1 /*- 2 * Copyright (c) 2016-2020 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_ipsec.h" 33 #include "opt_tcpdebug.h" 34 #include "opt_ratelimit.h" 35 #include "opt_kern_tls.h" 36 #include <sys/param.h> 37 #include <sys/arb.h> 38 #include <sys/module.h> 39 #include <sys/kernel.h> 40 #ifdef TCP_HHOOK 41 #include <sys/hhook.h> 42 #endif 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/proc.h> /* for proc0 declaration */ 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #ifdef STATS 54 #include <sys/qmath.h> 55 #include <sys/tree.h> 56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */ 57 #else 58 #include <sys/tree.h> 59 #endif 60 #include <sys/refcount.h> 61 #include <sys/queue.h> 62 #include <sys/tim_filter.h> 63 #include <sys/smp.h> 64 #include <sys/kthread.h> 65 #include <sys/kern_prefetch.h> 66 #include <sys/protosw.h> 67 #ifdef TCP_ACCOUNTING 68 #include <sys/sched.h> 69 #include <machine/cpu.h> 70 #endif 71 #include <vm/uma.h> 72 73 #include <net/route.h> 74 #include <net/route/nhop.h> 75 #include <net/vnet.h> 76 77 #define TCPSTATES /* for logging */ 78 79 #include <netinet/in.h> 80 #include <netinet/in_kdtrace.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 84 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 85 #include <netinet/ip_var.h> 86 #include <netinet/ip6.h> 87 #include <netinet6/in6_pcb.h> 88 #include <netinet6/ip6_var.h> 89 #include <netinet/tcp.h> 90 #define TCPOUTFLAGS 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_log_buf.h> 93 #include <netinet/tcp_seq.h> 94 #include <netinet/tcp_timer.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet/tcp_hpts.h> 97 #include <netinet/tcp_ratelimit.h> 98 #include <netinet/tcp_accounting.h> 99 #include <netinet/tcpip.h> 100 #include <netinet/cc/cc.h> 101 #include <netinet/cc/cc_newreno.h> 102 #include <netinet/tcp_fastopen.h> 103 #include <netinet/tcp_lro.h> 104 #ifdef NETFLIX_SHARED_CWND 105 #include <netinet/tcp_shared_cwnd.h> 106 #endif 107 #ifdef TCPDEBUG 108 #include <netinet/tcp_debug.h> 109 #endif /* TCPDEBUG */ 110 #ifdef TCP_OFFLOAD 111 #include <netinet/tcp_offload.h> 112 #endif 113 #ifdef INET6 114 #include <netinet6/tcp6_var.h> 115 #endif 116 117 #include <netipsec/ipsec_support.h> 118 119 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 120 #include <netipsec/ipsec.h> 121 #include <netipsec/ipsec6.h> 122 #endif /* IPSEC */ 123 124 #include <netinet/udp.h> 125 #include <netinet/udp_var.h> 126 #include <machine/in_cksum.h> 127 128 #ifdef MAC 129 #include <security/mac/mac_framework.h> 130 #endif 131 #include "sack_filter.h" 132 #include "tcp_rack.h" 133 #include "rack_bbr_common.h" 134 135 uma_zone_t rack_zone; 136 uma_zone_t rack_pcb_zone; 137 138 #ifndef TICKS2SBT 139 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) 140 #endif 141 142 VNET_DECLARE(uint32_t, newreno_beta); 143 VNET_DECLARE(uint32_t, newreno_beta_ecn); 144 #define V_newreno_beta VNET(newreno_beta) 145 #define V_newreno_beta_ecn VNET(newreno_beta_ecn) 146 147 148 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block"); 149 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options"); 150 151 struct sysctl_ctx_list rack_sysctl_ctx; 152 struct sysctl_oid *rack_sysctl_root; 153 154 #define CUM_ACKED 1 155 #define SACKED 2 156 157 /* 158 * The RACK module incorporates a number of 159 * TCP ideas that have been put out into the IETF 160 * over the last few years: 161 * - Matt Mathis's Rate Halving which slowly drops 162 * the congestion window so that the ack clock can 163 * be maintained during a recovery. 164 * - Yuchung Cheng's RACK TCP (for which its named) that 165 * will stop us using the number of dup acks and instead 166 * use time as the gage of when we retransmit. 167 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft 168 * of Dukkipati et.al. 169 * RACK depends on SACK, so if an endpoint arrives that 170 * cannot do SACK the state machine below will shuttle the 171 * connection back to using the "default" TCP stack that is 172 * in FreeBSD. 173 * 174 * To implement RACK the original TCP stack was first decomposed 175 * into a functional state machine with individual states 176 * for each of the possible TCP connection states. The do_segement 177 * functions role in life is to mandate the connection supports SACK 178 * initially and then assure that the RACK state matches the conenction 179 * state before calling the states do_segment function. Each 180 * state is simplified due to the fact that the original do_segment 181 * has been decomposed and we *know* what state we are in (no 182 * switches on the state) and all tests for SACK are gone. This 183 * greatly simplifies what each state does. 184 * 185 * TCP output is also over-written with a new version since it 186 * must maintain the new rack scoreboard. 187 * 188 */ 189 static int32_t rack_tlp_thresh = 1; 190 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ 191 static int32_t rack_tlp_use_greater = 1; 192 static int32_t rack_reorder_thresh = 2; 193 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000 194 * - 60 seconds */ 195 static uint8_t rack_req_measurements = 1; 196 /* Attack threshold detections */ 197 static uint32_t rack_highest_sack_thresh_seen = 0; 198 static uint32_t rack_highest_move_thresh_seen = 0; 199 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */ 200 static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */ 201 static int32_t rack_hw_rate_caps = 1; /* 1; */ 202 static int32_t rack_hw_rate_min = 0; /* 1500000;*/ 203 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */ 204 static int32_t rack_hw_up_only = 1; 205 static int32_t rack_stats_gets_ms_rtt = 1; 206 static int32_t rack_prr_addbackmax = 2; 207 static int32_t rack_do_hystart = 0; 208 209 static int32_t rack_pkt_delay = 1000; 210 static int32_t rack_send_a_lot_in_prr = 1; 211 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */ 212 static int32_t rack_verbose_logging = 0; 213 static int32_t rack_ignore_data_after_close = 1; 214 static int32_t rack_enable_shared_cwnd = 1; 215 static int32_t rack_use_cmp_acks = 1; 216 static int32_t rack_use_fsb = 1; 217 static int32_t rack_use_rfo = 1; 218 static int32_t rack_use_rsm_rfo = 1; 219 static int32_t rack_max_abc_post_recovery = 2; 220 static int32_t rack_client_low_buf = 0; 221 static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */ 222 #ifdef TCP_ACCOUNTING 223 static int32_t rack_tcp_accounting = 0; 224 #endif 225 static int32_t rack_limits_scwnd = 1; 226 static int32_t rack_enable_mqueue_for_nonpaced = 0; 227 static int32_t rack_disable_prr = 0; 228 static int32_t use_rack_rr = 1; 229 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ 230 static int32_t rack_persist_min = 250000; /* 250usec */ 231 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */ 232 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */ 233 static int32_t rack_default_init_window = 0; /* Use system default */ 234 static int32_t rack_limit_time_with_srtt = 0; 235 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */ 236 static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */ 237 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */ 238 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */ 239 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */ 240 /* 241 * Currently regular tcp has a rto_min of 30ms 242 * the backoff goes 12 times so that ends up 243 * being a total of 122.850 seconds before a 244 * connection is killed. 245 */ 246 static uint32_t rack_def_data_window = 20; 247 static uint32_t rack_goal_bdp = 2; 248 static uint32_t rack_min_srtts = 1; 249 static uint32_t rack_min_measure_usec = 0; 250 static int32_t rack_tlp_min = 10000; /* 10ms */ 251 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */ 252 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */ 253 static const int32_t rack_free_cache = 2; 254 static int32_t rack_hptsi_segments = 40; 255 static int32_t rack_rate_sample_method = USE_RTT_LOW; 256 static int32_t rack_pace_every_seg = 0; 257 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */ 258 static int32_t rack_slot_reduction = 4; 259 static int32_t rack_wma_divisor = 8; /* For WMA calculation */ 260 static int32_t rack_cwnd_block_ends_measure = 0; 261 static int32_t rack_rwnd_block_ends_measure = 0; 262 static int32_t rack_def_profile = 0; 263 264 static int32_t rack_lower_cwnd_at_tlp = 0; 265 static int32_t rack_limited_retran = 0; 266 static int32_t rack_always_send_oldest = 0; 267 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; 268 269 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ 270 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ 271 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ 272 273 /* Probertt */ 274 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ 275 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ 276 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ 277 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ 278 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ 279 280 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ 281 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ 282 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ 283 static uint32_t rack_probertt_use_min_rtt_exit = 0; 284 static uint32_t rack_probe_rtt_sets_cwnd = 0; 285 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ 286 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */ 287 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ 288 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ 289 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */ 290 static uint32_t rack_probertt_filter_life = 10000000; 291 static uint32_t rack_probertt_lower_within = 10; 292 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */ 293 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ 294 static int32_t rack_probertt_clear_is = 1; 295 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ 296 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ 297 298 /* Part of pacing */ 299 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ 300 301 /* Timely information */ 302 /* Combine these two gives the range of 'no change' to bw */ 303 /* ie the up/down provide the upper and lower bound */ 304 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ 305 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ 306 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ 307 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ 308 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ 309 static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multipler */ 310 static int32_t rack_gp_increase_per = 2; /* 2% increase in multipler */ 311 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ 312 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ 313 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ 314 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ 315 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ 316 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ 317 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ 318 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ 319 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ 320 static int32_t rack_use_max_for_nobackoff = 0; 321 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ 322 static int32_t rack_timely_no_stopping = 0; 323 static int32_t rack_down_raise_thresh = 100; 324 static int32_t rack_req_segs = 1; 325 static uint64_t rack_bw_rate_cap = 0; 326 327 /* Weird delayed ack mode */ 328 static int32_t rack_use_imac_dack = 0; 329 /* Rack specific counters */ 330 counter_u64_t rack_badfr; 331 counter_u64_t rack_badfr_bytes; 332 counter_u64_t rack_rtm_prr_retran; 333 counter_u64_t rack_rtm_prr_newdata; 334 counter_u64_t rack_timestamp_mismatch; 335 counter_u64_t rack_reorder_seen; 336 counter_u64_t rack_paced_segments; 337 counter_u64_t rack_unpaced_segments; 338 counter_u64_t rack_calc_zero; 339 counter_u64_t rack_calc_nonzero; 340 counter_u64_t rack_saw_enobuf; 341 counter_u64_t rack_saw_enobuf_hw; 342 counter_u64_t rack_saw_enetunreach; 343 counter_u64_t rack_per_timer_hole; 344 counter_u64_t rack_large_ackcmp; 345 counter_u64_t rack_small_ackcmp; 346 #ifdef INVARIANTS 347 counter_u64_t rack_adjust_map_bw; 348 #endif 349 /* Tail loss probe counters */ 350 counter_u64_t rack_tlp_tot; 351 counter_u64_t rack_tlp_newdata; 352 counter_u64_t rack_tlp_retran; 353 counter_u64_t rack_tlp_retran_bytes; 354 counter_u64_t rack_tlp_retran_fail; 355 counter_u64_t rack_to_tot; 356 counter_u64_t rack_to_arm_rack; 357 counter_u64_t rack_to_arm_tlp; 358 counter_u64_t rack_hot_alloc; 359 counter_u64_t rack_to_alloc; 360 counter_u64_t rack_to_alloc_hard; 361 counter_u64_t rack_to_alloc_emerg; 362 counter_u64_t rack_to_alloc_limited; 363 counter_u64_t rack_alloc_limited_conns; 364 counter_u64_t rack_split_limited; 365 366 #define MAX_NUM_OF_CNTS 13 367 counter_u64_t rack_proc_comp_ack[MAX_NUM_OF_CNTS]; 368 counter_u64_t rack_multi_single_eq; 369 counter_u64_t rack_proc_non_comp_ack; 370 371 counter_u64_t rack_fto_send; 372 counter_u64_t rack_fto_rsm_send; 373 counter_u64_t rack_nfto_resend; 374 counter_u64_t rack_non_fto_send; 375 counter_u64_t rack_extended_rfo; 376 377 counter_u64_t rack_sack_proc_all; 378 counter_u64_t rack_sack_proc_short; 379 counter_u64_t rack_sack_proc_restart; 380 counter_u64_t rack_sack_attacks_detected; 381 counter_u64_t rack_sack_attacks_reversed; 382 counter_u64_t rack_sack_used_next_merge; 383 counter_u64_t rack_sack_splits; 384 counter_u64_t rack_sack_used_prev_merge; 385 counter_u64_t rack_sack_skipped_acked; 386 counter_u64_t rack_ack_total; 387 counter_u64_t rack_express_sack; 388 counter_u64_t rack_sack_total; 389 counter_u64_t rack_move_none; 390 counter_u64_t rack_move_some; 391 392 counter_u64_t rack_used_tlpmethod; 393 counter_u64_t rack_used_tlpmethod2; 394 counter_u64_t rack_enter_tlp_calc; 395 counter_u64_t rack_input_idle_reduces; 396 counter_u64_t rack_collapsed_win; 397 counter_u64_t rack_tlp_does_nada; 398 counter_u64_t rack_try_scwnd; 399 counter_u64_t rack_hw_pace_init_fail; 400 counter_u64_t rack_hw_pace_lost; 401 counter_u64_t rack_sbsndptr_right; 402 counter_u64_t rack_sbsndptr_wrong; 403 404 /* Temp CPU counters */ 405 counter_u64_t rack_find_high; 406 407 counter_u64_t rack_progress_drops; 408 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; 409 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; 410 411 412 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2))) 413 414 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \ 415 (tv) = (value) + slop; \ 416 if ((u_long)(tv) < (u_long)(tvmin)) \ 417 (tv) = (tvmin); \ 418 if ((u_long)(tv) > (u_long)(tvmax)) \ 419 (tv) = (tvmax); \ 420 } while (0) 421 422 static void 423 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); 424 425 static int 426 rack_process_ack(struct mbuf *m, struct tcphdr *th, 427 struct socket *so, struct tcpcb *tp, struct tcpopt *to, 428 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); 429 static int 430 rack_process_data(struct mbuf *m, struct tcphdr *th, 431 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 432 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); 433 static void 434 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, 435 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery); 436 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); 437 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, 438 uint8_t limit_type); 439 static struct rack_sendmap * 440 rack_check_recovery_mode(struct tcpcb *tp, 441 uint32_t tsused); 442 static void 443 rack_cong_signal(struct tcpcb *tp, 444 uint32_t type, uint32_t ack); 445 static void rack_counter_destroy(void); 446 static int 447 rack_ctloutput(struct socket *so, struct sockopt *sopt, 448 struct inpcb *inp, struct tcpcb *tp); 449 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); 450 static void 451 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override); 452 static void 453 rack_do_segment(struct mbuf *m, struct tcphdr *th, 454 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 455 uint8_t iptos); 456 static void rack_dtor(void *mem, int32_t size, void *arg); 457 static void 458 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 459 uint32_t flex1, uint32_t flex2, 460 uint32_t flex3, uint32_t flex4, 461 uint32_t flex5, uint32_t flex6, 462 uint16_t flex7, uint8_t mod); 463 464 static void 465 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 466 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, 467 struct rack_sendmap *rsm, uint8_t quality); 468 static struct rack_sendmap * 469 rack_find_high_nonack(struct tcp_rack *rack, 470 struct rack_sendmap *rsm); 471 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); 472 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); 473 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); 474 static int 475 rack_get_sockopt(struct socket *so, struct sockopt *sopt, 476 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); 477 static void 478 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 479 tcp_seq th_ack, int line, uint8_t quality); 480 static uint32_t 481 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); 482 static int32_t rack_handoff_ok(struct tcpcb *tp); 483 static int32_t rack_init(struct tcpcb *tp); 484 static void rack_init_sysctls(void); 485 static void 486 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, 487 struct tcphdr *th, int entered_rec, int dup_ack_struck); 488 static void 489 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 490 uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t ts, 491 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls); 492 493 static void 494 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, 495 struct rack_sendmap *rsm); 496 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); 497 static int32_t rack_output(struct tcpcb *tp); 498 499 static uint32_t 500 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, 501 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, 502 uint32_t cts, int *moved_two); 503 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq); 504 static void rack_remxt_tmr(struct tcpcb *tp); 505 static int 506 rack_set_sockopt(struct socket *so, struct sockopt *sopt, 507 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); 508 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); 509 static int32_t rack_stopall(struct tcpcb *tp); 510 static void 511 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, 512 uint32_t delta); 513 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type); 514 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); 515 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type); 516 static uint32_t 517 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 518 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag); 519 static void 520 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 521 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag); 522 static int 523 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 524 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); 525 static int32_t tcp_addrack(module_t mod, int32_t type, void *data); 526 static int 527 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, 528 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 529 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 530 static int 531 rack_do_closing(struct mbuf *m, struct tcphdr *th, 532 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 533 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 534 static int 535 rack_do_established(struct mbuf *m, struct tcphdr *th, 536 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 537 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 538 static int 539 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, 540 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 541 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); 542 static int 543 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, 544 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 545 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 546 static int 547 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, 548 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 549 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 550 static int 551 rack_do_lastack(struct mbuf *m, struct tcphdr *th, 552 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 553 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 554 static int 555 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, 556 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 557 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 558 static int 559 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, 560 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 561 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 562 struct rack_sendmap * 563 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, 564 uint32_t tsused); 565 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, 566 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); 567 static void 568 tcp_rack_partialack(struct tcpcb *tp); 569 static int 570 rack_set_profile(struct tcp_rack *rack, int prof); 571 static void 572 rack_apply_deferred_options(struct tcp_rack *rack); 573 574 int32_t rack_clear_counter=0; 575 576 static void 577 rack_set_cc_pacing(struct tcp_rack *rack) 578 { 579 struct sockopt sopt; 580 struct cc_newreno_opts opt; 581 struct newreno old, *ptr; 582 struct tcpcb *tp; 583 int error; 584 585 if (rack->rc_pacing_cc_set) 586 return; 587 588 tp = rack->rc_tp; 589 if (tp->cc_algo == NULL) { 590 /* Tcb is leaving */ 591 printf("No cc algorithm?\n"); 592 return; 593 } 594 rack->rc_pacing_cc_set = 1; 595 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 596 /* Not new-reno we can't play games with beta! */ 597 goto out; 598 } 599 ptr = ((struct newreno *)tp->ccv->cc_data); 600 if (CC_ALGO(tp)->ctl_output == NULL) { 601 /* Huh, why does new_reno no longer have a set function? */ 602 printf("no ctl_output for algo:%s\n", tp->cc_algo->name); 603 goto out; 604 } 605 if (ptr == NULL) { 606 /* Just the default values */ 607 old.beta = V_newreno_beta_ecn; 608 old.beta_ecn = V_newreno_beta_ecn; 609 old.newreno_flags = 0; 610 } else { 611 old.beta = ptr->beta; 612 old.beta_ecn = ptr->beta_ecn; 613 old.newreno_flags = ptr->newreno_flags; 614 } 615 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 616 sopt.sopt_dir = SOPT_SET; 617 opt.name = CC_NEWRENO_BETA; 618 opt.val = rack->r_ctl.rc_saved_beta.beta; 619 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 620 if (error) { 621 printf("Error returned by ctl_output %d\n", error); 622 goto out; 623 } 624 /* 625 * Hack alert we need to set in our newreno_flags 626 * so that Abe behavior is also applied. 627 */ 628 ((struct newreno *)tp->ccv->cc_data)->newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 629 opt.name = CC_NEWRENO_BETA_ECN; 630 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn; 631 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 632 if (error) { 633 printf("Error returned by ctl_output %d\n", error); 634 goto out; 635 } 636 /* Save off the original values for restoral */ 637 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 638 out: 639 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 640 union tcp_log_stackspecific log; 641 struct timeval tv; 642 643 ptr = ((struct newreno *)tp->ccv->cc_data); 644 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 645 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 646 if (ptr) { 647 log.u_bbr.flex1 = ptr->beta; 648 log.u_bbr.flex2 = ptr->beta_ecn; 649 log.u_bbr.flex3 = ptr->newreno_flags; 650 } 651 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 652 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 653 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 654 log.u_bbr.flex7 = rack->gp_ready; 655 log.u_bbr.flex7 <<= 1; 656 log.u_bbr.flex7 |= rack->use_fixed_rate; 657 log.u_bbr.flex7 <<= 1; 658 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 659 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 660 log.u_bbr.flex8 = 3; 661 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error, 662 0, &log, false, NULL, NULL, 0, &tv); 663 } 664 } 665 666 static void 667 rack_undo_cc_pacing(struct tcp_rack *rack) 668 { 669 struct newreno old, *ptr; 670 struct tcpcb *tp; 671 672 if (rack->rc_pacing_cc_set == 0) 673 return; 674 tp = rack->rc_tp; 675 rack->rc_pacing_cc_set = 0; 676 if (tp->cc_algo == NULL) 677 /* Tcb is leaving */ 678 return; 679 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 680 /* Not new-reno nothing to do! */ 681 return; 682 } 683 ptr = ((struct newreno *)tp->ccv->cc_data); 684 if (ptr == NULL) { 685 /* 686 * This happens at rack_fini() if the 687 * cc module gets freed on us. In that 688 * case we loose our "new" settings but 689 * thats ok, since the tcb is going away anyway. 690 */ 691 return; 692 } 693 /* Grab out our set values */ 694 memcpy(&old, ptr, sizeof(struct newreno)); 695 /* Copy back in the original values */ 696 memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno)); 697 /* Now save back the values we had set in (for when pacing is restored) */ 698 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 699 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 700 union tcp_log_stackspecific log; 701 struct timeval tv; 702 703 ptr = ((struct newreno *)tp->ccv->cc_data); 704 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 705 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 706 log.u_bbr.flex1 = ptr->beta; 707 log.u_bbr.flex2 = ptr->beta_ecn; 708 log.u_bbr.flex3 = ptr->newreno_flags; 709 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 710 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 711 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 712 log.u_bbr.flex7 = rack->gp_ready; 713 log.u_bbr.flex7 <<= 1; 714 log.u_bbr.flex7 |= rack->use_fixed_rate; 715 log.u_bbr.flex7 <<= 1; 716 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 717 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 718 log.u_bbr.flex8 = 4; 719 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 720 0, &log, false, NULL, NULL, 0, &tv); 721 } 722 } 723 724 #ifdef NETFLIX_PEAKRATE 725 static inline void 726 rack_update_peakrate_thr(struct tcpcb *tp) 727 { 728 /* Keep in mind that t_maxpeakrate is in B/s. */ 729 uint64_t peak; 730 peak = uqmax((tp->t_maxseg * 2), 731 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC)); 732 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX); 733 } 734 #endif 735 736 static int 737 sysctl_rack_clear(SYSCTL_HANDLER_ARGS) 738 { 739 uint32_t stat; 740 int32_t error; 741 int i; 742 743 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); 744 if (error || req->newptr == NULL) 745 return error; 746 747 error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); 748 if (error) 749 return (error); 750 if (stat == 1) { 751 #ifdef INVARIANTS 752 printf("Clearing RACK counters\n"); 753 #endif 754 counter_u64_zero(rack_badfr); 755 counter_u64_zero(rack_badfr_bytes); 756 counter_u64_zero(rack_rtm_prr_retran); 757 counter_u64_zero(rack_rtm_prr_newdata); 758 counter_u64_zero(rack_timestamp_mismatch); 759 counter_u64_zero(rack_reorder_seen); 760 counter_u64_zero(rack_tlp_tot); 761 counter_u64_zero(rack_tlp_newdata); 762 counter_u64_zero(rack_tlp_retran); 763 counter_u64_zero(rack_tlp_retran_bytes); 764 counter_u64_zero(rack_tlp_retran_fail); 765 counter_u64_zero(rack_to_tot); 766 counter_u64_zero(rack_to_arm_rack); 767 counter_u64_zero(rack_to_arm_tlp); 768 counter_u64_zero(rack_paced_segments); 769 counter_u64_zero(rack_calc_zero); 770 counter_u64_zero(rack_calc_nonzero); 771 counter_u64_zero(rack_unpaced_segments); 772 counter_u64_zero(rack_saw_enobuf); 773 counter_u64_zero(rack_saw_enobuf_hw); 774 counter_u64_zero(rack_saw_enetunreach); 775 counter_u64_zero(rack_per_timer_hole); 776 counter_u64_zero(rack_large_ackcmp); 777 counter_u64_zero(rack_small_ackcmp); 778 #ifdef INVARIANTS 779 counter_u64_zero(rack_adjust_map_bw); 780 #endif 781 counter_u64_zero(rack_to_alloc_hard); 782 counter_u64_zero(rack_to_alloc_emerg); 783 counter_u64_zero(rack_sack_proc_all); 784 counter_u64_zero(rack_fto_send); 785 counter_u64_zero(rack_fto_rsm_send); 786 counter_u64_zero(rack_extended_rfo); 787 counter_u64_zero(rack_hw_pace_init_fail); 788 counter_u64_zero(rack_hw_pace_lost); 789 counter_u64_zero(rack_sbsndptr_wrong); 790 counter_u64_zero(rack_sbsndptr_right); 791 counter_u64_zero(rack_non_fto_send); 792 counter_u64_zero(rack_nfto_resend); 793 counter_u64_zero(rack_sack_proc_short); 794 counter_u64_zero(rack_sack_proc_restart); 795 counter_u64_zero(rack_to_alloc); 796 counter_u64_zero(rack_to_alloc_limited); 797 counter_u64_zero(rack_alloc_limited_conns); 798 counter_u64_zero(rack_split_limited); 799 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 800 counter_u64_zero(rack_proc_comp_ack[i]); 801 } 802 counter_u64_zero(rack_multi_single_eq); 803 counter_u64_zero(rack_proc_non_comp_ack); 804 counter_u64_zero(rack_find_high); 805 counter_u64_zero(rack_sack_attacks_detected); 806 counter_u64_zero(rack_sack_attacks_reversed); 807 counter_u64_zero(rack_sack_used_next_merge); 808 counter_u64_zero(rack_sack_used_prev_merge); 809 counter_u64_zero(rack_sack_splits); 810 counter_u64_zero(rack_sack_skipped_acked); 811 counter_u64_zero(rack_ack_total); 812 counter_u64_zero(rack_express_sack); 813 counter_u64_zero(rack_sack_total); 814 counter_u64_zero(rack_move_none); 815 counter_u64_zero(rack_move_some); 816 counter_u64_zero(rack_used_tlpmethod); 817 counter_u64_zero(rack_used_tlpmethod2); 818 counter_u64_zero(rack_enter_tlp_calc); 819 counter_u64_zero(rack_progress_drops); 820 counter_u64_zero(rack_tlp_does_nada); 821 counter_u64_zero(rack_try_scwnd); 822 counter_u64_zero(rack_collapsed_win); 823 } 824 rack_clear_counter = 0; 825 return (0); 826 } 827 828 static void 829 rack_init_sysctls(void) 830 { 831 int i; 832 struct sysctl_oid *rack_counters; 833 struct sysctl_oid *rack_attack; 834 struct sysctl_oid *rack_pacing; 835 struct sysctl_oid *rack_timely; 836 struct sysctl_oid *rack_timers; 837 struct sysctl_oid *rack_tlp; 838 struct sysctl_oid *rack_misc; 839 struct sysctl_oid *rack_features; 840 struct sysctl_oid *rack_measure; 841 struct sysctl_oid *rack_probertt; 842 struct sysctl_oid *rack_hw_pacing; 843 844 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 845 SYSCTL_CHILDREN(rack_sysctl_root), 846 OID_AUTO, 847 "sack_attack", 848 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 849 "Rack Sack Attack Counters and Controls"); 850 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 851 SYSCTL_CHILDREN(rack_sysctl_root), 852 OID_AUTO, 853 "stats", 854 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 855 "Rack Counters"); 856 SYSCTL_ADD_S32(&rack_sysctl_ctx, 857 SYSCTL_CHILDREN(rack_sysctl_root), 858 OID_AUTO, "rate_sample_method", CTLFLAG_RW, 859 &rack_rate_sample_method , USE_RTT_LOW, 860 "What method should we use for rate sampling 0=high, 1=low "); 861 /* Probe rtt related controls */ 862 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 863 SYSCTL_CHILDREN(rack_sysctl_root), 864 OID_AUTO, 865 "probertt", 866 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 867 "ProbeRTT related Controls"); 868 SYSCTL_ADD_U16(&rack_sysctl_ctx, 869 SYSCTL_CHILDREN(rack_probertt), 870 OID_AUTO, "exit_per_hpb", CTLFLAG_RW, 871 &rack_atexit_prtt_hbp, 130, 872 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); 873 SYSCTL_ADD_U16(&rack_sysctl_ctx, 874 SYSCTL_CHILDREN(rack_probertt), 875 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, 876 &rack_atexit_prtt, 130, 877 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); 878 SYSCTL_ADD_U16(&rack_sysctl_ctx, 879 SYSCTL_CHILDREN(rack_probertt), 880 OID_AUTO, "gp_per_mul", CTLFLAG_RW, 881 &rack_per_of_gp_probertt, 60, 882 "What percentage of goodput do we pace at in probertt"); 883 SYSCTL_ADD_U16(&rack_sysctl_ctx, 884 SYSCTL_CHILDREN(rack_probertt), 885 OID_AUTO, "gp_per_reduce", CTLFLAG_RW, 886 &rack_per_of_gp_probertt_reduce, 10, 887 "What percentage of goodput do we reduce every gp_srtt"); 888 SYSCTL_ADD_U16(&rack_sysctl_ctx, 889 SYSCTL_CHILDREN(rack_probertt), 890 OID_AUTO, "gp_per_low", CTLFLAG_RW, 891 &rack_per_of_gp_lowthresh, 40, 892 "What percentage of goodput do we allow the multiplier to fall to"); 893 SYSCTL_ADD_U32(&rack_sysctl_ctx, 894 SYSCTL_CHILDREN(rack_probertt), 895 OID_AUTO, "time_between", CTLFLAG_RW, 896 & rack_time_between_probertt, 96000000, 897 "How many useconds between the lowest rtt falling must past before we enter probertt"); 898 SYSCTL_ADD_U32(&rack_sysctl_ctx, 899 SYSCTL_CHILDREN(rack_probertt), 900 OID_AUTO, "safety", CTLFLAG_RW, 901 &rack_probe_rtt_safety_val, 2000000, 902 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); 903 SYSCTL_ADD_U32(&rack_sysctl_ctx, 904 SYSCTL_CHILDREN(rack_probertt), 905 OID_AUTO, "sets_cwnd", CTLFLAG_RW, 906 &rack_probe_rtt_sets_cwnd, 0, 907 "Do we set the cwnd too (if always_lower is on)"); 908 SYSCTL_ADD_U32(&rack_sysctl_ctx, 909 SYSCTL_CHILDREN(rack_probertt), 910 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, 911 &rack_max_drain_wait, 2, 912 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); 913 SYSCTL_ADD_U32(&rack_sysctl_ctx, 914 SYSCTL_CHILDREN(rack_probertt), 915 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, 916 &rack_must_drain, 1, 917 "We must drain this many gp_srtt's waiting for flight to reach goal"); 918 SYSCTL_ADD_U32(&rack_sysctl_ctx, 919 SYSCTL_CHILDREN(rack_probertt), 920 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, 921 &rack_probertt_use_min_rtt_entry, 1, 922 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); 923 SYSCTL_ADD_U32(&rack_sysctl_ctx, 924 SYSCTL_CHILDREN(rack_probertt), 925 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, 926 &rack_probertt_use_min_rtt_exit, 0, 927 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); 928 SYSCTL_ADD_U32(&rack_sysctl_ctx, 929 SYSCTL_CHILDREN(rack_probertt), 930 OID_AUTO, "length_div", CTLFLAG_RW, 931 &rack_probertt_gpsrtt_cnt_div, 0, 932 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); 933 SYSCTL_ADD_U32(&rack_sysctl_ctx, 934 SYSCTL_CHILDREN(rack_probertt), 935 OID_AUTO, "length_mul", CTLFLAG_RW, 936 &rack_probertt_gpsrtt_cnt_mul, 0, 937 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); 938 SYSCTL_ADD_U32(&rack_sysctl_ctx, 939 SYSCTL_CHILDREN(rack_probertt), 940 OID_AUTO, "holdtim_at_target", CTLFLAG_RW, 941 &rack_min_probertt_hold, 200000, 942 "What is the minimum time we hold probertt at target"); 943 SYSCTL_ADD_U32(&rack_sysctl_ctx, 944 SYSCTL_CHILDREN(rack_probertt), 945 OID_AUTO, "filter_life", CTLFLAG_RW, 946 &rack_probertt_filter_life, 10000000, 947 "What is the time for the filters life in useconds"); 948 SYSCTL_ADD_U32(&rack_sysctl_ctx, 949 SYSCTL_CHILDREN(rack_probertt), 950 OID_AUTO, "lower_within", CTLFLAG_RW, 951 &rack_probertt_lower_within, 10, 952 "If the rtt goes lower within this percentage of the time, go into probe-rtt"); 953 SYSCTL_ADD_U32(&rack_sysctl_ctx, 954 SYSCTL_CHILDREN(rack_probertt), 955 OID_AUTO, "must_move", CTLFLAG_RW, 956 &rack_min_rtt_movement, 250, 957 "How much is the minimum movement in rtt to count as a drop for probertt purposes"); 958 SYSCTL_ADD_U32(&rack_sysctl_ctx, 959 SYSCTL_CHILDREN(rack_probertt), 960 OID_AUTO, "clear_is_cnts", CTLFLAG_RW, 961 &rack_probertt_clear_is, 1, 962 "Do we clear I/S counts on exiting probe-rtt"); 963 SYSCTL_ADD_S32(&rack_sysctl_ctx, 964 SYSCTL_CHILDREN(rack_probertt), 965 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, 966 &rack_max_drain_hbp, 1, 967 "How many extra drain gpsrtt's do we get in highly buffered paths"); 968 SYSCTL_ADD_S32(&rack_sysctl_ctx, 969 SYSCTL_CHILDREN(rack_probertt), 970 OID_AUTO, "hbp_threshold", CTLFLAG_RW, 971 &rack_hbp_thresh, 3, 972 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); 973 /* Pacing related sysctls */ 974 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 975 SYSCTL_CHILDREN(rack_sysctl_root), 976 OID_AUTO, 977 "pacing", 978 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 979 "Pacing related Controls"); 980 SYSCTL_ADD_S32(&rack_sysctl_ctx, 981 SYSCTL_CHILDREN(rack_pacing), 982 OID_AUTO, "max_pace_over", CTLFLAG_RW, 983 &rack_max_per_above, 30, 984 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); 985 SYSCTL_ADD_S32(&rack_sysctl_ctx, 986 SYSCTL_CHILDREN(rack_pacing), 987 OID_AUTO, "pace_to_one", CTLFLAG_RW, 988 &rack_pace_one_seg, 0, 989 "Do we allow low b/w pacing of 1MSS instead of two"); 990 SYSCTL_ADD_S32(&rack_sysctl_ctx, 991 SYSCTL_CHILDREN(rack_pacing), 992 OID_AUTO, "limit_wsrtt", CTLFLAG_RW, 993 &rack_limit_time_with_srtt, 0, 994 "Do we limit pacing time based on srtt"); 995 SYSCTL_ADD_S32(&rack_sysctl_ctx, 996 SYSCTL_CHILDREN(rack_pacing), 997 OID_AUTO, "init_win", CTLFLAG_RW, 998 &rack_default_init_window, 0, 999 "Do we have a rack initial window 0 = system default"); 1000 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1001 SYSCTL_CHILDREN(rack_pacing), 1002 OID_AUTO, "gp_per_ss", CTLFLAG_RW, 1003 &rack_per_of_gp_ss, 250, 1004 "If non zero, what percentage of goodput to pace at in slow start"); 1005 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1006 SYSCTL_CHILDREN(rack_pacing), 1007 OID_AUTO, "gp_per_ca", CTLFLAG_RW, 1008 &rack_per_of_gp_ca, 150, 1009 "If non zero, what percentage of goodput to pace at in congestion avoidance"); 1010 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1011 SYSCTL_CHILDREN(rack_pacing), 1012 OID_AUTO, "gp_per_rec", CTLFLAG_RW, 1013 &rack_per_of_gp_rec, 200, 1014 "If non zero, what percentage of goodput to pace at in recovery"); 1015 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1016 SYSCTL_CHILDREN(rack_pacing), 1017 OID_AUTO, "pace_max_seg", CTLFLAG_RW, 1018 &rack_hptsi_segments, 40, 1019 "What size is the max for TSO segments in pacing and burst mitigation"); 1020 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1021 SYSCTL_CHILDREN(rack_pacing), 1022 OID_AUTO, "burst_reduces", CTLFLAG_RW, 1023 &rack_slot_reduction, 4, 1024 "When doing only burst mitigation what is the reduce divisor"); 1025 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1026 SYSCTL_CHILDREN(rack_sysctl_root), 1027 OID_AUTO, "use_pacing", CTLFLAG_RW, 1028 &rack_pace_every_seg, 0, 1029 "If set we use pacing, if clear we use only the original burst mitigation"); 1030 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1031 SYSCTL_CHILDREN(rack_pacing), 1032 OID_AUTO, "rate_cap", CTLFLAG_RW, 1033 &rack_bw_rate_cap, 0, 1034 "If set we apply this value to the absolute rate cap used by pacing"); 1035 SYSCTL_ADD_U8(&rack_sysctl_ctx, 1036 SYSCTL_CHILDREN(rack_sysctl_root), 1037 OID_AUTO, "req_measure_cnt", CTLFLAG_RW, 1038 &rack_req_measurements, 1, 1039 "If doing dynamic pacing, how many measurements must be in before we start pacing?"); 1040 /* Hardware pacing */ 1041 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1042 SYSCTL_CHILDREN(rack_sysctl_root), 1043 OID_AUTO, 1044 "hdwr_pacing", 1045 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1046 "Pacing related Controls"); 1047 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1048 SYSCTL_CHILDREN(rack_hw_pacing), 1049 OID_AUTO, "rwnd_factor", CTLFLAG_RW, 1050 &rack_hw_rwnd_factor, 2, 1051 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?"); 1052 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1053 SYSCTL_CHILDREN(rack_hw_pacing), 1054 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW, 1055 &rack_enobuf_hw_boost_mult, 2, 1056 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?"); 1057 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1058 SYSCTL_CHILDREN(rack_hw_pacing), 1059 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW, 1060 &rack_enobuf_hw_max, 2, 1061 "What is the max boost the pacing time if we see a ENOBUFS?"); 1062 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1063 SYSCTL_CHILDREN(rack_hw_pacing), 1064 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW, 1065 &rack_enobuf_hw_min, 2, 1066 "What is the min boost the pacing time if we see a ENOBUFS?"); 1067 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1068 SYSCTL_CHILDREN(rack_hw_pacing), 1069 OID_AUTO, "enable", CTLFLAG_RW, 1070 &rack_enable_hw_pacing, 0, 1071 "Should RACK attempt to use hw pacing?"); 1072 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1073 SYSCTL_CHILDREN(rack_hw_pacing), 1074 OID_AUTO, "rate_cap", CTLFLAG_RW, 1075 &rack_hw_rate_caps, 1, 1076 "Does the highest hardware pacing rate cap the rate we will send at??"); 1077 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1078 SYSCTL_CHILDREN(rack_hw_pacing), 1079 OID_AUTO, "rate_min", CTLFLAG_RW, 1080 &rack_hw_rate_min, 0, 1081 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?"); 1082 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1083 SYSCTL_CHILDREN(rack_hw_pacing), 1084 OID_AUTO, "rate_to_low", CTLFLAG_RW, 1085 &rack_hw_rate_to_low, 0, 1086 "If we fall below this rate, dis-engage hw pacing?"); 1087 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1088 SYSCTL_CHILDREN(rack_hw_pacing), 1089 OID_AUTO, "up_only", CTLFLAG_RW, 1090 &rack_hw_up_only, 1, 1091 "Do we allow hw pacing to lower the rate selected?"); 1092 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1093 SYSCTL_CHILDREN(rack_hw_pacing), 1094 OID_AUTO, "extra_mss_precise", CTLFLAG_RW, 1095 &rack_hw_pace_extra_slots, 2, 1096 "If the rates between software and hardware match precisely how many extra time_betweens do we get?"); 1097 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1098 SYSCTL_CHILDREN(rack_sysctl_root), 1099 OID_AUTO, 1100 "timely", 1101 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1102 "Rack Timely RTT Controls"); 1103 /* Timely based GP dynmics */ 1104 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1105 SYSCTL_CHILDREN(rack_timely), 1106 OID_AUTO, "upper", CTLFLAG_RW, 1107 &rack_gp_per_bw_mul_up, 2, 1108 "Rack timely upper range for equal b/w (in percentage)"); 1109 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1110 SYSCTL_CHILDREN(rack_timely), 1111 OID_AUTO, "lower", CTLFLAG_RW, 1112 &rack_gp_per_bw_mul_down, 4, 1113 "Rack timely lower range for equal b/w (in percentage)"); 1114 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1115 SYSCTL_CHILDREN(rack_timely), 1116 OID_AUTO, "rtt_max_mul", CTLFLAG_RW, 1117 &rack_gp_rtt_maxmul, 3, 1118 "Rack timely multipler of lowest rtt for rtt_max"); 1119 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1120 SYSCTL_CHILDREN(rack_timely), 1121 OID_AUTO, "rtt_min_div", CTLFLAG_RW, 1122 &rack_gp_rtt_mindiv, 4, 1123 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1124 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1125 SYSCTL_CHILDREN(rack_timely), 1126 OID_AUTO, "rtt_min_mul", CTLFLAG_RW, 1127 &rack_gp_rtt_minmul, 1, 1128 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1129 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1130 SYSCTL_CHILDREN(rack_timely), 1131 OID_AUTO, "decrease", CTLFLAG_RW, 1132 &rack_gp_decrease_per, 20, 1133 "Rack timely decrease percentage of our GP multiplication factor"); 1134 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1135 SYSCTL_CHILDREN(rack_timely), 1136 OID_AUTO, "increase", CTLFLAG_RW, 1137 &rack_gp_increase_per, 2, 1138 "Rack timely increase perentage of our GP multiplication factor"); 1139 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1140 SYSCTL_CHILDREN(rack_timely), 1141 OID_AUTO, "lowerbound", CTLFLAG_RW, 1142 &rack_per_lower_bound, 50, 1143 "Rack timely lowest percentage we allow GP multiplier to fall to"); 1144 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1145 SYSCTL_CHILDREN(rack_timely), 1146 OID_AUTO, "upperboundss", CTLFLAG_RW, 1147 &rack_per_upper_bound_ss, 0, 1148 "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); 1149 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1150 SYSCTL_CHILDREN(rack_timely), 1151 OID_AUTO, "upperboundca", CTLFLAG_RW, 1152 &rack_per_upper_bound_ca, 0, 1153 "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); 1154 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1155 SYSCTL_CHILDREN(rack_timely), 1156 OID_AUTO, "dynamicgp", CTLFLAG_RW, 1157 &rack_do_dyn_mul, 0, 1158 "Rack timely do we enable dynmaic timely goodput by default"); 1159 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1160 SYSCTL_CHILDREN(rack_timely), 1161 OID_AUTO, "no_rec_red", CTLFLAG_RW, 1162 &rack_gp_no_rec_chg, 1, 1163 "Rack timely do we prohibit the recovery multiplier from being lowered"); 1164 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1165 SYSCTL_CHILDREN(rack_timely), 1166 OID_AUTO, "red_clear_cnt", CTLFLAG_RW, 1167 &rack_timely_dec_clear, 6, 1168 "Rack timely what threshold do we count to before another boost during b/w decent"); 1169 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1170 SYSCTL_CHILDREN(rack_timely), 1171 OID_AUTO, "max_push_rise", CTLFLAG_RW, 1172 &rack_timely_max_push_rise, 3, 1173 "Rack timely how many times do we push up with b/w increase"); 1174 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1175 SYSCTL_CHILDREN(rack_timely), 1176 OID_AUTO, "max_push_drop", CTLFLAG_RW, 1177 &rack_timely_max_push_drop, 3, 1178 "Rack timely how many times do we push back on b/w decent"); 1179 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1180 SYSCTL_CHILDREN(rack_timely), 1181 OID_AUTO, "min_segs", CTLFLAG_RW, 1182 &rack_timely_min_segs, 4, 1183 "Rack timely when setting the cwnd what is the min num segments"); 1184 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1185 SYSCTL_CHILDREN(rack_timely), 1186 OID_AUTO, "noback_max", CTLFLAG_RW, 1187 &rack_use_max_for_nobackoff, 0, 1188 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); 1189 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1190 SYSCTL_CHILDREN(rack_timely), 1191 OID_AUTO, "interim_timely_only", CTLFLAG_RW, 1192 &rack_timely_int_timely_only, 0, 1193 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); 1194 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1195 SYSCTL_CHILDREN(rack_timely), 1196 OID_AUTO, "nonstop", CTLFLAG_RW, 1197 &rack_timely_no_stopping, 0, 1198 "Rack timely don't stop increase"); 1199 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1200 SYSCTL_CHILDREN(rack_timely), 1201 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, 1202 &rack_down_raise_thresh, 100, 1203 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); 1204 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1205 SYSCTL_CHILDREN(rack_timely), 1206 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, 1207 &rack_req_segs, 1, 1208 "Bottom dragging if not these many segments outstanding and room"); 1209 1210 /* TLP and Rack related parameters */ 1211 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1212 SYSCTL_CHILDREN(rack_sysctl_root), 1213 OID_AUTO, 1214 "tlp", 1215 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1216 "TLP and Rack related Controls"); 1217 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1218 SYSCTL_CHILDREN(rack_tlp), 1219 OID_AUTO, "use_rrr", CTLFLAG_RW, 1220 &use_rack_rr, 1, 1221 "Do we use Rack Rapid Recovery"); 1222 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1223 SYSCTL_CHILDREN(rack_tlp), 1224 OID_AUTO, "post_rec_labc", CTLFLAG_RW, 1225 &rack_max_abc_post_recovery, 2, 1226 "Since we do early recovery, do we override the l_abc to a value, if so what?"); 1227 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1228 SYSCTL_CHILDREN(rack_tlp), 1229 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, 1230 &rack_non_rxt_use_cr, 0, 1231 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); 1232 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1233 SYSCTL_CHILDREN(rack_tlp), 1234 OID_AUTO, "tlpmethod", CTLFLAG_RW, 1235 &rack_tlp_threshold_use, TLP_USE_TWO_ONE, 1236 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); 1237 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1238 SYSCTL_CHILDREN(rack_tlp), 1239 OID_AUTO, "limit", CTLFLAG_RW, 1240 &rack_tlp_limit, 2, 1241 "How many TLP's can be sent without sending new data"); 1242 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1243 SYSCTL_CHILDREN(rack_tlp), 1244 OID_AUTO, "use_greater", CTLFLAG_RW, 1245 &rack_tlp_use_greater, 1, 1246 "Should we use the rack_rtt time if its greater than srtt"); 1247 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1248 SYSCTL_CHILDREN(rack_tlp), 1249 OID_AUTO, "tlpminto", CTLFLAG_RW, 1250 &rack_tlp_min, 10000, 1251 "TLP minimum timeout per the specification (in microseconds)"); 1252 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1253 SYSCTL_CHILDREN(rack_tlp), 1254 OID_AUTO, "send_oldest", CTLFLAG_RW, 1255 &rack_always_send_oldest, 0, 1256 "Should we always send the oldest TLP and RACK-TLP"); 1257 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1258 SYSCTL_CHILDREN(rack_tlp), 1259 OID_AUTO, "rack_tlimit", CTLFLAG_RW, 1260 &rack_limited_retran, 0, 1261 "How many times can a rack timeout drive out sends"); 1262 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1263 SYSCTL_CHILDREN(rack_tlp), 1264 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, 1265 &rack_lower_cwnd_at_tlp, 0, 1266 "When a TLP completes a retran should we enter recovery"); 1267 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1268 SYSCTL_CHILDREN(rack_tlp), 1269 OID_AUTO, "reorder_thresh", CTLFLAG_RW, 1270 &rack_reorder_thresh, 2, 1271 "What factor for rack will be added when seeing reordering (shift right)"); 1272 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1273 SYSCTL_CHILDREN(rack_tlp), 1274 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, 1275 &rack_tlp_thresh, 1, 1276 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); 1277 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1278 SYSCTL_CHILDREN(rack_tlp), 1279 OID_AUTO, "reorder_fade", CTLFLAG_RW, 1280 &rack_reorder_fade, 60000000, 1281 "Does reorder detection fade, if so how many microseconds (0 means never)"); 1282 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1283 SYSCTL_CHILDREN(rack_tlp), 1284 OID_AUTO, "pktdelay", CTLFLAG_RW, 1285 &rack_pkt_delay, 1000, 1286 "Extra RACK time (in microseconds) besides reordering thresh"); 1287 1288 /* Timer related controls */ 1289 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1290 SYSCTL_CHILDREN(rack_sysctl_root), 1291 OID_AUTO, 1292 "timers", 1293 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1294 "Timer related controls"); 1295 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1296 SYSCTL_CHILDREN(rack_timers), 1297 OID_AUTO, "persmin", CTLFLAG_RW, 1298 &rack_persist_min, 250000, 1299 "What is the minimum time in microseconds between persists"); 1300 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1301 SYSCTL_CHILDREN(rack_timers), 1302 OID_AUTO, "persmax", CTLFLAG_RW, 1303 &rack_persist_max, 2000000, 1304 "What is the largest delay in microseconds between persists"); 1305 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1306 SYSCTL_CHILDREN(rack_timers), 1307 OID_AUTO, "delayed_ack", CTLFLAG_RW, 1308 &rack_delayed_ack_time, 40000, 1309 "Delayed ack time (40ms in microseconds)"); 1310 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1311 SYSCTL_CHILDREN(rack_timers), 1312 OID_AUTO, "minrto", CTLFLAG_RW, 1313 &rack_rto_min, 30000, 1314 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP"); 1315 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1316 SYSCTL_CHILDREN(rack_timers), 1317 OID_AUTO, "maxrto", CTLFLAG_RW, 1318 &rack_rto_max, 4000000, 1319 "Maximum RTO in microseconds -- should be at least as large as min_rto"); 1320 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1321 SYSCTL_CHILDREN(rack_timers), 1322 OID_AUTO, "minto", CTLFLAG_RW, 1323 &rack_min_to, 1000, 1324 "Minimum rack timeout in microseconds"); 1325 /* Measure controls */ 1326 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1327 SYSCTL_CHILDREN(rack_sysctl_root), 1328 OID_AUTO, 1329 "measure", 1330 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1331 "Measure related controls"); 1332 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1333 SYSCTL_CHILDREN(rack_measure), 1334 OID_AUTO, "wma_divisor", CTLFLAG_RW, 1335 &rack_wma_divisor, 8, 1336 "When doing b/w calculation what is the divisor for the WMA"); 1337 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1338 SYSCTL_CHILDREN(rack_measure), 1339 OID_AUTO, "end_cwnd", CTLFLAG_RW, 1340 &rack_cwnd_block_ends_measure, 0, 1341 "Does a cwnd just-return end the measurement window (app limited)"); 1342 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1343 SYSCTL_CHILDREN(rack_measure), 1344 OID_AUTO, "end_rwnd", CTLFLAG_RW, 1345 &rack_rwnd_block_ends_measure, 0, 1346 "Does an rwnd just-return end the measurement window (app limited -- not persists)"); 1347 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1348 SYSCTL_CHILDREN(rack_measure), 1349 OID_AUTO, "min_target", CTLFLAG_RW, 1350 &rack_def_data_window, 20, 1351 "What is the minimum target window (in mss) for a GP measurements"); 1352 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1353 SYSCTL_CHILDREN(rack_measure), 1354 OID_AUTO, "goal_bdp", CTLFLAG_RW, 1355 &rack_goal_bdp, 2, 1356 "What is the goal BDP to measure"); 1357 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1358 SYSCTL_CHILDREN(rack_measure), 1359 OID_AUTO, "min_srtts", CTLFLAG_RW, 1360 &rack_min_srtts, 1, 1361 "What is the goal BDP to measure"); 1362 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1363 SYSCTL_CHILDREN(rack_measure), 1364 OID_AUTO, "min_measure_tim", CTLFLAG_RW, 1365 &rack_min_measure_usec, 0, 1366 "What is the Minimum time time for a measurement if 0, this is off"); 1367 /* Features */ 1368 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1369 SYSCTL_CHILDREN(rack_sysctl_root), 1370 OID_AUTO, 1371 "features", 1372 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1373 "Feature controls"); 1374 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1375 SYSCTL_CHILDREN(rack_features), 1376 OID_AUTO, "cmpack", CTLFLAG_RW, 1377 &rack_use_cmp_acks, 1, 1378 "Should RACK have LRO send compressed acks"); 1379 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1380 SYSCTL_CHILDREN(rack_features), 1381 OID_AUTO, "fsb", CTLFLAG_RW, 1382 &rack_use_fsb, 1, 1383 "Should RACK use the fast send block?"); 1384 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1385 SYSCTL_CHILDREN(rack_features), 1386 OID_AUTO, "rfo", CTLFLAG_RW, 1387 &rack_use_rfo, 1, 1388 "Should RACK use rack_fast_output()?"); 1389 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1390 SYSCTL_CHILDREN(rack_features), 1391 OID_AUTO, "rsmrfo", CTLFLAG_RW, 1392 &rack_use_rsm_rfo, 1, 1393 "Should RACK use rack_fast_rsm_output()?"); 1394 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1395 SYSCTL_CHILDREN(rack_features), 1396 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, 1397 &rack_enable_mqueue_for_nonpaced, 0, 1398 "Should RACK use mbuf queuing for non-paced connections"); 1399 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1400 SYSCTL_CHILDREN(rack_features), 1401 OID_AUTO, "hystartplusplus", CTLFLAG_RW, 1402 &rack_do_hystart, 0, 1403 "Should RACK enable HyStart++ on connections?"); 1404 /* Misc rack controls */ 1405 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1406 SYSCTL_CHILDREN(rack_sysctl_root), 1407 OID_AUTO, 1408 "misc", 1409 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1410 "Misc related controls"); 1411 #ifdef TCP_ACCOUNTING 1412 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1413 SYSCTL_CHILDREN(rack_misc), 1414 OID_AUTO, "tcp_acct", CTLFLAG_RW, 1415 &rack_tcp_accounting, 0, 1416 "Should we turn on TCP accounting for all rack sessions?"); 1417 #endif 1418 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1419 SYSCTL_CHILDREN(rack_misc), 1420 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW, 1421 &rack_dsack_std_based, 3, 1422 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?"); 1423 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1424 SYSCTL_CHILDREN(rack_misc), 1425 OID_AUTO, "prr_addback_max", CTLFLAG_RW, 1426 &rack_prr_addbackmax, 2, 1427 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?"); 1428 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1429 SYSCTL_CHILDREN(rack_misc), 1430 OID_AUTO, "stats_gets_ms", CTLFLAG_RW, 1431 &rack_stats_gets_ms_rtt, 1, 1432 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?"); 1433 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1434 SYSCTL_CHILDREN(rack_misc), 1435 OID_AUTO, "clientlowbuf", CTLFLAG_RW, 1436 &rack_client_low_buf, 0, 1437 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?"); 1438 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1439 SYSCTL_CHILDREN(rack_misc), 1440 OID_AUTO, "defprofile", CTLFLAG_RW, 1441 &rack_def_profile, 0, 1442 "Should RACK use a default profile (0=no, num == profile num)?"); 1443 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1444 SYSCTL_CHILDREN(rack_misc), 1445 OID_AUTO, "shared_cwnd", CTLFLAG_RW, 1446 &rack_enable_shared_cwnd, 1, 1447 "Should RACK try to use the shared cwnd on connections where allowed"); 1448 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1449 SYSCTL_CHILDREN(rack_misc), 1450 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, 1451 &rack_limits_scwnd, 1, 1452 "Should RACK place low end time limits on the shared cwnd feature"); 1453 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1454 SYSCTL_CHILDREN(rack_misc), 1455 OID_AUTO, "iMac_dack", CTLFLAG_RW, 1456 &rack_use_imac_dack, 0, 1457 "Should RACK try to emulate iMac delayed ack"); 1458 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1459 SYSCTL_CHILDREN(rack_misc), 1460 OID_AUTO, "no_prr", CTLFLAG_RW, 1461 &rack_disable_prr, 0, 1462 "Should RACK not use prr and only pace (must have pacing on)"); 1463 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1464 SYSCTL_CHILDREN(rack_misc), 1465 OID_AUTO, "bb_verbose", CTLFLAG_RW, 1466 &rack_verbose_logging, 0, 1467 "Should RACK black box logging be verbose"); 1468 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1469 SYSCTL_CHILDREN(rack_misc), 1470 OID_AUTO, "data_after_close", CTLFLAG_RW, 1471 &rack_ignore_data_after_close, 1, 1472 "Do we hold off sending a RST until all pending data is ack'd"); 1473 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1474 SYSCTL_CHILDREN(rack_misc), 1475 OID_AUTO, "no_sack_needed", CTLFLAG_RW, 1476 &rack_sack_not_required, 1, 1477 "Do we allow rack to run on connections not supporting SACK"); 1478 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1479 SYSCTL_CHILDREN(rack_misc), 1480 OID_AUTO, "prr_sendalot", CTLFLAG_RW, 1481 &rack_send_a_lot_in_prr, 1, 1482 "Send a lot in prr"); 1483 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1484 SYSCTL_CHILDREN(rack_misc), 1485 OID_AUTO, "autoscale", CTLFLAG_RW, 1486 &rack_autosndbuf_inc, 20, 1487 "What percentage should rack scale up its snd buffer by?"); 1488 /* Sack Attacker detection stuff */ 1489 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1490 SYSCTL_CHILDREN(rack_attack), 1491 OID_AUTO, "detect_highsackratio", CTLFLAG_RW, 1492 &rack_highest_sack_thresh_seen, 0, 1493 "Highest sack to ack ratio seen"); 1494 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1495 SYSCTL_CHILDREN(rack_attack), 1496 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, 1497 &rack_highest_move_thresh_seen, 0, 1498 "Highest move to non-move ratio seen"); 1499 rack_ack_total = counter_u64_alloc(M_WAITOK); 1500 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1501 SYSCTL_CHILDREN(rack_attack), 1502 OID_AUTO, "acktotal", CTLFLAG_RD, 1503 &rack_ack_total, 1504 "Total number of Ack's"); 1505 rack_express_sack = counter_u64_alloc(M_WAITOK); 1506 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1507 SYSCTL_CHILDREN(rack_attack), 1508 OID_AUTO, "exp_sacktotal", CTLFLAG_RD, 1509 &rack_express_sack, 1510 "Total expresss number of Sack's"); 1511 rack_sack_total = counter_u64_alloc(M_WAITOK); 1512 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1513 SYSCTL_CHILDREN(rack_attack), 1514 OID_AUTO, "sacktotal", CTLFLAG_RD, 1515 &rack_sack_total, 1516 "Total number of SACKs"); 1517 rack_move_none = counter_u64_alloc(M_WAITOK); 1518 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1519 SYSCTL_CHILDREN(rack_attack), 1520 OID_AUTO, "move_none", CTLFLAG_RD, 1521 &rack_move_none, 1522 "Total number of SACK index reuse of postions under threshold"); 1523 rack_move_some = counter_u64_alloc(M_WAITOK); 1524 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1525 SYSCTL_CHILDREN(rack_attack), 1526 OID_AUTO, "move_some", CTLFLAG_RD, 1527 &rack_move_some, 1528 "Total number of SACK index reuse of postions over threshold"); 1529 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); 1530 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1531 SYSCTL_CHILDREN(rack_attack), 1532 OID_AUTO, "attacks", CTLFLAG_RD, 1533 &rack_sack_attacks_detected, 1534 "Total number of SACK attackers that had sack disabled"); 1535 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); 1536 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1537 SYSCTL_CHILDREN(rack_attack), 1538 OID_AUTO, "reversed", CTLFLAG_RD, 1539 &rack_sack_attacks_reversed, 1540 "Total number of SACK attackers that were later determined false positive"); 1541 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); 1542 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1543 SYSCTL_CHILDREN(rack_attack), 1544 OID_AUTO, "nextmerge", CTLFLAG_RD, 1545 &rack_sack_used_next_merge, 1546 "Total number of times we used the next merge"); 1547 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); 1548 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1549 SYSCTL_CHILDREN(rack_attack), 1550 OID_AUTO, "prevmerge", CTLFLAG_RD, 1551 &rack_sack_used_prev_merge, 1552 "Total number of times we used the prev merge"); 1553 /* Counters */ 1554 rack_fto_send = counter_u64_alloc(M_WAITOK); 1555 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1556 SYSCTL_CHILDREN(rack_counters), 1557 OID_AUTO, "fto_send", CTLFLAG_RD, 1558 &rack_fto_send, "Total number of rack_fast_output sends"); 1559 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK); 1560 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1561 SYSCTL_CHILDREN(rack_counters), 1562 OID_AUTO, "fto_rsm_send", CTLFLAG_RD, 1563 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends"); 1564 rack_nfto_resend = counter_u64_alloc(M_WAITOK); 1565 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1566 SYSCTL_CHILDREN(rack_counters), 1567 OID_AUTO, "nfto_resend", CTLFLAG_RD, 1568 &rack_nfto_resend, "Total number of rack_output retransmissions"); 1569 rack_non_fto_send = counter_u64_alloc(M_WAITOK); 1570 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1571 SYSCTL_CHILDREN(rack_counters), 1572 OID_AUTO, "nfto_send", CTLFLAG_RD, 1573 &rack_non_fto_send, "Total number of rack_output first sends"); 1574 rack_extended_rfo = counter_u64_alloc(M_WAITOK); 1575 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1576 SYSCTL_CHILDREN(rack_counters), 1577 OID_AUTO, "rfo_extended", CTLFLAG_RD, 1578 &rack_extended_rfo, "Total number of times we extended rfo"); 1579 1580 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK); 1581 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1582 SYSCTL_CHILDREN(rack_counters), 1583 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD, 1584 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing"); 1585 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK); 1586 1587 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1588 SYSCTL_CHILDREN(rack_counters), 1589 OID_AUTO, "hwpace_lost", CTLFLAG_RD, 1590 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing"); 1591 rack_badfr = counter_u64_alloc(M_WAITOK); 1592 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1593 SYSCTL_CHILDREN(rack_counters), 1594 OID_AUTO, "badfr", CTLFLAG_RD, 1595 &rack_badfr, "Total number of bad FRs"); 1596 rack_badfr_bytes = counter_u64_alloc(M_WAITOK); 1597 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1598 SYSCTL_CHILDREN(rack_counters), 1599 OID_AUTO, "badfr_bytes", CTLFLAG_RD, 1600 &rack_badfr_bytes, "Total number of bad FRs"); 1601 rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK); 1602 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1603 SYSCTL_CHILDREN(rack_counters), 1604 OID_AUTO, "prrsndret", CTLFLAG_RD, 1605 &rack_rtm_prr_retran, 1606 "Total number of prr based retransmits"); 1607 rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK); 1608 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1609 SYSCTL_CHILDREN(rack_counters), 1610 OID_AUTO, "prrsndnew", CTLFLAG_RD, 1611 &rack_rtm_prr_newdata, 1612 "Total number of prr based new transmits"); 1613 rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK); 1614 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1615 SYSCTL_CHILDREN(rack_counters), 1616 OID_AUTO, "tsnf", CTLFLAG_RD, 1617 &rack_timestamp_mismatch, 1618 "Total number of timestamps that we could not find the reported ts"); 1619 rack_find_high = counter_u64_alloc(M_WAITOK); 1620 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1621 SYSCTL_CHILDREN(rack_counters), 1622 OID_AUTO, "findhigh", CTLFLAG_RD, 1623 &rack_find_high, 1624 "Total number of FIN causing find-high"); 1625 rack_reorder_seen = counter_u64_alloc(M_WAITOK); 1626 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1627 SYSCTL_CHILDREN(rack_counters), 1628 OID_AUTO, "reordering", CTLFLAG_RD, 1629 &rack_reorder_seen, 1630 "Total number of times we added delay due to reordering"); 1631 rack_tlp_tot = counter_u64_alloc(M_WAITOK); 1632 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1633 SYSCTL_CHILDREN(rack_counters), 1634 OID_AUTO, "tlp_to_total", CTLFLAG_RD, 1635 &rack_tlp_tot, 1636 "Total number of tail loss probe expirations"); 1637 rack_tlp_newdata = counter_u64_alloc(M_WAITOK); 1638 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1639 SYSCTL_CHILDREN(rack_counters), 1640 OID_AUTO, "tlp_new", CTLFLAG_RD, 1641 &rack_tlp_newdata, 1642 "Total number of tail loss probe sending new data"); 1643 rack_tlp_retran = counter_u64_alloc(M_WAITOK); 1644 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1645 SYSCTL_CHILDREN(rack_counters), 1646 OID_AUTO, "tlp_retran", CTLFLAG_RD, 1647 &rack_tlp_retran, 1648 "Total number of tail loss probe sending retransmitted data"); 1649 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); 1650 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1651 SYSCTL_CHILDREN(rack_counters), 1652 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, 1653 &rack_tlp_retran_bytes, 1654 "Total bytes of tail loss probe sending retransmitted data"); 1655 rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK); 1656 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1657 SYSCTL_CHILDREN(rack_counters), 1658 OID_AUTO, "tlp_retran_fail", CTLFLAG_RD, 1659 &rack_tlp_retran_fail, 1660 "Total number of tail loss probe sending retransmitted data that failed (wait for t3)"); 1661 rack_to_tot = counter_u64_alloc(M_WAITOK); 1662 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1663 SYSCTL_CHILDREN(rack_counters), 1664 OID_AUTO, "rack_to_tot", CTLFLAG_RD, 1665 &rack_to_tot, 1666 "Total number of times the rack to expired"); 1667 rack_to_arm_rack = counter_u64_alloc(M_WAITOK); 1668 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1669 SYSCTL_CHILDREN(rack_counters), 1670 OID_AUTO, "arm_rack", CTLFLAG_RD, 1671 &rack_to_arm_rack, 1672 "Total number of times the rack timer armed"); 1673 rack_to_arm_tlp = counter_u64_alloc(M_WAITOK); 1674 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1675 SYSCTL_CHILDREN(rack_counters), 1676 OID_AUTO, "arm_tlp", CTLFLAG_RD, 1677 &rack_to_arm_tlp, 1678 "Total number of times the tlp timer armed"); 1679 rack_calc_zero = counter_u64_alloc(M_WAITOK); 1680 rack_calc_nonzero = counter_u64_alloc(M_WAITOK); 1681 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1682 SYSCTL_CHILDREN(rack_counters), 1683 OID_AUTO, "calc_zero", CTLFLAG_RD, 1684 &rack_calc_zero, 1685 "Total number of times pacing time worked out to zero"); 1686 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1687 SYSCTL_CHILDREN(rack_counters), 1688 OID_AUTO, "calc_nonzero", CTLFLAG_RD, 1689 &rack_calc_nonzero, 1690 "Total number of times pacing time worked out to non-zero"); 1691 rack_paced_segments = counter_u64_alloc(M_WAITOK); 1692 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1693 SYSCTL_CHILDREN(rack_counters), 1694 OID_AUTO, "paced", CTLFLAG_RD, 1695 &rack_paced_segments, 1696 "Total number of times a segment send caused hptsi"); 1697 rack_unpaced_segments = counter_u64_alloc(M_WAITOK); 1698 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1699 SYSCTL_CHILDREN(rack_counters), 1700 OID_AUTO, "unpaced", CTLFLAG_RD, 1701 &rack_unpaced_segments, 1702 "Total number of times a segment did not cause hptsi"); 1703 rack_saw_enobuf = counter_u64_alloc(M_WAITOK); 1704 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1705 SYSCTL_CHILDREN(rack_counters), 1706 OID_AUTO, "saw_enobufs", CTLFLAG_RD, 1707 &rack_saw_enobuf, 1708 "Total number of times a sends returned enobuf for non-hdwr paced connections"); 1709 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK); 1710 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1711 SYSCTL_CHILDREN(rack_counters), 1712 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD, 1713 &rack_saw_enobuf_hw, 1714 "Total number of times a send returned enobuf for hdwr paced connections"); 1715 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); 1716 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1717 SYSCTL_CHILDREN(rack_counters), 1718 OID_AUTO, "saw_enetunreach", CTLFLAG_RD, 1719 &rack_saw_enetunreach, 1720 "Total number of times a send received a enetunreachable"); 1721 rack_hot_alloc = counter_u64_alloc(M_WAITOK); 1722 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1723 SYSCTL_CHILDREN(rack_counters), 1724 OID_AUTO, "alloc_hot", CTLFLAG_RD, 1725 &rack_hot_alloc, 1726 "Total allocations from the top of our list"); 1727 rack_to_alloc = counter_u64_alloc(M_WAITOK); 1728 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1729 SYSCTL_CHILDREN(rack_counters), 1730 OID_AUTO, "allocs", CTLFLAG_RD, 1731 &rack_to_alloc, 1732 "Total allocations of tracking structures"); 1733 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); 1734 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1735 SYSCTL_CHILDREN(rack_counters), 1736 OID_AUTO, "allochard", CTLFLAG_RD, 1737 &rack_to_alloc_hard, 1738 "Total allocations done with sleeping the hard way"); 1739 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); 1740 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1741 SYSCTL_CHILDREN(rack_counters), 1742 OID_AUTO, "allocemerg", CTLFLAG_RD, 1743 &rack_to_alloc_emerg, 1744 "Total allocations done from emergency cache"); 1745 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); 1746 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1747 SYSCTL_CHILDREN(rack_counters), 1748 OID_AUTO, "alloc_limited", CTLFLAG_RD, 1749 &rack_to_alloc_limited, 1750 "Total allocations dropped due to limit"); 1751 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); 1752 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1753 SYSCTL_CHILDREN(rack_counters), 1754 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, 1755 &rack_alloc_limited_conns, 1756 "Connections with allocations dropped due to limit"); 1757 rack_split_limited = counter_u64_alloc(M_WAITOK); 1758 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1759 SYSCTL_CHILDREN(rack_counters), 1760 OID_AUTO, "split_limited", CTLFLAG_RD, 1761 &rack_split_limited, 1762 "Split allocations dropped due to limit"); 1763 1764 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 1765 char name[32]; 1766 sprintf(name, "cmp_ack_cnt_%d", i); 1767 rack_proc_comp_ack[i] = counter_u64_alloc(M_WAITOK); 1768 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1769 SYSCTL_CHILDREN(rack_counters), 1770 OID_AUTO, name, CTLFLAG_RD, 1771 &rack_proc_comp_ack[i], 1772 "Number of compressed acks we processed"); 1773 } 1774 rack_large_ackcmp = counter_u64_alloc(M_WAITOK); 1775 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1776 SYSCTL_CHILDREN(rack_counters), 1777 OID_AUTO, "cmp_large_mbufs", CTLFLAG_RD, 1778 &rack_large_ackcmp, 1779 "Number of TCP connections with large mbuf's for compressed acks"); 1780 rack_small_ackcmp = counter_u64_alloc(M_WAITOK); 1781 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1782 SYSCTL_CHILDREN(rack_counters), 1783 OID_AUTO, "cmp_small_mbufs", CTLFLAG_RD, 1784 &rack_small_ackcmp, 1785 "Number of TCP connections with small mbuf's for compressed acks"); 1786 #ifdef INVARIANTS 1787 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK); 1788 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1789 SYSCTL_CHILDREN(rack_counters), 1790 OID_AUTO, "map_adjust_req", CTLFLAG_RD, 1791 &rack_adjust_map_bw, 1792 "Number of times we hit the case where the sb went up and down on a sendmap entry"); 1793 #endif 1794 rack_multi_single_eq = counter_u64_alloc(M_WAITOK); 1795 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1796 SYSCTL_CHILDREN(rack_counters), 1797 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD, 1798 &rack_multi_single_eq, 1799 "Number of compressed acks total represented"); 1800 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK); 1801 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1802 SYSCTL_CHILDREN(rack_counters), 1803 OID_AUTO, "cmp_ack_not", CTLFLAG_RD, 1804 &rack_proc_non_comp_ack, 1805 "Number of non compresseds acks that we processed"); 1806 1807 1808 rack_sack_proc_all = counter_u64_alloc(M_WAITOK); 1809 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1810 SYSCTL_CHILDREN(rack_counters), 1811 OID_AUTO, "sack_long", CTLFLAG_RD, 1812 &rack_sack_proc_all, 1813 "Total times we had to walk whole list for sack processing"); 1814 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); 1815 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1816 SYSCTL_CHILDREN(rack_counters), 1817 OID_AUTO, "sack_restart", CTLFLAG_RD, 1818 &rack_sack_proc_restart, 1819 "Total times we had to walk whole list due to a restart"); 1820 rack_sack_proc_short = counter_u64_alloc(M_WAITOK); 1821 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1822 SYSCTL_CHILDREN(rack_counters), 1823 OID_AUTO, "sack_short", CTLFLAG_RD, 1824 &rack_sack_proc_short, 1825 "Total times we took shortcut for sack processing"); 1826 rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK); 1827 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1828 SYSCTL_CHILDREN(rack_counters), 1829 OID_AUTO, "tlp_calc_entered", CTLFLAG_RD, 1830 &rack_enter_tlp_calc, 1831 "Total times we called calc-tlp"); 1832 rack_used_tlpmethod = counter_u64_alloc(M_WAITOK); 1833 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1834 SYSCTL_CHILDREN(rack_counters), 1835 OID_AUTO, "hit_tlp_method", CTLFLAG_RD, 1836 &rack_used_tlpmethod, 1837 "Total number of runt sacks"); 1838 rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK); 1839 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1840 SYSCTL_CHILDREN(rack_counters), 1841 OID_AUTO, "hit_tlp_method2", CTLFLAG_RD, 1842 &rack_used_tlpmethod2, 1843 "Total number of times we hit TLP method 2"); 1844 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); 1845 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1846 SYSCTL_CHILDREN(rack_attack), 1847 OID_AUTO, "skipacked", CTLFLAG_RD, 1848 &rack_sack_skipped_acked, 1849 "Total number of times we skipped previously sacked"); 1850 rack_sack_splits = counter_u64_alloc(M_WAITOK); 1851 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1852 SYSCTL_CHILDREN(rack_attack), 1853 OID_AUTO, "ofsplit", CTLFLAG_RD, 1854 &rack_sack_splits, 1855 "Total number of times we did the old fashion tree split"); 1856 rack_progress_drops = counter_u64_alloc(M_WAITOK); 1857 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1858 SYSCTL_CHILDREN(rack_counters), 1859 OID_AUTO, "prog_drops", CTLFLAG_RD, 1860 &rack_progress_drops, 1861 "Total number of progress drops"); 1862 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); 1863 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1864 SYSCTL_CHILDREN(rack_counters), 1865 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, 1866 &rack_input_idle_reduces, 1867 "Total number of idle reductions on input"); 1868 rack_collapsed_win = counter_u64_alloc(M_WAITOK); 1869 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1870 SYSCTL_CHILDREN(rack_counters), 1871 OID_AUTO, "collapsed_win", CTLFLAG_RD, 1872 &rack_collapsed_win, 1873 "Total number of collapsed windows"); 1874 rack_tlp_does_nada = counter_u64_alloc(M_WAITOK); 1875 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1876 SYSCTL_CHILDREN(rack_counters), 1877 OID_AUTO, "tlp_nada", CTLFLAG_RD, 1878 &rack_tlp_does_nada, 1879 "Total number of nada tlp calls"); 1880 rack_try_scwnd = counter_u64_alloc(M_WAITOK); 1881 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1882 SYSCTL_CHILDREN(rack_counters), 1883 OID_AUTO, "tried_scwnd", CTLFLAG_RD, 1884 &rack_try_scwnd, 1885 "Total number of scwnd attempts"); 1886 1887 rack_per_timer_hole = counter_u64_alloc(M_WAITOK); 1888 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1889 SYSCTL_CHILDREN(rack_counters), 1890 OID_AUTO, "timer_hole", CTLFLAG_RD, 1891 &rack_per_timer_hole, 1892 "Total persists start in timer hole"); 1893 1894 rack_sbsndptr_wrong = counter_u64_alloc(M_WAITOK); 1895 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1896 SYSCTL_CHILDREN(rack_counters), 1897 OID_AUTO, "sndptr_wrong", CTLFLAG_RD, 1898 &rack_sbsndptr_wrong, "Total number of times the saved sbsndptr was incorret"); 1899 rack_sbsndptr_right = counter_u64_alloc(M_WAITOK); 1900 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1901 SYSCTL_CHILDREN(rack_counters), 1902 OID_AUTO, "sndptr_right", CTLFLAG_RD, 1903 &rack_sbsndptr_right, "Total number of times the saved sbsndptr was corret"); 1904 1905 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); 1906 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1907 OID_AUTO, "outsize", CTLFLAG_RD, 1908 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); 1909 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); 1910 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1911 OID_AUTO, "opts", CTLFLAG_RD, 1912 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); 1913 SYSCTL_ADD_PROC(&rack_sysctl_ctx, 1914 SYSCTL_CHILDREN(rack_sysctl_root), 1915 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1916 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); 1917 } 1918 1919 static __inline int 1920 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a) 1921 { 1922 if (SEQ_GEQ(b->r_start, a->r_start) && 1923 SEQ_LT(b->r_start, a->r_end)) { 1924 /* 1925 * The entry b is within the 1926 * block a. i.e.: 1927 * a -- |-------------| 1928 * b -- |----| 1929 * <or> 1930 * b -- |------| 1931 * <or> 1932 * b -- |-----------| 1933 */ 1934 return (0); 1935 } else if (SEQ_GEQ(b->r_start, a->r_end)) { 1936 /* 1937 * b falls as either the next 1938 * sequence block after a so a 1939 * is said to be smaller than b. 1940 * i.e: 1941 * a -- |------| 1942 * b -- |--------| 1943 * or 1944 * b -- |-----| 1945 */ 1946 return (1); 1947 } 1948 /* 1949 * Whats left is where a is 1950 * larger than b. i.e: 1951 * a -- |-------| 1952 * b -- |---| 1953 * or even possibly 1954 * b -- |--------------| 1955 */ 1956 return (-1); 1957 } 1958 1959 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1960 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1961 1962 static uint32_t 1963 rc_init_window(struct tcp_rack *rack) 1964 { 1965 uint32_t win; 1966 1967 if (rack->rc_init_win == 0) { 1968 /* 1969 * Nothing set by the user, use the system stack 1970 * default. 1971 */ 1972 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); 1973 } 1974 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; 1975 return (win); 1976 } 1977 1978 static uint64_t 1979 rack_get_fixed_pacing_bw(struct tcp_rack *rack) 1980 { 1981 if (IN_FASTRECOVERY(rack->rc_tp->t_flags)) 1982 return (rack->r_ctl.rc_fixed_pacing_rate_rec); 1983 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 1984 return (rack->r_ctl.rc_fixed_pacing_rate_ss); 1985 else 1986 return (rack->r_ctl.rc_fixed_pacing_rate_ca); 1987 } 1988 1989 static uint64_t 1990 rack_get_bw(struct tcp_rack *rack) 1991 { 1992 if (rack->use_fixed_rate) { 1993 /* Return the fixed pacing rate */ 1994 return (rack_get_fixed_pacing_bw(rack)); 1995 } 1996 if (rack->r_ctl.gp_bw == 0) { 1997 /* 1998 * We have yet no b/w measurement, 1999 * if we have a user set initial bw 2000 * return it. If we don't have that and 2001 * we have an srtt, use the tcp IW (10) to 2002 * calculate a fictional b/w over the SRTT 2003 * which is more or less a guess. Note 2004 * we don't use our IW from rack on purpose 2005 * so if we have like IW=30, we are not 2006 * calculating a "huge" b/w. 2007 */ 2008 uint64_t bw, srtt; 2009 if (rack->r_ctl.init_rate) 2010 return (rack->r_ctl.init_rate); 2011 2012 /* Has the user set a max peak rate? */ 2013 #ifdef NETFLIX_PEAKRATE 2014 if (rack->rc_tp->t_maxpeakrate) 2015 return (rack->rc_tp->t_maxpeakrate); 2016 #endif 2017 /* Ok lets come up with the IW guess, if we have a srtt */ 2018 if (rack->rc_tp->t_srtt == 0) { 2019 /* 2020 * Go with old pacing method 2021 * i.e. burst mitigation only. 2022 */ 2023 return (0); 2024 } 2025 /* Ok lets get the initial TCP win (not racks) */ 2026 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); 2027 srtt = (uint64_t)rack->rc_tp->t_srtt; 2028 bw *= (uint64_t)USECS_IN_SECOND; 2029 bw /= srtt; 2030 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2031 bw = rack->r_ctl.bw_rate_cap; 2032 return (bw); 2033 } else { 2034 uint64_t bw; 2035 2036 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 2037 /* Averaging is done, we can return the value */ 2038 bw = rack->r_ctl.gp_bw; 2039 } else { 2040 /* Still doing initial average must calculate */ 2041 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements; 2042 } 2043 #ifdef NETFLIX_PEAKRATE 2044 if ((rack->rc_tp->t_maxpeakrate) && 2045 (bw > rack->rc_tp->t_maxpeakrate)) { 2046 /* The user has set a peak rate to pace at 2047 * don't allow us to pace faster than that. 2048 */ 2049 return (rack->rc_tp->t_maxpeakrate); 2050 } 2051 #endif 2052 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2053 bw = rack->r_ctl.bw_rate_cap; 2054 return (bw); 2055 } 2056 } 2057 2058 static uint16_t 2059 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) 2060 { 2061 if (rack->use_fixed_rate) { 2062 return (100); 2063 } else if (rack->in_probe_rtt && (rsm == NULL)) 2064 return (rack->r_ctl.rack_per_of_gp_probertt); 2065 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) && 2066 rack->r_ctl.rack_per_of_gp_rec)) { 2067 if (rsm) { 2068 /* a retransmission always use the recovery rate */ 2069 return (rack->r_ctl.rack_per_of_gp_rec); 2070 } else if (rack->rack_rec_nonrxt_use_cr) { 2071 /* Directed to use the configured rate */ 2072 goto configured_rate; 2073 } else if (rack->rack_no_prr && 2074 (rack->r_ctl.rack_per_of_gp_rec > 100)) { 2075 /* No PRR, lets just use the b/w estimate only */ 2076 return (100); 2077 } else { 2078 /* 2079 * Here we may have a non-retransmit but we 2080 * have no overrides, so just use the recovery 2081 * rate (prr is in effect). 2082 */ 2083 return (rack->r_ctl.rack_per_of_gp_rec); 2084 } 2085 } 2086 configured_rate: 2087 /* For the configured rate we look at our cwnd vs the ssthresh */ 2088 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 2089 return (rack->r_ctl.rack_per_of_gp_ss); 2090 else 2091 return (rack->r_ctl.rack_per_of_gp_ca); 2092 } 2093 2094 static void 2095 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6) 2096 { 2097 /* 2098 * Types of logs (mod value) 2099 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit. 2100 * 2 = a dsack round begins, persist is reset to 16. 