xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 /*-
2  * Copyright (c) 2016-9 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #ifdef KERN_TLS
52 #include <sys/ktls.h>
53 #endif
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #ifdef STATS
57 #include <sys/qmath.h>
58 #include <sys/tree.h>
59 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
60 #endif
61 #include <sys/refcount.h>
62 #include <sys/tree.h>
63 #include <sys/queue.h>
64 #include <sys/smp.h>
65 #include <sys/kthread.h>
66 #include <sys/kern_prefetch.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/route.h>
71 #include <net/vnet.h>
72 
73 #define TCPSTATES		/* for logging */
74 
75 #include <netinet/in.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
80 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
81 #include <netinet/ip_var.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/tcp.h>
86 #define	TCPOUTFLAGS
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_log_buf.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_hpts.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/cc/cc.h>
95 #include <netinet/tcp_fastopen.h>
96 #include <netinet/tcp_lro.h>
97 #ifdef TCPDEBUG
98 #include <netinet/tcp_debug.h>
99 #endif				/* TCPDEBUG */
100 #ifdef TCP_OFFLOAD
101 #include <netinet/tcp_offload.h>
102 #endif
103 #ifdef INET6
104 #include <netinet6/tcp6_var.h>
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif				/* IPSEC */
113 
114 #include <netinet/udp.h>
115 #include <netinet/udp_var.h>
116 #include <machine/in_cksum.h>
117 
118 #ifdef MAC
119 #include <security/mac/mac_framework.h>
120 #endif
121 #include "sack_filter.h"
122 #include "tcp_rack.h"
123 #include "rack_bbr_common.h"
124 
125 uma_zone_t rack_zone;
126 uma_zone_t rack_pcb_zone;
127 
128 #ifndef TICKS2SBT
129 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
130 #endif
131 
132 struct sysctl_ctx_list rack_sysctl_ctx;
133 struct sysctl_oid *rack_sysctl_root;
134 
135 #define CUM_ACKED 1
136 #define SACKED 2
137 
138 /*
139  * The RACK module incorporates a number of
140  * TCP ideas that have been put out into the IETF
141  * over the last few years:
142  * - Matt Mathis's Rate Halving which slowly drops
143  *    the congestion window so that the ack clock can
144  *    be maintained during a recovery.
145  * - Yuchung Cheng's RACK TCP (for which its named) that
146  *    will stop us using the number of dup acks and instead
147  *    use time as the gage of when we retransmit.
148  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
149  *    of Dukkipati et.al.
150  * RACK depends on SACK, so if an endpoint arrives that
151  * cannot do SACK the state machine below will shuttle the
152  * connection back to using the "default" TCP stack that is
153  * in FreeBSD.
154  *
155  * To implement RACK the original TCP stack was first decomposed
156  * into a functional state machine with individual states
157  * for each of the possible TCP connection states. The do_segement
158  * functions role in life is to mandate the connection supports SACK
159  * initially and then assure that the RACK state matches the conenction
160  * state before calling the states do_segment function. Each
161  * state is simplified due to the fact that the original do_segment
162  * has been decomposed and we *know* what state we are in (no
163  * switches on the state) and all tests for SACK are gone. This
164  * greatly simplifies what each state does.
165  *
166  * TCP output is also over-written with a new version since it
167  * must maintain the new rack scoreboard.
168  *
169  */
170 static int32_t rack_tlp_thresh = 1;
171 static int32_t rack_reorder_thresh = 2;
172 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
173 						 * - 60 seconds */
174 /* Attack threshold detections */
175 static uint32_t rack_highest_sack_thresh_seen = 0;
176 static uint32_t rack_highest_move_thresh_seen = 0;
177 
178 static int32_t rack_pkt_delay = 1;
179 static int32_t rack_min_pace_time = 0;
180 static int32_t rack_early_recovery = 1;
181 static int32_t rack_send_a_lot_in_prr = 1;
182 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
183 static int32_t rack_verbose_logging = 0;
184 static int32_t rack_ignore_data_after_close = 1;
185 static int32_t use_rack_cheat = 1;
186 static int32_t rack_persist_min = 250;	/* 250ms */
187 static int32_t rack_persist_max = 1000;	/* 1 Second */
188 static int32_t rack_sack_not_required = 0;	/* set to one to allow non-sack to use rack */
189 static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
190 
191 /*
192  * Currently regular tcp has a rto_min of 30ms
193  * the backoff goes 12 times so that ends up
194  * being a total of 122.850 seconds before a
195  * connection is killed.
196  */
197 static int32_t rack_tlp_min = 10;
198 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
199 static int32_t rack_rto_max = 4000;	/* 4 seconds */
200 static const int32_t rack_free_cache = 2;
201 static int32_t rack_hptsi_segments = 40;
202 static int32_t rack_rate_sample_method = USE_RTT_LOW;
203 static int32_t rack_pace_every_seg = 0;
204 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
205 static int32_t rack_slot_reduction = 4;
206 static int32_t rack_lower_cwnd_at_tlp = 0;
207 static int32_t rack_use_proportional_reduce = 0;
208 static int32_t rack_proportional_rate = 10;
209 static int32_t rack_tlp_max_resend = 2;
210 static int32_t rack_limited_retran = 0;
211 static int32_t rack_always_send_oldest = 0;
212 static int32_t rack_use_sack_filter = 1;
213 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
214 static int32_t rack_per_of_gp = 50;
215 
216 /* Rack specific counters */
217 counter_u64_t rack_badfr;
218 counter_u64_t rack_badfr_bytes;
219 counter_u64_t rack_rtm_prr_retran;
220 counter_u64_t rack_rtm_prr_newdata;
221 counter_u64_t rack_timestamp_mismatch;
222 counter_u64_t rack_reorder_seen;
223 counter_u64_t rack_paced_segments;
224 counter_u64_t rack_unpaced_segments;
225 counter_u64_t rack_calc_zero;
226 counter_u64_t rack_calc_nonzero;
227 counter_u64_t rack_saw_enobuf;
228 counter_u64_t rack_saw_enetunreach;
229 counter_u64_t rack_per_timer_hole;
230 
231 /* Tail loss probe counters */
232 counter_u64_t rack_tlp_tot;
233 counter_u64_t rack_tlp_newdata;
234 counter_u64_t rack_tlp_retran;
235 counter_u64_t rack_tlp_retran_bytes;
236 counter_u64_t rack_tlp_retran_fail;
237 counter_u64_t rack_to_tot;
238 counter_u64_t rack_to_arm_rack;
239 counter_u64_t rack_to_arm_tlp;
240 counter_u64_t rack_to_alloc;
241 counter_u64_t rack_to_alloc_hard;
242 counter_u64_t rack_to_alloc_emerg;
243 counter_u64_t rack_to_alloc_limited;
244 counter_u64_t rack_alloc_limited_conns;
245 counter_u64_t rack_split_limited;
246 
247 counter_u64_t rack_sack_proc_all;
248 counter_u64_t rack_sack_proc_short;
249 counter_u64_t rack_sack_proc_restart;
250 counter_u64_t rack_sack_attacks_detected;
251 counter_u64_t rack_sack_attacks_reversed;
252 counter_u64_t rack_sack_used_next_merge;
253 counter_u64_t rack_sack_splits;
254 counter_u64_t rack_sack_used_prev_merge;
255 counter_u64_t rack_sack_skipped_acked;
256 counter_u64_t rack_ack_total;
257 counter_u64_t rack_express_sack;
258 counter_u64_t rack_sack_total;
259 counter_u64_t rack_move_none;
260 counter_u64_t rack_move_some;
261 
262 counter_u64_t rack_used_tlpmethod;
263 counter_u64_t rack_used_tlpmethod2;
264 counter_u64_t rack_enter_tlp_calc;
265 counter_u64_t rack_input_idle_reduces;
266 counter_u64_t rack_collapsed_win;
267 counter_u64_t rack_tlp_does_nada;
268 
269 /* Counters for HW TLS */
270 counter_u64_t rack_tls_rwnd;
271 counter_u64_t rack_tls_cwnd;
272 counter_u64_t rack_tls_app;
273 counter_u64_t rack_tls_other;
274 counter_u64_t rack_tls_filled;
275 counter_u64_t rack_tls_rxt;
276 counter_u64_t rack_tls_tlp;
277 
278 /* Temp CPU counters */
279 counter_u64_t rack_find_high;
280 
281 counter_u64_t rack_progress_drops;
282 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
283 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
284 
285 static void
286 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
287 
288 static int
289 rack_process_ack(struct mbuf *m, struct tcphdr *th,
290     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
291     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
292 static int
293 rack_process_data(struct mbuf *m, struct tcphdr *th,
294     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
295     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
296 static void
297 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
298     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
299 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
300 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
301     uint8_t limit_type);
302 static struct rack_sendmap *
303 rack_check_recovery_mode(struct tcpcb *tp,
304     uint32_t tsused);
305 static void
306 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
307     uint32_t type);
308 static void rack_counter_destroy(void);
309 static int
310 rack_ctloutput(struct socket *so, struct sockopt *sopt,
311     struct inpcb *inp, struct tcpcb *tp);
312 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
313 static void
314 rack_do_segment(struct mbuf *m, struct tcphdr *th,
315     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
316     uint8_t iptos);
317 static void rack_dtor(void *mem, int32_t size, void *arg);
318 static void
319 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
320     uint32_t t, uint32_t cts);
321 static struct rack_sendmap *
322 rack_find_high_nonack(struct tcp_rack *rack,
323     struct rack_sendmap *rsm);
324 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
325 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
326 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
327 static int
328 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
329     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
330 static int32_t rack_handoff_ok(struct tcpcb *tp);
331 static int32_t rack_init(struct tcpcb *tp);
332 static void rack_init_sysctls(void);
333 static void
334 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
335     struct tcphdr *th);
336 static void
337 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
338     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
339     uint8_t pass, struct rack_sendmap *hintrsm);
340 static void
341 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
342     struct rack_sendmap *rsm);
343 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
344 static int32_t rack_output(struct tcpcb *tp);
345 
346 static uint32_t
347 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
348     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
349     uint32_t cts, int *moved_two);
350 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
351 static void rack_remxt_tmr(struct tcpcb *tp);
352 static int
353 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
354     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
355 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
356 static int32_t rack_stopall(struct tcpcb *tp);
357 static void
358 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
359     uint32_t delta);
360 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
361 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
362 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
363 static uint32_t
364 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
365     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
366 static void
367 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
368     struct rack_sendmap *rsm, uint32_t ts);
369 static int
370 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
371     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
372 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
373 static int
374 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
375     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
376     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
377 static int
378 rack_do_closing(struct mbuf *m, struct tcphdr *th,
379     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
380     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
381 static int
382 rack_do_established(struct mbuf *m, struct tcphdr *th,
383     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
384     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
385 static int
386 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
387     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
388     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
389 static int
390 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
391     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
392     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
393 static int
394 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
395     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
396     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
397 static int
398 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
399     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
400     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
401 static int
402 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
403     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
404     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
405 static int
406 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
407     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
408     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
409 struct rack_sendmap *
410 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
411     uint32_t tsused);
412 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
413 static void
414      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
415 
416 int32_t rack_clear_counter=0;
417 
418 
419 static int
420 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
421 {
422 	uint32_t stat;
423 	int32_t error;
424 
425 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
426 	if (error || req->newptr == NULL)
427 		return error;
428 
429 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
430 	if (error)
431 		return (error);
432 	if (stat == 1) {
433 #ifdef INVARIANTS
434 		printf("Clearing RACK counters\n");
435 #endif
436 		counter_u64_zero(rack_badfr);
437 		counter_u64_zero(rack_badfr_bytes);
438 		counter_u64_zero(rack_rtm_prr_retran);
439 		counter_u64_zero(rack_rtm_prr_newdata);
440 		counter_u64_zero(rack_timestamp_mismatch);
441 		counter_u64_zero(rack_reorder_seen);
442 		counter_u64_zero(rack_tlp_tot);
443 		counter_u64_zero(rack_tlp_newdata);
444 		counter_u64_zero(rack_tlp_retran);
445 		counter_u64_zero(rack_tlp_retran_bytes);
446 		counter_u64_zero(rack_tlp_retran_fail);
447 		counter_u64_zero(rack_to_tot);
448 		counter_u64_zero(rack_to_arm_rack);
449 		counter_u64_zero(rack_to_arm_tlp);
450 		counter_u64_zero(rack_paced_segments);
451 		counter_u64_zero(rack_calc_zero);
452 		counter_u64_zero(rack_calc_nonzero);
453 		counter_u64_zero(rack_unpaced_segments);
454 		counter_u64_zero(rack_saw_enobuf);
455 		counter_u64_zero(rack_saw_enetunreach);
456 		counter_u64_zero(rack_per_timer_hole);
457 		counter_u64_zero(rack_to_alloc_hard);
458 		counter_u64_zero(rack_to_alloc_emerg);
459 		counter_u64_zero(rack_sack_proc_all);
460 		counter_u64_zero(rack_sack_proc_short);
461 		counter_u64_zero(rack_sack_proc_restart);
462 		counter_u64_zero(rack_to_alloc);
463 		counter_u64_zero(rack_to_alloc_limited);
464 		counter_u64_zero(rack_alloc_limited_conns);
465 		counter_u64_zero(rack_split_limited);
466 		counter_u64_zero(rack_find_high);
467 		counter_u64_zero(rack_tls_rwnd);
468 		counter_u64_zero(rack_tls_cwnd);
469 		counter_u64_zero(rack_tls_app);
470 		counter_u64_zero(rack_tls_other);
471 		counter_u64_zero(rack_tls_filled);
472 		counter_u64_zero(rack_tls_rxt);
473 		counter_u64_zero(rack_tls_tlp);
474 		counter_u64_zero(rack_sack_attacks_detected);
475 		counter_u64_zero(rack_sack_attacks_reversed);
476 		counter_u64_zero(rack_sack_used_next_merge);
477 		counter_u64_zero(rack_sack_used_prev_merge);
478 		counter_u64_zero(rack_sack_splits);
479 		counter_u64_zero(rack_sack_skipped_acked);
480 		counter_u64_zero(rack_ack_total);
481 		counter_u64_zero(rack_express_sack);
482 		counter_u64_zero(rack_sack_total);
483 		counter_u64_zero(rack_move_none);
484 		counter_u64_zero(rack_move_some);
485 		counter_u64_zero(rack_used_tlpmethod);
486 		counter_u64_zero(rack_used_tlpmethod2);
487 		counter_u64_zero(rack_enter_tlp_calc);
488 		counter_u64_zero(rack_progress_drops);
489 		counter_u64_zero(rack_tlp_does_nada);
490 		counter_u64_zero(rack_collapsed_win);
491 
492 	}
493 	rack_clear_counter = 0;
494 	return (0);
495 }
496 
497 
498 
499 static void
500 rack_init_sysctls(void)
501 {
502 	struct sysctl_oid *rack_counters;
503 	struct sysctl_oid *rack_attack;
504 
505 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
506 	    SYSCTL_CHILDREN(rack_sysctl_root),
507 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
508 	    &rack_rate_sample_method , USE_RTT_LOW,
509 	    "What method should we use for rate sampling 0=high, 1=low ");
510 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
511 	    SYSCTL_CHILDREN(rack_sysctl_root),
512 	    OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
513 	    &rack_hw_tls_max_seg , 0,
514 	    "Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
515 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
516 	    SYSCTL_CHILDREN(rack_sysctl_root),
517 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
518 	    &rack_ignore_data_after_close, 0,
519 	    "Do we hold off sending a RST until all pending data is ack'd");
520 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
521 	    SYSCTL_CHILDREN(rack_sysctl_root),
522 	    OID_AUTO, "cheat_rxt", CTLFLAG_RW,
523 	    &use_rack_cheat, 1,
524 	    "Do we use the rxt cheat for rack?");
525 
526 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
527 	    SYSCTL_CHILDREN(rack_sysctl_root),
528 	    OID_AUTO, "persmin", CTLFLAG_RW,
529 	    &rack_persist_min, 250,
530 	    "What is the minimum time in milliseconds between persists");
531 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
532 	    SYSCTL_CHILDREN(rack_sysctl_root),
533 	    OID_AUTO, "persmax", CTLFLAG_RW,
534 	    &rack_persist_max, 1000,
535 	    "What is the largest delay in milliseconds between persists");
536 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
537 	    SYSCTL_CHILDREN(rack_sysctl_root),
538 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
539 	    &rack_sack_not_required, 0,
540 	    "Do we allow rack to run on connections not supporting SACK?");
541 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
542 	    SYSCTL_CHILDREN(rack_sysctl_root),
543 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
544 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
545 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
546 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
547 	    SYSCTL_CHILDREN(rack_sysctl_root),
548 	    OID_AUTO, "gp_percentage", CTLFLAG_RW,
549 	    &rack_per_of_gp, 50,
550 	    "Do we pace to percentage of goodput (0=old method)?");
551 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
552 	    SYSCTL_CHILDREN(rack_sysctl_root),
553 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
554 	    &rack_min_pace_time, 0,
555 	    "Should we enforce a minimum pace time of 1ms");
556 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
557 	    SYSCTL_CHILDREN(rack_sysctl_root),
558 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
559 	    &rack_verbose_logging, 0,
560 	    "Should RACK black box logging be verbose");
561 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
562 	    SYSCTL_CHILDREN(rack_sysctl_root),
563 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
564 	    &rack_use_sack_filter, 1,
565 	    "Do we use sack filtering?");
566 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
567 	    SYSCTL_CHILDREN(rack_sysctl_root),
568 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
569 	    &rack_delayed_ack_time, 200,
570 	    "Delayed ack time (200ms)");
571 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
572 	    SYSCTL_CHILDREN(rack_sysctl_root),
573 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
574 	    &rack_tlp_min, 10,
575 	    "TLP minimum timeout per the specification (10ms)");
576 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
577 	    SYSCTL_CHILDREN(rack_sysctl_root),
578 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
579 	    &rack_always_send_oldest, 1,
580 	    "Should we always send the oldest TLP and RACK-TLP");
581 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
582 	    SYSCTL_CHILDREN(rack_sysctl_root),
583 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
584 	    &rack_limited_retran, 0,
585 	    "How many times can a rack timeout drive out sends");
586 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
587 	    SYSCTL_CHILDREN(rack_sysctl_root),
588 	    OID_AUTO, "minrto", CTLFLAG_RW,
589 	    &rack_rto_min, 0,
590 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
591 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
592 	    SYSCTL_CHILDREN(rack_sysctl_root),
593 	    OID_AUTO, "maxrto", CTLFLAG_RW,
594 	    &rack_rto_max, 0,
595 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
596 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
597 	    SYSCTL_CHILDREN(rack_sysctl_root),
598 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
599 	    &rack_tlp_max_resend, 2,
600 	    "How many times does TLP retry a single segment or multiple with no ACK");
601 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
602 	    SYSCTL_CHILDREN(rack_sysctl_root),
603 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
604 	    &rack_use_proportional_reduce, 0,
605 	    "Should we proportionaly reduce cwnd based on the number of losses ");
606 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
607 	    SYSCTL_CHILDREN(rack_sysctl_root),
608 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
609 	    &rack_proportional_rate, 10,
610 	    "What percent reduction per loss");
611 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
612 	    SYSCTL_CHILDREN(rack_sysctl_root),
613 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
614 	    &rack_lower_cwnd_at_tlp, 0,
615 	    "When a TLP completes a retran should we enter recovery?");
616 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
617 	    SYSCTL_CHILDREN(rack_sysctl_root),
618 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
619 	    &rack_slot_reduction, 4,
620 	    "When setting a slot should we reduce by divisor");
621 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
622 	    SYSCTL_CHILDREN(rack_sysctl_root),
623 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
624 	    &rack_pace_every_seg, 0,
625 	    "Should we use the original pacing mechanism that did not pace much?");
626 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
627 	    SYSCTL_CHILDREN(rack_sysctl_root),
628 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
629 	    &rack_hptsi_segments, 40,
630 	    "Should we pace out only a limited size of segments");
631 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
632 	    SYSCTL_CHILDREN(rack_sysctl_root),
633 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
634 	    &rack_send_a_lot_in_prr, 1,
635 	    "Send a lot in prr");
636 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
637 	    SYSCTL_CHILDREN(rack_sysctl_root),
638 	    OID_AUTO, "minto", CTLFLAG_RW,
639 	    &rack_min_to, 1,
640 	    "Minimum rack timeout in milliseconds");
641 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
642 	    SYSCTL_CHILDREN(rack_sysctl_root),
643 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
644 	    &rack_early_recovery, 1,
645 	    "Do we do early recovery with rack");
646 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
647 	    SYSCTL_CHILDREN(rack_sysctl_root),
648 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
649 	    &rack_reorder_thresh, 2,
650 	    "What factor for rack will be added when seeing reordering (shift right)");
651 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
652 	    SYSCTL_CHILDREN(rack_sysctl_root),
653 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
654 	    &rack_tlp_thresh, 1,
655 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
656 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
657 	    SYSCTL_CHILDREN(rack_sysctl_root),
658 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
659 	    &rack_reorder_fade, 0,
660 	    "Does reorder detection fade, if so how many ms (0 means never)");
661 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
662 	    SYSCTL_CHILDREN(rack_sysctl_root),
663 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
664 	    &rack_pkt_delay, 1,
665 	    "Extra RACK time (in ms) besides reordering thresh");
666 
667 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
668 	    SYSCTL_CHILDREN(rack_sysctl_root),
669 	    OID_AUTO,
670 	    "stats",
671 	    CTLFLAG_RW, 0,
672 	    "Rack Counters");
673 	rack_badfr = counter_u64_alloc(M_WAITOK);
674 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
675 	    SYSCTL_CHILDREN(rack_counters),
676 	    OID_AUTO, "badfr", CTLFLAG_RD,
677 	    &rack_badfr, "Total number of bad FRs");
678 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
680 	    SYSCTL_CHILDREN(rack_counters),
681 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
682 	    &rack_badfr_bytes, "Total number of bad FRs");
683 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
685 	    SYSCTL_CHILDREN(rack_counters),
686 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
687 	    &rack_rtm_prr_retran,
688 	    "Total number of prr based retransmits");
689 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
691 	    SYSCTL_CHILDREN(rack_counters),
692 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
693 	    &rack_rtm_prr_newdata,
694 	    "Total number of prr based new transmits");
695 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
697 	    SYSCTL_CHILDREN(rack_counters),
698 	    OID_AUTO, "tsnf", CTLFLAG_RD,
699 	    &rack_timestamp_mismatch,
700 	    "Total number of timestamps that we could not find the reported ts");
701 	rack_find_high = counter_u64_alloc(M_WAITOK);
702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
703 	    SYSCTL_CHILDREN(rack_counters),
704 	    OID_AUTO, "findhigh", CTLFLAG_RD,
705 	    &rack_find_high,
706 	    "Total number of FIN causing find-high");
707 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
709 	    SYSCTL_CHILDREN(rack_counters),
710 	    OID_AUTO, "reordering", CTLFLAG_RD,
711 	    &rack_reorder_seen,
712 	    "Total number of times we added delay due to reordering");
713 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
715 	    SYSCTL_CHILDREN(rack_counters),
716 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
717 	    &rack_tlp_tot,
718 	    "Total number of tail loss probe expirations");
719 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
721 	    SYSCTL_CHILDREN(rack_counters),
722 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
723 	    &rack_tlp_newdata,
724 	    "Total number of tail loss probe sending new data");
725 
726 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
727 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
728 	    SYSCTL_CHILDREN(rack_counters),
729 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
730 	    &rack_tlp_retran,
731 	    "Total number of tail loss probe sending retransmitted data");
732 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
733 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
734 	    SYSCTL_CHILDREN(rack_counters),
735 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
736 	    &rack_tlp_retran_bytes,
737 	    "Total bytes of tail loss probe sending retransmitted data");
738 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
739 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
740 	    SYSCTL_CHILDREN(rack_counters),
741 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
742 	    &rack_tlp_retran_fail,
743 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
744 	rack_to_tot = counter_u64_alloc(M_WAITOK);
745 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
746 	    SYSCTL_CHILDREN(rack_counters),
747 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
748 	    &rack_to_tot,
749 	    "Total number of times the rack to expired?");
750 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
751 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
752 	    SYSCTL_CHILDREN(rack_counters),
753 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
754 	    &rack_to_arm_rack,
755 	    "Total number of times the rack timer armed?");
756 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
757 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
758 	    SYSCTL_CHILDREN(rack_counters),
759 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
760 	    &rack_to_arm_tlp,
761 	    "Total number of times the tlp timer armed?");
762 
763 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
764 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
765 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
766 	    SYSCTL_CHILDREN(rack_counters),
767 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
768 	    &rack_calc_zero,
769 	    "Total number of times pacing time worked out to zero?");
770 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
771 	    SYSCTL_CHILDREN(rack_counters),
772 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
773 	    &rack_calc_nonzero,
774 	    "Total number of times pacing time worked out to non-zero?");
775 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
776 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
777 	    SYSCTL_CHILDREN(rack_counters),
778 	    OID_AUTO, "paced", CTLFLAG_RD,
779 	    &rack_paced_segments,
780 	    "Total number of times a segment send caused hptsi");
781 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
782 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
783 	    SYSCTL_CHILDREN(rack_counters),
784 	    OID_AUTO, "unpaced", CTLFLAG_RD,
785 	    &rack_unpaced_segments,
786 	    "Total number of times a segment did not cause hptsi");
787 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
788 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
789 	    SYSCTL_CHILDREN(rack_counters),
790 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
791 	    &rack_saw_enobuf,
792 	    "Total number of times a segment did not cause hptsi");
793 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
794 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_counters),
796 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
797 	    &rack_saw_enetunreach,
798 	    "Total number of times a segment did not cause hptsi");
799 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
800 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
801 	    SYSCTL_CHILDREN(rack_counters),
802 	    OID_AUTO, "allocs", CTLFLAG_RD,
803 	    &rack_to_alloc,
804 	    "Total allocations of tracking structures");
805 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
806 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
807 	    SYSCTL_CHILDREN(rack_counters),
808 	    OID_AUTO, "allochard", CTLFLAG_RD,
809 	    &rack_to_alloc_hard,
810 	    "Total allocations done with sleeping the hard way");
811 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
812 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
813 	    SYSCTL_CHILDREN(rack_counters),
814 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
815 	    &rack_to_alloc_emerg,
816 	    "Total allocations done from emergency cache");
817 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
818 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
819 	    SYSCTL_CHILDREN(rack_counters),
820 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
821 	    &rack_to_alloc_limited,
822 	    "Total allocations dropped due to limit");
823 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
824 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
825 	    SYSCTL_CHILDREN(rack_counters),
826 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
827 	    &rack_alloc_limited_conns,
828 	    "Connections with allocations dropped due to limit");
829 	rack_split_limited = counter_u64_alloc(M_WAITOK);
830 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
831 	    SYSCTL_CHILDREN(rack_counters),
832 	    OID_AUTO, "split_limited", CTLFLAG_RD,
833 	    &rack_split_limited,
834 	    "Split allocations dropped due to limit");
835 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
836 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
837 	    SYSCTL_CHILDREN(rack_counters),
838 	    OID_AUTO, "sack_long", CTLFLAG_RD,
839 	    &rack_sack_proc_all,
840 	    "Total times we had to walk whole list for sack processing");
841 
842 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
844 	    SYSCTL_CHILDREN(rack_counters),
845 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
846 	    &rack_sack_proc_restart,
847 	    "Total times we had to walk whole list due to a restart");
848 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_counters),
851 	    OID_AUTO, "sack_short", CTLFLAG_RD,
852 	    &rack_sack_proc_short,
853 	    "Total times we took shortcut for sack processing");
854 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
856 	    SYSCTL_CHILDREN(rack_counters),
857 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
858 	    &rack_enter_tlp_calc,
859 	    "Total times we called calc-tlp");
860 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
862 	    SYSCTL_CHILDREN(rack_counters),
863 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
864 	    &rack_used_tlpmethod,
865 	    "Total number of runt sacks");
866 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
867 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
868 	    SYSCTL_CHILDREN(rack_counters),
869 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
870 	    &rack_used_tlpmethod2,
871 	    "Total number of times we hit TLP method 2");
872 	/* Sack Attacker detection stuff */
873 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
874 	    SYSCTL_CHILDREN(rack_sysctl_root),
875 	    OID_AUTO,
876 	    "sack_attack",
877 	    CTLFLAG_RW, 0,
878 	    "Rack Sack Attack Counters and Controls");
879 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
880 	    SYSCTL_CHILDREN(rack_attack),
881 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
882 	    &rack_highest_sack_thresh_seen, 0,
883 	    "Highest sack to ack ratio seen");
884 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
885 	    SYSCTL_CHILDREN(rack_attack),
886 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
887 	    &rack_highest_move_thresh_seen, 0,
888 	    "Highest move to non-move ratio seen");
889 	rack_ack_total = counter_u64_alloc(M_WAITOK);
890 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_attack),
892 	    OID_AUTO, "acktotal", CTLFLAG_RD,
893 	    &rack_ack_total,
894 	    "Total number of Ack's");
895 
896 	rack_express_sack = counter_u64_alloc(M_WAITOK);
897 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
898 	    SYSCTL_CHILDREN(rack_attack),
899 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
900 	    &rack_express_sack,
901 	    "Total expresss number of Sack's");
902 	rack_sack_total = counter_u64_alloc(M_WAITOK);
903 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
904 	    SYSCTL_CHILDREN(rack_attack),
905 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
906 	    &rack_sack_total,
907 	    "Total number of SACK's");
908 	rack_move_none = counter_u64_alloc(M_WAITOK);
909 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
910 	    SYSCTL_CHILDREN(rack_attack),
911 	    OID_AUTO, "move_none", CTLFLAG_RD,
912 	    &rack_move_none,
913 	    "Total number of SACK index reuse of postions under threshold");
914 	rack_move_some = counter_u64_alloc(M_WAITOK);
915 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
916 	    SYSCTL_CHILDREN(rack_attack),
917 	    OID_AUTO, "move_some", CTLFLAG_RD,
918 	    &rack_move_some,
919 	    "Total number of SACK index reuse of postions over threshold");
920 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
921 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
922 	    SYSCTL_CHILDREN(rack_attack),
923 	    OID_AUTO, "attacks", CTLFLAG_RD,
924 	    &rack_sack_attacks_detected,
925 	    "Total number of SACK attackers that had sack disabled");
926 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
927 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
928 	    SYSCTL_CHILDREN(rack_attack),
929 	    OID_AUTO, "reversed", CTLFLAG_RD,
930 	    &rack_sack_attacks_reversed,
931 	    "Total number of SACK attackers that were later determined false positive");
932 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
933 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
934 	    SYSCTL_CHILDREN(rack_attack),
935 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
936 	    &rack_sack_used_next_merge,
937 	    "Total number of times we used the next merge");
938 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
939 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
940 	    SYSCTL_CHILDREN(rack_attack),
941 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
942 	    &rack_sack_used_prev_merge,
943 	    "Total number of times we used the prev merge");
944 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
945 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
946 	    SYSCTL_CHILDREN(rack_attack),
947 	    OID_AUTO, "skipacked", CTLFLAG_RD,
948 	    &rack_sack_skipped_acked,
949 	    "Total number of times we skipped previously sacked");
950 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
951 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
952 	    SYSCTL_CHILDREN(rack_attack),
953 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
954 	    &rack_sack_splits,
955 	    "Total number of times we did the old fashion tree split");
956 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
957 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
958 	    SYSCTL_CHILDREN(rack_counters),
959 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
960 	    &rack_progress_drops,
961 	    "Total number of progress drops");
962 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
963 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
964 	    SYSCTL_CHILDREN(rack_counters),
965 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
966 	    &rack_input_idle_reduces,
967 	    "Total number of idle reductions on input");
968 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
969 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
970 	    SYSCTL_CHILDREN(rack_counters),
971 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
972 	    &rack_collapsed_win,
973 	    "Total number of collapsed windows");
974 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
975 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
976 	    SYSCTL_CHILDREN(rack_counters),
977 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
978 	    &rack_tlp_does_nada,
979 	    "Total number of nada tlp calls");
980 
981 	rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
982 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
983 	    SYSCTL_CHILDREN(rack_counters),
984 	    OID_AUTO, "tls_rwnd", CTLFLAG_RD,
985 	    &rack_tls_rwnd,
986 	    "Total hdwr tls rwnd limited");
987 
988 	rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
989 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
990 	    SYSCTL_CHILDREN(rack_counters),
991 	    OID_AUTO, "tls_cwnd", CTLFLAG_RD,
992 	    &rack_tls_cwnd,
993 	    "Total hdwr tls cwnd limited");
994 
995 	rack_tls_app = counter_u64_alloc(M_WAITOK);
996 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
997 	    SYSCTL_CHILDREN(rack_counters),
998 	    OID_AUTO, "tls_app", CTLFLAG_RD,
999 	    &rack_tls_app,
1000 	    "Total hdwr tls app limited");
1001 
1002 	rack_tls_other = counter_u64_alloc(M_WAITOK);
1003 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1004 	    SYSCTL_CHILDREN(rack_counters),
1005 	    OID_AUTO, "tls_other", CTLFLAG_RD,
1006 	    &rack_tls_other,
1007 	    "Total hdwr tls other limited");
1008 
1009 	rack_tls_filled = counter_u64_alloc(M_WAITOK);
1010 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1011 	    SYSCTL_CHILDREN(rack_counters),
1012 	    OID_AUTO, "tls_filled", CTLFLAG_RD,
1013 	    &rack_tls_filled,
1014 	    "Total hdwr tls filled");
1015 
1016 	rack_tls_rxt = counter_u64_alloc(M_WAITOK);
1017 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1018 	    SYSCTL_CHILDREN(rack_counters),
1019 	    OID_AUTO, "tls_rxt", CTLFLAG_RD,
1020 	    &rack_tls_rxt,
1021 	    "Total hdwr rxt");
1022 
1023 	rack_tls_tlp = counter_u64_alloc(M_WAITOK);
1024 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1025 	    SYSCTL_CHILDREN(rack_counters),
1026 	    OID_AUTO, "tls_tlp", CTLFLAG_RD,
1027 	    &rack_tls_tlp,
1028 	    "Total hdwr tls tlp");
1029 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1030 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1031 	    SYSCTL_CHILDREN(rack_counters),
1032 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1033 	    &rack_per_timer_hole,
1034 	    "Total persists start in timer hole");
1035 
1036 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1037 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1038 	    OID_AUTO, "outsize", CTLFLAG_RD,
1039 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1040 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1041 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1042 	    OID_AUTO, "opts", CTLFLAG_RD,
1043 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1044 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1045 	    SYSCTL_CHILDREN(rack_sysctl_root),
1046 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1047 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1048 }
1049 
1050 static __inline int
1051 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1052 {
1053 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1054 	    SEQ_LT(b->r_start, a->r_end)) {
1055 		/*
1056 		 * The entry b is within the
1057 		 * block a. i.e.:
1058 		 * a --   |-------------|
1059 		 * b --   |----|
1060 		 * <or>
1061 		 * b --       |------|
1062 		 * <or>
1063 		 * b --       |-----------|
1064 		 */
1065 		return (0);
1066 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1067 		/*
1068 		 * b falls as either the next
1069 		 * sequence block after a so a
1070 		 * is said to be smaller than b.
1071 		 * i.e:
1072 		 * a --   |------|
1073 		 * b --          |--------|
1074 		 * or
1075 		 * b --              |-----|
1076 		 */
1077 		return (1);
1078 	}
1079 	/*
1080 	 * Whats left is where a is
1081 	 * larger than b. i.e:
1082 	 * a --         |-------|
1083 	 * b --  |---|
1084 	 * or even possibly
1085 	 * b --   |--------------|
1086 	 */
1087 	return (-1);
1088 }
1089 
1090 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1091 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1092 
1093 static inline int32_t
1094 rack_progress_timeout_check(struct tcpcb *tp)
1095 {
1096 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1097 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1098 			/*
1099 			 * There is an assumption that the caller
1100 			 * will drop the connection so we will
1101 			 * increment the counters here.
1102 			 */
1103 			struct tcp_rack *rack;
1104 			rack = (struct tcp_rack *)tp->t_fb_ptr;
1105 			counter_u64_add(rack_progress_drops, 1);
1106 #ifdef NETFLIX_STATS
1107 			TCPSTAT_INC(tcps_progdrops);
1108 #endif
1109 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
1110 			return (1);
1111 		}
1112 	}
1113 	return (0);
1114 }
1115 
1116 
1117 
1118 static void
1119 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1120 {
1121 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1122 		union tcp_log_stackspecific log;
1123 		struct timeval tv;
1124 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1125 		log.u_bbr.flex1 = tsused;
1126 		log.u_bbr.flex2 = thresh;
1127 		log.u_bbr.flex3 = rsm->r_flags;
1128 		log.u_bbr.flex4 = rsm->r_dupack;
1129 		log.u_bbr.flex5 = rsm->r_start;
1130 		log.u_bbr.flex6 = rsm->r_end;
1131 		log.u_bbr.flex8 = mod;
1132 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1133 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1134 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1135 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1136 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1137 		    &rack->rc_inp->inp_socket->so_rcv,
1138 		    &rack->rc_inp->inp_socket->so_snd,
1139 		    BBR_LOG_SETTINGS_CHG, 0,
1140 		    0, &log, false, &tv);
1141 	}
1142 }
1143 
1144 
1145 
1146 static void
1147 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1148 {
1149 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1150 		union tcp_log_stackspecific log;
1151 		struct timeval tv;
1152 
1153 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1154 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1155 		log.u_bbr.flex2 = to;
1156 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1157 		log.u_bbr.flex4 = slot;
1158 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1159 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1160 		log.u_bbr.flex7 = rack->rc_in_persist;
1161 		log.u_bbr.flex8 = which;
1162 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1163 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1164 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1165 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1166 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1167 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1168 		    &rack->rc_inp->inp_socket->so_rcv,
1169 		    &rack->rc_inp->inp_socket->so_snd,
1170 		    BBR_LOG_TIMERSTAR, 0,
1171 		    0, &log, false, &tv);
1172 	}
1173 }
1174 
1175 static void
1176 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
1177 {
1178 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1179 		union tcp_log_stackspecific log;
1180 		struct timeval tv;
1181 
1182 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1183 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1184 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1185 		log.u_bbr.flex8 = to_num;
1186 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1187 		log.u_bbr.flex2 = rack->rc_rack_rtt;
1188 		log.u_bbr.flex3 = no;
1189 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1190 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1191 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1192 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1193 		    &rack->rc_inp->inp_socket->so_rcv,
1194 		    &rack->rc_inp->inp_socket->so_snd,
1195 		    BBR_LOG_RTO, 0,
1196 		    0, &log, false, &tv);
1197 	}
1198 }
1199 
1200 static void
1201 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
1202     uint32_t o_srtt, uint32_t o_var)
1203 {
1204 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1205 		union tcp_log_stackspecific log;
1206 		struct timeval tv;
1207 
1208 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1209 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1210 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1211 		log.u_bbr.flex1 = t;
1212 		log.u_bbr.flex2 = o_srtt;
1213 		log.u_bbr.flex3 = o_var;
1214 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
1215 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
1216 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1217 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
1218 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1219 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1220 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1221 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1222 		TCP_LOG_EVENTP(tp, NULL,
1223 		    &rack->rc_inp->inp_socket->so_rcv,
1224 		    &rack->rc_inp->inp_socket->so_snd,
1225 		    BBR_LOG_BBRRTT, 0,
1226 		    0, &log, false, &tv);
1227 	}
1228 }
1229 
1230 static void
1231 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1232 {
1233 	/*
1234 	 * Log the rtt sample we are
1235 	 * applying to the srtt algorithm in
1236 	 * useconds.
