6890 * our third SYN to work-around some broken terminal servers 6891 * (most of which have hopefully been retired) that have bad VJ 6892 * header compression code which trashes TCP segments containing 6893 * unknown-to-them TCP options. 6894 */ 6895 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && 6896 (tp->t_rxtshift == 3)) 6897 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT); 6898 /* 6899 * If we backed off this far, our srtt estimate is probably bogus. 6900 * Clobber it so we'll take the next rtt measurement as our srtt; 6901 * move the current srtt into rttvar to keep the current retransmit 6902 * times until then. 6903 */ 6904 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { 6905 #ifdef INET6 6906 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 6907 in6_losing(tp->t_inpcb); 6908 else 6909 #endif 6910 in_losing(tp->t_inpcb); 6911 tp->t_rttvar += tp->t_srtt; 6912 tp->t_srtt = 0; 6913 } 6914 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 6915 tp->snd_recover = tp->snd_max; 6916 tp->t_flags |= TF_ACKNOW; 6917 tp->t_rtttime = 0; 6918 rack_cong_signal(tp, CC_RTO, tp->snd_una, __LINE__); 6919 out: 6920 return (retval); 6921 } 6922 6923 static int 6924 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp) 6925 { 6926 int32_t ret = 0; 6927 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); 6928 6929 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 6930 (tp->t_flags & TF_GPUTINPROG)) { 6931 /* 6932 * We have a goodput in progress 6933 * and we have entered a late state. 6934 * Do we have enough data in the sb 6935 * to handle the GPUT request? 6936 */ 6937 uint32_t bytes; 6938 6939 bytes = tp->gput_ack - tp->gput_seq; 6940 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 6941 bytes += tp->gput_seq - tp->snd_una; 6942 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 6943 /* 6944 * There are not enough bytes in the socket 6945 * buffer that have been sent to cover this 6946 * measurement. Cancel it. 6947 */ 6948 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6949 rack->r_ctl.rc_gp_srtt /*flex1*/, 6950 tp->gput_seq, 6951 0, 0, 18, __LINE__, NULL, 0); 6952 tp->t_flags &= ~TF_GPUTINPROG; 6953 } 6954 } 6955 if (timers == 0) { 6956 return (0); 6957 } 6958 if (tp->t_state == TCPS_LISTEN) { 6959 /* no timers on listen sockets */ 6960 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) 6961 return (0); 6962 return (1); 6963 } 6964 if ((timers & PACE_TMR_RACK) && 6965 rack->rc_on_min_to) { 6966 /* 6967 * For the rack timer when we 6968 * are on a min-timeout (which means rrr_conf = 3) 6969 * we don't want to check the timer. It may 6970 * be going off for a pace and thats ok we 6971 * want to send the retransmit (if its ready). 6972 * 6973 * If its on a normal rack timer (non-min) then 6974 * we will check if its expired. 6975 */ 6976 goto skip_time_check; 6977 } 6978 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6979 uint32_t left; 6980 6981 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 6982 ret = -1; 6983 rack_log_to_processing(rack, cts, ret, 0); 6984 return (0); 6985 } 6986 if (hpts_calling == 0) { 6987 /* 6988 * A user send or queued mbuf (sack) has called us? We 6989 * return 0 and let the pacing guards 6990 * deal with it if they should or 6991 * should not cause a send. 6992 */ 6993 ret = -2; 6994 rack_log_to_processing(rack, cts, ret, 0); 6995 return (0); 6996 } 6997 /* 6998 * Ok our timer went off early and we are not paced false 6999 * alarm, go back to sleep. 7000 */ 7001 ret = -3; 7002 left = rack->r_ctl.rc_timer_exp - cts; 7003 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left)); 7004 rack_log_to_processing(rack, cts, ret, left); 7005 return (1); 7006 } 7007 skip_time_check: 7008 rack->rc_tmr_stopped = 0; 7009 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; 7010 if (timers & PACE_TMR_DELACK) { 7011 ret = rack_timeout_delack(tp, rack, cts); 7012 } else if (timers & PACE_TMR_RACK) { 7013 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7014 rack->r_fast_output = 0; 7015 ret = rack_timeout_rack(tp, rack, cts); 7016 } else if (timers & PACE_TMR_TLP) { 7017 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7018 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp); 7019 } else if (timers & PACE_TMR_RXT) { 7020 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7021 rack->r_fast_output = 0; 7022 ret = rack_timeout_rxt(tp, rack, cts); 7023 } else if (timers & PACE_TMR_PERSIT) { 7024 ret = rack_timeout_persist(tp, rack, cts); 7025 } else if (timers & PACE_TMR_KEEP) { 7026 ret = rack_timeout_keepalive(tp, rack, cts); 7027 } 7028 rack_log_to_processing(rack, cts, ret, timers); 7029 return (ret); 7030 } 7031 7032 static void 7033 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) 7034 { 7035 struct timeval tv; 7036 uint32_t us_cts, flags_on_entry; 7037 uint8_t hpts_removed = 0; 7038 7039 flags_on_entry = rack->r_ctl.rc_hpts_flags; 7040 us_cts = tcp_get_usecs(&tv); 7041 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 7042 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || 7043 ((tp->snd_max - tp->snd_una) == 0))) { 7044 tcp_hpts_remove(rack->rc_inp); 7045 hpts_removed = 1; 7046 /* If we were not delayed cancel out the flag. */ 7047 if ((tp->snd_max - tp->snd_una) == 0) 7048 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7049 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7050 } 7051 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 7052 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 7053 if (tcp_in_hpts(rack->rc_inp) && 7054 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { 7055 /* 7056 * Canceling timer's when we have no output being 7057 * paced. We also must remove ourselves from the 7058 * hpts. 7059 */ 7060 tcp_hpts_remove(rack->rc_inp); 7061 hpts_removed = 1; 7062 } 7063 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); 7064 } 7065 if (hpts_removed == 0) 7066 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7067 } 7068 7069 static void 7070 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type) 7071 { 7072 return; 7073 } 7074 7075 static int 7076 rack_stopall(struct tcpcb *tp) 7077 { 7078 struct tcp_rack *rack; 7079 rack = (struct tcp_rack *)tp->t_fb_ptr; 7080 rack->t_timers_stopped = 1; 7081 return (0); 7082 } 7083 7084 static void 7085 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) 7086 { 7087 return; 7088 } 7089 7090 static int 7091 rack_timer_active(struct tcpcb *tp, uint32_t timer_type) 7092 { 7093 return (0); 7094 } 7095 7096 static void 7097 rack_stop_all_timers(struct tcpcb *tp) 7098 { 7099 struct tcp_rack *rack; 7100 7101 /* 7102 * Assure no timers are running. 7103 */ 7104 if (tcp_timer_active(tp, TT_PERSIST)) { 7105 /* We enter in persists, set the flag appropriately */ 7106 rack = (struct tcp_rack *)tp->t_fb_ptr; 7107 rack->rc_in_persist = 1; 7108 } 7109 tcp_timer_suspend(tp, TT_PERSIST); 7110 tcp_timer_suspend(tp, TT_REXMT); 7111 tcp_timer_suspend(tp, TT_KEEP); 7112 tcp_timer_suspend(tp, TT_DELACK); 7113 } 7114 7115 static void 7116 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 7117 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag) 7118 { 7119 int32_t idx; 7120 7121 rsm->r_rtr_cnt++; 7122 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7123 rsm->r_dupack = 0; 7124 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { 7125 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; 7126 rsm->r_flags |= RACK_OVERMAX; 7127 } 7128 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { 7129 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); 7130 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); 7131 } 7132 idx = rsm->r_rtr_cnt - 1; 7133 rsm->r_tim_lastsent[idx] = ts; 7134 /* 7135 * Here we don't add in the len of send, since its already 7136 * in snduna <->snd_max. 7137 */ 7138 rsm->r_fas = ctf_flight_size(rack->rc_tp, 7139 rack->r_ctl.rc_sacked); 7140 if (rsm->r_flags & RACK_ACKED) { 7141 /* Problably MTU discovery messing with us */ 7142 rsm->r_flags &= ~RACK_ACKED; 7143 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 7144 } 7145 if (rsm->r_in_tmap) { 7146 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7147 rsm->r_in_tmap = 0; 7148 } 7149 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7150 rsm->r_in_tmap = 1; 7151 /* Take off the must retransmit flag, if its on */ 7152 if (rsm->r_flags & RACK_MUST_RXT) { 7153 if (rack->r_must_retran) 7154 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 7155 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 7156 /* 7157 * We have retransmitted all we need. Clear 7158 * any must retransmit flags. 7159 */ 7160 rack->r_must_retran = 0; 7161 rack->r_ctl.rc_out_at_rto = 0; 7162 } 7163 rsm->r_flags &= ~RACK_MUST_RXT; 7164 } 7165 if (rsm->r_flags & RACK_SACK_PASSED) { 7166 /* We have retransmitted due to the SACK pass */ 7167 rsm->r_flags &= ~RACK_SACK_PASSED; 7168 rsm->r_flags |= RACK_WAS_SACKPASS; 7169 } 7170 } 7171 7172 static uint32_t 7173 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 7174 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag) 7175 { 7176 /* 7177 * We (re-)transmitted starting at rsm->r_start for some length 7178 * (possibly less than r_end. 7179 */ 7180 struct rack_sendmap *nrsm; 7181 #ifdef INVARIANTS 7182 struct rack_sendmap *insret; 7183 #endif 7184 uint32_t c_end; 7185 int32_t len; 7186 7187 len = *lenp; 7188 c_end = rsm->r_start + len; 7189 if (SEQ_GEQ(c_end, rsm->r_end)) { 7190 /* 7191 * We retransmitted the whole piece or more than the whole 7192 * slopping into the next rsm. 7193 */ 7194 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7195 if (c_end == rsm->r_end) { 7196 *lenp = 0; 7197 return (0); 7198 } else { 7199 int32_t act_len; 7200 7201 /* Hangs over the end return whats left */ 7202 act_len = rsm->r_end - rsm->r_start; 7203 *lenp = (len - act_len); 7204 return (rsm->r_end); 7205 } 7206 /* We don't get out of this block. */ 7207 } 7208 /* 7209 * Here we retransmitted less than the whole thing which means we 7210 * have to split this into what was transmitted and what was not. 7211 */ 7212 nrsm = rack_alloc_full_limit(rack); 7213 if (nrsm == NULL) { 7214 /* 7215 * We can't get memory, so lets not proceed. 7216 */ 7217 *lenp = 0; 7218 return (0); 7219 } 7220 /* 7221 * So here we are going to take the original rsm and make it what we 7222 * retransmitted. nrsm will be the tail portion we did not 7223 * retransmit. For example say the chunk was 1, 11 (10 bytes). And 7224 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to 7225 * 1, 6 and the new piece will be 6, 11. 7226 */ 7227 rack_clone_rsm(rack, nrsm, rsm, c_end); 7228 nrsm->r_dupack = 0; 7229 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 7230 #ifndef INVARIANTS 7231 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7232 #else 7233 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7234 if (insret != NULL) { 7235 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7236 nrsm, insret, rack, rsm); 7237 } 7238 #endif 7239 if (rsm->r_in_tmap) { 7240 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7241 nrsm->r_in_tmap = 1; 7242 } 7243 rsm->r_flags &= (~RACK_HAS_FIN); 7244 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7245 /* Log a split of rsm into rsm and nrsm */ 7246 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7247 *lenp = 0; 7248 return (0); 7249 } 7250 7251 static void 7252 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 7253 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts, 7254 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls) 7255 { 7256 struct tcp_rack *rack; 7257 struct rack_sendmap *rsm, *nrsm, fe; 7258 #ifdef INVARIANTS 7259 struct rack_sendmap *insret; 7260 #endif 7261 register uint32_t snd_max, snd_una; 7262 7263 /* 7264 * Add to the RACK log of packets in flight or retransmitted. If 7265 * there is a TS option we will use the TS echoed, if not we will 7266 * grab a TS. 7267 * 7268 * Retransmissions will increment the count and move the ts to its 7269 * proper place. Note that if options do not include TS's then we 7270 * won't be able to effectively use the ACK for an RTT on a retran. 7271 * 7272 * Notes about r_start and r_end. Lets consider a send starting at 7273 * sequence 1 for 10 bytes. In such an example the r_start would be 7274 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. 7275 * This means that r_end is actually the first sequence for the next 7276 * slot (11). 7277 * 7278 */ 7279 /* 7280 * If err is set what do we do XXXrrs? should we not add the thing? 7281 * -- i.e. return if err != 0 or should we pretend we sent it? -- 7282 * i.e. proceed with add ** do this for now. 7283 */ 7284 INP_WLOCK_ASSERT(tp->t_inpcb); 7285 if (err) 7286 /* 7287 * We don't log errors -- we could but snd_max does not 7288 * advance in this case either. 7289 */ 7290 return; 7291 7292 if (th_flags & TH_RST) { 7293 /* 7294 * We don't log resets and we return immediately from 7295 * sending 7296 */ 7297 return; 7298 } 7299 rack = (struct tcp_rack *)tp->t_fb_ptr; 7300 snd_una = tp->snd_una; 7301 snd_max = tp->snd_max; 7302 if (th_flags & (TH_SYN | TH_FIN)) { 7303 /* 7304 * The call to rack_log_output is made before bumping 7305 * snd_max. This means we can record one extra byte on a SYN 7306 * or FIN if seq_out is adding more on and a FIN is present 7307 * (and we are not resending). 7308 */ 7309 if ((th_flags & TH_SYN) && (seq_out == tp->iss)) 7310 len++; 7311 if (th_flags & TH_FIN) 7312 len++; 7313 if (SEQ_LT(snd_max, tp->snd_nxt)) { 7314 /* 7315 * The add/update as not been done for the FIN/SYN 7316 * yet. 7317 */ 7318 snd_max = tp->snd_nxt; 7319 } 7320 } 7321 if (SEQ_LEQ((seq_out + len), snd_una)) { 7322 /* Are sending an old segment to induce an ack (keep-alive)? */ 7323 return; 7324 } 7325 if (SEQ_LT(seq_out, snd_una)) { 7326 /* huh? should we panic? */ 7327 uint32_t end; 7328 7329 end = seq_out + len; 7330 seq_out = snd_una; 7331 if (SEQ_GEQ(end, seq_out)) 7332 len = end - seq_out; 7333 else 7334 len = 0; 7335 } 7336 if (len == 0) { 7337 /* We don't log zero window probes */ 7338 return; 7339 } 7340 if (IN_FASTRECOVERY(tp->t_flags)) { 7341 rack->r_ctl.rc_prr_out += len; 7342 } 7343 /* First question is it a retransmission or new? */ 7344 if (seq_out == snd_max) { 7345 /* Its new */ 7346 again: 7347 rsm = rack_alloc(rack); 7348 if (rsm == NULL) { 7349 /* 7350 * Hmm out of memory and the tcb got destroyed while 7351 * we tried to wait. 7352 */ 7353 return; 7354 } 7355 if (th_flags & TH_FIN) { 7356 rsm->r_flags = RACK_HAS_FIN|add_flag; 7357 } else { 7358 rsm->r_flags = add_flag; 7359 } 7360 if (hw_tls) 7361 rsm->r_hw_tls = 1; 7362 rsm->r_tim_lastsent[0] = cts; 7363 rsm->r_rtr_cnt = 1; 7364 rsm->r_rtr_bytes = 0; 7365 if (th_flags & TH_SYN) { 7366 /* The data space is one beyond snd_una */ 7367 rsm->r_flags |= RACK_HAS_SYN; 7368 } 7369 rsm->r_start = seq_out; 7370 rsm->r_end = rsm->r_start + len; 7371 rsm->r_dupack = 0; 7372 /* 7373 * save off the mbuf location that 7374 * sndmbuf_noadv returned (which is 7375 * where we started copying from).. 7376 */ 7377 rsm->m = s_mb; 7378 rsm->soff = s_moff; 7379 /* 7380 * Here we do add in the len of send, since its not yet 7381 * reflected in in snduna <->snd_max 7382 */ 7383 rsm->r_fas = (ctf_flight_size(rack->rc_tp, 7384 rack->r_ctl.rc_sacked) + 7385 (rsm->r_end - rsm->r_start)); 7386 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */ 7387 if (rsm->m) { 7388 if (rsm->m->m_len <= rsm->soff) { 7389 /* 7390 * XXXrrs Question, will this happen? 7391 * 7392 * If sbsndptr is set at the correct place 7393 * then s_moff should always be somewhere 7394 * within rsm->m. But if the sbsndptr was 7395 * off then that won't be true. If it occurs 7396 * we need to walkout to the correct location. 7397 */ 7398 struct mbuf *lm; 7399 7400 lm = rsm->m; 7401 while (lm->m_len <= rsm->soff) { 7402 rsm->soff -= lm->m_len; 7403 lm = lm->m_next; 7404 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u", 7405 __func__, rack, s_moff, s_mb, rsm->soff)); 7406 } 7407 rsm->m = lm; 7408 } 7409 rsm->orig_m_len = rsm->m->m_len; 7410 } else 7411 rsm->orig_m_len = 0; 7412 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7413 /* Log a new rsm */ 7414 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__); 7415 #ifndef INVARIANTS 7416 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7417 #else 7418 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7419 if (insret != NULL) { 7420 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7421 nrsm, insret, rack, rsm); 7422 } 7423 #endif 7424 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7425 rsm->r_in_tmap = 1; 7426 /* 7427 * Special case detection, is there just a single 7428 * packet outstanding when we are not in recovery? 7429 * 7430 * If this is true mark it so. 7431 */ 7432 if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 7433 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { 7434 struct rack_sendmap *prsm; 7435 7436 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7437 if (prsm) 7438 prsm->r_one_out_nr = 1; 7439 } 7440 return; 7441 } 7442 /* 7443 * If we reach here its a retransmission and we need to find it. 7444 */ 7445 memset(&fe, 0, sizeof(fe)); 7446 more: 7447 if (hintrsm && (hintrsm->r_start == seq_out)) { 7448 rsm = hintrsm; 7449 hintrsm = NULL; 7450 } else { 7451 /* No hints sorry */ 7452 rsm = NULL; 7453 } 7454 if ((rsm) && (rsm->r_start == seq_out)) { 7455 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7456 if (len == 0) { 7457 return; 7458 } else { 7459 goto more; 7460 } 7461 } 7462 /* Ok it was not the last pointer go through it the hard way. */ 7463 refind: 7464 fe.r_start = seq_out; 7465 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 7466 if (rsm) { 7467 if (rsm->r_start == seq_out) { 7468 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7469 if (len == 0) { 7470 return; 7471 } else { 7472 goto refind; 7473 } 7474 } 7475 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { 7476 /* Transmitted within this piece */ 7477 /* 7478 * Ok we must split off the front and then let the 7479 * update do the rest 7480 */ 7481 nrsm = rack_alloc_full_limit(rack); 7482 if (nrsm == NULL) { 7483 rack_update_rsm(tp, rack, rsm, cts, add_flag); 7484 return; 7485 } 7486 /* 7487 * copy rsm to nrsm and then trim the front of rsm 7488 * to not include this part. 7489 */ 7490 rack_clone_rsm(rack, nrsm, rsm, seq_out); 7491 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7492 #ifndef INVARIANTS 7493 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7494 #else 7495 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7496 if (insret != NULL) { 7497 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7498 nrsm, insret, rack, rsm); 7499 } 7500 #endif 7501 if (rsm->r_in_tmap) { 7502 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7503 nrsm->r_in_tmap = 1; 7504 } 7505 rsm->r_flags &= (~RACK_HAS_FIN); 7506 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag); 7507 if (len == 0) { 7508 return; 7509 } else if (len > 0) 7510 goto refind; 7511 } 7512 } 7513 /* 7514 * Hmm not found in map did they retransmit both old and on into the 7515 * new? 7516 */ 7517 if (seq_out == tp->snd_max) { 7518 goto again; 7519 } else if (SEQ_LT(seq_out, tp->snd_max)) { 7520 #ifdef INVARIANTS 7521 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", 7522 seq_out, len, tp->snd_una, tp->snd_max); 7523 printf("Starting Dump of all rack entries\n"); 7524 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 7525 printf("rsm:%p start:%u end:%u\n", 7526 rsm, rsm->r_start, rsm->r_end); 7527 } 7528 printf("Dump complete\n"); 7529 panic("seq_out not found rack:%p tp:%p", 7530 rack, tp); 7531 #endif 7532 } else { 7533 #ifdef INVARIANTS 7534 /* 7535 * Hmm beyond sndmax? (only if we are using the new rtt-pack 7536 * flag) 7537 */ 7538 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", 7539 seq_out, len, tp->snd_max, tp); 7540 #endif 7541 } 7542 } 7543 7544 /* 7545 * Record one of the RTT updates from an ack into 7546 * our sample structure. 7547 */ 7548 7549 static void 7550 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, 7551 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) 7552 { 7553 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7554 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { 7555 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; 7556 } 7557 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7558 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { 7559 rack->r_ctl.rack_rs.rs_rtt_highest = rtt; 7560 } 7561 if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 7562 if (us_rtt < rack->r_ctl.rc_gp_lowrtt) 7563 rack->r_ctl.rc_gp_lowrtt = us_rtt; 7564 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) 7565 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 7566 } 7567 if ((confidence == 1) && 7568 ((rsm == NULL) || 7569 (rsm->r_just_ret) || 7570 (rsm->r_one_out_nr && 7571 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { 7572 /* 7573 * If the rsm had a just return 7574 * hit it then we can't trust the 7575 * rtt measurement for buffer deterimination 7576 * Note that a confidence of 2, indicates 7577 * SACK'd which overrides the r_just_ret or 7578 * the r_one_out_nr. If it was a CUM-ACK and 7579 * we had only two outstanding, but get an 7580 * ack for only 1. Then that also lowers our 7581 * confidence. 7582 */ 7583 confidence = 0; 7584 } 7585 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7586 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { 7587 if (rack->r_ctl.rack_rs.confidence == 0) { 7588 /* 7589 * We take anything with no current confidence 7590 * saved. 7591 */ 7592 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7593 rack->r_ctl.rack_rs.confidence = confidence; 7594 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7595 } else if (confidence || rack->r_ctl.rack_rs.confidence) { 7596 /* 7597 * Once we have a confident number, 7598 * we can update it with a smaller 7599 * value since this confident number 7600 * may include the DSACK time until 7601 * the next segment (the second one) arrived. 7602 */ 7603 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7604 rack->r_ctl.rack_rs.confidence = confidence; 7605 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7606 } 7607 } 7608 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); 7609 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; 7610 rack->r_ctl.rack_rs.rs_rtt_tot += rtt; 7611 rack->r_ctl.rack_rs.rs_rtt_cnt++; 7612 } 7613 7614 /* 7615 * Collect new round-trip time estimate 7616 * and update averages and current timeout. 7617 */ 7618 static void 7619 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) 7620 { 7621 int32_t delta; 7622 int32_t rtt; 7623 7624 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) 7625 /* No valid sample */ 7626 return; 7627 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { 7628 /* We are to use the lowest RTT seen in a single ack */ 7629 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 7630 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { 7631 /* We are to use the highest RTT seen in a single ack */ 7632 rtt = rack->r_ctl.rack_rs.rs_rtt_highest; 7633 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { 7634 /* We are to use the average RTT seen in a single ack */ 7635 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / 7636 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); 7637 } else { 7638 #ifdef INVARIANTS 7639 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); 7640 #endif 7641 return; 7642 } 7643 if (rtt == 0) 7644 rtt = 1; 7645 if (rack->rc_gp_rtt_set == 0) { 7646 /* 7647 * With no RTT we have to accept 7648 * even one we are not confident of. 7649 */ 7650 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; 7651 rack->rc_gp_rtt_set = 1; 7652 } else if (rack->r_ctl.rack_rs.confidence) { 7653 /* update the running gp srtt */ 7654 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); 7655 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; 7656 } 7657 if (rack->r_ctl.rack_rs.confidence) { 7658 /* 7659 * record the low and high for highly buffered path computation, 7660 * we only do this if we are confident (not a retransmission). 7661 */ 7662 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { 7663 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7664 } 7665 if (rack->rc_highly_buffered == 0) { 7666 /* 7667 * Currently once we declare a path has 7668 * highly buffered there is no going 7669 * back, which may be a problem... 7670 */ 7671 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { 7672 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, 7673 rack->r_ctl.rc_highest_us_rtt, 7674 rack->r_ctl.rc_lowest_us_rtt, 7675 RACK_RTTS_SEEHBP); 7676 rack->rc_highly_buffered = 1; 7677 } 7678 } 7679 } 7680 if ((rack->r_ctl.rack_rs.confidence) || 7681 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { 7682 /* 7683 * If we are highly confident of it <or> it was 7684 * never retransmitted we accept it as the last us_rtt. 7685 */ 7686 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7687 /* The lowest rtt can be set if its was not retransmited */ 7688 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { 7689 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7690 if (rack->r_ctl.rc_lowest_us_rtt == 0) 7691 rack->r_ctl.rc_lowest_us_rtt = 1; 7692 } 7693 } 7694 rack = (struct tcp_rack *)tp->t_fb_ptr; 7695 if (tp->t_srtt != 0) { 7696 /* 7697 * We keep a simple srtt in microseconds, like our rtt 7698 * measurement. We don't need to do any tricks with shifting 7699 * etc. Instead we just add in 1/8th of the new measurement 7700 * and subtract out 1/8 of the old srtt. We do the same with 7701 * the variance after finding the absolute value of the 7702 * difference between this sample and the current srtt. 7703 */ 7704 delta = tp->t_srtt - rtt; 7705 /* Take off 1/8th of the current sRTT */ 7706 tp->t_srtt -= (tp->t_srtt >> 3); 7707 /* Add in 1/8th of the new RTT just measured */ 7708 tp->t_srtt += (rtt >> 3); 7709 if (tp->t_srtt <= 0) 7710 tp->t_srtt = 1; 7711 /* Now lets make the absolute value of the variance */ 7712 if (delta < 0) 7713 delta = -delta; 7714 /* Subtract out 1/8th */ 7715 tp->t_rttvar -= (tp->t_rttvar >> 3); 7716 /* Add in 1/8th of the new variance we just saw */ 7717 tp->t_rttvar += (delta >> 3); 7718 if (tp->t_rttvar <= 0) 7719 tp->t_rttvar = 1; 7720 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 7721 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7722 } else { 7723 /* 7724 * No rtt measurement yet - use the unsmoothed rtt. Set the 7725 * variance to half the rtt (so our first retransmit happens 7726 * at 3*rtt). 7727 */ 7728 tp->t_srtt = rtt; 7729 tp->t_rttvar = rtt >> 1; 7730 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7731 } 7732 rack->rc_srtt_measure_made = 1; 7733 KMOD_TCPSTAT_INC(tcps_rttupdated); 7734 tp->t_rttupdated++; 7735 #ifdef STATS 7736 if (rack_stats_gets_ms_rtt == 0) { 7737 /* Send in the microsecond rtt used for rxt timeout purposes */ 7738 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); 7739 } else if (rack_stats_gets_ms_rtt == 1) { 7740 /* Send in the millisecond rtt used for rxt timeout purposes */ 7741 int32_t ms_rtt; 7742 7743 /* Round up */ 7744 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7745 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7746 } else if (rack_stats_gets_ms_rtt == 2) { 7747 /* Send in the millisecond rtt has close to the path RTT as we can get */ 7748 int32_t ms_rtt; 7749 7750 /* Round up */ 7751 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7752 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7753 } else { 7754 /* Send in the microsecond rtt has close to the path RTT as we can get */ 7755 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 7756 } 7757 7758 #endif 7759 /* 7760 * the retransmit should happen at rtt + 4 * rttvar. Because of the 7761 * way we do the smoothing, srtt and rttvar will each average +1/2 7762 * tick of bias. When we compute the retransmit timer, we want 1/2 7763 * tick of rounding and 1 extra tick because of +-1/2 tick 7764 * uncertainty in the firing of the timer. The bias will give us 7765 * exactly the 1.5 tick we need. But, because the bias is 7766 * statistical, we have to test that we don't drop below the minimum 7767 * feasible timer (which is 2 ticks). 7768 */ 7769 tp->t_rxtshift = 0; 7770 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7771 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop); 7772 rack_log_rtt_sample(rack, rtt); 7773 tp->t_softerror = 0; 7774 } 7775 7776 7777 static void 7778 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) 7779 { 7780 /* 7781 * Apply to filter the inbound us-rtt at us_cts. 7782 */ 7783 uint32_t old_rtt; 7784 7785 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 7786 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, 7787 us_rtt, us_cts); 7788 if (old_rtt > us_rtt) { 7789 /* We just hit a new lower rtt time */ 7790 rack_log_rtt_shrinks(rack, us_cts, old_rtt, 7791 __LINE__, RACK_RTTS_NEWRTT); 7792 /* 7793 * Only count it if its lower than what we saw within our 7794 * calculated range. 7795 */ 7796 if ((old_rtt - us_rtt) > rack_min_rtt_movement) { 7797 if (rack_probertt_lower_within && 7798 rack->rc_gp_dyn_mul && 7799 (rack->use_fixed_rate == 0) && 7800 (rack->rc_always_pace)) { 7801 /* 7802 * We are seeing a new lower rtt very close 7803 * to the time that we would have entered probe-rtt. 7804 * This is probably due to the fact that a peer flow 7805 * has entered probe-rtt. Lets go in now too. 7806 */ 7807 uint32_t val; 7808 7809 val = rack_probertt_lower_within * rack_time_between_probertt; 7810 val /= 100; 7811 if ((rack->in_probe_rtt == 0) && 7812 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { 7813 rack_enter_probertt(rack, us_cts); 7814 } 7815 } 7816 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 7817 } 7818 } 7819 } 7820 7821 static int 7822 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 7823 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) 7824 { 7825 uint32_t us_rtt; 7826 int32_t i, all; 7827 uint32_t t, len_acked; 7828 7829 if ((rsm->r_flags & RACK_ACKED) || 7830 (rsm->r_flags & RACK_WAS_ACKED)) 7831 /* Already done */ 7832 return (0); 7833 if (rsm->r_no_rtt_allowed) { 7834 /* Not allowed */ 7835 return (0); 7836 } 7837 if (ack_type == CUM_ACKED) { 7838 if (SEQ_GT(th_ack, rsm->r_end)) { 7839 len_acked = rsm->r_end - rsm->r_start; 7840 all = 1; 7841 } else { 7842 len_acked = th_ack - rsm->r_start; 7843 all = 0; 7844 } 7845 } else { 7846 len_acked = rsm->r_end - rsm->r_start; 7847 all = 0; 7848 } 7849 if (rsm->r_rtr_cnt == 1) { 7850 7851 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7852 if ((int)t <= 0) 7853 t = 1; 7854 if (!tp->t_rttlow || tp->t_rttlow > t) 7855 tp->t_rttlow = t; 7856 if (!rack->r_ctl.rc_rack_min_rtt || 7857 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7858 rack->r_ctl.rc_rack_min_rtt = t; 7859 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7860 rack->r_ctl.rc_rack_min_rtt = 1; 7861 } 7862 } 7863 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) 7864 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7865 else 7866 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7867 if (us_rtt == 0) 7868 us_rtt = 1; 7869 if (CC_ALGO(tp)->rttsample != NULL) { 7870 /* Kick the RTT to the CC */ 7871 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 7872 } 7873 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 7874 if (ack_type == SACKED) { 7875 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1); 7876 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); 7877 } else { 7878 /* 7879 * We need to setup what our confidence 7880 * is in this ack. 7881 * 7882 * If the rsm was app limited and it is 7883 * less than a mss in length (the end 7884 * of the send) then we have a gap. If we 7885 * were app limited but say we were sending 7886 * multiple MSS's then we are more confident 7887 * int it. 7888 * 7889 * When we are not app-limited then we see if 7890 * the rsm is being included in the current 7891 * measurement, we tell this by the app_limited_needs_set 7892 * flag. 7893 * 7894 * Note that being cwnd blocked is not applimited 7895 * as well as the pacing delay between packets which 7896 * are sending only 1 or 2 MSS's also will show up 7897 * in the RTT. We probably need to examine this algorithm 7898 * a bit more and enhance it to account for the delay 7899 * between rsm's. We could do that by saving off the 7900 * pacing delay of each rsm (in an rsm) and then 7901 * factoring that in somehow though for now I am 7902 * not sure how :) 7903 */ 7904 int calc_conf = 0; 7905 7906 if (rsm->r_flags & RACK_APP_LIMITED) { 7907 if (all && (len_acked <= ctf_fixed_maxseg(tp))) 7908 calc_conf = 0; 7909 else 7910 calc_conf = 1; 7911 } else if (rack->app_limited_needs_set == 0) { 7912 calc_conf = 1; 7913 } else { 7914 calc_conf = 0; 7915 } 7916 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2); 7917 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 7918 calc_conf, rsm, rsm->r_rtr_cnt); 7919 } 7920 if ((rsm->r_flags & RACK_TLP) && 7921 (!IN_FASTRECOVERY(tp->t_flags))) { 7922 /* Segment was a TLP and our retrans matched */ 7923 if (rack->r_ctl.rc_tlp_cwnd_reduce) { 7924 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 7925 } 7926 } 7927 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 7928 /* New more recent rack_tmit_time */ 7929 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7930 rack->rc_rack_rtt = t; 7931 } 7932 return (1); 7933 } 7934 /* 7935 * We clear the soft/rxtshift since we got an ack. 7936 * There is no assurance we will call the commit() function 7937 * so we need to clear these to avoid incorrect handling. 7938 */ 7939 tp->t_rxtshift = 0; 7940 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7941 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 7942 tp->t_softerror = 0; 7943 if (to && (to->to_flags & TOF_TS) && 7944 (ack_type == CUM_ACKED) && 7945 (to->to_tsecr) && 7946 ((rsm->r_flags & RACK_OVERMAX) == 0)) { 7947 /* 7948 * Now which timestamp does it match? In this block the ACK 7949 * must be coming from a previous transmission. 7950 */ 7951 for (i = 0; i < rsm->r_rtr_cnt; i++) { 7952 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) { 7953 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 7954 if ((int)t <= 0) 7955 t = 1; 7956 if (CC_ALGO(tp)->rttsample != NULL) { 7957 /* 7958 * Kick the RTT to the CC, here 7959 * we lie a bit in that we know the 7960 * retransmission is correct even though 7961 * we retransmitted. This is because 7962 * we match the timestamps. 7963 */ 7964 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i])) 7965 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i]; 7966 else 7967 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i]; 7968 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 7969 } 7970 if ((i + 1) < rsm->r_rtr_cnt) { 7971 /* 7972 * The peer ack'd from our previous 7973 * transmission. We have a spurious 7974 * retransmission and thus we dont 7975 * want to update our rack_rtt. 7976 * 7977 * Hmm should there be a CC revert here? 7978 * 7979 */ 7980 return (0); 7981 } 7982 if (!tp->t_rttlow || tp->t_rttlow > t) 7983 tp->t_rttlow = t; 7984 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7985 rack->r_ctl.rc_rack_min_rtt = t; 7986 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7987 rack->r_ctl.rc_rack_min_rtt = 1; 7988 } 7989 } 7990 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 7991 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 7992 /* New more recent rack_tmit_time */ 7993 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7994 rack->rc_rack_rtt = t; 7995 } 7996 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3); 7997 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm, 7998 rsm->r_rtr_cnt); 7999 return (1); 8000 } 8001 } 8002 goto ts_not_found; 8003 } else { 8004 /* 8005 * Ok its a SACK block that we retransmitted. or a windows 8006 * machine without timestamps. We can tell nothing from the 8007 * time-stamp since its not there or the time the peer last 8008 * recieved a segment that moved forward its cum-ack point. 8009 */ 8010 ts_not_found: 8011 i = rsm->r_rtr_cnt - 1; 8012 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 8013 if ((int)t <= 0) 8014 t = 1; 8015 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8016 /* 8017 * We retransmitted and the ack came back in less 8018 * than the smallest rtt we have observed. We most 8019 * likely did an improper retransmit as outlined in 8020 * 6.2 Step 2 point 2 in the rack-draft so we 8021 * don't want to update our rack_rtt. We in 8022 * theory (in future) might want to think about reverting our 8023 * cwnd state but we won't for now. 8024 */ 8025 return (0); 8026 } else if (rack->r_ctl.rc_rack_min_rtt) { 8027 /* 8028 * We retransmitted it and the retransmit did the 8029 * job. 8030 */ 8031 if (!rack->r_ctl.rc_rack_min_rtt || 8032 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8033 rack->r_ctl.rc_rack_min_rtt = t; 8034 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8035 rack->r_ctl.rc_rack_min_rtt = 1; 8036 } 8037 } 8038 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) { 8039 /* New more recent rack_tmit_time */ 8040 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i]; 8041 rack->rc_rack_rtt = t; 8042 } 8043 return (1); 8044 } 8045 } 8046 return (0); 8047 } 8048 8049 /* 8050 * Mark the SACK_PASSED flag on all entries prior to rsm send wise. 8051 */ 8052 static void 8053 rack_log_sack_passed(struct tcpcb *tp, 8054 struct tcp_rack *rack, struct rack_sendmap *rsm) 8055 { 8056 struct rack_sendmap *nrsm; 8057 8058 nrsm = rsm; 8059 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, 8060 rack_head, r_tnext) { 8061 if (nrsm == rsm) { 8062 /* Skip orginal segment he is acked */ 8063 continue; 8064 } 8065 if (nrsm->r_flags & RACK_ACKED) { 8066 /* 8067 * Skip ack'd segments, though we 8068 * should not see these, since tmap 8069 * should not have ack'd segments. 8070 */ 8071 continue; 8072 } 8073 if (nrsm->r_flags & RACK_RWND_COLLAPSED) { 8074 /* 8075 * If the peer dropped the rwnd on 8076 * these then we don't worry about them. 8077 */ 8078 continue; 8079 } 8080 if (nrsm->r_flags & RACK_SACK_PASSED) { 8081 /* 8082 * We found one that is already marked 8083 * passed, we have been here before and 8084 * so all others below this are marked. 8085 */ 8086 break; 8087 } 8088 nrsm->r_flags |= RACK_SACK_PASSED; 8089 nrsm->r_flags &= ~RACK_WAS_SACKPASS; 8090 } 8091 } 8092 8093 static void 8094 rack_need_set_test(struct tcpcb *tp, 8095 struct tcp_rack *rack, 8096 struct rack_sendmap *rsm, 8097 tcp_seq th_ack, 8098 int line, 8099 int use_which) 8100 { 8101 8102 if ((tp->t_flags & TF_GPUTINPROG) && 8103 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8104 /* 8105 * We were app limited, and this ack 8106 * butts up or goes beyond the point where we want 8107 * to start our next measurement. We need 8108 * to record the new gput_ts as here and 8109 * possibly update the start sequence. 8110 */ 8111 uint32_t seq, ts; 8112 8113 if (rsm->r_rtr_cnt > 1) { 8114 /* 8115 * This is a retransmit, can we 8116 * really make any assessment at this 8117 * point? We are not really sure of 8118 * the timestamp, is it this or the 8119 * previous transmission? 8120 * 8121 * Lets wait for something better that 8122 * is not retransmitted. 8123 */ 8124 return; 8125 } 8126 seq = tp->gput_seq; 8127 ts = tp->gput_ts; 8128 rack->app_limited_needs_set = 0; 8129 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 8130 /* Do we start at a new end? */ 8131 if ((use_which == RACK_USE_BEG) && 8132 SEQ_GEQ(rsm->r_start, tp->gput_seq)) { 8133 /* 8134 * When we get an ACK that just eats 8135 * up some of the rsm, we set RACK_USE_BEG 8136 * since whats at r_start (i.e. th_ack) 8137 * is left unacked and thats where the 8138 * measurement not starts. 8139 */ 8140 tp->gput_seq = rsm->r_start; 8141 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8142 } 8143 if ((use_which == RACK_USE_END) && 8144 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8145 /* 8146 * We use the end when the cumack 8147 * is moving forward and completely 8148 * deleting the rsm passed so basically 8149 * r_end holds th_ack. 8150 * 8151 * For SACK's we also want to use the end 8152 * since this piece just got sacked and 8153 * we want to target anything after that 8154 * in our measurement. 8155 */ 8156 tp->gput_seq = rsm->r_end; 8157 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8158 } 8159 if (use_which == RACK_USE_END_OR_THACK) { 8160 /* 8161 * special case for ack moving forward, 8162 * not a sack, we need to move all the 8163 * way up to where this ack cum-ack moves 8164 * to. 8165 */ 8166 if (SEQ_GT(th_ack, rsm->r_end)) 8167 tp->gput_seq = th_ack; 8168 else 8169 tp->gput_seq = rsm->r_end; 8170 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8171 } 8172 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { 8173 /* 8174 * We moved beyond this guy's range, re-calculate 8175 * the new end point. 8176 */ 8177 if (rack->rc_gp_filled == 0) { 8178 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 8179 } else { 8180 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 8181 } 8182 } 8183 /* 8184 * We are moving the goal post, we may be able to clear the 8185 * measure_saw_probe_rtt flag. 8186 */ 8187 if ((rack->in_probe_rtt == 0) && 8188 (rack->measure_saw_probe_rtt) && 8189 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 8190 rack->measure_saw_probe_rtt = 0; 8191 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, 8192 seq, tp->gput_seq, 0, 5, line, NULL, 0); 8193 if (rack->rc_gp_filled && 8194 ((tp->gput_ack - tp->gput_seq) < 8195 max(rc_init_window(rack), (MIN_GP_WIN * 8196 ctf_fixed_maxseg(tp))))) { 8197 uint32_t ideal_amount; 8198 8199 ideal_amount = rack_get_measure_window(tp, rack); 8200 if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 8201 /* 8202 * There is no sense of continuing this measurement 8203 * because its too small to gain us anything we 8204 * trust. Skip it and that way we can start a new 8205 * measurement quicker. 8206 */ 8207 tp->t_flags &= ~TF_GPUTINPROG; 8208 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 8209 0, 0, 0, 6, __LINE__, NULL, 0); 8210 } else { 8211 /* 8212 * Reset the window further out. 8213 */ 8214 tp->gput_ack = tp->gput_seq + ideal_amount; 8215 } 8216 } 8217 } 8218 } 8219 8220 static inline int 8221 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm) 8222 { 8223 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) { 8224 /* Behind our TLP definition or right at */ 8225 return (0); 8226 } 8227 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) { 8228 /* The start is beyond or right at our end of TLP definition */ 8229 return (0); 8230 } 8231 /* It has to be a sub-part of the original TLP recorded */ 8232 return (1); 8233 } 8234 8235 8236 static uint32_t 8237 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, 8238 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two) 8239 { 8240 uint32_t start, end, changed = 0; 8241 struct rack_sendmap stack_map; 8242 struct rack_sendmap *rsm, *nrsm, fe, *prev, *next; 8243 #ifdef INVARIANTS 8244 struct rack_sendmap *insret; 8245 #endif 8246 int32_t used_ref = 1; 8247 int moved = 0; 8248 8249 start = sack->start; 8250 end = sack->end; 8251 rsm = *prsm; 8252 memset(&fe, 0, sizeof(fe)); 8253 do_rest_ofb: 8254 if ((rsm == NULL) || 8255 (SEQ_LT(end, rsm->r_start)) || 8256 (SEQ_GEQ(start, rsm->r_end)) || 8257 (SEQ_LT(start, rsm->r_start))) { 8258 /* 8259 * We are not in the right spot, 8260 * find the correct spot in the tree. 8261 */ 8262 used_ref = 0; 8263 fe.r_start = start; 8264 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 8265 moved++; 8266 } 8267 if (rsm == NULL) { 8268 /* TSNH */ 8269 goto out; 8270 } 8271 /* Ok we have an ACK for some piece of this rsm */ 8272 if (rsm->r_start != start) { 8273 if ((rsm->r_flags & RACK_ACKED) == 0) { 8274 /* 8275 * Before any splitting or hookery is 8276 * done is it a TLP of interest i.e. rxt? 8277 */ 8278 if ((rsm->r_flags & RACK_TLP) && 8279 (rsm->r_rtr_cnt > 1)) { 8280 /* 8281 * We are splitting a rxt TLP, check 8282 * if we need to save off the start/end 8283 */ 8284 if (rack->rc_last_tlp_acked_set && 8285 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8286 /* 8287 * We already turned this on since we are inside 8288 * the previous one was a partially sack now we 8289 * are getting another one (maybe all of it). 8290 * 8291 */ 8292 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8293 /* 8294 * Lets make sure we have all of it though. 8295 */ 8296 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8297 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8298 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8299 rack->r_ctl.last_tlp_acked_end); 8300 } 8301 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8302 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8303 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8304 rack->r_ctl.last_tlp_acked_end); 8305 } 8306 } else { 8307 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8308 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8309 rack->rc_last_tlp_past_cumack = 0; 8310 rack->rc_last_tlp_acked_set = 1; 8311 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8312 } 8313 } 8314 /** 8315 * Need to split this in two pieces the before and after, 8316 * the before remains in the map, the after must be 8317 * added. In other words we have: 8318 * rsm |--------------| 8319 * sackblk |-------> 8320 * rsm will become 8321 * rsm |---| 8322 * and nrsm will be the sacked piece 8323 * nrsm |----------| 8324 * 8325 * But before we start down that path lets 8326 * see if the sack spans over on top of 8327 * the next guy and it is already sacked. 8328 * 8329 */ 8330 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8331 if (next && (next->r_flags & RACK_ACKED) && 8332 SEQ_GEQ(end, next->r_start)) { 8333 /** 8334 * So the next one is already acked, and 8335 * we can thus by hookery use our stack_map 8336 * to reflect the piece being sacked and 8337 * then adjust the two tree entries moving 8338 * the start and ends around. So we start like: 8339 * rsm |------------| (not-acked) 8340 * next |-----------| (acked) 8341 * sackblk |--------> 8342 * We want to end like so: 8343 * rsm |------| (not-acked) 8344 * next |-----------------| (acked) 8345 * nrsm |-----| 8346 * Where nrsm is a temporary stack piece we 8347 * use to update all the gizmos. 8348 */ 8349 /* Copy up our fudge block */ 8350 nrsm = &stack_map; 8351 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8352 /* Now adjust our tree blocks */ 8353 rsm->r_end = start; 8354 next->r_start = start; 8355 /* Now we must adjust back where next->m is */ 8356 rack_setup_offset_for_rsm(rsm, next); 8357 8358 /* We don't need to adjust rsm, it did not change */ 8359 /* Clear out the dup ack count of the remainder */ 8360 rsm->r_dupack = 0; 8361 rsm->r_just_ret = 0; 8362 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8363 /* Now lets make sure our fudge block is right */ 8364 nrsm->r_start = start; 8365 /* Now lets update all the stats and such */ 8366 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8367 if (rack->app_limited_needs_set) 8368 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8369 changed += (nrsm->r_end - nrsm->r_start); 8370 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8371 if (nrsm->r_flags & RACK_SACK_PASSED) { 8372 rack->r_ctl.rc_reorder_ts = cts; 8373 } 8374 /* 8375 * Now we want to go up from rsm (the 8376 * one left un-acked) to the next one 8377 * in the tmap. We do this so when 8378 * we walk backwards we include marking 8379 * sack-passed on rsm (The one passed in 8380 * is skipped since it is generally called 8381 * on something sacked before removing it 8382 * from the tmap). 8383 */ 8384 if (rsm->r_in_tmap) { 8385 nrsm = TAILQ_NEXT(rsm, r_tnext); 8386 /* 8387 * Now that we have the next 8388 * one walk backwards from there. 8389 */ 8390 if (nrsm && nrsm->r_in_tmap) 8391 rack_log_sack_passed(tp, rack, nrsm); 8392 } 8393 /* Now are we done? */ 8394 if (SEQ_LT(end, next->r_end) || 8395 (end == next->r_end)) { 8396 /* Done with block */ 8397 goto out; 8398 } 8399 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__); 8400 counter_u64_add(rack_sack_used_next_merge, 1); 8401 /* Postion for the next block */ 8402 start = next->r_end; 8403 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next); 8404 if (rsm == NULL) 8405 goto out; 8406 } else { 8407 /** 8408 * We can't use any hookery here, so we 8409 * need to split the map. We enter like 8410 * so: 8411 * rsm |--------| 8412 * sackblk |-----> 8413 * We will add the new block nrsm and 8414 * that will be the new portion, and then 8415 * fall through after reseting rsm. So we 8416 * split and look like this: 8417 * rsm |----| 8418 * sackblk |-----> 8419 * nrsm |---| 8420 * We then fall through reseting 8421 * rsm to nrsm, so the next block 8422 * picks it up. 8423 */ 8424 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8425 if (nrsm == NULL) { 8426 /* 8427 * failed XXXrrs what can we do but loose the sack 8428 * info? 8429 */ 8430 goto out; 8431 } 8432 counter_u64_add(rack_sack_splits, 1); 8433 rack_clone_rsm(rack, nrsm, rsm, start); 8434 rsm->r_just_ret = 0; 8435 #ifndef INVARIANTS 8436 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8437 #else 8438 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8439 if (insret != NULL) { 8440 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8441 nrsm, insret, rack, rsm); 8442 } 8443 #endif 8444 if (rsm->r_in_tmap) { 8445 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8446 nrsm->r_in_tmap = 1; 8447 } 8448 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__); 8449 rsm->r_flags &= (~RACK_HAS_FIN); 8450 /* Position us to point to the new nrsm that starts the sack blk */ 8451 rsm = nrsm; 8452 } 8453 } else { 8454 /* Already sacked this piece */ 8455 counter_u64_add(rack_sack_skipped_acked, 1); 8456 moved++; 8457 if (end == rsm->r_end) { 8458 /* Done with block */ 8459 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8460 goto out; 8461 } else if (SEQ_LT(end, rsm->r_end)) { 8462 /* A partial sack to a already sacked block */ 8463 moved++; 8464 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8465 goto out; 8466 } else { 8467 /* 8468 * The end goes beyond this guy 8469 * reposition the start to the 8470 * next block. 8471 */ 8472 start = rsm->r_end; 8473 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8474 if (rsm == NULL) 8475 goto out; 8476 } 8477 } 8478 } 8479 if (SEQ_GEQ(end, rsm->r_end)) { 8480 /** 8481 * The end of this block is either beyond this guy or right 8482 * at this guy. I.e.: 8483 * rsm --- |-----| 8484 * end |-----| 8485 * <or> 8486 * end |---------| 8487 */ 8488 if ((rsm->r_flags & RACK_ACKED) == 0) { 8489 /* 8490 * Is it a TLP of interest? 8491 */ 8492 if ((rsm->r_flags & RACK_TLP) && 8493 (rsm->r_rtr_cnt > 1)) { 8494 /* 8495 * We are splitting a rxt TLP, check 8496 * if we need to save off the start/end 8497 */ 8498 if (rack->rc_last_tlp_acked_set && 8499 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8500 /* 8501 * We already turned this on since we are inside 8502 * the previous one was a partially sack now we 8503 * are getting another one (maybe all of it). 8504 */ 8505 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8506 /* 8507 * Lets make sure we have all of it though. 8508 */ 8509 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8510 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8511 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8512 rack->r_ctl.last_tlp_acked_end); 8513 } 8514 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8515 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8516 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8517 rack->r_ctl.last_tlp_acked_end); 8518 } 8519 } else { 8520 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8521 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8522 rack->rc_last_tlp_past_cumack = 0; 8523 rack->rc_last_tlp_acked_set = 1; 8524 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8525 } 8526 } 8527 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8528 changed += (rsm->r_end - rsm->r_start); 8529 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8530 if (rsm->r_in_tmap) /* should be true */ 8531 rack_log_sack_passed(tp, rack, rsm); 8532 /* Is Reordering occuring? */ 8533 if (rsm->r_flags & RACK_SACK_PASSED) { 8534 rsm->r_flags &= ~RACK_SACK_PASSED; 8535 rack->r_ctl.rc_reorder_ts = cts; 8536 } 8537 if (rack->app_limited_needs_set) 8538 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8539 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8540 rsm->r_flags |= RACK_ACKED; 8541 if (rsm->r_in_tmap) { 8542 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8543 rsm->r_in_tmap = 0; 8544 } 8545 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__); 8546 } else { 8547 counter_u64_add(rack_sack_skipped_acked, 1); 8548 moved++; 8549 } 8550 if (end == rsm->r_end) { 8551 /* This block only - done, setup for next */ 8552 goto out; 8553 } 8554 /* 8555 * There is more not coverend by this rsm move on 8556 * to the next block in the RB tree. 8557 */ 8558 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8559 start = rsm->r_end; 8560 rsm = nrsm; 8561 if (rsm == NULL) 8562 goto out; 8563 goto do_rest_ofb; 8564 } 8565 /** 8566 * The end of this sack block is smaller than 8567 * our rsm i.e.: 8568 * rsm --- |-----| 8569 * end |--| 8570 */ 8571 if ((rsm->r_flags & RACK_ACKED) == 0) { 8572 /* 8573 * Is it a TLP of interest? 8574 */ 8575 if ((rsm->r_flags & RACK_TLP) && 8576 (rsm->r_rtr_cnt > 1)) { 8577 /* 8578 * We are splitting a rxt TLP, check 8579 * if we need to save off the start/end 8580 */ 8581 if (rack->rc_last_tlp_acked_set && 8582 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8583 /* 8584 * We already turned this on since we are inside 8585 * the previous one was a partially sack now we 8586 * are getting another one (maybe all of it). 8587 */ 8588 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8589 /* 8590 * Lets make sure we have all of it though. 8591 */ 8592 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8593 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8594 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8595 rack->r_ctl.last_tlp_acked_end); 8596 } 8597 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8598 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8599 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8600 rack->r_ctl.last_tlp_acked_end); 8601 } 8602 } else { 8603 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8604 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8605 rack->rc_last_tlp_past_cumack = 0; 8606 rack->rc_last_tlp_acked_set = 1; 8607 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8608 } 8609 } 8610 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8611 if (prev && 8612 (prev->r_flags & RACK_ACKED)) { 8613 /** 8614 * Goal, we want the right remainder of rsm to shrink 8615 * in place and span from (rsm->r_start = end) to rsm->r_end. 8616 * We want to expand prev to go all the way 8617 * to prev->r_end <- end. 8618 * so in the tree we have before: 8619 * prev |--------| (acked) 8620 * rsm |-------| (non-acked) 8621 * sackblk |-| 8622 * We churn it so we end up with 8623 * prev |----------| (acked) 8624 * rsm |-----| (non-acked) 8625 * nrsm |-| (temporary) 8626 * 8627 * Note if either prev/rsm is a TLP we don't 8628 * do this. 8629 */ 8630 nrsm = &stack_map; 8631 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8632 prev->r_end = end; 8633 rsm->r_start = end; 8634 /* Now adjust nrsm (stack copy) to be 8635 * the one that is the small 8636 * piece that was "sacked". 8637 */ 8638 nrsm->r_end = end; 8639 rsm->r_dupack = 0; 8640 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8641 /* 8642 * Now that the rsm has had its start moved forward 8643 * lets go ahead and get its new place in the world. 8644 */ 8645 rack_setup_offset_for_rsm(prev, rsm); 8646 /* 8647 * Now nrsm is our new little piece 8648 * that is acked (which was merged 8649 * to prev). Update the rtt and changed 8650 * based on that. Also check for reordering. 8651 */ 8652 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8653 if (rack->app_limited_needs_set) 8654 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8655 changed += (nrsm->r_end - nrsm->r_start); 8656 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8657 if (nrsm->r_flags & RACK_SACK_PASSED) { 8658 rack->r_ctl.rc_reorder_ts = cts; 8659 } 8660 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__); 8661 rsm = prev; 8662 counter_u64_add(rack_sack_used_prev_merge, 1); 8663 } else { 8664 /** 8665 * This is the case where our previous 8666 * block is not acked either, so we must 8667 * split the block in two. 8668 */ 8669 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8670 if (nrsm == NULL) { 8671 /* failed rrs what can we do but loose the sack info? */ 8672 goto out; 8673 } 8674 if ((rsm->r_flags & RACK_TLP) && 8675 (rsm->r_rtr_cnt > 1)) { 8676 /* 8677 * We are splitting a rxt TLP, check 8678 * if we need to save off the start/end 8679 */ 8680 if (rack->rc_last_tlp_acked_set && 8681 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8682 /* 8683 * We already turned this on since this block is inside 8684 * the previous one was a partially sack now we 8685 * are getting another one (maybe all of it). 8686 */ 8687 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8688 /* 8689 * Lets make sure we have all of it though. 