2101 * 3 = a dsack round ends 2102 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh 2103 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack 2104 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh. 2105 */ 2106 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2107 union tcp_log_stackspecific log; 2108 struct timeval tv; 2109 2110 memset(&log, 0, sizeof(log)); 2111 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based; 2112 log.u_bbr.flex1 <<= 1; 2113 log.u_bbr.flex1 |= rack->rc_rack_use_dsack; 2114 log.u_bbr.flex1 <<= 1; 2115 log.u_bbr.flex1 |= rack->rc_dsack_round_seen; 2116 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end; 2117 log.u_bbr.flex3 = rack->r_ctl.num_dsack; 2118 log.u_bbr.flex4 = flex4; 2119 log.u_bbr.flex5 = flex5; 2120 log.u_bbr.flex6 = flex6; 2121 log.u_bbr.flex7 = rack->r_ctl.dsack_persist; 2122 log.u_bbr.flex8 = mod; 2123 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2124 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2125 &rack->rc_inp->inp_socket->so_rcv, 2126 &rack->rc_inp->inp_socket->so_snd, 2127 RACK_DSACK_HANDLING, 0, 2128 0, &log, false, &tv); 2129 } 2130 } 2131 2132 static void 2133 rack_log_hdwr_pacing(struct tcp_rack *rack, 2134 uint64_t rate, uint64_t hw_rate, int line, 2135 int error, uint16_t mod) 2136 { 2137 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2138 union tcp_log_stackspecific log; 2139 struct timeval tv; 2140 const struct ifnet *ifp; 2141 2142 memset(&log, 0, sizeof(log)); 2143 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); 2144 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); 2145 if (rack->r_ctl.crte) { 2146 ifp = rack->r_ctl.crte->ptbl->rs_ifp; 2147 } else if (rack->rc_inp->inp_route.ro_nh && 2148 rack->rc_inp->inp_route.ro_nh->nh_ifp) { 2149 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp; 2150 } else 2151 ifp = NULL; 2152 if (ifp) { 2153 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); 2154 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); 2155 } 2156 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2157 log.u_bbr.bw_inuse = rate; 2158 log.u_bbr.flex5 = line; 2159 log.u_bbr.flex6 = error; 2160 log.u_bbr.flex7 = mod; 2161 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; 2162 log.u_bbr.flex8 = rack->use_fixed_rate; 2163 log.u_bbr.flex8 <<= 1; 2164 log.u_bbr.flex8 |= rack->rack_hdrw_pacing; 2165 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 2166 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate; 2167 if (rack->r_ctl.crte) 2168 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate; 2169 else 2170 log.u_bbr.cur_del_rate = 0; 2171 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req; 2172 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2173 &rack->rc_inp->inp_socket->so_rcv, 2174 &rack->rc_inp->inp_socket->so_snd, 2175 BBR_LOG_HDWR_PACE, 0, 2176 0, &log, false, &tv); 2177 } 2178 } 2179 2180 static uint64_t 2181 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped) 2182 { 2183 /* 2184 * We allow rack_per_of_gp_xx to dictate our bw rate we want. 2185 */ 2186 uint64_t bw_est, high_rate; 2187 uint64_t gain; 2188 2189 gain = (uint64_t)rack_get_output_gain(rack, rsm); 2190 bw_est = bw * gain; 2191 bw_est /= (uint64_t)100; 2192 /* Never fall below the minimum (def 64kbps) */ 2193 if (bw_est < RACK_MIN_BW) 2194 bw_est = RACK_MIN_BW; 2195 if (rack->r_rack_hw_rate_caps) { 2196 /* Rate caps are in place */ 2197 if (rack->r_ctl.crte != NULL) { 2198 /* We have a hdwr rate already */ 2199 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 2200 if (bw_est >= high_rate) { 2201 /* We are capping bw at the highest rate table entry */ 2202 rack_log_hdwr_pacing(rack, 2203 bw_est, high_rate, __LINE__, 2204 0, 3); 2205 bw_est = high_rate; 2206 if (capped) 2207 *capped = 1; 2208 } 2209 } else if ((rack->rack_hdrw_pacing == 0) && 2210 (rack->rack_hdw_pace_ena) && 2211 (rack->rack_attempt_hdwr_pace == 0) && 2212 (rack->rc_inp->inp_route.ro_nh != NULL) && 2213 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 2214 /* 2215 * Special case, we have not yet attempted hardware 2216 * pacing, and yet we may, when we do, find out if we are 2217 * above the highest rate. We need to know the maxbw for the interface 2218 * in question (if it supports ratelimiting). We get back 2219 * a 0, if the interface is not found in the RL lists. 2220 */ 2221 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 2222 if (high_rate) { 2223 /* Yep, we have a rate is it above this rate? */ 2224 if (bw_est > high_rate) { 2225 bw_est = high_rate; 2226 if (capped) 2227 *capped = 1; 2228 } 2229 } 2230 } 2231 } 2232 return (bw_est); 2233 } 2234 2235 static void 2236 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) 2237 { 2238 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2239 union tcp_log_stackspecific log; 2240 struct timeval tv; 2241 2242 if ((mod != 1) && (rack_verbose_logging == 0)) { 2243 /* 2244 * We get 3 values currently for mod 2245 * 1 - We are retransmitting and this tells the reason. 2246 * 2 - We are clearing a dup-ack count. 2247 * 3 - We are incrementing a dup-ack count. 2248 * 2249 * The clear/increment are only logged 2250 * if you have BBverbose on. 2251 */ 2252 return; 2253 } 2254 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2255 log.u_bbr.flex1 = tsused; 2256 log.u_bbr.flex2 = thresh; 2257 log.u_bbr.flex3 = rsm->r_flags; 2258 log.u_bbr.flex4 = rsm->r_dupack; 2259 log.u_bbr.flex5 = rsm->r_start; 2260 log.u_bbr.flex6 = rsm->r_end; 2261 log.u_bbr.flex8 = mod; 2262 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2263 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2264 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2265 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2266 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2267 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2268 log.u_bbr.pacing_gain = rack->r_must_retran; 2269 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2270 &rack->rc_inp->inp_socket->so_rcv, 2271 &rack->rc_inp->inp_socket->so_snd, 2272 BBR_LOG_SETTINGS_CHG, 0, 2273 0, &log, false, &tv); 2274 } 2275 } 2276 2277 static void 2278 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) 2279 { 2280 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2281 union tcp_log_stackspecific log; 2282 struct timeval tv; 2283 2284 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2285 log.u_bbr.flex1 = rack->rc_tp->t_srtt; 2286 log.u_bbr.flex2 = to; 2287 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; 2288 log.u_bbr.flex4 = slot; 2289 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot; 2290 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2291 log.u_bbr.flex7 = rack->rc_in_persist; 2292 log.u_bbr.flex8 = which; 2293 if (rack->rack_no_prr) 2294 log.u_bbr.pkts_out = 0; 2295 else 2296 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 2297 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2298 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2299 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2300 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2301 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2302 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2303 log.u_bbr.pacing_gain = rack->r_must_retran; 2304 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift; 2305 log.u_bbr.lost = rack_rto_min; 2306 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2307 &rack->rc_inp->inp_socket->so_rcv, 2308 &rack->rc_inp->inp_socket->so_snd, 2309 BBR_LOG_TIMERSTAR, 0, 2310 0, &log, false, &tv); 2311 } 2312 } 2313 2314 static void 2315 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) 2316 { 2317 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2318 union tcp_log_stackspecific log; 2319 struct timeval tv; 2320 2321 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2322 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2323 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2324 log.u_bbr.flex8 = to_num; 2325 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; 2326 log.u_bbr.flex2 = rack->rc_rack_rtt; 2327 if (rsm == NULL) 2328 log.u_bbr.flex3 = 0; 2329 else 2330 log.u_bbr.flex3 = rsm->r_end - rsm->r_start; 2331 if (rack->rack_no_prr) 2332 log.u_bbr.flex5 = 0; 2333 else 2334 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2335 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2336 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2337 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2338 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2339 log.u_bbr.pacing_gain = rack->r_must_retran; 2340 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2341 &rack->rc_inp->inp_socket->so_rcv, 2342 &rack->rc_inp->inp_socket->so_snd, 2343 BBR_LOG_RTO, 0, 2344 0, &log, false, &tv); 2345 } 2346 } 2347 2348 static void 2349 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, 2350 struct rack_sendmap *prev, 2351 struct rack_sendmap *rsm, 2352 struct rack_sendmap *next, 2353 int flag, uint32_t th_ack, int line) 2354 { 2355 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2356 union tcp_log_stackspecific log; 2357 struct timeval tv; 2358 2359 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2360 log.u_bbr.flex8 = flag; 2361 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2362 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2363 log.u_bbr.cur_del_rate = (uint64_t)prev; 2364 log.u_bbr.delRate = (uint64_t)rsm; 2365 log.u_bbr.rttProp = (uint64_t)next; 2366 log.u_bbr.flex7 = 0; 2367 if (prev) { 2368 log.u_bbr.flex1 = prev->r_start; 2369 log.u_bbr.flex2 = prev->r_end; 2370 log.u_bbr.flex7 |= 0x4; 2371 } 2372 if (rsm) { 2373 log.u_bbr.flex3 = rsm->r_start; 2374 log.u_bbr.flex4 = rsm->r_end; 2375 log.u_bbr.flex7 |= 0x2; 2376 } 2377 if (next) { 2378 log.u_bbr.flex5 = next->r_start; 2379 log.u_bbr.flex6 = next->r_end; 2380 log.u_bbr.flex7 |= 0x1; 2381 } 2382 log.u_bbr.applimited = line; 2383 log.u_bbr.pkts_out = th_ack; 2384 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2385 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2386 if (rack->rack_no_prr) 2387 log.u_bbr.lost = 0; 2388 else 2389 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt; 2390 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2391 &rack->rc_inp->inp_socket->so_rcv, 2392 &rack->rc_inp->inp_socket->so_snd, 2393 TCP_LOG_MAPCHG, 0, 2394 0, &log, false, &tv); 2395 } 2396 } 2397 2398 static void 2399 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, 2400 struct rack_sendmap *rsm, int conf) 2401 { 2402 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2403 union tcp_log_stackspecific log; 2404 struct timeval tv; 2405 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2406 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2407 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2408 log.u_bbr.flex1 = t; 2409 log.u_bbr.flex2 = len; 2410 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt; 2411 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest; 2412 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest; 2413 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2414 log.u_bbr.flex7 = conf; 2415 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot; 2416 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; 2417 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2418 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2419 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; 2420 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2421 if (rsm) { 2422 log.u_bbr.pkt_epoch = rsm->r_start; 2423 log.u_bbr.lost = rsm->r_end; 2424 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; 2425 /* We loose any upper of the 24 bits */ 2426 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags; 2427 } else { 2428 /* Its a SYN */ 2429 log.u_bbr.pkt_epoch = rack->rc_tp->iss; 2430 log.u_bbr.lost = 0; 2431 log.u_bbr.cwnd_gain = 0; 2432 log.u_bbr.pacing_gain = 0; 2433 } 2434 /* Write out general bits of interest rrs here */ 2435 log.u_bbr.use_lt_bw = rack->rc_highly_buffered; 2436 log.u_bbr.use_lt_bw <<= 1; 2437 log.u_bbr.use_lt_bw |= rack->forced_ack; 2438 log.u_bbr.use_lt_bw <<= 1; 2439 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; 2440 log.u_bbr.use_lt_bw <<= 1; 2441 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 2442 log.u_bbr.use_lt_bw <<= 1; 2443 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 2444 log.u_bbr.use_lt_bw <<= 1; 2445 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 2446 log.u_bbr.use_lt_bw <<= 1; 2447 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 2448 log.u_bbr.use_lt_bw <<= 1; 2449 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; 2450 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; 2451 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; 2452 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; 2453 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; 2454 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; 2455 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 2456 log.u_bbr.bw_inuse <<= 32; 2457 if (rsm) 2458 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); 2459 TCP_LOG_EVENTP(tp, NULL, 2460 &rack->rc_inp->inp_socket->so_rcv, 2461 &rack->rc_inp->inp_socket->so_snd, 2462 BBR_LOG_BBRRTT, 0, 2463 0, &log, false, &tv); 2464 2465 2466 } 2467 } 2468 2469 static void 2470 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) 2471 { 2472 /* 2473 * Log the rtt sample we are 2474 * applying to the srtt algorithm in 2475 * useconds. 2476 */ 2477 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2478 union tcp_log_stackspecific log; 2479 struct timeval tv; 2480 2481 /* Convert our ms to a microsecond */ 2482 memset(&log, 0, sizeof(log)); 2483 log.u_bbr.flex1 = rtt; 2484 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2485 log.u_bbr.flex3 = rack->r_ctl.sack_count; 2486 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2487 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; 2488 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2489 log.u_bbr.flex7 = 1; 2490 log.u_bbr.flex8 = rack->sack_attack_disable; 2491 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2492 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2493 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2494 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2495 log.u_bbr.pacing_gain = rack->r_must_retran; 2496 /* 2497 * We capture in delRate the upper 32 bits as 2498 * the confidence level we had declared, and the 2499 * lower 32 bits as the actual RTT using the arrival 2500 * timestamp. 2501 */ 2502 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence; 2503 log.u_bbr.delRate <<= 32; 2504 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt; 2505 /* Lets capture all the things that make up t_rtxcur */ 2506 log.u_bbr.applimited = rack_rto_min; 2507 log.u_bbr.epoch = rack_rto_max; 2508 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop; 2509 log.u_bbr.lost = rack_rto_min; 2510 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop); 2511 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp); 2512 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec; 2513 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC; 2514 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec; 2515 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2516 &rack->rc_inp->inp_socket->so_rcv, 2517 &rack->rc_inp->inp_socket->so_snd, 2518 TCP_LOG_RTT, 0, 2519 0, &log, false, &tv); 2520 } 2521 } 2522 2523 static void 2524 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where) 2525 { 2526 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 2527 union tcp_log_stackspecific log; 2528 struct timeval tv; 2529 2530 /* Convert our ms to a microsecond */ 2531 memset(&log, 0, sizeof(log)); 2532 log.u_bbr.flex1 = rtt; 2533 log.u_bbr.flex2 = send_time; 2534 log.u_bbr.flex3 = ack_time; 2535 log.u_bbr.flex4 = where; 2536 log.u_bbr.flex7 = 2; 2537 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2538 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2539 &rack->rc_inp->inp_socket->so_rcv, 2540 &rack->rc_inp->inp_socket->so_snd, 2541 TCP_LOG_RTT, 0, 2542 0, &log, false, &tv); 2543 } 2544 } 2545 2546 2547 2548 static inline void 2549 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) 2550 { 2551 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2552 union tcp_log_stackspecific log; 2553 struct timeval tv; 2554 2555 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2556 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2557 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2558 log.u_bbr.flex1 = line; 2559 log.u_bbr.flex2 = tick; 2560 log.u_bbr.flex3 = tp->t_maxunacktime; 2561 log.u_bbr.flex4 = tp->t_acktime; 2562 log.u_bbr.flex8 = event; 2563 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2564 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2565 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2566 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2567 log.u_bbr.pacing_gain = rack->r_must_retran; 2568 TCP_LOG_EVENTP(tp, NULL, 2569 &rack->rc_inp->inp_socket->so_rcv, 2570 &rack->rc_inp->inp_socket->so_snd, 2571 BBR_LOG_PROGRESS, 0, 2572 0, &log, false, &tv); 2573 } 2574 } 2575 2576 static void 2577 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv) 2578 { 2579 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2580 union tcp_log_stackspecific log; 2581 2582 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2583 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2584 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2585 log.u_bbr.flex1 = slot; 2586 if (rack->rack_no_prr) 2587 log.u_bbr.flex2 = 0; 2588 else 2589 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; 2590 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); 2591 log.u_bbr.flex8 = rack->rc_in_persist; 2592 log.u_bbr.timeStamp = cts; 2593 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2594 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2595 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2596 log.u_bbr.pacing_gain = rack->r_must_retran; 2597 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2598 &rack->rc_inp->inp_socket->so_rcv, 2599 &rack->rc_inp->inp_socket->so_snd, 2600 BBR_LOG_BBRSND, 0, 2601 0, &log, false, tv); 2602 } 2603 } 2604 2605 static void 2606 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs) 2607 { 2608 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2609 union tcp_log_stackspecific log; 2610 struct timeval tv; 2611 2612 memset(&log, 0, sizeof(log)); 2613 log.u_bbr.flex1 = did_out; 2614 log.u_bbr.flex2 = nxt_pkt; 2615 log.u_bbr.flex3 = way_out; 2616 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2617 if (rack->rack_no_prr) 2618 log.u_bbr.flex5 = 0; 2619 else 2620 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2621 log.u_bbr.flex6 = nsegs; 2622 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; 2623 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */ 2624 log.u_bbr.flex7 <<= 1; 2625 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */ 2626 log.u_bbr.flex7 <<= 1; 2627 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */ 2628 log.u_bbr.flex8 = rack->rc_in_persist; 2629 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2630 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2631 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2632 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2633 log.u_bbr.use_lt_bw <<= 1; 2634 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2635 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2636 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2637 log.u_bbr.pacing_gain = rack->r_must_retran; 2638 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2639 &rack->rc_inp->inp_socket->so_rcv, 2640 &rack->rc_inp->inp_socket->so_snd, 2641 BBR_LOG_DOSEG_DONE, 0, 2642 0, &log, false, &tv); 2643 } 2644 } 2645 2646 static void 2647 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm) 2648 { 2649 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2650 union tcp_log_stackspecific log; 2651 struct timeval tv; 2652 uint32_t cts; 2653 2654 memset(&log, 0, sizeof(log)); 2655 cts = tcp_get_usecs(&tv); 2656 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; 2657 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 2658 log.u_bbr.flex4 = arg1; 2659 log.u_bbr.flex5 = arg2; 2660 log.u_bbr.flex6 = arg3; 2661 log.u_bbr.flex8 = frm; 2662 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2663 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2664 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2665 log.u_bbr.applimited = rack->r_ctl.rc_sacked; 2666 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2667 log.u_bbr.pacing_gain = rack->r_must_retran; 2668 TCP_LOG_EVENTP(tp, NULL, 2669 &tp->t_inpcb->inp_socket->so_rcv, 2670 &tp->t_inpcb->inp_socket->so_snd, 2671 TCP_HDWR_PACE_SIZE, 0, 2672 0, &log, false, &tv); 2673 } 2674 } 2675 2676 static void 2677 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, 2678 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) 2679 { 2680 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2681 union tcp_log_stackspecific log; 2682 struct timeval tv; 2683 2684 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2685 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2686 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2687 log.u_bbr.flex1 = slot; 2688 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; 2689 log.u_bbr.flex4 = reason; 2690 if (rack->rack_no_prr) 2691 log.u_bbr.flex5 = 0; 2692 else 2693 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2694 log.u_bbr.flex7 = hpts_calling; 2695 log.u_bbr.flex8 = rack->rc_in_persist; 2696 log.u_bbr.lt_epoch = cwnd_to_use; 2697 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2698 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2699 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2700 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2701 log.u_bbr.pacing_gain = rack->r_must_retran; 2702 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2703 &rack->rc_inp->inp_socket->so_rcv, 2704 &rack->rc_inp->inp_socket->so_snd, 2705 BBR_LOG_JUSTRET, 0, 2706 tlen, &log, false, &tv); 2707 } 2708 } 2709 2710 static void 2711 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, 2712 struct timeval *tv, uint32_t flags_on_entry) 2713 { 2714 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2715 union tcp_log_stackspecific log; 2716 2717 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2718 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2719 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2720 log.u_bbr.flex1 = line; 2721 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; 2722 log.u_bbr.flex3 = flags_on_entry; 2723 log.u_bbr.flex4 = us_cts; 2724 if (rack->rack_no_prr) 2725 log.u_bbr.flex5 = 0; 2726 else 2727 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2728 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2729 log.u_bbr.flex7 = hpts_removed; 2730 log.u_bbr.flex8 = 1; 2731 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; 2732 log.u_bbr.timeStamp = us_cts; 2733 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2734 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2735 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2736 log.u_bbr.pacing_gain = rack->r_must_retran; 2737 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2738 &rack->rc_inp->inp_socket->so_rcv, 2739 &rack->rc_inp->inp_socket->so_snd, 2740 BBR_LOG_TIMERCANC, 0, 2741 0, &log, false, tv); 2742 } 2743 } 2744 2745 static void 2746 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 2747 uint32_t flex1, uint32_t flex2, 2748 uint32_t flex3, uint32_t flex4, 2749 uint32_t flex5, uint32_t flex6, 2750 uint16_t flex7, uint8_t mod) 2751 { 2752 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2753 union tcp_log_stackspecific log; 2754 struct timeval tv; 2755 2756 if (mod == 1) { 2757 /* No you can't use 1, its for the real to cancel */ 2758 return; 2759 } 2760 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2761 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2762 log.u_bbr.flex1 = flex1; 2763 log.u_bbr.flex2 = flex2; 2764 log.u_bbr.flex3 = flex3; 2765 log.u_bbr.flex4 = flex4; 2766 log.u_bbr.flex5 = flex5; 2767 log.u_bbr.flex6 = flex6; 2768 log.u_bbr.flex7 = flex7; 2769 log.u_bbr.flex8 = mod; 2770 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2771 &rack->rc_inp->inp_socket->so_rcv, 2772 &rack->rc_inp->inp_socket->so_snd, 2773 BBR_LOG_TIMERCANC, 0, 2774 0, &log, false, &tv); 2775 } 2776 } 2777 2778 static void 2779 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) 2780 { 2781 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2782 union tcp_log_stackspecific log; 2783 struct timeval tv; 2784 2785 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2786 log.u_bbr.flex1 = timers; 2787 log.u_bbr.flex2 = ret; 2788 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; 2789 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2790 log.u_bbr.flex5 = cts; 2791 if (rack->rack_no_prr) 2792 log.u_bbr.flex6 = 0; 2793 else 2794 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; 2795 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2796 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2797 log.u_bbr.pacing_gain = rack->r_must_retran; 2798 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2799 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2800 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2801 &rack->rc_inp->inp_socket->so_rcv, 2802 &rack->rc_inp->inp_socket->so_snd, 2803 BBR_LOG_TO_PROCESS, 0, 2804 0, &log, false, &tv); 2805 } 2806 } 2807 2808 static void 2809 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd) 2810 { 2811 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2812 union tcp_log_stackspecific log; 2813 struct timeval tv; 2814 2815 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2816 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; 2817 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; 2818 if (rack->rack_no_prr) 2819 log.u_bbr.flex3 = 0; 2820 else 2821 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; 2822 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; 2823 log.u_bbr.flex5 = rack->r_ctl.rc_sacked; 2824 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; 2825 log.u_bbr.flex8 = frm; 2826 log.u_bbr.pkts_out = orig_cwnd; 2827 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2828 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2829 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2830 log.u_bbr.use_lt_bw <<= 1; 2831 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2832 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2833 &rack->rc_inp->inp_socket->so_rcv, 2834 &rack->rc_inp->inp_socket->so_snd, 2835 BBR_LOG_BBRUPD, 0, 2836 0, &log, false, &tv); 2837 } 2838 } 2839 2840 #ifdef NETFLIX_EXP_DETECTION 2841 static void 2842 rack_log_sad(struct tcp_rack *rack, int event) 2843 { 2844 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2845 union tcp_log_stackspecific log; 2846 struct timeval tv; 2847 2848 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2849 log.u_bbr.flex1 = rack->r_ctl.sack_count; 2850 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2851 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; 2852 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2853 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; 2854 log.u_bbr.flex6 = tcp_sack_to_ack_thresh; 2855 log.u_bbr.pkts_out = tcp_sack_to_move_thresh; 2856 log.u_bbr.lt_epoch = (tcp_force_detection << 8); 2857 log.u_bbr.lt_epoch |= rack->do_detection; 2858 log.u_bbr.applimited = tcp_map_minimum; 2859 log.u_bbr.flex7 = rack->sack_attack_disable; 2860 log.u_bbr.flex8 = event; 2861 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2862 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2863 log.u_bbr.delivered = tcp_sad_decay_val; 2864 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2865 &rack->rc_inp->inp_socket->so_rcv, 2866 &rack->rc_inp->inp_socket->so_snd, 2867 TCP_SAD_DETECTION, 0, 2868 0, &log, false, &tv); 2869 } 2870 } 2871 #endif 2872 2873 static void 2874 rack_counter_destroy(void) 2875 { 2876 int i; 2877 2878 counter_u64_free(rack_fto_send); 2879 counter_u64_free(rack_fto_rsm_send); 2880 counter_u64_free(rack_nfto_resend); 2881 counter_u64_free(rack_hw_pace_init_fail); 2882 counter_u64_free(rack_hw_pace_lost); 2883 counter_u64_free(rack_non_fto_send); 2884 counter_u64_free(rack_extended_rfo); 2885 counter_u64_free(rack_ack_total); 2886 counter_u64_free(rack_express_sack); 2887 counter_u64_free(rack_sack_total); 2888 counter_u64_free(rack_move_none); 2889 counter_u64_free(rack_move_some); 2890 counter_u64_free(rack_sack_attacks_detected); 2891 counter_u64_free(rack_sack_attacks_reversed); 2892 counter_u64_free(rack_sack_used_next_merge); 2893 counter_u64_free(rack_sack_used_prev_merge); 2894 counter_u64_free(rack_badfr); 2895 counter_u64_free(rack_badfr_bytes); 2896 counter_u64_free(rack_rtm_prr_retran); 2897 counter_u64_free(rack_rtm_prr_newdata); 2898 counter_u64_free(rack_timestamp_mismatch); 2899 counter_u64_free(rack_find_high); 2900 counter_u64_free(rack_reorder_seen); 2901 counter_u64_free(rack_tlp_tot); 2902 counter_u64_free(rack_tlp_newdata); 2903 counter_u64_free(rack_tlp_retran); 2904 counter_u64_free(rack_tlp_retran_bytes); 2905 counter_u64_free(rack_tlp_retran_fail); 2906 counter_u64_free(rack_to_tot); 2907 counter_u64_free(rack_to_arm_rack); 2908 counter_u64_free(rack_to_arm_tlp); 2909 counter_u64_free(rack_calc_zero); 2910 counter_u64_free(rack_calc_nonzero); 2911 counter_u64_free(rack_paced_segments); 2912 counter_u64_free(rack_unpaced_segments); 2913 counter_u64_free(rack_saw_enobuf); 2914 counter_u64_free(rack_saw_enobuf_hw); 2915 counter_u64_free(rack_saw_enetunreach); 2916 counter_u64_free(rack_hot_alloc); 2917 counter_u64_free(rack_to_alloc); 2918 counter_u64_free(rack_to_alloc_hard); 2919 counter_u64_free(rack_to_alloc_emerg); 2920 counter_u64_free(rack_to_alloc_limited); 2921 counter_u64_free(rack_alloc_limited_conns); 2922 counter_u64_free(rack_split_limited); 2923 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 2924 counter_u64_free(rack_proc_comp_ack[i]); 2925 } 2926 counter_u64_free(rack_multi_single_eq); 2927 counter_u64_free(rack_proc_non_comp_ack); 2928 counter_u64_free(rack_sack_proc_all); 2929 counter_u64_free(rack_sack_proc_restart); 2930 counter_u64_free(rack_sack_proc_short); 2931 counter_u64_free(rack_enter_tlp_calc); 2932 counter_u64_free(rack_used_tlpmethod); 2933 counter_u64_free(rack_used_tlpmethod2); 2934 counter_u64_free(rack_sack_skipped_acked); 2935 counter_u64_free(rack_sack_splits); 2936 counter_u64_free(rack_progress_drops); 2937 counter_u64_free(rack_input_idle_reduces); 2938 counter_u64_free(rack_collapsed_win); 2939 counter_u64_free(rack_tlp_does_nada); 2940 counter_u64_free(rack_try_scwnd); 2941 counter_u64_free(rack_per_timer_hole); 2942 counter_u64_free(rack_large_ackcmp); 2943 counter_u64_free(rack_small_ackcmp); 2944 #ifdef INVARIANTS 2945 counter_u64_free(rack_adjust_map_bw); 2946 #endif 2947 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); 2948 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); 2949 } 2950 2951 static struct rack_sendmap * 2952 rack_alloc(struct tcp_rack *rack) 2953 { 2954 struct rack_sendmap *rsm; 2955 2956 /* 2957 * First get the top of the list it in 2958 * theory is the "hottest" rsm we have, 2959 * possibly just freed by ack processing. 2960 */ 2961 if (rack->rc_free_cnt > rack_free_cache) { 2962 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2963 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2964 counter_u64_add(rack_hot_alloc, 1); 2965 rack->rc_free_cnt--; 2966 return (rsm); 2967 } 2968 /* 2969 * Once we get under our free cache we probably 2970 * no longer have a "hot" one available. Lets 2971 * get one from UMA. 2972 */ 2973 rsm = uma_zalloc(rack_zone, M_NOWAIT); 2974 if (rsm) { 2975 rack->r_ctl.rc_num_maps_alloced++; 2976 counter_u64_add(rack_to_alloc, 1); 2977 return (rsm); 2978 } 2979 /* 2980 * Dig in to our aux rsm's (the last two) since 2981 * UMA failed to get us one. 2982 */ 2983 if (rack->rc_free_cnt) { 2984 counter_u64_add(rack_to_alloc_emerg, 1); 2985 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2986 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2987 rack->rc_free_cnt--; 2988 return (rsm); 2989 } 2990 return (NULL); 2991 } 2992 2993 static struct rack_sendmap * 2994 rack_alloc_full_limit(struct tcp_rack *rack) 2995 { 2996 if ((V_tcp_map_entries_limit > 0) && 2997 (rack->do_detection == 0) && 2998 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 2999 counter_u64_add(rack_to_alloc_limited, 1); 3000 if (!rack->alloc_limit_reported) { 3001 rack->alloc_limit_reported = 1; 3002 counter_u64_add(rack_alloc_limited_conns, 1); 3003 } 3004 return (NULL); 3005 } 3006 return (rack_alloc(rack)); 3007 } 3008 3009 /* wrapper to allocate a sendmap entry, subject to a specific limit */ 3010 static struct rack_sendmap * 3011 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) 3012 { 3013 struct rack_sendmap *rsm; 3014 3015 if (limit_type) { 3016 /* currently there is only one limit type */ 3017 if (V_tcp_map_split_limit > 0 && 3018 (rack->do_detection == 0) && 3019 rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { 3020 counter_u64_add(rack_split_limited, 1); 3021 if (!rack->alloc_limit_reported) { 3022 rack->alloc_limit_reported = 1; 3023 counter_u64_add(rack_alloc_limited_conns, 1); 3024 } 3025 return (NULL); 3026 } 3027 } 3028 3029 /* allocate and mark in the limit type, if set */ 3030 rsm = rack_alloc(rack); 3031 if (rsm != NULL && limit_type) { 3032 rsm->r_limit_type = limit_type; 3033 rack->r_ctl.rc_num_split_allocs++; 3034 } 3035 return (rsm); 3036 } 3037 3038 static void 3039 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) 3040 { 3041 if (rsm->r_flags & RACK_APP_LIMITED) { 3042 if (rack->r_ctl.rc_app_limited_cnt > 0) { 3043 rack->r_ctl.rc_app_limited_cnt--; 3044 } 3045 } 3046 if (rsm->r_limit_type) { 3047 /* currently there is only one limit type */ 3048 rack->r_ctl.rc_num_split_allocs--; 3049 } 3050 if (rsm == rack->r_ctl.rc_first_appl) { 3051 if (rack->r_ctl.rc_app_limited_cnt == 0) 3052 rack->r_ctl.rc_first_appl = NULL; 3053 else { 3054 /* Follow the next one out */ 3055 struct rack_sendmap fe; 3056 3057 fe.r_start = rsm->r_nseq_appl; 3058 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 3059 } 3060 } 3061 if (rsm == rack->r_ctl.rc_resend) 3062 rack->r_ctl.rc_resend = NULL; 3063 if (rsm == rack->r_ctl.rc_rsm_at_retran) 3064 rack->r_ctl.rc_rsm_at_retran = NULL; 3065 if (rsm == rack->r_ctl.rc_end_appl) 3066 rack->r_ctl.rc_end_appl = NULL; 3067 if (rack->r_ctl.rc_tlpsend == rsm) 3068 rack->r_ctl.rc_tlpsend = NULL; 3069 if (rack->r_ctl.rc_sacklast == rsm) 3070 rack->r_ctl.rc_sacklast = NULL; 3071 memset(rsm, 0, sizeof(struct rack_sendmap)); 3072 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext); 3073 rack->rc_free_cnt++; 3074 } 3075 3076 static void 3077 rack_free_trim(struct tcp_rack *rack) 3078 { 3079 struct rack_sendmap *rsm; 3080 3081 /* 3082 * Free up all the tail entries until 3083 * we get our list down to the limit. 3084 */ 3085 while (rack->rc_free_cnt > rack_free_cache) { 3086 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head); 3087 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3088 rack->rc_free_cnt--; 3089 uma_zfree(rack_zone, rsm); 3090 } 3091 } 3092 3093 3094 static uint32_t 3095 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) 3096 { 3097 uint64_t srtt, bw, len, tim; 3098 uint32_t segsiz, def_len, minl; 3099 3100 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3101 def_len = rack_def_data_window * segsiz; 3102 if (rack->rc_gp_filled == 0) { 3103 /* 3104 * We have no measurement (IW is in flight?) so 3105 * we can only guess using our data_window sysctl 3106 * value (usually 20MSS). 3107 */ 3108 return (def_len); 3109 } 3110 /* 3111 * Now we have a number of factors to consider. 3112 * 3113 * 1) We have a desired BDP which is usually 3114 * at least 2. 3115 * 2) We have a minimum number of rtt's usually 1 SRTT 3116 * but we allow it too to be more. 3117 * 3) We want to make sure a measurement last N useconds (if 3118 * we have set rack_min_measure_usec. 3119 * 3120 * We handle the first concern here by trying to create a data 3121 * window of max(rack_def_data_window, DesiredBDP). The 3122 * second concern we handle in not letting the measurement 3123 * window end normally until at least the required SRTT's 3124 * have gone by which is done further below in 3125 * rack_enough_for_measurement(). Finally the third concern 3126 * we also handle here by calculating how long that time 3127 * would take at the current BW and then return the 3128 * max of our first calculation and that length. Note 3129 * that if rack_min_measure_usec is 0, we don't deal 3130 * with concern 3. Also for both Concern 1 and 3 an 3131 * application limited period could end the measurement 3132 * earlier. 3133 * 3134 * So lets calculate the BDP with the "known" b/w using 3135 * the SRTT has our rtt and then multiply it by the 3136 * goal. 3137 */ 3138 bw = rack_get_bw(rack); 3139 srtt = (uint64_t)tp->t_srtt; 3140 len = bw * srtt; 3141 len /= (uint64_t)HPTS_USEC_IN_SEC; 3142 len *= max(1, rack_goal_bdp); 3143 /* Now we need to round up to the nearest MSS */ 3144 len = roundup(len, segsiz); 3145 if (rack_min_measure_usec) { 3146 /* Now calculate our min length for this b/w */ 3147 tim = rack_min_measure_usec; 3148 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; 3149 if (minl == 0) 3150 minl = 1; 3151 minl = roundup(minl, segsiz); 3152 if (len < minl) 3153 len = minl; 3154 } 3155 /* 3156 * Now if we have a very small window we want 3157 * to attempt to get the window that is 3158 * as small as possible. This happens on 3159 * low b/w connections and we don't want to 3160 * span huge numbers of rtt's between measurements. 3161 * 3162 * We basically include 2 over our "MIN window" so 3163 * that the measurement can be shortened (possibly) by 3164 * an ack'ed packet. 3165 */ 3166 if (len < def_len) 3167 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); 3168 else 3169 return (max((uint32_t)len, def_len)); 3170 3171 } 3172 3173 static int 3174 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality) 3175 { 3176 uint32_t tim, srtts, segsiz; 3177 3178 /* 3179 * Has enough time passed for the GP measurement to be valid? 3180 */ 3181 if ((tp->snd_max == tp->snd_una) || 3182 (th_ack == tp->snd_max)){ 3183 /* All is acked */ 3184 *quality = RACK_QUALITY_ALLACKED; 3185 return (1); 3186 } 3187 if (SEQ_LT(th_ack, tp->gput_seq)) { 3188 /* Not enough bytes yet */ 3189 return (0); 3190 } 3191 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3192 if (SEQ_LT(th_ack, tp->gput_ack) && 3193 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 3194 /* Not enough bytes yet */ 3195 return (0); 3196 } 3197 if (rack->r_ctl.rc_first_appl && 3198 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) { 3199 /* 3200 * We are up to the app limited send point 3201 * we have to measure irrespective of the time.. 3202 */ 3203 *quality = RACK_QUALITY_APPLIMITED; 3204 return (1); 3205 } 3206 /* Now what about time? */ 3207 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); 3208 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; 3209 if (tim >= srtts) { 3210 *quality = RACK_QUALITY_HIGH; 3211 return (1); 3212 } 3213 /* Nope not even a full SRTT has passed */ 3214 return (0); 3215 } 3216 3217 static void 3218 rack_log_timely(struct tcp_rack *rack, 3219 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, 3220 uint64_t up_bnd, int line, uint8_t method) 3221 { 3222 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3223 union tcp_log_stackspecific log; 3224 struct timeval tv; 3225 3226 memset(&log, 0, sizeof(log)); 3227 log.u_bbr.flex1 = logged; 3228 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; 3229 log.u_bbr.flex2 <<= 4; 3230 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; 3231 log.u_bbr.flex2 <<= 4; 3232 log.u_bbr.flex2 |= rack->rc_gp_incr; 3233 log.u_bbr.flex2 <<= 4; 3234 log.u_bbr.flex2 |= rack->rc_gp_bwred; 3235 log.u_bbr.flex3 = rack->rc_gp_incr; 3236 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3237 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; 3238 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; 3239 log.u_bbr.flex7 = rack->rc_gp_bwred; 3240 log.u_bbr.flex8 = method; 3241 log.u_bbr.cur_del_rate = cur_bw; 3242 log.u_bbr.delRate = low_bnd; 3243 log.u_bbr.bw_inuse = up_bnd; 3244 log.u_bbr.rttProp = rack_get_bw(rack); 3245 log.u_bbr.pkt_epoch = line; 3246 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3247 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3248 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3249 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3250 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3251 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; 3252 log.u_bbr.cwnd_gain <<= 1; 3253 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; 3254 log.u_bbr.cwnd_gain <<= 1; 3255 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 3256 log.u_bbr.cwnd_gain <<= 1; 3257 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 3258 log.u_bbr.lost = rack->r_ctl.rc_loss_count; 3259 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3260 &rack->rc_inp->inp_socket->so_rcv, 3261 &rack->rc_inp->inp_socket->so_snd, 3262 TCP_TIMELY_WORK, 0, 3263 0, &log, false, &tv); 3264 } 3265 } 3266 3267 static int 3268 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) 3269 { 3270 /* 3271 * Before we increase we need to know if 3272 * the estimate just made was less than 3273 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) 3274 * 3275 * If we already are pacing at a fast enough 3276 * rate to push us faster there is no sense of 3277 * increasing. 3278 * 3279 * We first caculate our actual pacing rate (ss or ca multipler 3280 * times our cur_bw). 3281 * 3282 * Then we take the last measured rate and multipy by our 3283 * maximum pacing overage to give us a max allowable rate. 3284 * 3285 * If our act_rate is smaller than our max_allowable rate 3286 * then we should increase. Else we should hold steady. 3287 * 3288 */ 3289 uint64_t act_rate, max_allow_rate; 3290 3291 if (rack_timely_no_stopping) 3292 return (1); 3293 3294 if ((cur_bw == 0) || (last_bw_est == 0)) { 3295 /* 3296 * Initial startup case or 3297 * everything is acked case. 3298 */ 3299 rack_log_timely(rack, mult, cur_bw, 0, 0, 3300 __LINE__, 9); 3301 return (1); 3302 } 3303 if (mult <= 100) { 3304 /* 3305 * We can always pace at or slightly above our rate. 3306 */ 3307 rack_log_timely(rack, mult, cur_bw, 0, 0, 3308 __LINE__, 9); 3309 return (1); 3310 } 3311 act_rate = cur_bw * (uint64_t)mult; 3312 act_rate /= 100; 3313 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); 3314 max_allow_rate /= 100; 3315 if (act_rate < max_allow_rate) { 3316 /* 3317 * Here the rate we are actually pacing at 3318 * is smaller than 10% above our last measurement. 3319 * This means we are pacing below what we would 3320 * like to try to achieve (plus some wiggle room). 3321 */ 3322 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3323 __LINE__, 9); 3324 return (1); 3325 } else { 3326 /* 3327 * Here we are already pacing at least rack_max_per_above(10%) 3328 * what we are getting back. This indicates most likely 3329 * that we are being limited (cwnd/rwnd/app) and can't 3330 * get any more b/w. There is no sense of trying to 3331 * raise up the pacing rate its not speeding us up 3332 * and we already are pacing faster than we are getting. 3333 */ 3334 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3335 __LINE__, 8); 3336 return (0); 3337 } 3338 } 3339 3340 static void 3341 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) 3342 { 3343 /* 3344 * When we drag bottom, we want to assure 3345 * that no multiplier is below 1.0, if so 3346 * we want to restore it to at least that. 3347 */ 3348 if (rack->r_ctl.rack_per_of_gp_rec < 100) { 3349 /* This is unlikely we usually do not touch recovery */ 3350 rack->r_ctl.rack_per_of_gp_rec = 100; 3351 } 3352 if (rack->r_ctl.rack_per_of_gp_ca < 100) { 3353 rack->r_ctl.rack_per_of_gp_ca = 100; 3354 } 3355 if (rack->r_ctl.rack_per_of_gp_ss < 100) { 3356 rack->r_ctl.rack_per_of_gp_ss = 100; 3357 } 3358 } 3359 3360 static void 3361 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) 3362 { 3363 if (rack->r_ctl.rack_per_of_gp_ca > 100) { 3364 rack->r_ctl.rack_per_of_gp_ca = 100; 3365 } 3366 if (rack->r_ctl.rack_per_of_gp_ss > 100) { 3367 rack->r_ctl.rack_per_of_gp_ss = 100; 3368 } 3369 } 3370 3371 static void 3372 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) 3373 { 3374 int32_t calc, logged, plus; 3375 3376 logged = 0; 3377 3378 if (override) { 3379 /* 3380 * override is passed when we are 3381 * loosing b/w and making one last 3382 * gasp at trying to not loose out 3383 * to a new-reno flow. 3384 */ 3385 goto extra_boost; 3386 } 3387 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ 3388 if (rack->rc_gp_incr && 3389 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { 3390 /* 3391 * Reset and get 5 strokes more before the boost. Note 3392 * that the count is 0 based so we have to add one. 3393 */ 3394 extra_boost: 3395 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; 3396 rack->rc_gp_timely_inc_cnt = 0; 3397 } else 3398 plus = (uint32_t)rack_gp_increase_per; 3399 /* Must be at least 1% increase for true timely increases */ 3400 if ((plus < 1) && 3401 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) 3402 plus = 1; 3403 if (rack->rc_gp_saw_rec && 3404 (rack->rc_gp_no_rec_chg == 0) && 3405 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3406 rack->r_ctl.rack_per_of_gp_rec)) { 3407 /* We have been in recovery ding it too */ 3408 calc = rack->r_ctl.rack_per_of_gp_rec + plus; 3409 if (calc > 0xffff) 3410 calc = 0xffff; 3411 logged |= 1; 3412 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; 3413 if (rack_per_upper_bound_ss && 3414 (rack->rc_dragged_bottom == 0) && 3415 (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss)) 3416 rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss; 3417 } 3418 if (rack->rc_gp_saw_ca && 3419 (rack->rc_gp_saw_ss == 0) && 3420 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3421 rack->r_ctl.rack_per_of_gp_ca)) { 3422 /* In CA */ 3423 calc = rack->r_ctl.rack_per_of_gp_ca + plus; 3424 if (calc > 0xffff) 3425 calc = 0xffff; 3426 logged |= 2; 3427 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; 3428 if (rack_per_upper_bound_ca && 3429 (rack->rc_dragged_bottom == 0) && 3430 (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca)) 3431 rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca; 3432 } 3433 if (rack->rc_gp_saw_ss && 3434 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3435 rack->r_ctl.rack_per_of_gp_ss)) { 3436 /* In SS */ 3437 calc = rack->r_ctl.rack_per_of_gp_ss + plus; 3438 if (calc > 0xffff) 3439 calc = 0xffff; 3440 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; 3441 if (rack_per_upper_bound_ss && 3442 (rack->rc_dragged_bottom == 0) && 3443 (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss)) 3444 rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss; 3445 logged |= 4; 3446 } 3447 if (logged && 3448 (rack->rc_gp_incr == 0)){ 3449 /* Go into increment mode */ 3450 rack->rc_gp_incr = 1; 3451 rack->rc_gp_timely_inc_cnt = 0; 3452 } 3453 if (rack->rc_gp_incr && 3454 logged && 3455 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { 3456 rack->rc_gp_timely_inc_cnt++; 3457 } 3458 rack_log_timely(rack, logged, plus, 0, 0, 3459 __LINE__, 1); 3460 } 3461 3462 static uint32_t 3463 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) 3464 { 3465 /* 3466 * norm_grad = rtt_diff / minrtt; 3467 * new_per = curper * (1 - B * norm_grad) 3468 * 3469 * B = rack_gp_decrease_per (default 10%) 3470 * rtt_dif = input var current rtt-diff 3471 * curper = input var current percentage 3472 * minrtt = from rack filter 3473 * 3474 */ 3475 uint64_t perf; 3476 3477 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3478 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * 3479 (((uint64_t)rtt_diff * (uint64_t)1000000)/ 3480 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ 3481 (uint64_t)1000000)) / 3482 (uint64_t)1000000); 3483 if (perf > curper) { 3484 /* TSNH */ 3485 perf = curper - 1; 3486 } 3487 return ((uint32_t)perf); 3488 } 3489 3490 static uint32_t 3491 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) 3492 { 3493 /* 3494 * highrttthresh 3495 * result = curper * (1 - (B * ( 1 - ------ )) 3496 * gp_srtt 3497 * 3498 * B = rack_gp_decrease_per (default 10%) 3499 * highrttthresh = filter_min * rack_gp_rtt_maxmul 3500 */ 3501 uint64_t perf; 3502 uint32_t highrttthresh; 3503 3504 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 3505 3506 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3507 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - 3508 ((uint64_t)highrttthresh * (uint64_t)1000000) / 3509 (uint64_t)rtt)) / 100)) /(uint64_t)1000000); 3510 return (perf); 3511 } 3512 3513 static void 3514 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) 3515 { 3516 uint64_t logvar, logvar2, logvar3; 3517 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; 3518 3519 if (rack->rc_gp_incr) { 3520 /* Turn off increment counting */ 3521 rack->rc_gp_incr = 0; 3522 rack->rc_gp_timely_inc_cnt = 0; 3523 } 3524 ss_red = ca_red = rec_red = 0; 3525 logged = 0; 3526 /* Calculate the reduction value */ 3527 if (rtt_diff < 0) { 3528 rtt_diff *= -1; 3529 } 3530 /* Must be at least 1% reduction */ 3531 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { 3532 /* We have been in recovery ding it too */ 3533 if (timely_says == 2) { 3534 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); 3535 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3536 if (alt < new_per) 3537 val = alt; 3538 else 3539 val = new_per; 3540 } else 3541 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3542 if (rack->r_ctl.rack_per_of_gp_rec > val) { 3543 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); 3544 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; 3545 } else { 3546 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3547 rec_red = 0; 3548 } 3549 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) 3550 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3551 logged |= 1; 3552 } 3553 if (rack->rc_gp_saw_ss) { 3554 /* Sent in SS */ 3555 if (timely_says == 2) { 3556 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); 3557 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3558 if (alt < new_per) 3559 val = alt; 3560 else 3561 val = new_per; 3562 } else 3563 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 3564 if (rack->r_ctl.rack_per_of_gp_ss > new_per) { 3565 ss_red = rack->r_ctl.rack_per_of_gp_ss - val; 3566 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; 3567 } else { 3568 ss_red = new_per; 3569 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3570 logvar = new_per; 3571 logvar <<= 32; 3572 logvar |= alt; 3573 logvar2 = (uint32_t)rtt; 3574 logvar2 <<= 32; 3575 logvar2 |= (uint32_t)rtt_diff; 3576 logvar3 = rack_gp_rtt_maxmul; 3577 logvar3 <<= 32; 3578 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3579 rack_log_timely(rack, timely_says, 3580 logvar2, logvar3, 3581 logvar, __LINE__, 10); 3582 } 3583 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) 3584 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3585 logged |= 4; 3586 } else if (rack->rc_gp_saw_ca) { 3587 /* Sent in CA */ 3588 if (timely_says == 2) { 3589 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); 3590 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3591 if (alt < new_per) 3592 val = alt; 3593 else 3594 val = new_per; 3595 } else 3596 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 3597 if (rack->r_ctl.rack_per_of_gp_ca > val) { 3598 ca_red = rack->r_ctl.rack_per_of_gp_ca - val; 3599 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; 3600 } else { 3601 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3602 ca_red = 0; 3603 logvar = new_per; 3604 logvar <<= 32; 3605 logvar |= alt; 3606 logvar2 = (uint32_t)rtt; 3607 logvar2 <<= 32; 3608 logvar2 |= (uint32_t)rtt_diff; 3609 logvar3 = rack_gp_rtt_maxmul; 3610 logvar3 <<= 32; 3611 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3612 rack_log_timely(rack, timely_says, 3613 logvar2, logvar3, 3614 logvar, __LINE__, 10); 3615 } 3616 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) 3617 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3618 logged |= 2; 3619 } 3620 if (rack->rc_gp_timely_dec_cnt < 0x7) { 3621 rack->rc_gp_timely_dec_cnt++; 3622 if (rack_timely_dec_clear && 3623 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) 3624 rack->rc_gp_timely_dec_cnt = 0; 3625 } 3626 logvar = ss_red; 3627 logvar <<= 32; 3628 logvar |= ca_red; 3629 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, 3630 __LINE__, 2); 3631 } 3632 3633 static void 3634 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, 3635 uint32_t rtt, uint32_t line, uint8_t reas) 3636 { 3637 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3638 union tcp_log_stackspecific log; 3639 struct timeval tv; 3640 3641 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3642 log.u_bbr.flex1 = line; 3643 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; 3644 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; 3645 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3646 log.u_bbr.flex5 = rtt; 3647 log.u_bbr.flex6 = rack->rc_highly_buffered; 3648 log.u_bbr.flex6 <<= 1; 3649 log.u_bbr.flex6 |= rack->forced_ack; 3650 log.u_bbr.flex6 <<= 1; 3651 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; 3652 log.u_bbr.flex6 <<= 1; 3653 log.u_bbr.flex6 |= rack->in_probe_rtt; 3654 log.u_bbr.flex6 <<= 1; 3655 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; 3656 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; 3657 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; 3658 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; 3659 log.u_bbr.flex8 = reas; 3660 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3661 log.u_bbr.delRate = rack_get_bw(rack); 3662 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; 3663 log.u_bbr.cur_del_rate <<= 32; 3664 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; 3665 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; 3666 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3667 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3668 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3669 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3670 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; 3671 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; 3672 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3673 log.u_bbr.rttProp = us_cts; 3674 log.u_bbr.rttProp <<= 32; 3675 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; 3676 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3677 &rack->rc_inp->inp_socket->so_rcv, 3678 &rack->rc_inp->inp_socket->so_snd, 3679 BBR_LOG_RTT_SHRINKS, 0, 3680 0, &log, false, &rack->r_ctl.act_rcv_time); 3681 } 3682 } 3683 3684 static void 3685 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) 3686 { 3687 uint64_t bwdp; 3688 3689 bwdp = rack_get_bw(rack); 3690 bwdp *= (uint64_t)rtt; 3691 bwdp /= (uint64_t)HPTS_USEC_IN_SEC; 3692 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); 3693 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { 3694 /* 3695 * A window protocol must be able to have 4 packets 3696 * outstanding as the floor in order to function 3697 * (especially considering delayed ack :D). 3698 */ 3699 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); 3700 } 3701 } 3702 3703 static void 3704 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) 3705 { 3706 /** 3707 * ProbeRTT is a bit different in rack_pacing than in 3708 * BBR. It is like BBR in that it uses the lowering of 3709 * the RTT as a signal that we saw something new and 3710 * counts from there for how long between. But it is 3711 * different in that its quite simple. It does not 3712 * play with the cwnd and wait until we get down 3713 * to N segments outstanding and hold that for 3714 * 200ms. Instead it just sets the pacing reduction 3715 * rate to a set percentage (70 by default) and hold 3716 * that for a number of recent GP Srtt's. 3717 */ 3718 uint32_t segsiz; 3719 3720 if (rack->rc_gp_dyn_mul == 0) 3721 return; 3722 3723 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { 3724 /* We are idle */ 3725 return; 3726 } 3727 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3728 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3729 /* 3730 * Stop the goodput now, the idea here is 3731 * that future measurements with in_probe_rtt 3732 * won't register if they are not greater so 3733 * we want to get what info (if any) is available 3734 * now. 3735 */ 3736 rack_do_goodput_measurement(rack->rc_tp, rack, 3737 rack->rc_tp->snd_una, __LINE__, 3738 RACK_QUALITY_PROBERTT); 3739 } 3740 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3741 rack->r_ctl.rc_time_probertt_entered = us_cts; 3742 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3743 rack->r_ctl.rc_pace_min_segs); 3744 rack->in_probe_rtt = 1; 3745 rack->measure_saw_probe_rtt = 1; 3746 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3747 rack->r_ctl.rc_time_probertt_starts = 0; 3748 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; 3749 if (rack_probertt_use_min_rtt_entry) 3750 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3751 else 3752 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); 3753 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3754 __LINE__, RACK_RTTS_ENTERPROBE); 3755 } 3756 3757 static void 3758 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) 3759 { 3760 struct rack_sendmap *rsm; 3761 uint32_t segsiz; 3762 3763 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3764 rack->r_ctl.rc_pace_min_segs); 3765 rack->in_probe_rtt = 0; 3766 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3767 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3768 /* 3769 * Stop the goodput now, the idea here is 3770 * that future measurements with in_probe_rtt 3771 * won't register if they are not greater so 3772 * we want to get what info (if any) is available 3773 * now. 3774 */ 3775 rack_do_goodput_measurement(rack->rc_tp, rack, 3776 rack->rc_tp->snd_una, __LINE__, 3777 RACK_QUALITY_PROBERTT); 3778 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 3779 /* 3780 * We don't have enough data to make a measurement. 3781 * So lets just stop and start here after exiting 3782 * probe-rtt. We probably are not interested in 3783 * the results anyway. 3784 */ 3785 rack->rc_tp->t_flags &= ~TF_GPUTINPROG; 3786 } 3787 /* 3788 * Measurements through the current snd_max are going 3789 * to be limited by the slower pacing rate. 3790 * 3791 * We need to mark these as app-limited so we 3792 * don't collapse the b/w. 3793 */ 3794 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 3795 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 3796 if (rack->r_ctl.rc_app_limited_cnt == 0) 3797 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 3798 else { 3799 /* 3800 * Go out to the end app limited and mark 3801 * this new one as next and move the end_appl up 3802 * to this guy. 3803 */ 3804 if (rack->r_ctl.rc_end_appl) 3805 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 3806 rack->r_ctl.rc_end_appl = rsm; 3807 } 3808 rsm->r_flags |= RACK_APP_LIMITED; 3809 rack->r_ctl.rc_app_limited_cnt++; 3810 } 3811 /* 3812 * Now, we need to examine our pacing rate multipliers. 3813 * If its under 100%, we need to kick it back up to 3814 * 100%. We also don't let it be over our "max" above 3815 * the actual rate i.e. 100% + rack_clamp_atexit_prtt. 3816 * Note setting clamp_atexit_prtt to 0 has the effect 3817 * of setting CA/SS to 100% always at exit (which is 3818 * the default behavior). 3819 */ 3820 if (rack_probertt_clear_is) { 3821 rack->rc_gp_incr = 0; 3822 rack->rc_gp_bwred = 0; 3823 rack->rc_gp_timely_inc_cnt = 0; 3824 rack->rc_gp_timely_dec_cnt = 0; 3825 } 3826 /* Do we do any clamping at exit? */ 3827 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { 3828 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; 3829 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; 3830 } 3831 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { 3832 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; 3833 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; 3834 } 3835 /* 3836 * Lets set rtt_diff to 0, so that we will get a "boost" 3837 * after exiting. 3838 */ 3839 rack->r_ctl.rc_rtt_diff = 0; 3840 3841 /* Clear all flags so we start fresh */ 3842 rack->rc_tp->t_bytes_acked = 0; 3843 rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND; 3844 /* 3845 * If configured to, set the cwnd and ssthresh to 3846 * our targets. 3847 */ 3848 if (rack_probe_rtt_sets_cwnd) { 3849 uint64_t ebdp; 3850 uint32_t setto; 3851 3852 /* Set ssthresh so we get into CA once we hit our target */ 3853 if (rack_probertt_use_min_rtt_exit == 1) { 3854 /* Set to min rtt */ 3855 rack_set_prtt_target(rack, segsiz, 3856 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3857 } else if (rack_probertt_use_min_rtt_exit == 2) { 3858 /* Set to current gp rtt */ 3859 rack_set_prtt_target(rack, segsiz, 3860 rack->r_ctl.rc_gp_srtt); 3861 } else if (rack_probertt_use_min_rtt_exit == 3) { 3862 /* Set to entry gp rtt */ 3863 rack_set_prtt_target(rack, segsiz, 3864 rack->r_ctl.rc_entry_gp_rtt); 3865 } else { 3866 uint64_t sum; 3867 uint32_t setval; 3868 3869 sum = rack->r_ctl.rc_entry_gp_rtt; 3870 sum *= 10; 3871 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); 3872 if (sum >= 20) { 3873 /* 3874 * A highly buffered path needs 3875 * cwnd space for timely to work. 3876 * Lets set things up as if 3877 * we are heading back here again. 3878 */ 3879 setval = rack->r_ctl.rc_entry_gp_rtt; 3880 } else if (sum >= 15) { 3881 /* 3882 * Lets take the smaller of the 3883 * two since we are just somewhat 3884 * buffered. 3885 */ 3886 setval = rack->r_ctl.rc_gp_srtt; 3887 if (setval > rack->r_ctl.rc_entry_gp_rtt) 3888 setval = rack->r_ctl.rc_entry_gp_rtt; 3889 } else { 3890 /* 3891 * Here we are not highly buffered 3892 * and should pick the min we can to 3893 * keep from causing loss. 3894 */ 3895 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3896 } 3897 rack_set_prtt_target(rack, segsiz, 3898 setval); 3899 } 3900 if (rack_probe_rtt_sets_cwnd > 1) { 3901 /* There is a percentage here to boost */ 3902 ebdp = rack->r_ctl.rc_target_probertt_flight; 3903 ebdp *= rack_probe_rtt_sets_cwnd; 3904 ebdp /= 100; 3905 setto = rack->r_ctl.rc_target_probertt_flight + ebdp; 3906 } else 3907 setto = rack->r_ctl.rc_target_probertt_flight; 3908 rack->rc_tp->snd_cwnd = roundup(setto, segsiz); 3909 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { 3910 /* Enforce a min */ 3911 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; 3912 } 3913 /* If we set in the cwnd also set the ssthresh point so we are in CA */ 3914 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); 3915 } 3916 rack_log_rtt_shrinks(rack, us_cts, 3917 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3918 __LINE__, RACK_RTTS_EXITPROBE); 3919 /* Clear times last so log has all the info */ 3920 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; 3921 rack->r_ctl.rc_time_probertt_entered = us_cts; 3922 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3923 rack->r_ctl.rc_time_of_last_probertt = us_cts; 3924 } 3925 3926 static void 3927 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) 3928 { 3929 /* Check in on probe-rtt */ 3930 if (rack->rc_gp_filled == 0) { 3931 /* We do not do p-rtt unless we have gp measurements */ 3932 return; 3933 } 3934 if (rack->in_probe_rtt) { 3935 uint64_t no_overflow; 3936 uint32_t endtime, must_stay; 3937 3938 if (rack->r_ctl.rc_went_idle_time && 3939 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { 3940 /* 3941 * We went idle during prtt, just exit now. 3942 */ 3943 rack_exit_probertt(rack, us_cts); 3944 } else if (rack_probe_rtt_safety_val && 3945 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && 3946 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { 3947 /* 3948 * Probe RTT safety value triggered! 3949 */ 3950 rack_log_rtt_shrinks(rack, us_cts, 3951 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3952 __LINE__, RACK_RTTS_SAFETY); 3953 rack_exit_probertt(rack, us_cts); 3954 } 3955 /* Calculate the max we will wait */ 3956 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); 3957 if (rack->rc_highly_buffered) 3958 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); 3959 /* Calculate the min we must wait */ 3960 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); 3961 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && 3962 TSTMP_LT(us_cts, endtime)) { 3963 uint32_t calc; 3964 /* Do we lower more? */ 3965 no_exit: 3966 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) 3967 calc = us_cts - rack->r_ctl.rc_time_probertt_entered; 3968 else 3969 calc = 0; 3970 calc /= max(rack->r_ctl.rc_gp_srtt, 1); 3971 if (calc) { 3972 /* Maybe */ 3973 calc *= rack_per_of_gp_probertt_reduce; 3974 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; 3975 /* Limit it too */ 3976 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) 3977 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; 3978 } 3979 /* We must reach target or the time set */ 3980 return; 3981 } 3982 if (rack->r_ctl.rc_time_probertt_starts == 0) { 3983 if ((TSTMP_LT(us_cts, must_stay) && 3984 rack->rc_highly_buffered) || 3985 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > 3986 rack->r_ctl.rc_target_probertt_flight)) { 3987 /* We are not past the must_stay time */ 3988 goto no_exit; 3989 } 3990 rack_log_rtt_shrinks(rack, us_cts, 3991 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3992 __LINE__, RACK_RTTS_REACHTARGET); 3993 rack->r_ctl.rc_time_probertt_starts = us_cts; 3994 if (rack->r_ctl.rc_time_probertt_starts == 0) 3995 rack->r_ctl.rc_time_probertt_starts = 1; 3996 /* Restore back to our rate we want to pace at in prtt */ 3997 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3998 } 3999 /* 4000 * Setup our end time, some number of gp_srtts plus 200ms. 4001 */ 4002 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * 4003 (uint64_t)rack_probertt_gpsrtt_cnt_mul); 4004 if (rack_probertt_gpsrtt_cnt_div) 4005 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); 4006 else 4007 endtime = 0; 4008 endtime += rack_min_probertt_hold; 4009 endtime += rack->r_ctl.rc_time_probertt_starts; 4010 if (TSTMP_GEQ(us_cts, endtime)) { 4011 /* yes, exit probertt */ 4012 rack_exit_probertt(rack, us_cts); 4013 } 4014 4015 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { 4016 /* Go into probertt, its been too long since we went lower */ 4017 rack_enter_probertt(rack, us_cts); 4018 } 4019 } 4020 4021 static void 4022 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, 4023 uint32_t rtt, int32_t rtt_diff) 4024 { 4025 uint64_t cur_bw, up_bnd, low_bnd, subfr; 4026 uint32_t losses; 4027 4028 if ((rack->rc_gp_dyn_mul == 0) || 4029 (rack->use_fixed_rate) || 4030 (rack->in_probe_rtt) || 4031 (rack->rc_always_pace == 0)) { 4032 /* No dynamic GP multipler in play */ 4033 return; 4034 } 4035 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; 4036 cur_bw = rack_get_bw(rack); 4037 /* Calculate our up and down range */ 4038 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; 4039 up_bnd /= 100; 4040 up_bnd += rack->r_ctl.last_gp_comp_bw; 4041 4042 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; 4043 subfr /= 100; 4044 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; 4045 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { 4046 /* 4047 * This is the case where our RTT is above 4048 * the max target and we have been configured 4049 * to just do timely no bonus up stuff in that case. 4050 * 4051 * There are two configurations, set to 1, and we 4052 * just do timely if we are over our max. If its 4053 * set above 1 then we slam the multipliers down 4054 * to 100 and then decrement per timely. 4055 */ 4056 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4057 __LINE__, 3); 4058 if (rack->r_ctl.rc_no_push_at_mrtt > 1) 4059 rack_validate_multipliers_at_or_below_100(rack); 4060 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4061 } else if ((last_bw_est < low_bnd) && !losses) { 4062 /* 4063 * We are decreasing this is a bit complicated this 4064 * means we are loosing ground. This could be 4065 * because another flow entered and we are competing 4066 * for b/w with it. This will push the RTT up which 4067 * makes timely unusable unless we want to get shoved 4068 * into a corner and just be backed off (the age 4069 * old problem with delay based CC). 4070 * 4071 * On the other hand if it was a route change we 4072 * would like to stay somewhat contained and not 4073 * blow out the buffers. 4074 */ 4075 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4076 __LINE__, 3); 4077 rack->r_ctl.last_gp_comp_bw = cur_bw; 4078 if (rack->rc_gp_bwred == 0) { 4079 /* Go into reduction counting */ 4080 rack->rc_gp_bwred = 1; 4081 rack->rc_gp_timely_dec_cnt = 0; 4082 } 4083 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) || 4084 (timely_says == 0)) { 4085 /* 4086 * Push another time with a faster pacing 4087 * to try to gain back (we include override to 4088 * get a full raise factor). 4089 */ 4090 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || 4091 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || 4092 (timely_says == 0) || 4093 (rack_down_raise_thresh == 0)) { 4094 /* 4095 * Do an override up in b/w if we were 4096 * below the threshold or if the threshold 4097 * is zero we always do the raise. 4098 */ 4099 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); 4100 } else { 4101 /* Log it stays the same */ 4102 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, 4103 __LINE__, 11); 4104 } 4105 rack->rc_gp_timely_dec_cnt++; 4106 /* We are not incrementing really no-count */ 4107 rack->rc_gp_incr = 0; 4108 rack->rc_gp_timely_inc_cnt = 0; 4109 } else { 4110 /* 4111 * Lets just use the RTT 4112 * information and give up 4113 * pushing. 4114 */ 4115 goto use_timely; 4116 } 4117 } else if ((timely_says != 2) && 4118 !losses && 4119 (last_bw_est > up_bnd)) { 4120 /* 4121 * We are increasing b/w lets keep going, updating 4122 * our b/w and ignoring any timely input, unless 4123 * of course we are at our max raise (if there is one). 4124 */ 4125 4126 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4127 __LINE__, 3); 4128 rack->r_ctl.last_gp_comp_bw = cur_bw; 4129 if (rack->rc_gp_saw_ss && 4130 rack_per_upper_bound_ss && 4131 (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) { 4132 /* 4133 * In cases where we can't go higher 4134 * we should just use timely. 4135 */ 4136 goto use_timely; 4137 } 4138 if (rack->rc_gp_saw_ca && 4139 rack_per_upper_bound_ca && 4140 (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) { 4141 /* 4142 * In cases where we can't go higher 4143 * we should just use timely. 4144 */ 4145 goto use_timely; 4146 } 4147 rack->rc_gp_bwred = 0; 4148 rack->rc_gp_timely_dec_cnt = 0; 4149 /* You get a set number of pushes if timely is trying to reduce */ 4150 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { 4151 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4152 } else { 4153 /* Log it stays the same */ 4154 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, 4155 __LINE__, 12); 4156 } 4157 return; 4158 } else { 4159 /* 4160 * We are staying between the lower and upper range bounds 4161 * so use timely to decide. 4162 */ 4163 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4164 __LINE__, 3); 4165 use_timely: 4166 if (timely_says) { 4167 rack->rc_gp_incr = 0; 4168 rack->rc_gp_timely_inc_cnt = 0; 4169 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && 4170 !losses && 4171 (last_bw_est < low_bnd)) { 4172 /* We are loosing ground */ 4173 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4174 rack->rc_gp_timely_dec_cnt++; 4175 /* We are not incrementing really no-count */ 4176 rack->rc_gp_incr = 0; 4177 rack->rc_gp_timely_inc_cnt = 0; 4178 } else 4179 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4180 } else { 4181 rack->rc_gp_bwred = 0; 4182 rack->rc_gp_timely_dec_cnt = 0; 4183 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4184 } 4185 } 4186 } 4187 4188 static int32_t 4189 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) 4190 { 4191 int32_t timely_says; 4192 uint64_t log_mult, log_rtt_a_diff; 4193 4194 log_rtt_a_diff = rtt; 4195 log_rtt_a_diff <<= 32; 4196 log_rtt_a_diff |= (uint32_t)rtt_diff; 4197 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * 4198 rack_gp_rtt_maxmul)) { 4199 /* Reduce the b/w multipler */ 4200 timely_says = 2; 4201 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 4202 log_mult <<= 32; 4203 log_mult |= prev_rtt; 4204 rack_log_timely(rack, timely_says, log_mult, 4205 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4206 log_rtt_a_diff, __LINE__, 4); 4207 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4208 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4209 max(rack_gp_rtt_mindiv , 1)))) { 4210 /* Increase the b/w multipler */ 4211 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4212 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4213 max(rack_gp_rtt_mindiv , 1)); 4214 log_mult <<= 32; 4215 log_mult |= prev_rtt; 4216 timely_says = 0; 4217 rack_log_timely(rack, timely_says, log_mult , 4218 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4219 log_rtt_a_diff, __LINE__, 5); 4220 } else { 4221 /* 4222 * Use a gradient to find it the timely gradient 4223 * is: 4224 * grad = rc_rtt_diff / min_rtt; 4225 * 4226 * anything below or equal to 0 will be 4227 * a increase indication. Anything above 4228 * zero is a decrease. Note we take care 4229 * of the actual gradient calculation 4230 * in the reduction (its not needed for 4231 * increase). 4232 */ 4233 log_mult = prev_rtt; 4234 if (rtt_diff <= 0) { 4235 /* 4236 * Rttdiff is less than zero, increase the 4237 * b/w multipler (its 0 or negative) 4238 */ 4239 timely_says = 0; 4240 rack_log_timely(rack, timely_says, log_mult, 4241 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); 4242 } else { 4243 /* Reduce the b/w multipler */ 4244 timely_says = 1; 4245 rack_log_timely(rack, timely_says, log_mult, 4246 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); 4247 } 4248 } 4249 return (timely_says); 4250 } 4251 4252 static void 4253 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 4254 tcp_seq th_ack, int line, uint8_t quality) 4255 { 4256 uint64_t tim, bytes_ps, ltim, stim, utim; 4257 uint32_t segsiz, bytes, reqbytes, us_cts; 4258 int32_t gput, new_rtt_diff, timely_says; 4259 uint64_t resid_bw, subpart = 0, addpart = 0, srtt; 4260 int did_add = 0; 4261 4262 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4263 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 4264 if (TSTMP_GEQ(us_cts, tp->gput_ts)) 4265 tim = us_cts - tp->gput_ts; 4266 else 4267 tim = 0; 4268 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts) 4269 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; 4270 else 4271 stim = 0; 4272 /* 4273 * Use the larger of the send time or ack time. This prevents us 4274 * from being influenced by ack artifacts to come up with too 4275 * high of measurement. Note that since we are spanning over many more 4276 * bytes in most of our measurements hopefully that is less likely to 4277 * occur. 4278 */ 4279 if (tim > stim) 4280 utim = max(tim, 1); 4281 else 4282 utim = max(stim, 1); 4283 /* Lets get a msec time ltim too for the old stuff */ 4284 ltim = max(1, (utim / HPTS_USEC_IN_MSEC)); 4285 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim; 4286 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); 4287 if ((tim == 0) && (stim == 0)) { 4288 /* 4289 * Invalid measurement time, maybe 4290 * all on one ack/one send? 4291 */ 4292 bytes = 0; 4293 bytes_ps = 0; 4294 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4295 0, 0, 0, 10, __LINE__, NULL, quality); 4296 goto skip_measurement; 4297 } 4298 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { 4299 /* We never made a us_rtt measurement? */ 4300 bytes = 0; 4301 bytes_ps = 0; 4302 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4303 0, 0, 0, 10, __LINE__, NULL, quality); 4304 goto skip_measurement; 4305 } 4306 /* 4307 * Calculate the maximum possible b/w this connection 4308 * could have. We base our calculation on the lowest 4309 * rtt we have seen during the measurement and the 4310 * largest rwnd the client has given us in that time. This 4311 * forms a BDP that is the maximum that we could ever 4312 * get to the client. Anything larger is not valid. 4313 * 4314 * I originally had code here that rejected measurements 4315 * where the time was less than 1/2 the latest us_rtt. 4316 * But after thinking on that I realized its wrong since 4317 * say you had a 150Mbps or even 1Gbps link, and you 4318 * were a long way away.. example I am in Europe (100ms rtt) 4319 * talking to my 1Gbps link in S.C. Now measuring say 150,000 4320 * bytes my time would be 1.2ms, and yet my rtt would say 4321 * the measurement was invalid the time was < 50ms. The 4322 * same thing is true for 150Mb (8ms of time). 4323 * 4324 * A better way I realized is to look at what the maximum 4325 * the connection could possibly do. This is gated on 4326 * the lowest RTT we have seen and the highest rwnd. 4327 * We should in theory never exceed that, if we are 4328 * then something on the path is storing up packets 4329 * and then feeding them all at once to our endpoint 4330 * messing up our measurement. 4331 */ 4332 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; 4333 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; 4334 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; 4335 if (SEQ_LT(th_ack, tp->gput_seq)) { 4336 /* No measurement can be made */ 4337 bytes = 0; 4338 bytes_ps = 0; 4339 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4340 0, 0, 0, 10, __LINE__, NULL, quality); 4341 goto skip_measurement; 4342 } else 4343 bytes = (th_ack - tp->gput_seq); 4344 bytes_ps = (uint64_t)bytes; 4345 /* 4346 * Don't measure a b/w for pacing unless we have gotten at least 4347 * an initial windows worth of data in this measurement interval. 4348 * 4349 * Small numbers of bytes get badly influenced by delayed ack and 4350 * other artifacts. Note we take the initial window or our 4351 * defined minimum GP (defaulting to 10 which hopefully is the 4352 * IW). 4353 */ 4354 if (rack->rc_gp_filled == 0) { 4355 /* 4356 * The initial estimate is special. We 4357 * have blasted out an IW worth of packets 4358 * without a real valid ack ts results. We 4359 * then setup the app_limited_needs_set flag, 4360 * this should get the first ack in (probably 2 4361 * MSS worth) to be recorded as the timestamp. 4362 * We thus allow a smaller number of bytes i.e. 4363 * IW - 2MSS. 4364 */ 4365 reqbytes -= (2 * segsiz); 4366 /* Also lets fill previous for our first measurement to be neutral */ 4367 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4368 } 4369 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { 4370 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4371 rack->r_ctl.rc_app_limited_cnt, 4372 0, 0, 10, __LINE__, NULL, quality); 4373 goto skip_measurement; 4374 } 4375 /* 4376 * We now need to calculate the Timely like status so 4377 * we can update (possibly) the b/w multipliers. 4378 */ 4379 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; 4380 if (rack->rc_gp_filled == 0) { 4381 /* No previous reading */ 4382 rack->r_ctl.rc_rtt_diff = new_rtt_diff; 4383 } else { 4384 if (rack->measure_saw_probe_rtt == 0) { 4385 /* 4386 * We don't want a probertt to be counted 4387 * since it will be negative incorrectly. We 4388 * expect to be reducing the RTT when we 4389 * pace at a slower rate. 4390 */ 4391 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); 4392 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); 4393 } 4394 } 4395 timely_says = rack_make_timely_judgement(rack, 4396 rack->r_ctl.rc_gp_srtt, 4397 rack->r_ctl.rc_rtt_diff, 4398 rack->r_ctl.rc_prev_gp_srtt 4399 ); 4400 bytes_ps *= HPTS_USEC_IN_SEC; 4401 bytes_ps /= utim; 4402 if (bytes_ps > rack->r_ctl.last_max_bw) { 4403 /* 4404 * Something is on path playing 4405 * since this b/w is not possible based 4406 * on our BDP (highest rwnd and lowest rtt 4407 * we saw in the measurement window). 4408 * 4409 * Another option here would be to 4410 * instead skip the measurement. 4411 */ 4412 rack_log_pacing_delay_calc(rack, bytes, reqbytes, 4413 bytes_ps, rack->r_ctl.last_max_bw, 0, 4414 11, __LINE__, NULL, quality); 4415 bytes_ps = rack->r_ctl.last_max_bw; 4416 } 4417 /* We store gp for b/w in bytes per second */ 4418 if (rack->rc_gp_filled == 0) { 4419 /* Initial measurment */ 4420 if (bytes_ps) { 4421 rack->r_ctl.gp_bw = bytes_ps; 4422 rack->rc_gp_filled = 1; 4423 rack->r_ctl.num_measurements = 1; 4424 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 4425 } else { 4426 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4427 rack->r_ctl.rc_app_limited_cnt, 4428 0, 0, 10, __LINE__, NULL, quality); 4429 } 4430 if (rack->rc_inp->inp_in_hpts && 4431 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 4432 /* 4433 * Ok we can't trust the pacer in this case 4434 * where we transition from un-paced to paced. 4435 * Or for that matter when the burst mitigation 4436 * was making a wild guess and got it wrong. 4437 * Stop the pacer and clear up all the aggregate 4438 * delays etc. 4439 */ 4440 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 4441 rack->r_ctl.rc_hpts_flags = 0; 4442 rack->r_ctl.rc_last_output_to = 0; 4443 } 4444 did_add = 2; 4445 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) { 4446 /* Still a small number run an average */ 4447 rack->r_ctl.gp_bw += bytes_ps; 4448 addpart = rack->r_ctl.num_measurements; 4449 rack->r_ctl.num_measurements++; 4450 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 4451 /* We have collected enought to move forward */ 4452 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements; 4453 } 4454 did_add = 3; 4455 } else { 4456 /* 4457 * We want to take 1/wma of the goodput and add in to 7/8th 4458 * of the old value weighted by the srtt. So if your measurement 4459 * period is say 2 SRTT's long you would get 1/4 as the 4460 * value, if it was like 1/2 SRTT then you would get 1/16th. 4461 * 4462 * But we must be careful not to take too much i.e. if the 4463 * srtt is say 20ms and the measurement is taken over 4464 * 400ms our weight would be 400/20 i.e. 20. On the 4465 * other hand if we get a measurement over 1ms with a 4466 * 10ms rtt we only want to take a much smaller portion. 4467 */ 4468 if (rack->r_ctl.num_measurements < 0xff) { 4469 rack->r_ctl.num_measurements++; 4470 } 4471 srtt = (uint64_t)tp->t_srtt; 4472 if (srtt == 0) { 4473 /* 4474 * Strange why did t_srtt go back to zero? 4475 */ 4476 if (rack->r_ctl.rc_rack_min_rtt) 4477 srtt = rack->r_ctl.rc_rack_min_rtt; 4478 else 4479 srtt = HPTS_USEC_IN_MSEC; 4480 } 4481 /* 4482 * XXXrrs: Note for reviewers, in playing with 4483 * dynamic pacing I discovered this GP calculation 4484 * as done originally leads to some undesired results. 4485 * Basically you can get longer measurements contributing 4486 * too much to the WMA. Thus I changed it if you are doing 4487 * dynamic adjustments to only do the aportioned adjustment 4488 * if we have a very small (time wise) measurement. Longer 4489 * measurements just get there weight (defaulting to 1/8) 4490 * add to the WMA. We may want to think about changing 4491 * this to always do that for both sides i.e. dynamic 4492 * and non-dynamic... but considering lots of folks 4493 * were playing with this I did not want to change the 4494 * calculation per.se. without your thoughts.. Lawerence? 