1237 	 */
1238 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1239 		union tcp_log_stackspecific log;
1240 		struct timeval tv;
1241 
1242 		/* Convert our ms to a microsecond */
1243 		memset(&log, 0, sizeof(log));
1244 		log.u_bbr.flex1 = rtt * 1000;
1245 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1246 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
1247 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1248 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1249 		log.u_bbr.flex8 = rack->sack_attack_disable;
1250 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1251 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1252 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1253 		    &rack->rc_inp->inp_socket->so_rcv,
1254 		    &rack->rc_inp->inp_socket->so_snd,
1255 		    TCP_LOG_RTT, 0,
1256 		    0, &log, false, &tv);
1257 	}
1258 }
1259 
1260 
1261 static inline void
1262 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1263 {
1264 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1265 		union tcp_log_stackspecific log;
1266 		struct timeval tv;
1267 
1268 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1269 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1270 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1271 		log.u_bbr.flex1 = line;
1272 		log.u_bbr.flex2 = tick;
1273 		log.u_bbr.flex3 = tp->t_maxunacktime;
1274 		log.u_bbr.flex4 = tp->t_acktime;
1275 		log.u_bbr.flex8 = event;
1276 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1277 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1278 		TCP_LOG_EVENTP(tp, NULL,
1279 		    &rack->rc_inp->inp_socket->so_rcv,
1280 		    &rack->rc_inp->inp_socket->so_snd,
1281 		    BBR_LOG_PROGRESS, 0,
1282 		    0, &log, false, &tv);
1283 	}
1284 }
1285 
1286 static void
1287 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1288 {
1289 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1290 		union tcp_log_stackspecific log;
1291 		struct timeval tv;
1292 
1293 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1294 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1295 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1296 		log.u_bbr.flex1 = slot;
1297 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1298 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1299 		log.u_bbr.flex8 = rack->rc_in_persist;
1300 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1301 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1302 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1303 		    &rack->rc_inp->inp_socket->so_rcv,
1304 		    &rack->rc_inp->inp_socket->so_snd,
1305 		    BBR_LOG_BBRSND, 0,
1306 		    0, &log, false, &tv);
1307 	}
1308 }
1309 
1310 static void
1311 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1312 {
1313 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1314 		union tcp_log_stackspecific log;
1315 		struct timeval tv;
1316 
1317 		memset(&log, 0, sizeof(log));
1318 		log.u_bbr.flex1 = did_out;
1319 		log.u_bbr.flex2 = nxt_pkt;
1320 		log.u_bbr.flex3 = way_out;
1321 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1322 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1323 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1324 		log.u_bbr.flex7 = rack->r_wanted_output;
1325 		log.u_bbr.flex8 = rack->rc_in_persist;
1326 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1327 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1328 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1329 		    &rack->rc_inp->inp_socket->so_rcv,
1330 		    &rack->rc_inp->inp_socket->so_snd,
1331 		    BBR_LOG_DOSEG_DONE, 0,
1332 		    0, &log, false, &tv);
1333 	}
1334 }
1335 
1336 static void
1337 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1338 {
1339 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1340 		union tcp_log_stackspecific log;
1341 		struct timeval tv;
1342 		uint32_t cts;
1343 
1344 		memset(&log, 0, sizeof(log));
1345 		cts = tcp_get_usecs(&tv);
1346 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1347 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1348 		log.u_bbr.flex4 = len;
1349 		log.u_bbr.flex5 = orig_len;
1350 		log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1351 		log.u_bbr.flex7 = mod;
1352 		log.u_bbr.flex8 = frm;
1353 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1354 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1355 		TCP_LOG_EVENTP(tp, NULL,
1356 		    &tp->t_inpcb->inp_socket->so_rcv,
1357 		    &tp->t_inpcb->inp_socket->so_snd,
1358 		    TCP_HDWR_TLS, 0,
1359 		    0, &log, false, &tv);
1360 	}
1361 }
1362 
1363 static void
1364 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1365 {
1366 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1367 		union tcp_log_stackspecific log;
1368 		struct timeval tv;
1369 
1370 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1371 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1372 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1373 		log.u_bbr.flex1 = slot;
1374 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1375 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1376 		log.u_bbr.flex7 = hpts_calling;
1377 		log.u_bbr.flex8 = rack->rc_in_persist;
1378 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1379 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1380 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1381 		    &rack->rc_inp->inp_socket->so_rcv,
1382 		    &rack->rc_inp->inp_socket->so_snd,
1383 		    BBR_LOG_JUSTRET, 0,
1384 		    tlen, &log, false, &tv);
1385 	}
1386 }
1387 
1388 static void
1389 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1390 {
1391 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1392 		union tcp_log_stackspecific log;
1393 		struct timeval tv;
1394 
1395 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1396 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1397 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1398 		log.u_bbr.flex1 = line;
1399 		log.u_bbr.flex2 = 0;
1400 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1401 		log.u_bbr.flex4 = 0;
1402 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1403 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1404 		log.u_bbr.flex8 = hpts_removed;
1405 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1406 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1407 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1408 		    &rack->rc_inp->inp_socket->so_rcv,
1409 		    &rack->rc_inp->inp_socket->so_snd,
1410 		    BBR_LOG_TIMERCANC, 0,
1411 		    0, &log, false, &tv);
1412 	}
1413 }
1414 
1415 static void
1416 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1417 {
1418 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1419 		union tcp_log_stackspecific log;
1420 		struct timeval tv;
1421 
1422 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1423 		log.u_bbr.flex1 = timers;
1424 		log.u_bbr.flex2 = ret;
1425 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1426 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1427 		log.u_bbr.flex5 = cts;
1428 		log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
1429 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1430 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1431 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1432 		    &rack->rc_inp->inp_socket->so_rcv,
1433 		    &rack->rc_inp->inp_socket->so_snd,
1434 		    BBR_LOG_TO_PROCESS, 0,
1435 		    0, &log, false, &tv);
1436 	}
1437 }
1438 
1439 static void
1440 rack_log_to_prr(struct tcp_rack *rack, int frm)
1441 {
1442 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1443 		union tcp_log_stackspecific log;
1444 		struct timeval tv;
1445 
1446 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1447 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
1448 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
1449 		log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
1450 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
1451 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
1452 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
1453 		log.u_bbr.flex8 = frm;
1454 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1455 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1456 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1457 		    &rack->rc_inp->inp_socket->so_rcv,
1458 		    &rack->rc_inp->inp_socket->so_snd,
1459 		    BBR_LOG_BBRUPD, 0,
1460 		    0, &log, false, &tv);
1461 	}
1462 }
1463 
1464 #ifdef NETFLIX_EXP_DETECTION
1465 static void
1466 rack_log_sad(struct tcp_rack *rack, int event)
1467 {
1468 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1469 		union tcp_log_stackspecific log;
1470 		struct timeval tv;
1471 
1472 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1473 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
1474 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1475 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
1476 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1477 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
1478 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
1479 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
1480 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
1481 		log.u_bbr.lt_epoch |= rack->do_detection;
1482 		log.u_bbr.applimited = tcp_map_minimum;
1483 		log.u_bbr.flex7 = rack->sack_attack_disable;
1484 		log.u_bbr.flex8 = event;
1485 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1486 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1487 		log.u_bbr.delivered = tcp_sad_decay_val;
1488 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1489 		    &rack->rc_inp->inp_socket->so_rcv,
1490 		    &rack->rc_inp->inp_socket->so_snd,
1491 		    TCP_SAD_DETECTION, 0,
1492 		    0, &log, false, &tv);
1493 	}
1494 }
1495 #endif
1496 
1497 static void
1498 rack_counter_destroy(void)
1499 {
1500 	counter_u64_free(rack_badfr);
1501 	counter_u64_free(rack_badfr_bytes);
1502 	counter_u64_free(rack_rtm_prr_retran);
1503 	counter_u64_free(rack_rtm_prr_newdata);
1504 	counter_u64_free(rack_timestamp_mismatch);
1505 	counter_u64_free(rack_reorder_seen);
1506 	counter_u64_free(rack_tlp_tot);
1507 	counter_u64_free(rack_tlp_newdata);
1508 	counter_u64_free(rack_tlp_retran);
1509 	counter_u64_free(rack_tlp_retran_bytes);
1510 	counter_u64_free(rack_tlp_retran_fail);
1511 	counter_u64_free(rack_to_tot);
1512 	counter_u64_free(rack_to_arm_rack);
1513 	counter_u64_free(rack_to_arm_tlp);
1514 	counter_u64_free(rack_paced_segments);
1515 	counter_u64_free(rack_unpaced_segments);
1516 	counter_u64_free(rack_saw_enobuf);
1517 	counter_u64_free(rack_saw_enetunreach);
1518 	counter_u64_free(rack_to_alloc_hard);
1519 	counter_u64_free(rack_to_alloc_emerg);
1520 	counter_u64_free(rack_sack_proc_all);
1521 	counter_u64_free(rack_sack_proc_short);
1522 	counter_u64_free(rack_sack_proc_restart);
1523 	counter_u64_free(rack_to_alloc);
1524 	counter_u64_free(rack_to_alloc_limited);
1525 	counter_u64_free(rack_alloc_limited_conns);
1526 	counter_u64_free(rack_split_limited);
1527 	counter_u64_free(rack_find_high);
1528 	counter_u64_free(rack_enter_tlp_calc);
1529 	counter_u64_free(rack_used_tlpmethod);
1530 	counter_u64_free(rack_used_tlpmethod2);
1531 	counter_u64_free(rack_progress_drops);
1532 	counter_u64_free(rack_input_idle_reduces);
1533 	counter_u64_free(rack_collapsed_win);
1534 	counter_u64_free(rack_tlp_does_nada);
1535 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1536 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1537 }
1538 
1539 static struct rack_sendmap *
1540 rack_alloc(struct tcp_rack *rack)
1541 {
1542 	struct rack_sendmap *rsm;
1543 
1544 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1545 	if (rsm) {
1546 		rack->r_ctl.rc_num_maps_alloced++;
1547 		counter_u64_add(rack_to_alloc, 1);
1548 		return (rsm);
1549 	}
1550 	if (rack->rc_free_cnt) {
1551 		counter_u64_add(rack_to_alloc_emerg, 1);
1552 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1553 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
1554 		rack->rc_free_cnt--;
1555 		return (rsm);
1556 	}
1557 	return (NULL);
1558 }
1559 
1560 static struct rack_sendmap *
1561 rack_alloc_full_limit(struct tcp_rack *rack)
1562 {
1563 	if ((V_tcp_map_entries_limit > 0) &&
1564 	    (rack->do_detection == 0) &&
1565 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
1566 		counter_u64_add(rack_to_alloc_limited, 1);
1567 		if (!rack->alloc_limit_reported) {
1568 			rack->alloc_limit_reported = 1;
1569 			counter_u64_add(rack_alloc_limited_conns, 1);
1570 		}
1571 		return (NULL);
1572 	}
1573 	return (rack_alloc(rack));
1574 }
1575 
1576 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1577 static struct rack_sendmap *
1578 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1579 {
1580 	struct rack_sendmap *rsm;
1581 
1582 	if (limit_type) {
1583 		/* currently there is only one limit type */
1584 		if (V_tcp_map_split_limit > 0 &&
1585 		    (rack->do_detection == 0) &&
1586 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
1587 			counter_u64_add(rack_split_limited, 1);
1588 			if (!rack->alloc_limit_reported) {
1589 				rack->alloc_limit_reported = 1;
1590 				counter_u64_add(rack_alloc_limited_conns, 1);
1591 			}
1592 			return (NULL);
1593 		}
1594 	}
1595 
1596 	/* allocate and mark in the limit type, if set */
1597 	rsm = rack_alloc(rack);
1598 	if (rsm != NULL && limit_type) {
1599 		rsm->r_limit_type = limit_type;
1600 		rack->r_ctl.rc_num_split_allocs++;
1601 	}
1602 	return (rsm);
1603 }
1604 
1605 static void
1606 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1607 {
1608 	if (rsm->r_limit_type) {
1609 		/* currently there is only one limit type */
1610 		rack->r_ctl.rc_num_split_allocs--;
1611 	}
1612 	if (rack->r_ctl.rc_tlpsend == rsm)
1613 		rack->r_ctl.rc_tlpsend = NULL;
1614 	if (rack->r_ctl.rc_sacklast == rsm)
1615 		rack->r_ctl.rc_sacklast = NULL;
1616 	if (rack->rc_free_cnt < rack_free_cache) {
1617 		memset(rsm, 0, sizeof(struct rack_sendmap));
1618 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
1619 		rsm->r_limit_type = 0;
1620 		rack->rc_free_cnt++;
1621 		return;
1622 	}
1623 	rack->r_ctl.rc_num_maps_alloced--;
1624 	uma_zfree(rack_zone, rsm);
1625 }
1626 
1627 /*
1628  * CC wrapper hook functions
1629  */
1630 static void
1631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1632     uint16_t type, int32_t recovery)
1633 {
1634 #ifdef STATS
1635 	int32_t gput;
1636 #endif
1637 
1638 	INP_WLOCK_ASSERT(tp->t_inpcb);
1639 	tp->ccv->nsegs = nsegs;
1640 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1641 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1642 		uint32_t max;
1643 
1644 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
1645 		if (tp->ccv->bytes_this_ack > max) {
1646 			tp->ccv->bytes_this_ack = max;
1647 		}
1648 	}
1649 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
1650 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
1651 	     (tp->snd_cwnd < (ctf_flight_size(tp, rack->r_ctl.rc_sacked) * 2))))
1652 		tp->ccv->flags |= CCF_CWND_LIMITED;
1653 	else
1654 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1655 
1656 	if (type == CC_ACK) {
1657 #ifdef STATS
1658 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1659 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1660 		if ((tp->t_flags & TF_GPUTINPROG) &&
1661 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1662 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1663 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1664 			/* We store it in bytes per ms (or kbytes per sec) */
1665 			rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
1666 			rack->r_ctl.rc_gp_hist_idx++;
1667 			if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
1668 				rack->r_ctl.rc_gp_hist_filled = 1;
1669 			rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
1670 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1671 			    gput);
1672 			/*
1673 			 * XXXLAS: This is a temporary hack, and should be
1674 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1675 			 * API to deal with chained VOIs.
1676 			 */
1677 			if (tp->t_stats_gput_prev > 0)
1678 				stats_voi_update_abs_s32(tp->t_stats,
1679 				    VOI_TCP_GPUT_ND,
1680 				    ((gput - tp->t_stats_gput_prev) * 100) /
1681 				    tp->t_stats_gput_prev);
1682 			tp->t_flags &= ~TF_GPUTINPROG;
1683 			tp->t_stats_gput_prev = gput;
1684 
1685 			if (tp->t_maxpeakrate) {
1686 				/*
1687 				 * We update t_peakrate_thr. This gives us roughly
1688 				 * one update per round trip time.
1689 				 */
1690 				tcp_update_peakrate_thr(tp);
1691 			}
1692 		}
1693 #endif
1694 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1695 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1696 			    nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
1697 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1698 				tp->t_bytes_acked -= tp->snd_cwnd;
1699 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1700 			}
1701 		} else {
1702 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1703 			tp->t_bytes_acked = 0;
1704 		}
1705 	}
1706 	if (CC_ALGO(tp)->ack_received != NULL) {
1707 		/* XXXLAS: Find a way to live without this */
1708 		tp->ccv->curack = th->th_ack;
1709 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1710 	}
1711 #ifdef STATS
1712 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1713 #endif
1714 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1715 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1716 	}
1717 	/* we enforce max peak rate if it is set. */
1718 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1719 		tp->snd_cwnd = tp->t_peakrate_thr;
1720 	}
1721 }
1722 
1723 static void
1724 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1725 {
1726 	struct tcp_rack *rack;
1727 
1728 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1729 	INP_WLOCK_ASSERT(tp->t_inpcb);
1730 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1731 		rack->r_wanted_output++;
1732 }
1733 
1734 static void
1735 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1736 {
1737 	struct tcp_rack *rack;
1738 
1739 	INP_WLOCK_ASSERT(tp->t_inpcb);
1740 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1741 	if (CC_ALGO(tp)->post_recovery != NULL) {
1742 		tp->ccv->curack = th->th_ack;
1743 		CC_ALGO(tp)->post_recovery(tp->ccv);
1744 	}
1745 	/*
1746 	 * Here we can in theory adjust cwnd to be based on the number of
1747 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1748 	 * based on the rack_use_proportional flag.
1749 	 */
1750 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1751 		int32_t reduce;
1752 
1753 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1754 		if (reduce > 50) {
1755 			reduce = 50;
1756 		}
1757 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1758 	} else {
1759 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1760 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1761 			tp->snd_cwnd = tp->snd_ssthresh;
1762 		}
1763 	}
1764 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1765 		/* Suck the next prr cnt back into cwnd */
1766 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1767 		rack->r_ctl.rc_prr_sndcnt = 0;
1768 		rack_log_to_prr(rack, 1);
1769 	}
1770 	tp->snd_recover = tp->snd_una;
1771 	EXIT_RECOVERY(tp->t_flags);
1772 
1773 
1774 }
1775 
1776 static void
1777 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1778 {
1779 	struct tcp_rack *rack;
1780 
1781 	INP_WLOCK_ASSERT(tp->t_inpcb);
1782 
1783 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1784 	switch (type) {
1785 	case CC_NDUPACK:
1786 		tp->t_flags &= ~TF_WASFRECOVERY;
1787 		tp->t_flags &= ~TF_WASCRECOVERY;
1788 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1789 			rack->r_ctl.rc_tlp_rtx_out = 0;
1790 			rack->r_ctl.rc_prr_delivered = 0;
1791 			rack->r_ctl.rc_prr_out = 0;
1792 			rack->r_ctl.rc_loss_count = 0;
1793 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
1794 			rack_log_to_prr(rack, 2);
1795 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1796 			tp->snd_recover = tp->snd_max;
1797 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1798 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1799 		}
1800 		break;
1801 	case CC_ECN:
1802 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1803 			TCPSTAT_INC(tcps_ecn_rcwnd);
1804 			tp->snd_recover = tp->snd_max;
1805 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1806 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1807 		}
1808 		break;
1809 	case CC_RTO:
1810 		tp->t_dupacks = 0;
1811 		tp->t_bytes_acked = 0;
1812 		EXIT_RECOVERY(tp->t_flags);
1813 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1814 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
1815 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
1816 		break;
1817 	case CC_RTO_ERR:
1818 		TCPSTAT_INC(tcps_sndrexmitbad);
1819 		/* RTO was unnecessary, so reset everything. */
1820 		tp->snd_cwnd = tp->snd_cwnd_prev;
1821 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1822 		tp->snd_recover = tp->snd_recover_prev;
1823 		if (tp->t_flags & TF_WASFRECOVERY) {
1824 			ENTER_FASTRECOVERY(tp->t_flags);
1825 			tp->t_flags &= ~TF_WASFRECOVERY;
1826 		}
1827 		if (tp->t_flags & TF_WASCRECOVERY) {
1828 			ENTER_CONGRECOVERY(tp->t_flags);
1829 			tp->t_flags &= ~TF_WASCRECOVERY;
1830 		}
1831 		tp->snd_nxt = tp->snd_max;
1832 		tp->t_badrxtwin = 0;
1833 		break;
1834 	}
1835 
1836 	if (CC_ALGO(tp)->cong_signal != NULL) {
1837 		if (th != NULL)
1838 			tp->ccv->curack = th->th_ack;
1839 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1840 	}
1841 }
1842 
1843 
1844 
1845 static inline void
1846 rack_cc_after_idle(struct tcpcb *tp)
1847 {
1848 	uint32_t i_cwnd;
1849 
1850 	INP_WLOCK_ASSERT(tp->t_inpcb);
1851 
1852 #ifdef NETFLIX_STATS
1853 	TCPSTAT_INC(tcps_idle_restarts);
1854 	if (tp->t_state == TCPS_ESTABLISHED)
1855 		TCPSTAT_INC(tcps_idle_estrestarts);
1856 #endif
1857 	if (CC_ALGO(tp)->after_idle != NULL)
1858 		CC_ALGO(tp)->after_idle(tp->ccv);
1859 
1860 	if (tp->snd_cwnd == 1)
1861 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1862 	else
1863 		i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
1864 
1865 	/*
1866 	 * Being idle is no differnt than the initial window. If the cc
1867 	 * clamps it down below the initial window raise it to the initial
1868 	 * window.
1869 	 */
1870 	if (tp->snd_cwnd < i_cwnd) {
1871 		tp->snd_cwnd = i_cwnd;
1872 	}
1873 }
1874 
1875 
1876 /*
1877  * Indicate whether this ack should be delayed.  We can delay the ack if
1878  * following conditions are met:
1879  *	- There is no delayed ack timer in progress.
1880  *	- Our last ack wasn't a 0-sized window. We never want to delay
1881  *	  the ack that opens up a 0-sized window.
1882  *	- LRO wasn't used for this segment. We make sure by checking that the
1883  *	  segment size is not larger than the MSS.
1884  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1885  *	  connection.
1886  */
1887 #define DELAY_ACK(tp, tlen)			 \
1888 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1889 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1890 	(tlen <= tp->t_maxseg) &&		 \
1891 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1892 
1893 static struct rack_sendmap *
1894 rack_find_lowest_rsm(struct tcp_rack *rack)
1895 {
1896 	struct rack_sendmap *rsm;
1897 
1898 	/*
1899 	 * Walk the time-order transmitted list looking for an rsm that is
1900 	 * not acked. This will be the one that was sent the longest time
1901 	 * ago that is still outstanding.
1902 	 */
1903 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1904 		if (rsm->r_flags & RACK_ACKED) {
1905 			continue;
1906 		}
1907 		goto finish;
1908 	}
1909 finish:
1910 	return (rsm);
1911 }
1912 
1913 static struct rack_sendmap *
1914 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1915 {
1916 	struct rack_sendmap *prsm;
1917 
1918 	/*
1919 	 * Walk the sequence order list backward until we hit and arrive at
1920 	 * the highest seq not acked. In theory when this is called it
1921 	 * should be the last segment (which it was not).
1922 	 */
1923 	counter_u64_add(rack_find_high, 1);
1924 	prsm = rsm;
1925 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
1926 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1927 			continue;
1928 		}
1929 		return (prsm);
1930 	}
1931 	return (NULL);
1932 }
1933 
1934 
1935 static uint32_t
1936 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1937 {
1938 	int32_t lro;
1939 	uint32_t thresh;
1940 
1941 	/*
1942 	 * lro is the flag we use to determine if we have seen reordering.
1943 	 * If it gets set we have seen reordering. The reorder logic either
1944 	 * works in one of two ways:
1945 	 *
1946 	 * If reorder-fade is configured, then we track the last time we saw
1947 	 * re-ordering occur. If we reach the point where enough time as
1948 	 * passed we no longer consider reordering has occuring.
1949 	 *
1950 	 * Or if reorder-face is 0, then once we see reordering we consider
1951 	 * the connection to alway be subject to reordering and just set lro
1952 	 * to 1.
1953 	 *
1954 	 * In the end if lro is non-zero we add the extra time for
1955 	 * reordering in.
1956 	 */
1957 	if (srtt == 0)
1958 		srtt = 1;
1959 	if (rack->r_ctl.rc_reorder_ts) {
1960 		if (rack->r_ctl.rc_reorder_fade) {
1961 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1962 				lro = cts - rack->r_ctl.rc_reorder_ts;
1963 				if (lro == 0) {
1964 					/*
1965 					 * No time as passed since the last
1966 					 * reorder, mark it as reordering.
1967 					 */
1968 					lro = 1;
1969 				}
1970 			} else {
1971 				/* Negative time? */
1972 				lro = 0;
1973 			}
1974 			if (lro > rack->r_ctl.rc_reorder_fade) {
1975 				/* Turn off reordering seen too */
1976 				rack->r_ctl.rc_reorder_ts = 0;
1977 				lro = 0;
1978 			}
1979 		} else {
1980 			/* Reodering does not fade */
1981 			lro = 1;
1982 		}
1983 	} else {
1984 		lro = 0;
1985 	}
1986 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1987 	if (lro) {
1988 		/* It must be set, if not you get 1/4 rtt */
1989 		if (rack->r_ctl.rc_reorder_shift)
1990 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1991 		else
1992 			thresh += (srtt >> 2);
1993 	} else {
1994 		thresh += 1;
1995 	}
1996 	/* We don't let the rack timeout be above a RTO */
1997 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
1998 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
1999 	}
2000 	/* And we don't want it above the RTO max either */
2001 	if (thresh > rack_rto_max) {
2002 		thresh = rack_rto_max;
2003 	}
2004 	return (thresh);
2005 }
2006 
2007 static uint32_t
2008 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
2009 		     struct rack_sendmap *rsm, uint32_t srtt)
2010 {
2011 	struct rack_sendmap *prsm;
2012 	uint32_t thresh, len;
2013 	int maxseg;
2014 
2015 	if (srtt == 0)
2016 		srtt = 1;
2017 	if (rack->r_ctl.rc_tlp_threshold)
2018 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
2019 	else
2020 		thresh = (srtt * 2);
2021 
2022 	/* Get the previous sent packet, if any  */
2023 	maxseg = ctf_fixed_maxseg(tp);
2024 	counter_u64_add(rack_enter_tlp_calc, 1);
2025 	len = rsm->r_end - rsm->r_start;
2026 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
2027 		/* Exactly like the ID */
2028 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
2029 			uint32_t alt_thresh;
2030 			/*
2031 			 * Compensate for delayed-ack with the d-ack time.
2032 			 */
2033 			counter_u64_add(rack_used_tlpmethod, 1);
2034 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2035 			if (alt_thresh > thresh)
2036 				thresh = alt_thresh;
2037 		}
2038 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
2039 		/* 2.1 behavior */
2040 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
2041 		if (prsm && (len <= maxseg)) {
2042 			/*
2043 			 * Two packets outstanding, thresh should be (2*srtt) +
2044 			 * possible inter-packet delay (if any).
2045 			 */
2046 			uint32_t inter_gap = 0;
2047 			int idx, nidx;
2048 
2049 			counter_u64_add(rack_used_tlpmethod, 1);
2050 			idx = rsm->r_rtr_cnt - 1;
2051 			nidx = prsm->r_rtr_cnt - 1;
2052 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
2053 				/* Yes it was sent later (or at the same time) */
2054 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
2055 			}
2056 			thresh += inter_gap;
2057 		} else 	if (len <= maxseg) {
2058 			/*
2059 			 * Possibly compensate for delayed-ack.
2060 			 */
2061 			uint32_t alt_thresh;
2062 
2063 			counter_u64_add(rack_used_tlpmethod2, 1);
2064 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2065 			if (alt_thresh > thresh)
2066 				thresh = alt_thresh;
2067 		}
2068 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2069 		/* 2.2 behavior */
2070 		if (len <= maxseg) {
2071 			uint32_t alt_thresh;
2072 			/*
2073 			 * Compensate for delayed-ack with the d-ack time.
2074 			 */
2075 			counter_u64_add(rack_used_tlpmethod, 1);
2076 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2077 			if (alt_thresh > thresh)
2078 				thresh = alt_thresh;
2079 		}
2080 	}
2081  	/* Not above an RTO */
2082 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2083 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2084 	}
2085 	/* Not above a RTO max */
2086 	if (thresh > rack_rto_max) {
2087 		thresh = rack_rto_max;
2088 	}
2089 	/* Apply user supplied min TLP */
2090 	if (thresh < rack_tlp_min) {
2091 		thresh = rack_tlp_min;
2092 	}
2093 	return (thresh);
2094 }
2095 
2096 static uint32_t
2097 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
2098 {
2099 	/*
2100 	 * We want the rack_rtt which is the
2101 	 * last rtt we measured. However if that
2102 	 * does not exist we fallback to the srtt (which
2103 	 * we probably will never do) and then as a last
2104 	 * resort we use RACK_INITIAL_RTO if no srtt is
2105 	 * yet set.
2106 	 */
2107 	if (rack->rc_rack_rtt)
2108 		return(rack->rc_rack_rtt);
2109 	else if (tp->t_srtt == 0)
2110 		return(RACK_INITIAL_RTO);
2111 	return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
2112 }
2113 
2114 static struct rack_sendmap *
2115 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2116 {
2117 	/*
2118 	 * Check to see that we don't need to fall into recovery. We will
2119 	 * need to do so if our oldest transmit is past the time we should
2120 	 * have had an ack.
2121 	 */
2122 	struct tcp_rack *rack;
2123 	struct rack_sendmap *rsm;
2124 	int32_t idx;
2125 	uint32_t srtt, thresh;
2126 
2127 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2128 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
2129 		return (NULL);
2130 	}
2131 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2132 	if (rsm == NULL)
2133 		return (NULL);
2134 
2135 	if (rsm->r_flags & RACK_ACKED) {
2136 		rsm = rack_find_lowest_rsm(rack);
2137 		if (rsm == NULL)
2138 			return (NULL);
2139 	}
2140 	idx = rsm->r_rtr_cnt - 1;
2141 	srtt = rack_grab_rtt(tp, rack);
2142 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2143 	if (tsused < rsm->r_tim_lastsent[idx]) {
2144 		return (NULL);
2145 	}
2146 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2147 		return (NULL);
2148 	}
2149 	/* Ok if we reach here we are over-due */
2150 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2151 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2152 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2153 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2154 	return (rsm);
2155 }
2156 
2157 static uint32_t
2158 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2159 {
2160 	int32_t t;
2161 	int32_t tt;
2162 	uint32_t ret_val;
2163 
2164 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2165 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2166 	    rack_persist_min, rack_persist_max);
2167 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2168 		tp->t_rxtshift++;
2169 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2170 	ret_val = (uint32_t)tt;
2171 	return (ret_val);
2172 }
2173 
2174 static uint32_t
2175 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
2176 {
2177 	/*
2178 	 * Start the FR timer, we do this based on getting the first one in
2179 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2180 	 * events we need to stop the running timer (if its running) before
2181 	 * starting the new one.
2182 	 */
2183 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
2184 	uint32_t srtt_cur;
2185 	int32_t idx;
2186 	int32_t is_tlp_timer = 0;
2187 	struct rack_sendmap *rsm;
2188 
2189 	if (rack->t_timers_stopped) {
2190 		/* All timers have been stopped none are to run */
2191 		return (0);
2192 	}
2193 	if (rack->rc_in_persist) {
2194 		/* We can't start any timer in persists */
2195 		return (rack_get_persists_timer_val(tp, rack));
2196 	}
2197 	if ((tp->t_state < TCPS_ESTABLISHED) ||
2198 	    ((tp->t_flags & TF_SACK_PERMIT) == 0))
2199 		goto activate_rxt;
2200 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2201 	if ((rsm == NULL) || sup_rack) {
2202 		/* Nothing on the send map */
2203 activate_rxt:
2204 		time_since_sent = 0;
2205 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2206 		if (rsm) {
2207 			idx = rsm->r_rtr_cnt - 1;
2208 			if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2209 				tstmp_touse = rsm->r_tim_lastsent[idx];
2210 			else
2211 				tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2212 			if (TSTMP_GT(tstmp_touse, cts))
2213 			    time_since_sent = cts - tstmp_touse;
2214 		}
2215 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2216 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2217 			to = TICKS_2_MSEC(tp->t_rxtcur);
2218 			if (to > time_since_sent)
2219 				to -= time_since_sent;
2220 			else
2221 				to = rack->r_ctl.rc_min_to;
2222 			if (to == 0)
2223 				to = 1;
2224 			return (to);
2225 		}
2226 		return (0);
2227 	}
2228 	if (rsm->r_flags & RACK_ACKED) {
2229 		rsm = rack_find_lowest_rsm(rack);
2230 		if (rsm == NULL) {
2231 			/* No lowest? */
2232 			goto activate_rxt;
2233 		}
2234 	}
2235 	if (rack->sack_attack_disable) {
2236 		/*
2237 		 * We don't want to do
2238 		 * any TLP's if you are an attacker.
2239 		 * Though if you are doing what
2240 		 * is expected you may still have
2241 		 * SACK-PASSED marks.
2242 		 */
2243 		goto activate_rxt;
2244 	}
2245 	/* Convert from ms to usecs */
2246 	if (rsm->r_flags & RACK_SACK_PASSED) {
2247 		if ((tp->t_flags & TF_SENTFIN) &&
2248 		    ((tp->snd_max - tp->snd_una) == 1) &&
2249 		    (rsm->r_flags & RACK_HAS_FIN)) {
2250 			/*
2251 			 * We don't start a rack timer if all we have is a
2252 			 * FIN outstanding.
2253 			 */
2254 			goto activate_rxt;
2255 		}
2256 		if ((rack->use_rack_cheat == 0) &&
2257 		    (IN_RECOVERY(tp->t_flags)) &&
2258 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
2259 			/*
2260 			 * We are not cheating, in recovery  and
2261 			 * not enough ack's to yet get our next
2262 			 * retransmission out.
2263 			 *
2264 			 * Note that classified attackers do not
2265 			 * get to use the rack-cheat.
2266 			 */
2267 			goto activate_tlp;
2268 		}
2269 		srtt = rack_grab_rtt(tp, rack);
2270 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2271 		idx = rsm->r_rtr_cnt - 1;
2272 		exp = rsm->r_tim_lastsent[idx] + thresh;
2273 		if (SEQ_GEQ(exp, cts)) {
2274 			to = exp - cts;
2275 			if (to < rack->r_ctl.rc_min_to) {
2276 				to = rack->r_ctl.rc_min_to;
2277 			}
2278 		} else {
2279 			to = rack->r_ctl.rc_min_to;
2280 		}
2281 	} else {
2282 		/* Ok we need to do a TLP not RACK */
2283 activate_tlp:
2284 		if ((rack->rc_tlp_in_progress != 0) ||
2285 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2286 			/*
2287 			 * The previous send was a TLP or a tlp_rtx is in
2288 			 * process.
2289 			 */
2290 			goto activate_rxt;
2291 		}
2292 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2293 		if (rsm == NULL) {
2294 			/* We found no rsm to TLP with. */
2295 			goto activate_rxt;
2296 		}
2297 		if (rsm->r_flags & RACK_HAS_FIN) {
2298 			/* If its a FIN we dont do TLP */
2299 			rsm = NULL;
2300 			goto activate_rxt;
2301 		}
2302 		idx = rsm->r_rtr_cnt - 1;
2303 		time_since_sent = 0;
2304 		if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2305 			tstmp_touse = rsm->r_tim_lastsent[idx];
2306 		else
2307 			tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2308 		if (TSTMP_GT(tstmp_touse, cts))
2309 		    time_since_sent = cts - tstmp_touse;
2310 		is_tlp_timer = 1;
2311 		if (tp->t_srtt) {
2312 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2313 			srtt = TICKS_2_MSEC(srtt_cur);
2314 		} else
2315 			srtt = RACK_INITIAL_RTO;
2316 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2317 		if (thresh > time_since_sent)
2318 			to = thresh - time_since_sent;
2319 		else
2320 			to = rack->r_ctl.rc_min_to;
2321 		if (to > TCPTV_REXMTMAX) {
2322 			/*
2323 			 * If the TLP time works out to larger than the max
2324 			 * RTO lets not do TLP.. just RTO.
2325 			 */
2326 			goto activate_rxt;
2327 		}
2328 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2329 			/*
2330 			 * The tail is no longer the last one I did a probe
2331 			 * on
2332 			 */
2333 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2334 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2335 		}
2336 	}
2337 	if (is_tlp_timer == 0) {
2338 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2339 	} else {
2340 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2341 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2342 			/*
2343 			 * We have exceeded how many times we can retran the
2344 			 * current TLP timer, switch to the RTO timer.
2345 			 */
2346 			goto activate_rxt;
2347 		} else {
2348 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2349 		}
2350 	}
2351 	if (to == 0)
2352 		to = 1;
2353 	return (to);
2354 }
2355 
2356 static void
2357 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2358 {
2359 	if (rack->rc_in_persist == 0) {
2360 		rack->r_ctl.rc_went_idle_time = cts;
2361 		rack_timer_cancel(tp, rack, cts, __LINE__);
2362 		tp->t_rxtshift = 0;
2363 		rack->rc_in_persist = 1;
2364 	}
2365 }
2366 
2367 static void
2368 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2369 {
2370 	if (rack->rc_inp->inp_in_hpts)  {
2371 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2372 		rack->r_ctl.rc_hpts_flags  = 0;
2373 	}
2374 	rack->rc_in_persist = 0;
2375 	rack->r_ctl.rc_went_idle_time = 0;
2376 	tp->t_flags &= ~TF_FORCEDATA;
2377 	tp->t_rxtshift = 0;
2378 }
2379 
2380 static void
2381 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
2382       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
2383 {
2384 	struct inpcb *inp;
2385 	uint32_t delayed_ack = 0;
2386 	uint32_t hpts_timeout;
2387 	uint8_t stopped;
2388 	uint32_t left = 0;
2389 
2390 	inp = tp->t_inpcb;
2391 	if (inp->inp_in_hpts) {
2392 		/* A previous call is already set up */
2393 		return;
2394 	}
2395 	if ((tp->t_state == TCPS_CLOSED) ||
2396 	    (tp->t_state == TCPS_LISTEN)) {
2397 		return;
2398 	}
2399 	stopped = rack->rc_tmr_stopped;
2400 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2401 		left = rack->r_ctl.rc_timer_exp - cts;
2402 	}
2403 	rack->tlp_timer_up = 0;
2404 	rack->r_ctl.rc_timer_exp = 0;
2405 	if (rack->rc_inp->inp_in_hpts == 0) {
2406 		rack->r_ctl.rc_hpts_flags = 0;
2407 	}
2408 	if (slot) {
2409 		/* We are hptsi too */
2410 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2411 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2412 		/*
2413 		 * We are still left on the hpts when the to goes
2414 		 * it will be for output.
2415 		 */
2416 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2417 			slot = rack->r_ctl.rc_last_output_to - cts;
2418 		else
2419 			slot = 1;
2420 	}
2421 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
2422 #ifdef NETFLIX_EXP_DETECTION
2423 	if (rack->sack_attack_disable &&
2424 	    (slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
2425 		/*
2426 		 * We have a potential attacker on
2427 		 * the line. We have possibly some
2428 		 * (or now) pacing time set. We want to
2429 		 * slow down the processing of sacks by some
2430 		 * amount (if it is an attacker). Set the default
2431 		 * slot for attackers in place (unless the orginal
2432 		 * interval is longer). Its stored in
2433 		 * micro-seconds, so lets convert to msecs.
2434 		 */
2435 		slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
2436 	}
2437 #endif
2438 	if (tp->t_flags & TF_DELACK) {
2439 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2440 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2441 	}
2442 	if (delayed_ack && ((hpts_timeout == 0) ||
2443 			    (delayed_ack < hpts_timeout)))
2444 		hpts_timeout = delayed_ack;
2445 	else
2446 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2447 	/*
2448 	 * If no timers are going to run and we will fall off the hptsi
2449 	 * wheel, we resort to a keep-alive timer if its configured.
2450 	 */
2451 	if ((hpts_timeout == 0) &&
2452 	    (slot == 0)) {
2453 		if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2454 		    (tp->t_state <= TCPS_CLOSING)) {
2455 			/*
2456 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2457 			 * del-ack), we don't have segments being paced. So
2458 			 * all that is left is the keepalive timer.
2459 			 */
2460 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2461 				/* Get the established keep-alive time */
2462 				hpts_timeout = TP_KEEPIDLE(tp);
2463 			} else {
2464 				/* Get the initial setup keep-alive time */
2465 				hpts_timeout = TP_KEEPINIT(tp);
2466 			}
2467 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2468 		}
2469 	}
2470 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2471 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2472 		/*
2473 		 * RACK, TLP, persists and RXT timers all are restartable
2474 		 * based on actions input .. i.e we received a packet (ack
2475 		 * or sack) and that changes things (rw, or snd_una etc).
2476 		 * Thus we can restart them with a new value. For
2477 		 * keep-alive, delayed_ack we keep track of what was left
2478 		 * and restart the timer with a smaller value.
2479 		 */
2480 		if (left < hpts_timeout)
2481 			hpts_timeout = left;
2482 	}
2483 	if (hpts_timeout) {
2484 		/*
2485 		 * Hack alert for now we can't time-out over 2,147,483
2486 		 * seconds (a bit more than 596 hours), which is probably ok
2487 		 * :).
2488 		 */
2489 		if (hpts_timeout > 0x7ffffffe)
2490 			hpts_timeout = 0x7ffffffe;
2491 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2492 	}
2493 	if (slot) {
2494 		rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2495 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
2496 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2497 		else
2498 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2499 		rack->r_ctl.rc_last_output_to = cts + slot;
2500 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2501 			if (rack->rc_inp->inp_in_hpts == 0)
2502 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2503 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2504 		} else {
2505 			/*
2506 			 * Arrange for the hpts to kick back in after the
2507 			 * t-o if the t-o does not cause a send.
2508 			 */
2509 			if (rack->rc_inp->inp_in_hpts == 0)
2510 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2511 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2512 		}
2513 	} else if (hpts_timeout) {
2514 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
2515 			/* For a rack timer, don't wake us */
2516 			rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2517 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2518 		} else {
2519 			/* All other timers wake us up */
2520 			rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
2521 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2522 		}
2523 		if (rack->rc_inp->inp_in_hpts == 0)
2524 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2525 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2526 	} else {
2527 		/* No timer starting */
2528 #ifdef INVARIANTS
2529 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2530 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2531 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2532 		}
2533 #endif
2534 	}
2535 	rack->rc_tmr_stopped = 0;
2536 	if (slot)
2537 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2538 }
2539 
2540 /*
2541  * RACK Timer, here we simply do logging and house keeping.
2542  * the normal rack_output() function will call the
2543  * appropriate thing to check if we need to do a RACK retransmit.
2544  * We return 1, saying don't proceed with rack_output only
2545  * when all timers have been stopped (destroyed PCB?).
2546  */
2547 static int
2548 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2549 {
2550 	/*
2551 	 * This timer simply provides an internal trigger to send out data.
2552 	 * The check_recovery_mode call will see if there are needed
2553 	 * retransmissions, if so we will enter fast-recovery. The output
2554 	 * call may or may not do the same thing depending on sysctl
2555 	 * settings.
2556 	 */
2557 	struct rack_sendmap *rsm;
2558 	int32_t recovery, ll;
2559 
2560 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2561 		return (1);
2562 	}
2563 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2564 		/* Its not time yet */
2565 		return (0);
2566 	}
2567 	recovery = IN_RECOVERY(tp->t_flags);
2568 	counter_u64_add(rack_to_tot, 1);
2569 	if (rack->r_state && (rack->r_state != tp->t_state))
2570 		rack_set_state(tp, rack);
2571 	rsm = rack_check_recovery_mode(tp, cts);
2572 	if (rsm)
2573 		ll = rsm->r_end - rsm->r_start;
2574 	else
2575 		ll = 0;
2576 	rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
2577 	if (rsm) {
2578 		uint32_t rtt;
2579 
2580 		rtt = rack->rc_rack_rtt;
2581 		if (rtt == 0)
2582 			rtt = 1;
2583 		if ((recovery == 0) &&
2584 		    (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
2585 			/*
2586 			 * The rack-timeout that enter's us into recovery
2587 			 * will force out one MSS and set us up so that we
2588 			 * can do one more send in 2*rtt (transitioning the
2589 			 * rack timeout into a rack-tlp).
2590 			 */
2591 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2592 			rack_log_to_prr(rack, 3);
2593 		} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
2594 			   rack->use_rack_cheat) {
2595 			/*
2596 			 * When a rack timer goes, if the rack cheat is
2597 			 * on, arrange it so we can send a full segment.
2598 			 */
2599 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2600 			rack_log_to_prr(rack, 4);
2601 		}
2602 	} else {
2603 		/* This is a case that should happen rarely if ever */
2604 		counter_u64_add(rack_tlp_does_nada, 1);
2605 #ifdef TCP_BLACKBOX
2606 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2607 #endif
2608 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2609 	}
2610 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2611 	return (0);
2612 }
2613 
2614 static __inline void
2615 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
2616 	       struct rack_sendmap *rsm, uint32_t start)
2617 {
2618 	int idx;
2619 
2620 	nrsm->r_start = start;
2621 	nrsm->r_end = rsm->r_end;
2622 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2623 	nrsm->r_flags = rsm->r_flags;
2624 	nrsm->r_dupack = rsm->r_dupack;
2625 	nrsm->r_rtr_bytes = 0;
2626 	rsm->r_end = nrsm->r_start;
2627 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2628 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2629 	}
2630 }
2631 
2632 static struct rack_sendmap *
2633 rack_merge_rsm(struct tcp_rack *rack,
2634 	       struct rack_sendmap *l_rsm,
2635 	       struct rack_sendmap *r_rsm)
2636 {
2637 	/*
2638 	 * We are merging two ack'd RSM's,
2639 	 * the l_rsm is on the left (lower seq
2640 	 * values) and the r_rsm is on the right
2641 	 * (higher seq value). The simplest way
2642 	 * to merge these is to move the right
2643 	 * one into the left. I don't think there
2644 	 * is any reason we need to try to find
2645 	 * the oldest (or last oldest retransmitted).
2646 	 */
2647 	struct rack_sendmap *rm;
2648 
2649 	l_rsm->r_end = r_rsm->r_end;
2650 	if (l_rsm->r_dupack < r_rsm->r_dupack)
2651 		l_rsm->r_dupack = r_rsm->r_dupack;
2652 	if (r_rsm->r_rtr_bytes)
2653 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2654 	if (r_rsm->r_in_tmap) {
2655 		/* This really should not happen */
2656 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2657 		r_rsm->r_in_tmap = 0;
2658 	}
2659 	/* Now the flags */
2660 	if (r_rsm->r_flags & RACK_HAS_FIN)
2661 		l_rsm->r_flags |= RACK_HAS_FIN;
2662 	if (r_rsm->r_flags & RACK_TLP)
2663 		l_rsm->r_flags |= RACK_TLP;
2664 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
2665 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
2666 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
2667 #ifdef INVARIANTS
2668 	if (rm != r_rsm) {
2669 		panic("removing head in rack:%p rsm:%p rm:%p",
2670 		      rack, r_rsm, rm);
2671 	}
2672 #endif
2673 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2674 		/* Transfer the split limit to the map we free */
2675 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2676 		l_rsm->r_limit_type = 0;
2677 	}
2678 	rack_free(rack, r_rsm);
2679 	return(l_rsm);
2680 }
2681 
2682 /*
2683  * TLP Timer, here we simply setup what segment we want to
2684  * have the TLP expire on, the normal rack_output() will then
2685  * send it out.
2686  *
2687  * We return 1, saying don't proceed with rack_output only
2688  * when all timers have been stopped (destroyed PCB?).
2689  */
2690 static int
2691 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2692 {
2693 	/*
2694 	 * Tail Loss Probe.
2695 	 */
2696 	struct rack_sendmap *rsm = NULL;
2697 	struct rack_sendmap *insret;
2698 	struct socket *so;
2699 	uint32_t amm, old_prr_snd = 0;
2700 	uint32_t out, avail;
2701 	int collapsed_win = 0;
2702 
2703 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2704 		return (1);
2705 	}
2706 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2707 		/* Its not time yet */
2708 		return (0);
2709 	}
2710 	if (rack_progress_timeout_check(tp)) {
2711 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2712 		return (1);
2713 	}
2714 	/*
2715 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2716 	 * need to figure out how to force a full MSS segment out.
2717 	 */
2718 	rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
2719 	counter_u64_add(rack_tlp_tot, 1);
2720 	if (rack->r_state && (rack->r_state != tp->t_state))
2721 		rack_set_state(tp, rack);
2722 	so = tp->t_inpcb->inp_socket;
2723 #ifdef KERN_TLS
2724 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
2725 		/*
2726 		 * For hardware TLS we do *not* want to send
2727 		 * new data, lets instead just do a retransmission.