8690 */ 8691 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8692 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8693 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8694 rack->r_ctl.last_tlp_acked_end); 8695 } 8696 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8697 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8698 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8699 rack->r_ctl.last_tlp_acked_end); 8700 } 8701 } else { 8702 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8703 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8704 rack->rc_last_tlp_acked_set = 1; 8705 rack->rc_last_tlp_past_cumack = 0; 8706 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8707 } 8708 } 8709 /** 8710 * In this case nrsm becomes 8711 * nrsm->r_start = end; 8712 * nrsm->r_end = rsm->r_end; 8713 * which is un-acked. 8714 * <and> 8715 * rsm->r_end = nrsm->r_start; 8716 * i.e. the remaining un-acked 8717 * piece is left on the left 8718 * hand side. 8719 * 8720 * So we start like this 8721 * rsm |----------| (not acked) 8722 * sackblk |---| 8723 * build it so we have 8724 * rsm |---| (acked) 8725 * nrsm |------| (not acked) 8726 */ 8727 counter_u64_add(rack_sack_splits, 1); 8728 rack_clone_rsm(rack, nrsm, rsm, end); 8729 rsm->r_flags &= (~RACK_HAS_FIN); 8730 rsm->r_just_ret = 0; 8731 #ifndef INVARIANTS 8732 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8733 #else 8734 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8735 if (insret != NULL) { 8736 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8737 nrsm, insret, rack, rsm); 8738 } 8739 #endif 8740 if (rsm->r_in_tmap) { 8741 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8742 nrsm->r_in_tmap = 1; 8743 } 8744 nrsm->r_dupack = 0; 8745 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 8746 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8747 changed += (rsm->r_end - rsm->r_start); 8748 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8749 if (rsm->r_in_tmap) /* should be true */ 8750 rack_log_sack_passed(tp, rack, rsm); 8751 /* Is Reordering occuring? */ 8752 if (rsm->r_flags & RACK_SACK_PASSED) { 8753 rsm->r_flags &= ~RACK_SACK_PASSED; 8754 rack->r_ctl.rc_reorder_ts = cts; 8755 } 8756 if (rack->app_limited_needs_set) 8757 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8758 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8759 rsm->r_flags |= RACK_ACKED; 8760 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__); 8761 if (rsm->r_in_tmap) { 8762 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8763 rsm->r_in_tmap = 0; 8764 } 8765 } 8766 } else if (start != end){ 8767 /* 8768 * The block was already acked. 8769 */ 8770 counter_u64_add(rack_sack_skipped_acked, 1); 8771 moved++; 8772 } 8773 out: 8774 if (rsm && 8775 ((rsm->r_flags & RACK_TLP) == 0) && 8776 (rsm->r_flags & RACK_ACKED)) { 8777 /* 8778 * Now can we merge where we worked 8779 * with either the previous or 8780 * next block? 8781 */ 8782 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8783 while (next) { 8784 if (next->r_flags & RACK_TLP) 8785 break; 8786 if (next->r_flags & RACK_ACKED) { 8787 /* yep this and next can be merged */ 8788 rsm = rack_merge_rsm(rack, rsm, next); 8789 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8790 } else 8791 break; 8792 } 8793 /* Now what about the previous? */ 8794 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8795 while (prev) { 8796 if (prev->r_flags & RACK_TLP) 8797 break; 8798 if (prev->r_flags & RACK_ACKED) { 8799 /* yep the previous and this can be merged */ 8800 rsm = rack_merge_rsm(rack, prev, rsm); 8801 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8802 } else 8803 break; 8804 } 8805 } 8806 if (used_ref == 0) { 8807 counter_u64_add(rack_sack_proc_all, 1); 8808 } else { 8809 counter_u64_add(rack_sack_proc_short, 1); 8810 } 8811 /* Save off the next one for quick reference. */ 8812 if (rsm) 8813 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8814 else 8815 nrsm = NULL; 8816 *prsm = rack->r_ctl.rc_sacklast = nrsm; 8817 /* Pass back the moved. */ 8818 *moved_two = moved; 8819 return (changed); 8820 } 8821 8822 static void inline 8823 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) 8824 { 8825 struct rack_sendmap *tmap; 8826 8827 tmap = NULL; 8828 while (rsm && (rsm->r_flags & RACK_ACKED)) { 8829 /* Its no longer sacked, mark it so */ 8830 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 8831 #ifdef INVARIANTS 8832 if (rsm->r_in_tmap) { 8833 panic("rack:%p rsm:%p flags:0x%x in tmap?", 8834 rack, rsm, rsm->r_flags); 8835 } 8836 #endif 8837 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); 8838 /* Rebuild it into our tmap */ 8839 if (tmap == NULL) { 8840 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8841 tmap = rsm; 8842 } else { 8843 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); 8844 tmap = rsm; 8845 } 8846 tmap->r_in_tmap = 1; 8847 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8848 } 8849 /* 8850 * Now lets possibly clear the sack filter so we start 8851 * recognizing sacks that cover this area. 8852 */ 8853 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); 8854 8855 } 8856 8857 static void 8858 rack_do_decay(struct tcp_rack *rack) 8859 { 8860 struct timeval res; 8861 8862 #define timersub(tvp, uvp, vvp) \ 8863 do { \ 8864 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 8865 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 8866 if ((vvp)->tv_usec < 0) { \ 8867 (vvp)->tv_sec--; \ 8868 (vvp)->tv_usec += 1000000; \ 8869 } \ 8870 } while (0) 8871 8872 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); 8873 #undef timersub 8874 8875 rack->r_ctl.input_pkt++; 8876 if ((rack->rc_in_persist) || 8877 (res.tv_sec >= 1) || 8878 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { 8879 /* 8880 * Check for decay of non-SAD, 8881 * we want all SAD detection metrics to 8882 * decay 1/4 per second (or more) passed. 8883 */ 8884 #ifdef NETFLIX_EXP_DETECTION 8885 uint32_t pkt_delta; 8886 8887 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; 8888 #endif 8889 /* Update our saved tracking values */ 8890 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; 8891 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 8892 /* Now do we escape without decay? */ 8893 #ifdef NETFLIX_EXP_DETECTION 8894 if (rack->rc_in_persist || 8895 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || 8896 (pkt_delta < tcp_sad_low_pps)){ 8897 /* 8898 * We don't decay idle connections 8899 * or ones that have a low input pps. 8900 */ 8901 return; 8902 } 8903 /* Decay the counters */ 8904 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, 8905 tcp_sad_decay_val); 8906 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, 8907 tcp_sad_decay_val); 8908 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, 8909 tcp_sad_decay_val); 8910 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, 8911 tcp_sad_decay_val); 8912 #endif 8913 } 8914 } 8915 8916 static void 8917 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to) 8918 { 8919 struct rack_sendmap *rsm; 8920 #ifdef INVARIANTS 8921 struct rack_sendmap *rm; 8922 #endif 8923 8924 /* 8925 * The ACK point is advancing to th_ack, we must drop off 8926 * the packets in the rack log and calculate any eligble 8927 * RTT's. 8928 */ 8929 rack->r_wanted_output = 1; 8930 8931 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */ 8932 if ((rack->rc_last_tlp_acked_set == 1)&& 8933 (rack->rc_last_tlp_past_cumack == 1) && 8934 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) { 8935 /* 8936 * We have reached the point where our last rack 8937 * tlp retransmit sequence is ahead of the cum-ack. 8938 * This can only happen when the cum-ack moves all 8939 * the way around (its been a full 2^^31+1 bytes 8940 * or more since we sent a retransmitted TLP). Lets 8941 * turn off the valid flag since its not really valid. 8942 * 8943 * Note since sack's also turn on this event we have 8944 * a complication, we have to wait to age it out until 8945 * the cum-ack is by the TLP before checking which is 8946 * what the next else clause does. 8947 */ 8948 rack_log_dsack_event(rack, 9, __LINE__, 8949 rack->r_ctl.last_tlp_acked_start, 8950 rack->r_ctl.last_tlp_acked_end); 8951 rack->rc_last_tlp_acked_set = 0; 8952 rack->rc_last_tlp_past_cumack = 0; 8953 } else if ((rack->rc_last_tlp_acked_set == 1) && 8954 (rack->rc_last_tlp_past_cumack == 0) && 8955 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) { 8956 /* 8957 * It is safe to start aging TLP's out. 8958 */ 8959 rack->rc_last_tlp_past_cumack = 1; 8960 } 8961 /* We do the same for the tlp send seq as well */ 8962 if ((rack->rc_last_sent_tlp_seq_valid == 1) && 8963 (rack->rc_last_sent_tlp_past_cumack == 1) && 8964 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) { 8965 rack_log_dsack_event(rack, 9, __LINE__, 8966 rack->r_ctl.last_sent_tlp_seq, 8967 (rack->r_ctl.last_sent_tlp_seq + 8968 rack->r_ctl.last_sent_tlp_len)); 8969 rack->rc_last_sent_tlp_seq_valid = 0; 8970 rack->rc_last_sent_tlp_past_cumack = 0; 8971 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) && 8972 (rack->rc_last_sent_tlp_past_cumack == 0) && 8973 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) { 8974 /* 8975 * It is safe to start aging TLP's send. 8976 */ 8977 rack->rc_last_sent_tlp_past_cumack = 1; 8978 } 8979 more: 8980 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 8981 if (rsm == NULL) { 8982 if ((th_ack - 1) == tp->iss) { 8983 /* 8984 * For the SYN incoming case we will not 8985 * have called tcp_output for the sending of 8986 * the SYN, so there will be no map. All 8987 * other cases should probably be a panic. 8988 */ 8989 return; 8990 } 8991 if (tp->t_flags & TF_SENTFIN) { 8992 /* if we sent a FIN we often will not have map */ 8993 return; 8994 } 8995 #ifdef INVARIANTS 8996 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n", 8997 tp, 8998 tp->t_state, th_ack, rack, 8999 tp->snd_una, tp->snd_max, tp->snd_nxt); 9000 #endif 9001 return; 9002 } 9003 if (SEQ_LT(th_ack, rsm->r_start)) { 9004 /* Huh map is missing this */ 9005 #ifdef INVARIANTS 9006 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", 9007 rsm->r_start, 9008 th_ack, tp->t_state, rack->r_state); 9009 #endif 9010 return; 9011 } 9012 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); 9013 9014 /* Now was it a retransmitted TLP? */ 9015 if ((rsm->r_flags & RACK_TLP) && 9016 (rsm->r_rtr_cnt > 1)) { 9017 /* 9018 * Yes, this rsm was a TLP and retransmitted, remember that 9019 * since if a DSACK comes back on this we don't want 9020 * to think of it as a reordered segment. This may 9021 * get updated again with possibly even other TLPs 9022 * in flight, but thats ok. Only when we don't send 9023 * a retransmitted TLP for 1/2 the sequences space 9024 * will it get turned off (above). 9025 */ 9026 if (rack->rc_last_tlp_acked_set && 9027 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9028 /* 9029 * We already turned this on since the end matches, 9030 * the previous one was a partially ack now we 9031 * are getting another one (maybe all of it). 9032 */ 9033 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9034 /* 9035 * Lets make sure we have all of it though. 9036 */ 9037 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9038 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9039 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9040 rack->r_ctl.last_tlp_acked_end); 9041 } 9042 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9043 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9044 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9045 rack->r_ctl.last_tlp_acked_end); 9046 } 9047 } else { 9048 rack->rc_last_tlp_past_cumack = 1; 9049 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9050 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9051 rack->rc_last_tlp_acked_set = 1; 9052 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9053 } 9054 } 9055 /* Now do we consume the whole thing? */ 9056 if (SEQ_GEQ(th_ack, rsm->r_end)) { 9057 /* Its all consumed. */ 9058 uint32_t left; 9059 uint8_t newly_acked; 9060 9061 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__); 9062 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; 9063 rsm->r_rtr_bytes = 0; 9064 /* Record the time of highest cumack sent */ 9065 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9066 #ifndef INVARIANTS 9067 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9068 #else 9069 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9070 if (rm != rsm) { 9071 panic("removing head in rack:%p rsm:%p rm:%p", 9072 rack, rsm, rm); 9073 } 9074 #endif 9075 if (rsm->r_in_tmap) { 9076 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 9077 rsm->r_in_tmap = 0; 9078 } 9079 newly_acked = 1; 9080 if (rsm->r_flags & RACK_ACKED) { 9081 /* 9082 * It was acked on the scoreboard -- remove 9083 * it from total 9084 */ 9085 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 9086 newly_acked = 0; 9087 } else if (rsm->r_flags & RACK_SACK_PASSED) { 9088 /* 9089 * There are segments ACKED on the 9090 * scoreboard further up. We are seeing 9091 * reordering. 9092 */ 9093 rsm->r_flags &= ~RACK_SACK_PASSED; 9094 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 9095 rsm->r_flags |= RACK_ACKED; 9096 rack->r_ctl.rc_reorder_ts = cts; 9097 if (rack->r_ent_rec_ns) { 9098 /* 9099 * We have sent no more, and we saw an sack 9100 * then ack arrive. 9101 */ 9102 rack->r_might_revert = 1; 9103 } 9104 } 9105 if ((rsm->r_flags & RACK_TO_REXT) && 9106 (tp->t_flags & TF_RCVD_TSTMP) && 9107 (to->to_flags & TOF_TS) && 9108 (to->to_tsecr != 0) && 9109 (tp->t_flags & TF_PREVVALID)) { 9110 /* 9111 * We can use the timestamp to see 9112 * if this retransmission was from the 9113 * first transmit. If so we made a mistake. 9114 */ 9115 tp->t_flags &= ~TF_PREVVALID; 9116 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) { 9117 /* The first transmit is what this ack is for */ 9118 rack_cong_signal(tp, CC_RTO_ERR, th_ack, __LINE__); 9119 } 9120 } 9121 left = th_ack - rsm->r_end; 9122 if (rack->app_limited_needs_set && newly_acked) 9123 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); 9124 /* Free back to zone */ 9125 rack_free(rack, rsm); 9126 if (left) { 9127 goto more; 9128 } 9129 /* Check for reneging */ 9130 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9131 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { 9132 /* 9133 * The peer has moved snd_una up to 9134 * the edge of this send, i.e. one 9135 * that it had previously acked. The only 9136 * way that can be true if the peer threw 9137 * away data (space issues) that it had 9138 * previously sacked (else it would have 9139 * given us snd_una up to (rsm->r_end). 9140 * We need to undo the acked markings here. 9141 * 9142 * Note we have to look to make sure th_ack is 9143 * our rsm->r_start in case we get an old ack 9144 * where th_ack is behind snd_una. 9145 */ 9146 rack_peer_reneges(rack, rsm, th_ack); 9147 } 9148 return; 9149 } 9150 if (rsm->r_flags & RACK_ACKED) { 9151 /* 9152 * It was acked on the scoreboard -- remove it from 9153 * total for the part being cum-acked. 9154 */ 9155 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); 9156 } 9157 /* 9158 * Clear the dup ack count for 9159 * the piece that remains. 9160 */ 9161 rsm->r_dupack = 0; 9162 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 9163 if (rsm->r_rtr_bytes) { 9164 /* 9165 * It was retransmitted adjust the 9166 * sack holes for what was acked. 9167 */ 9168 int ack_am; 9169 9170 ack_am = (th_ack - rsm->r_start); 9171 if (ack_am >= rsm->r_rtr_bytes) { 9172 rack->r_ctl.rc_holes_rxt -= ack_am; 9173 rsm->r_rtr_bytes -= ack_am; 9174 } 9175 } 9176 /* 9177 * Update where the piece starts and record 9178 * the time of send of highest cumack sent. 9179 */ 9180 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9181 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__); 9182 /* Now we need to move our offset forward too */ 9183 if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) { 9184 /* Fix up the orig_m_len and possibly the mbuf offset */ 9185 rack_adjust_orig_mlen(rsm); 9186 } 9187 rsm->soff += (th_ack - rsm->r_start); 9188 rsm->r_start = th_ack; 9189 /* Now do we need to move the mbuf fwd too? */ 9190 if (rsm->m) { 9191 while (rsm->soff >= rsm->m->m_len) { 9192 rsm->soff -= rsm->m->m_len; 9193 rsm->m = rsm->m->m_next; 9194 KASSERT((rsm->m != NULL), 9195 (" nrsm:%p hit at soff:%u null m", 9196 rsm, rsm->soff)); 9197 } 9198 rsm->orig_m_len = rsm->m->m_len; 9199 } 9200 if (rack->app_limited_needs_set) 9201 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); 9202 } 9203 9204 static void 9205 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack) 9206 { 9207 struct rack_sendmap *rsm; 9208 int sack_pass_fnd = 0; 9209 9210 if (rack->r_might_revert) { 9211 /* 9212 * Ok we have reordering, have not sent anything, we 9213 * might want to revert the congestion state if nothing 9214 * further has SACK_PASSED on it. Lets check. 9215 * 9216 * We also get here when we have DSACKs come in for 9217 * all the data that we FR'd. Note that a rxt or tlp 9218 * timer clears this from happening. 9219 */ 9220 9221 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 9222 if (rsm->r_flags & RACK_SACK_PASSED) { 9223 sack_pass_fnd = 1; 9224 break; 9225 } 9226 } 9227 if (sack_pass_fnd == 0) { 9228 /* 9229 * We went into recovery 9230 * incorrectly due to reordering! 9231 */ 9232 int orig_cwnd; 9233 9234 rack->r_ent_rec_ns = 0; 9235 orig_cwnd = tp->snd_cwnd; 9236 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec; 9237 tp->snd_recover = tp->snd_una; 9238 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__); 9239 EXIT_RECOVERY(tp->t_flags); 9240 } 9241 rack->r_might_revert = 0; 9242 } 9243 } 9244 9245 #ifdef NETFLIX_EXP_DETECTION 9246 static void 9247 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz) 9248 { 9249 if ((rack->do_detection || tcp_force_detection) && 9250 tcp_sack_to_ack_thresh && 9251 tcp_sack_to_move_thresh && 9252 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) { 9253 /* 9254 * We have thresholds set to find 9255 * possible attackers and disable sack. 9256 * Check them. 9257 */ 9258 uint64_t ackratio, moveratio, movetotal; 9259 9260 /* Log detecting */ 9261 rack_log_sad(rack, 1); 9262 ackratio = (uint64_t)(rack->r_ctl.sack_count); 9263 ackratio *= (uint64_t)(1000); 9264 if (rack->r_ctl.ack_count) 9265 ackratio /= (uint64_t)(rack->r_ctl.ack_count); 9266 else { 9267 /* We really should not hit here */ 9268 ackratio = 1000; 9269 } 9270 if ((rack->sack_attack_disable == 0) && 9271 (ackratio > rack_highest_sack_thresh_seen)) 9272 rack_highest_sack_thresh_seen = (uint32_t)ackratio; 9273 movetotal = rack->r_ctl.sack_moved_extra; 9274 movetotal += rack->r_ctl.sack_noextra_move; 9275 moveratio = rack->r_ctl.sack_moved_extra; 9276 moveratio *= (uint64_t)1000; 9277 if (movetotal) 9278 moveratio /= movetotal; 9279 else { 9280 /* No moves, thats pretty good */ 9281 moveratio = 0; 9282 } 9283 if ((rack->sack_attack_disable == 0) && 9284 (moveratio > rack_highest_move_thresh_seen)) 9285 rack_highest_move_thresh_seen = (uint32_t)moveratio; 9286 if (rack->sack_attack_disable == 0) { 9287 if ((ackratio > tcp_sack_to_ack_thresh) && 9288 (moveratio > tcp_sack_to_move_thresh)) { 9289 /* Disable sack processing */ 9290 rack->sack_attack_disable = 1; 9291 if (rack->r_rep_attack == 0) { 9292 rack->r_rep_attack = 1; 9293 counter_u64_add(rack_sack_attacks_detected, 1); 9294 } 9295 if (tcp_attack_on_turns_on_logging) { 9296 /* 9297 * Turn on logging, used for debugging 9298 * false positives. 9299 */ 9300 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging; 9301 } 9302 /* Clamp the cwnd at flight size */ 9303 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; 9304 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 9305 rack_log_sad(rack, 2); 9306 } 9307 } else { 9308 /* We are sack-disabled check for false positives */ 9309 if ((ackratio <= tcp_restoral_thresh) || 9310 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) { 9311 rack->sack_attack_disable = 0; 9312 rack_log_sad(rack, 3); 9313 /* Restart counting */ 9314 rack->r_ctl.sack_count = 0; 9315 rack->r_ctl.sack_moved_extra = 0; 9316 rack->r_ctl.sack_noextra_move = 1; 9317 rack->r_ctl.ack_count = max(1, 9318 (bytes_this_ack / segsiz)); 9319 9320 if (rack->r_rep_reverse == 0) { 9321 rack->r_rep_reverse = 1; 9322 counter_u64_add(rack_sack_attacks_reversed, 1); 9323 } 9324 /* Restore the cwnd */ 9325 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) 9326 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; 9327 } 9328 } 9329 } 9330 } 9331 #endif 9332 9333 static int 9334 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end) 9335 { 9336 9337 uint32_t am, l_end; 9338 int was_tlp = 0; 9339 9340 if (SEQ_GT(end, start)) 9341 am = end - start; 9342 else 9343 am = 0; 9344 if ((rack->rc_last_tlp_acked_set ) && 9345 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) && 9346 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) { 9347 /* 9348 * The DSACK is because of a TLP which we don't 9349 * do anything with the reordering window over since 9350 * it was not reordering that caused the DSACK but 9351 * our previous retransmit TLP. 9352 */ 9353 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9354 was_tlp = 1; 9355 goto skip_dsack_round; 9356 } 9357 if (rack->rc_last_sent_tlp_seq_valid) { 9358 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len; 9359 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) && 9360 (SEQ_LEQ(end, l_end))) { 9361 /* 9362 * This dsack is from the last sent TLP, ignore it 9363 * for reordering purposes. 9364 */ 9365 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9366 was_tlp = 1; 9367 goto skip_dsack_round; 9368 } 9369 } 9370 if (rack->rc_dsack_round_seen == 0) { 9371 rack->rc_dsack_round_seen = 1; 9372 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max; 9373 rack->r_ctl.num_dsack++; 9374 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */ 9375 rack_log_dsack_event(rack, 2, __LINE__, 0, 0); 9376 } 9377 skip_dsack_round: 9378 /* 9379 * We keep track of how many DSACK blocks we get 9380 * after a recovery incident. 9381 */ 9382 rack->r_ctl.dsack_byte_cnt += am; 9383 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) && 9384 rack->r_ctl.retran_during_recovery && 9385 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) { 9386 /* 9387 * False recovery most likely culprit is reordering. If 9388 * nothing else is missing we need to revert. 9389 */ 9390 rack->r_might_revert = 1; 9391 rack_handle_might_revert(rack->rc_tp, rack); 9392 rack->r_might_revert = 0; 9393 rack->r_ctl.retran_during_recovery = 0; 9394 rack->r_ctl.dsack_byte_cnt = 0; 9395 } 9396 return (was_tlp); 9397 } 9398 9399 static void 9400 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack) 9401 { 9402 /* Deal with changed and PRR here (in recovery only) */ 9403 uint32_t pipe, snd_una; 9404 9405 rack->r_ctl.rc_prr_delivered += changed; 9406 9407 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) { 9408 /* 9409 * It is all outstanding, we are application limited 9410 * and thus we don't need more room to send anything. 9411 * Note we use tp->snd_una here and not th_ack because 9412 * the data as yet not been cut from the sb. 9413 */ 9414 rack->r_ctl.rc_prr_sndcnt = 0; 9415 return; 9416 } 9417 /* Compute prr_sndcnt */ 9418 if (SEQ_GT(tp->snd_una, th_ack)) { 9419 snd_una = tp->snd_una; 9420 } else { 9421 snd_una = th_ack; 9422 } 9423 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt; 9424 if (pipe > tp->snd_ssthresh) { 9425 long sndcnt; 9426 9427 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; 9428 if (rack->r_ctl.rc_prr_recovery_fs > 0) 9429 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; 9430 else { 9431 rack->r_ctl.rc_prr_sndcnt = 0; 9432 rack_log_to_prr(rack, 9, 0, __LINE__); 9433 sndcnt = 0; 9434 } 9435 sndcnt++; 9436 if (sndcnt > (long)rack->r_ctl.rc_prr_out) 9437 sndcnt -= rack->r_ctl.rc_prr_out; 9438 else 9439 sndcnt = 0; 9440 rack->r_ctl.rc_prr_sndcnt = sndcnt; 9441 rack_log_to_prr(rack, 10, 0, __LINE__); 9442 } else { 9443 uint32_t limit; 9444 9445 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) 9446 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); 9447 else 9448 limit = 0; 9449 if (changed > limit) 9450 limit = changed; 9451 limit += ctf_fixed_maxseg(tp); 9452 if (tp->snd_ssthresh > pipe) { 9453 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); 9454 rack_log_to_prr(rack, 11, 0, __LINE__); 9455 } else { 9456 rack->r_ctl.rc_prr_sndcnt = min(0, limit); 9457 rack_log_to_prr(rack, 12, 0, __LINE__); 9458 } 9459 } 9460 } 9461 9462 static void 9463 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck) 9464 { 9465 uint32_t changed; 9466 struct tcp_rack *rack; 9467 struct rack_sendmap *rsm; 9468 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; 9469 register uint32_t th_ack; 9470 int32_t i, j, k, num_sack_blks = 0; 9471 uint32_t cts, acked, ack_point; 9472 int loop_start = 0, moved_two = 0; 9473 uint32_t tsused; 9474 9475 9476 INP_WLOCK_ASSERT(tp->t_inpcb); 9477 if (tcp_get_flags(th) & TH_RST) { 9478 /* We don't log resets */ 9479 return; 9480 } 9481 rack = (struct tcp_rack *)tp->t_fb_ptr; 9482 cts = tcp_get_usecs(NULL); 9483 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9484 changed = 0; 9485 th_ack = th->th_ack; 9486 if (rack->sack_attack_disable == 0) 9487 rack_do_decay(rack); 9488 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) { 9489 /* 9490 * You only get credit for 9491 * MSS and greater (and you get extra 9492 * credit for larger cum-ack moves). 9493 */ 9494 int ac; 9495 9496 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); 9497 rack->r_ctl.ack_count += ac; 9498 counter_u64_add(rack_ack_total, ac); 9499 } 9500 if (rack->r_ctl.ack_count > 0xfff00000) { 9501 /* 9502 * reduce the number to keep us under 9503 * a uint32_t. 9504 */ 9505 rack->r_ctl.ack_count /= 2; 9506 rack->r_ctl.sack_count /= 2; 9507 } 9508 if (SEQ_GT(th_ack, tp->snd_una)) { 9509 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); 9510 tp->t_acktime = ticks; 9511 } 9512 if (rsm && SEQ_GT(th_ack, rsm->r_start)) 9513 changed = th_ack - rsm->r_start; 9514 if (changed) { 9515 rack_process_to_cumack(tp, rack, th_ack, cts, to); 9516 } 9517 if ((to->to_flags & TOF_SACK) == 0) { 9518 /* We are done nothing left and no sack. */ 9519 rack_handle_might_revert(tp, rack); 9520 /* 9521 * For cases where we struck a dup-ack 9522 * with no SACK, add to the changes so 9523 * PRR will work right. 9524 */ 9525 if (dup_ack_struck && (changed == 0)) { 9526 changed += ctf_fixed_maxseg(rack->rc_tp); 9527 } 9528 goto out; 9529 } 9530 /* Sack block processing */ 9531 if (SEQ_GT(th_ack, tp->snd_una)) 9532 ack_point = th_ack; 9533 else 9534 ack_point = tp->snd_una; 9535 for (i = 0; i < to->to_nsacks; i++) { 9536 bcopy((to->to_sacks + i * TCPOLEN_SACK), 9537 &sack, sizeof(sack)); 9538 sack.start = ntohl(sack.start); 9539 sack.end = ntohl(sack.end); 9540 if (SEQ_GT(sack.end, sack.start) && 9541 SEQ_GT(sack.start, ack_point) && 9542 SEQ_LT(sack.start, tp->snd_max) && 9543 SEQ_GT(sack.end, ack_point) && 9544 SEQ_LEQ(sack.end, tp->snd_max)) { 9545 sack_blocks[num_sack_blks] = sack; 9546 num_sack_blks++; 9547 } else if (SEQ_LEQ(sack.start, th_ack) && 9548 SEQ_LEQ(sack.end, th_ack)) { 9549 int was_tlp; 9550 9551 was_tlp = rack_note_dsack(rack, sack.start, sack.end); 9552 /* 9553 * Its a D-SACK block. 9554 */ 9555 tcp_record_dsack(tp, sack.start, sack.end, was_tlp); 9556 } 9557 } 9558 if (rack->rc_dsack_round_seen) { 9559 /* Is the dsack roound over? */ 9560 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) { 9561 /* Yes it is */ 9562 rack->rc_dsack_round_seen = 0; 9563 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 9564 } 9565 } 9566 /* 9567 * Sort the SACK blocks so we can update the rack scoreboard with 9568 * just one pass. 9569 */ 9570 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, 9571 num_sack_blks, th->th_ack); 9572 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); 9573 if (num_sack_blks == 0) { 9574 /* Nothing to sack (DSACKs?) */ 9575 goto out_with_totals; 9576 } 9577 if (num_sack_blks < 2) { 9578 /* Only one, we don't need to sort */ 9579 goto do_sack_work; 9580 } 9581 /* Sort the sacks */ 9582 for (i = 0; i < num_sack_blks; i++) { 9583 for (j = i + 1; j < num_sack_blks; j++) { 9584 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { 9585 sack = sack_blocks[i]; 9586 sack_blocks[i] = sack_blocks[j]; 9587 sack_blocks[j] = sack; 9588 } 9589 } 9590 } 9591 /* 9592 * Now are any of the sack block ends the same (yes some 9593 * implementations send these)? 9594 */ 9595 again: 9596 if (num_sack_blks == 0) 9597 goto out_with_totals; 9598 if (num_sack_blks > 1) { 9599 for (i = 0; i < num_sack_blks; i++) { 9600 for (j = i + 1; j < num_sack_blks; j++) { 9601 if (sack_blocks[i].end == sack_blocks[j].end) { 9602 /* 9603 * Ok these two have the same end we 9604 * want the smallest end and then 9605 * throw away the larger and start 9606 * again. 9607 */ 9608 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { 9609 /* 9610 * The second block covers 9611 * more area use that 9612 */ 9613 sack_blocks[i].start = sack_blocks[j].start; 9614 } 9615 /* 9616 * Now collapse out the dup-sack and 9617 * lower the count 9618 */ 9619 for (k = (j + 1); k < num_sack_blks; k++) { 9620 sack_blocks[j].start = sack_blocks[k].start; 9621 sack_blocks[j].end = sack_blocks[k].end; 9622 j++; 9623 } 9624 num_sack_blks--; 9625 goto again; 9626 } 9627 } 9628 } 9629 } 9630 do_sack_work: 9631 /* 9632 * First lets look to see if 9633 * we have retransmitted and 9634 * can use the transmit next? 9635 */ 9636 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9637 if (rsm && 9638 SEQ_GT(sack_blocks[0].end, rsm->r_start) && 9639 SEQ_LT(sack_blocks[0].start, rsm->r_end)) { 9640 /* 9641 * We probably did the FR and the next 9642 * SACK in continues as we would expect. 9643 */ 9644 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two); 9645 if (acked) { 9646 rack->r_wanted_output = 1; 9647 changed += acked; 9648 } 9649 if (num_sack_blks == 1) { 9650 /* 9651 * This is what we would expect from 9652 * a normal implementation to happen 9653 * after we have retransmitted the FR, 9654 * i.e the sack-filter pushes down 9655 * to 1 block and the next to be retransmitted 9656 * is the sequence in the sack block (has more 9657 * are acked). Count this as ACK'd data to boost 9658 * up the chances of recovering any false positives. 9659 */ 9660 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); 9661 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); 9662 counter_u64_add(rack_express_sack, 1); 9663 if (rack->r_ctl.ack_count > 0xfff00000) { 9664 /* 9665 * reduce the number to keep us under 9666 * a uint32_t. 9667 */ 9668 rack->r_ctl.ack_count /= 2; 9669 rack->r_ctl.sack_count /= 2; 9670 } 9671 goto out_with_totals; 9672 } else { 9673 /* 9674 * Start the loop through the 9675 * rest of blocks, past the first block. 9676 */ 9677 moved_two = 0; 9678 loop_start = 1; 9679 } 9680 } 9681 /* Its a sack of some sort */ 9682 rack->r_ctl.sack_count++; 9683 if (rack->r_ctl.sack_count > 0xfff00000) { 9684 /* 9685 * reduce the number to keep us under 9686 * a uint32_t. 9687 */ 9688 rack->r_ctl.ack_count /= 2; 9689 rack->r_ctl.sack_count /= 2; 9690 } 9691 counter_u64_add(rack_sack_total, 1); 9692 if (rack->sack_attack_disable) { 9693 /* An attacker disablement is in place */ 9694 if (num_sack_blks > 1) { 9695 rack->r_ctl.sack_count += (num_sack_blks - 1); 9696 rack->r_ctl.sack_moved_extra++; 9697 counter_u64_add(rack_move_some, 1); 9698 if (rack->r_ctl.sack_moved_extra > 0xfff00000) { 9699 rack->r_ctl.sack_moved_extra /= 2; 9700 rack->r_ctl.sack_noextra_move /= 2; 9701 } 9702 } 9703 goto out; 9704 } 9705 rsm = rack->r_ctl.rc_sacklast; 9706 for (i = loop_start; i < num_sack_blks; i++) { 9707 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two); 9708 if (acked) { 9709 rack->r_wanted_output = 1; 9710 changed += acked; 9711 } 9712 if (moved_two) { 9713 /* 9714 * If we did not get a SACK for at least a MSS and 9715 * had to move at all, or if we moved more than our 9716 * threshold, it counts against the "extra" move. 9717 */ 9718 rack->r_ctl.sack_moved_extra += moved_two; 9719 counter_u64_add(rack_move_some, 1); 9720 } else { 9721 /* 9722 * else we did not have to move 9723 * any more than we would expect. 9724 */ 9725 rack->r_ctl.sack_noextra_move++; 9726 counter_u64_add(rack_move_none, 1); 9727 } 9728 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { 9729 /* 9730 * If the SACK was not a full MSS then 9731 * we add to sack_count the number of 9732 * MSS's (or possibly more than 9733 * a MSS if its a TSO send) we had to skip by. 9734 */ 9735 rack->r_ctl.sack_count += moved_two; 9736 counter_u64_add(rack_sack_total, moved_two); 9737 } 9738 /* 9739 * Now we need to setup for the next 9740 * round. First we make sure we won't 9741 * exceed the size of our uint32_t on 9742 * the various counts, and then clear out 9743 * moved_two. 9744 */ 9745 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 9746 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 9747 rack->r_ctl.sack_moved_extra /= 2; 9748 rack->r_ctl.sack_noextra_move /= 2; 9749 } 9750 if (rack->r_ctl.sack_count > 0xfff00000) { 9751 rack->r_ctl.ack_count /= 2; 9752 rack->r_ctl.sack_count /= 2; 9753 } 9754 moved_two = 0; 9755 } 9756 out_with_totals: 9757 if (num_sack_blks > 1) { 9758 /* 9759 * You get an extra stroke if 9760 * you have more than one sack-blk, this 9761 * could be where we are skipping forward 9762 * and the sack-filter is still working, or 9763 * it could be an attacker constantly 9764 * moving us. 9765 */ 9766 rack->r_ctl.sack_moved_extra++; 9767 counter_u64_add(rack_move_some, 1); 9768 } 9769 out: 9770 #ifdef NETFLIX_EXP_DETECTION 9771 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp)); 9772 #endif 9773 if (changed) { 9774 /* Something changed cancel the rack timer */ 9775 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9776 } 9777 tsused = tcp_get_usecs(NULL); 9778 rsm = tcp_rack_output(tp, rack, tsused); 9779 if ((!IN_FASTRECOVERY(tp->t_flags)) && 9780 rsm && 9781 ((rsm->r_flags & RACK_MUST_RXT) == 0)) { 9782 /* Enter recovery */ 9783 entered_recovery = 1; 9784 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 9785 /* 9786 * When we enter recovery we need to assure we send 9787 * one packet. 9788 */ 9789 if (rack->rack_no_prr == 0) { 9790 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 9791 rack_log_to_prr(rack, 8, 0, __LINE__); 9792 } 9793 rack->r_timer_override = 1; 9794 rack->r_early = 0; 9795 rack->r_ctl.rc_agg_early = 0; 9796 } else if (IN_FASTRECOVERY(tp->t_flags) && 9797 rsm && 9798 (rack->r_rr_config == 3)) { 9799 /* 9800 * Assure we can output and we get no 9801 * remembered pace time except the retransmit. 9802 */ 9803 rack->r_timer_override = 1; 9804 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 9805 rack->r_ctl.rc_resend = rsm; 9806 } 9807 if (IN_FASTRECOVERY(tp->t_flags) && 9808 (rack->rack_no_prr == 0) && 9809 (entered_recovery == 0)) { 9810 rack_update_prr(tp, rack, changed, th_ack); 9811 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && 9812 ((tcp_in_hpts(rack->rc_inp) == 0) && 9813 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { 9814 /* 9815 * If you are pacing output you don't want 9816 * to override. 9817 */ 9818 rack->r_early = 0; 9819 rack->r_ctl.rc_agg_early = 0; 9820 rack->r_timer_override = 1; 9821 } 9822 } 9823 } 9824 9825 static void 9826 rack_strike_dupack(struct tcp_rack *rack) 9827 { 9828 struct rack_sendmap *rsm; 9829 9830 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9831 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 9832 rsm = TAILQ_NEXT(rsm, r_tnext); 9833 if (rsm->r_flags & RACK_MUST_RXT) { 9834 /* Sendmap entries that are marked to 9835 * be retransmitted do not need dupack's 9836 * struck. We get these marks for a number 9837 * of reasons (rxt timeout with no sack, 9838 * mtu change, or rwnd collapses). When 9839 * these events occur, we know we must retransmit 9840 * them and mark the sendmap entries. Dupack counting 9841 * is not needed since we are already set to retransmit 9842 * it as soon as we can. 9843 */ 9844 continue; 9845 } 9846 } 9847 if (rsm && (rsm->r_dupack < 0xff)) { 9848 rsm->r_dupack++; 9849 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { 9850 struct timeval tv; 9851 uint32_t cts; 9852 /* 9853 * Here we see if we need to retransmit. For 9854 * a SACK type connection if enough time has passed 9855 * we will get a return of the rsm. For a non-sack 9856 * connection we will get the rsm returned if the 9857 * dupack value is 3 or more. 9858 */ 9859 cts = tcp_get_usecs(&tv); 9860 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts); 9861 if (rack->r_ctl.rc_resend != NULL) { 9862 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) { 9863 rack_cong_signal(rack->rc_tp, CC_NDUPACK, 9864 rack->rc_tp->snd_una, __LINE__); 9865 } 9866 rack->r_wanted_output = 1; 9867 rack->r_timer_override = 1; 9868 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); 9869 } 9870 } else { 9871 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); 9872 } 9873 } 9874 } 9875 9876 static void 9877 rack_check_bottom_drag(struct tcpcb *tp, 9878 struct tcp_rack *rack, 9879 struct socket *so, int32_t acked) 9880 { 9881 uint32_t segsiz, minseg; 9882 9883 segsiz = ctf_fixed_maxseg(tp); 9884 minseg = segsiz; 9885 9886 if (tp->snd_max == tp->snd_una) { 9887 /* 9888 * We are doing dynamic pacing and we are way 9889 * under. Basically everything got acked while 9890 * we were still waiting on the pacer to expire. 9891 * 9892 * This means we need to boost the b/w in 9893 * addition to any earlier boosting of 9894 * the multiplier. 9895 */ 9896 rack->rc_dragged_bottom = 1; 9897 rack_validate_multipliers_at_or_above100(rack); 9898 /* 9899 * Lets use the segment bytes acked plus 9900 * the lowest RTT seen as the basis to 9901 * form a b/w estimate. This will be off 9902 * due to the fact that the true estimate 9903 * should be around 1/2 the time of the RTT 9904 * but we can settle for that. 9905 */ 9906 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && 9907 acked) { 9908 uint64_t bw, calc_bw, rtt; 9909 9910 rtt = rack->r_ctl.rack_rs.rs_us_rtt; 9911 if (rtt == 0) { 9912 /* no us sample is there a ms one? */ 9913 if (rack->r_ctl.rack_rs.rs_rtt_lowest) { 9914 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 9915 } else { 9916 goto no_measurement; 9917 } 9918 } 9919 bw = acked; 9920 calc_bw = bw * 1000000; 9921 calc_bw /= rtt; 9922 if (rack->r_ctl.last_max_bw && 9923 (rack->r_ctl.last_max_bw < calc_bw)) { 9924 /* 9925 * If we have a last calculated max bw 9926 * enforce it. 9927 */ 9928 calc_bw = rack->r_ctl.last_max_bw; 9929 } 9930 /* now plop it in */ 9931 if (rack->rc_gp_filled == 0) { 9932 if (calc_bw > ONE_POINT_TWO_MEG) { 9933 /* 9934 * If we have no measurement 9935 * don't let us set in more than 9936 * 1.2Mbps. If we are still too 9937 * low after pacing with this we 9938 * will hopefully have a max b/w 9939 * available to sanity check things. 9940 */ 9941 calc_bw = ONE_POINT_TWO_MEG; 9942 } 9943 rack->r_ctl.rc_rtt_diff = 0; 9944 rack->r_ctl.gp_bw = calc_bw; 9945 rack->rc_gp_filled = 1; 9946 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 9947 rack->r_ctl.num_measurements = RACK_REQ_AVG; 9948 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 9949 } else if (calc_bw > rack->r_ctl.gp_bw) { 9950 rack->r_ctl.rc_rtt_diff = 0; 9951 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 9952 rack->r_ctl.num_measurements = RACK_REQ_AVG; 9953 rack->r_ctl.gp_bw = calc_bw; 9954 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 9955 } else 9956 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9957 if ((rack->gp_ready == 0) && 9958 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 9959 /* We have enough measurements now */ 9960 rack->gp_ready = 1; 9961 rack_set_cc_pacing(rack); 9962 if (rack->defer_options) 9963 rack_apply_deferred_options(rack); 9964 } 9965 /* 9966 * For acks over 1mss we do a extra boost to simulate 9967 * where we would get 2 acks (we want 110 for the mul). 9968 */ 9969 if (acked > segsiz) 9970 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9971 } else { 9972 /* 9973 * zero rtt possibly?, settle for just an old increase. 9974 */ 9975 no_measurement: 9976 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9977 } 9978 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 9979 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), 9980 minseg)) && 9981 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && 9982 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && 9983 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= 9984 (segsiz * rack_req_segs))) { 9985 /* 9986 * We are doing dynamic GP pacing and 9987 * we have everything except 1MSS or less 9988 * bytes left out. We are still pacing away. 9989 * And there is data that could be sent, This 9990 * means we are inserting delayed ack time in 9991 * our measurements because we are pacing too slow. 9992 */ 9993 rack_validate_multipliers_at_or_above100(rack); 9994 rack->rc_dragged_bottom = 1; 9995 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9996 } 9997 } 9998 9999 10000 10001 static void 10002 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount) 10003 { 10004 /* 10005 * The fast output path is enabled and we 10006 * have moved the cumack forward. Lets see if 10007 * we can expand forward the fast path length by 10008 * that amount. What we would ideally like to 10009 * do is increase the number of bytes in the 10010 * fast path block (left_to_send) by the 10011 * acked amount. However we have to gate that 10012 * by two factors: 10013 * 1) The amount outstanding and the rwnd of the peer 10014 * (i.e. we don't want to exceed the rwnd of the peer). 10015 * <and> 10016 * 2) The amount of data left in the socket buffer (i.e. 10017 * we can't send beyond what is in the buffer). 10018 * 10019 * Note that this does not take into account any increase 10020 * in the cwnd. We will only extend the fast path by 10021 * what was acked. 10022 */ 10023 uint32_t new_total, gating_val; 10024 10025 new_total = acked_amount + rack->r_ctl.fsb.left_to_send; 10026 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)), 10027 (tp->snd_wnd - (tp->snd_max - tp->snd_una))); 10028 if (new_total <= gating_val) { 10029 /* We can increase left_to_send by the acked amount */ 10030 counter_u64_add(rack_extended_rfo, 1); 10031 rack->r_ctl.fsb.left_to_send = new_total; 10032 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))), 10033 ("rack:%p left_to_send:%u sbavail:%u out:%u", 10034 rack, rack->r_ctl.fsb.left_to_send, 10035 sbavail(&rack->rc_inp->inp_socket->so_snd), 10036 (tp->snd_max - tp->snd_una))); 10037 10038 } 10039 } 10040 10041 static void 10042 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una) 10043 { 10044 /* 10045 * Here any sendmap entry that points to the 10046 * beginning mbuf must be adjusted to the correct 10047 * offset. This must be called with: 10048 * 1) The socket buffer locked 10049 * 2) snd_una adjusted to its new postion. 10050 * 10051 * Note that (2) implies rack_ack_received has also 10052 * been called. 10053 * 10054 * We grab the first mbuf in the socket buffer and 10055 * then go through the front of the sendmap, recalculating 10056 * the stored offset for any sendmap entry that has 10057 * that mbuf. We must use the sb functions to do this 10058 * since its possible an add was done has well as 10059 * the subtraction we may have just completed. This should 10060 * not be a penalty though, since we just referenced the sb 10061 * to go in and trim off the mbufs that we freed (of course 10062 * there will be a penalty for the sendmap references though). 10063 */ 10064 struct mbuf *m; 10065 struct rack_sendmap *rsm; 10066 10067 SOCKBUF_LOCK_ASSERT(sb); 10068 m = sb->sb_mb; 10069 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 10070 if ((rsm == NULL) || (m == NULL)) { 10071 /* Nothing outstanding */ 10072 return; 10073 } 10074 while (rsm->m && (rsm->m == m)) { 10075 /* one to adjust */ 10076 #ifdef INVARIANTS 10077 struct mbuf *tm; 10078 uint32_t soff; 10079 10080 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff); 10081 if (rsm->orig_m_len != m->m_len) { 10082 rack_adjust_orig_mlen(rsm); 10083 } 10084 if (rsm->soff != soff) { 10085 /* 10086 * This is not a fatal error, we anticipate it 10087 * might happen (the else code), so we count it here 10088 * so that under invariant we can see that it really 10089 * does happen. 10090 */ 10091 counter_u64_add(rack_adjust_map_bw, 1); 10092 } 10093 rsm->m = tm; 10094 rsm->soff = soff; 10095 if (tm) 10096 rsm->orig_m_len = rsm->m->m_len; 10097 else 10098 rsm->orig_m_len = 0; 10099 #else 10100 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff); 10101 if (rsm->m) 10102 rsm->orig_m_len = rsm->m->m_len; 10103 else 10104 rsm->orig_m_len = 0; 10105 #endif 10106 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 10107 rsm); 10108 if (rsm == NULL) 10109 break; 10110 } 10111 } 10112 10113 /* 10114 * Return value of 1, we do not need to call rack_process_data(). 10115 * return value of 0, rack_process_data can be called. 10116 * For ret_val if its 0 the TCP is locked, if its non-zero 10117 * its unlocked and probably unsafe to touch the TCB. 10118 */ 10119 static int 10120 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, 10121 struct tcpcb *tp, struct tcpopt *to, 10122 uint32_t tiwin, int32_t tlen, 10123 int32_t * ofia, int32_t thflags, int32_t *ret_val) 10124 { 10125 int32_t ourfinisacked = 0; 10126 int32_t nsegs, acked_amount; 10127 int32_t acked; 10128 struct mbuf *mfree; 10129 struct tcp_rack *rack; 10130 int32_t under_pacing = 0; 10131 int32_t recovery = 0; 10132 10133 rack = (struct tcp_rack *)tp->t_fb_ptr; 10134 if (SEQ_GT(th->th_ack, tp->snd_max)) { 10135 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, 10136 &rack->r_ctl.challenge_ack_ts, 10137 &rack->r_ctl.challenge_ack_cnt); 10138 rack->r_wanted_output = 1; 10139 return (1); 10140 } 10141 if (rack->gp_ready && 10142 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 10143 under_pacing = 1; 10144 } 10145 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { 10146 int in_rec, dup_ack_struck = 0; 10147 10148 in_rec = IN_FASTRECOVERY(tp->t_flags); 10149 if (rack->rc_in_persist) { 10150 tp->t_rxtshift = 0; 10151 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10152 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10153 } 10154 if ((th->th_ack == tp->snd_una) && 10155 (tiwin == tp->snd_wnd) && 10156 ((to->to_flags & TOF_SACK) == 0)) { 10157 rack_strike_dupack(rack); 10158 dup_ack_struck = 1; 10159 } 10160 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck); 10161 } 10162 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 10163 /* 10164 * Old ack, behind (or duplicate to) the last one rcv'd 10165 * Note: We mark reordering is occuring if its 10166 * less than and we have not closed our window. 10167 */ 10168 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) { 10169 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 10170 } 10171 return (0); 10172 } 10173 /* 10174 * If we reach this point, ACK is not a duplicate, i.e., it ACKs 10175 * something we sent. 10176 */ 10177 if (tp->t_flags & TF_NEEDSYN) { 10178 /* 10179 * T/TCP: Connection was half-synchronized, and our SYN has 10180 * been ACK'd (so connection is now fully synchronized). Go 10181 * to non-starred state, increment snd_una for ACK of SYN, 10182 * and check if we can do window scaling. 10183 */ 10184 tp->t_flags &= ~TF_NEEDSYN; 10185 tp->snd_una++; 10186 /* Do window scaling? */ 10187 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 10188 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 10189 tp->rcv_scale = tp->request_r_scale; 10190 /* Send window already scaled. */ 10191 } 10192 } 10193 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10194 INP_WLOCK_ASSERT(tp->t_inpcb); 10195 10196 acked = BYTES_THIS_ACK(tp, th); 10197 if (acked) { 10198 /* 10199 * Any time we move the cum-ack forward clear 10200 * keep-alive tied probe-not-answered. The 10201 * persists clears its own on entry. 10202 */ 10203 rack->probe_not_answered = 0; 10204 } 10205 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 10206 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 10207 /* 10208 * If we just performed our first retransmit, and the ACK arrives 10209 * within our recovery window, then it was a mistake to do the 10210 * retransmit in the first place. Recover our original cwnd and 10211 * ssthresh, and proceed to transmit where we left off. 10212 */ 10213 if ((tp->t_flags & TF_PREVVALID) && 10214 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 10215 tp->t_flags &= ~TF_PREVVALID; 10216 if (tp->t_rxtshift == 1 && 10217 (int)(ticks - tp->t_badrxtwin) < 0) 10218 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__); 10219 } 10220 if (acked) { 10221 /* assure we are not backed off */ 10222 tp->t_rxtshift = 0; 10223 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10224 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10225 rack->rc_tlp_in_progress = 0; 10226 rack->r_ctl.rc_tlp_cnt_out = 0; 10227 /* 10228 * If it is the RXT timer we want to 10229 * stop it, so we can restart a TLP. 10230 */ 10231 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 10232 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10233 #ifdef NETFLIX_HTTP_LOGGING 10234 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 10235 #endif 10236 } 10237 /* 10238 * If we have a timestamp reply, update smoothed round trip time. If 10239 * no timestamp is present but transmit timer is running and timed 10240 * sequence number was acked, update smoothed round trip time. Since 10241 * we now have an rtt measurement, cancel the timer backoff (cf., 10242 * Phil Karn's retransmit alg.). Recompute the initial retransmit 10243 * timer. 10244 * 10245 * Some boxes send broken timestamp replies during the SYN+ACK 10246 * phase, ignore timestamps of 0 or we could calculate a huge RTT 10247 * and blow up the retransmit timer. 10248 */ 10249 /* 10250 * If all outstanding data is acked, stop retransmit timer and 10251 * remember to restart (more output or persist). If there is more 10252 * data to be acked, restart retransmit timer, using current 10253 * (possibly backed-off) value. 10254 */ 10255 if (acked == 0) { 10256 if (ofia) 10257 *ofia = ourfinisacked; 10258 return (0); 10259 } 10260 if (IN_RECOVERY(tp->t_flags)) { 10261 if (SEQ_LT(th->th_ack, tp->snd_recover) && 10262 (SEQ_LT(th->th_ack, tp->snd_max))) { 10263 tcp_rack_partialack(tp); 10264 } else { 10265 rack_post_recovery(tp, th->th_ack); 10266 recovery = 1; 10267 } 10268 } 10269 /* 10270 * Let the congestion control algorithm update congestion control 10271 * related information. This typically means increasing the 10272 * congestion window. 10273 */ 10274 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery); 10275 SOCKBUF_LOCK(&so->so_snd); 10276 acked_amount = min(acked, (int)sbavail(&so->so_snd)); 10277 tp->snd_wnd -= acked_amount; 10278 mfree = sbcut_locked(&so->so_snd, acked_amount); 10279 if ((sbused(&so->so_snd) == 0) && 10280 (acked > acked_amount) && 10281 (tp->t_state >= TCPS_FIN_WAIT_1) && 10282 (tp->t_flags & TF_SENTFIN)) { 10283 /* 10284 * We must be sure our fin 10285 * was sent and acked (we can be 10286 * in FIN_WAIT_1 without having 10287 * sent the fin). 10288 */ 10289 ourfinisacked = 1; 10290 } 10291 tp->snd_una = th->th_ack; 10292 if (acked_amount && sbavail(&so->so_snd)) 10293 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 10294 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 10295 /* NB: sowwakeup_locked() does an implicit unlock. */ 10296 sowwakeup_locked(so); 10297 m_freem(mfree); 10298 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 10299 tp->snd_recover = tp->snd_una; 10300 10301 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { 10302 tp->snd_nxt = tp->snd_una; 10303 } 10304 if (under_pacing && 10305 (rack->use_fixed_rate == 0) && 10306 (rack->in_probe_rtt == 0) && 10307 rack->rc_gp_dyn_mul && 10308 rack->rc_always_pace) { 10309 /* Check if we are dragging bottom */ 10310 rack_check_bottom_drag(tp, rack, so, acked); 10311 } 10312 if (tp->snd_una == tp->snd_max) { 10313 /* Nothing left outstanding */ 10314 tp->t_flags &= ~TF_PREVVALID; 10315 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 10316 rack->r_ctl.retran_during_recovery = 0; 10317 rack->r_ctl.dsack_byte_cnt = 0; 10318 if (rack->r_ctl.rc_went_idle_time == 0) 10319 rack->r_ctl.rc_went_idle_time = 1; 10320 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 10321 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 10322 tp->t_acktime = 0; 10323 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10324 /* Set need output so persist might get set */ 10325 rack->r_wanted_output = 1; 10326 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 10327 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 10328 (sbavail(&so->so_snd) == 0) && 10329 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 10330 /* 10331 * The socket was gone and the 10332 * peer sent data (now or in the past), time to 10333 * reset him. 10334 */ 10335 *ret_val = 1; 10336 /* tcp_close will kill the inp pre-log the Reset */ 10337 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 10338 tp = tcp_close(tp); 10339 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); 10340 return (1); 10341 } 10342 } 10343 if (ofia) 10344 *ofia = ourfinisacked; 10345 return (0); 10346 } 10347 10348 10349 static void 10350 rack_log_collapse(struct tcp_rack *rack, uint32_t cnt, uint32_t split, uint32_t out, int line, 10351 int dir, uint32_t flags, struct rack_sendmap *rsm) 10352 { 10353 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 10354 union tcp_log_stackspecific log; 10355 struct timeval tv; 10356 10357 memset(&log, 0, sizeof(log)); 10358 log.u_bbr.flex1 = cnt; 10359 log.u_bbr.flex2 = split; 10360 log.u_bbr.flex3 = out; 10361 log.u_bbr.flex4 = line; 10362 log.u_bbr.flex5 = rack->r_must_retran; 10363 log.u_bbr.flex6 = flags; 10364 log.u_bbr.flex7 = rack->rc_has_collapsed; 10365 log.u_bbr.flex8 = dir; /* 10366 * 1 is collapsed, 0 is uncollapsed, 10367 * 2 is log of a rsm being marked, 3 is a split. 10368 */ 10369 if (rsm == NULL) 10370 log.u_bbr.rttProp = 0; 10371 else 10372 log.u_bbr.rttProp = (uint64_t)rsm; 10373 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 10374 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 10375 TCP_LOG_EVENTP(rack->rc_tp, NULL, 10376 &rack->rc_inp->inp_socket->so_rcv, 10377 &rack->rc_inp->inp_socket->so_snd, 10378 TCP_RACK_LOG_COLLAPSE, 0, 10379 0, &log, false, &tv); 10380 } 10381 } 10382 10383 static void 10384 rack_collapsed_window(struct tcp_rack *rack, uint32_t out, int line) 10385 { 10386 /* 10387 * Here all we do is mark the collapsed point and set the flag. 10388 * This may happen again and again, but there is no 10389 * sense splitting our map until we know where the 10390 * peer finally lands in the collapse. 10391 */ 10392 rack_trace_point(rack, RACK_TP_COLLAPSED_WND); 10393 if ((rack->rc_has_collapsed == 0) || 10394 (rack->r_ctl.last_collapse_point != (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd))) 10395 counter_u64_add(rack_collapsed_win_seen, 1); 10396 rack->r_ctl.last_collapse_point = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd; 10397 rack->r_ctl.high_collapse_point = rack->rc_tp->snd_max; 10398 rack->rc_has_collapsed = 1; 10399 rack->r_collapse_point_valid = 1; 10400 rack_log_collapse(rack, 0, 0, rack->r_ctl.last_collapse_point, line, 1, 0, NULL); 10401 } 10402 10403 static void 10404 rack_un_collapse_window(struct tcp_rack *rack, int line) 10405 { 10406 struct rack_sendmap *nrsm, *rsm, fe; 10407 int cnt = 0, split = 0; 10408 #ifdef INVARIANTS 10409 struct rack_sendmap *insret; 10410 #endif 10411 10412 memset(&fe, 0, sizeof(fe)); 10413 rack->rc_has_collapsed = 0; 10414 fe.r_start = rack->r_ctl.last_collapse_point; 10415 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 10416 if (rsm == NULL) { 10417 /* Nothing to do maybe the peer ack'ed it all */ 10418 rack_log_collapse(rack, 0, 0, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL); 10419 return; 10420 } 10421 /* Now do we need to split this one? */ 10422 if (SEQ_GT(rack->r_ctl.last_collapse_point, rsm->r_start)) { 10423 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 10424 rack->r_ctl.last_collapse_point, line, 3, rsm->r_flags, rsm); 10425 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 10426 if (nrsm == NULL) { 10427 /* We can't get a rsm, mark all? */ 10428 nrsm = rsm; 10429 goto no_split; 10430 } 10431 /* Clone it */ 10432 split = 1; 10433 rack_clone_rsm(rack, nrsm, rsm, rack->r_ctl.last_collapse_point); 10434 #ifndef INVARIANTS 10435 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 10436 #else 10437 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 10438 if (insret != NULL) { 10439 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 10440 nrsm, insret, rack, rsm); 10441 } 10442 #endif 10443 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 10444 rack->r_ctl.last_collapse_point, __LINE__); 10445 if (rsm->r_in_tmap) { 10446 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 10447 nrsm->r_in_tmap = 1; 10448 } 10449 /* 10450 * Set in the new RSM as the 10451 * collapsed starting point 10452 */ 10453 rsm = nrsm; 10454 } 10455 no_split: 10456 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) { 10457 nrsm->r_flags |= RACK_RWND_COLLAPSED; 10458 rack_log_collapse(rack, nrsm->r_start, nrsm->r_end, 0, line, 4, nrsm->r_flags, nrsm); 10459 cnt++; 10460 } 10461 if (cnt) { 10462 counter_u64_add(rack_collapsed_win, 1); 10463 } 10464 rack_log_collapse(rack, cnt, split, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL); 10465 } 10466 10467 static void 10468 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, 10469 int32_t tlen, int32_t tfo_syn) 10470 { 10471 if (DELAY_ACK(tp, tlen) || tfo_syn) { 10472 if (rack->rc_dack_mode && 10473 (tlen > 500) && 10474 (rack->rc_dack_toggle == 1)) { 10475 goto no_delayed_ack; 10476 } 10477 rack_timer_cancel(tp, rack, 10478 rack->r_ctl.rc_rcvtime, __LINE__); 10479 tp->t_flags |= TF_DELACK; 10480 } else { 10481 no_delayed_ack: 10482 rack->r_wanted_output = 1; 10483 tp->t_flags |= TF_ACKNOW; 10484 if (rack->rc_dack_mode) { 10485 if (tp->t_flags & TF_DELACK) 10486 rack->rc_dack_toggle = 1; 10487 else 10488 rack->rc_dack_toggle = 0; 10489 } 10490 } 10491 } 10492 10493 static void 10494 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack) 10495 { 10496 /* 10497 * If fast output is in progress, lets validate that 10498 * the new window did not shrink on us and make it 10499 * so fast output should end. 10500 */ 10501 if (rack->r_fast_output) { 10502 uint32_t out; 10503 10504 /* 10505 * Calculate what we will send if left as is 10506 * and compare that to our send window. 