4495 * Peter?? 4496 */ 4497 if (rack->rc_gp_dyn_mul == 0) { 4498 subpart = rack->r_ctl.gp_bw * utim; 4499 subpart /= (srtt * 8); 4500 if (subpart < (rack->r_ctl.gp_bw / 2)) { 4501 /* 4502 * The b/w update takes no more 4503 * away then 1/2 our running total 4504 * so factor it in. 4505 */ 4506 addpart = bytes_ps * utim; 4507 addpart /= (srtt * 8); 4508 } else { 4509 /* 4510 * Don't allow a single measurement 4511 * to account for more than 1/2 of the 4512 * WMA. This could happen on a retransmission 4513 * where utim becomes huge compared to 4514 * srtt (multiple retransmissions when using 4515 * the sending rate which factors in all the 4516 * transmissions from the first one). 4517 */ 4518 subpart = rack->r_ctl.gp_bw / 2; 4519 addpart = bytes_ps / 2; 4520 } 4521 resid_bw = rack->r_ctl.gp_bw - subpart; 4522 rack->r_ctl.gp_bw = resid_bw + addpart; 4523 did_add = 1; 4524 } else { 4525 if ((utim / srtt) <= 1) { 4526 /* 4527 * The b/w update was over a small period 4528 * of time. The idea here is to prevent a small 4529 * measurement time period from counting 4530 * too much. So we scale it based on the 4531 * time so it attributes less than 1/rack_wma_divisor 4532 * of its measurement. 4533 */ 4534 subpart = rack->r_ctl.gp_bw * utim; 4535 subpart /= (srtt * rack_wma_divisor); 4536 addpart = bytes_ps * utim; 4537 addpart /= (srtt * rack_wma_divisor); 4538 } else { 4539 /* 4540 * The scaled measurement was long 4541 * enough so lets just add in the 4542 * portion of the measurment i.e. 1/rack_wma_divisor 4543 */ 4544 subpart = rack->r_ctl.gp_bw / rack_wma_divisor; 4545 addpart = bytes_ps / rack_wma_divisor; 4546 } 4547 if ((rack->measure_saw_probe_rtt == 0) || 4548 (bytes_ps > rack->r_ctl.gp_bw)) { 4549 /* 4550 * For probe-rtt we only add it in 4551 * if its larger, all others we just 4552 * add in. 4553 */ 4554 did_add = 1; 4555 resid_bw = rack->r_ctl.gp_bw - subpart; 4556 rack->r_ctl.gp_bw = resid_bw + addpart; 4557 } 4558 } 4559 } 4560 if ((rack->gp_ready == 0) && 4561 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 4562 /* We have enough measurements now */ 4563 rack->gp_ready = 1; 4564 rack_set_cc_pacing(rack); 4565 if (rack->defer_options) 4566 rack_apply_deferred_options(rack); 4567 } 4568 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim, 4569 rack_get_bw(rack), 22, did_add, NULL, quality); 4570 /* We do not update any multipliers if we are in or have seen a probe-rtt */ 4571 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) 4572 rack_update_multiplier(rack, timely_says, bytes_ps, 4573 rack->r_ctl.rc_gp_srtt, 4574 rack->r_ctl.rc_rtt_diff); 4575 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, 4576 rack_get_bw(rack), 3, line, NULL, quality); 4577 /* reset the gp srtt and setup the new prev */ 4578 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4579 /* Record the lost count for the next measurement */ 4580 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; 4581 /* 4582 * We restart our diffs based on the gpsrtt in the 4583 * measurement window. 4584 */ 4585 rack->rc_gp_rtt_set = 0; 4586 rack->rc_gp_saw_rec = 0; 4587 rack->rc_gp_saw_ca = 0; 4588 rack->rc_gp_saw_ss = 0; 4589 rack->rc_dragged_bottom = 0; 4590 skip_measurement: 4591 4592 #ifdef STATS 4593 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 4594 gput); 4595 /* 4596 * XXXLAS: This is a temporary hack, and should be 4597 * chained off VOI_TCP_GPUT when stats(9) grows an 4598 * API to deal with chained VOIs. 4599 */ 4600 if (tp->t_stats_gput_prev > 0) 4601 stats_voi_update_abs_s32(tp->t_stats, 4602 VOI_TCP_GPUT_ND, 4603 ((gput - tp->t_stats_gput_prev) * 100) / 4604 tp->t_stats_gput_prev); 4605 #endif 4606 tp->t_flags &= ~TF_GPUTINPROG; 4607 tp->t_stats_gput_prev = gput; 4608 /* 4609 * Now are we app limited now and there is space from where we 4610 * were to where we want to go? 4611 * 4612 * We don't do the other case i.e. non-applimited here since 4613 * the next send will trigger us picking up the missing data. 4614 */ 4615 if (rack->r_ctl.rc_first_appl && 4616 TCPS_HAVEESTABLISHED(tp->t_state) && 4617 rack->r_ctl.rc_app_limited_cnt && 4618 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && 4619 ((rack->r_ctl.rc_first_appl->r_end - th_ack) > 4620 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 4621 /* 4622 * Yep there is enough outstanding to make a measurement here. 4623 */ 4624 struct rack_sendmap *rsm, fe; 4625 4626 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 4627 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 4628 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4629 rack->app_limited_needs_set = 0; 4630 tp->gput_seq = th_ack; 4631 if (rack->in_probe_rtt) 4632 rack->measure_saw_probe_rtt = 1; 4633 else if ((rack->measure_saw_probe_rtt) && 4634 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 4635 rack->measure_saw_probe_rtt = 0; 4636 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) { 4637 /* There is a full window to gain info from */ 4638 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 4639 } else { 4640 /* We can only measure up to the applimited point */ 4641 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack); 4642 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 4643 /* 4644 * We don't have enough to make a measurement. 4645 */ 4646 tp->t_flags &= ~TF_GPUTINPROG; 4647 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 4648 0, 0, 0, 6, __LINE__, NULL, quality); 4649 return; 4650 } 4651 } 4652 if (tp->t_state >= TCPS_FIN_WAIT_1) { 4653 /* 4654 * We will get no more data into the SB 4655 * this means we need to have the data available 4656 * before we start a measurement. 4657 */ 4658 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < (tp->gput_ack - tp->gput_seq)) { 4659 /* Nope not enough data. */ 4660 return; 4661 } 4662 } 4663 tp->t_flags |= TF_GPUTINPROG; 4664 /* 4665 * Now we need to find the timestamp of the send at tp->gput_seq 4666 * for the send based measurement. 4667 */ 4668 fe.r_start = tp->gput_seq; 4669 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 4670 if (rsm) { 4671 /* Ok send-based limit is set */ 4672 if (SEQ_LT(rsm->r_start, tp->gput_seq)) { 4673 /* 4674 * Move back to include the earlier part 4675 * so our ack time lines up right (this may 4676 * make an overlapping measurement but thats 4677 * ok). 4678 */ 4679 tp->gput_seq = rsm->r_start; 4680 } 4681 if (rsm->r_flags & RACK_ACKED) 4682 tp->gput_ts = (uint32_t)rsm->r_ack_arrival; 4683 else 4684 rack->app_limited_needs_set = 1; 4685 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 4686 } else { 4687 /* 4688 * If we don't find the rsm due to some 4689 * send-limit set the current time, which 4690 * basically disables the send-limit. 4691 */ 4692 struct timeval tv; 4693 4694 microuptime(&tv); 4695 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 4696 } 4697 rack_log_pacing_delay_calc(rack, 4698 tp->gput_seq, 4699 tp->gput_ack, 4700 (uint64_t)rsm, 4701 tp->gput_ts, 4702 rack->r_ctl.rc_app_limited_cnt, 4703 9, 4704 __LINE__, NULL, quality); 4705 } 4706 } 4707 4708 /* 4709 * CC wrapper hook functions 4710 */ 4711 static void 4712 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, 4713 uint16_t type, int32_t recovery) 4714 { 4715 uint32_t prior_cwnd, acked; 4716 struct tcp_log_buffer *lgb = NULL; 4717 uint8_t labc_to_use, quality; 4718 4719 INP_WLOCK_ASSERT(tp->t_inpcb); 4720 tp->ccv->nsegs = nsegs; 4721 acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una); 4722 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { 4723 uint32_t max; 4724 4725 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); 4726 if (tp->ccv->bytes_this_ack > max) { 4727 tp->ccv->bytes_this_ack = max; 4728 } 4729 } 4730 #ifdef STATS 4731 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 4732 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); 4733 #endif 4734 quality = RACK_QUALITY_NONE; 4735 if ((tp->t_flags & TF_GPUTINPROG) && 4736 rack_enough_for_measurement(tp, rack, th_ack, &quality)) { 4737 /* Measure the Goodput */ 4738 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality); 4739 #ifdef NETFLIX_PEAKRATE 4740 if ((type == CC_ACK) && 4741 (tp->t_maxpeakrate)) { 4742 /* 4743 * We update t_peakrate_thr. This gives us roughly 4744 * one update per round trip time. Note 4745 * it will only be used if pace_always is off i.e 4746 * we don't do this for paced flows. 4747 */ 4748 rack_update_peakrate_thr(tp); 4749 } 4750 #endif 4751 } 4752 /* Which way our we limited, if not cwnd limited no advance in CA */ 4753 if (tp->snd_cwnd <= tp->snd_wnd) 4754 tp->ccv->flags |= CCF_CWND_LIMITED; 4755 else 4756 tp->ccv->flags &= ~CCF_CWND_LIMITED; 4757 if (tp->snd_cwnd > tp->snd_ssthresh) { 4758 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, 4759 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); 4760 /* For the setting of a window past use the actual scwnd we are using */ 4761 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { 4762 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; 4763 tp->ccv->flags |= CCF_ABC_SENTAWND; 4764 } 4765 } else { 4766 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 4767 tp->t_bytes_acked = 0; 4768 } 4769 prior_cwnd = tp->snd_cwnd; 4770 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec || 4771 (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf))) 4772 labc_to_use = rack->rc_labc; 4773 else 4774 labc_to_use = rack_max_abc_post_recovery; 4775 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4776 union tcp_log_stackspecific log; 4777 struct timeval tv; 4778 4779 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4780 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4781 log.u_bbr.flex1 = th_ack; 4782 log.u_bbr.flex2 = tp->ccv->flags; 4783 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4784 log.u_bbr.flex4 = tp->ccv->nsegs; 4785 log.u_bbr.flex5 = labc_to_use; 4786 log.u_bbr.flex6 = prior_cwnd; 4787 log.u_bbr.flex7 = V_tcp_do_newsack; 4788 log.u_bbr.flex8 = 1; 4789 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4790 0, &log, false, NULL, NULL, 0, &tv); 4791 } 4792 if (CC_ALGO(tp)->ack_received != NULL) { 4793 /* XXXLAS: Find a way to live without this */ 4794 tp->ccv->curack = th_ack; 4795 tp->ccv->labc = labc_to_use; 4796 tp->ccv->flags |= CCF_USE_LOCAL_ABC; 4797 CC_ALGO(tp)->ack_received(tp->ccv, type); 4798 } 4799 if (lgb) { 4800 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd; 4801 } 4802 if (rack->r_must_retran) { 4803 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) { 4804 /* 4805 * We now are beyond the rxt point so lets disable 4806 * the flag. 4807 */ 4808 rack->r_ctl.rc_out_at_rto = 0; 4809 rack->r_must_retran = 0; 4810 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) { 4811 /* 4812 * Only decrement the rc_out_at_rto if the cwnd advances 4813 * at least a whole segment. Otherwise next time the peer 4814 * acks, we won't be able to send this generaly happens 4815 * when we are in Congestion Avoidance. 4816 */ 4817 if (acked <= rack->r_ctl.rc_out_at_rto){ 4818 rack->r_ctl.rc_out_at_rto -= acked; 4819 } else { 4820 rack->r_ctl.rc_out_at_rto = 0; 4821 } 4822 } 4823 } 4824 #ifdef STATS 4825 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); 4826 #endif 4827 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { 4828 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; 4829 } 4830 #ifdef NETFLIX_PEAKRATE 4831 /* we enforce max peak rate if it is set and we are not pacing */ 4832 if ((rack->rc_always_pace == 0) && 4833 tp->t_peakrate_thr && 4834 (tp->snd_cwnd > tp->t_peakrate_thr)) { 4835 tp->snd_cwnd = tp->t_peakrate_thr; 4836 } 4837 #endif 4838 } 4839 4840 static void 4841 tcp_rack_partialack(struct tcpcb *tp) 4842 { 4843 struct tcp_rack *rack; 4844 4845 rack = (struct tcp_rack *)tp->t_fb_ptr; 4846 INP_WLOCK_ASSERT(tp->t_inpcb); 4847 /* 4848 * If we are doing PRR and have enough 4849 * room to send <or> we are pacing and prr 4850 * is disabled we will want to see if we 4851 * can send data (by setting r_wanted_output to 4852 * true). 4853 */ 4854 if ((rack->r_ctl.rc_prr_sndcnt > 0) || 4855 rack->rack_no_prr) 4856 rack->r_wanted_output = 1; 4857 } 4858 4859 static void 4860 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack) 4861 { 4862 struct tcp_rack *rack; 4863 uint32_t orig_cwnd; 4864 4865 orig_cwnd = tp->snd_cwnd; 4866 INP_WLOCK_ASSERT(tp->t_inpcb); 4867 rack = (struct tcp_rack *)tp->t_fb_ptr; 4868 /* only alert CC if we alerted when we entered */ 4869 if (CC_ALGO(tp)->post_recovery != NULL) { 4870 tp->ccv->curack = th_ack; 4871 CC_ALGO(tp)->post_recovery(tp->ccv); 4872 if (tp->snd_cwnd < tp->snd_ssthresh) { 4873 /* 4874 * Rack has burst control and pacing 4875 * so lets not set this any lower than 4876 * snd_ssthresh per RFC-6582 (option 2). 4877 */ 4878 tp->snd_cwnd = tp->snd_ssthresh; 4879 } 4880 } 4881 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4882 union tcp_log_stackspecific log; 4883 struct timeval tv; 4884 4885 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4886 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4887 log.u_bbr.flex1 = th_ack; 4888 log.u_bbr.flex2 = tp->ccv->flags; 4889 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4890 log.u_bbr.flex4 = tp->ccv->nsegs; 4891 log.u_bbr.flex5 = V_tcp_abc_l_var; 4892 log.u_bbr.flex6 = orig_cwnd; 4893 log.u_bbr.flex7 = V_tcp_do_newsack; 4894 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 4895 log.u_bbr.flex8 = 2; 4896 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4897 0, &log, false, NULL, NULL, 0, &tv); 4898 } 4899 if ((rack->rack_no_prr == 0) && 4900 (rack->no_prr_addback == 0) && 4901 (rack->r_ctl.rc_prr_sndcnt > 0)) { 4902 /* 4903 * Suck the next prr cnt back into cwnd, but 4904 * only do that if we are not application limited. 4905 */ 4906 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 4907 /* 4908 * We are allowed to add back to the cwnd the amount we did 4909 * not get out if: 4910 * a) no_prr_addback is off. 4911 * b) we are not app limited 4912 * c) we are doing prr 4913 * <and> 4914 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none). 4915 */ 4916 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax), 4917 rack->r_ctl.rc_prr_sndcnt); 4918 } 4919 rack->r_ctl.rc_prr_sndcnt = 0; 4920 rack_log_to_prr(rack, 1, 0); 4921 } 4922 rack_log_to_prr(rack, 14, orig_cwnd); 4923 tp->snd_recover = tp->snd_una; 4924 if (rack->r_ctl.dsack_persist) { 4925 rack->r_ctl.dsack_persist--; 4926 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 4927 rack->r_ctl.num_dsack = 0; 4928 } 4929 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 4930 } 4931 EXIT_RECOVERY(tp->t_flags); 4932 } 4933 4934 static void 4935 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack) 4936 { 4937 struct tcp_rack *rack; 4938 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd; 4939 4940 INP_WLOCK_ASSERT(tp->t_inpcb); 4941 #ifdef STATS 4942 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 4943 #endif 4944 if (IN_RECOVERY(tp->t_flags) == 0) { 4945 in_rec_at_entry = 0; 4946 ssthresh_enter = tp->snd_ssthresh; 4947 cwnd_enter = tp->snd_cwnd; 4948 } else 4949 in_rec_at_entry = 1; 4950 rack = (struct tcp_rack *)tp->t_fb_ptr; 4951 switch (type) { 4952 case CC_NDUPACK: 4953 tp->t_flags &= ~TF_WASFRECOVERY; 4954 tp->t_flags &= ~TF_WASCRECOVERY; 4955 if (!IN_FASTRECOVERY(tp->t_flags)) { 4956 rack->r_ctl.rc_prr_delivered = 0; 4957 rack->r_ctl.rc_prr_out = 0; 4958 if (rack->rack_no_prr == 0) { 4959 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 4960 rack_log_to_prr(rack, 2, in_rec_at_entry); 4961 } 4962 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; 4963 tp->snd_recover = tp->snd_max; 4964 if (tp->t_flags2 & TF2_ECN_PERMIT) 4965 tp->t_flags2 |= TF2_ECN_SND_CWR; 4966 } 4967 break; 4968 case CC_ECN: 4969 if (!IN_CONGRECOVERY(tp->t_flags) || 4970 /* 4971 * Allow ECN reaction on ACK to CWR, if 4972 * that data segment was also CE marked. 4973 */ 4974 SEQ_GEQ(ack, tp->snd_recover)) { 4975 EXIT_CONGRECOVERY(tp->t_flags); 4976 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); 4977 tp->snd_recover = tp->snd_max + 1; 4978 if (tp->t_flags2 & TF2_ECN_PERMIT) 4979 tp->t_flags2 |= TF2_ECN_SND_CWR; 4980 } 4981 break; 4982 case CC_RTO: 4983 tp->t_dupacks = 0; 4984 tp->t_bytes_acked = 0; 4985 EXIT_RECOVERY(tp->t_flags); 4986 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / 4987 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); 4988 orig_cwnd = tp->snd_cwnd; 4989 tp->snd_cwnd = ctf_fixed_maxseg(tp); 4990 rack_log_to_prr(rack, 16, orig_cwnd); 4991 if (tp->t_flags2 & TF2_ECN_PERMIT) 4992 tp->t_flags2 |= TF2_ECN_SND_CWR; 4993 break; 4994 case CC_RTO_ERR: 4995 KMOD_TCPSTAT_INC(tcps_sndrexmitbad); 4996 /* RTO was unnecessary, so reset everything. */ 4997 tp->snd_cwnd = tp->snd_cwnd_prev; 4998 tp->snd_ssthresh = tp->snd_ssthresh_prev; 4999 tp->snd_recover = tp->snd_recover_prev; 5000 if (tp->t_flags & TF_WASFRECOVERY) { 5001 ENTER_FASTRECOVERY(tp->t_flags); 5002 tp->t_flags &= ~TF_WASFRECOVERY; 5003 } 5004 if (tp->t_flags & TF_WASCRECOVERY) { 5005 ENTER_CONGRECOVERY(tp->t_flags); 5006 tp->t_flags &= ~TF_WASCRECOVERY; 5007 } 5008 tp->snd_nxt = tp->snd_max; 5009 tp->t_badrxtwin = 0; 5010 break; 5011 } 5012 if ((CC_ALGO(tp)->cong_signal != NULL) && 5013 (type != CC_RTO)){ 5014 tp->ccv->curack = ack; 5015 CC_ALGO(tp)->cong_signal(tp->ccv, type); 5016 } 5017 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) { 5018 rack_log_to_prr(rack, 15, cwnd_enter); 5019 rack->r_ctl.dsack_byte_cnt = 0; 5020 rack->r_ctl.retran_during_recovery = 0; 5021 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter; 5022 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter; 5023 rack->r_ent_rec_ns = 1; 5024 } 5025 } 5026 5027 static inline void 5028 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) 5029 { 5030 uint32_t i_cwnd; 5031 5032 INP_WLOCK_ASSERT(tp->t_inpcb); 5033 5034 #ifdef NETFLIX_STATS 5035 KMOD_TCPSTAT_INC(tcps_idle_restarts); 5036 if (tp->t_state == TCPS_ESTABLISHED) 5037 KMOD_TCPSTAT_INC(tcps_idle_estrestarts); 5038 #endif 5039 if (CC_ALGO(tp)->after_idle != NULL) 5040 CC_ALGO(tp)->after_idle(tp->ccv); 5041 5042 if (tp->snd_cwnd == 1) 5043 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 5044 else 5045 i_cwnd = rc_init_window(rack); 5046 5047 /* 5048 * Being idle is no differnt than the initial window. If the cc 5049 * clamps it down below the initial window raise it to the initial 5050 * window. 5051 */ 5052 if (tp->snd_cwnd < i_cwnd) { 5053 tp->snd_cwnd = i_cwnd; 5054 } 5055 } 5056 5057 /* 5058 * Indicate whether this ack should be delayed. We can delay the ack if 5059 * following conditions are met: 5060 * - There is no delayed ack timer in progress. 5061 * - Our last ack wasn't a 0-sized window. We never want to delay 5062 * the ack that opens up a 0-sized window. 5063 * - LRO wasn't used for this segment. We make sure by checking that the 5064 * segment size is not larger than the MSS. 5065 * - Delayed acks are enabled or this is a half-synchronized T/TCP 5066 * connection. 5067 */ 5068 #define DELAY_ACK(tp, tlen) \ 5069 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ 5070 ((tp->t_flags & TF_DELACK) == 0) && \ 5071 (tlen <= tp->t_maxseg) && \ 5072 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) 5073 5074 static struct rack_sendmap * 5075 rack_find_lowest_rsm(struct tcp_rack *rack) 5076 { 5077 struct rack_sendmap *rsm; 5078 5079 /* 5080 * Walk the time-order transmitted list looking for an rsm that is 5081 * not acked. This will be the one that was sent the longest time 5082 * ago that is still outstanding. 5083 */ 5084 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 5085 if (rsm->r_flags & RACK_ACKED) { 5086 continue; 5087 } 5088 goto finish; 5089 } 5090 finish: 5091 return (rsm); 5092 } 5093 5094 static struct rack_sendmap * 5095 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) 5096 { 5097 struct rack_sendmap *prsm; 5098 5099 /* 5100 * Walk the sequence order list backward until we hit and arrive at 5101 * the highest seq not acked. In theory when this is called it 5102 * should be the last segment (which it was not). 5103 */ 5104 counter_u64_add(rack_find_high, 1); 5105 prsm = rsm; 5106 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) { 5107 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { 5108 continue; 5109 } 5110 return (prsm); 5111 } 5112 return (NULL); 5113 } 5114 5115 static uint32_t 5116 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) 5117 { 5118 int32_t lro; 5119 uint32_t thresh; 5120 5121 /* 5122 * lro is the flag we use to determine if we have seen reordering. 5123 * If it gets set we have seen reordering. The reorder logic either 5124 * works in one of two ways: 5125 * 5126 * If reorder-fade is configured, then we track the last time we saw 5127 * re-ordering occur. If we reach the point where enough time as 5128 * passed we no longer consider reordering has occuring. 5129 * 5130 * Or if reorder-face is 0, then once we see reordering we consider 5131 * the connection to alway be subject to reordering and just set lro 5132 * to 1. 5133 * 5134 * In the end if lro is non-zero we add the extra time for 5135 * reordering in. 5136 */ 5137 if (srtt == 0) 5138 srtt = 1; 5139 if (rack->r_ctl.rc_reorder_ts) { 5140 if (rack->r_ctl.rc_reorder_fade) { 5141 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { 5142 lro = cts - rack->r_ctl.rc_reorder_ts; 5143 if (lro == 0) { 5144 /* 5145 * No time as passed since the last 5146 * reorder, mark it as reordering. 5147 */ 5148 lro = 1; 5149 } 5150 } else { 5151 /* Negative time? */ 5152 lro = 0; 5153 } 5154 if (lro > rack->r_ctl.rc_reorder_fade) { 5155 /* Turn off reordering seen too */ 5156 rack->r_ctl.rc_reorder_ts = 0; 5157 lro = 0; 5158 } 5159 } else { 5160 /* Reodering does not fade */ 5161 lro = 1; 5162 } 5163 } else { 5164 lro = 0; 5165 } 5166 if (rack->rc_rack_tmr_std_based == 0) { 5167 thresh = srtt + rack->r_ctl.rc_pkt_delay; 5168 } else { 5169 /* Standards based pkt-delay is 1/4 srtt */ 5170 thresh = srtt + (srtt >> 2); 5171 } 5172 if (lro && (rack->rc_rack_tmr_std_based == 0)) { 5173 /* It must be set, if not you get 1/4 rtt */ 5174 if (rack->r_ctl.rc_reorder_shift) 5175 thresh += (srtt >> rack->r_ctl.rc_reorder_shift); 5176 else 5177 thresh += (srtt >> 2); 5178 } 5179 if (rack->rc_rack_use_dsack && 5180 lro && 5181 (rack->r_ctl.num_dsack > 0)) { 5182 /* 5183 * We only increase the reordering window if we 5184 * have seen reordering <and> we have a DSACK count. 5185 */ 5186 thresh += rack->r_ctl.num_dsack * (srtt >> 2); 5187 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh); 5188 } 5189 /* SRTT * 2 is the ceiling */ 5190 if (thresh > (srtt * 2)) { 5191 thresh = srtt * 2; 5192 } 5193 /* And we don't want it above the RTO max either */ 5194 if (thresh > rack_rto_max) { 5195 thresh = rack_rto_max; 5196 } 5197 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh); 5198 return (thresh); 5199 } 5200 5201 static uint32_t 5202 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, 5203 struct rack_sendmap *rsm, uint32_t srtt) 5204 { 5205 struct rack_sendmap *prsm; 5206 uint32_t thresh, len; 5207 int segsiz; 5208 5209 if (srtt == 0) 5210 srtt = 1; 5211 if (rack->r_ctl.rc_tlp_threshold) 5212 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); 5213 else 5214 thresh = (srtt * 2); 5215 5216 /* Get the previous sent packet, if any */ 5217 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 5218 counter_u64_add(rack_enter_tlp_calc, 1); 5219 len = rsm->r_end - rsm->r_start; 5220 if (rack->rack_tlp_threshold_use == TLP_USE_ID) { 5221 /* Exactly like the ID */ 5222 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { 5223 uint32_t alt_thresh; 5224 /* 5225 * Compensate for delayed-ack with the d-ack time. 5226 */ 5227 counter_u64_add(rack_used_tlpmethod, 1); 5228 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5229 if (alt_thresh > thresh) 5230 thresh = alt_thresh; 5231 } 5232 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { 5233 /* 2.1 behavior */ 5234 prsm = TAILQ_PREV(rsm, rack_head, r_tnext); 5235 if (prsm && (len <= segsiz)) { 5236 /* 5237 * Two packets outstanding, thresh should be (2*srtt) + 5238 * possible inter-packet delay (if any). 5239 */ 5240 uint32_t inter_gap = 0; 5241 int idx, nidx; 5242 5243 counter_u64_add(rack_used_tlpmethod, 1); 5244 idx = rsm->r_rtr_cnt - 1; 5245 nidx = prsm->r_rtr_cnt - 1; 5246 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) { 5247 /* Yes it was sent later (or at the same time) */ 5248 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; 5249 } 5250 thresh += inter_gap; 5251 } else if (len <= segsiz) { 5252 /* 5253 * Possibly compensate for delayed-ack. 5254 */ 5255 uint32_t alt_thresh; 5256 5257 counter_u64_add(rack_used_tlpmethod2, 1); 5258 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5259 if (alt_thresh > thresh) 5260 thresh = alt_thresh; 5261 } 5262 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { 5263 /* 2.2 behavior */ 5264 if (len <= segsiz) { 5265 uint32_t alt_thresh; 5266 /* 5267 * Compensate for delayed-ack with the d-ack time. 5268 */ 5269 counter_u64_add(rack_used_tlpmethod, 1); 5270 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5271 if (alt_thresh > thresh) 5272 thresh = alt_thresh; 5273 } 5274 } 5275 /* Not above an RTO */ 5276 if (thresh > tp->t_rxtcur) { 5277 thresh = tp->t_rxtcur; 5278 } 5279 /* Not above a RTO max */ 5280 if (thresh > rack_rto_max) { 5281 thresh = rack_rto_max; 5282 } 5283 /* Apply user supplied min TLP */ 5284 if (thresh < rack_tlp_min) { 5285 thresh = rack_tlp_min; 5286 } 5287 return (thresh); 5288 } 5289 5290 static uint32_t 5291 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) 5292 { 5293 /* 5294 * We want the rack_rtt which is the 5295 * last rtt we measured. However if that 5296 * does not exist we fallback to the srtt (which 5297 * we probably will never do) and then as a last 5298 * resort we use RACK_INITIAL_RTO if no srtt is 5299 * yet set. 5300 */ 5301 if (rack->rc_rack_rtt) 5302 return (rack->rc_rack_rtt); 5303 else if (tp->t_srtt == 0) 5304 return (RACK_INITIAL_RTO); 5305 return (tp->t_srtt); 5306 } 5307 5308 static struct rack_sendmap * 5309 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) 5310 { 5311 /* 5312 * Check to see that we don't need to fall into recovery. We will 5313 * need to do so if our oldest transmit is past the time we should 5314 * have had an ack. 5315 */ 5316 struct tcp_rack *rack; 5317 struct rack_sendmap *rsm; 5318 int32_t idx; 5319 uint32_t srtt, thresh; 5320 5321 rack = (struct tcp_rack *)tp->t_fb_ptr; 5322 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 5323 return (NULL); 5324 } 5325 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5326 if (rsm == NULL) 5327 return (NULL); 5328 5329 if (rsm->r_flags & RACK_ACKED) { 5330 rsm = rack_find_lowest_rsm(rack); 5331 if (rsm == NULL) 5332 return (NULL); 5333 } 5334 idx = rsm->r_rtr_cnt - 1; 5335 srtt = rack_grab_rtt(tp, rack); 5336 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 5337 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) { 5338 return (NULL); 5339 } 5340 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) { 5341 return (NULL); 5342 } 5343 /* Ok if we reach here we are over-due and this guy can be sent */ 5344 if (IN_RECOVERY(tp->t_flags) == 0) { 5345 /* 5346 * For the one that enters us into recovery record undo 5347 * info. 5348 */ 5349 rack->r_ctl.rc_rsm_start = rsm->r_start; 5350 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 5351 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 5352 } 5353 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 5354 return (rsm); 5355 } 5356 5357 static uint32_t 5358 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) 5359 { 5360 int32_t t; 5361 int32_t tt; 5362 uint32_t ret_val; 5363 5364 t = (tp->t_srtt + (tp->t_rttvar << 2)); 5365 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], 5366 rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop); 5367 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; 5368 ret_val = (uint32_t)tt; 5369 return (ret_val); 5370 } 5371 5372 static uint32_t 5373 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) 5374 { 5375 /* 5376 * Start the FR timer, we do this based on getting the first one in 5377 * the rc_tmap. Note that if its NULL we must stop the timer. in all 5378 * events we need to stop the running timer (if its running) before 5379 * starting the new one. 5380 */ 5381 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; 5382 uint32_t srtt_cur; 5383 int32_t idx; 5384 int32_t is_tlp_timer = 0; 5385 struct rack_sendmap *rsm; 5386 5387 if (rack->t_timers_stopped) { 5388 /* All timers have been stopped none are to run */ 5389 return (0); 5390 } 5391 if (rack->rc_in_persist) { 5392 /* We can't start any timer in persists */ 5393 return (rack_get_persists_timer_val(tp, rack)); 5394 } 5395 rack->rc_on_min_to = 0; 5396 if ((tp->t_state < TCPS_ESTABLISHED) || 5397 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 5398 goto activate_rxt; 5399 } 5400 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5401 if ((rsm == NULL) || sup_rack) { 5402 /* Nothing on the send map or no rack */ 5403 activate_rxt: 5404 time_since_sent = 0; 5405 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5406 if (rsm) { 5407 /* 5408 * Should we discount the RTX timer any? 5409 * 5410 * We want to discount it the smallest amount. 5411 * If a timer (Rack/TLP or RXT) has gone off more 5412 * recently thats the discount we want to use (now - timer time). 5413 * If the retransmit of the oldest packet was more recent then 5414 * we want to use that (now - oldest-packet-last_transmit_time). 5415 * 5416 */ 5417 idx = rsm->r_rtr_cnt - 1; 5418 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx]))) 5419 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5420 else 5421 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5422 if (TSTMP_GT(cts, tstmp_touse)) 5423 time_since_sent = cts - tstmp_touse; 5424 } 5425 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 5426 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; 5427 to = tp->t_rxtcur; 5428 if (to > time_since_sent) 5429 to -= time_since_sent; 5430 else 5431 to = rack->r_ctl.rc_min_to; 5432 if (to == 0) 5433 to = 1; 5434 /* Special case for KEEPINIT */ 5435 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 5436 (TP_KEEPINIT(tp) != 0) && 5437 rsm) { 5438 /* 5439 * We have to put a ceiling on the rxt timer 5440 * of the keep-init timeout. 5441 */ 5442 uint32_t max_time, red; 5443 5444 max_time = TICKS_2_USEC(TP_KEEPINIT(tp)); 5445 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) { 5446 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]); 5447 if (red < max_time) 5448 max_time -= red; 5449 else 5450 max_time = 1; 5451 } 5452 /* Reduce timeout to the keep value if needed */ 5453 if (max_time < to) 5454 to = max_time; 5455 } 5456 return (to); 5457 } 5458 return (0); 5459 } 5460 if (rsm->r_flags & RACK_ACKED) { 5461 rsm = rack_find_lowest_rsm(rack); 5462 if (rsm == NULL) { 5463 /* No lowest? */ 5464 goto activate_rxt; 5465 } 5466 } 5467 if (rack->sack_attack_disable) { 5468 /* 5469 * We don't want to do 5470 * any TLP's if you are an attacker. 5471 * Though if you are doing what 5472 * is expected you may still have 5473 * SACK-PASSED marks. 5474 */ 5475 goto activate_rxt; 5476 } 5477 /* Convert from ms to usecs */ 5478 if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 5479 if ((tp->t_flags & TF_SENTFIN) && 5480 ((tp->snd_max - tp->snd_una) == 1) && 5481 (rsm->r_flags & RACK_HAS_FIN)) { 5482 /* 5483 * We don't start a rack timer if all we have is a 5484 * FIN outstanding. 5485 */ 5486 goto activate_rxt; 5487 } 5488 if ((rack->use_rack_rr == 0) && 5489 (IN_FASTRECOVERY(tp->t_flags)) && 5490 (rack->rack_no_prr == 0) && 5491 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { 5492 /* 5493 * We are not cheating, in recovery and 5494 * not enough ack's to yet get our next 5495 * retransmission out. 5496 * 5497 * Note that classified attackers do not 5498 * get to use the rack-cheat. 5499 */ 5500 goto activate_tlp; 5501 } 5502 srtt = rack_grab_rtt(tp, rack); 5503 thresh = rack_calc_thresh_rack(rack, srtt, cts); 5504 idx = rsm->r_rtr_cnt - 1; 5505 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh; 5506 if (SEQ_GEQ(exp, cts)) { 5507 to = exp - cts; 5508 if (to < rack->r_ctl.rc_min_to) { 5509 to = rack->r_ctl.rc_min_to; 5510 if (rack->r_rr_config == 3) 5511 rack->rc_on_min_to = 1; 5512 } 5513 } else { 5514 to = rack->r_ctl.rc_min_to; 5515 if (rack->r_rr_config == 3) 5516 rack->rc_on_min_to = 1; 5517 } 5518 } else { 5519 /* Ok we need to do a TLP not RACK */ 5520 activate_tlp: 5521 if ((rack->rc_tlp_in_progress != 0) && 5522 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { 5523 /* 5524 * The previous send was a TLP and we have sent 5525 * N TLP's without sending new data. 5526 */ 5527 goto activate_rxt; 5528 } 5529 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 5530 if (rsm == NULL) { 5531 /* We found no rsm to TLP with. */ 5532 goto activate_rxt; 5533 } 5534 if (rsm->r_flags & RACK_HAS_FIN) { 5535 /* If its a FIN we dont do TLP */ 5536 rsm = NULL; 5537 goto activate_rxt; 5538 } 5539 idx = rsm->r_rtr_cnt - 1; 5540 time_since_sent = 0; 5541 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time)) 5542 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5543 else 5544 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5545 if (TSTMP_GT(cts, tstmp_touse)) 5546 time_since_sent = cts - tstmp_touse; 5547 is_tlp_timer = 1; 5548 if (tp->t_srtt) { 5549 if ((rack->rc_srtt_measure_made == 0) && 5550 (tp->t_srtt == 1)) { 5551 /* 5552 * If another stack as run and set srtt to 1, 5553 * then the srtt was 0, so lets use the initial. 5554 */ 5555 srtt = RACK_INITIAL_RTO; 5556 } else { 5557 srtt_cur = tp->t_srtt; 5558 srtt = srtt_cur; 5559 } 5560 } else 5561 srtt = RACK_INITIAL_RTO; 5562 /* 5563 * If the SRTT is not keeping up and the 5564 * rack RTT has spiked we want to use 5565 * the last RTT not the smoothed one. 5566 */ 5567 if (rack_tlp_use_greater && 5568 tp->t_srtt && 5569 (srtt < rack_grab_rtt(tp, rack))) { 5570 srtt = rack_grab_rtt(tp, rack); 5571 } 5572 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); 5573 if (thresh > time_since_sent) { 5574 to = thresh - time_since_sent; 5575 } else { 5576 to = rack->r_ctl.rc_min_to; 5577 rack_log_alt_to_to_cancel(rack, 5578 thresh, /* flex1 */ 5579 time_since_sent, /* flex2 */ 5580 tstmp_touse, /* flex3 */ 5581 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ 5582 (uint32_t)rsm->r_tim_lastsent[idx], 5583 srtt, 5584 idx, 99); 5585 } 5586 if (to < rack_tlp_min) { 5587 to = rack_tlp_min; 5588 } 5589 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) { 5590 /* 5591 * If the TLP time works out to larger than the max 5592 * RTO lets not do TLP.. just RTO. 5593 */ 5594 goto activate_rxt; 5595 } 5596 } 5597 if (is_tlp_timer == 0) { 5598 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; 5599 } else { 5600 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; 5601 } 5602 if (to == 0) 5603 to = 1; 5604 return (to); 5605 } 5606 5607 static void 5608 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5609 { 5610 if (rack->rc_in_persist == 0) { 5611 if (tp->t_flags & TF_GPUTINPROG) { 5612 /* 5613 * Stop the goodput now, the calling of the 5614 * measurement function clears the flag. 5615 */ 5616 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__, 5617 RACK_QUALITY_PERSIST); 5618 } 5619 #ifdef NETFLIX_SHARED_CWND 5620 if (rack->r_ctl.rc_scw) { 5621 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5622 rack->rack_scwnd_is_idle = 1; 5623 } 5624 #endif 5625 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 5626 if (rack->r_ctl.rc_went_idle_time == 0) 5627 rack->r_ctl.rc_went_idle_time = 1; 5628 rack_timer_cancel(tp, rack, cts, __LINE__); 5629 tp->t_rxtshift = 0; 5630 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5631 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5632 rack->rc_in_persist = 1; 5633 } 5634 } 5635 5636 static void 5637 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5638 { 5639 if (rack->rc_inp->inp_in_hpts) { 5640 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 5641 rack->r_ctl.rc_hpts_flags = 0; 5642 } 5643 #ifdef NETFLIX_SHARED_CWND 5644 if (rack->r_ctl.rc_scw) { 5645 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5646 rack->rack_scwnd_is_idle = 0; 5647 } 5648 #endif 5649 if (rack->rc_gp_dyn_mul && 5650 (rack->use_fixed_rate == 0) && 5651 (rack->rc_always_pace)) { 5652 /* 5653 * Do we count this as if a probe-rtt just 5654 * finished? 5655 */ 5656 uint32_t time_idle, idle_min; 5657 5658 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time; 5659 idle_min = rack_min_probertt_hold; 5660 if (rack_probertt_gpsrtt_cnt_div) { 5661 uint64_t extra; 5662 extra = (uint64_t)rack->r_ctl.rc_gp_srtt * 5663 (uint64_t)rack_probertt_gpsrtt_cnt_mul; 5664 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; 5665 idle_min += (uint32_t)extra; 5666 } 5667 if (time_idle >= idle_min) { 5668 /* Yes, we count it as a probe-rtt. */ 5669 uint32_t us_cts; 5670 5671 us_cts = tcp_get_usecs(NULL); 5672 if (rack->in_probe_rtt == 0) { 5673 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 5674 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 5675 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 5676 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 5677 } else { 5678 rack_exit_probertt(rack, us_cts); 5679 } 5680 } 5681 } 5682 rack->rc_in_persist = 0; 5683 rack->r_ctl.rc_went_idle_time = 0; 5684 tp->t_rxtshift = 0; 5685 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5686 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 5687 rack->r_ctl.rc_agg_delayed = 0; 5688 rack->r_early = 0; 5689 rack->r_late = 0; 5690 rack->r_ctl.rc_agg_early = 0; 5691 } 5692 5693 static void 5694 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, 5695 struct hpts_diag *diag, struct timeval *tv) 5696 { 5697 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5698 union tcp_log_stackspecific log; 5699 5700 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5701 log.u_bbr.flex1 = diag->p_nxt_slot; 5702 log.u_bbr.flex2 = diag->p_cur_slot; 5703 log.u_bbr.flex3 = diag->slot_req; 5704 log.u_bbr.flex4 = diag->inp_hptsslot; 5705 log.u_bbr.flex5 = diag->slot_remaining; 5706 log.u_bbr.flex6 = diag->need_new_to; 5707 log.u_bbr.flex7 = diag->p_hpts_active; 5708 log.u_bbr.flex8 = diag->p_on_min_sleep; 5709 /* Hijack other fields as needed */ 5710 log.u_bbr.epoch = diag->have_slept; 5711 log.u_bbr.lt_epoch = diag->yet_to_sleep; 5712 log.u_bbr.pkts_out = diag->co_ret; 5713 log.u_bbr.applimited = diag->hpts_sleep_time; 5714 log.u_bbr.delivered = diag->p_prev_slot; 5715 log.u_bbr.inflight = diag->p_runningslot; 5716 log.u_bbr.bw_inuse = diag->wheel_slot; 5717 log.u_bbr.rttProp = diag->wheel_cts; 5718 log.u_bbr.timeStamp = cts; 5719 log.u_bbr.delRate = diag->maxslots; 5720 log.u_bbr.cur_del_rate = diag->p_curtick; 5721 log.u_bbr.cur_del_rate <<= 32; 5722 log.u_bbr.cur_del_rate |= diag->p_lasttick; 5723 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5724 &rack->rc_inp->inp_socket->so_rcv, 5725 &rack->rc_inp->inp_socket->so_snd, 5726 BBR_LOG_HPTSDIAG, 0, 5727 0, &log, false, tv); 5728 } 5729 5730 } 5731 5732 static void 5733 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type) 5734 { 5735 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5736 union tcp_log_stackspecific log; 5737 struct timeval tv; 5738 5739 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5740 log.u_bbr.flex1 = sb->sb_flags; 5741 log.u_bbr.flex2 = len; 5742 log.u_bbr.flex3 = sb->sb_state; 5743 log.u_bbr.flex8 = type; 5744 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5745 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5746 &rack->rc_inp->inp_socket->so_rcv, 5747 &rack->rc_inp->inp_socket->so_snd, 5748 TCP_LOG_SB_WAKE, 0, 5749 len, &log, false, &tv); 5750 } 5751 } 5752 5753 static void 5754 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, 5755 int32_t slot, uint32_t tot_len_this_send, int sup_rack) 5756 { 5757 struct hpts_diag diag; 5758 struct inpcb *inp; 5759 struct timeval tv; 5760 uint32_t delayed_ack = 0; 5761 uint32_t hpts_timeout; 5762 uint32_t entry_slot = slot; 5763 uint8_t stopped; 5764 uint32_t left = 0; 5765 uint32_t us_cts; 5766 5767 inp = tp->t_inpcb; 5768 if ((tp->t_state == TCPS_CLOSED) || 5769 (tp->t_state == TCPS_LISTEN)) { 5770 return; 5771 } 5772 if (inp->inp_in_hpts) { 5773 /* Already on the pacer */ 5774 return; 5775 } 5776 stopped = rack->rc_tmr_stopped; 5777 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 5778 left = rack->r_ctl.rc_timer_exp - cts; 5779 } 5780 rack->r_ctl.rc_timer_exp = 0; 5781 rack->r_ctl.rc_hpts_flags = 0; 5782 us_cts = tcp_get_usecs(&tv); 5783 /* Now early/late accounting */ 5784 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0); 5785 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) { 5786 /* 5787 * We have a early carry over set, 5788 * we can always add more time so we 5789 * can always make this compensation. 5790 * 5791 * Note if ack's are allowed to wake us do not 5792 * penalize the next timer for being awoke 5793 * by an ack aka the rc_agg_early (non-paced mode). 5794 */ 5795 slot += rack->r_ctl.rc_agg_early; 5796 rack->r_early = 0; 5797 rack->r_ctl.rc_agg_early = 0; 5798 } 5799 if (rack->r_late) { 5800 /* 5801 * This is harder, we can 5802 * compensate some but it 5803 * really depends on what 5804 * the current pacing time is. 5805 */ 5806 if (rack->r_ctl.rc_agg_delayed >= slot) { 5807 /* 5808 * We can't compensate for it all. 5809 * And we have to have some time 5810 * on the clock. We always have a min 5811 * 10 slots (10 x 10 i.e. 100 usecs). 5812 */ 5813 if (slot <= HPTS_TICKS_PER_SLOT) { 5814 /* We gain delay */ 5815 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot); 5816 slot = HPTS_TICKS_PER_SLOT; 5817 } else { 5818 /* We take off some */ 5819 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT); 5820 slot = HPTS_TICKS_PER_SLOT; 5821 } 5822 } else { 5823 slot -= rack->r_ctl.rc_agg_delayed; 5824 rack->r_ctl.rc_agg_delayed = 0; 5825 /* Make sure we have 100 useconds at minimum */ 5826 if (slot < HPTS_TICKS_PER_SLOT) { 5827 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot; 5828 slot = HPTS_TICKS_PER_SLOT; 5829 } 5830 if (rack->r_ctl.rc_agg_delayed == 0) 5831 rack->r_late = 0; 5832 } 5833 } 5834 if (slot) { 5835 /* We are pacing too */ 5836 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; 5837 } 5838 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); 5839 #ifdef NETFLIX_EXP_DETECTION 5840 if (rack->sack_attack_disable && 5841 (slot < tcp_sad_pacing_interval)) { 5842 /* 5843 * We have a potential attacker on 5844 * the line. We have possibly some 5845 * (or now) pacing time set. We want to 5846 * slow down the processing of sacks by some 5847 * amount (if it is an attacker). Set the default 5848 * slot for attackers in place (unless the orginal 5849 * interval is longer). Its stored in 5850 * micro-seconds, so lets convert to msecs. 5851 */ 5852 slot = tcp_sad_pacing_interval; 5853 } 5854 #endif 5855 if (tp->t_flags & TF_DELACK) { 5856 delayed_ack = TICKS_2_USEC(tcp_delacktime); 5857 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; 5858 } 5859 if (delayed_ack && ((hpts_timeout == 0) || 5860 (delayed_ack < hpts_timeout))) 5861 hpts_timeout = delayed_ack; 5862 else 5863 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 5864 /* 5865 * If no timers are going to run and we will fall off the hptsi 5866 * wheel, we resort to a keep-alive timer if its configured. 5867 */ 5868 if ((hpts_timeout == 0) && 5869 (slot == 0)) { 5870 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 5871 (tp->t_state <= TCPS_CLOSING)) { 5872 /* 5873 * Ok we have no timer (persists, rack, tlp, rxt or 5874 * del-ack), we don't have segments being paced. So 5875 * all that is left is the keepalive timer. 5876 */ 5877 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 5878 /* Get the established keep-alive time */ 5879 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); 5880 } else { 5881 /* 5882 * Get the initial setup keep-alive time, 5883 * note that this is probably not going to 5884 * happen, since rack will be running a rxt timer 5885 * if a SYN of some sort is outstanding. It is 5886 * actually handled in rack_timeout_rxt(). 5887 */ 5888 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); 5889 } 5890 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; 5891 if (rack->in_probe_rtt) { 5892 /* 5893 * We want to instead not wake up a long time from 5894 * now but to wake up about the time we would 5895 * exit probe-rtt and initiate a keep-alive ack. 5896 * This will get us out of probe-rtt and update 5897 * our min-rtt. 5898 */ 5899 hpts_timeout = rack_min_probertt_hold; 5900 } 5901 } 5902 } 5903 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == 5904 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { 5905 /* 5906 * RACK, TLP, persists and RXT timers all are restartable 5907 * based on actions input .. i.e we received a packet (ack 5908 * or sack) and that changes things (rw, or snd_una etc). 5909 * Thus we can restart them with a new value. For 5910 * keep-alive, delayed_ack we keep track of what was left 5911 * and restart the timer with a smaller value. 5912 */ 5913 if (left < hpts_timeout) 5914 hpts_timeout = left; 5915 } 5916 if (hpts_timeout) { 5917 /* 5918 * Hack alert for now we can't time-out over 2,147,483 5919 * seconds (a bit more than 596 hours), which is probably ok 5920 * :). 5921 */ 5922 if (hpts_timeout > 0x7ffffffe) 5923 hpts_timeout = 0x7ffffffe; 5924 rack->r_ctl.rc_timer_exp = cts + hpts_timeout; 5925 } 5926 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0); 5927 if ((rack->gp_ready == 0) && 5928 (rack->use_fixed_rate == 0) && 5929 (hpts_timeout < slot) && 5930 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { 5931 /* 5932 * We have no good estimate yet for the 5933 * old clunky burst mitigation or the 5934 * real pacing. And the tlp or rxt is smaller 5935 * than the pacing calculation. Lets not 5936 * pace that long since we know the calculation 5937 * so far is not accurate. 5938 */ 5939 slot = hpts_timeout; 5940 } 5941 rack->r_ctl.last_pacing_time = slot; 5942 /** 5943 * Turn off all the flags for queuing by default. The 5944 * flags have important meanings to what happens when 5945 * LRO interacts with the transport. Most likely (by default now) 5946 * mbuf_queueing and ack compression are on. So the transport 5947 * has a couple of flags that control what happens (if those 5948 * are not on then these flags won't have any effect since it 5949 * won't go through the queuing LRO path). 5950 * 5951 * INP_MBUF_QUEUE_READY - This flags says that I am busy 5952 * pacing output, so don't disturb. But 5953 * it also means LRO can wake me if there 5954 * is a SACK arrival. 5955 * 5956 * INP_DONT_SACK_QUEUE - This flag is used in conjunction 5957 * with the above flag (QUEUE_READY) and 5958 * when present it says don't even wake me 5959 * if a SACK arrives. 5960 * 5961 * The idea behind these flags is that if we are pacing we 5962 * set the MBUF_QUEUE_READY and only get woken up if 5963 * a SACK arrives (which could change things) or if 5964 * our pacing timer expires. If, however, we have a rack 5965 * timer running, then we don't even want a sack to wake 5966 * us since the rack timer has to expire before we can send. 5967 * 5968 * Other cases should usually have none of the flags set 5969 * so LRO can call into us. 5970 */ 5971 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5972 if (slot) { 5973 rack->r_ctl.rc_last_output_to = us_cts + slot; 5974 /* 5975 * A pacing timer (slot) is being set, in 5976 * such a case we cannot send (we are blocked by 5977 * the timer). So lets tell LRO that it should not 5978 * wake us unless there is a SACK. Note this only 5979 * will be effective if mbuf queueing is on or 5980 * compressed acks are being processed. 5981 */ 5982 inp->inp_flags2 |= INP_MBUF_QUEUE_READY; 5983 /* 5984 * But wait if we have a Rack timer running 5985 * even a SACK should not disturb us (with 5986 * the exception of r_rr_config 3). 5987 */ 5988 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && 5989 (rack->r_rr_config != 3)) 5990 inp->inp_flags2 |= INP_DONT_SACK_QUEUE; 5991 if (rack->rc_ack_can_sendout_data) { 5992 /* 5993 * Ahh but wait, this is that special case 5994 * where the pacing timer can be disturbed 5995 * backout the changes (used for non-paced 5996 * burst limiting). 5997 */ 5998 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5999 } 6000 if ((rack->use_rack_rr) && 6001 (rack->r_rr_config < 2) && 6002 ((hpts_timeout) && (hpts_timeout < slot))) { 6003 /* 6004 * Arrange for the hpts to kick back in after the 6005 * t-o if the t-o does not cause a send. 6006 */ 6007 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 6008 __LINE__, &diag); 6009 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6010 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 6011 } else { 6012 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), 6013 __LINE__, &diag); 6014 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6015 rack_log_to_start(rack, cts, hpts_timeout, slot, 1); 6016 } 6017 } else if (hpts_timeout) { 6018 /* 6019 * With respect to inp_flags2 here, lets let any new acks wake 6020 * us up here. Since we are not pacing (no pacing timer), output 6021 * can happen so we should let it. If its a Rack timer, then any inbound 6022 * packet probably won't change the sending (we will be blocked) 6023 * but it may change the prr stats so letting it in (the set defaults 6024 * at the start of this block) are good enough. 6025 */ 6026 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 6027 __LINE__, &diag); 6028 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 6029 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 6030 } else { 6031 /* No timer starting */ 6032 #ifdef INVARIANTS 6033 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 6034 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", 6035 tp, rack, tot_len_this_send, cts, slot, hpts_timeout); 6036 } 6037 #endif 6038 } 6039 rack->rc_tmr_stopped = 0; 6040 if (slot) 6041 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv); 6042 } 6043 6044 /* 6045 * RACK Timer, here we simply do logging and house keeping. 6046 * the normal rack_output() function will call the 6047 * appropriate thing to check if we need to do a RACK retransmit. 6048 * We return 1, saying don't proceed with rack_output only 6049 * when all timers have been stopped (destroyed PCB?). 6050 */ 6051 static int 6052 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6053 { 6054 /* 6055 * This timer simply provides an internal trigger to send out data. 6056 * The check_recovery_mode call will see if there are needed 6057 * retransmissions, if so we will enter fast-recovery. The output 6058 * call may or may not do the same thing depending on sysctl 6059 * settings. 6060 */ 6061 struct rack_sendmap *rsm; 6062 6063 if (tp->t_timers->tt_flags & TT_STOPPED) { 6064 return (1); 6065 } 6066 counter_u64_add(rack_to_tot, 1); 6067 if (rack->r_state && (rack->r_state != tp->t_state)) 6068 rack_set_state(tp, rack); 6069 rack->rc_on_min_to = 0; 6070 rsm = rack_check_recovery_mode(tp, cts); 6071 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); 6072 if (rsm) { 6073 rack->r_ctl.rc_resend = rsm; 6074 rack->r_timer_override = 1; 6075 if (rack->use_rack_rr) { 6076 /* 6077 * Don't accumulate extra pacing delay 6078 * we are allowing the rack timer to 6079 * over-ride pacing i.e. rrr takes precedence 6080 * if the pacing interval is longer than the rrr 6081 * time (in other words we get the min pacing 6082 * time versus rrr pacing time). 6083 */ 6084 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 6085 } 6086 } 6087 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; 6088 if (rsm == NULL) { 6089 /* restart a timer and return 1 */ 6090 rack_start_hpts_timer(rack, tp, cts, 6091 0, 0, 0); 6092 return (1); 6093 } 6094 return (0); 6095 } 6096 6097 static void 6098 rack_adjust_orig_mlen(struct rack_sendmap *rsm) 6099 { 6100 if (rsm->m->m_len > rsm->orig_m_len) { 6101 /* 6102 * Mbuf grew, caused by sbcompress, our offset does 6103 * not change. 6104 */ 6105 rsm->orig_m_len = rsm->m->m_len; 6106 } else if (rsm->m->m_len < rsm->orig_m_len) { 6107 /* 6108 * Mbuf shrank, trimmed off the top by an ack, our 6109 * offset changes. 6110 */ 6111 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len); 6112 rsm->orig_m_len = rsm->m->m_len; 6113 } 6114 } 6115 6116 static void 6117 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm) 6118 { 6119 struct mbuf *m; 6120 uint32_t soff; 6121 6122 if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) { 6123 /* Fix up the orig_m_len and possibly the mbuf offset */ 6124 rack_adjust_orig_mlen(src_rsm); 6125 } 6126 m = src_rsm->m; 6127 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start); 6128 while (soff >= m->m_len) { 6129 /* Move out past this mbuf */ 6130 soff -= m->m_len; 6131 m = m->m_next; 6132 KASSERT((m != NULL), 6133 ("rsm:%p nrsm:%p hit at soff:%u null m", 6134 src_rsm, rsm, soff)); 6135 } 6136 rsm->m = m; 6137 rsm->soff = soff; 6138 rsm->orig_m_len = m->m_len; 6139 } 6140 6141 static __inline void 6142 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, 6143 struct rack_sendmap *rsm, uint32_t start) 6144 { 6145 int idx; 6146 6147 nrsm->r_start = start; 6148 nrsm->r_end = rsm->r_end; 6149 nrsm->r_rtr_cnt = rsm->r_rtr_cnt; 6150 nrsm->r_flags = rsm->r_flags; 6151 nrsm->r_dupack = rsm->r_dupack; 6152 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed; 6153 nrsm->r_rtr_bytes = 0; 6154 nrsm->r_fas = rsm->r_fas; 6155 rsm->r_end = nrsm->r_start; 6156 nrsm->r_just_ret = rsm->r_just_ret; 6157 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { 6158 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; 6159 } 6160 /* Now if we have SYN flag we keep it on the left edge */ 6161 if (nrsm->r_flags & RACK_HAS_SYN) 6162 nrsm->r_flags &= ~RACK_HAS_SYN; 6163 /* Now if we have a FIN flag we keep it on the right edge */ 6164 if (rsm->r_flags & RACK_HAS_FIN) 6165 rsm->r_flags &= ~RACK_HAS_FIN; 6166 /* Push bit must go to the right edge as well */ 6167 if (rsm->r_flags & RACK_HAD_PUSH) 6168 rsm->r_flags &= ~RACK_HAD_PUSH; 6169 /* Clone over the state of the hw_tls flag */ 6170 nrsm->r_hw_tls = rsm->r_hw_tls; 6171 /* 6172 * Now we need to find nrsm's new location in the mbuf chain 6173 * we basically calculate a new offset, which is soff + 6174 * how much is left in original rsm. Then we walk out the mbuf 6175 * chain to find the righ postion, it may be the same mbuf 6176 * or maybe not. 6177 */ 6178 KASSERT(((rsm->m != NULL) || 6179 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))), 6180 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack)); 6181 if (rsm->m) 6182 rack_setup_offset_for_rsm(rsm, nrsm); 6183 } 6184 6185 static struct rack_sendmap * 6186 rack_merge_rsm(struct tcp_rack *rack, 6187 struct rack_sendmap *l_rsm, 6188 struct rack_sendmap *r_rsm) 6189 { 6190 /* 6191 * We are merging two ack'd RSM's, 6192 * the l_rsm is on the left (lower seq 6193 * values) and the r_rsm is on the right 6194 * (higher seq value). The simplest way 6195 * to merge these is to move the right 6196 * one into the left. I don't think there 6197 * is any reason we need to try to find 6198 * the oldest (or last oldest retransmitted). 6199 */ 6200 struct rack_sendmap *rm; 6201 6202 rack_log_map_chg(rack->rc_tp, rack, NULL, 6203 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__); 6204 l_rsm->r_end = r_rsm->r_end; 6205 if (l_rsm->r_dupack < r_rsm->r_dupack) 6206 l_rsm->r_dupack = r_rsm->r_dupack; 6207 if (r_rsm->r_rtr_bytes) 6208 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; 6209 if (r_rsm->r_in_tmap) { 6210 /* This really should not happen */ 6211 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); 6212 r_rsm->r_in_tmap = 0; 6213 } 6214 6215 /* Now the flags */ 6216 if (r_rsm->r_flags & RACK_HAS_FIN) 6217 l_rsm->r_flags |= RACK_HAS_FIN; 6218 if (r_rsm->r_flags & RACK_TLP) 6219 l_rsm->r_flags |= RACK_TLP; 6220 if (r_rsm->r_flags & RACK_RWND_COLLAPSED) 6221 l_rsm->r_flags |= RACK_RWND_COLLAPSED; 6222 if ((r_rsm->r_flags & RACK_APP_LIMITED) && 6223 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { 6224 /* 6225 * If both are app-limited then let the 6226 * free lower the count. If right is app 6227 * limited and left is not, transfer. 6228 */ 6229 l_rsm->r_flags |= RACK_APP_LIMITED; 6230 r_rsm->r_flags &= ~RACK_APP_LIMITED; 6231 if (r_rsm == rack->r_ctl.rc_first_appl) 6232 rack->r_ctl.rc_first_appl = l_rsm; 6233 } 6234 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6235 #ifdef INVARIANTS 6236 if (rm != r_rsm) { 6237 panic("removing head in rack:%p rsm:%p rm:%p", 6238 rack, r_rsm, rm); 6239 } 6240 #endif 6241 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { 6242 /* Transfer the split limit to the map we free */ 6243 r_rsm->r_limit_type = l_rsm->r_limit_type; 6244 l_rsm->r_limit_type = 0; 6245 } 6246 rack_free(rack, r_rsm); 6247 return (l_rsm); 6248 } 6249 6250 /* 6251 * TLP Timer, here we simply setup what segment we want to 6252 * have the TLP expire on, the normal rack_output() will then 6253 * send it out. 6254 * 6255 * We return 1, saying don't proceed with rack_output only 6256 * when all timers have been stopped (destroyed PCB?). 6257 */ 6258 static int 6259 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp) 6260 { 6261 /* 6262 * Tail Loss Probe. 6263 */ 6264 struct rack_sendmap *rsm = NULL; 6265 struct rack_sendmap *insret; 6266 struct socket *so; 6267 uint32_t amm; 6268 uint32_t out, avail; 6269 int collapsed_win = 0; 6270 6271 if (tp->t_timers->tt_flags & TT_STOPPED) { 6272 return (1); 6273 } 6274 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6275 /* Its not time yet */ 6276 return (0); 6277 } 6278 if (ctf_progress_timeout_check(tp, true)) { 6279 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6280 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 6281 return (1); 6282 } 6283 /* 6284 * A TLP timer has expired. We have been idle for 2 rtts. So we now 6285 * need to figure out how to force a full MSS segment out. 6286 */ 6287 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); 6288 rack->r_ctl.retran_during_recovery = 0; 6289 rack->r_ctl.dsack_byte_cnt = 0; 6290 counter_u64_add(rack_tlp_tot, 1); 6291 if (rack->r_state && (rack->r_state != tp->t_state)) 6292 rack_set_state(tp, rack); 6293 so = tp->t_inpcb->inp_socket; 6294 avail = sbavail(&so->so_snd); 6295 out = tp->snd_max - tp->snd_una; 6296 if (out > tp->snd_wnd) { 6297 /* special case, we need a retransmission */ 6298 collapsed_win = 1; 6299 goto need_retran; 6300 } 6301 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) { 6302 rack->r_ctl.dsack_persist--; 6303 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6304 rack->r_ctl.num_dsack = 0; 6305 } 6306 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6307 } 6308 if ((tp->t_flags & TF_GPUTINPROG) && 6309 (rack->r_ctl.rc_tlp_cnt_out == 1)) { 6310 /* 6311 * If this is the second in a row 6312 * TLP and we are doing a measurement 6313 * its time to abandon the measurement. 6314 * Something is likely broken on 6315 * the clients network and measuring a 6316 * broken network does us no good. 6317 */ 6318 tp->t_flags &= ~TF_GPUTINPROG; 6319 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6320 rack->r_ctl.rc_gp_srtt /*flex1*/, 6321 tp->gput_seq, 6322 0, 0, 18, __LINE__, NULL, 0); 6323 } 6324 /* 6325 * Check our send oldest always settings, and if 6326 * there is an oldest to send jump to the need_retran. 6327 */ 6328 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) 6329 goto need_retran; 6330 6331 if (avail > out) { 6332 /* New data is available */ 6333 amm = avail - out; 6334 if (amm > ctf_fixed_maxseg(tp)) { 6335 amm = ctf_fixed_maxseg(tp); 6336 if ((amm + out) > tp->snd_wnd) { 6337 /* We are rwnd limited */ 6338 goto need_retran; 6339 } 6340 } else if (amm < ctf_fixed_maxseg(tp)) { 6341 /* not enough to fill a MTU */ 6342 goto need_retran; 6343 } 6344 if (IN_FASTRECOVERY(tp->t_flags)) { 6345 /* Unlikely */ 6346 if (rack->rack_no_prr == 0) { 6347 if (out + amm <= tp->snd_wnd) { 6348 rack->r_ctl.rc_prr_sndcnt = amm; 6349 rack->r_ctl.rc_tlp_new_data = amm; 6350 rack_log_to_prr(rack, 4, 0); 6351 } 6352 } else 6353 goto need_retran; 6354 } else { 6355 /* Set the send-new override */ 6356 if (out + amm <= tp->snd_wnd) 6357 rack->r_ctl.rc_tlp_new_data = amm; 6358 else 6359 goto need_retran; 6360 } 6361 rack->r_ctl.rc_tlpsend = NULL; 6362 counter_u64_add(rack_tlp_newdata, 1); 6363 goto send; 6364 } 6365 need_retran: 6366 /* 6367 * Ok we need to arrange the last un-acked segment to be re-sent, or 6368 * optionally the first un-acked segment. 6369 */ 6370 if (collapsed_win == 0) { 6371 if (rack_always_send_oldest) 6372 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6373 else { 6374 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6375 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { 6376 rsm = rack_find_high_nonack(rack, rsm); 6377 } 6378 } 6379 if (rsm == NULL) { 6380 counter_u64_add(rack_tlp_does_nada, 1); 6381 #ifdef TCP_BLACKBOX 6382 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6383 #endif 6384 goto out; 6385 } 6386 } else { 6387 /* 6388 * We must find the last segment 6389 * that was acceptable by the client. 6390 */ 6391 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6392 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) { 6393 /* Found one */ 6394 break; 6395 } 6396 } 6397 if (rsm == NULL) { 6398 /* None? if so send the first */ 6399 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6400 if (rsm == NULL) { 6401 counter_u64_add(rack_tlp_does_nada, 1); 6402 #ifdef TCP_BLACKBOX 6403 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6404 #endif 6405 goto out; 6406 } 6407 } 6408 } 6409 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { 6410 /* 6411 * We need to split this the last segment in two. 6412 */ 6413 struct rack_sendmap *nrsm; 6414 6415 nrsm = rack_alloc_full_limit(rack); 6416 if (nrsm == NULL) { 6417 /* 6418 * No memory to split, we will just exit and punt 6419 * off to the RXT timer. 6420 */ 6421 counter_u64_add(rack_tlp_does_nada, 1); 6422 goto out; 6423 } 6424 rack_clone_rsm(rack, nrsm, rsm, 6425 (rsm->r_end - ctf_fixed_maxseg(tp))); 6426 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 6427 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6428 #ifdef INVARIANTS 6429 if (insret != NULL) { 6430 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 6431 nrsm, insret, rack, rsm); 6432 } 6433 #endif 6434 if (rsm->r_in_tmap) { 6435 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 6436 nrsm->r_in_tmap = 1; 6437 } 6438 rsm = nrsm; 6439 } 6440 rack->r_ctl.rc_tlpsend = rsm; 6441 send: 6442 /* Make sure output path knows we are doing a TLP */ 6443 *doing_tlp = 1; 6444 rack->r_timer_override = 1; 6445 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6446 return (0); 6447 out: 6448 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6449 return (0); 6450 } 6451 6452 /* 6453 * Delayed ack Timer, here we simply need to setup the 6454 * ACK_NOW flag and remove the DELACK flag. From there 6455 * the output routine will send the ack out. 6456 * 6457 * We only return 1, saying don't proceed, if all timers 6458 * are stopped (destroyed PCB?). 6459 */ 6460 static int 6461 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6462 { 6463 if (tp->t_timers->tt_flags & TT_STOPPED) { 6464 return (1); 6465 } 6466 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); 6467 tp->t_flags &= ~TF_DELACK; 6468 tp->t_flags |= TF_ACKNOW; 6469 KMOD_TCPSTAT_INC(tcps_delack); 6470 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 6471 return (0); 6472 } 6473 6474 /* 6475 * Persists timer, here we simply send the 6476 * same thing as a keepalive will. 6477 * the one byte send. 6478 * 6479 * We only return 1, saying don't proceed, if all timers 6480 * are stopped (destroyed PCB?). 6481 */ 6482 static int 6483 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6484 { 6485 struct tcptemp *t_template; 6486 struct inpcb *inp; 6487 int32_t retval = 1; 6488 6489 inp = tp->t_inpcb; 6490 6491 if (tp->t_timers->tt_flags & TT_STOPPED) { 6492 return (1); 6493 } 6494 if (rack->rc_in_persist == 0) 6495 return (0); 6496 if (ctf_progress_timeout_check(tp, false)) { 6497 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6498 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6499 tcp_set_inp_to_drop(inp, ETIMEDOUT); 6500 return (1); 6501 } 6502 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); 6503 /* 6504 * Persistence timer into zero window. Force a byte to be output, if 6505 * possible. 6506 */ 6507 KMOD_TCPSTAT_INC(tcps_persisttimeo); 6508 /* 6509 * Hack: if the peer is dead/unreachable, we do not time out if the 6510 * window is closed. After a full backoff, drop the connection if 6511 * the idle time (no responses to probes) reaches the maximum 6512 * backoff that we would use if retransmitting. 6513 */ 6514 if (tp->t_rxtshift == TCP_MAXRXTSHIFT && 6515 (ticks - tp->t_rcvtime >= tcp_maxpersistidle || 6516 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) { 6517 KMOD_TCPSTAT_INC(tcps_persistdrop); 6518 retval = 1; 6519 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6520 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6521 goto out; 6522 } 6523 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && 6524 tp->snd_una == tp->snd_max) 6525 rack_exit_persist(tp, rack, cts); 6526 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; 6527 /* 6528 * If the user has closed the socket then drop a persisting 6529 * connection after a much reduced timeout. 6530 */ 6531 if (tp->t_state > TCPS_CLOSE_WAIT && 6532 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { 6533 retval = 1; 6534 KMOD_TCPSTAT_INC(tcps_persistdrop); 6535 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6536 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6537 goto out; 6538 } 6539 t_template = tcpip_maketemplate(rack->rc_inp); 6540 if (t_template) { 6541 /* only set it if we were answered */ 6542 if (rack->forced_ack == 0) { 6543 rack->forced_ack = 1; 6544 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6545 } 6546 tcp_respond(tp, t_template->tt_ipgen, 6547 &t_template->tt_t, (struct mbuf *)NULL, 6548 tp->rcv_nxt, tp->snd_una - 1, 0); 6549 /* This sends an ack */ 6550 if (tp->t_flags & TF_DELACK) 6551 tp->t_flags &= ~TF_DELACK; 6552 free(t_template, M_TEMP); 6553 } 6554 if (tp->t_rxtshift < TCP_MAXRXTSHIFT) 6555 tp->t_rxtshift++; 6556 out: 6557 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); 6558 rack_start_hpts_timer(rack, tp, cts, 6559 0, 0, 0); 6560 return (retval); 6561 } 6562 6563 /* 6564 * If a keepalive goes off, we had no other timers 6565 * happening. We always return 1 here since this 6566 * routine either drops the connection or sends 6567 * out a segment with respond. 6568 */ 6569 static int 6570 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6571 { 6572 struct tcptemp *t_template; 6573 struct inpcb *inp; 6574 6575 if (tp->t_timers->tt_flags & TT_STOPPED) { 6576 return (1); 6577 } 6578 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; 6579 inp = tp->t_inpcb; 6580 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); 6581 /* 6582 * Keep-alive timer went off; send something or drop connection if 6583 * idle for too long. 6584 */ 6585 KMOD_TCPSTAT_INC(tcps_keeptimeo); 6586 if (tp->t_state < TCPS_ESTABLISHED) 6587 goto dropit; 6588 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 6589 tp->t_state <= TCPS_CLOSING) { 6590 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) 6591 goto dropit; 6592 /* 6593 * Send a packet designed to force a response if the peer is 6594 * up and reachable: either an ACK if the connection is 6595 * still alive, or an RST if the peer has closed the 6596 * connection due to timeout or reboot. Using sequence 6597 * number tp->snd_una-1 causes the transmitted zero-length 6598 * segment to lie outside the receive window; by the 6599 * protocol spec, this requires the correspondent TCP to 6600 * respond. 6601 */ 6602 KMOD_TCPSTAT_INC(tcps_keepprobe); 6603 t_template = tcpip_maketemplate(inp); 6604 if (t_template) { 6605 if (rack->forced_ack == 0) { 6606 rack->forced_ack = 1; 6607 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6608 } 6609 tcp_respond(tp, t_template->tt_ipgen, 6610 &t_template->tt_t, (struct mbuf *)NULL, 6611 tp->rcv_nxt, tp->snd_una - 1, 0); 6612 free(t_template, M_TEMP); 6613 } 6614 } 6615 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 6616 return (1); 6617 dropit: 6618 KMOD_TCPSTAT_INC(tcps_keepdrops); 6619 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6620 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6621 return (1); 6622 } 6623 6624 /* 6625 * Retransmit helper function, clear up all the ack 6626 * flags and take care of important book keeping. 6627 */ 6628 static void 6629 rack_remxt_tmr(struct tcpcb *tp) 6630 { 6631 /* 6632 * The retransmit timer went off, all sack'd blocks must be 6633 * un-acked. 6634 */ 6635 struct rack_sendmap *rsm, *trsm = NULL; 6636 struct tcp_rack *rack; 6637 6638 rack = (struct tcp_rack *)tp->t_fb_ptr; 6639 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__); 6640 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); 6641 if (rack->r_state && (rack->r_state != tp->t_state)) 6642 rack_set_state(tp, rack); 6643 /* 6644 * Ideally we would like to be able to 6645 * mark SACK-PASS on anything not acked here. 6646 * 6647 * However, if we do that we would burst out 6648 * all that data 1ms apart. This would be unwise, 6649 * so for now we will just let the normal rxt timer 6650 * and tlp timer take care of it. 6651 * 6652 * Also we really need to stick them back in sequence 6653 * order. This way we send in the proper order and any 6654 * sacks that come floating in will "re-ack" the data. 6655 * To do this we zap the tmap with an INIT and then 6656 * walk through and place every rsm in the RB tree 6657 * back in its seq ordered place. 6658 */ 6659 TAILQ_INIT(&rack->r_ctl.rc_tmap); 6660 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6661 rsm->r_dupack = 0; 6662 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 6663 /* We must re-add it back to the tlist */ 6664 if (trsm == NULL) { 6665 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 6666 } else { 6667 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 6668 } 6669 rsm->r_in_tmap = 1; 6670 trsm = rsm; 6671 if (rsm->r_flags & RACK_ACKED) 6672 rsm->r_flags |= RACK_WAS_ACKED; 6673 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS); 6674 rsm->r_flags |= RACK_MUST_RXT; 6675 } 6676 /* Clear the count (we just un-acked them) */ 6677 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una; 6678 rack->r_ctl.rc_sacked = 0; 6679 rack->r_ctl.rc_sacklast = NULL; 6680 rack->r_ctl.rc_agg_delayed = 0; 6681 rack->r_early = 0; 6682 rack->r_ctl.rc_agg_early = 0; 6683 rack->r_late = 0; 6684 /* Clear the tlp rtx mark */ 6685 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6686 if (rack->r_ctl.rc_resend != NULL) 6687 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT; 6688 rack->r_ctl.rc_prr_sndcnt = 0; 6689 rack_log_to_prr(rack, 6, 0); 6690 rack->r_timer_override = 1; 6691 if ((((tp->t_flags & TF_SACK_PERMIT) == 0) 6692 #ifdef NETFLIX_EXP_DETECTION 6693 || (rack->sack_attack_disable != 0) 6694 #endif 6695 ) && ((tp->t_flags & TF_SENTFIN) == 0)) { 6696 /* 6697 * For non-sack customers new data 6698 * needs to go out as retransmits until 6699 * we retransmit up to snd_max. 6700 */ 6701 rack->r_must_retran = 1; 6702 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp, 6703 rack->r_ctl.rc_sacked); 6704 } 6705 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 6706 } 6707 6708 static void 6709 rack_convert_rtts(struct tcpcb *tp) 6710 { 6711 if (tp->t_srtt > 1) { 6712 uint32_t val, frac; 6713 6714 val = tp->t_srtt >> TCP_RTT_SHIFT; 6715 frac = tp->t_srtt & 0x1f; 6716 tp->t_srtt = TICKS_2_USEC(val); 6717 /* 6718 * frac is the fractional part of the srtt (if any) 6719 * but its in ticks and every bit represents 6720 * 1/32nd of a hz. 6721 */ 6722 if (frac) { 6723 if (hz == 1000) { 6724 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6725 } else { 6726 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6727 } 6728 tp->t_srtt += frac; 6729 } 6730 } 6731 if (tp->t_rttvar) { 6732 uint32_t val, frac; 6733 6734 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 6735 frac = tp->t_rttvar & 0x1f; 6736 tp->t_rttvar = TICKS_2_USEC(val); 6737 /* 6738 * frac is the fractional part of the srtt (if any) 6739 * but its in ticks and every bit represents 6740 * 1/32nd of a hz. 6741 */ 6742 if (frac) { 6743 if (hz == 1000) { 6744 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6745 } else { 6746 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6747 } 6748 tp->t_rttvar += frac; 6749 } 6750 } 6751 tp->t_rxtcur = RACK_REXMTVAL(tp); 6752 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 6753 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop); 6754 } 6755 if (tp->t_rxtcur > rack_rto_max) { 6756 tp->t_rxtcur = rack_rto_max; 6757 } 6758 } 6759 6760 static void 6761 rack_cc_conn_init(struct tcpcb *tp) 6762 { 6763 struct tcp_rack *rack; 6764 uint32_t srtt; 6765 6766 rack = (struct tcp_rack *)tp->t_fb_ptr; 6767 srtt = tp->t_srtt; 6768 cc_conn_init(tp); 6769 /* 6770 * Now convert to rack's internal format, 6771 * if required. 6772 */ 6773 if ((srtt == 0) && (tp->t_srtt != 0)) 6774 rack_convert_rtts(tp); 6775 /* 6776 * We want a chance to stay in slowstart as 6777 * we create a connection. TCP spec says that 6778 * initially ssthresh is infinite. For our 6779 * purposes that is the snd_wnd. 6780 */ 6781 if (tp->snd_ssthresh < tp->snd_wnd) { 6782 tp->snd_ssthresh = tp->snd_wnd; 6783 } 6784 /* 6785 * We also want to assure a IW worth of 6786 * data can get inflight. 6787 */ 6788 if (rc_init_window(rack) < tp->snd_cwnd) 6789 tp->snd_cwnd = rc_init_window(rack); 6790 } 6791 6792 /* 6793 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise 6794 * we will setup to retransmit the lowest seq number outstanding. 6795 */ 6796 static int 6797 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6798 { 6799 int32_t rexmt; 6800 struct inpcb *inp; 6801 int32_t retval = 0; 6802 bool isipv6; 6803 6804 inp = tp->t_inpcb; 6805 if (tp->t_timers->tt_flags & TT_STOPPED) { 6806 return (1); 6807 } 6808 if ((tp->t_flags & TF_GPUTINPROG) && 6809 (tp->t_rxtshift)) { 6810 /* 6811 * We have had a second timeout 6812 * measurements on successive rxt's are not profitable. 6813 * It is unlikely to be of any use (the network is 6814 * broken or the client went away). 6815 */ 6816 tp->t_flags &= ~TF_GPUTINPROG; 6817 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 6818 rack->r_ctl.rc_gp_srtt /*flex1*/, 6819 tp->gput_seq, 6820 0, 0, 18, __LINE__, NULL, 0); 6821 } 6822 if (ctf_progress_timeout_check(tp, false)) { 6823 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6824 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6825 tcp_set_inp_to_drop(inp, ETIMEDOUT); 6826 return (1); 6827 } 6828 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; 6829 rack->r_ctl.retran_during_recovery = 0; 6830 rack->r_ctl.dsack_byte_cnt = 0; 6831 if (IN_FASTRECOVERY(tp->t_flags)) 6832 tp->t_flags |= TF_WASFRECOVERY; 6833 else 6834 tp->t_flags &= ~TF_WASFRECOVERY; 6835 if (IN_CONGRECOVERY(tp->t_flags)) 6836 tp->t_flags |= TF_WASCRECOVERY; 6837 else 6838 tp->t_flags &= ~TF_WASCRECOVERY; 6839 if (TCPS_HAVEESTABLISHED(tp->t_state) && 6840 (tp->snd_una == tp->snd_max)) { 6841 /* Nothing outstanding .. nothing to do */ 6842 return (0); 6843 } 6844 if (rack->r_ctl.dsack_persist) { 6845 rack->r_ctl.dsack_persist--; 6846 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 6847 rack->r_ctl.num_dsack = 0; 6848 } 6849 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 6850 } 6851 /* 6852 * Rack can only run one timer at a time, so we cannot 6853 * run a KEEPINIT (gating SYN sending) and a retransmit 6854 * timer for the SYN. So if we are in a front state and 6855 * have a KEEPINIT timer we need to check the first transmit 6856 * against now to see if we have exceeded the KEEPINIT time 6857 * (if one is set). 6858 */ 6859 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 6860 (TP_KEEPINIT(tp) != 0)) { 6861 struct rack_sendmap *rsm; 6862 6863 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6864 if (rsm) { 6865 /* Ok we have something outstanding to test keepinit with */ 6866 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) && 6867 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) { 6868 /* We have exceeded the KEEPINIT time */ 6869 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6870 goto drop_it; 6871 } 6872 } 6873 } 6874 /* 6875 * Retransmission timer went off. Message has not been acked within 6876 * retransmit interval. Back off to a longer retransmit interval 6877 * and retransmit one segment. 6878 */ 6879 rack_remxt_tmr(tp); 6880 if ((rack->r_ctl.rc_resend == NULL) || 6881 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { 6882 /* 6883 * If the rwnd collapsed on 6884 * the one we are retransmitting 6885 * it does not count against the 6886 * rxt count. 6887 */ 6888 tp->t_rxtshift++; 6889 } 6890 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { 6891 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6892 drop_it: 6893 tp->t_rxtshift = TCP_MAXRXTSHIFT; 6894 KMOD_TCPSTAT_INC(tcps_timeoutdrop); 6895 retval = 1; 6896 tcp_set_inp_to_drop(rack->rc_inp, 6897 (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT)); 6898 goto out; 6899 } 6900 if (tp->t_state == TCPS_SYN_SENT) { 6901 /* 6902 * If the SYN was retransmitted, indicate CWND to be limited 6903 * to 1 segment in cc_conn_init(). 6904 */ 6905 tp->snd_cwnd = 1; 6906 } else if (tp->t_rxtshift == 1) { 6907 /* 6908 * first retransmit; record ssthresh and cwnd so they can be 6909 * recovered if this turns out to be a "bad" retransmit. A 6910 * retransmit is considered "bad" if an ACK for this segment 6911 * is received within RTT/2 interval; the assumption here is 6912 * that the ACK was already in flight. See "On Estimating 6913 * End-to-End Network Path Properties" by Allman and Paxson 6914 * for more details. 6915 */ 6916 tp->snd_cwnd_prev = tp->snd_cwnd; 6917 tp->snd_ssthresh_prev = tp->snd_ssthresh; 6918 tp->snd_recover_prev = tp->snd_recover; 6919 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2); 6920 tp->t_flags |= TF_PREVVALID; 6921 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0) 6922 tp->t_flags &= ~TF_PREVVALID; 6923 KMOD_TCPSTAT_INC(tcps_rexmttimeo); 6924 if ((tp->t_state == TCPS_SYN_SENT) || 6925 (tp->t_state == TCPS_SYN_RECEIVED)) 6926 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]; 6927 else 6928 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift]; 6929 6930 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt, 6931 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop); 6932 /* 6933 * We enter the path for PLMTUD if connection is established or, if 6934 * connection is FIN_WAIT_1 status, reason for the last is that if 6935 * amount of data we send is very small, we could send it in couple 6936 * of packets and process straight to FIN. In that case we won't 6937 * catch ESTABLISHED state. 6938 */ 6939 #ifdef INET6 6940 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false; 6941 #else 6942 isipv6 = false; 6943 #endif 6944 if (((V_tcp_pmtud_blackhole_detect == 1) || 6945 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || 6946 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && 6947 ((tp->t_state == TCPS_ESTABLISHED) || 6948 (tp->t_state == TCPS_FIN_WAIT_1))) { 6949 /* 6950 * Idea here is that at each stage of mtu probe (usually, 6951 * 1448 -> 1188 -> 524) should be given 2 chances to recover 6952 * before further clamping down. 'tp->t_rxtshift % 2 == 0' 6953 * should take care of that. 6954 */ 6955 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == 6956 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && 6957 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && 6958 tp->t_rxtshift % 2 == 0)) { 6959 /* 6960 * Enter Path MTU Black-hole Detection mechanism: - 6961 * Disable Path MTU Discovery (IP "DF" bit). - 6962 * Reduce MTU to lower value than what we negotiated 6963 * with peer. 6964 */ 6965 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { 6966 /* Record that we may have found a black hole. */ 6967 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; 6968 /* Keep track of previous MSS. */ 6969 tp->t_pmtud_saved_maxseg = tp->t_maxseg; 6970 } 6971 6972 /* 6973 * Reduce the MSS to blackhole value or to the 6974 * default in an attempt to retransmit. 6975 */ 6976 #ifdef INET6 6977 if (isipv6 && 6978 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { 6979 /* Use the sysctl tuneable blackhole MSS. */ 6980 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; 6981 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 6982 } else if (isipv6) { 6983 /* Use the default MSS. */ 6984 tp->t_maxseg = V_tcp_v6mssdflt; 6985 /* 6986 * Disable Path MTU Discovery when we switch 6987 * to minmss. 6988 */ 6989 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 6990 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 6991 } 6992 #endif 6993 #if defined(INET6) && defined(INET) 6994 else 6995 #endif 6996 #ifdef INET 6997 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { 6998 /* Use the sysctl tuneable blackhole MSS. */ 6999 tp->t_maxseg = V_tcp_pmtud_blackhole_mss; 7000 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 7001 } else { 7002 /* Use the default MSS. */ 7003 tp->t_maxseg = V_tcp_mssdflt; 7004 /* 7005 * Disable Path MTU Discovery when we switch 7006 * to minmss. 7007 */ 7008 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 7009 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 7010 } 7011 #endif 7012 } else { 7013 /* 7014 * If further retransmissions are still unsuccessful 7015 * with a lowered MTU, maybe this isn't a blackhole 7016 * and we restore the previous MSS and blackhole 7017 * detection flags. The limit '6' is determined by 7018 * giving each probe stage (1448, 1188, 524) 2 7019 * chances to recover. 7020 */ 7021 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && 7022 (tp->t_rxtshift >= 6)) { 7023 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 7024 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; 7025 tp->t_maxseg = tp->t_pmtud_saved_maxseg; 7026 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); 7027 } 7028 } 7029 } 7030 /* 7031 * Disable RFC1323 and SACK if we haven't got any response to 7032 * our third SYN to work-around some broken terminal servers 7033 * (most of which have hopefully been retired) that have bad VJ 7034 * header compression code which trashes TCP segments containing 7035 * unknown-to-them TCP options. 7036 */ 7037 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && 7038 (tp->t_rxtshift == 3)) 7039 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT); 7040 /* 7041 * If we backed off this far, our srtt estimate is probably bogus. 7042 * Clobber it so we'll take the next rtt measurement as our srtt; 7043 * move the current srtt into rttvar to keep the current retransmit 7044 * times until then. 7045 */ 7046 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { 7047 #ifdef INET6 7048 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 7049 in6_losing(tp->t_inpcb); 7050 else 7051 #endif 7052 in_losing(tp->t_inpcb); 7053 tp->t_rttvar += tp->t_srtt; 7054 tp->t_srtt = 0; 7055 } 7056 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 7057 tp->snd_recover = tp->snd_max; 7058 tp->t_flags |= TF_ACKNOW; 7059 tp->t_rtttime = 0; 7060 rack_cong_signal(tp, CC_RTO, tp->snd_una); 7061 out: 7062 return (retval); 7063 } 7064 7065 static int 7066 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp) 7067 { 7068 int32_t ret = 0; 7069 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); 7070 7071 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 7072 (tp->t_flags & TF_GPUTINPROG)) { 7073 /* 7074 * We have a goodput in progress 7075 * and we have entered a late state. 