2728 		 */
2729 		goto need_retran;
2730 	}
2731 #endif
2732 	avail = sbavail(&so->so_snd);
2733 	out = tp->snd_max - tp->snd_una;
2734 	rack->tlp_timer_up = 1;
2735 	if (out > tp->snd_wnd) {
2736 		/* special case, we need a retransmission */
2737 		collapsed_win = 1;
2738 		goto need_retran;
2739 	}
2740 	/*
2741 	 * If we are in recovery we can jazz out a segment if new data is
2742 	 * present simply by setting rc_prr_sndcnt to a segment.
2743 	 */
2744 	if ((avail > out) &&
2745 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2746 		/* New data is available */
2747 		amm = avail - out;
2748 		if (amm > ctf_fixed_maxseg(tp)) {
2749 			amm = ctf_fixed_maxseg(tp);
2750 		} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
2751 			/* not enough to fill a MTU and no-delay is off */
2752 			goto need_retran;
2753 		}
2754 		if (IN_RECOVERY(tp->t_flags)) {
2755 			/* Unlikely */
2756 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2757 			if (out + amm <= tp->snd_wnd) {
2758 				rack->r_ctl.rc_prr_sndcnt = amm;
2759 				rack_log_to_prr(rack, 4);
2760 			} else
2761 				goto need_retran;
2762 		} else {
2763 			/* Set the send-new override */
2764 			if (out + amm <= tp->snd_wnd)
2765 				rack->r_ctl.rc_tlp_new_data = amm;
2766 			else
2767 				goto need_retran;
2768 		}
2769 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2770 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2771 		rack->r_ctl.rc_tlpsend = NULL;
2772 		counter_u64_add(rack_tlp_newdata, 1);
2773 		goto send;
2774 	}
2775 need_retran:
2776 	/*
2777 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2778 	 * optionally the first un-acked segment.
2779 	 */
2780 	if (collapsed_win == 0) {
2781 		if (rack_always_send_oldest)
2782 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2783 		else {
2784 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2785 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2786 				rsm = rack_find_high_nonack(rack, rsm);
2787 			}
2788 		}
2789 		if (rsm == NULL) {
2790 			counter_u64_add(rack_tlp_does_nada, 1);
2791 #ifdef TCP_BLACKBOX
2792 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2793 #endif
2794 			goto out;
2795 		}
2796 	} else {
2797 		/*
2798 		 * We must find the last segment
2799 		 * that was acceptable by the client.
2800 		 */
2801 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
2802 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
2803 				/* Found one */
2804 				break;
2805 			}
2806 		}
2807 		if (rsm == NULL) {
2808 			/* None? if so send the first */
2809 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2810 			if (rsm == NULL) {
2811 				counter_u64_add(rack_tlp_does_nada, 1);
2812 #ifdef TCP_BLACKBOX
2813 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2814 #endif
2815 				goto out;
2816 			}
2817 		}
2818 	}
2819 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
2820 		/*
2821 		 * We need to split this the last segment in two.
2822 		 */
2823 		struct rack_sendmap *nrsm;
2824 
2825 
2826 		nrsm = rack_alloc_full_limit(rack);
2827 		if (nrsm == NULL) {
2828 			/*
2829 			 * No memory to split, we will just exit and punt
2830 			 * off to the RXT timer.
2831 			 */
2832 			counter_u64_add(rack_tlp_does_nada, 1);
2833 			goto out;
2834 		}
2835 		rack_clone_rsm(rack, nrsm, rsm,
2836 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
2837 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
2838 #ifdef INVARIANTS
2839 		if (insret != NULL) {
2840 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
2841 			      nrsm, insret, rack, rsm);
2842 		}
2843 #endif
2844 		if (rsm->r_in_tmap) {
2845 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2846 			nrsm->r_in_tmap = 1;
2847 		}
2848 		rsm->r_flags &= (~RACK_HAS_FIN);
2849 		rsm = nrsm;
2850 	}
2851 	rack->r_ctl.rc_tlpsend = rsm;
2852 	rack->r_ctl.rc_tlp_rtx_out = 1;
2853 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2854 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2855 		tp->t_rxtshift++;
2856 	} else {
2857 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2858 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2859 	}
2860 send:
2861 	rack->r_ctl.rc_tlp_send_cnt++;
2862 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2863 		/*
2864 		 * Can't [re]/transmit a segment we have not heard from the
2865 		 * peer in max times. We need the retransmit timer to take
2866 		 * over.
2867 		 */
2868 	restore:
2869 		rack->r_ctl.rc_tlpsend = NULL;
2870 		if (rsm)
2871 			rsm->r_flags &= ~RACK_TLP;
2872 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2873 		rack_log_to_prr(rack, 5);
2874 		counter_u64_add(rack_tlp_retran_fail, 1);
2875 		goto out;
2876 	} else if (rsm) {
2877 		rsm->r_flags |= RACK_TLP;
2878 	}
2879 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2880 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2881 		/*
2882 		 * We don't want to send a single segment more than the max
2883 		 * either.
2884 		 */
2885 		goto restore;
2886 	}
2887 	rack->r_timer_override = 1;
2888 	rack->r_tlp_running = 1;
2889 	rack->rc_tlp_in_progress = 1;
2890 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2891 	return (0);
2892 out:
2893 	rack->tlp_timer_up = 0;
2894 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2895 	return (0);
2896 }
2897 
2898 /*
2899  * Delayed ack Timer, here we simply need to setup the
2900  * ACK_NOW flag and remove the DELACK flag. From there
2901  * the output routine will send the ack out.
2902  *
2903  * We only return 1, saying don't proceed, if all timers
2904  * are stopped (destroyed PCB?).
2905  */
2906 static int
2907 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2908 {
2909 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2910 		return (1);
2911 	}
2912 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
2913 	tp->t_flags &= ~TF_DELACK;
2914 	tp->t_flags |= TF_ACKNOW;
2915 	TCPSTAT_INC(tcps_delack);
2916 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2917 	return (0);
2918 }
2919 
2920 /*
2921  * Persists timer, here we simply need to setup the
2922  * FORCE-DATA flag the output routine will send
2923  * the one byte send.
2924  *
2925  * We only return 1, saying don't proceed, if all timers
2926  * are stopped (destroyed PCB?).
2927  */
2928 static int
2929 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2930 {
2931 	struct tcptemp *t_template;
2932 	struct inpcb *inp;
2933 	int32_t retval = 1;
2934 
2935 	inp = tp->t_inpcb;
2936 
2937 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2938 		return (1);
2939 	}
2940 	if (rack->rc_in_persist == 0)
2941 		return (0);
2942 	if (rack_progress_timeout_check(tp)) {
2943 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2944 		return (1);
2945 	}
2946 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2947 	/*
2948 	 * Persistence timer into zero window. Force a byte to be output, if
2949 	 * possible.
2950 	 */
2951 	TCPSTAT_INC(tcps_persisttimeo);
2952 	/*
2953 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2954 	 * window is closed.  After a full backoff, drop the connection if
2955 	 * the idle time (no responses to probes) reaches the maximum
2956 	 * backoff that we would use if retransmitting.
2957 	 */
2958 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2959 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2960 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2961 		TCPSTAT_INC(tcps_persistdrop);
2962 		retval = 1;
2963 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2964 		goto out;
2965 	}
2966 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2967 	    tp->snd_una == tp->snd_max)
2968 		rack_exit_persist(tp, rack);
2969 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2970 	/*
2971 	 * If the user has closed the socket then drop a persisting
2972 	 * connection after a much reduced timeout.
2973 	 */
2974 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2975 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2976 		retval = 1;
2977 		TCPSTAT_INC(tcps_persistdrop);
2978 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2979 		goto out;
2980 	}
2981 	t_template = tcpip_maketemplate(rack->rc_inp);
2982 	if (t_template) {
2983 		tcp_respond(tp, t_template->tt_ipgen,
2984 			    &t_template->tt_t, (struct mbuf *)NULL,
2985 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2986 		/* This sends an ack */
2987 		if (tp->t_flags & TF_DELACK)
2988 			tp->t_flags &= ~TF_DELACK;
2989 		free(t_template, M_TEMP);
2990 	}
2991 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2992 		tp->t_rxtshift++;
2993 out:
2994 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
2995 	rack_start_hpts_timer(rack, tp, cts,
2996 			      0, 0, 0);
2997 	return (retval);
2998 }
2999 
3000 /*
3001  * If a keepalive goes off, we had no other timers
3002  * happening. We always return 1 here since this
3003  * routine either drops the connection or sends
3004  * out a segment with respond.
3005  */
3006 static int
3007 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3008 {
3009 	struct tcptemp *t_template;
3010 	struct inpcb *inp;
3011 
3012 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3013 		return (1);
3014 	}
3015 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
3016 	inp = tp->t_inpcb;
3017 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
3018 	/*
3019 	 * Keep-alive timer went off; send something or drop connection if
3020 	 * idle for too long.
3021 	 */
3022 	TCPSTAT_INC(tcps_keeptimeo);
3023 	if (tp->t_state < TCPS_ESTABLISHED)
3024 		goto dropit;
3025 	if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
3026 	    tp->t_state <= TCPS_CLOSING) {
3027 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
3028 			goto dropit;
3029 		/*
3030 		 * Send a packet designed to force a response if the peer is
3031 		 * up and reachable: either an ACK if the connection is
3032 		 * still alive, or an RST if the peer has closed the
3033 		 * connection due to timeout or reboot. Using sequence
3034 		 * number tp->snd_una-1 causes the transmitted zero-length
3035 		 * segment to lie outside the receive window; by the
3036 		 * protocol spec, this requires the correspondent TCP to
3037 		 * respond.
3038 		 */
3039 		TCPSTAT_INC(tcps_keepprobe);
3040 		t_template = tcpip_maketemplate(inp);
3041 		if (t_template) {
3042 			tcp_respond(tp, t_template->tt_ipgen,
3043 			    &t_template->tt_t, (struct mbuf *)NULL,
3044 			    tp->rcv_nxt, tp->snd_una - 1, 0);
3045 			free(t_template, M_TEMP);
3046 		}
3047 	}
3048 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
3049 	return (1);
3050 dropit:
3051 	TCPSTAT_INC(tcps_keepdrops);
3052 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
3053 	return (1);
3054 }
3055 
3056 /*
3057  * Retransmit helper function, clear up all the ack
3058  * flags and take care of important book keeping.
3059  */
3060 static void
3061 rack_remxt_tmr(struct tcpcb *tp)
3062 {
3063 	/*
3064 	 * The retransmit timer went off, all sack'd blocks must be
3065 	 * un-acked.
3066 	 */
3067 	struct rack_sendmap *rsm, *trsm = NULL;
3068 	struct tcp_rack *rack;
3069 	int32_t cnt = 0;
3070 
3071 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3072 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
3073 	rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
3074 	if (rack->r_state && (rack->r_state != tp->t_state))
3075 		rack_set_state(tp, rack);
3076 	/*
3077 	 * Ideally we would like to be able to
3078 	 * mark SACK-PASS on anything not acked here.
3079 	 * However, if we do that we would burst out
3080 	 * all that data 1ms apart. This would be unwise,
3081 	 * so for now we will just let the normal rxt timer
3082 	 * and tlp timer take care of it.
3083 	 */
3084 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3085 		if (rsm->r_flags & RACK_ACKED) {
3086 			cnt++;
3087 			rsm->r_dupack = 0;
3088 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3089 			if (rsm->r_in_tmap == 0) {
3090 				/* We must re-add it back to the tlist */
3091 				if (trsm == NULL) {
3092 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3093 				} else {
3094 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
3095 				}
3096 				rsm->r_in_tmap = 1;
3097 			}
3098 		}
3099 		trsm = rsm;
3100 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
3101 	}
3102 	/* Clear the count (we just un-acked them) */
3103 	rack->r_ctl.rc_sacked = 0;
3104 	/* Clear the tlp rtx mark */
3105 	rack->r_ctl.rc_tlp_rtx_out = 0;
3106 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
3107 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3108 	rack->r_ctl.rc_prr_sndcnt = 0;
3109 	rack_log_to_prr(rack, 6);
3110 	rack->r_timer_override = 1;
3111 }
3112 
3113 /*
3114  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
3115  * we will setup to retransmit the lowest seq number outstanding.
3116  */
3117 static int
3118 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3119 {
3120 	int32_t rexmt;
3121 	struct inpcb *inp;
3122 	int32_t retval = 0;
3123 
3124 	inp = tp->t_inpcb;
3125 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3126 		return (1);
3127 	}
3128 	if (rack_progress_timeout_check(tp)) {
3129 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
3130 		return (1);
3131 	}
3132 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
3133 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
3134 	    (tp->snd_una == tp->snd_max)) {
3135 		/* Nothing outstanding .. nothing to do */
3136 		return (0);
3137 	}
3138 	/*
3139 	 * Retransmission timer went off.  Message has not been acked within
3140 	 * retransmit interval.  Back off to a longer retransmit interval
3141 	 * and retransmit one segment.
3142 	 */
3143 	rack_remxt_tmr(tp);
3144 	if ((rack->r_ctl.rc_resend == NULL) ||
3145 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
3146 		/*
3147 		 * If the rwnd collapsed on
3148 		 * the one we are retransmitting
3149 		 * it does not count against the
3150 		 * rxt count.
3151 		 */
3152 		tp->t_rxtshift++;
3153 	}
3154 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
3155 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
3156 		TCPSTAT_INC(tcps_timeoutdrop);
3157 		retval = 1;
3158 		tcp_set_inp_to_drop(rack->rc_inp,
3159 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
3160 		goto out;
3161 	}
3162 	if (tp->t_state == TCPS_SYN_SENT) {
3163 		/*
3164 		 * If the SYN was retransmitted, indicate CWND to be limited
3165 		 * to 1 segment in cc_conn_init().
3166 		 */
3167 		tp->snd_cwnd = 1;
3168 	} else if (tp->t_rxtshift == 1) {
3169 		/*
3170 		 * first retransmit; record ssthresh and cwnd so they can be
3171 		 * recovered if this turns out to be a "bad" retransmit. A
3172 		 * retransmit is considered "bad" if an ACK for this segment
3173 		 * is received within RTT/2 interval; the assumption here is
3174 		 * that the ACK was already in flight.  See "On Estimating
3175 		 * End-to-End Network Path Properties" by Allman and Paxson
3176 		 * for more details.
3177 		 */
3178 		tp->snd_cwnd_prev = tp->snd_cwnd;
3179 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
3180 		tp->snd_recover_prev = tp->snd_recover;
3181 		if (IN_FASTRECOVERY(tp->t_flags))
3182 			tp->t_flags |= TF_WASFRECOVERY;
3183 		else
3184 			tp->t_flags &= ~TF_WASFRECOVERY;
3185 		if (IN_CONGRECOVERY(tp->t_flags))
3186 			tp->t_flags |= TF_WASCRECOVERY;
3187 		else
3188 			tp->t_flags &= ~TF_WASCRECOVERY;
3189 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
3190 		tp->t_flags |= TF_PREVVALID;
3191 	} else
3192 		tp->t_flags &= ~TF_PREVVALID;
3193 	TCPSTAT_INC(tcps_rexmttimeo);
3194 	if ((tp->t_state == TCPS_SYN_SENT) ||
3195 	    (tp->t_state == TCPS_SYN_RECEIVED))
3196 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
3197 	else
3198 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
3199 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
3200 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
3201 	   MSEC_2_TICKS(rack_rto_max));
3202 	/*
3203 	 * We enter the path for PLMTUD if connection is established or, if
3204 	 * connection is FIN_WAIT_1 status, reason for the last is that if
3205 	 * amount of data we send is very small, we could send it in couple
3206 	 * of packets and process straight to FIN. In that case we won't
3207 	 * catch ESTABLISHED state.
3208 	 */
3209 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
3210 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
3211 #ifdef INET6
3212 		int32_t isipv6;
3213 #endif
3214 
3215 		/*
3216 		 * Idea here is that at each stage of mtu probe (usually,
3217 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
3218 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3219 		 * should take care of that.
3220 		 */
3221 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3222 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3223 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3224 		    tp->t_rxtshift % 2 == 0)) {
3225 			/*
3226 			 * Enter Path MTU Black-hole Detection mechanism: -
3227 			 * Disable Path MTU Discovery (IP "DF" bit). -
3228 			 * Reduce MTU to lower value than what we negotiated
3229 			 * with peer.
3230 			 */
3231 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3232 				/* Record that we may have found a black hole. */
3233 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3234 				/* Keep track of previous MSS. */
3235 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3236 			}
3237 
3238 			/*
3239 			 * Reduce the MSS to blackhole value or to the
3240 			 * default in an attempt to retransmit.
3241 			 */
3242 #ifdef INET6
3243 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
3244 			if (isipv6 &&
3245 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3246 				/* Use the sysctl tuneable blackhole MSS. */
3247 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3248 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3249 			} else if (isipv6) {
3250 				/* Use the default MSS. */
3251 				tp->t_maxseg = V_tcp_v6mssdflt;
3252 				/*
3253 				 * Disable Path MTU Discovery when we switch
3254 				 * to minmss.
3255 				 */
3256 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3257 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3258 			}
3259 #endif
3260 #if defined(INET6) && defined(INET)
3261 			else
3262 #endif
3263 #ifdef INET
3264 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3265 				/* Use the sysctl tuneable blackhole MSS. */
3266 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3267 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3268 			} else {
3269 				/* Use the default MSS. */
3270 				tp->t_maxseg = V_tcp_mssdflt;
3271 				/*
3272 				 * Disable Path MTU Discovery when we switch
3273 				 * to minmss.
3274 				 */
3275 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3276 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3277 			}
3278 #endif
3279 		} else {
3280 			/*
3281 			 * If further retransmissions are still unsuccessful
3282 			 * with a lowered MTU, maybe this isn't a blackhole
3283 			 * and we restore the previous MSS and blackhole
3284 			 * detection flags. The limit '6' is determined by
3285 			 * giving each probe stage (1448, 1188, 524) 2
3286 			 * chances to recover.
3287 			 */
3288 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3289 			    (tp->t_rxtshift >= 6)) {
3290 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3291 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3292 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3293 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3294 			}
3295 		}
3296 	}
3297 	/*
3298 	 * If we backed off this far, our srtt estimate is probably bogus.
3299 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3300 	 * move the current srtt into rttvar to keep the current retransmit
3301 	 * times until then.
3302 	 */
3303 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3304 #ifdef INET6
3305 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3306 			in6_losing(tp->t_inpcb);
3307 		else
3308 #endif
3309 			in_losing(tp->t_inpcb);
3310 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3311 		tp->t_srtt = 0;
3312 	}
3313 	if (rack_use_sack_filter)
3314 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3315 	tp->snd_recover = tp->snd_max;
3316 	tp->t_flags |= TF_ACKNOW;
3317 	tp->t_rtttime = 0;
3318 	rack_cong_signal(tp, NULL, CC_RTO);
3319 out:
3320 	return (retval);
3321 }
3322 
3323 static int
3324 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3325 {
3326 	int32_t ret = 0;
3327 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3328 
3329 	if (timers == 0) {
3330 		return (0);
3331 	}
3332 	if (tp->t_state == TCPS_LISTEN) {
3333 		/* no timers on listen sockets */
3334 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3335 			return (0);
3336 		return (1);
3337 	}
3338 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3339 		uint32_t left;
3340 
3341 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3342 			ret = -1;
3343 			rack_log_to_processing(rack, cts, ret, 0);
3344 			return (0);
3345 		}
3346 		if (hpts_calling == 0) {
3347 			ret = -2;
3348 			rack_log_to_processing(rack, cts, ret, 0);
3349 			return (0);
3350 		}
3351 		/*
3352 		 * Ok our timer went off early and we are not paced false
3353 		 * alarm, go back to sleep.
3354 		 */
3355 		ret = -3;
3356 		left = rack->r_ctl.rc_timer_exp - cts;
3357 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3358 		rack_log_to_processing(rack, cts, ret, left);
3359 		rack->rc_last_pto_set = 0;
3360 		return (1);
3361 	}
3362 	rack->rc_tmr_stopped = 0;
3363 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3364 	if (timers & PACE_TMR_DELACK) {
3365 		ret = rack_timeout_delack(tp, rack, cts);
3366 	} else if (timers & PACE_TMR_RACK) {
3367 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3368 		ret = rack_timeout_rack(tp, rack, cts);
3369 	} else if (timers & PACE_TMR_TLP) {
3370 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3371 		ret = rack_timeout_tlp(tp, rack, cts);
3372 	} else if (timers & PACE_TMR_RXT) {
3373 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3374 		ret = rack_timeout_rxt(tp, rack, cts);
3375 	} else if (timers & PACE_TMR_PERSIT) {
3376 		ret = rack_timeout_persist(tp, rack, cts);
3377 	} else if (timers & PACE_TMR_KEEP) {
3378 		ret = rack_timeout_keepalive(tp, rack, cts);
3379 	}
3380 	rack_log_to_processing(rack, cts, ret, timers);
3381 	return (ret);
3382 }
3383 
3384 static void
3385 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3386 {
3387 	uint8_t hpts_removed = 0;
3388 
3389 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3390 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3391 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3392 		hpts_removed = 1;
3393 	}
3394 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3395 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3396 		if (rack->rc_inp->inp_in_hpts &&
3397 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3398 			/*
3399 			 * Canceling timer's when we have no output being
3400 			 * paced. We also must remove ourselves from the
3401 			 * hpts.
3402 			 */
3403 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3404 			hpts_removed = 1;
3405 		}
3406 		rack_log_to_cancel(rack, hpts_removed, line);
3407 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3408 	}
3409 }
3410 
3411 static void
3412 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3413 {
3414 	return;
3415 }
3416 
3417 static int
3418 rack_stopall(struct tcpcb *tp)
3419 {
3420 	struct tcp_rack *rack;
3421 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3422 	rack->t_timers_stopped = 1;
3423 	return (0);
3424 }
3425 
3426 static void
3427 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3428 {
3429 	return;
3430 }
3431 
3432 static int
3433 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3434 {
3435 	return (0);
3436 }
3437 
3438 static void
3439 rack_stop_all_timers(struct tcpcb *tp)
3440 {
3441 	struct tcp_rack *rack;
3442 
3443 	/*
3444 	 * Assure no timers are running.
3445 	 */
3446 	if (tcp_timer_active(tp, TT_PERSIST)) {
3447 		/* We enter in persists, set the flag appropriately */
3448 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3449 		rack->rc_in_persist = 1;
3450 	}
3451 	tcp_timer_suspend(tp, TT_PERSIST);
3452 	tcp_timer_suspend(tp, TT_REXMT);
3453 	tcp_timer_suspend(tp, TT_KEEP);
3454 	tcp_timer_suspend(tp, TT_DELACK);
3455 }
3456 
3457 static void
3458 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3459     struct rack_sendmap *rsm, uint32_t ts)
3460 {
3461 	int32_t idx;
3462 
3463 	rsm->r_rtr_cnt++;
3464 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3465 	rsm->r_dupack = 0;
3466 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3467 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3468 		rsm->r_flags |= RACK_OVERMAX;
3469 	}
3470 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3471 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3472 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3473 	}
3474 	idx = rsm->r_rtr_cnt - 1;
3475 	rsm->r_tim_lastsent[idx] = ts;
3476 	if (rsm->r_flags & RACK_ACKED) {
3477 		/* Problably MTU discovery messing with us */
3478 		rsm->r_flags &= ~RACK_ACKED;
3479 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3480 	}
3481 	if (rsm->r_in_tmap) {
3482 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3483 		rsm->r_in_tmap = 0;
3484 	}
3485 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3486 	rsm->r_in_tmap = 1;
3487 	if (rsm->r_flags & RACK_SACK_PASSED) {
3488 		/* We have retransmitted due to the SACK pass */
3489 		rsm->r_flags &= ~RACK_SACK_PASSED;
3490 		rsm->r_flags |= RACK_WAS_SACKPASS;
3491 	}
3492 }
3493 
3494 
3495 static uint32_t
3496 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3497     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
3498 {
3499 	/*
3500 	 * We (re-)transmitted starting at rsm->r_start for some length
3501 	 * (possibly less than r_end.
3502 	 */
3503 	struct rack_sendmap *nrsm, *insret;
3504 	uint32_t c_end;
3505 	int32_t len;
3506 
3507 	len = *lenp;
3508 	c_end = rsm->r_start + len;
3509 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3510 		/*
3511 		 * We retransmitted the whole piece or more than the whole
3512 		 * slopping into the next rsm.
3513 		 */
3514 		rack_update_rsm(tp, rack, rsm, ts);
3515 		if (c_end == rsm->r_end) {
3516 			*lenp = 0;
3517 			return (0);
3518 		} else {
3519 			int32_t act_len;
3520 
3521 			/* Hangs over the end return whats left */
3522 			act_len = rsm->r_end - rsm->r_start;
3523 			*lenp = (len - act_len);
3524 			return (rsm->r_end);
3525 		}
3526 		/* We don't get out of this block. */
3527 	}
3528 	/*
3529 	 * Here we retransmitted less than the whole thing which means we
3530 	 * have to split this into what was transmitted and what was not.
3531 	 */
3532 	nrsm = rack_alloc_full_limit(rack);
3533 	if (nrsm == NULL) {
3534 		/*
3535 		 * We can't get memory, so lets not proceed.
3536 		 */
3537 		*lenp = 0;
3538 		return (0);
3539 	}
3540 	/*
3541 	 * So here we are going to take the original rsm and make it what we
3542 	 * retransmitted. nrsm will be the tail portion we did not
3543 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3544 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3545 	 * 1, 6 and the new piece will be 6, 11.
3546 	 */
3547 	rack_clone_rsm(rack, nrsm, rsm, c_end);
3548 	nrsm->r_dupack = 0;
3549 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
3550 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3551 #ifdef INVARIANTS
3552 	if (insret != NULL) {
3553 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3554 		      nrsm, insret, rack, rsm);
3555 	}
3556 #endif
3557 	if (rsm->r_in_tmap) {
3558 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3559 		nrsm->r_in_tmap = 1;
3560 	}
3561 	rsm->r_flags &= (~RACK_HAS_FIN);
3562 	rack_update_rsm(tp, rack, rsm, ts);
3563 	*lenp = 0;
3564 	return (0);
3565 }
3566 
3567 
3568 static void
3569 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3570     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3571     uint8_t pass, struct rack_sendmap *hintrsm)
3572 {
3573 	struct tcp_rack *rack;
3574 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
3575 	register uint32_t snd_max, snd_una;
3576 
3577 	/*
3578 	 * Add to the RACK log of packets in flight or retransmitted. If
3579 	 * there is a TS option we will use the TS echoed, if not we will
3580 	 * grab a TS.
3581 	 *
3582 	 * Retransmissions will increment the count and move the ts to its
3583 	 * proper place. Note that if options do not include TS's then we
3584 	 * won't be able to effectively use the ACK for an RTT on a retran.
3585 	 *
3586 	 * Notes about r_start and r_end. Lets consider a send starting at
3587 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3588 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3589 	 * This means that r_end is actually the first sequence for the next
3590 	 * slot (11).
3591 	 *
3592 	 */
3593 	/*
3594 	 * If err is set what do we do XXXrrs? should we not add the thing?
3595 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3596 	 * i.e. proceed with add ** do this for now.
3597 	 */
3598 	INP_WLOCK_ASSERT(tp->t_inpcb);
3599 	if (err)
3600 		/*
3601 		 * We don't log errors -- we could but snd_max does not
3602 		 * advance in this case either.
3603 		 */
3604 		return;
3605 
3606 	if (th_flags & TH_RST) {
3607 		/*
3608 		 * We don't log resets and we return immediately from
3609 		 * sending
3610 		 */
3611 		return;
3612 	}
3613 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3614 	snd_una = tp->snd_una;
3615 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3616 		/* Are sending an old segment to induce an ack (keep-alive)? */
3617 		return;
3618 	}
3619 	if (SEQ_LT(seq_out, snd_una)) {
3620 		/* huh? should we panic? */
3621 		uint32_t end;
3622 
3623 		end = seq_out + len;
3624 		seq_out = snd_una;
3625 		if (SEQ_GEQ(end, seq_out))
3626 			len = end - seq_out;
3627 		else
3628 			len = 0;
3629 	}
3630 	snd_max = tp->snd_max;
3631 	if (th_flags & (TH_SYN | TH_FIN)) {
3632 		/*
3633 		 * The call to rack_log_output is made before bumping
3634 		 * snd_max. This means we can record one extra byte on a SYN
3635 		 * or FIN if seq_out is adding more on and a FIN is present
3636 		 * (and we are not resending).
3637 		 */
3638 		if (th_flags & TH_SYN)
3639 			len++;
3640 		if (th_flags & TH_FIN)
3641 			len++;
3642 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3643 			/*
3644 			 * The add/update as not been done for the FIN/SYN
3645 			 * yet.
3646 			 */
3647 			snd_max = tp->snd_nxt;
3648 		}
3649 	}
3650 	if (len == 0) {
3651 		/* We don't log zero window probes */
3652 		return;
3653 	}
3654 	rack->r_ctl.rc_time_last_sent = ts;
3655 	if (IN_RECOVERY(tp->t_flags)) {
3656 		rack->r_ctl.rc_prr_out += len;
3657 	}
3658 	/* First question is it a retransmission or new? */
3659 	if (seq_out == snd_max) {
3660 		/* Its new */
3661 again:
3662 		rsm = rack_alloc(rack);
3663 		if (rsm == NULL) {
3664 			/*
3665 			 * Hmm out of memory and the tcb got destroyed while
3666 			 * we tried to wait.
3667 			 */
3668 			return;
3669 		}
3670 		if (th_flags & TH_FIN) {
3671 			rsm->r_flags = RACK_HAS_FIN;
3672 		} else {
3673 			rsm->r_flags = 0;
3674 		}
3675 		rsm->r_tim_lastsent[0] = ts;
3676 		rsm->r_rtr_cnt = 1;
3677 		rsm->r_rtr_bytes = 0;
3678 		if (th_flags & TH_SYN) {
3679 			/* The data space is one beyond snd_una */
3680 			rsm->r_start = seq_out + 1;
3681 			rsm->r_end = rsm->r_start + (len - 1);
3682 		} else {
3683 			/* Normal case */
3684 			rsm->r_start = seq_out;
3685 			rsm->r_end = rsm->r_start + len;
3686 		}
3687 		rsm->r_dupack = 0;
3688 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3689 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
3690 #ifdef INVARIANTS
3691 		if (insret != NULL) {
3692 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3693 			      nrsm, insret, rack, rsm);
3694 		}
3695 #endif
3696 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3697 		rsm->r_in_tmap = 1;
3698 		return;
3699 	}
3700 	/*
3701 	 * If we reach here its a retransmission and we need to find it.
3702 	 */
3703 	memset(&fe, 0, sizeof(fe));
3704 more:
3705 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3706 		rsm = hintrsm;
3707 		hintrsm = NULL;
3708 	} else {
3709 		/* No hints sorry */
3710 		rsm = NULL;
3711 	}
3712 	if ((rsm) && (rsm->r_start == seq_out)) {
3713 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3714 		if (len == 0) {
3715 			return;
3716 		} else {
3717 			goto more;
3718 		}
3719 	}
3720 	/* Ok it was not the last pointer go through it the hard way. */
3721 refind:
3722 	fe.r_start = seq_out;
3723 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3724 	if (rsm) {
3725 		if (rsm->r_start == seq_out) {
3726 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3727 			if (len == 0) {
3728 				return;
3729 			} else {
3730 				goto refind;
3731 			}
3732 		}
3733 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3734 			/* Transmitted within this piece */
3735 			/*
3736 			 * Ok we must split off the front and then let the
3737 			 * update do the rest
3738 			 */
3739 			nrsm = rack_alloc_full_limit(rack);
3740 			if (nrsm == NULL) {
3741 				rack_update_rsm(tp, rack, rsm, ts);
3742 				return;
3743 			}
3744 			/*
3745 			 * copy rsm to nrsm and then trim the front of rsm
3746 			 * to not include this part.
3747 			 */
3748 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
3749 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3750 #ifdef INVARIANTS
3751 			if (insret != NULL) {
3752 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3753 				      nrsm, insret, rack, rsm);
3754 			}
3755 #endif
3756 			if (rsm->r_in_tmap) {
3757 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3758 				nrsm->r_in_tmap = 1;
3759 			}
3760 			rsm->r_flags &= (~RACK_HAS_FIN);
3761 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3762 			if (len == 0) {
3763 				return;
3764 			} else if (len > 0)
3765 				goto refind;
3766 		}
3767 	}
3768 	/*
3769 	 * Hmm not found in map did they retransmit both old and on into the
3770 	 * new?
3771 	 */
3772 	if (seq_out == tp->snd_max) {
3773 		goto again;
3774 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3775 #ifdef INVARIANTS
3776 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3777 		    seq_out, len, tp->snd_una, tp->snd_max);
3778 		printf("Starting Dump of all rack entries\n");
3779 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3780 			printf("rsm:%p start:%u end:%u\n",
3781 			    rsm, rsm->r_start, rsm->r_end);
3782 		}
3783 		printf("Dump complete\n");
3784 		panic("seq_out not found rack:%p tp:%p",
3785 		    rack, tp);
3786 #endif
3787 	} else {
3788 #ifdef INVARIANTS
3789 		/*
3790 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3791 		 * flag)
3792 		 */
3793 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3794 		    seq_out, len, tp->snd_max, tp);
3795 #endif
3796 	}
3797 }
3798 
3799 /*
3800  * Record one of the RTT updates from an ack into
3801  * our sample structure.
3802  */
3803 static void
3804 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3805 {
3806 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3807 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3808 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3809 	}
3810 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3811 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3812 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3813 	}
3814 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3815 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3816 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3817 }
3818 
3819 /*
3820  * Collect new round-trip time estimate
3821  * and update averages and current timeout.
3822  */
3823 static void
3824 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3825 {
3826 	int32_t delta;
3827 	uint32_t o_srtt, o_var;
3828 	int32_t rtt;
3829 
3830 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3831 		/* No valid sample */
3832 		return;
3833 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3834 		/* We are to use the lowest RTT seen in a single ack */
3835 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3836 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3837 		/* We are to use the highest RTT seen in a single ack */
3838 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3839 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3840 		/* We are to use the average RTT seen in a single ack */
3841 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3842 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3843 	} else {
3844 #ifdef INVARIANTS
3845 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3846 #endif
3847 		return;
3848 	}
3849 	if (rtt == 0)
3850 		rtt = 1;
3851 	rack_log_rtt_sample(rack, rtt);
3852 	o_srtt = tp->t_srtt;
3853 	o_var = tp->t_rttvar;
3854 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3855 	if (tp->t_srtt != 0) {
3856 		/*
3857 		 * srtt is stored as fixed point with 5 bits after the
3858 		 * binary point (i.e., scaled by 8).  The following magic is
3859 		 * equivalent to the smoothing algorithm in rfc793 with an
3860 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3861 		 * Adjust rtt to origin 0.
3862 		 */
3863 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3864 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3865 
3866 		tp->t_srtt += delta;
3867 		if (tp->t_srtt <= 0)
3868 			tp->t_srtt = 1;
3869 
3870 		/*
3871 		 * We accumulate a smoothed rtt variance (actually, a
3872 		 * smoothed mean difference), then set the retransmit timer
3873 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3874 		 * is stored as fixed point with 4 bits after the binary
3875 		 * point (scaled by 16).  The following is equivalent to
3876 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3877 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3878 		 * wired-in beta.
3879 		 */
3880 		if (delta < 0)
3881 			delta = -delta;
3882 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3883 		tp->t_rttvar += delta;
3884 		if (tp->t_rttvar <= 0)
3885 			tp->t_rttvar = 1;
3886 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3887 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3888 	} else {
3889 		/*
3890 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3891 		 * variance to half the rtt (so our first retransmit happens
3892 		 * at 3*rtt).
3893 		 */
3894 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3895 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3896 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3897 	}
3898 	TCPSTAT_INC(tcps_rttupdated);
3899 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3900 	tp->t_rttupdated++;
3901 #ifdef STATS
3902 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3903 #endif
3904 	tp->t_rxtshift = 0;
3905 
3906 	/*
3907 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3908 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3909 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3910 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3911 	 * uncertainty in the firing of the timer.  The bias will give us
3912 	 * exactly the 1.5 tick we need.  But, because the bias is
3913 	 * statistical, we have to test that we don't drop below the minimum
3914 	 * feasible timer (which is 2 ticks).
3915 	 */
3916 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3917 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3918 	tp->t_softerror = 0;
3919 }
3920 
3921 static void
3922 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3923     uint32_t t, uint32_t cts)
3924 {
3925 	/*
3926 	 * For this RSM, we acknowledged the data from a previous
3927 	 * transmission, not the last one we made. This means we did a false
3928 	 * retransmit.
3929 	 */
3930 	struct tcp_rack *rack;
3931 
3932 	if (rsm->r_flags & RACK_HAS_FIN) {
3933 		/*
3934 		 * The sending of the FIN often is multiple sent when we
3935 		 * have everything outstanding ack'd. We ignore this case
3936 		 * since its over now.
3937 		 */
3938 		return;
3939 	}
3940 	if (rsm->r_flags & RACK_TLP) {
3941 		/*
3942 		 * We expect TLP's to have this occur.
3943 		 */
3944 		return;
3945 	}
3946 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3947 	/* should we undo cc changes and exit recovery? */
3948 	if (IN_RECOVERY(tp->t_flags)) {
3949 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3950 			/*
3951 			 * Undo what we ratched down and exit recovery if
3952 			 * possible
3953 			 */
3954 			EXIT_RECOVERY(tp->t_flags);
3955 			tp->snd_recover = tp->snd_una;
3956 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3957 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3958 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3959 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3960 		}
3961 	}
3962 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3963 		/*
3964 		 * We retransmitted based on a sack and the earlier
3965 		 * retransmission ack'd it - re-ordering is occuring.
3966 		 */
3967 		counter_u64_add(rack_reorder_seen, 1);
3968 		rack->r_ctl.rc_reorder_ts = cts;
3969 	}
3970 	counter_u64_add(rack_badfr, 1);
3971 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3972 }
3973 
3974 
3975 static int
3976 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3977     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3978 {
3979 	int32_t i;
3980 	uint32_t t;
3981 
3982 	if (rsm->r_flags & RACK_ACKED)
3983 		/* Already done */
3984 		return (0);
3985 
3986 
3987 	if ((rsm->r_rtr_cnt == 1) ||
3988 	    ((ack_type == CUM_ACKED) &&
3989 	    (to->to_flags & TOF_TS) &&
3990 	    (to->to_tsecr) &&
3991 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3992 	    ) {
3993 		/*
3994 		 * We will only find a matching timestamp if its cum-acked.
3995 		 * But if its only one retransmission its for-sure matching
3996 		 * :-)
3997 		 */
3998 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3999 		if ((int)t <= 0)
4000 			t = 1;
4001 		if (!tp->t_rttlow || tp->t_rttlow > t)
4002 			tp->t_rttlow = t;
4003 		if (!rack->r_ctl.rc_rack_min_rtt ||
4004 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4005 			rack->r_ctl.rc_rack_min_rtt = t;
4006 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
4007 				rack->r_ctl.rc_rack_min_rtt = 1;
4008 			}
4009 		}
4010 		tcp_rack_xmit_timer(rack, t + 1);
4011 		if ((rsm->r_flags & RACK_TLP) &&
4012 		    (!IN_RECOVERY(tp->t_flags))) {
4013 			/* Segment was a TLP and our retrans matched */
4014 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
4015 				rack->r_ctl.rc_rsm_start = tp->snd_max;
4016 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4017 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4018 				rack_cong_signal(tp, NULL, CC_NDUPACK);
4019 				/*
4020 				 * When we enter recovery we need to assure
4021 				 * we send one packet.
4022 				 */
4023 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4024 				rack_log_to_prr(rack, 7);
4025 			}
4026 		}
4027 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4028 			/* New more recent rack_tmit_time */
4029 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4030 			rack->rc_rack_rtt = t;
4031 		}
4032 		return (1);
4033 	}
4034 	/*
4035 	 * We clear the soft/rxtshift since we got an ack.
4036 	 * There is no assurance we will call the commit() function
4037 	 * so we need to clear these to avoid incorrect handling.
4038 	 */
4039 	tp->t_rxtshift = 0;
4040 	tp->t_softerror = 0;
4041 	if ((to->to_flags & TOF_TS) &&
4042 	    (ack_type == CUM_ACKED) &&
4043 	    (to->to_tsecr) &&
4044 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
4045 		/*
4046 		 * Now which timestamp does it match? In this block the ACK
4047 		 * must be coming from a previous transmission.
4048 		 */
4049 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
4050 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
4051 				t = cts - rsm->r_tim_lastsent[i];
4052 				if ((int)t <= 0)
4053 					t = 1;
4054 				if ((i + 1) < rsm->r_rtr_cnt) {
4055 					/* Likely */
4056 					rack_earlier_retran(tp, rsm, t, cts);
4057 				}
4058 				if (!tp->t_rttlow || tp->t_rttlow > t)
4059 					tp->t_rttlow = t;
4060 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4061 					rack->r_ctl.rc_rack_min_rtt = t;
4062 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
4063 						rack->r_ctl.rc_rack_min_rtt = 1;
4064 					}
4065 				}
4066                                 /*
4067 				 * Note the following calls to
4068 				 * tcp_rack_xmit_timer() are being commented
4069 				 * out for now. They give us no more accuracy
4070 				 * and often lead to a wrong choice. We have
4071 				 * enough samples that have not been
4072 				 * retransmitted. I leave the commented out
4073 				 * code in here in case in the future we
4074 				 * decide to add it back (though I can't forsee
4075 				 * doing that). That way we will easily see
4076 				 * where they need to be placed.
4077 				 */
4078 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
4079 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4080 					/* New more recent rack_tmit_time */
4081 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4082 					rack->rc_rack_rtt = t;
4083 				}
4084 				return (1);
4085 			}
4086 		}
4087 		goto ts_not_found;
4088 	} else {
4089 		/*
4090 		 * Ok its a SACK block that we retransmitted. or a windows
4091 		 * machine without timestamps. We can tell nothing from the
4092 		 * time-stamp since its not there or the time the peer last
4093 		 * recieved a segment that moved forward its cum-ack point.
4094 		 */
4095 ts_not_found:
4096 		i = rsm->r_rtr_cnt - 1;
4097 		t = cts - rsm->r_tim_lastsent[i];
4098 		if ((int)t <= 0)
4099 			t = 1;
4100 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4101 			/*
4102 			 * We retransmitted and the ack came back in less
4103 			 * than the smallest rtt we have observed. We most
4104 			 * likey did an improper retransmit as outlined in
4105 			 * 4.2 Step 3 point 2 in the rack-draft.
4106 			 */
4107 			i = rsm->r_rtr_cnt - 2;
4108 			t = cts - rsm->r_tim_lastsent[i];
4109 			rack_earlier_retran(tp, rsm, t, cts);
4110 		} else if (rack->r_ctl.rc_rack_min_rtt) {
4111 			/*
4112 			 * We retransmitted it and the retransmit did the
4113 			 * job.