10507 */ 10508 out = ctf_outstanding(tp); 10509 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) { 10510 /* ok we have an issue */ 10511 if (out >= tp->snd_wnd) { 10512 /* Turn off fast output the window is met or collapsed */ 10513 rack->r_fast_output = 0; 10514 } else { 10515 /* we have some room left */ 10516 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out; 10517 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) { 10518 /* If not at least 1 full segment never mind */ 10519 rack->r_fast_output = 0; 10520 } 10521 } 10522 } 10523 } 10524 } 10525 10526 10527 /* 10528 * Return value of 1, the TCB is unlocked and most 10529 * likely gone, return value of 0, the TCP is still 10530 * locked. 10531 */ 10532 static int 10533 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, 10534 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 10535 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) 10536 { 10537 /* 10538 * Update window information. Don't look at window if no ACK: TAC's 10539 * send garbage on first SYN. 10540 */ 10541 int32_t nsegs; 10542 int32_t tfo_syn; 10543 struct tcp_rack *rack; 10544 10545 rack = (struct tcp_rack *)tp->t_fb_ptr; 10546 INP_WLOCK_ASSERT(tp->t_inpcb); 10547 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10548 if ((thflags & TH_ACK) && 10549 (SEQ_LT(tp->snd_wl1, th->th_seq) || 10550 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 10551 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 10552 /* keep track of pure window updates */ 10553 if (tlen == 0 && 10554 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 10555 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 10556 tp->snd_wnd = tiwin; 10557 rack_validate_fo_sendwin_up(tp, rack); 10558 tp->snd_wl1 = th->th_seq; 10559 tp->snd_wl2 = th->th_ack; 10560 if (tp->snd_wnd > tp->max_sndwnd) 10561 tp->max_sndwnd = tp->snd_wnd; 10562 rack->r_wanted_output = 1; 10563 } else if (thflags & TH_ACK) { 10564 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { 10565 tp->snd_wnd = tiwin; 10566 rack_validate_fo_sendwin_up(tp, rack); 10567 tp->snd_wl1 = th->th_seq; 10568 tp->snd_wl2 = th->th_ack; 10569 } 10570 } 10571 if (tp->snd_wnd < ctf_outstanding(tp)) 10572 /* The peer collapsed the window */ 10573 rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__); 10574 else if (rack->rc_has_collapsed) 10575 rack_un_collapse_window(rack, __LINE__); 10576 if ((rack->r_collapse_point_valid) && 10577 (SEQ_GT(th->th_ack, rack->r_ctl.high_collapse_point))) 10578 rack->r_collapse_point_valid = 0; 10579 /* Was persist timer active and now we have window space? */ 10580 if ((rack->rc_in_persist != 0) && 10581 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 10582 rack->r_ctl.rc_pace_min_segs))) { 10583 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10584 tp->snd_nxt = tp->snd_max; 10585 /* Make sure we output to start the timer */ 10586 rack->r_wanted_output = 1; 10587 } 10588 /* Do we enter persists? */ 10589 if ((rack->rc_in_persist == 0) && 10590 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 10591 TCPS_HAVEESTABLISHED(tp->t_state) && 10592 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 10593 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 10594 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 10595 /* 10596 * Here the rwnd is less than 10597 * the pacing size, we are established, 10598 * nothing is outstanding, and there is 10599 * data to send. Enter persists. 10600 */ 10601 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10602 } 10603 if (tp->t_flags2 & TF2_DROP_AF_DATA) { 10604 m_freem(m); 10605 return (0); 10606 } 10607 /* 10608 * don't process the URG bit, ignore them drag 10609 * along the up. 10610 */ 10611 tp->rcv_up = tp->rcv_nxt; 10612 INP_WLOCK_ASSERT(tp->t_inpcb); 10613 10614 /* 10615 * Process the segment text, merging it into the TCP sequencing 10616 * queue, and arranging for acknowledgment of receipt if necessary. 10617 * This process logically involves adjusting tp->rcv_wnd as data is 10618 * presented to the user (this happens in tcp_usrreq.c, case 10619 * PRU_RCVD). If a FIN has already been received on this connection 10620 * then we just ignore the text. 10621 */ 10622 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 10623 IS_FASTOPEN(tp->t_flags)); 10624 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 10625 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10626 tcp_seq save_start = th->th_seq; 10627 tcp_seq save_rnxt = tp->rcv_nxt; 10628 int save_tlen = tlen; 10629 10630 m_adj(m, drop_hdrlen); /* delayed header drop */ 10631 /* 10632 * Insert segment which includes th into TCP reassembly 10633 * queue with control block tp. Set thflags to whether 10634 * reassembly now includes a segment with FIN. This handles 10635 * the common case inline (segment is the next to be 10636 * received on an established connection, and the queue is 10637 * empty), avoiding linkage into and removal from the queue 10638 * and repetition of various conversions. Set DELACK for 10639 * segments received in order, but ack immediately when 10640 * segments are out of order (so fast retransmit can work). 10641 */ 10642 if (th->th_seq == tp->rcv_nxt && 10643 SEGQ_EMPTY(tp) && 10644 (TCPS_HAVEESTABLISHED(tp->t_state) || 10645 tfo_syn)) { 10646 #ifdef NETFLIX_SB_LIMITS 10647 u_int mcnt, appended; 10648 10649 if (so->so_rcv.sb_shlim) { 10650 mcnt = m_memcnt(m); 10651 appended = 0; 10652 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10653 CFO_NOSLEEP, NULL) == false) { 10654 counter_u64_add(tcp_sb_shlim_fails, 1); 10655 m_freem(m); 10656 return (0); 10657 } 10658 } 10659 #endif 10660 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); 10661 tp->rcv_nxt += tlen; 10662 if (tlen && 10663 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10664 (tp->t_fbyte_in == 0)) { 10665 tp->t_fbyte_in = ticks; 10666 if (tp->t_fbyte_in == 0) 10667 tp->t_fbyte_in = 1; 10668 if (tp->t_fbyte_out && tp->t_fbyte_in) 10669 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10670 } 10671 thflags = tcp_get_flags(th) & TH_FIN; 10672 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10673 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10674 SOCKBUF_LOCK(&so->so_rcv); 10675 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10676 m_freem(m); 10677 } else 10678 #ifdef NETFLIX_SB_LIMITS 10679 appended = 10680 #endif 10681 sbappendstream_locked(&so->so_rcv, m, 0); 10682 10683 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10684 /* NB: sorwakeup_locked() does an implicit unlock. */ 10685 sorwakeup_locked(so); 10686 #ifdef NETFLIX_SB_LIMITS 10687 if (so->so_rcv.sb_shlim && appended != mcnt) 10688 counter_fo_release(so->so_rcv.sb_shlim, 10689 mcnt - appended); 10690 #endif 10691 } else { 10692 /* 10693 * XXX: Due to the header drop above "th" is 10694 * theoretically invalid by now. Fortunately 10695 * m_adj() doesn't actually frees any mbufs when 10696 * trimming from the head. 10697 */ 10698 tcp_seq temp = save_start; 10699 10700 thflags = tcp_reass(tp, th, &temp, &tlen, m); 10701 tp->t_flags |= TF_ACKNOW; 10702 if (tp->t_flags & TF_WAKESOR) { 10703 tp->t_flags &= ~TF_WAKESOR; 10704 /* NB: sorwakeup_locked() does an implicit unlock. */ 10705 sorwakeup_locked(so); 10706 } 10707 } 10708 if ((tp->t_flags & TF_SACK_PERMIT) && 10709 (save_tlen > 0) && 10710 TCPS_HAVEESTABLISHED(tp->t_state)) { 10711 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 10712 /* 10713 * DSACK actually handled in the fastpath 10714 * above. 10715 */ 10716 RACK_OPTS_INC(tcp_sack_path_1); 10717 tcp_update_sack_list(tp, save_start, 10718 save_start + save_tlen); 10719 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 10720 if ((tp->rcv_numsacks >= 1) && 10721 (tp->sackblks[0].end == save_start)) { 10722 /* 10723 * Partial overlap, recorded at todrop 10724 * above. 10725 */ 10726 RACK_OPTS_INC(tcp_sack_path_2a); 10727 tcp_update_sack_list(tp, 10728 tp->sackblks[0].start, 10729 tp->sackblks[0].end); 10730 } else { 10731 RACK_OPTS_INC(tcp_sack_path_2b); 10732 tcp_update_dsack_list(tp, save_start, 10733 save_start + save_tlen); 10734 } 10735 } else if (tlen >= save_tlen) { 10736 /* Update of sackblks. */ 10737 RACK_OPTS_INC(tcp_sack_path_3); 10738 tcp_update_dsack_list(tp, save_start, 10739 save_start + save_tlen); 10740 } else if (tlen > 0) { 10741 RACK_OPTS_INC(tcp_sack_path_4); 10742 tcp_update_dsack_list(tp, save_start, 10743 save_start + tlen); 10744 } 10745 } 10746 } else { 10747 m_freem(m); 10748 thflags &= ~TH_FIN; 10749 } 10750 10751 /* 10752 * If FIN is received ACK the FIN and let the user know that the 10753 * connection is closing. 10754 */ 10755 if (thflags & TH_FIN) { 10756 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10757 /* The socket upcall is handled by socantrcvmore. */ 10758 socantrcvmore(so); 10759 /* 10760 * If connection is half-synchronized (ie NEEDSYN 10761 * flag on) then delay ACK, so it may be piggybacked 10762 * when SYN is sent. Otherwise, since we received a 10763 * FIN then no more input can be expected, send ACK 10764 * now. 10765 */ 10766 if (tp->t_flags & TF_NEEDSYN) { 10767 rack_timer_cancel(tp, rack, 10768 rack->r_ctl.rc_rcvtime, __LINE__); 10769 tp->t_flags |= TF_DELACK; 10770 } else { 10771 tp->t_flags |= TF_ACKNOW; 10772 } 10773 tp->rcv_nxt++; 10774 } 10775 switch (tp->t_state) { 10776 /* 10777 * In SYN_RECEIVED and ESTABLISHED STATES enter the 10778 * CLOSE_WAIT state. 10779 */ 10780 case TCPS_SYN_RECEIVED: 10781 tp->t_starttime = ticks; 10782 /* FALLTHROUGH */ 10783 case TCPS_ESTABLISHED: 10784 rack_timer_cancel(tp, rack, 10785 rack->r_ctl.rc_rcvtime, __LINE__); 10786 tcp_state_change(tp, TCPS_CLOSE_WAIT); 10787 break; 10788 10789 /* 10790 * If still in FIN_WAIT_1 STATE FIN has not been 10791 * acked so enter the CLOSING state. 10792 */ 10793 case TCPS_FIN_WAIT_1: 10794 rack_timer_cancel(tp, rack, 10795 rack->r_ctl.rc_rcvtime, __LINE__); 10796 tcp_state_change(tp, TCPS_CLOSING); 10797 break; 10798 10799 /* 10800 * In FIN_WAIT_2 state enter the TIME_WAIT state, 10801 * starting the time-wait timer, turning off the 10802 * other standard timers. 10803 */ 10804 case TCPS_FIN_WAIT_2: 10805 rack_timer_cancel(tp, rack, 10806 rack->r_ctl.rc_rcvtime, __LINE__); 10807 tcp_twstart(tp); 10808 return (1); 10809 } 10810 } 10811 /* 10812 * Return any desired output. 10813 */ 10814 if ((tp->t_flags & TF_ACKNOW) || 10815 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { 10816 rack->r_wanted_output = 1; 10817 } 10818 INP_WLOCK_ASSERT(tp->t_inpcb); 10819 return (0); 10820 } 10821 10822 /* 10823 * Here nothing is really faster, its just that we 10824 * have broken out the fast-data path also just like 10825 * the fast-ack. 10826 */ 10827 static int 10828 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, 10829 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10830 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) 10831 { 10832 int32_t nsegs; 10833 int32_t newsize = 0; /* automatic sockbuf scaling */ 10834 struct tcp_rack *rack; 10835 #ifdef NETFLIX_SB_LIMITS 10836 u_int mcnt, appended; 10837 #endif 10838 #ifdef TCPDEBUG 10839 /* 10840 * The size of tcp_saveipgen must be the size of the max ip header, 10841 * now IPv6. 10842 */ 10843 u_char tcp_saveipgen[IP6_HDR_LEN]; 10844 struct tcphdr tcp_savetcp; 10845 short ostate = 0; 10846 10847 #endif 10848 /* 10849 * If last ACK falls within this segment's sequence numbers, record 10850 * the timestamp. NOTE that the test is modified according to the 10851 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 10852 */ 10853 if (__predict_false(th->th_seq != tp->rcv_nxt)) { 10854 return (0); 10855 } 10856 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10857 return (0); 10858 } 10859 if (tiwin && tiwin != tp->snd_wnd) { 10860 return (0); 10861 } 10862 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { 10863 return (0); 10864 } 10865 if (__predict_false((to->to_flags & TOF_TS) && 10866 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { 10867 return (0); 10868 } 10869 if (__predict_false((th->th_ack != tp->snd_una))) { 10870 return (0); 10871 } 10872 if (__predict_false(tlen > sbspace(&so->so_rcv))) { 10873 return (0); 10874 } 10875 if ((to->to_flags & TOF_TS) != 0 && 10876 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 10877 tp->ts_recent_age = tcp_ts_getticks(); 10878 tp->ts_recent = to->to_tsval; 10879 } 10880 rack = (struct tcp_rack *)tp->t_fb_ptr; 10881 /* 10882 * This is a pure, in-sequence data packet with nothing on the 10883 * reassembly queue and we have enough buffer space to take it. 10884 */ 10885 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10886 10887 #ifdef NETFLIX_SB_LIMITS 10888 if (so->so_rcv.sb_shlim) { 10889 mcnt = m_memcnt(m); 10890 appended = 0; 10891 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10892 CFO_NOSLEEP, NULL) == false) { 10893 counter_u64_add(tcp_sb_shlim_fails, 1); 10894 m_freem(m); 10895 return (1); 10896 } 10897 } 10898 #endif 10899 /* Clean receiver SACK report if present */ 10900 if (tp->rcv_numsacks) 10901 tcp_clean_sackreport(tp); 10902 KMOD_TCPSTAT_INC(tcps_preddat); 10903 tp->rcv_nxt += tlen; 10904 if (tlen && 10905 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10906 (tp->t_fbyte_in == 0)) { 10907 tp->t_fbyte_in = ticks; 10908 if (tp->t_fbyte_in == 0) 10909 tp->t_fbyte_in = 1; 10910 if (tp->t_fbyte_out && tp->t_fbyte_in) 10911 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10912 } 10913 /* 10914 * Pull snd_wl1 up to prevent seq wrap relative to th_seq. 10915 */ 10916 tp->snd_wl1 = th->th_seq; 10917 /* 10918 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. 10919 */ 10920 tp->rcv_up = tp->rcv_nxt; 10921 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10922 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10923 #ifdef TCPDEBUG 10924 if (so->so_options & SO_DEBUG) 10925 tcp_trace(TA_INPUT, ostate, tp, 10926 (void *)tcp_saveipgen, &tcp_savetcp, 0); 10927 #endif 10928 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 10929 10930 /* Add data to socket buffer. */ 10931 SOCKBUF_LOCK(&so->so_rcv); 10932 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10933 m_freem(m); 10934 } else { 10935 /* 10936 * Set new socket buffer size. Give up when limit is 10937 * reached. 10938 */ 10939 if (newsize) 10940 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 10941 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 10942 m_adj(m, drop_hdrlen); /* delayed header drop */ 10943 #ifdef NETFLIX_SB_LIMITS 10944 appended = 10945 #endif 10946 sbappendstream_locked(&so->so_rcv, m, 0); 10947 ctf_calc_rwin(so, tp); 10948 } 10949 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10950 /* NB: sorwakeup_locked() does an implicit unlock. */ 10951 sorwakeup_locked(so); 10952 #ifdef NETFLIX_SB_LIMITS 10953 if (so->so_rcv.sb_shlim && mcnt != appended) 10954 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); 10955 #endif 10956 rack_handle_delayed_ack(tp, rack, tlen, 0); 10957 if (tp->snd_una == tp->snd_max) 10958 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 10959 return (1); 10960 } 10961 10962 /* 10963 * This subfunction is used to try to highly optimize the 10964 * fast path. We again allow window updates that are 10965 * in sequence to remain in the fast-path. We also add 10966 * in the __predict's to attempt to help the compiler. 10967 * Note that if we return a 0, then we can *not* process 10968 * it and the caller should push the packet into the 10969 * slow-path. 10970 */ 10971 static int 10972 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 10973 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10974 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) 10975 { 10976 int32_t acked; 10977 int32_t nsegs; 10978 #ifdef TCPDEBUG 10979 /* 10980 * The size of tcp_saveipgen must be the size of the max ip header, 10981 * now IPv6. 10982 */ 10983 u_char tcp_saveipgen[IP6_HDR_LEN]; 10984 struct tcphdr tcp_savetcp; 10985 short ostate = 0; 10986 #endif 10987 int32_t under_pacing = 0; 10988 struct tcp_rack *rack; 10989 10990 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 10991 /* Old ack, behind (or duplicate to) the last one rcv'd */ 10992 return (0); 10993 } 10994 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { 10995 /* Above what we have sent? */ 10996 return (0); 10997 } 10998 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10999 /* We are retransmitting */ 11000 return (0); 11001 } 11002 if (__predict_false(tiwin == 0)) { 11003 /* zero window */ 11004 return (0); 11005 } 11006 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { 11007 /* We need a SYN or a FIN, unlikely.. */ 11008 return (0); 11009 } 11010 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { 11011 /* Timestamp is behind .. old ack with seq wrap? */ 11012 return (0); 11013 } 11014 if (__predict_false(IN_RECOVERY(tp->t_flags))) { 11015 /* Still recovering */ 11016 return (0); 11017 } 11018 rack = (struct tcp_rack *)tp->t_fb_ptr; 11019 if (rack->r_ctl.rc_sacked) { 11020 /* We have sack holes on our scoreboard */ 11021 return (0); 11022 } 11023 /* Ok if we reach here, we can process a fast-ack */ 11024 if (rack->gp_ready && 11025 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 11026 under_pacing = 1; 11027 } 11028 nsegs = max(1, m->m_pkthdr.lro_nsegs); 11029 rack_log_ack(tp, to, th, 0, 0); 11030 /* Did the window get updated? */ 11031 if (tiwin != tp->snd_wnd) { 11032 tp->snd_wnd = tiwin; 11033 rack_validate_fo_sendwin_up(tp, rack); 11034 tp->snd_wl1 = th->th_seq; 11035 if (tp->snd_wnd > tp->max_sndwnd) 11036 tp->max_sndwnd = tp->snd_wnd; 11037 } 11038 /* Do we exit persists? */ 11039 if ((rack->rc_in_persist != 0) && 11040 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 11041 rack->r_ctl.rc_pace_min_segs))) { 11042 rack_exit_persist(tp, rack, cts); 11043 } 11044 /* Do we enter persists? */ 11045 if ((rack->rc_in_persist == 0) && 11046 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 11047 TCPS_HAVEESTABLISHED(tp->t_state) && 11048 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 11049 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 11050 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 11051 /* 11052 * Here the rwnd is less than 11053 * the pacing size, we are established, 11054 * nothing is outstanding, and there is 11055 * data to send. Enter persists. 11056 */ 11057 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 11058 } 11059 /* 11060 * If last ACK falls within this segment's sequence numbers, record 11061 * the timestamp. NOTE that the test is modified according to the 11062 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 11063 */ 11064 if ((to->to_flags & TOF_TS) != 0 && 11065 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 11066 tp->ts_recent_age = tcp_ts_getticks(); 11067 tp->ts_recent = to->to_tsval; 11068 } 11069 /* 11070 * This is a pure ack for outstanding data. 11071 */ 11072 KMOD_TCPSTAT_INC(tcps_predack); 11073 11074 /* 11075 * "bad retransmit" recovery. 11076 */ 11077 if ((tp->t_flags & TF_PREVVALID) && 11078 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 11079 tp->t_flags &= ~TF_PREVVALID; 11080 if (tp->t_rxtshift == 1 && 11081 (int)(ticks - tp->t_badrxtwin) < 0) 11082 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__); 11083 } 11084 /* 11085 * Recalculate the transmit timer / rtt. 11086 * 11087 * Some boxes send broken timestamp replies during the SYN+ACK 11088 * phase, ignore timestamps of 0 or we could calculate a huge RTT 11089 * and blow up the retransmit timer. 11090 */ 11091 acked = BYTES_THIS_ACK(tp, th); 11092 11093 #ifdef TCP_HHOOK 11094 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 11095 hhook_run_tcp_est_in(tp, th, to); 11096 #endif 11097 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 11098 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 11099 if (acked) { 11100 struct mbuf *mfree; 11101 11102 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0); 11103 SOCKBUF_LOCK(&so->so_snd); 11104 mfree = sbcut_locked(&so->so_snd, acked); 11105 tp->snd_una = th->th_ack; 11106 /* Note we want to hold the sb lock through the sendmap adjust */ 11107 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 11108 /* Wake up the socket if we have room to write more */ 11109 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 11110 sowwakeup_locked(so); 11111 m_freem(mfree); 11112 tp->t_rxtshift = 0; 11113 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 11114 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 11115 rack->rc_tlp_in_progress = 0; 11116 rack->r_ctl.rc_tlp_cnt_out = 0; 11117 /* 11118 * If it is the RXT timer we want to 11119 * stop it, so we can restart a TLP. 11120 */ 11121 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 11122 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11123 #ifdef NETFLIX_HTTP_LOGGING 11124 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 11125 #endif 11126 } 11127 /* 11128 * Let the congestion control algorithm update congestion control 11129 * related information. This typically means increasing the 11130 * congestion window. 11131 */ 11132 if (tp->snd_wnd < ctf_outstanding(tp)) { 11133 /* The peer collapsed the window */ 11134 rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__); 11135 } else if (rack->rc_has_collapsed) 11136 rack_un_collapse_window(rack, __LINE__); 11137 if ((rack->r_collapse_point_valid) && 11138 (SEQ_GT(tp->snd_una, rack->r_ctl.high_collapse_point))) 11139 rack->r_collapse_point_valid = 0; 11140 /* 11141 * Pull snd_wl2 up to prevent seq wrap relative to th_ack. 11142 */ 11143 tp->snd_wl2 = th->th_ack; 11144 tp->t_dupacks = 0; 11145 m_freem(m); 11146 /* ND6_HINT(tp); *//* Some progress has been made. */ 11147 11148 /* 11149 * If all outstanding data are acked, stop retransmit timer, 11150 * otherwise restart timer using current (possibly backed-off) 11151 * value. If process is waiting for space, wakeup/selwakeup/signal. 11152 * If data are ready to send, let tcp_output decide between more 11153 * output or persist. 11154 */ 11155 #ifdef TCPDEBUG 11156 if (so->so_options & SO_DEBUG) 11157 tcp_trace(TA_INPUT, ostate, tp, 11158 (void *)tcp_saveipgen, 11159 &tcp_savetcp, 0); 11160 #endif 11161 if (under_pacing && 11162 (rack->use_fixed_rate == 0) && 11163 (rack->in_probe_rtt == 0) && 11164 rack->rc_gp_dyn_mul && 11165 rack->rc_always_pace) { 11166 /* Check if we are dragging bottom */ 11167 rack_check_bottom_drag(tp, rack, so, acked); 11168 } 11169 if (tp->snd_una == tp->snd_max) { 11170 tp->t_flags &= ~TF_PREVVALID; 11171 rack->r_ctl.retran_during_recovery = 0; 11172 rack->r_ctl.dsack_byte_cnt = 0; 11173 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 11174 if (rack->r_ctl.rc_went_idle_time == 0) 11175 rack->r_ctl.rc_went_idle_time = 1; 11176 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 11177 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 11178 tp->t_acktime = 0; 11179 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11180 } 11181 if (acked && rack->r_fast_output) 11182 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked); 11183 if (sbavail(&so->so_snd)) { 11184 rack->r_wanted_output = 1; 11185 } 11186 return (1); 11187 } 11188 11189 /* 11190 * Return value of 1, the TCB is unlocked and most 11191 * likely gone, return value of 0, the TCP is still 11192 * locked. 11193 */ 11194 static int 11195 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, 11196 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11197 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11198 { 11199 int32_t ret_val = 0; 11200 int32_t todrop; 11201 int32_t ourfinisacked = 0; 11202 struct tcp_rack *rack; 11203 11204 ctf_calc_rwin(so, tp); 11205 /* 11206 * If the state is SYN_SENT: if seg contains an ACK, but not for our 11207 * SYN, drop the input. if seg contains a RST, then drop the 11208 * connection. if seg does not contain SYN, then drop it. Otherwise 11209 * this is an acceptable SYN segment initialize tp->rcv_nxt and 11210 * tp->irs if seg contains ack then advance tp->snd_una if seg 11211 * contains an ECE and ECN support is enabled, the stream is ECN 11212 * capable. if SYN has been acked change to ESTABLISHED else 11213 * SYN_RCVD state arrange for segment to be acked (eventually) 11214 * continue processing rest of data/controls. 11215 */ 11216 if ((thflags & TH_ACK) && 11217 (SEQ_LEQ(th->th_ack, tp->iss) || 11218 SEQ_GT(th->th_ack, tp->snd_max))) { 11219 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11220 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11221 return (1); 11222 } 11223 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { 11224 TCP_PROBE5(connect__refused, NULL, tp, 11225 mtod(m, const char *), tp, th); 11226 tp = tcp_drop(tp, ECONNREFUSED); 11227 ctf_do_drop(m, tp); 11228 return (1); 11229 } 11230 if (thflags & TH_RST) { 11231 ctf_do_drop(m, tp); 11232 return (1); 11233 } 11234 if (!(thflags & TH_SYN)) { 11235 ctf_do_drop(m, tp); 11236 return (1); 11237 } 11238 tp->irs = th->th_seq; 11239 tcp_rcvseqinit(tp); 11240 rack = (struct tcp_rack *)tp->t_fb_ptr; 11241 if (thflags & TH_ACK) { 11242 int tfo_partial = 0; 11243 11244 KMOD_TCPSTAT_INC(tcps_connects); 11245 soisconnected(so); 11246 #ifdef MAC 11247 mac_socketpeer_set_from_mbuf(m, so); 11248 #endif 11249 /* Do window scaling on this connection? */ 11250 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11251 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11252 tp->rcv_scale = tp->request_r_scale; 11253 } 11254 tp->rcv_adv += min(tp->rcv_wnd, 11255 TCP_MAXWIN << tp->rcv_scale); 11256 /* 11257 * If not all the data that was sent in the TFO SYN 11258 * has been acked, resend the remainder right away. 11259 */ 11260 if (IS_FASTOPEN(tp->t_flags) && 11261 (tp->snd_una != tp->snd_max)) { 11262 tp->snd_nxt = th->th_ack; 11263 tfo_partial = 1; 11264 } 11265 /* 11266 * If there's data, delay ACK; if there's also a FIN ACKNOW 11267 * will be turned on later. 11268 */ 11269 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { 11270 rack_timer_cancel(tp, rack, 11271 rack->r_ctl.rc_rcvtime, __LINE__); 11272 tp->t_flags |= TF_DELACK; 11273 } else { 11274 rack->r_wanted_output = 1; 11275 tp->t_flags |= TF_ACKNOW; 11276 rack->rc_dack_toggle = 0; 11277 } 11278 11279 tcp_ecn_input_syn_sent(tp, thflags, iptos); 11280 11281 if (SEQ_GT(th->th_ack, tp->snd_una)) { 11282 /* 11283 * We advance snd_una for the 11284 * fast open case. If th_ack is 11285 * acknowledging data beyond 11286 * snd_una we can't just call 11287 * ack-processing since the 11288 * data stream in our send-map 11289 * will start at snd_una + 1 (one 11290 * beyond the SYN). If its just 11291 * equal we don't need to do that 11292 * and there is no send_map. 11293 */ 11294 tp->snd_una++; 11295 } 11296 /* 11297 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions: 11298 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 11299 */ 11300 tp->t_starttime = ticks; 11301 if (tp->t_flags & TF_NEEDFIN) { 11302 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11303 tp->t_flags &= ~TF_NEEDFIN; 11304 thflags &= ~TH_SYN; 11305 } else { 11306 tcp_state_change(tp, TCPS_ESTABLISHED); 11307 TCP_PROBE5(connect__established, NULL, tp, 11308 mtod(m, const char *), tp, th); 11309 rack_cc_conn_init(tp); 11310 } 11311 } else { 11312 /* 11313 * Received initial SYN in SYN-SENT[*] state => simultaneous 11314 * open. If segment contains CC option and there is a 11315 * cached CC, apply TAO test. If it succeeds, connection is * 11316 * half-synchronized. Otherwise, do 3-way handshake: 11317 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If 11318 * there was no CC option, clear cached CC value. 11319 */ 11320 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 11321 tcp_state_change(tp, TCPS_SYN_RECEIVED); 11322 } 11323 INP_WLOCK_ASSERT(tp->t_inpcb); 11324 /* 11325 * Advance th->th_seq to correspond to first data byte. If data, 11326 * trim to stay within window, dropping FIN if necessary. 11327 */ 11328 th->th_seq++; 11329 if (tlen > tp->rcv_wnd) { 11330 todrop = tlen - tp->rcv_wnd; 11331 m_adj(m, -todrop); 11332 tlen = tp->rcv_wnd; 11333 thflags &= ~TH_FIN; 11334 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); 11335 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 11336 } 11337 tp->snd_wl1 = th->th_seq - 1; 11338 tp->rcv_up = th->th_seq; 11339 /* 11340 * Client side of transaction: already sent SYN and data. If the 11341 * remote host used T/TCP to validate the SYN, our data will be 11342 * ACK'd; if so, enter normal data segment processing in the middle 11343 * of step 5, ack processing. Otherwise, goto step 6. 11344 */ 11345 if (thflags & TH_ACK) { 11346 /* For syn-sent we need to possibly update the rtt */ 11347 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11348 uint32_t t, mcts; 11349 11350 mcts = tcp_ts_getticks(); 11351 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11352 if (!tp->t_rttlow || tp->t_rttlow > t) 11353 tp->t_rttlow = t; 11354 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4); 11355 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11356 tcp_rack_xmit_timer_commit(rack, tp); 11357 } 11358 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) 11359 return (ret_val); 11360 /* We may have changed to FIN_WAIT_1 above */ 11361 if (tp->t_state == TCPS_FIN_WAIT_1) { 11362 /* 11363 * In FIN_WAIT_1 STATE in addition to the processing 11364 * for the ESTABLISHED state if our FIN is now 11365 * acknowledged then enter FIN_WAIT_2. 11366 */ 11367 if (ourfinisacked) { 11368 /* 11369 * If we can't receive any more data, then 11370 * closing user can proceed. Starting the 11371 * timer is contrary to the specification, 11372 * but if we don't get a FIN we'll hang 11373 * forever. 11374 * 11375 * XXXjl: we should release the tp also, and 11376 * use a compressed state. 11377 */ 11378 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11379 soisdisconnected(so); 11380 tcp_timer_activate(tp, TT_2MSL, 11381 (tcp_fast_finwait2_recycle ? 11382 tcp_finwait2_timeout : 11383 TP_MAXIDLE(tp))); 11384 } 11385 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11386 } 11387 } 11388 } 11389 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11390 tiwin, thflags, nxt_pkt)); 11391 } 11392 11393 /* 11394 * Return value of 1, the TCB is unlocked and most 11395 * likely gone, return value of 0, the TCP is still 11396 * locked. 11397 */ 11398 static int 11399 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, 11400 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11401 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11402 { 11403 struct tcp_rack *rack; 11404 int32_t ret_val = 0; 11405 int32_t ourfinisacked = 0; 11406 11407 ctf_calc_rwin(so, tp); 11408 if ((thflags & TH_ACK) && 11409 (SEQ_LEQ(th->th_ack, tp->snd_una) || 11410 SEQ_GT(th->th_ack, tp->snd_max))) { 11411 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11412 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11413 return (1); 11414 } 11415 rack = (struct tcp_rack *)tp->t_fb_ptr; 11416 if (IS_FASTOPEN(tp->t_flags)) { 11417 /* 11418 * When a TFO connection is in SYN_RECEIVED, the 11419 * only valid packets are the initial SYN, a 11420 * retransmit/copy of the initial SYN (possibly with 11421 * a subset of the original data), a valid ACK, a 11422 * FIN, or a RST. 11423 */ 11424 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { 11425 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11426 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11427 return (1); 11428 } else if (thflags & TH_SYN) { 11429 /* non-initial SYN is ignored */ 11430 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || 11431 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || 11432 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { 11433 ctf_do_drop(m, NULL); 11434 return (0); 11435 } 11436 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { 11437 ctf_do_drop(m, NULL); 11438 return (0); 11439 } 11440 } 11441 11442 if ((thflags & TH_RST) || 11443 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11444 return (__ctf_process_rst(m, th, so, tp, 11445 &rack->r_ctl.challenge_ack_ts, 11446 &rack->r_ctl.challenge_ack_cnt)); 11447 /* 11448 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11449 * it's less than ts_recent, drop it. 11450 */ 11451 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11452 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11453 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11454 return (ret_val); 11455 } 11456 /* 11457 * In the SYN-RECEIVED state, validate that the packet belongs to 11458 * this connection before trimming the data to fit the receive 11459 * window. Check the sequence number versus IRS since we know the 11460 * sequence numbers haven't wrapped. This is a partial fix for the 11461 * "LAND" DoS attack. 11462 */ 11463 if (SEQ_LT(th->th_seq, tp->irs)) { 11464 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11465 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11466 return (1); 11467 } 11468 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11469 &rack->r_ctl.challenge_ack_ts, 11470 &rack->r_ctl.challenge_ack_cnt)) { 11471 return (ret_val); 11472 } 11473 /* 11474 * If last ACK falls within this segment's sequence numbers, record 11475 * its timestamp. NOTE: 1) That the test incorporates suggestions 11476 * from the latest proposal of the tcplw@cray.com list (Braden 11477 * 1993/04/26). 2) That updating only on newer timestamps interferes 11478 * with our earlier PAWS tests, so this check should be solely 11479 * predicated on the sequence space of this segment. 3) That we 11480 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11481 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11482 * SEG.Len, This modified check allows us to overcome RFC1323's 11483 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11484 * p.869. In such cases, we can still calculate the RTT correctly 11485 * when RCV.NXT == Last.ACK.Sent. 11486 */ 11487 if ((to->to_flags & TOF_TS) != 0 && 11488 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11489 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11490 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11491 tp->ts_recent_age = tcp_ts_getticks(); 11492 tp->ts_recent = to->to_tsval; 11493 } 11494 tp->snd_wnd = tiwin; 11495 rack_validate_fo_sendwin_up(tp, rack); 11496 /* 11497 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11498 * is on (half-synchronized state), then queue data for later 11499 * processing; else drop segment and return. 11500 */ 11501 if ((thflags & TH_ACK) == 0) { 11502 if (IS_FASTOPEN(tp->t_flags)) { 11503 rack_cc_conn_init(tp); 11504 } 11505 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11506 tiwin, thflags, nxt_pkt)); 11507 } 11508 KMOD_TCPSTAT_INC(tcps_connects); 11509 soisconnected(so); 11510 /* Do window scaling? */ 11511 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11512 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11513 tp->rcv_scale = tp->request_r_scale; 11514 } 11515 /* 11516 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> 11517 * FIN-WAIT-1 11518 */ 11519 tp->t_starttime = ticks; 11520 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 11521 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 11522 tp->t_tfo_pending = NULL; 11523 } 11524 if (tp->t_flags & TF_NEEDFIN) { 11525 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11526 tp->t_flags &= ~TF_NEEDFIN; 11527 } else { 11528 tcp_state_change(tp, TCPS_ESTABLISHED); 11529 TCP_PROBE5(accept__established, NULL, tp, 11530 mtod(m, const char *), tp, th); 11531 /* 11532 * TFO connections call cc_conn_init() during SYN 11533 * processing. Calling it again here for such connections 11534 * is not harmless as it would undo the snd_cwnd reduction 11535 * that occurs when a TFO SYN|ACK is retransmitted. 11536 */ 11537 if (!IS_FASTOPEN(tp->t_flags)) 11538 rack_cc_conn_init(tp); 11539 } 11540 /* 11541 * Account for the ACK of our SYN prior to 11542 * regular ACK processing below, except for 11543 * simultaneous SYN, which is handled later. 11544 */ 11545 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 11546 tp->snd_una++; 11547 /* 11548 * If segment contains data or ACK, will call tcp_reass() later; if 11549 * not, do so now to pass queued data to user. 11550 */ 11551 if (tlen == 0 && (thflags & TH_FIN) == 0) { 11552 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 11553 (struct mbuf *)0); 11554 if (tp->t_flags & TF_WAKESOR) { 11555 tp->t_flags &= ~TF_WAKESOR; 11556 /* NB: sorwakeup_locked() does an implicit unlock. */ 11557 sorwakeup_locked(so); 11558 } 11559 } 11560 tp->snd_wl1 = th->th_seq - 1; 11561 /* For syn-recv we need to possibly update the rtt */ 11562 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11563 uint32_t t, mcts; 11564 11565 mcts = tcp_ts_getticks(); 11566 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11567 if (!tp->t_rttlow || tp->t_rttlow > t) 11568 tp->t_rttlow = t; 11569 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5); 11570 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11571 tcp_rack_xmit_timer_commit(rack, tp); 11572 } 11573 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11574 return (ret_val); 11575 } 11576 if (tp->t_state == TCPS_FIN_WAIT_1) { 11577 /* We could have went to FIN_WAIT_1 (or EST) above */ 11578 /* 11579 * In FIN_WAIT_1 STATE in addition to the processing for the 11580 * ESTABLISHED state if our FIN is now acknowledged then 11581 * enter FIN_WAIT_2. 11582 */ 11583 if (ourfinisacked) { 11584 /* 11585 * If we can't receive any more data, then closing 11586 * user can proceed. Starting the timer is contrary 11587 * to the specification, but if we don't get a FIN 11588 * we'll hang forever. 11589 * 11590 * XXXjl: we should release the tp also, and use a 11591 * compressed state. 11592 */ 11593 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11594 soisdisconnected(so); 11595 tcp_timer_activate(tp, TT_2MSL, 11596 (tcp_fast_finwait2_recycle ? 11597 tcp_finwait2_timeout : 11598 TP_MAXIDLE(tp))); 11599 } 11600 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11601 } 11602 } 11603 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11604 tiwin, thflags, nxt_pkt)); 11605 } 11606 11607 /* 11608 * Return value of 1, the TCB is unlocked and most 11609 * likely gone, return value of 0, the TCP is still 11610 * locked. 11611 */ 11612 static int 11613 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, 11614 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11615 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11616 { 11617 int32_t ret_val = 0; 11618 struct tcp_rack *rack; 11619 11620 /* 11621 * Header prediction: check for the two common cases of a 11622 * uni-directional data xfer. If the packet has no control flags, 11623 * is in-sequence, the window didn't change and we're not 11624 * retransmitting, it's a candidate. If the length is zero and the 11625 * ack moved forward, we're the sender side of the xfer. Just free 11626 * the data acked & wake any higher level process that was blocked 11627 * waiting for space. If the length is non-zero and the ack didn't 11628 * move, we're the receiver side. If we're getting packets in-order 11629 * (the reassembly queue is empty), add the data toc The socket 11630 * buffer and note that we need a delayed ack. Make sure that the 11631 * hidden state-flags are also off. Since we check for 11632 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. 11633 */ 11634 rack = (struct tcp_rack *)tp->t_fb_ptr; 11635 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && 11636 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && 11637 __predict_true(SEGQ_EMPTY(tp)) && 11638 __predict_true(th->th_seq == tp->rcv_nxt)) { 11639 if (tlen == 0) { 11640 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, 11641 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { 11642 return (0); 11643 } 11644 } else { 11645 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, 11646 tiwin, nxt_pkt, iptos)) { 11647 return (0); 11648 } 11649 } 11650 } 11651 ctf_calc_rwin(so, tp); 11652 11653 if ((thflags & TH_RST) || 11654 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11655 return (__ctf_process_rst(m, th, so, tp, 11656 &rack->r_ctl.challenge_ack_ts, 11657 &rack->r_ctl.challenge_ack_cnt)); 11658 11659 /* 11660 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11661 * synchronized state. 11662 */ 11663 if (thflags & TH_SYN) { 11664 ctf_challenge_ack(m, th, tp, &ret_val); 11665 return (ret_val); 11666 } 11667 /* 11668 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11669 * it's less than ts_recent, drop it. 11670 */ 11671 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11672 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11673 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11674 return (ret_val); 11675 } 11676 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11677 &rack->r_ctl.challenge_ack_ts, 11678 &rack->r_ctl.challenge_ack_cnt)) { 11679 return (ret_val); 11680 } 11681 /* 11682 * If last ACK falls within this segment's sequence numbers, record 11683 * its timestamp. NOTE: 1) That the test incorporates suggestions 11684 * from the latest proposal of the tcplw@cray.com list (Braden 11685 * 1993/04/26). 2) That updating only on newer timestamps interferes 11686 * with our earlier PAWS tests, so this check should be solely 11687 * predicated on the sequence space of this segment. 3) That we 11688 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11689 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11690 * SEG.Len, This modified check allows us to overcome RFC1323's 11691 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11692 * p.869. In such cases, we can still calculate the RTT correctly 11693 * when RCV.NXT == Last.ACK.Sent. 11694 */ 11695 if ((to->to_flags & TOF_TS) != 0 && 11696 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11697 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11698 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11699 tp->ts_recent_age = tcp_ts_getticks(); 11700 tp->ts_recent = to->to_tsval; 11701 } 11702 /* 11703 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11704 * is on (half-synchronized state), then queue data for later 11705 * processing; else drop segment and return. 11706 */ 11707 if ((thflags & TH_ACK) == 0) { 11708 if (tp->t_flags & TF_NEEDSYN) { 11709 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11710 tiwin, thflags, nxt_pkt)); 11711 11712 } else if (tp->t_flags & TF_ACKNOW) { 11713 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11714 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11715 return (ret_val); 11716 } else { 11717 ctf_do_drop(m, NULL); 11718 return (0); 11719 } 11720 } 11721 /* 11722 * Ack processing. 11723 */ 11724 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11725 return (ret_val); 11726 } 11727 if (sbavail(&so->so_snd)) { 11728 if (ctf_progress_timeout_check(tp, true)) { 11729 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 11730 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11731 return (1); 11732 } 11733 } 11734 /* State changes only happen in rack_process_data() */ 11735 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11736 tiwin, thflags, nxt_pkt)); 11737 } 11738 11739 /* 11740 * Return value of 1, the TCB is unlocked and most 11741 * likely gone, return value of 0, the TCP is still 11742 * locked. 11743 */ 11744 static int 11745 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, 11746 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11747 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11748 { 11749 int32_t ret_val = 0; 11750 struct tcp_rack *rack; 11751 11752 rack = (struct tcp_rack *)tp->t_fb_ptr; 11753 ctf_calc_rwin(so, tp); 11754 if ((thflags & TH_RST) || 11755 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11756 return (__ctf_process_rst(m, th, so, tp, 11757 &rack->r_ctl.challenge_ack_ts, 11758 &rack->r_ctl.challenge_ack_cnt)); 11759 /* 11760 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11761 * synchronized state. 11762 */ 11763 if (thflags & TH_SYN) { 11764 ctf_challenge_ack(m, th, tp, &ret_val); 11765 return (ret_val); 11766 } 11767 /* 11768 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11769 * it's less than ts_recent, drop it. 11770 */ 11771 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11772 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11773 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11774 return (ret_val); 11775 } 11776 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11777 &rack->r_ctl.challenge_ack_ts, 11778 &rack->r_ctl.challenge_ack_cnt)) { 11779 return (ret_val); 11780 } 11781 /* 11782 * If last ACK falls within this segment's sequence numbers, record 11783 * its timestamp. NOTE: 1) That the test incorporates suggestions 11784 * from the latest proposal of the tcplw@cray.com list (Braden 11785 * 1993/04/26). 2) That updating only on newer timestamps interferes 11786 * with our earlier PAWS tests, so this check should be solely 11787 * predicated on the sequence space of this segment. 3) That we 11788 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11789 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11790 * SEG.Len, This modified check allows us to overcome RFC1323's 11791 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11792 * p.869. In such cases, we can still calculate the RTT correctly 11793 * when RCV.NXT == Last.ACK.Sent. 11794 */ 11795 if ((to->to_flags & TOF_TS) != 0 && 11796 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11797 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11798 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11799 tp->ts_recent_age = tcp_ts_getticks(); 11800 tp->ts_recent = to->to_tsval; 11801 } 11802 /* 11803 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11804 * is on (half-synchronized state), then queue data for later 11805 * processing; else drop segment and return. 11806 */ 11807 if ((thflags & TH_ACK) == 0) { 11808 if (tp->t_flags & TF_NEEDSYN) { 11809 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11810 tiwin, thflags, nxt_pkt)); 11811 11812 } else if (tp->t_flags & TF_ACKNOW) { 11813 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11814 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11815 return (ret_val); 11816 } else { 11817 ctf_do_drop(m, NULL); 11818 return (0); 11819 } 11820 } 11821 /* 11822 * Ack processing. 11823 */ 11824 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11825 return (ret_val); 11826 } 11827 if (sbavail(&so->so_snd)) { 11828 if (ctf_progress_timeout_check(tp, true)) { 11829 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11830 tp, tick, PROGRESS_DROP, __LINE__); 11831 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11832 return (1); 11833 } 11834 } 11835 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11836 tiwin, thflags, nxt_pkt)); 11837 } 11838 11839 static int 11840 rack_check_data_after_close(struct mbuf *m, 11841 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) 11842 { 11843 struct tcp_rack *rack; 11844 11845 rack = (struct tcp_rack *)tp->t_fb_ptr; 11846 if (rack->rc_allow_data_af_clo == 0) { 11847 close_now: 11848 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11849 /* tcp_close will kill the inp pre-log the Reset */ 11850 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 11851 tp = tcp_close(tp); 11852 KMOD_TCPSTAT_INC(tcps_rcvafterclose); 11853 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); 11854 return (1); 11855 } 11856 if (sbavail(&so->so_snd) == 0) 11857 goto close_now; 11858 /* Ok we allow data that is ignored and a followup reset */ 11859 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11860 tp->rcv_nxt = th->th_seq + *tlen; 11861 tp->t_flags2 |= TF2_DROP_AF_DATA; 11862 rack->r_wanted_output = 1; 11863 *tlen = 0; 11864 return (0); 11865 } 11866 11867 /* 11868 * Return value of 1, the TCB is unlocked and most 11869 * likely gone, return value of 0, the TCP is still 11870 * locked. 11871 */ 11872 static int 11873 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, 11874 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11875 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11876 { 11877 int32_t ret_val = 0; 11878 int32_t ourfinisacked = 0; 11879 struct tcp_rack *rack; 11880 11881 rack = (struct tcp_rack *)tp->t_fb_ptr; 11882 ctf_calc_rwin(so, tp); 11883 11884 if ((thflags & TH_RST) || 11885 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11886 return (__ctf_process_rst(m, th, so, tp, 11887 &rack->r_ctl.challenge_ack_ts, 11888 &rack->r_ctl.challenge_ack_cnt)); 11889 /* 11890 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11891 * synchronized state. 11892 */ 11893 if (thflags & TH_SYN) { 11894 ctf_challenge_ack(m, th, tp, &ret_val); 11895 return (ret_val); 11896 } 11897 /* 11898 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11899 * it's less than ts_recent, drop it. 11900 */ 11901 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11902 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11903 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11904 return (ret_val); 11905 } 11906 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11907 &rack->r_ctl.challenge_ack_ts, 11908 &rack->r_ctl.challenge_ack_cnt)) { 11909 return (ret_val); 11910 } 11911 /* 11912 * If new data are received on a connection after the user processes 11913 * are gone, then RST the other end. 11914 */ 11915 if ((tp->t_flags & TF_CLOSED) && tlen && 11916 rack_check_data_after_close(m, tp, &tlen, th, so)) 11917 return (1); 11918 /* 11919 * If last ACK falls within this segment's sequence numbers, record 11920 * its timestamp. NOTE: 1) That the test incorporates suggestions 11921 * from the latest proposal of the tcplw@cray.com list (Braden 11922 * 1993/04/26). 2) That updating only on newer timestamps interferes 11923 * with our earlier PAWS tests, so this check should be solely 11924 * predicated on the sequence space of this segment. 3) That we 11925 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11926 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11927 * SEG.Len, This modified check allows us to overcome RFC1323's 11928 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11929 * p.869. In such cases, we can still calculate the RTT correctly 11930 * when RCV.NXT == Last.ACK.Sent. 11931 */ 11932 if ((to->to_flags & TOF_TS) != 0 && 11933 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11934 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11935 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11936 tp->ts_recent_age = tcp_ts_getticks(); 11937 tp->ts_recent = to->to_tsval; 11938 } 11939 /* 11940 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11941 * is on (half-synchronized state), then queue data for later 11942 * processing; else drop segment and return. 11943 */ 11944 if ((thflags & TH_ACK) == 0) { 11945 if (tp->t_flags & TF_NEEDSYN) { 11946 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11947 tiwin, thflags, nxt_pkt)); 11948 } else if (tp->t_flags & TF_ACKNOW) { 11949 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11950 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11951 return (ret_val); 11952 } else { 11953 ctf_do_drop(m, NULL); 11954 return (0); 11955 } 11956 } 11957 /* 11958 * Ack processing. 11959 */ 11960 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11961 return (ret_val); 11962 } 11963 if (ourfinisacked) { 11964 /* 11965 * If we can't receive any more data, then closing user can 11966 * proceed. Starting the timer is contrary to the 11967 * specification, but if we don't get a FIN we'll hang 11968 * forever. 11969 * 11970 * XXXjl: we should release the tp also, and use a 11971 * compressed state. 11972 */ 11973 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11974 soisdisconnected(so); 11975 tcp_timer_activate(tp, TT_2MSL, 11976 (tcp_fast_finwait2_recycle ? 11977 tcp_finwait2_timeout : 11978 TP_MAXIDLE(tp))); 11979 } 11980 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11981 } 11982 if (sbavail(&so->so_snd)) { 11983 if (ctf_progress_timeout_check(tp, true)) { 11984 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11985 tp, tick, PROGRESS_DROP, __LINE__); 11986 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11987 return (1); 11988 } 11989 } 11990 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11991 tiwin, thflags, nxt_pkt)); 11992 } 11993 11994 /* 11995 * Return value of 1, the TCB is unlocked and most 11996 * likely gone, return value of 0, the TCP is still 11997 * locked. 11998 */ 11999 static int 12000 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, 12001 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12002 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12003 { 12004 int32_t ret_val = 0; 12005 int32_t ourfinisacked = 0; 12006 struct tcp_rack *rack; 12007 12008 rack = (struct tcp_rack *)tp->t_fb_ptr; 12009 ctf_calc_rwin(so, tp); 12010 12011 if ((thflags & TH_RST) || 12012 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12013 return (__ctf_process_rst(m, th, so, tp, 12014 &rack->r_ctl.challenge_ack_ts, 12015 &rack->r_ctl.challenge_ack_cnt)); 12016 /* 12017 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12018 * synchronized state. 12019 */ 12020 if (thflags & TH_SYN) { 12021 ctf_challenge_ack(m, th, tp, &ret_val); 12022 return (ret_val); 12023 } 12024 /* 12025 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12026 * it's less than ts_recent, drop it. 12027 */ 12028 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12029 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12030 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12031 return (ret_val); 12032 } 12033 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12034 &rack->r_ctl.challenge_ack_ts, 12035 &rack->r_ctl.challenge_ack_cnt)) { 12036 return (ret_val); 12037 } 12038 /* 12039 * If new data are received on a connection after the user processes 12040 * are gone, then RST the other end. 12041 */ 12042 if ((tp->t_flags & TF_CLOSED) && tlen && 12043 rack_check_data_after_close(m, tp, &tlen, th, so)) 12044 return (1); 12045 /* 12046 * If last ACK falls within this segment's sequence numbers, record 12047 * its timestamp. NOTE: 1) That the test incorporates suggestions 12048 * from the latest proposal of the tcplw@cray.com list (Braden 12049 * 1993/04/26). 2) That updating only on newer timestamps interferes 12050 * with our earlier PAWS tests, so this check should be solely 12051 * predicated on the sequence space of this segment. 3) That we 12052 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12053 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12054 * SEG.Len, This modified check allows us to overcome RFC1323's 12055 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12056 * p.869. In such cases, we can still calculate the RTT correctly 12057 * when RCV.NXT == Last.ACK.Sent. 12058 */ 12059 if ((to->to_flags & TOF_TS) != 0 && 12060 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12061 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12062 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12063 tp->ts_recent_age = tcp_ts_getticks(); 12064 tp->ts_recent = to->to_tsval; 12065 } 12066 /* 12067 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12068 * is on (half-synchronized state), then queue data for later 12069 * processing; else drop segment and return. 12070 */ 12071 if ((thflags & TH_ACK) == 0) { 12072 if (tp->t_flags & TF_NEEDSYN) { 12073 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12074 tiwin, thflags, nxt_pkt)); 12075 } else if (tp->t_flags & TF_ACKNOW) { 12076 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12077 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12078 return (ret_val); 12079 } else { 12080 ctf_do_drop(m, NULL); 12081 return (0); 12082 } 12083 } 12084 /* 12085 * Ack processing. 12086 */ 12087 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12088 return (ret_val); 12089 } 12090 if (ourfinisacked) { 12091 tcp_twstart(tp); 12092 m_freem(m); 12093 return (1); 12094 } 12095 if (sbavail(&so->so_snd)) { 12096 if (ctf_progress_timeout_check(tp, true)) { 12097 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12098 tp, tick, PROGRESS_DROP, __LINE__); 12099 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12100 return (1); 12101 } 12102 } 12103 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12104 tiwin, thflags, nxt_pkt)); 12105 } 12106 12107 /* 12108 * Return value of 1, the TCB is unlocked and most 12109 * likely gone, return value of 0, the TCP is still 12110 * locked. 12111 */ 12112 static int 12113 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 12114 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12115 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12116 { 12117 int32_t ret_val = 0; 12118 int32_t ourfinisacked = 0; 12119 struct tcp_rack *rack; 12120 12121 rack = (struct tcp_rack *)tp->t_fb_ptr; 12122 ctf_calc_rwin(so, tp); 12123 12124 if ((thflags & TH_RST) || 12125 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12126 return (__ctf_process_rst(m, th, so, tp, 12127 &rack->r_ctl.challenge_ack_ts, 12128 &rack->r_ctl.challenge_ack_cnt)); 12129 /* 12130 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12131 * synchronized state. 