7076 * Do we have enough data in the sb 7077 * to handle the GPUT request? 7078 */ 7079 uint32_t bytes; 7080 7081 bytes = tp->gput_ack - tp->gput_seq; 7082 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 7083 bytes += tp->gput_seq - tp->snd_una; 7084 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 7085 /* 7086 * There are not enough bytes in the socket 7087 * buffer that have been sent to cover this 7088 * measurement. Cancel it. 7089 */ 7090 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 7091 rack->r_ctl.rc_gp_srtt /*flex1*/, 7092 tp->gput_seq, 7093 0, 0, 18, __LINE__, NULL, 0); 7094 tp->t_flags &= ~TF_GPUTINPROG; 7095 } 7096 } 7097 if (timers == 0) { 7098 return (0); 7099 } 7100 if (tp->t_state == TCPS_LISTEN) { 7101 /* no timers on listen sockets */ 7102 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) 7103 return (0); 7104 return (1); 7105 } 7106 if ((timers & PACE_TMR_RACK) && 7107 rack->rc_on_min_to) { 7108 /* 7109 * For the rack timer when we 7110 * are on a min-timeout (which means rrr_conf = 3) 7111 * we don't want to check the timer. It may 7112 * be going off for a pace and thats ok we 7113 * want to send the retransmit (if its ready). 7114 * 7115 * If its on a normal rack timer (non-min) then 7116 * we will check if its expired. 7117 */ 7118 goto skip_time_check; 7119 } 7120 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 7121 uint32_t left; 7122 7123 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 7124 ret = -1; 7125 rack_log_to_processing(rack, cts, ret, 0); 7126 return (0); 7127 } 7128 if (hpts_calling == 0) { 7129 /* 7130 * A user send or queued mbuf (sack) has called us? We 7131 * return 0 and let the pacing guards 7132 * deal with it if they should or 7133 * should not cause a send. 7134 */ 7135 ret = -2; 7136 rack_log_to_processing(rack, cts, ret, 0); 7137 return (0); 7138 } 7139 /* 7140 * Ok our timer went off early and we are not paced false 7141 * alarm, go back to sleep. 7142 */ 7143 ret = -3; 7144 left = rack->r_ctl.rc_timer_exp - cts; 7145 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left)); 7146 rack_log_to_processing(rack, cts, ret, left); 7147 return (1); 7148 } 7149 skip_time_check: 7150 rack->rc_tmr_stopped = 0; 7151 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; 7152 if (timers & PACE_TMR_DELACK) { 7153 ret = rack_timeout_delack(tp, rack, cts); 7154 } else if (timers & PACE_TMR_RACK) { 7155 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7156 rack->r_fast_output = 0; 7157 ret = rack_timeout_rack(tp, rack, cts); 7158 } else if (timers & PACE_TMR_TLP) { 7159 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7160 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp); 7161 } else if (timers & PACE_TMR_RXT) { 7162 rack->r_ctl.rc_tlp_rxt_last_time = cts; 7163 rack->r_fast_output = 0; 7164 ret = rack_timeout_rxt(tp, rack, cts); 7165 } else if (timers & PACE_TMR_PERSIT) { 7166 ret = rack_timeout_persist(tp, rack, cts); 7167 } else if (timers & PACE_TMR_KEEP) { 7168 ret = rack_timeout_keepalive(tp, rack, cts); 7169 } 7170 rack_log_to_processing(rack, cts, ret, timers); 7171 return (ret); 7172 } 7173 7174 static void 7175 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) 7176 { 7177 struct timeval tv; 7178 uint32_t us_cts, flags_on_entry; 7179 uint8_t hpts_removed = 0; 7180 7181 flags_on_entry = rack->r_ctl.rc_hpts_flags; 7182 us_cts = tcp_get_usecs(&tv); 7183 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 7184 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || 7185 ((tp->snd_max - tp->snd_una) == 0))) { 7186 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 7187 hpts_removed = 1; 7188 /* If we were not delayed cancel out the flag. */ 7189 if ((tp->snd_max - tp->snd_una) == 0) 7190 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7191 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7192 } 7193 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 7194 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 7195 if (rack->rc_inp->inp_in_hpts && 7196 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { 7197 /* 7198 * Canceling timer's when we have no output being 7199 * paced. We also must remove ourselves from the 7200 * hpts. 7201 */ 7202 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 7203 hpts_removed = 1; 7204 } 7205 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); 7206 } 7207 if (hpts_removed == 0) 7208 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7209 } 7210 7211 static void 7212 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type) 7213 { 7214 return; 7215 } 7216 7217 static int 7218 rack_stopall(struct tcpcb *tp) 7219 { 7220 struct tcp_rack *rack; 7221 rack = (struct tcp_rack *)tp->t_fb_ptr; 7222 rack->t_timers_stopped = 1; 7223 return (0); 7224 } 7225 7226 static void 7227 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) 7228 { 7229 return; 7230 } 7231 7232 static int 7233 rack_timer_active(struct tcpcb *tp, uint32_t timer_type) 7234 { 7235 return (0); 7236 } 7237 7238 static void 7239 rack_stop_all_timers(struct tcpcb *tp) 7240 { 7241 struct tcp_rack *rack; 7242 7243 /* 7244 * Assure no timers are running. 7245 */ 7246 if (tcp_timer_active(tp, TT_PERSIST)) { 7247 /* We enter in persists, set the flag appropriately */ 7248 rack = (struct tcp_rack *)tp->t_fb_ptr; 7249 rack->rc_in_persist = 1; 7250 } 7251 tcp_timer_suspend(tp, TT_PERSIST); 7252 tcp_timer_suspend(tp, TT_REXMT); 7253 tcp_timer_suspend(tp, TT_KEEP); 7254 tcp_timer_suspend(tp, TT_DELACK); 7255 } 7256 7257 static void 7258 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 7259 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag) 7260 { 7261 int32_t idx; 7262 7263 rsm->r_rtr_cnt++; 7264 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7265 rsm->r_dupack = 0; 7266 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { 7267 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; 7268 rsm->r_flags |= RACK_OVERMAX; 7269 } 7270 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { 7271 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); 7272 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); 7273 } 7274 idx = rsm->r_rtr_cnt - 1; 7275 rsm->r_tim_lastsent[idx] = ts; 7276 /* 7277 * Here we don't add in the len of send, since its already 7278 * in snduna <->snd_max. 7279 */ 7280 rsm->r_fas = ctf_flight_size(rack->rc_tp, 7281 rack->r_ctl.rc_sacked); 7282 if (rsm->r_flags & RACK_ACKED) { 7283 /* Problably MTU discovery messing with us */ 7284 rsm->r_flags &= ~RACK_ACKED; 7285 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 7286 } 7287 if (rsm->r_in_tmap) { 7288 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7289 rsm->r_in_tmap = 0; 7290 } 7291 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7292 rsm->r_in_tmap = 1; 7293 if (rsm->r_flags & RACK_SACK_PASSED) { 7294 /* We have retransmitted due to the SACK pass */ 7295 rsm->r_flags &= ~RACK_SACK_PASSED; 7296 rsm->r_flags |= RACK_WAS_SACKPASS; 7297 } 7298 } 7299 7300 static uint32_t 7301 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 7302 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag) 7303 { 7304 /* 7305 * We (re-)transmitted starting at rsm->r_start for some length 7306 * (possibly less than r_end. 7307 */ 7308 struct rack_sendmap *nrsm, *insret; 7309 uint32_t c_end; 7310 int32_t len; 7311 7312 len = *lenp; 7313 c_end = rsm->r_start + len; 7314 if (SEQ_GEQ(c_end, rsm->r_end)) { 7315 /* 7316 * We retransmitted the whole piece or more than the whole 7317 * slopping into the next rsm. 7318 */ 7319 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7320 if (c_end == rsm->r_end) { 7321 *lenp = 0; 7322 return (0); 7323 } else { 7324 int32_t act_len; 7325 7326 /* Hangs over the end return whats left */ 7327 act_len = rsm->r_end - rsm->r_start; 7328 *lenp = (len - act_len); 7329 return (rsm->r_end); 7330 } 7331 /* We don't get out of this block. */ 7332 } 7333 /* 7334 * Here we retransmitted less than the whole thing which means we 7335 * have to split this into what was transmitted and what was not. 7336 */ 7337 nrsm = rack_alloc_full_limit(rack); 7338 if (nrsm == NULL) { 7339 /* 7340 * We can't get memory, so lets not proceed. 7341 */ 7342 *lenp = 0; 7343 return (0); 7344 } 7345 /* 7346 * So here we are going to take the original rsm and make it what we 7347 * retransmitted. nrsm will be the tail portion we did not 7348 * retransmit. For example say the chunk was 1, 11 (10 bytes). And 7349 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to 7350 * 1, 6 and the new piece will be 6, 11. 7351 */ 7352 rack_clone_rsm(rack, nrsm, rsm, c_end); 7353 nrsm->r_dupack = 0; 7354 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 7355 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7356 #ifdef INVARIANTS 7357 if (insret != NULL) { 7358 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7359 nrsm, insret, rack, rsm); 7360 } 7361 #endif 7362 if (rsm->r_in_tmap) { 7363 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7364 nrsm->r_in_tmap = 1; 7365 } 7366 rsm->r_flags &= (~RACK_HAS_FIN); 7367 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7368 /* Log a split of rsm into rsm and nrsm */ 7369 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7370 *lenp = 0; 7371 return (0); 7372 } 7373 7374 static void 7375 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 7376 uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t cts, 7377 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls) 7378 { 7379 struct tcp_rack *rack; 7380 struct rack_sendmap *rsm, *nrsm, *insret, fe; 7381 register uint32_t snd_max, snd_una; 7382 7383 /* 7384 * Add to the RACK log of packets in flight or retransmitted. If 7385 * there is a TS option we will use the TS echoed, if not we will 7386 * grab a TS. 7387 * 7388 * Retransmissions will increment the count and move the ts to its 7389 * proper place. Note that if options do not include TS's then we 7390 * won't be able to effectively use the ACK for an RTT on a retran. 7391 * 7392 * Notes about r_start and r_end. Lets consider a send starting at 7393 * sequence 1 for 10 bytes. In such an example the r_start would be 7394 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. 7395 * This means that r_end is actually the first sequence for the next 7396 * slot (11). 7397 * 7398 */ 7399 /* 7400 * If err is set what do we do XXXrrs? should we not add the thing? 7401 * -- i.e. return if err != 0 or should we pretend we sent it? -- 7402 * i.e. proceed with add ** do this for now. 7403 */ 7404 INP_WLOCK_ASSERT(tp->t_inpcb); 7405 if (err) 7406 /* 7407 * We don't log errors -- we could but snd_max does not 7408 * advance in this case either. 7409 */ 7410 return; 7411 7412 if (th_flags & TH_RST) { 7413 /* 7414 * We don't log resets and we return immediately from 7415 * sending 7416 */ 7417 return; 7418 } 7419 rack = (struct tcp_rack *)tp->t_fb_ptr; 7420 snd_una = tp->snd_una; 7421 snd_max = tp->snd_max; 7422 if (th_flags & (TH_SYN | TH_FIN)) { 7423 /* 7424 * The call to rack_log_output is made before bumping 7425 * snd_max. This means we can record one extra byte on a SYN 7426 * or FIN if seq_out is adding more on and a FIN is present 7427 * (and we are not resending). 7428 */ 7429 if ((th_flags & TH_SYN) && (seq_out == tp->iss)) 7430 len++; 7431 if (th_flags & TH_FIN) 7432 len++; 7433 if (SEQ_LT(snd_max, tp->snd_nxt)) { 7434 /* 7435 * The add/update as not been done for the FIN/SYN 7436 * yet. 7437 */ 7438 snd_max = tp->snd_nxt; 7439 } 7440 } 7441 if (SEQ_LEQ((seq_out + len), snd_una)) { 7442 /* Are sending an old segment to induce an ack (keep-alive)? */ 7443 return; 7444 } 7445 if (SEQ_LT(seq_out, snd_una)) { 7446 /* huh? should we panic? */ 7447 uint32_t end; 7448 7449 end = seq_out + len; 7450 seq_out = snd_una; 7451 if (SEQ_GEQ(end, seq_out)) 7452 len = end - seq_out; 7453 else 7454 len = 0; 7455 } 7456 if (len == 0) { 7457 /* We don't log zero window probes */ 7458 return; 7459 } 7460 rack->r_ctl.rc_time_last_sent = cts; 7461 if (IN_FASTRECOVERY(tp->t_flags)) { 7462 rack->r_ctl.rc_prr_out += len; 7463 } 7464 /* First question is it a retransmission or new? */ 7465 if (seq_out == snd_max) { 7466 /* Its new */ 7467 again: 7468 rsm = rack_alloc(rack); 7469 if (rsm == NULL) { 7470 /* 7471 * Hmm out of memory and the tcb got destroyed while 7472 * we tried to wait. 7473 */ 7474 return; 7475 } 7476 if (th_flags & TH_FIN) { 7477 rsm->r_flags = RACK_HAS_FIN|add_flag; 7478 } else { 7479 rsm->r_flags = add_flag; 7480 } 7481 if (hw_tls) 7482 rsm->r_hw_tls = 1; 7483 rsm->r_tim_lastsent[0] = cts; 7484 rsm->r_rtr_cnt = 1; 7485 rsm->r_rtr_bytes = 0; 7486 if (th_flags & TH_SYN) { 7487 /* The data space is one beyond snd_una */ 7488 rsm->r_flags |= RACK_HAS_SYN; 7489 } 7490 rsm->r_start = seq_out; 7491 rsm->r_end = rsm->r_start + len; 7492 rsm->r_dupack = 0; 7493 /* 7494 * save off the mbuf location that 7495 * sndmbuf_noadv returned (which is 7496 * where we started copying from).. 7497 */ 7498 rsm->m = s_mb; 7499 rsm->soff = s_moff; 7500 /* 7501 * Here we do add in the len of send, since its not yet 7502 * reflected in in snduna <->snd_max 7503 */ 7504 rsm->r_fas = (ctf_flight_size(rack->rc_tp, 7505 rack->r_ctl.rc_sacked) + 7506 (rsm->r_end - rsm->r_start)); 7507 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */ 7508 if (rsm->m) { 7509 if (rsm->m->m_len <= rsm->soff) { 7510 /* 7511 * XXXrrs Question, will this happen? 7512 * 7513 * If sbsndptr is set at the correct place 7514 * then s_moff should always be somewhere 7515 * within rsm->m. But if the sbsndptr was 7516 * off then that won't be true. If it occurs 7517 * we need to walkout to the correct location. 7518 */ 7519 struct mbuf *lm; 7520 7521 lm = rsm->m; 7522 while (lm->m_len <= rsm->soff) { 7523 rsm->soff -= lm->m_len; 7524 lm = lm->m_next; 7525 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u", 7526 __func__, rack, s_moff, s_mb, rsm->soff)); 7527 } 7528 rsm->m = lm; 7529 counter_u64_add(rack_sbsndptr_wrong, 1); 7530 } else 7531 counter_u64_add(rack_sbsndptr_right, 1); 7532 rsm->orig_m_len = rsm->m->m_len; 7533 } else 7534 rsm->orig_m_len = 0; 7535 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7536 /* Log a new rsm */ 7537 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__); 7538 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7539 #ifdef INVARIANTS 7540 if (insret != NULL) { 7541 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7542 nrsm, insret, rack, rsm); 7543 } 7544 #endif 7545 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7546 rsm->r_in_tmap = 1; 7547 /* 7548 * Special case detection, is there just a single 7549 * packet outstanding when we are not in recovery? 7550 * 7551 * If this is true mark it so. 7552 */ 7553 if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 7554 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { 7555 struct rack_sendmap *prsm; 7556 7557 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7558 if (prsm) 7559 prsm->r_one_out_nr = 1; 7560 } 7561 return; 7562 } 7563 /* 7564 * If we reach here its a retransmission and we need to find it. 7565 */ 7566 memset(&fe, 0, sizeof(fe)); 7567 more: 7568 if (hintrsm && (hintrsm->r_start == seq_out)) { 7569 rsm = hintrsm; 7570 hintrsm = NULL; 7571 } else { 7572 /* No hints sorry */ 7573 rsm = NULL; 7574 } 7575 if ((rsm) && (rsm->r_start == seq_out)) { 7576 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7577 if (len == 0) { 7578 return; 7579 } else { 7580 goto more; 7581 } 7582 } 7583 /* Ok it was not the last pointer go through it the hard way. */ 7584 refind: 7585 fe.r_start = seq_out; 7586 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 7587 if (rsm) { 7588 if (rsm->r_start == seq_out) { 7589 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7590 if (len == 0) { 7591 return; 7592 } else { 7593 goto refind; 7594 } 7595 } 7596 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { 7597 /* Transmitted within this piece */ 7598 /* 7599 * Ok we must split off the front and then let the 7600 * update do the rest 7601 */ 7602 nrsm = rack_alloc_full_limit(rack); 7603 if (nrsm == NULL) { 7604 rack_update_rsm(tp, rack, rsm, cts, add_flag); 7605 return; 7606 } 7607 /* 7608 * copy rsm to nrsm and then trim the front of rsm 7609 * to not include this part. 7610 */ 7611 rack_clone_rsm(rack, nrsm, rsm, seq_out); 7612 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7613 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7614 #ifdef INVARIANTS 7615 if (insret != NULL) { 7616 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7617 nrsm, insret, rack, rsm); 7618 } 7619 #endif 7620 if (rsm->r_in_tmap) { 7621 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7622 nrsm->r_in_tmap = 1; 7623 } 7624 rsm->r_flags &= (~RACK_HAS_FIN); 7625 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag); 7626 if (len == 0) { 7627 return; 7628 } else if (len > 0) 7629 goto refind; 7630 } 7631 } 7632 /* 7633 * Hmm not found in map did they retransmit both old and on into the 7634 * new? 7635 */ 7636 if (seq_out == tp->snd_max) { 7637 goto again; 7638 } else if (SEQ_LT(seq_out, tp->snd_max)) { 7639 #ifdef INVARIANTS 7640 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", 7641 seq_out, len, tp->snd_una, tp->snd_max); 7642 printf("Starting Dump of all rack entries\n"); 7643 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 7644 printf("rsm:%p start:%u end:%u\n", 7645 rsm, rsm->r_start, rsm->r_end); 7646 } 7647 printf("Dump complete\n"); 7648 panic("seq_out not found rack:%p tp:%p", 7649 rack, tp); 7650 #endif 7651 } else { 7652 #ifdef INVARIANTS 7653 /* 7654 * Hmm beyond sndmax? (only if we are using the new rtt-pack 7655 * flag) 7656 */ 7657 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", 7658 seq_out, len, tp->snd_max, tp); 7659 #endif 7660 } 7661 } 7662 7663 /* 7664 * Record one of the RTT updates from an ack into 7665 * our sample structure. 7666 */ 7667 7668 static void 7669 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, 7670 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) 7671 { 7672 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7673 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { 7674 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; 7675 } 7676 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7677 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { 7678 rack->r_ctl.rack_rs.rs_rtt_highest = rtt; 7679 } 7680 if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 7681 if (us_rtt < rack->r_ctl.rc_gp_lowrtt) 7682 rack->r_ctl.rc_gp_lowrtt = us_rtt; 7683 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) 7684 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 7685 } 7686 if ((confidence == 1) && 7687 ((rsm == NULL) || 7688 (rsm->r_just_ret) || 7689 (rsm->r_one_out_nr && 7690 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { 7691 /* 7692 * If the rsm had a just return 7693 * hit it then we can't trust the 7694 * rtt measurement for buffer deterimination 7695 * Note that a confidence of 2, indicates 7696 * SACK'd which overrides the r_just_ret or 7697 * the r_one_out_nr. If it was a CUM-ACK and 7698 * we had only two outstanding, but get an 7699 * ack for only 1. Then that also lowers our 7700 * confidence. 7701 */ 7702 confidence = 0; 7703 } 7704 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7705 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { 7706 if (rack->r_ctl.rack_rs.confidence == 0) { 7707 /* 7708 * We take anything with no current confidence 7709 * saved. 7710 */ 7711 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7712 rack->r_ctl.rack_rs.confidence = confidence; 7713 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7714 } else if (confidence || rack->r_ctl.rack_rs.confidence) { 7715 /* 7716 * Once we have a confident number, 7717 * we can update it with a smaller 7718 * value since this confident number 7719 * may include the DSACK time until 7720 * the next segment (the second one) arrived. 7721 */ 7722 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7723 rack->r_ctl.rack_rs.confidence = confidence; 7724 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7725 } 7726 } 7727 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); 7728 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; 7729 rack->r_ctl.rack_rs.rs_rtt_tot += rtt; 7730 rack->r_ctl.rack_rs.rs_rtt_cnt++; 7731 } 7732 7733 /* 7734 * Collect new round-trip time estimate 7735 * and update averages and current timeout. 7736 */ 7737 static void 7738 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) 7739 { 7740 int32_t delta; 7741 uint32_t o_srtt, o_var; 7742 int32_t hrtt_up = 0; 7743 int32_t rtt; 7744 7745 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) 7746 /* No valid sample */ 7747 return; 7748 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { 7749 /* We are to use the lowest RTT seen in a single ack */ 7750 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 7751 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { 7752 /* We are to use the highest RTT seen in a single ack */ 7753 rtt = rack->r_ctl.rack_rs.rs_rtt_highest; 7754 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { 7755 /* We are to use the average RTT seen in a single ack */ 7756 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / 7757 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); 7758 } else { 7759 #ifdef INVARIANTS 7760 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); 7761 #endif 7762 return; 7763 } 7764 if (rtt == 0) 7765 rtt = 1; 7766 if (rack->rc_gp_rtt_set == 0) { 7767 /* 7768 * With no RTT we have to accept 7769 * even one we are not confident of. 7770 */ 7771 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; 7772 rack->rc_gp_rtt_set = 1; 7773 } else if (rack->r_ctl.rack_rs.confidence) { 7774 /* update the running gp srtt */ 7775 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); 7776 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; 7777 } 7778 if (rack->r_ctl.rack_rs.confidence) { 7779 /* 7780 * record the low and high for highly buffered path computation, 7781 * we only do this if we are confident (not a retransmission). 7782 */ 7783 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { 7784 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7785 hrtt_up = 1; 7786 } 7787 if (rack->rc_highly_buffered == 0) { 7788 /* 7789 * Currently once we declare a path has 7790 * highly buffered there is no going 7791 * back, which may be a problem... 7792 */ 7793 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { 7794 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, 7795 rack->r_ctl.rc_highest_us_rtt, 7796 rack->r_ctl.rc_lowest_us_rtt, 7797 RACK_RTTS_SEEHBP); 7798 rack->rc_highly_buffered = 1; 7799 } 7800 } 7801 } 7802 if ((rack->r_ctl.rack_rs.confidence) || 7803 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { 7804 /* 7805 * If we are highly confident of it <or> it was 7806 * never retransmitted we accept it as the last us_rtt. 7807 */ 7808 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7809 /* The lowest rtt can be set if its was not retransmited */ 7810 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { 7811 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7812 if (rack->r_ctl.rc_lowest_us_rtt == 0) 7813 rack->r_ctl.rc_lowest_us_rtt = 1; 7814 } 7815 } 7816 o_srtt = tp->t_srtt; 7817 o_var = tp->t_rttvar; 7818 rack = (struct tcp_rack *)tp->t_fb_ptr; 7819 if (tp->t_srtt != 0) { 7820 /* 7821 * We keep a simple srtt in microseconds, like our rtt 7822 * measurement. We don't need to do any tricks with shifting 7823 * etc. Instead we just add in 1/8th of the new measurement 7824 * and subtract out 1/8 of the old srtt. We do the same with 7825 * the variance after finding the absolute value of the 7826 * difference between this sample and the current srtt. 7827 */ 7828 delta = tp->t_srtt - rtt; 7829 /* Take off 1/8th of the current sRTT */ 7830 tp->t_srtt -= (tp->t_srtt >> 3); 7831 /* Add in 1/8th of the new RTT just measured */ 7832 tp->t_srtt += (rtt >> 3); 7833 if (tp->t_srtt <= 0) 7834 tp->t_srtt = 1; 7835 /* Now lets make the absolute value of the variance */ 7836 if (delta < 0) 7837 delta = -delta; 7838 /* Subtract out 1/8th */ 7839 tp->t_rttvar -= (tp->t_rttvar >> 3); 7840 /* Add in 1/8th of the new variance we just saw */ 7841 tp->t_rttvar += (delta >> 3); 7842 if (tp->t_rttvar <= 0) 7843 tp->t_rttvar = 1; 7844 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 7845 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7846 } else { 7847 /* 7848 * No rtt measurement yet - use the unsmoothed rtt. Set the 7849 * variance to half the rtt (so our first retransmit happens 7850 * at 3*rtt). 7851 */ 7852 tp->t_srtt = rtt; 7853 tp->t_rttvar = rtt >> 1; 7854 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7855 } 7856 rack->rc_srtt_measure_made = 1; 7857 KMOD_TCPSTAT_INC(tcps_rttupdated); 7858 tp->t_rttupdated++; 7859 #ifdef STATS 7860 if (rack_stats_gets_ms_rtt == 0) { 7861 /* Send in the microsecond rtt used for rxt timeout purposes */ 7862 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); 7863 } else if (rack_stats_gets_ms_rtt == 1) { 7864 /* Send in the millisecond rtt used for rxt timeout purposes */ 7865 int32_t ms_rtt; 7866 7867 /* Round up */ 7868 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7869 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7870 } else if (rack_stats_gets_ms_rtt == 2) { 7871 /* Send in the millisecond rtt has close to the path RTT as we can get */ 7872 int32_t ms_rtt; 7873 7874 /* Round up */ 7875 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7876 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7877 } else { 7878 /* Send in the microsecond rtt has close to the path RTT as we can get */ 7879 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 7880 } 7881 7882 #endif 7883 /* 7884 * the retransmit should happen at rtt + 4 * rttvar. Because of the 7885 * way we do the smoothing, srtt and rttvar will each average +1/2 7886 * tick of bias. When we compute the retransmit timer, we want 1/2 7887 * tick of rounding and 1 extra tick because of +-1/2 tick 7888 * uncertainty in the firing of the timer. The bias will give us 7889 * exactly the 1.5 tick we need. But, because the bias is 7890 * statistical, we have to test that we don't drop below the minimum 7891 * feasible timer (which is 2 ticks). 7892 */ 7893 tp->t_rxtshift = 0; 7894 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7895 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop); 7896 rack_log_rtt_sample(rack, rtt); 7897 tp->t_softerror = 0; 7898 } 7899 7900 7901 static void 7902 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) 7903 { 7904 /* 7905 * Apply to filter the inbound us-rtt at us_cts. 7906 */ 7907 uint32_t old_rtt; 7908 7909 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 7910 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, 7911 us_rtt, us_cts); 7912 if (rack->r_ctl.last_pacing_time && 7913 rack->rc_gp_dyn_mul && 7914 (rack->r_ctl.last_pacing_time > us_rtt)) 7915 rack->pacing_longer_than_rtt = 1; 7916 else 7917 rack->pacing_longer_than_rtt = 0; 7918 if (old_rtt > us_rtt) { 7919 /* We just hit a new lower rtt time */ 7920 rack_log_rtt_shrinks(rack, us_cts, old_rtt, 7921 __LINE__, RACK_RTTS_NEWRTT); 7922 /* 7923 * Only count it if its lower than what we saw within our 7924 * calculated range. 7925 */ 7926 if ((old_rtt - us_rtt) > rack_min_rtt_movement) { 7927 if (rack_probertt_lower_within && 7928 rack->rc_gp_dyn_mul && 7929 (rack->use_fixed_rate == 0) && 7930 (rack->rc_always_pace)) { 7931 /* 7932 * We are seeing a new lower rtt very close 7933 * to the time that we would have entered probe-rtt. 7934 * This is probably due to the fact that a peer flow 7935 * has entered probe-rtt. Lets go in now too. 7936 */ 7937 uint32_t val; 7938 7939 val = rack_probertt_lower_within * rack_time_between_probertt; 7940 val /= 100; 7941 if ((rack->in_probe_rtt == 0) && 7942 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { 7943 rack_enter_probertt(rack, us_cts); 7944 } 7945 } 7946 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 7947 } 7948 } 7949 } 7950 7951 static int 7952 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 7953 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) 7954 { 7955 uint32_t us_rtt; 7956 int32_t i, all; 7957 uint32_t t, len_acked; 7958 7959 if ((rsm->r_flags & RACK_ACKED) || 7960 (rsm->r_flags & RACK_WAS_ACKED)) 7961 /* Already done */ 7962 return (0); 7963 if (rsm->r_no_rtt_allowed) { 7964 /* Not allowed */ 7965 return (0); 7966 } 7967 if (ack_type == CUM_ACKED) { 7968 if (SEQ_GT(th_ack, rsm->r_end)) { 7969 len_acked = rsm->r_end - rsm->r_start; 7970 all = 1; 7971 } else { 7972 len_acked = th_ack - rsm->r_start; 7973 all = 0; 7974 } 7975 } else { 7976 len_acked = rsm->r_end - rsm->r_start; 7977 all = 0; 7978 } 7979 if (rsm->r_rtr_cnt == 1) { 7980 7981 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7982 if ((int)t <= 0) 7983 t = 1; 7984 if (!tp->t_rttlow || tp->t_rttlow > t) 7985 tp->t_rttlow = t; 7986 if (!rack->r_ctl.rc_rack_min_rtt || 7987 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7988 rack->r_ctl.rc_rack_min_rtt = t; 7989 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7990 rack->r_ctl.rc_rack_min_rtt = 1; 7991 } 7992 } 7993 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) 7994 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7995 else 7996 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7997 if (us_rtt == 0) 7998 us_rtt = 1; 7999 if (CC_ALGO(tp)->rttsample != NULL) { 8000 /* Kick the RTT to the CC */ 8001 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 8002 } 8003 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 8004 if (ack_type == SACKED) { 8005 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1); 8006 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); 8007 } else { 8008 /* 8009 * We need to setup what our confidence 8010 * is in this ack. 8011 * 8012 * If the rsm was app limited and it is 8013 * less than a mss in length (the end 8014 * of the send) then we have a gap. If we 8015 * were app limited but say we were sending 8016 * multiple MSS's then we are more confident 8017 * int it. 8018 * 8019 * When we are not app-limited then we see if 8020 * the rsm is being included in the current 8021 * measurement, we tell this by the app_limited_needs_set 8022 * flag. 8023 * 8024 * Note that being cwnd blocked is not applimited 8025 * as well as the pacing delay between packets which 8026 * are sending only 1 or 2 MSS's also will show up 8027 * in the RTT. We probably need to examine this algorithm 8028 * a bit more and enhance it to account for the delay 8029 * between rsm's. We could do that by saving off the 8030 * pacing delay of each rsm (in an rsm) and then 8031 * factoring that in somehow though for now I am 8032 * not sure how :) 8033 */ 8034 int calc_conf = 0; 8035 8036 if (rsm->r_flags & RACK_APP_LIMITED) { 8037 if (all && (len_acked <= ctf_fixed_maxseg(tp))) 8038 calc_conf = 0; 8039 else 8040 calc_conf = 1; 8041 } else if (rack->app_limited_needs_set == 0) { 8042 calc_conf = 1; 8043 } else { 8044 calc_conf = 0; 8045 } 8046 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2); 8047 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 8048 calc_conf, rsm, rsm->r_rtr_cnt); 8049 } 8050 if ((rsm->r_flags & RACK_TLP) && 8051 (!IN_FASTRECOVERY(tp->t_flags))) { 8052 /* Segment was a TLP and our retrans matched */ 8053 if (rack->r_ctl.rc_tlp_cwnd_reduce) { 8054 rack->r_ctl.rc_rsm_start = tp->snd_max; 8055 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 8056 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 8057 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 8058 } 8059 } 8060 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 8061 /* New more recent rack_tmit_time */ 8062 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8063 rack->rc_rack_rtt = t; 8064 } 8065 return (1); 8066 } 8067 /* 8068 * We clear the soft/rxtshift since we got an ack. 8069 * There is no assurance we will call the commit() function 8070 * so we need to clear these to avoid incorrect handling. 8071 */ 8072 tp->t_rxtshift = 0; 8073 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 8074 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 8075 tp->t_softerror = 0; 8076 if (to && (to->to_flags & TOF_TS) && 8077 (ack_type == CUM_ACKED) && 8078 (to->to_tsecr) && 8079 ((rsm->r_flags & RACK_OVERMAX) == 0)) { 8080 /* 8081 * Now which timestamp does it match? In this block the ACK 8082 * must be coming from a previous transmission. 8083 */ 8084 for (i = 0; i < rsm->r_rtr_cnt; i++) { 8085 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) { 8086 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 8087 if ((int)t <= 0) 8088 t = 1; 8089 if (CC_ALGO(tp)->rttsample != NULL) { 8090 /* 8091 * Kick the RTT to the CC, here 8092 * we lie a bit in that we know the 8093 * retransmission is correct even though 8094 * we retransmitted. This is because 8095 * we match the timestamps. 8096 */ 8097 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i])) 8098 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i]; 8099 else 8100 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i]; 8101 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas); 8102 } 8103 if ((i + 1) < rsm->r_rtr_cnt) { 8104 /* 8105 * The peer ack'd from our previous 8106 * transmission. We have a spurious 8107 * retransmission and thus we dont 8108 * want to update our rack_rtt. 8109 * 8110 * Hmm should there be a CC revert here? 8111 * 8112 */ 8113 return (0); 8114 } 8115 if (!tp->t_rttlow || tp->t_rttlow > t) 8116 tp->t_rttlow = t; 8117 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8118 rack->r_ctl.rc_rack_min_rtt = t; 8119 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8120 rack->r_ctl.rc_rack_min_rtt = 1; 8121 } 8122 } 8123 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 8124 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 8125 /* New more recent rack_tmit_time */ 8126 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8127 rack->rc_rack_rtt = t; 8128 } 8129 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3); 8130 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm, 8131 rsm->r_rtr_cnt); 8132 return (1); 8133 } 8134 } 8135 goto ts_not_found; 8136 } else { 8137 /* 8138 * Ok its a SACK block that we retransmitted. or a windows 8139 * machine without timestamps. We can tell nothing from the 8140 * time-stamp since its not there or the time the peer last 8141 * recieved a segment that moved forward its cum-ack point. 8142 */ 8143 ts_not_found: 8144 i = rsm->r_rtr_cnt - 1; 8145 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 8146 if ((int)t <= 0) 8147 t = 1; 8148 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8149 /* 8150 * We retransmitted and the ack came back in less 8151 * than the smallest rtt we have observed. We most 8152 * likely did an improper retransmit as outlined in 8153 * 6.2 Step 2 point 2 in the rack-draft so we 8154 * don't want to update our rack_rtt. We in 8155 * theory (in future) might want to think about reverting our 8156 * cwnd state but we won't for now. 8157 */ 8158 return (0); 8159 } else if (rack->r_ctl.rc_rack_min_rtt) { 8160 /* 8161 * We retransmitted it and the retransmit did the 8162 * job. 8163 */ 8164 if (!rack->r_ctl.rc_rack_min_rtt || 8165 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8166 rack->r_ctl.rc_rack_min_rtt = t; 8167 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8168 rack->r_ctl.rc_rack_min_rtt = 1; 8169 } 8170 } 8171 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) { 8172 /* New more recent rack_tmit_time */ 8173 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i]; 8174 rack->rc_rack_rtt = t; 8175 } 8176 return (1); 8177 } 8178 } 8179 return (0); 8180 } 8181 8182 /* 8183 * Mark the SACK_PASSED flag on all entries prior to rsm send wise. 8184 */ 8185 static void 8186 rack_log_sack_passed(struct tcpcb *tp, 8187 struct tcp_rack *rack, struct rack_sendmap *rsm) 8188 { 8189 struct rack_sendmap *nrsm; 8190 8191 nrsm = rsm; 8192 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, 8193 rack_head, r_tnext) { 8194 if (nrsm == rsm) { 8195 /* Skip orginal segment he is acked */ 8196 continue; 8197 } 8198 if (nrsm->r_flags & RACK_ACKED) { 8199 /* 8200 * Skip ack'd segments, though we 8201 * should not see these, since tmap 8202 * should not have ack'd segments. 8203 */ 8204 continue; 8205 } 8206 if (nrsm->r_flags & RACK_SACK_PASSED) { 8207 /* 8208 * We found one that is already marked 8209 * passed, we have been here before and 8210 * so all others below this are marked. 8211 */ 8212 break; 8213 } 8214 nrsm->r_flags |= RACK_SACK_PASSED; 8215 nrsm->r_flags &= ~RACK_WAS_SACKPASS; 8216 } 8217 } 8218 8219 static void 8220 rack_need_set_test(struct tcpcb *tp, 8221 struct tcp_rack *rack, 8222 struct rack_sendmap *rsm, 8223 tcp_seq th_ack, 8224 int line, 8225 int use_which) 8226 { 8227 8228 if ((tp->t_flags & TF_GPUTINPROG) && 8229 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8230 /* 8231 * We were app limited, and this ack 8232 * butts up or goes beyond the point where we want 8233 * to start our next measurement. We need 8234 * to record the new gput_ts as here and 8235 * possibly update the start sequence. 8236 */ 8237 uint32_t seq, ts; 8238 8239 if (rsm->r_rtr_cnt > 1) { 8240 /* 8241 * This is a retransmit, can we 8242 * really make any assessment at this 8243 * point? We are not really sure of 8244 * the timestamp, is it this or the 8245 * previous transmission? 8246 * 8247 * Lets wait for something better that 8248 * is not retransmitted. 8249 */ 8250 return; 8251 } 8252 seq = tp->gput_seq; 8253 ts = tp->gput_ts; 8254 rack->app_limited_needs_set = 0; 8255 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 8256 /* Do we start at a new end? */ 8257 if ((use_which == RACK_USE_BEG) && 8258 SEQ_GEQ(rsm->r_start, tp->gput_seq)) { 8259 /* 8260 * When we get an ACK that just eats 8261 * up some of the rsm, we set RACK_USE_BEG 8262 * since whats at r_start (i.e. th_ack) 8263 * is left unacked and thats where the 8264 * measurement not starts. 8265 */ 8266 tp->gput_seq = rsm->r_start; 8267 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8268 } 8269 if ((use_which == RACK_USE_END) && 8270 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8271 /* 8272 * We use the end when the cumack 8273 * is moving forward and completely 8274 * deleting the rsm passed so basically 8275 * r_end holds th_ack. 8276 * 8277 * For SACK's we also want to use the end 8278 * since this piece just got sacked and 8279 * we want to target anything after that 8280 * in our measurement. 8281 */ 8282 tp->gput_seq = rsm->r_end; 8283 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8284 } 8285 if (use_which == RACK_USE_END_OR_THACK) { 8286 /* 8287 * special case for ack moving forward, 8288 * not a sack, we need to move all the 8289 * way up to where this ack cum-ack moves 8290 * to. 8291 */ 8292 if (SEQ_GT(th_ack, rsm->r_end)) 8293 tp->gput_seq = th_ack; 8294 else 8295 tp->gput_seq = rsm->r_end; 8296 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8297 } 8298 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { 8299 /* 8300 * We moved beyond this guy's range, re-calculate 8301 * the new end point. 8302 */ 8303 if (rack->rc_gp_filled == 0) { 8304 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 8305 } else { 8306 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 8307 } 8308 } 8309 /* 8310 * We are moving the goal post, we may be able to clear the 8311 * measure_saw_probe_rtt flag. 8312 */ 8313 if ((rack->in_probe_rtt == 0) && 8314 (rack->measure_saw_probe_rtt) && 8315 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 8316 rack->measure_saw_probe_rtt = 0; 8317 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, 8318 seq, tp->gput_seq, 0, 5, line, NULL, 0); 8319 if (rack->rc_gp_filled && 8320 ((tp->gput_ack - tp->gput_seq) < 8321 max(rc_init_window(rack), (MIN_GP_WIN * 8322 ctf_fixed_maxseg(tp))))) { 8323 uint32_t ideal_amount; 8324 8325 ideal_amount = rack_get_measure_window(tp, rack); 8326 if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 8327 /* 8328 * There is no sense of continuing this measurement 8329 * because its too small to gain us anything we 8330 * trust. Skip it and that way we can start a new 8331 * measurement quicker. 8332 */ 8333 tp->t_flags &= ~TF_GPUTINPROG; 8334 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 8335 0, 0, 0, 6, __LINE__, NULL, 0); 8336 } else { 8337 /* 8338 * Reset the window further out. 8339 */ 8340 tp->gput_ack = tp->gput_seq + ideal_amount; 8341 } 8342 } 8343 } 8344 } 8345 8346 static inline int 8347 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm) 8348 { 8349 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) { 8350 /* Behind our TLP definition or right at */ 8351 return (0); 8352 } 8353 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) { 8354 /* The start is beyond or right at our end of TLP definition */ 8355 return (0); 8356 } 8357 /* It has to be a sub-part of the original TLP recorded */ 8358 return (1); 8359 } 8360 8361 8362 static uint32_t 8363 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, 8364 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two) 8365 { 8366 uint32_t start, end, changed = 0; 8367 struct rack_sendmap stack_map; 8368 struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next; 8369 int32_t used_ref = 1; 8370 int moved = 0; 8371 8372 start = sack->start; 8373 end = sack->end; 8374 rsm = *prsm; 8375 memset(&fe, 0, sizeof(fe)); 8376 do_rest_ofb: 8377 if ((rsm == NULL) || 8378 (SEQ_LT(end, rsm->r_start)) || 8379 (SEQ_GEQ(start, rsm->r_end)) || 8380 (SEQ_LT(start, rsm->r_start))) { 8381 /* 8382 * We are not in the right spot, 8383 * find the correct spot in the tree. 8384 */ 8385 used_ref = 0; 8386 fe.r_start = start; 8387 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 8388 moved++; 8389 } 8390 if (rsm == NULL) { 8391 /* TSNH */ 8392 goto out; 8393 } 8394 /* Ok we have an ACK for some piece of this rsm */ 8395 if (rsm->r_start != start) { 8396 if ((rsm->r_flags & RACK_ACKED) == 0) { 8397 /* 8398 * Before any splitting or hookery is 8399 * done is it a TLP of interest i.e. rxt? 8400 */ 8401 if ((rsm->r_flags & RACK_TLP) && 8402 (rsm->r_rtr_cnt > 1)) { 8403 /* 8404 * We are splitting a rxt TLP, check 8405 * if we need to save off the start/end 8406 */ 8407 if (rack->rc_last_tlp_acked_set && 8408 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8409 /* 8410 * We already turned this on since we are inside 8411 * the previous one was a partially sack now we 8412 * are getting another one (maybe all of it). 8413 * 8414 */ 8415 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8416 /* 8417 * Lets make sure we have all of it though. 8418 */ 8419 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8420 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8421 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8422 rack->r_ctl.last_tlp_acked_end); 8423 } 8424 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8425 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8426 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8427 rack->r_ctl.last_tlp_acked_end); 8428 } 8429 } else { 8430 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8431 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8432 rack->rc_last_tlp_past_cumack = 0; 8433 rack->rc_last_tlp_acked_set = 1; 8434 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8435 } 8436 } 8437 /** 8438 * Need to split this in two pieces the before and after, 8439 * the before remains in the map, the after must be 8440 * added. In other words we have: 8441 * rsm |--------------| 8442 * sackblk |-------> 8443 * rsm will become 8444 * rsm |---| 8445 * and nrsm will be the sacked piece 8446 * nrsm |----------| 8447 * 8448 * But before we start down that path lets 8449 * see if the sack spans over on top of 8450 * the next guy and it is already sacked. 8451 * 8452 */ 8453 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8454 if (next && (next->r_flags & RACK_ACKED) && 8455 SEQ_GEQ(end, next->r_start)) { 8456 /** 8457 * So the next one is already acked, and 8458 * we can thus by hookery use our stack_map 8459 * to reflect the piece being sacked and 8460 * then adjust the two tree entries moving 8461 * the start and ends around. So we start like: 8462 * rsm |------------| (not-acked) 8463 * next |-----------| (acked) 8464 * sackblk |--------> 8465 * We want to end like so: 8466 * rsm |------| (not-acked) 8467 * next |-----------------| (acked) 8468 * nrsm |-----| 8469 * Where nrsm is a temporary stack piece we 8470 * use to update all the gizmos. 8471 */ 8472 /* Copy up our fudge block */ 8473 nrsm = &stack_map; 8474 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8475 /* Now adjust our tree blocks */ 8476 rsm->r_end = start; 8477 next->r_start = start; 8478 /* Now we must adjust back where next->m is */ 8479 rack_setup_offset_for_rsm(rsm, next); 8480 8481 /* We don't need to adjust rsm, it did not change */ 8482 /* Clear out the dup ack count of the remainder */ 8483 rsm->r_dupack = 0; 8484 rsm->r_just_ret = 0; 8485 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8486 /* Now lets make sure our fudge block is right */ 8487 nrsm->r_start = start; 8488 /* Now lets update all the stats and such */ 8489 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8490 if (rack->app_limited_needs_set) 8491 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8492 changed += (nrsm->r_end - nrsm->r_start); 8493 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8494 if (nrsm->r_flags & RACK_SACK_PASSED) { 8495 counter_u64_add(rack_reorder_seen, 1); 8496 rack->r_ctl.rc_reorder_ts = cts; 8497 } 8498 /* 8499 * Now we want to go up from rsm (the 8500 * one left un-acked) to the next one 8501 * in the tmap. We do this so when 8502 * we walk backwards we include marking 8503 * sack-passed on rsm (The one passed in 8504 * is skipped since it is generally called 8505 * on something sacked before removing it 8506 * from the tmap). 8507 */ 8508 if (rsm->r_in_tmap) { 8509 nrsm = TAILQ_NEXT(rsm, r_tnext); 8510 /* 8511 * Now that we have the next 8512 * one walk backwards from there. 8513 */ 8514 if (nrsm && nrsm->r_in_tmap) 8515 rack_log_sack_passed(tp, rack, nrsm); 8516 } 8517 /* Now are we done? */ 8518 if (SEQ_LT(end, next->r_end) || 8519 (end == next->r_end)) { 8520 /* Done with block */ 8521 goto out; 8522 } 8523 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__); 8524 counter_u64_add(rack_sack_used_next_merge, 1); 8525 /* Postion for the next block */ 8526 start = next->r_end; 8527 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next); 8528 if (rsm == NULL) 8529 goto out; 8530 } else { 8531 /** 8532 * We can't use any hookery here, so we 8533 * need to split the map. We enter like 8534 * so: 8535 * rsm |--------| 8536 * sackblk |-----> 8537 * We will add the new block nrsm and 8538 * that will be the new portion, and then 8539 * fall through after reseting rsm. So we 8540 * split and look like this: 8541 * rsm |----| 8542 * sackblk |-----> 8543 * nrsm |---| 8544 * We then fall through reseting 8545 * rsm to nrsm, so the next block 8546 * picks it up. 8547 */ 8548 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8549 if (nrsm == NULL) { 8550 /* 8551 * failed XXXrrs what can we do but loose the sack 8552 * info? 8553 */ 8554 goto out; 8555 } 8556 counter_u64_add(rack_sack_splits, 1); 8557 rack_clone_rsm(rack, nrsm, rsm, start); 8558 rsm->r_just_ret = 0; 8559 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8560 #ifdef INVARIANTS 8561 if (insret != NULL) { 8562 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8563 nrsm, insret, rack, rsm); 8564 } 8565 #endif 8566 if (rsm->r_in_tmap) { 8567 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8568 nrsm->r_in_tmap = 1; 8569 } 8570 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__); 8571 rsm->r_flags &= (~RACK_HAS_FIN); 8572 /* Position us to point to the new nrsm that starts the sack blk */ 8573 rsm = nrsm; 8574 } 8575 } else { 8576 /* Already sacked this piece */ 8577 counter_u64_add(rack_sack_skipped_acked, 1); 8578 moved++; 8579 if (end == rsm->r_end) { 8580 /* Done with block */ 8581 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8582 goto out; 8583 } else if (SEQ_LT(end, rsm->r_end)) { 8584 /* A partial sack to a already sacked block */ 8585 moved++; 8586 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8587 goto out; 8588 } else { 8589 /* 8590 * The end goes beyond this guy 8591 * repostion the start to the 8592 * next block. 8593 */ 8594 start = rsm->r_end; 8595 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8596 if (rsm == NULL) 8597 goto out; 8598 } 8599 } 8600 } 8601 if (SEQ_GEQ(end, rsm->r_end)) { 8602 /** 8603 * The end of this block is either beyond this guy or right 8604 * at this guy. I.e.: 8605 * rsm --- |-----| 8606 * end |-----| 8607 * <or> 8608 * end |---------| 8609 */ 8610 if ((rsm->r_flags & RACK_ACKED) == 0) { 8611 /* 8612 * Is it a TLP of interest? 8613 */ 8614 if ((rsm->r_flags & RACK_TLP) && 8615 (rsm->r_rtr_cnt > 1)) { 8616 /* 8617 * We are splitting a rxt TLP, check 8618 * if we need to save off the start/end 8619 */ 8620 if (rack->rc_last_tlp_acked_set && 8621 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8622 /* 8623 * We already turned this on since we are inside 8624 * the previous one was a partially sack now we 8625 * are getting another one (maybe all of it). 8626 */ 8627 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8628 /* 8629 * Lets make sure we have all of it though. 8630 */ 8631 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8632 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8633 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8634 rack->r_ctl.last_tlp_acked_end); 8635 } 8636 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8637 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8638 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8639 rack->r_ctl.last_tlp_acked_end); 8640 } 8641 } else { 8642 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8643 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8644 rack->rc_last_tlp_past_cumack = 0; 8645 rack->rc_last_tlp_acked_set = 1; 8646 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8647 } 8648 } 8649 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8650 changed += (rsm->r_end - rsm->r_start); 8651 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8652 if (rsm->r_in_tmap) /* should be true */ 8653 rack_log_sack_passed(tp, rack, rsm); 8654 /* Is Reordering occuring? */ 8655 if (rsm->r_flags & RACK_SACK_PASSED) { 8656 rsm->r_flags &= ~RACK_SACK_PASSED; 8657 counter_u64_add(rack_reorder_seen, 1); 8658 rack->r_ctl.rc_reorder_ts = cts; 8659 } 8660 if (rack->app_limited_needs_set) 8661 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8662 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8663 rsm->r_flags |= RACK_ACKED; 8664 if (rsm->r_in_tmap) { 8665 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8666 rsm->r_in_tmap = 0; 8667 } 8668 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__); 8669 } else { 8670 counter_u64_add(rack_sack_skipped_acked, 1); 8671 moved++; 8672 } 8673 if (end == rsm->r_end) { 8674 /* This block only - done, setup for next */ 8675 goto out; 8676 } 8677 /* 8678 * There is more not coverend by this rsm move on 8679 * to the next block in the RB tree. 8680 */ 8681 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8682 start = rsm->r_end; 8683 rsm = nrsm; 8684 if (rsm == NULL) 8685 goto out; 8686 goto do_rest_ofb; 8687 } 8688 /** 8689 * The end of this sack block is smaller than 8690 * our rsm i.e.: 8691 * rsm --- |-----| 8692 * end |--| 8693 */ 8694 if ((rsm->r_flags & RACK_ACKED) == 0) { 8695 /* 8696 * Is it a TLP of interest? 8697 */ 8698 if ((rsm->r_flags & RACK_TLP) && 8699 (rsm->r_rtr_cnt > 1)) { 8700 /* 8701 * We are splitting a rxt TLP, check 8702 * if we need to save off the start/end 8703 */ 8704 if (rack->rc_last_tlp_acked_set && 8705 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8706 /* 8707 * We already turned this on since we are inside 8708 * the previous one was a partially sack now we 8709 * are getting another one (maybe all of it). 8710 */ 8711 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8712 /* 8713 * Lets make sure we have all of it though. 8714 */ 8715 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8716 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8717 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8718 rack->r_ctl.last_tlp_acked_end); 8719 } 8720 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8721 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8722 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8723 rack->r_ctl.last_tlp_acked_end); 8724 } 8725 } else { 8726 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8727 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8728 rack->rc_last_tlp_past_cumack = 0; 8729 rack->rc_last_tlp_acked_set = 1; 8730 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8731 } 8732 } 8733 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8734 if (prev && 8735 (prev->r_flags & RACK_ACKED)) { 8736 /** 8737 * Goal, we want the right remainder of rsm to shrink 8738 * in place and span from (rsm->r_start = end) to rsm->r_end. 8739 * We want to expand prev to go all the way 8740 * to prev->r_end <- end. 8741 * so in the tree we have before: 8742 * prev |--------| (acked) 8743 * rsm |-------| (non-acked) 8744 * sackblk |-| 8745 * We churn it so we end up with 8746 * prev |----------| (acked) 8747 * rsm |-----| (non-acked) 8748 * nrsm |-| (temporary) 8749 * 8750 * Note if either prev/rsm is a TLP we don't 8751 * do this. 8752 */ 8753 nrsm = &stack_map; 8754 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8755 prev->r_end = end; 8756 rsm->r_start = end; 8757 /* Now adjust nrsm (stack copy) to be 8758 * the one that is the small 8759 * piece that was "sacked". 8760 */ 8761 nrsm->r_end = end; 8762 rsm->r_dupack = 0; 8763 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8764 /* 8765 * Now that the rsm has had its start moved forward 8766 * lets go ahead and get its new place in the world. 8767 */ 8768 rack_setup_offset_for_rsm(prev, rsm); 8769 /* 8770 * Now nrsm is our new little piece 8771 * that is acked (which was merged 8772 * to prev). Update the rtt and changed 8773 * based on that. Also check for reordering. 8774 */ 8775 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8776 if (rack->app_limited_needs_set) 8777 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8778 changed += (nrsm->r_end - nrsm->r_start); 8779 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8780 if (nrsm->r_flags & RACK_SACK_PASSED) { 8781 counter_u64_add(rack_reorder_seen, 1); 8782 rack->r_ctl.rc_reorder_ts = cts; 8783 } 8784 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__); 8785 rsm = prev; 8786 counter_u64_add(rack_sack_used_prev_merge, 1); 8787 } else { 8788 /** 8789 * This is the case where our previous 8790 * block is not acked either, so we must 8791 * split the block in two. 8792 */ 8793 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8794 if (nrsm == NULL) { 8795 /* failed rrs what can we do but loose the sack info? */ 8796 goto out; 8797 } 8798 if ((rsm->r_flags & RACK_TLP) && 8799 (rsm->r_rtr_cnt > 1)) { 8800 /* 8801 * We are splitting a rxt TLP, check 8802 * if we need to save off the start/end 8803 */ 8804 if (rack->rc_last_tlp_acked_set && 8805 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 8806 /* 8807 * We already turned this on since this block is inside 8808 * the previous one was a partially sack now we 8809 * are getting another one (maybe all of it). 8810 */ 8811 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 8812 /* 8813 * Lets make sure we have all of it though. 8814 */ 8815 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 8816 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8817 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8818 rack->r_ctl.last_tlp_acked_end); 8819 } 8820 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 8821 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8822 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 8823 rack->r_ctl.last_tlp_acked_end); 8824 } 8825 } else { 8826 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 8827 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 8828 rack->rc_last_tlp_acked_set = 1; 8829 rack->rc_last_tlp_past_cumack = 0; 8830 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 8831 } 8832 } 8833 /** 8834 * In this case nrsm becomes 8835 * nrsm->r_start = end; 8836 * nrsm->r_end = rsm->r_end; 8837 * which is un-acked. 8838 * <and> 8839 * rsm->r_end = nrsm->r_start; 8840 * i.e. the remaining un-acked 8841 * piece is left on the left 8842 * hand side. 8843 * 8844 * So we start like this 8845 * rsm |----------| (not acked) 8846 * sackblk |---| 8847 * build it so we have 8848 * rsm |---| (acked) 8849 * nrsm |------| (not acked) 8850 */ 8851 counter_u64_add(rack_sack_splits, 1); 8852 rack_clone_rsm(rack, nrsm, rsm, end); 8853 rsm->r_flags &= (~RACK_HAS_FIN); 8854 rsm->r_just_ret = 0; 8855 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8856 #ifdef INVARIANTS 8857 if (insret != NULL) { 8858 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8859 nrsm, insret, rack, rsm); 8860 } 8861 #endif 8862 if (rsm->r_in_tmap) { 8863 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8864 nrsm->r_in_tmap = 1; 8865 } 8866 nrsm->r_dupack = 0; 8867 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 8868 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8869 changed += (rsm->r_end - rsm->r_start); 8870 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8871 if (rsm->r_in_tmap) /* should be true */ 8872 rack_log_sack_passed(tp, rack, rsm); 8873 /* Is Reordering occuring? */ 8874 if (rsm->r_flags & RACK_SACK_PASSED) { 8875 rsm->r_flags &= ~RACK_SACK_PASSED; 8876 counter_u64_add(rack_reorder_seen, 1); 8877 rack->r_ctl.rc_reorder_ts = cts; 8878 } 8879 if (rack->app_limited_needs_set) 8880 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8881 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8882 rsm->r_flags |= RACK_ACKED; 8883 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__); 8884 if (rsm->r_in_tmap) { 8885 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8886 rsm->r_in_tmap = 0; 8887 } 8888 } 8889 } else if (start != end){ 8890 /* 8891 * The block was already acked. 8892 */ 8893 counter_u64_add(rack_sack_skipped_acked, 1); 8894 moved++; 8895 } 8896 out: 8897 if (rsm && 8898 ((rsm->r_flags & RACK_TLP) == 0) && 8899 (rsm->r_flags & RACK_ACKED)) { 8900 /* 8901 * Now can we merge where we worked 8902 * with either the previous or 8903 * next block? 8904 */ 8905 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8906 while (next) { 8907 if (next->r_flags & RACK_TLP) 8908 break; 8909 if (next->r_flags & RACK_ACKED) { 8910 /* yep this and next can be merged */ 8911 rsm = rack_merge_rsm(rack, rsm, next); 8912 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8913 } else 8914 break; 8915 } 8916 /* Now what about the previous? */ 8917 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8918 while (prev) { 8919 if (prev->r_flags & RACK_TLP) 8920 break; 8921 if (prev->r_flags & RACK_ACKED) { 8922 /* yep the previous and this can be merged */ 8923 rsm = rack_merge_rsm(rack, prev, rsm); 8924 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8925 } else 8926 break; 8927 } 8928 } 8929 if (used_ref == 0) { 8930 counter_u64_add(rack_sack_proc_all, 1); 8931 } else { 8932 counter_u64_add(rack_sack_proc_short, 1); 8933 } 8934 /* Save off the next one for quick reference. */ 8935 if (rsm) 8936 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8937 else 8938 nrsm = NULL; 8939 *prsm = rack->r_ctl.rc_sacklast = nrsm; 8940 /* Pass back the moved. */ 8941 *moved_two = moved; 8942 return (changed); 8943 } 8944 8945 static void inline 8946 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) 8947 { 8948 struct rack_sendmap *tmap; 8949 8950 tmap = NULL; 8951 while (rsm && (rsm->r_flags & RACK_ACKED)) { 8952 /* Its no longer sacked, mark it so */ 8953 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 8954 #ifdef INVARIANTS 8955 if (rsm->r_in_tmap) { 8956 panic("rack:%p rsm:%p flags:0x%x in tmap?", 8957 rack, rsm, rsm->r_flags); 8958 } 8959 #endif 8960 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); 8961 /* Rebuild it into our tmap */ 8962 if (tmap == NULL) { 8963 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8964 tmap = rsm; 8965 } else { 8966 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); 8967 tmap = rsm; 8968 } 8969 tmap->r_in_tmap = 1; 8970 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8971 } 8972 /* 8973 * Now lets possibly clear the sack filter so we start 8974 * recognizing sacks that cover this area. 8975 */ 8976 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); 8977 8978 } 8979 8980 static void 8981 rack_do_decay(struct tcp_rack *rack) 8982 { 8983 struct timeval res; 8984 8985 #define timersub(tvp, uvp, vvp) \ 8986 do { \ 8987 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 8988 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 8989 if ((vvp)->tv_usec < 0) { \ 8990 (vvp)->tv_sec--; \ 8991 (vvp)->tv_usec += 1000000; \ 8992 } \ 8993 } while (0) 8994 8995 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); 8996 #undef timersub 8997 8998 rack->r_ctl.input_pkt++; 8999 if ((rack->rc_in_persist) || 9000 (res.tv_sec >= 1) || 9001 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { 9002 /* 9003 * Check for decay of non-SAD, 9004 * we want all SAD detection metrics to 9005 * decay 1/4 per second (or more) passed. 9006 */ 9007 uint32_t pkt_delta; 9008 9009 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; 9010 /* Update our saved tracking values */ 9011 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; 9012 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 9013 /* Now do we escape without decay? */ 9014 #ifdef NETFLIX_EXP_DETECTION 9015 if (rack->rc_in_persist || 9016 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || 9017 (pkt_delta < tcp_sad_low_pps)){ 9018 /* 9019 * We don't decay idle connections 9020 * or ones that have a low input pps. 9021 */ 9022 return; 9023 } 9024 /* Decay the counters */ 9025 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, 9026 tcp_sad_decay_val); 9027 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, 9028 tcp_sad_decay_val); 9029 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, 9030 tcp_sad_decay_val); 9031 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, 9032 tcp_sad_decay_val); 9033 #endif 9034 } 9035 } 9036 9037 static void 9038 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to) 9039 { 9040 struct rack_sendmap *rsm, *rm; 9041 9042 /* 9043 * The ACK point is advancing to th_ack, we must drop off 9044 * the packets in the rack log and calculate any eligble 9045 * RTT's. 9046 */ 9047 rack->r_wanted_output = 1; 9048 9049 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */ 9050 if ((rack->rc_last_tlp_acked_set == 1)&& 9051 (rack->rc_last_tlp_past_cumack == 1) && 9052 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) { 9053 /* 9054 * We have reached the point where our last rack 9055 * tlp retransmit sequence is ahead of the cum-ack. 9056 * This can only happen when the cum-ack moves all 9057 * the way around (its been a full 2^^31+1 bytes 9058 * or more since we sent a retransmitted TLP). Lets 9059 * turn off the valid flag since its not really valid. 9060 * 9061 * Note since sack's also turn on this event we have 9062 * a complication, we have to wait to age it out until 9063 * the cum-ack is by the TLP before checking which is 9064 * what the next else clause does. 9065 */ 9066 rack_log_dsack_event(rack, 9, __LINE__, 9067 rack->r_ctl.last_tlp_acked_start, 9068 rack->r_ctl.last_tlp_acked_end); 9069 rack->rc_last_tlp_acked_set = 0; 9070 rack->rc_last_tlp_past_cumack = 0; 9071 } else if ((rack->rc_last_tlp_acked_set == 1) && 9072 (rack->rc_last_tlp_past_cumack == 0) && 9073 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) { 9074 /* 9075 * It is safe to start aging TLP's out. 9076 */ 9077 rack->rc_last_tlp_past_cumack = 1; 9078 } 9079 /* We do the same for the tlp send seq as well */ 9080 if ((rack->rc_last_sent_tlp_seq_valid == 1) && 9081 (rack->rc_last_sent_tlp_past_cumack == 1) && 9082 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) { 9083 rack_log_dsack_event(rack, 9, __LINE__, 9084 rack->r_ctl.last_sent_tlp_seq, 9085 (rack->r_ctl.last_sent_tlp_seq + 9086 rack->r_ctl.last_sent_tlp_len)); 9087 rack->rc_last_sent_tlp_seq_valid = 0; 9088 rack->rc_last_sent_tlp_past_cumack = 0; 9089 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) && 9090 (rack->rc_last_sent_tlp_past_cumack == 0) && 9091 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) { 9092 /* 9093 * It is safe to start aging TLP's send. 9094 */ 9095 rack->rc_last_sent_tlp_past_cumack = 1; 9096 } 9097 more: 9098 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9099 if (rsm == NULL) { 9100 if ((th_ack - 1) == tp->iss) { 9101 /* 9102 * For the SYN incoming case we will not 9103 * have called tcp_output for the sending of 9104 * the SYN, so there will be no map. All 9105 * other cases should probably be a panic. 9106 */ 9107 return; 9108 } 9109 if (tp->t_flags & TF_SENTFIN) { 9110 /* if we sent a FIN we often will not have map */ 9111 return; 9112 } 9113 #ifdef INVARIANTS 9114 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n", 9115 tp, 9116 tp->t_state, th_ack, rack, 9117 tp->snd_una, tp->snd_max, tp->snd_nxt); 9118 #endif 9119 return; 9120 } 9121 if (SEQ_LT(th_ack, rsm->r_start)) { 9122 /* Huh map is missing this */ 9123 #ifdef INVARIANTS 9124 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", 9125 rsm->r_start, 9126 th_ack, tp->t_state, rack->r_state); 9127 #endif 9128 return; 9129 } 9130 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); 9131 9132 /* Now was it a retransmitted TLP? */ 9133 if ((rsm->r_flags & RACK_TLP) && 9134 (rsm->r_rtr_cnt > 1)) { 9135 /* 9136 * Yes, this rsm was a TLP and retransmitted, remember that 9137 * since if a DSACK comes back on this we don't want 9138 * to think of it as a reordered segment. This may 9139 * get updated again with possibly even other TLPs 9140 * in flight, but thats ok. Only when we don't send 9141 * a retransmitted TLP for 1/2 the sequences space 9142 * will it get turned off (above). 9143 */ 9144 if (rack->rc_last_tlp_acked_set && 9145 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9146 /* 9147 * We already turned this on since the end matches, 9148 * the previous one was a partially ack now we 9149 * are getting another one (maybe all of it). 9150 */ 9151 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9152 /* 9153 * Lets make sure we have all of it though. 9154 */ 9155 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9156 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9157 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9158 rack->r_ctl.last_tlp_acked_end); 9159 } 9160 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9161 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9162 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9163 rack->r_ctl.last_tlp_acked_end); 9164 } 9165 } else { 9166 rack->rc_last_tlp_past_cumack = 1; 9167 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9168 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9169 rack->rc_last_tlp_acked_set = 1; 9170 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9171 } 9172 } 9173 /* Now do we consume the whole thing? */ 9174 if (SEQ_GEQ(th_ack, rsm->r_end)) { 9175 /* Its all consumed. */ 9176 uint32_t left; 9177 uint8_t newly_acked; 9178 9179 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__); 9180 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; 9181 rsm->r_rtr_bytes = 0; 9182 /* Record the time of highest cumack sent */ 9183 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9184 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 9185 #ifdef INVARIANTS 9186 if (rm != rsm) { 9187 panic("removing head in rack:%p rsm:%p rm:%p", 9188 rack, rsm, rm); 9189 } 9190 #endif 9191 if (rsm->r_in_tmap) { 9192 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 9193 rsm->r_in_tmap = 0; 9194 } 9195 newly_acked = 1; 9196 if (rsm->r_flags & RACK_ACKED) { 9197 /* 9198 * It was acked on the scoreboard -- remove 9199 * it from total 9200 */ 9201 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 9202 newly_acked = 0; 9203 } else if (rsm->r_flags & RACK_SACK_PASSED) { 9204 /* 9205 * There are segments ACKED on the 9206 * scoreboard further up. We are seeing 9207 * reordering. 9208 */ 9209 rsm->r_flags &= ~RACK_SACK_PASSED; 9210 counter_u64_add(rack_reorder_seen, 1); 9211 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 9212 rsm->r_flags |= RACK_ACKED; 9213 rack->r_ctl.rc_reorder_ts = cts; 9214 if (rack->r_ent_rec_ns) { 9215 /* 9216 * We have sent no more, and we saw an sack 9217 * then ack arrive. 9218 */ 9219 rack->r_might_revert = 1; 9220 } 9221 } 9222 if ((rsm->r_flags & RACK_TO_REXT) && 9223 (tp->t_flags & TF_RCVD_TSTMP) && 9224 (to->to_flags & TOF_TS) && 9225 (to->to_tsecr != 0) && 9226 (tp->t_flags & TF_PREVVALID)) { 9227 /* 9228 * We can use the timestamp to see 9229 * if this retransmission was from the 9230 * first transmit. If so we made a mistake. 9231 */ 9232 tp->t_flags &= ~TF_PREVVALID; 9233 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) { 9234 /* The first transmit is what this ack is for */ 9235 rack_cong_signal(tp, CC_RTO_ERR, th_ack); 9236 } 9237 } 9238 left = th_ack - rsm->r_end; 9239 if (rack->app_limited_needs_set && newly_acked) 9240 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); 9241 /* Free back to zone */ 9242 rack_free(rack, rsm); 9243 if (left) { 9244 goto more; 9245 } 9246 /* Check for reneging */ 9247 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9248 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { 9249 /* 9250 * The peer has moved snd_una up to 9251 * the edge of this send, i.e. one 9252 * that it had previously acked. The only 9253 * way that can be true if the peer threw 9254 * away data (space issues) that it had 9255 * previously sacked (else it would have 9256 * given us snd_una up to (rsm->r_end). 9257 * We need to undo the acked markings here. 9258 * 9259 * Note we have to look to make sure th_ack is 9260 * our rsm->r_start in case we get an old ack 9261 * where th_ack is behind snd_una. 9262 */ 9263 rack_peer_reneges(rack, rsm, th_ack); 9264 } 9265 return; 9266 } 9267 if (rsm->r_flags & RACK_ACKED) { 9268 /* 9269 * It was acked on the scoreboard -- remove it from 9270 * total for the part being cum-acked. 9271 */ 9272 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); 9273 } 9274 /* 9275 * Clear the dup ack count for 9276 * the piece that remains. 9277 */ 9278 rsm->r_dupack = 0; 9279 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 9280 if (rsm->r_rtr_bytes) { 9281 /* 9282 * It was retransmitted adjust the 9283 * sack holes for what was acked. 9284 */ 9285 int ack_am; 9286 9287 ack_am = (th_ack - rsm->r_start); 9288 if (ack_am >= rsm->r_rtr_bytes) { 9289 rack->r_ctl.rc_holes_rxt -= ack_am; 9290 rsm->r_rtr_bytes -= ack_am; 9291 } 9292 } 9293 /* 9294 * Update where the piece starts and record 9295 * the time of send of highest cumack sent. 9296 */ 9297 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 9298 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__); 9299 /* Now we need to move our offset forward too */ 9300 if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) { 9301 /* Fix up the orig_m_len and possibly the mbuf offset */ 9302 rack_adjust_orig_mlen(rsm); 9303 } 9304 rsm->soff += (th_ack - rsm->r_start); 9305 rsm->r_start = th_ack; 9306 /* Now do we need to move the mbuf fwd too? */ 9307 if (rsm->m) { 9308 while (rsm->soff >= rsm->m->m_len) { 9309 rsm->soff -= rsm->m->m_len; 9310 rsm->m = rsm->m->m_next; 9311 KASSERT((rsm->m != NULL), 9312 (" nrsm:%p hit at soff:%u null m", 9313 rsm, rsm->soff)); 9314 } 9315 rsm->orig_m_len = rsm->m->m_len; 9316 } 9317 if (rack->app_limited_needs_set) 9318 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); 9319 } 9320 9321 static void 9322 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack) 9323 { 9324 struct rack_sendmap *rsm; 9325 int sack_pass_fnd = 0; 9326 9327 if (rack->r_might_revert) { 9328 /* 9329 * Ok we have reordering, have not sent anything, we 9330 * might want to revert the congestion state if nothing 9331 * further has SACK_PASSED on it. Lets check. 9332 * 9333 * We also get here when we have DSACKs come in for 9334 * all the data that we FR'd. Note that a rxt or tlp 9335 * timer clears this from happening. 9336 */ 9337 9338 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 9339 if (rsm->r_flags & RACK_SACK_PASSED) { 9340 sack_pass_fnd = 1; 9341 break; 9342 } 9343 } 9344 if (sack_pass_fnd == 0) { 9345 /* 9346 * We went into recovery 9347 * incorrectly due to reordering! 9348 */ 9349 int orig_cwnd; 9350 9351 rack->r_ent_rec_ns = 0; 9352 orig_cwnd = tp->snd_cwnd; 9353 tp->snd_cwnd = rack->r_ctl.rc_cwnd_at_erec; 9354 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec; 9355 tp->snd_recover = tp->snd_una; 9356 rack_log_to_prr(rack, 14, orig_cwnd); 9357 EXIT_RECOVERY(tp->t_flags); 9358 } 9359 rack->r_might_revert = 0; 9360 } 9361 } 9362 9363 #ifdef NETFLIX_EXP_DETECTION 9364 static void 9365 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz) 9366 { 9367 if ((rack->do_detection || tcp_force_detection) && 9368 tcp_sack_to_ack_thresh && 9369 tcp_sack_to_move_thresh && 9370 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) { 9371 /* 9372 * We have thresholds set to find 9373 * possible attackers and disable sack. 9374 * Check them. 9375 */ 9376 uint64_t ackratio, moveratio, movetotal; 9377 9378 /* Log detecting */ 9379 rack_log_sad(rack, 1); 9380 ackratio = (uint64_t)(rack->r_ctl.sack_count); 9381 ackratio *= (uint64_t)(1000); 9382 if (rack->r_ctl.ack_count) 9383 ackratio /= (uint64_t)(rack->r_ctl.ack_count); 9384 else { 9385 /* We really should not hit here */ 9386 ackratio = 1000; 9387 } 9388 if ((rack->sack_attack_disable == 0) && 9389 (ackratio > rack_highest_sack_thresh_seen)) 9390 rack_highest_sack_thresh_seen = (uint32_t)ackratio; 9391 movetotal = rack->r_ctl.sack_moved_extra; 9392 movetotal += rack->r_ctl.sack_noextra_move; 9393 moveratio = rack->r_ctl.sack_moved_extra; 9394 moveratio *= (uint64_t)1000; 9395 if (movetotal) 9396 moveratio /= movetotal; 9397 else { 9398 /* No moves, thats pretty good */ 9399 moveratio = 0; 9400 } 9401 if ((rack->sack_attack_disable == 0) && 9402 (moveratio > rack_highest_move_thresh_seen)) 9403 rack_highest_move_thresh_seen = (uint32_t)moveratio; 9404 if (rack->sack_attack_disable == 0) { 9405 if ((ackratio > tcp_sack_to_ack_thresh) && 9406 (moveratio > tcp_sack_to_move_thresh)) { 9407 /* Disable sack processing */ 9408 rack->sack_attack_disable = 1; 9409 if (rack->r_rep_attack == 0) { 9410 rack->r_rep_attack = 1; 9411 counter_u64_add(rack_sack_attacks_detected, 1); 9412 } 9413 if (tcp_attack_on_turns_on_logging) { 9414 /* 9415 * Turn on logging, used for debugging 9416 * false positives. 9417 */ 9418 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging; 9419 } 9420 /* Clamp the cwnd at flight size */ 9421 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; 9422 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 9423 rack_log_sad(rack, 2); 9424 } 9425 } else { 9426 /* We are sack-disabled check for false positives */ 9427 if ((ackratio <= tcp_restoral_thresh) || 9428 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) { 9429 rack->sack_attack_disable = 0; 9430 rack_log_sad(rack, 3); 9431 /* Restart counting */ 9432 rack->r_ctl.sack_count = 0; 9433 rack->r_ctl.sack_moved_extra = 0; 9434 rack->r_ctl.sack_noextra_move = 1; 9435 rack->r_ctl.ack_count = max(1, 9436 (bytes_this_ack / segsiz)); 9437 9438 if (rack->r_rep_reverse == 0) { 9439 rack->r_rep_reverse = 1; 9440 counter_u64_add(rack_sack_attacks_reversed, 1); 9441 } 9442 /* Restore the cwnd */ 9443 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) 9444 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; 9445 } 9446 } 9447 } 9448 } 9449 #endif 9450 9451 static int 9452 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end) 9453 { 9454 9455 uint32_t am, l_end; 9456 int was_tlp = 0; 9457 9458 if (SEQ_GT(end, start)) 9459 am = end - start; 9460 else 9461 am = 0; 9462 if ((rack->rc_last_tlp_acked_set ) && 9463 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) && 9464 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) { 9465 /* 9466 * The DSACK is because of a TLP which we don't 9467 * do anything with the reordering window over since 9468 * it was not reordering that caused the DSACK but 9469 * our previous retransmit TLP. 9470 */ 9471 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9472 was_tlp = 1; 9473 goto skip_dsack_round; 9474 } 9475 if (rack->rc_last_sent_tlp_seq_valid) { 9476 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len; 9477 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) && 9478 (SEQ_LEQ(end, l_end))) { 9479 /* 9480 * This dsack is from the last sent TLP, ignore it 9481 * for reordering purposes. 9482 */ 9483 rack_log_dsack_event(rack, 7, __LINE__, start, end); 9484 was_tlp = 1; 9485 goto skip_dsack_round; 9486 } 9487 } 9488 if (rack->rc_dsack_round_seen == 0) { 9489 rack->rc_dsack_round_seen = 1; 9490 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max; 9491 rack->r_ctl.num_dsack++; 9492 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */ 9493 rack_log_dsack_event(rack, 2, __LINE__, 0, 0); 9494 } 9495 skip_dsack_round: 9496 /* 9497 * We keep track of how many DSACK blocks we get 9498 * after a recovery incident. 9499 */ 9500 rack->r_ctl.dsack_byte_cnt += am; 9501 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) && 9502 rack->r_ctl.retran_during_recovery && 9503 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) { 9504 /* 9505 * False recovery most likely culprit is reordering. If 9506 * nothing else is missing we need to revert. 9507 */ 9508 rack->r_might_revert = 1; 9509 rack_handle_might_revert(rack->rc_tp, rack); 9510 rack->r_might_revert = 0; 9511 rack->r_ctl.retran_during_recovery = 0; 9512 rack->r_ctl.dsack_byte_cnt = 0; 9513 } 9514 return (was_tlp); 9515 } 9516 9517 static void 9518 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack) 9519 { 9520 /* Deal with changed and PRR here (in recovery only) */ 9521 uint32_t pipe, snd_una; 9522 9523 rack->r_ctl.rc_prr_delivered += changed; 9524 9525 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) { 9526 /* 9527 * It is all outstanding, we are application limited 9528 * and thus we don't need more room to send anything. 9529 * Note we use tp->snd_una here and not th_ack because 9530 * the data as yet not been cut from the sb. 9531 */ 9532 rack->r_ctl.rc_prr_sndcnt = 0; 9533 return; 9534 } 9535 /* Compute prr_sndcnt */ 9536 if (SEQ_GT(tp->snd_una, th_ack)) { 9537 snd_una = tp->snd_una; 9538 } else { 9539 snd_una = th_ack; 9540 } 9541 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt; 9542 if (pipe > tp->snd_ssthresh) { 9543 long sndcnt; 9544 9545 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; 9546 if (rack->r_ctl.rc_prr_recovery_fs > 0) 9547 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; 9548 else { 9549 rack->r_ctl.rc_prr_sndcnt = 0; 9550 rack_log_to_prr(rack, 9, 0); 9551 sndcnt = 0; 9552 } 9553 sndcnt++; 9554 if (sndcnt > (long)rack->r_ctl.rc_prr_out) 9555 sndcnt -= rack->r_ctl.rc_prr_out; 9556 else 9557 sndcnt = 0; 9558 rack->r_ctl.rc_prr_sndcnt = sndcnt; 9559 rack_log_to_prr(rack, 10, 0); 9560 } else { 9561 uint32_t limit; 9562 9563 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) 9564 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); 9565 else 9566 limit = 0; 9567 if (changed > limit) 9568 limit = changed; 9569 limit += ctf_fixed_maxseg(tp); 9570 if (tp->snd_ssthresh > pipe) { 9571 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); 9572 rack_log_to_prr(rack, 11, 0); 9573 } else { 9574 rack->r_ctl.rc_prr_sndcnt = min(0, limit); 9575 rack_log_to_prr(rack, 12, 0); 9576 } 9577 } 9578 } 9579 9580 static void 9581 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck) 9582 { 9583 uint32_t changed; 9584 struct tcp_rack *rack; 9585 struct rack_sendmap *rsm; 9586 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; 9587 register uint32_t th_ack; 9588 int32_t i, j, k, num_sack_blks = 0; 9589 uint32_t cts, acked, ack_point, sack_changed = 0; 9590 int loop_start = 0, moved_two = 0; 9591 uint32_t tsused; 9592 9593 9594 INP_WLOCK_ASSERT(tp->t_inpcb); 9595 if (th->th_flags & TH_RST) { 9596 /* We don't log resets */ 9597 return; 9598 } 9599 rack = (struct tcp_rack *)tp->t_fb_ptr; 9600 cts = tcp_get_usecs(NULL); 9601 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9602 changed = 0; 9603 th_ack = th->th_ack; 9604 if (rack->sack_attack_disable == 0) 9605 rack_do_decay(rack); 9606 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) { 9607 /* 9608 * You only get credit for 9609 * MSS and greater (and you get extra 9610 * credit for larger cum-ack moves). 9611 */ 9612 int ac; 9613 9614 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); 9615 rack->r_ctl.ack_count += ac; 9616 counter_u64_add(rack_ack_total, ac); 9617 } 9618 if (rack->r_ctl.ack_count > 0xfff00000) { 9619 /* 9620 * reduce the number to keep us under 9621 * a uint32_t. 9622 */ 9623 rack->r_ctl.ack_count /= 2; 9624 rack->r_ctl.sack_count /= 2; 9625 } 9626 if (SEQ_GT(th_ack, tp->snd_una)) { 9627 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); 9628 tp->t_acktime = ticks; 9629 } 9630 if (rsm && SEQ_GT(th_ack, rsm->r_start)) 9631 changed = th_ack - rsm->r_start; 9632 if (changed) { 9633 rack_process_to_cumack(tp, rack, th_ack, cts, to); 9634 } 9635 if ((to->to_flags & TOF_SACK) == 0) { 9636 /* We are done nothing left and no sack. */ 9637 rack_handle_might_revert(tp, rack); 9638 /* 9639 * For cases where we struck a dup-ack 9640 * with no SACK, add to the changes so 9641 * PRR will work right. 9642 */ 9643 if (dup_ack_struck && (changed == 0)) { 9644 changed += ctf_fixed_maxseg(rack->rc_tp); 9645 } 9646 goto out; 9647 } 9648 /* Sack block processing */ 9649 if (SEQ_GT(th_ack, tp->snd_una)) 9650 ack_point = th_ack; 9651 else 9652 ack_point = tp->snd_una; 9653 for (i = 0; i < to->to_nsacks; i++) { 9654 bcopy((to->to_sacks + i * TCPOLEN_SACK), 9655 &sack, sizeof(sack)); 9656 sack.start = ntohl(sack.start); 9657 sack.end = ntohl(sack.end); 9658 if (SEQ_GT(sack.end, sack.start) && 9659 SEQ_GT(sack.start, ack_point) && 9660 SEQ_LT(sack.start, tp->snd_max) && 9661 SEQ_GT(sack.end, ack_point) && 9662 SEQ_LEQ(sack.end, tp->snd_max)) { 9663 sack_blocks[num_sack_blks] = sack; 9664 num_sack_blks++; 9665 } else if (SEQ_LEQ(sack.start, th_ack) && 9666 SEQ_LEQ(sack.end, th_ack)) { 9667 int was_tlp; 9668 9669 was_tlp = rack_note_dsack(rack, sack.start, sack.end); 9670 /* 9671 * Its a D-SACK block. 