4114 			 */
4115 			if (!rack->r_ctl.rc_rack_min_rtt ||
4116 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4117 				rack->r_ctl.rc_rack_min_rtt = t;
4118 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
4119 					rack->r_ctl.rc_rack_min_rtt = 1;
4120 				}
4121 			}
4122 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
4123 				/* New more recent rack_tmit_time */
4124 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
4125 				rack->rc_rack_rtt = t;
4126 			}
4127 			return (1);
4128 		}
4129 	}
4130 	return (0);
4131 }
4132 
4133 /*
4134  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
4135  */
4136 static void
4137 rack_log_sack_passed(struct tcpcb *tp,
4138     struct tcp_rack *rack, struct rack_sendmap *rsm)
4139 {
4140 	struct rack_sendmap *nrsm;
4141 
4142 	nrsm = rsm;
4143 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
4144 	    rack_head, r_tnext) {
4145 		if (nrsm == rsm) {
4146 			/* Skip orginal segment he is acked */
4147 			continue;
4148 		}
4149 		if (nrsm->r_flags & RACK_ACKED) {
4150 			/*
4151 			 * Skip ack'd segments, though we
4152 			 * should not see these, since tmap
4153 			 * should not have ack'd segments.
4154 			 */
4155 			continue;
4156 		}
4157 		if (nrsm->r_flags & RACK_SACK_PASSED) {
4158 			/*
4159 			 * We found one that is already marked
4160 			 * passed, we have been here before and
4161 			 * so all others below this are marked.
4162 			 */
4163 			break;
4164 		}
4165 		nrsm->r_flags |= RACK_SACK_PASSED;
4166 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
4167 	}
4168 }
4169 
4170 static uint32_t
4171 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
4172 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
4173 {
4174 	uint32_t start, end, changed = 0;
4175 	struct rack_sendmap stack_map;
4176 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
4177 	int32_t used_ref = 1;
4178 	int moved = 0;
4179 
4180 	start = sack->start;
4181 	end = sack->end;
4182 	rsm = *prsm;
4183 	memset(&fe, 0, sizeof(fe));
4184 do_rest_ofb:
4185 	if ((rsm == NULL) ||
4186 	    (SEQ_LT(end, rsm->r_start)) ||
4187 	    (SEQ_GEQ(start, rsm->r_end)) ||
4188 	    (SEQ_LT(start, rsm->r_start))) {
4189 		/*
4190 		 * We are not in the right spot,
4191 		 * find the correct spot in the tree.
4192 		 */
4193 		used_ref = 0;
4194 		fe.r_start = start;
4195 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4196 		moved++;
4197 	}
4198 	if (rsm == NULL) {
4199 		/* TSNH */
4200 		goto out;
4201 	}
4202 	/* Ok we have an ACK for some piece of this rsm */
4203 	if (rsm->r_start != start) {
4204 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4205 			/**
4206 			 * Need to split this in two pieces the before and after,
4207 			 * the before remains in the map, the after must be
4208 			 * added. In other words we have:
4209 			 * rsm        |--------------|
4210 			 * sackblk        |------->
4211 			 * rsm will become
4212 			 *     rsm    |---|
4213 			 * and nrsm will be  the sacked piece
4214 			 *     nrsm       |----------|
4215 			 *
4216 			 * But before we start down that path lets
4217 			 * see if the sack spans over on top of
4218 			 * the next guy and it is already sacked.
4219 			 */
4220 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4221 			if (next && (next->r_flags & RACK_ACKED) &&
4222 			    SEQ_GEQ(end, next->r_start)) {
4223 				/**
4224 				 * So the next one is already acked, and
4225 				 * we can thus by hookery use our stack_map
4226 				 * to reflect the piece being sacked and
4227 				 * then adjust the two tree entries moving
4228 				 * the start and ends around. So we start like:
4229 				 *  rsm     |------------|             (not-acked)
4230 				 *  next                 |-----------| (acked)
4231 				 *  sackblk        |-------->
4232 				 *  We want to end like so:
4233 				 *  rsm     |------|                   (not-acked)
4234 				 *  next           |-----------------| (acked)
4235 				 *  nrsm           |-----|
4236 				 * Where nrsm is a temporary stack piece we
4237 				 * use to update all the gizmos.
4238 				 */
4239 				/* Copy up our fudge block */
4240 				nrsm = &stack_map;
4241 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4242 				/* Now adjust our tree blocks */
4243 				rsm->r_end = start;
4244 				next->r_start = start;
4245 				/* Clear out the dup ack count of the remainder */
4246 				rsm->r_dupack = 0;
4247 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4248 				/* Now lets make sure our fudge block is right */
4249 				nrsm->r_start = start;
4250 				/* Now lets update all the stats and such */
4251 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4252 				changed += (nrsm->r_end - nrsm->r_start);
4253 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4254 				if (nrsm->r_flags & RACK_SACK_PASSED) {
4255 					counter_u64_add(rack_reorder_seen, 1);
4256 					rack->r_ctl.rc_reorder_ts = cts;
4257 				}
4258 				/*
4259 				 * Now we want to go up from rsm (the
4260 				 * one left un-acked) to the next one
4261 				 * in the tmap. We do this so when
4262 				 * we walk backwards we include marking
4263 				 * sack-passed on rsm (The one passed in
4264 				 * is skipped since it is generally called
4265 				 * on something sacked before removing it
4266 				 * from the tmap).
4267 				 */
4268 				if (rsm->r_in_tmap) {
4269 					nrsm = TAILQ_NEXT(rsm, r_tnext);
4270 					/*
4271 					 * Now that we have the next
4272 					 * one walk backwards from there.
4273 					 */
4274 					if (nrsm && nrsm->r_in_tmap)
4275 						rack_log_sack_passed(tp, rack, nrsm);
4276 				}
4277 				/* Now are we done? */
4278 				if (SEQ_LT(end, next->r_end) ||
4279 				    (end == next->r_end)) {
4280 					/* Done with block */
4281 					goto out;
4282 				}
4283 				counter_u64_add(rack_sack_used_next_merge, 1);
4284 				/* Postion for the next block */
4285 				start = next->r_end;
4286 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
4287 				if (rsm == NULL)
4288 					goto out;
4289 			} else {
4290 				/**
4291 				 * We can't use any hookery here, so we
4292 				 * need to split the map. We enter like
4293 				 * so:
4294 				 *  rsm      |--------|
4295 				 *  sackblk       |----->
4296 				 * We will add the new block nrsm and
4297 				 * that will be the new portion, and then
4298 				 * fall through after reseting rsm. So we
4299 				 * split and look like this:
4300 				 *  rsm      |----|
4301 				 *  sackblk       |----->
4302 				 *  nrsm          |---|
4303 				 * We then fall through reseting
4304 				 * rsm to nrsm, so the next block
4305 				 * picks it up.
4306 				 */
4307 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4308 				if (nrsm == NULL) {
4309 					/*
4310 					 * failed XXXrrs what can we do but loose the sack
4311 					 * info?
4312 					 */
4313 					goto out;
4314 				}
4315 				counter_u64_add(rack_sack_splits, 1);
4316 				rack_clone_rsm(rack, nrsm, rsm, start);
4317 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4318 #ifdef INVARIANTS
4319 				if (insret != NULL) {
4320 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4321 					      nrsm, insret, rack, rsm);
4322 				}
4323 #endif
4324 				if (rsm->r_in_tmap) {
4325 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4326 					nrsm->r_in_tmap = 1;
4327 				}
4328 				rsm->r_flags &= (~RACK_HAS_FIN);
4329 				/* Position us to point to the new nrsm that starts the sack blk */
4330 				rsm = nrsm;
4331 			}
4332 		} else {
4333 			/* Already sacked this piece */
4334 			counter_u64_add(rack_sack_skipped_acked, 1);
4335 			moved++;
4336 			if (end == rsm->r_end) {
4337 				/* Done with block */
4338 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4339 				goto out;
4340 			} else if (SEQ_LT(end, rsm->r_end)) {
4341 				/* A partial sack to a already sacked block */
4342 				moved++;
4343 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4344 				goto out;
4345 			} else {
4346 				/*
4347 				 * The end goes beyond this guy
4348 				 * repostion the start to the
4349 				 * next block.
4350 				 */
4351 				start = rsm->r_end;
4352 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4353 				if (rsm == NULL)
4354 					goto out;
4355 			}
4356 		}
4357 	}
4358 	if (SEQ_GEQ(end, rsm->r_end)) {
4359 		/**
4360 		 * The end of this block is either beyond this guy or right
4361 		 * at this guy. I.e.:
4362 		 *  rsm ---                 |-----|
4363 		 *  end                     |-----|
4364 		 *  <or>
4365 		 *  end                     |---------|
4366 		 */
4367 		if (rsm->r_flags & RACK_TLP)
4368 			rack->r_ctl.rc_tlp_rtx_out = 0;
4369 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4370 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4371 			changed += (rsm->r_end - rsm->r_start);
4372 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4373 			if (rsm->r_in_tmap) /* should be true */
4374 				rack_log_sack_passed(tp, rack, rsm);
4375 			/* Is Reordering occuring? */
4376 			if (rsm->r_flags & RACK_SACK_PASSED) {
4377 				rsm->r_flags &= ~RACK_SACK_PASSED;
4378 				counter_u64_add(rack_reorder_seen, 1);
4379 				rack->r_ctl.rc_reorder_ts = cts;
4380 			}
4381 			rsm->r_flags |= RACK_ACKED;
4382 			rsm->r_flags &= ~RACK_TLP;
4383 			if (rsm->r_in_tmap) {
4384 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4385 				rsm->r_in_tmap = 0;
4386 			}
4387 		} else {
4388 			counter_u64_add(rack_sack_skipped_acked, 1);
4389 			moved++;
4390 		}
4391 		if (end == rsm->r_end) {
4392 			/* This block only - done, setup for next  */
4393 			goto out;
4394 		}
4395 		/*
4396 		 * There is more not coverend by this rsm move on
4397 		 * to the next block in the RB tree.
4398 		 */
4399 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4400 		start = rsm->r_end;
4401 		rsm = nrsm;
4402 		if (rsm == NULL)
4403 			goto out;
4404 		goto do_rest_ofb;
4405 	}
4406 	/**
4407 	 * The end of this sack block is smaller than
4408 	 * our rsm i.e.:
4409 	 *  rsm ---                 |-----|
4410 	 *  end                     |--|
4411 	 */
4412 	if ((rsm->r_flags & RACK_ACKED) == 0) {
4413 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4414 		if (prev && (prev->r_flags & RACK_ACKED)) {
4415 			/**
4416 			 * Goal, we want the right remainder of rsm to shrink
4417 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
4418 			 * We want to expand prev to go all the way
4419 			 * to prev->r_end <- end.
4420 			 * so in the tree we have before:
4421 			 *   prev     |--------|         (acked)
4422 			 *   rsm               |-------| (non-acked)
4423 			 *   sackblk           |-|
4424 			 * We churn it so we end up with
4425 			 *   prev     |----------|       (acked)
4426 			 *   rsm                 |-----| (non-acked)
4427 			 *   nrsm              |-| (temporary)
4428 			 */
4429 			nrsm = &stack_map;
4430 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4431 			prev->r_end = end;
4432 			rsm->r_start = end;
4433 			/* Now adjust nrsm (stack copy) to be
4434 			 * the one that is the small
4435 			 * piece that was "sacked".
4436 			 */
4437 			nrsm->r_end = end;
4438 			rsm->r_dupack = 0;
4439 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4440 			/*
4441 			 * Now nrsm is our new little piece
4442 			 * that is acked (which was merged
4443 			 * to prev). Update the rtt and changed
4444 			 * based on that. Also check for reordering.
4445 			 */
4446 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4447 			changed += (nrsm->r_end - nrsm->r_start);
4448 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4449 			if (nrsm->r_flags & RACK_SACK_PASSED) {
4450 				counter_u64_add(rack_reorder_seen, 1);
4451 				rack->r_ctl.rc_reorder_ts = cts;
4452 			}
4453 			rsm = prev;
4454 			counter_u64_add(rack_sack_used_prev_merge, 1);
4455 		} else {
4456 			/**
4457 			 * This is the case where our previous
4458 			 * block is not acked either, so we must
4459 			 * split the block in two.
4460 			 */
4461 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4462 			if (nrsm == NULL) {
4463 				/* failed rrs what can we do but loose the sack info? */
4464 				goto out;
4465 			}
4466 			/**
4467 			 * In this case nrsm becomes
4468 			 * nrsm->r_start = end;
4469 			 * nrsm->r_end = rsm->r_end;
4470 			 * which is un-acked.
4471 			 * <and>
4472 			 * rsm->r_end = nrsm->r_start;
4473 			 * i.e. the remaining un-acked
4474 			 * piece is left on the left
4475 			 * hand side.
4476 			 *
4477 			 * So we start like this
4478 			 * rsm      |----------| (not acked)
4479 			 * sackblk  |---|
4480 			 * build it so we have
4481 			 * rsm      |---|         (acked)
4482 			 * nrsm         |------|  (not acked)
4483 			 */
4484 			counter_u64_add(rack_sack_splits, 1);
4485 			rack_clone_rsm(rack, nrsm, rsm, end);
4486 			rsm->r_flags &= (~RACK_HAS_FIN);
4487 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4488 #ifdef INVARIANTS
4489 			if (insret != NULL) {
4490 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4491 				      nrsm, insret, rack, rsm);
4492 			}
4493 #endif
4494 			if (rsm->r_in_tmap) {
4495 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4496 				nrsm->r_in_tmap = 1;
4497 			}
4498 			nrsm->r_dupack = 0;
4499 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
4500 			if (rsm->r_flags & RACK_TLP)
4501 				rack->r_ctl.rc_tlp_rtx_out = 0;
4502 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4503 			changed += (rsm->r_end - rsm->r_start);
4504 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4505 			if (rsm->r_in_tmap) /* should be true */
4506 				rack_log_sack_passed(tp, rack, rsm);
4507 			/* Is Reordering occuring? */
4508 			if (rsm->r_flags & RACK_SACK_PASSED) {
4509 				rsm->r_flags &= ~RACK_SACK_PASSED;
4510 				counter_u64_add(rack_reorder_seen, 1);
4511 				rack->r_ctl.rc_reorder_ts = cts;
4512 			}
4513 			rsm->r_flags |= RACK_ACKED;
4514 			rsm->r_flags &= ~RACK_TLP;
4515 			if (rsm->r_in_tmap) {
4516 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4517 				rsm->r_in_tmap = 0;
4518 			}
4519 		}
4520 	} else if (start != end){
4521 		/*
4522 		 * The block was already acked.
4523 		 */
4524 		counter_u64_add(rack_sack_skipped_acked, 1);
4525 		moved++;
4526 	}
4527 out:
4528 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4529 		/*
4530 		 * Now can we merge where we worked
4531 		 * with either the previous or
4532 		 * next block?
4533 		 */
4534 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4535 		while (next) {
4536 		    if (next->r_flags & RACK_ACKED) {
4537 			/* yep this and next can be merged */
4538 			rsm = rack_merge_rsm(rack, rsm, next);
4539 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4540 		    } else
4541 			    break;
4542 		}
4543 		/* Now what about the previous? */
4544 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4545 		while (prev) {
4546 		    if (prev->r_flags & RACK_ACKED) {
4547 			/* yep the previous and this can be merged */
4548 			rsm = rack_merge_rsm(rack, prev, rsm);
4549 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4550 		    } else
4551 			    break;
4552 		}
4553 	}
4554 	if (used_ref == 0) {
4555 		counter_u64_add(rack_sack_proc_all, 1);
4556 	} else {
4557 		counter_u64_add(rack_sack_proc_short, 1);
4558 	}
4559 	/* Save off the next one for quick reference. */
4560 	if (rsm)
4561 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4562 	else
4563 		nrsm = NULL;
4564 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
4565 	/* Pass back the moved. */
4566 	*moved_two = moved;
4567 	return (changed);
4568 }
4569 
4570 static void inline
4571 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4572 {
4573 	struct rack_sendmap *tmap;
4574 
4575 	tmap = NULL;
4576 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4577 		/* Its no longer sacked, mark it so */
4578 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4579 #ifdef INVARIANTS
4580 		if (rsm->r_in_tmap) {
4581 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4582 			      rack, rsm, rsm->r_flags);
4583 		}
4584 #endif
4585 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4586 		/* Rebuild it into our tmap */
4587 		if (tmap == NULL) {
4588 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4589 			tmap = rsm;
4590 		} else {
4591 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4592 			tmap = rsm;
4593 		}
4594 		tmap->r_in_tmap = 1;
4595 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4596 	}
4597 	/*
4598 	 * Now lets possibly clear the sack filter so we start
4599 	 * recognizing sacks that cover this area.
4600 	 */
4601 	if (rack_use_sack_filter)
4602 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4603 
4604 }
4605 
4606 static void
4607 rack_do_decay(struct tcp_rack *rack)
4608 {
4609 #ifdef NETFLIX_EXP_DETECTION
4610 	struct timeval res;
4611 
4612 #define	timersub(tvp, uvp, vvp)						\
4613 	do {								\
4614 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
4615 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
4616 		if ((vvp)->tv_usec < 0) {				\
4617 			(vvp)->tv_sec--;				\
4618 			(vvp)->tv_usec += 1000000;			\
4619 		}							\
4620 	} while (0)
4621 
4622 	timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
4623 #undef timersub
4624 
4625 	rack->r_ctl.input_pkt++;
4626 	if ((rack->rc_in_persist) ||
4627 	    (res.tv_sec >= 1) ||
4628 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
4629 		/*
4630 		 * Check for decay of non-SAD,
4631 		 * we want all SAD detection metrics to
4632 		 * decay 1/4 per second (or more) passed.
4633 		 */
4634 		uint32_t pkt_delta;
4635 
4636 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
4637 		/* Update our saved tracking values */
4638 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
4639 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
4640 		/* Now do we escape without decay? */
4641 		if (rack->rc_in_persist ||
4642 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
4643 		    (pkt_delta < tcp_sad_low_pps)){
4644 			/*
4645 			 * We don't decay idle connections
4646 			 * or ones that have a low input pps.
4647 			 */
4648 			return;
4649 		}
4650 		/* Decay the counters */
4651 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
4652 							tcp_sad_decay_val);
4653 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
4654 							 tcp_sad_decay_val);
4655 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
4656 							       tcp_sad_decay_val);
4657 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
4658 								tcp_sad_decay_val);
4659 	}
4660 #endif
4661 }
4662 
4663 static void
4664 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4665 {
4666 	uint32_t changed, entered_recovery = 0;
4667 	struct tcp_rack *rack;
4668 	struct rack_sendmap *rsm, *rm;
4669 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4670 	register uint32_t th_ack;
4671 	int32_t i, j, k, num_sack_blks = 0;
4672 	uint32_t cts, acked, ack_point, sack_changed = 0;
4673 	int loop_start = 0, moved_two = 0;
4674 
4675 	INP_WLOCK_ASSERT(tp->t_inpcb);
4676 	if (th->th_flags & TH_RST) {
4677 		/* We don't log resets */
4678 		return;
4679 	}
4680 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4681 	cts = tcp_ts_getticks();
4682 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4683 	changed = 0;
4684 	th_ack = th->th_ack;
4685 	if (rack->sack_attack_disable == 0)
4686 		rack_do_decay(rack);
4687 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
4688 		/*
4689 		 * You only get credit for
4690 		 * MSS and greater (and you get extra
4691 		 * credit for larger cum-ack moves).
4692 		 */
4693 		int ac;
4694 
4695 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
4696 		rack->r_ctl.ack_count += ac;
4697 		counter_u64_add(rack_ack_total, ac);
4698 	}
4699 	if (rack->r_ctl.ack_count > 0xfff00000) {
4700 		/*
4701 		 * reduce the number to keep us under
4702 		 * a uint32_t.
4703 		 */
4704 		rack->r_ctl.ack_count /= 2;
4705 		rack->r_ctl.sack_count /= 2;
4706 	}
4707 	if (SEQ_GT(th_ack, tp->snd_una)) {
4708 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4709 		tp->t_acktime = ticks;
4710 	}
4711 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4712 		changed = th_ack - rsm->r_start;
4713 	if (changed) {
4714 		/*
4715 		 * The ACK point is advancing to th_ack, we must drop off
4716 		 * the packets in the rack log and calculate any eligble
4717 		 * RTT's.
4718 		 */
4719 		rack->r_wanted_output++;
4720 	more:
4721 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4722 		if (rsm == NULL) {
4723 			if ((th_ack - 1) == tp->iss) {
4724 				/*
4725 				 * For the SYN incoming case we will not
4726 				 * have called tcp_output for the sending of
4727 				 * the SYN, so there will be no map. All
4728 				 * other cases should probably be a panic.
4729 				 */
4730 				goto proc_sack;
4731 			}
4732 			if (tp->t_flags & TF_SENTFIN) {
4733 				/* if we send a FIN we will not hav a map */
4734 				goto proc_sack;
4735 			}
4736 #ifdef INVARIANTS
4737 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4738 			      tp,
4739 			      th, tp->t_state, rack,
4740 			      tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4741 #endif
4742 			goto proc_sack;
4743 		}
4744 		if (SEQ_LT(th_ack, rsm->r_start)) {
4745 			/* Huh map is missing this */
4746 #ifdef INVARIANTS
4747 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4748 			       rsm->r_start,
4749 			       th_ack, tp->t_state, rack->r_state);
4750 #endif
4751 			goto proc_sack;
4752 		}
4753 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4754 		/* Now do we consume the whole thing? */
4755 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4756 			/* Its all consumed. */
4757 			uint32_t left;
4758 
4759 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4760 			rsm->r_rtr_bytes = 0;
4761 			if (rsm->r_flags & RACK_TLP)
4762 				rack->r_ctl.rc_tlp_rtx_out = 0;
4763 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4764 #ifdef INVARIANTS
4765 			if (rm != rsm) {
4766 				panic("removing head in rack:%p rsm:%p rm:%p",
4767 				      rack, rsm, rm);
4768 			}
4769 #endif
4770 			if (rsm->r_in_tmap) {
4771 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4772 				rsm->r_in_tmap = 0;
4773 			}
4774 			if (rsm->r_flags & RACK_ACKED) {
4775 				/*
4776 				 * It was acked on the scoreboard -- remove
4777 				 * it from total
4778 				 */
4779 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4780 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4781 				/*
4782 				 * There are segments ACKED on the
4783 				 * scoreboard further up. We are seeing
4784 				 * reordering.
4785 				 */
4786 				rsm->r_flags &= ~RACK_SACK_PASSED;
4787 				counter_u64_add(rack_reorder_seen, 1);
4788 				rsm->r_flags |= RACK_ACKED;
4789 				rack->r_ctl.rc_reorder_ts = cts;
4790 			}
4791 			left = th_ack - rsm->r_end;
4792 			if (rsm->r_rtr_cnt > 1) {
4793 				/*
4794 				 * Technically we should make r_rtr_cnt be
4795 				 * monotonicly increasing and just mod it to
4796 				 * the timestamp it is replacing.. that way
4797 				 * we would have the last 3 retransmits. Now
4798 				 * rc_loss_count will be wrong if we
4799 				 * retransmit something more than 2 times in
4800 				 * recovery :(
4801 				 */
4802 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4803 			}
4804 			/* Free back to zone */
4805 			rack_free(rack, rsm);
4806 			if (left) {
4807 				goto more;
4808 			}
4809 			goto proc_sack;
4810 		}
4811 		if (rsm->r_flags & RACK_ACKED) {
4812 			/*
4813 			 * It was acked on the scoreboard -- remove it from
4814 			 * total for the part being cum-acked.
4815 			 */
4816 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4817 		}
4818 		/*
4819 		 * Clear the dup ack count for
4820 		 * the piece that remains.
4821 		 */
4822 		rsm->r_dupack = 0;
4823 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4824 		if (rsm->r_rtr_bytes) {
4825 			/*
4826 			 * It was retransmitted adjust the
4827 			 * sack holes for what was acked.
4828 			 */
4829 			int ack_am;
4830 
4831 			ack_am = (th_ack - rsm->r_start);
4832 			if (ack_am >= rsm->r_rtr_bytes) {
4833 				rack->r_ctl.rc_holes_rxt -= ack_am;
4834 				rsm->r_rtr_bytes -= ack_am;
4835 			}
4836 		}
4837 		/* Update where the piece starts */
4838 		rsm->r_start = th_ack;
4839 	}
4840 proc_sack:
4841 	/* Check for reneging */
4842 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4843 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4844 		/*
4845 		 * The peer has moved snd_una up to
4846 		 * the edge of this send, i.e. one
4847 		 * that it had previously acked. The only
4848 		 * way that can be true if the peer threw
4849 		 * away data (space issues) that it had
4850 		 * previously sacked (else it would have
4851 		 * given us snd_una up to (rsm->r_end).
4852 		 * We need to undo the acked markings here.
4853 		 *
4854 		 * Note we have to look to make sure th_ack is
4855 		 * our rsm->r_start in case we get an old ack
4856 		 * where th_ack is behind snd_una.
4857 		 */
4858 		rack_peer_reneges(rack, rsm, th->th_ack);
4859 	}
4860 	if ((to->to_flags & TOF_SACK) == 0) {
4861 		/* We are done nothing left */
4862 		goto out;
4863 	}
4864 	/* Sack block processing */
4865 	if (SEQ_GT(th_ack, tp->snd_una))
4866 		ack_point = th_ack;
4867 	else
4868 		ack_point = tp->snd_una;
4869 	for (i = 0; i < to->to_nsacks; i++) {
4870 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4871 		      &sack, sizeof(sack));
4872 		sack.start = ntohl(sack.start);
4873 		sack.end = ntohl(sack.end);
4874 		if (SEQ_GT(sack.end, sack.start) &&
4875 		    SEQ_GT(sack.start, ack_point) &&
4876 		    SEQ_LT(sack.start, tp->snd_max) &&
4877 		    SEQ_GT(sack.end, ack_point) &&
4878 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4879 			sack_blocks[num_sack_blks] = sack;
4880 			num_sack_blks++;
4881 #ifdef NETFLIX_STATS
4882 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4883 			   SEQ_LEQ(sack.end, th_ack)) {
4884 			/*
4885 			 * Its a D-SACK block.
4886 			 */
4887 			tcp_record_dsack(sack.start, sack.end);
4888 #endif
4889 		}
4890 
4891 	}
4892 	/*
4893 	 * Sort the SACK blocks so we can update the rack scoreboard with
4894 	 * just one pass.
4895 	 */
4896 	if (rack_use_sack_filter) {
4897 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4898 						 num_sack_blks, th->th_ack);
4899 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4900 	}
4901 	if (num_sack_blks == 0)  {
4902 		/* Nothing to sack (DSACKs?) */
4903 		goto out_with_totals;
4904 	}
4905 	if (num_sack_blks < 2) {
4906 		/* Only one, we don't need to sort */
4907 		goto do_sack_work;
4908 	}
4909 	/* Sort the sacks */
4910 	for (i = 0; i < num_sack_blks; i++) {
4911 		for (j = i + 1; j < num_sack_blks; j++) {
4912 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4913 				sack = sack_blocks[i];
4914 				sack_blocks[i] = sack_blocks[j];
4915 				sack_blocks[j] = sack;
4916 			}
4917 		}
4918 	}
4919 	/*
4920 	 * Now are any of the sack block ends the same (yes some
4921 	 * implementations send these)?
4922 	 */
4923 again:
4924 	if (num_sack_blks == 0)
4925 		goto out_with_totals;
4926 	if (num_sack_blks > 1) {
4927 		for (i = 0; i < num_sack_blks; i++) {
4928 			for (j = i + 1; j < num_sack_blks; j++) {
4929 				if (sack_blocks[i].end == sack_blocks[j].end) {
4930 					/*
4931 					 * Ok these two have the same end we
4932 					 * want the smallest end and then
4933 					 * throw away the larger and start
4934 					 * again.
4935 					 */
4936 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4937 						/*
4938 						 * The second block covers
4939 						 * more area use that
4940 						 */
4941 						sack_blocks[i].start = sack_blocks[j].start;
4942 					}
4943 					/*
4944 					 * Now collapse out the dup-sack and
4945 					 * lower the count
4946 					 */
4947 					for (k = (j + 1); k < num_sack_blks; k++) {
4948 						sack_blocks[j].start = sack_blocks[k].start;
4949 						sack_blocks[j].end = sack_blocks[k].end;
4950 						j++;
4951 					}
4952 					num_sack_blks--;
4953 					goto again;
4954 				}
4955 			}
4956 		}
4957 	}
4958 do_sack_work:
4959 	/*
4960 	 * First lets look to see if
4961 	 * we have retransmitted and
4962 	 * can use the transmit next?
4963 	 */
4964 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4965 	if (rsm &&
4966 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
4967 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
4968 		/*
4969 		 * We probably did the FR and the next
4970 		 * SACK in continues as we would expect.
4971 		 */
4972 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
4973 		if (acked) {
4974 			rack->r_wanted_output++;
4975 			changed += acked;
4976 			sack_changed += acked;
4977 		}
4978 		if (num_sack_blks == 1) {
4979 			/*
4980 			 * This is what we would expect from
4981 			 * a normal implementation to happen
4982 			 * after we have retransmitted the FR,
4983 			 * i.e the sack-filter pushes down
4984 			 * to 1 block and the next to be retransmitted
4985 			 * is the sequence in the sack block (has more
4986 			 * are acked). Count this as ACK'd data to boost
4987 			 * up the chances of recovering any false positives.
4988 			 */
4989 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
4990 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
4991 			counter_u64_add(rack_express_sack, 1);
4992 			if (rack->r_ctl.ack_count > 0xfff00000) {
4993 				/*
4994 				 * reduce the number to keep us under
4995 				 * a uint32_t.
4996 				 */
4997 				rack->r_ctl.ack_count /= 2;
4998 				rack->r_ctl.sack_count /= 2;
4999 			}
5000 			goto out_with_totals;
5001 		} else {
5002 			/*
5003 			 * Start the loop through the
5004 			 * rest of blocks, past the first block.
5005 			 */
5006 			moved_two = 0;
5007 			loop_start = 1;
5008 		}
5009 	}
5010 	/* Its a sack of some sort */
5011 	rack->r_ctl.sack_count++;
5012 	if (rack->r_ctl.sack_count > 0xfff00000) {
5013 		/*
5014 		 * reduce the number to keep us under
5015 		 * a uint32_t.
5016 		 */
5017 		rack->r_ctl.ack_count /= 2;
5018 		rack->r_ctl.sack_count /= 2;
5019 	}
5020 	counter_u64_add(rack_sack_total, 1);
5021 	if (rack->sack_attack_disable) {
5022 		/* An attacker disablement is in place */
5023 		if (num_sack_blks > 1) {
5024 			rack->r_ctl.sack_count += (num_sack_blks - 1);
5025 			rack->r_ctl.sack_moved_extra++;
5026 			counter_u64_add(rack_move_some, 1);
5027 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
5028 				rack->r_ctl.sack_moved_extra /= 2;
5029 				rack->r_ctl.sack_noextra_move /= 2;
5030 			}
5031 		}
5032 		goto out;
5033 	}
5034 	rsm = rack->r_ctl.rc_sacklast;
5035 	for (i = loop_start; i < num_sack_blks; i++) {
5036 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
5037 		if (acked) {
5038 			rack->r_wanted_output++;
5039 			changed += acked;
5040 			sack_changed += acked;
5041 		}
5042 		if (moved_two) {
5043 			/*
5044 			 * If we did not get a SACK for at least a MSS and
5045 			 * had to move at all, or if we moved more than our
5046 			 * threshold, it counts against the "extra" move.
5047 			 */
5048 			rack->r_ctl.sack_moved_extra += moved_two;
5049 			counter_u64_add(rack_move_some, 1);
5050 		} else {
5051 			/*
5052 			 * else we did not have to move
5053 			 * any more than we would expect.
5054 			 */
5055 			rack->r_ctl.sack_noextra_move++;
5056 			counter_u64_add(rack_move_none, 1);
5057 		}
5058 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
5059 			/*
5060 			 * If the SACK was not a full MSS then
5061 			 * we add to sack_count the number of
5062 			 * MSS's (or possibly more than
5063 			 * a MSS if its a TSO send) we had to skip by.
5064 			 */
5065 			rack->r_ctl.sack_count += moved_two;
5066 			counter_u64_add(rack_sack_total, moved_two);
5067 		}
5068 		/*
5069 		 * Now we need to setup for the next
5070 		 * round. First we make sure we won't
5071 		 * exceed the size of our uint32_t on
5072 		 * the various counts, and then clear out
5073 		 * moved_two.
5074 		 */
5075 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
5076 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
5077 			rack->r_ctl.sack_moved_extra /= 2;
5078 			rack->r_ctl.sack_noextra_move /= 2;
5079 		}
5080 		if (rack->r_ctl.sack_count > 0xfff00000) {
5081 			rack->r_ctl.ack_count /= 2;
5082 			rack->r_ctl.sack_count /= 2;
5083 		}
5084 		moved_two = 0;
5085 	}
5086 out_with_totals:
5087 	if (num_sack_blks > 1) {
5088 		/*
5089 		 * You get an extra stroke if
5090 		 * you have more than one sack-blk, this
5091 		 * could be where we are skipping forward
5092 		 * and the sack-filter is still working, or
5093 		 * it could be an attacker constantly
5094 		 * moving us.
5095 		 */
5096 		rack->r_ctl.sack_moved_extra++;
5097 		counter_u64_add(rack_move_some, 1);
5098 	}
5099 out:
5100 #ifdef NETFLIX_EXP_DETECTION
5101 	if ((rack->do_detection || tcp_force_detection) &&
5102 	    tcp_sack_to_ack_thresh &&
5103 	    tcp_sack_to_move_thresh &&
5104 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
5105 		/*
5106 		 * We have thresholds set to find
5107 		 * possible attackers and disable sack.
5108 		 * Check them.
5109 		 */
5110 		uint64_t ackratio, moveratio, movetotal;
5111 
5112 		/* Log detecting */
5113 		rack_log_sad(rack, 1);
5114 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
5115 		ackratio *= (uint64_t)(1000);
5116 		if (rack->r_ctl.ack_count)
5117 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
5118 		else {
5119 			/* We really should not hit here */
5120 			ackratio = 1000;
5121 		}
5122 		if ((rack->sack_attack_disable  == 0) &&
5123 		    (ackratio > rack_highest_sack_thresh_seen))
5124 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
5125 		movetotal = rack->r_ctl.sack_moved_extra;
5126 		movetotal += rack->r_ctl.sack_noextra_move;
5127 		moveratio = rack->r_ctl.sack_moved_extra;
5128 		moveratio *= (uint64_t)1000;
5129 		if (movetotal)
5130 			moveratio /= movetotal;
5131 		else {
5132 			/* No moves, thats pretty good */
5133 			moveratio = 0;
5134 		}
5135 		if ((rack->sack_attack_disable == 0) &&
5136 		    (moveratio > rack_highest_move_thresh_seen))
5137 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
5138 		if (rack->sack_attack_disable == 0) {
5139 			if ((ackratio > tcp_sack_to_ack_thresh) &&
5140 			    (moveratio > tcp_sack_to_move_thresh)) {
5141 				/* Disable sack processing */
5142 				rack->sack_attack_disable = 1;
5143 				if (rack->r_rep_attack == 0) {
5144 					rack->r_rep_attack = 1;
5145 					counter_u64_add(rack_sack_attacks_detected, 1);
5146 				}
5147 				if (tcp_attack_on_turns_on_logging) {
5148 					/*
5149 					 * Turn on logging, used for debugging
5150 					 * false positives.
5151 					 */
5152 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
5153 				}
5154 				/* Clamp the cwnd at flight size */
5155 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
5156 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
5157 				rack_log_sad(rack, 2);
5158 			}
5159 		} else {
5160 			/* We are sack-disabled check for false positives */
5161 			if ((ackratio <= tcp_restoral_thresh) ||
5162 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
5163 				rack->sack_attack_disable  = 0;
5164 				rack_log_sad(rack, 3);
5165 				/* Restart counting */
5166 				rack->r_ctl.sack_count = 0;
5167 				rack->r_ctl.sack_moved_extra = 0;
5168 				rack->r_ctl.sack_noextra_move = 1;
5169 				rack->r_ctl.ack_count = max(1,
5170 				      (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
5171 
5172 				if (rack->r_rep_reverse == 0) {
5173 					rack->r_rep_reverse = 1;
5174 					counter_u64_add(rack_sack_attacks_reversed, 1);
5175 				}
5176 				/* Restore the cwnd */
5177 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
5178 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
5179 			}
5180 		}
5181 	}
5182 #endif
5183 	if (changed) {
5184 		/* Something changed cancel the rack timer */
5185 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5186 	}
5187 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
5188 		/*
5189 		 * Ok we have a high probability that we need to go in to
5190 		 * recovery since we have data sack'd
5191 		 */
5192 		struct rack_sendmap *rsm;
5193 		uint32_t tsused;
5194 
5195 		tsused = tcp_ts_getticks();
5196 		rsm = tcp_rack_output(tp, rack, tsused);
5197 		if (rsm) {
5198 			/* Enter recovery */
5199 			rack->r_ctl.rc_rsm_start = rsm->r_start;
5200 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5201 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5202 			entered_recovery = 1;
5203 			rack_cong_signal(tp, NULL, CC_NDUPACK);
5204 			/*
5205 			 * When we enter recovery we need to assure we send
5206 			 * one packet.
5207 			 */
5208 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5209 			rack_log_to_prr(rack, 8);
5210 			rack->r_timer_override = 1;
5211 		}
5212 	}
5213 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
5214 		/* Deal with changed and PRR here (in recovery only) */
5215 		uint32_t pipe, snd_una;
5216 
5217 		rack->r_ctl.rc_prr_delivered += changed;
5218 		/* Compute prr_sndcnt */
5219 		if (SEQ_GT(tp->snd_una, th_ack)) {
5220 			snd_una = tp->snd_una;
5221 		} else {
5222 			snd_una = th_ack;
5223 		}
5224 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
5225 		if (pipe > tp->snd_ssthresh) {
5226 			long sndcnt;
5227 
5228 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
5229 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
5230 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
5231 			else {
5232 				rack->r_ctl.rc_prr_sndcnt = 0;
5233 				rack_log_to_prr(rack, 9);
5234 				sndcnt = 0;
5235 			}
5236 			sndcnt++;
5237 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
5238 				sndcnt -= rack->r_ctl.rc_prr_out;
5239 			else
5240 				sndcnt = 0;
5241 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
5242 			rack_log_to_prr(rack, 10);
5243 		} else {
5244 			uint32_t limit;
5245 
5246 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
5247 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
5248 			else
5249 				limit = 0;
5250 			if (changed > limit)
5251 				limit = changed;
5252 			limit += ctf_fixed_maxseg(tp);
5253 			if (tp->snd_ssthresh > pipe) {
5254 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
5255 				rack_log_to_prr(rack, 11);
5256 			} else {
5257 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
5258 				rack_log_to_prr(rack, 12);
5259 			}
5260 		}
5261 		if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
5262 			rack->r_timer_override = 1;
5263 		}
5264 	}
5265 }
5266 
5267 static void
5268 rack_strike_dupack(struct tcp_rack *rack)
5269 {
5270 	struct rack_sendmap *rsm;
5271 
5272 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5273 	if (rsm && (rsm->r_dupack < 0xff)) {
5274 		rsm->r_dupack++;
5275 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
5276 			rack->r_wanted_output = 1;
5277 			rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
5278 		} else {
5279 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
5280 		}
5281 	}
5282 }
5283 
5284 /*
5285  * Return value of 1, we do not need to call rack_process_data().
5286  * return value of 0, rack_process_data can be called.
5287  * For ret_val if its 0 the TCP is locked, if its non-zero
5288  * its unlocked and probably unsafe to touch the TCB.
5289  */
5290 static int
5291 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5292     struct tcpcb *tp, struct tcpopt *to,
5293     uint32_t tiwin, int32_t tlen,
5294     int32_t * ofia, int32_t thflags, int32_t * ret_val)
5295 {
5296 	int32_t ourfinisacked = 0;
5297 	int32_t nsegs, acked_amount;
5298 	int32_t acked;
5299 	struct mbuf *mfree;
5300 	struct tcp_rack *rack;
5301 	int32_t recovery = 0;
5302 
5303 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5304 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
5305 		ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
5306 		rack->r_wanted_output++;
5307 		return (1);
5308 	}
5309 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
5310 		if (rack->rc_in_persist)
5311 			tp->t_rxtshift = 0;
5312 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
5313 			rack_strike_dupack(rack);
5314 		rack_log_ack(tp, to, th);
5315 	}
5316 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5317 		/*
5318 		 * Old ack, behind (or duplicate to) the last one rcv'd
5319 		 * Note: Should mark reordering is occuring! We should also
5320 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
5321 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
5322 		 * retran and> ack 3
5323 		 */
5324 		return (0);
5325 	}
5326 	/*
5327 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
5328 	 * something we sent.
5329 	 */
5330 	if (tp->t_flags & TF_NEEDSYN) {
5331 		/*
5332 		 * T/TCP: Connection was half-synchronized, and our SYN has
5333 		 * been ACK'd (so connection is now fully synchronized).  Go
5334 		 * to non-starred state, increment snd_una for ACK of SYN,
5335 		 * and check if we can do window scaling.
5336 		 */
5337 		tp->t_flags &= ~TF_NEEDSYN;
5338 		tp->snd_una++;
5339 		/* Do window scaling? */
5340 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5341 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5342 			tp->rcv_scale = tp->request_r_scale;
5343 			/* Send window already scaled. */
5344 		}
5345 	}
5346 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5347 	INP_WLOCK_ASSERT(tp->t_inpcb);
5348 
5349 	acked = BYTES_THIS_ACK(tp, th);
5350 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5351 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5352 
5353 	/*
5354 	 * If we just performed our first retransmit, and the ACK arrives
5355 	 * within our recovery window, then it was a mistake to do the
5356 	 * retransmit in the first place.  Recover our original cwnd and
5357 	 * ssthresh, and proceed to transmit where we left off.
5358 	 */
5359 	if (tp->t_flags & TF_PREVVALID) {
5360 		tp->t_flags &= ~TF_PREVVALID;
5361 		if (tp->t_rxtshift == 1 &&
5362 		    (int)(ticks - tp->t_badrxtwin) < 0)
5363 			rack_cong_signal(tp, th, CC_RTO_ERR);
5364 	}
5365 	/*
5366 	 * If we have a timestamp reply, update smoothed round trip time. If
5367 	 * no timestamp is present but transmit timer is running and timed
5368 	 * sequence number was acked, update smoothed round trip time. Since
5369 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
5370 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
5371 	 * timer.
5372 	 *
5373 	 * Some boxes send broken timestamp replies during the SYN+ACK
5374 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5375 	 * and blow up the retransmit timer.
5376 	 */
5377 	/*
5378 	 * If all outstanding data is acked, stop retransmit timer and
5379 	 * remember to restart (more output or persist). If there is more
5380 	 * data to be acked, restart retransmit timer, using current
5381 	 * (possibly backed-off) value.
5382 	 */
5383 	if (th->th_ack == tp->snd_max) {
5384 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5385 		rack->r_wanted_output++;
5386 	}
5387 	if (acked == 0) {
5388 		if (ofia)
5389 			*ofia = ourfinisacked;
5390 		return (0);
5391 	}
5392 	if (rack->r_ctl.rc_early_recovery) {
5393 		if (IN_RECOVERY(tp->t_flags)) {
5394 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5395 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5396 				tcp_rack_partialack(tp, th);
5397 			} else {
5398 				rack_post_recovery(tp, th);
5399 				recovery = 1;
5400 			}
5401 		}
5402 	}
5403 	/*
5404 	 * Let the congestion control algorithm update congestion control
5405 	 * related information. This typically means increasing the
5406 	 * congestion window.