12132 */ 12133 if (thflags & TH_SYN) { 12134 ctf_challenge_ack(m, th, tp, &ret_val); 12135 return (ret_val); 12136 } 12137 /* 12138 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12139 * it's less than ts_recent, drop it. 12140 */ 12141 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12142 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12143 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12144 return (ret_val); 12145 } 12146 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12147 &rack->r_ctl.challenge_ack_ts, 12148 &rack->r_ctl.challenge_ack_cnt)) { 12149 return (ret_val); 12150 } 12151 /* 12152 * If new data are received on a connection after the user processes 12153 * are gone, then RST the other end. 12154 */ 12155 if ((tp->t_flags & TF_CLOSED) && tlen && 12156 rack_check_data_after_close(m, tp, &tlen, th, so)) 12157 return (1); 12158 /* 12159 * If last ACK falls within this segment's sequence numbers, record 12160 * its timestamp. NOTE: 1) That the test incorporates suggestions 12161 * from the latest proposal of the tcplw@cray.com list (Braden 12162 * 1993/04/26). 2) That updating only on newer timestamps interferes 12163 * with our earlier PAWS tests, so this check should be solely 12164 * predicated on the sequence space of this segment. 3) That we 12165 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12166 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12167 * SEG.Len, This modified check allows us to overcome RFC1323's 12168 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12169 * p.869. In such cases, we can still calculate the RTT correctly 12170 * when RCV.NXT == Last.ACK.Sent. 12171 */ 12172 if ((to->to_flags & TOF_TS) != 0 && 12173 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12174 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12175 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12176 tp->ts_recent_age = tcp_ts_getticks(); 12177 tp->ts_recent = to->to_tsval; 12178 } 12179 /* 12180 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12181 * is on (half-synchronized state), then queue data for later 12182 * processing; else drop segment and return. 12183 */ 12184 if ((thflags & TH_ACK) == 0) { 12185 if (tp->t_flags & TF_NEEDSYN) { 12186 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12187 tiwin, thflags, nxt_pkt)); 12188 } else if (tp->t_flags & TF_ACKNOW) { 12189 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12190 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12191 return (ret_val); 12192 } else { 12193 ctf_do_drop(m, NULL); 12194 return (0); 12195 } 12196 } 12197 /* 12198 * case TCPS_LAST_ACK: Ack processing. 12199 */ 12200 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12201 return (ret_val); 12202 } 12203 if (ourfinisacked) { 12204 tp = tcp_close(tp); 12205 ctf_do_drop(m, tp); 12206 return (1); 12207 } 12208 if (sbavail(&so->so_snd)) { 12209 if (ctf_progress_timeout_check(tp, true)) { 12210 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12211 tp, tick, PROGRESS_DROP, __LINE__); 12212 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12213 return (1); 12214 } 12215 } 12216 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12217 tiwin, thflags, nxt_pkt)); 12218 } 12219 12220 /* 12221 * Return value of 1, the TCB is unlocked and most 12222 * likely gone, return value of 0, the TCP is still 12223 * locked. 12224 */ 12225 static int 12226 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, 12227 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12228 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12229 { 12230 int32_t ret_val = 0; 12231 int32_t ourfinisacked = 0; 12232 struct tcp_rack *rack; 12233 12234 rack = (struct tcp_rack *)tp->t_fb_ptr; 12235 ctf_calc_rwin(so, tp); 12236 12237 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 12238 if ((thflags & TH_RST) || 12239 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12240 return (__ctf_process_rst(m, th, so, tp, 12241 &rack->r_ctl.challenge_ack_ts, 12242 &rack->r_ctl.challenge_ack_cnt)); 12243 /* 12244 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12245 * synchronized state. 12246 */ 12247 if (thflags & TH_SYN) { 12248 ctf_challenge_ack(m, th, tp, &ret_val); 12249 return (ret_val); 12250 } 12251 /* 12252 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12253 * it's less than ts_recent, drop it. 12254 */ 12255 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12256 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12257 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12258 return (ret_val); 12259 } 12260 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12261 &rack->r_ctl.challenge_ack_ts, 12262 &rack->r_ctl.challenge_ack_cnt)) { 12263 return (ret_val); 12264 } 12265 /* 12266 * If new data are received on a connection after the user processes 12267 * are gone, then RST the other end. 12268 */ 12269 if ((tp->t_flags & TF_CLOSED) && tlen && 12270 rack_check_data_after_close(m, tp, &tlen, th, so)) 12271 return (1); 12272 /* 12273 * If last ACK falls within this segment's sequence numbers, record 12274 * its timestamp. NOTE: 1) That the test incorporates suggestions 12275 * from the latest proposal of the tcplw@cray.com list (Braden 12276 * 1993/04/26). 2) That updating only on newer timestamps interferes 12277 * with our earlier PAWS tests, so this check should be solely 12278 * predicated on the sequence space of this segment. 3) That we 12279 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12280 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12281 * SEG.Len, This modified check allows us to overcome RFC1323's 12282 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12283 * p.869. In such cases, we can still calculate the RTT correctly 12284 * when RCV.NXT == Last.ACK.Sent. 12285 */ 12286 if ((to->to_flags & TOF_TS) != 0 && 12287 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12288 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12289 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12290 tp->ts_recent_age = tcp_ts_getticks(); 12291 tp->ts_recent = to->to_tsval; 12292 } 12293 /* 12294 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12295 * is on (half-synchronized state), then queue data for later 12296 * processing; else drop segment and return. 12297 */ 12298 if ((thflags & TH_ACK) == 0) { 12299 if (tp->t_flags & TF_NEEDSYN) { 12300 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12301 tiwin, thflags, nxt_pkt)); 12302 } else if (tp->t_flags & TF_ACKNOW) { 12303 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12304 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12305 return (ret_val); 12306 } else { 12307 ctf_do_drop(m, NULL); 12308 return (0); 12309 } 12310 } 12311 /* 12312 * Ack processing. 12313 */ 12314 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12315 return (ret_val); 12316 } 12317 if (sbavail(&so->so_snd)) { 12318 if (ctf_progress_timeout_check(tp, true)) { 12319 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12320 tp, tick, PROGRESS_DROP, __LINE__); 12321 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12322 return (1); 12323 } 12324 } 12325 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12326 tiwin, thflags, nxt_pkt)); 12327 } 12328 12329 static void inline 12330 rack_clear_rate_sample(struct tcp_rack *rack) 12331 { 12332 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; 12333 rack->r_ctl.rack_rs.rs_rtt_cnt = 0; 12334 rack->r_ctl.rack_rs.rs_rtt_tot = 0; 12335 } 12336 12337 static void 12338 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override) 12339 { 12340 uint64_t bw_est, rate_wanted; 12341 int chged = 0; 12342 uint32_t user_max, orig_min, orig_max; 12343 12344 orig_min = rack->r_ctl.rc_pace_min_segs; 12345 orig_max = rack->r_ctl.rc_pace_max_segs; 12346 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; 12347 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) 12348 chged = 1; 12349 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); 12350 if (rack->use_fixed_rate || rack->rc_force_max_seg) { 12351 if (user_max != rack->r_ctl.rc_pace_max_segs) 12352 chged = 1; 12353 } 12354 if (rack->rc_force_max_seg) { 12355 rack->r_ctl.rc_pace_max_segs = user_max; 12356 } else if (rack->use_fixed_rate) { 12357 bw_est = rack_get_bw(rack); 12358 if ((rack->r_ctl.crte == NULL) || 12359 (bw_est != rack->r_ctl.crte->rate)) { 12360 rack->r_ctl.rc_pace_max_segs = user_max; 12361 } else { 12362 /* We are pacing right at the hardware rate */ 12363 uint32_t segsiz; 12364 12365 segsiz = min(ctf_fixed_maxseg(tp), 12366 rack->r_ctl.rc_pace_min_segs); 12367 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size( 12368 tp, bw_est, segsiz, 0, 12369 rack->r_ctl.crte, NULL); 12370 } 12371 } else if (rack->rc_always_pace) { 12372 if (rack->r_ctl.gp_bw || 12373 #ifdef NETFLIX_PEAKRATE 12374 rack->rc_tp->t_maxpeakrate || 12375 #endif 12376 rack->r_ctl.init_rate) { 12377 /* We have a rate of some sort set */ 12378 uint32_t orig; 12379 12380 bw_est = rack_get_bw(rack); 12381 orig = rack->r_ctl.rc_pace_max_segs; 12382 if (fill_override) 12383 rate_wanted = *fill_override; 12384 else 12385 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL); 12386 if (rate_wanted) { 12387 /* We have something */ 12388 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, 12389 rate_wanted, 12390 ctf_fixed_maxseg(rack->rc_tp)); 12391 } else 12392 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; 12393 if (orig != rack->r_ctl.rc_pace_max_segs) 12394 chged = 1; 12395 } else if ((rack->r_ctl.gp_bw == 0) && 12396 (rack->r_ctl.rc_pace_max_segs == 0)) { 12397 /* 12398 * If we have nothing limit us to bursting 12399 * out IW sized pieces. 12400 */ 12401 chged = 1; 12402 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); 12403 } 12404 } 12405 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { 12406 chged = 1; 12407 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; 12408 } 12409 if (chged) 12410 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2); 12411 } 12412 12413 12414 static void 12415 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack) 12416 { 12417 #ifdef INET6 12418 struct ip6_hdr *ip6 = NULL; 12419 #endif 12420 #ifdef INET 12421 struct ip *ip = NULL; 12422 #endif 12423 struct udphdr *udp = NULL; 12424 12425 /* Ok lets fill in the fast block, it can only be used with no IP options! */ 12426 #ifdef INET6 12427 if (rack->r_is_v6) { 12428 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 12429 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 12430 if (tp->t_port) { 12431 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12432 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 12433 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12434 udp->uh_dport = tp->t_port; 12435 rack->r_ctl.fsb.udp = udp; 12436 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12437 } else 12438 { 12439 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1); 12440 rack->r_ctl.fsb.udp = NULL; 12441 } 12442 tcpip_fillheaders(rack->rc_inp, 12443 tp->t_port, 12444 ip6, rack->r_ctl.fsb.th); 12445 } else 12446 #endif /* INET6 */ 12447 { 12448 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr); 12449 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 12450 if (tp->t_port) { 12451 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12452 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 12453 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12454 udp->uh_dport = tp->t_port; 12455 rack->r_ctl.fsb.udp = udp; 12456 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12457 } else 12458 { 12459 rack->r_ctl.fsb.udp = NULL; 12460 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1); 12461 } 12462 tcpip_fillheaders(rack->rc_inp, 12463 tp->t_port, 12464 ip, rack->r_ctl.fsb.th); 12465 } 12466 rack->r_fsb_inited = 1; 12467 } 12468 12469 static int 12470 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack) 12471 { 12472 /* 12473 * Allocate the larger of spaces V6 if available else just 12474 * V4 and include udphdr (overbook) 12475 */ 12476 #ifdef INET6 12477 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr); 12478 #else 12479 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr); 12480 #endif 12481 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len, 12482 M_TCPFSB, M_NOWAIT|M_ZERO); 12483 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) { 12484 return (ENOMEM); 12485 } 12486 rack->r_fsb_inited = 0; 12487 return (0); 12488 } 12489 12490 static int 12491 rack_init(struct tcpcb *tp) 12492 { 12493 struct tcp_rack *rack = NULL; 12494 #ifdef INVARIANTS 12495 struct rack_sendmap *insret; 12496 #endif 12497 uint32_t iwin, snt, us_cts; 12498 int err; 12499 12500 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); 12501 if (tp->t_fb_ptr == NULL) { 12502 /* 12503 * We need to allocate memory but cant. The INP and INP_INFO 12504 * locks and they are recursive (happens during setup. So a 12505 * scheme to drop the locks fails :( 12506 * 12507 */ 12508 return (ENOMEM); 12509 } 12510 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack)); 12511 12512 rack = (struct tcp_rack *)tp->t_fb_ptr; 12513 RB_INIT(&rack->r_ctl.rc_mtree); 12514 TAILQ_INIT(&rack->r_ctl.rc_free); 12515 TAILQ_INIT(&rack->r_ctl.rc_tmap); 12516 rack->rc_tp = tp; 12517 rack->rc_inp = tp->t_inpcb; 12518 /* Set the flag */ 12519 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 12520 /* Probably not needed but lets be sure */ 12521 rack_clear_rate_sample(rack); 12522 /* 12523 * Save off the default values, socket options will poke 12524 * at these if pacing is not on or we have not yet 12525 * reached where pacing is on (gp_ready/fixed enabled). 12526 * When they get set into the CC module (when gp_ready 12527 * is enabled or we enable fixed) then we will set these 12528 * values into the CC and place in here the old values 12529 * so we have a restoral. Then we will set the flag 12530 * rc_pacing_cc_set. That way whenever we turn off pacing 12531 * or switch off this stack, we will know to go restore 12532 * the saved values. 12533 */ 12534 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn; 12535 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn; 12536 /* We want abe like behavior as well */ 12537 rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 12538 rack->r_ctl.rc_reorder_fade = rack_reorder_fade; 12539 rack->rc_allow_data_af_clo = rack_ignore_data_after_close; 12540 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; 12541 rack->r_ctl.roundends = tp->snd_max; 12542 if (use_rack_rr) 12543 rack->use_rack_rr = 1; 12544 if (V_tcp_delack_enabled) 12545 tp->t_delayed_ack = 1; 12546 else 12547 tp->t_delayed_ack = 0; 12548 #ifdef TCP_ACCOUNTING 12549 if (rack_tcp_accounting) { 12550 tp->t_flags2 |= TF2_TCP_ACCOUNTING; 12551 } 12552 #endif 12553 if (rack_enable_shared_cwnd) 12554 rack->rack_enable_scwnd = 1; 12555 rack->rc_user_set_max_segs = rack_hptsi_segments; 12556 rack->rc_force_max_seg = 0; 12557 if (rack_use_imac_dack) 12558 rack->rc_dack_mode = 1; 12559 TAILQ_INIT(&rack->r_ctl.opt_list); 12560 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; 12561 rack->r_ctl.rc_pkt_delay = rack_pkt_delay; 12562 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; 12563 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; 12564 rack->r_ctl.rc_highest_us_rtt = 0; 12565 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap; 12566 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop); 12567 if (rack_use_cmp_acks) 12568 rack->r_use_cmp_ack = 1; 12569 if (rack_disable_prr) 12570 rack->rack_no_prr = 1; 12571 if (rack_gp_no_rec_chg) 12572 rack->rc_gp_no_rec_chg = 1; 12573 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 12574 rack->rc_always_pace = 1; 12575 if (rack->use_fixed_rate || rack->gp_ready) 12576 rack_set_cc_pacing(rack); 12577 } else 12578 rack->rc_always_pace = 0; 12579 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) 12580 rack->r_mbuf_queue = 1; 12581 else 12582 rack->r_mbuf_queue = 0; 12583 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 12584 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 12585 else 12586 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12587 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12588 if (rack_limits_scwnd) 12589 rack->r_limit_scw = 1; 12590 else 12591 rack->r_limit_scw = 0; 12592 rack->rc_labc = V_tcp_abc_l_var; 12593 rack->r_ctl.rc_high_rwnd = tp->snd_wnd; 12594 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 12595 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; 12596 rack->rack_tlp_threshold_use = rack_tlp_threshold_use; 12597 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; 12598 rack->r_ctl.rc_min_to = rack_min_to; 12599 microuptime(&rack->r_ctl.act_rcv_time); 12600 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 12601 rack->rc_init_win = rack_default_init_window; 12602 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; 12603 if (rack_hw_up_only) 12604 rack->r_up_only = 1; 12605 if (rack_do_dyn_mul) { 12606 /* When dynamic adjustment is on CA needs to start at 100% */ 12607 rack->rc_gp_dyn_mul = 1; 12608 if (rack_do_dyn_mul >= 100) 12609 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 12610 } else 12611 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 12612 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; 12613 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 12614 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); 12615 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, 12616 rack_probertt_filter_life); 12617 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12618 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 12619 rack->r_ctl.rc_time_of_last_probertt = us_cts; 12620 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks(); 12621 rack->r_ctl.rc_time_probertt_starts = 0; 12622 if (rack_dsack_std_based & 0x1) { 12623 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 12624 rack->rc_rack_tmr_std_based = 1; 12625 } 12626 if (rack_dsack_std_based & 0x2) { 12627 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 12628 rack->rc_rack_use_dsack = 1; 12629 } 12630 /* We require at least one measurement, even if the sysctl is 0 */ 12631 if (rack_req_measurements) 12632 rack->r_ctl.req_measurements = rack_req_measurements; 12633 else 12634 rack->r_ctl.req_measurements = 1; 12635 if (rack_enable_hw_pacing) 12636 rack->rack_hdw_pace_ena = 1; 12637 if (rack_hw_rate_caps) 12638 rack->r_rack_hw_rate_caps = 1; 12639 /* Do we force on detection? */ 12640 #ifdef NETFLIX_EXP_DETECTION 12641 if (tcp_force_detection) 12642 rack->do_detection = 1; 12643 else 12644 #endif 12645 rack->do_detection = 0; 12646 if (rack_non_rxt_use_cr) 12647 rack->rack_rec_nonrxt_use_cr = 1; 12648 err = rack_init_fsb(tp, rack); 12649 if (err) { 12650 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12651 tp->t_fb_ptr = NULL; 12652 return (err); 12653 } 12654 if (tp->snd_una != tp->snd_max) { 12655 /* Create a send map for the current outstanding data */ 12656 struct rack_sendmap *rsm; 12657 12658 rsm = rack_alloc(rack); 12659 if (rsm == NULL) { 12660 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12661 tp->t_fb_ptr = NULL; 12662 return (ENOMEM); 12663 } 12664 rsm->r_no_rtt_allowed = 1; 12665 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 12666 rsm->r_rtr_cnt = 1; 12667 rsm->r_rtr_bytes = 0; 12668 if (tp->t_flags & TF_SENTFIN) 12669 rsm->r_flags |= RACK_HAS_FIN; 12670 if ((tp->snd_una == tp->iss) && 12671 !TCPS_HAVEESTABLISHED(tp->t_state)) 12672 rsm->r_flags |= RACK_HAS_SYN; 12673 rsm->r_start = tp->snd_una; 12674 rsm->r_end = tp->snd_max; 12675 rsm->r_dupack = 0; 12676 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) { 12677 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff); 12678 if (rsm->m) 12679 rsm->orig_m_len = rsm->m->m_len; 12680 else 12681 rsm->orig_m_len = 0; 12682 } else { 12683 /* 12684 * This can happen if we have a stand-alone FIN or 12685 * SYN. 12686 */ 12687 rsm->m = NULL; 12688 rsm->orig_m_len = 0; 12689 rsm->soff = 0; 12690 } 12691 #ifndef INVARIANTS 12692 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12693 #else 12694 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12695 if (insret != NULL) { 12696 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p", 12697 insret, rack, rsm); 12698 } 12699 #endif 12700 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 12701 rsm->r_in_tmap = 1; 12702 } 12703 /* 12704 * Timers in Rack are kept in microseconds so lets 12705 * convert any initial incoming variables 12706 * from ticks into usecs. Note that we 12707 * also change the values of t_srtt and t_rttvar, if 12708 * they are non-zero. They are kept with a 5 12709 * bit decimal so we have to carefully convert 12710 * these to get the full precision. 12711 */ 12712 rack_convert_rtts(tp); 12713 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 12714 if (rack_do_hystart) { 12715 tp->ccv->flags |= CCF_HYSTART_ALLOWED; 12716 if (rack_do_hystart > 1) 12717 tp->ccv->flags |= CCF_HYSTART_CAN_SH_CWND; 12718 if (rack_do_hystart > 2) 12719 tp->ccv->flags |= CCF_HYSTART_CONS_SSTH; 12720 } 12721 if (rack_def_profile) 12722 rack_set_profile(rack, rack_def_profile); 12723 /* Cancel the GP measurement in progress */ 12724 tp->t_flags &= ~TF_GPUTINPROG; 12725 if (SEQ_GT(tp->snd_max, tp->iss)) 12726 snt = tp->snd_max - tp->iss; 12727 else 12728 snt = 0; 12729 iwin = rc_init_window(rack); 12730 if (snt < iwin) { 12731 /* We are not past the initial window 12732 * so we need to make sure cwnd is 12733 * correct. 12734 */ 12735 if (tp->snd_cwnd < iwin) 12736 tp->snd_cwnd = iwin; 12737 /* 12738 * If we are within the initial window 12739 * we want ssthresh to be unlimited. Setting 12740 * it to the rwnd (which the default stack does 12741 * and older racks) is not really a good idea 12742 * since we want to be in SS and grow both the 12743 * cwnd and the rwnd (via dynamic rwnd growth). If 12744 * we set it to the rwnd then as the peer grows its 12745 * rwnd we will be stuck in CA and never hit SS. 12746 * 12747 * Its far better to raise it up high (this takes the 12748 * risk that there as been a loss already, probably 12749 * we should have an indicator in all stacks of loss 12750 * but we don't), but considering the normal use this 12751 * is a risk worth taking. The consequences of not 12752 * hitting SS are far worse than going one more time 12753 * into it early on (before we have sent even a IW). 12754 * It is highly unlikely that we will have had a loss 12755 * before getting the IW out. 12756 */ 12757 tp->snd_ssthresh = 0xffffffff; 12758 } 12759 rack_stop_all_timers(tp); 12760 /* Lets setup the fsb block */ 12761 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 12762 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur, 12763 __LINE__, RACK_RTTS_INIT); 12764 return (0); 12765 } 12766 12767 static int 12768 rack_handoff_ok(struct tcpcb *tp) 12769 { 12770 if ((tp->t_state == TCPS_CLOSED) || 12771 (tp->t_state == TCPS_LISTEN)) { 12772 /* Sure no problem though it may not stick */ 12773 return (0); 12774 } 12775 if ((tp->t_state == TCPS_SYN_SENT) || 12776 (tp->t_state == TCPS_SYN_RECEIVED)) { 12777 /* 12778 * We really don't know if you support sack, 12779 * you have to get to ESTAB or beyond to tell. 12780 */ 12781 return (EAGAIN); 12782 } 12783 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) { 12784 /* 12785 * Rack will only send a FIN after all data is acknowledged. 12786 * So in this case we have more data outstanding. We can't 12787 * switch stacks until either all data and only the FIN 12788 * is left (in which case rack_init() now knows how 12789 * to deal with that) <or> all is acknowledged and we 12790 * are only left with incoming data, though why you 12791 * would want to switch to rack after all data is acknowledged 12792 * I have no idea (rrs)! 12793 */ 12794 return (EAGAIN); 12795 } 12796 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ 12797 return (0); 12798 } 12799 /* 12800 * If we reach here we don't do SACK on this connection so we can 12801 * never do rack. 12802 */ 12803 return (EINVAL); 12804 } 12805 12806 12807 static void 12808 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) 12809 { 12810 if (tp->t_fb_ptr) { 12811 struct tcp_rack *rack; 12812 struct rack_sendmap *rsm, *nrsm; 12813 #ifdef INVARIANTS 12814 struct rack_sendmap *rm; 12815 #endif 12816 12817 rack = (struct tcp_rack *)tp->t_fb_ptr; 12818 if (tp->t_in_pkt) { 12819 /* 12820 * It is unsafe to process the packets since a 12821 * reset may be lurking in them (its rare but it 12822 * can occur). If we were to find a RST, then we 12823 * would end up dropping the connection and the 12824 * INP lock, so when we return the caller (tcp_usrreq) 12825 * will blow up when it trys to unlock the inp. 12826 */ 12827 struct mbuf *save, *m; 12828 12829 m = tp->t_in_pkt; 12830 tp->t_in_pkt = NULL; 12831 tp->t_tail_pkt = NULL; 12832 while (m) { 12833 save = m->m_nextpkt; 12834 m->m_nextpkt = NULL; 12835 m_freem(m); 12836 m = save; 12837 } 12838 } 12839 tp->t_flags &= ~TF_FORCEDATA; 12840 #ifdef NETFLIX_SHARED_CWND 12841 if (rack->r_ctl.rc_scw) { 12842 uint32_t limit; 12843 12844 if (rack->r_limit_scw) 12845 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 12846 else 12847 limit = 0; 12848 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 12849 rack->r_ctl.rc_scw_index, 12850 limit); 12851 rack->r_ctl.rc_scw = NULL; 12852 } 12853 #endif 12854 if (rack->r_ctl.fsb.tcp_ip_hdr) { 12855 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB); 12856 rack->r_ctl.fsb.tcp_ip_hdr = NULL; 12857 rack->r_ctl.fsb.th = NULL; 12858 } 12859 /* Convert back to ticks, with */ 12860 if (tp->t_srtt > 1) { 12861 uint32_t val, frac; 12862 12863 val = USEC_2_TICKS(tp->t_srtt); 12864 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12865 tp->t_srtt = val << TCP_RTT_SHIFT; 12866 /* 12867 * frac is the fractional part here is left 12868 * over from converting to hz and shifting. 12869 * We need to convert this to the 5 bit 12870 * remainder. 12871 */ 12872 if (frac) { 12873 if (hz == 1000) { 12874 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12875 } else { 12876 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12877 } 12878 tp->t_srtt += frac; 12879 } 12880 } 12881 if (tp->t_rttvar) { 12882 uint32_t val, frac; 12883 12884 val = USEC_2_TICKS(tp->t_rttvar); 12885 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12886 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 12887 /* 12888 * frac is the fractional part here is left 12889 * over from converting to hz and shifting. 12890 * We need to convert this to the 5 bit 12891 * remainder. 12892 */ 12893 if (frac) { 12894 if (hz == 1000) { 12895 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12896 } else { 12897 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12898 } 12899 tp->t_rttvar += frac; 12900 } 12901 } 12902 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur); 12903 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 12904 if (rack->rc_always_pace) { 12905 tcp_decrement_paced_conn(); 12906 rack_undo_cc_pacing(rack); 12907 rack->rc_always_pace = 0; 12908 } 12909 /* Clean up any options if they were not applied */ 12910 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) { 12911 struct deferred_opt_list *dol; 12912 12913 dol = TAILQ_FIRST(&rack->r_ctl.opt_list); 12914 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 12915 free(dol, M_TCPDO); 12916 } 12917 /* rack does not use force data but other stacks may clear it */ 12918 if (rack->r_ctl.crte != NULL) { 12919 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 12920 rack->rack_hdrw_pacing = 0; 12921 rack->r_ctl.crte = NULL; 12922 } 12923 #ifdef TCP_BLACKBOX 12924 tcp_log_flowend(tp); 12925 #endif 12926 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) { 12927 #ifndef INVARIANTS 12928 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12929 #else 12930 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12931 if (rm != rsm) { 12932 panic("At fini, rack:%p rsm:%p rm:%p", 12933 rack, rsm, rm); 12934 } 12935 #endif 12936 uma_zfree(rack_zone, rsm); 12937 } 12938 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 12939 while (rsm) { 12940 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 12941 uma_zfree(rack_zone, rsm); 12942 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 12943 } 12944 rack->rc_free_cnt = 0; 12945 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12946 tp->t_fb_ptr = NULL; 12947 } 12948 if (tp->t_inpcb) { 12949 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12950 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; 12951 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE; 12952 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP; 12953 /* Cancel the GP measurement in progress */ 12954 tp->t_flags &= ~TF_GPUTINPROG; 12955 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS; 12956 } 12957 /* Make sure snd_nxt is correctly set */ 12958 tp->snd_nxt = tp->snd_max; 12959 } 12960 12961 static void 12962 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) 12963 { 12964 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) { 12965 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 12966 } 12967 switch (tp->t_state) { 12968 case TCPS_SYN_SENT: 12969 rack->r_state = TCPS_SYN_SENT; 12970 rack->r_substate = rack_do_syn_sent; 12971 break; 12972 case TCPS_SYN_RECEIVED: 12973 rack->r_state = TCPS_SYN_RECEIVED; 12974 rack->r_substate = rack_do_syn_recv; 12975 break; 12976 case TCPS_ESTABLISHED: 12977 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12978 rack->r_state = TCPS_ESTABLISHED; 12979 rack->r_substate = rack_do_established; 12980 break; 12981 case TCPS_CLOSE_WAIT: 12982 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12983 rack->r_state = TCPS_CLOSE_WAIT; 12984 rack->r_substate = rack_do_close_wait; 12985 break; 12986 case TCPS_FIN_WAIT_1: 12987 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12988 rack->r_state = TCPS_FIN_WAIT_1; 12989 rack->r_substate = rack_do_fin_wait_1; 12990 break; 12991 case TCPS_CLOSING: 12992 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12993 rack->r_state = TCPS_CLOSING; 12994 rack->r_substate = rack_do_closing; 12995 break; 12996 case TCPS_LAST_ACK: 12997 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12998 rack->r_state = TCPS_LAST_ACK; 12999 rack->r_substate = rack_do_lastack; 13000 break; 13001 case TCPS_FIN_WAIT_2: 13002 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13003 rack->r_state = TCPS_FIN_WAIT_2; 13004 rack->r_substate = rack_do_fin_wait_2; 13005 break; 13006 case TCPS_LISTEN: 13007 case TCPS_CLOSED: 13008 case TCPS_TIME_WAIT: 13009 default: 13010 break; 13011 }; 13012 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 13013 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 13014 13015 } 13016 13017 static void 13018 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) 13019 { 13020 /* 13021 * We received an ack, and then did not 13022 * call send or were bounced out due to the 13023 * hpts was running. Now a timer is up as well, is 13024 * it the right timer? 13025 */ 13026 struct rack_sendmap *rsm; 13027 int tmr_up; 13028 13029 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 13030 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) 13031 return; 13032 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 13033 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && 13034 (tmr_up == PACE_TMR_RXT)) { 13035 /* Should be an RXT */ 13036 return; 13037 } 13038 if (rsm == NULL) { 13039 /* Nothing outstanding? */ 13040 if (tp->t_flags & TF_DELACK) { 13041 if (tmr_up == PACE_TMR_DELACK) 13042 /* We are supposed to have delayed ack up and we do */ 13043 return; 13044 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { 13045 /* 13046 * if we hit enobufs then we would expect the possibility 13047 * of nothing outstanding and the RXT up (and the hptsi timer). 13048 */ 13049 return; 13050 } else if (((V_tcp_always_keepalive || 13051 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 13052 (tp->t_state <= TCPS_CLOSING)) && 13053 (tmr_up == PACE_TMR_KEEP) && 13054 (tp->snd_max == tp->snd_una)) { 13055 /* We should have keep alive up and we do */ 13056 return; 13057 } 13058 } 13059 if (SEQ_GT(tp->snd_max, tp->snd_una) && 13060 ((tmr_up == PACE_TMR_TLP) || 13061 (tmr_up == PACE_TMR_RACK) || 13062 (tmr_up == PACE_TMR_RXT))) { 13063 /* 13064 * Either a Rack, TLP or RXT is fine if we 13065 * have outstanding data. 13066 */ 13067 return; 13068 } else if (tmr_up == PACE_TMR_DELACK) { 13069 /* 13070 * If the delayed ack was going to go off 13071 * before the rtx/tlp/rack timer were going to 13072 * expire, then that would be the timer in control. 13073 * Note we don't check the time here trusting the 13074 * code is correct. 13075 */ 13076 return; 13077 } 13078 /* 13079 * Ok the timer originally started is not what we want now. 13080 * We will force the hpts to be stopped if any, and restart 13081 * with the slot set to what was in the saved slot. 13082 */ 13083 if (tcp_in_hpts(rack->rc_inp)) { 13084 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 13085 uint32_t us_cts; 13086 13087 us_cts = tcp_get_usecs(NULL); 13088 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 13089 rack->r_early = 1; 13090 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 13091 } 13092 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 13093 } 13094 tcp_hpts_remove(tp->t_inpcb); 13095 } 13096 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13097 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 13098 } 13099 13100 13101 static void 13102 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq) 13103 { 13104 if ((SEQ_LT(tp->snd_wl1, seq) || 13105 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) || 13106 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) { 13107 /* keep track of pure window updates */ 13108 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd)) 13109 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 13110 tp->snd_wnd = tiwin; 13111 rack_validate_fo_sendwin_up(tp, rack); 13112 tp->snd_wl1 = seq; 13113 tp->snd_wl2 = ack; 13114 if (tp->snd_wnd > tp->max_sndwnd) 13115 tp->max_sndwnd = tp->snd_wnd; 13116 rack->r_wanted_output = 1; 13117 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) { 13118 tp->snd_wnd = tiwin; 13119 rack_validate_fo_sendwin_up(tp, rack); 13120 tp->snd_wl1 = seq; 13121 tp->snd_wl2 = ack; 13122 } else { 13123 /* Not a valid win update */ 13124 return; 13125 } 13126 /* Do we exit persists? */ 13127 if ((rack->rc_in_persist != 0) && 13128 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 13129 rack->r_ctl.rc_pace_min_segs))) { 13130 rack_exit_persist(tp, rack, cts); 13131 } 13132 /* Do we enter persists? */ 13133 if ((rack->rc_in_persist == 0) && 13134 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 13135 TCPS_HAVEESTABLISHED(tp->t_state) && 13136 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 13137 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 13138 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 13139 /* 13140 * Here the rwnd is less than 13141 * the pacing size, we are established, 13142 * nothing is outstanding, and there is 13143 * data to send. Enter persists. 13144 */ 13145 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 13146 } 13147 } 13148 13149 static void 13150 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq) 13151 { 13152 13153 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 13154 union tcp_log_stackspecific log; 13155 struct timeval ltv; 13156 char tcp_hdr_buf[60]; 13157 struct tcphdr *th; 13158 struct timespec ts; 13159 uint32_t orig_snd_una; 13160 uint8_t xx = 0; 13161 13162 #ifdef NETFLIX_HTTP_LOGGING 13163 struct http_sendfile_track *http_req; 13164 13165 if (SEQ_GT(ae->ack, tp->snd_una)) { 13166 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1)); 13167 } else { 13168 http_req = tcp_http_find_req_for_seq(tp, ae->ack); 13169 } 13170 #endif 13171 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 13172 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 13173 if (rack->rack_no_prr == 0) 13174 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 13175 else 13176 log.u_bbr.flex1 = 0; 13177 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 13178 log.u_bbr.use_lt_bw <<= 1; 13179 log.u_bbr.use_lt_bw |= rack->r_might_revert; 13180 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 13181 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 13182 log.u_bbr.pkts_out = tp->t_maxseg; 13183 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 13184 log.u_bbr.flex7 = 1; 13185 log.u_bbr.lost = ae->flags; 13186 log.u_bbr.cwnd_gain = ackval; 13187 log.u_bbr.pacing_gain = 0x2; 13188 if (ae->flags & TSTMP_HDWR) { 13189 /* Record the hardware timestamp if present */ 13190 log.u_bbr.flex3 = M_TSTMP; 13191 ts.tv_sec = ae->timestamp / 1000000000; 13192 ts.tv_nsec = ae->timestamp % 1000000000; 13193 ltv.tv_sec = ts.tv_sec; 13194 ltv.tv_usec = ts.tv_nsec / 1000; 13195 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 13196 } else if (ae->flags & TSTMP_LRO) { 13197 /* Record the LRO the arrival timestamp */ 13198 log.u_bbr.flex3 = M_TSTMP_LRO; 13199 ts.tv_sec = ae->timestamp / 1000000000; 13200 ts.tv_nsec = ae->timestamp % 1000000000; 13201 ltv.tv_sec = ts.tv_sec; 13202 ltv.tv_usec = ts.tv_nsec / 1000; 13203 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 13204 } 13205 log.u_bbr.timeStamp = tcp_get_usecs(<v); 13206 /* Log the rcv time */ 13207 log.u_bbr.delRate = ae->timestamp; 13208 #ifdef NETFLIX_HTTP_LOGGING 13209 log.u_bbr.applimited = tp->t_http_closed; 13210 log.u_bbr.applimited <<= 8; 13211 log.u_bbr.applimited |= tp->t_http_open; 13212 log.u_bbr.applimited <<= 8; 13213 log.u_bbr.applimited |= tp->t_http_req; 13214 if (http_req) { 13215 /* Copy out any client req info */ 13216 /* seconds */ 13217 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 13218 /* useconds */ 13219 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 13220 log.u_bbr.rttProp = http_req->timestamp; 13221 log.u_bbr.cur_del_rate = http_req->start; 13222 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 13223 log.u_bbr.flex8 |= 1; 13224 } else { 13225 log.u_bbr.flex8 |= 2; 13226 log.u_bbr.bw_inuse = http_req->end; 13227 } 13228 log.u_bbr.flex6 = http_req->start_seq; 13229 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 13230 log.u_bbr.flex8 |= 4; 13231 log.u_bbr.epoch = http_req->end_seq; 13232 } 13233 } 13234 #endif 13235 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf)); 13236 th = (struct tcphdr *)tcp_hdr_buf; 13237 th->th_seq = ae->seq; 13238 th->th_ack = ae->ack; 13239 th->th_win = ae->win; 13240 /* Now fill in the ports */ 13241 th->th_sport = tp->t_inpcb->inp_fport; 13242 th->th_dport = tp->t_inpcb->inp_lport; 13243 tcp_set_flags(th, ae->flags); 13244 /* Now do we have a timestamp option? */ 13245 if (ae->flags & HAS_TSTMP) { 13246 u_char *cp; 13247 uint32_t val; 13248 13249 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2); 13250 cp = (u_char *)(th + 1); 13251 *cp = TCPOPT_NOP; 13252 cp++; 13253 *cp = TCPOPT_NOP; 13254 cp++; 13255 *cp = TCPOPT_TIMESTAMP; 13256 cp++; 13257 *cp = TCPOLEN_TIMESTAMP; 13258 cp++; 13259 val = htonl(ae->ts_value); 13260 bcopy((char *)&val, 13261 (char *)cp, sizeof(uint32_t)); 13262 val = htonl(ae->ts_echo); 13263 bcopy((char *)&val, 13264 (char *)(cp + 4), sizeof(uint32_t)); 13265 } else 13266 th->th_off = (sizeof(struct tcphdr) >> 2); 13267 13268 /* 13269 * For sane logging we need to play a little trick. 13270 * If the ack were fully processed we would have moved 13271 * snd_una to high_seq, but since compressed acks are 13272 * processed in two phases, at this point (logging) snd_una 13273 * won't be advanced. So we would see multiple acks showing 13274 * the advancement. We can prevent that by "pretending" that 13275 * snd_una was advanced and then un-advancing it so that the 13276 * logging code has the right value for tlb_snd_una. 13277 */ 13278 if (tp->snd_una != high_seq) { 13279 orig_snd_una = tp->snd_una; 13280 tp->snd_una = high_seq; 13281 xx = 1; 13282 } else 13283 xx = 0; 13284 TCP_LOG_EVENTP(tp, th, 13285 &tp->t_inpcb->inp_socket->so_rcv, 13286 &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0, 13287 0, &log, true, <v); 13288 if (xx) { 13289 tp->snd_una = orig_snd_una; 13290 } 13291 } 13292 13293 } 13294 13295 static void 13296 rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts) 13297 { 13298 uint32_t us_rtt; 13299 /* 13300 * A persist or keep-alive was forced out, update our 13301 * min rtt time. Note now worry about lost responses. 13302 * When a subsequent keep-alive or persist times out 13303 * and forced_ack is still on, then the last probe 13304 * was not responded to. In such cases we have a 13305 * sysctl that controls the behavior. Either we apply 13306 * the rtt but with reduced confidence (0). Or we just 13307 * plain don't apply the rtt estimate. Having data flow 13308 * will clear the probe_not_answered flag i.e. cum-ack 13309 * move forward <or> exiting and reentering persists. 13310 */ 13311 13312 rack->forced_ack = 0; 13313 rack->rc_tp->t_rxtshift = 0; 13314 if ((rack->rc_in_persist && 13315 (tiwin == rack->rc_tp->snd_wnd)) || 13316 (rack->rc_in_persist == 0)) { 13317 /* 13318 * In persists only apply the RTT update if this is 13319 * a response to our window probe. And that 13320 * means the rwnd sent must match the current 13321 * snd_wnd. If it does not, then we got a 13322 * window update ack instead. For keepalive 13323 * we allow the answer no matter what the window. 13324 * 13325 * Note that if the probe_not_answered is set then 13326 * the forced_ack_ts is the oldest one i.e. the first 13327 * probe sent that might have been lost. This assures 13328 * us that if we do calculate an RTT it is longer not 13329 * some short thing. 13330 */ 13331 if (rack->rc_in_persist) 13332 counter_u64_add(rack_persists_acks, 1); 13333 us_rtt = us_cts - rack->r_ctl.forced_ack_ts; 13334 if (us_rtt == 0) 13335 us_rtt = 1; 13336 if (rack->probe_not_answered == 0) { 13337 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 13338 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1); 13339 } else { 13340 /* We have a retransmitted probe here too */ 13341 if (rack_apply_rtt_with_reduced_conf) { 13342 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 13343 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1); 13344 } 13345 } 13346 } 13347 } 13348 13349 static int 13350 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv) 13351 { 13352 /* 13353 * Handle a "special" compressed ack mbuf. Each incoming 13354 * ack has only four possible dispositions: 13355 * 13356 * A) It moves the cum-ack forward 13357 * B) It is behind the cum-ack. 13358 * C) It is a window-update ack. 13359 * D) It is a dup-ack. 13360 * 13361 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES 13362 * in the incoming mbuf. We also need to still pay attention 13363 * to nxt_pkt since there may be another packet after this 13364 * one. 13365 */ 13366 #ifdef TCP_ACCOUNTING 13367 uint64_t ts_val; 13368 uint64_t rdstc; 13369 #endif 13370 int segsiz; 13371 struct timespec ts; 13372 struct tcp_rack *rack; 13373 struct tcp_ackent *ae; 13374 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack; 13375 int cnt, i, did_out, ourfinisacked = 0; 13376 struct tcpopt to_holder, *to = NULL; 13377 #ifdef TCP_ACCOUNTING 13378 int win_up_req = 0; 13379 #endif 13380 int nsegs = 0; 13381 int under_pacing = 1; 13382 int recovery = 0; 13383 #ifdef TCP_ACCOUNTING 13384 sched_pin(); 13385 #endif 13386 rack = (struct tcp_rack *)tp->t_fb_ptr; 13387 if (rack->gp_ready && 13388 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) 13389 under_pacing = 0; 13390 else 13391 under_pacing = 1; 13392 13393 if (rack->r_state != tp->t_state) 13394 rack_set_state(tp, rack); 13395 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13396 (tp->t_flags & TF_GPUTINPROG)) { 13397 /* 13398 * We have a goodput in progress 13399 * and we have entered a late state. 13400 * Do we have enough data in the sb 13401 * to handle the GPUT request? 13402 */ 13403 uint32_t bytes; 13404 13405 bytes = tp->gput_ack - tp->gput_seq; 13406 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 13407 bytes += tp->gput_seq - tp->snd_una; 13408 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 13409 /* 13410 * There are not enough bytes in the socket 13411 * buffer that have been sent to cover this 13412 * measurement. Cancel it. 13413 */ 13414 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 13415 rack->r_ctl.rc_gp_srtt /*flex1*/, 13416 tp->gput_seq, 13417 0, 0, 18, __LINE__, NULL, 0); 13418 tp->t_flags &= ~TF_GPUTINPROG; 13419 } 13420 } 13421 to = &to_holder; 13422 to->to_flags = 0; 13423 KASSERT((m->m_len >= sizeof(struct tcp_ackent)), 13424 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len)); 13425 cnt = m->m_len / sizeof(struct tcp_ackent); 13426 counter_u64_add(rack_multi_single_eq, cnt); 13427 high_seq = tp->snd_una; 13428 the_win = tp->snd_wnd; 13429 win_seq = tp->snd_wl1; 13430 win_upd_ack = tp->snd_wl2; 13431 cts = tcp_tv_to_usectick(tv); 13432 ms_cts = tcp_tv_to_mssectick(tv); 13433 rack->r_ctl.rc_rcvtime = cts; 13434 segsiz = ctf_fixed_maxseg(tp); 13435 if ((rack->rc_gp_dyn_mul) && 13436 (rack->use_fixed_rate == 0) && 13437 (rack->rc_always_pace)) { 13438 /* Check in on probertt */ 13439 rack_check_probe_rtt(rack, cts); 13440 } 13441 for (i = 0; i < cnt; i++) { 13442 #ifdef TCP_ACCOUNTING 13443 ts_val = get_cyclecount(); 13444 #endif 13445 rack_clear_rate_sample(rack); 13446 ae = ((mtod(m, struct tcp_ackent *)) + i); 13447 /* Setup the window */ 13448 tiwin = ae->win << tp->snd_scale; 13449 if (tiwin > rack->r_ctl.rc_high_rwnd) 13450 rack->r_ctl.rc_high_rwnd = tiwin; 13451 /* figure out the type of ack */ 13452 if (SEQ_LT(ae->ack, high_seq)) { 13453 /* Case B*/ 13454 ae->ack_val_set = ACK_BEHIND; 13455 } else if (SEQ_GT(ae->ack, high_seq)) { 13456 /* Case A */ 13457 ae->ack_val_set = ACK_CUMACK; 13458 } else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){ 13459 /* Case D */ 13460 ae->ack_val_set = ACK_DUPACK; 13461 } else { 13462 /* Case C */ 13463 ae->ack_val_set = ACK_RWND; 13464 } 13465 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq); 13466 /* Validate timestamp */ 13467 if (ae->flags & HAS_TSTMP) { 13468 /* Setup for a timestamp */ 13469 to->to_flags = TOF_TS; 13470 ae->ts_echo -= tp->ts_offset; 13471 to->to_tsecr = ae->ts_echo; 13472 to->to_tsval = ae->ts_value; 13473 /* 13474 * If echoed timestamp is later than the current time, fall back to 13475 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 13476 * were used when this connection was established. 13477 */ 13478 if (TSTMP_GT(ae->ts_echo, ms_cts)) 13479 to->to_tsecr = 0; 13480 if (tp->ts_recent && 13481 TSTMP_LT(ae->ts_value, tp->ts_recent)) { 13482 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) { 13483 #ifdef TCP_ACCOUNTING 13484 rdstc = get_cyclecount(); 13485 if (rdstc > ts_val) { 13486 counter_u64_add(tcp_proc_time[ae->ack_val_set] , 13487 (rdstc - ts_val)); 13488 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13489 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13490 } 13491 } 13492 #endif 13493 continue; 13494 } 13495 } 13496 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) && 13497 SEQ_LEQ(tp->last_ack_sent, ae->seq)) { 13498 tp->ts_recent_age = tcp_ts_getticks(); 13499 tp->ts_recent = ae->ts_value; 13500 } 13501 } else { 13502 /* Setup for a no options */ 13503 to->to_flags = 0; 13504 } 13505 /* Update the rcv time and perform idle reduction possibly */ 13506 if (tp->t_idle_reduce && 13507 (tp->snd_max == tp->snd_una) && 13508 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 13509 counter_u64_add(rack_input_idle_reduces, 1); 13510 rack_cc_after_idle(rack, tp); 13511 } 13512 tp->t_rcvtime = ticks; 13513 /* Now what about ECN? */ 13514 if (tcp_ecn_input_segment(tp, ae->flags, ae->codepoint)) 13515 rack_cong_signal(tp, CC_ECN, ae->ack, __LINE__); 13516 #ifdef TCP_ACCOUNTING 13517 /* Count for the specific type of ack in */ 13518 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1); 13519 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13520 tp->tcp_cnt_counters[ae->ack_val_set]++; 13521 } 13522 #endif 13523 /* 13524 * Note how we could move up these in the determination 13525 * above, but we don't so that way the timestamp checks (and ECN) 13526 * is done first before we do any processing on the ACK. 13527 * The non-compressed path through the code has this 13528 * weakness (noted by @jtl) that it actually does some 13529 * processing before verifying the timestamp information. 13530 * We don't take that path here which is why we set 13531 * the ack_val_set first, do the timestamp and ecn 13532 * processing, and then look at what we have setup. 13533 */ 13534 if (ae->ack_val_set == ACK_BEHIND) { 13535 /* 13536 * Case B flag reordering, if window is not closed 13537 * or it could be a keep-alive or persists 13538 */ 13539 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) { 13540 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 13541 } 13542 } else if (ae->ack_val_set == ACK_DUPACK) { 13543 /* Case D */ 13544 rack_strike_dupack(rack); 13545 } else if (ae->ack_val_set == ACK_RWND) { 13546 /* Case C */ 13547 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13548 ts.tv_sec = ae->timestamp / 1000000000; 13549 ts.tv_nsec = ae->timestamp % 1000000000; 13550 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13551 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13552 } else { 13553 rack->r_ctl.act_rcv_time = *tv; 13554 } 13555 if (rack->forced_ack) { 13556 rack_handle_probe_response(rack, tiwin, 13557 tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 13558 } 13559 #ifdef TCP_ACCOUNTING 13560 win_up_req = 1; 13561 #endif 13562 win_upd_ack = ae->ack; 13563 win_seq = ae->seq; 13564 the_win = tiwin; 13565 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13566 } else { 13567 /* Case A */ 13568 if (SEQ_GT(ae->ack, tp->snd_max)) { 13569 /* 13570 * We just send an ack since the incoming 13571 * ack is beyond the largest seq we sent. 13572 */ 13573 if ((tp->t_flags & TF_ACKNOW) == 0) { 13574 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt); 13575 if (tp->t_flags && TF_ACKNOW) 13576 rack->r_wanted_output = 1; 13577 } 13578 } else { 13579 nsegs++; 13580 /* If the window changed setup to update */ 13581 if (tiwin != tp->snd_wnd) { 13582 win_upd_ack = ae->ack; 13583 win_seq = ae->seq; 13584 the_win = tiwin; 13585 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13586 } 13587 #ifdef TCP_ACCOUNTING 13588 /* Account for the acks */ 13589 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13590 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz); 13591 } 13592 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN], 13593 (((ae->ack - high_seq) + segsiz - 1) / segsiz)); 13594 #endif 13595 high_seq = ae->ack; 13596 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 13597 union tcp_log_stackspecific log; 13598 struct timeval tv; 13599 13600 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 13601 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 13602 log.u_bbr.flex1 = high_seq; 13603 log.u_bbr.flex2 = rack->r_ctl.roundends; 13604 log.u_bbr.flex3 = rack->r_ctl.current_round; 13605 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround; 13606 log.u_bbr.flex8 = 8; 13607 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 13608 0, &log, false, NULL, NULL, 0, &tv); 13609 } 13610 /* 13611 * The draft (v3) calls for us to use SEQ_GEQ, but that 13612 * causes issues when we are just going app limited. Lets 13613 * instead use SEQ_GT <or> where its equal but more data 13614 * is outstanding. 13615 */ 13616 if ((SEQ_GT(high_seq, rack->r_ctl.roundends)) || 13617 ((high_seq == rack->r_ctl.roundends) && 13618 SEQ_GT(tp->snd_max, tp->snd_una))) { 13619 rack->r_ctl.current_round++; 13620 rack->r_ctl.roundends = tp->snd_max; 13621 if (CC_ALGO(tp)->newround != NULL) { 13622 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 13623 } 13624 } 13625 /* Setup our act_rcv_time */ 13626 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13627 ts.tv_sec = ae->timestamp / 1000000000; 13628 ts.tv_nsec = ae->timestamp % 1000000000; 13629 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13630 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13631 } else { 13632 rack->r_ctl.act_rcv_time = *tv; 13633 } 13634 rack_process_to_cumack(tp, rack, ae->ack, cts, to); 13635 if (rack->rc_dsack_round_seen) { 13636 /* Is the dsack round over? */ 13637 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) { 13638 /* Yes it is */ 13639 rack->rc_dsack_round_seen = 0; 13640 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 13641 } 13642 } 13643 } 13644 } 13645 /* And lets be sure to commit the rtt measurements for this ack */ 13646 tcp_rack_xmit_timer_commit(rack, tp); 13647 #ifdef TCP_ACCOUNTING 13648 rdstc = get_cyclecount(); 13649 if (rdstc > ts_val) { 13650 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val)); 13651 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13652 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13653 if (ae->ack_val_set == ACK_CUMACK) 13654 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val); 13655 } 13656 } 13657 #endif 13658 } 13659 #ifdef TCP_ACCOUNTING 13660 ts_val = get_cyclecount(); 13661 #endif 13662 /* Tend to any collapsed window */ 13663 if (SEQ_GT(tp->snd_max, high_seq) && (tp->snd_wnd < (tp->snd_max - high_seq))) { 13664 /* The peer collapsed the window */ 13665 rack_collapsed_window(rack, (tp->snd_max - high_seq), __LINE__); 13666 } else if (rack->rc_has_collapsed) 13667 rack_un_collapse_window(rack, __LINE__); 13668 if ((rack->r_collapse_point_valid) && 13669 (SEQ_GT(high_seq, rack->r_ctl.high_collapse_point))) 13670 rack->r_collapse_point_valid = 0; 13671 acked_amount = acked = (high_seq - tp->snd_una); 13672 if (acked) { 13673 /* 13674 * Clear the probe not answered flag 13675 * since cum-ack moved forward. 13676 */ 13677 rack->probe_not_answered = 0; 13678 if (rack->sack_attack_disable == 0) 13679 rack_do_decay(rack); 13680 if (acked >= segsiz) { 13681 /* 13682 * You only get credit for 13683 * MSS and greater (and you get extra 13684 * credit for larger cum-ack moves). 13685 */ 13686 int ac; 13687 13688 ac = acked / segsiz; 13689 rack->r_ctl.ack_count += ac; 13690 counter_u64_add(rack_ack_total, ac); 13691 } 13692 if (rack->r_ctl.ack_count > 0xfff00000) { 13693 /* 13694 * reduce the number to keep us under 13695 * a uint32_t. 13696 */ 13697 rack->r_ctl.ack_count /= 2; 13698 rack->r_ctl.sack_count /= 2; 13699 } 13700 if (tp->t_flags & TF_NEEDSYN) { 13701 /* 13702 * T/TCP: Connection was half-synchronized, and our SYN has 13703 * been ACK'd (so connection is now fully synchronized). Go 13704 * to non-starred state, increment snd_una for ACK of SYN, 13705 * and check if we can do window scaling. 13706 */ 13707 tp->t_flags &= ~TF_NEEDSYN; 13708 tp->snd_una++; 13709 acked_amount = acked = (high_seq - tp->snd_una); 13710 } 13711 if (acked > sbavail(&so->so_snd)) 13712 acked_amount = sbavail(&so->so_snd); 13713 #ifdef NETFLIX_EXP_DETECTION 13714 /* 13715 * We only care on a cum-ack move if we are in a sack-disabled 13716 * state. We have already added in to the ack_count, and we never 13717 * would disable on a cum-ack move, so we only care to do the 13718 * detection if it may "undo" it, i.e. we were in disabled already. 13719 */ 13720 if (rack->sack_attack_disable) 13721 rack_do_detection(tp, rack, acked_amount, segsiz); 13722 #endif 13723 if (IN_FASTRECOVERY(tp->t_flags) && 13724 (rack->rack_no_prr == 0)) 13725 rack_update_prr(tp, rack, acked_amount, high_seq); 13726 if (IN_RECOVERY(tp->t_flags)) { 13727 if (SEQ_LT(high_seq, tp->snd_recover) && 13728 (SEQ_LT(high_seq, tp->snd_max))) { 13729 tcp_rack_partialack(tp); 13730 } else { 13731 rack_post_recovery(tp, high_seq); 13732 recovery = 1; 13733 } 13734 } 13735 /* Handle the rack-log-ack part (sendmap) */ 13736 if ((sbused(&so->so_snd) == 0) && 13737 (acked > acked_amount) && 13738 (tp->t_state >= TCPS_FIN_WAIT_1) && 13739 (tp->t_flags & TF_SENTFIN)) { 13740 /* 13741 * We must be sure our fin 13742 * was sent and acked (we can be 13743 * in FIN_WAIT_1 without having 13744 * sent the fin). 13745 */ 13746 ourfinisacked = 1; 13747 /* 13748 * Lets make sure snd_una is updated 13749 * since most likely acked_amount = 0 (it 13750 * should be). 13751 */ 13752 tp->snd_una = high_seq; 13753 } 13754 /* Did we make a RTO error? */ 13755 if ((tp->t_flags & TF_PREVVALID) && 13756 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 13757 tp->t_flags &= ~TF_PREVVALID; 13758 if (tp->t_rxtshift == 1 && 13759 (int)(ticks - tp->t_badrxtwin) < 0) 13760 rack_cong_signal(tp, CC_RTO_ERR, high_seq, __LINE__); 13761 } 13762 /* Handle the data in the socket buffer */ 13763 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1); 13764 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 13765 if (acked_amount > 0) { 13766 struct mbuf *mfree; 13767 13768 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery); 13769 SOCKBUF_LOCK(&so->so_snd); 13770 mfree = sbcut_locked(&so->so_snd, acked_amount); 13771 tp->snd_una = high_seq; 13772 /* Note we want to hold the sb lock through the sendmap adjust */ 13773 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 13774 /* Wake up the socket if we have room to write more */ 13775 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 13776 sowwakeup_locked(so); 13777 m_freem(mfree); 13778 } 13779 /* update progress */ 13780 tp->t_acktime = ticks; 13781 rack_log_progress_event(rack, tp, tp->t_acktime, 13782 PROGRESS_UPDATE, __LINE__); 13783 /* Clear out shifts and such */ 13784 tp->t_rxtshift = 0; 13785 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 13786 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 13787 rack->rc_tlp_in_progress = 0; 13788 rack->r_ctl.rc_tlp_cnt_out = 0; 13789 /* Send recover and snd_nxt must be dragged along */ 13790 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 13791 tp->snd_recover = tp->snd_una; 13792 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 13793 tp->snd_nxt = tp->snd_una; 13794 /* 13795 * If the RXT timer is running we want to 13796 * stop it, so we can restart a TLP (or new RXT). 