9672 */ 9673 tcp_record_dsack(tp, sack.start, sack.end, was_tlp); 9674 } 9675 } 9676 if (rack->rc_dsack_round_seen) { 9677 /* Is the dsack roound over? */ 9678 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) { 9679 /* Yes it is */ 9680 rack->rc_dsack_round_seen = 0; 9681 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 9682 } 9683 } 9684 /* 9685 * Sort the SACK blocks so we can update the rack scoreboard with 9686 * just one pass. 9687 */ 9688 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, 9689 num_sack_blks, th->th_ack); 9690 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); 9691 if (num_sack_blks == 0) { 9692 /* Nothing to sack (DSACKs?) */ 9693 goto out_with_totals; 9694 } 9695 if (num_sack_blks < 2) { 9696 /* Only one, we don't need to sort */ 9697 goto do_sack_work; 9698 } 9699 /* Sort the sacks */ 9700 for (i = 0; i < num_sack_blks; i++) { 9701 for (j = i + 1; j < num_sack_blks; j++) { 9702 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { 9703 sack = sack_blocks[i]; 9704 sack_blocks[i] = sack_blocks[j]; 9705 sack_blocks[j] = sack; 9706 } 9707 } 9708 } 9709 /* 9710 * Now are any of the sack block ends the same (yes some 9711 * implementations send these)? 9712 */ 9713 again: 9714 if (num_sack_blks == 0) 9715 goto out_with_totals; 9716 if (num_sack_blks > 1) { 9717 for (i = 0; i < num_sack_blks; i++) { 9718 for (j = i + 1; j < num_sack_blks; j++) { 9719 if (sack_blocks[i].end == sack_blocks[j].end) { 9720 /* 9721 * Ok these two have the same end we 9722 * want the smallest end and then 9723 * throw away the larger and start 9724 * again. 9725 */ 9726 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { 9727 /* 9728 * The second block covers 9729 * more area use that 9730 */ 9731 sack_blocks[i].start = sack_blocks[j].start; 9732 } 9733 /* 9734 * Now collapse out the dup-sack and 9735 * lower the count 9736 */ 9737 for (k = (j + 1); k < num_sack_blks; k++) { 9738 sack_blocks[j].start = sack_blocks[k].start; 9739 sack_blocks[j].end = sack_blocks[k].end; 9740 j++; 9741 } 9742 num_sack_blks--; 9743 goto again; 9744 } 9745 } 9746 } 9747 } 9748 do_sack_work: 9749 /* 9750 * First lets look to see if 9751 * we have retransmitted and 9752 * can use the transmit next? 9753 */ 9754 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9755 if (rsm && 9756 SEQ_GT(sack_blocks[0].end, rsm->r_start) && 9757 SEQ_LT(sack_blocks[0].start, rsm->r_end)) { 9758 /* 9759 * We probably did the FR and the next 9760 * SACK in continues as we would expect. 9761 */ 9762 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two); 9763 if (acked) { 9764 rack->r_wanted_output = 1; 9765 changed += acked; 9766 sack_changed += acked; 9767 } 9768 if (num_sack_blks == 1) { 9769 /* 9770 * This is what we would expect from 9771 * a normal implementation to happen 9772 * after we have retransmitted the FR, 9773 * i.e the sack-filter pushes down 9774 * to 1 block and the next to be retransmitted 9775 * is the sequence in the sack block (has more 9776 * are acked). Count this as ACK'd data to boost 9777 * up the chances of recovering any false positives. 9778 */ 9779 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); 9780 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); 9781 counter_u64_add(rack_express_sack, 1); 9782 if (rack->r_ctl.ack_count > 0xfff00000) { 9783 /* 9784 * reduce the number to keep us under 9785 * a uint32_t. 9786 */ 9787 rack->r_ctl.ack_count /= 2; 9788 rack->r_ctl.sack_count /= 2; 9789 } 9790 goto out_with_totals; 9791 } else { 9792 /* 9793 * Start the loop through the 9794 * rest of blocks, past the first block. 9795 */ 9796 moved_two = 0; 9797 loop_start = 1; 9798 } 9799 } 9800 /* Its a sack of some sort */ 9801 rack->r_ctl.sack_count++; 9802 if (rack->r_ctl.sack_count > 0xfff00000) { 9803 /* 9804 * reduce the number to keep us under 9805 * a uint32_t. 9806 */ 9807 rack->r_ctl.ack_count /= 2; 9808 rack->r_ctl.sack_count /= 2; 9809 } 9810 counter_u64_add(rack_sack_total, 1); 9811 if (rack->sack_attack_disable) { 9812 /* An attacker disablement is in place */ 9813 if (num_sack_blks > 1) { 9814 rack->r_ctl.sack_count += (num_sack_blks - 1); 9815 rack->r_ctl.sack_moved_extra++; 9816 counter_u64_add(rack_move_some, 1); 9817 if (rack->r_ctl.sack_moved_extra > 0xfff00000) { 9818 rack->r_ctl.sack_moved_extra /= 2; 9819 rack->r_ctl.sack_noextra_move /= 2; 9820 } 9821 } 9822 goto out; 9823 } 9824 rsm = rack->r_ctl.rc_sacklast; 9825 for (i = loop_start; i < num_sack_blks; i++) { 9826 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two); 9827 if (acked) { 9828 rack->r_wanted_output = 1; 9829 changed += acked; 9830 sack_changed += acked; 9831 } 9832 if (moved_two) { 9833 /* 9834 * If we did not get a SACK for at least a MSS and 9835 * had to move at all, or if we moved more than our 9836 * threshold, it counts against the "extra" move. 9837 */ 9838 rack->r_ctl.sack_moved_extra += moved_two; 9839 counter_u64_add(rack_move_some, 1); 9840 } else { 9841 /* 9842 * else we did not have to move 9843 * any more than we would expect. 9844 */ 9845 rack->r_ctl.sack_noextra_move++; 9846 counter_u64_add(rack_move_none, 1); 9847 } 9848 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { 9849 /* 9850 * If the SACK was not a full MSS then 9851 * we add to sack_count the number of 9852 * MSS's (or possibly more than 9853 * a MSS if its a TSO send) we had to skip by. 9854 */ 9855 rack->r_ctl.sack_count += moved_two; 9856 counter_u64_add(rack_sack_total, moved_two); 9857 } 9858 /* 9859 * Now we need to setup for the next 9860 * round. First we make sure we won't 9861 * exceed the size of our uint32_t on 9862 * the various counts, and then clear out 9863 * moved_two. 9864 */ 9865 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 9866 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 9867 rack->r_ctl.sack_moved_extra /= 2; 9868 rack->r_ctl.sack_noextra_move /= 2; 9869 } 9870 if (rack->r_ctl.sack_count > 0xfff00000) { 9871 rack->r_ctl.ack_count /= 2; 9872 rack->r_ctl.sack_count /= 2; 9873 } 9874 moved_two = 0; 9875 } 9876 out_with_totals: 9877 if (num_sack_blks > 1) { 9878 /* 9879 * You get an extra stroke if 9880 * you have more than one sack-blk, this 9881 * could be where we are skipping forward 9882 * and the sack-filter is still working, or 9883 * it could be an attacker constantly 9884 * moving us. 9885 */ 9886 rack->r_ctl.sack_moved_extra++; 9887 counter_u64_add(rack_move_some, 1); 9888 } 9889 out: 9890 #ifdef NETFLIX_EXP_DETECTION 9891 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp)); 9892 #endif 9893 if (changed) { 9894 /* Something changed cancel the rack timer */ 9895 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9896 } 9897 tsused = tcp_get_usecs(NULL); 9898 rsm = tcp_rack_output(tp, rack, tsused); 9899 if ((!IN_FASTRECOVERY(tp->t_flags)) && 9900 rsm) { 9901 /* Enter recovery */ 9902 rack->r_ctl.rc_rsm_start = rsm->r_start; 9903 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 9904 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 9905 entered_recovery = 1; 9906 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 9907 /* 9908 * When we enter recovery we need to assure we send 9909 * one packet. 9910 */ 9911 if (rack->rack_no_prr == 0) { 9912 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 9913 rack_log_to_prr(rack, 8, 0); 9914 } 9915 rack->r_timer_override = 1; 9916 rack->r_early = 0; 9917 rack->r_ctl.rc_agg_early = 0; 9918 } else if (IN_FASTRECOVERY(tp->t_flags) && 9919 rsm && 9920 (rack->r_rr_config == 3)) { 9921 /* 9922 * Assure we can output and we get no 9923 * remembered pace time except the retransmit. 9924 */ 9925 rack->r_timer_override = 1; 9926 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 9927 rack->r_ctl.rc_resend = rsm; 9928 } 9929 if (IN_FASTRECOVERY(tp->t_flags) && 9930 (rack->rack_no_prr == 0) && 9931 (entered_recovery == 0)) { 9932 rack_update_prr(tp, rack, changed, th_ack); 9933 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && 9934 ((rack->rc_inp->inp_in_hpts == 0) && 9935 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { 9936 /* 9937 * If you are pacing output you don't want 9938 * to override. 9939 */ 9940 rack->r_early = 0; 9941 rack->r_ctl.rc_agg_early = 0; 9942 rack->r_timer_override = 1; 9943 } 9944 } 9945 } 9946 9947 static void 9948 rack_strike_dupack(struct tcp_rack *rack) 9949 { 9950 struct rack_sendmap *rsm; 9951 9952 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9953 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 9954 rsm = TAILQ_NEXT(rsm, r_tnext); 9955 } 9956 if (rsm && (rsm->r_dupack < 0xff)) { 9957 rsm->r_dupack++; 9958 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { 9959 struct timeval tv; 9960 uint32_t cts; 9961 /* 9962 * Here we see if we need to retransmit. For 9963 * a SACK type connection if enough time has passed 9964 * we will get a return of the rsm. For a non-sack 9965 * connection we will get the rsm returned if the 9966 * dupack value is 3 or more. 9967 */ 9968 cts = tcp_get_usecs(&tv); 9969 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts); 9970 if (rack->r_ctl.rc_resend != NULL) { 9971 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) { 9972 rack_cong_signal(rack->rc_tp, CC_NDUPACK, 9973 rack->rc_tp->snd_una); 9974 } 9975 rack->r_wanted_output = 1; 9976 rack->r_timer_override = 1; 9977 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); 9978 } 9979 } else { 9980 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); 9981 } 9982 } 9983 } 9984 9985 static void 9986 rack_check_bottom_drag(struct tcpcb *tp, 9987 struct tcp_rack *rack, 9988 struct socket *so, int32_t acked) 9989 { 9990 uint32_t segsiz, minseg; 9991 9992 segsiz = ctf_fixed_maxseg(tp); 9993 minseg = segsiz; 9994 9995 if (tp->snd_max == tp->snd_una) { 9996 /* 9997 * We are doing dynamic pacing and we are way 9998 * under. Basically everything got acked while 9999 * we were still waiting on the pacer to expire. 10000 * 10001 * This means we need to boost the b/w in 10002 * addition to any earlier boosting of 10003 * the multipler. 10004 */ 10005 rack->rc_dragged_bottom = 1; 10006 rack_validate_multipliers_at_or_above100(rack); 10007 /* 10008 * Lets use the segment bytes acked plus 10009 * the lowest RTT seen as the basis to 10010 * form a b/w estimate. This will be off 10011 * due to the fact that the true estimate 10012 * should be around 1/2 the time of the RTT 10013 * but we can settle for that. 10014 */ 10015 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && 10016 acked) { 10017 uint64_t bw, calc_bw, rtt; 10018 10019 rtt = rack->r_ctl.rack_rs.rs_us_rtt; 10020 if (rtt == 0) { 10021 /* no us sample is there a ms one? */ 10022 if (rack->r_ctl.rack_rs.rs_rtt_lowest) { 10023 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 10024 } else { 10025 goto no_measurement; 10026 } 10027 } 10028 bw = acked; 10029 calc_bw = bw * 1000000; 10030 calc_bw /= rtt; 10031 if (rack->r_ctl.last_max_bw && 10032 (rack->r_ctl.last_max_bw < calc_bw)) { 10033 /* 10034 * If we have a last calculated max bw 10035 * enforce it. 10036 */ 10037 calc_bw = rack->r_ctl.last_max_bw; 10038 } 10039 /* now plop it in */ 10040 if (rack->rc_gp_filled == 0) { 10041 if (calc_bw > ONE_POINT_TWO_MEG) { 10042 /* 10043 * If we have no measurement 10044 * don't let us set in more than 10045 * 1.2Mbps. If we are still too 10046 * low after pacing with this we 10047 * will hopefully have a max b/w 10048 * available to sanity check things. 10049 */ 10050 calc_bw = ONE_POINT_TWO_MEG; 10051 } 10052 rack->r_ctl.rc_rtt_diff = 0; 10053 rack->r_ctl.gp_bw = calc_bw; 10054 rack->rc_gp_filled = 1; 10055 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 10056 rack->r_ctl.num_measurements = RACK_REQ_AVG; 10057 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 10058 } else if (calc_bw > rack->r_ctl.gp_bw) { 10059 rack->r_ctl.rc_rtt_diff = 0; 10060 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 10061 rack->r_ctl.num_measurements = RACK_REQ_AVG; 10062 rack->r_ctl.gp_bw = calc_bw; 10063 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 10064 } else 10065 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10066 if ((rack->gp_ready == 0) && 10067 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 10068 /* We have enough measurements now */ 10069 rack->gp_ready = 1; 10070 rack_set_cc_pacing(rack); 10071 if (rack->defer_options) 10072 rack_apply_deferred_options(rack); 10073 } 10074 /* 10075 * For acks over 1mss we do a extra boost to simulate 10076 * where we would get 2 acks (we want 110 for the mul). 10077 */ 10078 if (acked > segsiz) 10079 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10080 } else { 10081 /* 10082 * zero rtt possibly?, settle for just an old increase. 10083 */ 10084 no_measurement: 10085 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10086 } 10087 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 10088 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), 10089 minseg)) && 10090 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && 10091 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && 10092 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= 10093 (segsiz * rack_req_segs))) { 10094 /* 10095 * We are doing dynamic GP pacing and 10096 * we have everything except 1MSS or less 10097 * bytes left out. We are still pacing away. 10098 * And there is data that could be sent, This 10099 * means we are inserting delayed ack time in 10100 * our measurements because we are pacing too slow. 10101 */ 10102 rack_validate_multipliers_at_or_above100(rack); 10103 rack->rc_dragged_bottom = 1; 10104 rack_increase_bw_mul(rack, -1, 0, 0, 1); 10105 } 10106 } 10107 10108 10109 10110 static void 10111 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount) 10112 { 10113 /* 10114 * The fast output path is enabled and we 10115 * have moved the cumack forward. Lets see if 10116 * we can expand forward the fast path length by 10117 * that amount. What we would ideally like to 10118 * do is increase the number of bytes in the 10119 * fast path block (left_to_send) by the 10120 * acked amount. However we have to gate that 10121 * by two factors: 10122 * 1) The amount outstanding and the rwnd of the peer 10123 * (i.e. we don't want to exceed the rwnd of the peer). 10124 * <and> 10125 * 2) The amount of data left in the socket buffer (i.e. 10126 * we can't send beyond what is in the buffer). 10127 * 10128 * Note that this does not take into account any increase 10129 * in the cwnd. We will only extend the fast path by 10130 * what was acked. 10131 */ 10132 uint32_t new_total, gating_val; 10133 10134 new_total = acked_amount + rack->r_ctl.fsb.left_to_send; 10135 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)), 10136 (tp->snd_wnd - (tp->snd_max - tp->snd_una))); 10137 if (new_total <= gating_val) { 10138 /* We can increase left_to_send by the acked amount */ 10139 counter_u64_add(rack_extended_rfo, 1); 10140 rack->r_ctl.fsb.left_to_send = new_total; 10141 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))), 10142 ("rack:%p left_to_send:%u sbavail:%u out:%u", 10143 rack, rack->r_ctl.fsb.left_to_send, 10144 sbavail(&rack->rc_inp->inp_socket->so_snd), 10145 (tp->snd_max - tp->snd_una))); 10146 10147 } 10148 } 10149 10150 static void 10151 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una) 10152 { 10153 /* 10154 * Here any sendmap entry that points to the 10155 * beginning mbuf must be adjusted to the correct 10156 * offset. This must be called with: 10157 * 1) The socket buffer locked 10158 * 2) snd_una adjusted to its new postion. 10159 * 10160 * Note that (2) implies rack_ack_received has also 10161 * been called. 10162 * 10163 * We grab the first mbuf in the socket buffer and 10164 * then go through the front of the sendmap, recalculating 10165 * the stored offset for any sendmap entry that has 10166 * that mbuf. We must use the sb functions to do this 10167 * since its possible an add was done has well as 10168 * the subtraction we may have just completed. This should 10169 * not be a penalty though, since we just referenced the sb 10170 * to go in and trim off the mbufs that we freed (of course 10171 * there will be a penalty for the sendmap references though). 10172 */ 10173 struct mbuf *m; 10174 struct rack_sendmap *rsm; 10175 10176 SOCKBUF_LOCK_ASSERT(sb); 10177 m = sb->sb_mb; 10178 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 10179 if ((rsm == NULL) || (m == NULL)) { 10180 /* Nothing outstanding */ 10181 return; 10182 } 10183 while (rsm->m && (rsm->m == m)) { 10184 /* one to adjust */ 10185 #ifdef INVARIANTS 10186 struct mbuf *tm; 10187 uint32_t soff; 10188 10189 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff); 10190 if (rsm->orig_m_len != m->m_len) { 10191 rack_adjust_orig_mlen(rsm); 10192 } 10193 if (rsm->soff != soff) { 10194 /* 10195 * This is not a fatal error, we anticipate it 10196 * might happen (the else code), so we count it here 10197 * so that under invariant we can see that it really 10198 * does happen. 10199 */ 10200 counter_u64_add(rack_adjust_map_bw, 1); 10201 } 10202 rsm->m = tm; 10203 rsm->soff = soff; 10204 if (tm) 10205 rsm->orig_m_len = rsm->m->m_len; 10206 else 10207 rsm->orig_m_len = 0; 10208 #else 10209 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff); 10210 if (rsm->m) 10211 rsm->orig_m_len = rsm->m->m_len; 10212 else 10213 rsm->orig_m_len = 0; 10214 #endif 10215 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 10216 rsm); 10217 if (rsm == NULL) 10218 break; 10219 } 10220 } 10221 10222 /* 10223 * Return value of 1, we do not need to call rack_process_data(). 10224 * return value of 0, rack_process_data can be called. 10225 * For ret_val if its 0 the TCP is locked, if its non-zero 10226 * its unlocked and probably unsafe to touch the TCB. 10227 */ 10228 static int 10229 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, 10230 struct tcpcb *tp, struct tcpopt *to, 10231 uint32_t tiwin, int32_t tlen, 10232 int32_t * ofia, int32_t thflags, int32_t *ret_val) 10233 { 10234 int32_t ourfinisacked = 0; 10235 int32_t nsegs, acked_amount; 10236 int32_t acked; 10237 struct mbuf *mfree; 10238 struct tcp_rack *rack; 10239 int32_t under_pacing = 0; 10240 int32_t recovery = 0; 10241 10242 rack = (struct tcp_rack *)tp->t_fb_ptr; 10243 if (SEQ_GT(th->th_ack, tp->snd_max)) { 10244 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, 10245 &rack->r_ctl.challenge_ack_ts, 10246 &rack->r_ctl.challenge_ack_cnt); 10247 rack->r_wanted_output = 1; 10248 return (1); 10249 } 10250 if (rack->gp_ready && 10251 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 10252 under_pacing = 1; 10253 } 10254 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { 10255 int in_rec, dup_ack_struck = 0; 10256 10257 in_rec = IN_FASTRECOVERY(tp->t_flags); 10258 if (rack->rc_in_persist) { 10259 tp->t_rxtshift = 0; 10260 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10261 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10262 } 10263 if ((th->th_ack == tp->snd_una) && 10264 (tiwin == tp->snd_wnd) && 10265 ((to->to_flags & TOF_SACK) == 0)) { 10266 rack_strike_dupack(rack); 10267 dup_ack_struck = 1; 10268 } 10269 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck); 10270 } 10271 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 10272 /* 10273 * Old ack, behind (or duplicate to) the last one rcv'd 10274 * Note: We mark reordering is occuring if its 10275 * less than and we have not closed our window. 10276 */ 10277 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) { 10278 counter_u64_add(rack_reorder_seen, 1); 10279 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 10280 } 10281 return (0); 10282 } 10283 /* 10284 * If we reach this point, ACK is not a duplicate, i.e., it ACKs 10285 * something we sent. 10286 */ 10287 if (tp->t_flags & TF_NEEDSYN) { 10288 /* 10289 * T/TCP: Connection was half-synchronized, and our SYN has 10290 * been ACK'd (so connection is now fully synchronized). Go 10291 * to non-starred state, increment snd_una for ACK of SYN, 10292 * and check if we can do window scaling. 10293 */ 10294 tp->t_flags &= ~TF_NEEDSYN; 10295 tp->snd_una++; 10296 /* Do window scaling? */ 10297 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 10298 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 10299 tp->rcv_scale = tp->request_r_scale; 10300 /* Send window already scaled. */ 10301 } 10302 } 10303 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10304 INP_WLOCK_ASSERT(tp->t_inpcb); 10305 10306 acked = BYTES_THIS_ACK(tp, th); 10307 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 10308 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 10309 /* 10310 * If we just performed our first retransmit, and the ACK arrives 10311 * within our recovery window, then it was a mistake to do the 10312 * retransmit in the first place. Recover our original cwnd and 10313 * ssthresh, and proceed to transmit where we left off. 10314 */ 10315 if ((tp->t_flags & TF_PREVVALID) && 10316 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 10317 tp->t_flags &= ~TF_PREVVALID; 10318 if (tp->t_rxtshift == 1 && 10319 (int)(ticks - tp->t_badrxtwin) < 0) 10320 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 10321 } 10322 if (acked) { 10323 /* assure we are not backed off */ 10324 tp->t_rxtshift = 0; 10325 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10326 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 10327 rack->rc_tlp_in_progress = 0; 10328 rack->r_ctl.rc_tlp_cnt_out = 0; 10329 /* 10330 * If it is the RXT timer we want to 10331 * stop it, so we can restart a TLP. 10332 */ 10333 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 10334 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10335 #ifdef NETFLIX_HTTP_LOGGING 10336 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 10337 #endif 10338 } 10339 /* 10340 * If we have a timestamp reply, update smoothed round trip time. If 10341 * no timestamp is present but transmit timer is running and timed 10342 * sequence number was acked, update smoothed round trip time. Since 10343 * we now have an rtt measurement, cancel the timer backoff (cf., 10344 * Phil Karn's retransmit alg.). Recompute the initial retransmit 10345 * timer. 10346 * 10347 * Some boxes send broken timestamp replies during the SYN+ACK 10348 * phase, ignore timestamps of 0 or we could calculate a huge RTT 10349 * and blow up the retransmit timer. 10350 */ 10351 /* 10352 * If all outstanding data is acked, stop retransmit timer and 10353 * remember to restart (more output or persist). If there is more 10354 * data to be acked, restart retransmit timer, using current 10355 * (possibly backed-off) value. 10356 */ 10357 if (acked == 0) { 10358 if (ofia) 10359 *ofia = ourfinisacked; 10360 return (0); 10361 } 10362 if (IN_RECOVERY(tp->t_flags)) { 10363 if (SEQ_LT(th->th_ack, tp->snd_recover) && 10364 (SEQ_LT(th->th_ack, tp->snd_max))) { 10365 tcp_rack_partialack(tp); 10366 } else { 10367 rack_post_recovery(tp, th->th_ack); 10368 recovery = 1; 10369 } 10370 } 10371 /* 10372 * Let the congestion control algorithm update congestion control 10373 * related information. This typically means increasing the 10374 * congestion window. 10375 */ 10376 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery); 10377 SOCKBUF_LOCK(&so->so_snd); 10378 acked_amount = min(acked, (int)sbavail(&so->so_snd)); 10379 tp->snd_wnd -= acked_amount; 10380 mfree = sbcut_locked(&so->so_snd, acked_amount); 10381 if ((sbused(&so->so_snd) == 0) && 10382 (acked > acked_amount) && 10383 (tp->t_state >= TCPS_FIN_WAIT_1) && 10384 (tp->t_flags & TF_SENTFIN)) { 10385 /* 10386 * We must be sure our fin 10387 * was sent and acked (we can be 10388 * in FIN_WAIT_1 without having 10389 * sent the fin). 10390 */ 10391 ourfinisacked = 1; 10392 } 10393 tp->snd_una = th->th_ack; 10394 if (acked_amount && sbavail(&so->so_snd)) 10395 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 10396 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 10397 /* NB: sowwakeup_locked() does an implicit unlock. */ 10398 sowwakeup_locked(so); 10399 m_freem(mfree); 10400 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 10401 tp->snd_recover = tp->snd_una; 10402 10403 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { 10404 tp->snd_nxt = tp->snd_una; 10405 } 10406 if (under_pacing && 10407 (rack->use_fixed_rate == 0) && 10408 (rack->in_probe_rtt == 0) && 10409 rack->rc_gp_dyn_mul && 10410 rack->rc_always_pace) { 10411 /* Check if we are dragging bottom */ 10412 rack_check_bottom_drag(tp, rack, so, acked); 10413 } 10414 if (tp->snd_una == tp->snd_max) { 10415 /* Nothing left outstanding */ 10416 tp->t_flags &= ~TF_PREVVALID; 10417 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 10418 rack->r_ctl.retran_during_recovery = 0; 10419 rack->r_ctl.dsack_byte_cnt = 0; 10420 if (rack->r_ctl.rc_went_idle_time == 0) 10421 rack->r_ctl.rc_went_idle_time = 1; 10422 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 10423 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 10424 tp->t_acktime = 0; 10425 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10426 /* Set need output so persist might get set */ 10427 rack->r_wanted_output = 1; 10428 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 10429 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 10430 (sbavail(&so->so_snd) == 0) && 10431 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 10432 /* 10433 * The socket was gone and the 10434 * peer sent data (now or in the past), time to 10435 * reset him. 10436 */ 10437 *ret_val = 1; 10438 /* tcp_close will kill the inp pre-log the Reset */ 10439 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 10440 tp = tcp_close(tp); 10441 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); 10442 return (1); 10443 } 10444 } 10445 if (ofia) 10446 *ofia = ourfinisacked; 10447 return (0); 10448 } 10449 10450 static void 10451 rack_collapsed_window(struct tcp_rack *rack) 10452 { 10453 /* 10454 * Now we must walk the 10455 * send map and divide the 10456 * ones left stranded. These 10457 * guys can't cause us to abort 10458 * the connection and are really 10459 * "unsent". However if a buggy 10460 * client actually did keep some 10461 * of the data i.e. collapsed the win 10462 * and refused to ack and then opened 10463 * the win and acked that data. We would 10464 * get into an ack war, the simplier 10465 * method then of just pretending we 10466 * did not send those segments something 10467 * won't work. 10468 */ 10469 struct rack_sendmap *rsm, *nrsm, fe, *insret; 10470 tcp_seq max_seq; 10471 10472 max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd; 10473 memset(&fe, 0, sizeof(fe)); 10474 fe.r_start = max_seq; 10475 /* Find the first seq past or at maxseq */ 10476 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 10477 if (rsm == NULL) { 10478 /* Nothing to do strange */ 10479 rack->rc_has_collapsed = 0; 10480 return; 10481 } 10482 /* 10483 * Now do we need to split at 10484 * the collapse point? 10485 */ 10486 if (SEQ_GT(max_seq, rsm->r_start)) { 10487 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 10488 if (nrsm == NULL) { 10489 /* We can't get a rsm, mark all? */ 10490 nrsm = rsm; 10491 goto no_split; 10492 } 10493 /* Clone it */ 10494 rack_clone_rsm(rack, nrsm, rsm, max_seq); 10495 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 10496 #ifdef INVARIANTS 10497 if (insret != NULL) { 10498 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 10499 nrsm, insret, rack, rsm); 10500 } 10501 #endif 10502 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__); 10503 if (rsm->r_in_tmap) { 10504 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 10505 nrsm->r_in_tmap = 1; 10506 } 10507 /* 10508 * Set in the new RSM as the 10509 * collapsed starting point 10510 */ 10511 rsm = nrsm; 10512 } 10513 no_split: 10514 counter_u64_add(rack_collapsed_win, 1); 10515 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) { 10516 nrsm->r_flags |= RACK_RWND_COLLAPSED; 10517 } 10518 rack->rc_has_collapsed = 1; 10519 } 10520 10521 static void 10522 rack_un_collapse_window(struct tcp_rack *rack) 10523 { 10524 struct rack_sendmap *rsm; 10525 10526 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 10527 if (rsm->r_flags & RACK_RWND_COLLAPSED) 10528 rsm->r_flags &= ~RACK_RWND_COLLAPSED; 10529 else 10530 break; 10531 } 10532 rack->rc_has_collapsed = 0; 10533 } 10534 10535 static void 10536 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, 10537 int32_t tlen, int32_t tfo_syn) 10538 { 10539 if (DELAY_ACK(tp, tlen) || tfo_syn) { 10540 if (rack->rc_dack_mode && 10541 (tlen > 500) && 10542 (rack->rc_dack_toggle == 1)) { 10543 goto no_delayed_ack; 10544 } 10545 rack_timer_cancel(tp, rack, 10546 rack->r_ctl.rc_rcvtime, __LINE__); 10547 tp->t_flags |= TF_DELACK; 10548 } else { 10549 no_delayed_ack: 10550 rack->r_wanted_output = 1; 10551 tp->t_flags |= TF_ACKNOW; 10552 if (rack->rc_dack_mode) { 10553 if (tp->t_flags & TF_DELACK) 10554 rack->rc_dack_toggle = 1; 10555 else 10556 rack->rc_dack_toggle = 0; 10557 } 10558 } 10559 } 10560 10561 static void 10562 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack) 10563 { 10564 /* 10565 * If fast output is in progress, lets validate that 10566 * the new window did not shrink on us and make it 10567 * so fast output should end. 10568 */ 10569 if (rack->r_fast_output) { 10570 uint32_t out; 10571 10572 /* 10573 * Calculate what we will send if left as is 10574 * and compare that to our send window. 10575 */ 10576 out = ctf_outstanding(tp); 10577 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) { 10578 /* ok we have an issue */ 10579 if (out >= tp->snd_wnd) { 10580 /* Turn off fast output the window is met or collapsed */ 10581 rack->r_fast_output = 0; 10582 } else { 10583 /* we have some room left */ 10584 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out; 10585 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) { 10586 /* If not at least 1 full segment never mind */ 10587 rack->r_fast_output = 0; 10588 } 10589 } 10590 } 10591 } 10592 } 10593 10594 10595 /* 10596 * Return value of 1, the TCB is unlocked and most 10597 * likely gone, return value of 0, the TCP is still 10598 * locked. 10599 */ 10600 static int 10601 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, 10602 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 10603 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) 10604 { 10605 /* 10606 * Update window information. Don't look at window if no ACK: TAC's 10607 * send garbage on first SYN. 10608 */ 10609 int32_t nsegs; 10610 int32_t tfo_syn; 10611 struct tcp_rack *rack; 10612 10613 rack = (struct tcp_rack *)tp->t_fb_ptr; 10614 INP_WLOCK_ASSERT(tp->t_inpcb); 10615 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10616 if ((thflags & TH_ACK) && 10617 (SEQ_LT(tp->snd_wl1, th->th_seq) || 10618 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 10619 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 10620 /* keep track of pure window updates */ 10621 if (tlen == 0 && 10622 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 10623 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 10624 tp->snd_wnd = tiwin; 10625 rack_validate_fo_sendwin_up(tp, rack); 10626 tp->snd_wl1 = th->th_seq; 10627 tp->snd_wl2 = th->th_ack; 10628 if (tp->snd_wnd > tp->max_sndwnd) 10629 tp->max_sndwnd = tp->snd_wnd; 10630 rack->r_wanted_output = 1; 10631 } else if (thflags & TH_ACK) { 10632 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { 10633 tp->snd_wnd = tiwin; 10634 rack_validate_fo_sendwin_up(tp, rack); 10635 tp->snd_wl1 = th->th_seq; 10636 tp->snd_wl2 = th->th_ack; 10637 } 10638 } 10639 if (tp->snd_wnd < ctf_outstanding(tp)) 10640 /* The peer collapsed the window */ 10641 rack_collapsed_window(rack); 10642 else if (rack->rc_has_collapsed) 10643 rack_un_collapse_window(rack); 10644 /* Was persist timer active and now we have window space? */ 10645 if ((rack->rc_in_persist != 0) && 10646 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 10647 rack->r_ctl.rc_pace_min_segs))) { 10648 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10649 tp->snd_nxt = tp->snd_max; 10650 /* Make sure we output to start the timer */ 10651 rack->r_wanted_output = 1; 10652 } 10653 /* Do we enter persists? */ 10654 if ((rack->rc_in_persist == 0) && 10655 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 10656 TCPS_HAVEESTABLISHED(tp->t_state) && 10657 (tp->snd_max == tp->snd_una) && 10658 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 10659 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 10660 /* 10661 * Here the rwnd is less than 10662 * the pacing size, we are established, 10663 * nothing is outstanding, and there is 10664 * data to send. Enter persists. 10665 */ 10666 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10667 } 10668 if (tp->t_flags2 & TF2_DROP_AF_DATA) { 10669 m_freem(m); 10670 return (0); 10671 } 10672 /* 10673 * don't process the URG bit, ignore them drag 10674 * along the up. 10675 */ 10676 tp->rcv_up = tp->rcv_nxt; 10677 INP_WLOCK_ASSERT(tp->t_inpcb); 10678 10679 /* 10680 * Process the segment text, merging it into the TCP sequencing 10681 * queue, and arranging for acknowledgment of receipt if necessary. 10682 * This process logically involves adjusting tp->rcv_wnd as data is 10683 * presented to the user (this happens in tcp_usrreq.c, case 10684 * PRU_RCVD). If a FIN has already been received on this connection 10685 * then we just ignore the text. 10686 */ 10687 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 10688 IS_FASTOPEN(tp->t_flags)); 10689 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 10690 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10691 tcp_seq save_start = th->th_seq; 10692 tcp_seq save_rnxt = tp->rcv_nxt; 10693 int save_tlen = tlen; 10694 10695 m_adj(m, drop_hdrlen); /* delayed header drop */ 10696 /* 10697 * Insert segment which includes th into TCP reassembly 10698 * queue with control block tp. Set thflags to whether 10699 * reassembly now includes a segment with FIN. This handles 10700 * the common case inline (segment is the next to be 10701 * received on an established connection, and the queue is 10702 * empty), avoiding linkage into and removal from the queue 10703 * and repetition of various conversions. Set DELACK for 10704 * segments received in order, but ack immediately when 10705 * segments are out of order (so fast retransmit can work). 10706 */ 10707 if (th->th_seq == tp->rcv_nxt && 10708 SEGQ_EMPTY(tp) && 10709 (TCPS_HAVEESTABLISHED(tp->t_state) || 10710 tfo_syn)) { 10711 #ifdef NETFLIX_SB_LIMITS 10712 u_int mcnt, appended; 10713 10714 if (so->so_rcv.sb_shlim) { 10715 mcnt = m_memcnt(m); 10716 appended = 0; 10717 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10718 CFO_NOSLEEP, NULL) == false) { 10719 counter_u64_add(tcp_sb_shlim_fails, 1); 10720 m_freem(m); 10721 return (0); 10722 } 10723 } 10724 #endif 10725 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); 10726 tp->rcv_nxt += tlen; 10727 if (tlen && 10728 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10729 (tp->t_fbyte_in == 0)) { 10730 tp->t_fbyte_in = ticks; 10731 if (tp->t_fbyte_in == 0) 10732 tp->t_fbyte_in = 1; 10733 if (tp->t_fbyte_out && tp->t_fbyte_in) 10734 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10735 } 10736 thflags = th->th_flags & TH_FIN; 10737 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10738 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10739 SOCKBUF_LOCK(&so->so_rcv); 10740 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10741 m_freem(m); 10742 } else 10743 #ifdef NETFLIX_SB_LIMITS 10744 appended = 10745 #endif 10746 sbappendstream_locked(&so->so_rcv, m, 0); 10747 10748 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10749 /* NB: sorwakeup_locked() does an implicit unlock. */ 10750 sorwakeup_locked(so); 10751 #ifdef NETFLIX_SB_LIMITS 10752 if (so->so_rcv.sb_shlim && appended != mcnt) 10753 counter_fo_release(so->so_rcv.sb_shlim, 10754 mcnt - appended); 10755 #endif 10756 } else { 10757 /* 10758 * XXX: Due to the header drop above "th" is 10759 * theoretically invalid by now. Fortunately 10760 * m_adj() doesn't actually frees any mbufs when 10761 * trimming from the head. 10762 */ 10763 tcp_seq temp = save_start; 10764 10765 thflags = tcp_reass(tp, th, &temp, &tlen, m); 10766 tp->t_flags |= TF_ACKNOW; 10767 if (tp->t_flags & TF_WAKESOR) { 10768 tp->t_flags &= ~TF_WAKESOR; 10769 /* NB: sorwakeup_locked() does an implicit unlock. */ 10770 sorwakeup_locked(so); 10771 } 10772 } 10773 if ((tp->t_flags & TF_SACK_PERMIT) && 10774 (save_tlen > 0) && 10775 TCPS_HAVEESTABLISHED(tp->t_state)) { 10776 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 10777 /* 10778 * DSACK actually handled in the fastpath 10779 * above. 10780 */ 10781 RACK_OPTS_INC(tcp_sack_path_1); 10782 tcp_update_sack_list(tp, save_start, 10783 save_start + save_tlen); 10784 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 10785 if ((tp->rcv_numsacks >= 1) && 10786 (tp->sackblks[0].end == save_start)) { 10787 /* 10788 * Partial overlap, recorded at todrop 10789 * above. 10790 */ 10791 RACK_OPTS_INC(tcp_sack_path_2a); 10792 tcp_update_sack_list(tp, 10793 tp->sackblks[0].start, 10794 tp->sackblks[0].end); 10795 } else { 10796 RACK_OPTS_INC(tcp_sack_path_2b); 10797 tcp_update_dsack_list(tp, save_start, 10798 save_start + save_tlen); 10799 } 10800 } else if (tlen >= save_tlen) { 10801 /* Update of sackblks. */ 10802 RACK_OPTS_INC(tcp_sack_path_3); 10803 tcp_update_dsack_list(tp, save_start, 10804 save_start + save_tlen); 10805 } else if (tlen > 0) { 10806 RACK_OPTS_INC(tcp_sack_path_4); 10807 tcp_update_dsack_list(tp, save_start, 10808 save_start + tlen); 10809 } 10810 } 10811 } else { 10812 m_freem(m); 10813 thflags &= ~TH_FIN; 10814 } 10815 10816 /* 10817 * If FIN is received ACK the FIN and let the user know that the 10818 * connection is closing. 10819 */ 10820 if (thflags & TH_FIN) { 10821 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10822 /* The socket upcall is handled by socantrcvmore. */ 10823 socantrcvmore(so); 10824 /* 10825 * If connection is half-synchronized (ie NEEDSYN 10826 * flag on) then delay ACK, so it may be piggybacked 10827 * when SYN is sent. Otherwise, since we received a 10828 * FIN then no more input can be expected, send ACK 10829 * now. 10830 */ 10831 if (tp->t_flags & TF_NEEDSYN) { 10832 rack_timer_cancel(tp, rack, 10833 rack->r_ctl.rc_rcvtime, __LINE__); 10834 tp->t_flags |= TF_DELACK; 10835 } else { 10836 tp->t_flags |= TF_ACKNOW; 10837 } 10838 tp->rcv_nxt++; 10839 } 10840 switch (tp->t_state) { 10841 /* 10842 * In SYN_RECEIVED and ESTABLISHED STATES enter the 10843 * CLOSE_WAIT state. 10844 */ 10845 case TCPS_SYN_RECEIVED: 10846 tp->t_starttime = ticks; 10847 /* FALLTHROUGH */ 10848 case TCPS_ESTABLISHED: 10849 rack_timer_cancel(tp, rack, 10850 rack->r_ctl.rc_rcvtime, __LINE__); 10851 tcp_state_change(tp, TCPS_CLOSE_WAIT); 10852 break; 10853 10854 /* 10855 * If still in FIN_WAIT_1 STATE FIN has not been 10856 * acked so enter the CLOSING state. 10857 */ 10858 case TCPS_FIN_WAIT_1: 10859 rack_timer_cancel(tp, rack, 10860 rack->r_ctl.rc_rcvtime, __LINE__); 10861 tcp_state_change(tp, TCPS_CLOSING); 10862 break; 10863 10864 /* 10865 * In FIN_WAIT_2 state enter the TIME_WAIT state, 10866 * starting the time-wait timer, turning off the 10867 * other standard timers. 10868 */ 10869 case TCPS_FIN_WAIT_2: 10870 rack_timer_cancel(tp, rack, 10871 rack->r_ctl.rc_rcvtime, __LINE__); 10872 tcp_twstart(tp); 10873 return (1); 10874 } 10875 } 10876 /* 10877 * Return any desired output. 10878 */ 10879 if ((tp->t_flags & TF_ACKNOW) || 10880 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { 10881 rack->r_wanted_output = 1; 10882 } 10883 INP_WLOCK_ASSERT(tp->t_inpcb); 10884 return (0); 10885 } 10886 10887 /* 10888 * Here nothing is really faster, its just that we 10889 * have broken out the fast-data path also just like 10890 * the fast-ack. 10891 */ 10892 static int 10893 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, 10894 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10895 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) 10896 { 10897 int32_t nsegs; 10898 int32_t newsize = 0; /* automatic sockbuf scaling */ 10899 struct tcp_rack *rack; 10900 #ifdef NETFLIX_SB_LIMITS 10901 u_int mcnt, appended; 10902 #endif 10903 #ifdef TCPDEBUG 10904 /* 10905 * The size of tcp_saveipgen must be the size of the max ip header, 10906 * now IPv6. 10907 */ 10908 u_char tcp_saveipgen[IP6_HDR_LEN]; 10909 struct tcphdr tcp_savetcp; 10910 short ostate = 0; 10911 10912 #endif 10913 /* 10914 * If last ACK falls within this segment's sequence numbers, record 10915 * the timestamp. NOTE that the test is modified according to the 10916 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 10917 */ 10918 if (__predict_false(th->th_seq != tp->rcv_nxt)) { 10919 return (0); 10920 } 10921 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10922 return (0); 10923 } 10924 if (tiwin && tiwin != tp->snd_wnd) { 10925 return (0); 10926 } 10927 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { 10928 return (0); 10929 } 10930 if (__predict_false((to->to_flags & TOF_TS) && 10931 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { 10932 return (0); 10933 } 10934 if (__predict_false((th->th_ack != tp->snd_una))) { 10935 return (0); 10936 } 10937 if (__predict_false(tlen > sbspace(&so->so_rcv))) { 10938 return (0); 10939 } 10940 if ((to->to_flags & TOF_TS) != 0 && 10941 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 10942 tp->ts_recent_age = tcp_ts_getticks(); 10943 tp->ts_recent = to->to_tsval; 10944 } 10945 rack = (struct tcp_rack *)tp->t_fb_ptr; 10946 /* 10947 * This is a pure, in-sequence data packet with nothing on the 10948 * reassembly queue and we have enough buffer space to take it. 10949 */ 10950 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10951 10952 #ifdef NETFLIX_SB_LIMITS 10953 if (so->so_rcv.sb_shlim) { 10954 mcnt = m_memcnt(m); 10955 appended = 0; 10956 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10957 CFO_NOSLEEP, NULL) == false) { 10958 counter_u64_add(tcp_sb_shlim_fails, 1); 10959 m_freem(m); 10960 return (1); 10961 } 10962 } 10963 #endif 10964 /* Clean receiver SACK report if present */ 10965 if (tp->rcv_numsacks) 10966 tcp_clean_sackreport(tp); 10967 KMOD_TCPSTAT_INC(tcps_preddat); 10968 tp->rcv_nxt += tlen; 10969 if (tlen && 10970 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10971 (tp->t_fbyte_in == 0)) { 10972 tp->t_fbyte_in = ticks; 10973 if (tp->t_fbyte_in == 0) 10974 tp->t_fbyte_in = 1; 10975 if (tp->t_fbyte_out && tp->t_fbyte_in) 10976 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10977 } 10978 /* 10979 * Pull snd_wl1 up to prevent seq wrap relative to th_seq. 10980 */ 10981 tp->snd_wl1 = th->th_seq; 10982 /* 10983 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. 10984 */ 10985 tp->rcv_up = tp->rcv_nxt; 10986 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10987 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10988 #ifdef TCPDEBUG 10989 if (so->so_options & SO_DEBUG) 10990 tcp_trace(TA_INPUT, ostate, tp, 10991 (void *)tcp_saveipgen, &tcp_savetcp, 0); 10992 #endif 10993 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 10994 10995 /* Add data to socket buffer. */ 10996 SOCKBUF_LOCK(&so->so_rcv); 10997 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10998 m_freem(m); 10999 } else { 11000 /* 11001 * Set new socket buffer size. Give up when limit is 11002 * reached. 11003 */ 11004 if (newsize) 11005 if (!sbreserve_locked(&so->so_rcv, 11006 newsize, so, NULL)) 11007 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 11008 m_adj(m, drop_hdrlen); /* delayed header drop */ 11009 #ifdef NETFLIX_SB_LIMITS 11010 appended = 11011 #endif 11012 sbappendstream_locked(&so->so_rcv, m, 0); 11013 ctf_calc_rwin(so, tp); 11014 } 11015 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 11016 /* NB: sorwakeup_locked() does an implicit unlock. */ 11017 sorwakeup_locked(so); 11018 #ifdef NETFLIX_SB_LIMITS 11019 if (so->so_rcv.sb_shlim && mcnt != appended) 11020 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); 11021 #endif 11022 rack_handle_delayed_ack(tp, rack, tlen, 0); 11023 if (tp->snd_una == tp->snd_max) 11024 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 11025 return (1); 11026 } 11027 11028 /* 11029 * This subfunction is used to try to highly optimize the 11030 * fast path. We again allow window updates that are 11031 * in sequence to remain in the fast-path. We also add 11032 * in the __predict's to attempt to help the compiler. 11033 * Note that if we return a 0, then we can *not* process 11034 * it and the caller should push the packet into the 11035 * slow-path. 11036 */ 11037 static int 11038 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 11039 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11040 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) 11041 { 11042 int32_t acked; 11043 int32_t nsegs; 11044 #ifdef TCPDEBUG 11045 /* 11046 * The size of tcp_saveipgen must be the size of the max ip header, 11047 * now IPv6. 11048 */ 11049 u_char tcp_saveipgen[IP6_HDR_LEN]; 11050 struct tcphdr tcp_savetcp; 11051 short ostate = 0; 11052 #endif 11053 int32_t under_pacing = 0; 11054 struct tcp_rack *rack; 11055 11056 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 11057 /* Old ack, behind (or duplicate to) the last one rcv'd */ 11058 return (0); 11059 } 11060 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { 11061 /* Above what we have sent? */ 11062 return (0); 11063 } 11064 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 11065 /* We are retransmitting */ 11066 return (0); 11067 } 11068 if (__predict_false(tiwin == 0)) { 11069 /* zero window */ 11070 return (0); 11071 } 11072 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { 11073 /* We need a SYN or a FIN, unlikely.. */ 11074 return (0); 11075 } 11076 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { 11077 /* Timestamp is behind .. old ack with seq wrap? */ 11078 return (0); 11079 } 11080 if (__predict_false(IN_RECOVERY(tp->t_flags))) { 11081 /* Still recovering */ 11082 return (0); 11083 } 11084 rack = (struct tcp_rack *)tp->t_fb_ptr; 11085 if (rack->r_ctl.rc_sacked) { 11086 /* We have sack holes on our scoreboard */ 11087 return (0); 11088 } 11089 /* Ok if we reach here, we can process a fast-ack */ 11090 if (rack->gp_ready && 11091 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 11092 under_pacing = 1; 11093 } 11094 nsegs = max(1, m->m_pkthdr.lro_nsegs); 11095 rack_log_ack(tp, to, th, 0, 0); 11096 /* Did the window get updated? */ 11097 if (tiwin != tp->snd_wnd) { 11098 tp->snd_wnd = tiwin; 11099 rack_validate_fo_sendwin_up(tp, rack); 11100 tp->snd_wl1 = th->th_seq; 11101 if (tp->snd_wnd > tp->max_sndwnd) 11102 tp->max_sndwnd = tp->snd_wnd; 11103 } 11104 /* Do we exit persists? */ 11105 if ((rack->rc_in_persist != 0) && 11106 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 11107 rack->r_ctl.rc_pace_min_segs))) { 11108 rack_exit_persist(tp, rack, cts); 11109 } 11110 /* Do we enter persists? */ 11111 if ((rack->rc_in_persist == 0) && 11112 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 11113 TCPS_HAVEESTABLISHED(tp->t_state) && 11114 (tp->snd_max == tp->snd_una) && 11115 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 11116 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 11117 /* 11118 * Here the rwnd is less than 11119 * the pacing size, we are established, 11120 * nothing is outstanding, and there is 11121 * data to send. Enter persists. 11122 */ 11123 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 11124 } 11125 /* 11126 * If last ACK falls within this segment's sequence numbers, record 11127 * the timestamp. NOTE that the test is modified according to the 11128 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 11129 */ 11130 if ((to->to_flags & TOF_TS) != 0 && 11131 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 11132 tp->ts_recent_age = tcp_ts_getticks(); 11133 tp->ts_recent = to->to_tsval; 11134 } 11135 /* 11136 * This is a pure ack for outstanding data. 11137 */ 11138 KMOD_TCPSTAT_INC(tcps_predack); 11139 11140 /* 11141 * "bad retransmit" recovery. 11142 */ 11143 if ((tp->t_flags & TF_PREVVALID) && 11144 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 11145 tp->t_flags &= ~TF_PREVVALID; 11146 if (tp->t_rxtshift == 1 && 11147 (int)(ticks - tp->t_badrxtwin) < 0) 11148 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 11149 } 11150 /* 11151 * Recalculate the transmit timer / rtt. 11152 * 11153 * Some boxes send broken timestamp replies during the SYN+ACK 11154 * phase, ignore timestamps of 0 or we could calculate a huge RTT 11155 * and blow up the retransmit timer. 11156 */ 11157 acked = BYTES_THIS_ACK(tp, th); 11158 11159 #ifdef TCP_HHOOK 11160 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 11161 hhook_run_tcp_est_in(tp, th, to); 11162 #endif 11163 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 11164 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 11165 if (acked) { 11166 struct mbuf *mfree; 11167 11168 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0); 11169 SOCKBUF_LOCK(&so->so_snd); 11170 mfree = sbcut_locked(&so->so_snd, acked); 11171 tp->snd_una = th->th_ack; 11172 /* Note we want to hold the sb lock through the sendmap adjust */ 11173 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 11174 /* Wake up the socket if we have room to write more */ 11175 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 11176 sowwakeup_locked(so); 11177 m_freem(mfree); 11178 tp->t_rxtshift = 0; 11179 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 11180 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 11181 rack->rc_tlp_in_progress = 0; 11182 rack->r_ctl.rc_tlp_cnt_out = 0; 11183 /* 11184 * If it is the RXT timer we want to 11185 * stop it, so we can restart a TLP. 11186 */ 11187 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 11188 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11189 #ifdef NETFLIX_HTTP_LOGGING 11190 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 11191 #endif 11192 } 11193 /* 11194 * Let the congestion control algorithm update congestion control 11195 * related information. This typically means increasing the 11196 * congestion window. 11197 */ 11198 if (tp->snd_wnd < ctf_outstanding(tp)) { 11199 /* The peer collapsed the window */ 11200 rack_collapsed_window(rack); 11201 } else if (rack->rc_has_collapsed) 11202 rack_un_collapse_window(rack); 11203 11204 /* 11205 * Pull snd_wl2 up to prevent seq wrap relative to th_ack. 11206 */ 11207 tp->snd_wl2 = th->th_ack; 11208 tp->t_dupacks = 0; 11209 m_freem(m); 11210 /* ND6_HINT(tp); *//* Some progress has been made. */ 11211 11212 /* 11213 * If all outstanding data are acked, stop retransmit timer, 11214 * otherwise restart timer using current (possibly backed-off) 11215 * value. If process is waiting for space, wakeup/selwakeup/signal. 11216 * If data are ready to send, let tcp_output decide between more 11217 * output or persist. 11218 */ 11219 #ifdef TCPDEBUG 11220 if (so->so_options & SO_DEBUG) 11221 tcp_trace(TA_INPUT, ostate, tp, 11222 (void *)tcp_saveipgen, 11223 &tcp_savetcp, 0); 11224 #endif 11225 if (under_pacing && 11226 (rack->use_fixed_rate == 0) && 11227 (rack->in_probe_rtt == 0) && 11228 rack->rc_gp_dyn_mul && 11229 rack->rc_always_pace) { 11230 /* Check if we are dragging bottom */ 11231 rack_check_bottom_drag(tp, rack, so, acked); 11232 } 11233 if (tp->snd_una == tp->snd_max) { 11234 tp->t_flags &= ~TF_PREVVALID; 11235 rack->r_ctl.retran_during_recovery = 0; 11236 rack->r_ctl.dsack_byte_cnt = 0; 11237 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 11238 if (rack->r_ctl.rc_went_idle_time == 0) 11239 rack->r_ctl.rc_went_idle_time = 1; 11240 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 11241 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 11242 tp->t_acktime = 0; 11243 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11244 } 11245 if (acked && rack->r_fast_output) 11246 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked); 11247 if (sbavail(&so->so_snd)) { 11248 rack->r_wanted_output = 1; 11249 } 11250 return (1); 11251 } 11252 11253 /* 11254 * Return value of 1, the TCB is unlocked and most 11255 * likely gone, return value of 0, the TCP is still 11256 * locked. 11257 */ 11258 static int 11259 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, 11260 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11261 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11262 { 11263 int32_t ret_val = 0; 11264 int32_t todrop; 11265 int32_t ourfinisacked = 0; 11266 struct tcp_rack *rack; 11267 11268 ctf_calc_rwin(so, tp); 11269 /* 11270 * If the state is SYN_SENT: if seg contains an ACK, but not for our 11271 * SYN, drop the input. if seg contains a RST, then drop the 11272 * connection. if seg does not contain SYN, then drop it. Otherwise 11273 * this is an acceptable SYN segment initialize tp->rcv_nxt and 11274 * tp->irs if seg contains ack then advance tp->snd_una if seg 11275 * contains an ECE and ECN support is enabled, the stream is ECN 11276 * capable. if SYN has been acked change to ESTABLISHED else 11277 * SYN_RCVD state arrange for segment to be acked (eventually) 11278 * continue processing rest of data/controls. 11279 */ 11280 if ((thflags & TH_ACK) && 11281 (SEQ_LEQ(th->th_ack, tp->iss) || 11282 SEQ_GT(th->th_ack, tp->snd_max))) { 11283 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11284 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11285 return (1); 11286 } 11287 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { 11288 TCP_PROBE5(connect__refused, NULL, tp, 11289 mtod(m, const char *), tp, th); 11290 tp = tcp_drop(tp, ECONNREFUSED); 11291 ctf_do_drop(m, tp); 11292 return (1); 11293 } 11294 if (thflags & TH_RST) { 11295 ctf_do_drop(m, tp); 11296 return (1); 11297 } 11298 if (!(thflags & TH_SYN)) { 11299 ctf_do_drop(m, tp); 11300 return (1); 11301 } 11302 tp->irs = th->th_seq; 11303 tcp_rcvseqinit(tp); 11304 rack = (struct tcp_rack *)tp->t_fb_ptr; 11305 if (thflags & TH_ACK) { 11306 int tfo_partial = 0; 11307 11308 KMOD_TCPSTAT_INC(tcps_connects); 11309 soisconnected(so); 11310 #ifdef MAC 11311 mac_socketpeer_set_from_mbuf(m, so); 11312 #endif 11313 /* Do window scaling on this connection? */ 11314 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11315 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11316 tp->rcv_scale = tp->request_r_scale; 11317 } 11318 tp->rcv_adv += min(tp->rcv_wnd, 11319 TCP_MAXWIN << tp->rcv_scale); 11320 /* 11321 * If not all the data that was sent in the TFO SYN 11322 * has been acked, resend the remainder right away. 11323 */ 11324 if (IS_FASTOPEN(tp->t_flags) && 11325 (tp->snd_una != tp->snd_max)) { 11326 tp->snd_nxt = th->th_ack; 11327 tfo_partial = 1; 11328 } 11329 /* 11330 * If there's data, delay ACK; if there's also a FIN ACKNOW 11331 * will be turned on later. 11332 */ 11333 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { 11334 rack_timer_cancel(tp, rack, 11335 rack->r_ctl.rc_rcvtime, __LINE__); 11336 tp->t_flags |= TF_DELACK; 11337 } else { 11338 rack->r_wanted_output = 1; 11339 tp->t_flags |= TF_ACKNOW; 11340 rack->rc_dack_toggle = 0; 11341 } 11342 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) && 11343 (V_tcp_do_ecn == 1)) { 11344 tp->t_flags2 |= TF2_ECN_PERMIT; 11345 KMOD_TCPSTAT_INC(tcps_ecn_shs); 11346 } 11347 if (SEQ_GT(th->th_ack, tp->snd_una)) { 11348 /* 11349 * We advance snd_una for the 11350 * fast open case. If th_ack is 11351 * acknowledging data beyond 11352 * snd_una we can't just call 11353 * ack-processing since the 11354 * data stream in our send-map 11355 * will start at snd_una + 1 (one 11356 * beyond the SYN). If its just 11357 * equal we don't need to do that 11358 * and there is no send_map. 11359 */ 11360 tp->snd_una++; 11361 } 11362 /* 11363 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions: 11364 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 11365 */ 11366 tp->t_starttime = ticks; 11367 if (tp->t_flags & TF_NEEDFIN) { 11368 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11369 tp->t_flags &= ~TF_NEEDFIN; 11370 thflags &= ~TH_SYN; 11371 } else { 11372 tcp_state_change(tp, TCPS_ESTABLISHED); 11373 TCP_PROBE5(connect__established, NULL, tp, 11374 mtod(m, const char *), tp, th); 11375 rack_cc_conn_init(tp); 11376 } 11377 } else { 11378 /* 11379 * Received initial SYN in SYN-SENT[*] state => simultaneous 11380 * open. If segment contains CC option and there is a 11381 * cached CC, apply TAO test. If it succeeds, connection is * 11382 * half-synchronized. Otherwise, do 3-way handshake: 11383 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If 11384 * there was no CC option, clear cached CC value. 11385 */ 11386 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 11387 tcp_state_change(tp, TCPS_SYN_RECEIVED); 11388 } 11389 INP_WLOCK_ASSERT(tp->t_inpcb); 11390 /* 11391 * Advance th->th_seq to correspond to first data byte. If data, 11392 * trim to stay within window, dropping FIN if necessary. 11393 */ 11394 th->th_seq++; 11395 if (tlen > tp->rcv_wnd) { 11396 todrop = tlen - tp->rcv_wnd; 11397 m_adj(m, -todrop); 11398 tlen = tp->rcv_wnd; 11399 thflags &= ~TH_FIN; 11400 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); 11401 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 11402 } 11403 tp->snd_wl1 = th->th_seq - 1; 11404 tp->rcv_up = th->th_seq; 11405 /* 11406 * Client side of transaction: already sent SYN and data. If the 11407 * remote host used T/TCP to validate the SYN, our data will be 11408 * ACK'd; if so, enter normal data segment processing in the middle 11409 * of step 5, ack processing. Otherwise, goto step 6. 11410 */ 11411 if (thflags & TH_ACK) { 11412 /* For syn-sent we need to possibly update the rtt */ 11413 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11414 uint32_t t, mcts; 11415 11416 mcts = tcp_ts_getticks(); 11417 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11418 if (!tp->t_rttlow || tp->t_rttlow > t) 11419 tp->t_rttlow = t; 11420 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4); 11421 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11422 tcp_rack_xmit_timer_commit(rack, tp); 11423 } 11424 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) 11425 return (ret_val); 11426 /* We may have changed to FIN_WAIT_1 above */ 11427 if (tp->t_state == TCPS_FIN_WAIT_1) { 11428 /* 11429 * In FIN_WAIT_1 STATE in addition to the processing 11430 * for the ESTABLISHED state if our FIN is now 11431 * acknowledged then enter FIN_WAIT_2. 11432 */ 11433 if (ourfinisacked) { 11434 /* 11435 * If we can't receive any more data, then 11436 * closing user can proceed. Starting the 11437 * timer is contrary to the specification, 11438 * but if we don't get a FIN we'll hang 11439 * forever. 11440 * 11441 * XXXjl: we should release the tp also, and 11442 * use a compressed state. 11443 */ 11444 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11445 soisdisconnected(so); 11446 tcp_timer_activate(tp, TT_2MSL, 11447 (tcp_fast_finwait2_recycle ? 11448 tcp_finwait2_timeout : 11449 TP_MAXIDLE(tp))); 11450 } 11451 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11452 } 11453 } 11454 } 11455 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11456 tiwin, thflags, nxt_pkt)); 11457 } 11458 11459 /* 11460 * Return value of 1, the TCB is unlocked and most 11461 * likely gone, return value of 0, the TCP is still 11462 * locked. 11463 */ 11464 static int 11465 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, 11466 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11467 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11468 { 11469 struct tcp_rack *rack; 11470 int32_t ret_val = 0; 11471 int32_t ourfinisacked = 0; 11472 11473 ctf_calc_rwin(so, tp); 11474 if ((thflags & TH_ACK) && 11475 (SEQ_LEQ(th->th_ack, tp->snd_una) || 11476 SEQ_GT(th->th_ack, tp->snd_max))) { 11477 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11478 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11479 return (1); 11480 } 11481 rack = (struct tcp_rack *)tp->t_fb_ptr; 11482 if (IS_FASTOPEN(tp->t_flags)) { 11483 /* 11484 * When a TFO connection is in SYN_RECEIVED, the 11485 * only valid packets are the initial SYN, a 11486 * retransmit/copy of the initial SYN (possibly with 11487 * a subset of the original data), a valid ACK, a 11488 * FIN, or a RST. 11489 */ 11490 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { 11491 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11492 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11493 return (1); 11494 } else if (thflags & TH_SYN) { 11495 /* non-initial SYN is ignored */ 11496 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || 11497 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || 11498 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { 11499 ctf_do_drop(m, NULL); 11500 return (0); 11501 } 11502 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { 11503 ctf_do_drop(m, NULL); 11504 return (0); 11505 } 11506 } 11507 if ((thflags & TH_RST) || 11508 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11509 return (ctf_process_rst(m, th, so, tp)); 11510 /* 11511 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11512 * it's less than ts_recent, drop it. 11513 */ 11514 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11515 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11516 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11517 return (ret_val); 11518 } 11519 /* 11520 * In the SYN-RECEIVED state, validate that the packet belongs to 11521 * this connection before trimming the data to fit the receive 11522 * window. Check the sequence number versus IRS since we know the 11523 * sequence numbers haven't wrapped. This is a partial fix for the 11524 * "LAND" DoS attack. 11525 */ 11526 if (SEQ_LT(th->th_seq, tp->irs)) { 11527 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 11528 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11529 return (1); 11530 } 11531 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11532 &rack->r_ctl.challenge_ack_ts, 11533 &rack->r_ctl.challenge_ack_cnt)) { 11534 return (ret_val); 11535 } 11536 /* 11537 * If last ACK falls within this segment's sequence numbers, record 11538 * its timestamp. NOTE: 1) That the test incorporates suggestions 11539 * from the latest proposal of the tcplw@cray.com list (Braden 11540 * 1993/04/26). 2) That updating only on newer timestamps interferes 11541 * with our earlier PAWS tests, so this check should be solely 11542 * predicated on the sequence space of this segment. 3) That we 11543 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11544 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11545 * SEG.Len, This modified check allows us to overcome RFC1323's 11546 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11547 * p.869. In such cases, we can still calculate the RTT correctly 11548 * when RCV.NXT == Last.ACK.Sent. 11549 */ 11550 if ((to->to_flags & TOF_TS) != 0 && 11551 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11552 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11553 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11554 tp->ts_recent_age = tcp_ts_getticks(); 11555 tp->ts_recent = to->to_tsval; 11556 } 11557 tp->snd_wnd = tiwin; 11558 rack_validate_fo_sendwin_up(tp, rack); 11559 /* 11560 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11561 * is on (half-synchronized state), then queue data for later 11562 * processing; else drop segment and return. 11563 */ 11564 if ((thflags & TH_ACK) == 0) { 11565 if (IS_FASTOPEN(tp->t_flags)) { 11566 rack_cc_conn_init(tp); 11567 } 11568 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11569 tiwin, thflags, nxt_pkt)); 11570 } 11571 KMOD_TCPSTAT_INC(tcps_connects); 11572 soisconnected(so); 11573 /* Do window scaling? */ 11574 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11575 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11576 tp->rcv_scale = tp->request_r_scale; 11577 } 11578 /* 11579 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> 11580 * FIN-WAIT-1 11581 */ 11582 tp->t_starttime = ticks; 11583 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 11584 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 11585 tp->t_tfo_pending = NULL; 11586 } 11587 if (tp->t_flags & TF_NEEDFIN) { 11588 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11589 tp->t_flags &= ~TF_NEEDFIN; 11590 } else { 11591 tcp_state_change(tp, TCPS_ESTABLISHED); 11592 TCP_PROBE5(accept__established, NULL, tp, 11593 mtod(m, const char *), tp, th); 11594 /* 11595 * TFO connections call cc_conn_init() during SYN 11596 * processing. Calling it again here for such connections 11597 * is not harmless as it would undo the snd_cwnd reduction 11598 * that occurs when a TFO SYN|ACK is retransmitted. 11599 */ 11600 if (!IS_FASTOPEN(tp->t_flags)) 11601 rack_cc_conn_init(tp); 11602 } 11603 /* 11604 * Account for the ACK of our SYN prior to 11605 * regular ACK processing below, except for 11606 * simultaneous SYN, which is handled later. 11607 */ 11608 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 11609 tp->snd_una++; 11610 /* 11611 * If segment contains data or ACK, will call tcp_reass() later; if 11612 * not, do so now to pass queued data to user. 11613 */ 11614 if (tlen == 0 && (thflags & TH_FIN) == 0) { 11615 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 11616 (struct mbuf *)0); 11617 if (tp->t_flags & TF_WAKESOR) { 11618 tp->t_flags &= ~TF_WAKESOR; 11619 /* NB: sorwakeup_locked() does an implicit unlock. */ 11620 sorwakeup_locked(so); 11621 } 11622 } 11623 tp->snd_wl1 = th->th_seq - 1; 11624 /* For syn-recv we need to possibly update the rtt */ 11625 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11626 uint32_t t, mcts; 11627 11628 mcts = tcp_ts_getticks(); 11629 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11630 if (!tp->t_rttlow || tp->t_rttlow > t) 11631 tp->t_rttlow = t; 11632 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5); 11633 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11634 tcp_rack_xmit_timer_commit(rack, tp); 11635 } 11636 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11637 return (ret_val); 11638 } 11639 if (tp->t_state == TCPS_FIN_WAIT_1) { 11640 /* We could have went to FIN_WAIT_1 (or EST) above */ 11641 /* 11642 * In FIN_WAIT_1 STATE in addition to the processing for the 11643 * ESTABLISHED state if our FIN is now acknowledged then 11644 * enter FIN_WAIT_2. 11645 */ 11646 if (ourfinisacked) { 11647 /* 11648 * If we can't receive any more data, then closing 11649 * user can proceed. Starting the timer is contrary 11650 * to the specification, but if we don't get a FIN 11651 * we'll hang forever. 11652 * 11653 * XXXjl: we should release the tp also, and use a 11654 * compressed state. 11655 */ 11656 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11657 soisdisconnected(so); 11658 tcp_timer_activate(tp, TT_2MSL, 11659 (tcp_fast_finwait2_recycle ? 11660 tcp_finwait2_timeout : 11661 TP_MAXIDLE(tp))); 11662 } 11663 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11664 } 11665 } 11666 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11667 tiwin, thflags, nxt_pkt)); 11668 } 11669 11670 /* 11671 * Return value of 1, the TCB is unlocked and most 11672 * likely gone, return value of 0, the TCP is still 11673 * locked. 11674 */ 11675 static int 11676 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, 11677 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11678 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11679 { 11680 int32_t ret_val = 0; 11681 struct tcp_rack *rack; 11682 11683 /* 11684 * Header prediction: check for the two common cases of a 11685 * uni-directional data xfer. If the packet has no control flags, 11686 * is in-sequence, the window didn't change and we're not 11687 * retransmitting, it's a candidate. If the length is zero and the 11688 * ack moved forward, we're the sender side of the xfer. Just free 11689 * the data acked & wake any higher level process that was blocked 11690 * waiting for space. If the length is non-zero and the ack didn't 11691 * move, we're the receiver side. If we're getting packets in-order 11692 * (the reassembly queue is empty), add the data toc The socket 11693 * buffer and note that we need a delayed ack. Make sure that the 11694 * hidden state-flags are also off. Since we check for 11695 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. 11696 */ 11697 rack = (struct tcp_rack *)tp->t_fb_ptr; 11698 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && 11699 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && 11700 __predict_true(SEGQ_EMPTY(tp)) && 11701 __predict_true(th->th_seq == tp->rcv_nxt)) { 11702 if (tlen == 0) { 11703 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, 11704 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { 11705 return (0); 11706 } 11707 } else { 11708 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, 11709 tiwin, nxt_pkt, iptos)) { 11710 return (0); 11711 } 11712 } 11713 } 11714 ctf_calc_rwin(so, tp); 11715 11716 if ((thflags & TH_RST) || 11717 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11718 return (ctf_process_rst(m, th, so, tp)); 11719 11720 /* 11721 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11722 * synchronized state. 11723 */ 11724 if (thflags & TH_SYN) { 11725 ctf_challenge_ack(m, th, tp, &ret_val); 11726 return (ret_val); 11727 } 11728 /* 11729 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11730 * it's less than ts_recent, drop it. 11731 */ 11732 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11733 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11734 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11735 return (ret_val); 11736 } 11737 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11738 &rack->r_ctl.challenge_ack_ts, 11739 &rack->r_ctl.challenge_ack_cnt)) { 11740 return (ret_val); 11741 } 11742 /* 11743 * If last ACK falls within this segment's sequence numbers, record 11744 * its timestamp. NOTE: 1) That the test incorporates suggestions 11745 * from the latest proposal of the tcplw@cray.com list (Braden 11746 * 1993/04/26). 2) That updating only on newer timestamps interferes 11747 * with our earlier PAWS tests, so this check should be solely 11748 * predicated on the sequence space of this segment. 3) That we 11749 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11750 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11751 * SEG.Len, This modified check allows us to overcome RFC1323's 11752 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11753 * p.869. In such cases, we can still calculate the RTT correctly 11754 * when RCV.NXT == Last.ACK.Sent. 11755 */ 11756 if ((to->to_flags & TOF_TS) != 0 && 11757 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11758 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11759 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11760 tp->ts_recent_age = tcp_ts_getticks(); 11761 tp->ts_recent = to->to_tsval; 11762 } 11763 /* 11764 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11765 * is on (half-synchronized state), then queue data for later 11766 * processing; else drop segment and return. 11767 */ 11768 if ((thflags & TH_ACK) == 0) { 11769 if (tp->t_flags & TF_NEEDSYN) { 11770 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11771 tiwin, thflags, nxt_pkt)); 11772 11773 } else if (tp->t_flags & TF_ACKNOW) { 11774 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11775 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11776 return (ret_val); 11777 } else { 11778 ctf_do_drop(m, NULL); 11779 return (0); 11780 } 11781 } 11782 /* 11783 * Ack processing. 11784 */ 11785 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11786 return (ret_val); 11787 } 11788 if (sbavail(&so->so_snd)) { 11789 if (ctf_progress_timeout_check(tp, true)) { 11790 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 11791 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11792 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11793 return (1); 11794 } 11795 } 11796 /* State changes only happen in rack_process_data() */ 11797 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11798 tiwin, thflags, nxt_pkt)); 11799 } 11800 11801 /* 11802 * Return value of 1, the TCB is unlocked and most 11803 * likely gone, return value of 0, the TCP is still 11804 * locked. 11805 */ 11806 static int 11807 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, 11808 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11809 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11810 { 11811 int32_t ret_val = 0; 11812 struct tcp_rack *rack; 11813 11814 rack = (struct tcp_rack *)tp->t_fb_ptr; 11815 ctf_calc_rwin(so, tp); 11816 if ((thflags & TH_RST) || 11817 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11818 return (ctf_process_rst(m, th, so, tp)); 11819 /* 11820 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11821 * synchronized state. 11822 */ 11823 if (thflags & TH_SYN) { 11824 ctf_challenge_ack(m, th, tp, &ret_val); 11825 return (ret_val); 11826 } 11827 /* 11828 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11829 * it's less than ts_recent, drop it. 11830 */ 11831 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11832 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11833 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11834 return (ret_val); 11835 } 11836 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11837 &rack->r_ctl.challenge_ack_ts, 11838 &rack->r_ctl.challenge_ack_cnt)) { 11839 return (ret_val); 11840 } 11841 /* 11842 * If last ACK falls within this segment's sequence numbers, record 11843 * its timestamp. NOTE: 1) That the test incorporates suggestions 11844 * from the latest proposal of the tcplw@cray.com list (Braden 11845 * 1993/04/26). 2) That updating only on newer timestamps interferes 11846 * with our earlier PAWS tests, so this check should be solely 11847 * predicated on the sequence space of this segment. 3) That we 11848 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11849 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11850 * SEG.Len, This modified check allows us to overcome RFC1323's 11851 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11852 * p.869. In such cases, we can still calculate the RTT correctly 11853 * when RCV.NXT == Last.ACK.Sent. 11854 */ 11855 if ((to->to_flags & TOF_TS) != 0 && 11856 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11857 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11858 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11859 tp->ts_recent_age = tcp_ts_getticks(); 11860 tp->ts_recent = to->to_tsval; 11861 } 11862 /* 11863 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11864 * is on (half-synchronized state), then queue data for later 11865 * processing; else drop segment and return. 11866 */ 11867 if ((thflags & TH_ACK) == 0) { 11868 if (tp->t_flags & TF_NEEDSYN) { 11869 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11870 tiwin, thflags, nxt_pkt)); 11871 11872 } else if (tp->t_flags & TF_ACKNOW) { 11873 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11874 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11875 return (ret_val); 11876 } else { 11877 ctf_do_drop(m, NULL); 11878 return (0); 11879 } 11880 } 11881 /* 11882 * Ack processing. 11883 */ 11884 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11885 return (ret_val); 11886 } 11887 if (sbavail(&so->so_snd)) { 11888 if (ctf_progress_timeout_check(tp, true)) { 11889 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11890 tp, tick, PROGRESS_DROP, __LINE__); 11891 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11892 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11893 return (1); 11894 } 11895 } 11896 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11897 tiwin, thflags, nxt_pkt)); 11898 } 11899 11900 static int 11901 rack_check_data_after_close(struct mbuf *m, 11902 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) 11903 { 11904 struct tcp_rack *rack; 11905 11906 rack = (struct tcp_rack *)tp->t_fb_ptr; 11907 if (rack->rc_allow_data_af_clo == 0) { 11908 close_now: 11909 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11910 /* tcp_close will kill the inp pre-log the Reset */ 11911 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 11912 tp = tcp_close(tp); 11913 KMOD_TCPSTAT_INC(tcps_rcvafterclose); 11914 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); 11915 return (1); 11916 } 11917 if (sbavail(&so->so_snd) == 0) 11918 goto close_now; 11919 /* Ok we allow data that is ignored and a followup reset */ 11920 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11921 tp->rcv_nxt = th->th_seq + *tlen; 11922 tp->t_flags2 |= TF2_DROP_AF_DATA; 11923 rack->r_wanted_output = 1; 11924 *tlen = 0; 11925 return (0); 11926 } 11927 11928 /* 11929 * Return value of 1, the TCB is unlocked and most 11930 * likely gone, return value of 0, the TCP is still 11931 * locked. 11932 */ 11933 static int 11934 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, 11935 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11936 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11937 { 11938 int32_t ret_val = 0; 11939 int32_t ourfinisacked = 0; 11940 struct tcp_rack *rack; 11941 11942 rack = (struct tcp_rack *)tp->t_fb_ptr; 11943 ctf_calc_rwin(so, tp); 11944 11945 if ((thflags & TH_RST) || 11946 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11947 return (ctf_process_rst(m, th, so, tp)); 11948 /* 11949 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11950 * synchronized state. 11951 */ 11952 if (thflags & TH_SYN) { 11953 ctf_challenge_ack(m, th, tp, &ret_val); 11954 return (ret_val); 11955 } 11956 /* 11957 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11958 * it's less than ts_recent, drop it. 11959 */ 11960 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11961 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11962 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11963 return (ret_val); 11964 } 11965 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11966 &rack->r_ctl.challenge_ack_ts, 11967 &rack->r_ctl.challenge_ack_cnt)) { 11968 return (ret_val); 11969 } 11970 /* 11971 * If new data are received on a connection after the user processes 11972 * are gone, then RST the other end. 11973 */ 11974 if ((so->so_state & SS_NOFDREF) && tlen) { 11975 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 11976 return (1); 11977 } 11978 /* 11979 * If last ACK falls within this segment's sequence numbers, record 11980 * its timestamp. NOTE: 1) That the test incorporates suggestions 11981 * from the latest proposal of the tcplw@cray.com list (Braden 11982 * 1993/04/26). 2) That updating only on newer timestamps interferes 11983 * with our earlier PAWS tests, so this check should be solely 11984 * predicated on the sequence space of this segment. 3) That we 11985 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11986 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11987 * SEG.Len, This modified check allows us to overcome RFC1323's 11988 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11989 * p.869. In such cases, we can still calculate the RTT correctly 11990 * when RCV.NXT == Last.ACK.Sent. 11991 */ 11992 if ((to->to_flags & TOF_TS) != 0 && 11993 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11994 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11995 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11996 tp->ts_recent_age = tcp_ts_getticks(); 11997 tp->ts_recent = to->to_tsval; 11998 } 11999 /* 12000 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12001 * is on (half-synchronized state), then queue data for later 12002 * processing; else drop segment and return. 12003 */ 12004 if ((thflags & TH_ACK) == 0) { 12005 if (tp->t_flags & TF_NEEDSYN) { 12006 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12007 tiwin, thflags, nxt_pkt)); 12008 } else if (tp->t_flags & TF_ACKNOW) { 12009 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12010 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12011 return (ret_val); 12012 } else { 12013 ctf_do_drop(m, NULL); 12014 return (0); 12015 } 12016 } 12017 /* 12018 * Ack processing. 12019 */ 12020 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12021 return (ret_val); 12022 } 12023 if (ourfinisacked) { 12024 /* 12025 * If we can't receive any more data, then closing user can 12026 * proceed. Starting the timer is contrary to the 12027 * specification, but if we don't get a FIN we'll hang 12028 * forever. 12029 * 12030 * XXXjl: we should release the tp also, and use a 12031 * compressed state. 12032 */ 12033 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 12034 soisdisconnected(so); 12035 tcp_timer_activate(tp, TT_2MSL, 12036 (tcp_fast_finwait2_recycle ? 12037 tcp_finwait2_timeout : 12038 TP_MAXIDLE(tp))); 12039 } 12040 tcp_state_change(tp, TCPS_FIN_WAIT_2); 12041 } 12042 if (sbavail(&so->so_snd)) { 12043 if (ctf_progress_timeout_check(tp, true)) { 12044 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12045 tp, tick, PROGRESS_DROP, __LINE__); 12046 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 12047 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12048 return (1); 12049 } 12050 } 12051 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12052 tiwin, thflags, nxt_pkt)); 12053 } 12054 12055 /* 12056 * Return value of 1, the TCB is unlocked and most 12057 * likely gone, return value of 0, the TCP is still 12058 * locked. 12059 */ 12060 static int 12061 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, 12062 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12063 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12064 { 12065 int32_t ret_val = 0; 12066 int32_t ourfinisacked = 0; 12067 struct tcp_rack *rack; 12068 12069 rack = (struct tcp_rack *)tp->t_fb_ptr; 12070 ctf_calc_rwin(so, tp); 12071 12072 if ((thflags & TH_RST) || 12073 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12074 return (ctf_process_rst(m, th, so, tp)); 12075 /* 12076 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12077 * synchronized state. 12078 */ 12079 if (thflags & TH_SYN) { 12080 ctf_challenge_ack(m, th, tp, &ret_val); 12081 return (ret_val); 12082 } 12083 /* 12084 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12085 * it's less than ts_recent, drop it. 12086 */ 12087 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12088 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12089 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12090 return (ret_val); 12091 } 12092 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12093 &rack->r_ctl.challenge_ack_ts, 12094 &rack->r_ctl.challenge_ack_cnt)) { 12095 return (ret_val); 12096 } 12097 /* 12098 * If new data are received on a connection after the user processes 12099 * are gone, then RST the other end. 12100 */ 12101 if ((so->so_state & SS_NOFDREF) && tlen) { 12102 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12103 return (1); 12104 } 12105 /* 12106 * If last ACK falls within this segment's sequence numbers, record 12107 * its timestamp. NOTE: 1) That the test incorporates suggestions 12108 * from the latest proposal of the tcplw@cray.com list (Braden 12109 * 1993/04/26). 2) That updating only on newer timestamps interferes 12110 * with our earlier PAWS tests, so this check should be solely 12111 * predicated on the sequence space of this segment. 3) That we 12112 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12113 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12114 * SEG.Len, This modified check allows us to overcome RFC1323's 12115 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12116 * p.869. In such cases, we can still calculate the RTT correctly 12117 * when RCV.NXT == Last.ACK.Sent. 12118 */ 12119 if ((to->to_flags & TOF_TS) != 0 && 12120 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12121 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12122 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12123 tp->ts_recent_age = tcp_ts_getticks(); 12124 tp->ts_recent = to->to_tsval; 12125 } 12126 /* 12127 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12128 * is on (half-synchronized state), then queue data for later 12129 * processing; else drop segment and return. 