5407 	 */
5408 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
5409 	SOCKBUF_LOCK(&so->so_snd);
5410 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
5411 	tp->snd_wnd -= acked_amount;
5412 	mfree = sbcut_locked(&so->so_snd, acked_amount);
5413 	if ((sbused(&so->so_snd) == 0) &&
5414 	    (acked > acked_amount) &&
5415 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
5416 		ourfinisacked = 1;
5417 	}
5418 	/* NB: sowwakeup_locked() does an implicit unlock. */
5419 	sowwakeup_locked(so);
5420 	m_freem(mfree);
5421 	if (rack->r_ctl.rc_early_recovery == 0) {
5422 		if (IN_RECOVERY(tp->t_flags)) {
5423 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5424 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5425 				tcp_rack_partialack(tp, th);
5426 			} else {
5427 				rack_post_recovery(tp, th);
5428 			}
5429 		}
5430 	}
5431 	tp->snd_una = th->th_ack;
5432 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
5433 		tp->snd_recover = tp->snd_una;
5434 
5435 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
5436 		tp->snd_nxt = tp->snd_una;
5437 	}
5438 	if (tp->snd_una == tp->snd_max) {
5439 		/* Nothing left outstanding */
5440 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5441 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
5442 			tp->t_acktime = 0;
5443 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5444 		/* Set need output so persist might get set */
5445 		rack->r_wanted_output++;
5446 		if (rack_use_sack_filter)
5447 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5448 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
5449 		    (sbavail(&so->so_snd) == 0) &&
5450 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
5451 			/*
5452 			 * The socket was gone and the
5453 			 * peer sent data, time to
5454 			 * reset him.
5455 			 */
5456 			*ret_val = 1;
5457 			tp = tcp_close(tp);
5458 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
5459 			return (1);
5460 		}
5461 	}
5462 	if (ofia)
5463 		*ofia = ourfinisacked;
5464 	return (0);
5465 }
5466 
5467 static void
5468 rack_collapsed_window(struct tcp_rack *rack)
5469 {
5470 	/*
5471 	 * Now we must walk the
5472 	 * send map and divide the
5473 	 * ones left stranded. These
5474 	 * guys can't cause us to abort
5475 	 * the connection and are really
5476 	 * "unsent". However if a buggy
5477 	 * client actually did keep some
5478 	 * of the data i.e. collapsed the win
5479 	 * and refused to ack and then opened
5480 	 * the win and acked that data. We would
5481 	 * get into an ack war, the simplier
5482 	 * method then of just pretending we
5483 	 * did not send those segments something
5484 	 * won't work.
5485 	 */
5486 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
5487 	tcp_seq max_seq;
5488 	uint32_t maxseg;
5489 
5490 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
5491 	maxseg = ctf_fixed_maxseg(rack->rc_tp);
5492 	memset(&fe, 0, sizeof(fe));
5493 	fe.r_start = max_seq;
5494 	/* Find the first seq past or at maxseq */
5495 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
5496 	if (rsm == NULL) {
5497 		/* Nothing to do strange */
5498 		rack->rc_has_collapsed = 0;
5499 		return;
5500 	}
5501 	/*
5502 	 * Now do we need to split at
5503 	 * the collapse point?
5504 	 */
5505 	if (SEQ_GT(max_seq, rsm->r_start)) {
5506 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
5507 		if (nrsm == NULL) {
5508 			/* We can't get a rsm, mark all? */
5509 			nrsm = rsm;
5510 			goto no_split;
5511 		}
5512 		/* Clone it */
5513 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
5514 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5515 #ifdef INVARIANTS
5516 		if (insret != NULL) {
5517 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5518 			      nrsm, insret, rack, rsm);
5519 		}
5520 #endif
5521 		if (rsm->r_in_tmap) {
5522 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5523 			nrsm->r_in_tmap = 1;
5524 		}
5525 		/*
5526 		 * Set in the new RSM as the
5527 		 * collapsed starting point
5528 		 */
5529 		rsm = nrsm;
5530 	}
5531 no_split:
5532 	counter_u64_add(rack_collapsed_win, 1);
5533 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
5534 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
5535 		rack->rc_has_collapsed = 1;
5536 	}
5537 }
5538 
5539 static void
5540 rack_un_collapse_window(struct tcp_rack *rack)
5541 {
5542 	struct rack_sendmap *rsm;
5543 
5544 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5545 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
5546 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
5547 		else
5548 			break;
5549 	}
5550 	rack->rc_has_collapsed = 0;
5551 }
5552 
5553 /*
5554  * Return value of 1, the TCB is unlocked and most
5555  * likely gone, return value of 0, the TCP is still
5556  * locked.
5557  */
5558 static int
5559 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
5560     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
5561     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5562 {
5563 	/*
5564 	 * Update window information. Don't look at window if no ACK: TAC's
5565 	 * send garbage on first SYN.
5566 	 */
5567 	int32_t nsegs;
5568 	int32_t tfo_syn;
5569 	struct tcp_rack *rack;
5570 
5571 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5572 	INP_WLOCK_ASSERT(tp->t_inpcb);
5573 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5574 	if ((thflags & TH_ACK) &&
5575 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
5576 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
5577 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
5578 		/* keep track of pure window updates */
5579 		if (tlen == 0 &&
5580 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
5581 			TCPSTAT_INC(tcps_rcvwinupd);
5582 		tp->snd_wnd = tiwin;
5583 		tp->snd_wl1 = th->th_seq;
5584 		tp->snd_wl2 = th->th_ack;
5585 		if (tp->snd_wnd > tp->max_sndwnd)
5586 			tp->max_sndwnd = tp->snd_wnd;
5587 		rack->r_wanted_output++;
5588 	} else if (thflags & TH_ACK) {
5589 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
5590 			tp->snd_wnd = tiwin;
5591 			tp->snd_wl1 = th->th_seq;
5592 			tp->snd_wl2 = th->th_ack;
5593 		}
5594 	}
5595 	if (tp->snd_wnd < ctf_outstanding(tp))
5596 		/* The peer collapsed the window */
5597 		rack_collapsed_window(rack);
5598 	else if (rack->rc_has_collapsed)
5599 		rack_un_collapse_window(rack);
5600 	/* Was persist timer active and now we have window space? */
5601 	if ((rack->rc_in_persist != 0) &&
5602 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
5603 				rack->r_ctl.rc_pace_min_segs))) {
5604 		rack_exit_persist(tp, rack);
5605 		tp->snd_nxt = tp->snd_max;
5606 		/* Make sure we output to start the timer */
5607 		rack->r_wanted_output++;
5608 	}
5609 	/* Do we enter persists? */
5610 	if ((rack->rc_in_persist == 0) &&
5611 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
5612 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
5613 	    (tp->snd_max == tp->snd_una) &&
5614 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
5615 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
5616 		/*
5617 		 * Here the rwnd is less than
5618 		 * the pacing size, we are established,
5619 		 * nothing is outstanding, and there is
5620 		 * data to send. Enter persists.
5621 		 */
5622 		tp->snd_nxt = tp->snd_una;
5623 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
5624 	}
5625 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
5626 		m_freem(m);
5627 		return (0);
5628 	}
5629 	/*
5630 	 * Process segments with URG.
5631 	 */
5632 	if ((thflags & TH_URG) && th->th_urp &&
5633 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5634 		/*
5635 		 * This is a kludge, but if we receive and accept random
5636 		 * urgent pointers, we'll crash in soreceive.  It's hard to
5637 		 * imagine someone actually wanting to send this much urgent
5638 		 * data.
5639 		 */
5640 		SOCKBUF_LOCK(&so->so_rcv);
5641 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
5642 			th->th_urp = 0;	/* XXX */
5643 			thflags &= ~TH_URG;	/* XXX */
5644 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
5645 			goto dodata;	/* XXX */
5646 		}
5647 		/*
5648 		 * If this segment advances the known urgent pointer, then
5649 		 * mark the data stream.  This should not happen in
5650 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
5651 		 * FIN has been received from the remote side. In these
5652 		 * states we ignore the URG.
5653 		 *
5654 		 * According to RFC961 (Assigned Protocols), the urgent
5655 		 * pointer points to the last octet of urgent data.  We
5656 		 * continue, however, to consider it to indicate the first
5657 		 * octet of data past the urgent section as the original
5658 		 * spec states (in one of two places).
5659 		 */
5660 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
5661 			tp->rcv_up = th->th_seq + th->th_urp;
5662 			so->so_oobmark = sbavail(&so->so_rcv) +
5663 			    (tp->rcv_up - tp->rcv_nxt) - 1;
5664 			if (so->so_oobmark == 0)
5665 				so->so_rcv.sb_state |= SBS_RCVATMARK;
5666 			sohasoutofband(so);
5667 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
5668 		}
5669 		SOCKBUF_UNLOCK(&so->so_rcv);
5670 		/*
5671 		 * Remove out of band data so doesn't get presented to user.
5672 		 * This can happen independent of advancing the URG pointer,
5673 		 * but if two URG's are pending at once, some out-of-band
5674 		 * data may creep in... ick.
5675 		 */
5676 		if (th->th_urp <= (uint32_t) tlen &&
5677 		    !(so->so_options & SO_OOBINLINE)) {
5678 			/* hdr drop is delayed */
5679 			tcp_pulloutofband(so, th, m, drop_hdrlen);
5680 		}
5681 	} else {
5682 		/*
5683 		 * If no out of band data is expected, pull receive urgent
5684 		 * pointer along with the receive window.
5685 		 */
5686 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
5687 			tp->rcv_up = tp->rcv_nxt;
5688 	}
5689 dodata:				/* XXX */
5690 	INP_WLOCK_ASSERT(tp->t_inpcb);
5691 
5692 	/*
5693 	 * Process the segment text, merging it into the TCP sequencing
5694 	 * queue, and arranging for acknowledgment of receipt if necessary.
5695 	 * This process logically involves adjusting tp->rcv_wnd as data is
5696 	 * presented to the user (this happens in tcp_usrreq.c, case
5697 	 * PRU_RCVD).  If a FIN has already been received on this connection
5698 	 * then we just ignore the text.
5699 	 */
5700 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
5701 		   IS_FASTOPEN(tp->t_flags));
5702 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
5703 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5704 		tcp_seq save_start = th->th_seq;
5705 		tcp_seq save_rnxt  = tp->rcv_nxt;
5706 		int     save_tlen  = tlen;
5707 
5708 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5709 		/*
5710 		 * Insert segment which includes th into TCP reassembly
5711 		 * queue with control block tp.  Set thflags to whether
5712 		 * reassembly now includes a segment with FIN.  This handles
5713 		 * the common case inline (segment is the next to be
5714 		 * received on an established connection, and the queue is
5715 		 * empty), avoiding linkage into and removal from the queue
5716 		 * and repetition of various conversions. Set DELACK for
5717 		 * segments received in order, but ack immediately when
5718 		 * segments are out of order (so fast retransmit can work).
5719 		 */
5720 		if (th->th_seq == tp->rcv_nxt &&
5721 		    SEGQ_EMPTY(tp) &&
5722 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
5723 		    tfo_syn)) {
5724 #ifdef NETFLIX_SB_LIMITS
5725 			u_int mcnt, appended;
5726 
5727 			if (so->so_rcv.sb_shlim) {
5728 				mcnt = m_memcnt(m);
5729 				appended = 0;
5730 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5731 				    CFO_NOSLEEP, NULL) == false) {
5732 					counter_u64_add(tcp_sb_shlim_fails, 1);
5733 					m_freem(m);
5734 					return (0);
5735 				}
5736 			}
5737 #endif
5738 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
5739 				rack_timer_cancel(tp, rack,
5740 				    rack->r_ctl.rc_rcvtime, __LINE__);
5741 				tp->t_flags |= TF_DELACK;
5742 			} else {
5743 				rack->r_wanted_output++;
5744 				tp->t_flags |= TF_ACKNOW;
5745 			}
5746 			tp->rcv_nxt += tlen;
5747 			thflags = th->th_flags & TH_FIN;
5748 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
5749 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
5750 			SOCKBUF_LOCK(&so->so_rcv);
5751 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5752 				m_freem(m);
5753 			} else
5754 #ifdef NETFLIX_SB_LIMITS
5755 				appended =
5756 #endif
5757 					sbappendstream_locked(&so->so_rcv, m, 0);
5758 			/* NB: sorwakeup_locked() does an implicit unlock. */
5759 			sorwakeup_locked(so);
5760 #ifdef NETFLIX_SB_LIMITS
5761 			if (so->so_rcv.sb_shlim && appended != mcnt)
5762 				counter_fo_release(so->so_rcv.sb_shlim,
5763 				    mcnt - appended);
5764 #endif
5765 		} else {
5766 			/*
5767 			 * XXX: Due to the header drop above "th" is
5768 			 * theoretically invalid by now.  Fortunately
5769 			 * m_adj() doesn't actually frees any mbufs when
5770 			 * trimming from the head.
5771 			 */
5772 			tcp_seq temp = save_start;
5773 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
5774 			tp->t_flags |= TF_ACKNOW;
5775 		}
5776 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
5777 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
5778 				/*
5779 				 * DSACK actually handled in the fastpath
5780 				 * above.
5781 				 */
5782 				tcp_update_sack_list(tp, save_start,
5783 				    save_start + save_tlen);
5784 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
5785 				if ((tp->rcv_numsacks >= 1) &&
5786 				    (tp->sackblks[0].end == save_start)) {
5787 					/*
5788 					 * Partial overlap, recorded at todrop
5789 					 * above.
5790 					 */
5791 					tcp_update_sack_list(tp,
5792 					    tp->sackblks[0].start,
5793 					    tp->sackblks[0].end);
5794 				} else {
5795 					tcp_update_dsack_list(tp, save_start,
5796 					    save_start + save_tlen);
5797 				}
5798 			} else if (tlen >= save_tlen) {
5799 				/* Update of sackblks. */
5800 				tcp_update_dsack_list(tp, save_start,
5801 				    save_start + save_tlen);
5802 			} else if (tlen > 0) {
5803 				tcp_update_dsack_list(tp, save_start,
5804 				    save_start + tlen);
5805 			}
5806 		}
5807 	} else {
5808 		m_freem(m);
5809 		thflags &= ~TH_FIN;
5810 	}
5811 
5812 	/*
5813 	 * If FIN is received ACK the FIN and let the user know that the
5814 	 * connection is closing.
5815 	 */
5816 	if (thflags & TH_FIN) {
5817 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5818 			socantrcvmore(so);
5819 			/*
5820 			 * If connection is half-synchronized (ie NEEDSYN
5821 			 * flag on) then delay ACK, so it may be piggybacked
5822 			 * when SYN is sent. Otherwise, since we received a
5823 			 * FIN then no more input can be expected, send ACK
5824 			 * now.
5825 			 */
5826 			if (tp->t_flags & TF_NEEDSYN) {
5827 				rack_timer_cancel(tp, rack,
5828 				    rack->r_ctl.rc_rcvtime, __LINE__);
5829 				tp->t_flags |= TF_DELACK;
5830 			} else {
5831 				tp->t_flags |= TF_ACKNOW;
5832 			}
5833 			tp->rcv_nxt++;
5834 		}
5835 		switch (tp->t_state) {
5836 
5837 			/*
5838 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
5839 			 * CLOSE_WAIT state.
5840 			 */
5841 		case TCPS_SYN_RECEIVED:
5842 			tp->t_starttime = ticks;
5843 			/* FALLTHROUGH */
5844 		case TCPS_ESTABLISHED:
5845 			rack_timer_cancel(tp, rack,
5846 			    rack->r_ctl.rc_rcvtime, __LINE__);
5847 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
5848 			break;
5849 
5850 			/*
5851 			 * If still in FIN_WAIT_1 STATE FIN has not been
5852 			 * acked so enter the CLOSING state.
5853 			 */
5854 		case TCPS_FIN_WAIT_1:
5855 			rack_timer_cancel(tp, rack,
5856 			    rack->r_ctl.rc_rcvtime, __LINE__);
5857 			tcp_state_change(tp, TCPS_CLOSING);
5858 			break;
5859 
5860 			/*
5861 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5862 			 * starting the time-wait timer, turning off the
5863 			 * other standard timers.
5864 			 */
5865 		case TCPS_FIN_WAIT_2:
5866 			rack_timer_cancel(tp, rack,
5867 			    rack->r_ctl.rc_rcvtime, __LINE__);
5868 			tcp_twstart(tp);
5869 			return (1);
5870 		}
5871 	}
5872 	/*
5873 	 * Return any desired output.
5874 	 */
5875 	if ((tp->t_flags & TF_ACKNOW) ||
5876 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5877 		rack->r_wanted_output++;
5878 	}
5879 	INP_WLOCK_ASSERT(tp->t_inpcb);
5880 	return (0);
5881 }
5882 
5883 /*
5884  * Here nothing is really faster, its just that we
5885  * have broken out the fast-data path also just like
5886  * the fast-ack.
5887  */
5888 static int
5889 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5890     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5891     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
5892 {
5893 	int32_t nsegs;
5894 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5895 	struct tcp_rack *rack;
5896 #ifdef NETFLIX_SB_LIMITS
5897 	u_int mcnt, appended;
5898 #endif
5899 #ifdef TCPDEBUG
5900 	/*
5901 	 * The size of tcp_saveipgen must be the size of the max ip header,
5902 	 * now IPv6.
5903 	 */
5904 	u_char tcp_saveipgen[IP6_HDR_LEN];
5905 	struct tcphdr tcp_savetcp;
5906 	short ostate = 0;
5907 
5908 #endif
5909 	/*
5910 	 * If last ACK falls within this segment's sequence numbers, record
5911 	 * the timestamp. NOTE that the test is modified according to the
5912 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5913 	 */
5914 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5915 		return (0);
5916 	}
5917 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5918 		return (0);
5919 	}
5920 	if (tiwin && tiwin != tp->snd_wnd) {
5921 		return (0);
5922 	}
5923 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5924 		return (0);
5925 	}
5926 	if (__predict_false((to->to_flags & TOF_TS) &&
5927 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5928 		return (0);
5929 	}
5930 	if (__predict_false((th->th_ack != tp->snd_una))) {
5931 		return (0);
5932 	}
5933 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5934 		return (0);
5935 	}
5936 	if ((to->to_flags & TOF_TS) != 0 &&
5937 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5938 		tp->ts_recent_age = tcp_ts_getticks();
5939 		tp->ts_recent = to->to_tsval;
5940 	}
5941 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5942 	/*
5943 	 * This is a pure, in-sequence data packet with nothing on the
5944 	 * reassembly queue and we have enough buffer space to take it.
5945 	 */
5946 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5947 
5948 #ifdef NETFLIX_SB_LIMITS
5949 	if (so->so_rcv.sb_shlim) {
5950 		mcnt = m_memcnt(m);
5951 		appended = 0;
5952 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5953 		    CFO_NOSLEEP, NULL) == false) {
5954 			counter_u64_add(tcp_sb_shlim_fails, 1);
5955 			m_freem(m);
5956 			return (1);
5957 		}
5958 	}
5959 #endif
5960 	/* Clean receiver SACK report if present */
5961 	if (tp->rcv_numsacks)
5962 		tcp_clean_sackreport(tp);
5963 	TCPSTAT_INC(tcps_preddat);
5964 	tp->rcv_nxt += tlen;
5965 	/*
5966 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5967 	 */
5968 	tp->snd_wl1 = th->th_seq;
5969 	/*
5970 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5971 	 */
5972 	tp->rcv_up = tp->rcv_nxt;
5973 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
5974 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
5975 #ifdef TCPDEBUG
5976 	if (so->so_options & SO_DEBUG)
5977 		tcp_trace(TA_INPUT, ostate, tp,
5978 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5979 #endif
5980 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5981 
5982 	/* Add data to socket buffer. */
5983 	SOCKBUF_LOCK(&so->so_rcv);
5984 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5985 		m_freem(m);
5986 	} else {
5987 		/*
5988 		 * Set new socket buffer size. Give up when limit is
5989 		 * reached.
5990 		 */
5991 		if (newsize)
5992 			if (!sbreserve_locked(&so->so_rcv,
5993 			    newsize, so, NULL))
5994 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
5995 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5996 #ifdef NETFLIX_SB_LIMITS
5997 		appended =
5998 #endif
5999 			sbappendstream_locked(&so->so_rcv, m, 0);
6000 		ctf_calc_rwin(so, tp);
6001 	}
6002 	/* NB: sorwakeup_locked() does an implicit unlock. */
6003 	sorwakeup_locked(so);
6004 #ifdef NETFLIX_SB_LIMITS
6005 	if (so->so_rcv.sb_shlim && mcnt != appended)
6006 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
6007 #endif
6008 	if (DELAY_ACK(tp, tlen)) {
6009 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6010 		tp->t_flags |= TF_DELACK;
6011 	} else {
6012 		tp->t_flags |= TF_ACKNOW;
6013 		rack->r_wanted_output++;
6014 	}
6015 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
6016 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6017 	return (1);
6018 }
6019 
6020 /*
6021  * This subfunction is used to try to highly optimize the
6022  * fast path. We again allow window updates that are
6023  * in sequence to remain in the fast-path. We also add
6024  * in the __predict's to attempt to help the compiler.
6025  * Note that if we return a 0, then we can *not* process
6026  * it and the caller should push the packet into the
6027  * slow-path.
6028  */
6029 static int
6030 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6031     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6032     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts, uint8_t iptos)
6033 {
6034 	int32_t acked;
6035 	int32_t nsegs;
6036 
6037 #ifdef TCPDEBUG
6038 	/*
6039 	 * The size of tcp_saveipgen must be the size of the max ip header,
6040 	 * now IPv6.
6041 	 */
6042 	u_char tcp_saveipgen[IP6_HDR_LEN];
6043 	struct tcphdr tcp_savetcp;
6044 	short ostate = 0;
6045 
6046 #endif
6047 	struct tcp_rack *rack;
6048 
6049 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
6050 		/* Old ack, behind (or duplicate to) the last one rcv'd */
6051 		return (0);
6052 	}
6053 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
6054 		/* Above what we have sent? */
6055 		return (0);
6056 	}
6057 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
6058 		/* We are retransmitting */
6059 		return (0);
6060 	}
6061 	if (__predict_false(tiwin == 0)) {
6062 		/* zero window */
6063 		return (0);
6064 	}
6065 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
6066 		/* We need a SYN or a FIN, unlikely.. */
6067 		return (0);
6068 	}
6069 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
6070 		/* Timestamp is behind .. old ack with seq wrap? */
6071 		return (0);
6072 	}
6073 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
6074 		/* Still recovering */
6075 		return (0);
6076 	}
6077 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6078 	if (rack->r_ctl.rc_sacked) {
6079 		/* We have sack holes on our scoreboard */
6080 		return (0);
6081 	}
6082 	/* Ok if we reach here, we can process a fast-ack */
6083 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
6084 	rack_log_ack(tp, to, th);
6085 	/*
6086 	 * We made progress, clear the tlp
6087 	 * out flag so we could start a TLP
6088 	 * again.
6089 	 */
6090 	rack->r_ctl.rc_tlp_rtx_out = 0;
6091 	/* Did the window get updated? */
6092 	if (tiwin != tp->snd_wnd) {
6093 		tp->snd_wnd = tiwin;
6094 		tp->snd_wl1 = th->th_seq;
6095 		if (tp->snd_wnd > tp->max_sndwnd)
6096 			tp->max_sndwnd = tp->snd_wnd;
6097 	}
6098 	/* Do we exit persists? */
6099 	if ((rack->rc_in_persist != 0) &&
6100 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
6101 			       rack->r_ctl.rc_pace_min_segs))) {
6102 		rack_exit_persist(tp, rack);
6103 	}
6104 	/* Do we enter persists? */
6105 	if ((rack->rc_in_persist == 0) &&
6106 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
6107 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
6108 	    (tp->snd_max == tp->snd_una) &&
6109 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
6110 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
6111 		/*
6112 		 * Here the rwnd is less than
6113 		 * the pacing size, we are established,
6114 		 * nothing is outstanding, and there is
6115 		 * data to send. Enter persists.
6116 		 */
6117 		tp->snd_nxt = tp->snd_una;
6118 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
6119 	}
6120 	/*
6121 	 * If last ACK falls within this segment's sequence numbers, record
6122 	 * the timestamp. NOTE that the test is modified according to the
6123 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
6124 	 */
6125 	if ((to->to_flags & TOF_TS) != 0 &&
6126 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
6127 		tp->ts_recent_age = tcp_ts_getticks();
6128 		tp->ts_recent = to->to_tsval;
6129 	}
6130 	/*
6131 	 * This is a pure ack for outstanding data.
6132 	 */
6133 	TCPSTAT_INC(tcps_predack);
6134 
6135 	/*
6136 	 * "bad retransmit" recovery.
6137 	 */
6138 	if (tp->t_flags & TF_PREVVALID) {
6139 		tp->t_flags &= ~TF_PREVVALID;
6140 		if (tp->t_rxtshift == 1 &&
6141 		    (int)(ticks - tp->t_badrxtwin) < 0)
6142 			rack_cong_signal(tp, th, CC_RTO_ERR);
6143 	}
6144 	/*
6145 	 * Recalculate the transmit timer / rtt.
6146 	 *
6147 	 * Some boxes send broken timestamp replies during the SYN+ACK
6148 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
6149 	 * and blow up the retransmit timer.
6150 	 */
6151 	acked = BYTES_THIS_ACK(tp, th);
6152 
6153 #ifdef TCP_HHOOK
6154 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
6155 	hhook_run_tcp_est_in(tp, th, to);
6156 #endif
6157 
6158 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
6159 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
6160 	sbdrop(&so->so_snd, acked);
6161 	/*
6162 	 * Let the congestion control algorithm update congestion control
6163 	 * related information. This typically means increasing the
6164 	 * congestion window.
6165 	 */
6166 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
6167 
6168 	tp->snd_una = th->th_ack;
6169 	if (tp->snd_wnd < ctf_outstanding(tp)) {
6170 		/* The peer collapsed the window */
6171 		rack_collapsed_window(rack);
6172 	} else if (rack->rc_has_collapsed)
6173 		rack_un_collapse_window(rack);
6174 
6175 	/*
6176 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
6177 	 */
6178 	tp->snd_wl2 = th->th_ack;
6179 	tp->t_dupacks = 0;
6180 	m_freem(m);
6181 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
6182 
6183 	/*
6184 	 * If all outstanding data are acked, stop retransmit timer,
6185 	 * otherwise restart timer using current (possibly backed-off)
6186 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
6187 	 * If data are ready to send, let tcp_output decide between more
6188 	 * output or persist.
6189 	 */
6190 #ifdef TCPDEBUG
6191 	if (so->so_options & SO_DEBUG)
6192 		tcp_trace(TA_INPUT, ostate, tp,
6193 		    (void *)tcp_saveipgen,
6194 		    &tcp_savetcp, 0);
6195 #endif
6196 	if (tp->snd_una == tp->snd_max) {
6197 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
6198 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
6199 			tp->t_acktime = 0;
6200 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6201 	}
6202 	/* Wake up the socket if we have room to write more */
6203 	sowwakeup(so);
6204 	if (sbavail(&so->so_snd)) {
6205 		rack->r_wanted_output++;
6206 	}
6207 	return (1);
6208 }
6209 
6210 /*
6211  * Return value of 1, the TCB is unlocked and most
6212  * likely gone, return value of 0, the TCP is still
6213  * locked.
6214  */
6215 static int
6216 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
6217     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6218     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t tos)
6219 {
6220 	int32_t ret_val = 0;
6221 	int32_t todrop;
6222 	int32_t ourfinisacked = 0;
6223 	struct tcp_rack *rack;
6224 
6225 	ctf_calc_rwin(so, tp);
6226 	/*
6227 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
6228 	 * SYN, drop the input. if seg contains a RST, then drop the
6229 	 * connection. if seg does not contain SYN, then drop it. Otherwise
6230 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
6231 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
6232 	 * contains an ECE and ECN support is enabled, the stream is ECN
6233 	 * capable. if SYN has been acked change to ESTABLISHED else
6234 	 * SYN_RCVD state arrange for segment to be acked (eventually)
6235 	 * continue processing rest of data/controls, beginning with URG
6236 	 */
6237 	if ((thflags & TH_ACK) &&
6238 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
6239 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6240 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6241 		return (1);
6242 	}
6243 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
6244 		TCP_PROBE5(connect__refused, NULL, tp,
6245 		    mtod(m, const char *), tp, th);
6246 		tp = tcp_drop(tp, ECONNREFUSED);
6247 		ctf_do_drop(m, tp);
6248 		return (1);
6249 	}
6250 	if (thflags & TH_RST) {
6251 		ctf_do_drop(m, tp);
6252 		return (1);
6253 	}
6254 	if (!(thflags & TH_SYN)) {
6255 		ctf_do_drop(m, tp);
6256 		return (1);
6257 	}
6258 	tp->irs = th->th_seq;
6259 	tcp_rcvseqinit(tp);
6260 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6261 	if (thflags & TH_ACK) {
6262 		int tfo_partial = 0;
6263 
6264 		TCPSTAT_INC(tcps_connects);
6265 		soisconnected(so);
6266 #ifdef MAC
6267 		mac_socketpeer_set_from_mbuf(m, so);
6268 #endif
6269 		/* Do window scaling on this connection? */
6270 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6271 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6272 			tp->rcv_scale = tp->request_r_scale;
6273 		}
6274 		tp->rcv_adv += min(tp->rcv_wnd,
6275 		    TCP_MAXWIN << tp->rcv_scale);
6276 		/*
6277 		 * If not all the data that was sent in the TFO SYN
6278 		 * has been acked, resend the remainder right away.
6279 		 */
6280 		if (IS_FASTOPEN(tp->t_flags) &&
6281 		    (tp->snd_una != tp->snd_max)) {
6282 			tp->snd_nxt = th->th_ack;
6283 			tfo_partial = 1;
6284 		}
6285 		/*
6286 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
6287 		 * will be turned on later.
6288 		 */
6289 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
6290 			rack_timer_cancel(tp, rack,
6291 					  rack->r_ctl.rc_rcvtime, __LINE__);
6292 			tp->t_flags |= TF_DELACK;
6293 		} else {
6294 			rack->r_wanted_output++;
6295 			tp->t_flags |= TF_ACKNOW;
6296 		}
6297 
6298 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
6299 		    V_tcp_do_ecn) {
6300 			tp->t_flags2 |= TF2_ECN_PERMIT;
6301 			TCPSTAT_INC(tcps_ecn_shs);
6302 		}
6303 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
6304 			/*
6305 			 * We advance snd_una for the
6306 			 * fast open case. If th_ack is
6307 			 * acknowledging data beyond
6308 			 * snd_una we can't just call
6309 			 * ack-processing since the
6310 			 * data stream in our send-map
6311 			 * will start at snd_una + 1 (one
6312 			 * beyond the SYN). If its just
6313 			 * equal we don't need to do that
6314 			 * and there is no send_map.
6315 			 */
6316 			tp->snd_una++;
6317 		}
6318 		/*
6319 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
6320 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
6321 		 */
6322 		tp->t_starttime = ticks;
6323 		if (tp->t_flags & TF_NEEDFIN) {
6324 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
6325 			tp->t_flags &= ~TF_NEEDFIN;
6326 			thflags &= ~TH_SYN;
6327 		} else {
6328 			tcp_state_change(tp, TCPS_ESTABLISHED);
6329 			TCP_PROBE5(connect__established, NULL, tp,
6330 			    mtod(m, const char *), tp, th);
6331 			cc_conn_init(tp);
6332 		}
6333 	} else {
6334 		/*
6335 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
6336 		 * open.  If segment contains CC option and there is a
6337 		 * cached CC, apply TAO test. If it succeeds, connection is *
6338 		 * half-synchronized. Otherwise, do 3-way handshake:
6339 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
6340 		 * there was no CC option, clear cached CC value.
6341 		 */
6342 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
6343 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
6344 	}
6345 	INP_WLOCK_ASSERT(tp->t_inpcb);
6346 	/*
6347 	 * Advance th->th_seq to correspond to first data byte. If data,
6348 	 * trim to stay within window, dropping FIN if necessary.
6349 	 */
6350 	th->th_seq++;
6351 	if (tlen > tp->rcv_wnd) {
6352 		todrop = tlen - tp->rcv_wnd;
6353 		m_adj(m, -todrop);
6354 		tlen = tp->rcv_wnd;
6355 		thflags &= ~TH_FIN;
6356 		TCPSTAT_INC(tcps_rcvpackafterwin);
6357 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
6358 	}
6359 	tp->snd_wl1 = th->th_seq - 1;
6360 	tp->rcv_up = th->th_seq;
6361 	/*
6362 	 * Client side of transaction: already sent SYN and data. If the
6363 	 * remote host used T/TCP to validate the SYN, our data will be
6364 	 * ACK'd; if so, enter normal data segment processing in the middle
6365 	 * of step 5, ack processing. Otherwise, goto step 6.
6366 	 */
6367 	if (thflags & TH_ACK) {
6368 		/* For syn-sent we need to possibly update the rtt */
6369 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6370 			uint32_t t;
6371 
6372 			t = tcp_ts_getticks() - to->to_tsecr;
6373 			if (!tp->t_rttlow || tp->t_rttlow > t)
6374 				tp->t_rttlow = t;
6375 			tcp_rack_xmit_timer(rack, t + 1);
6376 			tcp_rack_xmit_timer_commit(rack, tp);
6377 		}
6378 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
6379 			return (ret_val);
6380 		/* We may have changed to FIN_WAIT_1 above */
6381 		if (tp->t_state == TCPS_FIN_WAIT_1) {
6382 			/*
6383 			 * In FIN_WAIT_1 STATE in addition to the processing
6384 			 * for the ESTABLISHED state if our FIN is now
6385 			 * acknowledged then enter FIN_WAIT_2.
6386 			 */
6387 			if (ourfinisacked) {
6388 				/*
6389 				 * If we can't receive any more data, then
6390 				 * closing user can proceed. Starting the
6391 				 * timer is contrary to the specification,
6392 				 * but if we don't get a FIN we'll hang
6393 				 * forever.
6394 				 *
6395 				 * XXXjl: we should release the tp also, and
6396 				 * use a compressed state.
6397 				 */
6398 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6399 					soisdisconnected(so);
6400 					tcp_timer_activate(tp, TT_2MSL,
6401 					    (tcp_fast_finwait2_recycle ?
6402 					    tcp_finwait2_timeout :
6403 					    TP_MAXIDLE(tp)));
6404 				}
6405 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
6406 			}
6407 		}
6408 	}
6409 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6410 	   tiwin, thflags, nxt_pkt));
6411 }
6412 
6413 /*
6414  * Return value of 1, the TCB is unlocked and most
6415  * likely gone, return value of 0, the TCP is still
6416  * locked.
6417  */
6418 static int
6419 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
6420     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6421     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6422 {
6423 	struct tcp_rack *rack;
6424 	int32_t ret_val = 0;
6425 	int32_t ourfinisacked = 0;
6426 
6427 	ctf_calc_rwin(so, tp);
6428 	if ((thflags & TH_ACK) &&
6429 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
6430 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6431 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6432 		return (1);
6433 	}
6434 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6435 	if (IS_FASTOPEN(tp->t_flags)) {
6436 		/*
6437 		 * When a TFO connection is in SYN_RECEIVED, the
6438 		 * only valid packets are the initial SYN, a
6439 		 * retransmit/copy of the initial SYN (possibly with
6440 		 * a subset of the original data), a valid ACK, a
6441 		 * FIN, or a RST.
6442 		 */
6443 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
6444 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6445 			return (1);
6446 		} else if (thflags & TH_SYN) {
6447 			/* non-initial SYN is ignored */
6448 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
6449 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
6450 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
6451 				ctf_do_drop(m, NULL);
6452 				return (0);
6453 			}
6454 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
6455 			ctf_do_drop(m, NULL);
6456 			return (0);
6457 		}
6458 	}
6459 	if ((thflags & TH_RST) ||
6460 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6461 		return (ctf_process_rst(m, th, so, tp));
6462 	/*
6463 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6464 	 * it's less than ts_recent, drop it.
6465 	 */
6466 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6467 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6468 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6469 			return (ret_val);
6470 	}
6471 	/*
6472 	 * In the SYN-RECEIVED state, validate that the packet belongs to
6473 	 * this connection before trimming the data to fit the receive
6474 	 * window.  Check the sequence number versus IRS since we know the
6475 	 * sequence numbers haven't wrapped.  This is a partial fix for the
6476 	 * "LAND" DoS attack.
6477 	 */
6478 	if (SEQ_LT(th->th_seq, tp->irs)) {
6479 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6480 		return (1);
6481 	}
6482 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6483 		return (ret_val);
6484 	}
6485 	/*
6486 	 * If last ACK falls within this segment's sequence numbers, record
6487 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6488 	 * from the latest proposal of the tcplw@cray.com list (Braden
6489 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6490 	 * with our earlier PAWS tests, so this check should be solely
6491 	 * predicated on the sequence space of this segment. 3) That we
6492 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6493 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6494 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6495 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6496 	 * p.869. In such cases, we can still calculate the RTT correctly
6497 	 * when RCV.NXT == Last.ACK.Sent.
6498 	 */
6499 	if ((to->to_flags & TOF_TS) != 0 &&
6500 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6501 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6502 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6503 		tp->ts_recent_age = tcp_ts_getticks();
6504 		tp->ts_recent = to->to_tsval;
6505 	}
6506 	tp->snd_wnd = tiwin;
6507 	/*
6508 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6509 	 * is on (half-synchronized state), then queue data for later
6510 	 * processing; else drop segment and return.
6511 	 */
6512 	if ((thflags & TH_ACK) == 0) {
6513 		if (IS_FASTOPEN(tp->t_flags)) {
6514 			cc_conn_init(tp);
6515 		}
6516 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6517 		    tiwin, thflags, nxt_pkt));
6518 	}
6519 	TCPSTAT_INC(tcps_connects);
6520 	soisconnected(so);
6521 	/* Do window scaling? */
6522 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6523 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6524 		tp->rcv_scale = tp->request_r_scale;
6525 	}
6526 	/*
6527 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
6528 	 * FIN-WAIT-1
6529 	 */
6530 	tp->t_starttime = ticks;
6531 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
6532 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
6533 		tp->t_tfo_pending = NULL;
6534 
6535 		/*
6536 		 * Account for the ACK of our SYN prior to
6537 		 * regular ACK processing below.
6538 		 */
6539 		tp->snd_una++;
6540 	}
6541 	if (tp->t_flags & TF_NEEDFIN) {
6542 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
6543 		tp->t_flags &= ~TF_NEEDFIN;
6544 	} else {
6545 		tcp_state_change(tp, TCPS_ESTABLISHED);
6546 		TCP_PROBE5(accept__established, NULL, tp,
6547 		    mtod(m, const char *), tp, th);
6548 		/*
6549 		 * TFO connections call cc_conn_init() during SYN
6550 		 * processing.  Calling it again here for such connections
6551 		 * is not harmless as it would undo the snd_cwnd reduction
6552 		 * that occurs when a TFO SYN|ACK is retransmitted.
6553 		 */
6554 		if (!IS_FASTOPEN(tp->t_flags))
6555 			cc_conn_init(tp);
6556 	}
6557 	/*
6558 	 * If segment contains data or ACK, will call tcp_reass() later; if
6559 	 * not, do so now to pass queued data to user.
6560 	 */
6561 	if (tlen == 0 && (thflags & TH_FIN) == 0)
6562 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
6563 		    (struct mbuf *)0);
6564 	tp->snd_wl1 = th->th_seq - 1;
6565 	/* For syn-recv we need to possibly update the rtt */
6566 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6567 		uint32_t t;
6568 
6569 		t = tcp_ts_getticks() - to->to_tsecr;
6570 		if (!tp->t_rttlow || tp->t_rttlow > t)
6571 			tp->t_rttlow = t;
6572 		tcp_rack_xmit_timer(rack, t + 1);
6573 		tcp_rack_xmit_timer_commit(rack, tp);
6574 	}
6575 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6576 		return (ret_val);
6577 	}
6578 	if (tp->t_state == TCPS_FIN_WAIT_1) {
6579 		/* We could have went to FIN_WAIT_1 (or EST) above */
6580 		/*
6581 		 * In FIN_WAIT_1 STATE in addition to the processing for the
6582 		 * ESTABLISHED state if our FIN is now acknowledged then
6583 		 * enter FIN_WAIT_2.
6584 		 */
6585 		if (ourfinisacked) {
6586 			/*
6587 			 * If we can't receive any more data, then closing
6588 			 * user can proceed. Starting the timer is contrary
6589 			 * to the specification, but if we don't get a FIN
6590 			 * we'll hang forever.
6591 			 *
6592 			 * XXXjl: we should release the tp also, and use a
6593 			 * compressed state.
6594 			 */
6595 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6596 				soisdisconnected(so);
6597 				tcp_timer_activate(tp, TT_2MSL,
6598 				    (tcp_fast_finwait2_recycle ?
6599 				    tcp_finwait2_timeout :
6600 				    TP_MAXIDLE(tp)));
6601 			}
6602 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
6603 		}
6604 	}
6605 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6606 	    tiwin, thflags, nxt_pkt));
6607 }
6608 
6609 /*
6610  * Return value of 1, the TCB is unlocked and most
6611  * likely gone, return value of 0, the TCP is still
6612  * locked.
6613  */
6614 static int
6615 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
6616     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6617     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6618 {
6619 	int32_t ret_val = 0;
6620 
6621 	/*
6622 	 * Header prediction: check for the two common cases of a
6623 	 * uni-directional data xfer.  If the packet has no control flags,
6624 	 * is in-sequence, the window didn't change and we're not
6625 	 * retransmitting, it's a candidate.  If the length is zero and the
6626 	 * ack moved forward, we're the sender side of the xfer.  Just free
6627 	 * the data acked & wake any higher level process that was blocked
6628 	 * waiting for space.  If the length is non-zero and the ack didn't
6629 	 * move, we're the receiver side.  If we're getting packets in-order
6630 	 * (the reassembly queue is empty), add the data toc The socket
6631 	 * buffer and note that we need a delayed ack. Make sure that the
6632 	 * hidden state-flags are also off. Since we check for
6633 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
6634 	 */
6635 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
6636 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
6637 	    __predict_true(SEGQ_EMPTY(tp)) &&
6638 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
6639 		struct tcp_rack *rack;
6640 
6641 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6642 		if (tlen == 0) {
6643 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
6644 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime, iptos)) {
6645 				return (0);
6646 			}
6647 		} else {
6648 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
6649 			    tiwin, nxt_pkt, iptos)) {
6650 				return (0);
6651 			}
6652 		}
6653 	}
6654 	ctf_calc_rwin(so, tp);
6655 
6656 	if ((thflags & TH_RST) ||
6657 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6658 		return (ctf_process_rst(m, th, so, tp));
6659 
6660 	/*
6661 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6662 	 * synchronized state.
6663 	 */
6664 	if (thflags & TH_SYN) {
6665 		ctf_challenge_ack(m, th, tp, &ret_val);
6666 		return (ret_val);
6667 	}
6668 	/*
6669 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6670 	 * it's less than ts_recent, drop it.
6671 	 */
6672 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6673 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6674 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6675 			return (ret_val);
6676 	}
6677 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6678 		return (ret_val);
6679 	}
6680 	/*
6681 	 * If last ACK falls within this segment's sequence numbers, record
6682 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6683 	 * from the latest proposal of the tcplw@cray.com list (Braden
6684 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6685 	 * with our earlier PAWS tests, so this check should be solely
6686 	 * predicated on the sequence space of this segment. 3) That we
6687 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6688 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6689 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6690 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6691 	 * p.869. In such cases, we can still calculate the RTT correctly
6692 	 * when RCV.NXT == Last.ACK.Sent.
6693 	 */
6694 	if ((to->to_flags & TOF_TS) != 0 &&
6695 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6696 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6697 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6698 		tp->ts_recent_age = tcp_ts_getticks();
6699 		tp->ts_recent = to->to_tsval;
6700 	}
6701 	/*
6702 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6703 	 * is on (half-synchronized state), then queue data for later
6704 	 * processing; else drop segment and return.