13797 */ 13798 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 13799 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13800 #ifdef NETFLIX_HTTP_LOGGING 13801 tcp_http_check_for_comp(rack->rc_tp, high_seq); 13802 #endif 13803 tp->snd_wl2 = high_seq; 13804 tp->t_dupacks = 0; 13805 if (under_pacing && 13806 (rack->use_fixed_rate == 0) && 13807 (rack->in_probe_rtt == 0) && 13808 rack->rc_gp_dyn_mul && 13809 rack->rc_always_pace) { 13810 /* Check if we are dragging bottom */ 13811 rack_check_bottom_drag(tp, rack, so, acked); 13812 } 13813 if (tp->snd_una == tp->snd_max) { 13814 tp->t_flags &= ~TF_PREVVALID; 13815 rack->r_ctl.retran_during_recovery = 0; 13816 rack->r_ctl.dsack_byte_cnt = 0; 13817 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 13818 if (rack->r_ctl.rc_went_idle_time == 0) 13819 rack->r_ctl.rc_went_idle_time = 1; 13820 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 13821 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 13822 tp->t_acktime = 0; 13823 /* Set so we might enter persists... */ 13824 rack->r_wanted_output = 1; 13825 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13826 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 13827 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13828 (sbavail(&so->so_snd) == 0) && 13829 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 13830 /* 13831 * The socket was gone and the 13832 * peer sent data (not now in the past), time to 13833 * reset him. 13834 */ 13835 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13836 /* tcp_close will kill the inp pre-log the Reset */ 13837 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 13838 #ifdef TCP_ACCOUNTING 13839 rdstc = get_cyclecount(); 13840 if (rdstc > ts_val) { 13841 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13842 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13843 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13844 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13845 } 13846 } 13847 #endif 13848 m_freem(m); 13849 tp = tcp_close(tp); 13850 if (tp == NULL) { 13851 #ifdef TCP_ACCOUNTING 13852 sched_unpin(); 13853 #endif 13854 return (1); 13855 } 13856 /* 13857 * We would normally do drop-with-reset which would 13858 * send back a reset. We can't since we don't have 13859 * all the needed bits. Instead lets arrange for 13860 * a call to tcp_output(). That way since we 13861 * are in the closed state we will generate a reset. 13862 * 13863 * Note if tcp_accounting is on we don't unpin since 13864 * we do that after the goto label. 13865 */ 13866 goto send_out_a_rst; 13867 } 13868 if ((sbused(&so->so_snd) == 0) && 13869 (tp->t_state >= TCPS_FIN_WAIT_1) && 13870 (tp->t_flags & TF_SENTFIN)) { 13871 /* 13872 * If we can't receive any more data, then closing user can 13873 * proceed. Starting the timer is contrary to the 13874 * specification, but if we don't get a FIN we'll hang 13875 * forever. 13876 * 13877 */ 13878 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13879 soisdisconnected(so); 13880 tcp_timer_activate(tp, TT_2MSL, 13881 (tcp_fast_finwait2_recycle ? 13882 tcp_finwait2_timeout : 13883 TP_MAXIDLE(tp))); 13884 } 13885 if (ourfinisacked == 0) { 13886 /* 13887 * We don't change to fin-wait-2 if we have our fin acked 13888 * which means we are probably in TCPS_CLOSING. 13889 */ 13890 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13891 } 13892 } 13893 } 13894 /* Wake up the socket if we have room to write more */ 13895 if (sbavail(&so->so_snd)) { 13896 rack->r_wanted_output = 1; 13897 if (ctf_progress_timeout_check(tp, true)) { 13898 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 13899 tp, tick, PROGRESS_DROP, __LINE__); 13900 /* 13901 * We cheat here and don't send a RST, we should send one 13902 * when the pacer drops the connection. 13903 */ 13904 #ifdef TCP_ACCOUNTING 13905 rdstc = get_cyclecount(); 13906 if (rdstc > ts_val) { 13907 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13908 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13909 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13910 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13911 } 13912 } 13913 sched_unpin(); 13914 #endif 13915 (void)tcp_drop(tp, ETIMEDOUT); 13916 m_freem(m); 13917 return (1); 13918 } 13919 } 13920 if (ourfinisacked) { 13921 switch(tp->t_state) { 13922 case TCPS_CLOSING: 13923 #ifdef TCP_ACCOUNTING 13924 rdstc = get_cyclecount(); 13925 if (rdstc > ts_val) { 13926 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13927 (rdstc - ts_val)); 13928 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13929 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13930 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13931 } 13932 } 13933 sched_unpin(); 13934 #endif 13935 tcp_twstart(tp); 13936 m_freem(m); 13937 return (1); 13938 break; 13939 case TCPS_LAST_ACK: 13940 #ifdef TCP_ACCOUNTING 13941 rdstc = get_cyclecount(); 13942 if (rdstc > ts_val) { 13943 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13944 (rdstc - ts_val)); 13945 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13946 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13947 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13948 } 13949 } 13950 sched_unpin(); 13951 #endif 13952 tp = tcp_close(tp); 13953 ctf_do_drop(m, tp); 13954 return (1); 13955 break; 13956 case TCPS_FIN_WAIT_1: 13957 #ifdef TCP_ACCOUNTING 13958 rdstc = get_cyclecount(); 13959 if (rdstc > ts_val) { 13960 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13961 (rdstc - ts_val)); 13962 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13963 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13964 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13965 } 13966 } 13967 #endif 13968 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13969 soisdisconnected(so); 13970 tcp_timer_activate(tp, TT_2MSL, 13971 (tcp_fast_finwait2_recycle ? 13972 tcp_finwait2_timeout : 13973 TP_MAXIDLE(tp))); 13974 } 13975 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13976 break; 13977 default: 13978 break; 13979 } 13980 } 13981 if (rack->r_fast_output) { 13982 /* 13983 * We re doing fast output.. can we expand that? 13984 */ 13985 rack_gain_for_fastoutput(rack, tp, so, acked_amount); 13986 } 13987 #ifdef TCP_ACCOUNTING 13988 rdstc = get_cyclecount(); 13989 if (rdstc > ts_val) { 13990 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13991 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13992 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13993 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13994 } 13995 } 13996 13997 } else if (win_up_req) { 13998 rdstc = get_cyclecount(); 13999 if (rdstc > ts_val) { 14000 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val)); 14001 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14002 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val); 14003 } 14004 } 14005 #endif 14006 } 14007 /* Now is there a next packet, if so we are done */ 14008 m_freem(m); 14009 did_out = 0; 14010 if (nxt_pkt) { 14011 #ifdef TCP_ACCOUNTING 14012 sched_unpin(); 14013 #endif 14014 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs); 14015 return (0); 14016 } 14017 rack_handle_might_revert(tp, rack); 14018 ctf_calc_rwin(so, tp); 14019 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14020 send_out_a_rst: 14021 if (tcp_output(tp) < 0) { 14022 #ifdef TCP_ACCOUNTING 14023 sched_unpin(); 14024 #endif 14025 return (1); 14026 } 14027 did_out = 1; 14028 } 14029 rack_free_trim(rack); 14030 #ifdef TCP_ACCOUNTING 14031 sched_unpin(); 14032 #endif 14033 rack_timer_audit(tp, rack, &so->so_snd); 14034 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs); 14035 return (0); 14036 } 14037 14038 14039 static int 14040 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, 14041 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, 14042 int32_t nxt_pkt, struct timeval *tv) 14043 { 14044 #ifdef TCP_ACCOUNTING 14045 uint64_t ts_val; 14046 #endif 14047 int32_t thflags, retval, did_out = 0; 14048 int32_t way_out = 0; 14049 /* 14050 * cts - is the current time from tv (caller gets ts) in microseconds. 14051 * ms_cts - is the current time from tv in milliseconds. 14052 * us_cts - is the time that LRO or hardware actually got the packet in microseconds. 14053 */ 14054 uint32_t cts, us_cts, ms_cts; 14055 uint32_t tiwin, high_seq; 14056 struct timespec ts; 14057 struct tcpopt to; 14058 struct tcp_rack *rack; 14059 struct rack_sendmap *rsm; 14060 int32_t prev_state = 0; 14061 #ifdef TCP_ACCOUNTING 14062 int ack_val_set = 0xf; 14063 #endif 14064 int nsegs; 14065 /* 14066 * tv passed from common code is from either M_TSTMP_LRO or 14067 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. 14068 */ 14069 rack = (struct tcp_rack *)tp->t_fb_ptr; 14070 if (m->m_flags & M_ACKCMP) { 14071 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv)); 14072 } 14073 if (m->m_flags & M_ACKCMP) { 14074 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp); 14075 } 14076 cts = tcp_tv_to_usectick(tv); 14077 ms_cts = tcp_tv_to_mssectick(tv); 14078 nsegs = m->m_pkthdr.lro_nsegs; 14079 counter_u64_add(rack_proc_non_comp_ack, 1); 14080 thflags = tcp_get_flags(th); 14081 #ifdef TCP_ACCOUNTING 14082 sched_pin(); 14083 if (thflags & TH_ACK) 14084 ts_val = get_cyclecount(); 14085 #endif 14086 if ((m->m_flags & M_TSTMP) || 14087 (m->m_flags & M_TSTMP_LRO)) { 14088 mbuf_tstmp2timespec(m, &ts); 14089 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 14090 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 14091 } else 14092 rack->r_ctl.act_rcv_time = *tv; 14093 kern_prefetch(rack, &prev_state); 14094 prev_state = 0; 14095 /* 14096 * Unscale the window into a 32-bit value. For the SYN_SENT state 14097 * the scale is zero. 14098 */ 14099 tiwin = th->th_win << tp->snd_scale; 14100 #ifdef TCP_ACCOUNTING 14101 if (thflags & TH_ACK) { 14102 /* 14103 * We have a tradeoff here. We can either do what we are 14104 * doing i.e. pinning to this CPU and then doing the accounting 14105 * <or> we could do a critical enter, setup the rdtsc and cpu 14106 * as in below, and then validate we are on the same CPU on 14107 * exit. I have choosen to not do the critical enter since 14108 * that often will gain you a context switch, and instead lock 14109 * us (line above this if) to the same CPU with sched_pin(). This 14110 * means we may be context switched out for a higher priority 14111 * interupt but we won't be moved to another CPU. 14112 * 14113 * If this occurs (which it won't very often since we most likely 14114 * are running this code in interupt context and only a higher 14115 * priority will bump us ... clock?) we will falsely add in 14116 * to the time the interupt processing time plus the ack processing 14117 * time. This is ok since its a rare event. 14118 */ 14119 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin, 14120 ctf_fixed_maxseg(tp)); 14121 } 14122 #endif 14123 /* 14124 * Parse options on any incoming segment. 14125 */ 14126 memset(&to, 0, sizeof(to)); 14127 tcp_dooptions(&to, (u_char *)(th + 1), 14128 (th->th_off << 2) - sizeof(struct tcphdr), 14129 (thflags & TH_SYN) ? TO_SYN : 0); 14130 NET_EPOCH_ASSERT(); 14131 INP_WLOCK_ASSERT(tp->t_inpcb); 14132 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 14133 __func__)); 14134 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 14135 __func__)); 14136 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 14137 (tp->t_flags & TF_GPUTINPROG)) { 14138 /* 14139 * We have a goodput in progress 14140 * and we have entered a late state. 14141 * Do we have enough data in the sb 14142 * to handle the GPUT request? 14143 */ 14144 uint32_t bytes; 14145 14146 bytes = tp->gput_ack - tp->gput_seq; 14147 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 14148 bytes += tp->gput_seq - tp->snd_una; 14149 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 14150 /* 14151 * There are not enough bytes in the socket 14152 * buffer that have been sent to cover this 14153 * measurement. Cancel it. 14154 */ 14155 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 14156 rack->r_ctl.rc_gp_srtt /*flex1*/, 14157 tp->gput_seq, 14158 0, 0, 18, __LINE__, NULL, 0); 14159 tp->t_flags &= ~TF_GPUTINPROG; 14160 } 14161 } 14162 high_seq = th->th_ack; 14163 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 14164 union tcp_log_stackspecific log; 14165 struct timeval ltv; 14166 #ifdef NETFLIX_HTTP_LOGGING 14167 struct http_sendfile_track *http_req; 14168 14169 if (SEQ_GT(th->th_ack, tp->snd_una)) { 14170 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1)); 14171 } else { 14172 http_req = tcp_http_find_req_for_seq(tp, th->th_ack); 14173 } 14174 #endif 14175 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14176 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 14177 if (rack->rack_no_prr == 0) 14178 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 14179 else 14180 log.u_bbr.flex1 = 0; 14181 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 14182 log.u_bbr.use_lt_bw <<= 1; 14183 log.u_bbr.use_lt_bw |= rack->r_might_revert; 14184 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 14185 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14186 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 14187 log.u_bbr.flex3 = m->m_flags; 14188 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 14189 log.u_bbr.lost = thflags; 14190 log.u_bbr.pacing_gain = 0x1; 14191 #ifdef TCP_ACCOUNTING 14192 log.u_bbr.cwnd_gain = ack_val_set; 14193 #endif 14194 log.u_bbr.flex7 = 2; 14195 if (m->m_flags & M_TSTMP) { 14196 /* Record the hardware timestamp if present */ 14197 mbuf_tstmp2timespec(m, &ts); 14198 ltv.tv_sec = ts.tv_sec; 14199 ltv.tv_usec = ts.tv_nsec / 1000; 14200 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 14201 } else if (m->m_flags & M_TSTMP_LRO) { 14202 /* Record the LRO the arrival timestamp */ 14203 mbuf_tstmp2timespec(m, &ts); 14204 ltv.tv_sec = ts.tv_sec; 14205 ltv.tv_usec = ts.tv_nsec / 1000; 14206 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 14207 } 14208 log.u_bbr.timeStamp = tcp_get_usecs(<v); 14209 /* Log the rcv time */ 14210 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; 14211 #ifdef NETFLIX_HTTP_LOGGING 14212 log.u_bbr.applimited = tp->t_http_closed; 14213 log.u_bbr.applimited <<= 8; 14214 log.u_bbr.applimited |= tp->t_http_open; 14215 log.u_bbr.applimited <<= 8; 14216 log.u_bbr.applimited |= tp->t_http_req; 14217 if (http_req) { 14218 /* Copy out any client req info */ 14219 /* seconds */ 14220 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 14221 /* useconds */ 14222 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 14223 log.u_bbr.rttProp = http_req->timestamp; 14224 log.u_bbr.cur_del_rate = http_req->start; 14225 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 14226 log.u_bbr.flex8 |= 1; 14227 } else { 14228 log.u_bbr.flex8 |= 2; 14229 log.u_bbr.bw_inuse = http_req->end; 14230 } 14231 log.u_bbr.flex6 = http_req->start_seq; 14232 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 14233 log.u_bbr.flex8 |= 4; 14234 log.u_bbr.epoch = http_req->end_seq; 14235 } 14236 } 14237 #endif 14238 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 14239 tlen, &log, true, <v); 14240 } 14241 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 14242 way_out = 4; 14243 retval = 0; 14244 m_freem(m); 14245 goto done_with_input; 14246 } 14247 /* 14248 * If a segment with the ACK-bit set arrives in the SYN-SENT state 14249 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. 14250 */ 14251 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 14252 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 14253 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 14254 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14255 #ifdef TCP_ACCOUNTING 14256 sched_unpin(); 14257 #endif 14258 return (1); 14259 } 14260 /* 14261 * If timestamps were negotiated during SYN/ACK and a 14262 * segment without a timestamp is received, silently drop 14263 * the segment, unless it is a RST segment or missing timestamps are 14264 * tolerated. 14265 * See section 3.2 of RFC 7323. 14266 */ 14267 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) && 14268 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) { 14269 way_out = 5; 14270 retval = 0; 14271 m_freem(m); 14272 goto done_with_input; 14273 } 14274 14275 /* 14276 * Segment received on connection. Reset idle time and keep-alive 14277 * timer. XXX: This should be done after segment validation to 14278 * ignore broken/spoofed segs. 14279 */ 14280 if (tp->t_idle_reduce && 14281 (tp->snd_max == tp->snd_una) && 14282 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 14283 counter_u64_add(rack_input_idle_reduces, 1); 14284 rack_cc_after_idle(rack, tp); 14285 } 14286 tp->t_rcvtime = ticks; 14287 #ifdef STATS 14288 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 14289 #endif 14290 if (tiwin > rack->r_ctl.rc_high_rwnd) 14291 rack->r_ctl.rc_high_rwnd = tiwin; 14292 /* 14293 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move 14294 * this to occur after we've validated the segment. 14295 */ 14296 if (tcp_ecn_input_segment(tp, thflags, iptos)) 14297 rack_cong_signal(tp, CC_ECN, th->th_ack, __LINE__); 14298 14299 /* 14300 * If echoed timestamp is later than the current time, fall back to 14301 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 14302 * were used when this connection was established. 14303 */ 14304 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 14305 to.to_tsecr -= tp->ts_offset; 14306 if (TSTMP_GT(to.to_tsecr, ms_cts)) 14307 to.to_tsecr = 0; 14308 } 14309 14310 /* 14311 * If its the first time in we need to take care of options and 14312 * verify we can do SACK for rack! 14313 */ 14314 if (rack->r_state == 0) { 14315 /* Should be init'd by rack_init() */ 14316 KASSERT(rack->rc_inp != NULL, 14317 ("%s: rack->rc_inp unexpectedly NULL", __func__)); 14318 if (rack->rc_inp == NULL) { 14319 rack->rc_inp = tp->t_inpcb; 14320 } 14321 14322 /* 14323 * Process options only when we get SYN/ACK back. The SYN 14324 * case for incoming connections is handled in tcp_syncache. 14325 * According to RFC1323 the window field in a SYN (i.e., a 14326 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX 14327 * this is traditional behavior, may need to be cleaned up. 14328 */ 14329 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 14330 /* Handle parallel SYN for ECN */ 14331 tcp_ecn_input_parallel_syn(tp, thflags, iptos); 14332 if ((to.to_flags & TOF_SCALE) && 14333 (tp->t_flags & TF_REQ_SCALE)) { 14334 tp->t_flags |= TF_RCVD_SCALE; 14335 tp->snd_scale = to.to_wscale; 14336 } else 14337 tp->t_flags &= ~TF_REQ_SCALE; 14338 /* 14339 * Initial send window. It will be updated with the 14340 * next incoming segment to the scaled value. 14341 */ 14342 tp->snd_wnd = th->th_win; 14343 rack_validate_fo_sendwin_up(tp, rack); 14344 if ((to.to_flags & TOF_TS) && 14345 (tp->t_flags & TF_REQ_TSTMP)) { 14346 tp->t_flags |= TF_RCVD_TSTMP; 14347 tp->ts_recent = to.to_tsval; 14348 tp->ts_recent_age = cts; 14349 } else 14350 tp->t_flags &= ~TF_REQ_TSTMP; 14351 if (to.to_flags & TOF_MSS) { 14352 tcp_mss(tp, to.to_mss); 14353 } 14354 if ((tp->t_flags & TF_SACK_PERMIT) && 14355 (to.to_flags & TOF_SACKPERM) == 0) 14356 tp->t_flags &= ~TF_SACK_PERMIT; 14357 if (IS_FASTOPEN(tp->t_flags)) { 14358 if (to.to_flags & TOF_FASTOPEN) { 14359 uint16_t mss; 14360 14361 if (to.to_flags & TOF_MSS) 14362 mss = to.to_mss; 14363 else 14364 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 14365 mss = TCP6_MSS; 14366 else 14367 mss = TCP_MSS; 14368 tcp_fastopen_update_cache(tp, mss, 14369 to.to_tfo_len, to.to_tfo_cookie); 14370 } else 14371 tcp_fastopen_disable_path(tp); 14372 } 14373 } 14374 /* 14375 * At this point we are at the initial call. Here we decide 14376 * if we are doing RACK or not. We do this by seeing if 14377 * TF_SACK_PERMIT is set and the sack-not-required is clear. 14378 * The code now does do dup-ack counting so if you don't 14379 * switch back you won't get rack & TLP, but you will still 14380 * get this stack. 14381 */ 14382 14383 if ((rack_sack_not_required == 0) && 14384 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 14385 tcp_switch_back_to_default(tp); 14386 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, 14387 tlen, iptos); 14388 #ifdef TCP_ACCOUNTING 14389 sched_unpin(); 14390 #endif 14391 return (1); 14392 } 14393 tcp_set_hpts(tp->t_inpcb); 14394 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); 14395 } 14396 if (thflags & TH_FIN) 14397 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 14398 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 14399 if ((rack->rc_gp_dyn_mul) && 14400 (rack->use_fixed_rate == 0) && 14401 (rack->rc_always_pace)) { 14402 /* Check in on probertt */ 14403 rack_check_probe_rtt(rack, us_cts); 14404 } 14405 rack_clear_rate_sample(rack); 14406 if ((rack->forced_ack) && 14407 ((tcp_get_flags(th) & TH_RST) == 0)) { 14408 rack_handle_probe_response(rack, tiwin, us_cts); 14409 } 14410 /* 14411 * This is the one exception case where we set the rack state 14412 * always. All other times (timers etc) we must have a rack-state 14413 * set (so we assure we have done the checks above for SACK). 14414 */ 14415 rack->r_ctl.rc_rcvtime = cts; 14416 if (rack->r_state != tp->t_state) 14417 rack_set_state(tp, rack); 14418 if (SEQ_GT(th->th_ack, tp->snd_una) && 14419 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL) 14420 kern_prefetch(rsm, &prev_state); 14421 prev_state = rack->r_state; 14422 retval = (*rack->r_substate) (m, th, so, 14423 tp, &to, drop_hdrlen, 14424 tlen, tiwin, thflags, nxt_pkt, iptos); 14425 #ifdef INVARIANTS 14426 if ((retval == 0) && 14427 (tp->t_inpcb == NULL)) { 14428 panic("retval:%d tp:%p t_inpcb:NULL state:%d", 14429 retval, tp, prev_state); 14430 } 14431 #endif 14432 if (retval == 0) { 14433 /* 14434 * If retval is 1 the tcb is unlocked and most likely the tp 14435 * is gone. 14436 */ 14437 INP_WLOCK_ASSERT(tp->t_inpcb); 14438 if ((rack->rc_gp_dyn_mul) && 14439 (rack->rc_always_pace) && 14440 (rack->use_fixed_rate == 0) && 14441 rack->in_probe_rtt && 14442 (rack->r_ctl.rc_time_probertt_starts == 0)) { 14443 /* 14444 * If we are going for target, lets recheck before 14445 * we output. 14446 */ 14447 rack_check_probe_rtt(rack, us_cts); 14448 } 14449 if (rack->set_pacing_done_a_iw == 0) { 14450 /* How much has been acked? */ 14451 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { 14452 /* We have enough to set in the pacing segment size */ 14453 rack->set_pacing_done_a_iw = 1; 14454 rack_set_pace_segments(tp, rack, __LINE__, NULL); 14455 } 14456 } 14457 tcp_rack_xmit_timer_commit(rack, tp); 14458 #ifdef TCP_ACCOUNTING 14459 /* 14460 * If we set the ack_val_se to what ack processing we are doing 14461 * we also want to track how many cycles we burned. Note 14462 * the bits after tcp_output we let be "free". This is because 14463 * we are also tracking the tcp_output times as well. Note the 14464 * use of 0xf here since we only have 11 counter (0 - 0xa) and 14465 * 0xf cannot be returned and is what we initialize it too to 14466 * indicate we are not doing the tabulations. 14467 */ 14468 if (ack_val_set != 0xf) { 14469 uint64_t crtsc; 14470 14471 crtsc = get_cyclecount(); 14472 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14473 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14474 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val); 14475 } 14476 } 14477 #endif 14478 if (nxt_pkt == 0) { 14479 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14480 do_output_now: 14481 if (tcp_output(tp) < 0) 14482 return (1); 14483 did_out = 1; 14484 } 14485 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 14486 rack_free_trim(rack); 14487 } 14488 /* Update any rounds needed */ 14489 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 14490 union tcp_log_stackspecific log; 14491 struct timeval tv; 14492 14493 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14494 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14495 log.u_bbr.flex1 = high_seq; 14496 log.u_bbr.flex2 = rack->r_ctl.roundends; 14497 log.u_bbr.flex3 = rack->r_ctl.current_round; 14498 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround; 14499 log.u_bbr.flex8 = 9; 14500 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 14501 0, &log, false, NULL, NULL, 0, &tv); 14502 } 14503 /* 14504 * The draft (v3) calls for us to use SEQ_GEQ, but that 14505 * causes issues when we are just going app limited. Lets 14506 * instead use SEQ_GT <or> where its equal but more data 14507 * is outstanding. 14508 */ 14509 if ((SEQ_GT(tp->snd_una, rack->r_ctl.roundends)) || 14510 ((tp->snd_una == rack->r_ctl.roundends) && SEQ_GT(tp->snd_max, tp->snd_una))) { 14511 rack->r_ctl.current_round++; 14512 rack->r_ctl.roundends = tp->snd_max; 14513 if (CC_ALGO(tp)->newround != NULL) { 14514 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 14515 } 14516 } 14517 if ((nxt_pkt == 0) && 14518 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && 14519 (SEQ_GT(tp->snd_max, tp->snd_una) || 14520 (tp->t_flags & TF_DELACK) || 14521 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 14522 (tp->t_state <= TCPS_CLOSING)))) { 14523 /* We could not send (probably in the hpts but stopped the timer earlier)? */ 14524 if ((tp->snd_max == tp->snd_una) && 14525 ((tp->t_flags & TF_DELACK) == 0) && 14526 (tcp_in_hpts(rack->rc_inp)) && 14527 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 14528 /* keep alive not needed if we are hptsi output yet */ 14529 ; 14530 } else { 14531 int late = 0; 14532 if (tcp_in_hpts(rack->rc_inp)) { 14533 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 14534 us_cts = tcp_get_usecs(NULL); 14535 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 14536 rack->r_early = 1; 14537 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 14538 } else 14539 late = 1; 14540 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 14541 } 14542 tcp_hpts_remove(tp->t_inpcb); 14543 } 14544 if (late && (did_out == 0)) { 14545 /* 14546 * We are late in the sending 14547 * and we did not call the output 14548 * (this probably should not happen). 14549 */ 14550 goto do_output_now; 14551 } 14552 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 14553 } 14554 way_out = 1; 14555 } else if (nxt_pkt == 0) { 14556 /* Do we have the correct timer running? */ 14557 rack_timer_audit(tp, rack, &so->so_snd); 14558 way_out = 2; 14559 } 14560 done_with_input: 14561 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs)); 14562 if (did_out) 14563 rack->r_wanted_output = 0; 14564 #ifdef INVARIANTS 14565 if (tp->t_inpcb == NULL) { 14566 panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", 14567 did_out, 14568 retval, tp, prev_state); 14569 } 14570 #endif 14571 #ifdef TCP_ACCOUNTING 14572 } else { 14573 /* 14574 * Track the time (see above). 14575 */ 14576 if (ack_val_set != 0xf) { 14577 uint64_t crtsc; 14578 14579 crtsc = get_cyclecount(); 14580 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14581 /* 14582 * Note we *DO NOT* increment the per-tcb counters since 14583 * in the else the TP may be gone!! 14584 */ 14585 } 14586 #endif 14587 } 14588 #ifdef TCP_ACCOUNTING 14589 sched_unpin(); 14590 #endif 14591 return (retval); 14592 } 14593 14594 void 14595 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 14596 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) 14597 { 14598 struct timeval tv; 14599 14600 /* First lets see if we have old packets */ 14601 if (tp->t_in_pkt) { 14602 if (ctf_do_queued_segments(so, tp, 1)) { 14603 m_freem(m); 14604 return; 14605 } 14606 } 14607 if (m->m_flags & M_TSTMP_LRO) { 14608 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; 14609 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; 14610 } else { 14611 /* Should not be should we kassert instead? */ 14612 tcp_get_usecs(&tv); 14613 } 14614 if (rack_do_segment_nounlock(m, th, so, tp, 14615 drop_hdrlen, tlen, iptos, 0, &tv) == 0) { 14616 INP_WUNLOCK(tp->t_inpcb); 14617 } 14618 } 14619 14620 struct rack_sendmap * 14621 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) 14622 { 14623 struct rack_sendmap *rsm = NULL; 14624 int32_t idx; 14625 uint32_t srtt = 0, thresh = 0, ts_low = 0; 14626 14627 /* Return the next guy to be re-transmitted */ 14628 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 14629 return (NULL); 14630 } 14631 if (tp->t_flags & TF_SENTFIN) { 14632 /* retran the end FIN? */ 14633 return (NULL); 14634 } 14635 /* ok lets look at this one */ 14636 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 14637 if (rack->r_must_retran && rsm && (rsm->r_flags & RACK_MUST_RXT)) { 14638 return (rsm); 14639 } 14640 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { 14641 goto check_it; 14642 } 14643 rsm = rack_find_lowest_rsm(rack); 14644 if (rsm == NULL) { 14645 return (NULL); 14646 } 14647 check_it: 14648 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) && 14649 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 14650 /* 14651 * No sack so we automatically do the 3 strikes and 14652 * retransmit (no rack timer would be started). 14653 */ 14654 14655 return (rsm); 14656 } 14657 if (rsm->r_flags & RACK_ACKED) { 14658 return (NULL); 14659 } 14660 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && 14661 (rsm->r_dupack < DUP_ACK_THRESHOLD)) { 14662 /* Its not yet ready */ 14663 return (NULL); 14664 } 14665 srtt = rack_grab_rtt(tp, rack); 14666 idx = rsm->r_rtr_cnt - 1; 14667 ts_low = (uint32_t)rsm->r_tim_lastsent[idx]; 14668 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 14669 if ((tsused == ts_low) || 14670 (TSTMP_LT(tsused, ts_low))) { 14671 /* No time since sending */ 14672 return (NULL); 14673 } 14674 if ((tsused - ts_low) < thresh) { 14675 /* It has not been long enough yet */ 14676 return (NULL); 14677 } 14678 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 14679 ((rsm->r_flags & RACK_SACK_PASSED) && 14680 (rack->sack_attack_disable == 0))) { 14681 /* 14682 * We have passed the dup-ack threshold <or> 14683 * a SACK has indicated this is missing. 14684 * Note that if you are a declared attacker 14685 * it is only the dup-ack threshold that 14686 * will cause retransmits. 14687 */ 14688 /* log retransmit reason */ 14689 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); 14690 rack->r_fast_output = 0; 14691 return (rsm); 14692 } 14693 return (NULL); 14694 } 14695 14696 static void 14697 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 14698 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, 14699 int line, struct rack_sendmap *rsm, uint8_t quality) 14700 { 14701 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 14702 union tcp_log_stackspecific log; 14703 struct timeval tv; 14704 14705 memset(&log, 0, sizeof(log)); 14706 log.u_bbr.flex1 = slot; 14707 log.u_bbr.flex2 = len; 14708 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; 14709 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; 14710 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; 14711 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; 14712 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data; 14713 log.u_bbr.use_lt_bw <<= 1; 14714 log.u_bbr.use_lt_bw |= rack->r_late; 14715 log.u_bbr.use_lt_bw <<= 1; 14716 log.u_bbr.use_lt_bw |= rack->r_early; 14717 log.u_bbr.use_lt_bw <<= 1; 14718 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 14719 log.u_bbr.use_lt_bw <<= 1; 14720 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 14721 log.u_bbr.use_lt_bw <<= 1; 14722 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 14723 log.u_bbr.use_lt_bw <<= 1; 14724 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 14725 log.u_bbr.use_lt_bw <<= 1; 14726 log.u_bbr.use_lt_bw |= rack->gp_ready; 14727 log.u_bbr.pkt_epoch = line; 14728 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed; 14729 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early; 14730 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; 14731 log.u_bbr.bw_inuse = bw_est; 14732 log.u_bbr.delRate = bw; 14733 if (rack->r_ctl.gp_bw == 0) 14734 log.u_bbr.cur_del_rate = 0; 14735 else 14736 log.u_bbr.cur_del_rate = rack_get_bw(rack); 14737 log.u_bbr.rttProp = len_time; 14738 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; 14739 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; 14740 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 14741 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { 14742 /* We are in slow start */ 14743 log.u_bbr.flex7 = 1; 14744 } else { 14745 /* we are on congestion avoidance */ 14746 log.u_bbr.flex7 = 0; 14747 } 14748 log.u_bbr.flex8 = method; 14749 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14750 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14751 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; 14752 log.u_bbr.cwnd_gain <<= 1; 14753 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 14754 log.u_bbr.cwnd_gain <<= 1; 14755 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 14756 log.u_bbr.bbr_substate = quality; 14757 TCP_LOG_EVENTP(rack->rc_tp, NULL, 14758 &rack->rc_inp->inp_socket->so_rcv, 14759 &rack->rc_inp->inp_socket->so_snd, 14760 BBR_LOG_HPTSI_CALC, 0, 14761 0, &log, false, &tv); 14762 } 14763 } 14764 14765 static uint32_t 14766 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) 14767 { 14768 uint32_t new_tso, user_max; 14769 14770 user_max = rack->rc_user_set_max_segs * mss; 14771 if (rack->rc_force_max_seg) { 14772 return (user_max); 14773 } 14774 if (rack->use_fixed_rate && 14775 ((rack->r_ctl.crte == NULL) || 14776 (bw != rack->r_ctl.crte->rate))) { 14777 /* Use the user mss since we are not exactly matched */ 14778 return (user_max); 14779 } 14780 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL); 14781 if (new_tso > user_max) 14782 new_tso = user_max; 14783 return (new_tso); 14784 } 14785 14786 static int32_t 14787 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced) 14788 { 14789 uint64_t lentim, fill_bw; 14790 14791 /* Lets first see if we are full, if so continue with normal rate */ 14792 rack->r_via_fill_cw = 0; 14793 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) 14794 return (slot); 14795 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) 14796 return (slot); 14797 if (rack->r_ctl.rc_last_us_rtt == 0) 14798 return (slot); 14799 if (rack->rc_pace_fill_if_rttin_range && 14800 (rack->r_ctl.rc_last_us_rtt >= 14801 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { 14802 /* The rtt is huge, N * smallest, lets not fill */ 14803 return (slot); 14804 } 14805 /* 14806 * first lets calculate the b/w based on the last us-rtt 14807 * and the sndwnd. 14808 */ 14809 fill_bw = rack->r_ctl.cwnd_to_use; 14810 /* Take the rwnd if its smaller */ 14811 if (fill_bw > rack->rc_tp->snd_wnd) 14812 fill_bw = rack->rc_tp->snd_wnd; 14813 if (rack->r_fill_less_agg) { 14814 /* 14815 * Now take away the inflight (this will reduce our 14816 * aggressiveness and yeah, if we get that much out in 1RTT 14817 * we will have had acks come back and still be behind). 14818 */ 14819 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14820 } 14821 /* Now lets make it into a b/w */ 14822 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; 14823 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 14824 /* We are below the min b/w */ 14825 if (non_paced) 14826 *rate_wanted = fill_bw; 14827 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted)) 14828 return (slot); 14829 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap)) 14830 fill_bw = rack->r_ctl.bw_rate_cap; 14831 rack->r_via_fill_cw = 1; 14832 if (rack->r_rack_hw_rate_caps && 14833 (rack->r_ctl.crte != NULL)) { 14834 uint64_t high_rate; 14835 14836 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 14837 if (fill_bw > high_rate) { 14838 /* We are capping bw at the highest rate table entry */ 14839 if (*rate_wanted > high_rate) { 14840 /* The original rate was also capped */ 14841 rack->r_via_fill_cw = 0; 14842 } 14843 rack_log_hdwr_pacing(rack, 14844 fill_bw, high_rate, __LINE__, 14845 0, 3); 14846 fill_bw = high_rate; 14847 if (capped) 14848 *capped = 1; 14849 } 14850 } else if ((rack->r_ctl.crte == NULL) && 14851 (rack->rack_hdrw_pacing == 0) && 14852 (rack->rack_hdw_pace_ena) && 14853 rack->r_rack_hw_rate_caps && 14854 (rack->rack_attempt_hdwr_pace == 0) && 14855 (rack->rc_inp->inp_route.ro_nh != NULL) && 14856 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 14857 /* 14858 * Ok we may have a first attempt that is greater than our top rate 14859 * lets check. 14860 */ 14861 uint64_t high_rate; 14862 14863 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 14864 if (high_rate) { 14865 if (fill_bw > high_rate) { 14866 fill_bw = high_rate; 14867 if (capped) 14868 *capped = 1; 14869 } 14870 } 14871 } 14872 /* 14873 * Ok fill_bw holds our mythical b/w to fill the cwnd 14874 * in a rtt, what does that time wise equate too? 14875 */ 14876 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; 14877 lentim /= fill_bw; 14878 *rate_wanted = fill_bw; 14879 if (non_paced || (lentim < slot)) { 14880 rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 14881 0, lentim, 12, __LINE__, NULL, 0); 14882 return ((int32_t)lentim); 14883 } else 14884 return (slot); 14885 } 14886 14887 static int32_t 14888 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) 14889 { 14890 uint64_t srtt; 14891 int32_t slot = 0; 14892 int can_start_hw_pacing = 1; 14893 int err; 14894 14895 if (rack->rc_always_pace == 0) { 14896 /* 14897 * We use the most optimistic possible cwnd/srtt for 14898 * sending calculations. This will make our 14899 * calculation anticipate getting more through 14900 * quicker then possible. But thats ok we don't want 14901 * the peer to have a gap in data sending. 14902 */ 14903 uint64_t cwnd, tr_perms = 0; 14904 int32_t reduce = 0; 14905 14906 old_method: 14907 /* 14908 * We keep no precise pacing with the old method 14909 * instead we use the pacer to mitigate bursts. 14910 */ 14911 if (rack->r_ctl.rc_rack_min_rtt) 14912 srtt = rack->r_ctl.rc_rack_min_rtt; 14913 else 14914 srtt = max(tp->t_srtt, 1); 14915 if (rack->r_ctl.rc_rack_largest_cwnd) 14916 cwnd = rack->r_ctl.rc_rack_largest_cwnd; 14917 else 14918 cwnd = rack->r_ctl.cwnd_to_use; 14919 /* Inflate cwnd by 1000 so srtt of usecs is in ms */ 14920 tr_perms = (cwnd * 1000) / srtt; 14921 if (tr_perms == 0) { 14922 tr_perms = ctf_fixed_maxseg(tp); 14923 } 14924 /* 14925 * Calculate how long this will take to drain, if 14926 * the calculation comes out to zero, thats ok we 14927 * will use send_a_lot to possibly spin around for 14928 * more increasing tot_len_this_send to the point 14929 * that its going to require a pace, or we hit the 14930 * cwnd. Which in that case we are just waiting for 14931 * a ACK. 14932 */ 14933 slot = len / tr_perms; 14934 /* Now do we reduce the time so we don't run dry? */ 14935 if (slot && rack_slot_reduction) { 14936 reduce = (slot / rack_slot_reduction); 14937 if (reduce < slot) { 14938 slot -= reduce; 14939 } else 14940 slot = 0; 14941 } 14942 slot *= HPTS_USEC_IN_MSEC; 14943 if (rack->rc_pace_to_cwnd) { 14944 uint64_t rate_wanted = 0; 14945 14946 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1); 14947 rack->rc_ack_can_sendout_data = 1; 14948 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0); 14949 } else 14950 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0); 14951 } else { 14952 uint64_t bw_est, res, lentim, rate_wanted; 14953 uint32_t orig_val, segs, oh; 14954 int capped = 0; 14955 int prev_fill; 14956 14957 if ((rack->r_rr_config == 1) && rsm) { 14958 return (rack->r_ctl.rc_min_to); 14959 } 14960 if (rack->use_fixed_rate) { 14961 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); 14962 } else if ((rack->r_ctl.init_rate == 0) && 14963 #ifdef NETFLIX_PEAKRATE 14964 (rack->rc_tp->t_maxpeakrate == 0) && 14965 #endif 14966 (rack->r_ctl.gp_bw == 0)) { 14967 /* no way to yet do an estimate */ 14968 bw_est = rate_wanted = 0; 14969 } else { 14970 bw_est = rack_get_bw(rack); 14971 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped); 14972 } 14973 if ((bw_est == 0) || (rate_wanted == 0) || 14974 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) { 14975 /* 14976 * No way yet to make a b/w estimate or 14977 * our raise is set incorrectly. 14978 */ 14979 goto old_method; 14980 } 14981 /* We need to account for all the overheads */ 14982 segs = (len + segsiz - 1) / segsiz; 14983 /* 14984 * We need the diff between 1514 bytes (e-mtu with e-hdr) 14985 * and how much data we put in each packet. Yes this 14986 * means we may be off if we are larger than 1500 bytes 14987 * or smaller. But this just makes us more conservative. 14988 */ 14989 if (rack_hw_rate_min && 14990 (bw_est < rack_hw_rate_min)) 14991 can_start_hw_pacing = 0; 14992 if (ETHERNET_SEGMENT_SIZE > segsiz) 14993 oh = ETHERNET_SEGMENT_SIZE - segsiz; 14994 else 14995 oh = 0; 14996 segs *= oh; 14997 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; 14998 res = lentim / rate_wanted; 14999 slot = (uint32_t)res; 15000 orig_val = rack->r_ctl.rc_pace_max_segs; 15001 if (rack->r_ctl.crte == NULL) { 15002 /* 15003 * Only do this if we are not hardware pacing 15004 * since if we are doing hw-pacing below we will 15005 * set make a call after setting up or changing 15006 * the rate. 15007 */ 15008 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 15009 } else if (rack->rc_inp->inp_snd_tag == NULL) { 15010 /* 15011 * We lost our rate somehow, this can happen 15012 * if the interface changed underneath us. 15013 */ 15014 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15015 rack->r_ctl.crte = NULL; 15016 /* Lets re-allow attempting to setup pacing */ 15017 rack->rack_hdrw_pacing = 0; 15018 rack->rack_attempt_hdwr_pace = 0; 15019 rack_log_hdwr_pacing(rack, 15020 rate_wanted, bw_est, __LINE__, 15021 0, 6); 15022 } 15023 /* Did we change the TSO size, if so log it */ 15024 if (rack->r_ctl.rc_pace_max_segs != orig_val) 15025 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0); 15026 prev_fill = rack->r_via_fill_cw; 15027 if ((rack->rc_pace_to_cwnd) && 15028 (capped == 0) && 15029 (rack->use_fixed_rate == 0) && 15030 (rack->in_probe_rtt == 0) && 15031 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) { 15032 /* 15033 * We want to pace at our rate *or* faster to 15034 * fill the cwnd to the max if its not full. 15035 */ 15036 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0); 15037 } 15038 if ((rack->rc_inp->inp_route.ro_nh != NULL) && 15039 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 15040 if ((rack->rack_hdw_pace_ena) && 15041 (can_start_hw_pacing > 0) && 15042 (rack->rack_hdrw_pacing == 0) && 15043 (rack->rack_attempt_hdwr_pace == 0)) { 15044 /* 15045 * Lets attempt to turn on hardware pacing 15046 * if we can. 15047 */ 15048 rack->rack_attempt_hdwr_pace = 1; 15049 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, 15050 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15051 rate_wanted, 15052 RS_PACING_GEQ, 15053 &err, &rack->r_ctl.crte_prev_rate); 15054 if (rack->r_ctl.crte) { 15055 rack->rack_hdrw_pacing = 1; 15056 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz, 15057 0, rack->r_ctl.crte, 15058 NULL); 15059 rack_log_hdwr_pacing(rack, 15060 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15061 err, 0); 15062 rack->r_ctl.last_hw_bw_req = rate_wanted; 15063 } else { 15064 counter_u64_add(rack_hw_pace_init_fail, 1); 15065 } 15066 } else if (rack->rack_hdrw_pacing && 15067 (rack->r_ctl.last_hw_bw_req != rate_wanted)) { 15068 /* Do we need to adjust our rate? */ 15069 const struct tcp_hwrate_limit_table *nrte; 15070 15071 if (rack->r_up_only && 15072 (rate_wanted < rack->r_ctl.crte->rate)) { 15073 /** 15074 * We have four possible states here 15075 * having to do with the previous time 15076 * and this time. 15077 * previous | this-time 15078 * A) 0 | 0 -- fill_cw not in the picture 15079 * B) 1 | 0 -- we were doing a fill-cw but now are not 15080 * C) 1 | 1 -- all rates from fill_cw 15081 * D) 0 | 1 -- we were doing non-fill and now we are filling 15082 * 15083 * For case A, C and D we don't allow a drop. But for 15084 * case B where we now our on our steady rate we do 15085 * allow a drop. 15086 * 15087 */ 15088 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0))) 15089 goto done_w_hdwr; 15090 } 15091 if ((rate_wanted > rack->r_ctl.crte->rate) || 15092 (rate_wanted <= rack->r_ctl.crte_prev_rate)) { 15093 if (rack_hw_rate_to_low && 15094 (bw_est < rack_hw_rate_to_low)) { 15095 /* 15096 * The pacing rate is too low for hardware, but 15097 * do allow hardware pacing to be restarted. 15098 */ 15099 rack_log_hdwr_pacing(rack, 15100 bw_est, rack->r_ctl.crte->rate, __LINE__, 15101 0, 5); 15102 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15103 rack->r_ctl.crte = NULL; 15104 rack->rack_attempt_hdwr_pace = 0; 15105 rack->rack_hdrw_pacing = 0; 15106 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15107 goto done_w_hdwr; 15108 } 15109 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, 15110 rack->rc_tp, 15111 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15112 rate_wanted, 15113 RS_PACING_GEQ, 15114 &err, &rack->r_ctl.crte_prev_rate); 15115 if (nrte == NULL) { 15116 /* Lost the rate */ 15117 rack->rack_hdrw_pacing = 0; 15118 rack->r_ctl.crte = NULL; 15119 rack_log_hdwr_pacing(rack, 15120 rate_wanted, 0, __LINE__, 15121 err, 1); 15122 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15123 counter_u64_add(rack_hw_pace_lost, 1); 15124 } else if (nrte != rack->r_ctl.crte) { 15125 rack->r_ctl.crte = nrte; 15126 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, 15127 segsiz, 0, 15128 rack->r_ctl.crte, 15129 NULL); 15130 rack_log_hdwr_pacing(rack, 15131 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15132 err, 2); 15133 rack->r_ctl.last_hw_bw_req = rate_wanted; 15134 } 15135 } else { 15136 /* We just need to adjust the segment size */ 15137 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15138 rack_log_hdwr_pacing(rack, 15139 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15140 0, 4); 15141 rack->r_ctl.last_hw_bw_req = rate_wanted; 15142 } 15143 } 15144 } 15145 if ((rack->r_ctl.crte != NULL) && 15146 (rack->r_ctl.crte->rate == rate_wanted)) { 15147 /* 15148 * We need to add a extra if the rates 15149 * are exactly matched. The idea is 15150 * we want the software to make sure the 15151 * queue is empty before adding more, this 15152 * gives us N MSS extra pace times where 15153 * N is our sysctl 15154 */ 15155 slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots); 15156 } 15157 done_w_hdwr: 15158 if (rack_limit_time_with_srtt && 15159 (rack->use_fixed_rate == 0) && 15160 #ifdef NETFLIX_PEAKRATE 15161 (rack->rc_tp->t_maxpeakrate == 0) && 15162 #endif 15163 (rack->rack_hdrw_pacing == 0)) { 15164 /* 15165 * Sanity check, we do not allow the pacing delay 15166 * to be longer than the SRTT of the path. If it is 15167 * a slow path, then adding a packet should increase 15168 * the RTT and compensate for this i.e. the srtt will 15169 * be greater so the allowed pacing time will be greater. 15170 * 15171 * Note this restriction is not for where a peak rate 15172 * is set, we are doing fixed pacing or hardware pacing. 15173 */ 15174 if (rack->rc_tp->t_srtt) 15175 srtt = rack->rc_tp->t_srtt; 15176 else 15177 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ 15178 if (srtt < (uint64_t)slot) { 15179 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0); 15180 slot = srtt; 15181 } 15182 } 15183 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0); 15184 } 15185 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) { 15186 /* 15187 * If this rate is seeing enobufs when it 15188 * goes to send then either the nic is out 15189 * of gas or we are mis-estimating the time 15190 * somehow and not letting the queue empty 15191 * completely. Lets add to the pacing time. 15192 */ 15193 int hw_boost_delay; 15194 15195 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult; 15196 if (hw_boost_delay > rack_enobuf_hw_max) 15197 hw_boost_delay = rack_enobuf_hw_max; 15198 else if (hw_boost_delay < rack_enobuf_hw_min) 15199 hw_boost_delay = rack_enobuf_hw_min; 15200 slot += hw_boost_delay; 15201 } 15202 return (slot); 15203 } 15204 15205 static void 15206 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, 15207 tcp_seq startseq, uint32_t sb_offset) 15208 { 15209 struct rack_sendmap *my_rsm = NULL; 15210 struct rack_sendmap fe; 15211 15212 if (tp->t_state < TCPS_ESTABLISHED) { 15213 /* 15214 * We don't start any measurements if we are 15215 * not at least established. 15216 */ 15217 return; 15218 } 15219 if (tp->t_state >= TCPS_FIN_WAIT_1) { 15220 /* 15221 * We will get no more data into the SB 15222 * this means we need to have the data available 15223 * before we start a measurement. 15224 */ 15225 15226 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < 15227 max(rc_init_window(rack), 15228 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) { 15229 /* Nope not enough data */ 15230 return; 15231 } 15232 } 15233 tp->t_flags |= TF_GPUTINPROG; 15234 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 15235 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 15236 tp->gput_seq = startseq; 15237 rack->app_limited_needs_set = 0; 15238 if (rack->in_probe_rtt) 15239 rack->measure_saw_probe_rtt = 1; 15240 else if ((rack->measure_saw_probe_rtt) && 15241 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 15242 rack->measure_saw_probe_rtt = 0; 15243 if (rack->rc_gp_filled) 15244 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 15245 else { 15246 /* Special case initial measurement */ 15247 struct timeval tv; 15248 15249 tp->gput_ts = tcp_get_usecs(&tv); 15250 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15251 } 15252 /* 15253 * We take a guess out into the future, 15254 * if we have no measurement and no 15255 * initial rate, we measure the first 15256 * initial-windows worth of data to 15257 * speed up getting some GP measurement and 15258 * thus start pacing. 15259 */ 15260 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { 15261 rack->app_limited_needs_set = 1; 15262 tp->gput_ack = startseq + max(rc_init_window(rack), 15263 (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 15264 rack_log_pacing_delay_calc(rack, 15265 tp->gput_seq, 15266 tp->gput_ack, 15267 0, 15268 tp->gput_ts, 15269 rack->r_ctl.rc_app_limited_cnt, 15270 9, 15271 __LINE__, NULL, 0); 15272 return; 15273 } 15274 if (sb_offset) { 15275 /* 15276 * We are out somewhere in the sb 15277 * can we use the already outstanding data? 15278 */ 15279 if (rack->r_ctl.rc_app_limited_cnt == 0) { 15280 /* 15281 * Yes first one is good and in this case 15282 * the tp->gput_ts is correctly set based on 15283 * the last ack that arrived (no need to 15284 * set things up when an ack comes in). 15285 */ 15286 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 15287 if ((my_rsm == NULL) || 15288 (my_rsm->r_rtr_cnt != 1)) { 15289 /* retransmission? */ 15290 goto use_latest; 15291 } 15292 } else { 15293 if (rack->r_ctl.rc_first_appl == NULL) { 15294 /* 15295 * If rc_first_appl is NULL 15296 * then the cnt should be 0. 15297 * This is probably an error, maybe 15298 * a KASSERT would be approprate. 15299 */ 15300 goto use_latest; 15301 } 15302 /* 15303 * If we have a marker pointer to the last one that is 15304 * app limited we can use that, but we need to set 15305 * things up so that when it gets ack'ed we record 15306 * the ack time (if its not already acked). 15307 */ 15308 rack->app_limited_needs_set = 1; 15309 /* 15310 * We want to get to the rsm that is either 15311 * next with space i.e. over 1 MSS or the one 15312 * after that (after the app-limited). 15313 */ 15314 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15315 rack->r_ctl.rc_first_appl); 15316 if (my_rsm) { 15317 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) 15318 /* Have to use the next one */ 15319 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15320 my_rsm); 15321 else { 15322 /* Use after the first MSS of it is acked */ 15323 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); 15324 goto start_set; 15325 } 15326 } 15327 if ((my_rsm == NULL) || 15328 (my_rsm->r_rtr_cnt != 1)) { 15329 /* 15330 * Either its a retransmit or 15331 * the last is the app-limited one. 15332 */ 15333 goto use_latest; 15334 } 15335 } 15336 tp->gput_seq = my_rsm->r_start; 15337 start_set: 15338 if (my_rsm->r_flags & RACK_ACKED) { 15339 /* 15340 * This one has been acked use the arrival ack time 15341 */ 15342 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15343 rack->app_limited_needs_set = 0; 15344 } 15345 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15346 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 15347 rack_log_pacing_delay_calc(rack, 15348 tp->gput_seq, 15349 tp->gput_ack, 15350 (uint64_t)my_rsm, 15351 tp->gput_ts, 15352 rack->r_ctl.rc_app_limited_cnt, 15353 9, 15354 __LINE__, NULL, 0); 15355 return; 15356 } 15357 15358 use_latest: 15359 /* 15360 * We don't know how long we may have been 15361 * idle or if this is the first-send. Lets 15362 * setup the flag so we will trim off 15363 * the first ack'd data so we get a true 15364 * measurement. 15365 */ 15366 rack->app_limited_needs_set = 1; 15367 tp->gput_ack = startseq + rack_get_measure_window(tp, rack); 15368 /* Find this guy so we can pull the send time */ 15369 fe.r_start = startseq; 15370 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 15371 if (my_rsm) { 15372 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15373 if (my_rsm->r_flags & RACK_ACKED) { 15374 /* 15375 * Unlikely since its probably what was 15376 * just transmitted (but I am paranoid). 15377 */ 15378 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15379 rack->app_limited_needs_set = 0; 15380 } 15381 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { 15382 /* This also is unlikely */ 15383 tp->gput_seq = my_rsm->r_start; 15384 } 15385 } else { 15386 /* 15387 * TSNH unless we have some send-map limit, 15388 * and even at that it should not be hitting 15389 * that limit (we should have stopped sending). 15390 */ 15391 struct timeval tv; 15392 15393 microuptime(&tv); 15394 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15395 } 15396 rack_log_pacing_delay_calc(rack, 15397 tp->gput_seq, 15398 tp->gput_ack, 15399 (uint64_t)my_rsm, 15400 tp->gput_ts, 15401 rack->r_ctl.rc_app_limited_cnt, 15402 9, __LINE__, NULL, 0); 15403 } 15404 15405 static inline uint32_t 15406 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, 15407 uint32_t avail, int32_t sb_offset) 15408 { 15409 uint32_t len; 15410 uint32_t sendwin; 15411 15412 if (tp->snd_wnd > cwnd_to_use) 15413 sendwin = cwnd_to_use; 15414 else 15415 sendwin = tp->snd_wnd; 15416 if (ctf_outstanding(tp) >= tp->snd_wnd) { 15417 /* We never want to go over our peers rcv-window */ 15418 len = 0; 15419 } else { 15420 uint32_t flight; 15421 15422 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 15423 if (flight >= sendwin) { 15424 /* 15425 * We have in flight what we are allowed by cwnd (if 15426 * it was rwnd blocking it would have hit above out 15427 * >= tp->snd_wnd). 15428 */ 15429 return (0); 15430 } 15431 len = sendwin - flight; 15432 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { 15433 /* We would send too much (beyond the rwnd) */ 15434 len = tp->snd_wnd - ctf_outstanding(tp); 15435 } 15436 if ((len + sb_offset) > avail) { 15437 /* 15438 * We don't have that much in the SB, how much is 15439 * there? 15440 */ 15441 len = avail - sb_offset; 15442 } 15443 } 15444 return (len); 15445 } 15446 15447 static void 15448 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, 15449 unsigned ipoptlen, int32_t orig_len, int32_t len, int error, 15450 int rsm_is_null, int optlen, int line, uint16_t mode) 15451 { 15452 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15453 union tcp_log_stackspecific log; 15454 struct timeval tv; 15455 15456 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15457 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 15458 log.u_bbr.flex1 = error; 15459 log.u_bbr.flex2 = flags; 15460 log.u_bbr.flex3 = rsm_is_null; 15461 log.u_bbr.flex4 = ipoptlen; 15462 log.u_bbr.flex5 = tp->rcv_numsacks; 15463 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 15464 log.u_bbr.flex7 = optlen; 15465 log.u_bbr.flex8 = rack->r_fsb_inited; 15466 log.u_bbr.applimited = rack->r_fast_output; 15467 log.u_bbr.bw_inuse = rack_get_bw(rack); 15468 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 15469 log.u_bbr.cwnd_gain = mode; 15470 log.u_bbr.pkts_out = orig_len; 15471 log.u_bbr.lt_epoch = len; 15472 log.u_bbr.delivered = line; 15473 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 15474 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15475 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0, 15476 len, &log, false, NULL, NULL, 0, &tv); 15477 } 15478 } 15479 15480 15481 static struct mbuf * 15482 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, 15483 struct rack_fast_send_blk *fsb, 15484 int32_t seglimit, int32_t segsize, int hw_tls) 15485 { 15486 #ifdef KERN_TLS 15487 struct ktls_session *tls, *ntls; 15488 #ifdef INVARIANTS 15489 struct mbuf *start; 15490 #endif 15491 #endif 15492 struct mbuf *m, *n, **np, *smb; 15493 struct mbuf *top; 15494 int32_t off, soff; 15495 int32_t len = *plen; 15496 int32_t fragsize; 15497 int32_t len_cp = 0; 15498 uint32_t mlen, frags; 15499 15500 soff = off = the_off; 15501 smb = m = the_m; 15502 np = ⊤ 15503 top = NULL; 15504 #ifdef KERN_TLS 15505 if (hw_tls && (m->m_flags & M_EXTPG)) 15506 tls = m->m_epg_tls; 15507 else 15508 tls = NULL; 15509 #ifdef INVARIANTS 15510 start = m; 15511 #endif 15512 #endif 15513 while (len > 0) { 15514 if (m == NULL) { 15515 *plen = len_cp; 15516 break; 15517 } 15518 #ifdef KERN_TLS 15519 if (hw_tls) { 15520 if (m->m_flags & M_EXTPG) 15521 ntls = m->m_epg_tls; 15522 else 15523 ntls = NULL; 15524 15525 /* 15526 * Avoid mixing TLS records with handshake 15527 * data or TLS records from different 15528 * sessions. 