12130 */ 12131 if ((thflags & TH_ACK) == 0) { 12132 if (tp->t_flags & TF_NEEDSYN) { 12133 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12134 tiwin, thflags, nxt_pkt)); 12135 } else if (tp->t_flags & TF_ACKNOW) { 12136 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12137 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12138 return (ret_val); 12139 } else { 12140 ctf_do_drop(m, NULL); 12141 return (0); 12142 } 12143 } 12144 /* 12145 * Ack processing. 12146 */ 12147 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12148 return (ret_val); 12149 } 12150 if (ourfinisacked) { 12151 tcp_twstart(tp); 12152 m_freem(m); 12153 return (1); 12154 } 12155 if (sbavail(&so->so_snd)) { 12156 if (ctf_progress_timeout_check(tp, true)) { 12157 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12158 tp, tick, PROGRESS_DROP, __LINE__); 12159 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 12160 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12161 return (1); 12162 } 12163 } 12164 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12165 tiwin, thflags, nxt_pkt)); 12166 } 12167 12168 /* 12169 * Return value of 1, the TCB is unlocked and most 12170 * likely gone, return value of 0, the TCP is still 12171 * locked. 12172 */ 12173 static int 12174 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 12175 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12176 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12177 { 12178 int32_t ret_val = 0; 12179 int32_t ourfinisacked = 0; 12180 struct tcp_rack *rack; 12181 12182 rack = (struct tcp_rack *)tp->t_fb_ptr; 12183 ctf_calc_rwin(so, tp); 12184 12185 if ((thflags & TH_RST) || 12186 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12187 return (ctf_process_rst(m, th, so, tp)); 12188 /* 12189 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12190 * synchronized state. 12191 */ 12192 if (thflags & TH_SYN) { 12193 ctf_challenge_ack(m, th, tp, &ret_val); 12194 return (ret_val); 12195 } 12196 /* 12197 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12198 * it's less than ts_recent, drop it. 12199 */ 12200 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12201 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12202 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12203 return (ret_val); 12204 } 12205 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12206 &rack->r_ctl.challenge_ack_ts, 12207 &rack->r_ctl.challenge_ack_cnt)) { 12208 return (ret_val); 12209 } 12210 /* 12211 * If new data are received on a connection after the user processes 12212 * are gone, then RST the other end. 12213 */ 12214 if ((so->so_state & SS_NOFDREF) && tlen) { 12215 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12216 return (1); 12217 } 12218 /* 12219 * If last ACK falls within this segment's sequence numbers, record 12220 * its timestamp. NOTE: 1) That the test incorporates suggestions 12221 * from the latest proposal of the tcplw@cray.com list (Braden 12222 * 1993/04/26). 2) That updating only on newer timestamps interferes 12223 * with our earlier PAWS tests, so this check should be solely 12224 * predicated on the sequence space of this segment. 3) That we 12225 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12226 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12227 * SEG.Len, This modified check allows us to overcome RFC1323's 12228 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12229 * p.869. In such cases, we can still calculate the RTT correctly 12230 * when RCV.NXT == Last.ACK.Sent. 12231 */ 12232 if ((to->to_flags & TOF_TS) != 0 && 12233 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12234 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12235 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12236 tp->ts_recent_age = tcp_ts_getticks(); 12237 tp->ts_recent = to->to_tsval; 12238 } 12239 /* 12240 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12241 * is on (half-synchronized state), then queue data for later 12242 * processing; else drop segment and return. 12243 */ 12244 if ((thflags & TH_ACK) == 0) { 12245 if (tp->t_flags & TF_NEEDSYN) { 12246 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12247 tiwin, thflags, nxt_pkt)); 12248 } else if (tp->t_flags & TF_ACKNOW) { 12249 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12250 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12251 return (ret_val); 12252 } else { 12253 ctf_do_drop(m, NULL); 12254 return (0); 12255 } 12256 } 12257 /* 12258 * case TCPS_LAST_ACK: Ack processing. 12259 */ 12260 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12261 return (ret_val); 12262 } 12263 if (ourfinisacked) { 12264 tp = tcp_close(tp); 12265 ctf_do_drop(m, tp); 12266 return (1); 12267 } 12268 if (sbavail(&so->so_snd)) { 12269 if (ctf_progress_timeout_check(tp, true)) { 12270 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12271 tp, tick, PROGRESS_DROP, __LINE__); 12272 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 12273 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12274 return (1); 12275 } 12276 } 12277 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12278 tiwin, thflags, nxt_pkt)); 12279 } 12280 12281 /* 12282 * Return value of 1, the TCB is unlocked and most 12283 * likely gone, return value of 0, the TCP is still 12284 * locked. 12285 */ 12286 static int 12287 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, 12288 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12289 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 12290 { 12291 int32_t ret_val = 0; 12292 int32_t ourfinisacked = 0; 12293 struct tcp_rack *rack; 12294 12295 rack = (struct tcp_rack *)tp->t_fb_ptr; 12296 ctf_calc_rwin(so, tp); 12297 12298 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 12299 if ((thflags & TH_RST) || 12300 (tp->t_fin_is_rst && (thflags & TH_FIN))) 12301 return (ctf_process_rst(m, th, so, tp)); 12302 /* 12303 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 12304 * synchronized state. 12305 */ 12306 if (thflags & TH_SYN) { 12307 ctf_challenge_ack(m, th, tp, &ret_val); 12308 return (ret_val); 12309 } 12310 /* 12311 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 12312 * it's less than ts_recent, drop it. 12313 */ 12314 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 12315 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 12316 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 12317 return (ret_val); 12318 } 12319 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 12320 &rack->r_ctl.challenge_ack_ts, 12321 &rack->r_ctl.challenge_ack_cnt)) { 12322 return (ret_val); 12323 } 12324 /* 12325 * If new data are received on a connection after the user processes 12326 * are gone, then RST the other end. 12327 */ 12328 if ((so->so_state & SS_NOFDREF) && 12329 tlen) { 12330 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 12331 return (1); 12332 } 12333 /* 12334 * If last ACK falls within this segment's sequence numbers, record 12335 * its timestamp. NOTE: 1) That the test incorporates suggestions 12336 * from the latest proposal of the tcplw@cray.com list (Braden 12337 * 1993/04/26). 2) That updating only on newer timestamps interferes 12338 * with our earlier PAWS tests, so this check should be solely 12339 * predicated on the sequence space of this segment. 3) That we 12340 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 12341 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 12342 * SEG.Len, This modified check allows us to overcome RFC1323's 12343 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 12344 * p.869. In such cases, we can still calculate the RTT correctly 12345 * when RCV.NXT == Last.ACK.Sent. 12346 */ 12347 if ((to->to_flags & TOF_TS) != 0 && 12348 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 12349 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 12350 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 12351 tp->ts_recent_age = tcp_ts_getticks(); 12352 tp->ts_recent = to->to_tsval; 12353 } 12354 /* 12355 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 12356 * is on (half-synchronized state), then queue data for later 12357 * processing; else drop segment and return. 12358 */ 12359 if ((thflags & TH_ACK) == 0) { 12360 if (tp->t_flags & TF_NEEDSYN) { 12361 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12362 tiwin, thflags, nxt_pkt)); 12363 } else if (tp->t_flags & TF_ACKNOW) { 12364 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 12365 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 12366 return (ret_val); 12367 } else { 12368 ctf_do_drop(m, NULL); 12369 return (0); 12370 } 12371 } 12372 /* 12373 * Ack processing. 12374 */ 12375 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 12376 return (ret_val); 12377 } 12378 if (sbavail(&so->so_snd)) { 12379 if (ctf_progress_timeout_check(tp, true)) { 12380 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 12381 tp, tick, PROGRESS_DROP, __LINE__); 12382 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 12383 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 12384 return (1); 12385 } 12386 } 12387 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 12388 tiwin, thflags, nxt_pkt)); 12389 } 12390 12391 static void inline 12392 rack_clear_rate_sample(struct tcp_rack *rack) 12393 { 12394 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; 12395 rack->r_ctl.rack_rs.rs_rtt_cnt = 0; 12396 rack->r_ctl.rack_rs.rs_rtt_tot = 0; 12397 } 12398 12399 static void 12400 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override) 12401 { 12402 uint64_t bw_est, rate_wanted; 12403 int chged = 0; 12404 uint32_t user_max, orig_min, orig_max; 12405 12406 orig_min = rack->r_ctl.rc_pace_min_segs; 12407 orig_max = rack->r_ctl.rc_pace_max_segs; 12408 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; 12409 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) 12410 chged = 1; 12411 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); 12412 if (rack->use_fixed_rate || rack->rc_force_max_seg) { 12413 if (user_max != rack->r_ctl.rc_pace_max_segs) 12414 chged = 1; 12415 } 12416 if (rack->rc_force_max_seg) { 12417 rack->r_ctl.rc_pace_max_segs = user_max; 12418 } else if (rack->use_fixed_rate) { 12419 bw_est = rack_get_bw(rack); 12420 if ((rack->r_ctl.crte == NULL) || 12421 (bw_est != rack->r_ctl.crte->rate)) { 12422 rack->r_ctl.rc_pace_max_segs = user_max; 12423 } else { 12424 /* We are pacing right at the hardware rate */ 12425 uint32_t segsiz; 12426 12427 segsiz = min(ctf_fixed_maxseg(tp), 12428 rack->r_ctl.rc_pace_min_segs); 12429 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size( 12430 tp, bw_est, segsiz, 0, 12431 rack->r_ctl.crte, NULL); 12432 } 12433 } else if (rack->rc_always_pace) { 12434 if (rack->r_ctl.gp_bw || 12435 #ifdef NETFLIX_PEAKRATE 12436 rack->rc_tp->t_maxpeakrate || 12437 #endif 12438 rack->r_ctl.init_rate) { 12439 /* We have a rate of some sort set */ 12440 uint32_t orig; 12441 12442 bw_est = rack_get_bw(rack); 12443 orig = rack->r_ctl.rc_pace_max_segs; 12444 if (fill_override) 12445 rate_wanted = *fill_override; 12446 else 12447 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL); 12448 if (rate_wanted) { 12449 /* We have something */ 12450 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, 12451 rate_wanted, 12452 ctf_fixed_maxseg(rack->rc_tp)); 12453 } else 12454 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; 12455 if (orig != rack->r_ctl.rc_pace_max_segs) 12456 chged = 1; 12457 } else if ((rack->r_ctl.gp_bw == 0) && 12458 (rack->r_ctl.rc_pace_max_segs == 0)) { 12459 /* 12460 * If we have nothing limit us to bursting 12461 * out IW sized pieces. 12462 */ 12463 chged = 1; 12464 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); 12465 } 12466 } 12467 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { 12468 chged = 1; 12469 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; 12470 } 12471 if (chged) 12472 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2); 12473 } 12474 12475 12476 static void 12477 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack) 12478 { 12479 #ifdef INET6 12480 struct ip6_hdr *ip6 = NULL; 12481 #endif 12482 #ifdef INET 12483 struct ip *ip = NULL; 12484 #endif 12485 struct udphdr *udp = NULL; 12486 12487 /* Ok lets fill in the fast block, it can only be used with no IP options! */ 12488 #ifdef INET6 12489 if (rack->r_is_v6) { 12490 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 12491 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 12492 if (tp->t_port) { 12493 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12494 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 12495 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12496 udp->uh_dport = tp->t_port; 12497 rack->r_ctl.fsb.udp = udp; 12498 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12499 } else 12500 { 12501 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1); 12502 rack->r_ctl.fsb.udp = NULL; 12503 } 12504 tcpip_fillheaders(rack->rc_inp, 12505 tp->t_port, 12506 ip6, rack->r_ctl.fsb.th); 12507 } else 12508 #endif /* INET6 */ 12509 { 12510 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr); 12511 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 12512 if (tp->t_port) { 12513 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 12514 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 12515 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 12516 udp->uh_dport = tp->t_port; 12517 rack->r_ctl.fsb.udp = udp; 12518 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 12519 } else 12520 { 12521 rack->r_ctl.fsb.udp = NULL; 12522 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1); 12523 } 12524 tcpip_fillheaders(rack->rc_inp, 12525 tp->t_port, 12526 ip, rack->r_ctl.fsb.th); 12527 } 12528 rack->r_fsb_inited = 1; 12529 } 12530 12531 static int 12532 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack) 12533 { 12534 /* 12535 * Allocate the larger of spaces V6 if available else just 12536 * V4 and include udphdr (overbook) 12537 */ 12538 #ifdef INET6 12539 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr); 12540 #else 12541 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr); 12542 #endif 12543 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len, 12544 M_TCPFSB, M_NOWAIT|M_ZERO); 12545 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) { 12546 return (ENOMEM); 12547 } 12548 rack->r_fsb_inited = 0; 12549 return (0); 12550 } 12551 12552 static int 12553 rack_init(struct tcpcb *tp) 12554 { 12555 struct tcp_rack *rack = NULL; 12556 struct rack_sendmap *insret; 12557 uint32_t iwin, snt, us_cts; 12558 int err; 12559 12560 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); 12561 if (tp->t_fb_ptr == NULL) { 12562 /* 12563 * We need to allocate memory but cant. The INP and INP_INFO 12564 * locks and they are recusive (happens during setup. So a 12565 * scheme to drop the locks fails :( 12566 * 12567 */ 12568 return (ENOMEM); 12569 } 12570 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack)); 12571 12572 rack = (struct tcp_rack *)tp->t_fb_ptr; 12573 RB_INIT(&rack->r_ctl.rc_mtree); 12574 TAILQ_INIT(&rack->r_ctl.rc_free); 12575 TAILQ_INIT(&rack->r_ctl.rc_tmap); 12576 rack->rc_tp = tp; 12577 rack->rc_inp = tp->t_inpcb; 12578 /* Set the flag */ 12579 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 12580 /* Probably not needed but lets be sure */ 12581 rack_clear_rate_sample(rack); 12582 /* 12583 * Save off the default values, socket options will poke 12584 * at these if pacing is not on or we have not yet 12585 * reached where pacing is on (gp_ready/fixed enabled). 12586 * When they get set into the CC module (when gp_ready 12587 * is enabled or we enable fixed) then we will set these 12588 * values into the CC and place in here the old values 12589 * so we have a restoral. Then we will set the flag 12590 * rc_pacing_cc_set. That way whenever we turn off pacing 12591 * or switch off this stack, we will know to go restore 12592 * the saved values. 12593 */ 12594 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn; 12595 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn; 12596 /* We want abe like behavior as well */ 12597 rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 12598 rack->r_ctl.rc_reorder_fade = rack_reorder_fade; 12599 rack->rc_allow_data_af_clo = rack_ignore_data_after_close; 12600 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; 12601 rack->r_ctl.roundends = tp->snd_max; 12602 if (use_rack_rr) 12603 rack->use_rack_rr = 1; 12604 if (V_tcp_delack_enabled) 12605 tp->t_delayed_ack = 1; 12606 else 12607 tp->t_delayed_ack = 0; 12608 #ifdef TCP_ACCOUNTING 12609 if (rack_tcp_accounting) { 12610 tp->t_flags2 |= TF2_TCP_ACCOUNTING; 12611 } 12612 #endif 12613 if (rack_enable_shared_cwnd) 12614 rack->rack_enable_scwnd = 1; 12615 rack->rc_user_set_max_segs = rack_hptsi_segments; 12616 rack->rc_force_max_seg = 0; 12617 if (rack_use_imac_dack) 12618 rack->rc_dack_mode = 1; 12619 TAILQ_INIT(&rack->r_ctl.opt_list); 12620 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; 12621 rack->r_ctl.rc_pkt_delay = rack_pkt_delay; 12622 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; 12623 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; 12624 rack->r_ctl.rc_highest_us_rtt = 0; 12625 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap; 12626 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop); 12627 if (rack_use_cmp_acks) 12628 rack->r_use_cmp_ack = 1; 12629 if (rack_disable_prr) 12630 rack->rack_no_prr = 1; 12631 if (rack_gp_no_rec_chg) 12632 rack->rc_gp_no_rec_chg = 1; 12633 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 12634 rack->rc_always_pace = 1; 12635 if (rack->use_fixed_rate || rack->gp_ready) 12636 rack_set_cc_pacing(rack); 12637 } else 12638 rack->rc_always_pace = 0; 12639 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) 12640 rack->r_mbuf_queue = 1; 12641 else 12642 rack->r_mbuf_queue = 0; 12643 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 12644 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 12645 else 12646 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12647 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12648 if (rack_limits_scwnd) 12649 rack->r_limit_scw = 1; 12650 else 12651 rack->r_limit_scw = 0; 12652 rack->rc_labc = V_tcp_abc_l_var; 12653 rack->r_ctl.rc_high_rwnd = tp->snd_wnd; 12654 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 12655 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; 12656 rack->rack_tlp_threshold_use = rack_tlp_threshold_use; 12657 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; 12658 rack->r_ctl.rc_min_to = rack_min_to; 12659 microuptime(&rack->r_ctl.act_rcv_time); 12660 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 12661 rack->r_running_late = 0; 12662 rack->r_running_early = 0; 12663 rack->rc_init_win = rack_default_init_window; 12664 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; 12665 if (rack_hw_up_only) 12666 rack->r_up_only = 1; 12667 if (rack_do_dyn_mul) { 12668 /* When dynamic adjustment is on CA needs to start at 100% */ 12669 rack->rc_gp_dyn_mul = 1; 12670 if (rack_do_dyn_mul >= 100) 12671 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 12672 } else 12673 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 12674 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; 12675 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 12676 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); 12677 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, 12678 rack_probertt_filter_life); 12679 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12680 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 12681 rack->r_ctl.rc_time_of_last_probertt = us_cts; 12682 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks(); 12683 rack->r_ctl.rc_time_probertt_starts = 0; 12684 if (rack_dsack_std_based & 0x1) { 12685 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 12686 rack->rc_rack_tmr_std_based = 1; 12687 } 12688 if (rack_dsack_std_based & 0x2) { 12689 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 12690 rack->rc_rack_use_dsack = 1; 12691 } 12692 /* We require at least one measurement, even if the sysctl is 0 */ 12693 if (rack_req_measurements) 12694 rack->r_ctl.req_measurements = rack_req_measurements; 12695 else 12696 rack->r_ctl.req_measurements = 1; 12697 if (rack_enable_hw_pacing) 12698 rack->rack_hdw_pace_ena = 1; 12699 if (rack_hw_rate_caps) 12700 rack->r_rack_hw_rate_caps = 1; 12701 /* Do we force on detection? */ 12702 #ifdef NETFLIX_EXP_DETECTION 12703 if (tcp_force_detection) 12704 rack->do_detection = 1; 12705 else 12706 #endif 12707 rack->do_detection = 0; 12708 if (rack_non_rxt_use_cr) 12709 rack->rack_rec_nonrxt_use_cr = 1; 12710 err = rack_init_fsb(tp, rack); 12711 if (err) { 12712 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12713 tp->t_fb_ptr = NULL; 12714 return (err); 12715 } 12716 if (tp->snd_una != tp->snd_max) { 12717 /* Create a send map for the current outstanding data */ 12718 struct rack_sendmap *rsm; 12719 12720 rsm = rack_alloc(rack); 12721 if (rsm == NULL) { 12722 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12723 tp->t_fb_ptr = NULL; 12724 return (ENOMEM); 12725 } 12726 rsm->r_no_rtt_allowed = 1; 12727 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 12728 rsm->r_rtr_cnt = 1; 12729 rsm->r_rtr_bytes = 0; 12730 if (tp->t_flags & TF_SENTFIN) { 12731 rsm->r_end = tp->snd_max - 1; 12732 rsm->r_flags |= RACK_HAS_FIN; 12733 } else { 12734 rsm->r_end = tp->snd_max; 12735 } 12736 if (tp->snd_una == tp->iss) { 12737 /* The data space is one beyond snd_una */ 12738 rsm->r_flags |= RACK_HAS_SYN; 12739 rsm->r_start = tp->iss; 12740 rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una); 12741 } else 12742 rsm->r_start = tp->snd_una; 12743 rsm->r_dupack = 0; 12744 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) { 12745 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff); 12746 if (rsm->m) 12747 rsm->orig_m_len = rsm->m->m_len; 12748 else 12749 rsm->orig_m_len = 0; 12750 } else { 12751 /* 12752 * This can happen if we have a stand-alone FIN or 12753 * SYN. 12754 */ 12755 rsm->m = NULL; 12756 rsm->orig_m_len = 0; 12757 rsm->soff = 0; 12758 } 12759 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12760 #ifdef INVARIANTS 12761 if (insret != NULL) { 12762 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p", 12763 insret, rack, rsm); 12764 } 12765 #endif 12766 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 12767 rsm->r_in_tmap = 1; 12768 } 12769 /* 12770 * Timers in Rack are kept in microseconds so lets 12771 * convert any initial incoming variables 12772 * from ticks into usecs. Note that we 12773 * also change the values of t_srtt and t_rttvar, if 12774 * they are non-zero. They are kept with a 5 12775 * bit decimal so we have to carefully convert 12776 * these to get the full precision. 12777 */ 12778 rack_convert_rtts(tp); 12779 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 12780 if (rack_do_hystart) { 12781 struct sockopt sopt; 12782 struct cc_newreno_opts opt; 12783 12784 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 12785 sopt.sopt_dir = SOPT_SET; 12786 opt.name = CC_NEWRENO_ENABLE_HYSTART; 12787 opt.val = rack_do_hystart; 12788 if (CC_ALGO(tp)->ctl_output != NULL) 12789 (void)CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 12790 } 12791 if (rack_def_profile) 12792 rack_set_profile(rack, rack_def_profile); 12793 /* Cancel the GP measurement in progress */ 12794 tp->t_flags &= ~TF_GPUTINPROG; 12795 if (SEQ_GT(tp->snd_max, tp->iss)) 12796 snt = tp->snd_max - tp->iss; 12797 else 12798 snt = 0; 12799 iwin = rc_init_window(rack); 12800 if (snt < iwin) { 12801 /* We are not past the initial window 12802 * so we need to make sure cwnd is 12803 * correct. 12804 */ 12805 if (tp->snd_cwnd < iwin) 12806 tp->snd_cwnd = iwin; 12807 /* 12808 * If we are within the initial window 12809 * we want ssthresh to be unlimited. Setting 12810 * it to the rwnd (which the default stack does 12811 * and older racks) is not really a good idea 12812 * since we want to be in SS and grow both the 12813 * cwnd and the rwnd (via dynamic rwnd growth). If 12814 * we set it to the rwnd then as the peer grows its 12815 * rwnd we will be stuck in CA and never hit SS. 12816 * 12817 * Its far better to raise it up high (this takes the 12818 * risk that there as been a loss already, probably 12819 * we should have an indicator in all stacks of loss 12820 * but we don't), but considering the normal use this 12821 * is a risk worth taking. The consequences of not 12822 * hitting SS are far worse than going one more time 12823 * into it early on (before we have sent even a IW). 12824 * It is highly unlikely that we will have had a loss 12825 * before getting the IW out. 12826 */ 12827 tp->snd_ssthresh = 0xffffffff; 12828 } 12829 rack_stop_all_timers(tp); 12830 /* Lets setup the fsb block */ 12831 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 12832 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur, 12833 __LINE__, RACK_RTTS_INIT); 12834 return (0); 12835 } 12836 12837 static int 12838 rack_handoff_ok(struct tcpcb *tp) 12839 { 12840 if ((tp->t_state == TCPS_CLOSED) || 12841 (tp->t_state == TCPS_LISTEN)) { 12842 /* Sure no problem though it may not stick */ 12843 return (0); 12844 } 12845 if ((tp->t_state == TCPS_SYN_SENT) || 12846 (tp->t_state == TCPS_SYN_RECEIVED)) { 12847 /* 12848 * We really don't know if you support sack, 12849 * you have to get to ESTAB or beyond to tell. 12850 */ 12851 return (EAGAIN); 12852 } 12853 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) { 12854 /* 12855 * Rack will only send a FIN after all data is acknowledged. 12856 * So in this case we have more data outstanding. We can't 12857 * switch stacks until either all data and only the FIN 12858 * is left (in which case rack_init() now knows how 12859 * to deal with that) <or> all is acknowledged and we 12860 * are only left with incoming data, though why you 12861 * would want to switch to rack after all data is acknowledged 12862 * I have no idea (rrs)! 12863 */ 12864 return (EAGAIN); 12865 } 12866 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ 12867 return (0); 12868 } 12869 /* 12870 * If we reach here we don't do SACK on this connection so we can 12871 * never do rack. 12872 */ 12873 return (EINVAL); 12874 } 12875 12876 12877 static void 12878 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) 12879 { 12880 int ack_cmp = 0; 12881 12882 if (tp->t_fb_ptr) { 12883 struct tcp_rack *rack; 12884 struct rack_sendmap *rsm, *nrsm, *rm; 12885 12886 rack = (struct tcp_rack *)tp->t_fb_ptr; 12887 if (tp->t_in_pkt) { 12888 /* 12889 * It is unsafe to process the packets since a 12890 * reset may be lurking in them (its rare but it 12891 * can occur). If we were to find a RST, then we 12892 * would end up dropping the connection and the 12893 * INP lock, so when we return the caller (tcp_usrreq) 12894 * will blow up when it trys to unlock the inp. 12895 */ 12896 struct mbuf *save, *m; 12897 12898 m = tp->t_in_pkt; 12899 tp->t_in_pkt = NULL; 12900 tp->t_tail_pkt = NULL; 12901 while (m) { 12902 save = m->m_nextpkt; 12903 m->m_nextpkt = NULL; 12904 m_freem(m); 12905 m = save; 12906 } 12907 if ((tp->t_inpcb) && 12908 (tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP)) 12909 ack_cmp = 1; 12910 if (ack_cmp) { 12911 /* Total if we used large or small (if ack-cmp was used). */ 12912 if (rack->rc_inp->inp_flags2 & INP_MBUF_L_ACKS) 12913 counter_u64_add(rack_large_ackcmp, 1); 12914 else 12915 counter_u64_add(rack_small_ackcmp, 1); 12916 } 12917 } 12918 tp->t_flags &= ~TF_FORCEDATA; 12919 #ifdef NETFLIX_SHARED_CWND 12920 if (rack->r_ctl.rc_scw) { 12921 uint32_t limit; 12922 12923 if (rack->r_limit_scw) 12924 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 12925 else 12926 limit = 0; 12927 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 12928 rack->r_ctl.rc_scw_index, 12929 limit); 12930 rack->r_ctl.rc_scw = NULL; 12931 } 12932 #endif 12933 if (rack->r_ctl.fsb.tcp_ip_hdr) { 12934 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB); 12935 rack->r_ctl.fsb.tcp_ip_hdr = NULL; 12936 rack->r_ctl.fsb.th = NULL; 12937 } 12938 /* Convert back to ticks, with */ 12939 if (tp->t_srtt > 1) { 12940 uint32_t val, frac; 12941 12942 val = USEC_2_TICKS(tp->t_srtt); 12943 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12944 tp->t_srtt = val << TCP_RTT_SHIFT; 12945 /* 12946 * frac is the fractional part here is left 12947 * over from converting to hz and shifting. 12948 * We need to convert this to the 5 bit 12949 * remainder. 12950 */ 12951 if (frac) { 12952 if (hz == 1000) { 12953 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12954 } else { 12955 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12956 } 12957 tp->t_srtt += frac; 12958 } 12959 } 12960 if (tp->t_rttvar) { 12961 uint32_t val, frac; 12962 12963 val = USEC_2_TICKS(tp->t_rttvar); 12964 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12965 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 12966 /* 12967 * frac is the fractional part here is left 12968 * over from converting to hz and shifting. 12969 * We need to convert this to the 5 bit 12970 * remainder. 12971 */ 12972 if (frac) { 12973 if (hz == 1000) { 12974 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12975 } else { 12976 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12977 } 12978 tp->t_rttvar += frac; 12979 } 12980 } 12981 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur); 12982 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 12983 if (rack->rc_always_pace) { 12984 tcp_decrement_paced_conn(); 12985 rack_undo_cc_pacing(rack); 12986 rack->rc_always_pace = 0; 12987 } 12988 /* Clean up any options if they were not applied */ 12989 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) { 12990 struct deferred_opt_list *dol; 12991 12992 dol = TAILQ_FIRST(&rack->r_ctl.opt_list); 12993 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 12994 free(dol, M_TCPDO); 12995 } 12996 /* rack does not use force data but other stacks may clear it */ 12997 if (rack->r_ctl.crte != NULL) { 12998 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 12999 rack->rack_hdrw_pacing = 0; 13000 rack->r_ctl.crte = NULL; 13001 } 13002 #ifdef TCP_BLACKBOX 13003 tcp_log_flowend(tp); 13004 #endif 13005 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) { 13006 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 13007 #ifdef INVARIANTS 13008 if (rm != rsm) { 13009 panic("At fini, rack:%p rsm:%p rm:%p", 13010 rack, rsm, rm); 13011 } 13012 #endif 13013 uma_zfree(rack_zone, rsm); 13014 } 13015 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 13016 while (rsm) { 13017 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 13018 uma_zfree(rack_zone, rsm); 13019 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 13020 } 13021 rack->rc_free_cnt = 0; 13022 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 13023 tp->t_fb_ptr = NULL; 13024 } 13025 if (tp->t_inpcb) { 13026 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 13027 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; 13028 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE; 13029 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP; 13030 /* Cancel the GP measurement in progress */ 13031 tp->t_flags &= ~TF_GPUTINPROG; 13032 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS; 13033 } 13034 /* Make sure snd_nxt is correctly set */ 13035 tp->snd_nxt = tp->snd_max; 13036 } 13037 13038 static void 13039 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) 13040 { 13041 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) { 13042 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 13043 } 13044 switch (tp->t_state) { 13045 case TCPS_SYN_SENT: 13046 rack->r_state = TCPS_SYN_SENT; 13047 rack->r_substate = rack_do_syn_sent; 13048 break; 13049 case TCPS_SYN_RECEIVED: 13050 rack->r_state = TCPS_SYN_RECEIVED; 13051 rack->r_substate = rack_do_syn_recv; 13052 break; 13053 case TCPS_ESTABLISHED: 13054 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13055 rack->r_state = TCPS_ESTABLISHED; 13056 rack->r_substate = rack_do_established; 13057 break; 13058 case TCPS_CLOSE_WAIT: 13059 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13060 rack->r_state = TCPS_CLOSE_WAIT; 13061 rack->r_substate = rack_do_close_wait; 13062 break; 13063 case TCPS_FIN_WAIT_1: 13064 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13065 rack->r_state = TCPS_FIN_WAIT_1; 13066 rack->r_substate = rack_do_fin_wait_1; 13067 break; 13068 case TCPS_CLOSING: 13069 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13070 rack->r_state = TCPS_CLOSING; 13071 rack->r_substate = rack_do_closing; 13072 break; 13073 case TCPS_LAST_ACK: 13074 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13075 rack->r_state = TCPS_LAST_ACK; 13076 rack->r_substate = rack_do_lastack; 13077 break; 13078 case TCPS_FIN_WAIT_2: 13079 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13080 rack->r_state = TCPS_FIN_WAIT_2; 13081 rack->r_substate = rack_do_fin_wait_2; 13082 break; 13083 case TCPS_LISTEN: 13084 case TCPS_CLOSED: 13085 case TCPS_TIME_WAIT: 13086 default: 13087 break; 13088 }; 13089 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 13090 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 13091 13092 } 13093 13094 static void 13095 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) 13096 { 13097 /* 13098 * We received an ack, and then did not 13099 * call send or were bounced out due to the 13100 * hpts was running. Now a timer is up as well, is 13101 * it the right timer? 13102 */ 13103 struct rack_sendmap *rsm; 13104 int tmr_up; 13105 13106 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 13107 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) 13108 return; 13109 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 13110 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && 13111 (tmr_up == PACE_TMR_RXT)) { 13112 /* Should be an RXT */ 13113 return; 13114 } 13115 if (rsm == NULL) { 13116 /* Nothing outstanding? */ 13117 if (tp->t_flags & TF_DELACK) { 13118 if (tmr_up == PACE_TMR_DELACK) 13119 /* We are supposed to have delayed ack up and we do */ 13120 return; 13121 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { 13122 /* 13123 * if we hit enobufs then we would expect the possiblity 13124 * of nothing outstanding and the RXT up (and the hptsi timer). 13125 */ 13126 return; 13127 } else if (((V_tcp_always_keepalive || 13128 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 13129 (tp->t_state <= TCPS_CLOSING)) && 13130 (tmr_up == PACE_TMR_KEEP) && 13131 (tp->snd_max == tp->snd_una)) { 13132 /* We should have keep alive up and we do */ 13133 return; 13134 } 13135 } 13136 if (SEQ_GT(tp->snd_max, tp->snd_una) && 13137 ((tmr_up == PACE_TMR_TLP) || 13138 (tmr_up == PACE_TMR_RACK) || 13139 (tmr_up == PACE_TMR_RXT))) { 13140 /* 13141 * Either a Rack, TLP or RXT is fine if we 13142 * have outstanding data. 13143 */ 13144 return; 13145 } else if (tmr_up == PACE_TMR_DELACK) { 13146 /* 13147 * If the delayed ack was going to go off 13148 * before the rtx/tlp/rack timer were going to 13149 * expire, then that would be the timer in control. 13150 * Note we don't check the time here trusting the 13151 * code is correct. 13152 */ 13153 return; 13154 } 13155 /* 13156 * Ok the timer originally started is not what we want now. 13157 * We will force the hpts to be stopped if any, and restart 13158 * with the slot set to what was in the saved slot. 13159 */ 13160 if (rack->rc_inp->inp_in_hpts) { 13161 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 13162 uint32_t us_cts; 13163 13164 us_cts = tcp_get_usecs(NULL); 13165 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 13166 rack->r_early = 1; 13167 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 13168 } 13169 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 13170 } 13171 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); 13172 } 13173 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13174 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 13175 } 13176 13177 13178 static void 13179 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq) 13180 { 13181 if ((SEQ_LT(tp->snd_wl1, seq) || 13182 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) || 13183 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) { 13184 /* keep track of pure window updates */ 13185 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd)) 13186 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 13187 tp->snd_wnd = tiwin; 13188 rack_validate_fo_sendwin_up(tp, rack); 13189 tp->snd_wl1 = seq; 13190 tp->snd_wl2 = ack; 13191 if (tp->snd_wnd > tp->max_sndwnd) 13192 tp->max_sndwnd = tp->snd_wnd; 13193 rack->r_wanted_output = 1; 13194 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) { 13195 tp->snd_wnd = tiwin; 13196 rack_validate_fo_sendwin_up(tp, rack); 13197 tp->snd_wl1 = seq; 13198 tp->snd_wl2 = ack; 13199 } else { 13200 /* Not a valid win update */ 13201 return; 13202 } 13203 if (tp->snd_wnd > tp->max_sndwnd) 13204 tp->max_sndwnd = tp->snd_wnd; 13205 if (tp->snd_wnd < (tp->snd_max - high_seq)) { 13206 /* The peer collapsed the window */ 13207 rack_collapsed_window(rack); 13208 } else if (rack->rc_has_collapsed) 13209 rack_un_collapse_window(rack); 13210 /* Do we exit persists? */ 13211 if ((rack->rc_in_persist != 0) && 13212 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 13213 rack->r_ctl.rc_pace_min_segs))) { 13214 rack_exit_persist(tp, rack, cts); 13215 } 13216 /* Do we enter persists? */ 13217 if ((rack->rc_in_persist == 0) && 13218 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 13219 TCPS_HAVEESTABLISHED(tp->t_state) && 13220 (tp->snd_max == tp->snd_una) && 13221 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 13222 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 13223 /* 13224 * Here the rwnd is less than 13225 * the pacing size, we are established, 13226 * nothing is outstanding, and there is 13227 * data to send. Enter persists. 13228 */ 13229 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 13230 } 13231 } 13232 13233 static void 13234 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq) 13235 { 13236 13237 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 13238 union tcp_log_stackspecific log; 13239 struct timeval ltv; 13240 char tcp_hdr_buf[60]; 13241 struct tcphdr *th; 13242 struct timespec ts; 13243 uint32_t orig_snd_una; 13244 uint8_t xx = 0; 13245 13246 #ifdef NETFLIX_HTTP_LOGGING 13247 struct http_sendfile_track *http_req; 13248 13249 if (SEQ_GT(ae->ack, tp->snd_una)) { 13250 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1)); 13251 } else { 13252 http_req = tcp_http_find_req_for_seq(tp, ae->ack); 13253 } 13254 #endif 13255 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 13256 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 13257 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 13258 if (rack->rack_no_prr == 0) 13259 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 13260 else 13261 log.u_bbr.flex1 = 0; 13262 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 13263 log.u_bbr.use_lt_bw <<= 1; 13264 log.u_bbr.use_lt_bw |= rack->r_might_revert; 13265 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 13266 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 13267 log.u_bbr.pkts_out = tp->t_maxseg; 13268 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 13269 log.u_bbr.flex7 = 1; 13270 log.u_bbr.lost = ae->flags; 13271 log.u_bbr.cwnd_gain = ackval; 13272 log.u_bbr.pacing_gain = 0x2; 13273 if (ae->flags & TSTMP_HDWR) { 13274 /* Record the hardware timestamp if present */ 13275 log.u_bbr.flex3 = M_TSTMP; 13276 ts.tv_sec = ae->timestamp / 1000000000; 13277 ts.tv_nsec = ae->timestamp % 1000000000; 13278 ltv.tv_sec = ts.tv_sec; 13279 ltv.tv_usec = ts.tv_nsec / 1000; 13280 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 13281 } else if (ae->flags & TSTMP_LRO) { 13282 /* Record the LRO the arrival timestamp */ 13283 log.u_bbr.flex3 = M_TSTMP_LRO; 13284 ts.tv_sec = ae->timestamp / 1000000000; 13285 ts.tv_nsec = ae->timestamp % 1000000000; 13286 ltv.tv_sec = ts.tv_sec; 13287 ltv.tv_usec = ts.tv_nsec / 1000; 13288 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 13289 } 13290 log.u_bbr.timeStamp = tcp_get_usecs(<v); 13291 /* Log the rcv time */ 13292 log.u_bbr.delRate = ae->timestamp; 13293 #ifdef NETFLIX_HTTP_LOGGING 13294 log.u_bbr.applimited = tp->t_http_closed; 13295 log.u_bbr.applimited <<= 8; 13296 log.u_bbr.applimited |= tp->t_http_open; 13297 log.u_bbr.applimited <<= 8; 13298 log.u_bbr.applimited |= tp->t_http_req; 13299 if (http_req) { 13300 /* Copy out any client req info */ 13301 /* seconds */ 13302 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 13303 /* useconds */ 13304 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 13305 log.u_bbr.rttProp = http_req->timestamp; 13306 log.u_bbr.cur_del_rate = http_req->start; 13307 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 13308 log.u_bbr.flex8 |= 1; 13309 } else { 13310 log.u_bbr.flex8 |= 2; 13311 log.u_bbr.bw_inuse = http_req->end; 13312 } 13313 log.u_bbr.flex6 = http_req->start_seq; 13314 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 13315 log.u_bbr.flex8 |= 4; 13316 log.u_bbr.epoch = http_req->end_seq; 13317 } 13318 } 13319 #endif 13320 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf)); 13321 th = (struct tcphdr *)tcp_hdr_buf; 13322 th->th_seq = ae->seq; 13323 th->th_ack = ae->ack; 13324 th->th_win = ae->win; 13325 /* Now fill in the ports */ 13326 th->th_sport = tp->t_inpcb->inp_fport; 13327 th->th_dport = tp->t_inpcb->inp_lport; 13328 th->th_flags = ae->flags & 0xff; 13329 /* Now do we have a timestamp option? */ 13330 if (ae->flags & HAS_TSTMP) { 13331 u_char *cp; 13332 uint32_t val; 13333 13334 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2); 13335 cp = (u_char *)(th + 1); 13336 *cp = TCPOPT_NOP; 13337 cp++; 13338 *cp = TCPOPT_NOP; 13339 cp++; 13340 *cp = TCPOPT_TIMESTAMP; 13341 cp++; 13342 *cp = TCPOLEN_TIMESTAMP; 13343 cp++; 13344 val = htonl(ae->ts_value); 13345 bcopy((char *)&val, 13346 (char *)cp, sizeof(uint32_t)); 13347 val = htonl(ae->ts_echo); 13348 bcopy((char *)&val, 13349 (char *)(cp + 4), sizeof(uint32_t)); 13350 } else 13351 th->th_off = (sizeof(struct tcphdr) >> 2); 13352 13353 /* 13354 * For sane logging we need to play a little trick. 13355 * If the ack were fully processed we would have moved 13356 * snd_una to high_seq, but since compressed acks are 13357 * processed in two phases, at this point (logging) snd_una 13358 * won't be advanced. So we would see multiple acks showing 13359 * the advancement. We can prevent that by "pretending" that 13360 * snd_una was advanced and then un-advancing it so that the 13361 * logging code has the right value for tlb_snd_una. 13362 */ 13363 if (tp->snd_una != high_seq) { 13364 orig_snd_una = tp->snd_una; 13365 tp->snd_una = high_seq; 13366 xx = 1; 13367 } else 13368 xx = 0; 13369 TCP_LOG_EVENTP(tp, th, 13370 &tp->t_inpcb->inp_socket->so_rcv, 13371 &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0, 13372 0, &log, true, <v); 13373 if (xx) { 13374 tp->snd_una = orig_snd_una; 13375 } 13376 } 13377 13378 } 13379 13380 static int 13381 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv) 13382 { 13383 /* 13384 * Handle a "special" compressed ack mbuf. Each incoming 13385 * ack has only four possible dispositions: 13386 * 13387 * A) It moves the cum-ack forward 13388 * B) It is behind the cum-ack. 13389 * C) It is a window-update ack. 13390 * D) It is a dup-ack. 13391 * 13392 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES 13393 * in the incoming mbuf. We also need to still pay attention 13394 * to nxt_pkt since there may be another packet after this 13395 * one. 13396 */ 13397 #ifdef TCP_ACCOUNTING 13398 uint64_t ts_val; 13399 uint64_t rdstc; 13400 #endif 13401 int segsiz; 13402 struct timespec ts; 13403 struct tcp_rack *rack; 13404 struct tcp_ackent *ae; 13405 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack; 13406 int cnt, i, did_out, ourfinisacked = 0; 13407 struct tcpopt to_holder, *to = NULL; 13408 int win_up_req = 0; 13409 int nsegs = 0; 13410 int under_pacing = 1; 13411 int recovery = 0; 13412 int idx; 13413 #ifdef TCP_ACCOUNTING 13414 sched_pin(); 13415 #endif 13416 rack = (struct tcp_rack *)tp->t_fb_ptr; 13417 if (rack->gp_ready && 13418 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) 13419 under_pacing = 0; 13420 else 13421 under_pacing = 1; 13422 13423 if (rack->r_state != tp->t_state) 13424 rack_set_state(tp, rack); 13425 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13426 (tp->t_flags & TF_GPUTINPROG)) { 13427 /* 13428 * We have a goodput in progress 13429 * and we have entered a late state. 13430 * Do we have enough data in the sb 13431 * to handle the GPUT request? 13432 */ 13433 uint32_t bytes; 13434 13435 bytes = tp->gput_ack - tp->gput_seq; 13436 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 13437 bytes += tp->gput_seq - tp->snd_una; 13438 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 13439 /* 13440 * There are not enough bytes in the socket 13441 * buffer that have been sent to cover this 13442 * measurement. Cancel it. 13443 */ 13444 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 13445 rack->r_ctl.rc_gp_srtt /*flex1*/, 13446 tp->gput_seq, 13447 0, 0, 18, __LINE__, NULL, 0); 13448 tp->t_flags &= ~TF_GPUTINPROG; 13449 } 13450 } 13451 to = &to_holder; 13452 to->to_flags = 0; 13453 KASSERT((m->m_len >= sizeof(struct tcp_ackent)), 13454 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len)); 13455 cnt = m->m_len / sizeof(struct tcp_ackent); 13456 idx = cnt / 5; 13457 if (idx >= MAX_NUM_OF_CNTS) 13458 idx = MAX_NUM_OF_CNTS - 1; 13459 counter_u64_add(rack_proc_comp_ack[idx], 1); 13460 counter_u64_add(rack_multi_single_eq, cnt); 13461 high_seq = tp->snd_una; 13462 the_win = tp->snd_wnd; 13463 win_seq = tp->snd_wl1; 13464 win_upd_ack = tp->snd_wl2; 13465 cts = tcp_tv_to_usectick(tv); 13466 ms_cts = tcp_tv_to_mssectick(tv); 13467 segsiz = ctf_fixed_maxseg(tp); 13468 if ((rack->rc_gp_dyn_mul) && 13469 (rack->use_fixed_rate == 0) && 13470 (rack->rc_always_pace)) { 13471 /* Check in on probertt */ 13472 rack_check_probe_rtt(rack, cts); 13473 } 13474 for (i = 0; i < cnt; i++) { 13475 #ifdef TCP_ACCOUNTING 13476 ts_val = get_cyclecount(); 13477 #endif 13478 rack_clear_rate_sample(rack); 13479 ae = ((mtod(m, struct tcp_ackent *)) + i); 13480 /* Setup the window */ 13481 tiwin = ae->win << tp->snd_scale; 13482 /* figure out the type of ack */ 13483 if (SEQ_LT(ae->ack, high_seq)) { 13484 /* Case B*/ 13485 ae->ack_val_set = ACK_BEHIND; 13486 } else if (SEQ_GT(ae->ack, high_seq)) { 13487 /* Case A */ 13488 ae->ack_val_set = ACK_CUMACK; 13489 } else if (tiwin == the_win) { 13490 /* Case D */ 13491 ae->ack_val_set = ACK_DUPACK; 13492 } else { 13493 /* Case C */ 13494 ae->ack_val_set = ACK_RWND; 13495 } 13496 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq); 13497 /* Validate timestamp */ 13498 if (ae->flags & HAS_TSTMP) { 13499 /* Setup for a timestamp */ 13500 to->to_flags = TOF_TS; 13501 ae->ts_echo -= tp->ts_offset; 13502 to->to_tsecr = ae->ts_echo; 13503 to->to_tsval = ae->ts_value; 13504 /* 13505 * If echoed timestamp is later than the current time, fall back to 13506 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 13507 * were used when this connection was established. 13508 */ 13509 if (TSTMP_GT(ae->ts_echo, ms_cts)) 13510 to->to_tsecr = 0; 13511 if (tp->ts_recent && 13512 TSTMP_LT(ae->ts_value, tp->ts_recent)) { 13513 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) { 13514 #ifdef TCP_ACCOUNTING 13515 rdstc = get_cyclecount(); 13516 if (rdstc > ts_val) { 13517 counter_u64_add(tcp_proc_time[ae->ack_val_set] , 13518 (rdstc - ts_val)); 13519 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13520 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13521 } 13522 } 13523 #endif 13524 continue; 13525 } 13526 } 13527 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) && 13528 SEQ_LEQ(tp->last_ack_sent, ae->seq)) { 13529 tp->ts_recent_age = tcp_ts_getticks(); 13530 tp->ts_recent = ae->ts_value; 13531 } 13532 } else { 13533 /* Setup for a no options */ 13534 to->to_flags = 0; 13535 } 13536 /* Update the rcv time and perform idle reduction possibly */ 13537 if (tp->t_idle_reduce && 13538 (tp->snd_max == tp->snd_una) && 13539 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 13540 counter_u64_add(rack_input_idle_reduces, 1); 13541 rack_cc_after_idle(rack, tp); 13542 } 13543 tp->t_rcvtime = ticks; 13544 /* Now what about ECN? */ 13545 if (tp->t_flags2 & TF2_ECN_PERMIT) { 13546 if (ae->flags & TH_CWR) { 13547 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 13548 tp->t_flags |= TF_ACKNOW; 13549 } 13550 switch (ae->codepoint & IPTOS_ECN_MASK) { 13551 case IPTOS_ECN_CE: 13552 tp->t_flags2 |= TF2_ECN_SND_ECE; 13553 KMOD_TCPSTAT_INC(tcps_ecn_ce); 13554 break; 13555 case IPTOS_ECN_ECT0: 13556 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 13557 break; 13558 case IPTOS_ECN_ECT1: 13559 KMOD_TCPSTAT_INC(tcps_ecn_ect1); 13560 break; 13561 } 13562 13563 /* Process a packet differently from RFC3168. */ 13564 cc_ecnpkt_handler_flags(tp, ae->flags, ae->codepoint); 13565 /* Congestion experienced. */ 13566 if (ae->flags & TH_ECE) { 13567 rack_cong_signal(tp, CC_ECN, ae->ack); 13568 } 13569 } 13570 #ifdef TCP_ACCOUNTING 13571 /* Count for the specific type of ack in */ 13572 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1); 13573 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13574 tp->tcp_cnt_counters[ae->ack_val_set]++; 13575 } 13576 #endif 13577 /* 13578 * Note how we could move up these in the determination 13579 * above, but we don't so that way the timestamp checks (and ECN) 13580 * is done first before we do any processing on the ACK. 13581 * The non-compressed path through the code has this 13582 * weakness (noted by @jtl) that it actually does some 13583 * processing before verifying the timestamp information. 13584 * We don't take that path here which is why we set 13585 * the ack_val_set first, do the timestamp and ecn 13586 * processing, and then look at what we have setup. 13587 */ 13588 if (ae->ack_val_set == ACK_BEHIND) { 13589 /* 13590 * Case B flag reordering, if window is not closed 13591 * or it could be a keep-alive or persists 13592 */ 13593 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) { 13594 counter_u64_add(rack_reorder_seen, 1); 13595 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 13596 } 13597 } else if (ae->ack_val_set == ACK_DUPACK) { 13598 /* Case D */ 13599 rack_strike_dupack(rack); 13600 } else if (ae->ack_val_set == ACK_RWND) { 13601 /* Case C */ 13602 win_up_req = 1; 13603 win_upd_ack = ae->ack; 13604 win_seq = ae->seq; 13605 the_win = tiwin; 13606 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13607 } else { 13608 /* Case A */ 13609 if (SEQ_GT(ae->ack, tp->snd_max)) { 13610 /* 13611 * We just send an ack since the incoming 13612 * ack is beyond the largest seq we sent. 13613 */ 13614 if ((tp->t_flags & TF_ACKNOW) == 0) { 13615 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt); 13616 if (tp->t_flags && TF_ACKNOW) 13617 rack->r_wanted_output = 1; 13618 } 13619 } else { 13620 nsegs++; 13621 /* If the window changed setup to update */ 13622 if (tiwin != tp->snd_wnd) { 13623 win_upd_ack = ae->ack; 13624 win_seq = ae->seq; 13625 the_win = tiwin; 13626 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13627 } 13628 #ifdef TCP_ACCOUNTING 13629 /* Account for the acks */ 13630 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13631 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz); 13632 } 13633 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN], 13634 (((ae->ack - high_seq) + segsiz - 1) / segsiz)); 13635 #endif 13636 high_seq = ae->ack; 13637 if (SEQ_GEQ(high_seq, rack->r_ctl.roundends)) { 13638 rack->r_ctl.current_round++; 13639 rack->r_ctl.roundends = tp->snd_max; 13640 if (CC_ALGO(tp)->newround != NULL) { 13641 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 13642 } 13643 } 13644 /* Setup our act_rcv_time */ 13645 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13646 ts.tv_sec = ae->timestamp / 1000000000; 13647 ts.tv_nsec = ae->timestamp % 1000000000; 13648 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13649 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13650 } else { 13651 rack->r_ctl.act_rcv_time = *tv; 13652 } 13653 rack_process_to_cumack(tp, rack, ae->ack, cts, to); 13654 if (rack->rc_dsack_round_seen) { 13655 /* Is the dsack round over? */ 13656 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) { 13657 /* Yes it is */ 13658 rack->rc_dsack_round_seen = 0; 13659 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 13660 } 13661 } 13662 } 13663 } 13664 /* And lets be sure to commit the rtt measurements for this ack */ 13665 tcp_rack_xmit_timer_commit(rack, tp); 13666 #ifdef TCP_ACCOUNTING 13667 rdstc = get_cyclecount(); 13668 if (rdstc > ts_val) { 13669 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val)); 13670 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13671 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13672 if (ae->ack_val_set == ACK_CUMACK) 13673 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val); 13674 } 13675 } 13676 #endif 13677 } 13678 #ifdef TCP_ACCOUNTING 13679 ts_val = get_cyclecount(); 13680 #endif 13681 acked_amount = acked = (high_seq - tp->snd_una); 13682 if (acked) { 13683 if (rack->sack_attack_disable == 0) 13684 rack_do_decay(rack); 13685 if (acked >= segsiz) { 13686 /* 13687 * You only get credit for 13688 * MSS and greater (and you get extra 13689 * credit for larger cum-ack moves). 13690 */ 13691 int ac; 13692 13693 ac = acked / segsiz; 13694 rack->r_ctl.ack_count += ac; 13695 counter_u64_add(rack_ack_total, ac); 13696 } 13697 if (rack->r_ctl.ack_count > 0xfff00000) { 13698 /* 13699 * reduce the number to keep us under 13700 * a uint32_t. 13701 */ 13702 rack->r_ctl.ack_count /= 2; 13703 rack->r_ctl.sack_count /= 2; 13704 } 13705 if (tp->t_flags & TF_NEEDSYN) { 13706 /* 13707 * T/TCP: Connection was half-synchronized, and our SYN has 13708 * been ACK'd (so connection is now fully synchronized). Go 13709 * to non-starred state, increment snd_una for ACK of SYN, 13710 * and check if we can do window scaling. 13711 */ 13712 tp->t_flags &= ~TF_NEEDSYN; 13713 tp->snd_una++; 13714 acked_amount = acked = (high_seq - tp->snd_una); 13715 } 13716 if (acked > sbavail(&so->so_snd)) 13717 acked_amount = sbavail(&so->so_snd); 13718 #ifdef NETFLIX_EXP_DETECTION 13719 /* 13720 * We only care on a cum-ack move if we are in a sack-disabled 13721 * state. We have already added in to the ack_count, and we never 13722 * would disable on a cum-ack move, so we only care to do the 13723 * detection if it may "undo" it, i.e. we were in disabled already. 13724 */ 13725 if (rack->sack_attack_disable) 13726 rack_do_detection(tp, rack, acked_amount, segsiz); 13727 #endif 13728 if (IN_FASTRECOVERY(tp->t_flags) && 13729 (rack->rack_no_prr == 0)) 13730 rack_update_prr(tp, rack, acked_amount, high_seq); 13731 if (IN_RECOVERY(tp->t_flags)) { 13732 if (SEQ_LT(high_seq, tp->snd_recover) && 13733 (SEQ_LT(high_seq, tp->snd_max))) { 13734 tcp_rack_partialack(tp); 13735 } else { 13736 rack_post_recovery(tp, high_seq); 13737 recovery = 1; 13738 } 13739 } 13740 /* Handle the rack-log-ack part (sendmap) */ 13741 if ((sbused(&so->so_snd) == 0) && 13742 (acked > acked_amount) && 13743 (tp->t_state >= TCPS_FIN_WAIT_1) && 13744 (tp->t_flags & TF_SENTFIN)) { 13745 /* 13746 * We must be sure our fin 13747 * was sent and acked (we can be 13748 * in FIN_WAIT_1 without having 13749 * sent the fin). 13750 */ 13751 ourfinisacked = 1; 13752 /* 13753 * Lets make sure snd_una is updated 13754 * since most likely acked_amount = 0 (it 13755 * should be). 13756 */ 13757 tp->snd_una = high_seq; 13758 } 13759 /* Did we make a RTO error? */ 13760 if ((tp->t_flags & TF_PREVVALID) && 13761 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 13762 tp->t_flags &= ~TF_PREVVALID; 13763 if (tp->t_rxtshift == 1 && 13764 (int)(ticks - tp->t_badrxtwin) < 0) 13765 rack_cong_signal(tp, CC_RTO_ERR, high_seq); 13766 } 13767 /* Handle the data in the socket buffer */ 13768 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1); 13769 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 13770 if (acked_amount > 0) { 13771 struct mbuf *mfree; 13772 13773 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery); 13774 SOCKBUF_LOCK(&so->so_snd); 13775 mfree = sbcut_locked(&so->so_snd, acked_amount); 13776 tp->snd_una = high_seq; 13777 /* Note we want to hold the sb lock through the sendmap adjust */ 13778 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 13779 /* Wake up the socket if we have room to write more */ 13780 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 13781 sowwakeup_locked(so); 13782 m_freem(mfree); 13783 } 13784 /* update progress */ 13785 tp->t_acktime = ticks; 13786 rack_log_progress_event(rack, tp, tp->t_acktime, 13787 PROGRESS_UPDATE, __LINE__); 13788 /* Clear out shifts and such */ 13789 tp->t_rxtshift = 0; 13790 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 13791 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 13792 rack->rc_tlp_in_progress = 0; 13793 rack->r_ctl.rc_tlp_cnt_out = 0; 13794 /* Send recover and snd_nxt must be dragged along */ 13795 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 13796 tp->snd_recover = tp->snd_una; 13797 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 13798 tp->snd_nxt = tp->snd_una; 13799 /* 13800 * If the RXT timer is running we want to 13801 * stop it, so we can restart a TLP (or new RXT). 13802 */ 13803 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 13804 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13805 #ifdef NETFLIX_HTTP_LOGGING 13806 tcp_http_check_for_comp(rack->rc_tp, high_seq); 13807 #endif 13808 tp->snd_wl2 = high_seq; 13809 tp->t_dupacks = 0; 13810 if (under_pacing && 13811 (rack->use_fixed_rate == 0) && 13812 (rack->in_probe_rtt == 0) && 13813 rack->rc_gp_dyn_mul && 13814 rack->rc_always_pace) { 13815 /* Check if we are dragging bottom */ 13816 rack_check_bottom_drag(tp, rack, so, acked); 13817 } 13818 if (tp->snd_una == tp->snd_max) { 13819 tp->t_flags &= ~TF_PREVVALID; 13820 rack->r_ctl.retran_during_recovery = 0; 13821 rack->r_ctl.dsack_byte_cnt = 0; 13822 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 13823 if (rack->r_ctl.rc_went_idle_time == 0) 13824 rack->r_ctl.rc_went_idle_time = 1; 13825 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 13826 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 13827 tp->t_acktime = 0; 13828 /* Set so we might enter persists... */ 13829 rack->r_wanted_output = 1; 13830 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13831 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 13832 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13833 (sbavail(&so->so_snd) == 0) && 13834 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 13835 /* 13836 * The socket was gone and the 13837 * peer sent data (not now in the past), time to 13838 * reset him. 13839 */ 13840 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13841 /* tcp_close will kill the inp pre-log the Reset */ 13842 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 13843 #ifdef TCP_ACCOUNTING 13844 rdstc = get_cyclecount(); 13845 if (rdstc > ts_val) { 13846 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13847 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13848 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13849 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13850 } 13851 } 13852 #endif 13853 m_freem(m); 13854 tp = tcp_close(tp); 13855 if (tp == NULL) { 13856 #ifdef TCP_ACCOUNTING 13857 sched_unpin(); 13858 #endif 13859 return (1); 13860 } 13861 /* 13862 * We would normally do drop-with-reset which would 13863 * send back a reset. We can't since we don't have 13864 * all the needed bits. Instead lets arrange for 13865 * a call to tcp_output(). That way since we 13866 * are in the closed state we will generate a reset. 13867 * 13868 * Note if tcp_accounting is on we don't unpin since 13869 * we do that after the goto label. 13870 */ 13871 goto send_out_a_rst; 13872 } 13873 if ((sbused(&so->so_snd) == 0) && 13874 (tp->t_state >= TCPS_FIN_WAIT_1) && 13875 (tp->t_flags & TF_SENTFIN)) { 13876 /* 13877 * If we can't receive any more data, then closing user can 13878 * proceed. Starting the timer is contrary to the 13879 * specification, but if we don't get a FIN we'll hang 13880 * forever. 13881 * 13882 */ 13883 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13884 soisdisconnected(so); 13885 tcp_timer_activate(tp, TT_2MSL, 13886 (tcp_fast_finwait2_recycle ? 13887 tcp_finwait2_timeout : 13888 TP_MAXIDLE(tp))); 13889 } 13890 if (ourfinisacked == 0) { 13891 /* 13892 * We don't change to fin-wait-2 if we have our fin acked 13893 * which means we are probably in TCPS_CLOSING. 13894 */ 13895 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13896 } 13897 } 13898 } 13899 /* Wake up the socket if we have room to write more */ 13900 if (sbavail(&so->so_snd)) { 13901 rack->r_wanted_output = 1; 13902 if (ctf_progress_timeout_check(tp, true)) { 13903 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 13904 tp, tick, PROGRESS_DROP, __LINE__); 13905 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 13906 /* 13907 * We cheat here and don't send a RST, we should send one 13908 * when the pacer drops the connection. 13909 */ 13910 #ifdef TCP_ACCOUNTING 13911 rdstc = get_cyclecount(); 13912 if (rdstc > ts_val) { 13913 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13914 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13915 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13916 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13917 } 13918 } 13919 sched_unpin(); 13920 #endif 13921 INP_WUNLOCK(rack->rc_inp); 13922 m_freem(m); 13923 return (1); 13924 } 13925 } 13926 if (ourfinisacked) { 13927 switch(tp->t_state) { 13928 case TCPS_CLOSING: 13929 #ifdef TCP_ACCOUNTING 13930 rdstc = get_cyclecount(); 13931 if (rdstc > ts_val) { 13932 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13933 (rdstc - ts_val)); 13934 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13935 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13936 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13937 } 13938 } 13939 sched_unpin(); 13940 #endif 13941 tcp_twstart(tp); 13942 m_freem(m); 13943 return (1); 13944 break; 13945 case TCPS_LAST_ACK: 13946 #ifdef TCP_ACCOUNTING 13947 rdstc = get_cyclecount(); 13948 if (rdstc > ts_val) { 13949 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13950 (rdstc - ts_val)); 13951 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13952 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13953 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13954 } 13955 } 13956 sched_unpin(); 13957 #endif 13958 tp = tcp_close(tp); 13959 ctf_do_drop(m, tp); 13960 return (1); 13961 break; 13962 case TCPS_FIN_WAIT_1: 13963 #ifdef TCP_ACCOUNTING 13964 rdstc = get_cyclecount(); 13965 if (rdstc > ts_val) { 13966 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13967 (rdstc - ts_val)); 13968 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13969 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13970 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13971 } 13972 } 13973 #endif 13974 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13975 soisdisconnected(so); 13976 tcp_timer_activate(tp, TT_2MSL, 13977 (tcp_fast_finwait2_recycle ? 13978 tcp_finwait2_timeout : 13979 TP_MAXIDLE(tp))); 13980 } 13981 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13982 break; 13983 default: 13984 break; 13985 } 13986 } 13987 if (rack->r_fast_output) { 13988 /* 13989 * We re doing fast output.. can we expand that? 13990 */ 13991 rack_gain_for_fastoutput(rack, tp, so, acked_amount); 13992 } 13993 #ifdef TCP_ACCOUNTING 13994 rdstc = get_cyclecount(); 13995 if (rdstc > ts_val) { 13996 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13997 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13998 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13999 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 14000 } 14001 } 14002 14003 } else if (win_up_req) { 14004 rdstc = get_cyclecount(); 14005 if (rdstc > ts_val) { 14006 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val)); 14007 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14008 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val); 14009 } 14010 } 14011 #endif 14012 } 14013 /* Now is there a next packet, if so we are done */ 14014 m_freem(m); 14015 did_out = 0; 14016 if (nxt_pkt) { 14017 #ifdef TCP_ACCOUNTING 14018 sched_unpin(); 14019 #endif 14020 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs); 14021 return (0); 14022 } 14023 rack_handle_might_revert(tp, rack); 14024 ctf_calc_rwin(so, tp); 14025 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14026 send_out_a_rst: 14027 (void)tp->t_fb->tfb_tcp_output(tp); 14028 did_out = 1; 14029 } 14030 rack_free_trim(rack); 14031 #ifdef TCP_ACCOUNTING 14032 sched_unpin(); 14033 #endif 14034 rack_timer_audit(tp, rack, &so->so_snd); 14035 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs); 14036 return (0); 14037 } 14038 14039 14040 static int 14041 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, 14042 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, 14043 int32_t nxt_pkt, struct timeval *tv) 14044 { 14045 #ifdef TCP_ACCOUNTING 14046 uint64_t ts_val; 14047 #endif 14048 int32_t thflags, retval, did_out = 0; 14049 int32_t way_out = 0; 14050 /* 14051 * cts - is the current time from tv (caller gets ts) in microseconds. 14052 * ms_cts - is the current time from tv in milliseconds. 14053 * us_cts - is the time that LRO or hardware actually got the packet in microseconds. 14054 */ 14055 uint32_t cts, us_cts, ms_cts; 14056 uint32_t tiwin; 14057 struct timespec ts; 14058 struct tcpopt to; 14059 struct tcp_rack *rack; 14060 struct rack_sendmap *rsm; 14061 int32_t prev_state = 0; 14062 #ifdef TCP_ACCOUNTING 14063 int ack_val_set = 0xf; 14064 #endif 14065 int nsegs; 14066 /* 14067 * tv passed from common code is from either M_TSTMP_LRO or 14068 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. 14069 */ 14070 rack = (struct tcp_rack *)tp->t_fb_ptr; 14071 if (m->m_flags & M_ACKCMP) { 14072 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv)); 14073 } 14074 if (m->m_flags & M_ACKCMP) { 14075 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp); 14076 } 14077 cts = tcp_tv_to_usectick(tv); 14078 ms_cts = tcp_tv_to_mssectick(tv); 14079 nsegs = m->m_pkthdr.lro_nsegs; 14080 counter_u64_add(rack_proc_non_comp_ack, 1); 14081 thflags = th->th_flags; 14082 #ifdef TCP_ACCOUNTING 14083 sched_pin(); 14084 if (thflags & TH_ACK) 14085 ts_val = get_cyclecount(); 14086 #endif 14087 if ((m->m_flags & M_TSTMP) || 14088 (m->m_flags & M_TSTMP_LRO)) { 14089 mbuf_tstmp2timespec(m, &ts); 14090 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 14091 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 14092 } else 14093 rack->r_ctl.act_rcv_time = *tv; 14094 kern_prefetch(rack, &prev_state); 14095 prev_state = 0; 14096 /* 14097 * Unscale the window into a 32-bit value. For the SYN_SENT state 14098 * the scale is zero. 14099 */ 14100 tiwin = th->th_win << tp->snd_scale; 14101 #ifdef TCP_ACCOUNTING 14102 if (thflags & TH_ACK) { 14103 /* 14104 * We have a tradeoff here. We can either do what we are 14105 * doing i.e. pinning to this CPU and then doing the accounting 14106 * <or> we could do a critical enter, setup the rdtsc and cpu 14107 * as in below, and then validate we are on the same CPU on 14108 * exit. I have choosen to not do the critical enter since 14109 * that often will gain you a context switch, and instead lock 14110 * us (line above this if) to the same CPU with sched_pin(). This 14111 * means we may be context switched out for a higher priority 14112 * interupt but we won't be moved to another CPU. 14113 * 14114 * If this occurs (which it won't very often since we most likely 14115 * are running this code in interupt context and only a higher 14116 * priority will bump us ... clock?) we will falsely add in 14117 * to the time the interupt processing time plus the ack processing 14118 * time. This is ok since its a rare event. 14119 */ 14120 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin, 14121 ctf_fixed_maxseg(tp)); 14122 } 14123 #endif 14124 /* 14125 * Parse options on any incoming segment. 14126 */ 14127 memset(&to, 0, sizeof(to)); 14128 tcp_dooptions(&to, (u_char *)(th + 1), 14129 (th->th_off << 2) - sizeof(struct tcphdr), 14130 (thflags & TH_SYN) ? TO_SYN : 0); 14131 NET_EPOCH_ASSERT(); 14132 INP_WLOCK_ASSERT(tp->t_inpcb); 14133 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 14134 __func__)); 14135 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 14136 __func__)); 14137 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 14138 (tp->t_flags & TF_GPUTINPROG)) { 14139 /* 14140 * We have a goodput in progress 14141 * and we have entered a late state. 14142 * Do we have enough data in the sb 14143 * to handle the GPUT request? 14144 */ 14145 uint32_t bytes; 14146 14147 bytes = tp->gput_ack - tp->gput_seq; 14148 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 14149 bytes += tp->gput_seq - tp->snd_una; 14150 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 14151 /* 14152 * There are not enough bytes in the socket 14153 * buffer that have been sent to cover this 14154 * measurement. Cancel it. 14155 */ 14156 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 14157 rack->r_ctl.rc_gp_srtt /*flex1*/, 14158 tp->gput_seq, 14159 0, 0, 18, __LINE__, NULL, 0); 14160 tp->t_flags &= ~TF_GPUTINPROG; 14161 } 14162 } 14163 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 14164 union tcp_log_stackspecific log; 14165 struct timeval ltv; 14166 #ifdef NETFLIX_HTTP_LOGGING 14167 struct http_sendfile_track *http_req; 14168 14169 if (SEQ_GT(th->th_ack, tp->snd_una)) { 14170 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1)); 14171 } else { 14172 http_req = tcp_http_find_req_for_seq(tp, th->th_ack); 14173 } 14174 #endif 14175 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14176 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 14177 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 14178 if (rack->rack_no_prr == 0) 14179 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 14180 else 14181 log.u_bbr.flex1 = 0; 14182 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 14183 log.u_bbr.use_lt_bw <<= 1; 14184 log.u_bbr.use_lt_bw |= rack->r_might_revert; 14185 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 14186 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14187 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 14188 log.u_bbr.flex3 = m->m_flags; 14189 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 14190 log.u_bbr.lost = thflags; 14191 log.u_bbr.pacing_gain = 0x1; 14192 #ifdef TCP_ACCOUNTING 14193 log.u_bbr.cwnd_gain = ack_val_set; 14194 #endif 14195 log.u_bbr.flex7 = 2; 14196 if (m->m_flags & M_TSTMP) { 14197 /* Record the hardware timestamp if present */ 14198 mbuf_tstmp2timespec(m, &ts); 14199 ltv.tv_sec = ts.tv_sec; 14200 ltv.tv_usec = ts.tv_nsec / 1000; 14201 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 14202 } else if (m->m_flags & M_TSTMP_LRO) { 14203 /* Record the LRO the arrival timestamp */ 14204 mbuf_tstmp2timespec(m, &ts); 14205 ltv.tv_sec = ts.tv_sec; 14206 ltv.tv_usec = ts.tv_nsec / 1000; 14207 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 14208 } 14209 log.u_bbr.timeStamp = tcp_get_usecs(<v); 14210 /* Log the rcv time */ 14211 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; 14212 #ifdef NETFLIX_HTTP_LOGGING 14213 log.u_bbr.applimited = tp->t_http_closed; 14214 log.u_bbr.applimited <<= 8; 14215 log.u_bbr.applimited |= tp->t_http_open; 14216 log.u_bbr.applimited <<= 8; 14217 log.u_bbr.applimited |= tp->t_http_req; 14218 if (http_req) { 14219 /* Copy out any client req info */ 14220 /* seconds */ 14221 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 14222 /* useconds */ 14223 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 14224 log.u_bbr.rttProp = http_req->timestamp; 14225 log.u_bbr.cur_del_rate = http_req->start; 14226 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 14227 log.u_bbr.flex8 |= 1; 14228 } else { 14229 log.u_bbr.flex8 |= 2; 14230 log.u_bbr.bw_inuse = http_req->end; 14231 } 14232 log.u_bbr.flex6 = http_req->start_seq; 14233 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 14234 log.u_bbr.flex8 |= 4; 14235 log.u_bbr.epoch = http_req->end_seq; 14236 } 14237 } 14238 #endif 14239 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 14240 tlen, &log, true, <v); 14241 } 14242 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 14243 way_out = 4; 14244 retval = 0; 14245 m_freem(m); 14246 goto done_with_input; 14247 } 14248 /* 14249 * If a segment with the ACK-bit set arrives in the SYN-SENT state 14250 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. 14251 */ 14252 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 14253 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 14254 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 14255 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14256 #ifdef TCP_ACCOUNTING 14257 sched_unpin(); 14258 #endif 14259 return (1); 14260 } 14261 /* 14262 * If timestamps were negotiated during SYN/ACK and a 14263 * segment without a timestamp is received, silently drop 14264 * the segment, unless it is a RST segment or missing timestamps are 14265 * tolerated. 14266 * See section 3.2 of RFC 7323. 14267 */ 14268 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) && 14269 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) { 14270 way_out = 5; 14271 retval = 0; 14272 m_freem(m); 14273 goto done_with_input; 14274 } 14275 14276 /* 14277 * Segment received on connection. Reset idle time and keep-alive 14278 * timer. XXX: This should be done after segment validation to 14279 * ignore broken/spoofed segs. 14280 */ 14281 if (tp->t_idle_reduce && 14282 (tp->snd_max == tp->snd_una) && 14283 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 14284 counter_u64_add(rack_input_idle_reduces, 1); 14285 rack_cc_after_idle(rack, tp); 14286 } 14287 tp->t_rcvtime = ticks; 14288 #ifdef STATS 14289 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 14290 #endif 14291 if (tiwin > rack->r_ctl.rc_high_rwnd) 14292 rack->r_ctl.rc_high_rwnd = tiwin; 14293 /* 14294 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move 14295 * this to occur after we've validated the segment. 14296 */ 14297 if (tp->t_flags2 & TF2_ECN_PERMIT) { 14298 if (thflags & TH_CWR) { 14299 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 14300 tp->t_flags |= TF_ACKNOW; 14301 } 14302 switch (iptos & IPTOS_ECN_MASK) { 14303 case IPTOS_ECN_CE: 14304 tp->t_flags2 |= TF2_ECN_SND_ECE; 14305 KMOD_TCPSTAT_INC(tcps_ecn_ce); 14306 break; 14307 case IPTOS_ECN_ECT0: 14308 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 14309 break; 14310 case IPTOS_ECN_ECT1: 14311 KMOD_TCPSTAT_INC(tcps_ecn_ect1); 14312 break; 14313 } 14314 14315 /* Process a packet differently from RFC3168. */ 14316 cc_ecnpkt_handler(tp, th, iptos); 14317 14318 /* Congestion experienced. */ 14319 if (thflags & TH_ECE) { 14320 rack_cong_signal(tp, CC_ECN, th->th_ack); 14321 } 14322 } 14323 14324 /* 14325 * If echoed timestamp is later than the current time, fall back to 14326 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 14327 * were used when this connection was established. 14328 */ 14329 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 14330 to.to_tsecr -= tp->ts_offset; 14331 if (TSTMP_GT(to.to_tsecr, ms_cts)) 14332 to.to_tsecr = 0; 14333 } 14334 14335 /* 14336 * If its the first time in we need to take care of options and 14337 * verify we can do SACK for rack! 14338 */ 14339 if (rack->r_state == 0) { 14340 /* Should be init'd by rack_init() */ 14341 KASSERT(rack->rc_inp != NULL, 14342 ("%s: rack->rc_inp unexpectedly NULL", __func__)); 14343 if (rack->rc_inp == NULL) { 14344 rack->rc_inp = tp->t_inpcb; 14345 } 14346 14347 /* 14348 * Process options only when we get SYN/ACK back. The SYN 14349 * case for incoming connections is handled in tcp_syncache. 14350 * According to RFC1323 the window field in a SYN (i.e., a 14351 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX 14352 * this is traditional behavior, may need to be cleaned up. 14353 */ 14354 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 14355 /* Handle parallel SYN for ECN */ 14356 if (!(thflags & TH_ACK) && 14357 ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) && 14358 ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) { 14359 tp->t_flags2 |= TF2_ECN_PERMIT; 14360 tp->t_flags2 |= TF2_ECN_SND_ECE; 14361 TCPSTAT_INC(tcps_ecn_shs); 14362 } 14363 if ((to.to_flags & TOF_SCALE) && 14364 (tp->t_flags & TF_REQ_SCALE)) { 14365 tp->t_flags |= TF_RCVD_SCALE; 14366 tp->snd_scale = to.to_wscale; 14367 } else 14368 tp->t_flags &= ~TF_REQ_SCALE; 14369 /* 14370 * Initial send window. It will be updated with the 14371 * next incoming segment to the scaled value. 14372 */ 14373 tp->snd_wnd = th->th_win; 14374 rack_validate_fo_sendwin_up(tp, rack); 14375 if ((to.to_flags & TOF_TS) && 14376 (tp->t_flags & TF_REQ_TSTMP)) { 14377 tp->t_flags |= TF_RCVD_TSTMP; 14378 tp->ts_recent = to.to_tsval; 14379 tp->ts_recent_age = cts; 14380 } else 14381 tp->t_flags &= ~TF_REQ_TSTMP; 14382 if (to.to_flags & TOF_MSS) { 14383 tcp_mss(tp, to.to_mss); 14384 } 14385 if ((tp->t_flags & TF_SACK_PERMIT) && 14386 (to.to_flags & TOF_SACKPERM) == 0) 14387 tp->t_flags &= ~TF_SACK_PERMIT; 14388 if (IS_FASTOPEN(tp->t_flags)) { 14389 if (to.to_flags & TOF_FASTOPEN) { 14390 uint16_t mss; 14391 14392 if (to.to_flags & TOF_MSS) 14393 mss = to.to_mss; 14394 else 14395 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 14396 mss = TCP6_MSS; 14397 else 14398 mss = TCP_MSS; 14399 tcp_fastopen_update_cache(tp, mss, 14400 to.to_tfo_len, to.to_tfo_cookie); 14401 } else 14402 tcp_fastopen_disable_path(tp); 14403 } 14404 } 14405 /* 14406 * At this point we are at the initial call. Here we decide 14407 * if we are doing RACK or not. We do this by seeing if 14408 * TF_SACK_PERMIT is set and the sack-not-required is clear. 14409 * The code now does do dup-ack counting so if you don't 14410 * switch back you won't get rack & TLP, but you will still 14411 * get this stack. 14412 */ 14413 14414 if ((rack_sack_not_required == 0) && 14415 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 14416 tcp_switch_back_to_default(tp); 14417 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, 14418 tlen, iptos); 14419 #ifdef TCP_ACCOUNTING 14420 sched_unpin(); 14421 #endif 14422 return (1); 14423 } 14424 tcp_set_hpts(tp->t_inpcb); 14425 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); 14426 } 14427 if (thflags & TH_FIN) 14428 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 14429 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 14430 if ((rack->rc_gp_dyn_mul) && 14431 (rack->use_fixed_rate == 0) && 14432 (rack->rc_always_pace)) { 14433 /* Check in on probertt */ 14434 rack_check_probe_rtt(rack, us_cts); 14435 } 14436 rack_clear_rate_sample(rack); 14437 if (rack->forced_ack) { 14438 uint32_t us_rtt; 14439 14440 /* 14441 * A persist or keep-alive was forced out, update our 14442 * min rtt time. Note we do not worry about lost 14443 * retransmissions since KEEP-ALIVES and persists 14444 * are usually way long on times of sending (though 14445 * if we were really paranoid or worried we could 14446 * at least use timestamps if available to validate). 14447 */ 14448 rack->forced_ack = 0; 14449 if (tiwin == tp->snd_wnd) { 14450 /* 14451 * Only apply the RTT update if this is 14452 * a response to our window probe. And that 14453 * means the rwnd sent must match the current 14454 * snd_wnd. If it does not, then we got a 14455 * window update ack instead. 14456 */ 14457 us_rtt = us_cts - rack->r_ctl.forced_ack_ts; 14458 if (us_rtt == 0) 14459 us_rtt = 1; 14460 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 14461 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1); 14462 } 14463 } 14464 /* 14465 * This is the one exception case where we set the rack state 14466 * always. All other times (timers etc) we must have a rack-state 14467 * set (so we assure we have done the checks above for SACK). 14468 */ 14469 rack->r_ctl.rc_rcvtime = cts; 14470 if (rack->r_state != tp->t_state) 14471 rack_set_state(tp, rack); 14472 if (SEQ_GT(th->th_ack, tp->snd_una) && 14473 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL) 14474 kern_prefetch(rsm, &prev_state); 14475 prev_state = rack->r_state; 14476 retval = (*rack->r_substate) (m, th, so, 14477 tp, &to, drop_hdrlen, 14478 tlen, tiwin, thflags, nxt_pkt, iptos); 14479 #ifdef INVARIANTS 14480 if ((retval == 0) && 14481 (tp->t_inpcb == NULL)) { 14482 panic("retval:%d tp:%p t_inpcb:NULL state:%d", 14483 retval, tp, prev_state); 14484 } 14485 #endif 14486 if (retval == 0) { 14487 /* 14488 * If retval is 1 the tcb is unlocked and most likely the tp 14489 * is gone. 14490 */ 14491 INP_WLOCK_ASSERT(tp->t_inpcb); 14492 if ((rack->rc_gp_dyn_mul) && 14493 (rack->rc_always_pace) && 14494 (rack->use_fixed_rate == 0) && 14495 rack->in_probe_rtt && 14496 (rack->r_ctl.rc_time_probertt_starts == 0)) { 14497 /* 14498 * If we are going for target, lets recheck before 14499 * we output. 14500 */ 14501 rack_check_probe_rtt(rack, us_cts); 14502 } 14503 if (rack->set_pacing_done_a_iw == 0) { 14504 /* How much has been acked? */ 14505 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { 14506 /* We have enough to set in the pacing segment size */ 14507 rack->set_pacing_done_a_iw = 1; 14508 rack_set_pace_segments(tp, rack, __LINE__, NULL); 14509 } 14510 } 14511 tcp_rack_xmit_timer_commit(rack, tp); 14512 #ifdef TCP_ACCOUNTING 14513 /* 14514 * If we set the ack_val_se to what ack processing we are doing 14515 * we also want to track how many cycles we burned. Note 14516 * the bits after tcp_output we let be "free". This is because 14517 * we are also tracking the tcp_output times as well. Note the 14518 * use of 0xf here since we only have 11 counter (0 - 0xa) and 14519 * 0xf cannot be returned and is what we initialize it too to 14520 * indicate we are not doing the tabulations. 14521 */ 14522 if (ack_val_set != 0xf) { 14523 uint64_t crtsc; 14524 14525 crtsc = get_cyclecount(); 14526 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14527 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 14528 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val); 14529 } 14530 } 14531 #endif 14532 if (nxt_pkt == 0) { 14533 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 14534 do_output_now: 14535 did_out = 1; 14536 (void)tp->t_fb->tfb_tcp_output(tp); 14537 } 14538 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 14539 rack_free_trim(rack); 14540 } 14541 /* Update any rounds needed */ 14542 if (SEQ_GEQ(tp->snd_una, rack->r_ctl.roundends)) { 14543 rack->r_ctl.current_round++; 14544 rack->r_ctl.roundends = tp->snd_max; 14545 if (CC_ALGO(tp)->newround != NULL) { 14546 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round); 14547 } 14548 } 14549 if ((nxt_pkt == 0) && 14550 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && 14551 (SEQ_GT(tp->snd_max, tp->snd_una) || 14552 (tp->t_flags & TF_DELACK) || 14553 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 14554 (tp->t_state <= TCPS_CLOSING)))) { 14555 /* We could not send (probably in the hpts but stopped the timer earlier)? */ 14556 if ((tp->snd_max == tp->snd_una) && 14557 ((tp->t_flags & TF_DELACK) == 0) && 14558 (rack->rc_inp->inp_in_hpts) && 14559 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 14560 /* keep alive not needed if we are hptsi output yet */ 14561 ; 14562 } else { 14563 int late = 0; 14564 if (rack->rc_inp->inp_in_hpts) { 14565 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 14566 us_cts = tcp_get_usecs(NULL); 14567 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 14568 rack->r_early = 1; 14569 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 14570 } else 14571 late = 1; 14572 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 14573 } 14574 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); 14575 } 14576 if (late && (did_out == 0)) { 14577 /* 14578 * We are late in the sending 14579 * and we did not call the output 14580 * (this probably should not happen). 