6705 	 */
6706 	if ((thflags & TH_ACK) == 0) {
6707 		if (tp->t_flags & TF_NEEDSYN) {
6708 
6709 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6710 			    tiwin, thflags, nxt_pkt));
6711 
6712 		} else if (tp->t_flags & TF_ACKNOW) {
6713 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6714 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6715 			return (ret_val);
6716 		} else {
6717 			ctf_do_drop(m, NULL);
6718 			return (0);
6719 		}
6720 	}
6721 	/*
6722 	 * Ack processing.
6723 	 */
6724 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6725 		return (ret_val);
6726 	}
6727 	if (sbavail(&so->so_snd)) {
6728 		if (rack_progress_timeout_check(tp)) {
6729 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6730 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6731 			return (1);
6732 		}
6733 	}
6734 	/* State changes only happen in rack_process_data() */
6735 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6736 	    tiwin, thflags, nxt_pkt));
6737 }
6738 
6739 /*
6740  * Return value of 1, the TCB is unlocked and most
6741  * likely gone, return value of 0, the TCP is still
6742  * locked.
6743  */
6744 static int
6745 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
6746     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6747     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6748 {
6749 	int32_t ret_val = 0;
6750 
6751 	ctf_calc_rwin(so, tp);
6752 	if ((thflags & TH_RST) ||
6753 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6754 		return (ctf_process_rst(m, th, so, tp));
6755 	/*
6756 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6757 	 * synchronized state.
6758 	 */
6759 	if (thflags & TH_SYN) {
6760 		ctf_challenge_ack(m, th, tp, &ret_val);
6761 		return (ret_val);
6762 	}
6763 	/*
6764 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6765 	 * it's less than ts_recent, drop it.
6766 	 */
6767 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6768 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6769 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6770 			return (ret_val);
6771 	}
6772 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6773 		return (ret_val);
6774 	}
6775 	/*
6776 	 * If last ACK falls within this segment's sequence numbers, record
6777 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6778 	 * from the latest proposal of the tcplw@cray.com list (Braden
6779 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6780 	 * with our earlier PAWS tests, so this check should be solely
6781 	 * predicated on the sequence space of this segment. 3) That we
6782 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6783 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6784 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6785 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6786 	 * p.869. In such cases, we can still calculate the RTT correctly
6787 	 * when RCV.NXT == Last.ACK.Sent.
6788 	 */
6789 	if ((to->to_flags & TOF_TS) != 0 &&
6790 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6791 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6792 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6793 		tp->ts_recent_age = tcp_ts_getticks();
6794 		tp->ts_recent = to->to_tsval;
6795 	}
6796 	/*
6797 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6798 	 * is on (half-synchronized state), then queue data for later
6799 	 * processing; else drop segment and return.
6800 	 */
6801 	if ((thflags & TH_ACK) == 0) {
6802 		if (tp->t_flags & TF_NEEDSYN) {
6803 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6804 			    tiwin, thflags, nxt_pkt));
6805 
6806 		} else if (tp->t_flags & TF_ACKNOW) {
6807 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6808 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6809 			return (ret_val);
6810 		} else {
6811 			ctf_do_drop(m, NULL);
6812 			return (0);
6813 		}
6814 	}
6815 	/*
6816 	 * Ack processing.
6817 	 */
6818 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6819 		return (ret_val);
6820 	}
6821 	if (sbavail(&so->so_snd)) {
6822 		if (rack_progress_timeout_check(tp)) {
6823 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6824 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6825 			return (1);
6826 		}
6827 	}
6828 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6829 	    tiwin, thflags, nxt_pkt));
6830 }
6831 
6832 static int
6833 rack_check_data_after_close(struct mbuf *m,
6834     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
6835 {
6836 	struct tcp_rack *rack;
6837 
6838 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6839 	if (rack->rc_allow_data_af_clo == 0) {
6840 	close_now:
6841 		tp = tcp_close(tp);
6842 		TCPSTAT_INC(tcps_rcvafterclose);
6843 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
6844 		return (1);
6845 	}
6846 	if (sbavail(&so->so_snd) == 0)
6847 		goto close_now;
6848 	/* Ok we allow data that is ignored and a followup reset */
6849 	tp->rcv_nxt = th->th_seq + *tlen;
6850 	tp->t_flags2 |= TF2_DROP_AF_DATA;
6851 	rack->r_wanted_output = 1;
6852 	*tlen = 0;
6853 	return (0);
6854 }
6855 
6856 /*
6857  * Return value of 1, the TCB is unlocked and most
6858  * likely gone, return value of 0, the TCP is still
6859  * locked.
6860  */
6861 static int
6862 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
6863     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6864     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6865 {
6866 	int32_t ret_val = 0;
6867 	int32_t ourfinisacked = 0;
6868 
6869 	ctf_calc_rwin(so, tp);
6870 
6871 	if ((thflags & TH_RST) ||
6872 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6873 		return (ctf_process_rst(m, th, so, tp));
6874 	/*
6875 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6876 	 * synchronized state.
6877 	 */
6878 	if (thflags & TH_SYN) {
6879 		ctf_challenge_ack(m, th, tp, &ret_val);
6880 		return (ret_val);
6881 	}
6882 	/*
6883 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6884 	 * it's less than ts_recent, drop it.
6885 	 */
6886 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6887 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6888 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6889 			return (ret_val);
6890 	}
6891 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6892 		return (ret_val);
6893 	}
6894 	/*
6895 	 * If new data are received on a connection after the user processes
6896 	 * are gone, then RST the other end.
6897 	 */
6898 	if ((so->so_state & SS_NOFDREF) && tlen) {
6899 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6900 			return (1);
6901 	}
6902 	/*
6903 	 * If last ACK falls within this segment's sequence numbers, record
6904 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6905 	 * from the latest proposal of the tcplw@cray.com list (Braden
6906 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6907 	 * with our earlier PAWS tests, so this check should be solely
6908 	 * predicated on the sequence space of this segment. 3) That we
6909 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6910 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6911 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6912 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6913 	 * p.869. In such cases, we can still calculate the RTT correctly
6914 	 * when RCV.NXT == Last.ACK.Sent.
6915 	 */
6916 	if ((to->to_flags & TOF_TS) != 0 &&
6917 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6918 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6919 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6920 		tp->ts_recent_age = tcp_ts_getticks();
6921 		tp->ts_recent = to->to_tsval;
6922 	}
6923 	/*
6924 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6925 	 * is on (half-synchronized state), then queue data for later
6926 	 * processing; else drop segment and return.
6927 	 */
6928 	if ((thflags & TH_ACK) == 0) {
6929 		if (tp->t_flags & TF_NEEDSYN) {
6930 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6931 			    tiwin, thflags, nxt_pkt));
6932 		} else if (tp->t_flags & TF_ACKNOW) {
6933 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6934 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6935 			return (ret_val);
6936 		} else {
6937 			ctf_do_drop(m, NULL);
6938 			return (0);
6939 		}
6940 	}
6941 	/*
6942 	 * Ack processing.
6943 	 */
6944 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6945 		return (ret_val);
6946 	}
6947 	if (ourfinisacked) {
6948 		/*
6949 		 * If we can't receive any more data, then closing user can
6950 		 * proceed. Starting the timer is contrary to the
6951 		 * specification, but if we don't get a FIN we'll hang
6952 		 * forever.
6953 		 *
6954 		 * XXXjl: we should release the tp also, and use a
6955 		 * compressed state.
6956 		 */
6957 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6958 			soisdisconnected(so);
6959 			tcp_timer_activate(tp, TT_2MSL,
6960 			    (tcp_fast_finwait2_recycle ?
6961 			    tcp_finwait2_timeout :
6962 			    TP_MAXIDLE(tp)));
6963 		}
6964 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6965 	}
6966 	if (sbavail(&so->so_snd)) {
6967 		if (rack_progress_timeout_check(tp)) {
6968 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6969 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6970 			return (1);
6971 		}
6972 	}
6973 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6974 	    tiwin, thflags, nxt_pkt));
6975 }
6976 
6977 /*
6978  * Return value of 1, the TCB is unlocked and most
6979  * likely gone, return value of 0, the TCP is still
6980  * locked.
6981  */
6982 static int
6983 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6984     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6985     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6986 {
6987 	int32_t ret_val = 0;
6988 	int32_t ourfinisacked = 0;
6989 
6990 	ctf_calc_rwin(so, tp);
6991 
6992 	if ((thflags & TH_RST) ||
6993 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6994 		return (ctf_process_rst(m, th, so, tp));
6995 	/*
6996 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6997 	 * synchronized state.
6998 	 */
6999 	if (thflags & TH_SYN) {
7000 		ctf_challenge_ack(m, th, tp, &ret_val);
7001 		return (ret_val);
7002 	}
7003 	/*
7004 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7005 	 * it's less than ts_recent, drop it.
7006 	 */
7007 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7008 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7009 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7010 			return (ret_val);
7011 	}
7012 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7013 		return (ret_val);
7014 	}
7015 	/*
7016 	 * If new data are received on a connection after the user processes
7017 	 * are gone, then RST the other end.
7018 	 */
7019 	if ((so->so_state & SS_NOFDREF) && tlen) {
7020 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7021 			return (1);
7022 	}
7023 	/*
7024 	 * If last ACK falls within this segment's sequence numbers, record
7025 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7026 	 * from the latest proposal of the tcplw@cray.com list (Braden
7027 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7028 	 * with our earlier PAWS tests, so this check should be solely
7029 	 * predicated on the sequence space of this segment. 3) That we
7030 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7031 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7032 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7033 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7034 	 * p.869. In such cases, we can still calculate the RTT correctly
7035 	 * when RCV.NXT == Last.ACK.Sent.
7036 	 */
7037 	if ((to->to_flags & TOF_TS) != 0 &&
7038 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7039 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7040 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7041 		tp->ts_recent_age = tcp_ts_getticks();
7042 		tp->ts_recent = to->to_tsval;
7043 	}
7044 	/*
7045 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7046 	 * is on (half-synchronized state), then queue data for later
7047 	 * processing; else drop segment and return.
7048 	 */
7049 	if ((thflags & TH_ACK) == 0) {
7050 		if (tp->t_flags & TF_NEEDSYN) {
7051 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7052 			    tiwin, thflags, nxt_pkt));
7053 		} else if (tp->t_flags & TF_ACKNOW) {
7054 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7055 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7056 			return (ret_val);
7057 		} else {
7058 			ctf_do_drop(m, NULL);
7059 			return (0);
7060 		}
7061 	}
7062 	/*
7063 	 * Ack processing.
7064 	 */
7065 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7066 		return (ret_val);
7067 	}
7068 	if (ourfinisacked) {
7069 		tcp_twstart(tp);
7070 		m_freem(m);
7071 		return (1);
7072 	}
7073 	if (sbavail(&so->so_snd)) {
7074 		if (rack_progress_timeout_check(tp)) {
7075 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7076 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7077 			return (1);
7078 		}
7079 	}
7080 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7081 	    tiwin, thflags, nxt_pkt));
7082 }
7083 
7084 /*
7085  * Return value of 1, the TCB is unlocked and most
7086  * likely gone, return value of 0, the TCP is still
7087  * locked.
7088  */
7089 static int
7090 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
7091     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7092     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7093 {
7094 	int32_t ret_val = 0;
7095 	int32_t ourfinisacked = 0;
7096 
7097 	ctf_calc_rwin(so, tp);
7098 
7099 	if ((thflags & TH_RST) ||
7100 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7101 		return (ctf_process_rst(m, th, so, tp));
7102 	/*
7103 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7104 	 * synchronized state.
7105 	 */
7106 	if (thflags & TH_SYN) {
7107 		ctf_challenge_ack(m, th, tp, &ret_val);
7108 		return (ret_val);
7109 	}
7110 	/*
7111 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7112 	 * it's less than ts_recent, drop it.
7113 	 */
7114 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7115 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7116 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7117 			return (ret_val);
7118 	}
7119 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7120 		return (ret_val);
7121 	}
7122 	/*
7123 	 * If new data are received on a connection after the user processes
7124 	 * are gone, then RST the other end.
7125 	 */
7126 	if ((so->so_state & SS_NOFDREF) && tlen) {
7127 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7128 			return (1);
7129 	}
7130 	/*
7131 	 * If last ACK falls within this segment's sequence numbers, record
7132 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7133 	 * from the latest proposal of the tcplw@cray.com list (Braden
7134 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7135 	 * with our earlier PAWS tests, so this check should be solely
7136 	 * predicated on the sequence space of this segment. 3) That we
7137 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7138 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7139 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7140 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7141 	 * p.869. In such cases, we can still calculate the RTT correctly
7142 	 * when RCV.NXT == Last.ACK.Sent.
7143 	 */
7144 	if ((to->to_flags & TOF_TS) != 0 &&
7145 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7146 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7147 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7148 		tp->ts_recent_age = tcp_ts_getticks();
7149 		tp->ts_recent = to->to_tsval;
7150 	}
7151 	/*
7152 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7153 	 * is on (half-synchronized state), then queue data for later
7154 	 * processing; else drop segment and return.
7155 	 */
7156 	if ((thflags & TH_ACK) == 0) {
7157 		if (tp->t_flags & TF_NEEDSYN) {
7158 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7159 			    tiwin, thflags, nxt_pkt));
7160 		} else if (tp->t_flags & TF_ACKNOW) {
7161 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7162 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7163 			return (ret_val);
7164 		} else {
7165 			ctf_do_drop(m, NULL);
7166 			return (0);
7167 		}
7168 	}
7169 	/*
7170 	 * case TCPS_LAST_ACK: Ack processing.
7171 	 */
7172 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7173 		return (ret_val);
7174 	}
7175 	if (ourfinisacked) {
7176 		tp = tcp_close(tp);
7177 		ctf_do_drop(m, tp);
7178 		return (1);
7179 	}
7180 	if (sbavail(&so->so_snd)) {
7181 		if (rack_progress_timeout_check(tp)) {
7182 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7183 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7184 			return (1);
7185 		}
7186 	}
7187 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7188 	    tiwin, thflags, nxt_pkt));
7189 }
7190 
7191 
7192 /*
7193  * Return value of 1, the TCB is unlocked and most
7194  * likely gone, return value of 0, the TCP is still
7195  * locked.
7196  */
7197 static int
7198 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
7199     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7200     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7201 {
7202 	int32_t ret_val = 0;
7203 	int32_t ourfinisacked = 0;
7204 
7205 	ctf_calc_rwin(so, tp);
7206 
7207 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
7208 	if ((thflags & TH_RST) ||
7209 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7210 		return (ctf_process_rst(m, th, so, tp));
7211 	/*
7212 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7213 	 * synchronized state.
7214 	 */
7215 	if (thflags & TH_SYN) {
7216 		ctf_challenge_ack(m, th, tp, &ret_val);
7217 		return (ret_val);
7218 	}
7219 	/*
7220 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7221 	 * it's less than ts_recent, drop it.
7222 	 */
7223 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7224 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7225 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7226 			return (ret_val);
7227 	}
7228 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7229 		return (ret_val);
7230 	}
7231 	/*
7232 	 * If new data are received on a connection after the user processes
7233 	 * are gone, then RST the other end.
7234 	 */
7235 	if ((so->so_state & SS_NOFDREF) &&
7236 	    tlen) {
7237 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7238 			return (1);
7239 	}
7240 	/*
7241 	 * If last ACK falls within this segment's sequence numbers, record
7242 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7243 	 * from the latest proposal of the tcplw@cray.com list (Braden
7244 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7245 	 * with our earlier PAWS tests, so this check should be solely
7246 	 * predicated on the sequence space of this segment. 3) That we
7247 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7248 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7249 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7250 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7251 	 * p.869. In such cases, we can still calculate the RTT correctly
7252 	 * when RCV.NXT == Last.ACK.Sent.
7253 	 */
7254 	if ((to->to_flags & TOF_TS) != 0 &&
7255 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7256 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7257 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7258 		tp->ts_recent_age = tcp_ts_getticks();
7259 		tp->ts_recent = to->to_tsval;
7260 	}
7261 	/*
7262 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7263 	 * is on (half-synchronized state), then queue data for later
7264 	 * processing; else drop segment and return.
7265 	 */
7266 	if ((thflags & TH_ACK) == 0) {
7267 		if (tp->t_flags & TF_NEEDSYN) {
7268 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7269 			    tiwin, thflags, nxt_pkt));
7270 		} else if (tp->t_flags & TF_ACKNOW) {
7271 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7272 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7273 			return (ret_val);
7274 		} else {
7275 			ctf_do_drop(m, NULL);
7276 			return (0);
7277 		}
7278 	}
7279 	/*
7280 	 * Ack processing.
7281 	 */
7282 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7283 		return (ret_val);
7284 	}
7285 	if (sbavail(&so->so_snd)) {
7286 		if (rack_progress_timeout_check(tp)) {
7287 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7288 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7289 			return (1);
7290 		}
7291 	}
7292 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7293 	    tiwin, thflags, nxt_pkt));
7294 }
7295 
7296 
7297 static void inline
7298 rack_clear_rate_sample(struct tcp_rack *rack)
7299 {
7300 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
7301 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
7302 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
7303 }
7304 
7305 static void
7306 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
7307 {
7308 	uint32_t tls_seg = 0;
7309 
7310 #ifdef KERN_TLS
7311 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
7312 		tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
7313 		rack->r_ctl.rc_pace_min_segs = tls_seg;
7314 	} else
7315 #endif
7316 		rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
7317 	rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
7318 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
7319 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
7320 #ifdef KERN_TLS
7321 	if (tls_seg != 0) {
7322 		if (rack_hw_tls_max_seg > 1) {
7323 			rack->r_ctl.rc_pace_max_segs /= tls_seg;
7324 			if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
7325 				rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
7326 		} else {
7327 			rack->r_ctl.rc_pace_max_segs = 1;
7328 		}
7329 		if (rack->r_ctl.rc_pace_max_segs == 0)
7330 			rack->r_ctl.rc_pace_max_segs = 1;
7331 		rack->r_ctl.rc_pace_max_segs *= tls_seg;
7332 	}
7333 #endif
7334 	rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
7335 }
7336 
7337 static int
7338 rack_init(struct tcpcb *tp)
7339 {
7340 	struct tcp_rack *rack = NULL;
7341 	struct rack_sendmap *insret;
7342 
7343 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
7344 	if (tp->t_fb_ptr == NULL) {
7345 		/*
7346 		 * We need to allocate memory but cant. The INP and INP_INFO
7347 		 * locks and they are recusive (happens during setup. So a
7348 		 * scheme to drop the locks fails :(
7349 		 *
7350 		 */
7351 		return (ENOMEM);
7352 	}
7353 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
7354 
7355 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7356 	RB_INIT(&rack->r_ctl.rc_mtree);
7357 	TAILQ_INIT(&rack->r_ctl.rc_free);
7358 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
7359 	rack->rc_tp = tp;
7360 	if (tp->t_inpcb) {
7361 		rack->rc_inp = tp->t_inpcb;
7362 	}
7363 	tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
7364 	/* Probably not needed but lets be sure */
7365 	rack_clear_rate_sample(rack);
7366 	rack->r_cpu = 0;
7367 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
7368 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
7369 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
7370 	rack->rc_pace_reduce = rack_slot_reduction;
7371 	if (use_rack_cheat)
7372 		rack->use_rack_cheat = 1;
7373 	if (V_tcp_delack_enabled)
7374 		tp->t_delayed_ack = 1;
7375 	else
7376 		tp->t_delayed_ack = 0;
7377 	rack->rc_pace_max_segs = rack_hptsi_segments;
7378 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
7379 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
7380 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
7381 	rack->r_enforce_min_pace = rack_min_pace_time;
7382 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
7383 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
7384 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
7385 	rack->rc_always_pace = rack_pace_every_seg;
7386 	rack_set_pace_segments(tp, rack);
7387 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
7388 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
7389 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
7390 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
7391 	rack->r_ctl.rc_min_to = rack_min_to;
7392 	rack->rack_per_of_gp = rack_per_of_gp;
7393 	microuptime(&rack->r_ctl.rc_last_ack);
7394 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
7395 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
7396 	/* Do we force on detection? */
7397 #ifdef NETFLIX_EXP_DETECTION
7398 	if (tcp_force_detection)
7399 		rack->do_detection = 1;
7400 	else
7401 #endif
7402 		rack->do_detection = 0;
7403 	if (tp->snd_una != tp->snd_max) {
7404 		/* Create a send map for the current outstanding data */
7405 		struct rack_sendmap *rsm;
7406 
7407 		rsm = rack_alloc(rack);
7408 		if (rsm == NULL) {
7409 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7410 			tp->t_fb_ptr = NULL;
7411 			return (ENOMEM);
7412 		}
7413 		rsm->r_flags = RACK_OVERMAX;
7414 		rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
7415 		rsm->r_rtr_cnt = 1;
7416 		rsm->r_rtr_bytes = 0;
7417 		rsm->r_start = tp->snd_una;
7418 		rsm->r_end = tp->snd_max;
7419 		rsm->r_dupack = 0;
7420 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7421 #ifdef INVARIANTS
7422 		if (insret != NULL) {
7423 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
7424 			      insret, rack, rsm);
7425 		}
7426 #endif
7427 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7428 		rsm->r_in_tmap = 1;
7429 	}
7430 	rack_stop_all_timers(tp);
7431 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7432 	return (0);
7433 }
7434 
7435 static int
7436 rack_handoff_ok(struct tcpcb *tp)
7437 {
7438 	if ((tp->t_state == TCPS_CLOSED) ||
7439 	    (tp->t_state == TCPS_LISTEN)) {
7440 		/* Sure no problem though it may not stick */
7441 		return (0);
7442 	}
7443 	if ((tp->t_state == TCPS_SYN_SENT) ||
7444 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
7445 		/*
7446 		 * We really don't know you have to get to ESTAB or beyond
7447 		 * to tell.
7448 		 */
7449 		return (EAGAIN);
7450 	}
7451 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
7452 		return (0);
7453 	}
7454 	/*
7455 	 * If we reach here we don't do SACK on this connection so we can
7456 	 * never do rack.
7457 	 */
7458 	return (EINVAL);
7459 }
7460 
7461 static void
7462 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
7463 {
7464 	if (tp->t_fb_ptr) {
7465 		struct tcp_rack *rack;
7466 		struct rack_sendmap *rsm, *nrsm, *rm;
7467 		if (tp->t_inpcb) {
7468 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
7469 			tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
7470 		}
7471 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7472 #ifdef TCP_BLACKBOX
7473 		tcp_log_flowend(tp);
7474 #endif
7475 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
7476 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7477 #ifdef INVARIANTS
7478 			if (rm != rsm) {
7479 				panic("At fini, rack:%p rsm:%p rm:%p",
7480 				      rack, rsm, rm);
7481 			}
7482 #endif
7483 			uma_zfree(rack_zone, rsm);
7484 		}
7485 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7486 		while (rsm) {
7487 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
7488 			uma_zfree(rack_zone, rsm);
7489 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7490 		}
7491 		rack->rc_free_cnt = 0;
7492 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7493 		tp->t_fb_ptr = NULL;
7494 	}
7495 	/* Make sure snd_nxt is correctly set */
7496 	tp->snd_nxt = tp->snd_max;
7497 }
7498 
7499 
7500 static void
7501 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
7502 {
7503 	switch (tp->t_state) {
7504 	case TCPS_SYN_SENT:
7505 		rack->r_state = TCPS_SYN_SENT;
7506 		rack->r_substate = rack_do_syn_sent;
7507 		break;
7508 	case TCPS_SYN_RECEIVED:
7509 		rack->r_state = TCPS_SYN_RECEIVED;
7510 		rack->r_substate = rack_do_syn_recv;
7511 		break;
7512 	case TCPS_ESTABLISHED:
7513 		rack_set_pace_segments(tp, rack);
7514 		rack->r_state = TCPS_ESTABLISHED;
7515 		rack->r_substate = rack_do_established;
7516 		break;
7517 	case TCPS_CLOSE_WAIT:
7518 		rack->r_state = TCPS_CLOSE_WAIT;
7519 		rack->r_substate = rack_do_close_wait;
7520 		break;
7521 	case TCPS_FIN_WAIT_1:
7522 		rack->r_state = TCPS_FIN_WAIT_1;
7523 		rack->r_substate = rack_do_fin_wait_1;
7524 		break;
7525 	case TCPS_CLOSING:
7526 		rack->r_state = TCPS_CLOSING;
7527 		rack->r_substate = rack_do_closing;
7528 		break;
7529 	case TCPS_LAST_ACK:
7530 		rack->r_state = TCPS_LAST_ACK;
7531 		rack->r_substate = rack_do_lastack;
7532 		break;
7533 	case TCPS_FIN_WAIT_2:
7534 		rack->r_state = TCPS_FIN_WAIT_2;
7535 		rack->r_substate = rack_do_fin_wait_2;
7536 		break;
7537 	case TCPS_LISTEN:
7538 	case TCPS_CLOSED:
7539 	case TCPS_TIME_WAIT:
7540 	default:
7541 		break;
7542 	};
7543 }
7544 
7545 
7546 static void
7547 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
7548 {
7549 	/*
7550 	 * We received an ack, and then did not
7551 	 * call send or were bounced out due to the
7552 	 * hpts was running. Now a timer is up as well, is
7553 	 * it the right timer?
7554 	 */
7555 	struct rack_sendmap *rsm;
7556 	int tmr_up;
7557 
7558 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7559 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
7560 		return;
7561 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7562 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
7563 	    (tmr_up == PACE_TMR_RXT)) {
7564 		/* Should be an RXT */
7565 		return;
7566 	}
7567 	if (rsm == NULL) {
7568 		/* Nothing outstanding? */
7569 		if (tp->t_flags & TF_DELACK) {
7570 			if (tmr_up == PACE_TMR_DELACK)
7571 				/* We are supposed to have delayed ack up and we do */
7572 				return;
7573 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
7574 			/*
7575 			 * if we hit enobufs then we would expect the possiblity
7576 			 * of nothing outstanding and the RXT up (and the hptsi timer).
7577 			 */
7578 			return;
7579 		} else if (((tcp_always_keepalive ||
7580 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7581 			    (tp->t_state <= TCPS_CLOSING)) &&
7582 			   (tmr_up == PACE_TMR_KEEP) &&
7583 			   (tp->snd_max == tp->snd_una)) {
7584 			/* We should have keep alive up and we do */
7585 			return;
7586 		}
7587 	}
7588 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
7589 		   ((tmr_up == PACE_TMR_TLP) ||
7590 		    (tmr_up == PACE_TMR_RACK) ||
7591 		    (tmr_up == PACE_TMR_RXT))) {
7592 		/*
7593 		 * Either a Rack, TLP or RXT is fine if  we
7594 		 * have outstanding data.
7595 		 */
7596 		return;
7597 	} else if (tmr_up == PACE_TMR_DELACK) {
7598 		/*
7599 		 * If the delayed ack was going to go off
7600 		 * before the rtx/tlp/rack timer were going to
7601 		 * expire, then that would be the timer in control.
7602 		 * Note we don't check the time here trusting the
7603 		 * code is correct.
7604 		 */
7605 		return;
7606 	}
7607 	/*
7608 	 * Ok the timer originally started is not what we want now.
7609 	 * We will force the hpts to be stopped if any, and restart
7610 	 * with the slot set to what was in the saved slot.
7611 	 */
7612 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7613 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7614 }
7615 
7616 static int
7617 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
7618     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
7619     int32_t nxt_pkt, struct timeval *tv)
7620 {
7621 	int32_t thflags, retval, did_out = 0;
7622 	int32_t way_out = 0;
7623 	uint32_t cts;
7624 	uint32_t tiwin;
7625 	struct tcpopt to;
7626 	struct tcp_rack *rack;
7627 	struct rack_sendmap *rsm;
7628 	int32_t prev_state = 0;
7629 
7630 	if (m->m_flags & M_TSTMP_LRO) {
7631 		tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7632 		tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7633 	}
7634 	cts = tcp_tv_to_mssectick(tv);
7635 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7636 
7637 	kern_prefetch(rack, &prev_state);
7638 	prev_state = 0;
7639 	thflags = th->th_flags;
7640 
7641 	NET_EPOCH_ASSERT();
7642 	INP_WLOCK_ASSERT(tp->t_inpcb);
7643 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
7644 	    __func__));
7645 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
7646 	    __func__));
7647 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
7648 		union tcp_log_stackspecific log;
7649 		struct timeval tv;
7650 
7651 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
7652 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
7653 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
7654 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
7655 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
7656 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
7657 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7658 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
7659 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
7660 		    tlen, &log, true, &tv);
7661 	}
7662 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
7663 		way_out = 4;
7664 		retval = 0;
7665 		goto done_with_input;
7666 	}
7667 	/*
7668 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
7669 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
7670 	 */
7671 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
7672 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
7673 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7674 		return(1);
7675 	}
7676 	/*
7677 	 * Segment received on connection. Reset idle time and keep-alive
7678 	 * timer. XXX: This should be done after segment validation to
7679 	 * ignore broken/spoofed segs.
7680 	 */
7681 	if  (tp->t_idle_reduce &&
7682 	     (tp->snd_max == tp->snd_una) &&
7683 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
7684 		counter_u64_add(rack_input_idle_reduces, 1);
7685 		rack_cc_after_idle(tp);
7686 	}
7687 	tp->t_rcvtime = ticks;
7688 
7689 	/*
7690 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
7691 	 * the scale is zero.
7692 	 */
7693 	tiwin = th->th_win << tp->snd_scale;
7694 #ifdef STATS
7695 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
7696 #endif
7697 	if (tiwin > rack->r_ctl.rc_high_rwnd)
7698 		rack->r_ctl.rc_high_rwnd = tiwin;
7699 	/*
7700 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
7701 	 * this to occur after we've validated the segment.
7702 	 */
7703 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
7704 		if (thflags & TH_CWR)
7705 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
7706 		switch (iptos & IPTOS_ECN_MASK) {
7707 		case IPTOS_ECN_CE:
7708 			tp->t_flags2 |= TF2_ECN_SND_ECE;
7709 			TCPSTAT_INC(tcps_ecn_ce);
7710 			break;
7711 		case IPTOS_ECN_ECT0:
7712 			TCPSTAT_INC(tcps_ecn_ect0);
7713 			break;
7714 		case IPTOS_ECN_ECT1:
7715 			TCPSTAT_INC(tcps_ecn_ect1);
7716 			break;
7717 		}
7718 		/* Congestion experienced. */
7719 		if (thflags & TH_ECE) {
7720 			rack_cong_signal(tp, th, CC_ECN);
7721 		}
7722 	}
7723 	/*
7724 	 * Parse options on any incoming segment.
7725 	 */
7726 	tcp_dooptions(&to, (u_char *)(th + 1),
7727 	    (th->th_off << 2) - sizeof(struct tcphdr),
7728 	    (thflags & TH_SYN) ? TO_SYN : 0);
7729 
7730 	/*
7731 	 * If echoed timestamp is later than the current time, fall back to
7732 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
7733 	 * were used when this connection was established.
7734 	 */
7735 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
7736 		to.to_tsecr -= tp->ts_offset;
7737 		if (TSTMP_GT(to.to_tsecr, cts))
7738 			to.to_tsecr = 0;
7739 	}
7740 	/*
7741 	 * If its the first time in we need to take care of options and
7742 	 * verify we can do SACK for rack!
7743 	 */
7744 	if (rack->r_state == 0) {
7745 		/* Should be init'd by rack_init() */
7746 		KASSERT(rack->rc_inp != NULL,
7747 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
7748 		if (rack->rc_inp == NULL) {
7749 			rack->rc_inp = tp->t_inpcb;
7750 		}
7751 
7752 		/*
7753 		 * Process options only when we get SYN/ACK back. The SYN
7754 		 * case for incoming connections is handled in tcp_syncache.
7755 		 * According to RFC1323 the window field in a SYN (i.e., a
7756 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
7757 		 * this is traditional behavior, may need to be cleaned up.
7758 		 */
7759 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
7760 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
7761 			if ((to.to_flags & TOF_SCALE) &&
7762 			    (tp->t_flags & TF_REQ_SCALE)) {
7763 				tp->t_flags |= TF_RCVD_SCALE;
7764 				tp->snd_scale = to.to_wscale;
7765 			}
7766 			/*
7767 			 * Initial send window.  It will be updated with the
7768 			 * next incoming segment to the scaled value.
7769 			 */
7770 			tp->snd_wnd = th->th_win;
7771 			if (to.to_flags & TOF_TS) {
7772 				tp->t_flags |= TF_RCVD_TSTMP;
7773 				tp->ts_recent = to.to_tsval;
7774 				tp->ts_recent_age = cts;
7775 			}
7776 			if (to.to_flags & TOF_MSS)
7777 				tcp_mss(tp, to.to_mss);
7778 			if ((tp->t_flags & TF_SACK_PERMIT) &&
7779 			    (to.to_flags & TOF_SACKPERM) == 0)
7780 				tp->t_flags &= ~TF_SACK_PERMIT;
7781 			if (IS_FASTOPEN(tp->t_flags)) {
7782 				if (to.to_flags & TOF_FASTOPEN) {
7783 					uint16_t mss;
7784 
7785 					if (to.to_flags & TOF_MSS)
7786 						mss = to.to_mss;
7787 					else
7788 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
7789 							mss = TCP6_MSS;
7790 						else
7791 							mss = TCP_MSS;
7792 					tcp_fastopen_update_cache(tp, mss,
7793 					    to.to_tfo_len, to.to_tfo_cookie);
7794 				} else
7795 					tcp_fastopen_disable_path(tp);
7796 			}
7797 		}
7798 		/*
7799 		 * At this point we are at the initial call. Here we decide
7800 		 * if we are doing RACK or not. We do this by seeing if
7801 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
7802 		 * we switch to the default code.
7803 		 */
7804 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
7805 			tcp_switch_back_to_default(tp);
7806 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
7807 			    tlen, iptos);
7808 			return (1);
7809 		}
7810 		/* Set the flag */
7811 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
7812 		tcp_set_hpts(tp->t_inpcb);
7813 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
7814 	}
7815 	/*
7816 	 * This is the one exception case where we set the rack state
7817 	 * always. All other times (timers etc) we must have a rack-state
7818 	 * set (so we assure we have done the checks above for SACK).
7819 	 */
7820 	memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
7821 	rack->r_ctl.rc_rcvtime = cts;
7822 	if (rack->r_state != tp->t_state)
7823 		rack_set_state(tp, rack);
7824 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
7825 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
7826 		kern_prefetch(rsm, &prev_state);
7827 	prev_state = rack->r_state;
7828 	rack->r_ctl.rc_tlp_send_cnt = 0;
7829 	rack_clear_rate_sample(rack);
7830 	retval = (*rack->r_substate) (m, th, so,
7831 	    tp, &to, drop_hdrlen,
7832 	    tlen, tiwin, thflags, nxt_pkt, iptos);
7833 #ifdef INVARIANTS
7834 	if ((retval == 0) &&
7835 	    (tp->t_inpcb == NULL)) {
7836 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
7837 		    retval, tp, prev_state);
7838 	}
7839 #endif
7840 	if (retval == 0) {
7841 		/*
7842 		 * If retval is 1 the tcb is unlocked and most likely the tp
7843 		 * is gone.
7844 		 */
7845 		INP_WLOCK_ASSERT(tp->t_inpcb);
7846 		if (rack->set_pacing_done_a_iw == 0) {
7847 			/* How much has been acked? */
7848 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
7849 				/* We have enough to set in the pacing segment size */
7850 				rack->set_pacing_done_a_iw = 1;
7851 				rack_set_pace_segments(tp, rack);
7852 			}
7853 		}
7854 		tcp_rack_xmit_timer_commit(rack, tp);
7855 		if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
7856 			if (rack->r_wanted_output != 0) {
7857 				did_out = 1;
7858 				(void)tp->t_fb->tfb_tcp_output(tp);
7859 			}
7860 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
7861 		}
7862 		if ((nxt_pkt == 0) &&
7863 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
7864 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
7865 		     (tp->t_flags & TF_DELACK) ||
7866 		     ((tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7867 		      (tp->t_state <= TCPS_CLOSING)))) {
7868 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
7869 			if ((tp->snd_max == tp->snd_una) &&
7870 			    ((tp->t_flags & TF_DELACK) == 0) &&
7871 			    (rack->rc_inp->inp_in_hpts) &&
7872 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
7873 				/* keep alive not needed if we are hptsi output yet */
7874 				;
7875 			} else {
7876 				if (rack->rc_inp->inp_in_hpts) {
7877 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7878 					counter_u64_add(rack_per_timer_hole, 1);
7879 				}
7880 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7881 			}
7882 			way_out = 1;
7883 		} else if (nxt_pkt == 0) {
7884 			/* Do we have the correct timer running? */
7885 			rack_timer_audit(tp, rack, &so->so_snd);
7886 			way_out = 2;
7887 		}
7888 	done_with_input:
7889 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
7890 		if (did_out)
7891 			rack->r_wanted_output = 0;
7892 #ifdef INVARIANTS
7893 		if (tp->t_inpcb == NULL) {
7894 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
7895 			      did_out,
7896 			      retval, tp, prev_state);
7897 		}
7898 #endif
7899 	}
7900 	return (retval);
7901 }
7902 
7903 void
7904 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
7905     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
7906 {
7907 	struct timeval tv;
7908 
7909 	/* First lets see if we have old packets */
7910 	if (tp->t_in_pkt) {
7911 		if (ctf_do_queued_segments(so, tp, 1)) {
7912 			m_freem(m);
7913 			return;
7914 		}
7915 	}
7916 	if (m->m_flags & M_TSTMP_LRO) {
7917 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7918 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7919 	} else {
7920 		/* Should not be should we kassert instead? */
7921 		tcp_get_usecs(&tv);
7922 	}
7923 	if(rack_do_segment_nounlock(m, th, so, tp,
7924 				    drop_hdrlen, tlen, iptos, 0, &tv) == 0)
7925 		INP_WUNLOCK(tp->t_inpcb);
7926 }
7927 
7928 struct rack_sendmap *
7929 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
7930 {
7931 	struct rack_sendmap *rsm = NULL;
7932 	int32_t idx;
7933 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
7934 
7935 	/* Return the next guy to be re-transmitted */
7936 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
7937 		return (NULL);
7938 	}
7939 	if (tp->t_flags & TF_SENTFIN) {
7940 		/* retran the end FIN? */
7941 		return (NULL);
7942 	}
7943 	/* ok lets look at this one */
7944 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7945 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
7946 		goto check_it;
7947 	}
7948 	rsm = rack_find_lowest_rsm(rack);
7949 	if (rsm == NULL) {
7950 		return (NULL);
7951 	}
7952 check_it:
7953 	if (rsm->r_flags & RACK_ACKED) {
7954 		return (NULL);
7955 	}
7956 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
7957 		/* Its not yet ready */
7958 		return (NULL);
7959 	}
7960 	srtt = rack_grab_rtt(tp, rack);
7961 	idx = rsm->r_rtr_cnt - 1;
7962 	ts_low = rsm->r_tim_lastsent[idx];
7963 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
7964 	if ((tsused == ts_low) ||
7965 	    (TSTMP_LT(tsused, ts_low))) {
7966 		/* No time since sending */
7967 		return (NULL);
7968 	}
7969 	if ((tsused - ts_low) < thresh) {
7970 		/* It has not been long enough yet */
7971 		return (NULL);
7972 	}
7973 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
7974 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
7975 	     (rack->sack_attack_disable == 0))) {
7976 		/*
7977 		 * We have passed the dup-ack threshold <or>
7978 		 * a SACK has indicated this is missing.
7979 		 * Note that if you are a declared attacker
7980 		 * it is only the dup-ack threshold that
7981 		 * will cause retransmits.
7982 		 */
7983 		/* log retransmit reason */
7984 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
7985 		return (rsm);
7986 	}
7987 	return (NULL);
7988 }
7989 
7990 static int32_t
7991 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
7992 {
7993 	int32_t slot = 0;
7994 
7995 	if ((rack->rack_per_of_gp == 0) ||
7996 	    (rack->rc_always_pace == 0)) {
7997 		/*
7998 		 * We use the most optimistic possible cwnd/srtt for
7999 		 * sending calculations. This will make our
8000 		 * calculation anticipate getting more through
8001 		 * quicker then possible. But thats ok we don't want
8002 		 * the peer to have a gap in data sending.
8003 		 */
8004 		uint32_t srtt, cwnd, tr_perms = 0;
8005 
8006 old_method:
8007 		if (rack->r_ctl.rc_rack_min_rtt)
8008 			srtt = rack->r_ctl.rc_rack_min_rtt;
8009 		else
8010 			srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8011 		if (rack->r_ctl.rc_rack_largest_cwnd)
8012 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8013 		else
8014 			cwnd = tp->snd_cwnd;
8015 		tr_perms = cwnd / srtt;
8016 		if (tr_perms == 0) {
8017 			tr_perms = ctf_fixed_maxseg(tp);
8018 		}
8019 		/*
8020 		 * Calculate how long this will take to drain, if
8021 		 * the calculation comes out to zero, thats ok we
8022 		 * will use send_a_lot to possibly spin around for
8023 		 * more increasing tot_len_this_send to the point
8024 		 * that its going to require a pace, or we hit the
8025 		 * cwnd. Which in that case we are just waiting for
8026 		 * a ACK.
8027 		 */
8028 		slot = len / tr_perms;
8029 		/* Now do we reduce the time so we don't run dry? */
8030 		if (slot && rack->rc_pace_reduce) {
8031 			int32_t reduce;
8032 
8033 			reduce = (slot / rack->rc_pace_reduce);
8034 			if (reduce < slot) {
8035 				slot -= reduce;
8036 			} else
8037 				slot = 0;
8038 		}
8039 	} else {
8040 		int cnt;
8041 		uint64_t bw_est, bw_raise, res, lentim;
8042 
8043 		bw_est = 0;
8044 		for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
8045 			if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
8046 			    (rack->r_ctl.rc_gp_history[cnt] == 0))
8047 				break;
8048 			bw_est += rack->r_ctl.rc_gp_history[cnt];
8049 		}
8050 		if (bw_est == 0) {
8051 			/*
8052 			 * No way yet to make a b/w estimate
8053 			 * (no goodput est yet).
8054 			 */
8055 			goto old_method;
8056 		}
8057 		/* Covert to bytes per second */
8058 		bw_est *= MSEC_IN_SECOND;
8059 		/*
8060 		 * Now ratchet it up by our percentage. Note
8061 		 * that the minimum you can do is 1 which would
8062 		 * get you 101% of the average last N goodput estimates.
8063 		 * The max you can do is 256 which would yeild you
8064 		 * 356% of the last N goodput estimates.