15529 */ 15530 if (tls != ntls) { 15531 MPASS(m != start); 15532 *plen = len_cp; 15533 break; 15534 } 15535 } 15536 #endif 15537 mlen = min(len, m->m_len - off); 15538 if (seglimit) { 15539 /* 15540 * For M_EXTPG mbufs, add 3 segments 15541 * + 1 in case we are crossing page boundaries 15542 * + 2 in case the TLS hdr/trailer are used 15543 * It is cheaper to just add the segments 15544 * than it is to take the cache miss to look 15545 * at the mbuf ext_pgs state in detail. 15546 */ 15547 if (m->m_flags & M_EXTPG) { 15548 fragsize = min(segsize, PAGE_SIZE); 15549 frags = 3; 15550 } else { 15551 fragsize = segsize; 15552 frags = 0; 15553 } 15554 15555 /* Break if we really can't fit anymore. */ 15556 if ((frags + 1) >= seglimit) { 15557 *plen = len_cp; 15558 break; 15559 } 15560 15561 /* 15562 * Reduce size if you can't copy the whole 15563 * mbuf. If we can't copy the whole mbuf, also 15564 * adjust len so the loop will end after this 15565 * mbuf. 15566 */ 15567 if ((frags + howmany(mlen, fragsize)) >= seglimit) { 15568 mlen = (seglimit - frags - 1) * fragsize; 15569 len = mlen; 15570 *plen = len_cp + len; 15571 } 15572 frags += howmany(mlen, fragsize); 15573 if (frags == 0) 15574 frags++; 15575 seglimit -= frags; 15576 KASSERT(seglimit > 0, 15577 ("%s: seglimit went too low", __func__)); 15578 } 15579 n = m_get(M_NOWAIT, m->m_type); 15580 *np = n; 15581 if (n == NULL) 15582 goto nospace; 15583 n->m_len = mlen; 15584 soff += mlen; 15585 len_cp += n->m_len; 15586 if (m->m_flags & (M_EXT|M_EXTPG)) { 15587 n->m_data = m->m_data + off; 15588 mb_dupcl(n, m); 15589 } else { 15590 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 15591 (u_int)n->m_len); 15592 } 15593 len -= n->m_len; 15594 off = 0; 15595 m = m->m_next; 15596 np = &n->m_next; 15597 if (len || (soff == smb->m_len)) { 15598 /* 15599 * We have more so we move forward or 15600 * we have consumed the entire mbuf and 15601 * len has fell to 0. 15602 */ 15603 soff = 0; 15604 smb = m; 15605 } 15606 15607 } 15608 if (fsb != NULL) { 15609 fsb->m = smb; 15610 fsb->off = soff; 15611 if (smb) { 15612 /* 15613 * Save off the size of the mbuf. We do 15614 * this so that we can recognize when it 15615 * has been trimmed by sbcut() as acks 15616 * come in. 15617 */ 15618 fsb->o_m_len = smb->m_len; 15619 } else { 15620 /* 15621 * This is the case where the next mbuf went to NULL. This 15622 * means with this copy we have sent everything in the sb. 15623 * In theory we could clear the fast_output flag, but lets 15624 * not since its possible that we could get more added 15625 * and acks that call the extend function which would let 15626 * us send more. 15627 */ 15628 fsb->o_m_len = 0; 15629 } 15630 } 15631 return (top); 15632 nospace: 15633 if (top) 15634 m_freem(top); 15635 return (NULL); 15636 15637 } 15638 15639 /* 15640 * This is a copy of m_copym(), taking the TSO segment size/limit 15641 * constraints into account, and advancing the sndptr as it goes. 15642 */ 15643 static struct mbuf * 15644 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, 15645 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff) 15646 { 15647 struct mbuf *m, *n; 15648 int32_t soff; 15649 15650 soff = rack->r_ctl.fsb.off; 15651 m = rack->r_ctl.fsb.m; 15652 if (rack->r_ctl.fsb.o_m_len > m->m_len) { 15653 /* 15654 * The mbuf had the front of it chopped off by an ack 15655 * we need to adjust the soff/off by that difference. 15656 */ 15657 uint32_t delta; 15658 15659 delta = rack->r_ctl.fsb.o_m_len - m->m_len; 15660 soff -= delta; 15661 } else if (rack->r_ctl.fsb.o_m_len < m->m_len) { 15662 /* 15663 * The mbuf was expanded probably by 15664 * a m_compress. Just update o_m_len. 15665 */ 15666 rack->r_ctl.fsb.o_m_len = m->m_len; 15667 } 15668 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff)); 15669 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen)); 15670 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?", 15671 __FUNCTION__, 15672 rack, *plen, m, m->m_len)); 15673 /* Save off the right location before we copy and advance */ 15674 *s_soff = soff; 15675 *s_mb = rack->r_ctl.fsb.m; 15676 n = rack_fo_base_copym(m, soff, plen, 15677 &rack->r_ctl.fsb, 15678 seglimit, segsize, rack->r_ctl.fsb.hw_tls); 15679 return (n); 15680 } 15681 15682 static int 15683 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, 15684 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp) 15685 { 15686 /* 15687 * Enter the fast retransmit path. We are given that a sched_pin is 15688 * in place (if accounting is compliled in) and the cycle count taken 15689 * at the entry is in the ts_val. The concept her is that the rsm 15690 * now holds the mbuf offsets and such so we can directly transmit 15691 * without a lot of overhead, the len field is already set for 15692 * us to prohibit us from sending too much (usually its 1MSS). 15693 */ 15694 struct ip *ip = NULL; 15695 struct udphdr *udp = NULL; 15696 struct tcphdr *th = NULL; 15697 struct mbuf *m = NULL; 15698 struct inpcb *inp; 15699 uint8_t *cpto; 15700 struct tcp_log_buffer *lgb; 15701 #ifdef TCP_ACCOUNTING 15702 uint64_t crtsc; 15703 int cnt_thru = 1; 15704 #endif 15705 struct tcpopt to; 15706 u_char opt[TCP_MAXOLEN]; 15707 uint32_t hdrlen, optlen; 15708 int32_t slot, segsiz, max_val, tso = 0, error, ulen = 0; 15709 uint16_t flags; 15710 uint32_t if_hw_tsomaxsegcount = 0, startseq; 15711 uint32_t if_hw_tsomaxsegsize; 15712 15713 #ifdef INET6 15714 struct ip6_hdr *ip6 = NULL; 15715 15716 if (rack->r_is_v6) { 15717 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 15718 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 15719 } else 15720 #endif /* INET6 */ 15721 { 15722 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 15723 hdrlen = sizeof(struct tcpiphdr); 15724 } 15725 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 15726 goto failed; 15727 } 15728 if (doing_tlp) { 15729 /* Its a TLP add the flag, it may already be there but be sure */ 15730 rsm->r_flags |= RACK_TLP; 15731 } else { 15732 /* If it was a TLP it is not not on this retransmit */ 15733 rsm->r_flags &= ~RACK_TLP; 15734 } 15735 startseq = rsm->r_start; 15736 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 15737 inp = rack->rc_inp; 15738 to.to_flags = 0; 15739 flags = tcp_outflags[tp->t_state]; 15740 if (flags & (TH_SYN|TH_RST)) { 15741 goto failed; 15742 } 15743 if (rsm->r_flags & RACK_HAS_FIN) { 15744 /* We can't send a FIN here */ 15745 goto failed; 15746 } 15747 if (flags & TH_FIN) { 15748 /* We never send a FIN */ 15749 flags &= ~TH_FIN; 15750 } 15751 if (tp->t_flags & TF_RCVD_TSTMP) { 15752 to.to_tsval = ms_cts + tp->ts_offset; 15753 to.to_tsecr = tp->ts_recent; 15754 to.to_flags = TOF_TS; 15755 } 15756 optlen = tcp_addoptions(&to, opt); 15757 hdrlen += optlen; 15758 udp = rack->r_ctl.fsb.udp; 15759 if (udp) 15760 hdrlen += sizeof(struct udphdr); 15761 if (rack->r_ctl.rc_pace_max_segs) 15762 max_val = rack->r_ctl.rc_pace_max_segs; 15763 else if (rack->rc_user_set_max_segs) 15764 max_val = rack->rc_user_set_max_segs * segsiz; 15765 else 15766 max_val = len; 15767 if ((tp->t_flags & TF_TSO) && 15768 V_tcp_do_tso && 15769 (len > segsiz) && 15770 (tp->t_port == 0)) 15771 tso = 1; 15772 #ifdef INET6 15773 if (MHLEN < hdrlen + max_linkhdr) 15774 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 15775 else 15776 #endif 15777 m = m_gethdr(M_NOWAIT, MT_DATA); 15778 if (m == NULL) 15779 goto failed; 15780 m->m_data += max_linkhdr; 15781 m->m_len = hdrlen; 15782 th = rack->r_ctl.fsb.th; 15783 /* Establish the len to send */ 15784 if (len > max_val) 15785 len = max_val; 15786 if ((tso) && (len + optlen > tp->t_maxseg)) { 15787 uint32_t if_hw_tsomax; 15788 int32_t max_len; 15789 15790 /* extract TSO information */ 15791 if_hw_tsomax = tp->t_tsomax; 15792 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 15793 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 15794 /* 15795 * Check if we should limit by maximum payload 15796 * length: 15797 */ 15798 if (if_hw_tsomax != 0) { 15799 /* compute maximum TSO length */ 15800 max_len = (if_hw_tsomax - hdrlen - 15801 max_linkhdr); 15802 if (max_len <= 0) { 15803 goto failed; 15804 } else if (len > max_len) { 15805 len = max_len; 15806 } 15807 } 15808 if (len <= segsiz) { 15809 /* 15810 * In case there are too many small fragments don't 15811 * use TSO: 15812 */ 15813 tso = 0; 15814 } 15815 } else { 15816 tso = 0; 15817 } 15818 if ((tso == 0) && (len > segsiz)) 15819 len = segsiz; 15820 if ((len == 0) || 15821 (len <= MHLEN - hdrlen - max_linkhdr)) { 15822 goto failed; 15823 } 15824 th->th_seq = htonl(rsm->r_start); 15825 th->th_ack = htonl(tp->rcv_nxt); 15826 /* 15827 * The PUSH bit should only be applied 15828 * if the full retransmission is made. If 15829 * we are sending less than this is the 15830 * left hand edge and should not have 15831 * the PUSH bit. 15832 */ 15833 if ((rsm->r_flags & RACK_HAD_PUSH) && 15834 (len == (rsm->r_end - rsm->r_start))) 15835 flags |= TH_PUSH; 15836 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 15837 if (th->th_win == 0) { 15838 tp->t_sndzerowin++; 15839 tp->t_flags |= TF_RXWIN0SENT; 15840 } else 15841 tp->t_flags &= ~TF_RXWIN0SENT; 15842 if (rsm->r_flags & RACK_TLP) { 15843 /* 15844 * TLP should not count in retran count, but 15845 * in its own bin 15846 */ 15847 counter_u64_add(rack_tlp_retran, 1); 15848 counter_u64_add(rack_tlp_retran_bytes, len); 15849 } else { 15850 tp->t_sndrexmitpack++; 15851 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 15852 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 15853 } 15854 #ifdef STATS 15855 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 15856 len); 15857 #endif 15858 if (rsm->m == NULL) 15859 goto failed; 15860 if (rsm->orig_m_len != rsm->m->m_len) { 15861 /* Fix up the orig_m_len and possibly the mbuf offset */ 15862 rack_adjust_orig_mlen(rsm); 15863 } 15864 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls); 15865 if (len <= segsiz) { 15866 /* 15867 * Must have ran out of mbufs for the copy 15868 * shorten it to no longer need tso. Lets 15869 * not put on sendalot since we are low on 15870 * mbufs. 15871 */ 15872 tso = 0; 15873 } 15874 if ((m->m_next == NULL) || (len <= 0)){ 15875 goto failed; 15876 } 15877 if (udp) { 15878 if (rack->r_is_v6) 15879 ulen = hdrlen + len - sizeof(struct ip6_hdr); 15880 else 15881 ulen = hdrlen + len - sizeof(struct ip); 15882 udp->uh_ulen = htons(ulen); 15883 } 15884 m->m_pkthdr.rcvif = (struct ifnet *)0; 15885 if (TCPS_HAVERCVDSYN(tp->t_state) && 15886 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 15887 int ect = tcp_ecn_output_established(tp, &flags, len, true); 15888 if ((tp->t_state == TCPS_SYN_RECEIVED) && 15889 (tp->t_flags2 & TF2_ECN_SND_ECE)) 15890 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 15891 #ifdef INET6 15892 if (rack->r_is_v6) { 15893 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 15894 ip6->ip6_flow |= htonl(ect << 20); 15895 } 15896 else 15897 #endif 15898 { 15899 ip->ip_tos &= ~IPTOS_ECN_MASK; 15900 ip->ip_tos |= ect; 15901 } 15902 } 15903 tcp_set_flags(th, flags); 15904 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 15905 #ifdef INET6 15906 if (rack->r_is_v6) { 15907 if (tp->t_port) { 15908 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 15909 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15910 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 15911 th->th_sum = htons(0); 15912 UDPSTAT_INC(udps_opackets); 15913 } else { 15914 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 15915 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15916 th->th_sum = in6_cksum_pseudo(ip6, 15917 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 15918 0); 15919 } 15920 } 15921 #endif 15922 #if defined(INET6) && defined(INET) 15923 else 15924 #endif 15925 #ifdef INET 15926 { 15927 if (tp->t_port) { 15928 m->m_pkthdr.csum_flags = CSUM_UDP; 15929 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15930 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 15931 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 15932 th->th_sum = htons(0); 15933 UDPSTAT_INC(udps_opackets); 15934 } else { 15935 m->m_pkthdr.csum_flags = CSUM_TCP; 15936 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15937 th->th_sum = in_pseudo(ip->ip_src.s_addr, 15938 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 15939 IPPROTO_TCP + len + optlen)); 15940 } 15941 /* IP version must be set here for ipv4/ipv6 checking later */ 15942 KASSERT(ip->ip_v == IPVERSION, 15943 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 15944 } 15945 #endif 15946 if (tso) { 15947 KASSERT(len > tp->t_maxseg - optlen, 15948 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 15949 m->m_pkthdr.csum_flags |= CSUM_TSO; 15950 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 15951 } 15952 #ifdef INET6 15953 if (rack->r_is_v6) { 15954 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 15955 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 15956 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 15957 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15958 else 15959 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15960 } 15961 #endif 15962 #if defined(INET) && defined(INET6) 15963 else 15964 #endif 15965 #ifdef INET 15966 { 15967 ip->ip_len = htons(m->m_pkthdr.len); 15968 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 15969 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 15970 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15971 if (tp->t_port == 0 || len < V_tcp_minmss) { 15972 ip->ip_off |= htons(IP_DF); 15973 } 15974 } else { 15975 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15976 } 15977 } 15978 #endif 15979 /* Time to copy in our header */ 15980 cpto = mtod(m, uint8_t *); 15981 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 15982 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 15983 if (optlen) { 15984 bcopy(opt, th + 1, optlen); 15985 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 15986 } else { 15987 th->th_off = sizeof(struct tcphdr) >> 2; 15988 } 15989 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15990 union tcp_log_stackspecific log; 15991 15992 if (rsm->r_flags & RACK_RWND_COLLAPSED) { 15993 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm); 15994 counter_u64_add(rack_collapsed_win_rxt, 1); 15995 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start)); 15996 } 15997 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15998 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 15999 if (rack->rack_no_prr) 16000 log.u_bbr.flex1 = 0; 16001 else 16002 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16003 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16004 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16005 log.u_bbr.flex4 = max_val; 16006 log.u_bbr.flex5 = 0; 16007 /* Save off the early/late values */ 16008 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16009 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16010 log.u_bbr.bw_inuse = rack_get_bw(rack); 16011 if (doing_tlp == 0) 16012 log.u_bbr.flex8 = 1; 16013 else 16014 log.u_bbr.flex8 = 2; 16015 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16016 log.u_bbr.flex7 = 55; 16017 log.u_bbr.pkts_out = tp->t_maxseg; 16018 log.u_bbr.timeStamp = cts; 16019 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16020 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16021 log.u_bbr.delivered = 0; 16022 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16023 len, &log, false, NULL, NULL, 0, tv); 16024 } else 16025 lgb = NULL; 16026 #ifdef INET6 16027 if (rack->r_is_v6) { 16028 error = ip6_output(m, NULL, 16029 &inp->inp_route6, 16030 0, NULL, NULL, inp); 16031 } 16032 #endif 16033 #if defined(INET) && defined(INET6) 16034 else 16035 #endif 16036 #ifdef INET 16037 { 16038 error = ip_output(m, NULL, 16039 &inp->inp_route, 16040 0, 0, inp); 16041 } 16042 #endif 16043 m = NULL; 16044 if (lgb) { 16045 lgb->tlb_errno = error; 16046 lgb = NULL; 16047 } 16048 if (error) { 16049 goto failed; 16050 } 16051 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv), 16052 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls); 16053 if (doing_tlp && (rack->fast_rsm_hack == 0)) { 16054 rack->rc_tlp_in_progress = 1; 16055 rack->r_ctl.rc_tlp_cnt_out++; 16056 } 16057 if (error == 0) { 16058 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls); 16059 if (doing_tlp) { 16060 rack->rc_last_sent_tlp_past_cumack = 0; 16061 rack->rc_last_sent_tlp_seq_valid = 1; 16062 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 16063 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 16064 } 16065 } 16066 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16067 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16068 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 16069 rack->r_ctl.retran_during_recovery += len; 16070 { 16071 int idx; 16072 16073 idx = (len / segsiz) + 3; 16074 if (idx >= TCP_MSS_ACCT_ATIMER) 16075 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16076 else 16077 counter_u64_add(rack_out_size[idx], 1); 16078 } 16079 if (tp->t_rtttime == 0) { 16080 tp->t_rtttime = ticks; 16081 tp->t_rtseq = startseq; 16082 KMOD_TCPSTAT_INC(tcps_segstimed); 16083 } 16084 counter_u64_add(rack_fto_rsm_send, 1); 16085 if (error && (error == ENOBUFS)) { 16086 if (rack->r_ctl.crte != NULL) { 16087 rack_trace_point(rack, RACK_TP_HWENOBUF); 16088 } else 16089 rack_trace_point(rack, RACK_TP_ENOBUF); 16090 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 16091 if (rack->rc_enobuf < 0x7f) 16092 rack->rc_enobuf++; 16093 if (slot < (10 * HPTS_USEC_IN_MSEC)) 16094 slot = 10 * HPTS_USEC_IN_MSEC; 16095 } else 16096 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz); 16097 if ((slot == 0) || 16098 (rack->rc_always_pace == 0) || 16099 (rack->r_rr_config == 1)) { 16100 /* 16101 * We have no pacing set or we 16102 * are using old-style rack or 16103 * we are overridden to use the old 1ms pacing. 16104 */ 16105 slot = rack->r_ctl.rc_min_to; 16106 } 16107 rack_start_hpts_timer(rack, tp, cts, slot, len, 0); 16108 #ifdef TCP_ACCOUNTING 16109 crtsc = get_cyclecount(); 16110 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16111 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16112 } 16113 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16114 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16115 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16116 } 16117 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16118 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16119 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz); 16120 } 16121 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz)); 16122 sched_unpin(); 16123 #endif 16124 return (0); 16125 failed: 16126 if (m) 16127 m_free(m); 16128 return (-1); 16129 } 16130 16131 static void 16132 rack_sndbuf_autoscale(struct tcp_rack *rack) 16133 { 16134 /* 16135 * Automatic sizing of send socket buffer. Often the send buffer 16136 * size is not optimally adjusted to the actual network conditions 16137 * at hand (delay bandwidth product). Setting the buffer size too 16138 * small limits throughput on links with high bandwidth and high 16139 * delay (eg. trans-continental/oceanic links). Setting the 16140 * buffer size too big consumes too much real kernel memory, 16141 * especially with many connections on busy servers. 16142 * 16143 * The criteria to step up the send buffer one notch are: 16144 * 1. receive window of remote host is larger than send buffer 16145 * (with a fudge factor of 5/4th); 16146 * 2. send buffer is filled to 7/8th with data (so we actually 16147 * have data to make use of it); 16148 * 3. send buffer fill has not hit maximal automatic size; 16149 * 4. our send window (slow start and cogestion controlled) is 16150 * larger than sent but unacknowledged data in send buffer. 16151 * 16152 * Note that the rack version moves things much faster since 16153 * we want to avoid hitting cache lines in the rack_fast_output() 16154 * path so this is called much less often and thus moves 16155 * the SB forward by a percentage. 16156 */ 16157 struct socket *so; 16158 struct tcpcb *tp; 16159 uint32_t sendwin, scaleup; 16160 16161 tp = rack->rc_tp; 16162 so = rack->rc_inp->inp_socket; 16163 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd); 16164 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) { 16165 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && 16166 sbused(&so->so_snd) >= 16167 (so->so_snd.sb_hiwat / 8 * 7) && 16168 sbused(&so->so_snd) < V_tcp_autosndbuf_max && 16169 sendwin >= (sbused(&so->so_snd) - 16170 (tp->snd_nxt - tp->snd_una))) { 16171 if (rack_autosndbuf_inc) 16172 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100; 16173 else 16174 scaleup = V_tcp_autosndbuf_inc; 16175 if (scaleup < V_tcp_autosndbuf_inc) 16176 scaleup = V_tcp_autosndbuf_inc; 16177 scaleup += so->so_snd.sb_hiwat; 16178 if (scaleup > V_tcp_autosndbuf_max) 16179 scaleup = V_tcp_autosndbuf_max; 16180 if (!sbreserve_locked(so, SO_SND, scaleup, curthread)) 16181 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 16182 } 16183 } 16184 } 16185 16186 static int 16187 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, 16188 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err) 16189 { 16190 /* 16191 * Enter to do fast output. We are given that the sched_pin is 16192 * in place (if accounting is compiled in) and the cycle count taken 16193 * at entry is in place in ts_val. The idea here is that 16194 * we know how many more bytes needs to be sent (presumably either 16195 * during pacing or to fill the cwnd and that was greater than 16196 * the max-burst). We have how much to send and all the info we 16197 * need to just send. 16198 */ 16199 struct ip *ip = NULL; 16200 struct udphdr *udp = NULL; 16201 struct tcphdr *th = NULL; 16202 struct mbuf *m, *s_mb; 16203 struct inpcb *inp; 16204 uint8_t *cpto; 16205 struct tcp_log_buffer *lgb; 16206 #ifdef TCP_ACCOUNTING 16207 uint64_t crtsc; 16208 #endif 16209 struct tcpopt to; 16210 u_char opt[TCP_MAXOLEN]; 16211 uint32_t hdrlen, optlen; 16212 #ifdef TCP_ACCOUNTING 16213 int cnt_thru = 1; 16214 #endif 16215 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0; 16216 uint16_t flags; 16217 uint32_t s_soff; 16218 uint32_t if_hw_tsomaxsegcount = 0, startseq; 16219 uint32_t if_hw_tsomaxsegsize; 16220 uint16_t add_flag = RACK_SENT_FP; 16221 #ifdef INET6 16222 struct ip6_hdr *ip6 = NULL; 16223 16224 if (rack->r_is_v6) { 16225 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 16226 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 16227 } else 16228 #endif /* INET6 */ 16229 { 16230 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 16231 hdrlen = sizeof(struct tcpiphdr); 16232 } 16233 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 16234 m = NULL; 16235 goto failed; 16236 } 16237 startseq = tp->snd_max; 16238 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16239 inp = rack->rc_inp; 16240 len = rack->r_ctl.fsb.left_to_send; 16241 to.to_flags = 0; 16242 flags = rack->r_ctl.fsb.tcp_flags; 16243 if (tp->t_flags & TF_RCVD_TSTMP) { 16244 to.to_tsval = ms_cts + tp->ts_offset; 16245 to.to_tsecr = tp->ts_recent; 16246 to.to_flags = TOF_TS; 16247 } 16248 optlen = tcp_addoptions(&to, opt); 16249 hdrlen += optlen; 16250 udp = rack->r_ctl.fsb.udp; 16251 if (udp) 16252 hdrlen += sizeof(struct udphdr); 16253 if (rack->r_ctl.rc_pace_max_segs) 16254 max_val = rack->r_ctl.rc_pace_max_segs; 16255 else if (rack->rc_user_set_max_segs) 16256 max_val = rack->rc_user_set_max_segs * segsiz; 16257 else 16258 max_val = len; 16259 if ((tp->t_flags & TF_TSO) && 16260 V_tcp_do_tso && 16261 (len > segsiz) && 16262 (tp->t_port == 0)) 16263 tso = 1; 16264 again: 16265 #ifdef INET6 16266 if (MHLEN < hdrlen + max_linkhdr) 16267 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 16268 else 16269 #endif 16270 m = m_gethdr(M_NOWAIT, MT_DATA); 16271 if (m == NULL) 16272 goto failed; 16273 m->m_data += max_linkhdr; 16274 m->m_len = hdrlen; 16275 th = rack->r_ctl.fsb.th; 16276 /* Establish the len to send */ 16277 if (len > max_val) 16278 len = max_val; 16279 if ((tso) && (len + optlen > tp->t_maxseg)) { 16280 uint32_t if_hw_tsomax; 16281 int32_t max_len; 16282 16283 /* extract TSO information */ 16284 if_hw_tsomax = tp->t_tsomax; 16285 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 16286 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 16287 /* 16288 * Check if we should limit by maximum payload 16289 * length: 16290 */ 16291 if (if_hw_tsomax != 0) { 16292 /* compute maximum TSO length */ 16293 max_len = (if_hw_tsomax - hdrlen - 16294 max_linkhdr); 16295 if (max_len <= 0) { 16296 goto failed; 16297 } else if (len > max_len) { 16298 len = max_len; 16299 } 16300 } 16301 if (len <= segsiz) { 16302 /* 16303 * In case there are too many small fragments don't 16304 * use TSO: 16305 */ 16306 tso = 0; 16307 } 16308 } else { 16309 tso = 0; 16310 } 16311 if ((tso == 0) && (len > segsiz)) 16312 len = segsiz; 16313 if ((len == 0) || 16314 (len <= MHLEN - hdrlen - max_linkhdr)) { 16315 goto failed; 16316 } 16317 sb_offset = tp->snd_max - tp->snd_una; 16318 th->th_seq = htonl(tp->snd_max); 16319 th->th_ack = htonl(tp->rcv_nxt); 16320 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 16321 if (th->th_win == 0) { 16322 tp->t_sndzerowin++; 16323 tp->t_flags |= TF_RXWIN0SENT; 16324 } else 16325 tp->t_flags &= ~TF_RXWIN0SENT; 16326 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 16327 KMOD_TCPSTAT_INC(tcps_sndpack); 16328 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 16329 #ifdef STATS 16330 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 16331 len); 16332 #endif 16333 if (rack->r_ctl.fsb.m == NULL) 16334 goto failed; 16335 16336 /* s_mb and s_soff are saved for rack_log_output */ 16337 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, 16338 &s_mb, &s_soff); 16339 if (len <= segsiz) { 16340 /* 16341 * Must have ran out of mbufs for the copy 16342 * shorten it to no longer need tso. Lets 16343 * not put on sendalot since we are low on 16344 * mbufs. 16345 */ 16346 tso = 0; 16347 } 16348 if (rack->r_ctl.fsb.rfo_apply_push && 16349 (len == rack->r_ctl.fsb.left_to_send)) { 16350 flags |= TH_PUSH; 16351 add_flag |= RACK_HAD_PUSH; 16352 } 16353 if ((m->m_next == NULL) || (len <= 0)){ 16354 goto failed; 16355 } 16356 if (udp) { 16357 if (rack->r_is_v6) 16358 ulen = hdrlen + len - sizeof(struct ip6_hdr); 16359 else 16360 ulen = hdrlen + len - sizeof(struct ip); 16361 udp->uh_ulen = htons(ulen); 16362 } 16363 m->m_pkthdr.rcvif = (struct ifnet *)0; 16364 if (TCPS_HAVERCVDSYN(tp->t_state) && 16365 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 16366 int ect = tcp_ecn_output_established(tp, &flags, len, false); 16367 if ((tp->t_state == TCPS_SYN_RECEIVED) && 16368 (tp->t_flags2 & TF2_ECN_SND_ECE)) 16369 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 16370 #ifdef INET6 16371 if (rack->r_is_v6) { 16372 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 16373 ip6->ip6_flow |= htonl(ect << 20); 16374 } 16375 else 16376 #endif 16377 { 16378 ip->ip_tos &= ~IPTOS_ECN_MASK; 16379 ip->ip_tos |= ect; 16380 } 16381 } 16382 tcp_set_flags(th, flags); 16383 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 16384 #ifdef INET6 16385 if (rack->r_is_v6) { 16386 if (tp->t_port) { 16387 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 16388 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16389 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 16390 th->th_sum = htons(0); 16391 UDPSTAT_INC(udps_opackets); 16392 } else { 16393 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 16394 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16395 th->th_sum = in6_cksum_pseudo(ip6, 16396 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 16397 0); 16398 } 16399 } 16400 #endif 16401 #if defined(INET6) && defined(INET) 16402 else 16403 #endif 16404 #ifdef INET 16405 { 16406 if (tp->t_port) { 16407 m->m_pkthdr.csum_flags = CSUM_UDP; 16408 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16409 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 16410 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 16411 th->th_sum = htons(0); 16412 UDPSTAT_INC(udps_opackets); 16413 } else { 16414 m->m_pkthdr.csum_flags = CSUM_TCP; 16415 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16416 th->th_sum = in_pseudo(ip->ip_src.s_addr, 16417 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 16418 IPPROTO_TCP + len + optlen)); 16419 } 16420 /* IP version must be set here for ipv4/ipv6 checking later */ 16421 KASSERT(ip->ip_v == IPVERSION, 16422 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 16423 } 16424 #endif 16425 if (tso) { 16426 KASSERT(len > tp->t_maxseg - optlen, 16427 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 16428 m->m_pkthdr.csum_flags |= CSUM_TSO; 16429 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 16430 } 16431 #ifdef INET6 16432 if (rack->r_is_v6) { 16433 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 16434 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 16435 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 16436 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16437 else 16438 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16439 } 16440 #endif 16441 #if defined(INET) && defined(INET6) 16442 else 16443 #endif 16444 #ifdef INET 16445 { 16446 ip->ip_len = htons(m->m_pkthdr.len); 16447 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 16448 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 16449 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16450 if (tp->t_port == 0 || len < V_tcp_minmss) { 16451 ip->ip_off |= htons(IP_DF); 16452 } 16453 } else { 16454 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16455 } 16456 } 16457 #endif 16458 /* Time to copy in our header */ 16459 cpto = mtod(m, uint8_t *); 16460 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 16461 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 16462 if (optlen) { 16463 bcopy(opt, th + 1, optlen); 16464 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 16465 } else { 16466 th->th_off = sizeof(struct tcphdr) >> 2; 16467 } 16468 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 16469 union tcp_log_stackspecific log; 16470 16471 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16472 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 16473 if (rack->rack_no_prr) 16474 log.u_bbr.flex1 = 0; 16475 else 16476 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16477 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16478 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16479 log.u_bbr.flex4 = max_val; 16480 log.u_bbr.flex5 = 0; 16481 /* Save off the early/late values */ 16482 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16483 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16484 log.u_bbr.bw_inuse = rack_get_bw(rack); 16485 log.u_bbr.flex8 = 0; 16486 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16487 log.u_bbr.flex7 = 44; 16488 log.u_bbr.pkts_out = tp->t_maxseg; 16489 log.u_bbr.timeStamp = cts; 16490 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16491 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16492 log.u_bbr.delivered = 0; 16493 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16494 len, &log, false, NULL, NULL, 0, tv); 16495 } else 16496 lgb = NULL; 16497 #ifdef INET6 16498 if (rack->r_is_v6) { 16499 error = ip6_output(m, NULL, 16500 &inp->inp_route6, 16501 0, NULL, NULL, inp); 16502 } 16503 #endif 16504 #if defined(INET) && defined(INET6) 16505 else 16506 #endif 16507 #ifdef INET 16508 { 16509 error = ip_output(m, NULL, 16510 &inp->inp_route, 16511 0, 0, inp); 16512 } 16513 #endif 16514 if (lgb) { 16515 lgb->tlb_errno = error; 16516 lgb = NULL; 16517 } 16518 if (error) { 16519 *send_err = error; 16520 m = NULL; 16521 goto failed; 16522 } 16523 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv), 16524 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls); 16525 m = NULL; 16526 if (tp->snd_una == tp->snd_max) { 16527 rack->r_ctl.rc_tlp_rxt_last_time = cts; 16528 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 16529 tp->t_acktime = ticks; 16530 } 16531 if (error == 0) 16532 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls); 16533 16534 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16535 tot_len += len; 16536 if ((tp->t_flags & TF_GPUTINPROG) == 0) 16537 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset); 16538 tp->snd_max += len; 16539 tp->snd_nxt = tp->snd_max; 16540 { 16541 int idx; 16542 16543 idx = (len / segsiz) + 3; 16544 if (idx >= TCP_MSS_ACCT_ATIMER) 16545 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16546 else 16547 counter_u64_add(rack_out_size[idx], 1); 16548 } 16549 if (len <= rack->r_ctl.fsb.left_to_send) 16550 rack->r_ctl.fsb.left_to_send -= len; 16551 else 16552 rack->r_ctl.fsb.left_to_send = 0; 16553 if (rack->r_ctl.fsb.left_to_send < segsiz) { 16554 rack->r_fast_output = 0; 16555 rack->r_ctl.fsb.left_to_send = 0; 16556 /* At the end of fast_output scale up the sb */ 16557 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd); 16558 rack_sndbuf_autoscale(rack); 16559 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd); 16560 } 16561 if (tp->t_rtttime == 0) { 16562 tp->t_rtttime = ticks; 16563 tp->t_rtseq = startseq; 16564 KMOD_TCPSTAT_INC(tcps_segstimed); 16565 } 16566 if ((rack->r_ctl.fsb.left_to_send >= segsiz) && 16567 (max_val > len) && 16568 (tso == 0)) { 16569 max_val -= len; 16570 len = segsiz; 16571 th = rack->r_ctl.fsb.th; 16572 #ifdef TCP_ACCOUNTING 16573 cnt_thru++; 16574 #endif 16575 goto again; 16576 } 16577 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16578 counter_u64_add(rack_fto_send, 1); 16579 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz); 16580 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0); 16581 #ifdef TCP_ACCOUNTING 16582 crtsc = get_cyclecount(); 16583 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16584 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16585 } 16586 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16587 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16588 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16589 } 16590 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16591 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16592 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz); 16593 } 16594 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz)); 16595 sched_unpin(); 16596 #endif 16597 return (0); 16598 failed: 16599 if (m) 16600 m_free(m); 16601 rack->r_fast_output = 0; 16602 return (-1); 16603 } 16604 16605 static struct rack_sendmap * 16606 rack_check_collapsed(struct tcp_rack *rack, uint32_t cts) 16607 { 16608 struct rack_sendmap *rsm = NULL; 16609 struct rack_sendmap fe; 16610 int thresh; 16611 16612 restart: 16613 fe.r_start = rack->r_ctl.last_collapse_point; 16614 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 16615 if ((rsm == NULL) || ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0)) { 16616 /* Nothing, strange turn off validity */ 16617 rack->r_collapse_point_valid = 0; 16618 return (NULL); 16619 } 16620 /* Can we send it yet? */ 16621 if (rsm->r_end > (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)) { 16622 /* 16623 * Receiver window has not grown enough for 16624 * the segment to be put on the wire. 16625 */ 16626 return (NULL); 16627 } 16628 if (rsm->r_flags & RACK_ACKED) { 16629 /* 16630 * It has been sacked, lets move to the 16631 * next one if possible. 16632 */ 16633 rack->r_ctl.last_collapse_point = rsm->r_end; 16634 /* Are we done? */ 16635 if (SEQ_GEQ(rack->r_ctl.last_collapse_point, 16636 rack->r_ctl.high_collapse_point)) { 16637 rack->r_collapse_point_valid = 0; 16638 return (NULL); 16639 } 16640 goto restart; 16641 } 16642 /* Now has it been long enough ? */ 16643 thresh = rack_calc_thresh_rack(rack, rack_grab_rtt(rack->rc_tp, rack), cts); 16644 if ((cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) > thresh) { 16645 rack_log_collapse(rack, rsm->r_start, 16646 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])), 16647 thresh, __LINE__, 6, rsm->r_flags, rsm); 16648 return (rsm); 16649 } 16650 /* Not enough time */ 16651 rack_log_collapse(rack, rsm->r_start, 16652 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])), 16653 thresh, __LINE__, 7, rsm->r_flags, rsm); 16654 return (NULL); 16655 } 16656 16657 static int 16658 rack_output(struct tcpcb *tp) 16659 { 16660 struct socket *so; 16661 uint32_t recwin; 16662 uint32_t sb_offset, s_moff = 0; 16663 int32_t len, error = 0; 16664 uint16_t flags; 16665 struct mbuf *m, *s_mb = NULL; 16666 struct mbuf *mb; 16667 uint32_t if_hw_tsomaxsegcount = 0; 16668 uint32_t if_hw_tsomaxsegsize; 16669 int32_t segsiz, minseg; 16670 long tot_len_this_send = 0; 16671 #ifdef INET 16672 struct ip *ip = NULL; 16673 #endif 16674 struct udphdr *udp = NULL; 16675 struct tcp_rack *rack; 16676 struct tcphdr *th; 16677 uint8_t pass = 0; 16678 uint8_t mark = 0; 16679 uint8_t wanted_cookie = 0; 16680 u_char opt[TCP_MAXOLEN]; 16681 unsigned ipoptlen, optlen, hdrlen, ulen=0; 16682 uint32_t rack_seq; 16683 16684 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 16685 unsigned ipsec_optlen = 0; 16686 16687 #endif 16688 int32_t idle, sendalot; 16689 int32_t sub_from_prr = 0; 16690 volatile int32_t sack_rxmit; 16691 struct rack_sendmap *rsm = NULL; 16692 int32_t tso, mtu; 16693 struct tcpopt to; 16694 int32_t slot = 0; 16695 int32_t sup_rack = 0; 16696 uint32_t cts, ms_cts, delayed, early; 16697 uint16_t add_flag = RACK_SENT_SP; 16698 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */ 16699 uint8_t hpts_calling, doing_tlp = 0; 16700 uint32_t cwnd_to_use, pace_max_seg; 16701 int32_t do_a_prefetch = 0; 16702 int32_t prefetch_rsm = 0; 16703 int32_t orig_len = 0; 16704 struct timeval tv; 16705 int32_t prefetch_so_done = 0; 16706 struct tcp_log_buffer *lgb; 16707 struct inpcb *inp; 16708 struct sockbuf *sb; 16709 uint64_t ts_val = 0; 16710 #ifdef TCP_ACCOUNTING 16711 uint64_t crtsc; 16712 #endif 16713 #ifdef INET6 16714 struct ip6_hdr *ip6 = NULL; 16715 int32_t isipv6; 16716 #endif 16717 bool hw_tls = false; 16718 16719 /* setup and take the cache hits here */ 16720 rack = (struct tcp_rack *)tp->t_fb_ptr; 16721 #ifdef TCP_ACCOUNTING 16722 sched_pin(); 16723 ts_val = get_cyclecount(); 16724 #endif 16725 hpts_calling = rack->rc_inp->inp_hpts_calls; 16726 NET_EPOCH_ASSERT(); 16727 INP_WLOCK_ASSERT(rack->rc_inp); 16728 #ifdef TCP_OFFLOAD 16729 if (tp->t_flags & TF_TOE) { 16730 #ifdef TCP_ACCOUNTING 16731 sched_unpin(); 16732 #endif 16733 return (tcp_offload_output(tp)); 16734 } 16735 #endif 16736 /* 16737 * For TFO connections in SYN_RECEIVED, only allow the initial 16738 * SYN|ACK and those sent by the retransmit timer. 16739 */ 16740 if (IS_FASTOPEN(tp->t_flags) && 16741 (tp->t_state == TCPS_SYN_RECEIVED) && 16742 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ 16743 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */ 16744 #ifdef TCP_ACCOUNTING 16745 sched_unpin(); 16746 #endif 16747 return (0); 16748 } 16749 #ifdef INET6 16750 if (rack->r_state) { 16751 /* Use the cache line loaded if possible */ 16752 isipv6 = rack->r_is_v6; 16753 } else { 16754 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0; 16755 } 16756 #endif 16757 early = 0; 16758 cts = tcp_get_usecs(&tv); 16759 ms_cts = tcp_tv_to_mssectick(&tv); 16760 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && 16761 tcp_in_hpts(rack->rc_inp)) { 16762 /* 16763 * We are on the hpts for some timer but not hptsi output. 16764 * Remove from the hpts unconditionally. 16765 */ 16766 rack_timer_cancel(tp, rack, cts, __LINE__); 16767 } 16768 /* Are we pacing and late? */ 16769 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16770 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) { 16771 /* We are delayed */ 16772 delayed = cts - rack->r_ctl.rc_last_output_to; 16773 } else { 16774 delayed = 0; 16775 } 16776 /* Do the timers, which may override the pacer */ 16777 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 16778 int retval; 16779 16780 retval = rack_process_timers(tp, rack, cts, hpts_calling, 16781 &doing_tlp); 16782 if (retval != 0) { 16783 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); 16784 #ifdef TCP_ACCOUNTING 16785 sched_unpin(); 16786 #endif 16787 /* 16788 * If timers want tcp_drop(), then pass error out, 16789 * otherwise suppress it. 16790 */ 16791 return (retval < 0 ? retval : 0); 16792 } 16793 } 16794 if (rack->rc_in_persist) { 16795 if (tcp_in_hpts(rack->rc_inp) == 0) { 16796 /* Timer is not running */ 16797 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 16798 } 16799 #ifdef TCP_ACCOUNTING 16800 sched_unpin(); 16801 #endif 16802 return (0); 16803 } 16804 if ((rack->r_timer_override) || 16805 (rack->rc_ack_can_sendout_data) || 16806 (delayed) || 16807 (tp->t_state < TCPS_ESTABLISHED)) { 16808 rack->rc_ack_can_sendout_data = 0; 16809 if (tcp_in_hpts(rack->rc_inp)) 16810 tcp_hpts_remove(rack->rc_inp); 16811 } else if (tcp_in_hpts(rack->rc_inp)) { 16812 /* 16813 * On the hpts you can't pass even if ACKNOW is on, we will 16814 * when the hpts fires. 16815 */ 16816 #ifdef TCP_ACCOUNTING 16817 crtsc = get_cyclecount(); 16818 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16819 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val); 16820 } 16821 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val)); 16822 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16823 tp->tcp_cnt_counters[SND_BLOCKED]++; 16824 } 16825 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1); 16826 sched_unpin(); 16827 #endif 16828 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); 16829 return (0); 16830 } 16831 rack->rc_inp->inp_hpts_calls = 0; 16832 /* Finish out both pacing early and late accounting */ 16833 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16834 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 16835 early = rack->r_ctl.rc_last_output_to - cts; 16836 } else 16837 early = 0; 16838 if (delayed) { 16839 rack->r_ctl.rc_agg_delayed += delayed; 16840 rack->r_late = 1; 16841 } else if (early) { 16842 rack->r_ctl.rc_agg_early += early; 16843 rack->r_early = 1; 16844 } 16845 /* Now that early/late accounting is done turn off the flag */ 16846 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 16847 rack->r_wanted_output = 0; 16848 rack->r_timer_override = 0; 16849 if ((tp->t_state != rack->r_state) && 16850 TCPS_HAVEESTABLISHED(tp->t_state)) { 16851 rack_set_state(tp, rack); 16852 } 16853 if ((rack->r_fast_output) && 16854 (doing_tlp == 0) && 16855 (tp->rcv_numsacks == 0)) { 16856 int ret; 16857 16858 error = 0; 16859 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 16860 if (ret >= 0) 16861 return(ret); 16862 else if (error) { 16863 inp = rack->rc_inp; 16864 so = inp->inp_socket; 16865 sb = &so->so_snd; 16866 goto nomore; 16867 } 16868 } 16869 inp = rack->rc_inp; 16870 /* 16871 * For TFO connections in SYN_SENT or SYN_RECEIVED, 16872 * only allow the initial SYN or SYN|ACK and those sent 16873 * by the retransmit timer. 16874 */ 16875 if (IS_FASTOPEN(tp->t_flags) && 16876 ((tp->t_state == TCPS_SYN_RECEIVED) || 16877 (tp->t_state == TCPS_SYN_SENT)) && 16878 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ 16879 (tp->t_rxtshift == 0)) { /* not a retransmit */ 16880 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16881 so = inp->inp_socket; 16882 sb = &so->so_snd; 16883 goto just_return_nolock; 16884 } 16885 /* 16886 * Determine length of data that should be transmitted, and flags 16887 * that will be used. If there is some data or critical controls 16888 * (SYN, RST) to send, then transmit; otherwise, investigate 16889 * further. 16890 */ 16891 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); 16892 if (tp->t_idle_reduce) { 16893 if (idle && (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 16894 rack_cc_after_idle(rack, tp); 16895 } 16896 tp->t_flags &= ~TF_LASTIDLE; 16897 if (idle) { 16898 if (tp->t_flags & TF_MORETOCOME) { 16899 tp->t_flags |= TF_LASTIDLE; 16900 idle = 0; 16901 } 16902 } 16903 if ((tp->snd_una == tp->snd_max) && 16904 rack->r_ctl.rc_went_idle_time && 16905 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) { 16906 idle = cts - rack->r_ctl.rc_went_idle_time; 16907 if (idle > rack_min_probertt_hold) { 16908 /* Count as a probe rtt */ 16909 if (rack->in_probe_rtt == 0) { 16910 rack->r_ctl.rc_lower_rtt_us_cts = cts; 16911 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 16912 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 16913 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 16914 } else { 16915 rack_exit_probertt(rack, cts); 16916 } 16917 } 16918 idle = 0; 16919 } 16920 if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED)) 16921 rack_init_fsb_block(tp, rack); 16922 again: 16923 /* 16924 * If we've recently taken a timeout, snd_max will be greater than 16925 * snd_nxt. There may be SACK information that allows us to avoid 16926 * resending already delivered data. Adjust snd_nxt accordingly. 16927 */ 16928 sendalot = 0; 16929 cts = tcp_get_usecs(&tv); 16930 ms_cts = tcp_tv_to_mssectick(&tv); 16931 tso = 0; 16932 mtu = 0; 16933 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16934 minseg = segsiz; 16935 if (rack->r_ctl.rc_pace_max_segs == 0) 16936 pace_max_seg = rack->rc_user_set_max_segs * segsiz; 16937 else 16938 pace_max_seg = rack->r_ctl.rc_pace_max_segs; 16939 sb_offset = tp->snd_max - tp->snd_una; 16940 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16941 flags = tcp_outflags[tp->t_state]; 16942 while (rack->rc_free_cnt < rack_free_cache) { 16943 rsm = rack_alloc(rack); 16944 if (rsm == NULL) { 16945 if (inp->inp_hpts_calls) 16946 /* Retry in a ms */ 16947 slot = (1 * HPTS_USEC_IN_MSEC); 16948 so = inp->inp_socket; 16949 sb = &so->so_snd; 16950 goto just_return_nolock; 16951 } 16952 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); 16953 rack->rc_free_cnt++; 16954 rsm = NULL; 16955 } 16956 if (inp->inp_hpts_calls) 16957 inp->inp_hpts_calls = 0; 16958 sack_rxmit = 0; 16959 len = 0; 16960 rsm = NULL; 16961 if (flags & TH_RST) { 16962 SOCKBUF_LOCK(&inp->inp_socket->so_snd); 16963 so = inp->inp_socket; 16964 sb = &so->so_snd; 16965 goto send; 16966 } 16967 if (rack->r_ctl.rc_resend) { 16968 /* Retransmit timer */ 16969 rsm = rack->r_ctl.rc_resend; 16970 rack->r_ctl.rc_resend = NULL; 16971 len = rsm->r_end - rsm->r_start; 16972 sack_rxmit = 1; 16973 sendalot = 0; 16974 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16975 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16976 __func__, __LINE__, 16977 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16978 sb_offset = rsm->r_start - tp->snd_una; 16979 if (len >= segsiz) 16980 len = segsiz; 16981 } else if (rack->r_collapse_point_valid && 16982 ((rsm = rack_check_collapsed(rack, cts)) != NULL)) { 16983 /* 16984 * If an RSM is returned then enough time has passed 16985 * for us to retransmit it. Move up the collapse point, 16986 * since this rsm has its chance to retransmit now. 16987 */ 16988 rack_trace_point(rack, RACK_TP_COLLAPSED_RXT); 16989 rack->r_ctl.last_collapse_point = rsm->r_end; 16990 /* Are we done? */ 16991 if (SEQ_GEQ(rack->r_ctl.last_collapse_point, 16992 rack->r_ctl.high_collapse_point)) 16993 rack->r_collapse_point_valid = 0; 16994 sack_rxmit = 1; 16995 /* We are not doing a TLP */ 16996 doing_tlp = 0; 16997 len = rsm->r_end - rsm->r_start; 16998 sb_offset = rsm->r_start - tp->snd_una; 16999 sendalot = 0; 17000 if ((rack->full_size_rxt == 0) && 17001 (rack->shape_rxt_to_pacing_min == 0) && 17002 (len >= segsiz)) 17003 len = segsiz; 17004 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) { 17005 /* We have a retransmit that takes precedence */ 17006 if ((!IN_FASTRECOVERY(tp->t_flags)) && 17007 ((rsm->r_flags & RACK_MUST_RXT) == 0) && 17008 ((tp->t_flags & TF_WASFRECOVERY) == 0)) { 17009 /* Enter recovery if not induced by a time-out */ 17010 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 17011 } 17012 #ifdef INVARIANTS 17013 if (SEQ_LT(rsm->r_start, tp->snd_una)) { 17014 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", 17015 tp, rack, rsm, rsm->r_start, tp->snd_una); 17016 } 17017 #endif 17018 len = rsm->r_end - rsm->r_start; 17019 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17020 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17021 __func__, __LINE__, 17022 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17023 sb_offset = rsm->r_start - tp->snd_una; 17024 sendalot = 0; 17025 if (len >= segsiz) 17026 len = segsiz; 17027 if (len > 0) { 17028 sack_rxmit = 1; 17029 KMOD_TCPSTAT_INC(tcps_sack_rexmits); 17030 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, 17031 min(len, segsiz)); 17032 } 17033 } else if (rack->r_ctl.rc_tlpsend) { 17034 /* Tail loss probe */ 17035 long cwin; 17036 long tlen; 17037 17038 /* 17039 * Check if we can do a TLP with a RACK'd packet 17040 * this can happen if we are not doing the rack 17041 * cheat and we skipped to a TLP and it 17042 * went off. 17043 */ 17044 rsm = rack->r_ctl.rc_tlpsend; 17045 /* We are doing a TLP make sure the flag is preent */ 17046 rsm->r_flags |= RACK_TLP; 17047 rack->r_ctl.rc_tlpsend = NULL; 17048 sack_rxmit = 1; 17049 tlen = rsm->r_end - rsm->r_start; 17050 if (tlen > segsiz) 17051 tlen = segsiz; 17052 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17053 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17054 __func__, __LINE__, 17055 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17056 sb_offset = rsm->r_start - tp->snd_una; 17057 cwin = min(tp->snd_wnd, tlen); 17058 len = cwin; 17059 } 17060 if (rack->r_must_retran && 17061 (doing_tlp == 0) && 17062 (SEQ_GT(tp->snd_max, tp->snd_una)) && 17063 (rsm == NULL)) { 17064 /* 17065 * There are two different ways that we 17066 * can get into this block: 17067 * a) This is a non-sack connection, we had a time-out 17068 * and thus r_must_retran was set and everything 17069 * left outstanding as been marked for retransmit. 17070 * b) The MTU of the path shrank, so that everything 17071 * was marked to be retransmitted with the smaller 17072 * mtu and r_must_retran was set. 17073 * 17074 * This means that we expect the sendmap (outstanding) 17075 * to all be marked must. We can use the tmap to 17076 * look at them. 17077 * 17078 */ 17079 int sendwin, flight; 17080 17081 sendwin = min(tp->snd_wnd, tp->snd_cwnd); 17082 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto); 17083 if (flight >= sendwin) { 17084 /* 17085 * We can't send yet. 17086 */ 17087 so = inp->inp_socket; 17088 sb = &so->so_snd; 17089 goto just_return_nolock; 17090 } 17091 /* 17092 * This is the case a/b mentioned above. All 17093 * outstanding/not-acked should be marked. 17094 * We can use the tmap to find them. 17095 */ 17096 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 17097 if (rsm == NULL) { 17098 /* TSNH */ 17099 rack->r_must_retran = 0; 17100 rack->r_ctl.rc_out_at_rto = 0; 17101 so = inp->inp_socket; 17102 sb = &so->so_snd; 17103 goto just_return_nolock; 17104 } 17105 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 17106 /* 17107 * The first one does not have the flag, did we collapse 17108 * further up in our list? 17109 */ 17110 rack->r_must_retran = 0; 17111 rack->r_ctl.rc_out_at_rto = 0; 17112 rsm = NULL; 17113 sack_rxmit = 0; 17114 } else { 17115 sack_rxmit = 1; 17116 len = rsm->r_end - rsm->r_start; 17117 sb_offset = rsm->r_start - tp->snd_una; 17118 sendalot = 0; 17119 if ((rack->full_size_rxt == 0) && 17120 (rack->shape_rxt_to_pacing_min == 0) && 17121 (len >= segsiz)) 17122 len = segsiz; 17123 /* 17124 * Delay removing the flag RACK_MUST_RXT so 17125 * that the fastpath for retransmit will 17126 * work with this rsm. 17127 */ 17128 } 17129 } 17130 /* 17131 * Enforce a connection sendmap count limit if set 17132 * as long as we are not retransmiting. 17133 */ 17134 if ((rsm == NULL) && 17135 (rack->do_detection == 0) && 17136 (V_tcp_map_entries_limit > 0) && 17137 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 17138 counter_u64_add(rack_to_alloc_limited, 1); 17139 if (!rack->alloc_limit_reported) { 17140 rack->alloc_limit_reported = 1; 17141 counter_u64_add(rack_alloc_limited_conns, 1); 17142 } 17143 so = inp->inp_socket; 17144 sb = &so->so_snd; 17145 goto just_return_nolock; 17146 } 17147 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { 17148 /* we are retransmitting the fin */ 17149 len--; 17150 if (len) { 17151 /* 17152 * When retransmitting data do *not* include the 17153 * FIN. This could happen from a TLP probe. 17154 */ 17155 flags &= ~TH_FIN; 17156 } 17157 } 17158 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo && 17159 ((rsm->r_flags & RACK_HAS_FIN) == 0)) { 17160 int ret; 17161 17162 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp); 17163 if (ret == 0) 17164 return (0); 17165 } 17166 so = inp->inp_socket; 17167 sb = &so->so_snd; 17168 if (do_a_prefetch == 0) { 17169 kern_prefetch(sb, &do_a_prefetch); 17170 do_a_prefetch = 1; 17171 } 17172 #ifdef NETFLIX_SHARED_CWND 17173 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && 17174 rack->rack_enable_scwnd) { 17175 /* We are doing cwnd sharing */ 17176 if (rack->gp_ready && 17177 (rack->rack_attempted_scwnd == 0) && 17178 (rack->r_ctl.rc_scw == NULL) && 17179 tp->t_lib) { 17180 /* The pcbid is in, lets make an attempt */ 17181 counter_u64_add(rack_try_scwnd, 1); 17182 rack->rack_attempted_scwnd = 1; 17183 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, 17184 &rack->r_ctl.rc_scw_index, 17185 segsiz); 17186 } 17187 if (rack->r_ctl.rc_scw && 17188 (rack->rack_scwnd_is_idle == 1) && 17189 sbavail(&so->so_snd)) { 17190 /* we are no longer out of data */ 17191 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17192 rack->rack_scwnd_is_idle = 0; 17193 } 17194 if (rack->r_ctl.rc_scw) { 17195 /* First lets update and get the cwnd */ 17196 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, 17197 rack->r_ctl.rc_scw_index, 17198 tp->snd_cwnd, tp->snd_wnd, segsiz); 17199 } 17200 } 17201 #endif 17202 /* 17203 * Get standard flags, and add SYN or FIN if requested by 'hidden' 17204 * state flags. 17205 */ 17206 if (tp->t_flags & TF_NEEDFIN) 17207 flags |= TH_FIN; 17208 if (tp->t_flags & TF_NEEDSYN) 17209 flags |= TH_SYN; 17210 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { 17211 void *end_rsm; 17212 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 17213 if (end_rsm) 17214 kern_prefetch(end_rsm, &prefetch_rsm); 17215 prefetch_rsm = 1; 17216 } 17217 SOCKBUF_LOCK(sb); 17218 /* 17219 * If snd_nxt == snd_max and we have transmitted a FIN, the 17220 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a 17221 * negative length. This can also occur when TCP opens up its 17222 * congestion window while receiving additional duplicate acks after 17223 * fast-retransmit because TCP will reset snd_nxt to snd_max after 17224 * the fast-retransmit. 17225 * 17226 * In the normal retransmit-FIN-only case, however, snd_nxt will be 17227 * set to snd_una, the sb_offset will be 0, and the length may wind 17228 * up 0. 17229 * 17230 * If sack_rxmit is true we are retransmitting from the scoreboard 17231 * in which case len is already set. 17232 */ 17233 if ((sack_rxmit == 0) && 17234 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) { 17235 uint32_t avail; 17236 17237 avail = sbavail(sb); 17238 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) 17239 sb_offset = tp->snd_nxt - tp->snd_una; 17240 else 17241 sb_offset = 0; 17242 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { 17243 if (rack->r_ctl.rc_tlp_new_data) { 17244 /* TLP is forcing out new data */ 17245 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { 17246 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); 17247 } 17248 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) { 17249 if (tp->snd_wnd > sb_offset) 17250 len = tp->snd_wnd - sb_offset; 17251 else 17252 len = 0; 17253 } else { 17254 len = rack->r_ctl.rc_tlp_new_data; 17255 } 17256 rack->r_ctl.rc_tlp_new_data = 0; 17257 } else { 17258 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); 17259 } 17260 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) { 17261 /* 17262 * For prr=off, we need to send only 1 MSS 17263 * at a time. We do this because another sack could 17264 * be arriving that causes us to send retransmits and 17265 * we don't want to be on a long pace due to a larger send 17266 * that keeps us from sending out the retransmit. 17267 */ 17268 len = segsiz; 17269 } 17270 } else { 17271 uint32_t outstanding; 17272 /* 17273 * We are inside of a Fast recovery episode, this 17274 * is caused by a SACK or 3 dup acks. At this point 17275 * we have sent all the retransmissions and we rely 17276 * on PRR to dictate what we will send in the form of 17277 * new data. 17278 */ 17279 17280 outstanding = tp->snd_max - tp->snd_una; 17281 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { 17282 if (tp->snd_wnd > outstanding) { 17283 len = tp->snd_wnd - outstanding; 17284 /* Check to see if we have the data */ 17285 if ((sb_offset + len) > avail) { 17286 /* It does not all fit */ 17287 if (avail > sb_offset) 17288 len = avail - sb_offset; 17289 else 17290 len = 0; 17291 } 17292 } else { 17293 len = 0; 17294 } 17295 } else if (avail > sb_offset) { 17296 len = avail - sb_offset; 17297 } else { 17298 len = 0; 17299 } 17300 if (len > 0) { 17301 if (len > rack->r_ctl.rc_prr_sndcnt) { 17302 len = rack->r_ctl.rc_prr_sndcnt; 17303 } 17304 if (len > 0) { 17305 sub_from_prr = 1; 17306 } 17307 } 17308 if (len > segsiz) { 17309 /* 17310 * We should never send more than a MSS when 17311 * retransmitting or sending new data in prr 17312 * mode unless the override flag is on. Most 17313 * likely the PRR algorithm is not going to 17314 * let us send a lot as well :-) 17315 */ 17316 if (rack->r_ctl.rc_prr_sendalot == 0) { 17317 len = segsiz; 17318 } 17319 } else if (len < segsiz) { 17320 /* 17321 * Do we send any? The idea here is if the 17322 * send empty's the socket buffer we want to 17323 * do it. However if not then lets just wait 17324 * for our prr_sndcnt to get bigger. 