14581 */ 14582 goto do_output_now; 14583 } 14584 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 14585 } 14586 way_out = 1; 14587 } else if (nxt_pkt == 0) { 14588 /* Do we have the correct timer running? */ 14589 rack_timer_audit(tp, rack, &so->so_snd); 14590 way_out = 2; 14591 } 14592 done_with_input: 14593 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs)); 14594 if (did_out) 14595 rack->r_wanted_output = 0; 14596 #ifdef INVARIANTS 14597 if (tp->t_inpcb == NULL) { 14598 panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", 14599 did_out, 14600 retval, tp, prev_state); 14601 } 14602 #endif 14603 #ifdef TCP_ACCOUNTING 14604 } else { 14605 /* 14606 * Track the time (see above). 14607 */ 14608 if (ack_val_set != 0xf) { 14609 uint64_t crtsc; 14610 14611 crtsc = get_cyclecount(); 14612 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 14613 /* 14614 * Note we *DO NOT* increment the per-tcb counters since 14615 * in the else the TP may be gone!! 14616 */ 14617 } 14618 #endif 14619 } 14620 #ifdef TCP_ACCOUNTING 14621 sched_unpin(); 14622 #endif 14623 return (retval); 14624 } 14625 14626 void 14627 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 14628 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) 14629 { 14630 struct timeval tv; 14631 14632 /* First lets see if we have old packets */ 14633 if (tp->t_in_pkt) { 14634 if (ctf_do_queued_segments(so, tp, 1)) { 14635 m_freem(m); 14636 return; 14637 } 14638 } 14639 if (m->m_flags & M_TSTMP_LRO) { 14640 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; 14641 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; 14642 } else { 14643 /* Should not be should we kassert instead? */ 14644 tcp_get_usecs(&tv); 14645 } 14646 if (rack_do_segment_nounlock(m, th, so, tp, 14647 drop_hdrlen, tlen, iptos, 0, &tv) == 0) { 14648 INP_WUNLOCK(tp->t_inpcb); 14649 } 14650 } 14651 14652 struct rack_sendmap * 14653 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) 14654 { 14655 struct rack_sendmap *rsm = NULL; 14656 int32_t idx; 14657 uint32_t srtt = 0, thresh = 0, ts_low = 0; 14658 14659 /* Return the next guy to be re-transmitted */ 14660 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 14661 return (NULL); 14662 } 14663 if (tp->t_flags & TF_SENTFIN) { 14664 /* retran the end FIN? */ 14665 return (NULL); 14666 } 14667 /* ok lets look at this one */ 14668 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 14669 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { 14670 goto check_it; 14671 } 14672 rsm = rack_find_lowest_rsm(rack); 14673 if (rsm == NULL) { 14674 return (NULL); 14675 } 14676 check_it: 14677 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) && 14678 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 14679 /* 14680 * No sack so we automatically do the 3 strikes and 14681 * retransmit (no rack timer would be started). 14682 */ 14683 14684 return (rsm); 14685 } 14686 if (rsm->r_flags & RACK_ACKED) { 14687 return (NULL); 14688 } 14689 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && 14690 (rsm->r_dupack < DUP_ACK_THRESHOLD)) { 14691 /* Its not yet ready */ 14692 return (NULL); 14693 } 14694 srtt = rack_grab_rtt(tp, rack); 14695 idx = rsm->r_rtr_cnt - 1; 14696 ts_low = (uint32_t)rsm->r_tim_lastsent[idx]; 14697 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 14698 if ((tsused == ts_low) || 14699 (TSTMP_LT(tsused, ts_low))) { 14700 /* No time since sending */ 14701 return (NULL); 14702 } 14703 if ((tsused - ts_low) < thresh) { 14704 /* It has not been long enough yet */ 14705 return (NULL); 14706 } 14707 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 14708 ((rsm->r_flags & RACK_SACK_PASSED) && 14709 (rack->sack_attack_disable == 0))) { 14710 /* 14711 * We have passed the dup-ack threshold <or> 14712 * a SACK has indicated this is missing. 14713 * Note that if you are a declared attacker 14714 * it is only the dup-ack threshold that 14715 * will cause retransmits. 14716 */ 14717 /* log retransmit reason */ 14718 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); 14719 rack->r_fast_output = 0; 14720 return (rsm); 14721 } 14722 return (NULL); 14723 } 14724 14725 static void 14726 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 14727 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, 14728 int line, struct rack_sendmap *rsm, uint8_t quality) 14729 { 14730 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 14731 union tcp_log_stackspecific log; 14732 struct timeval tv; 14733 14734 memset(&log, 0, sizeof(log)); 14735 log.u_bbr.flex1 = slot; 14736 log.u_bbr.flex2 = len; 14737 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; 14738 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; 14739 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; 14740 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; 14741 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data; 14742 log.u_bbr.use_lt_bw <<= 1; 14743 log.u_bbr.use_lt_bw |= rack->r_late; 14744 log.u_bbr.use_lt_bw <<= 1; 14745 log.u_bbr.use_lt_bw |= rack->r_early; 14746 log.u_bbr.use_lt_bw <<= 1; 14747 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 14748 log.u_bbr.use_lt_bw <<= 1; 14749 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 14750 log.u_bbr.use_lt_bw <<= 1; 14751 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 14752 log.u_bbr.use_lt_bw <<= 1; 14753 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 14754 log.u_bbr.use_lt_bw <<= 1; 14755 log.u_bbr.use_lt_bw |= rack->gp_ready; 14756 log.u_bbr.pkt_epoch = line; 14757 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed; 14758 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early; 14759 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; 14760 log.u_bbr.bw_inuse = bw_est; 14761 log.u_bbr.delRate = bw; 14762 if (rack->r_ctl.gp_bw == 0) 14763 log.u_bbr.cur_del_rate = 0; 14764 else 14765 log.u_bbr.cur_del_rate = rack_get_bw(rack); 14766 log.u_bbr.rttProp = len_time; 14767 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; 14768 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; 14769 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 14770 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { 14771 /* We are in slow start */ 14772 log.u_bbr.flex7 = 1; 14773 } else { 14774 /* we are on congestion avoidance */ 14775 log.u_bbr.flex7 = 0; 14776 } 14777 log.u_bbr.flex8 = method; 14778 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14779 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14780 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; 14781 log.u_bbr.cwnd_gain <<= 1; 14782 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 14783 log.u_bbr.cwnd_gain <<= 1; 14784 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 14785 log.u_bbr.bbr_substate = quality; 14786 TCP_LOG_EVENTP(rack->rc_tp, NULL, 14787 &rack->rc_inp->inp_socket->so_rcv, 14788 &rack->rc_inp->inp_socket->so_snd, 14789 BBR_LOG_HPTSI_CALC, 0, 14790 0, &log, false, &tv); 14791 } 14792 } 14793 14794 static uint32_t 14795 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) 14796 { 14797 uint32_t new_tso, user_max; 14798 14799 user_max = rack->rc_user_set_max_segs * mss; 14800 if (rack->rc_force_max_seg) { 14801 return (user_max); 14802 } 14803 if (rack->use_fixed_rate && 14804 ((rack->r_ctl.crte == NULL) || 14805 (bw != rack->r_ctl.crte->rate))) { 14806 /* Use the user mss since we are not exactly matched */ 14807 return (user_max); 14808 } 14809 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL); 14810 if (new_tso > user_max) 14811 new_tso = user_max; 14812 return (new_tso); 14813 } 14814 14815 static int32_t 14816 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced) 14817 { 14818 uint64_t lentim, fill_bw; 14819 14820 /* Lets first see if we are full, if so continue with normal rate */ 14821 rack->r_via_fill_cw = 0; 14822 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) 14823 return (slot); 14824 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) 14825 return (slot); 14826 if (rack->r_ctl.rc_last_us_rtt == 0) 14827 return (slot); 14828 if (rack->rc_pace_fill_if_rttin_range && 14829 (rack->r_ctl.rc_last_us_rtt >= 14830 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { 14831 /* The rtt is huge, N * smallest, lets not fill */ 14832 return (slot); 14833 } 14834 /* 14835 * first lets calculate the b/w based on the last us-rtt 14836 * and the sndwnd. 14837 */ 14838 fill_bw = rack->r_ctl.cwnd_to_use; 14839 /* Take the rwnd if its smaller */ 14840 if (fill_bw > rack->rc_tp->snd_wnd) 14841 fill_bw = rack->rc_tp->snd_wnd; 14842 if (rack->r_fill_less_agg) { 14843 /* 14844 * Now take away the inflight (this will reduce our 14845 * aggressiveness and yeah, if we get that much out in 1RTT 14846 * we will have had acks come back and still be behind). 14847 */ 14848 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14849 } 14850 /* Now lets make it into a b/w */ 14851 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; 14852 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 14853 /* We are below the min b/w */ 14854 if (non_paced) 14855 *rate_wanted = fill_bw; 14856 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted)) 14857 return (slot); 14858 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap)) 14859 fill_bw = rack->r_ctl.bw_rate_cap; 14860 rack->r_via_fill_cw = 1; 14861 if (rack->r_rack_hw_rate_caps && 14862 (rack->r_ctl.crte != NULL)) { 14863 uint64_t high_rate; 14864 14865 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 14866 if (fill_bw > high_rate) { 14867 /* We are capping bw at the highest rate table entry */ 14868 if (*rate_wanted > high_rate) { 14869 /* The original rate was also capped */ 14870 rack->r_via_fill_cw = 0; 14871 } 14872 rack_log_hdwr_pacing(rack, 14873 fill_bw, high_rate, __LINE__, 14874 0, 3); 14875 fill_bw = high_rate; 14876 if (capped) 14877 *capped = 1; 14878 } 14879 } else if ((rack->r_ctl.crte == NULL) && 14880 (rack->rack_hdrw_pacing == 0) && 14881 (rack->rack_hdw_pace_ena) && 14882 rack->r_rack_hw_rate_caps && 14883 (rack->rack_attempt_hdwr_pace == 0) && 14884 (rack->rc_inp->inp_route.ro_nh != NULL) && 14885 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 14886 /* 14887 * Ok we may have a first attempt that is greater than our top rate 14888 * lets check. 14889 */ 14890 uint64_t high_rate; 14891 14892 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 14893 if (high_rate) { 14894 if (fill_bw > high_rate) { 14895 fill_bw = high_rate; 14896 if (capped) 14897 *capped = 1; 14898 } 14899 } 14900 } 14901 /* 14902 * Ok fill_bw holds our mythical b/w to fill the cwnd 14903 * in a rtt, what does that time wise equate too? 14904 */ 14905 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; 14906 lentim /= fill_bw; 14907 *rate_wanted = fill_bw; 14908 if (non_paced || (lentim < slot)) { 14909 rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 14910 0, lentim, 12, __LINE__, NULL, 0); 14911 return ((int32_t)lentim); 14912 } else 14913 return (slot); 14914 } 14915 14916 static int32_t 14917 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) 14918 { 14919 uint64_t srtt; 14920 int32_t slot = 0; 14921 int can_start_hw_pacing = 1; 14922 int err; 14923 14924 if (rack->rc_always_pace == 0) { 14925 /* 14926 * We use the most optimistic possible cwnd/srtt for 14927 * sending calculations. This will make our 14928 * calculation anticipate getting more through 14929 * quicker then possible. But thats ok we don't want 14930 * the peer to have a gap in data sending. 14931 */ 14932 uint64_t cwnd, tr_perms = 0; 14933 int32_t reduce = 0; 14934 14935 old_method: 14936 /* 14937 * We keep no precise pacing with the old method 14938 * instead we use the pacer to mitigate bursts. 14939 */ 14940 if (rack->r_ctl.rc_rack_min_rtt) 14941 srtt = rack->r_ctl.rc_rack_min_rtt; 14942 else 14943 srtt = max(tp->t_srtt, 1); 14944 if (rack->r_ctl.rc_rack_largest_cwnd) 14945 cwnd = rack->r_ctl.rc_rack_largest_cwnd; 14946 else 14947 cwnd = rack->r_ctl.cwnd_to_use; 14948 /* Inflate cwnd by 1000 so srtt of usecs is in ms */ 14949 tr_perms = (cwnd * 1000) / srtt; 14950 if (tr_perms == 0) { 14951 tr_perms = ctf_fixed_maxseg(tp); 14952 } 14953 /* 14954 * Calculate how long this will take to drain, if 14955 * the calculation comes out to zero, thats ok we 14956 * will use send_a_lot to possibly spin around for 14957 * more increasing tot_len_this_send to the point 14958 * that its going to require a pace, or we hit the 14959 * cwnd. Which in that case we are just waiting for 14960 * a ACK. 14961 */ 14962 slot = len / tr_perms; 14963 /* Now do we reduce the time so we don't run dry? */ 14964 if (slot && rack_slot_reduction) { 14965 reduce = (slot / rack_slot_reduction); 14966 if (reduce < slot) { 14967 slot -= reduce; 14968 } else 14969 slot = 0; 14970 } 14971 slot *= HPTS_USEC_IN_MSEC; 14972 if (rack->rc_pace_to_cwnd) { 14973 uint64_t rate_wanted = 0; 14974 14975 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1); 14976 rack->rc_ack_can_sendout_data = 1; 14977 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0); 14978 } else 14979 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0); 14980 } else { 14981 uint64_t bw_est, res, lentim, rate_wanted; 14982 uint32_t orig_val, segs, oh; 14983 int capped = 0; 14984 int prev_fill; 14985 14986 if ((rack->r_rr_config == 1) && rsm) { 14987 return (rack->r_ctl.rc_min_to); 14988 } 14989 if (rack->use_fixed_rate) { 14990 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); 14991 } else if ((rack->r_ctl.init_rate == 0) && 14992 #ifdef NETFLIX_PEAKRATE 14993 (rack->rc_tp->t_maxpeakrate == 0) && 14994 #endif 14995 (rack->r_ctl.gp_bw == 0)) { 14996 /* no way to yet do an estimate */ 14997 bw_est = rate_wanted = 0; 14998 } else { 14999 bw_est = rack_get_bw(rack); 15000 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped); 15001 } 15002 if ((bw_est == 0) || (rate_wanted == 0) || 15003 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) { 15004 /* 15005 * No way yet to make a b/w estimate or 15006 * our raise is set incorrectly. 15007 */ 15008 goto old_method; 15009 } 15010 /* We need to account for all the overheads */ 15011 segs = (len + segsiz - 1) / segsiz; 15012 /* 15013 * We need the diff between 1514 bytes (e-mtu with e-hdr) 15014 * and how much data we put in each packet. Yes this 15015 * means we may be off if we are larger than 1500 bytes 15016 * or smaller. But this just makes us more conservative. 15017 */ 15018 if (rack_hw_rate_min && 15019 (bw_est < rack_hw_rate_min)) 15020 can_start_hw_pacing = 0; 15021 if (ETHERNET_SEGMENT_SIZE > segsiz) 15022 oh = ETHERNET_SEGMENT_SIZE - segsiz; 15023 else 15024 oh = 0; 15025 segs *= oh; 15026 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; 15027 res = lentim / rate_wanted; 15028 slot = (uint32_t)res; 15029 orig_val = rack->r_ctl.rc_pace_max_segs; 15030 if (rack->r_ctl.crte == NULL) { 15031 /* 15032 * Only do this if we are not hardware pacing 15033 * since if we are doing hw-pacing below we will 15034 * set make a call after setting up or changing 15035 * the rate. 15036 */ 15037 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 15038 } else if (rack->rc_inp->inp_snd_tag == NULL) { 15039 /* 15040 * We lost our rate somehow, this can happen 15041 * if the interface changed underneath us. 15042 */ 15043 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15044 rack->r_ctl.crte = NULL; 15045 /* Lets re-allow attempting to setup pacing */ 15046 rack->rack_hdrw_pacing = 0; 15047 rack->rack_attempt_hdwr_pace = 0; 15048 rack_log_hdwr_pacing(rack, 15049 rate_wanted, bw_est, __LINE__, 15050 0, 6); 15051 } 15052 /* Did we change the TSO size, if so log it */ 15053 if (rack->r_ctl.rc_pace_max_segs != orig_val) 15054 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0); 15055 prev_fill = rack->r_via_fill_cw; 15056 if ((rack->rc_pace_to_cwnd) && 15057 (capped == 0) && 15058 (rack->use_fixed_rate == 0) && 15059 (rack->in_probe_rtt == 0) && 15060 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) { 15061 /* 15062 * We want to pace at our rate *or* faster to 15063 * fill the cwnd to the max if its not full. 15064 */ 15065 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0); 15066 } 15067 if ((rack->rc_inp->inp_route.ro_nh != NULL) && 15068 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 15069 if ((rack->rack_hdw_pace_ena) && 15070 (can_start_hw_pacing > 0) && 15071 (rack->rack_hdrw_pacing == 0) && 15072 (rack->rack_attempt_hdwr_pace == 0)) { 15073 /* 15074 * Lets attempt to turn on hardware pacing 15075 * if we can. 15076 */ 15077 rack->rack_attempt_hdwr_pace = 1; 15078 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, 15079 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15080 rate_wanted, 15081 RS_PACING_GEQ, 15082 &err, &rack->r_ctl.crte_prev_rate); 15083 if (rack->r_ctl.crte) { 15084 rack->rack_hdrw_pacing = 1; 15085 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz, 15086 0, rack->r_ctl.crte, 15087 NULL); 15088 rack_log_hdwr_pacing(rack, 15089 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15090 err, 0); 15091 rack->r_ctl.last_hw_bw_req = rate_wanted; 15092 } else { 15093 counter_u64_add(rack_hw_pace_init_fail, 1); 15094 } 15095 } else if (rack->rack_hdrw_pacing && 15096 (rack->r_ctl.last_hw_bw_req != rate_wanted)) { 15097 /* Do we need to adjust our rate? */ 15098 const struct tcp_hwrate_limit_table *nrte; 15099 15100 if (rack->r_up_only && 15101 (rate_wanted < rack->r_ctl.crte->rate)) { 15102 /** 15103 * We have four possible states here 15104 * having to do with the previous time 15105 * and this time. 15106 * previous | this-time 15107 * A) 0 | 0 -- fill_cw not in the picture 15108 * B) 1 | 0 -- we were doing a fill-cw but now are not 15109 * C) 1 | 1 -- all rates from fill_cw 15110 * D) 0 | 1 -- we were doing non-fill and now we are filling 15111 * 15112 * For case A, C and D we don't allow a drop. But for 15113 * case B where we now our on our steady rate we do 15114 * allow a drop. 15115 * 15116 */ 15117 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0))) 15118 goto done_w_hdwr; 15119 } 15120 if ((rate_wanted > rack->r_ctl.crte->rate) || 15121 (rate_wanted <= rack->r_ctl.crte_prev_rate)) { 15122 if (rack_hw_rate_to_low && 15123 (bw_est < rack_hw_rate_to_low)) { 15124 /* 15125 * The pacing rate is too low for hardware, but 15126 * do allow hardware pacing to be restarted. 15127 */ 15128 rack_log_hdwr_pacing(rack, 15129 bw_est, rack->r_ctl.crte->rate, __LINE__, 15130 0, 5); 15131 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 15132 rack->r_ctl.crte = NULL; 15133 rack->rack_attempt_hdwr_pace = 0; 15134 rack->rack_hdrw_pacing = 0; 15135 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15136 goto done_w_hdwr; 15137 } 15138 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, 15139 rack->rc_tp, 15140 rack->rc_inp->inp_route.ro_nh->nh_ifp, 15141 rate_wanted, 15142 RS_PACING_GEQ, 15143 &err, &rack->r_ctl.crte_prev_rate); 15144 if (nrte == NULL) { 15145 /* Lost the rate */ 15146 rack->rack_hdrw_pacing = 0; 15147 rack->r_ctl.crte = NULL; 15148 rack_log_hdwr_pacing(rack, 15149 rate_wanted, 0, __LINE__, 15150 err, 1); 15151 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15152 counter_u64_add(rack_hw_pace_lost, 1); 15153 } else if (nrte != rack->r_ctl.crte) { 15154 rack->r_ctl.crte = nrte; 15155 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, 15156 segsiz, 0, 15157 rack->r_ctl.crte, 15158 NULL); 15159 rack_log_hdwr_pacing(rack, 15160 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15161 err, 2); 15162 rack->r_ctl.last_hw_bw_req = rate_wanted; 15163 } 15164 } else { 15165 /* We just need to adjust the segment size */ 15166 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 15167 rack_log_hdwr_pacing(rack, 15168 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 15169 0, 4); 15170 rack->r_ctl.last_hw_bw_req = rate_wanted; 15171 } 15172 } 15173 } 15174 if ((rack->r_ctl.crte != NULL) && 15175 (rack->r_ctl.crte->rate == rate_wanted)) { 15176 /* 15177 * We need to add a extra if the rates 15178 * are exactly matched. The idea is 15179 * we want the software to make sure the 15180 * queue is empty before adding more, this 15181 * gives us N MSS extra pace times where 15182 * N is our sysctl 15183 */ 15184 slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots); 15185 } 15186 done_w_hdwr: 15187 if (rack_limit_time_with_srtt && 15188 (rack->use_fixed_rate == 0) && 15189 #ifdef NETFLIX_PEAKRATE 15190 (rack->rc_tp->t_maxpeakrate == 0) && 15191 #endif 15192 (rack->rack_hdrw_pacing == 0)) { 15193 /* 15194 * Sanity check, we do not allow the pacing delay 15195 * to be longer than the SRTT of the path. If it is 15196 * a slow path, then adding a packet should increase 15197 * the RTT and compensate for this i.e. the srtt will 15198 * be greater so the allowed pacing time will be greater. 15199 * 15200 * Note this restriction is not for where a peak rate 15201 * is set, we are doing fixed pacing or hardware pacing. 15202 */ 15203 if (rack->rc_tp->t_srtt) 15204 srtt = rack->rc_tp->t_srtt; 15205 else 15206 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ 15207 if (srtt < (uint64_t)slot) { 15208 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0); 15209 slot = srtt; 15210 } 15211 } 15212 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0); 15213 } 15214 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) { 15215 /* 15216 * If this rate is seeing enobufs when it 15217 * goes to send then either the nic is out 15218 * of gas or we are mis-estimating the time 15219 * somehow and not letting the queue empty 15220 * completely. Lets add to the pacing time. 15221 */ 15222 int hw_boost_delay; 15223 15224 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult; 15225 if (hw_boost_delay > rack_enobuf_hw_max) 15226 hw_boost_delay = rack_enobuf_hw_max; 15227 else if (hw_boost_delay < rack_enobuf_hw_min) 15228 hw_boost_delay = rack_enobuf_hw_min; 15229 slot += hw_boost_delay; 15230 } 15231 if (slot) 15232 counter_u64_add(rack_calc_nonzero, 1); 15233 else 15234 counter_u64_add(rack_calc_zero, 1); 15235 return (slot); 15236 } 15237 15238 static void 15239 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, 15240 tcp_seq startseq, uint32_t sb_offset) 15241 { 15242 struct rack_sendmap *my_rsm = NULL; 15243 struct rack_sendmap fe; 15244 15245 if (tp->t_state < TCPS_ESTABLISHED) { 15246 /* 15247 * We don't start any measurements if we are 15248 * not at least established. 15249 */ 15250 return; 15251 } 15252 if (tp->t_state >= TCPS_FIN_WAIT_1) { 15253 /* 15254 * We will get no more data into the SB 15255 * this means we need to have the data available 15256 * before we start a measurement. 15257 */ 15258 15259 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < 15260 max(rc_init_window(rack), 15261 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) { 15262 /* Nope not enough data */ 15263 return; 15264 } 15265 } 15266 tp->t_flags |= TF_GPUTINPROG; 15267 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 15268 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 15269 tp->gput_seq = startseq; 15270 rack->app_limited_needs_set = 0; 15271 if (rack->in_probe_rtt) 15272 rack->measure_saw_probe_rtt = 1; 15273 else if ((rack->measure_saw_probe_rtt) && 15274 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 15275 rack->measure_saw_probe_rtt = 0; 15276 if (rack->rc_gp_filled) 15277 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 15278 else { 15279 /* Special case initial measurement */ 15280 struct timeval tv; 15281 15282 tp->gput_ts = tcp_get_usecs(&tv); 15283 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15284 } 15285 /* 15286 * We take a guess out into the future, 15287 * if we have no measurement and no 15288 * initial rate, we measure the first 15289 * initial-windows worth of data to 15290 * speed up getting some GP measurement and 15291 * thus start pacing. 15292 */ 15293 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { 15294 rack->app_limited_needs_set = 1; 15295 tp->gput_ack = startseq + max(rc_init_window(rack), 15296 (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 15297 rack_log_pacing_delay_calc(rack, 15298 tp->gput_seq, 15299 tp->gput_ack, 15300 0, 15301 tp->gput_ts, 15302 rack->r_ctl.rc_app_limited_cnt, 15303 9, 15304 __LINE__, NULL, 0); 15305 return; 15306 } 15307 if (sb_offset) { 15308 /* 15309 * We are out somewhere in the sb 15310 * can we use the already outstanding data? 15311 */ 15312 if (rack->r_ctl.rc_app_limited_cnt == 0) { 15313 /* 15314 * Yes first one is good and in this case 15315 * the tp->gput_ts is correctly set based on 15316 * the last ack that arrived (no need to 15317 * set things up when an ack comes in). 15318 */ 15319 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 15320 if ((my_rsm == NULL) || 15321 (my_rsm->r_rtr_cnt != 1)) { 15322 /* retransmission? */ 15323 goto use_latest; 15324 } 15325 } else { 15326 if (rack->r_ctl.rc_first_appl == NULL) { 15327 /* 15328 * If rc_first_appl is NULL 15329 * then the cnt should be 0. 15330 * This is probably an error, maybe 15331 * a KASSERT would be approprate. 15332 */ 15333 goto use_latest; 15334 } 15335 /* 15336 * If we have a marker pointer to the last one that is 15337 * app limited we can use that, but we need to set 15338 * things up so that when it gets ack'ed we record 15339 * the ack time (if its not already acked). 15340 */ 15341 rack->app_limited_needs_set = 1; 15342 /* 15343 * We want to get to the rsm that is either 15344 * next with space i.e. over 1 MSS or the one 15345 * after that (after the app-limited). 15346 */ 15347 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15348 rack->r_ctl.rc_first_appl); 15349 if (my_rsm) { 15350 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) 15351 /* Have to use the next one */ 15352 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 15353 my_rsm); 15354 else { 15355 /* Use after the first MSS of it is acked */ 15356 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); 15357 goto start_set; 15358 } 15359 } 15360 if ((my_rsm == NULL) || 15361 (my_rsm->r_rtr_cnt != 1)) { 15362 /* 15363 * Either its a retransmit or 15364 * the last is the app-limited one. 15365 */ 15366 goto use_latest; 15367 } 15368 } 15369 tp->gput_seq = my_rsm->r_start; 15370 start_set: 15371 if (my_rsm->r_flags & RACK_ACKED) { 15372 /* 15373 * This one has been acked use the arrival ack time 15374 */ 15375 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15376 rack->app_limited_needs_set = 0; 15377 } 15378 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15379 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 15380 rack_log_pacing_delay_calc(rack, 15381 tp->gput_seq, 15382 tp->gput_ack, 15383 (uint64_t)my_rsm, 15384 tp->gput_ts, 15385 rack->r_ctl.rc_app_limited_cnt, 15386 9, 15387 __LINE__, NULL, 0); 15388 return; 15389 } 15390 15391 use_latest: 15392 /* 15393 * We don't know how long we may have been 15394 * idle or if this is the first-send. Lets 15395 * setup the flag so we will trim off 15396 * the first ack'd data so we get a true 15397 * measurement. 15398 */ 15399 rack->app_limited_needs_set = 1; 15400 tp->gput_ack = startseq + rack_get_measure_window(tp, rack); 15401 /* Find this guy so we can pull the send time */ 15402 fe.r_start = startseq; 15403 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 15404 if (my_rsm) { 15405 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 15406 if (my_rsm->r_flags & RACK_ACKED) { 15407 /* 15408 * Unlikely since its probably what was 15409 * just transmitted (but I am paranoid). 15410 */ 15411 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 15412 rack->app_limited_needs_set = 0; 15413 } 15414 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { 15415 /* This also is unlikely */ 15416 tp->gput_seq = my_rsm->r_start; 15417 } 15418 } else { 15419 /* 15420 * TSNH unless we have some send-map limit, 15421 * and even at that it should not be hitting 15422 * that limit (we should have stopped sending). 15423 */ 15424 struct timeval tv; 15425 15426 microuptime(&tv); 15427 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 15428 } 15429 rack_log_pacing_delay_calc(rack, 15430 tp->gput_seq, 15431 tp->gput_ack, 15432 (uint64_t)my_rsm, 15433 tp->gput_ts, 15434 rack->r_ctl.rc_app_limited_cnt, 15435 9, __LINE__, NULL, 0); 15436 } 15437 15438 static inline uint32_t 15439 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, 15440 uint32_t avail, int32_t sb_offset) 15441 { 15442 uint32_t len; 15443 uint32_t sendwin; 15444 15445 if (tp->snd_wnd > cwnd_to_use) 15446 sendwin = cwnd_to_use; 15447 else 15448 sendwin = tp->snd_wnd; 15449 if (ctf_outstanding(tp) >= tp->snd_wnd) { 15450 /* We never want to go over our peers rcv-window */ 15451 len = 0; 15452 } else { 15453 uint32_t flight; 15454 15455 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 15456 if (flight >= sendwin) { 15457 /* 15458 * We have in flight what we are allowed by cwnd (if 15459 * it was rwnd blocking it would have hit above out 15460 * >= tp->snd_wnd). 15461 */ 15462 return (0); 15463 } 15464 len = sendwin - flight; 15465 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { 15466 /* We would send too much (beyond the rwnd) */ 15467 len = tp->snd_wnd - ctf_outstanding(tp); 15468 } 15469 if ((len + sb_offset) > avail) { 15470 /* 15471 * We don't have that much in the SB, how much is 15472 * there? 15473 */ 15474 len = avail - sb_offset; 15475 } 15476 } 15477 return (len); 15478 } 15479 15480 static void 15481 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, 15482 unsigned ipoptlen, int32_t orig_len, int32_t len, int error, 15483 int rsm_is_null, int optlen, int line, uint16_t mode) 15484 { 15485 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15486 union tcp_log_stackspecific log; 15487 struct timeval tv; 15488 15489 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15490 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 15491 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 15492 log.u_bbr.flex1 = error; 15493 log.u_bbr.flex2 = flags; 15494 log.u_bbr.flex3 = rsm_is_null; 15495 log.u_bbr.flex4 = ipoptlen; 15496 log.u_bbr.flex5 = tp->rcv_numsacks; 15497 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 15498 log.u_bbr.flex7 = optlen; 15499 log.u_bbr.flex8 = rack->r_fsb_inited; 15500 log.u_bbr.applimited = rack->r_fast_output; 15501 log.u_bbr.bw_inuse = rack_get_bw(rack); 15502 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 15503 log.u_bbr.cwnd_gain = mode; 15504 log.u_bbr.pkts_out = orig_len; 15505 log.u_bbr.lt_epoch = len; 15506 log.u_bbr.delivered = line; 15507 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 15508 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15509 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0, 15510 len, &log, false, NULL, NULL, 0, &tv); 15511 } 15512 } 15513 15514 15515 static struct mbuf * 15516 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, 15517 struct rack_fast_send_blk *fsb, 15518 int32_t seglimit, int32_t segsize, int hw_tls) 15519 { 15520 #ifdef KERN_TLS 15521 struct ktls_session *tls, *ntls; 15522 struct mbuf *start; 15523 #endif 15524 struct mbuf *m, *n, **np, *smb; 15525 struct mbuf *top; 15526 int32_t off, soff; 15527 int32_t len = *plen; 15528 int32_t fragsize; 15529 int32_t len_cp = 0; 15530 uint32_t mlen, frags; 15531 15532 soff = off = the_off; 15533 smb = m = the_m; 15534 np = ⊤ 15535 top = NULL; 15536 #ifdef KERN_TLS 15537 if (hw_tls && (m->m_flags & M_EXTPG)) 15538 tls = m->m_epg_tls; 15539 else 15540 tls = NULL; 15541 start = m; 15542 #endif 15543 while (len > 0) { 15544 if (m == NULL) { 15545 *plen = len_cp; 15546 break; 15547 } 15548 #ifdef KERN_TLS 15549 if (hw_tls) { 15550 if (m->m_flags & M_EXTPG) 15551 ntls = m->m_epg_tls; 15552 else 15553 ntls = NULL; 15554 15555 /* 15556 * Avoid mixing TLS records with handshake 15557 * data or TLS records from different 15558 * sessions. 15559 */ 15560 if (tls != ntls) { 15561 MPASS(m != start); 15562 *plen = len_cp; 15563 break; 15564 } 15565 } 15566 #endif 15567 mlen = min(len, m->m_len - off); 15568 if (seglimit) { 15569 /* 15570 * For M_EXTPG mbufs, add 3 segments 15571 * + 1 in case we are crossing page boundaries 15572 * + 2 in case the TLS hdr/trailer are used 15573 * It is cheaper to just add the segments 15574 * than it is to take the cache miss to look 15575 * at the mbuf ext_pgs state in detail. 15576 */ 15577 if (m->m_flags & M_EXTPG) { 15578 fragsize = min(segsize, PAGE_SIZE); 15579 frags = 3; 15580 } else { 15581 fragsize = segsize; 15582 frags = 0; 15583 } 15584 15585 /* Break if we really can't fit anymore. */ 15586 if ((frags + 1) >= seglimit) { 15587 *plen = len_cp; 15588 break; 15589 } 15590 15591 /* 15592 * Reduce size if you can't copy the whole 15593 * mbuf. If we can't copy the whole mbuf, also 15594 * adjust len so the loop will end after this 15595 * mbuf. 15596 */ 15597 if ((frags + howmany(mlen, fragsize)) >= seglimit) { 15598 mlen = (seglimit - frags - 1) * fragsize; 15599 len = mlen; 15600 *plen = len_cp + len; 15601 } 15602 frags += howmany(mlen, fragsize); 15603 if (frags == 0) 15604 frags++; 15605 seglimit -= frags; 15606 KASSERT(seglimit > 0, 15607 ("%s: seglimit went too low", __func__)); 15608 } 15609 n = m_get(M_NOWAIT, m->m_type); 15610 *np = n; 15611 if (n == NULL) 15612 goto nospace; 15613 n->m_len = mlen; 15614 soff += mlen; 15615 len_cp += n->m_len; 15616 if (m->m_flags & (M_EXT|M_EXTPG)) { 15617 n->m_data = m->m_data + off; 15618 mb_dupcl(n, m); 15619 } else { 15620 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 15621 (u_int)n->m_len); 15622 } 15623 len -= n->m_len; 15624 off = 0; 15625 m = m->m_next; 15626 np = &n->m_next; 15627 if (len || (soff == smb->m_len)) { 15628 /* 15629 * We have more so we move forward or 15630 * we have consumed the entire mbuf and 15631 * len has fell to 0. 15632 */ 15633 soff = 0; 15634 smb = m; 15635 } 15636 15637 } 15638 if (fsb != NULL) { 15639 fsb->m = smb; 15640 fsb->off = soff; 15641 if (smb) { 15642 /* 15643 * Save off the size of the mbuf. We do 15644 * this so that we can recognize when it 15645 * has been trimmed by sbcut() as acks 15646 * come in. 15647 */ 15648 fsb->o_m_len = smb->m_len; 15649 } else { 15650 /* 15651 * This is the case where the next mbuf went to NULL. This 15652 * means with this copy we have sent everything in the sb. 15653 * In theory we could clear the fast_output flag, but lets 15654 * not since its possible that we could get more added 15655 * and acks that call the extend function which would let 15656 * us send more. 15657 */ 15658 fsb->o_m_len = 0; 15659 } 15660 } 15661 return (top); 15662 nospace: 15663 if (top) 15664 m_freem(top); 15665 return (NULL); 15666 15667 } 15668 15669 /* 15670 * This is a copy of m_copym(), taking the TSO segment size/limit 15671 * constraints into account, and advancing the sndptr as it goes. 15672 */ 15673 static struct mbuf * 15674 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, 15675 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff) 15676 { 15677 struct mbuf *m, *n; 15678 int32_t soff; 15679 15680 soff = rack->r_ctl.fsb.off; 15681 m = rack->r_ctl.fsb.m; 15682 if (rack->r_ctl.fsb.o_m_len > m->m_len) { 15683 /* 15684 * The mbuf had the front of it chopped off by an ack 15685 * we need to adjust the soff/off by that difference. 15686 */ 15687 uint32_t delta; 15688 15689 delta = rack->r_ctl.fsb.o_m_len - m->m_len; 15690 soff -= delta; 15691 } else if (rack->r_ctl.fsb.o_m_len < m->m_len) { 15692 /* 15693 * The mbuf was expanded probably by 15694 * a m_compress. Just update o_m_len. 15695 */ 15696 rack->r_ctl.fsb.o_m_len = m->m_len; 15697 } 15698 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff)); 15699 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen)); 15700 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?", 15701 __FUNCTION__, 15702 rack, *plen, m, m->m_len)); 15703 /* Save off the right location before we copy and advance */ 15704 *s_soff = soff; 15705 *s_mb = rack->r_ctl.fsb.m; 15706 n = rack_fo_base_copym(m, soff, plen, 15707 &rack->r_ctl.fsb, 15708 seglimit, segsize, rack->r_ctl.fsb.hw_tls); 15709 return (n); 15710 } 15711 15712 static int 15713 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, 15714 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp) 15715 { 15716 /* 15717 * Enter the fast retransmit path. We are given that a sched_pin is 15718 * in place (if accounting is compliled in) and the cycle count taken 15719 * at the entry is in the ts_val. The concept her is that the rsm 15720 * now holds the mbuf offsets and such so we can directly transmit 15721 * without a lot of overhead, the len field is already set for 15722 * us to prohibit us from sending too much (usually its 1MSS). 15723 */ 15724 struct ip *ip = NULL; 15725 struct udphdr *udp = NULL; 15726 struct tcphdr *th = NULL; 15727 struct mbuf *m = NULL; 15728 struct inpcb *inp; 15729 uint8_t *cpto; 15730 struct tcp_log_buffer *lgb; 15731 #ifdef TCP_ACCOUNTING 15732 uint64_t crtsc; 15733 int cnt_thru = 1; 15734 #endif 15735 struct tcpopt to; 15736 u_char opt[TCP_MAXOLEN]; 15737 uint32_t hdrlen, optlen; 15738 int32_t slot, segsiz, max_val, tso = 0, error, flags, ulen = 0; 15739 uint32_t us_cts; 15740 uint32_t if_hw_tsomaxsegcount = 0, startseq; 15741 uint32_t if_hw_tsomaxsegsize; 15742 15743 #ifdef INET6 15744 struct ip6_hdr *ip6 = NULL; 15745 15746 if (rack->r_is_v6) { 15747 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 15748 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 15749 } else 15750 #endif /* INET6 */ 15751 { 15752 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 15753 hdrlen = sizeof(struct tcpiphdr); 15754 } 15755 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 15756 goto failed; 15757 } 15758 if (doing_tlp) { 15759 /* Its a TLP add the flag, it may already be there but be sure */ 15760 rsm->r_flags |= RACK_TLP; 15761 } else { 15762 /* If it was a TLP it is not not on this retransmit */ 15763 rsm->r_flags &= ~RACK_TLP; 15764 } 15765 startseq = rsm->r_start; 15766 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 15767 inp = rack->rc_inp; 15768 to.to_flags = 0; 15769 flags = tcp_outflags[tp->t_state]; 15770 if (flags & (TH_SYN|TH_RST)) { 15771 goto failed; 15772 } 15773 if (rsm->r_flags & RACK_HAS_FIN) { 15774 /* We can't send a FIN here */ 15775 goto failed; 15776 } 15777 if (flags & TH_FIN) { 15778 /* We never send a FIN */ 15779 flags &= ~TH_FIN; 15780 } 15781 if (tp->t_flags & TF_RCVD_TSTMP) { 15782 to.to_tsval = ms_cts + tp->ts_offset; 15783 to.to_tsecr = tp->ts_recent; 15784 to.to_flags = TOF_TS; 15785 } 15786 optlen = tcp_addoptions(&to, opt); 15787 hdrlen += optlen; 15788 udp = rack->r_ctl.fsb.udp; 15789 if (udp) 15790 hdrlen += sizeof(struct udphdr); 15791 if (rack->r_ctl.rc_pace_max_segs) 15792 max_val = rack->r_ctl.rc_pace_max_segs; 15793 else if (rack->rc_user_set_max_segs) 15794 max_val = rack->rc_user_set_max_segs * segsiz; 15795 else 15796 max_val = len; 15797 if ((tp->t_flags & TF_TSO) && 15798 V_tcp_do_tso && 15799 (len > segsiz) && 15800 (tp->t_port == 0)) 15801 tso = 1; 15802 #ifdef INET6 15803 if (MHLEN < hdrlen + max_linkhdr) 15804 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 15805 else 15806 #endif 15807 m = m_gethdr(M_NOWAIT, MT_DATA); 15808 if (m == NULL) 15809 goto failed; 15810 m->m_data += max_linkhdr; 15811 m->m_len = hdrlen; 15812 th = rack->r_ctl.fsb.th; 15813 /* Establish the len to send */ 15814 if (len > max_val) 15815 len = max_val; 15816 if ((tso) && (len + optlen > tp->t_maxseg)) { 15817 uint32_t if_hw_tsomax; 15818 int32_t max_len; 15819 15820 /* extract TSO information */ 15821 if_hw_tsomax = tp->t_tsomax; 15822 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 15823 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 15824 /* 15825 * Check if we should limit by maximum payload 15826 * length: 15827 */ 15828 if (if_hw_tsomax != 0) { 15829 /* compute maximum TSO length */ 15830 max_len = (if_hw_tsomax - hdrlen - 15831 max_linkhdr); 15832 if (max_len <= 0) { 15833 goto failed; 15834 } else if (len > max_len) { 15835 len = max_len; 15836 } 15837 } 15838 if (len <= segsiz) { 15839 /* 15840 * In case there are too many small fragments don't 15841 * use TSO: 15842 */ 15843 tso = 0; 15844 } 15845 } else { 15846 tso = 0; 15847 } 15848 if ((tso == 0) && (len > segsiz)) 15849 len = segsiz; 15850 us_cts = tcp_get_usecs(tv); 15851 if ((len == 0) || 15852 (len <= MHLEN - hdrlen - max_linkhdr)) { 15853 goto failed; 15854 } 15855 th->th_seq = htonl(rsm->r_start); 15856 th->th_ack = htonl(tp->rcv_nxt); 15857 /* 15858 * The PUSH bit should only be applied 15859 * if the full retransmission is made. If 15860 * we are sending less than this is the 15861 * left hand edge and should not have 15862 * the PUSH bit. 15863 */ 15864 if ((rsm->r_flags & RACK_HAD_PUSH) && 15865 (len == (rsm->r_end - rsm->r_start))) 15866 flags |= TH_PUSH; 15867 th->th_flags = flags; 15868 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 15869 if (th->th_win == 0) { 15870 tp->t_sndzerowin++; 15871 tp->t_flags |= TF_RXWIN0SENT; 15872 } else 15873 tp->t_flags &= ~TF_RXWIN0SENT; 15874 if (rsm->r_flags & RACK_TLP) { 15875 /* 15876 * TLP should not count in retran count, but 15877 * in its own bin 15878 */ 15879 counter_u64_add(rack_tlp_retran, 1); 15880 counter_u64_add(rack_tlp_retran_bytes, len); 15881 } else { 15882 tp->t_sndrexmitpack++; 15883 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 15884 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 15885 } 15886 #ifdef STATS 15887 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 15888 len); 15889 #endif 15890 if (rsm->m == NULL) 15891 goto failed; 15892 if (rsm->orig_m_len != rsm->m->m_len) { 15893 /* Fix up the orig_m_len and possibly the mbuf offset */ 15894 rack_adjust_orig_mlen(rsm); 15895 } 15896 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls); 15897 if (len <= segsiz) { 15898 /* 15899 * Must have ran out of mbufs for the copy 15900 * shorten it to no longer need tso. Lets 15901 * not put on sendalot since we are low on 15902 * mbufs. 15903 */ 15904 tso = 0; 15905 } 15906 if ((m->m_next == NULL) || (len <= 0)){ 15907 goto failed; 15908 } 15909 if (udp) { 15910 if (rack->r_is_v6) 15911 ulen = hdrlen + len - sizeof(struct ip6_hdr); 15912 else 15913 ulen = hdrlen + len - sizeof(struct ip); 15914 udp->uh_ulen = htons(ulen); 15915 } 15916 m->m_pkthdr.rcvif = (struct ifnet *)0; 15917 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 15918 #ifdef INET6 15919 if (rack->r_is_v6) { 15920 if (tp->t_port) { 15921 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 15922 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15923 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 15924 th->th_sum = htons(0); 15925 UDPSTAT_INC(udps_opackets); 15926 } else { 15927 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 15928 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15929 th->th_sum = in6_cksum_pseudo(ip6, 15930 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 15931 0); 15932 } 15933 } 15934 #endif 15935 #if defined(INET6) && defined(INET) 15936 else 15937 #endif 15938 #ifdef INET 15939 { 15940 if (tp->t_port) { 15941 m->m_pkthdr.csum_flags = CSUM_UDP; 15942 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15943 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 15944 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 15945 th->th_sum = htons(0); 15946 UDPSTAT_INC(udps_opackets); 15947 } else { 15948 m->m_pkthdr.csum_flags = CSUM_TCP; 15949 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15950 th->th_sum = in_pseudo(ip->ip_src.s_addr, 15951 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 15952 IPPROTO_TCP + len + optlen)); 15953 } 15954 /* IP version must be set here for ipv4/ipv6 checking later */ 15955 KASSERT(ip->ip_v == IPVERSION, 15956 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 15957 } 15958 #endif 15959 if (tso) { 15960 KASSERT(len > tp->t_maxseg - optlen, 15961 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 15962 m->m_pkthdr.csum_flags |= CSUM_TSO; 15963 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 15964 } 15965 #ifdef INET6 15966 if (rack->r_is_v6) { 15967 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 15968 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 15969 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 15970 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15971 else 15972 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15973 } 15974 #endif 15975 #if defined(INET) && defined(INET6) 15976 else 15977 #endif 15978 #ifdef INET 15979 { 15980 ip->ip_len = htons(m->m_pkthdr.len); 15981 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 15982 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 15983 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15984 if (tp->t_port == 0 || len < V_tcp_minmss) { 15985 ip->ip_off |= htons(IP_DF); 15986 } 15987 } else { 15988 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15989 } 15990 } 15991 #endif 15992 /* Time to copy in our header */ 15993 cpto = mtod(m, uint8_t *); 15994 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 15995 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 15996 if (optlen) { 15997 bcopy(opt, th + 1, optlen); 15998 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 15999 } else { 16000 th->th_off = sizeof(struct tcphdr) >> 2; 16001 } 16002 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 16003 union tcp_log_stackspecific log; 16004 16005 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16006 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 16007 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 16008 if (rack->rack_no_prr) 16009 log.u_bbr.flex1 = 0; 16010 else 16011 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16012 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16013 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16014 log.u_bbr.flex4 = max_val; 16015 log.u_bbr.flex5 = 0; 16016 /* Save off the early/late values */ 16017 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16018 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16019 log.u_bbr.bw_inuse = rack_get_bw(rack); 16020 if (doing_tlp == 0) 16021 log.u_bbr.flex8 = 1; 16022 else 16023 log.u_bbr.flex8 = 2; 16024 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16025 log.u_bbr.flex7 = 55; 16026 log.u_bbr.pkts_out = tp->t_maxseg; 16027 log.u_bbr.timeStamp = cts; 16028 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16029 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16030 log.u_bbr.delivered = 0; 16031 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16032 len, &log, false, NULL, NULL, 0, tv); 16033 } else 16034 lgb = NULL; 16035 #ifdef INET6 16036 if (rack->r_is_v6) { 16037 error = ip6_output(m, NULL, 16038 &inp->inp_route6, 16039 0, NULL, NULL, inp); 16040 } 16041 #endif 16042 #if defined(INET) && defined(INET6) 16043 else 16044 #endif 16045 #ifdef INET 16046 { 16047 error = ip_output(m, NULL, 16048 &inp->inp_route, 16049 0, 0, inp); 16050 } 16051 #endif 16052 m = NULL; 16053 if (lgb) { 16054 lgb->tlb_errno = error; 16055 lgb = NULL; 16056 } 16057 if (error) { 16058 goto failed; 16059 } 16060 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv), 16061 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls); 16062 if (doing_tlp && (rack->fast_rsm_hack == 0)) { 16063 rack->rc_tlp_in_progress = 1; 16064 rack->r_ctl.rc_tlp_cnt_out++; 16065 } 16066 if (error == 0) { 16067 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls); 16068 if (doing_tlp) { 16069 rack->rc_last_sent_tlp_past_cumack = 0; 16070 rack->rc_last_sent_tlp_seq_valid = 1; 16071 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 16072 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 16073 } 16074 } 16075 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16076 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16077 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 16078 rack->r_ctl.retran_during_recovery += len; 16079 { 16080 int idx; 16081 16082 idx = (len / segsiz) + 3; 16083 if (idx >= TCP_MSS_ACCT_ATIMER) 16084 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16085 else 16086 counter_u64_add(rack_out_size[idx], 1); 16087 } 16088 if (tp->t_rtttime == 0) { 16089 tp->t_rtttime = ticks; 16090 tp->t_rtseq = startseq; 16091 KMOD_TCPSTAT_INC(tcps_segstimed); 16092 } 16093 counter_u64_add(rack_fto_rsm_send, 1); 16094 if (error && (error == ENOBUFS)) { 16095 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 16096 if (rack->rc_enobuf < 0x7f) 16097 rack->rc_enobuf++; 16098 if (slot < (10 * HPTS_USEC_IN_MSEC)) 16099 slot = 10 * HPTS_USEC_IN_MSEC; 16100 } else 16101 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz); 16102 if ((slot == 0) || 16103 (rack->rc_always_pace == 0) || 16104 (rack->r_rr_config == 1)) { 16105 /* 16106 * We have no pacing set or we 16107 * are using old-style rack or 16108 * we are overriden to use the old 1ms pacing. 16109 */ 16110 slot = rack->r_ctl.rc_min_to; 16111 } 16112 rack_start_hpts_timer(rack, tp, cts, slot, len, 0); 16113 if (rack->r_must_retran) { 16114 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 16115 if ((SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) || 16116 ((rsm->r_flags & RACK_MUST_RXT) == 0)) { 16117 /* 16118 * We have retransmitted all we need. If 16119 * RACK_MUST_RXT is not set then we need to 16120 * not retransmit this guy. 16121 */ 16122 rack->r_must_retran = 0; 16123 rack->r_ctl.rc_out_at_rto = 0; 16124 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 16125 /* Not one we should rxt */ 16126 goto failed; 16127 } else { 16128 /* Clear the flag */ 16129 rsm->r_flags &= ~RACK_MUST_RXT; 16130 } 16131 } else { 16132 /* Remove the flag */ 16133 rsm->r_flags &= ~RACK_MUST_RXT; 16134 } 16135 } 16136 #ifdef TCP_ACCOUNTING 16137 crtsc = get_cyclecount(); 16138 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16139 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16140 } 16141 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16142 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16143 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16144 } 16145 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16146 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16147 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz); 16148 } 16149 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz)); 16150 sched_unpin(); 16151 #endif 16152 return (0); 16153 failed: 16154 if (m) 16155 m_free(m); 16156 return (-1); 16157 } 16158 16159 static void 16160 rack_sndbuf_autoscale(struct tcp_rack *rack) 16161 { 16162 /* 16163 * Automatic sizing of send socket buffer. Often the send buffer 16164 * size is not optimally adjusted to the actual network conditions 16165 * at hand (delay bandwidth product). Setting the buffer size too 16166 * small limits throughput on links with high bandwidth and high 16167 * delay (eg. trans-continental/oceanic links). Setting the 16168 * buffer size too big consumes too much real kernel memory, 16169 * especially with many connections on busy servers. 16170 * 16171 * The criteria to step up the send buffer one notch are: 16172 * 1. receive window of remote host is larger than send buffer 16173 * (with a fudge factor of 5/4th); 16174 * 2. send buffer is filled to 7/8th with data (so we actually 16175 * have data to make use of it); 16176 * 3. send buffer fill has not hit maximal automatic size; 16177 * 4. our send window (slow start and cogestion controlled) is 16178 * larger than sent but unacknowledged data in send buffer. 16179 * 16180 * Note that the rack version moves things much faster since 16181 * we want to avoid hitting cache lines in the rack_fast_output() 16182 * path so this is called much less often and thus moves 16183 * the SB forward by a percentage. 16184 */ 16185 struct socket *so; 16186 struct tcpcb *tp; 16187 uint32_t sendwin, scaleup; 16188 16189 tp = rack->rc_tp; 16190 so = rack->rc_inp->inp_socket; 16191 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd); 16192 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) { 16193 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && 16194 sbused(&so->so_snd) >= 16195 (so->so_snd.sb_hiwat / 8 * 7) && 16196 sbused(&so->so_snd) < V_tcp_autosndbuf_max && 16197 sendwin >= (sbused(&so->so_snd) - 16198 (tp->snd_nxt - tp->snd_una))) { 16199 if (rack_autosndbuf_inc) 16200 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100; 16201 else 16202 scaleup = V_tcp_autosndbuf_inc; 16203 if (scaleup < V_tcp_autosndbuf_inc) 16204 scaleup = V_tcp_autosndbuf_inc; 16205 scaleup += so->so_snd.sb_hiwat; 16206 if (scaleup > V_tcp_autosndbuf_max) 16207 scaleup = V_tcp_autosndbuf_max; 16208 if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread)) 16209 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 16210 } 16211 } 16212 } 16213 16214 static int 16215 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, 16216 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err) 16217 { 16218 /* 16219 * Enter to do fast output. We are given that the sched_pin is 16220 * in place (if accounting is compiled in) and the cycle count taken 16221 * at entry is in place in ts_val. The idea here is that 16222 * we know how many more bytes needs to be sent (presumably either 16223 * during pacing or to fill the cwnd and that was greater than 16224 * the max-burst). We have how much to send and all the info we 16225 * need to just send. 16226 */ 16227 struct ip *ip = NULL; 16228 struct udphdr *udp = NULL; 16229 struct tcphdr *th = NULL; 16230 struct mbuf *m, *s_mb; 16231 struct inpcb *inp; 16232 uint8_t *cpto; 16233 struct tcp_log_buffer *lgb; 16234 #ifdef TCP_ACCOUNTING 16235 uint64_t crtsc; 16236 #endif 16237 struct tcpopt to; 16238 u_char opt[TCP_MAXOLEN]; 16239 uint32_t hdrlen, optlen; 16240 int cnt_thru = 1; 16241 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, flags, ulen = 0; 16242 uint32_t us_cts, s_soff; 16243 uint32_t if_hw_tsomaxsegcount = 0, startseq; 16244 uint32_t if_hw_tsomaxsegsize; 16245 uint16_t add_flag = RACK_SENT_FP; 16246 #ifdef INET6 16247 struct ip6_hdr *ip6 = NULL; 16248 16249 if (rack->r_is_v6) { 16250 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 16251 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 16252 } else 16253 #endif /* INET6 */ 16254 { 16255 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 16256 hdrlen = sizeof(struct tcpiphdr); 16257 } 16258 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 16259 m = NULL; 16260 goto failed; 16261 } 16262 startseq = tp->snd_max; 16263 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16264 inp = rack->rc_inp; 16265 len = rack->r_ctl.fsb.left_to_send; 16266 to.to_flags = 0; 16267 flags = rack->r_ctl.fsb.tcp_flags; 16268 if (tp->t_flags & TF_RCVD_TSTMP) { 16269 to.to_tsval = ms_cts + tp->ts_offset; 16270 to.to_tsecr = tp->ts_recent; 16271 to.to_flags = TOF_TS; 16272 } 16273 optlen = tcp_addoptions(&to, opt); 16274 hdrlen += optlen; 16275 udp = rack->r_ctl.fsb.udp; 16276 if (udp) 16277 hdrlen += sizeof(struct udphdr); 16278 if (rack->r_ctl.rc_pace_max_segs) 16279 max_val = rack->r_ctl.rc_pace_max_segs; 16280 else if (rack->rc_user_set_max_segs) 16281 max_val = rack->rc_user_set_max_segs * segsiz; 16282 else 16283 max_val = len; 16284 if ((tp->t_flags & TF_TSO) && 16285 V_tcp_do_tso && 16286 (len > segsiz) && 16287 (tp->t_port == 0)) 16288 tso = 1; 16289 again: 16290 #ifdef INET6 16291 if (MHLEN < hdrlen + max_linkhdr) 16292 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 16293 else 16294 #endif 16295 m = m_gethdr(M_NOWAIT, MT_DATA); 16296 if (m == NULL) 16297 goto failed; 16298 m->m_data += max_linkhdr; 16299 m->m_len = hdrlen; 16300 th = rack->r_ctl.fsb.th; 16301 /* Establish the len to send */ 16302 if (len > max_val) 16303 len = max_val; 16304 if ((tso) && (len + optlen > tp->t_maxseg)) { 16305 uint32_t if_hw_tsomax; 16306 int32_t max_len; 16307 16308 /* extract TSO information */ 16309 if_hw_tsomax = tp->t_tsomax; 16310 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 16311 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 16312 /* 16313 * Check if we should limit by maximum payload 16314 * length: 16315 */ 16316 if (if_hw_tsomax != 0) { 16317 /* compute maximum TSO length */ 16318 max_len = (if_hw_tsomax - hdrlen - 16319 max_linkhdr); 16320 if (max_len <= 0) { 16321 goto failed; 16322 } else if (len > max_len) { 16323 len = max_len; 16324 } 16325 } 16326 if (len <= segsiz) { 16327 /* 16328 * In case there are too many small fragments don't 16329 * use TSO: 16330 */ 16331 tso = 0; 16332 } 16333 } else { 16334 tso = 0; 16335 } 16336 if ((tso == 0) && (len > segsiz)) 16337 len = segsiz; 16338 us_cts = tcp_get_usecs(tv); 16339 if ((len == 0) || 16340 (len <= MHLEN - hdrlen - max_linkhdr)) { 16341 goto failed; 16342 } 16343 sb_offset = tp->snd_max - tp->snd_una; 16344 th->th_seq = htonl(tp->snd_max); 16345 th->th_ack = htonl(tp->rcv_nxt); 16346 th->th_flags = flags; 16347 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 16348 if (th->th_win == 0) { 16349 tp->t_sndzerowin++; 16350 tp->t_flags |= TF_RXWIN0SENT; 16351 } else 16352 tp->t_flags &= ~TF_RXWIN0SENT; 16353 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 16354 KMOD_TCPSTAT_INC(tcps_sndpack); 16355 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 16356 #ifdef STATS 16357 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 16358 len); 16359 #endif 16360 if (rack->r_ctl.fsb.m == NULL) 16361 goto failed; 16362 16363 /* s_mb and s_soff are saved for rack_log_output */ 16364 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, 16365 &s_mb, &s_soff); 16366 if (len <= segsiz) { 16367 /* 16368 * Must have ran out of mbufs for the copy 16369 * shorten it to no longer need tso. Lets 16370 * not put on sendalot since we are low on 16371 * mbufs. 16372 */ 16373 tso = 0; 16374 } 16375 if (rack->r_ctl.fsb.rfo_apply_push && 16376 (len == rack->r_ctl.fsb.left_to_send)) { 16377 th->th_flags |= TH_PUSH; 16378 add_flag |= RACK_HAD_PUSH; 16379 } 16380 if ((m->m_next == NULL) || (len <= 0)){ 16381 goto failed; 16382 } 16383 if (udp) { 16384 if (rack->r_is_v6) 16385 ulen = hdrlen + len - sizeof(struct ip6_hdr); 16386 else 16387 ulen = hdrlen + len - sizeof(struct ip); 16388 udp->uh_ulen = htons(ulen); 16389 } 16390 m->m_pkthdr.rcvif = (struct ifnet *)0; 16391 if (tp->t_state == TCPS_ESTABLISHED && 16392 (tp->t_flags2 & TF2_ECN_PERMIT)) { 16393 /* 16394 * If the peer has ECN, mark data packets with ECN capable 16395 * transmission (ECT). Ignore pure ack packets, 16396 * retransmissions. 16397 */ 16398 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max)) { 16399 #ifdef INET6 16400 if (rack->r_is_v6) 16401 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); 16402 else 16403 #endif 16404 ip->ip_tos |= IPTOS_ECN_ECT0; 16405 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 16406 /* 16407 * Reply with proper ECN notifications. 16408 * Only set CWR on new data segments. 16409 */ 16410 if (tp->t_flags2 & TF2_ECN_SND_CWR) { 16411 flags |= TH_CWR; 16412 tp->t_flags2 &= ~TF2_ECN_SND_CWR; 16413 } 16414 } 16415 if (tp->t_flags2 & TF2_ECN_SND_ECE) 16416 flags |= TH_ECE; 16417 } 16418 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 16419 #ifdef INET6 16420 if (rack->r_is_v6) { 16421 if (tp->t_port) { 16422 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 16423 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16424 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 16425 th->th_sum = htons(0); 16426 UDPSTAT_INC(udps_opackets); 16427 } else { 16428 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 16429 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16430 th->th_sum = in6_cksum_pseudo(ip6, 16431 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 16432 0); 16433 } 16434 } 16435 #endif 16436 #if defined(INET6) && defined(INET) 16437 else 16438 #endif 16439 #ifdef INET 16440 { 16441 if (tp->t_port) { 16442 m->m_pkthdr.csum_flags = CSUM_UDP; 16443 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 16444 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 16445 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 16446 th->th_sum = htons(0); 16447 UDPSTAT_INC(udps_opackets); 16448 } else { 16449 m->m_pkthdr.csum_flags = CSUM_TCP; 16450 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 16451 th->th_sum = in_pseudo(ip->ip_src.s_addr, 16452 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 16453 IPPROTO_TCP + len + optlen)); 16454 } 16455 /* IP version must be set here for ipv4/ipv6 checking later */ 16456 KASSERT(ip->ip_v == IPVERSION, 16457 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 16458 } 16459 #endif 16460 if (tso) { 16461 KASSERT(len > tp->t_maxseg - optlen, 16462 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 16463 m->m_pkthdr.csum_flags |= CSUM_TSO; 16464 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 16465 } 16466 #ifdef INET6 16467 if (rack->r_is_v6) { 16468 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 16469 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 16470 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 16471 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16472 else 16473 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16474 } 16475 #endif 16476 #if defined(INET) && defined(INET6) 16477 else 16478 #endif 16479 #ifdef INET 16480 { 16481 ip->ip_len = htons(m->m_pkthdr.len); 16482 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 16483 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 16484 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 16485 if (tp->t_port == 0 || len < V_tcp_minmss) { 16486 ip->ip_off |= htons(IP_DF); 16487 } 16488 } else { 16489 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 16490 } 16491 } 16492 #endif 16493 /* Time to copy in our header */ 16494 cpto = mtod(m, uint8_t *); 16495 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 16496 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 16497 if (optlen) { 16498 bcopy(opt, th + 1, optlen); 16499 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 16500 } else { 16501 th->th_off = sizeof(struct tcphdr) >> 2; 16502 } 16503 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 16504 union tcp_log_stackspecific log; 16505 16506 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16507 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 16508 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 16509 if (rack->rack_no_prr) 16510 log.u_bbr.flex1 = 0; 16511 else 16512 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16513 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 16514 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 16515 log.u_bbr.flex4 = max_val; 16516 log.u_bbr.flex5 = 0; 16517 /* Save off the early/late values */ 16518 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 16519 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 16520 log.u_bbr.bw_inuse = rack_get_bw(rack); 16521 log.u_bbr.flex8 = 0; 16522 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 16523 log.u_bbr.flex7 = 44; 16524 log.u_bbr.pkts_out = tp->t_maxseg; 16525 log.u_bbr.timeStamp = cts; 16526 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16527 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 16528 log.u_bbr.delivered = 0; 16529 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 16530 len, &log, false, NULL, NULL, 0, tv); 16531 } else 16532 lgb = NULL; 16533 #ifdef INET6 16534 if (rack->r_is_v6) { 16535 error = ip6_output(m, NULL, 16536 &inp->inp_route6, 16537 0, NULL, NULL, inp); 16538 } 16539 #endif 16540 #if defined(INET) && defined(INET6) 16541 else 16542 #endif 16543 #ifdef INET 16544 { 16545 error = ip_output(m, NULL, 16546 &inp->inp_route, 16547 0, 0, inp); 16548 } 16549 #endif 16550 if (lgb) { 16551 lgb->tlb_errno = error; 16552 lgb = NULL; 16553 } 16554 if (error) { 16555 *send_err = error; 16556 m = NULL; 16557 goto failed; 16558 } 16559 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv), 16560 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls); 16561 m = NULL; 16562 if (tp->snd_una == tp->snd_max) { 16563 rack->r_ctl.rc_tlp_rxt_last_time = cts; 16564 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 16565 tp->t_acktime = ticks; 16566 } 16567 if (error == 0) 16568 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls); 16569 16570 rack->forced_ack = 0; /* If we send something zap the FA flag */ 16571 tot_len += len; 16572 if ((tp->t_flags & TF_GPUTINPROG) == 0) 16573 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset); 16574 tp->snd_max += len; 16575 tp->snd_nxt = tp->snd_max; 16576 { 16577 int idx; 16578 16579 idx = (len / segsiz) + 3; 16580 if (idx >= TCP_MSS_ACCT_ATIMER) 16581 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 16582 else 16583 counter_u64_add(rack_out_size[idx], 1); 16584 } 16585 if (len <= rack->r_ctl.fsb.left_to_send) 16586 rack->r_ctl.fsb.left_to_send -= len; 16587 else 16588 rack->r_ctl.fsb.left_to_send = 0; 16589 if (rack->r_ctl.fsb.left_to_send < segsiz) { 16590 rack->r_fast_output = 0; 16591 rack->r_ctl.fsb.left_to_send = 0; 16592 /* At the end of fast_output scale up the sb */ 16593 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd); 16594 rack_sndbuf_autoscale(rack); 16595 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd); 16596 } 16597 if (tp->t_rtttime == 0) { 16598 tp->t_rtttime = ticks; 16599 tp->t_rtseq = startseq; 16600 KMOD_TCPSTAT_INC(tcps_segstimed); 16601 } 16602 if ((rack->r_ctl.fsb.left_to_send >= segsiz) && 16603 (max_val > len) && 16604 (tso == 0)) { 16605 max_val -= len; 16606 len = segsiz; 16607 th = rack->r_ctl.fsb.th; 16608 cnt_thru++; 16609 goto again; 16610 } 16611 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 16612 counter_u64_add(rack_fto_send, 1); 16613 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz); 16614 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0); 16615 #ifdef TCP_ACCOUNTING 16616 crtsc = get_cyclecount(); 16617 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16618 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 16619 } 16620 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 16621 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16622 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 16623 } 16624 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 16625 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16626 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz); 16627 } 16628 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz)); 16629 sched_unpin(); 16630 #endif 16631 return (0); 16632 failed: 16633 if (m) 16634 m_free(m); 16635 rack->r_fast_output = 0; 16636 return (-1); 16637 } 16638 16639 static int 16640 rack_output(struct tcpcb *tp) 16641 { 16642 struct socket *so; 16643 uint32_t recwin; 16644 uint32_t sb_offset, s_moff = 0; 16645 int32_t len, flags, error = 0; 16646 struct mbuf *m, *s_mb = NULL; 16647 struct mbuf *mb; 16648 uint32_t if_hw_tsomaxsegcount = 0; 16649 uint32_t if_hw_tsomaxsegsize; 16650 int32_t segsiz, minseg; 16651 long tot_len_this_send = 0; 16652 #ifdef INET 16653 struct ip *ip = NULL; 16654 #endif 16655 #ifdef TCPDEBUG 16656 struct ipovly *ipov = NULL; 16657 #endif 16658 struct udphdr *udp = NULL; 16659 struct tcp_rack *rack; 16660 struct tcphdr *th; 16661 uint8_t pass = 0; 16662 uint8_t mark = 0; 16663 uint8_t wanted_cookie = 0; 16664 u_char opt[TCP_MAXOLEN]; 16665 unsigned ipoptlen, optlen, hdrlen, ulen=0; 16666 uint32_t rack_seq; 16667 16668 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 16669 unsigned ipsec_optlen = 0; 16670 16671 #endif 16672 int32_t idle, sendalot; 16673 int32_t sub_from_prr = 0; 16674 volatile int32_t sack_rxmit; 16675 struct rack_sendmap *rsm = NULL; 16676 int32_t tso, mtu; 16677 struct tcpopt to; 16678 int32_t slot = 0; 16679 int32_t sup_rack = 0; 16680 uint32_t cts, ms_cts, delayed, early; 16681 uint16_t add_flag = RACK_SENT_SP; 16682 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */ 16683 uint8_t hpts_calling, doing_tlp = 0; 16684 uint32_t cwnd_to_use, pace_max_seg; 16685 int32_t do_a_prefetch = 0; 16686 int32_t prefetch_rsm = 0; 16687 int32_t orig_len = 0; 16688 struct timeval tv; 16689 int32_t prefetch_so_done = 0; 16690 struct tcp_log_buffer *lgb; 16691 struct inpcb *inp; 16692 struct sockbuf *sb; 16693 uint64_t ts_val = 0; 16694 #ifdef TCP_ACCOUNTING 16695 uint64_t crtsc; 16696 #endif 16697 #ifdef INET6 16698 struct ip6_hdr *ip6 = NULL; 16699 int32_t isipv6; 16700 #endif 16701 uint8_t filled_all = 0; 16702 bool hw_tls = false; 16703 16704 /* setup and take the cache hits here */ 16705 rack = (struct tcp_rack *)tp->t_fb_ptr; 16706 #ifdef TCP_ACCOUNTING 16707 sched_pin(); 16708 ts_val = get_cyclecount(); 16709 #endif 16710 hpts_calling = rack->rc_inp->inp_hpts_calls; 16711 NET_EPOCH_ASSERT(); 16712 INP_WLOCK_ASSERT(rack->rc_inp); 16713 #ifdef TCP_OFFLOAD 16714 if (tp->t_flags & TF_TOE) { 16715 #ifdef TCP_ACCOUNTING 16716 sched_unpin(); 16717 #endif 16718 return (tcp_offload_output(tp)); 16719 } 16720 #endif 16721 /* 16722 * For TFO connections in SYN_RECEIVED, only allow the initial 16723 * SYN|ACK and those sent by the retransmit timer. 16724 */ 16725 if (IS_FASTOPEN(tp->t_flags) && 16726 (tp->t_state == TCPS_SYN_RECEIVED) && 16727 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ 16728 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */ 16729 #ifdef TCP_ACCOUNTING 16730 sched_unpin(); 16731 #endif 16732 return (0); 16733 } 16734 #ifdef INET6 16735 if (rack->r_state) { 16736 /* Use the cache line loaded if possible */ 16737 isipv6 = rack->r_is_v6; 16738 } else { 16739 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0; 16740 } 16741 #endif 16742 early = 0; 16743 cts = tcp_get_usecs(&tv); 16744 ms_cts = tcp_tv_to_mssectick(&tv); 16745 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && 16746 rack->rc_inp->inp_in_hpts) { 16747 /* 16748 * We are on the hpts for some timer but not hptsi output. 16749 * Remove from the hpts unconditionally. 16750 */ 16751 rack_timer_cancel(tp, rack, cts, __LINE__); 16752 } 16753 /* Are we pacing and late? */ 16754 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16755 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) { 16756 /* We are delayed */ 16757 delayed = cts - rack->r_ctl.rc_last_output_to; 16758 } else { 16759 delayed = 0; 16760 } 16761 /* Do the timers, which may override the pacer */ 16762 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 16763 if (rack_process_timers(tp, rack, cts, hpts_calling, &doing_tlp)) { 16764 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); 16765 #ifdef TCP_ACCOUNTING 16766 sched_unpin(); 16767 #endif 16768 return (0); 16769 } 16770 } 16771 if (rack->rc_in_persist) { 16772 if (rack->rc_inp->inp_in_hpts == 0) { 16773 /* Timer is not running */ 16774 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 16775 } 16776 #ifdef TCP_ACCOUNTING 16777 sched_unpin(); 16778 #endif 16779 return (0); 16780 } 16781 if ((rack->r_timer_override) || 16782 (rack->rc_ack_can_sendout_data) || 16783 (delayed) || 16784 (tp->t_state < TCPS_ESTABLISHED)) { 16785 rack->rc_ack_can_sendout_data = 0; 16786 if (rack->rc_inp->inp_in_hpts) 16787 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 16788 } else if (rack->rc_inp->inp_in_hpts) { 16789 /* 16790 * On the hpts you can't pass even if ACKNOW is on, we will 16791 * when the hpts fires. 16792 */ 16793 #ifdef TCP_ACCOUNTING 16794 crtsc = get_cyclecount(); 16795 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16796 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val); 16797 } 16798 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val)); 16799 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16800 tp->tcp_cnt_counters[SND_BLOCKED]++; 16801 } 16802 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1); 16803 sched_unpin(); 16804 #endif 16805 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); 16806 return (0); 16807 } 16808 rack->rc_inp->inp_hpts_calls = 0; 16809 /* Finish out both pacing early and late accounting */ 16810 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16811 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 16812 early = rack->r_ctl.rc_last_output_to - cts; 16813 } else 16814 early = 0; 16815 if (delayed) { 16816 rack->r_ctl.rc_agg_delayed += delayed; 16817 rack->r_late = 1; 16818 } else if (early) { 16819 rack->r_ctl.rc_agg_early += early; 16820 rack->r_early = 1; 16821 } 16822 /* Now that early/late accounting is done turn off the flag */ 16823 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 16824 rack->r_wanted_output = 0; 16825 rack->r_timer_override = 0; 16826 if ((tp->t_state != rack->r_state) && 16827 TCPS_HAVEESTABLISHED(tp->t_state)) { 16828 rack_set_state(tp, rack); 16829 } 16830 if ((rack->r_fast_output) && 16831 (doing_tlp == 0) && 16832 (tp->rcv_numsacks == 0)) { 16833 int ret; 16834 16835 error = 0; 16836 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 16837 if (ret >= 0) 16838 return(ret); 16839 else if (error) { 16840 inp = rack->rc_inp; 16841 so = inp->inp_socket; 16842 sb = &so->so_snd; 16843 goto nomore; 16844 } 16845 } 16846 inp = rack->rc_inp; 16847 /* 16848 * For TFO connections in SYN_SENT or SYN_RECEIVED, 16849 * only allow the initial SYN or SYN|ACK and those sent 16850 * by the retransmit timer. 16851 */ 16852 if (IS_FASTOPEN(tp->t_flags) && 16853 ((tp->t_state == TCPS_SYN_RECEIVED) || 16854 (tp->t_state == TCPS_SYN_SENT)) && 16855 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ 16856 (tp->t_rxtshift == 0)) { /* not a retransmit */ 16857 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16858 so = inp->inp_socket; 16859 sb = &so->so_snd; 16860 goto just_return_nolock; 16861 } 16862 /* 16863 * Determine length of data that should be transmitted, and flags 16864 * that will be used. If there is some data or critical controls 16865 * (SYN, RST) to send, then transmit; otherwise, investigate 16866 * further. 16867 */ 16868 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); 16869 if (tp->t_idle_reduce) { 16870 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 16871 rack_cc_after_idle(rack, tp); 16872 } 16873 tp->t_flags &= ~TF_LASTIDLE; 16874 if (idle) { 16875 if (tp->t_flags & TF_MORETOCOME) { 16876 tp->t_flags |= TF_LASTIDLE; 16877 idle = 0; 16878 } 16879 } 16880 if ((tp->snd_una == tp->snd_max) && 16881 rack->r_ctl.rc_went_idle_time && 16882 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) { 16883 idle = cts - rack->r_ctl.rc_went_idle_time; 16884 if (idle > rack_min_probertt_hold) { 16885 /* Count as a probe rtt */ 16886 if (rack->in_probe_rtt == 0) { 16887 rack->r_ctl.rc_lower_rtt_us_cts = cts; 16888 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 16889 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 16890 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 16891 } else { 16892 rack_exit_probertt(rack, cts); 16893 } 16894 } 16895 idle = 0; 16896 } 16897 if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED)) 16898 rack_init_fsb_block(tp, rack); 16899 again: 16900 /* 16901 * If we've recently taken a timeout, snd_max will be greater than 16902 * snd_nxt. There may be SACK information that allows us to avoid 16903 * resending already delivered data. Adjust snd_nxt accordingly. 16904 */ 16905 sendalot = 0; 16906 cts = tcp_get_usecs(&tv); 16907 ms_cts = tcp_tv_to_mssectick(&tv); 16908 tso = 0; 16909 mtu = 0; 16910 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16911 minseg = segsiz; 16912 if (rack->r_ctl.rc_pace_max_segs == 0) 16913 pace_max_seg = rack->rc_user_set_max_segs * segsiz; 16914 else 16915 pace_max_seg = rack->r_ctl.rc_pace_max_segs; 16916 sb_offset = tp->snd_max - tp->snd_una; 16917 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16918 flags = tcp_outflags[tp->t_state]; 16919 while (rack->rc_free_cnt < rack_free_cache) { 16920 rsm = rack_alloc(rack); 16921 if (rsm == NULL) { 16922 if (inp->inp_hpts_calls) 16923 /* Retry in a ms */ 16924 slot = (1 * HPTS_USEC_IN_MSEC); 16925 so = inp->inp_socket; 16926 sb = &so->so_snd; 16927 goto just_return_nolock; 16928 } 16929 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); 16930 rack->rc_free_cnt++; 16931 rsm = NULL; 16932 } 16933 if (inp->inp_hpts_calls) 16934 inp->inp_hpts_calls = 0; 16935 sack_rxmit = 0; 16936 len = 0; 16937 rsm = NULL; 16938 if (flags & TH_RST) { 16939 SOCKBUF_LOCK(&inp->inp_socket->so_snd); 16940 so = inp->inp_socket; 16941 sb = &so->so_snd; 16942 goto send; 16943 } 16944 if (rack->r_ctl.rc_resend) { 16945 /* Retransmit timer */ 16946 rsm = rack->r_ctl.rc_resend; 16947 rack->r_ctl.rc_resend = NULL; 16948 len = rsm->r_end - rsm->r_start; 16949 sack_rxmit = 1; 16950 sendalot = 0; 16951 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16952 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16953 __func__, __LINE__, 16954 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16955 sb_offset = rsm->r_start - tp->snd_una; 16956 if (len >= segsiz) 16957 len = segsiz; 16958 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) { 16959 /* We have a retransmit that takes precedence */ 16960 if ((!IN_FASTRECOVERY(tp->t_flags)) && 16961 ((tp->t_flags & TF_WASFRECOVERY) == 0)) { 16962 /* Enter recovery if not induced by a time-out */ 16963 rack->r_ctl.rc_rsm_start = rsm->r_start; 16964 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 16965 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 16966 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 16967 } 16968 #ifdef INVARIANTS 16969 if (SEQ_LT(rsm->r_start, tp->snd_una)) { 16970 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", 16971 tp, rack, rsm, rsm->r_start, tp->snd_una); 16972 } 16973 #endif 16974 len = rsm->r_end - rsm->r_start; 16975 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16976 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16977 __func__, __LINE__, 16978 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16979 sb_offset = rsm->r_start - tp->snd_una; 16980 sendalot = 0; 16981 if (len >= segsiz) 16982 len = segsiz; 16983 if (len > 0) { 16984 sack_rxmit = 1; 16985 KMOD_TCPSTAT_INC(tcps_sack_rexmits); 16986 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, 16987 min(len, segsiz)); 16988 counter_u64_add(rack_rtm_prr_retran, 1); 16989 } 16990 } else if (rack->r_ctl.rc_tlpsend) { 16991 /* Tail loss probe */ 16992 long cwin; 16993 long tlen; 16994 16995 /* 16996 * Check if we can do a TLP with a RACK'd packet 16997 * this can happen if we are not doing the rack 16998 * cheat and we skipped to a TLP and it 16999 * went off. 17000 */ 17001 rsm = rack->r_ctl.rc_tlpsend; 17002 /* We are doing a TLP make sure the flag is preent */ 17003 rsm->r_flags |= RACK_TLP; 17004 rack->r_ctl.rc_tlpsend = NULL; 17005 sack_rxmit = 1; 17006 tlen = rsm->r_end - rsm->r_start; 17007 if (tlen > segsiz) 17008 tlen = segsiz; 17009 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 17010 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 17011 __func__, __LINE__, 17012 rsm->r_start, tp->snd_una, tp, rack, rsm)); 17013 sb_offset = rsm->r_start - tp->snd_una; 17014 cwin = min(tp->snd_wnd, tlen); 17015 len = cwin; 17016 } 17017 if (rack->r_must_retran && 17018 (rsm == NULL)) { 17019 /* 17020 * Non-Sack and we had a RTO or Sack/non-Sack and a 17021 * MTU change, we need to retransmit until we reach 17022 * the former snd_max (rack->r_ctl.rc_snd_max_at_rto). 17023 */ 17024 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 17025 int sendwin, flight; 17026 17027 sendwin = min(tp->snd_wnd, tp->snd_cwnd); 17028 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto); 17029 if (flight >= sendwin) { 17030 so = inp->inp_socket; 17031 sb = &so->so_snd; 17032 goto just_return_nolock; 17033 } 17034 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 17035 if (rsm == NULL) { 17036 /* TSNH */ 17037 rack->r_must_retran = 0; 17038 rack->r_ctl.rc_out_at_rto = 0; 17039 rack->r_must_retran = 0; 17040 so = inp->inp_socket; 17041 sb = &so->so_snd; 17042 goto just_return_nolock; 17043 } 17044 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 17045 /* It does not have the flag, we are done */ 17046 rack->r_must_retran = 0; 17047 rack->r_ctl.rc_out_at_rto = 0; 17048 } else { 17049 sack_rxmit = 1; 17050 len = rsm->r_end - rsm->r_start; 17051 sendalot = 0; 17052 sb_offset = rsm->r_start - tp->snd_una; 17053 if (len >= segsiz) 17054 len = segsiz; 17055 /* 17056 * Delay removing the flag RACK_MUST_RXT so 17057 * that the fastpath for retransmit will 17058 * work with this rsm. 17059 */ 17060 17061 } 17062 } else { 17063 /* We must be done if there is nothing outstanding */ 17064 rack->r_must_retran = 0; 17065 rack->r_ctl.rc_out_at_rto = 0; 17066 } 17067 } 17068 /* 17069 * Enforce a connection sendmap count limit if set 17070 * as long as we are not retransmiting. 17071 */ 17072 if ((rsm == NULL) && 17073 (rack->do_detection == 0) && 17074 (V_tcp_map_entries_limit > 0) && 17075 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 17076 counter_u64_add(rack_to_alloc_limited, 1); 17077 if (!rack->alloc_limit_reported) { 17078 rack->alloc_limit_reported = 1; 17079 counter_u64_add(rack_alloc_limited_conns, 1); 17080 } 17081 so = inp->inp_socket; 17082 sb = &so->so_snd; 17083 goto just_return_nolock; 17084 } 17085 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { 17086 /* we are retransmitting the fin */ 17087 len--; 17088 if (len) { 17089 /* 17090 * When retransmitting data do *not* include the 17091 * FIN. This could happen from a TLP probe. 17092 */ 17093 flags &= ~TH_FIN; 17094 } 17095 } 17096 #ifdef INVARIANTS 17097 /* For debugging */ 17098 rack->r_ctl.rc_rsm_at_retran = rsm; 17099 #endif 17100 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo && 17101 ((rsm->r_flags & RACK_HAS_FIN) == 0)) { 17102 int ret; 17103 17104 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp); 17105 if (ret == 0) 17106 return (0); 17107 } 17108 if (rsm && (rsm->r_flags & RACK_MUST_RXT)) { 17109 /* 17110 * Clear the flag in prep for the send 17111 * note that if we can't get an mbuf 17112 * and fail, we won't retransmit this 17113 * rsm but that should be ok (its rare). 17114 */ 17115 rsm->r_flags &= ~RACK_MUST_RXT; 17116 } 17117 so = inp->inp_socket; 17118 sb = &so->so_snd; 17119 if (do_a_prefetch == 0) { 17120 kern_prefetch(sb, &do_a_prefetch); 17121 do_a_prefetch = 1; 17122 } 17123 #ifdef NETFLIX_SHARED_CWND 17124 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && 17125 rack->rack_enable_scwnd) { 17126 /* We are doing cwnd sharing */ 17127 if (rack->gp_ready && 17128 (rack->rack_attempted_scwnd == 0) && 17129 (rack->r_ctl.rc_scw == NULL) && 17130 tp->t_lib) { 17131 /* The pcbid is in, lets make an attempt */ 17132 counter_u64_add(rack_try_scwnd, 1); 17133 rack->rack_attempted_scwnd = 1; 17134 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, 17135 &rack->r_ctl.rc_scw_index, 17136 segsiz); 17137 } 17138 if (rack->r_ctl.rc_scw && 17139 (rack->rack_scwnd_is_idle == 1) && 17140 sbavail(&so->so_snd)) { 17141 /* we are no longer out of data */ 17142 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17143 rack->rack_scwnd_is_idle = 0; 17144 } 17145 if (rack->r_ctl.rc_scw) { 17146 /* First lets update and get the cwnd */ 17147 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, 17148 rack->r_ctl.rc_scw_index, 17149 tp->snd_cwnd, tp->snd_wnd, segsiz); 17150 } 17151 } 17152 #endif 17153 /* 17154 * Get standard flags, and add SYN or FIN if requested by 'hidden' 17155 * state flags. 