8065 		 */
8066 		bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
8067 		bw_est += bw_raise;
8068 		/* average by the number we added */
8069 		bw_est /= cnt;
8070 		/* Now calculate a rate based on this b/w */
8071 		lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
8072 		res = lentim / bw_est;
8073 		slot = (uint32_t)res;
8074 	}
8075 	if (rack->r_enforce_min_pace &&
8076 	    (slot == 0)) {
8077 		/* We are enforcing a minimum pace time of 1ms */
8078 		slot = rack->r_enforce_min_pace;
8079 	}
8080 	if (slot)
8081 		counter_u64_add(rack_calc_nonzero, 1);
8082 	else
8083 		counter_u64_add(rack_calc_zero, 1);
8084 	return (slot);
8085 }
8086 
8087 static int
8088 rack_output(struct tcpcb *tp)
8089 {
8090 	struct socket *so;
8091 	uint32_t recwin, sendwin;
8092 	uint32_t sb_offset;
8093 	int32_t len, flags, error = 0;
8094 	struct mbuf *m;
8095 	struct mbuf *mb;
8096 	uint32_t if_hw_tsomaxsegcount = 0;
8097 	uint32_t if_hw_tsomaxsegsize = 0;
8098 	int32_t maxseg;
8099 	long tot_len_this_send = 0;
8100 	struct ip *ip = NULL;
8101 #ifdef TCPDEBUG
8102 	struct ipovly *ipov = NULL;
8103 #endif
8104 	struct udphdr *udp = NULL;
8105 	struct tcp_rack *rack;
8106 	struct tcphdr *th;
8107 	uint8_t pass = 0;
8108 	uint8_t wanted_cookie = 0;
8109 	u_char opt[TCP_MAXOLEN];
8110 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
8111 	uint32_t rack_seq;
8112 
8113 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8114 	unsigned ipsec_optlen = 0;
8115 
8116 #endif
8117 	int32_t idle, sendalot;
8118 	int32_t sub_from_prr = 0;
8119 	volatile int32_t sack_rxmit;
8120 	struct rack_sendmap *rsm = NULL;
8121 	int32_t tso, mtu;
8122 	struct tcpopt to;
8123 	int32_t slot = 0;
8124 	int32_t sup_rack = 0;
8125 	uint32_t cts;
8126 	uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
8127 	int32_t do_a_prefetch;
8128 	int32_t prefetch_rsm = 0;
8129 	int force_tso = 0;
8130 	int32_t orig_len;
8131 	int32_t prefetch_so_done = 0;
8132 	struct tcp_log_buffer *lgb = NULL;
8133 	struct inpcb *inp;
8134 	struct sockbuf *sb;
8135 #ifdef INET6
8136 	struct ip6_hdr *ip6 = NULL;
8137 	int32_t isipv6;
8138 #endif
8139 	uint8_t filled_all = 0;
8140 	bool hw_tls = false;
8141 
8142 	/* setup and take the cache hits here */
8143 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8144 	inp = rack->rc_inp;
8145 	so = inp->inp_socket;
8146 	sb = &so->so_snd;
8147 	kern_prefetch(sb, &do_a_prefetch);
8148 	do_a_prefetch = 1;
8149 
8150 #ifdef KERN_TLS
8151 	hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
8152 #endif
8153 
8154 	INP_WLOCK_ASSERT(inp);
8155 #ifdef TCP_OFFLOAD
8156 	if (tp->t_flags & TF_TOE)
8157 		return (tcp_offload_output(tp));
8158 #endif
8159 	maxseg = ctf_fixed_maxseg(tp);
8160 	/*
8161 	 * For TFO connections in SYN_RECEIVED, only allow the initial
8162 	 * SYN|ACK and those sent by the retransmit timer.
8163 	 */
8164 	if (IS_FASTOPEN(tp->t_flags) &&
8165 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
8166 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
8167 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
8168 		return (0);
8169 #ifdef INET6
8170 	if (rack->r_state) {
8171 		/* Use the cache line loaded if possible */
8172 		isipv6 = rack->r_is_v6;
8173 	} else {
8174 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
8175 	}
8176 #endif
8177 	cts = tcp_ts_getticks();
8178 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
8179 	    inp->inp_in_hpts) {
8180 		/*
8181 		 * We are on the hpts for some timer but not hptsi output.
8182 		 * Remove from the hpts unconditionally.
8183 		 */
8184 		rack_timer_cancel(tp, rack, cts, __LINE__);
8185 	}
8186 	/* Mark that we have called rack_output(). */
8187 	if ((rack->r_timer_override) ||
8188 	    (tp->t_flags & TF_FORCEDATA) ||
8189 	    (tp->t_state < TCPS_ESTABLISHED)) {
8190 		if (tp->t_inpcb->inp_in_hpts)
8191 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
8192 	} else if (tp->t_inpcb->inp_in_hpts) {
8193 		/*
8194 		 * On the hpts you can't pass even if ACKNOW is on, we will
8195 		 * when the hpts fires.
8196 		 */
8197 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
8198 		return (0);
8199 	}
8200 	hpts_calling = inp->inp_hpts_calls;
8201 	inp->inp_hpts_calls = 0;
8202 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
8203 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
8204 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
8205 			return (0);
8206 		}
8207 	}
8208 	rack->r_wanted_output = 0;
8209 	rack->r_timer_override = 0;
8210 	/*
8211 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
8212 	 * only allow the initial SYN or SYN|ACK and those sent
8213 	 * by the retransmit timer.
8214 	 */
8215 	if (IS_FASTOPEN(tp->t_flags) &&
8216 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
8217 	     (tp->t_state == TCPS_SYN_SENT)) &&
8218 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
8219 	    (tp->t_rxtshift == 0))              /* not a retransmit */
8220 		return (0);
8221 	/*
8222 	 * Determine length of data that should be transmitted, and flags
8223 	 * that will be used. If there is some data or critical controls
8224 	 * (SYN, RST) to send, then transmit; otherwise, investigate
8225 	 * further.
8226 	 */
8227 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
8228 	if (tp->t_idle_reduce) {
8229 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
8230 			rack_cc_after_idle(tp);
8231 	}
8232 	tp->t_flags &= ~TF_LASTIDLE;
8233 	if (idle) {
8234 		if (tp->t_flags & TF_MORETOCOME) {
8235 			tp->t_flags |= TF_LASTIDLE;
8236 			idle = 0;
8237 		}
8238 	}
8239 again:
8240 	/*
8241 	 * If we've recently taken a timeout, snd_max will be greater than
8242 	 * snd_nxt.  There may be SACK information that allows us to avoid
8243 	 * resending already delivered data.  Adjust snd_nxt accordingly.
8244 	 */
8245 	sendalot = 0;
8246 	cts = tcp_ts_getticks();
8247 	tso = 0;
8248 	mtu = 0;
8249 	sb_offset = tp->snd_max - tp->snd_una;
8250 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
8251 
8252 	flags = tcp_outflags[tp->t_state];
8253 	while (rack->rc_free_cnt < rack_free_cache) {
8254 		rsm = rack_alloc(rack);
8255 		if (rsm == NULL) {
8256 			if (inp->inp_hpts_calls)
8257 				/* Retry in a ms */
8258 				slot = 1;
8259 			goto just_return_nolock;
8260 		}
8261 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
8262 		rack->rc_free_cnt++;
8263 		rsm = NULL;
8264 	}
8265 	if (inp->inp_hpts_calls)
8266 		inp->inp_hpts_calls = 0;
8267 	sack_rxmit = 0;
8268 	len = 0;
8269 	rsm = NULL;
8270 	if (flags & TH_RST) {
8271 		SOCKBUF_LOCK(sb);
8272 		goto send;
8273 	}
8274 	if (rack->r_ctl.rc_tlpsend) {
8275 		/* Tail loss probe */
8276 		long cwin;
8277 		long tlen;
8278 
8279 		doing_tlp = 1;
8280 		/*
8281 		 * Check if we can do a TLP with a RACK'd packet
8282 		 * this can happen if we are not doing the rack
8283 		 * cheat and we skipped to a TLP and it
8284 		 * went off.
8285 		 */
8286 		rsm = tcp_rack_output(tp, rack, cts);
8287 		if (rsm == NULL)
8288 			rsm = rack->r_ctl.rc_tlpsend;
8289 		rack->r_ctl.rc_tlpsend = NULL;
8290 		sack_rxmit = 1;
8291 		tlen = rsm->r_end - rsm->r_start;
8292 		if (tlen > ctf_fixed_maxseg(tp))
8293 			tlen = ctf_fixed_maxseg(tp);
8294 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8295 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8296 		    __func__, __LINE__,
8297 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8298 		sb_offset = rsm->r_start - tp->snd_una;
8299 		cwin = min(tp->snd_wnd, tlen);
8300 		len = cwin;
8301 	} else if (rack->r_ctl.rc_resend) {
8302 		/* Retransmit timer */
8303 		rsm = rack->r_ctl.rc_resend;
8304 		rack->r_ctl.rc_resend = NULL;
8305 		len = rsm->r_end - rsm->r_start;
8306 		sack_rxmit = 1;
8307 		sendalot = 0;
8308 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8309 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8310 		    __func__, __LINE__,
8311 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8312 		sb_offset = rsm->r_start - tp->snd_una;
8313 		if (len >= ctf_fixed_maxseg(tp)) {
8314 			len = ctf_fixed_maxseg(tp);
8315 		}
8316 	} else if ((rack->rc_in_persist == 0) &&
8317 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
8318 		int maxseg;
8319 
8320 		maxseg = ctf_fixed_maxseg(tp);
8321 		if ((!IN_RECOVERY(tp->t_flags)) &&
8322 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
8323 			/* Enter recovery if not induced by a time-out */
8324 			rack->r_ctl.rc_rsm_start = rsm->r_start;
8325 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
8326 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
8327 			rack_cong_signal(tp, NULL, CC_NDUPACK);
8328 			/*
8329 			 * When we enter recovery we need to assure we send
8330 			 * one packet.
8331 			 */
8332 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
8333 			rack_log_to_prr(rack, 13);
8334 		}
8335 #ifdef INVARIANTS
8336 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
8337 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
8338 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
8339 		}
8340 #endif
8341 		len = rsm->r_end - rsm->r_start;
8342 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8343 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8344 		    __func__, __LINE__,
8345 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8346 		sb_offset = rsm->r_start - tp->snd_una;
8347 		/* Can we send it within the PRR boundary? */
8348 		if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
8349 			/* It does not fit */
8350 			if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
8351 			    (rack->r_ctl.rc_prr_sndcnt < maxseg)) {
8352 				/*
8353 				 * prr is less than a segment, we
8354 				 * have more acks due in besides
8355 				 * what we need to resend. Lets not send
8356 				 * to avoid sending small pieces of
8357 				 * what we need to retransmit.
8358 				 */
8359 				len = 0;
8360 				goto just_return_nolock;
8361 			}
8362 			len = rack->r_ctl.rc_prr_sndcnt;
8363 		}
8364 		sendalot = 0;
8365 		if (len >= maxseg) {
8366 			len = maxseg;
8367 		}
8368 		if (len > 0) {
8369 			sub_from_prr = 1;
8370 			sack_rxmit = 1;
8371 			TCPSTAT_INC(tcps_sack_rexmits);
8372 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
8373 			    min(len, ctf_fixed_maxseg(tp)));
8374 			counter_u64_add(rack_rtm_prr_retran, 1);
8375 		}
8376 	}
8377 	/*
8378 	 * Enforce a connection sendmap count limit if set
8379 	 * as long as we are not retransmiting.
8380 	 */
8381 	if ((rsm == NULL) &&
8382 	    (rack->do_detection == 0) &&
8383 	    (V_tcp_map_entries_limit > 0) &&
8384 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
8385 		counter_u64_add(rack_to_alloc_limited, 1);
8386 		if (!rack->alloc_limit_reported) {
8387 			rack->alloc_limit_reported = 1;
8388 			counter_u64_add(rack_alloc_limited_conns, 1);
8389 		}
8390 		goto just_return_nolock;
8391 	}
8392 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
8393 		/* we are retransmitting the fin */
8394 		len--;
8395 		if (len) {
8396 			/*
8397 			 * When retransmitting data do *not* include the
8398 			 * FIN. This could happen from a TLP probe.
8399 			 */
8400 			flags &= ~TH_FIN;
8401 		}
8402 	}
8403 #ifdef INVARIANTS
8404 	/* For debugging */
8405 	rack->r_ctl.rc_rsm_at_retran = rsm;
8406 #endif
8407 	/*
8408 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
8409 	 * state flags.
8410 	 */
8411 	if (tp->t_flags & TF_NEEDFIN)
8412 		flags |= TH_FIN;
8413 	if (tp->t_flags & TF_NEEDSYN)
8414 		flags |= TH_SYN;
8415 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
8416 		void *end_rsm;
8417 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
8418 		if (end_rsm)
8419 			kern_prefetch(end_rsm, &prefetch_rsm);
8420 		prefetch_rsm = 1;
8421 	}
8422 	SOCKBUF_LOCK(sb);
8423 	/*
8424 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
8425 	 * if window is small but nonzero and time TF_SENTFIN expired, we
8426 	 * will send what we can and go to transmit state.
8427 	 */
8428 	if (tp->t_flags & TF_FORCEDATA) {
8429 		if (sendwin == 0) {
8430 			/*
8431 			 * If we still have some data to send, then clear
8432 			 * the FIN bit.  Usually this would happen below
8433 			 * when it realizes that we aren't sending all the
8434 			 * data.  However, if we have exactly 1 byte of
8435 			 * unsent data, then it won't clear the FIN bit
8436 			 * below, and if we are in persist state, we wind up
8437 			 * sending the packet without recording that we sent
8438 			 * the FIN bit.
8439 			 *
8440 			 * We can't just blindly clear the FIN bit, because
8441 			 * if we don't have any more data to send then the
8442 			 * probe will be the FIN itself.
8443 			 */
8444 			if (sb_offset < sbused(sb))
8445 				flags &= ~TH_FIN;
8446 			sendwin = 1;
8447 		} else {
8448 			if ((rack->rc_in_persist != 0) &&
8449  			    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8450 					       rack->r_ctl.rc_pace_min_segs)))
8451 				rack_exit_persist(tp, rack);
8452 			/*
8453 			 * If we are dropping persist mode then we need to
8454 			 * correct snd_nxt/snd_max and off.
8455 			 */
8456 			tp->snd_nxt = tp->snd_max;
8457 			sb_offset = tp->snd_nxt - tp->snd_una;
8458 		}
8459 	}
8460 	/*
8461 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
8462 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
8463 	 * negative length.  This can also occur when TCP opens up its
8464 	 * congestion window while receiving additional duplicate acks after
8465 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
8466 	 * the fast-retransmit.
8467 	 *
8468 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
8469 	 * set to snd_una, the sb_offset will be 0, and the length may wind
8470 	 * up 0.
8471 	 *
8472 	 * If sack_rxmit is true we are retransmitting from the scoreboard
8473 	 * in which case len is already set.
8474 	 */
8475 	if (sack_rxmit == 0) {
8476 		uint32_t avail;
8477 
8478 		avail = sbavail(sb);
8479 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
8480 			sb_offset = tp->snd_nxt - tp->snd_una;
8481 		else
8482 			sb_offset = 0;
8483 		if (IN_RECOVERY(tp->t_flags) == 0) {
8484 			if (rack->r_ctl.rc_tlp_new_data) {
8485 				/* TLP is forcing out new data */
8486 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
8487 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
8488 				}
8489 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
8490 					len = tp->snd_wnd;
8491 				else
8492 					len = rack->r_ctl.rc_tlp_new_data;
8493 				rack->r_ctl.rc_tlp_new_data = 0;
8494 				new_data_tlp = doing_tlp = 1;
8495 			} else {
8496 				if (sendwin > avail) {
8497 					/* use the available */
8498 					if (avail > sb_offset) {
8499 						len = (int32_t)(avail - sb_offset);
8500 					} else {
8501 						len = 0;
8502 					}
8503 				} else {
8504 					if (sendwin > sb_offset) {
8505 						len = (int32_t)(sendwin - sb_offset);
8506 					} else {
8507 						len = 0;
8508 					}
8509 				}
8510 			}
8511 		} else {
8512 			uint32_t outstanding;
8513 
8514 			/*
8515 			 * We are inside of a SACK recovery episode and are
8516 			 * sending new data, having retransmitted all the
8517 			 * data possible so far in the scoreboard.
8518 			 */
8519 			outstanding = tp->snd_max - tp->snd_una;
8520 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
8521 				if (tp->snd_wnd > outstanding) {
8522 					len = tp->snd_wnd - outstanding;
8523 					/* Check to see if we have the data */
8524 					if (((sb_offset + len) > avail) &&
8525 					    (avail > sb_offset))
8526 						len = avail - sb_offset;
8527 					else
8528 						len = 0;
8529 				} else
8530 					len = 0;
8531 			} else if (avail > sb_offset)
8532 				len = avail - sb_offset;
8533 			else
8534 				len = 0;
8535 			if (len > 0) {
8536 				if (len > rack->r_ctl.rc_prr_sndcnt)
8537 					len = rack->r_ctl.rc_prr_sndcnt;
8538 				if (len > 0) {
8539 					sub_from_prr = 1;
8540 					counter_u64_add(rack_rtm_prr_newdata, 1);
8541 				}
8542 			}
8543 			if (len > ctf_fixed_maxseg(tp)) {
8544 				/*
8545 				 * We should never send more than a MSS when
8546 				 * retransmitting or sending new data in prr
8547 				 * mode unless the override flag is on. Most
8548 				 * likely the PRR algorithm is not going to
8549 				 * let us send a lot as well :-)
8550 				 */
8551 				if (rack->r_ctl.rc_prr_sendalot == 0)
8552 					len = ctf_fixed_maxseg(tp);
8553 			} else if (len < ctf_fixed_maxseg(tp)) {
8554 				/*
8555 				 * Do we send any? The idea here is if the
8556 				 * send empty's the socket buffer we want to
8557 				 * do it. However if not then lets just wait
8558 				 * for our prr_sndcnt to get bigger.
8559 				 */
8560 				long leftinsb;
8561 
8562 				leftinsb = sbavail(sb) - sb_offset;
8563 				if (leftinsb > len) {
8564 					/* This send does not empty the sb */
8565 					len = 0;
8566 				}
8567 			}
8568 		}
8569 	}
8570 	if (prefetch_so_done == 0) {
8571 		kern_prefetch(so, &prefetch_so_done);
8572 		prefetch_so_done = 1;
8573 	}
8574 	/*
8575 	 * Lop off SYN bit if it has already been sent.  However, if this is
8576 	 * SYN-SENT state and if segment contains data and if we don't know
8577 	 * that foreign host supports TAO, suppress sending segment.
8578 	 */
8579 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
8580 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
8581 		if (tp->t_state != TCPS_SYN_RECEIVED)
8582 			flags &= ~TH_SYN;
8583 		/*
8584 		 * When sending additional segments following a TFO SYN|ACK,
8585 		 * do not include the SYN bit.
8586 		 */
8587 		if (IS_FASTOPEN(tp->t_flags) &&
8588 		    (tp->t_state == TCPS_SYN_RECEIVED))
8589 			flags &= ~TH_SYN;
8590 		sb_offset--, len++;
8591 	}
8592 	/*
8593 	 * Be careful not to send data and/or FIN on SYN segments. This
8594 	 * measure is needed to prevent interoperability problems with not
8595 	 * fully conformant TCP implementations.
8596 	 */
8597 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
8598 		len = 0;
8599 		flags &= ~TH_FIN;
8600 	}
8601 	/*
8602 	 * On TFO sockets, ensure no data is sent in the following cases:
8603 	 *
8604 	 *  - When retransmitting SYN|ACK on a passively-created socket
8605 	 *
8606 	 *  - When retransmitting SYN on an actively created socket
8607 	 *
8608 	 *  - When sending a zero-length cookie (cookie request) on an
8609 	 *    actively created socket
8610 	 *
8611 	 *  - When the socket is in the CLOSED state (RST is being sent)
8612 	 */
8613 	if (IS_FASTOPEN(tp->t_flags) &&
8614 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
8615 	     ((tp->t_state == TCPS_SYN_SENT) &&
8616 	      (tp->t_tfo_client_cookie_len == 0)) ||
8617 	     (flags & TH_RST))) {
8618 		sack_rxmit = 0;
8619 		len = 0;
8620 	}
8621 	/* Without fast-open there should never be data sent on a SYN */
8622 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
8623 		len = 0;
8624 	orig_len = len;
8625 	if (len <= 0) {
8626 		/*
8627 		 * If FIN has been sent but not acked, but we haven't been
8628 		 * called to retransmit, len will be < 0.  Otherwise, window
8629 		 * shrank after we sent into it.  If window shrank to 0,
8630 		 * cancel pending retransmit, pull snd_nxt back to (closed)
8631 		 * window, and set the persist timer if it isn't already
8632 		 * going.  If the window didn't close completely, just wait
8633 		 * for an ACK.
8634 		 *
8635 		 * We also do a general check here to ensure that we will
8636 		 * set the persist timer when we have data to send, but a
8637 		 * 0-byte window. This makes sure the persist timer is set
8638 		 * even if the packet hits one of the "goto send" lines
8639 		 * below.
8640 		 */
8641 		len = 0;
8642 		if ((tp->snd_wnd == 0) &&
8643 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8644 		    (tp->snd_una == tp->snd_max) &&
8645 		    (sb_offset < (int)sbavail(sb))) {
8646 			tp->snd_nxt = tp->snd_una;
8647 			rack_enter_persist(tp, rack, cts);
8648 		}
8649 	} else if ((rsm == NULL) &&
8650 		   ((doing_tlp == 0) || (new_data_tlp == 1)) &&
8651 		   (len < rack->r_ctl.rc_pace_max_segs)) {
8652 		/*
8653 		 * We are not sending a full segment for
8654 		 * some reason. Should we not send anything (think
8655 		 * sws or persists)?
8656 		 */
8657 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8658 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8659 		    (len < (int)(sbavail(sb) - sb_offset))) {
8660 			/*
8661 			 * Here the rwnd is less than
8662 			 * the pacing size, this is not a retransmit,
8663 			 * we are established and
8664 			 * the send is not the last in the socket buffer
8665 			 * we send nothing, and may enter persists.
8666 			 */
8667 			len = 0;
8668 			if (tp->snd_max == tp->snd_una) {
8669 				/*
8670 				 * Nothing out we can
8671 				 * go into persists.
8672 				 */
8673 				rack_enter_persist(tp, rack, cts);
8674 				tp->snd_nxt = tp->snd_una;
8675 			}
8676 		} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
8677 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8678 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8679 			   (len < rack->r_ctl.rc_pace_min_segs)) {
8680 			/*
8681 			 * Here we are not retransmitting, and
8682 			 * the cwnd is not so small that we could
8683 			 * not send at least a min size (rxt timer
8684 			 * not having gone off), We have 2 segments or
8685 			 * more already in flight, its not the tail end
8686 			 * of the socket buffer  and the cwnd is blocking
8687 			 * us from sending out a minimum pacing segment size.
8688 			 * Lets not send anything.
8689 			 */
8690 			len = 0;
8691 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
8692 			    min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8693 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8694 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8695 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
8696 			/*
8697 			 * Here we have a send window but we have
8698 			 * filled it up and we can't send another pacing segment.
8699 			 * We also have in flight more than 2 segments
8700 			 * and we are not completing the sb i.e. we allow
8701 			 * the last bytes of the sb to go out even if
8702 			 * its not a full pacing segment.
8703 			 */
8704 			len = 0;
8705 		}
8706 	}
8707 	/* len will be >= 0 after this point. */
8708 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
8709 	tcp_sndbuf_autoscale(tp, so, sendwin);
8710 	/*
8711 	 * Decide if we can use TCP Segmentation Offloading (if supported by
8712 	 * hardware).
8713 	 *
8714 	 * TSO may only be used if we are in a pure bulk sending state.  The
8715 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
8716 	 * options prevent using TSO.  With TSO the TCP header is the same
8717 	 * (except for the sequence number) for all generated packets.  This
8718 	 * makes it impossible to transmit any options which vary per
8719 	 * generated segment or packet.
8720 	 *
8721 	 * IPv4 handling has a clear separation of ip options and ip header
8722 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
8723 	 * the right thing below to provide length of just ip options and thus
8724 	 * checking for ipoptlen is enough to decide if ip options are present.
8725 	 */
8726 
8727 #ifdef INET6
8728 	if (isipv6)
8729 		ipoptlen = ip6_optlen(tp->t_inpcb);
8730 	else
8731 #endif
8732 		if (tp->t_inpcb->inp_options)
8733 			ipoptlen = tp->t_inpcb->inp_options->m_len -
8734 			    offsetof(struct ipoption, ipopt_list);
8735 		else
8736 			ipoptlen = 0;
8737 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8738 	/*
8739 	 * Pre-calculate here as we save another lookup into the darknesses
8740 	 * of IPsec that way and can actually decide if TSO is ok.
8741 	 */
8742 #ifdef INET6
8743 	if (isipv6 && IPSEC_ENABLED(ipv6))
8744 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
8745 #ifdef INET
8746 	else
8747 #endif
8748 #endif				/* INET6 */
8749 #ifdef INET
8750 	if (IPSEC_ENABLED(ipv4))
8751 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
8752 #endif				/* INET */
8753 #endif
8754 
8755 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8756 	ipoptlen += ipsec_optlen;
8757 #endif
8758 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
8759 	    (tp->t_port == 0) &&
8760 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
8761 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
8762 	    ipoptlen == 0)
8763 		tso = 1;
8764 	{
8765 		uint32_t outstanding;
8766 
8767 		outstanding = tp->snd_max - tp->snd_una;
8768 		if (tp->t_flags & TF_SENTFIN) {
8769 			/*
8770 			 * If we sent a fin, snd_max is 1 higher than
8771 			 * snd_una
8772 			 */
8773 			outstanding--;
8774 		}
8775 		if (sack_rxmit) {
8776 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
8777 				flags &= ~TH_FIN;
8778 		} else {
8779 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
8780 			    sbused(sb)))
8781 				flags &= ~TH_FIN;
8782 		}
8783 	}
8784 	recwin = sbspace(&so->so_rcv);
8785 
8786 	/*
8787 	 * Sender silly window avoidance.   We transmit under the following
8788 	 * conditions when len is non-zero:
8789 	 *
8790 	 * - We have a full segment (or more with TSO) - This is the last
8791 	 * buffer in a write()/send() and we are either idle or running
8792 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
8793 	 * then 1/2 the maximum send window's worth of data (receiver may be
8794 	 * limited the window size) - we need to retransmit
8795 	 */
8796 	if (len) {
8797 		if (len >= ctf_fixed_maxseg(tp)) {
8798 			pass = 1;
8799 			goto send;
8800 		}
8801 		/*
8802 		 * NOTE! on localhost connections an 'ack' from the remote
8803 		 * end may occur synchronously with the output and cause us
8804 		 * to flush a buffer queued with moretocome.  XXX
8805 		 *
8806 		 */
8807 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
8808 		    (idle || (tp->t_flags & TF_NODELAY)) &&
8809 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
8810 		    (tp->t_flags & TF_NOPUSH) == 0) {
8811 			pass = 2;
8812 			goto send;
8813 		}
8814 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
8815 			pass = 3;
8816 			goto send;
8817 		}
8818 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
8819 			goto send;
8820 		}
8821 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
8822 			pass = 4;
8823 			goto send;
8824 		}
8825 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
8826 			pass = 5;
8827 			goto send;
8828 		}
8829 		if (sack_rxmit) {
8830 			pass = 6;
8831 			goto send;
8832 		}
8833 	}
8834 	/*
8835 	 * Sending of standalone window updates.
8836 	 *
8837 	 * Window updates are important when we close our window due to a
8838 	 * full socket buffer and are opening it again after the application
8839 	 * reads data from it.  Once the window has opened again and the
8840 	 * remote end starts to send again the ACK clock takes over and
8841 	 * provides the most current window information.
8842 	 *
8843 	 * We must avoid the silly window syndrome whereas every read from
8844 	 * the receive buffer, no matter how small, causes a window update
8845 	 * to be sent.  We also should avoid sending a flurry of window
8846 	 * updates when the socket buffer had queued a lot of data and the
8847 	 * application is doing small reads.
8848 	 *
8849 	 * Prevent a flurry of pointless window updates by only sending an
8850 	 * update when we can increase the advertized window by more than
8851 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
8852 	 * full or is very small be more aggressive and send an update
8853 	 * whenever we can increase by two mss sized segments. In all other
8854 	 * situations the ACK's to new incoming data will carry further
8855 	 * window increases.
8856 	 *
8857 	 * Don't send an independent window update if a delayed ACK is
8858 	 * pending (it will get piggy-backed on it) or the remote side
8859 	 * already has done a half-close and won't send more data.  Skip
8860 	 * this if the connection is in T/TCP half-open state.
8861 	 */
8862 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
8863 	    !(tp->t_flags & TF_DELACK) &&
8864 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
8865 		/*
8866 		 * "adv" is the amount we could increase the window, taking
8867 		 * into account that we are limited by TCP_MAXWIN <<
8868 		 * tp->rcv_scale.
8869 		 */
8870 		int32_t adv;
8871 		int oldwin;
8872 
8873 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
8874 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
8875 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
8876 			adv -= oldwin;
8877 		} else
8878 			oldwin = 0;
8879 
8880 		/*
8881 		 * If the new window size ends up being the same as the old
8882 		 * size when it is scaled, then don't force a window update.
8883 		 */
8884 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
8885 			goto dontupdate;
8886 
8887 		if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
8888 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
8889 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
8890 		     so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
8891 			pass = 7;
8892 			goto send;
8893 		}
8894 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
8895 			goto send;
8896 	}
8897 dontupdate:
8898 
8899 	/*
8900 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
8901 	 * is also a catch-all for the retransmit timer timeout case.
8902 	 */
8903 	if (tp->t_flags & TF_ACKNOW) {
8904 		pass = 8;
8905 		goto send;
8906 	}
8907 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
8908 		pass = 9;
8909 		goto send;
8910 	}
8911 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
8912 		pass = 10;
8913 		goto send;
8914 	}
8915 	/*
8916 	 * If our state indicates that FIN should be sent and we have not
8917 	 * yet done so, then we need to send.
8918 	 */
8919 	if ((flags & TH_FIN) &&
8920 	    (tp->snd_nxt == tp->snd_una)) {
8921 		pass = 11;
8922 		goto send;
8923 	}
8924 	/*
8925 	 * No reason to send a segment, just return.
8926 	 */
8927 just_return:
8928 	SOCKBUF_UNLOCK(sb);
8929 just_return_nolock:
8930 	if (tot_len_this_send == 0)
8931 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
8932 	if (slot) {
8933 		/* set the rack tcb into the slot N */
8934 		counter_u64_add(rack_paced_segments, 1);
8935 	} else if (tot_len_this_send) {
8936 		counter_u64_add(rack_unpaced_segments, 1);
8937 	}
8938 	/* Check if we need to go into persists or not */
8939 	if ((rack->rc_in_persist == 0) &&
8940 	    (tp->snd_max == tp->snd_una) &&
8941 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
8942 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8943 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
8944 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
8945 		/* Yes lets make sure to move to persist before timer-start */
8946 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8947 	}
8948 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
8949 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
8950 	tp->t_flags &= ~TF_FORCEDATA;
8951 	return (0);
8952 
8953 send:
8954 	if ((flags & TH_FIN) &&
8955 	    sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8956 		/*
8957 		 * We do not transmit a FIN
8958 		 * with data outstanding. We
8959 		 * need to make it so all data
8960 		 * is acked first.
8961 		 */
8962 		flags &= ~TH_FIN;
8963 	}
8964 	if (doing_tlp == 0) {
8965 		/*
8966 		 * Data not a TLP, and its not the rxt firing. If it is the
8967 		 * rxt firing, we want to leave the tlp_in_progress flag on
8968 		 * so we don't send another TLP. It has to be a rack timer
8969 		 * or normal send (response to acked data) to clear the tlp
8970 		 * in progress flag.
8971 		 */
8972 		rack->rc_tlp_in_progress = 0;
8973 	}
8974 	SOCKBUF_LOCK_ASSERT(sb);
8975 	if (len > 0) {
8976 		if (len >= ctf_fixed_maxseg(tp))
8977 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
8978 		else
8979 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
8980 	}
8981 	/*
8982 	 * Before ESTABLISHED, force sending of initial options unless TCP
8983 	 * set not to do any options. NOTE: we assume that the IP/TCP header
8984 	 * plus TCP options always fit in a single mbuf, leaving room for a
8985 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
8986 	 * + optlen <= MCLBYTES
8987 	 */
8988 	optlen = 0;
8989 #ifdef INET6
8990 	if (isipv6)
8991 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
8992 	else
8993 #endif
8994 		hdrlen = sizeof(struct tcpiphdr);
8995 
8996 	/*
8997 	 * Compute options for segment. We only have to care about SYN and
8998 	 * established connection segments.  Options for SYN-ACK segments
8999 	 * are handled in TCP syncache.
9000 	 */
9001 	to.to_flags = 0;
9002 	if ((tp->t_flags & TF_NOOPT) == 0) {
9003 		/* Maximum segment size. */
9004 		if (flags & TH_SYN) {
9005 			tp->snd_nxt = tp->iss;
9006 			to.to_mss = tcp_mssopt(&inp->inp_inc);
9007 #ifdef NETFLIX_TCPOUDP
9008 			if (tp->t_port)
9009 				to.to_mss -= V_tcp_udp_tunneling_overhead;
9010 #endif
9011 			to.to_flags |= TOF_MSS;
9012 
9013 			/*
9014 			 * On SYN or SYN|ACK transmits on TFO connections,
9015 			 * only include the TFO option if it is not a
9016 			 * retransmit, as the presence of the TFO option may
9017 			 * have caused the original SYN or SYN|ACK to have
9018 			 * been dropped by a middlebox.
9019 			 */
9020 			if (IS_FASTOPEN(tp->t_flags) &&
9021 			    (tp->t_rxtshift == 0)) {
9022 				if (tp->t_state == TCPS_SYN_RECEIVED) {
9023 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
9024 					to.to_tfo_cookie =
9025 					    (u_int8_t *)&tp->t_tfo_cookie.server;
9026 					to.to_flags |= TOF_FASTOPEN;
9027 					wanted_cookie = 1;
9028 				} else if (tp->t_state == TCPS_SYN_SENT) {
9029 					to.to_tfo_len =
9030 					    tp->t_tfo_client_cookie_len;
9031 					to.to_tfo_cookie =
9032 					    tp->t_tfo_cookie.client;
9033 					to.to_flags |= TOF_FASTOPEN;
9034 					wanted_cookie = 1;
9035 					/*
9036 					 * If we wind up having more data to
9037 					 * send with the SYN than can fit in
9038 					 * one segment, don't send any more
9039 					 * until the SYN|ACK comes back from
9040 					 * the other end.
9041 					 */
9042 					sendalot = 0;
9043 				}
9044 			}
9045 		}
9046 		/* Window scaling. */
9047 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
9048 			to.to_wscale = tp->request_r_scale;
9049 			to.to_flags |= TOF_SCALE;
9050 		}
9051 		/* Timestamps. */
9052 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
9053 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
9054 			to.to_tsval = cts + tp->ts_offset;
9055 			to.to_tsecr = tp->ts_recent;
9056 			to.to_flags |= TOF_TS;
9057 		}
9058 		/* Set receive buffer autosizing timestamp. */
9059 		if (tp->rfbuf_ts == 0 &&
9060 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
9061 			tp->rfbuf_ts = tcp_ts_getticks();
9062 		/* Selective ACK's. */
9063 		if (flags & TH_SYN)
9064 			to.to_flags |= TOF_SACKPERM;
9065 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9066 		    tp->rcv_numsacks > 0) {
9067 			to.to_flags |= TOF_SACK;
9068 			to.to_nsacks = tp->rcv_numsacks;
9069 			to.to_sacks = (u_char *)tp->sackblks;
9070 		}
9071 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9072 		/* TCP-MD5 (RFC2385). */
9073 		if (tp->t_flags & TF_SIGNATURE)
9074 			to.to_flags |= TOF_SIGNATURE;
9075 #endif				/* TCP_SIGNATURE */
9076 
9077 		/* Processing the options. */
9078 		hdrlen += optlen = tcp_addoptions(&to, opt);
9079 		/*
9080 		 * If we wanted a TFO option to be added, but it was unable
9081 		 * to fit, ensure no data is sent.
9082 		 */
9083 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
9084 		    !(to.to_flags & TOF_FASTOPEN))
9085 			len = 0;
9086 	}
9087 #ifdef NETFLIX_TCPOUDP
9088 	if (tp->t_port) {
9089 		if (V_tcp_udp_tunneling_port == 0) {
9090 			/* The port was removed?? */
9091 			SOCKBUF_UNLOCK(&so->so_snd);
9092 			return (EHOSTUNREACH);
9093 		}
9094 		hdrlen += sizeof(struct udphdr);
9095 	}
9096 #endif
9097 #ifdef INET6
9098 	if (isipv6)
9099 		ipoptlen = ip6_optlen(tp->t_inpcb);
9100 	else
9101 #endif
9102 	if (tp->t_inpcb->inp_options)
9103 		ipoptlen = tp->t_inpcb->inp_options->m_len -
9104 		    offsetof(struct ipoption, ipopt_list);
9105 	else
9106 		ipoptlen = 0;
9107 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
9108 	ipoptlen += ipsec_optlen;
9109 #endif
9110 
9111 #ifdef KERN_TLS
9112  	/* force TSO for so TLS offload can get mss */
9113  	if (sb->sb_flags & SB_TLS_IFNET) {
9114  		force_tso = 1;
9115  	}
9116 #endif
9117 	/*
9118 	 * Adjust data length if insertion of options will bump the packet
9119 	 * length beyond the t_maxseg length. Clear the FIN bit because we
9120 	 * cut off the tail of the segment.
9121 	 */
9122 	if (len + optlen + ipoptlen > tp->t_maxseg) {
9123 		if (tso) {
9124 			uint32_t if_hw_tsomax;
9125 			uint32_t moff;
9126 			int32_t max_len;
9127 
9128 			/* extract TSO information */
9129 			if_hw_tsomax = tp->t_tsomax;
9130 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
9131 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
9132 			KASSERT(ipoptlen == 0,
9133 			    ("%s: TSO can't do IP options", __func__));
9134 
9135 			/*
9136 			 * Check if we should limit by maximum payload
9137 			 * length:
9138 			 */
9139 			if (if_hw_tsomax != 0) {
9140 				/* compute maximum TSO length */
9141 				max_len = (if_hw_tsomax - hdrlen -
9142 				    max_linkhdr);
9143 				if (max_len <= 0) {
9144 					len = 0;
9145 				} else if (len > max_len) {
9146 					sendalot = 1;
9147 					len = max_len;
9148 				}
9149 			}
9150 			/*
9151 			 * Prevent the last segment from being fractional
9152 			 * unless the send sockbuf can be emptied:
9153 			 */
9154 			max_len = (tp->t_maxseg - optlen);
9155 			if (((sb_offset + len) < sbavail(sb)) &&
9156 			    (hw_tls == 0)) {
9157 				moff = len % (u_int)max_len;
9158 				if (moff != 0) {
9159 					len -= moff;
9160 					sendalot = 1;
9161 				}
9162 			}
9163                         /*
9164 			 * In case there are too many small fragments don't
9165 			 * use TSO:
9166 			 */
9167 			if (len <= maxseg) {
9168 				len = max_len;
9169 				sendalot = 1;
9170 				tso = 0;
9171 			}
9172 			/*
9173 			 * Send the FIN in a separate segment after the bulk
9174 			 * sending is done. We don't trust the TSO
9175 			 * implementations to clear the FIN flag on all but
9176 			 * the last segment.
9177 			 */
9178 			if (tp->t_flags & TF_NEEDFIN)
9179 				sendalot = 1;
9180 
9181 		} else {
9182 			if (optlen + ipoptlen >= tp->t_maxseg) {
9183 				/*
9184 				 * Since we don't have enough space to put
9185 				 * the IP header chain and the TCP header in
9186 				 * one packet as required by RFC 7112, don't
9187 				 * send it. Also ensure that at least one
9188 				 * byte of the payload can be put into the
9189 				 * TCP segment.
9190 				 */
9191 				SOCKBUF_UNLOCK(&so->so_snd);
9192 				error = EMSGSIZE;
9193 				sack_rxmit = 0;
9194 				goto out;
9195 			}
9196 			len = tp->t_maxseg - optlen - ipoptlen;
9197 			sendalot = 1;
9198 		}
9199 	} else
9200 		tso = 0;
9201 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
9202 	    ("%s: len > IP_MAXPACKET", __func__));
9203 #ifdef DIAGNOSTIC
9204 #ifdef INET6
9205 	if (max_linkhdr + hdrlen > MCLBYTES)
9206 #else
9207 	if (max_linkhdr + hdrlen > MHLEN)
9208 #endif
9209 		panic("tcphdr too big");
9210 #endif
9211 
9212 	/*
9213 	 * This KASSERT is here to catch edge cases at a well defined place.
9214 	 * Before, those had triggered (random) panic conditions further
9215 	 * down.
9216 	 */
9217 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
9218 	if ((len == 0) &&
9219 	    (flags & TH_FIN) &&
9220 	    (sbused(sb))) {
9221 		/*
9222 		 * We have outstanding data, don't send a fin by itself!.
9223 		 */
9224 		goto just_return;
9225 	}
9226 	/*
9227 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
9228 	 * and initialize the header from the template for sends on this
9229 	 * connection.
9230 	 */
9231 	if (len) {
9232 		uint32_t max_val;
9233 		uint32_t moff;
9234 
9235 		if (rack->rc_pace_max_segs)
9236 			max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
9237 		else
9238 			max_val = len;
9239 		if (rack->r_ctl.rc_pace_max_segs < max_val)
9240 			max_val = rack->r_ctl.rc_pace_max_segs;
9241 		/*
9242 		 * We allow a limit on sending with hptsi.
9243 		 */
9244 		if (len > max_val) {
9245 			len = max_val;
9246 		}
9247 #ifdef INET6
9248 		if (MHLEN < hdrlen + max_linkhdr)
9249 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
9250 		else
9251 #endif
9252 			m = m_gethdr(M_NOWAIT, MT_DATA);
9253 
9254 		if (m == NULL) {
9255 			SOCKBUF_UNLOCK(sb);
9256 			error = ENOBUFS;
9257 			sack_rxmit = 0;
9258 			goto out;
9259 		}
9260 		m->m_data += max_linkhdr;
9261 		m->m_len = hdrlen;
9262 
9263 		/*
9264 		 * Start the m_copy functions from the closest mbuf to the
9265 		 * sb_offset in the socket buffer chain.
9266 		 */
9267 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
9268 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
9269 			m_copydata(mb, moff, (int)len,
9270 			    mtod(m, caddr_t)+hdrlen);
9271 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9272 				sbsndptr_adv(sb, mb, len);
9273 			m->m_len += len;
9274 		} else {
9275 			struct sockbuf *msb;
9276 
9277 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9278 				msb = NULL;
9279 			else
9280 				msb = sb;
9281 			m->m_next = tcp_m_copym(
9282 #ifdef NETFLIX_COPY_ARGS
9283 				tp,
9284 #endif
9285 				mb, moff, &len,
9286 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
9287 			    ((rsm == NULL) ? hw_tls : 0)
9288 #ifdef NETFLIX_COPY_ARGS
9289 				, &filled_all
9290 #endif
9291 				);
9292 			if (len <= (tp->t_maxseg - optlen)) {
9293 				/*
9294 				 * Must have ran out of mbufs for the copy
9295 				 * shorten it to no longer need tso. Lets
9296 				 * not put on sendalot since we are low on
9297 				 * mbufs.