17325 */ 17326 long leftinsb; 17327 17328 leftinsb = sbavail(sb) - sb_offset; 17329 if (leftinsb > len) { 17330 /* This send does not empty the sb */ 17331 len = 0; 17332 } 17333 } 17334 } 17335 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { 17336 /* 17337 * If you have not established 17338 * and are not doing FAST OPEN 17339 * no data please. 17340 */ 17341 if ((sack_rxmit == 0) && 17342 (!IS_FASTOPEN(tp->t_flags))){ 17343 len = 0; 17344 sb_offset = 0; 17345 } 17346 } 17347 if (prefetch_so_done == 0) { 17348 kern_prefetch(so, &prefetch_so_done); 17349 prefetch_so_done = 1; 17350 } 17351 /* 17352 * Lop off SYN bit if it has already been sent. However, if this is 17353 * SYN-SENT state and if segment contains data and if we don't know 17354 * that foreign host supports TAO, suppress sending segment. 17355 */ 17356 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && 17357 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { 17358 /* 17359 * When sending additional segments following a TFO SYN|ACK, 17360 * do not include the SYN bit. 17361 */ 17362 if (IS_FASTOPEN(tp->t_flags) && 17363 (tp->t_state == TCPS_SYN_RECEIVED)) 17364 flags &= ~TH_SYN; 17365 } 17366 /* 17367 * Be careful not to send data and/or FIN on SYN segments. This 17368 * measure is needed to prevent interoperability problems with not 17369 * fully conformant TCP implementations. 17370 */ 17371 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { 17372 len = 0; 17373 flags &= ~TH_FIN; 17374 } 17375 /* 17376 * On TFO sockets, ensure no data is sent in the following cases: 17377 * 17378 * - When retransmitting SYN|ACK on a passively-created socket 17379 * 17380 * - When retransmitting SYN on an actively created socket 17381 * 17382 * - When sending a zero-length cookie (cookie request) on an 17383 * actively created socket 17384 * 17385 * - When the socket is in the CLOSED state (RST is being sent) 17386 */ 17387 if (IS_FASTOPEN(tp->t_flags) && 17388 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || 17389 ((tp->t_state == TCPS_SYN_SENT) && 17390 (tp->t_tfo_client_cookie_len == 0)) || 17391 (flags & TH_RST))) { 17392 sack_rxmit = 0; 17393 len = 0; 17394 } 17395 /* Without fast-open there should never be data sent on a SYN */ 17396 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { 17397 tp->snd_nxt = tp->iss; 17398 len = 0; 17399 } 17400 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) { 17401 /* We only send 1 MSS if we have a DSACK block */ 17402 add_flag |= RACK_SENT_W_DSACK; 17403 len = segsiz; 17404 } 17405 orig_len = len; 17406 if (len <= 0) { 17407 /* 17408 * If FIN has been sent but not acked, but we haven't been 17409 * called to retransmit, len will be < 0. Otherwise, window 17410 * shrank after we sent into it. If window shrank to 0, 17411 * cancel pending retransmit, pull snd_nxt back to (closed) 17412 * window, and set the persist timer if it isn't already 17413 * going. If the window didn't close completely, just wait 17414 * for an ACK. 17415 * 17416 * We also do a general check here to ensure that we will 17417 * set the persist timer when we have data to send, but a 17418 * 0-byte window. This makes sure the persist timer is set 17419 * even if the packet hits one of the "goto send" lines 17420 * below. 17421 */ 17422 len = 0; 17423 if ((tp->snd_wnd == 0) && 17424 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17425 (tp->snd_una == tp->snd_max) && 17426 (sb_offset < (int)sbavail(sb))) { 17427 rack_enter_persist(tp, rack, cts); 17428 } 17429 } else if ((rsm == NULL) && 17430 (doing_tlp == 0) && 17431 (len < pace_max_seg)) { 17432 /* 17433 * We are not sending a maximum sized segment for 17434 * some reason. Should we not send anything (think 17435 * sws or persists)? 17436 */ 17437 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17438 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17439 (len < minseg) && 17440 (len < (int)(sbavail(sb) - sb_offset))) { 17441 /* 17442 * Here the rwnd is less than 17443 * the minimum pacing size, this is not a retransmit, 17444 * we are established and 17445 * the send is not the last in the socket buffer 17446 * we send nothing, and we may enter persists 17447 * if nothing is outstanding. 17448 */ 17449 len = 0; 17450 if (tp->snd_max == tp->snd_una) { 17451 /* 17452 * Nothing out we can 17453 * go into persists. 17454 */ 17455 rack_enter_persist(tp, rack, cts); 17456 } 17457 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && 17458 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17459 (len < (int)(sbavail(sb) - sb_offset)) && 17460 (len < minseg)) { 17461 /* 17462 * Here we are not retransmitting, and 17463 * the cwnd is not so small that we could 17464 * not send at least a min size (rxt timer 17465 * not having gone off), We have 2 segments or 17466 * more already in flight, its not the tail end 17467 * of the socket buffer and the cwnd is blocking 17468 * us from sending out a minimum pacing segment size. 17469 * Lets not send anything. 17470 */ 17471 len = 0; 17472 } else if (((tp->snd_wnd - ctf_outstanding(tp)) < 17473 min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17474 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17475 (len < (int)(sbavail(sb) - sb_offset)) && 17476 (TCPS_HAVEESTABLISHED(tp->t_state))) { 17477 /* 17478 * Here we have a send window but we have 17479 * filled it up and we can't send another pacing segment. 17480 * We also have in flight more than 2 segments 17481 * and we are not completing the sb i.e. we allow 17482 * the last bytes of the sb to go out even if 17483 * its not a full pacing segment. 17484 */ 17485 len = 0; 17486 } else if ((rack->r_ctl.crte != NULL) && 17487 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) && 17488 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) && 17489 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) && 17490 (len < (int)(sbavail(sb) - sb_offset))) { 17491 /* 17492 * Here we are doing hardware pacing, this is not a TLP, 17493 * we are not sending a pace max segment size, there is rwnd 17494 * room to send at least N pace_max_seg, the cwnd is greater 17495 * than or equal to a full pacing segments plus 4 mss and we have 2 or 17496 * more segments in flight and its not the tail of the socket buffer. 17497 * 17498 * We don't want to send instead we need to get more ack's in to 17499 * allow us to send a full pacing segment. Normally, if we are pacing 17500 * about the right speed, we should have finished our pacing 17501 * send as most of the acks have come back if we are at the 17502 * right rate. This is a bit fuzzy since return path delay 17503 * can delay the acks, which is why we want to make sure we 17504 * have cwnd space to have a bit more than a max pace segments in flight. 17505 * 17506 * If we have not gotten our acks back we are pacing at too high a 17507 * rate delaying will not hurt and will bring our GP estimate down by 17508 * injecting the delay. If we don't do this we will send 17509 * 2 MSS out in response to the acks being clocked in which 17510 * defeats the point of hw-pacing (i.e. to help us get 17511 * larger TSO's out). 17512 */ 17513 len = 0; 17514 17515 } 17516 17517 } 17518 /* len will be >= 0 after this point. */ 17519 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 17520 rack_sndbuf_autoscale(rack); 17521 /* 17522 * Decide if we can use TCP Segmentation Offloading (if supported by 17523 * hardware). 17524 * 17525 * TSO may only be used if we are in a pure bulk sending state. The 17526 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP 17527 * options prevent using TSO. With TSO the TCP header is the same 17528 * (except for the sequence number) for all generated packets. This 17529 * makes it impossible to transmit any options which vary per 17530 * generated segment or packet. 17531 * 17532 * IPv4 handling has a clear separation of ip options and ip header 17533 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does 17534 * the right thing below to provide length of just ip options and thus 17535 * checking for ipoptlen is enough to decide if ip options are present. 17536 */ 17537 ipoptlen = 0; 17538 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17539 /* 17540 * Pre-calculate here as we save another lookup into the darknesses 17541 * of IPsec that way and can actually decide if TSO is ok. 17542 */ 17543 #ifdef INET6 17544 if (isipv6 && IPSEC_ENABLED(ipv6)) 17545 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb); 17546 #ifdef INET 17547 else 17548 #endif 17549 #endif /* INET6 */ 17550 #ifdef INET 17551 if (IPSEC_ENABLED(ipv4)) 17552 ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb); 17553 #endif /* INET */ 17554 #endif 17555 17556 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17557 ipoptlen += ipsec_optlen; 17558 #endif 17559 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && 17560 (tp->t_port == 0) && 17561 ((tp->t_flags & TF_SIGNATURE) == 0) && 17562 tp->rcv_numsacks == 0 && sack_rxmit == 0 && 17563 ipoptlen == 0) 17564 tso = 1; 17565 { 17566 uint32_t outstanding __unused; 17567 17568 outstanding = tp->snd_max - tp->snd_una; 17569 if (tp->t_flags & TF_SENTFIN) { 17570 /* 17571 * If we sent a fin, snd_max is 1 higher than 17572 * snd_una 17573 */ 17574 outstanding--; 17575 } 17576 if (sack_rxmit) { 17577 if ((rsm->r_flags & RACK_HAS_FIN) == 0) 17578 flags &= ~TH_FIN; 17579 } else { 17580 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + 17581 sbused(sb))) 17582 flags &= ~TH_FIN; 17583 } 17584 } 17585 recwin = lmin(lmax(sbspace(&so->so_rcv), 0), 17586 (long)TCP_MAXWIN << tp->rcv_scale); 17587 17588 /* 17589 * Sender silly window avoidance. We transmit under the following 17590 * conditions when len is non-zero: 17591 * 17592 * - We have a full segment (or more with TSO) - This is the last 17593 * buffer in a write()/send() and we are either idle or running 17594 * NODELAY - we've timed out (e.g. persist timer) - we have more 17595 * then 1/2 the maximum send window's worth of data (receiver may be 17596 * limited the window size) - we need to retransmit 17597 */ 17598 if (len) { 17599 if (len >= segsiz) { 17600 goto send; 17601 } 17602 /* 17603 * NOTE! on localhost connections an 'ack' from the remote 17604 * end may occur synchronously with the output and cause us 17605 * to flush a buffer queued with moretocome. XXX 17606 * 17607 */ 17608 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ 17609 (idle || (tp->t_flags & TF_NODELAY)) && 17610 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17611 (tp->t_flags & TF_NOPUSH) == 0) { 17612 pass = 2; 17613 goto send; 17614 } 17615 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ 17616 pass = 22; 17617 goto send; 17618 } 17619 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { 17620 pass = 4; 17621 goto send; 17622 } 17623 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ 17624 pass = 5; 17625 goto send; 17626 } 17627 if (sack_rxmit) { 17628 pass = 6; 17629 goto send; 17630 } 17631 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && 17632 (ctf_outstanding(tp) < (segsiz * 2))) { 17633 /* 17634 * We have less than two MSS outstanding (delayed ack) 17635 * and our rwnd will not let us send a full sized 17636 * MSS. Lets go ahead and let this small segment 17637 * out because we want to try to have at least two 17638 * packets inflight to not be caught by delayed ack. 17639 */ 17640 pass = 12; 17641 goto send; 17642 } 17643 } 17644 /* 17645 * Sending of standalone window updates. 17646 * 17647 * Window updates are important when we close our window due to a 17648 * full socket buffer and are opening it again after the application 17649 * reads data from it. Once the window has opened again and the 17650 * remote end starts to send again the ACK clock takes over and 17651 * provides the most current window information. 17652 * 17653 * We must avoid the silly window syndrome whereas every read from 17654 * the receive buffer, no matter how small, causes a window update 17655 * to be sent. We also should avoid sending a flurry of window 17656 * updates when the socket buffer had queued a lot of data and the 17657 * application is doing small reads. 17658 * 17659 * Prevent a flurry of pointless window updates by only sending an 17660 * update when we can increase the advertized window by more than 17661 * 1/4th of the socket buffer capacity. When the buffer is getting 17662 * full or is very small be more aggressive and send an update 17663 * whenever we can increase by two mss sized segments. In all other 17664 * situations the ACK's to new incoming data will carry further 17665 * window increases. 17666 * 17667 * Don't send an independent window update if a delayed ACK is 17668 * pending (it will get piggy-backed on it) or the remote side 17669 * already has done a half-close and won't send more data. Skip 17670 * this if the connection is in T/TCP half-open state. 17671 */ 17672 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && 17673 !(tp->t_flags & TF_DELACK) && 17674 !TCPS_HAVERCVDFIN(tp->t_state)) { 17675 /* 17676 * "adv" is the amount we could increase the window, taking 17677 * into account that we are limited by TCP_MAXWIN << 17678 * tp->rcv_scale. 17679 */ 17680 int32_t adv; 17681 int oldwin; 17682 17683 adv = recwin; 17684 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { 17685 oldwin = (tp->rcv_adv - tp->rcv_nxt); 17686 if (adv > oldwin) 17687 adv -= oldwin; 17688 else { 17689 /* We can't increase the window */ 17690 adv = 0; 17691 } 17692 } else 17693 oldwin = 0; 17694 17695 /* 17696 * If the new window size ends up being the same as or less 17697 * than the old size when it is scaled, then don't force 17698 * a window update. 17699 */ 17700 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) 17701 goto dontupdate; 17702 17703 if (adv >= (int32_t)(2 * segsiz) && 17704 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || 17705 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || 17706 so->so_rcv.sb_hiwat <= 8 * segsiz)) { 17707 pass = 7; 17708 goto send; 17709 } 17710 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { 17711 pass = 23; 17712 goto send; 17713 } 17714 } 17715 dontupdate: 17716 17717 /* 17718 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW 17719 * is also a catch-all for the retransmit timer timeout case. 17720 */ 17721 if (tp->t_flags & TF_ACKNOW) { 17722 pass = 8; 17723 goto send; 17724 } 17725 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { 17726 pass = 9; 17727 goto send; 17728 } 17729 /* 17730 * If our state indicates that FIN should be sent and we have not 17731 * yet done so, then we need to send. 17732 */ 17733 if ((flags & TH_FIN) && 17734 (tp->snd_nxt == tp->snd_una)) { 17735 pass = 11; 17736 goto send; 17737 } 17738 /* 17739 * No reason to send a segment, just return. 17740 */ 17741 just_return: 17742 SOCKBUF_UNLOCK(sb); 17743 just_return_nolock: 17744 { 17745 int app_limited = CTF_JR_SENT_DATA; 17746 17747 if (tot_len_this_send > 0) { 17748 /* Make sure snd_nxt is up to max */ 17749 rack->r_ctl.fsb.recwin = recwin; 17750 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); 17751 if ((error == 0) && 17752 rack_use_rfo && 17753 ((flags & (TH_SYN|TH_FIN)) == 0) && 17754 (ipoptlen == 0) && 17755 (tp->snd_nxt == tp->snd_max) && 17756 (tp->rcv_numsacks == 0) && 17757 rack->r_fsb_inited && 17758 TCPS_HAVEESTABLISHED(tp->t_state) && 17759 (rack->r_must_retran == 0) && 17760 ((tp->t_flags & TF_NEEDFIN) == 0) && 17761 (len > 0) && (orig_len > 0) && 17762 (orig_len > len) && 17763 ((orig_len - len) >= segsiz) && 17764 ((optlen == 0) || 17765 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 17766 /* We can send at least one more MSS using our fsb */ 17767 17768 rack->r_fast_output = 1; 17769 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 17770 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 17771 rack->r_ctl.fsb.tcp_flags = flags; 17772 rack->r_ctl.fsb.left_to_send = orig_len - len; 17773 if (hw_tls) 17774 rack->r_ctl.fsb.hw_tls = 1; 17775 else 17776 rack->r_ctl.fsb.hw_tls = 0; 17777 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 17778 ("rack:%p left_to_send:%u sbavail:%u out:%u", 17779 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 17780 (tp->snd_max - tp->snd_una))); 17781 if (rack->r_ctl.fsb.left_to_send < segsiz) 17782 rack->r_fast_output = 0; 17783 else { 17784 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 17785 rack->r_ctl.fsb.rfo_apply_push = 1; 17786 else 17787 rack->r_ctl.fsb.rfo_apply_push = 0; 17788 } 17789 } else 17790 rack->r_fast_output = 0; 17791 17792 17793 rack_log_fsb(rack, tp, so, flags, 17794 ipoptlen, orig_len, len, 0, 17795 1, optlen, __LINE__, 1); 17796 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 17797 tp->snd_nxt = tp->snd_max; 17798 } else { 17799 int end_window = 0; 17800 uint32_t seq = tp->gput_ack; 17801 17802 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17803 if (rsm) { 17804 /* 17805 * Mark the last sent that we just-returned (hinting 17806 * that delayed ack may play a role in any rtt measurement). 17807 */ 17808 rsm->r_just_ret = 1; 17809 } 17810 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); 17811 rack->r_ctl.rc_agg_delayed = 0; 17812 rack->r_early = 0; 17813 rack->r_late = 0; 17814 rack->r_ctl.rc_agg_early = 0; 17815 if ((ctf_outstanding(tp) + 17816 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), 17817 minseg)) >= tp->snd_wnd) { 17818 /* We are limited by the rwnd */ 17819 app_limited = CTF_JR_RWND_LIMITED; 17820 if (IN_FASTRECOVERY(tp->t_flags)) 17821 rack->r_ctl.rc_prr_sndcnt = 0; 17822 } else if (ctf_outstanding(tp) >= sbavail(sb)) { 17823 /* We are limited by whats available -- app limited */ 17824 app_limited = CTF_JR_APP_LIMITED; 17825 if (IN_FASTRECOVERY(tp->t_flags)) 17826 rack->r_ctl.rc_prr_sndcnt = 0; 17827 } else if ((idle == 0) && 17828 ((tp->t_flags & TF_NODELAY) == 0) && 17829 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17830 (len < segsiz)) { 17831 /* 17832 * No delay is not on and the 17833 * user is sending less than 1MSS. This 17834 * brings out SWS avoidance so we 17835 * don't send. Another app-limited case. 17836 */ 17837 app_limited = CTF_JR_APP_LIMITED; 17838 } else if (tp->t_flags & TF_NOPUSH) { 17839 /* 17840 * The user has requested no push of 17841 * the last segment and we are 17842 * at the last segment. Another app 17843 * limited case. 17844 */ 17845 app_limited = CTF_JR_APP_LIMITED; 17846 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { 17847 /* Its the cwnd */ 17848 app_limited = CTF_JR_CWND_LIMITED; 17849 } else if (IN_FASTRECOVERY(tp->t_flags) && 17850 (rack->rack_no_prr == 0) && 17851 (rack->r_ctl.rc_prr_sndcnt < segsiz)) { 17852 app_limited = CTF_JR_PRR; 17853 } else { 17854 /* Now why here are we not sending? */ 17855 #ifdef NOW 17856 #ifdef INVARIANTS 17857 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); 17858 #endif 17859 #endif 17860 app_limited = CTF_JR_ASSESSING; 17861 } 17862 /* 17863 * App limited in some fashion, for our pacing GP 17864 * measurements we don't want any gap (even cwnd). 17865 * Close down the measurement window. 17866 */ 17867 if (rack_cwnd_block_ends_measure && 17868 ((app_limited == CTF_JR_CWND_LIMITED) || 17869 (app_limited == CTF_JR_PRR))) { 17870 /* 17871 * The reason we are not sending is 17872 * the cwnd (or prr). We have been configured 17873 * to end the measurement window in 17874 * this case. 17875 */ 17876 end_window = 1; 17877 } else if (rack_rwnd_block_ends_measure && 17878 (app_limited == CTF_JR_RWND_LIMITED)) { 17879 /* 17880 * We are rwnd limited and have been 17881 * configured to end the measurement 17882 * window in this case. 17883 */ 17884 end_window = 1; 17885 } else if (app_limited == CTF_JR_APP_LIMITED) { 17886 /* 17887 * A true application limited period, we have 17888 * ran out of data. 17889 */ 17890 end_window = 1; 17891 } else if (app_limited == CTF_JR_ASSESSING) { 17892 /* 17893 * In the assessing case we hit the end of 17894 * the if/else and had no known reason 17895 * This will panic us under invariants.. 17896 * 17897 * If we get this out in logs we need to 17898 * investagate which reason we missed. 17899 */ 17900 end_window = 1; 17901 } 17902 if (end_window) { 17903 uint8_t log = 0; 17904 17905 /* Adjust the Gput measurement */ 17906 if ((tp->t_flags & TF_GPUTINPROG) && 17907 SEQ_GT(tp->gput_ack, tp->snd_max)) { 17908 tp->gput_ack = tp->snd_max; 17909 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 17910 /* 17911 * There is not enough to measure. 17912 */ 17913 tp->t_flags &= ~TF_GPUTINPROG; 17914 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 17915 rack->r_ctl.rc_gp_srtt /*flex1*/, 17916 tp->gput_seq, 17917 0, 0, 18, __LINE__, NULL, 0); 17918 } else 17919 log = 1; 17920 } 17921 /* Mark the last packet has app limited */ 17922 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17923 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 17924 if (rack->r_ctl.rc_app_limited_cnt == 0) 17925 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 17926 else { 17927 /* 17928 * Go out to the end app limited and mark 17929 * this new one as next and move the end_appl up 17930 * to this guy. 17931 */ 17932 if (rack->r_ctl.rc_end_appl) 17933 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 17934 rack->r_ctl.rc_end_appl = rsm; 17935 } 17936 rsm->r_flags |= RACK_APP_LIMITED; 17937 rack->r_ctl.rc_app_limited_cnt++; 17938 } 17939 if (log) 17940 rack_log_pacing_delay_calc(rack, 17941 rack->r_ctl.rc_app_limited_cnt, seq, 17942 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0); 17943 } 17944 } 17945 /* Check if we need to go into persists or not */ 17946 if ((tp->snd_max == tp->snd_una) && 17947 TCPS_HAVEESTABLISHED(tp->t_state) && 17948 sbavail(sb) && 17949 (sbavail(sb) > tp->snd_wnd) && 17950 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { 17951 /* Yes lets make sure to move to persist before timer-start */ 17952 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 17953 } 17954 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); 17955 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); 17956 } 17957 #ifdef NETFLIX_SHARED_CWND 17958 if ((sbavail(sb) == 0) && 17959 rack->r_ctl.rc_scw) { 17960 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17961 rack->rack_scwnd_is_idle = 1; 17962 } 17963 #endif 17964 #ifdef TCP_ACCOUNTING 17965 if (tot_len_this_send > 0) { 17966 crtsc = get_cyclecount(); 17967 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17968 tp->tcp_cnt_counters[SND_OUT_DATA]++; 17969 } 17970 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 17971 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17972 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 17973 } 17974 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 17975 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17976 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz); 17977 } 17978 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz)); 17979 } else { 17980 crtsc = get_cyclecount(); 17981 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17982 tp->tcp_cnt_counters[SND_LIMITED]++; 17983 } 17984 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1); 17985 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17986 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val); 17987 } 17988 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val)); 17989 } 17990 sched_unpin(); 17991 #endif 17992 return (0); 17993 17994 send: 17995 if (rsm || sack_rxmit) 17996 counter_u64_add(rack_nfto_resend, 1); 17997 else 17998 counter_u64_add(rack_non_fto_send, 1); 17999 if ((flags & TH_FIN) && 18000 sbavail(sb)) { 18001 /* 18002 * We do not transmit a FIN 18003 * with data outstanding. We 18004 * need to make it so all data 18005 * is acked first. 18006 */ 18007 flags &= ~TH_FIN; 18008 } 18009 /* Enforce stack imposed max seg size if we have one */ 18010 if (rack->r_ctl.rc_pace_max_segs && 18011 (len > rack->r_ctl.rc_pace_max_segs)) { 18012 mark = 1; 18013 len = rack->r_ctl.rc_pace_max_segs; 18014 } 18015 SOCKBUF_LOCK_ASSERT(sb); 18016 if (len > 0) { 18017 if (len >= segsiz) 18018 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; 18019 else 18020 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; 18021 } 18022 /* 18023 * Before ESTABLISHED, force sending of initial options unless TCP 18024 * set not to do any options. NOTE: we assume that the IP/TCP header 18025 * plus TCP options always fit in a single mbuf, leaving room for a 18026 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) 18027 * + optlen <= MCLBYTES 18028 */ 18029 optlen = 0; 18030 #ifdef INET6 18031 if (isipv6) 18032 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 18033 else 18034 #endif 18035 hdrlen = sizeof(struct tcpiphdr); 18036 18037 /* 18038 * Compute options for segment. We only have to care about SYN and 18039 * established connection segments. Options for SYN-ACK segments 18040 * are handled in TCP syncache. 18041 */ 18042 to.to_flags = 0; 18043 if ((tp->t_flags & TF_NOOPT) == 0) { 18044 /* Maximum segment size. */ 18045 if (flags & TH_SYN) { 18046 tp->snd_nxt = tp->iss; 18047 to.to_mss = tcp_mssopt(&inp->inp_inc); 18048 if (tp->t_port) 18049 to.to_mss -= V_tcp_udp_tunneling_overhead; 18050 to.to_flags |= TOF_MSS; 18051 18052 /* 18053 * On SYN or SYN|ACK transmits on TFO connections, 18054 * only include the TFO option if it is not a 18055 * retransmit, as the presence of the TFO option may 18056 * have caused the original SYN or SYN|ACK to have 18057 * been dropped by a middlebox. 18058 */ 18059 if (IS_FASTOPEN(tp->t_flags) && 18060 (tp->t_rxtshift == 0)) { 18061 if (tp->t_state == TCPS_SYN_RECEIVED) { 18062 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; 18063 to.to_tfo_cookie = 18064 (u_int8_t *)&tp->t_tfo_cookie.server; 18065 to.to_flags |= TOF_FASTOPEN; 18066 wanted_cookie = 1; 18067 } else if (tp->t_state == TCPS_SYN_SENT) { 18068 to.to_tfo_len = 18069 tp->t_tfo_client_cookie_len; 18070 to.to_tfo_cookie = 18071 tp->t_tfo_cookie.client; 18072 to.to_flags |= TOF_FASTOPEN; 18073 wanted_cookie = 1; 18074 /* 18075 * If we wind up having more data to 18076 * send with the SYN than can fit in 18077 * one segment, don't send any more 18078 * until the SYN|ACK comes back from 18079 * the other end. 18080 */ 18081 sendalot = 0; 18082 } 18083 } 18084 } 18085 /* Window scaling. */ 18086 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { 18087 to.to_wscale = tp->request_r_scale; 18088 to.to_flags |= TOF_SCALE; 18089 } 18090 /* Timestamps. */ 18091 if ((tp->t_flags & TF_RCVD_TSTMP) || 18092 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { 18093 to.to_tsval = ms_cts + tp->ts_offset; 18094 to.to_tsecr = tp->ts_recent; 18095 to.to_flags |= TOF_TS; 18096 } 18097 /* Set receive buffer autosizing timestamp. */ 18098 if (tp->rfbuf_ts == 0 && 18099 (so->so_rcv.sb_flags & SB_AUTOSIZE)) 18100 tp->rfbuf_ts = tcp_ts_getticks(); 18101 /* Selective ACK's. */ 18102 if (tp->t_flags & TF_SACK_PERMIT) { 18103 if (flags & TH_SYN) 18104 to.to_flags |= TOF_SACKPERM; 18105 else if (TCPS_HAVEESTABLISHED(tp->t_state) && 18106 tp->rcv_numsacks > 0) { 18107 to.to_flags |= TOF_SACK; 18108 to.to_nsacks = tp->rcv_numsacks; 18109 to.to_sacks = (u_char *)tp->sackblks; 18110 } 18111 } 18112 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18113 /* TCP-MD5 (RFC2385). */ 18114 if (tp->t_flags & TF_SIGNATURE) 18115 to.to_flags |= TOF_SIGNATURE; 18116 #endif /* TCP_SIGNATURE */ 18117 18118 /* Processing the options. */ 18119 hdrlen += optlen = tcp_addoptions(&to, opt); 18120 /* 18121 * If we wanted a TFO option to be added, but it was unable 18122 * to fit, ensure no data is sent. 18123 */ 18124 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && 18125 !(to.to_flags & TOF_FASTOPEN)) 18126 len = 0; 18127 } 18128 if (tp->t_port) { 18129 if (V_tcp_udp_tunneling_port == 0) { 18130 /* The port was removed?? */ 18131 SOCKBUF_UNLOCK(&so->so_snd); 18132 #ifdef TCP_ACCOUNTING 18133 crtsc = get_cyclecount(); 18134 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18135 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18136 } 18137 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18138 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18139 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18140 } 18141 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18142 sched_unpin(); 18143 #endif 18144 return (EHOSTUNREACH); 18145 } 18146 hdrlen += sizeof(struct udphdr); 18147 } 18148 #ifdef INET6 18149 if (isipv6) 18150 ipoptlen = ip6_optlen(tp->t_inpcb); 18151 else 18152 #endif 18153 if (tp->t_inpcb->inp_options) 18154 ipoptlen = tp->t_inpcb->inp_options->m_len - 18155 offsetof(struct ipoption, ipopt_list); 18156 else 18157 ipoptlen = 0; 18158 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18159 ipoptlen += ipsec_optlen; 18160 #endif 18161 18162 /* 18163 * Adjust data length if insertion of options will bump the packet 18164 * length beyond the t_maxseg length. Clear the FIN bit because we 18165 * cut off the tail of the segment. 18166 */ 18167 if (len + optlen + ipoptlen > tp->t_maxseg) { 18168 if (tso) { 18169 uint32_t if_hw_tsomax; 18170 uint32_t moff; 18171 int32_t max_len; 18172 18173 /* extract TSO information */ 18174 if_hw_tsomax = tp->t_tsomax; 18175 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 18176 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 18177 KASSERT(ipoptlen == 0, 18178 ("%s: TSO can't do IP options", __func__)); 18179 18180 /* 18181 * Check if we should limit by maximum payload 18182 * length: 18183 */ 18184 if (if_hw_tsomax != 0) { 18185 /* compute maximum TSO length */ 18186 max_len = (if_hw_tsomax - hdrlen - 18187 max_linkhdr); 18188 if (max_len <= 0) { 18189 len = 0; 18190 } else if (len > max_len) { 18191 sendalot = 1; 18192 len = max_len; 18193 mark = 2; 18194 } 18195 } 18196 /* 18197 * Prevent the last segment from being fractional 18198 * unless the send sockbuf can be emptied: 18199 */ 18200 max_len = (tp->t_maxseg - optlen); 18201 if ((sb_offset + len) < sbavail(sb)) { 18202 moff = len % (u_int)max_len; 18203 if (moff != 0) { 18204 mark = 3; 18205 len -= moff; 18206 } 18207 } 18208 /* 18209 * In case there are too many small fragments don't 18210 * use TSO: 18211 */ 18212 if (len <= segsiz) { 18213 mark = 4; 18214 tso = 0; 18215 } 18216 /* 18217 * Send the FIN in a separate segment after the bulk 18218 * sending is done. We don't trust the TSO 18219 * implementations to clear the FIN flag on all but 18220 * the last segment. 18221 */ 18222 if (tp->t_flags & TF_NEEDFIN) { 18223 sendalot = 4; 18224 } 18225 } else { 18226 mark = 5; 18227 if (optlen + ipoptlen >= tp->t_maxseg) { 18228 /* 18229 * Since we don't have enough space to put 18230 * the IP header chain and the TCP header in 18231 * one packet as required by RFC 7112, don't 18232 * send it. Also ensure that at least one 18233 * byte of the payload can be put into the 18234 * TCP segment. 18235 */ 18236 SOCKBUF_UNLOCK(&so->so_snd); 18237 error = EMSGSIZE; 18238 sack_rxmit = 0; 18239 goto out; 18240 } 18241 len = tp->t_maxseg - optlen - ipoptlen; 18242 sendalot = 5; 18243 } 18244 } else { 18245 tso = 0; 18246 mark = 6; 18247 } 18248 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, 18249 ("%s: len > IP_MAXPACKET", __func__)); 18250 #ifdef DIAGNOSTIC 18251 #ifdef INET6 18252 if (max_linkhdr + hdrlen > MCLBYTES) 18253 #else 18254 if (max_linkhdr + hdrlen > MHLEN) 18255 #endif 18256 panic("tcphdr too big"); 18257 #endif 18258 18259 /* 18260 * This KASSERT is here to catch edge cases at a well defined place. 18261 * Before, those had triggered (random) panic conditions further 18262 * down. 18263 */ 18264 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 18265 if ((len == 0) && 18266 (flags & TH_FIN) && 18267 (sbused(sb))) { 18268 /* 18269 * We have outstanding data, don't send a fin by itself!. 18270 */ 18271 goto just_return; 18272 } 18273 /* 18274 * Grab a header mbuf, attaching a copy of data to be transmitted, 18275 * and initialize the header from the template for sends on this 18276 * connection. 18277 */ 18278 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0; 18279 if (len) { 18280 uint32_t max_val; 18281 uint32_t moff; 18282 18283 if (rack->r_ctl.rc_pace_max_segs) 18284 max_val = rack->r_ctl.rc_pace_max_segs; 18285 else if (rack->rc_user_set_max_segs) 18286 max_val = rack->rc_user_set_max_segs * segsiz; 18287 else 18288 max_val = len; 18289 /* 18290 * We allow a limit on sending with hptsi. 18291 */ 18292 if (len > max_val) { 18293 mark = 7; 18294 len = max_val; 18295 } 18296 #ifdef INET6 18297 if (MHLEN < hdrlen + max_linkhdr) 18298 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 18299 else 18300 #endif 18301 m = m_gethdr(M_NOWAIT, MT_DATA); 18302 18303 if (m == NULL) { 18304 SOCKBUF_UNLOCK(sb); 18305 error = ENOBUFS; 18306 sack_rxmit = 0; 18307 goto out; 18308 } 18309 m->m_data += max_linkhdr; 18310 m->m_len = hdrlen; 18311 18312 /* 18313 * Start the m_copy functions from the closest mbuf to the 18314 * sb_offset in the socket buffer chain. 18315 */ 18316 mb = sbsndptr_noadv(sb, sb_offset, &moff); 18317 s_mb = mb; 18318 s_moff = moff; 18319 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { 18320 m_copydata(mb, moff, (int)len, 18321 mtod(m, caddr_t)+hdrlen); 18322 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18323 sbsndptr_adv(sb, mb, len); 18324 m->m_len += len; 18325 } else { 18326 struct sockbuf *msb; 18327 18328 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18329 msb = NULL; 18330 else 18331 msb = sb; 18332 m->m_next = tcp_m_copym( 18333 mb, moff, &len, 18334 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, 18335 ((rsm == NULL) ? hw_tls : 0) 18336 #ifdef NETFLIX_COPY_ARGS 18337 , &s_mb, &s_moff 18338 #endif 18339 ); 18340 if (len <= (tp->t_maxseg - optlen)) { 18341 /* 18342 * Must have ran out of mbufs for the copy 18343 * shorten it to no longer need tso. Lets 18344 * not put on sendalot since we are low on 18345 * mbufs. 18346 */ 18347 tso = 0; 18348 } 18349 if (m->m_next == NULL) { 18350 SOCKBUF_UNLOCK(sb); 18351 (void)m_free(m); 18352 error = ENOBUFS; 18353 sack_rxmit = 0; 18354 goto out; 18355 } 18356 } 18357 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { 18358 if (rsm && (rsm->r_flags & RACK_TLP)) { 18359 /* 18360 * TLP should not count in retran count, but 18361 * in its own bin 18362 */ 18363 counter_u64_add(rack_tlp_retran, 1); 18364 counter_u64_add(rack_tlp_retran_bytes, len); 18365 } else { 18366 tp->t_sndrexmitpack++; 18367 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 18368 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 18369 } 18370 #ifdef STATS 18371 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 18372 len); 18373 #endif 18374 } else { 18375 KMOD_TCPSTAT_INC(tcps_sndpack); 18376 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 18377 #ifdef STATS 18378 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 18379 len); 18380 #endif 18381 } 18382 /* 18383 * If we're sending everything we've got, set PUSH. (This 18384 * will keep happy those implementations which only give 18385 * data to the user when a buffer fills or a PUSH comes in.) 18386 */ 18387 if (sb_offset + len == sbused(sb) && 18388 sbused(sb) && 18389 !(flags & TH_SYN)) { 18390 flags |= TH_PUSH; 18391 add_flag |= RACK_HAD_PUSH; 18392 } 18393 18394 SOCKBUF_UNLOCK(sb); 18395 } else { 18396 SOCKBUF_UNLOCK(sb); 18397 if (tp->t_flags & TF_ACKNOW) 18398 KMOD_TCPSTAT_INC(tcps_sndacks); 18399 else if (flags & (TH_SYN | TH_FIN | TH_RST)) 18400 KMOD_TCPSTAT_INC(tcps_sndctrl); 18401 else 18402 KMOD_TCPSTAT_INC(tcps_sndwinup); 18403 18404 m = m_gethdr(M_NOWAIT, MT_DATA); 18405 if (m == NULL) { 18406 error = ENOBUFS; 18407 sack_rxmit = 0; 18408 goto out; 18409 } 18410 #ifdef INET6 18411 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && 18412 MHLEN >= hdrlen) { 18413 M_ALIGN(m, hdrlen); 18414 } else 18415 #endif 18416 m->m_data += max_linkhdr; 18417 m->m_len = hdrlen; 18418 } 18419 SOCKBUF_UNLOCK_ASSERT(sb); 18420 m->m_pkthdr.rcvif = (struct ifnet *)0; 18421 #ifdef MAC 18422 mac_inpcb_create_mbuf(inp, m); 18423 #endif 18424 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18425 #ifdef INET6 18426 if (isipv6) 18427 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 18428 else 18429 #endif /* INET6 */ 18430 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 18431 th = rack->r_ctl.fsb.th; 18432 udp = rack->r_ctl.fsb.udp; 18433 if (udp) { 18434 #ifdef INET6 18435 if (isipv6) 18436 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18437 else 18438 #endif /* INET6 */ 18439 ulen = hdrlen + len - sizeof(struct ip); 18440 udp->uh_ulen = htons(ulen); 18441 } 18442 } else { 18443 #ifdef INET6 18444 if (isipv6) { 18445 ip6 = mtod(m, struct ip6_hdr *); 18446 if (tp->t_port) { 18447 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 18448 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18449 udp->uh_dport = tp->t_port; 18450 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18451 udp->uh_ulen = htons(ulen); 18452 th = (struct tcphdr *)(udp + 1); 18453 } else 18454 th = (struct tcphdr *)(ip6 + 1); 18455 tcpip_fillheaders(inp, tp->t_port, ip6, th); 18456 } else 18457 #endif /* INET6 */ 18458 { 18459 ip = mtod(m, struct ip *); 18460 if (tp->t_port) { 18461 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 18462 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18463 udp->uh_dport = tp->t_port; 18464 ulen = hdrlen + len - sizeof(struct ip); 18465 udp->uh_ulen = htons(ulen); 18466 th = (struct tcphdr *)(udp + 1); 18467 } else 18468 th = (struct tcphdr *)(ip + 1); 18469 tcpip_fillheaders(inp, tp->t_port, ip, th); 18470 } 18471 } 18472 /* 18473 * Fill in fields, remembering maximum advertised window for use in 18474 * delaying messages about window sizes. If resending a FIN, be sure 18475 * not to use a new sequence number. 18476 */ 18477 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && 18478 tp->snd_nxt == tp->snd_max) 18479 tp->snd_nxt--; 18480 /* 18481 * If we are starting a connection, send ECN setup SYN packet. If we 18482 * are on a retransmit, we may resend those bits a number of times 18483 * as per RFC 3168. 18484 */ 18485 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) { 18486 flags |= tcp_ecn_output_syn_sent(tp); 18487 } 18488 /* Also handle parallel SYN for ECN */ 18489 if (TCPS_HAVERCVDSYN(tp->t_state) && 18490 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 18491 int ect = tcp_ecn_output_established(tp, &flags, len, sack_rxmit); 18492 if ((tp->t_state == TCPS_SYN_RECEIVED) && 18493 (tp->t_flags2 & TF2_ECN_SND_ECE)) 18494 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 18495 #ifdef INET6 18496 if (isipv6) { 18497 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 18498 ip6->ip6_flow |= htonl(ect << 20); 18499 } 18500 else 18501 #endif 18502 { 18503 ip->ip_tos &= ~IPTOS_ECN_MASK; 18504 ip->ip_tos |= ect; 18505 } 18506 } 18507 /* 18508 * If we are doing retransmissions, then snd_nxt will not reflect 18509 * the first unsent octet. For ACK only packets, we do not want the 18510 * sequence number of the retransmitted packet, we want the sequence 18511 * number of the next unsent octet. So, if there is no data (and no 18512 * SYN or FIN), use snd_max instead of snd_nxt when filling in 18513 * ti_seq. But if we are in persist state, snd_max might reflect 18514 * one byte beyond the right edge of the window, so use snd_nxt in 18515 * that case, since we know we aren't doing a retransmission. 18516 * (retransmit and persist are mutually exclusive...) 18517 */ 18518 if (sack_rxmit == 0) { 18519 if (len || (flags & (TH_SYN | TH_FIN))) { 18520 th->th_seq = htonl(tp->snd_nxt); 18521 rack_seq = tp->snd_nxt; 18522 } else { 18523 th->th_seq = htonl(tp->snd_max); 18524 rack_seq = tp->snd_max; 18525 } 18526 } else { 18527 th->th_seq = htonl(rsm->r_start); 18528 rack_seq = rsm->r_start; 18529 } 18530 th->th_ack = htonl(tp->rcv_nxt); 18531 tcp_set_flags(th, flags); 18532 /* 18533 * Calculate receive window. Don't shrink window, but avoid silly 18534 * window syndrome. 18535 * If a RST segment is sent, advertise a window of zero. 18536 */ 18537 if (flags & TH_RST) { 18538 recwin = 0; 18539 } else { 18540 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && 18541 recwin < (long)segsiz) { 18542 recwin = 0; 18543 } 18544 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && 18545 recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) 18546 recwin = (long)(tp->rcv_adv - tp->rcv_nxt); 18547 } 18548 18549 /* 18550 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or 18551 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is 18552 * handled in syncache. 18553 */ 18554 if (flags & TH_SYN) 18555 th->th_win = htons((u_short) 18556 (min(sbspace(&so->so_rcv), TCP_MAXWIN))); 18557 else { 18558 /* Avoid shrinking window with window scaling. */ 18559 recwin = roundup2(recwin, 1 << tp->rcv_scale); 18560 th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); 18561 } 18562 /* 18563 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 18564 * window. This may cause the remote transmitter to stall. This 18565 * flag tells soreceive() to disable delayed acknowledgements when 18566 * draining the buffer. This can occur if the receiver is 18567 * attempting to read more data than can be buffered prior to 18568 * transmitting on the connection. 18569 */ 18570 if (th->th_win == 0) { 18571 tp->t_sndzerowin++; 18572 tp->t_flags |= TF_RXWIN0SENT; 18573 } else 18574 tp->t_flags &= ~TF_RXWIN0SENT; 18575 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 18576 /* Now are we using fsb?, if so copy the template data to the mbuf */ 18577 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18578 uint8_t *cpto; 18579 18580 cpto = mtod(m, uint8_t *); 18581 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 18582 /* 18583 * We have just copied in: 18584 * IP/IP6 18585 * <optional udphdr> 18586 * tcphdr (no options) 18587 * 18588 * We need to grab the correct pointers into the mbuf 18589 * for both the tcp header, and possibly the udp header (if tunneling). 18590 * We do this by using the offset in the copy buffer and adding it 18591 * to the mbuf base pointer (cpto). 18592 */ 18593 #ifdef INET6 18594 if (isipv6) 18595 ip6 = mtod(m, struct ip6_hdr *); 18596 else 18597 #endif /* INET6 */ 18598 ip = mtod(m, struct ip *); 18599 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 18600 /* If we have a udp header lets set it into the mbuf as well */ 18601 if (udp) 18602 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr)); 18603 } 18604 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18605 if (to.to_flags & TOF_SIGNATURE) { 18606 /* 18607 * Calculate MD5 signature and put it into the place 18608 * determined before. 18609 * NOTE: since TCP options buffer doesn't point into 18610 * mbuf's data, calculate offset and use it. 18611 */ 18612 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 18613 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 18614 /* 18615 * Do not send segment if the calculation of MD5 18616 * digest has failed. 18617 */ 18618 goto out; 18619 } 18620 } 18621 #endif 18622 if (optlen) { 18623 bcopy(opt, th + 1, optlen); 18624 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 18625 } 18626 /* 18627 * Put TCP length in extended header, and then checksum extended 18628 * header and data. 18629 */ 18630 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 18631 #ifdef INET6 18632 if (isipv6) { 18633 /* 18634 * ip6_plen is not need to be filled now, and will be filled 18635 * in ip6_output. 18636 */ 18637 if (tp->t_port) { 18638 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 18639 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18640 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 18641 th->th_sum = htons(0); 18642 UDPSTAT_INC(udps_opackets); 18643 } else { 18644 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 18645 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18646 th->th_sum = in6_cksum_pseudo(ip6, 18647 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 18648 0); 18649 } 18650 } 18651 #endif 18652 #if defined(INET6) && defined(INET) 18653 else 18654 #endif 18655 #ifdef INET 18656 { 18657 if (tp->t_port) { 18658 m->m_pkthdr.csum_flags = CSUM_UDP; 18659 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18660 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 18661 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 18662 th->th_sum = htons(0); 18663 UDPSTAT_INC(udps_opackets); 18664 } else { 18665 m->m_pkthdr.csum_flags = CSUM_TCP; 18666 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18667 th->th_sum = in_pseudo(ip->ip_src.s_addr, 18668 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 18669 IPPROTO_TCP + len + optlen)); 18670 } 18671 /* IP version must be set here for ipv4/ipv6 checking later */ 18672 KASSERT(ip->ip_v == IPVERSION, 18673 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 18674 } 18675 #endif 18676 /* 18677 * Enable TSO and specify the size of the segments. The TCP pseudo 18678 * header checksum is always provided. XXX: Fixme: This is currently 18679 * not the case for IPv6. 18680 */ 18681 if (tso) { 18682 KASSERT(len > tp->t_maxseg - optlen, 18683 ("%s: len <= tso_segsz", __func__)); 18684 m->m_pkthdr.csum_flags |= CSUM_TSO; 18685 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 18686 } 18687 KASSERT(len + hdrlen == m_length(m, NULL), 18688 ("%s: mbuf chain different than expected: %d + %u != %u", 18689 __func__, len, hdrlen, m_length(m, NULL))); 18690 18691 #ifdef TCP_HHOOK 18692 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ 18693 hhook_run_tcp_est_out(tp, th, &to, len, tso); 18694 #endif 18695 /* We're getting ready to send; log now. */ 18696 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 18697 union tcp_log_stackspecific log; 18698 18699 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 18700 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp); 18701 if (rack->rack_no_prr) 18702 log.u_bbr.flex1 = 0; 18703 else 18704 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 18705 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 18706 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 18707 log.u_bbr.flex4 = orig_len; 18708 /* Save off the early/late values */ 18709 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 18710 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 18711 log.u_bbr.bw_inuse = rack_get_bw(rack); 18712 log.u_bbr.flex8 = 0; 18713 if (rsm) { 18714 if (rsm->r_flags & RACK_RWND_COLLAPSED) { 18715 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm); 18716 counter_u64_add(rack_collapsed_win_rxt, 1); 18717 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start)); 18718 } 18719 if (doing_tlp) 18720 log.u_bbr.flex8 = 2; 18721 else 18722 log.u_bbr.flex8 = 1; 18723 } else { 18724 if (doing_tlp) 18725 log.u_bbr.flex8 = 3; 18726 else 18727 log.u_bbr.flex8 = 0; 18728 } 18729 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 18730 log.u_bbr.flex7 = mark; 18731 log.u_bbr.flex7 <<= 8; 18732 log.u_bbr.flex7 |= pass; 18733 log.u_bbr.pkts_out = tp->t_maxseg; 18734 log.u_bbr.timeStamp = cts; 18735 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18736 log.u_bbr.lt_epoch = cwnd_to_use; 18737 log.u_bbr.delivered = sendalot; 18738 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, 18739 len, &log, false, NULL, NULL, 0, &tv); 18740 } else 18741 lgb = NULL; 18742 18743 /* 18744 * Fill in IP length and desired time to live and send to IP level. 18745 * There should be a better way to handle ttl and tos; we could keep 18746 * them in the template, but need a way to checksum without them. 18747 */ 18748 /* 18749 * m->m_pkthdr.len should have been set before cksum calcuration, 18750 * because in6_cksum() need it. 18751 */ 18752 #ifdef INET6 18753 if (isipv6) { 18754 /* 18755 * we separately set hoplimit for every segment, since the 18756 * user might want to change the value via setsockopt. Also, 18757 * desired default hop limit might be changed via Neighbor 18758 * Discovery. 18759 */ 18760 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL); 18761 18762 /* 18763 * Set the packet size here for the benefit of DTrace 18764 * probes. ip6_output() will set it properly; it's supposed 18765 * to include the option header lengths as well. 18766 */ 18767 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 18768 18769 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 18770 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18771 else 18772 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18773 18774 if (tp->t_state == TCPS_SYN_SENT) 18775 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); 18776 18777 TCP_PROBE5(send, NULL, tp, ip6, tp, th); 18778 /* TODO: IPv6 IP6TOS_ECT bit on */ 18779 error = ip6_output(m, 18780 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18781 inp->in6p_outputopts, 18782 #else 18783 NULL, 18784 #endif 18785 &inp->inp_route6, 18786 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 18787 NULL, NULL, inp); 18788 18789 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) 18790 mtu = inp->inp_route6.ro_nh->nh_mtu; 18791 } 18792 #endif /* INET6 */ 18793 #if defined(INET) && defined(INET6) 18794 else 18795 #endif 18796 #ifdef INET 18797 { 18798 ip->ip_len = htons(m->m_pkthdr.len); 18799 #ifdef INET6 18800 if (inp->inp_vflag & INP_IPV6PROTO) 18801 ip->ip_ttl = in6_selecthlim(inp, NULL); 18802 #endif /* INET6 */ 18803 rack->r_ctl.fsb.hoplimit = ip->ip_ttl; 18804 /* 18805 * If we do path MTU discovery, then we set DF on every 18806 * packet. This might not be the best thing to do according 18807 * to RFC3390 Section 2. However the tcp hostcache migitates 18808 * the problem so it affects only the first tcp connection 18809 * with a host. 18810 * 18811 * NB: Don't set DF on small MTU/MSS to have a safe 18812 * fallback. 18813 */ 18814 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 18815 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18816 if (tp->t_port == 0 || len < V_tcp_minmss) { 18817 ip->ip_off |= htons(IP_DF); 18818 } 18819 } else { 18820 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18821 } 18822 18823 if (tp->t_state == TCPS_SYN_SENT) 18824 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); 18825 18826 TCP_PROBE5(send, NULL, tp, ip, tp, th); 18827 18828 error = ip_output(m, 18829 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18830 inp->inp_options, 18831 #else 18832 NULL, 18833 #endif 18834 &inp->inp_route, 18835 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, 18836 inp); 18837 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) 18838 mtu = inp->inp_route.ro_nh->nh_mtu; 18839 } 18840 #endif /* INET */ 18841 18842 out: 18843 if (lgb) { 18844 lgb->tlb_errno = error; 18845 lgb = NULL; 18846 } 18847 /* 18848 * In transmit state, time the transmission and arrange for the 18849 * retransmit. In persist state, just set snd_max. 18850 */ 18851 if (error == 0) { 18852 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls); 18853 if (rsm && doing_tlp) { 18854 rack->rc_last_sent_tlp_past_cumack = 0; 18855 rack->rc_last_sent_tlp_seq_valid = 1; 18856 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 18857 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 18858 } 18859 rack->forced_ack = 0; /* If we send something zap the FA flag */ 18860 if (rsm && (doing_tlp == 0)) { 18861 /* Set we retransmitted */ 18862 rack->rc_gp_saw_rec = 1; 18863 } else { 18864 if (cwnd_to_use > tp->snd_ssthresh) { 18865 /* Set we sent in CA */ 18866 rack->rc_gp_saw_ca = 1; 18867 } else { 18868 /* Set we sent in SS */ 18869 rack->rc_gp_saw_ss = 1; 18870 } 18871 } 18872 if (TCPS_HAVEESTABLISHED(tp->t_state) && 18873 (tp->t_flags & TF_SACK_PERMIT) && 18874 tp->rcv_numsacks > 0) 18875 tcp_clean_dsack_blocks(tp); 18876 tot_len_this_send += len; 18877 if (len == 0) 18878 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); 18879 else if (len == 1) { 18880 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); 18881 } else if (len > 1) { 18882 int idx; 18883 18884 idx = (len / segsiz) + 3; 18885 if (idx >= TCP_MSS_ACCT_ATIMER) 18886 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 18887 else 18888 counter_u64_add(rack_out_size[idx], 1); 18889 } 18890 } 18891 if ((rack->rack_no_prr == 0) && 18892 sub_from_prr && 18893 (error == 0)) { 18894 if (rack->r_ctl.rc_prr_sndcnt >= len) 18895 rack->r_ctl.rc_prr_sndcnt -= len; 18896 else 18897 rack->r_ctl.rc_prr_sndcnt = 0; 18898 } 18899 sub_from_prr = 0; 18900 if (doing_tlp) { 18901 /* Make sure the TLP is added */ 18902 add_flag |= RACK_TLP; 18903 } else if (rsm) { 18904 /* If its a resend without TLP then it must not have the flag */ 18905 rsm->r_flags &= ~RACK_TLP; 18906 } 18907 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, 18908 rack_to_usec_ts(&tv), 18909 rsm, add_flag, s_mb, s_moff, hw_tls); 18910 18911 18912 if ((error == 0) && 18913 (len > 0) && 18914 (tp->snd_una == tp->snd_max)) 18915 rack->r_ctl.rc_tlp_rxt_last_time = cts; 18916 { 18917 tcp_seq startseq = tp->snd_nxt; 18918 18919 /* Track our lost count */ 18920 if (rsm && (doing_tlp == 0)) 18921 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; 18922 /* 18923 * Advance snd_nxt over sequence space of this segment. 18924 */ 18925 if (error) 18926 /* We don't log or do anything with errors */ 18927 goto nomore; 18928 if (doing_tlp == 0) { 18929 if (rsm == NULL) { 18930 /* 18931 * Not a retransmission of some 18932 * sort, new data is going out so 18933 * clear our TLP count and flag. 18934 */ 18935 rack->rc_tlp_in_progress = 0; 18936 rack->r_ctl.rc_tlp_cnt_out = 0; 18937 } 18938 } else { 18939 /* 18940 * We have just sent a TLP, mark that it is true 18941 * and make sure our in progress is set so we 18942 * continue to check the count. 18943 */ 18944 rack->rc_tlp_in_progress = 1; 18945 rack->r_ctl.rc_tlp_cnt_out++; 18946 } 18947 if (flags & (TH_SYN | TH_FIN)) { 18948 if (flags & TH_SYN) 18949 tp->snd_nxt++; 18950 if (flags & TH_FIN) { 18951 tp->snd_nxt++; 18952 tp->t_flags |= TF_SENTFIN; 18953 } 18954 } 18955 /* In the ENOBUFS case we do *not* update snd_max */ 18956 if (sack_rxmit) 18957 goto nomore; 18958 18959 tp->snd_nxt += len; 18960 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { 18961 if (tp->snd_una == tp->snd_max) { 18962 /* 18963 * Update the time we just added data since 18964 * none was outstanding. 18965 */ 18966 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 18967 tp->t_acktime = ticks; 18968 } 18969 tp->snd_max = tp->snd_nxt; 18970 /* 18971 * Time this transmission if not a retransmission and 18972 * not currently timing anything. 18973 * This is only relevant in case of switching back to 18974 * the base stack. 18975 */ 18976 if (tp->t_rtttime == 0) { 18977 tp->t_rtttime = ticks; 18978 tp->t_rtseq = startseq; 18979 KMOD_TCPSTAT_INC(tcps_segstimed); 18980 } 18981 if (len && 18982 ((tp->t_flags & TF_GPUTINPROG) == 0)) 18983 rack_start_gp_measurement(tp, rack, startseq, sb_offset); 18984 } 18985 /* 18986 * If we are doing FO we need to update the mbuf position and subtract 18987 * this happens when the peer sends us duplicate information and 18988 * we thus want to send a DSACK. 18989 * 18990 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO 18991 * turned off? If not then we are going to echo multiple DSACK blocks 18992 * out (with the TSO), which we should not be doing. 18993 */ 18994 if (rack->r_fast_output && len) { 18995 if (rack->r_ctl.fsb.left_to_send > len) 18996 rack->r_ctl.fsb.left_to_send -= len; 18997 else 18998 rack->r_ctl.fsb.left_to_send = 0; 18999 if (rack->r_ctl.fsb.left_to_send < segsiz) 19000 rack->r_fast_output = 0; 19001 if (rack->r_fast_output) { 19002 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19003 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19004 } 19005 } 19006 } 19007 nomore: 19008 if (error) { 19009 rack->r_ctl.rc_agg_delayed = 0; 19010 rack->r_early = 0; 19011 rack->r_late = 0; 19012 rack->r_ctl.rc_agg_early = 0; 19013 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ 19014 /* 19015 * Failures do not advance the seq counter above. For the 19016 * case of ENOBUFS we will fall out and retry in 1ms with 19017 * the hpts. Everything else will just have to retransmit 19018 * with the timer. 19019 * 19020 * In any case, we do not want to loop around for another 19021 * send without a good reason. 19022 */ 19023 sendalot = 0; 19024 switch (error) { 19025 case EPERM: 19026 tp->t_softerror = error; 19027 #ifdef TCP_ACCOUNTING 19028 crtsc = get_cyclecount(); 19029 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19030 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19031 } 19032 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19033 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19034 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19035 } 19036 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19037 sched_unpin(); 19038 #endif 19039 return (error); 19040 case ENOBUFS: 19041 /* 19042 * Pace us right away to retry in a some 19043 * time 19044 */ 19045 if (rack->r_ctl.crte != NULL) { 19046 rack_trace_point(rack, RACK_TP_HWENOBUF); 19047 } else 19048 rack_trace_point(rack, RACK_TP_ENOBUF); 19049 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 19050 if (rack->rc_enobuf < 0x7f) 19051 rack->rc_enobuf++; 19052 if (slot < (10 * HPTS_USEC_IN_MSEC)) 19053 slot = 10 * HPTS_USEC_IN_MSEC; 19054 if (rack->r_ctl.crte != NULL) { 19055 counter_u64_add(rack_saw_enobuf_hw, 1); 19056 tcp_rl_log_enobuf(rack->r_ctl.crte); 19057 } 19058 counter_u64_add(rack_saw_enobuf, 1); 19059 goto enobufs; 19060 case EMSGSIZE: 19061 /* 19062 * For some reason the interface we used initially 19063 * to send segments changed to another or lowered 19064 * its MTU. If TSO was active we either got an 19065 * interface without TSO capabilits or TSO was 19066 * turned off. If we obtained mtu from ip_output() 19067 * then update it and try again. 