9298 				 */
9299 				tso = 0;
9300 			}
9301 			if (m->m_next == NULL) {
9302 				SOCKBUF_UNLOCK(sb);
9303 				(void)m_free(m);
9304 				error = ENOBUFS;
9305 				sack_rxmit = 0;
9306 				goto out;
9307 			}
9308 		}
9309 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
9310 			TCPSTAT_INC(tcps_sndprobe);
9311 #ifdef STATS
9312 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9313 				stats_voi_update_abs_u32(tp->t_stats,
9314 				    VOI_TCP_RETXPB, len);
9315 			else
9316 				stats_voi_update_abs_u64(tp->t_stats,
9317 				    VOI_TCP_TXPB, len);
9318 #endif
9319 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
9320 			if (rsm && (rsm->r_flags & RACK_TLP)) {
9321 				/*
9322 				 * TLP should not count in retran count, but
9323 				 * in its own bin
9324 				 */
9325 				counter_u64_add(rack_tlp_retran, 1);
9326 				counter_u64_add(rack_tlp_retran_bytes, len);
9327 			} else {
9328 				tp->t_sndrexmitpack++;
9329 				TCPSTAT_INC(tcps_sndrexmitpack);
9330 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
9331 			}
9332 #ifdef STATS
9333 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
9334 			    len);
9335 #endif
9336 		} else {
9337 			TCPSTAT_INC(tcps_sndpack);
9338 			TCPSTAT_ADD(tcps_sndbyte, len);
9339 #ifdef STATS
9340 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
9341 			    len);
9342 #endif
9343 		}
9344 		/*
9345 		 * If we're sending everything we've got, set PUSH. (This
9346 		 * will keep happy those implementations which only give
9347 		 * data to the user when a buffer fills or a PUSH comes in.)
9348 		 */
9349 		if (sb_offset + len == sbused(sb) &&
9350 		    sbused(sb) &&
9351 		    !(flags & TH_SYN))
9352 			flags |= TH_PUSH;
9353 
9354 		/*
9355 		 * Are we doing pacing, if so we must calculate the slot. We
9356 		 * only do hptsi in ESTABLISHED and with no RESET being
9357 		 * sent where we have data to send.
9358 		 */
9359 		if (((tp->t_state == TCPS_ESTABLISHED) ||
9360 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
9361 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
9362 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
9363 		    ((flags & TH_FIN) == 0))) &&
9364 		    ((flags & TH_RST) == 0)) {
9365 			/* Get our pacing rate */
9366 			tot_len_this_send += len;
9367 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
9368 		}
9369 		SOCKBUF_UNLOCK(sb);
9370 	} else {
9371 		SOCKBUF_UNLOCK(sb);
9372 		if (tp->t_flags & TF_ACKNOW)
9373 			TCPSTAT_INC(tcps_sndacks);
9374 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
9375 			TCPSTAT_INC(tcps_sndctrl);
9376 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
9377 			TCPSTAT_INC(tcps_sndurg);
9378 		else
9379 			TCPSTAT_INC(tcps_sndwinup);
9380 
9381 		m = m_gethdr(M_NOWAIT, MT_DATA);
9382 		if (m == NULL) {
9383 			error = ENOBUFS;
9384 			sack_rxmit = 0;
9385 			goto out;
9386 		}
9387 #ifdef INET6
9388 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
9389 		    MHLEN >= hdrlen) {
9390 			M_ALIGN(m, hdrlen);
9391 		} else
9392 #endif
9393 			m->m_data += max_linkhdr;
9394 		m->m_len = hdrlen;
9395 	}
9396 	SOCKBUF_UNLOCK_ASSERT(sb);
9397 	m->m_pkthdr.rcvif = (struct ifnet *)0;
9398 #ifdef MAC
9399 	mac_inpcb_create_mbuf(inp, m);
9400 #endif
9401 #ifdef INET6
9402 	if (isipv6) {
9403 		ip6 = mtod(m, struct ip6_hdr *);
9404 #ifdef NETFLIX_TCPOUDP
9405 		if (tp->t_port) {
9406 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
9407 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9408 			udp->uh_dport = tp->t_port;
9409 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
9410 			udp->uh_ulen = htons(ulen);
9411 			th = (struct tcphdr *)(udp + 1);
9412 		} else
9413 #endif
9414 			th = (struct tcphdr *)(ip6 + 1);
9415 		tcpip_fillheaders(inp,
9416 #ifdef NETFLIX_TCPOUDP
9417 				  tp->t_port,
9418 #endif
9419 				  ip6, th);
9420 	} else
9421 #endif				/* INET6 */
9422 	{
9423 		ip = mtod(m, struct ip *);
9424 #ifdef TCPDEBUG
9425 		ipov = (struct ipovly *)ip;
9426 #endif
9427 #ifdef NETFLIX_TCPOUDP
9428 		if (tp->t_port) {
9429 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
9430 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9431 			udp->uh_dport = tp->t_port;
9432 			ulen = hdrlen + len - sizeof(struct ip);
9433 			udp->uh_ulen = htons(ulen);
9434 			th = (struct tcphdr *)(udp + 1);
9435 		} else
9436 #endif
9437 			th = (struct tcphdr *)(ip + 1);
9438 		tcpip_fillheaders(inp,
9439 #ifdef NETFLIX_TCPOUDP
9440 				  tp->t_port,
9441 #endif
9442 				  ip, th);
9443 	}
9444 	/*
9445 	 * Fill in fields, remembering maximum advertised window for use in
9446 	 * delaying messages about window sizes. If resending a FIN, be sure
9447 	 * not to use a new sequence number.
9448 	 */
9449 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
9450 	    tp->snd_nxt == tp->snd_max)
9451 		tp->snd_nxt--;
9452 	/*
9453 	 * If we are starting a connection, send ECN setup SYN packet. If we
9454 	 * are on a retransmit, we may resend those bits a number of times
9455 	 * as per RFC 3168.
9456 	 */
9457 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
9458 		if (tp->t_rxtshift >= 1) {
9459 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
9460 				flags |= TH_ECE | TH_CWR;
9461 		} else
9462 			flags |= TH_ECE | TH_CWR;
9463 	}
9464 	if (tp->t_state == TCPS_ESTABLISHED &&
9465 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
9466 		/*
9467 		 * If the peer has ECN, mark data packets with ECN capable
9468 		 * transmission (ECT). Ignore pure ack packets,
9469 		 * retransmissions and window probes.
9470 		 */
9471 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
9472 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
9473 #ifdef INET6
9474 			if (isipv6)
9475 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
9476 			else
9477 #endif
9478 				ip->ip_tos |= IPTOS_ECN_ECT0;
9479 			TCPSTAT_INC(tcps_ecn_ect0);
9480 		}
9481 		/*
9482 		 * Reply with proper ECN notifications.
9483 		 */
9484 		if (tp->t_flags2 & TF2_ECN_SND_CWR) {
9485 			flags |= TH_CWR;
9486 			tp->t_flags2 &= ~TF2_ECN_SND_CWR;
9487 		}
9488 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
9489 			flags |= TH_ECE;
9490 	}
9491 	/*
9492 	 * If we are doing retransmissions, then snd_nxt will not reflect
9493 	 * the first unsent octet.  For ACK only packets, we do not want the
9494 	 * sequence number of the retransmitted packet, we want the sequence
9495 	 * number of the next unsent octet.  So, if there is no data (and no
9496 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
9497 	 * ti_seq.  But if we are in persist state, snd_max might reflect
9498 	 * one byte beyond the right edge of the window, so use snd_nxt in
9499 	 * that case, since we know we aren't doing a retransmission.
9500 	 * (retransmit and persist are mutually exclusive...)
9501 	 */
9502 	if (sack_rxmit == 0) {
9503 		if (len || (flags & (TH_SYN | TH_FIN)) ||
9504 		    rack->rc_in_persist) {
9505 			th->th_seq = htonl(tp->snd_nxt);
9506 			rack_seq = tp->snd_nxt;
9507 		} else if (flags & TH_RST) {
9508 			/*
9509 			 * For a Reset send the last cum ack in sequence
9510 			 * (this like any other choice may still generate a
9511 			 * challenge ack, if a ack-update packet is in
9512 			 * flight).
9513 			 */
9514 			th->th_seq = htonl(tp->snd_una);
9515 			rack_seq = tp->snd_una;
9516 		} else {
9517 			th->th_seq = htonl(tp->snd_max);
9518 			rack_seq = tp->snd_max;
9519 		}
9520 	} else {
9521 		th->th_seq = htonl(rsm->r_start);
9522 		rack_seq = rsm->r_start;
9523 	}
9524 	th->th_ack = htonl(tp->rcv_nxt);
9525 	if (optlen) {
9526 		bcopy(opt, th + 1, optlen);
9527 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
9528 	}
9529 	th->th_flags = flags;
9530 	/*
9531 	 * Calculate receive window.  Don't shrink window, but avoid silly
9532 	 * window syndrome.
9533 	 * If a RST segment is sent, advertise a window of zero.
9534 	 */
9535 	if (flags & TH_RST) {
9536 		recwin = 0;
9537 	} else {
9538 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
9539 		    recwin < (long)ctf_fixed_maxseg(tp))
9540 			recwin = 0;
9541 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
9542 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
9543 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
9544 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
9545 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
9546 	}
9547 
9548 	/*
9549 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
9550 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
9551 	 * handled in syncache.
9552 	 */
9553 	if (flags & TH_SYN)
9554 		th->th_win = htons((u_short)
9555 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
9556 	else
9557 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
9558 	/*
9559 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
9560 	 * window.  This may cause the remote transmitter to stall.  This
9561 	 * flag tells soreceive() to disable delayed acknowledgements when
9562 	 * draining the buffer.  This can occur if the receiver is
9563 	 * attempting to read more data than can be buffered prior to
9564 	 * transmitting on the connection.
9565 	 */
9566 	if (th->th_win == 0) {
9567 		tp->t_sndzerowin++;
9568 		tp->t_flags |= TF_RXWIN0SENT;
9569 	} else
9570 		tp->t_flags &= ~TF_RXWIN0SENT;
9571 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
9572 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
9573 		th->th_flags |= TH_URG;
9574 	} else
9575 		/*
9576 		 * If no urgent pointer to send, then we pull the urgent
9577 		 * pointer to the left edge of the send window so that it
9578 		 * doesn't drift into the send window on sequence number
9579 		 * wraparound.
9580 		 */
9581 		tp->snd_up = tp->snd_una;	/* drag it along */
9582 
9583 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9584 	if (to.to_flags & TOF_SIGNATURE) {
9585 		/*
9586 		 * Calculate MD5 signature and put it into the place
9587 		 * determined before.
9588 		 * NOTE: since TCP options buffer doesn't point into
9589 		 * mbuf's data, calculate offset and use it.
9590 		 */
9591 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
9592 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
9593 			/*
9594 			 * Do not send segment if the calculation of MD5
9595 			 * digest has failed.
9596 			 */
9597 			goto out;
9598 		}
9599 	}
9600 #endif
9601 
9602 	/*
9603 	 * Put TCP length in extended header, and then checksum extended
9604 	 * header and data.
9605 	 */
9606 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
9607 #ifdef INET6
9608 	if (isipv6) {
9609 		/*
9610 		 * ip6_plen is not need to be filled now, and will be filled
9611 		 * in ip6_output.
9612 		 */
9613 		if (tp->t_port) {
9614 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
9615 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9616 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
9617 			th->th_sum = htons(0);
9618 			UDPSTAT_INC(udps_opackets);
9619 		} else {
9620 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
9621 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9622 			th->th_sum = in6_cksum_pseudo(ip6,
9623 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
9624 			    0);
9625 		}
9626 	}
9627 #endif
9628 #if defined(INET6) && defined(INET)
9629 	else
9630 #endif
9631 #ifdef INET
9632 	{
9633 		if (tp->t_port) {
9634 			m->m_pkthdr.csum_flags = CSUM_UDP;
9635 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9636 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
9637 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
9638 			th->th_sum = htons(0);
9639 			UDPSTAT_INC(udps_opackets);
9640 		} else {
9641 			m->m_pkthdr.csum_flags = CSUM_TCP;
9642 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9643 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
9644 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
9645 			    IPPROTO_TCP + len + optlen));
9646 		}
9647 		/* IP version must be set here for ipv4/ipv6 checking later */
9648 		KASSERT(ip->ip_v == IPVERSION,
9649 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
9650 	}
9651 #endif
9652 	/*
9653 	 * Enable TSO and specify the size of the segments. The TCP pseudo
9654 	 * header checksum is always provided. XXX: Fixme: This is currently
9655 	 * not the case for IPv6.
9656 	 */
9657 	if (tso || force_tso) {
9658 		KASSERT(force_tso || len > tp->t_maxseg - optlen,
9659 		    ("%s: len <= tso_segsz", __func__));
9660 		m->m_pkthdr.csum_flags |= CSUM_TSO;
9661 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
9662 	}
9663 	KASSERT(len + hdrlen == m_length(m, NULL),
9664 	    ("%s: mbuf chain different than expected: %d + %u != %u",
9665 	    __func__, len, hdrlen, m_length(m, NULL)));
9666 
9667 #ifdef TCP_HHOOK
9668 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
9669 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
9670 #endif
9671 #ifdef TCPDEBUG
9672 	/*
9673 	 * Trace.
9674 	 */
9675 	if (so->so_options & SO_DEBUG) {
9676 		u_short save = 0;
9677 
9678 #ifdef INET6
9679 		if (!isipv6)
9680 #endif
9681 		{
9682 			save = ipov->ih_len;
9683 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
9684 			      * (th->th_off << 2) */ );
9685 		}
9686 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
9687 #ifdef INET6
9688 		if (!isipv6)
9689 #endif
9690 			ipov->ih_len = save;
9691 	}
9692 #endif				/* TCPDEBUG */
9693 
9694 	/* We're getting ready to send; log now. */
9695 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
9696 		union tcp_log_stackspecific log;
9697 		struct timeval tv;
9698 
9699 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
9700 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
9701 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
9702 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
9703 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
9704 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
9705 		log.u_bbr.flex4 = orig_len;
9706 		if (filled_all)
9707 			log.u_bbr.flex5 = 0x80000000;
9708 		else
9709 			log.u_bbr.flex5 = 0;
9710 		if (rsm || sack_rxmit) {
9711 			log.u_bbr.flex8 = 1;
9712 		} else {
9713 			log.u_bbr.flex8 = 0;
9714 		}
9715 		log.u_bbr.pkts_out = tp->t_maxseg;
9716 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
9717 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9718 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
9719 		    len, &log, false, NULL, NULL, 0, &tv);
9720 	} else
9721 		lgb = NULL;
9722 
9723 	/*
9724 	 * Fill in IP length and desired time to live and send to IP level.
9725 	 * There should be a better way to handle ttl and tos; we could keep
9726 	 * them in the template, but need a way to checksum without them.
9727 	 */
9728 	/*
9729 	 * m->m_pkthdr.len should have been set before cksum calcuration,
9730 	 * because in6_cksum() need it.
9731 	 */
9732 #ifdef INET6
9733 	if (isipv6) {
9734 		/*
9735 		 * we separately set hoplimit for every segment, since the
9736 		 * user might want to change the value via setsockopt. Also,
9737 		 * desired default hop limit might be changed via Neighbor
9738 		 * Discovery.
9739 		 */
9740 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
9741 
9742 		/*
9743 		 * Set the packet size here for the benefit of DTrace
9744 		 * probes. ip6_output() will set it properly; it's supposed
9745 		 * to include the option header lengths as well.
9746 		 */
9747 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
9748 
9749 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
9750 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9751 		else
9752 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9753 
9754 		if (tp->t_state == TCPS_SYN_SENT)
9755 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
9756 
9757 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
9758 		/* TODO: IPv6 IP6TOS_ECT bit on */
9759 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
9760 		    &inp->inp_route6,
9761 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
9762 		    NULL, NULL, inp);
9763 
9764 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
9765 			mtu = inp->inp_route6.ro_rt->rt_mtu;
9766 	}
9767 #endif				/* INET6 */
9768 #if defined(INET) && defined(INET6)
9769 	else
9770 #endif
9771 #ifdef INET
9772 	{
9773 		ip->ip_len = htons(m->m_pkthdr.len);
9774 #ifdef INET6
9775 		if (inp->inp_vflag & INP_IPV6PROTO)
9776 			ip->ip_ttl = in6_selecthlim(inp, NULL);
9777 #endif				/* INET6 */
9778 		/*
9779 		 * If we do path MTU discovery, then we set DF on every
9780 		 * packet. This might not be the best thing to do according
9781 		 * to RFC3390 Section 2. However the tcp hostcache migitates
9782 		 * the problem so it affects only the first tcp connection
9783 		 * with a host.
9784 		 *
9785 		 * NB: Don't set DF on small MTU/MSS to have a safe
9786 		 * fallback.
9787 		 */
9788 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
9789 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9790 			if (tp->t_port == 0 || len < V_tcp_minmss) {
9791 				ip->ip_off |= htons(IP_DF);
9792 			}
9793 		} else {
9794 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9795 		}
9796 
9797 		if (tp->t_state == TCPS_SYN_SENT)
9798 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
9799 
9800 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
9801 
9802 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
9803 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
9804 		    inp);
9805 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
9806 			mtu = inp->inp_route.ro_rt->rt_mtu;
9807 	}
9808 #endif				/* INET */
9809 
9810 out:
9811 	if (lgb) {
9812 		lgb->tlb_errno = error;
9813 		lgb = NULL;
9814 	}
9815 	/*
9816 	 * In transmit state, time the transmission and arrange for the
9817 	 * retransmit.  In persist state, just set snd_max.
9818 	 */
9819 	if (error == 0) {
9820 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9821 		    (tp->t_flags & TF_SACK_PERMIT) &&
9822 		    tp->rcv_numsacks > 0)
9823 			tcp_clean_dsack_blocks(tp);
9824 		if (len == 0)
9825 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
9826 		else if (len == 1) {
9827 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
9828 		} else if (len > 1) {
9829 			int idx;
9830 
9831 			idx = (len / ctf_fixed_maxseg(tp)) + 3;
9832 			if (idx >= TCP_MSS_ACCT_ATIMER)
9833 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
9834 			else
9835 				counter_u64_add(rack_out_size[idx], 1);
9836 		}
9837 		if (hw_tls && len > 0) {
9838 			if (filled_all) {
9839 				counter_u64_add(rack_tls_filled, 1);
9840 				rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
9841 			} else {
9842 				if (rsm) {
9843 					counter_u64_add(rack_tls_rxt, 1);
9844 					rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
9845 				} else if (doing_tlp) {
9846 					counter_u64_add(rack_tls_tlp, 1);
9847 					rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
9848 				} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
9849 					counter_u64_add(rack_tls_app, 1);
9850 					rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
9851 				} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
9852 					counter_u64_add(rack_tls_cwnd, 1);
9853 					rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
9854 				} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
9855 					counter_u64_add(rack_tls_rwnd, 1);
9856 					rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
9857 				} else {
9858 					rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
9859 					counter_u64_add(rack_tls_other, 1);
9860 				}
9861 			}
9862 		}
9863 	}
9864 	if (sub_from_prr && (error == 0)) {
9865 		if (rack->r_ctl.rc_prr_sndcnt >= len)
9866 			rack->r_ctl.rc_prr_sndcnt -= len;
9867 		else
9868 			rack->r_ctl.rc_prr_sndcnt = 0;
9869 	}
9870 	sub_from_prr = 0;
9871 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
9872 	    pass, rsm);
9873 	if ((error == 0) &&
9874 	    (len > 0) &&
9875 	    (tp->snd_una == tp->snd_max))
9876 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
9877 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
9878 	    (rack->rc_in_persist == 0)) {
9879 		tcp_seq startseq = tp->snd_nxt;
9880 
9881 		/*
9882 		 * Advance snd_nxt over sequence space of this segment.
9883 		 */
9884 		if (error)
9885 			/* We don't log or do anything with errors */
9886 			goto nomore;
9887 
9888 		if (flags & (TH_SYN | TH_FIN)) {
9889 			if (flags & TH_SYN)
9890 				tp->snd_nxt++;
9891 			if (flags & TH_FIN) {
9892 				tp->snd_nxt++;
9893 				tp->t_flags |= TF_SENTFIN;
9894 			}
9895 		}
9896 		/* In the ENOBUFS case we do *not* update snd_max */
9897 		if (sack_rxmit)
9898 			goto nomore;
9899 
9900 		tp->snd_nxt += len;
9901 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
9902 			if (tp->snd_una == tp->snd_max) {
9903 				/*
9904 				 * Update the time we just added data since
9905 				 * none was outstanding.
9906 				 */
9907 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9908 				tp->t_acktime = ticks;
9909 			}
9910 			tp->snd_max = tp->snd_nxt;
9911 			/*
9912 			 * Time this transmission if not a retransmission and
9913 			 * not currently timing anything.
9914 			 * This is only relevant in case of switching back to
9915 			 * the base stack.
9916 			 */
9917 			if (tp->t_rtttime == 0) {
9918 				tp->t_rtttime = ticks;
9919 				tp->t_rtseq = startseq;
9920 				TCPSTAT_INC(tcps_segstimed);
9921 			}
9922 #ifdef STATS
9923 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
9924 				tp->t_flags |= TF_GPUTINPROG;
9925 				tp->gput_seq = startseq;
9926 				tp->gput_ack = startseq +
9927 				    ulmin(sbavail(sb) - sb_offset, sendwin);
9928 				tp->gput_ts = tcp_ts_getticks();
9929 			}
9930 #endif
9931 		}
9932 	} else {
9933 		/*
9934 		 * Persist case, update snd_max but since we are in persist
9935 		 * mode (no window) we do not update snd_nxt.
9936 		 */
9937 		int32_t xlen = len;
9938 
9939 		if (error)
9940 			goto nomore;
9941 
9942 		if (flags & TH_SYN)
9943 			++xlen;
9944 		if (flags & TH_FIN) {
9945 			++xlen;
9946 			tp->t_flags |= TF_SENTFIN;
9947 		}
9948 		/* In the ENOBUFS case we do *not* update snd_max */
9949 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
9950 			if (tp->snd_una == tp->snd_max) {
9951 				/*
9952 				 * Update the time we just added data since
9953 				 * none was outstanding.
9954 				 */
9955 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9956 				tp->t_acktime = ticks;
9957 			}
9958 			tp->snd_max = tp->snd_nxt + len;
9959 		}
9960 	}
9961 nomore:
9962 	if (error) {
9963 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
9964 		/*
9965 		 * Failures do not advance the seq counter above. For the
9966 		 * case of ENOBUFS we will fall out and retry in 1ms with
9967 		 * the hpts. Everything else will just have to retransmit
9968 		 * with the timer.
9969 		 *
9970 		 * In any case, we do not want to loop around for another
9971 		 * send without a good reason.
9972 		 */
9973 		sendalot = 0;
9974 		switch (error) {
9975 		case EPERM:
9976 			tp->t_flags &= ~TF_FORCEDATA;
9977 			tp->t_softerror = error;
9978 			return (error);
9979 		case ENOBUFS:
9980 			if (slot == 0) {
9981 				/*
9982 				 * Pace us right away to retry in a some
9983 				 * time
9984 				 */
9985 				slot = 1 + rack->rc_enobuf;
9986 				if (rack->rc_enobuf < 255)
9987 					rack->rc_enobuf++;
9988 				if (slot > (rack->rc_rack_rtt / 2)) {
9989 					slot = rack->rc_rack_rtt / 2;
9990 				}
9991 				if (slot < 10)
9992 					slot = 10;
9993 			}
9994 			counter_u64_add(rack_saw_enobuf, 1);
9995 			error = 0;
9996 			goto enobufs;
9997 		case EMSGSIZE:
9998 			/*
9999 			 * For some reason the interface we used initially
10000 			 * to send segments changed to another or lowered
10001 			 * its MTU. If TSO was active we either got an
10002 			 * interface without TSO capabilits or TSO was
10003 			 * turned off. If we obtained mtu from ip_output()
10004 			 * then update it and try again.
10005 			 */
10006 			if (tso)
10007 				tp->t_flags &= ~TF_TSO;
10008 			if (mtu != 0) {
10009 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
10010 				goto again;
10011 			}
10012 			slot = 10;
10013 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10014 			tp->t_flags &= ~TF_FORCEDATA;
10015 			return (error);
10016 		case ENETUNREACH:
10017 			counter_u64_add(rack_saw_enetunreach, 1);
10018 		case EHOSTDOWN:
10019 		case EHOSTUNREACH:
10020 		case ENETDOWN:
10021 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
10022 				tp->t_softerror = error;
10023 			}
10024 			/* FALLTHROUGH */
10025 		default:
10026 			slot = 10;
10027 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10028 			tp->t_flags &= ~TF_FORCEDATA;
10029 			return (error);
10030 		}
10031 	} else {
10032 		rack->rc_enobuf = 0;
10033 	}
10034 	TCPSTAT_INC(tcps_sndtotal);
10035 
10036 	/*
10037 	 * Data sent (as far as we can tell). If this advertises a larger
10038 	 * window than any other segment, then remember the size of the
10039 	 * advertised window. Any pending ACK has now been sent.
10040 	 */
10041 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
10042 		tp->rcv_adv = tp->rcv_nxt + recwin;
10043 	tp->last_ack_sent = tp->rcv_nxt;
10044 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
10045 enobufs:
10046 	rack->r_tlp_running = 0;
10047 	if (flags & TH_RST) {
10048 		/*
10049 		 * We don't send again after sending a RST.
10050 		 */
10051 		slot = 0;
10052 		sendalot = 0;
10053 	}
10054 	if (rsm && (slot == 0)) {
10055 		/*
10056 		 * Dup ack retransmission possibly, so
10057 		 * lets assure we have at least min rack
10058 		 * time, if its a rack resend then the rack
10059 		 * to will also be set to this.
10060 		 */
10061 		slot = rack->r_ctl.rc_min_to;
10062 	}
10063 	if (slot) {
10064 		/* set the rack tcb into the slot N */
10065 		counter_u64_add(rack_paced_segments, 1);
10066 	} else if (sendalot) {
10067 		if (len)
10068 			counter_u64_add(rack_unpaced_segments, 1);
10069 		sack_rxmit = 0;
10070 		tp->t_flags &= ~TF_FORCEDATA;
10071 		goto again;
10072 	} else if (len) {
10073 		counter_u64_add(rack_unpaced_segments, 1);
10074 	}
10075 	tp->t_flags &= ~TF_FORCEDATA;
10076 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
10077 	return (error);
10078 }
10079 
10080 /*
10081  * rack_ctloutput() must drop the inpcb lock before performing copyin on
10082  * socket option arguments.  When it re-acquires the lock after the copy, it
10083  * has to revalidate that the connection is still valid for the socket
10084  * option.
10085  */
10086 static int
10087 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
10088     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10089 {
10090 	int32_t error = 0, optval;
10091 
10092 	switch (sopt->sopt_name) {
10093 	case TCP_RACK_PROP_RATE:
10094 	case TCP_RACK_PROP:
10095 	case TCP_RACK_TLP_REDUCE:
10096 	case TCP_RACK_EARLY_RECOV:
10097 	case TCP_RACK_PACE_ALWAYS:
10098 	case TCP_DELACK:
10099 	case TCP_RACK_PACE_REDUCE:
10100 	case TCP_RACK_PACE_MAX_SEG:
10101 	case TCP_RACK_PRR_SENDALOT:
10102 	case TCP_RACK_MIN_TO:
10103 	case TCP_RACK_EARLY_SEG:
10104 	case TCP_RACK_REORD_THRESH:
10105 	case TCP_RACK_REORD_FADE:
10106 	case TCP_RACK_TLP_THRESH:
10107 	case TCP_RACK_PKT_DELAY:
10108 	case TCP_RACK_TLP_USE:
10109 	case TCP_RACK_TLP_INC_VAR:
10110 	case TCP_RACK_IDLE_REDUCE_HIGH:
10111 	case TCP_RACK_MIN_PACE:
10112 	case TCP_RACK_GP_INCREASE:
10113 	case TCP_BBR_RACK_RTT_USE:
10114 	case TCP_BBR_USE_RACK_CHEAT:
10115 	case TCP_RACK_DO_DETECTION:
10116 	case TCP_DATA_AFTER_CLOSE:
10117 		break;
10118 	default:
10119 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10120 		break;
10121 	}
10122 	INP_WUNLOCK(inp);
10123 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
10124 	if (error)
10125 		return (error);
10126 	INP_WLOCK(inp);
10127 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
10128 		INP_WUNLOCK(inp);
10129 		return (ECONNRESET);
10130 	}
10131 	tp = intotcpcb(inp);
10132 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10133 	switch (sopt->sopt_name) {
10134 	case TCP_RACK_DO_DETECTION:
10135 		RACK_OPTS_INC(tcp_rack_do_detection);
10136 		if (optval == 0)
10137 			rack->do_detection = 0;
10138 		else
10139 			rack->do_detection = 1;
10140 		break;
10141 	case TCP_RACK_PROP_RATE:
10142 		if ((optval <= 0) || (optval >= 100)) {
10143 			error = EINVAL;
10144 			break;
10145 		}
10146 		RACK_OPTS_INC(tcp_rack_prop_rate);
10147 		rack->r_ctl.rc_prop_rate = optval;
10148 		break;
10149 	case TCP_RACK_TLP_USE:
10150 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
10151 			error = EINVAL;
10152 			break;
10153 		}
10154 		RACK_OPTS_INC(tcp_tlp_use);
10155 		rack->rack_tlp_threshold_use = optval;
10156 		break;
10157 	case TCP_RACK_PROP:
10158 		/* RACK proportional rate reduction (bool) */
10159 		RACK_OPTS_INC(tcp_rack_prop);
10160 		rack->r_ctl.rc_prop_reduce = optval;
10161 		break;
10162 	case TCP_RACK_TLP_REDUCE:
10163 		/* RACK TLP cwnd reduction (bool) */
10164 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
10165 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
10166 		break;
10167 	case TCP_RACK_EARLY_RECOV:
10168 		/* Should recovery happen early (bool) */
10169 		RACK_OPTS_INC(tcp_rack_early_recov);
10170 		rack->r_ctl.rc_early_recovery = optval;
10171 		break;
10172 	case TCP_RACK_PACE_ALWAYS:
10173 		/* Use the always pace method (bool)  */
10174 		RACK_OPTS_INC(tcp_rack_pace_always);
10175 		if (optval > 0)
10176 			rack->rc_always_pace = 1;
10177 		else
10178 			rack->rc_always_pace = 0;
10179 		break;
10180 	case TCP_RACK_PACE_REDUCE:
10181 		/* RACK Hptsi reduction factor (divisor) */
10182 		RACK_OPTS_INC(tcp_rack_pace_reduce);
10183 		if (optval)
10184 			/* Must be non-zero */
10185 			rack->rc_pace_reduce = optval;
10186 		else
10187 			error = EINVAL;
10188 		break;
10189 	case TCP_RACK_PACE_MAX_SEG:
10190 		/* Max segments in a pace */
10191 		RACK_OPTS_INC(tcp_rack_max_seg);
10192 		rack->rc_pace_max_segs = optval;
10193 		rack_set_pace_segments(tp, rack);
10194 		break;
10195 	case TCP_RACK_PRR_SENDALOT:
10196 		/* Allow PRR to send more than one seg */
10197 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
10198 		rack->r_ctl.rc_prr_sendalot = optval;
10199 		break;
10200 	case TCP_RACK_MIN_TO:
10201 		/* Minimum time between rack t-o's in ms */
10202 		RACK_OPTS_INC(tcp_rack_min_to);
10203 		rack->r_ctl.rc_min_to = optval;
10204 		break;
10205 	case TCP_RACK_EARLY_SEG:
10206 		/* If early recovery max segments */
10207 		RACK_OPTS_INC(tcp_rack_early_seg);
10208 		rack->r_ctl.rc_early_recovery_segs = optval;
10209 		break;
10210 	case TCP_RACK_REORD_THRESH:
10211 		/* RACK reorder threshold (shift amount) */
10212 		RACK_OPTS_INC(tcp_rack_reord_thresh);
10213 		if ((optval > 0) && (optval < 31))
10214 			rack->r_ctl.rc_reorder_shift = optval;
10215 		else
10216 			error = EINVAL;
10217 		break;
10218 	case TCP_RACK_REORD_FADE:
10219 		/* Does reordering fade after ms time */
10220 		RACK_OPTS_INC(tcp_rack_reord_fade);
10221 		rack->r_ctl.rc_reorder_fade = optval;
10222 		break;
10223 	case TCP_RACK_TLP_THRESH:
10224 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10225 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
10226 		if (optval)
10227 			rack->r_ctl.rc_tlp_threshold = optval;
10228 		else
10229 			error = EINVAL;
10230 		break;
10231 	case TCP_BBR_USE_RACK_CHEAT:
10232 		RACK_OPTS_INC(tcp_rack_cheat);
10233 		if (optval)
10234 			rack->use_rack_cheat = 1;
10235 		else
10236 			rack->use_rack_cheat = 0;
10237 		break;
10238 	case TCP_RACK_PKT_DELAY:
10239 		/* RACK added ms i.e. rack-rtt + reord + N */
10240 		RACK_OPTS_INC(tcp_rack_pkt_delay);
10241 		rack->r_ctl.rc_pkt_delay = optval;
10242 		break;
10243 	case TCP_RACK_TLP_INC_VAR:
10244 		/* Does TLP include rtt variance in t-o */
10245 		error = EINVAL;
10246 		break;
10247 	case TCP_RACK_IDLE_REDUCE_HIGH:
10248 		error = EINVAL;
10249 		break;
10250 	case TCP_DELACK:
10251 		if (optval == 0)
10252 			tp->t_delayed_ack = 0;
10253 		else
10254 			tp->t_delayed_ack = 1;
10255 		if (tp->t_flags & TF_DELACK) {
10256 			tp->t_flags &= ~TF_DELACK;
10257 			tp->t_flags |= TF_ACKNOW;
10258 			rack_output(tp);
10259 		}
10260 		break;
10261 	case TCP_RACK_MIN_PACE:
10262 		RACK_OPTS_INC(tcp_rack_min_pace);
10263 		if (optval > 3)
10264 			rack->r_enforce_min_pace = 3;
10265 		else
10266 			rack->r_enforce_min_pace = optval;
10267 		break;
10268 	case TCP_RACK_GP_INCREASE:
10269 		if ((optval >= 0) &&
10270 		    (optval <= 256))
10271 			rack->rack_per_of_gp = optval;
10272 		else
10273 			error = EINVAL;
10274 
10275 		break;
10276 	case TCP_BBR_RACK_RTT_USE:
10277 		if ((optval != USE_RTT_HIGH) &&
10278 		    (optval != USE_RTT_LOW) &&
10279 		    (optval != USE_RTT_AVG))
10280 			error = EINVAL;
10281 		else
10282 			rack->r_ctl.rc_rate_sample_method = optval;
10283 		break;
10284 	case TCP_DATA_AFTER_CLOSE:
10285 		if (optval)
10286 			rack->rc_allow_data_af_clo = 1;
10287 		else
10288 			rack->rc_allow_data_af_clo = 0;
10289 		break;
10290 	default:
10291 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10292 		break;
10293 	}
10294 #ifdef NETFLIX_STATS
10295 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
10296 #endif
10297 	INP_WUNLOCK(inp);
10298 	return (error);
10299 }
10300 
10301 static int
10302 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
10303     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10304 {
10305 	int32_t error, optval;
10306 
10307 	/*
10308 	 * Because all our options are either boolean or an int, we can just
10309 	 * pull everything into optval and then unlock and copy. If we ever
10310 	 * add a option that is not a int, then this will have quite an
10311 	 * impact to this routine.
10312 	 */
10313 	error = 0;
10314 	switch (sopt->sopt_name) {
10315 	case TCP_RACK_DO_DETECTION:
10316 		optval = rack->do_detection;
10317 		break;
10318 
10319 	case TCP_RACK_PROP_RATE:
10320 		optval = rack->r_ctl.rc_prop_rate;
10321 		break;
10322 	case TCP_RACK_PROP:
10323 		/* RACK proportional rate reduction (bool) */
10324 		optval = rack->r_ctl.rc_prop_reduce;
10325 		break;
10326 	case TCP_RACK_TLP_REDUCE:
10327 		/* RACK TLP cwnd reduction (bool) */
10328 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
10329 		break;
10330 	case TCP_RACK_EARLY_RECOV:
10331 		/* Should recovery happen early (bool) */
10332 		optval = rack->r_ctl.rc_early_recovery;
10333 		break;
10334 	case TCP_RACK_PACE_REDUCE:
10335 		/* RACK Hptsi reduction factor (divisor) */
10336 		optval = rack->rc_pace_reduce;
10337 		break;
10338 	case TCP_RACK_PACE_MAX_SEG:
10339 		/* Max segments in a pace */
10340 		optval = rack->rc_pace_max_segs;
10341 		break;
10342 	case TCP_RACK_PACE_ALWAYS:
10343 		/* Use the always pace method */
10344 		optval = rack->rc_always_pace;
10345 		break;
10346 	case TCP_RACK_PRR_SENDALOT:
10347 		/* Allow PRR to send more than one seg */
10348 		optval = rack->r_ctl.rc_prr_sendalot;
10349 		break;
10350 	case TCP_RACK_MIN_TO:
10351 		/* Minimum time between rack t-o's in ms */
10352 		optval = rack->r_ctl.rc_min_to;
10353 		break;
10354 	case TCP_RACK_EARLY_SEG:
10355 		/* If early recovery max segments */
10356 		optval = rack->r_ctl.rc_early_recovery_segs;
10357 		break;
10358 	case TCP_RACK_REORD_THRESH:
10359 		/* RACK reorder threshold (shift amount) */
10360 		optval = rack->r_ctl.rc_reorder_shift;
10361 		break;
10362 	case TCP_RACK_REORD_FADE:
10363 		/* Does reordering fade after ms time */
10364 		optval = rack->r_ctl.rc_reorder_fade;
10365 		break;
10366 	case TCP_BBR_USE_RACK_CHEAT:
10367 		/* Do we use the rack cheat for rxt */
10368 		optval = rack->use_rack_cheat;
10369 		break;
10370 	case TCP_RACK_TLP_THRESH:
10371 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10372 		optval = rack->r_ctl.rc_tlp_threshold;
10373 		break;
10374 	case TCP_RACK_PKT_DELAY:
10375 		/* RACK added ms i.e. rack-rtt + reord + N */
10376 		optval = rack->r_ctl.rc_pkt_delay;
10377 		break;
10378 	case TCP_RACK_TLP_USE:
10379 		optval = rack->rack_tlp_threshold_use;
10380 		break;
10381 	case TCP_RACK_TLP_INC_VAR:
10382 		/* Does TLP include rtt variance in t-o */
10383 		error = EINVAL;
10384 		break;
10385 	case TCP_RACK_IDLE_REDUCE_HIGH:
10386 		error = EINVAL;
10387 		break;
10388 	case TCP_RACK_MIN_PACE:
10389 		optval = rack->r_enforce_min_pace;
10390 		break;
10391 	case TCP_RACK_GP_INCREASE:
10392 		optval = rack->rack_per_of_gp;
10393 		break;
10394 	case TCP_BBR_RACK_RTT_USE:
10395 		optval = rack->r_ctl.rc_rate_sample_method;
10396 		break;
10397 	case TCP_DELACK:
10398 		optval = tp->t_delayed_ack;
10399 		break;
10400 	case TCP_DATA_AFTER_CLOSE:
10401 		optval = rack->rc_allow_data_af_clo;
10402 		break;
10403 	default:
10404 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10405 		break;
10406 	}
10407 	INP_WUNLOCK(inp);
10408 	if (error == 0) {
10409 		error = sooptcopyout(sopt, &optval, sizeof optval);
10410 	}
10411 	return (error);
10412 }
10413 
10414 static int
10415 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
10416 {
10417 	int32_t error = EINVAL;
10418 	struct tcp_rack *rack;
10419 
10420 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10421 	if (rack == NULL) {
10422 		/* Huh? */
10423 		goto out;
10424 	}
10425 	if (sopt->sopt_dir == SOPT_SET) {
10426 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
10427 	} else if (sopt->sopt_dir == SOPT_GET) {
10428 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
10429 	}
10430 out:
10431 	INP_WUNLOCK(inp);
10432 	return (error);
10433 }
10434 
10435 
10436 static struct tcp_function_block __tcp_rack = {
10437 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
10438 	.tfb_tcp_output = rack_output,
10439 	.tfb_do_queued_segments = ctf_do_queued_segments,
10440 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
10441 	.tfb_tcp_do_segment = rack_do_segment,
10442 	.tfb_tcp_ctloutput = rack_ctloutput,
10443 	.tfb_tcp_fb_init = rack_init,
10444 	.tfb_tcp_fb_fini = rack_fini,
10445 	.tfb_tcp_timer_stop_all = rack_stopall,
10446 	.tfb_tcp_timer_activate = rack_timer_activate,
10447 	.tfb_tcp_timer_active = rack_timer_active,
10448 	.tfb_tcp_timer_stop = rack_timer_stop,
10449 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
10450 	.tfb_tcp_handoff_ok = rack_handoff_ok
10451 };
10452 
10453 static const char *rack_stack_names[] = {
10454 	__XSTRING(STACKNAME),
10455 #ifdef STACKALIAS
10456 	__XSTRING(STACKALIAS),
10457 #endif
10458 };
10459 
10460 static int
10461 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
10462 {
10463 	memset(mem, 0, size);
10464 	return (0);
10465 }
10466 
10467 static void
10468 rack_dtor(void *mem, int32_t size, void *arg)
10469 {
10470 
10471 }
10472 
10473 static bool rack_mod_inited = false;
10474 
10475 static int
10476 tcp_addrack(module_t mod, int32_t type, void *data)
10477 {
10478 	int32_t err = 0;
10479 	int num_stacks;
10480 
10481 	switch (type) {
10482 	case MOD_LOAD:
10483 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
10484 		    sizeof(struct rack_sendmap),
10485 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
10486 
10487 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
10488 		    sizeof(struct tcp_rack),
10489 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
10490 
10491 		sysctl_ctx_init(&rack_sysctl_ctx);
10492 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
10493 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
10494 		    OID_AUTO,
10495 #ifdef STACKALIAS
10496 		    __XSTRING(STACKALIAS),
10497 #else
10498 		    __XSTRING(STACKNAME),
10499 #endif
10500 		    CTLFLAG_RW, 0,
10501 		    "");
10502 		if (rack_sysctl_root == NULL) {
10503 			printf("Failed to add sysctl node\n");
10504 			err = EFAULT;
10505 			goto free_uma;
10506 		}
10507 		rack_init_sysctls();
10508 		num_stacks = nitems(rack_stack_names);
10509 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
10510 		    rack_stack_names, &num_stacks);
10511 		if (err) {
10512 			printf("Failed to register %s stack name for "
10513 			    "%s module\n", rack_stack_names[num_stacks],
10514 			    __XSTRING(MODNAME));
10515 			sysctl_ctx_free(&rack_sysctl_ctx);
10516 free_uma:
10517 			uma_zdestroy(rack_zone);
10518 			uma_zdestroy(rack_pcb_zone);
10519 			rack_counter_destroy();
10520 			printf("Failed to register rack module -- err:%d\n", err);
10521 			return (err);
10522 		}
10523 		tcp_lro_reg_mbufq();
10524 		rack_mod_inited = true;
10525 		break;
10526 	case MOD_QUIESCE:
10527 		err = deregister_tcp_functions(&__tcp_rack, true, false);
10528 		break;
10529 	case MOD_UNLOAD:
10530 		err = deregister_tcp_functions(&__tcp_rack, false, true);
10531 		if (err == EBUSY)
10532 			break;
10533 		if (rack_mod_inited) {
10534 			uma_zdestroy(rack_zone);
10535 			uma_zdestroy(rack_pcb_zone);
10536 			sysctl_ctx_free(&rack_sysctl_ctx);
10537 			rack_counter_destroy();
10538 			rack_mod_inited = false;
10539 		}
10540 		tcp_lro_dereg_mbufq();
10541 		err = 0;
10542 		break;
10543 	default:
10544 		return (EOPNOTSUPP);
10545 	}
10546 	return (err);
10547 }
10548 
10549 static moduledata_t tcp_rack = {
10550 	.name = __XSTRING(MODNAME),
10551 	.evhand = tcp_addrack,
10552 	.priv = 0
10553 };
10554 
10555 MODULE_VERSION(MODNAME, 1);
10556 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
10557 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
10558