19068 */ 19069 if (tso) 19070 tp->t_flags &= ~TF_TSO; 19071 if (mtu != 0) { 19072 tcp_mss_update(tp, -1, mtu, NULL, NULL); 19073 goto again; 19074 } 19075 slot = 10 * HPTS_USEC_IN_MSEC; 19076 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19077 #ifdef TCP_ACCOUNTING 19078 crtsc = get_cyclecount(); 19079 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19080 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19081 } 19082 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19083 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19084 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19085 } 19086 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19087 sched_unpin(); 19088 #endif 19089 return (error); 19090 case ENETUNREACH: 19091 counter_u64_add(rack_saw_enetunreach, 1); 19092 case EHOSTDOWN: 19093 case EHOSTUNREACH: 19094 case ENETDOWN: 19095 if (TCPS_HAVERCVDSYN(tp->t_state)) { 19096 tp->t_softerror = error; 19097 } 19098 /* FALLTHROUGH */ 19099 default: 19100 slot = 10 * HPTS_USEC_IN_MSEC; 19101 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19102 #ifdef TCP_ACCOUNTING 19103 crtsc = get_cyclecount(); 19104 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19105 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19106 } 19107 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19108 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19109 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19110 } 19111 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19112 sched_unpin(); 19113 #endif 19114 return (error); 19115 } 19116 } else { 19117 rack->rc_enobuf = 0; 19118 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 19119 rack->r_ctl.retran_during_recovery += len; 19120 } 19121 KMOD_TCPSTAT_INC(tcps_sndtotal); 19122 19123 /* 19124 * Data sent (as far as we can tell). If this advertises a larger 19125 * window than any other segment, then remember the size of the 19126 * advertised window. Any pending ACK has now been sent. 19127 */ 19128 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) 19129 tp->rcv_adv = tp->rcv_nxt + recwin; 19130 19131 tp->last_ack_sent = tp->rcv_nxt; 19132 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 19133 enobufs: 19134 if (sendalot) { 19135 /* Do we need to turn off sendalot? */ 19136 if (rack->r_ctl.rc_pace_max_segs && 19137 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { 19138 /* We hit our max. */ 19139 sendalot = 0; 19140 } else if ((rack->rc_user_set_max_segs) && 19141 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { 19142 /* We hit the user defined max */ 19143 sendalot = 0; 19144 } 19145 } 19146 if ((error == 0) && (flags & TH_FIN)) 19147 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); 19148 if (flags & TH_RST) { 19149 /* 19150 * We don't send again after sending a RST. 19151 */ 19152 slot = 0; 19153 sendalot = 0; 19154 if (error == 0) 19155 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 19156 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { 19157 /* 19158 * Get our pacing rate, if an error 19159 * occurred in sending (ENOBUF) we would 19160 * hit the else if with slot preset. Other 19161 * errors return. 19162 */ 19163 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); 19164 } 19165 if (rsm && 19166 (rsm->r_flags & RACK_HAS_SYN) == 0 && 19167 rack->use_rack_rr) { 19168 /* Its a retransmit and we use the rack cheat? */ 19169 if ((slot == 0) || 19170 (rack->rc_always_pace == 0) || 19171 (rack->r_rr_config == 1)) { 19172 /* 19173 * We have no pacing set or we 19174 * are using old-style rack or 19175 * we are overridden to use the old 1ms pacing. 19176 */ 19177 slot = rack->r_ctl.rc_min_to; 19178 } 19179 } 19180 /* We have sent clear the flag */ 19181 rack->r_ent_rec_ns = 0; 19182 if (rack->r_must_retran) { 19183 if (rsm) { 19184 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 19185 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 19186 /* 19187 * We have retransmitted all. 19188 */ 19189 rack->r_must_retran = 0; 19190 rack->r_ctl.rc_out_at_rto = 0; 19191 } 19192 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19193 /* 19194 * Sending new data will also kill 19195 * the loop. 19196 */ 19197 rack->r_must_retran = 0; 19198 rack->r_ctl.rc_out_at_rto = 0; 19199 } 19200 } 19201 rack->r_ctl.fsb.recwin = recwin; 19202 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) && 19203 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19204 /* 19205 * We hit an RTO and now have past snd_max at the RTO 19206 * clear all the WAS flags. 19207 */ 19208 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY); 19209 } 19210 if (slot) { 19211 /* set the rack tcb into the slot N */ 19212 if ((error == 0) && 19213 rack_use_rfo && 19214 ((flags & (TH_SYN|TH_FIN)) == 0) && 19215 (rsm == NULL) && 19216 (tp->snd_nxt == tp->snd_max) && 19217 (ipoptlen == 0) && 19218 (tp->rcv_numsacks == 0) && 19219 rack->r_fsb_inited && 19220 TCPS_HAVEESTABLISHED(tp->t_state) && 19221 (rack->r_must_retran == 0) && 19222 ((tp->t_flags & TF_NEEDFIN) == 0) && 19223 (len > 0) && (orig_len > 0) && 19224 (orig_len > len) && 19225 ((orig_len - len) >= segsiz) && 19226 ((optlen == 0) || 19227 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19228 /* We can send at least one more MSS using our fsb */ 19229 19230 rack->r_fast_output = 1; 19231 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19232 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19233 rack->r_ctl.fsb.tcp_flags = flags; 19234 rack->r_ctl.fsb.left_to_send = orig_len - len; 19235 if (hw_tls) 19236 rack->r_ctl.fsb.hw_tls = 1; 19237 else 19238 rack->r_ctl.fsb.hw_tls = 0; 19239 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19240 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19241 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19242 (tp->snd_max - tp->snd_una))); 19243 if (rack->r_ctl.fsb.left_to_send < segsiz) 19244 rack->r_fast_output = 0; 19245 else { 19246 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19247 rack->r_ctl.fsb.rfo_apply_push = 1; 19248 else 19249 rack->r_ctl.fsb.rfo_apply_push = 0; 19250 } 19251 } else 19252 rack->r_fast_output = 0; 19253 rack_log_fsb(rack, tp, so, flags, 19254 ipoptlen, orig_len, len, error, 19255 (rsm == NULL), optlen, __LINE__, 2); 19256 } else if (sendalot) { 19257 int ret; 19258 19259 sack_rxmit = 0; 19260 if ((error == 0) && 19261 rack_use_rfo && 19262 ((flags & (TH_SYN|TH_FIN)) == 0) && 19263 (rsm == NULL) && 19264 (ipoptlen == 0) && 19265 (tp->rcv_numsacks == 0) && 19266 (tp->snd_nxt == tp->snd_max) && 19267 (rack->r_must_retran == 0) && 19268 rack->r_fsb_inited && 19269 TCPS_HAVEESTABLISHED(tp->t_state) && 19270 ((tp->t_flags & TF_NEEDFIN) == 0) && 19271 (len > 0) && (orig_len > 0) && 19272 (orig_len > len) && 19273 ((orig_len - len) >= segsiz) && 19274 ((optlen == 0) || 19275 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19276 /* we can use fast_output for more */ 19277 19278 rack->r_fast_output = 1; 19279 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19280 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19281 rack->r_ctl.fsb.tcp_flags = flags; 19282 rack->r_ctl.fsb.left_to_send = orig_len - len; 19283 if (hw_tls) 19284 rack->r_ctl.fsb.hw_tls = 1; 19285 else 19286 rack->r_ctl.fsb.hw_tls = 0; 19287 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19288 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19289 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19290 (tp->snd_max - tp->snd_una))); 19291 if (rack->r_ctl.fsb.left_to_send < segsiz) { 19292 rack->r_fast_output = 0; 19293 } 19294 if (rack->r_fast_output) { 19295 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19296 rack->r_ctl.fsb.rfo_apply_push = 1; 19297 else 19298 rack->r_ctl.fsb.rfo_apply_push = 0; 19299 rack_log_fsb(rack, tp, so, flags, 19300 ipoptlen, orig_len, len, error, 19301 (rsm == NULL), optlen, __LINE__, 3); 19302 error = 0; 19303 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 19304 if (ret >= 0) 19305 return (ret); 19306 else if (error) 19307 goto nomore; 19308 19309 } 19310 } 19311 goto again; 19312 } 19313 /* Assure when we leave that snd_nxt will point to top */ 19314 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 19315 tp->snd_nxt = tp->snd_max; 19316 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); 19317 #ifdef TCP_ACCOUNTING 19318 crtsc = get_cyclecount() - ts_val; 19319 if (tot_len_this_send) { 19320 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19321 tp->tcp_cnt_counters[SND_OUT_DATA]++; 19322 } 19323 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 19324 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19325 tp->tcp_proc_time[SND_OUT_DATA] += crtsc; 19326 } 19327 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc); 19328 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19329 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz); 19330 } 19331 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz)); 19332 } else { 19333 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19334 tp->tcp_cnt_counters[SND_OUT_ACK]++; 19335 } 19336 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1); 19337 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19338 tp->tcp_proc_time[SND_OUT_ACK] += crtsc; 19339 } 19340 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc); 19341 } 19342 sched_unpin(); 19343 #endif 19344 if (error == ENOBUFS) 19345 error = 0; 19346 return (error); 19347 } 19348 19349 static void 19350 rack_update_seg(struct tcp_rack *rack) 19351 { 19352 uint32_t orig_val; 19353 19354 orig_val = rack->r_ctl.rc_pace_max_segs; 19355 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 19356 if (orig_val != rack->r_ctl.rc_pace_max_segs) 19357 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0); 19358 } 19359 19360 static void 19361 rack_mtu_change(struct tcpcb *tp) 19362 { 19363 /* 19364 * The MSS may have changed 19365 */ 19366 struct tcp_rack *rack; 19367 struct rack_sendmap *rsm; 19368 19369 rack = (struct tcp_rack *)tp->t_fb_ptr; 19370 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) { 19371 /* 19372 * The MTU has changed we need to resend everything 19373 * since all we have sent is lost. We first fix 19374 * up the mtu though. 19375 */ 19376 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19377 /* We treat this like a full retransmit timeout without the cwnd adjustment */ 19378 rack_remxt_tmr(tp); 19379 rack->r_fast_output = 0; 19380 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp, 19381 rack->r_ctl.rc_sacked); 19382 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 19383 rack->r_must_retran = 1; 19384 /* Mark all inflight to needing to be rxt'd */ 19385 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 19386 rsm->r_flags |= RACK_MUST_RXT; 19387 } 19388 } 19389 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 19390 /* We don't use snd_nxt to retransmit */ 19391 tp->snd_nxt = tp->snd_max; 19392 } 19393 19394 static int 19395 rack_set_profile(struct tcp_rack *rack, int prof) 19396 { 19397 int err = EINVAL; 19398 if (prof == 1) { 19399 /* pace_always=1 */ 19400 if (rack->rc_always_pace == 0) { 19401 if (tcp_can_enable_pacing() == 0) 19402 return (EBUSY); 19403 } 19404 rack->rc_always_pace = 1; 19405 if (rack->use_fixed_rate || rack->gp_ready) 19406 rack_set_cc_pacing(rack); 19407 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19408 rack->rack_attempt_hdwr_pace = 0; 19409 /* cmpack=1 */ 19410 if (rack_use_cmp_acks) 19411 rack->r_use_cmp_ack = 1; 19412 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19413 rack->r_use_cmp_ack) 19414 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19415 /* scwnd=1 */ 19416 rack->rack_enable_scwnd = 1; 19417 /* dynamic=100 */ 19418 rack->rc_gp_dyn_mul = 1; 19419 /* gp_inc_ca */ 19420 rack->r_ctl.rack_per_of_gp_ca = 100; 19421 /* rrr_conf=3 */ 19422 rack->r_rr_config = 3; 19423 /* npush=2 */ 19424 rack->r_ctl.rc_no_push_at_mrtt = 2; 19425 /* fillcw=1 */ 19426 rack->rc_pace_to_cwnd = 1; 19427 rack->rc_pace_fill_if_rttin_range = 0; 19428 rack->rtt_limit_mul = 0; 19429 /* noprr=1 */ 19430 rack->rack_no_prr = 1; 19431 /* lscwnd=1 */ 19432 rack->r_limit_scw = 1; 19433 /* gp_inc_rec */ 19434 rack->r_ctl.rack_per_of_gp_rec = 90; 19435 err = 0; 19436 19437 } else if (prof == 3) { 19438 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */ 19439 /* pace_always=1 */ 19440 if (rack->rc_always_pace == 0) { 19441 if (tcp_can_enable_pacing() == 0) 19442 return (EBUSY); 19443 } 19444 rack->rc_always_pace = 1; 19445 if (rack->use_fixed_rate || rack->gp_ready) 19446 rack_set_cc_pacing(rack); 19447 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19448 rack->rack_attempt_hdwr_pace = 0; 19449 /* cmpack=1 */ 19450 if (rack_use_cmp_acks) 19451 rack->r_use_cmp_ack = 1; 19452 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19453 rack->r_use_cmp_ack) 19454 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19455 /* scwnd=1 */ 19456 rack->rack_enable_scwnd = 1; 19457 /* dynamic=100 */ 19458 rack->rc_gp_dyn_mul = 1; 19459 /* gp_inc_ca */ 19460 rack->r_ctl.rack_per_of_gp_ca = 100; 19461 /* rrr_conf=3 */ 19462 rack->r_rr_config = 3; 19463 /* npush=2 */ 19464 rack->r_ctl.rc_no_push_at_mrtt = 2; 19465 /* fillcw=2 */ 19466 rack->rc_pace_to_cwnd = 1; 19467 rack->r_fill_less_agg = 1; 19468 rack->rc_pace_fill_if_rttin_range = 0; 19469 rack->rtt_limit_mul = 0; 19470 /* noprr=1 */ 19471 rack->rack_no_prr = 1; 19472 /* lscwnd=1 */ 19473 rack->r_limit_scw = 1; 19474 /* gp_inc_rec */ 19475 rack->r_ctl.rack_per_of_gp_rec = 90; 19476 err = 0; 19477 19478 19479 } else if (prof == 2) { 19480 /* cmpack=1 */ 19481 if (rack->rc_always_pace == 0) { 19482 if (tcp_can_enable_pacing() == 0) 19483 return (EBUSY); 19484 } 19485 rack->rc_always_pace = 1; 19486 if (rack->use_fixed_rate || rack->gp_ready) 19487 rack_set_cc_pacing(rack); 19488 rack->r_use_cmp_ack = 1; 19489 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19490 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19491 /* pace_always=1 */ 19492 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19493 /* scwnd=1 */ 19494 rack->rack_enable_scwnd = 1; 19495 /* dynamic=100 */ 19496 rack->rc_gp_dyn_mul = 1; 19497 rack->r_ctl.rack_per_of_gp_ca = 100; 19498 /* rrr_conf=3 */ 19499 rack->r_rr_config = 3; 19500 /* npush=2 */ 19501 rack->r_ctl.rc_no_push_at_mrtt = 2; 19502 /* fillcw=1 */ 19503 rack->rc_pace_to_cwnd = 1; 19504 rack->rc_pace_fill_if_rttin_range = 0; 19505 rack->rtt_limit_mul = 0; 19506 /* noprr=1 */ 19507 rack->rack_no_prr = 1; 19508 /* lscwnd=0 */ 19509 rack->r_limit_scw = 0; 19510 err = 0; 19511 } else if (prof == 0) { 19512 /* This changes things back to the default settings */ 19513 err = 0; 19514 if (rack->rc_always_pace) { 19515 tcp_decrement_paced_conn(); 19516 rack_undo_cc_pacing(rack); 19517 rack->rc_always_pace = 0; 19518 } 19519 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 19520 rack->rc_always_pace = 1; 19521 if (rack->use_fixed_rate || rack->gp_ready) 19522 rack_set_cc_pacing(rack); 19523 } else 19524 rack->rc_always_pace = 0; 19525 if (rack_dsack_std_based & 0x1) { 19526 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 19527 rack->rc_rack_tmr_std_based = 1; 19528 } 19529 if (rack_dsack_std_based & 0x2) { 19530 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 19531 rack->rc_rack_use_dsack = 1; 19532 } 19533 if (rack_use_cmp_acks) 19534 rack->r_use_cmp_ack = 1; 19535 else 19536 rack->r_use_cmp_ack = 0; 19537 if (rack_disable_prr) 19538 rack->rack_no_prr = 1; 19539 else 19540 rack->rack_no_prr = 0; 19541 if (rack_gp_no_rec_chg) 19542 rack->rc_gp_no_rec_chg = 1; 19543 else 19544 rack->rc_gp_no_rec_chg = 0; 19545 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) { 19546 rack->r_mbuf_queue = 1; 19547 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19548 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19549 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19550 } else { 19551 rack->r_mbuf_queue = 0; 19552 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19553 } 19554 if (rack_enable_shared_cwnd) 19555 rack->rack_enable_scwnd = 1; 19556 else 19557 rack->rack_enable_scwnd = 0; 19558 if (rack_do_dyn_mul) { 19559 /* When dynamic adjustment is on CA needs to start at 100% */ 19560 rack->rc_gp_dyn_mul = 1; 19561 if (rack_do_dyn_mul >= 100) 19562 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 19563 } else { 19564 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 19565 rack->rc_gp_dyn_mul = 0; 19566 } 19567 rack->r_rr_config = 0; 19568 rack->r_ctl.rc_no_push_at_mrtt = 0; 19569 rack->rc_pace_to_cwnd = 0; 19570 rack->rc_pace_fill_if_rttin_range = 0; 19571 rack->rtt_limit_mul = 0; 19572 19573 if (rack_enable_hw_pacing) 19574 rack->rack_hdw_pace_ena = 1; 19575 else 19576 rack->rack_hdw_pace_ena = 0; 19577 if (rack_disable_prr) 19578 rack->rack_no_prr = 1; 19579 else 19580 rack->rack_no_prr = 0; 19581 if (rack_limits_scwnd) 19582 rack->r_limit_scw = 1; 19583 else 19584 rack->r_limit_scw = 0; 19585 err = 0; 19586 } 19587 return (err); 19588 } 19589 19590 static int 19591 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval) 19592 { 19593 struct deferred_opt_list *dol; 19594 19595 dol = malloc(sizeof(struct deferred_opt_list), 19596 M_TCPFSB, M_NOWAIT|M_ZERO); 19597 if (dol == NULL) { 19598 /* 19599 * No space yikes -- fail out.. 19600 */ 19601 return (0); 19602 } 19603 dol->optname = sopt_name; 19604 dol->optval = loptval; 19605 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next); 19606 return (1); 19607 } 19608 19609 static int 19610 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, 19611 uint32_t optval, uint64_t loptval) 19612 { 19613 struct epoch_tracker et; 19614 struct sockopt sopt; 19615 struct cc_newreno_opts opt; 19616 uint64_t val; 19617 int error = 0; 19618 uint16_t ca, ss; 19619 19620 switch (sopt_name) { 19621 19622 case TCP_RACK_DSACK_OPT: 19623 RACK_OPTS_INC(tcp_rack_dsack_opt); 19624 if (optval & 0x1) { 19625 rack->rc_rack_tmr_std_based = 1; 19626 } else { 19627 rack->rc_rack_tmr_std_based = 0; 19628 } 19629 if (optval & 0x2) { 19630 rack->rc_rack_use_dsack = 1; 19631 } else { 19632 rack->rc_rack_use_dsack = 0; 19633 } 19634 rack_log_dsack_event(rack, 5, __LINE__, 0, 0); 19635 break; 19636 case TCP_RACK_PACING_BETA: 19637 RACK_OPTS_INC(tcp_rack_beta); 19638 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19639 /* This only works for newreno. */ 19640 error = EINVAL; 19641 break; 19642 } 19643 if (rack->rc_pacing_cc_set) { 19644 /* 19645 * Set them into the real CC module 19646 * whats in the rack pcb is the old values 19647 * to be used on restoral/ 19648 */ 19649 sopt.sopt_dir = SOPT_SET; 19650 opt.name = CC_NEWRENO_BETA; 19651 opt.val = optval; 19652 if (CC_ALGO(tp)->ctl_output != NULL) 19653 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19654 else { 19655 error = ENOENT; 19656 break; 19657 } 19658 } else { 19659 /* 19660 * Not pacing yet so set it into our local 19661 * rack pcb storage. 19662 */ 19663 rack->r_ctl.rc_saved_beta.beta = optval; 19664 } 19665 break; 19666 case TCP_RACK_TIMER_SLOP: 19667 RACK_OPTS_INC(tcp_rack_timer_slop); 19668 rack->r_ctl.timer_slop = optval; 19669 if (rack->rc_tp->t_srtt) { 19670 /* 19671 * If we have an SRTT lets update t_rxtcur 19672 * to have the new slop. 19673 */ 19674 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 19675 rack_rto_min, rack_rto_max, 19676 rack->r_ctl.timer_slop); 19677 } 19678 break; 19679 case TCP_RACK_PACING_BETA_ECN: 19680 RACK_OPTS_INC(tcp_rack_beta_ecn); 19681 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19682 /* This only works for newreno. */ 19683 error = EINVAL; 19684 break; 19685 } 19686 if (rack->rc_pacing_cc_set) { 19687 /* 19688 * Set them into the real CC module 19689 * whats in the rack pcb is the old values 19690 * to be used on restoral/ 19691 */ 19692 sopt.sopt_dir = SOPT_SET; 19693 opt.name = CC_NEWRENO_BETA_ECN; 19694 opt.val = optval; 19695 if (CC_ALGO(tp)->ctl_output != NULL) 19696 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19697 else 19698 error = ENOENT; 19699 } else { 19700 /* 19701 * Not pacing yet so set it into our local 19702 * rack pcb storage. 19703 */ 19704 rack->r_ctl.rc_saved_beta.beta_ecn = optval; 19705 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED; 19706 } 19707 break; 19708 case TCP_DEFER_OPTIONS: 19709 RACK_OPTS_INC(tcp_defer_opt); 19710 if (optval) { 19711 if (rack->gp_ready) { 19712 /* Too late */ 19713 error = EINVAL; 19714 break; 19715 } 19716 rack->defer_options = 1; 19717 } else 19718 rack->defer_options = 0; 19719 break; 19720 case TCP_RACK_MEASURE_CNT: 19721 RACK_OPTS_INC(tcp_rack_measure_cnt); 19722 if (optval && (optval <= 0xff)) { 19723 rack->r_ctl.req_measurements = optval; 19724 } else 19725 error = EINVAL; 19726 break; 19727 case TCP_REC_ABC_VAL: 19728 RACK_OPTS_INC(tcp_rec_abc_val); 19729 if (optval > 0) 19730 rack->r_use_labc_for_rec = 1; 19731 else 19732 rack->r_use_labc_for_rec = 0; 19733 break; 19734 case TCP_RACK_ABC_VAL: 19735 RACK_OPTS_INC(tcp_rack_abc_val); 19736 if ((optval > 0) && (optval < 255)) 19737 rack->rc_labc = optval; 19738 else 19739 error = EINVAL; 19740 break; 19741 case TCP_HDWR_UP_ONLY: 19742 RACK_OPTS_INC(tcp_pacing_up_only); 19743 if (optval) 19744 rack->r_up_only = 1; 19745 else 19746 rack->r_up_only = 0; 19747 break; 19748 case TCP_PACING_RATE_CAP: 19749 RACK_OPTS_INC(tcp_pacing_rate_cap); 19750 rack->r_ctl.bw_rate_cap = loptval; 19751 break; 19752 case TCP_RACK_PROFILE: 19753 RACK_OPTS_INC(tcp_profile); 19754 error = rack_set_profile(rack, optval); 19755 break; 19756 case TCP_USE_CMP_ACKS: 19757 RACK_OPTS_INC(tcp_use_cmp_acks); 19758 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) { 19759 /* You can't turn it off once its on! */ 19760 error = EINVAL; 19761 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) { 19762 rack->r_use_cmp_ack = 1; 19763 rack->r_mbuf_queue = 1; 19764 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19765 } 19766 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 19767 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19768 break; 19769 case TCP_SHARED_CWND_TIME_LIMIT: 19770 RACK_OPTS_INC(tcp_lscwnd); 19771 if (optval) 19772 rack->r_limit_scw = 1; 19773 else 19774 rack->r_limit_scw = 0; 19775 break; 19776 case TCP_RACK_PACE_TO_FILL: 19777 RACK_OPTS_INC(tcp_fillcw); 19778 if (optval == 0) 19779 rack->rc_pace_to_cwnd = 0; 19780 else { 19781 rack->rc_pace_to_cwnd = 1; 19782 if (optval > 1) 19783 rack->r_fill_less_agg = 1; 19784 } 19785 if ((optval >= rack_gp_rtt_maxmul) && 19786 rack_gp_rtt_maxmul && 19787 (optval < 0xf)) { 19788 rack->rc_pace_fill_if_rttin_range = 1; 19789 rack->rtt_limit_mul = optval; 19790 } else { 19791 rack->rc_pace_fill_if_rttin_range = 0; 19792 rack->rtt_limit_mul = 0; 19793 } 19794 break; 19795 case TCP_RACK_NO_PUSH_AT_MAX: 19796 RACK_OPTS_INC(tcp_npush); 19797 if (optval == 0) 19798 rack->r_ctl.rc_no_push_at_mrtt = 0; 19799 else if (optval < 0xff) 19800 rack->r_ctl.rc_no_push_at_mrtt = optval; 19801 else 19802 error = EINVAL; 19803 break; 19804 case TCP_SHARED_CWND_ENABLE: 19805 RACK_OPTS_INC(tcp_rack_scwnd); 19806 if (optval == 0) 19807 rack->rack_enable_scwnd = 0; 19808 else 19809 rack->rack_enable_scwnd = 1; 19810 break; 19811 case TCP_RACK_MBUF_QUEUE: 19812 /* Now do we use the LRO mbuf-queue feature */ 19813 RACK_OPTS_INC(tcp_rack_mbufq); 19814 if (optval || rack->r_use_cmp_ack) 19815 rack->r_mbuf_queue = 1; 19816 else 19817 rack->r_mbuf_queue = 0; 19818 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19819 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19820 else 19821 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19822 break; 19823 case TCP_RACK_NONRXT_CFG_RATE: 19824 RACK_OPTS_INC(tcp_rack_cfg_rate); 19825 if (optval == 0) 19826 rack->rack_rec_nonrxt_use_cr = 0; 19827 else 19828 rack->rack_rec_nonrxt_use_cr = 1; 19829 break; 19830 case TCP_NO_PRR: 19831 RACK_OPTS_INC(tcp_rack_noprr); 19832 if (optval == 0) 19833 rack->rack_no_prr = 0; 19834 else if (optval == 1) 19835 rack->rack_no_prr = 1; 19836 else if (optval == 2) 19837 rack->no_prr_addback = 1; 19838 else 19839 error = EINVAL; 19840 break; 19841 case TCP_TIMELY_DYN_ADJ: 19842 RACK_OPTS_INC(tcp_timely_dyn); 19843 if (optval == 0) 19844 rack->rc_gp_dyn_mul = 0; 19845 else { 19846 rack->rc_gp_dyn_mul = 1; 19847 if (optval >= 100) { 19848 /* 19849 * If the user sets something 100 or more 19850 * its the gp_ca value. 19851 */ 19852 rack->r_ctl.rack_per_of_gp_ca = optval; 19853 } 19854 } 19855 break; 19856 case TCP_RACK_DO_DETECTION: 19857 RACK_OPTS_INC(tcp_rack_do_detection); 19858 if (optval == 0) 19859 rack->do_detection = 0; 19860 else 19861 rack->do_detection = 1; 19862 break; 19863 case TCP_RACK_TLP_USE: 19864 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { 19865 error = EINVAL; 19866 break; 19867 } 19868 RACK_OPTS_INC(tcp_tlp_use); 19869 rack->rack_tlp_threshold_use = optval; 19870 break; 19871 case TCP_RACK_TLP_REDUCE: 19872 /* RACK TLP cwnd reduction (bool) */ 19873 RACK_OPTS_INC(tcp_rack_tlp_reduce); 19874 rack->r_ctl.rc_tlp_cwnd_reduce = optval; 19875 break; 19876 /* Pacing related ones */ 19877 case TCP_RACK_PACE_ALWAYS: 19878 /* 19879 * zero is old rack method, 1 is new 19880 * method using a pacing rate. 19881 */ 19882 RACK_OPTS_INC(tcp_rack_pace_always); 19883 if (optval > 0) { 19884 if (rack->rc_always_pace) { 19885 error = EALREADY; 19886 break; 19887 } else if (tcp_can_enable_pacing()) { 19888 rack->rc_always_pace = 1; 19889 if (rack->use_fixed_rate || rack->gp_ready) 19890 rack_set_cc_pacing(rack); 19891 } 19892 else { 19893 error = ENOSPC; 19894 break; 19895 } 19896 } else { 19897 if (rack->rc_always_pace) { 19898 tcp_decrement_paced_conn(); 19899 rack->rc_always_pace = 0; 19900 rack_undo_cc_pacing(rack); 19901 } 19902 } 19903 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19904 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19905 else 19906 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19907 /* A rate may be set irate or other, if so set seg size */ 19908 rack_update_seg(rack); 19909 break; 19910 case TCP_BBR_RACK_INIT_RATE: 19911 RACK_OPTS_INC(tcp_initial_rate); 19912 val = optval; 19913 /* Change from kbits per second to bytes per second */ 19914 val *= 1000; 19915 val /= 8; 19916 rack->r_ctl.init_rate = val; 19917 if (rack->rc_init_win != rack_default_init_window) { 19918 uint32_t win, snt; 19919 19920 /* 19921 * Options don't always get applied 19922 * in the order you think. So in order 19923 * to assure we update a cwnd we need 19924 * to check and see if we are still 19925 * where we should raise the cwnd. 19926 */ 19927 win = rc_init_window(rack); 19928 if (SEQ_GT(tp->snd_max, tp->iss)) 19929 snt = tp->snd_max - tp->iss; 19930 else 19931 snt = 0; 19932 if ((snt < win) && 19933 (tp->snd_cwnd < win)) 19934 tp->snd_cwnd = win; 19935 } 19936 if (rack->rc_always_pace) 19937 rack_update_seg(rack); 19938 break; 19939 case TCP_BBR_IWINTSO: 19940 RACK_OPTS_INC(tcp_initial_win); 19941 if (optval && (optval <= 0xff)) { 19942 uint32_t win, snt; 19943 19944 rack->rc_init_win = optval; 19945 win = rc_init_window(rack); 19946 if (SEQ_GT(tp->snd_max, tp->iss)) 19947 snt = tp->snd_max - tp->iss; 19948 else 19949 snt = 0; 19950 if ((snt < win) && 19951 (tp->t_srtt | 19952 #ifdef NETFLIX_PEAKRATE 19953 tp->t_maxpeakrate | 19954 #endif 19955 rack->r_ctl.init_rate)) { 19956 /* 19957 * We are not past the initial window 19958 * and we have some bases for pacing, 19959 * so we need to possibly adjust up 19960 * the cwnd. Note even if we don't set 19961 * the cwnd, its still ok to raise the rc_init_win 19962 * which can be used coming out of idle when we 19963 * would have a rate. 19964 */ 19965 if (tp->snd_cwnd < win) 19966 tp->snd_cwnd = win; 19967 } 19968 if (rack->rc_always_pace) 19969 rack_update_seg(rack); 19970 } else 19971 error = EINVAL; 19972 break; 19973 case TCP_RACK_FORCE_MSEG: 19974 RACK_OPTS_INC(tcp_rack_force_max_seg); 19975 if (optval) 19976 rack->rc_force_max_seg = 1; 19977 else 19978 rack->rc_force_max_seg = 0; 19979 break; 19980 case TCP_RACK_PACE_MAX_SEG: 19981 /* Max segments size in a pace in bytes */ 19982 RACK_OPTS_INC(tcp_rack_max_seg); 19983 rack->rc_user_set_max_segs = optval; 19984 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19985 break; 19986 case TCP_RACK_PACE_RATE_REC: 19987 /* Set the fixed pacing rate in Bytes per second ca */ 19988 RACK_OPTS_INC(tcp_rack_pace_rate_rec); 19989 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19990 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 19991 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19992 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 19993 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19994 rack->use_fixed_rate = 1; 19995 if (rack->rc_always_pace) 19996 rack_set_cc_pacing(rack); 19997 rack_log_pacing_delay_calc(rack, 19998 rack->r_ctl.rc_fixed_pacing_rate_ss, 19999 rack->r_ctl.rc_fixed_pacing_rate_ca, 20000 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20001 __LINE__, NULL,0); 20002 break; 20003 20004 case TCP_RACK_PACE_RATE_SS: 20005 /* Set the fixed pacing rate in Bytes per second ca */ 20006 RACK_OPTS_INC(tcp_rack_pace_rate_ss); 20007 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20008 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 20009 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20010 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 20011 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20012 rack->use_fixed_rate = 1; 20013 if (rack->rc_always_pace) 20014 rack_set_cc_pacing(rack); 20015 rack_log_pacing_delay_calc(rack, 20016 rack->r_ctl.rc_fixed_pacing_rate_ss, 20017 rack->r_ctl.rc_fixed_pacing_rate_ca, 20018 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20019 __LINE__, NULL, 0); 20020 break; 20021 20022 case TCP_RACK_PACE_RATE_CA: 20023 /* Set the fixed pacing rate in Bytes per second ca */ 20024 RACK_OPTS_INC(tcp_rack_pace_rate_ca); 20025 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20026 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 20027 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20028 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 20029 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20030 rack->use_fixed_rate = 1; 20031 if (rack->rc_always_pace) 20032 rack_set_cc_pacing(rack); 20033 rack_log_pacing_delay_calc(rack, 20034 rack->r_ctl.rc_fixed_pacing_rate_ss, 20035 rack->r_ctl.rc_fixed_pacing_rate_ca, 20036 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20037 __LINE__, NULL, 0); 20038 break; 20039 case TCP_RACK_GP_INCREASE_REC: 20040 RACK_OPTS_INC(tcp_gp_inc_rec); 20041 rack->r_ctl.rack_per_of_gp_rec = optval; 20042 rack_log_pacing_delay_calc(rack, 20043 rack->r_ctl.rack_per_of_gp_ss, 20044 rack->r_ctl.rack_per_of_gp_ca, 20045 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20046 __LINE__, NULL, 0); 20047 break; 20048 case TCP_RACK_GP_INCREASE_CA: 20049 RACK_OPTS_INC(tcp_gp_inc_ca); 20050 ca = optval; 20051 if (ca < 100) { 20052 /* 20053 * We don't allow any reduction 20054 * over the GP b/w. 20055 */ 20056 error = EINVAL; 20057 break; 20058 } 20059 rack->r_ctl.rack_per_of_gp_ca = ca; 20060 rack_log_pacing_delay_calc(rack, 20061 rack->r_ctl.rack_per_of_gp_ss, 20062 rack->r_ctl.rack_per_of_gp_ca, 20063 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20064 __LINE__, NULL, 0); 20065 break; 20066 case TCP_RACK_GP_INCREASE_SS: 20067 RACK_OPTS_INC(tcp_gp_inc_ss); 20068 ss = optval; 20069 if (ss < 100) { 20070 /* 20071 * We don't allow any reduction 20072 * over the GP b/w. 20073 */ 20074 error = EINVAL; 20075 break; 20076 } 20077 rack->r_ctl.rack_per_of_gp_ss = ss; 20078 rack_log_pacing_delay_calc(rack, 20079 rack->r_ctl.rack_per_of_gp_ss, 20080 rack->r_ctl.rack_per_of_gp_ca, 20081 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20082 __LINE__, NULL, 0); 20083 break; 20084 case TCP_RACK_RR_CONF: 20085 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); 20086 if (optval && optval <= 3) 20087 rack->r_rr_config = optval; 20088 else 20089 rack->r_rr_config = 0; 20090 break; 20091 case TCP_HDWR_RATE_CAP: 20092 RACK_OPTS_INC(tcp_hdwr_rate_cap); 20093 if (optval) { 20094 if (rack->r_rack_hw_rate_caps == 0) 20095 rack->r_rack_hw_rate_caps = 1; 20096 else 20097 error = EALREADY; 20098 } else { 20099 rack->r_rack_hw_rate_caps = 0; 20100 } 20101 break; 20102 case TCP_BBR_HDWR_PACE: 20103 RACK_OPTS_INC(tcp_hdwr_pacing); 20104 if (optval){ 20105 if (rack->rack_hdrw_pacing == 0) { 20106 rack->rack_hdw_pace_ena = 1; 20107 rack->rack_attempt_hdwr_pace = 0; 20108 } else 20109 error = EALREADY; 20110 } else { 20111 rack->rack_hdw_pace_ena = 0; 20112 #ifdef RATELIMIT 20113 if (rack->r_ctl.crte != NULL) { 20114 rack->rack_hdrw_pacing = 0; 20115 rack->rack_attempt_hdwr_pace = 0; 20116 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 20117 rack->r_ctl.crte = NULL; 20118 } 20119 #endif 20120 } 20121 break; 20122 /* End Pacing related ones */ 20123 case TCP_RACK_PRR_SENDALOT: 20124 /* Allow PRR to send more than one seg */ 20125 RACK_OPTS_INC(tcp_rack_prr_sendalot); 20126 rack->r_ctl.rc_prr_sendalot = optval; 20127 break; 20128 case TCP_RACK_MIN_TO: 20129 /* Minimum time between rack t-o's in ms */ 20130 RACK_OPTS_INC(tcp_rack_min_to); 20131 rack->r_ctl.rc_min_to = optval; 20132 break; 20133 case TCP_RACK_EARLY_SEG: 20134 /* If early recovery max segments */ 20135 RACK_OPTS_INC(tcp_rack_early_seg); 20136 rack->r_ctl.rc_early_recovery_segs = optval; 20137 break; 20138 case TCP_RACK_ENABLE_HYSTART: 20139 { 20140 if (optval) { 20141 tp->ccv->flags |= CCF_HYSTART_ALLOWED; 20142 if (rack_do_hystart > RACK_HYSTART_ON) 20143 tp->ccv->flags |= CCF_HYSTART_CAN_SH_CWND; 20144 if (rack_do_hystart > RACK_HYSTART_ON_W_SC) 20145 tp->ccv->flags |= CCF_HYSTART_CONS_SSTH; 20146 } else { 20147 tp->ccv->flags &= ~(CCF_HYSTART_ALLOWED|CCF_HYSTART_CAN_SH_CWND|CCF_HYSTART_CONS_SSTH); 20148 } 20149 } 20150 break; 20151 case TCP_RACK_REORD_THRESH: 20152 /* RACK reorder threshold (shift amount) */ 20153 RACK_OPTS_INC(tcp_rack_reord_thresh); 20154 if ((optval > 0) && (optval < 31)) 20155 rack->r_ctl.rc_reorder_shift = optval; 20156 else 20157 error = EINVAL; 20158 break; 20159 case TCP_RACK_REORD_FADE: 20160 /* Does reordering fade after ms time */ 20161 RACK_OPTS_INC(tcp_rack_reord_fade); 20162 rack->r_ctl.rc_reorder_fade = optval; 20163 break; 20164 case TCP_RACK_TLP_THRESH: 20165 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20166 RACK_OPTS_INC(tcp_rack_tlp_thresh); 20167 if (optval) 20168 rack->r_ctl.rc_tlp_threshold = optval; 20169 else 20170 error = EINVAL; 20171 break; 20172 case TCP_BBR_USE_RACK_RR: 20173 RACK_OPTS_INC(tcp_rack_rr); 20174 if (optval) 20175 rack->use_rack_rr = 1; 20176 else 20177 rack->use_rack_rr = 0; 20178 break; 20179 case TCP_FAST_RSM_HACK: 20180 RACK_OPTS_INC(tcp_rack_fastrsm_hack); 20181 if (optval) 20182 rack->fast_rsm_hack = 1; 20183 else 20184 rack->fast_rsm_hack = 0; 20185 break; 20186 case TCP_RACK_PKT_DELAY: 20187 /* RACK added ms i.e. rack-rtt + reord + N */ 20188 RACK_OPTS_INC(tcp_rack_pkt_delay); 20189 rack->r_ctl.rc_pkt_delay = optval; 20190 break; 20191 case TCP_DELACK: 20192 RACK_OPTS_INC(tcp_rack_delayed_ack); 20193 if (optval == 0) 20194 tp->t_delayed_ack = 0; 20195 else 20196 tp->t_delayed_ack = 1; 20197 if (tp->t_flags & TF_DELACK) { 20198 tp->t_flags &= ~TF_DELACK; 20199 tp->t_flags |= TF_ACKNOW; 20200 NET_EPOCH_ENTER(et); 20201 rack_output(tp); 20202 NET_EPOCH_EXIT(et); 20203 } 20204 break; 20205 20206 case TCP_BBR_RACK_RTT_USE: 20207 RACK_OPTS_INC(tcp_rack_rtt_use); 20208 if ((optval != USE_RTT_HIGH) && 20209 (optval != USE_RTT_LOW) && 20210 (optval != USE_RTT_AVG)) 20211 error = EINVAL; 20212 else 20213 rack->r_ctl.rc_rate_sample_method = optval; 20214 break; 20215 case TCP_DATA_AFTER_CLOSE: 20216 RACK_OPTS_INC(tcp_data_after_close); 20217 if (optval) 20218 rack->rc_allow_data_af_clo = 1; 20219 else 20220 rack->rc_allow_data_af_clo = 0; 20221 break; 20222 default: 20223 break; 20224 } 20225 #ifdef NETFLIX_STATS 20226 tcp_log_socket_option(tp, sopt_name, optval, error); 20227 #endif 20228 return (error); 20229 } 20230 20231 20232 static void 20233 rack_apply_deferred_options(struct tcp_rack *rack) 20234 { 20235 struct deferred_opt_list *dol, *sdol; 20236 uint32_t s_optval; 20237 20238 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) { 20239 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 20240 /* Disadvantage of deferal is you loose the error return */ 20241 s_optval = (uint32_t)dol->optval; 20242 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval); 20243 free(dol, M_TCPDO); 20244 } 20245 } 20246 20247 static void 20248 rack_hw_tls_change(struct tcpcb *tp, int chg) 20249 { 20250 /* 20251 * HW tls state has changed.. fix all 20252 * rsm's in flight. 20253 */ 20254 struct tcp_rack *rack; 20255 struct rack_sendmap *rsm; 20256 20257 rack = (struct tcp_rack *)tp->t_fb_ptr; 20258 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 20259 if (chg) 20260 rsm->r_hw_tls = 1; 20261 else 20262 rsm->r_hw_tls = 0; 20263 } 20264 if (chg) 20265 rack->r_ctl.fsb.hw_tls = 1; 20266 else 20267 rack->r_ctl.fsb.hw_tls = 0; 20268 } 20269 20270 static int 20271 rack_pru_options(struct tcpcb *tp, int flags) 20272 { 20273 if (flags & PRUS_OOB) 20274 return (EOPNOTSUPP); 20275 return (0); 20276 } 20277 20278 static struct tcp_function_block __tcp_rack = { 20279 .tfb_tcp_block_name = __XSTRING(STACKNAME), 20280 .tfb_tcp_output = rack_output, 20281 .tfb_do_queued_segments = ctf_do_queued_segments, 20282 .tfb_do_segment_nounlock = rack_do_segment_nounlock, 20283 .tfb_tcp_do_segment = rack_do_segment, 20284 .tfb_tcp_ctloutput = rack_ctloutput, 20285 .tfb_tcp_fb_init = rack_init, 20286 .tfb_tcp_fb_fini = rack_fini, 20287 .tfb_tcp_timer_stop_all = rack_stopall, 20288 .tfb_tcp_timer_activate = rack_timer_activate, 20289 .tfb_tcp_timer_active = rack_timer_active, 20290 .tfb_tcp_timer_stop = rack_timer_stop, 20291 .tfb_tcp_rexmit_tmr = rack_remxt_tmr, 20292 .tfb_tcp_handoff_ok = rack_handoff_ok, 20293 .tfb_tcp_mtu_chg = rack_mtu_change, 20294 .tfb_pru_options = rack_pru_options, 20295 .tfb_hwtls_change = rack_hw_tls_change, 20296 .tfb_flags = TCP_FUNC_OUTPUT_CANDROP, 20297 }; 20298 20299 /* 20300 * rack_ctloutput() must drop the inpcb lock before performing copyin on 20301 * socket option arguments. When it re-acquires the lock after the copy, it 20302 * has to revalidate that the connection is still valid for the socket 20303 * option. 20304 */ 20305 static int 20306 rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt) 20307 { 20308 #ifdef INET6 20309 struct ip6_hdr *ip6; 20310 #endif 20311 #ifdef INET 20312 struct ip *ip; 20313 #endif 20314 struct tcpcb *tp; 20315 struct tcp_rack *rack; 20316 uint64_t loptval; 20317 int32_t error = 0, optval; 20318 20319 tp = intotcpcb(inp); 20320 rack = (struct tcp_rack *)tp->t_fb_ptr; 20321 if (rack == NULL) { 20322 INP_WUNLOCK(inp); 20323 return (EINVAL); 20324 } 20325 #ifdef INET6 20326 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 20327 #endif 20328 #ifdef INET 20329 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 20330 #endif 20331 20332 switch (sopt->sopt_level) { 20333 #ifdef INET6 20334 case IPPROTO_IPV6: 20335 MPASS(inp->inp_vflag & INP_IPV6PROTO); 20336 switch (sopt->sopt_name) { 20337 case IPV6_USE_MIN_MTU: 20338 tcp6_use_min_mtu(tp); 20339 break; 20340 case IPV6_TCLASS: 20341 /* 20342 * The DSCP codepoint has changed, update the fsb. 20343 */ 20344 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 20345 (rack->rc_inp->inp_flow & IPV6_FLOWINFO_MASK); 20346 break; 20347 } 20348 INP_WUNLOCK(inp); 20349 return (0); 20350 #endif 20351 #ifdef INET 20352 case IPPROTO_IP: 20353 switch (sopt->sopt_name) { 20354 case IP_TOS: 20355 /* 20356 * The DSCP codepoint has changed, update the fsb. 20357 */ 20358 ip->ip_tos = rack->rc_inp->inp_ip_tos; 20359 break; 20360 case IP_TTL: 20361 /* 20362 * The TTL has changed, update the fsb. 20363 */ 20364 ip->ip_ttl = rack->rc_inp->inp_ip_ttl; 20365 break; 20366 } 20367 INP_WUNLOCK(inp); 20368 return (0); 20369 #endif 20370 } 20371 20372 switch (sopt->sopt_name) { 20373 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ 20374 /* Pacing related ones */ 20375 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ 20376 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ 20377 case TCP_BBR_IWINTSO: /* URL:tso_iwin */ 20378 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ 20379 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ 20380 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ 20381 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ 20382 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ 20383 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ 20384 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ 20385 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ 20386 case TCP_RACK_RR_CONF: /* URL:rrr_conf */ 20387 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ 20388 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */ 20389 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */ 20390 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */ 20391 /* End pacing related */ 20392 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */ 20393 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */ 20394 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ 20395 case TCP_RACK_MIN_TO: /* URL:min_to */ 20396 case TCP_RACK_EARLY_SEG: /* URL:early_seg */ 20397 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ 20398 case TCP_RACK_REORD_FADE: /* URL:reord_fade */ 20399 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ 20400 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ 20401 case TCP_RACK_TLP_USE: /* URL:tlp_use */ 20402 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ 20403 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ 20404 case TCP_RACK_DO_DETECTION: /* URL:detect */ 20405 case TCP_NO_PRR: /* URL:noprr */ 20406 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ 20407 case TCP_DATA_AFTER_CLOSE: /* no URL */ 20408 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ 20409 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ 20410 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ 20411 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ 20412 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ 20413 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ 20414 case TCP_RACK_PROFILE: /* URL:profile */ 20415 case TCP_USE_CMP_ACKS: /* URL:cmpack */ 20416 case TCP_RACK_ABC_VAL: /* URL:labc */ 20417 case TCP_REC_ABC_VAL: /* URL:reclabc */ 20418 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */ 20419 case TCP_DEFER_OPTIONS: /* URL:defer */ 20420 case TCP_RACK_DSACK_OPT: /* URL:dsack */ 20421 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */ 20422 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */ 20423 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */ 20424 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */ 20425 break; 20426 default: 20427 /* Filter off all unknown options to the base stack */ 20428 return (tcp_default_ctloutput(inp, sopt)); 20429 break; 20430 } 20431 INP_WUNLOCK(inp); 20432 if (sopt->sopt_name == TCP_PACING_RATE_CAP) { 20433 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval)); 20434 /* 20435 * We truncate it down to 32 bits for the socket-option trace this 20436 * means rates > 34Gbps won't show right, but thats probably ok. 20437 */ 20438 optval = (uint32_t)loptval; 20439 } else { 20440 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); 20441 /* Save it in 64 bit form too */ 20442 loptval = optval; 20443 } 20444 if (error) 20445 return (error); 20446 INP_WLOCK(inp); 20447 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 20448 INP_WUNLOCK(inp); 20449 return (ECONNRESET); 20450 } 20451 if (tp->t_fb != &__tcp_rack) { 20452 INP_WUNLOCK(inp); 20453 return (ENOPROTOOPT); 20454 } 20455 if (rack->defer_options && (rack->gp_ready == 0) && 20456 (sopt->sopt_name != TCP_DEFER_OPTIONS) && 20457 (sopt->sopt_name != TCP_RACK_PACING_BETA) && 20458 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) && 20459 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) { 20460 /* Options are beind deferred */ 20461 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) { 20462 INP_WUNLOCK(inp); 20463 return (0); 20464 } else { 20465 /* No memory to defer, fail */ 20466 INP_WUNLOCK(inp); 20467 return (ENOMEM); 20468 } 20469 } 20470 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval); 20471 INP_WUNLOCK(inp); 20472 return (error); 20473 } 20474 20475 static void 20476 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti) 20477 { 20478 20479 INP_WLOCK_ASSERT(tp->t_inpcb); 20480 bzero(ti, sizeof(*ti)); 20481 20482 ti->tcpi_state = tp->t_state; 20483 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) 20484 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; 20485 if (tp->t_flags & TF_SACK_PERMIT) 20486 ti->tcpi_options |= TCPI_OPT_SACK; 20487 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { 20488 ti->tcpi_options |= TCPI_OPT_WSCALE; 20489 ti->tcpi_snd_wscale = tp->snd_scale; 20490 ti->tcpi_rcv_wscale = tp->rcv_scale; 20491 } 20492 if (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) 20493 ti->tcpi_options |= TCPI_OPT_ECN; 20494 if (tp->t_flags & TF_FASTOPEN) 20495 ti->tcpi_options |= TCPI_OPT_TFO; 20496 /* still kept in ticks is t_rcvtime */ 20497 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; 20498 /* Since we hold everything in precise useconds this is easy */ 20499 ti->tcpi_rtt = tp->t_srtt; 20500 ti->tcpi_rttvar = tp->t_rttvar; 20501 ti->tcpi_rto = tp->t_rxtcur; 20502 ti->tcpi_snd_ssthresh = tp->snd_ssthresh; 20503 ti->tcpi_snd_cwnd = tp->snd_cwnd; 20504 /* 20505 * FreeBSD-specific extension fields for tcp_info. 20506 */ 20507 ti->tcpi_rcv_space = tp->rcv_wnd; 20508 ti->tcpi_rcv_nxt = tp->rcv_nxt; 20509 ti->tcpi_snd_wnd = tp->snd_wnd; 20510 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ 20511 ti->tcpi_snd_nxt = tp->snd_nxt; 20512 ti->tcpi_snd_mss = tp->t_maxseg; 20513 ti->tcpi_rcv_mss = tp->t_maxseg; 20514 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; 20515 ti->tcpi_rcv_ooopack = tp->t_rcvoopack; 20516 ti->tcpi_snd_zerowin = tp->t_sndzerowin; 20517 #ifdef NETFLIX_STATS 20518 ti->tcpi_total_tlp = tp->t_sndtlppack; 20519 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte; 20520 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo)); 20521 #endif 20522 #ifdef TCP_OFFLOAD 20523 if (tp->t_flags & TF_TOE) { 20524 ti->tcpi_options |= TCPI_OPT_TOE; 20525 tcp_offload_tcp_info(tp, ti); 20526 } 20527 #endif 20528 } 20529 20530 static int 20531 rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt) 20532 { 20533 struct tcpcb *tp; 20534 struct tcp_rack *rack; 20535 int32_t error, optval; 20536 uint64_t val, loptval; 20537 struct tcp_info ti; 20538 /* 20539 * Because all our options are either boolean or an int, we can just 20540 * pull everything into optval and then unlock and copy. If we ever 20541 * add a option that is not a int, then this will have quite an 20542 * impact to this routine. 20543 */ 20544 error = 0; 20545 tp = intotcpcb(inp); 20546 rack = (struct tcp_rack *)tp->t_fb_ptr; 20547 if (rack == NULL) { 20548 INP_WUNLOCK(inp); 20549 return (EINVAL); 20550 } 20551 switch (sopt->sopt_name) { 20552 case TCP_INFO: 20553 /* First get the info filled */ 20554 rack_fill_info(tp, &ti); 20555 /* Fix up the rtt related fields if needed */ 20556 INP_WUNLOCK(inp); 20557 error = sooptcopyout(sopt, &ti, sizeof ti); 20558 return (error); 20559 /* 20560 * Beta is the congestion control value for NewReno that influences how 20561 * much of a backoff happens when loss is detected. It is normally set 20562 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value 20563 * when you exit recovery. 20564 */ 20565 case TCP_RACK_PACING_BETA: 20566 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20567 error = EINVAL; 20568 else if (rack->rc_pacing_cc_set == 0) 20569 optval = rack->r_ctl.rc_saved_beta.beta; 20570 else { 20571 /* 20572 * Reach out into the CC data and report back what 20573 * I have previously set. Yeah it looks hackish but 20574 * we don't want to report the saved values. 20575 */ 20576 if (tp->ccv->cc_data) 20577 optval = ((struct newreno *)tp->ccv->cc_data)->beta; 20578 else 20579 error = EINVAL; 20580 } 20581 break; 20582 /* 20583 * Beta_ecn is the congestion control value for NewReno that influences how 20584 * much of a backoff happens when a ECN mark is detected. It is normally set 20585 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when 20586 * you exit recovery. Note that classic ECN has a beta of 50, it is only 20587 * ABE Ecn that uses this "less" value, but we do too with pacing :) 20588 */ 20589 20590 case TCP_RACK_PACING_BETA_ECN: 20591 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20592 error = EINVAL; 20593 else if (rack->rc_pacing_cc_set == 0) 20594 optval = rack->r_ctl.rc_saved_beta.beta_ecn; 20595 else { 20596 /* 20597 * Reach out into the CC data and report back what 20598 * I have previously set. Yeah it looks hackish but 20599 * we don't want to report the saved values. 20600 */ 20601 if (tp->ccv->cc_data) 20602 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn; 20603 else 20604 error = EINVAL; 20605 } 20606 break; 20607 case TCP_RACK_DSACK_OPT: 20608 optval = 0; 20609 if (rack->rc_rack_tmr_std_based) { 20610 optval |= 1; 20611 } 20612 if (rack->rc_rack_use_dsack) { 20613 optval |= 2; 20614 } 20615 break; 20616 case TCP_RACK_ENABLE_HYSTART: 20617 { 20618 if (tp->ccv->flags & CCF_HYSTART_ALLOWED) { 20619 optval = RACK_HYSTART_ON; 20620 if (tp->ccv->flags & CCF_HYSTART_CAN_SH_CWND) 20621 optval = RACK_HYSTART_ON_W_SC; 20622 if (tp->ccv->flags & CCF_HYSTART_CONS_SSTH) 20623 optval = RACK_HYSTART_ON_W_SC_C; 20624 } else { 20625 optval = RACK_HYSTART_OFF; 20626 } 20627 } 20628 break; 20629 case TCP_FAST_RSM_HACK: 20630 optval = rack->fast_rsm_hack; 20631 break; 20632 case TCP_DEFER_OPTIONS: 20633 optval = rack->defer_options; 20634 break; 20635 case TCP_RACK_MEASURE_CNT: 20636 optval = rack->r_ctl.req_measurements; 20637 break; 20638 case TCP_REC_ABC_VAL: 20639 optval = rack->r_use_labc_for_rec; 20640 break; 20641 case TCP_RACK_ABC_VAL: 20642 optval = rack->rc_labc; 20643 break; 20644 case TCP_HDWR_UP_ONLY: 20645 optval= rack->r_up_only; 20646 break; 20647 case TCP_PACING_RATE_CAP: 20648 loptval = rack->r_ctl.bw_rate_cap; 20649 break; 20650 case TCP_RACK_PROFILE: 20651 /* You cannot retrieve a profile, its write only */ 20652 error = EINVAL; 20653 break; 20654 case TCP_USE_CMP_ACKS: 20655 optval = rack->r_use_cmp_ack; 20656 break; 20657 case TCP_RACK_PACE_TO_FILL: 20658 optval = rack->rc_pace_to_cwnd; 20659 if (optval && rack->r_fill_less_agg) 20660 optval++; 20661 break; 20662 case TCP_RACK_NO_PUSH_AT_MAX: 20663 optval = rack->r_ctl.rc_no_push_at_mrtt; 20664 break; 20665 case TCP_SHARED_CWND_ENABLE: 20666 optval = rack->rack_enable_scwnd; 20667 break; 20668 case TCP_RACK_NONRXT_CFG_RATE: 20669 optval = rack->rack_rec_nonrxt_use_cr; 20670 break; 20671 case TCP_NO_PRR: 20672 if (rack->rack_no_prr == 1) 20673 optval = 1; 20674 else if (rack->no_prr_addback == 1) 20675 optval = 2; 20676 else 20677 optval = 0; 20678 break; 20679 case TCP_RACK_DO_DETECTION: 20680 optval = rack->do_detection; 20681 break; 20682 case TCP_RACK_MBUF_QUEUE: 20683 /* Now do we use the LRO mbuf-queue feature */ 20684 optval = rack->r_mbuf_queue; 20685 break; 20686 case TCP_TIMELY_DYN_ADJ: 20687 optval = rack->rc_gp_dyn_mul; 20688 break; 20689 case TCP_BBR_IWINTSO: 20690 optval = rack->rc_init_win; 20691 break; 20692 case TCP_RACK_TLP_REDUCE: 20693 /* RACK TLP cwnd reduction (bool) */ 20694 optval = rack->r_ctl.rc_tlp_cwnd_reduce; 20695 break; 20696 case TCP_BBR_RACK_INIT_RATE: 20697 val = rack->r_ctl.init_rate; 20698 /* convert to kbits per sec */ 20699 val *= 8; 20700 val /= 1000; 20701 optval = (uint32_t)val; 20702 break; 20703 case TCP_RACK_FORCE_MSEG: 20704 optval = rack->rc_force_max_seg; 20705 break; 20706 case TCP_RACK_PACE_MAX_SEG: 20707 /* Max segments in a pace */ 20708 optval = rack->rc_user_set_max_segs; 20709 break; 20710 case TCP_RACK_PACE_ALWAYS: 20711 /* Use the always pace method */ 20712 optval = rack->rc_always_pace; 20713 break; 20714 case TCP_RACK_PRR_SENDALOT: 20715 /* Allow PRR to send more than one seg */ 20716 optval = rack->r_ctl.rc_prr_sendalot; 20717 break; 20718 case TCP_RACK_MIN_TO: 20719 /* Minimum time between rack t-o's in ms */ 20720 optval = rack->r_ctl.rc_min_to; 20721 break; 20722 case TCP_RACK_EARLY_SEG: 20723 /* If early recovery max segments */ 20724 optval = rack->r_ctl.rc_early_recovery_segs; 20725 break; 20726 case TCP_RACK_REORD_THRESH: 20727 /* RACK reorder threshold (shift amount) */ 20728 optval = rack->r_ctl.rc_reorder_shift; 20729 break; 20730 case TCP_RACK_REORD_FADE: 20731 /* Does reordering fade after ms time */ 20732 optval = rack->r_ctl.rc_reorder_fade; 20733 break; 20734 case TCP_BBR_USE_RACK_RR: 20735 /* Do we use the rack cheat for rxt */ 20736 optval = rack->use_rack_rr; 20737 break; 20738 case TCP_RACK_RR_CONF: 20739 optval = rack->r_rr_config; 20740 break; 20741 case TCP_HDWR_RATE_CAP: 20742 optval = rack->r_rack_hw_rate_caps; 20743 break; 20744 case TCP_BBR_HDWR_PACE: 20745 optval = rack->rack_hdw_pace_ena; 20746 break; 20747 case TCP_RACK_TLP_THRESH: 20748 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20749 optval = rack->r_ctl.rc_tlp_threshold; 20750 break; 20751 case TCP_RACK_PKT_DELAY: 20752 /* RACK added ms i.e. rack-rtt + reord + N */ 20753 optval = rack->r_ctl.rc_pkt_delay; 20754 break; 20755 case TCP_RACK_TLP_USE: 20756 optval = rack->rack_tlp_threshold_use; 20757 break; 20758 case TCP_RACK_PACE_RATE_CA: 20759 optval = rack->r_ctl.rc_fixed_pacing_rate_ca; 20760 break; 20761 case TCP_RACK_PACE_RATE_SS: 20762 optval = rack->r_ctl.rc_fixed_pacing_rate_ss; 20763 break; 20764 case TCP_RACK_PACE_RATE_REC: 20765 optval = rack->r_ctl.rc_fixed_pacing_rate_rec; 20766 break; 20767 case TCP_RACK_GP_INCREASE_SS: 20768 optval = rack->r_ctl.rack_per_of_gp_ca; 20769 break; 20770 case TCP_RACK_GP_INCREASE_CA: 20771 optval = rack->r_ctl.rack_per_of_gp_ss; 20772 break; 20773 case TCP_BBR_RACK_RTT_USE: 20774 optval = rack->r_ctl.rc_rate_sample_method; 20775 break; 20776 case TCP_DELACK: 20777 optval = tp->t_delayed_ack; 20778 break; 20779 case TCP_DATA_AFTER_CLOSE: 20780 optval = rack->rc_allow_data_af_clo; 20781 break; 20782 case TCP_SHARED_CWND_TIME_LIMIT: 20783 optval = rack->r_limit_scw; 20784 break; 20785 case TCP_RACK_TIMER_SLOP: 20786 optval = rack->r_ctl.timer_slop; 20787 break; 20788 default: 20789 return (tcp_default_ctloutput(inp, sopt)); 20790 break; 20791 } 20792 INP_WUNLOCK(inp); 20793 if (error == 0) { 20794 if (TCP_PACING_RATE_CAP) 20795 error = sooptcopyout(sopt, &loptval, sizeof loptval); 20796 else 20797 error = sooptcopyout(sopt, &optval, sizeof optval); 20798 } 20799 return (error); 20800 } 20801 20802 static int 20803 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt) 20804 { 20805 if (sopt->sopt_dir == SOPT_SET) { 20806 return (rack_set_sockopt(inp, sopt)); 20807 } else if (sopt->sopt_dir == SOPT_GET) { 20808 return (rack_get_sockopt(inp, sopt)); 20809 } else { 20810 panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir); 20811 } 20812 } 20813 20814 static const char *rack_stack_names[] = { 20815 __XSTRING(STACKNAME), 20816 #ifdef STACKALIAS 20817 __XSTRING(STACKALIAS), 20818 #endif 20819 }; 20820 20821 static int 20822 rack_ctor(void *mem, int32_t size, void *arg, int32_t how) 20823 { 20824 memset(mem, 0, size); 20825 return (0); 20826 } 20827 20828 static void 20829 rack_dtor(void *mem, int32_t size, void *arg) 20830 { 20831 20832 } 20833 20834 static bool rack_mod_inited = false; 20835 20836 static int 20837 tcp_addrack(module_t mod, int32_t type, void *data) 20838 { 20839 int32_t err = 0; 20840 int num_stacks; 20841 20842 switch (type) { 20843 case MOD_LOAD: 20844 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", 20845 sizeof(struct rack_sendmap), 20846 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 20847 20848 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", 20849 sizeof(struct tcp_rack), 20850 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 20851 20852 sysctl_ctx_init(&rack_sysctl_ctx); 20853 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 20854 SYSCTL_STATIC_CHILDREN(_net_inet_tcp), 20855 OID_AUTO, 20856 #ifdef STACKALIAS 20857 __XSTRING(STACKALIAS), 20858 #else 20859 __XSTRING(STACKNAME), 20860 #endif 20861 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 20862 ""); 20863 if (rack_sysctl_root == NULL) { 20864 printf("Failed to add sysctl node\n"); 20865 err = EFAULT; 20866 goto free_uma; 20867 } 20868 rack_init_sysctls(); 20869 num_stacks = nitems(rack_stack_names); 20870 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, 20871 rack_stack_names, &num_stacks); 20872 if (err) { 20873 printf("Failed to register %s stack name for " 20874 "%s module\n", rack_stack_names[num_stacks], 20875 __XSTRING(MODNAME)); 20876 sysctl_ctx_free(&rack_sysctl_ctx); 20877 free_uma: 20878 uma_zdestroy(rack_zone); 20879 uma_zdestroy(rack_pcb_zone); 20880 rack_counter_destroy(); 20881 printf("Failed to register rack module -- err:%d\n", err); 20882 return (err); 20883 } 20884 tcp_lro_reg_mbufq(); 20885 rack_mod_inited = true; 20886 break; 20887 case MOD_QUIESCE: 20888 err = deregister_tcp_functions(&__tcp_rack, true, false); 20889 break; 20890 case MOD_UNLOAD: 20891 err = deregister_tcp_functions(&__tcp_rack, false, true); 20892 if (err == EBUSY) 20893 break; 20894 if (rack_mod_inited) { 20895 uma_zdestroy(rack_zone); 20896 uma_zdestroy(rack_pcb_zone); 20897 sysctl_ctx_free(&rack_sysctl_ctx); 20898 rack_counter_destroy(); 20899 rack_mod_inited = false; 20900 } 20901 tcp_lro_dereg_mbufq(); 20902 err = 0; 20903 break; 20904 default: 20905 return (EOPNOTSUPP); 20906 } 20907 return (err); 20908 } 20909 20910 static moduledata_t tcp_rack = { 20911 .name = __XSTRING(MODNAME), 20912 .evhand = tcp_addrack, 20913 .priv = 0 20914 }; 20915 20916 MODULE_VERSION(MODNAME, 1); 20917 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); 20918 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1); 20919