17156 */ 17157 if (tp->t_flags & TF_NEEDFIN) 17158 flags |= TH_FIN; 17159 if (tp->t_flags & TF_NEEDSYN) 17160 flags |= TH_SYN; 17161 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { 17162 void *end_rsm; 17163 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 17164 if (end_rsm) 17165 kern_prefetch(end_rsm, &prefetch_rsm); 17166 prefetch_rsm = 1; 17167 } 17168 SOCKBUF_LOCK(sb); 17169 /* 17170 * If snd_nxt == snd_max and we have transmitted a FIN, the 17171 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a 17172 * negative length. This can also occur when TCP opens up its 17173 * congestion window while receiving additional duplicate acks after 17174 * fast-retransmit because TCP will reset snd_nxt to snd_max after 17175 * the fast-retransmit. 17176 * 17177 * In the normal retransmit-FIN-only case, however, snd_nxt will be 17178 * set to snd_una, the sb_offset will be 0, and the length may wind 17179 * up 0. 17180 * 17181 * If sack_rxmit is true we are retransmitting from the scoreboard 17182 * in which case len is already set. 17183 */ 17184 if ((sack_rxmit == 0) && 17185 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) { 17186 uint32_t avail; 17187 17188 avail = sbavail(sb); 17189 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) 17190 sb_offset = tp->snd_nxt - tp->snd_una; 17191 else 17192 sb_offset = 0; 17193 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { 17194 if (rack->r_ctl.rc_tlp_new_data) { 17195 /* TLP is forcing out new data */ 17196 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { 17197 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); 17198 } 17199 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) { 17200 if (tp->snd_wnd > sb_offset) 17201 len = tp->snd_wnd - sb_offset; 17202 else 17203 len = 0; 17204 } else { 17205 len = rack->r_ctl.rc_tlp_new_data; 17206 } 17207 } else { 17208 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); 17209 } 17210 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) { 17211 /* 17212 * For prr=off, we need to send only 1 MSS 17213 * at a time. We do this because another sack could 17214 * be arriving that causes us to send retransmits and 17215 * we don't want to be on a long pace due to a larger send 17216 * that keeps us from sending out the retransmit. 17217 */ 17218 len = segsiz; 17219 } 17220 } else { 17221 uint32_t outstanding; 17222 /* 17223 * We are inside of a Fast recovery episode, this 17224 * is caused by a SACK or 3 dup acks. At this point 17225 * we have sent all the retransmissions and we rely 17226 * on PRR to dictate what we will send in the form of 17227 * new data. 17228 */ 17229 17230 outstanding = tp->snd_max - tp->snd_una; 17231 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { 17232 if (tp->snd_wnd > outstanding) { 17233 len = tp->snd_wnd - outstanding; 17234 /* Check to see if we have the data */ 17235 if ((sb_offset + len) > avail) { 17236 /* It does not all fit */ 17237 if (avail > sb_offset) 17238 len = avail - sb_offset; 17239 else 17240 len = 0; 17241 } 17242 } else { 17243 len = 0; 17244 } 17245 } else if (avail > sb_offset) { 17246 len = avail - sb_offset; 17247 } else { 17248 len = 0; 17249 } 17250 if (len > 0) { 17251 if (len > rack->r_ctl.rc_prr_sndcnt) { 17252 len = rack->r_ctl.rc_prr_sndcnt; 17253 } 17254 if (len > 0) { 17255 sub_from_prr = 1; 17256 counter_u64_add(rack_rtm_prr_newdata, 1); 17257 } 17258 } 17259 if (len > segsiz) { 17260 /* 17261 * We should never send more than a MSS when 17262 * retransmitting or sending new data in prr 17263 * mode unless the override flag is on. Most 17264 * likely the PRR algorithm is not going to 17265 * let us send a lot as well :-) 17266 */ 17267 if (rack->r_ctl.rc_prr_sendalot == 0) { 17268 len = segsiz; 17269 } 17270 } else if (len < segsiz) { 17271 /* 17272 * Do we send any? The idea here is if the 17273 * send empty's the socket buffer we want to 17274 * do it. However if not then lets just wait 17275 * for our prr_sndcnt to get bigger. 17276 */ 17277 long leftinsb; 17278 17279 leftinsb = sbavail(sb) - sb_offset; 17280 if (leftinsb > len) { 17281 /* This send does not empty the sb */ 17282 len = 0; 17283 } 17284 } 17285 } 17286 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { 17287 /* 17288 * If you have not established 17289 * and are not doing FAST OPEN 17290 * no data please. 17291 */ 17292 if ((sack_rxmit == 0) && 17293 (!IS_FASTOPEN(tp->t_flags))){ 17294 len = 0; 17295 sb_offset = 0; 17296 } 17297 } 17298 if (prefetch_so_done == 0) { 17299 kern_prefetch(so, &prefetch_so_done); 17300 prefetch_so_done = 1; 17301 } 17302 /* 17303 * Lop off SYN bit if it has already been sent. However, if this is 17304 * SYN-SENT state and if segment contains data and if we don't know 17305 * that foreign host supports TAO, suppress sending segment. 17306 */ 17307 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && 17308 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { 17309 /* 17310 * When sending additional segments following a TFO SYN|ACK, 17311 * do not include the SYN bit. 17312 */ 17313 if (IS_FASTOPEN(tp->t_flags) && 17314 (tp->t_state == TCPS_SYN_RECEIVED)) 17315 flags &= ~TH_SYN; 17316 } 17317 /* 17318 * Be careful not to send data and/or FIN on SYN segments. This 17319 * measure is needed to prevent interoperability problems with not 17320 * fully conformant TCP implementations. 17321 */ 17322 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { 17323 len = 0; 17324 flags &= ~TH_FIN; 17325 } 17326 /* 17327 * On TFO sockets, ensure no data is sent in the following cases: 17328 * 17329 * - When retransmitting SYN|ACK on a passively-created socket 17330 * 17331 * - When retransmitting SYN on an actively created socket 17332 * 17333 * - When sending a zero-length cookie (cookie request) on an 17334 * actively created socket 17335 * 17336 * - When the socket is in the CLOSED state (RST is being sent) 17337 */ 17338 if (IS_FASTOPEN(tp->t_flags) && 17339 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || 17340 ((tp->t_state == TCPS_SYN_SENT) && 17341 (tp->t_tfo_client_cookie_len == 0)) || 17342 (flags & TH_RST))) { 17343 sack_rxmit = 0; 17344 len = 0; 17345 } 17346 /* Without fast-open there should never be data sent on a SYN */ 17347 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { 17348 tp->snd_nxt = tp->iss; 17349 len = 0; 17350 } 17351 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) { 17352 /* We only send 1 MSS if we have a DSACK block */ 17353 add_flag |= RACK_SENT_W_DSACK; 17354 len = segsiz; 17355 } 17356 orig_len = len; 17357 if (len <= 0) { 17358 /* 17359 * If FIN has been sent but not acked, but we haven't been 17360 * called to retransmit, len will be < 0. Otherwise, window 17361 * shrank after we sent into it. If window shrank to 0, 17362 * cancel pending retransmit, pull snd_nxt back to (closed) 17363 * window, and set the persist timer if it isn't already 17364 * going. If the window didn't close completely, just wait 17365 * for an ACK. 17366 * 17367 * We also do a general check here to ensure that we will 17368 * set the persist timer when we have data to send, but a 17369 * 0-byte window. This makes sure the persist timer is set 17370 * even if the packet hits one of the "goto send" lines 17371 * below. 17372 */ 17373 len = 0; 17374 if ((tp->snd_wnd == 0) && 17375 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17376 (tp->snd_una == tp->snd_max) && 17377 (sb_offset < (int)sbavail(sb))) { 17378 rack_enter_persist(tp, rack, cts); 17379 } 17380 } else if ((rsm == NULL) && 17381 (doing_tlp == 0) && 17382 (len < pace_max_seg)) { 17383 /* 17384 * We are not sending a maximum sized segment for 17385 * some reason. Should we not send anything (think 17386 * sws or persists)? 17387 */ 17388 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17389 (TCPS_HAVEESTABLISHED(tp->t_state)) && 17390 (len < minseg) && 17391 (len < (int)(sbavail(sb) - sb_offset))) { 17392 /* 17393 * Here the rwnd is less than 17394 * the minimum pacing size, this is not a retransmit, 17395 * we are established and 17396 * the send is not the last in the socket buffer 17397 * we send nothing, and we may enter persists 17398 * if nothing is outstanding. 17399 */ 17400 len = 0; 17401 if (tp->snd_max == tp->snd_una) { 17402 /* 17403 * Nothing out we can 17404 * go into persists. 17405 */ 17406 rack_enter_persist(tp, rack, cts); 17407 } 17408 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && 17409 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17410 (len < (int)(sbavail(sb) - sb_offset)) && 17411 (len < minseg)) { 17412 /* 17413 * Here we are not retransmitting, and 17414 * the cwnd is not so small that we could 17415 * not send at least a min size (rxt timer 17416 * not having gone off), We have 2 segments or 17417 * more already in flight, its not the tail end 17418 * of the socket buffer and the cwnd is blocking 17419 * us from sending out a minimum pacing segment size. 17420 * Lets not send anything. 17421 */ 17422 len = 0; 17423 } else if (((tp->snd_wnd - ctf_outstanding(tp)) < 17424 min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 17425 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 17426 (len < (int)(sbavail(sb) - sb_offset)) && 17427 (TCPS_HAVEESTABLISHED(tp->t_state))) { 17428 /* 17429 * Here we have a send window but we have 17430 * filled it up and we can't send another pacing segment. 17431 * We also have in flight more than 2 segments 17432 * and we are not completing the sb i.e. we allow 17433 * the last bytes of the sb to go out even if 17434 * its not a full pacing segment. 17435 */ 17436 len = 0; 17437 } else if ((rack->r_ctl.crte != NULL) && 17438 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) && 17439 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) && 17440 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) && 17441 (len < (int)(sbavail(sb) - sb_offset))) { 17442 /* 17443 * Here we are doing hardware pacing, this is not a TLP, 17444 * we are not sending a pace max segment size, there is rwnd 17445 * room to send at least N pace_max_seg, the cwnd is greater 17446 * than or equal to a full pacing segments plus 4 mss and we have 2 or 17447 * more segments in flight and its not the tail of the socket buffer. 17448 * 17449 * We don't want to send instead we need to get more ack's in to 17450 * allow us to send a full pacing segment. Normally, if we are pacing 17451 * about the right speed, we should have finished our pacing 17452 * send as most of the acks have come back if we are at the 17453 * right rate. This is a bit fuzzy since return path delay 17454 * can delay the acks, which is why we want to make sure we 17455 * have cwnd space to have a bit more than a max pace segments in flight. 17456 * 17457 * If we have not gotten our acks back we are pacing at too high a 17458 * rate delaying will not hurt and will bring our GP estimate down by 17459 * injecting the delay. If we don't do this we will send 17460 * 2 MSS out in response to the acks being clocked in which 17461 * defeats the point of hw-pacing (i.e. to help us get 17462 * larger TSO's out). 17463 */ 17464 len = 0; 17465 17466 } 17467 17468 } 17469 /* len will be >= 0 after this point. */ 17470 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 17471 rack_sndbuf_autoscale(rack); 17472 /* 17473 * Decide if we can use TCP Segmentation Offloading (if supported by 17474 * hardware). 17475 * 17476 * TSO may only be used if we are in a pure bulk sending state. The 17477 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP 17478 * options prevent using TSO. With TSO the TCP header is the same 17479 * (except for the sequence number) for all generated packets. This 17480 * makes it impossible to transmit any options which vary per 17481 * generated segment or packet. 17482 * 17483 * IPv4 handling has a clear separation of ip options and ip header 17484 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does 17485 * the right thing below to provide length of just ip options and thus 17486 * checking for ipoptlen is enough to decide if ip options are present. 17487 */ 17488 ipoptlen = 0; 17489 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17490 /* 17491 * Pre-calculate here as we save another lookup into the darknesses 17492 * of IPsec that way and can actually decide if TSO is ok. 17493 */ 17494 #ifdef INET6 17495 if (isipv6 && IPSEC_ENABLED(ipv6)) 17496 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb); 17497 #ifdef INET 17498 else 17499 #endif 17500 #endif /* INET6 */ 17501 #ifdef INET 17502 if (IPSEC_ENABLED(ipv4)) 17503 ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb); 17504 #endif /* INET */ 17505 #endif 17506 17507 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17508 ipoptlen += ipsec_optlen; 17509 #endif 17510 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && 17511 (tp->t_port == 0) && 17512 ((tp->t_flags & TF_SIGNATURE) == 0) && 17513 tp->rcv_numsacks == 0 && sack_rxmit == 0 && 17514 ipoptlen == 0) 17515 tso = 1; 17516 { 17517 uint32_t outstanding; 17518 17519 outstanding = tp->snd_max - tp->snd_una; 17520 if (tp->t_flags & TF_SENTFIN) { 17521 /* 17522 * If we sent a fin, snd_max is 1 higher than 17523 * snd_una 17524 */ 17525 outstanding--; 17526 } 17527 if (sack_rxmit) { 17528 if ((rsm->r_flags & RACK_HAS_FIN) == 0) 17529 flags &= ~TH_FIN; 17530 } else { 17531 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + 17532 sbused(sb))) 17533 flags &= ~TH_FIN; 17534 } 17535 } 17536 recwin = lmin(lmax(sbspace(&so->so_rcv), 0), 17537 (long)TCP_MAXWIN << tp->rcv_scale); 17538 17539 /* 17540 * Sender silly window avoidance. We transmit under the following 17541 * conditions when len is non-zero: 17542 * 17543 * - We have a full segment (or more with TSO) - This is the last 17544 * buffer in a write()/send() and we are either idle or running 17545 * NODELAY - we've timed out (e.g. persist timer) - we have more 17546 * then 1/2 the maximum send window's worth of data (receiver may be 17547 * limited the window size) - we need to retransmit 17548 */ 17549 if (len) { 17550 if (len >= segsiz) { 17551 goto send; 17552 } 17553 /* 17554 * NOTE! on localhost connections an 'ack' from the remote 17555 * end may occur synchronously with the output and cause us 17556 * to flush a buffer queued with moretocome. XXX 17557 * 17558 */ 17559 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ 17560 (idle || (tp->t_flags & TF_NODELAY)) && 17561 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17562 (tp->t_flags & TF_NOPUSH) == 0) { 17563 pass = 2; 17564 goto send; 17565 } 17566 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ 17567 pass = 22; 17568 goto send; 17569 } 17570 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { 17571 pass = 4; 17572 goto send; 17573 } 17574 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ 17575 pass = 5; 17576 goto send; 17577 } 17578 if (sack_rxmit) { 17579 pass = 6; 17580 goto send; 17581 } 17582 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && 17583 (ctf_outstanding(tp) < (segsiz * 2))) { 17584 /* 17585 * We have less than two MSS outstanding (delayed ack) 17586 * and our rwnd will not let us send a full sized 17587 * MSS. Lets go ahead and let this small segment 17588 * out because we want to try to have at least two 17589 * packets inflight to not be caught by delayed ack. 17590 */ 17591 pass = 12; 17592 goto send; 17593 } 17594 } 17595 /* 17596 * Sending of standalone window updates. 17597 * 17598 * Window updates are important when we close our window due to a 17599 * full socket buffer and are opening it again after the application 17600 * reads data from it. Once the window has opened again and the 17601 * remote end starts to send again the ACK clock takes over and 17602 * provides the most current window information. 17603 * 17604 * We must avoid the silly window syndrome whereas every read from 17605 * the receive buffer, no matter how small, causes a window update 17606 * to be sent. We also should avoid sending a flurry of window 17607 * updates when the socket buffer had queued a lot of data and the 17608 * application is doing small reads. 17609 * 17610 * Prevent a flurry of pointless window updates by only sending an 17611 * update when we can increase the advertized window by more than 17612 * 1/4th of the socket buffer capacity. When the buffer is getting 17613 * full or is very small be more aggressive and send an update 17614 * whenever we can increase by two mss sized segments. In all other 17615 * situations the ACK's to new incoming data will carry further 17616 * window increases. 17617 * 17618 * Don't send an independent window update if a delayed ACK is 17619 * pending (it will get piggy-backed on it) or the remote side 17620 * already has done a half-close and won't send more data. Skip 17621 * this if the connection is in T/TCP half-open state. 17622 */ 17623 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && 17624 !(tp->t_flags & TF_DELACK) && 17625 !TCPS_HAVERCVDFIN(tp->t_state)) { 17626 /* 17627 * "adv" is the amount we could increase the window, taking 17628 * into account that we are limited by TCP_MAXWIN << 17629 * tp->rcv_scale. 17630 */ 17631 int32_t adv; 17632 int oldwin; 17633 17634 adv = recwin; 17635 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { 17636 oldwin = (tp->rcv_adv - tp->rcv_nxt); 17637 if (adv > oldwin) 17638 adv -= oldwin; 17639 else { 17640 /* We can't increase the window */ 17641 adv = 0; 17642 } 17643 } else 17644 oldwin = 0; 17645 17646 /* 17647 * If the new window size ends up being the same as or less 17648 * than the old size when it is scaled, then don't force 17649 * a window update. 17650 */ 17651 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) 17652 goto dontupdate; 17653 17654 if (adv >= (int32_t)(2 * segsiz) && 17655 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || 17656 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || 17657 so->so_rcv.sb_hiwat <= 8 * segsiz)) { 17658 pass = 7; 17659 goto send; 17660 } 17661 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { 17662 pass = 23; 17663 goto send; 17664 } 17665 } 17666 dontupdate: 17667 17668 /* 17669 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW 17670 * is also a catch-all for the retransmit timer timeout case. 17671 */ 17672 if (tp->t_flags & TF_ACKNOW) { 17673 pass = 8; 17674 goto send; 17675 } 17676 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { 17677 pass = 9; 17678 goto send; 17679 } 17680 /* 17681 * If our state indicates that FIN should be sent and we have not 17682 * yet done so, then we need to send. 17683 */ 17684 if ((flags & TH_FIN) && 17685 (tp->snd_nxt == tp->snd_una)) { 17686 pass = 11; 17687 goto send; 17688 } 17689 /* 17690 * No reason to send a segment, just return. 17691 */ 17692 just_return: 17693 SOCKBUF_UNLOCK(sb); 17694 just_return_nolock: 17695 { 17696 int app_limited = CTF_JR_SENT_DATA; 17697 17698 if (tot_len_this_send > 0) { 17699 /* Make sure snd_nxt is up to max */ 17700 rack->r_ctl.fsb.recwin = recwin; 17701 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); 17702 if ((error == 0) && 17703 rack_use_rfo && 17704 ((flags & (TH_SYN|TH_FIN)) == 0) && 17705 (ipoptlen == 0) && 17706 (tp->snd_nxt == tp->snd_max) && 17707 (tp->rcv_numsacks == 0) && 17708 rack->r_fsb_inited && 17709 TCPS_HAVEESTABLISHED(tp->t_state) && 17710 (rack->r_must_retran == 0) && 17711 ((tp->t_flags & TF_NEEDFIN) == 0) && 17712 (len > 0) && (orig_len > 0) && 17713 (orig_len > len) && 17714 ((orig_len - len) >= segsiz) && 17715 ((optlen == 0) || 17716 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 17717 /* We can send at least one more MSS using our fsb */ 17718 17719 rack->r_fast_output = 1; 17720 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 17721 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 17722 rack->r_ctl.fsb.tcp_flags = flags; 17723 rack->r_ctl.fsb.left_to_send = orig_len - len; 17724 if (hw_tls) 17725 rack->r_ctl.fsb.hw_tls = 1; 17726 else 17727 rack->r_ctl.fsb.hw_tls = 0; 17728 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 17729 ("rack:%p left_to_send:%u sbavail:%u out:%u", 17730 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 17731 (tp->snd_max - tp->snd_una))); 17732 if (rack->r_ctl.fsb.left_to_send < segsiz) 17733 rack->r_fast_output = 0; 17734 else { 17735 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 17736 rack->r_ctl.fsb.rfo_apply_push = 1; 17737 else 17738 rack->r_ctl.fsb.rfo_apply_push = 0; 17739 } 17740 } else 17741 rack->r_fast_output = 0; 17742 17743 17744 rack_log_fsb(rack, tp, so, flags, 17745 ipoptlen, orig_len, len, 0, 17746 1, optlen, __LINE__, 1); 17747 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 17748 tp->snd_nxt = tp->snd_max; 17749 } else { 17750 int end_window = 0; 17751 uint32_t seq = tp->gput_ack; 17752 17753 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17754 if (rsm) { 17755 /* 17756 * Mark the last sent that we just-returned (hinting 17757 * that delayed ack may play a role in any rtt measurement). 17758 */ 17759 rsm->r_just_ret = 1; 17760 } 17761 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); 17762 rack->r_ctl.rc_agg_delayed = 0; 17763 rack->r_early = 0; 17764 rack->r_late = 0; 17765 rack->r_ctl.rc_agg_early = 0; 17766 if ((ctf_outstanding(tp) + 17767 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), 17768 minseg)) >= tp->snd_wnd) { 17769 /* We are limited by the rwnd */ 17770 app_limited = CTF_JR_RWND_LIMITED; 17771 if (IN_FASTRECOVERY(tp->t_flags)) 17772 rack->r_ctl.rc_prr_sndcnt = 0; 17773 } else if (ctf_outstanding(tp) >= sbavail(sb)) { 17774 /* We are limited by whats available -- app limited */ 17775 app_limited = CTF_JR_APP_LIMITED; 17776 if (IN_FASTRECOVERY(tp->t_flags)) 17777 rack->r_ctl.rc_prr_sndcnt = 0; 17778 } else if ((idle == 0) && 17779 ((tp->t_flags & TF_NODELAY) == 0) && 17780 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17781 (len < segsiz)) { 17782 /* 17783 * No delay is not on and the 17784 * user is sending less than 1MSS. This 17785 * brings out SWS avoidance so we 17786 * don't send. Another app-limited case. 17787 */ 17788 app_limited = CTF_JR_APP_LIMITED; 17789 } else if (tp->t_flags & TF_NOPUSH) { 17790 /* 17791 * The user has requested no push of 17792 * the last segment and we are 17793 * at the last segment. Another app 17794 * limited case. 17795 */ 17796 app_limited = CTF_JR_APP_LIMITED; 17797 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { 17798 /* Its the cwnd */ 17799 app_limited = CTF_JR_CWND_LIMITED; 17800 } else if (IN_FASTRECOVERY(tp->t_flags) && 17801 (rack->rack_no_prr == 0) && 17802 (rack->r_ctl.rc_prr_sndcnt < segsiz)) { 17803 app_limited = CTF_JR_PRR; 17804 } else { 17805 /* Now why here are we not sending? */ 17806 #ifdef NOW 17807 #ifdef INVARIANTS 17808 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); 17809 #endif 17810 #endif 17811 app_limited = CTF_JR_ASSESSING; 17812 } 17813 /* 17814 * App limited in some fashion, for our pacing GP 17815 * measurements we don't want any gap (even cwnd). 17816 * Close down the measurement window. 17817 */ 17818 if (rack_cwnd_block_ends_measure && 17819 ((app_limited == CTF_JR_CWND_LIMITED) || 17820 (app_limited == CTF_JR_PRR))) { 17821 /* 17822 * The reason we are not sending is 17823 * the cwnd (or prr). We have been configured 17824 * to end the measurement window in 17825 * this case. 17826 */ 17827 end_window = 1; 17828 } else if (rack_rwnd_block_ends_measure && 17829 (app_limited == CTF_JR_RWND_LIMITED)) { 17830 /* 17831 * We are rwnd limited and have been 17832 * configured to end the measurement 17833 * window in this case. 17834 */ 17835 end_window = 1; 17836 } else if (app_limited == CTF_JR_APP_LIMITED) { 17837 /* 17838 * A true application limited period, we have 17839 * ran out of data. 17840 */ 17841 end_window = 1; 17842 } else if (app_limited == CTF_JR_ASSESSING) { 17843 /* 17844 * In the assessing case we hit the end of 17845 * the if/else and had no known reason 17846 * This will panic us under invariants.. 17847 * 17848 * If we get this out in logs we need to 17849 * investagate which reason we missed. 17850 */ 17851 end_window = 1; 17852 } 17853 if (end_window) { 17854 uint8_t log = 0; 17855 17856 /* Adjust the Gput measurement */ 17857 if ((tp->t_flags & TF_GPUTINPROG) && 17858 SEQ_GT(tp->gput_ack, tp->snd_max)) { 17859 tp->gput_ack = tp->snd_max; 17860 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 17861 /* 17862 * There is not enough to measure. 17863 */ 17864 tp->t_flags &= ~TF_GPUTINPROG; 17865 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 17866 rack->r_ctl.rc_gp_srtt /*flex1*/, 17867 tp->gput_seq, 17868 0, 0, 18, __LINE__, NULL, 0); 17869 } else 17870 log = 1; 17871 } 17872 /* Mark the last packet has app limited */ 17873 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17874 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 17875 if (rack->r_ctl.rc_app_limited_cnt == 0) 17876 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 17877 else { 17878 /* 17879 * Go out to the end app limited and mark 17880 * this new one as next and move the end_appl up 17881 * to this guy. 17882 */ 17883 if (rack->r_ctl.rc_end_appl) 17884 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 17885 rack->r_ctl.rc_end_appl = rsm; 17886 } 17887 rsm->r_flags |= RACK_APP_LIMITED; 17888 rack->r_ctl.rc_app_limited_cnt++; 17889 } 17890 if (log) 17891 rack_log_pacing_delay_calc(rack, 17892 rack->r_ctl.rc_app_limited_cnt, seq, 17893 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0); 17894 } 17895 } 17896 if (slot) { 17897 /* set the rack tcb into the slot N */ 17898 counter_u64_add(rack_paced_segments, 1); 17899 } else if (tot_len_this_send) { 17900 counter_u64_add(rack_unpaced_segments, 1); 17901 } 17902 /* Check if we need to go into persists or not */ 17903 if ((tp->snd_max == tp->snd_una) && 17904 TCPS_HAVEESTABLISHED(tp->t_state) && 17905 sbavail(sb) && 17906 (sbavail(sb) > tp->snd_wnd) && 17907 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { 17908 /* Yes lets make sure to move to persist before timer-start */ 17909 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 17910 } 17911 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); 17912 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); 17913 } 17914 #ifdef NETFLIX_SHARED_CWND 17915 if ((sbavail(sb) == 0) && 17916 rack->r_ctl.rc_scw) { 17917 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17918 rack->rack_scwnd_is_idle = 1; 17919 } 17920 #endif 17921 #ifdef TCP_ACCOUNTING 17922 if (tot_len_this_send > 0) { 17923 crtsc = get_cyclecount(); 17924 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17925 tp->tcp_cnt_counters[SND_OUT_DATA]++; 17926 } 17927 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 17928 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17929 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 17930 } 17931 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 17932 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17933 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz); 17934 } 17935 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz)); 17936 } else { 17937 crtsc = get_cyclecount(); 17938 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17939 tp->tcp_cnt_counters[SND_LIMITED]++; 17940 } 17941 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1); 17942 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17943 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val); 17944 } 17945 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val)); 17946 } 17947 sched_unpin(); 17948 #endif 17949 return (0); 17950 17951 send: 17952 if (rsm || sack_rxmit) 17953 counter_u64_add(rack_nfto_resend, 1); 17954 else 17955 counter_u64_add(rack_non_fto_send, 1); 17956 if ((flags & TH_FIN) && 17957 sbavail(sb)) { 17958 /* 17959 * We do not transmit a FIN 17960 * with data outstanding. We 17961 * need to make it so all data 17962 * is acked first. 17963 */ 17964 flags &= ~TH_FIN; 17965 } 17966 /* Enforce stack imposed max seg size if we have one */ 17967 if (rack->r_ctl.rc_pace_max_segs && 17968 (len > rack->r_ctl.rc_pace_max_segs)) { 17969 mark = 1; 17970 len = rack->r_ctl.rc_pace_max_segs; 17971 } 17972 SOCKBUF_LOCK_ASSERT(sb); 17973 if (len > 0) { 17974 if (len >= segsiz) 17975 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; 17976 else 17977 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; 17978 } 17979 /* 17980 * Before ESTABLISHED, force sending of initial options unless TCP 17981 * set not to do any options. NOTE: we assume that the IP/TCP header 17982 * plus TCP options always fit in a single mbuf, leaving room for a 17983 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) 17984 * + optlen <= MCLBYTES 17985 */ 17986 optlen = 0; 17987 #ifdef INET6 17988 if (isipv6) 17989 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 17990 else 17991 #endif 17992 hdrlen = sizeof(struct tcpiphdr); 17993 17994 /* 17995 * Compute options for segment. We only have to care about SYN and 17996 * established connection segments. Options for SYN-ACK segments 17997 * are handled in TCP syncache. 17998 */ 17999 to.to_flags = 0; 18000 if ((tp->t_flags & TF_NOOPT) == 0) { 18001 /* Maximum segment size. */ 18002 if (flags & TH_SYN) { 18003 tp->snd_nxt = tp->iss; 18004 to.to_mss = tcp_mssopt(&inp->inp_inc); 18005 if (tp->t_port) 18006 to.to_mss -= V_tcp_udp_tunneling_overhead; 18007 to.to_flags |= TOF_MSS; 18008 18009 /* 18010 * On SYN or SYN|ACK transmits on TFO connections, 18011 * only include the TFO option if it is not a 18012 * retransmit, as the presence of the TFO option may 18013 * have caused the original SYN or SYN|ACK to have 18014 * been dropped by a middlebox. 18015 */ 18016 if (IS_FASTOPEN(tp->t_flags) && 18017 (tp->t_rxtshift == 0)) { 18018 if (tp->t_state == TCPS_SYN_RECEIVED) { 18019 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; 18020 to.to_tfo_cookie = 18021 (u_int8_t *)&tp->t_tfo_cookie.server; 18022 to.to_flags |= TOF_FASTOPEN; 18023 wanted_cookie = 1; 18024 } else if (tp->t_state == TCPS_SYN_SENT) { 18025 to.to_tfo_len = 18026 tp->t_tfo_client_cookie_len; 18027 to.to_tfo_cookie = 18028 tp->t_tfo_cookie.client; 18029 to.to_flags |= TOF_FASTOPEN; 18030 wanted_cookie = 1; 18031 /* 18032 * If we wind up having more data to 18033 * send with the SYN than can fit in 18034 * one segment, don't send any more 18035 * until the SYN|ACK comes back from 18036 * the other end. 18037 */ 18038 sendalot = 0; 18039 } 18040 } 18041 } 18042 /* Window scaling. */ 18043 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { 18044 to.to_wscale = tp->request_r_scale; 18045 to.to_flags |= TOF_SCALE; 18046 } 18047 /* Timestamps. */ 18048 if ((tp->t_flags & TF_RCVD_TSTMP) || 18049 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { 18050 to.to_tsval = ms_cts + tp->ts_offset; 18051 to.to_tsecr = tp->ts_recent; 18052 to.to_flags |= TOF_TS; 18053 } 18054 /* Set receive buffer autosizing timestamp. */ 18055 if (tp->rfbuf_ts == 0 && 18056 (so->so_rcv.sb_flags & SB_AUTOSIZE)) 18057 tp->rfbuf_ts = tcp_ts_getticks(); 18058 /* Selective ACK's. */ 18059 if (tp->t_flags & TF_SACK_PERMIT) { 18060 if (flags & TH_SYN) 18061 to.to_flags |= TOF_SACKPERM; 18062 else if (TCPS_HAVEESTABLISHED(tp->t_state) && 18063 tp->rcv_numsacks > 0) { 18064 to.to_flags |= TOF_SACK; 18065 to.to_nsacks = tp->rcv_numsacks; 18066 to.to_sacks = (u_char *)tp->sackblks; 18067 } 18068 } 18069 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18070 /* TCP-MD5 (RFC2385). */ 18071 if (tp->t_flags & TF_SIGNATURE) 18072 to.to_flags |= TOF_SIGNATURE; 18073 #endif /* TCP_SIGNATURE */ 18074 18075 /* Processing the options. */ 18076 hdrlen += optlen = tcp_addoptions(&to, opt); 18077 /* 18078 * If we wanted a TFO option to be added, but it was unable 18079 * to fit, ensure no data is sent. 18080 */ 18081 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && 18082 !(to.to_flags & TOF_FASTOPEN)) 18083 len = 0; 18084 } 18085 if (tp->t_port) { 18086 if (V_tcp_udp_tunneling_port == 0) { 18087 /* The port was removed?? */ 18088 SOCKBUF_UNLOCK(&so->so_snd); 18089 #ifdef TCP_ACCOUNTING 18090 crtsc = get_cyclecount(); 18091 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18092 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18093 } 18094 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18095 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18096 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18097 } 18098 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18099 sched_unpin(); 18100 #endif 18101 return (EHOSTUNREACH); 18102 } 18103 hdrlen += sizeof(struct udphdr); 18104 } 18105 #ifdef INET6 18106 if (isipv6) 18107 ipoptlen = ip6_optlen(tp->t_inpcb); 18108 else 18109 #endif 18110 if (tp->t_inpcb->inp_options) 18111 ipoptlen = tp->t_inpcb->inp_options->m_len - 18112 offsetof(struct ipoption, ipopt_list); 18113 else 18114 ipoptlen = 0; 18115 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18116 ipoptlen += ipsec_optlen; 18117 #endif 18118 18119 /* 18120 * Adjust data length if insertion of options will bump the packet 18121 * length beyond the t_maxseg length. Clear the FIN bit because we 18122 * cut off the tail of the segment. 18123 */ 18124 if (len + optlen + ipoptlen > tp->t_maxseg) { 18125 if (tso) { 18126 uint32_t if_hw_tsomax; 18127 uint32_t moff; 18128 int32_t max_len; 18129 18130 /* extract TSO information */ 18131 if_hw_tsomax = tp->t_tsomax; 18132 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 18133 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 18134 KASSERT(ipoptlen == 0, 18135 ("%s: TSO can't do IP options", __func__)); 18136 18137 /* 18138 * Check if we should limit by maximum payload 18139 * length: 18140 */ 18141 if (if_hw_tsomax != 0) { 18142 /* compute maximum TSO length */ 18143 max_len = (if_hw_tsomax - hdrlen - 18144 max_linkhdr); 18145 if (max_len <= 0) { 18146 len = 0; 18147 } else if (len > max_len) { 18148 sendalot = 1; 18149 len = max_len; 18150 mark = 2; 18151 } 18152 } 18153 /* 18154 * Prevent the last segment from being fractional 18155 * unless the send sockbuf can be emptied: 18156 */ 18157 max_len = (tp->t_maxseg - optlen); 18158 if ((sb_offset + len) < sbavail(sb)) { 18159 moff = len % (u_int)max_len; 18160 if (moff != 0) { 18161 mark = 3; 18162 len -= moff; 18163 } 18164 } 18165 /* 18166 * In case there are too many small fragments don't 18167 * use TSO: 18168 */ 18169 if (len <= segsiz) { 18170 mark = 4; 18171 tso = 0; 18172 } 18173 /* 18174 * Send the FIN in a separate segment after the bulk 18175 * sending is done. We don't trust the TSO 18176 * implementations to clear the FIN flag on all but 18177 * the last segment. 18178 */ 18179 if (tp->t_flags & TF_NEEDFIN) { 18180 sendalot = 4; 18181 } 18182 } else { 18183 mark = 5; 18184 if (optlen + ipoptlen >= tp->t_maxseg) { 18185 /* 18186 * Since we don't have enough space to put 18187 * the IP header chain and the TCP header in 18188 * one packet as required by RFC 7112, don't 18189 * send it. Also ensure that at least one 18190 * byte of the payload can be put into the 18191 * TCP segment. 18192 */ 18193 SOCKBUF_UNLOCK(&so->so_snd); 18194 error = EMSGSIZE; 18195 sack_rxmit = 0; 18196 goto out; 18197 } 18198 len = tp->t_maxseg - optlen - ipoptlen; 18199 sendalot = 5; 18200 } 18201 } else { 18202 tso = 0; 18203 mark = 6; 18204 } 18205 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, 18206 ("%s: len > IP_MAXPACKET", __func__)); 18207 #ifdef DIAGNOSTIC 18208 #ifdef INET6 18209 if (max_linkhdr + hdrlen > MCLBYTES) 18210 #else 18211 if (max_linkhdr + hdrlen > MHLEN) 18212 #endif 18213 panic("tcphdr too big"); 18214 #endif 18215 18216 /* 18217 * This KASSERT is here to catch edge cases at a well defined place. 18218 * Before, those had triggered (random) panic conditions further 18219 * down. 18220 */ 18221 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 18222 if ((len == 0) && 18223 (flags & TH_FIN) && 18224 (sbused(sb))) { 18225 /* 18226 * We have outstanding data, don't send a fin by itself!. 18227 */ 18228 goto just_return; 18229 } 18230 /* 18231 * Grab a header mbuf, attaching a copy of data to be transmitted, 18232 * and initialize the header from the template for sends on this 18233 * connection. 18234 */ 18235 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0; 18236 if (len) { 18237 uint32_t max_val; 18238 uint32_t moff; 18239 18240 if (rack->r_ctl.rc_pace_max_segs) 18241 max_val = rack->r_ctl.rc_pace_max_segs; 18242 else if (rack->rc_user_set_max_segs) 18243 max_val = rack->rc_user_set_max_segs * segsiz; 18244 else 18245 max_val = len; 18246 /* 18247 * We allow a limit on sending with hptsi. 18248 */ 18249 if (len > max_val) { 18250 mark = 7; 18251 len = max_val; 18252 } 18253 #ifdef INET6 18254 if (MHLEN < hdrlen + max_linkhdr) 18255 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 18256 else 18257 #endif 18258 m = m_gethdr(M_NOWAIT, MT_DATA); 18259 18260 if (m == NULL) { 18261 SOCKBUF_UNLOCK(sb); 18262 error = ENOBUFS; 18263 sack_rxmit = 0; 18264 goto out; 18265 } 18266 m->m_data += max_linkhdr; 18267 m->m_len = hdrlen; 18268 18269 /* 18270 * Start the m_copy functions from the closest mbuf to the 18271 * sb_offset in the socket buffer chain. 18272 */ 18273 mb = sbsndptr_noadv(sb, sb_offset, &moff); 18274 s_mb = mb; 18275 s_moff = moff; 18276 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { 18277 m_copydata(mb, moff, (int)len, 18278 mtod(m, caddr_t)+hdrlen); 18279 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18280 sbsndptr_adv(sb, mb, len); 18281 m->m_len += len; 18282 } else { 18283 struct sockbuf *msb; 18284 18285 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 18286 msb = NULL; 18287 else 18288 msb = sb; 18289 m->m_next = tcp_m_copym( 18290 mb, moff, &len, 18291 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, 18292 ((rsm == NULL) ? hw_tls : 0) 18293 #ifdef NETFLIX_COPY_ARGS 18294 , &filled_all 18295 #endif 18296 ); 18297 if (len <= (tp->t_maxseg - optlen)) { 18298 /* 18299 * Must have ran out of mbufs for the copy 18300 * shorten it to no longer need tso. Lets 18301 * not put on sendalot since we are low on 18302 * mbufs. 18303 */ 18304 tso = 0; 18305 } 18306 if (m->m_next == NULL) { 18307 SOCKBUF_UNLOCK(sb); 18308 (void)m_free(m); 18309 error = ENOBUFS; 18310 sack_rxmit = 0; 18311 goto out; 18312 } 18313 } 18314 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { 18315 if (rsm && (rsm->r_flags & RACK_TLP)) { 18316 /* 18317 * TLP should not count in retran count, but 18318 * in its own bin 18319 */ 18320 counter_u64_add(rack_tlp_retran, 1); 18321 counter_u64_add(rack_tlp_retran_bytes, len); 18322 } else { 18323 tp->t_sndrexmitpack++; 18324 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 18325 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 18326 } 18327 #ifdef STATS 18328 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 18329 len); 18330 #endif 18331 } else { 18332 KMOD_TCPSTAT_INC(tcps_sndpack); 18333 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 18334 #ifdef STATS 18335 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 18336 len); 18337 #endif 18338 } 18339 /* 18340 * If we're sending everything we've got, set PUSH. (This 18341 * will keep happy those implementations which only give 18342 * data to the user when a buffer fills or a PUSH comes in.) 18343 */ 18344 if (sb_offset + len == sbused(sb) && 18345 sbused(sb) && 18346 !(flags & TH_SYN)) { 18347 flags |= TH_PUSH; 18348 add_flag |= RACK_HAD_PUSH; 18349 } 18350 18351 SOCKBUF_UNLOCK(sb); 18352 } else { 18353 SOCKBUF_UNLOCK(sb); 18354 if (tp->t_flags & TF_ACKNOW) 18355 KMOD_TCPSTAT_INC(tcps_sndacks); 18356 else if (flags & (TH_SYN | TH_FIN | TH_RST)) 18357 KMOD_TCPSTAT_INC(tcps_sndctrl); 18358 else 18359 KMOD_TCPSTAT_INC(tcps_sndwinup); 18360 18361 m = m_gethdr(M_NOWAIT, MT_DATA); 18362 if (m == NULL) { 18363 error = ENOBUFS; 18364 sack_rxmit = 0; 18365 goto out; 18366 } 18367 #ifdef INET6 18368 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && 18369 MHLEN >= hdrlen) { 18370 M_ALIGN(m, hdrlen); 18371 } else 18372 #endif 18373 m->m_data += max_linkhdr; 18374 m->m_len = hdrlen; 18375 } 18376 SOCKBUF_UNLOCK_ASSERT(sb); 18377 m->m_pkthdr.rcvif = (struct ifnet *)0; 18378 #ifdef MAC 18379 mac_inpcb_create_mbuf(inp, m); 18380 #endif 18381 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18382 #ifdef INET6 18383 if (isipv6) 18384 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 18385 else 18386 #endif /* INET6 */ 18387 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 18388 th = rack->r_ctl.fsb.th; 18389 udp = rack->r_ctl.fsb.udp; 18390 if (udp) { 18391 #ifdef INET6 18392 if (isipv6) 18393 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18394 else 18395 #endif /* INET6 */ 18396 ulen = hdrlen + len - sizeof(struct ip); 18397 udp->uh_ulen = htons(ulen); 18398 } 18399 } else { 18400 #ifdef INET6 18401 if (isipv6) { 18402 ip6 = mtod(m, struct ip6_hdr *); 18403 if (tp->t_port) { 18404 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 18405 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18406 udp->uh_dport = tp->t_port; 18407 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18408 udp->uh_ulen = htons(ulen); 18409 th = (struct tcphdr *)(udp + 1); 18410 } else 18411 th = (struct tcphdr *)(ip6 + 1); 18412 tcpip_fillheaders(inp, tp->t_port, ip6, th); 18413 } else 18414 #endif /* INET6 */ 18415 { 18416 ip = mtod(m, struct ip *); 18417 #ifdef TCPDEBUG 18418 ipov = (struct ipovly *)ip; 18419 #endif 18420 if (tp->t_port) { 18421 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 18422 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 18423 udp->uh_dport = tp->t_port; 18424 ulen = hdrlen + len - sizeof(struct ip); 18425 udp->uh_ulen = htons(ulen); 18426 th = (struct tcphdr *)(udp + 1); 18427 } else 18428 th = (struct tcphdr *)(ip + 1); 18429 tcpip_fillheaders(inp, tp->t_port, ip, th); 18430 } 18431 } 18432 /* 18433 * Fill in fields, remembering maximum advertised window for use in 18434 * delaying messages about window sizes. If resending a FIN, be sure 18435 * not to use a new sequence number. 18436 */ 18437 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && 18438 tp->snd_nxt == tp->snd_max) 18439 tp->snd_nxt--; 18440 /* 18441 * If we are starting a connection, send ECN setup SYN packet. If we 18442 * are on a retransmit, we may resend those bits a number of times 18443 * as per RFC 3168. 18444 */ 18445 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) { 18446 if (tp->t_rxtshift >= 1) { 18447 if (tp->t_rxtshift <= V_tcp_ecn_maxretries) 18448 flags |= TH_ECE | TH_CWR; 18449 } else 18450 flags |= TH_ECE | TH_CWR; 18451 } 18452 /* Handle parallel SYN for ECN */ 18453 if ((tp->t_state == TCPS_SYN_RECEIVED) && 18454 (tp->t_flags2 & TF2_ECN_SND_ECE)) { 18455 flags |= TH_ECE; 18456 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 18457 } 18458 if (TCPS_HAVEESTABLISHED(tp->t_state) && 18459 (tp->t_flags2 & TF2_ECN_PERMIT)) { 18460 /* 18461 * If the peer has ECN, mark data packets with ECN capable 18462 * transmission (ECT). Ignore pure ack packets, 18463 * retransmissions. 18464 */ 18465 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) && 18466 (sack_rxmit == 0)) { 18467 #ifdef INET6 18468 if (isipv6) 18469 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); 18470 else 18471 #endif 18472 ip->ip_tos |= IPTOS_ECN_ECT0; 18473 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 18474 /* 18475 * Reply with proper ECN notifications. 18476 * Only set CWR on new data segments. 18477 */ 18478 if (tp->t_flags2 & TF2_ECN_SND_CWR) { 18479 flags |= TH_CWR; 18480 tp->t_flags2 &= ~TF2_ECN_SND_CWR; 18481 } 18482 } 18483 if (tp->t_flags2 & TF2_ECN_SND_ECE) 18484 flags |= TH_ECE; 18485 } 18486 /* 18487 * If we are doing retransmissions, then snd_nxt will not reflect 18488 * the first unsent octet. For ACK only packets, we do not want the 18489 * sequence number of the retransmitted packet, we want the sequence 18490 * number of the next unsent octet. So, if there is no data (and no 18491 * SYN or FIN), use snd_max instead of snd_nxt when filling in 18492 * ti_seq. But if we are in persist state, snd_max might reflect 18493 * one byte beyond the right edge of the window, so use snd_nxt in 18494 * that case, since we know we aren't doing a retransmission. 18495 * (retransmit and persist are mutually exclusive...) 18496 */ 18497 if (sack_rxmit == 0) { 18498 if (len || (flags & (TH_SYN | TH_FIN))) { 18499 th->th_seq = htonl(tp->snd_nxt); 18500 rack_seq = tp->snd_nxt; 18501 } else { 18502 th->th_seq = htonl(tp->snd_max); 18503 rack_seq = tp->snd_max; 18504 } 18505 } else { 18506 th->th_seq = htonl(rsm->r_start); 18507 rack_seq = rsm->r_start; 18508 } 18509 th->th_ack = htonl(tp->rcv_nxt); 18510 th->th_flags = flags; 18511 /* 18512 * Calculate receive window. Don't shrink window, but avoid silly 18513 * window syndrome. 18514 * If a RST segment is sent, advertise a window of zero. 18515 */ 18516 if (flags & TH_RST) { 18517 recwin = 0; 18518 } else { 18519 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && 18520 recwin < (long)segsiz) { 18521 recwin = 0; 18522 } 18523 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && 18524 recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) 18525 recwin = (long)(tp->rcv_adv - tp->rcv_nxt); 18526 } 18527 18528 /* 18529 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or 18530 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is 18531 * handled in syncache. 18532 */ 18533 if (flags & TH_SYN) 18534 th->th_win = htons((u_short) 18535 (min(sbspace(&so->so_rcv), TCP_MAXWIN))); 18536 else { 18537 /* Avoid shrinking window with window scaling. */ 18538 recwin = roundup2(recwin, 1 << tp->rcv_scale); 18539 th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); 18540 } 18541 /* 18542 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 18543 * window. This may cause the remote transmitter to stall. This 18544 * flag tells soreceive() to disable delayed acknowledgements when 18545 * draining the buffer. This can occur if the receiver is 18546 * attempting to read more data than can be buffered prior to 18547 * transmitting on the connection. 18548 */ 18549 if (th->th_win == 0) { 18550 tp->t_sndzerowin++; 18551 tp->t_flags |= TF_RXWIN0SENT; 18552 } else 18553 tp->t_flags &= ~TF_RXWIN0SENT; 18554 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 18555 /* Now are we using fsb?, if so copy the template data to the mbuf */ 18556 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 18557 uint8_t *cpto; 18558 18559 cpto = mtod(m, uint8_t *); 18560 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 18561 /* 18562 * We have just copied in: 18563 * IP/IP6 18564 * <optional udphdr> 18565 * tcphdr (no options) 18566 * 18567 * We need to grab the correct pointers into the mbuf 18568 * for both the tcp header, and possibly the udp header (if tunneling). 18569 * We do this by using the offset in the copy buffer and adding it 18570 * to the mbuf base pointer (cpto). 18571 */ 18572 #ifdef INET6 18573 if (isipv6) 18574 ip6 = mtod(m, struct ip6_hdr *); 18575 else 18576 #endif /* INET6 */ 18577 ip = mtod(m, struct ip *); 18578 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 18579 /* If we have a udp header lets set it into the mbuf as well */ 18580 if (udp) 18581 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr)); 18582 } 18583 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18584 if (to.to_flags & TOF_SIGNATURE) { 18585 /* 18586 * Calculate MD5 signature and put it into the place 18587 * determined before. 18588 * NOTE: since TCP options buffer doesn't point into 18589 * mbuf's data, calculate offset and use it. 18590 */ 18591 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 18592 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 18593 /* 18594 * Do not send segment if the calculation of MD5 18595 * digest has failed. 18596 */ 18597 goto out; 18598 } 18599 } 18600 #endif 18601 if (optlen) { 18602 bcopy(opt, th + 1, optlen); 18603 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 18604 } 18605 /* 18606 * Put TCP length in extended header, and then checksum extended 18607 * header and data. 18608 */ 18609 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 18610 #ifdef INET6 18611 if (isipv6) { 18612 /* 18613 * ip6_plen is not need to be filled now, and will be filled 18614 * in ip6_output. 18615 */ 18616 if (tp->t_port) { 18617 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 18618 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18619 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 18620 th->th_sum = htons(0); 18621 UDPSTAT_INC(udps_opackets); 18622 } else { 18623 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 18624 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18625 th->th_sum = in6_cksum_pseudo(ip6, 18626 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 18627 0); 18628 } 18629 } 18630 #endif 18631 #if defined(INET6) && defined(INET) 18632 else 18633 #endif 18634 #ifdef INET 18635 { 18636 if (tp->t_port) { 18637 m->m_pkthdr.csum_flags = CSUM_UDP; 18638 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18639 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 18640 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 18641 th->th_sum = htons(0); 18642 UDPSTAT_INC(udps_opackets); 18643 } else { 18644 m->m_pkthdr.csum_flags = CSUM_TCP; 18645 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18646 th->th_sum = in_pseudo(ip->ip_src.s_addr, 18647 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 18648 IPPROTO_TCP + len + optlen)); 18649 } 18650 /* IP version must be set here for ipv4/ipv6 checking later */ 18651 KASSERT(ip->ip_v == IPVERSION, 18652 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 18653 } 18654 #endif 18655 /* 18656 * Enable TSO and specify the size of the segments. The TCP pseudo 18657 * header checksum is always provided. XXX: Fixme: This is currently 18658 * not the case for IPv6. 18659 */ 18660 if (tso) { 18661 KASSERT(len > tp->t_maxseg - optlen, 18662 ("%s: len <= tso_segsz", __func__)); 18663 m->m_pkthdr.csum_flags |= CSUM_TSO; 18664 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 18665 } 18666 KASSERT(len + hdrlen == m_length(m, NULL), 18667 ("%s: mbuf chain different than expected: %d + %u != %u", 18668 __func__, len, hdrlen, m_length(m, NULL))); 18669 18670 #ifdef TCP_HHOOK 18671 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ 18672 hhook_run_tcp_est_out(tp, th, &to, len, tso); 18673 #endif 18674 /* We're getting ready to send; log now. */ 18675 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 18676 union tcp_log_stackspecific log; 18677 18678 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 18679 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 18680 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 18681 if (rack->rack_no_prr) 18682 log.u_bbr.flex1 = 0; 18683 else 18684 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 18685 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 18686 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 18687 log.u_bbr.flex4 = orig_len; 18688 if (filled_all) 18689 log.u_bbr.flex5 = 0x80000000; 18690 else 18691 log.u_bbr.flex5 = 0; 18692 /* Save off the early/late values */ 18693 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 18694 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 18695 log.u_bbr.bw_inuse = rack_get_bw(rack); 18696 if (rsm || sack_rxmit) { 18697 if (doing_tlp) 18698 log.u_bbr.flex8 = 2; 18699 else 18700 log.u_bbr.flex8 = 1; 18701 } else { 18702 if (doing_tlp) 18703 log.u_bbr.flex8 = 3; 18704 else 18705 log.u_bbr.flex8 = 0; 18706 } 18707 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 18708 log.u_bbr.flex7 = mark; 18709 log.u_bbr.flex7 <<= 8; 18710 log.u_bbr.flex7 |= pass; 18711 log.u_bbr.pkts_out = tp->t_maxseg; 18712 log.u_bbr.timeStamp = cts; 18713 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18714 log.u_bbr.lt_epoch = cwnd_to_use; 18715 log.u_bbr.delivered = sendalot; 18716 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, 18717 len, &log, false, NULL, NULL, 0, &tv); 18718 } else 18719 lgb = NULL; 18720 18721 /* 18722 * Fill in IP length and desired time to live and send to IP level. 18723 * There should be a better way to handle ttl and tos; we could keep 18724 * them in the template, but need a way to checksum without them. 18725 */ 18726 /* 18727 * m->m_pkthdr.len should have been set before cksum calcuration, 18728 * because in6_cksum() need it. 18729 */ 18730 #ifdef INET6 18731 if (isipv6) { 18732 /* 18733 * we separately set hoplimit for every segment, since the 18734 * user might want to change the value via setsockopt. Also, 18735 * desired default hop limit might be changed via Neighbor 18736 * Discovery. 18737 */ 18738 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL); 18739 18740 /* 18741 * Set the packet size here for the benefit of DTrace 18742 * probes. ip6_output() will set it properly; it's supposed 18743 * to include the option header lengths as well. 18744 */ 18745 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 18746 18747 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 18748 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18749 else 18750 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18751 18752 if (tp->t_state == TCPS_SYN_SENT) 18753 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); 18754 18755 TCP_PROBE5(send, NULL, tp, ip6, tp, th); 18756 /* TODO: IPv6 IP6TOS_ECT bit on */ 18757 error = ip6_output(m, 18758 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18759 inp->in6p_outputopts, 18760 #else 18761 NULL, 18762 #endif 18763 &inp->inp_route6, 18764 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 18765 NULL, NULL, inp); 18766 18767 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) 18768 mtu = inp->inp_route6.ro_nh->nh_mtu; 18769 } 18770 #endif /* INET6 */ 18771 #if defined(INET) && defined(INET6) 18772 else 18773 #endif 18774 #ifdef INET 18775 { 18776 ip->ip_len = htons(m->m_pkthdr.len); 18777 #ifdef INET6 18778 if (inp->inp_vflag & INP_IPV6PROTO) 18779 ip->ip_ttl = in6_selecthlim(inp, NULL); 18780 #endif /* INET6 */ 18781 rack->r_ctl.fsb.hoplimit = ip->ip_ttl; 18782 /* 18783 * If we do path MTU discovery, then we set DF on every 18784 * packet. This might not be the best thing to do according 18785 * to RFC3390 Section 2. However the tcp hostcache migitates 18786 * the problem so it affects only the first tcp connection 18787 * with a host. 18788 * 18789 * NB: Don't set DF on small MTU/MSS to have a safe 18790 * fallback. 18791 */ 18792 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 18793 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18794 if (tp->t_port == 0 || len < V_tcp_minmss) { 18795 ip->ip_off |= htons(IP_DF); 18796 } 18797 } else { 18798 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18799 } 18800 18801 if (tp->t_state == TCPS_SYN_SENT) 18802 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); 18803 18804 TCP_PROBE5(send, NULL, tp, ip, tp, th); 18805 18806 error = ip_output(m, 18807 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18808 inp->inp_options, 18809 #else 18810 NULL, 18811 #endif 18812 &inp->inp_route, 18813 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, 18814 inp); 18815 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) 18816 mtu = inp->inp_route.ro_nh->nh_mtu; 18817 } 18818 #endif /* INET */ 18819 18820 out: 18821 if (lgb) { 18822 lgb->tlb_errno = error; 18823 lgb = NULL; 18824 } 18825 /* 18826 * In transmit state, time the transmission and arrange for the 18827 * retransmit. In persist state, just set snd_max. 18828 */ 18829 if (error == 0) { 18830 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls); 18831 if (rsm && doing_tlp) { 18832 rack->rc_last_sent_tlp_past_cumack = 0; 18833 rack->rc_last_sent_tlp_seq_valid = 1; 18834 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 18835 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 18836 } 18837 rack->forced_ack = 0; /* If we send something zap the FA flag */ 18838 if (rsm && (doing_tlp == 0)) { 18839 /* Set we retransmitted */ 18840 rack->rc_gp_saw_rec = 1; 18841 } else { 18842 if (cwnd_to_use > tp->snd_ssthresh) { 18843 /* Set we sent in CA */ 18844 rack->rc_gp_saw_ca = 1; 18845 } else { 18846 /* Set we sent in SS */ 18847 rack->rc_gp_saw_ss = 1; 18848 } 18849 } 18850 if (doing_tlp && (rsm == NULL)) { 18851 /* Make sure new data TLP cnt is clear */ 18852 rack->r_ctl.rc_tlp_new_data = 0; 18853 } 18854 if (TCPS_HAVEESTABLISHED(tp->t_state) && 18855 (tp->t_flags & TF_SACK_PERMIT) && 18856 tp->rcv_numsacks > 0) 18857 tcp_clean_dsack_blocks(tp); 18858 tot_len_this_send += len; 18859 if (len == 0) 18860 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); 18861 else if (len == 1) { 18862 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); 18863 } else if (len > 1) { 18864 int idx; 18865 18866 idx = (len / segsiz) + 3; 18867 if (idx >= TCP_MSS_ACCT_ATIMER) 18868 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 18869 else 18870 counter_u64_add(rack_out_size[idx], 1); 18871 } 18872 } 18873 if ((rack->rack_no_prr == 0) && 18874 sub_from_prr && 18875 (error == 0)) { 18876 if (rack->r_ctl.rc_prr_sndcnt >= len) 18877 rack->r_ctl.rc_prr_sndcnt -= len; 18878 else 18879 rack->r_ctl.rc_prr_sndcnt = 0; 18880 } 18881 sub_from_prr = 0; 18882 if (doing_tlp) { 18883 /* Make sure the TLP is added */ 18884 add_flag |= RACK_TLP; 18885 } else if (rsm) { 18886 /* If its a resend without TLP then it must not have the flag */ 18887 rsm->r_flags &= ~RACK_TLP; 18888 } 18889 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, 18890 rack_to_usec_ts(&tv), 18891 rsm, add_flag, s_mb, s_moff, hw_tls); 18892 18893 18894 if ((error == 0) && 18895 (len > 0) && 18896 (tp->snd_una == tp->snd_max)) 18897 rack->r_ctl.rc_tlp_rxt_last_time = cts; 18898 { 18899 tcp_seq startseq = tp->snd_nxt; 18900 18901 /* Track our lost count */ 18902 if (rsm && (doing_tlp == 0)) 18903 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; 18904 /* 18905 * Advance snd_nxt over sequence space of this segment. 18906 */ 18907 if (error) 18908 /* We don't log or do anything with errors */ 18909 goto nomore; 18910 if (doing_tlp == 0) { 18911 if (rsm == NULL) { 18912 /* 18913 * Not a retransmission of some 18914 * sort, new data is going out so 18915 * clear our TLP count and flag. 18916 */ 18917 rack->rc_tlp_in_progress = 0; 18918 rack->r_ctl.rc_tlp_cnt_out = 0; 18919 } 18920 } else { 18921 /* 18922 * We have just sent a TLP, mark that it is true 18923 * and make sure our in progress is set so we 18924 * continue to check the count. 18925 */ 18926 rack->rc_tlp_in_progress = 1; 18927 rack->r_ctl.rc_tlp_cnt_out++; 18928 } 18929 if (flags & (TH_SYN | TH_FIN)) { 18930 if (flags & TH_SYN) 18931 tp->snd_nxt++; 18932 if (flags & TH_FIN) { 18933 tp->snd_nxt++; 18934 tp->t_flags |= TF_SENTFIN; 18935 } 18936 } 18937 /* In the ENOBUFS case we do *not* update snd_max */ 18938 if (sack_rxmit) 18939 goto nomore; 18940 18941 tp->snd_nxt += len; 18942 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { 18943 if (tp->snd_una == tp->snd_max) { 18944 /* 18945 * Update the time we just added data since 18946 * none was outstanding. 18947 */ 18948 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 18949 tp->t_acktime = ticks; 18950 } 18951 tp->snd_max = tp->snd_nxt; 18952 /* 18953 * Time this transmission if not a retransmission and 18954 * not currently timing anything. 18955 * This is only relevant in case of switching back to 18956 * the base stack. 18957 */ 18958 if (tp->t_rtttime == 0) { 18959 tp->t_rtttime = ticks; 18960 tp->t_rtseq = startseq; 18961 KMOD_TCPSTAT_INC(tcps_segstimed); 18962 } 18963 if (len && 18964 ((tp->t_flags & TF_GPUTINPROG) == 0)) 18965 rack_start_gp_measurement(tp, rack, startseq, sb_offset); 18966 } 18967 /* 18968 * If we are doing FO we need to update the mbuf position and subtract 18969 * this happens when the peer sends us duplicate information and 18970 * we thus want to send a DSACK. 18971 * 18972 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO 18973 * turned off? If not then we are going to echo multiple DSACK blocks 18974 * out (with the TSO), which we should not be doing. 18975 */ 18976 if (rack->r_fast_output && len) { 18977 if (rack->r_ctl.fsb.left_to_send > len) 18978 rack->r_ctl.fsb.left_to_send -= len; 18979 else 18980 rack->r_ctl.fsb.left_to_send = 0; 18981 if (rack->r_ctl.fsb.left_to_send < segsiz) 18982 rack->r_fast_output = 0; 18983 if (rack->r_fast_output) { 18984 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 18985 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 18986 } 18987 } 18988 } 18989 nomore: 18990 if (error) { 18991 rack->r_ctl.rc_agg_delayed = 0; 18992 rack->r_early = 0; 18993 rack->r_late = 0; 18994 rack->r_ctl.rc_agg_early = 0; 18995 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ 18996 /* 18997 * Failures do not advance the seq counter above. For the 18998 * case of ENOBUFS we will fall out and retry in 1ms with 18999 * the hpts. Everything else will just have to retransmit 19000 * with the timer. 19001 * 19002 * In any case, we do not want to loop around for another 19003 * send without a good reason. 19004 */ 19005 sendalot = 0; 19006 switch (error) { 19007 case EPERM: 19008 tp->t_softerror = error; 19009 #ifdef TCP_ACCOUNTING 19010 crtsc = get_cyclecount(); 19011 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19012 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19013 } 19014 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19015 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19016 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19017 } 19018 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19019 sched_unpin(); 19020 #endif 19021 return (error); 19022 case ENOBUFS: 19023 /* 19024 * Pace us right away to retry in a some 19025 * time 19026 */ 19027 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 19028 if (rack->rc_enobuf < 0x7f) 19029 rack->rc_enobuf++; 19030 if (slot < (10 * HPTS_USEC_IN_MSEC)) 19031 slot = 10 * HPTS_USEC_IN_MSEC; 19032 if (rack->r_ctl.crte != NULL) { 19033 counter_u64_add(rack_saw_enobuf_hw, 1); 19034 tcp_rl_log_enobuf(rack->r_ctl.crte); 19035 } 19036 counter_u64_add(rack_saw_enobuf, 1); 19037 goto enobufs; 19038 case EMSGSIZE: 19039 /* 19040 * For some reason the interface we used initially 19041 * to send segments changed to another or lowered 19042 * its MTU. If TSO was active we either got an 19043 * interface without TSO capabilits or TSO was 19044 * turned off. If we obtained mtu from ip_output() 19045 * then update it and try again. 19046 */ 19047 if (tso) 19048 tp->t_flags &= ~TF_TSO; 19049 if (mtu != 0) { 19050 tcp_mss_update(tp, -1, mtu, NULL, NULL); 19051 goto again; 19052 } 19053 slot = 10 * HPTS_USEC_IN_MSEC; 19054 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19055 #ifdef TCP_ACCOUNTING 19056 crtsc = get_cyclecount(); 19057 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19058 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19059 } 19060 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19061 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19062 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19063 } 19064 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19065 sched_unpin(); 19066 #endif 19067 return (error); 19068 case ENETUNREACH: 19069 counter_u64_add(rack_saw_enetunreach, 1); 19070 case EHOSTDOWN: 19071 case EHOSTUNREACH: 19072 case ENETDOWN: 19073 if (TCPS_HAVERCVDSYN(tp->t_state)) { 19074 tp->t_softerror = error; 19075 } 19076 /* FALLTHROUGH */ 19077 default: 19078 slot = 10 * HPTS_USEC_IN_MSEC; 19079 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 19080 #ifdef TCP_ACCOUNTING 19081 crtsc = get_cyclecount(); 19082 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19083 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 19084 } 19085 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 19086 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19087 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 19088 } 19089 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 19090 sched_unpin(); 19091 #endif 19092 return (error); 19093 } 19094 } else { 19095 rack->rc_enobuf = 0; 19096 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 19097 rack->r_ctl.retran_during_recovery += len; 19098 } 19099 KMOD_TCPSTAT_INC(tcps_sndtotal); 19100 19101 /* 19102 * Data sent (as far as we can tell). If this advertises a larger 19103 * window than any other segment, then remember the size of the 19104 * advertised window. Any pending ACK has now been sent. 19105 */ 19106 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) 19107 tp->rcv_adv = tp->rcv_nxt + recwin; 19108 19109 tp->last_ack_sent = tp->rcv_nxt; 19110 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 19111 enobufs: 19112 if (sendalot) { 19113 /* Do we need to turn off sendalot? */ 19114 if (rack->r_ctl.rc_pace_max_segs && 19115 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { 19116 /* We hit our max. */ 19117 sendalot = 0; 19118 } else if ((rack->rc_user_set_max_segs) && 19119 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { 19120 /* We hit the user defined max */ 19121 sendalot = 0; 19122 } 19123 } 19124 if ((error == 0) && (flags & TH_FIN)) 19125 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); 19126 if (flags & TH_RST) { 19127 /* 19128 * We don't send again after sending a RST. 19129 */ 19130 slot = 0; 19131 sendalot = 0; 19132 if (error == 0) 19133 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 19134 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { 19135 /* 19136 * Get our pacing rate, if an error 19137 * occurred in sending (ENOBUF) we would 19138 * hit the else if with slot preset. Other 19139 * errors return. 19140 */ 19141 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); 19142 } 19143 if (rsm && 19144 (rsm->r_flags & RACK_HAS_SYN) == 0 && 19145 rack->use_rack_rr) { 19146 /* Its a retransmit and we use the rack cheat? */ 19147 if ((slot == 0) || 19148 (rack->rc_always_pace == 0) || 19149 (rack->r_rr_config == 1)) { 19150 /* 19151 * We have no pacing set or we 19152 * are using old-style rack or 19153 * we are overriden to use the old 1ms pacing. 19154 */ 19155 slot = rack->r_ctl.rc_min_to; 19156 } 19157 } 19158 /* We have sent clear the flag */ 19159 rack->r_ent_rec_ns = 0; 19160 if (rack->r_must_retran) { 19161 if (rsm) { 19162 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 19163 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 19164 /* 19165 * We have retransmitted all. 19166 */ 19167 rack->r_must_retran = 0; 19168 rack->r_ctl.rc_out_at_rto = 0; 19169 } 19170 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19171 /* 19172 * Sending new data will also kill 19173 * the loop. 19174 */ 19175 rack->r_must_retran = 0; 19176 rack->r_ctl.rc_out_at_rto = 0; 19177 } 19178 } 19179 rack->r_ctl.fsb.recwin = recwin; 19180 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) && 19181 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 19182 /* 19183 * We hit an RTO and now have past snd_max at the RTO 19184 * clear all the WAS flags. 19185 */ 19186 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY); 19187 } 19188 if (slot) { 19189 /* set the rack tcb into the slot N */ 19190 counter_u64_add(rack_paced_segments, 1); 19191 if ((error == 0) && 19192 rack_use_rfo && 19193 ((flags & (TH_SYN|TH_FIN)) == 0) && 19194 (rsm == NULL) && 19195 (tp->snd_nxt == tp->snd_max) && 19196 (ipoptlen == 0) && 19197 (tp->rcv_numsacks == 0) && 19198 rack->r_fsb_inited && 19199 TCPS_HAVEESTABLISHED(tp->t_state) && 19200 (rack->r_must_retran == 0) && 19201 ((tp->t_flags & TF_NEEDFIN) == 0) && 19202 (len > 0) && (orig_len > 0) && 19203 (orig_len > len) && 19204 ((orig_len - len) >= segsiz) && 19205 ((optlen == 0) || 19206 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19207 /* We can send at least one more MSS using our fsb */ 19208 19209 rack->r_fast_output = 1; 19210 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19211 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19212 rack->r_ctl.fsb.tcp_flags = flags; 19213 rack->r_ctl.fsb.left_to_send = orig_len - len; 19214 if (hw_tls) 19215 rack->r_ctl.fsb.hw_tls = 1; 19216 else 19217 rack->r_ctl.fsb.hw_tls = 0; 19218 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19219 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19220 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19221 (tp->snd_max - tp->snd_una))); 19222 if (rack->r_ctl.fsb.left_to_send < segsiz) 19223 rack->r_fast_output = 0; 19224 else { 19225 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19226 rack->r_ctl.fsb.rfo_apply_push = 1; 19227 else 19228 rack->r_ctl.fsb.rfo_apply_push = 0; 19229 } 19230 } else 19231 rack->r_fast_output = 0; 19232 rack_log_fsb(rack, tp, so, flags, 19233 ipoptlen, orig_len, len, error, 19234 (rsm == NULL), optlen, __LINE__, 2); 19235 } else if (sendalot) { 19236 int ret; 19237 19238 if (len) 19239 counter_u64_add(rack_unpaced_segments, 1); 19240 sack_rxmit = 0; 19241 if ((error == 0) && 19242 rack_use_rfo && 19243 ((flags & (TH_SYN|TH_FIN)) == 0) && 19244 (rsm == NULL) && 19245 (ipoptlen == 0) && 19246 (tp->rcv_numsacks == 0) && 19247 (tp->snd_nxt == tp->snd_max) && 19248 (rack->r_must_retran == 0) && 19249 rack->r_fsb_inited && 19250 TCPS_HAVEESTABLISHED(tp->t_state) && 19251 ((tp->t_flags & TF_NEEDFIN) == 0) && 19252 (len > 0) && (orig_len > 0) && 19253 (orig_len > len) && 19254 ((orig_len - len) >= segsiz) && 19255 ((optlen == 0) || 19256 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 19257 /* we can use fast_output for more */ 19258 19259 rack->r_fast_output = 1; 19260 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19261 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19262 rack->r_ctl.fsb.tcp_flags = flags; 19263 rack->r_ctl.fsb.left_to_send = orig_len - len; 19264 if (hw_tls) 19265 rack->r_ctl.fsb.hw_tls = 1; 19266 else 19267 rack->r_ctl.fsb.hw_tls = 0; 19268 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19269 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19270 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19271 (tp->snd_max - tp->snd_una))); 19272 if (rack->r_ctl.fsb.left_to_send < segsiz) { 19273 rack->r_fast_output = 0; 19274 } 19275 if (rack->r_fast_output) { 19276 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19277 rack->r_ctl.fsb.rfo_apply_push = 1; 19278 else 19279 rack->r_ctl.fsb.rfo_apply_push = 0; 19280 rack_log_fsb(rack, tp, so, flags, 19281 ipoptlen, orig_len, len, error, 19282 (rsm == NULL), optlen, __LINE__, 3); 19283 error = 0; 19284 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 19285 if (ret >= 0) 19286 return (ret); 19287 else if (error) 19288 goto nomore; 19289 19290 } 19291 } 19292 goto again; 19293 } else if (len) { 19294 counter_u64_add(rack_unpaced_segments, 1); 19295 } 19296 /* Assure when we leave that snd_nxt will point to top */ 19297 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 19298 tp->snd_nxt = tp->snd_max; 19299 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); 19300 #ifdef TCP_ACCOUNTING 19301 crtsc = get_cyclecount() - ts_val; 19302 if (tot_len_this_send) { 19303 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19304 tp->tcp_cnt_counters[SND_OUT_DATA]++; 19305 } 19306 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 19307 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19308 tp->tcp_proc_time[SND_OUT_DATA] += crtsc; 19309 } 19310 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc); 19311 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19312 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz); 19313 } 19314 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz)); 19315 } else { 19316 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19317 tp->tcp_cnt_counters[SND_OUT_ACK]++; 19318 } 19319 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1); 19320 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19321 tp->tcp_proc_time[SND_OUT_ACK] += crtsc; 19322 } 19323 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc); 19324 } 19325 sched_unpin(); 19326 #endif 19327 if (error == ENOBUFS) 19328 error = 0; 19329 return (error); 19330 } 19331 19332 static void 19333 rack_update_seg(struct tcp_rack *rack) 19334 { 19335 uint32_t orig_val; 19336 19337 orig_val = rack->r_ctl.rc_pace_max_segs; 19338 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 19339 if (orig_val != rack->r_ctl.rc_pace_max_segs) 19340 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0); 19341 } 19342 19343 static void 19344 rack_mtu_change(struct tcpcb *tp) 19345 { 19346 /* 19347 * The MSS may have changed 19348 */ 19349 struct tcp_rack *rack; 19350 struct rack_sendmap *rsm; 19351 19352 rack = (struct tcp_rack *)tp->t_fb_ptr; 19353 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) { 19354 /* 19355 * The MTU has changed we need to resend everything 19356 * since all we have sent is lost. We first fix 19357 * up the mtu though. 19358 */ 19359 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19360 /* We treat this like a full retransmit timeout without the cwnd adjustment */ 19361 rack_remxt_tmr(tp); 19362 rack->r_fast_output = 0; 19363 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp, 19364 rack->r_ctl.rc_sacked); 19365 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 19366 rack->r_must_retran = 1; 19367 /* Mark all inflight to needing to be rxt'd */ 19368 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 19369 rsm->r_flags |= RACK_MUST_RXT; 19370 } 19371 } 19372 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 19373 /* We don't use snd_nxt to retransmit */ 19374 tp->snd_nxt = tp->snd_max; 19375 } 19376 19377 static int 19378 rack_set_profile(struct tcp_rack *rack, int prof) 19379 { 19380 int err = EINVAL; 19381 if (prof == 1) { 19382 /* pace_always=1 */ 19383 if (rack->rc_always_pace == 0) { 19384 if (tcp_can_enable_pacing() == 0) 19385 return (EBUSY); 19386 } 19387 rack->rc_always_pace = 1; 19388 if (rack->use_fixed_rate || rack->gp_ready) 19389 rack_set_cc_pacing(rack); 19390 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19391 rack->rack_attempt_hdwr_pace = 0; 19392 /* cmpack=1 */ 19393 if (rack_use_cmp_acks) 19394 rack->r_use_cmp_ack = 1; 19395 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19396 rack->r_use_cmp_ack) 19397 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19398 /* scwnd=1 */ 19399 rack->rack_enable_scwnd = 1; 19400 /* dynamic=100 */ 19401 rack->rc_gp_dyn_mul = 1; 19402 /* gp_inc_ca */ 19403 rack->r_ctl.rack_per_of_gp_ca = 100; 19404 /* rrr_conf=3 */ 19405 rack->r_rr_config = 3; 19406 /* npush=2 */ 19407 rack->r_ctl.rc_no_push_at_mrtt = 2; 19408 /* fillcw=1 */ 19409 rack->rc_pace_to_cwnd = 1; 19410 rack->rc_pace_fill_if_rttin_range = 0; 19411 rack->rtt_limit_mul = 0; 19412 /* noprr=1 */ 19413 rack->rack_no_prr = 1; 19414 /* lscwnd=1 */ 19415 rack->r_limit_scw = 1; 19416 /* gp_inc_rec */ 19417 rack->r_ctl.rack_per_of_gp_rec = 90; 19418 err = 0; 19419 19420 } else if (prof == 3) { 19421 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */ 19422 /* pace_always=1 */ 19423 if (rack->rc_always_pace == 0) { 19424 if (tcp_can_enable_pacing() == 0) 19425 return (EBUSY); 19426 } 19427 rack->rc_always_pace = 1; 19428 if (rack->use_fixed_rate || rack->gp_ready) 19429 rack_set_cc_pacing(rack); 19430 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19431 rack->rack_attempt_hdwr_pace = 0; 19432 /* cmpack=1 */ 19433 if (rack_use_cmp_acks) 19434 rack->r_use_cmp_ack = 1; 19435 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 19436 rack->r_use_cmp_ack) 19437 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19438 /* scwnd=1 */ 19439 rack->rack_enable_scwnd = 1; 19440 /* dynamic=100 */ 19441 rack->rc_gp_dyn_mul = 1; 19442 /* gp_inc_ca */ 19443 rack->r_ctl.rack_per_of_gp_ca = 100; 19444 /* rrr_conf=3 */ 19445 rack->r_rr_config = 3; 19446 /* npush=2 */ 19447 rack->r_ctl.rc_no_push_at_mrtt = 2; 19448 /* fillcw=2 */ 19449 rack->rc_pace_to_cwnd = 1; 19450 rack->r_fill_less_agg = 1; 19451 rack->rc_pace_fill_if_rttin_range = 0; 19452 rack->rtt_limit_mul = 0; 19453 /* noprr=1 */ 19454 rack->rack_no_prr = 1; 19455 /* lscwnd=1 */ 19456 rack->r_limit_scw = 1; 19457 /* gp_inc_rec */ 19458 rack->r_ctl.rack_per_of_gp_rec = 90; 19459 err = 0; 19460 19461 19462 } else if (prof == 2) { 19463 /* cmpack=1 */ 19464 if (rack->rc_always_pace == 0) { 19465 if (tcp_can_enable_pacing() == 0) 19466 return (EBUSY); 19467 } 19468 rack->rc_always_pace = 1; 19469 if (rack->use_fixed_rate || rack->gp_ready) 19470 rack_set_cc_pacing(rack); 19471 rack->r_use_cmp_ack = 1; 19472 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19473 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19474 /* pace_always=1 */ 19475 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19476 /* scwnd=1 */ 19477 rack->rack_enable_scwnd = 1; 19478 /* dynamic=100 */ 19479 rack->rc_gp_dyn_mul = 1; 19480 rack->r_ctl.rack_per_of_gp_ca = 100; 19481 /* rrr_conf=3 */ 19482 rack->r_rr_config = 3; 19483 /* npush=2 */ 19484 rack->r_ctl.rc_no_push_at_mrtt = 2; 19485 /* fillcw=1 */ 19486 rack->rc_pace_to_cwnd = 1; 19487 rack->rc_pace_fill_if_rttin_range = 0; 19488 rack->rtt_limit_mul = 0; 19489 /* noprr=1 */ 19490 rack->rack_no_prr = 1; 19491 /* lscwnd=0 */ 19492 rack->r_limit_scw = 0; 19493 err = 0; 19494 } else if (prof == 0) { 19495 /* This changes things back to the default settings */ 19496 err = 0; 19497 if (rack->rc_always_pace) { 19498 tcp_decrement_paced_conn(); 19499 rack_undo_cc_pacing(rack); 19500 rack->rc_always_pace = 0; 19501 } 19502 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 19503 rack->rc_always_pace = 1; 19504 if (rack->use_fixed_rate || rack->gp_ready) 19505 rack_set_cc_pacing(rack); 19506 } else 19507 rack->rc_always_pace = 0; 19508 if (rack_dsack_std_based & 0x1) { 19509 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 19510 rack->rc_rack_tmr_std_based = 1; 19511 } 19512 if (rack_dsack_std_based & 0x2) { 19513 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 19514 rack->rc_rack_use_dsack = 1; 19515 } 19516 if (rack_use_cmp_acks) 19517 rack->r_use_cmp_ack = 1; 19518 else 19519 rack->r_use_cmp_ack = 0; 19520 if (rack_disable_prr) 19521 rack->rack_no_prr = 1; 19522 else 19523 rack->rack_no_prr = 0; 19524 if (rack_gp_no_rec_chg) 19525 rack->rc_gp_no_rec_chg = 1; 19526 else 19527 rack->rc_gp_no_rec_chg = 0; 19528 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) { 19529 rack->r_mbuf_queue = 1; 19530 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 19531 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19532 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19533 } else { 19534 rack->r_mbuf_queue = 0; 19535 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19536 } 19537 if (rack_enable_shared_cwnd) 19538 rack->rack_enable_scwnd = 1; 19539 else 19540 rack->rack_enable_scwnd = 0; 19541 if (rack_do_dyn_mul) { 19542 /* When dynamic adjustment is on CA needs to start at 100% */ 19543 rack->rc_gp_dyn_mul = 1; 19544 if (rack_do_dyn_mul >= 100) 19545 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 19546 } else { 19547 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 19548 rack->rc_gp_dyn_mul = 0; 19549 } 19550 rack->r_rr_config = 0; 19551 rack->r_ctl.rc_no_push_at_mrtt = 0; 19552 rack->rc_pace_to_cwnd = 0; 19553 rack->rc_pace_fill_if_rttin_range = 0; 19554 rack->rtt_limit_mul = 0; 19555 19556 if (rack_enable_hw_pacing) 19557 rack->rack_hdw_pace_ena = 1; 19558 else 19559 rack->rack_hdw_pace_ena = 0; 19560 if (rack_disable_prr) 19561 rack->rack_no_prr = 1; 19562 else 19563 rack->rack_no_prr = 0; 19564 if (rack_limits_scwnd) 19565 rack->r_limit_scw = 1; 19566 else 19567 rack->r_limit_scw = 0; 19568 err = 0; 19569 } 19570 return (err); 19571 } 19572 19573 static int 19574 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval) 19575 { 19576 struct deferred_opt_list *dol; 19577 19578 dol = malloc(sizeof(struct deferred_opt_list), 19579 M_TCPFSB, M_NOWAIT|M_ZERO); 19580 if (dol == NULL) { 19581 /* 19582 * No space yikes -- fail out.. 19583 */ 19584 return (0); 19585 } 19586 dol->optname = sopt_name; 19587 dol->optval = loptval; 19588 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next); 19589 return (1); 19590 } 19591 19592 static int 19593 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, 19594 uint32_t optval, uint64_t loptval) 19595 { 19596 struct epoch_tracker et; 19597 struct sockopt sopt; 19598 struct cc_newreno_opts opt; 19599 uint64_t val; 19600 int error = 0; 19601 uint16_t ca, ss; 19602 19603 switch (sopt_name) { 19604 19605 case TCP_RACK_DSACK_OPT: 19606 RACK_OPTS_INC(tcp_rack_dsack_opt); 19607 if (optval & 0x1) { 19608 rack->rc_rack_tmr_std_based = 1; 19609 } else { 19610 rack->rc_rack_tmr_std_based = 0; 19611 } 19612 if (optval & 0x2) { 19613 rack->rc_rack_use_dsack = 1; 19614 } else { 19615 rack->rc_rack_use_dsack = 0; 19616 } 19617 rack_log_dsack_event(rack, 5, __LINE__, 0, 0); 19618 break; 19619 case TCP_RACK_PACING_BETA: 19620 RACK_OPTS_INC(tcp_rack_beta); 19621 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19622 /* This only works for newreno. */ 19623 error = EINVAL; 19624 break; 19625 } 19626 if (rack->rc_pacing_cc_set) { 19627 /* 19628 * Set them into the real CC module 19629 * whats in the rack pcb is the old values 19630 * to be used on restoral/ 19631 */ 19632 sopt.sopt_dir = SOPT_SET; 19633 opt.name = CC_NEWRENO_BETA; 19634 opt.val = optval; 19635 if (CC_ALGO(tp)->ctl_output != NULL) 19636 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19637 else { 19638 error = ENOENT; 19639 break; 19640 } 19641 } else { 19642 /* 19643 * Not pacing yet so set it into our local 19644 * rack pcb storage. 19645 */ 19646 rack->r_ctl.rc_saved_beta.beta = optval; 19647 } 19648 break; 19649 case TCP_RACK_TIMER_SLOP: 19650 RACK_OPTS_INC(tcp_rack_timer_slop); 19651 rack->r_ctl.timer_slop = optval; 19652 if (rack->rc_tp->t_srtt) { 19653 /* 19654 * If we have an SRTT lets update t_rxtcur 19655 * to have the new slop. 19656 */ 19657 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 19658 rack_rto_min, rack_rto_max, 19659 rack->r_ctl.timer_slop); 19660 } 19661 break; 19662 case TCP_RACK_PACING_BETA_ECN: 19663 RACK_OPTS_INC(tcp_rack_beta_ecn); 19664 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 19665 /* This only works for newreno. */ 19666 error = EINVAL; 19667 break; 19668 } 19669 if (rack->rc_pacing_cc_set) { 19670 /* 19671 * Set them into the real CC module 19672 * whats in the rack pcb is the old values 19673 * to be used on restoral/ 19674 */ 19675 sopt.sopt_dir = SOPT_SET; 19676 opt.name = CC_NEWRENO_BETA_ECN; 19677 opt.val = optval; 19678 if (CC_ALGO(tp)->ctl_output != NULL) 19679 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 19680 else 19681 error = ENOENT; 19682 } else { 19683 /* 19684 * Not pacing yet so set it into our local 19685 * rack pcb storage. 19686 */ 19687 rack->r_ctl.rc_saved_beta.beta_ecn = optval; 19688 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED; 19689 } 19690 break; 19691 case TCP_DEFER_OPTIONS: 19692 RACK_OPTS_INC(tcp_defer_opt); 19693 if (optval) { 19694 if (rack->gp_ready) { 19695 /* Too late */ 19696 error = EINVAL; 19697 break; 19698 } 19699 rack->defer_options = 1; 19700 } else 19701 rack->defer_options = 0; 19702 break; 19703 case TCP_RACK_MEASURE_CNT: 19704 RACK_OPTS_INC(tcp_rack_measure_cnt); 19705 if (optval && (optval <= 0xff)) { 19706 rack->r_ctl.req_measurements = optval; 19707 } else 19708 error = EINVAL; 19709 break; 19710 case TCP_REC_ABC_VAL: 19711 RACK_OPTS_INC(tcp_rec_abc_val); 19712 if (optval > 0) 19713 rack->r_use_labc_for_rec = 1; 19714 else 19715 rack->r_use_labc_for_rec = 0; 19716 break; 19717 case TCP_RACK_ABC_VAL: 19718 RACK_OPTS_INC(tcp_rack_abc_val); 19719 if ((optval > 0) && (optval < 255)) 19720 rack->rc_labc = optval; 19721 else 19722 error = EINVAL; 19723 break; 19724 case TCP_HDWR_UP_ONLY: 19725 RACK_OPTS_INC(tcp_pacing_up_only); 19726 if (optval) 19727 rack->r_up_only = 1; 19728 else 19729 rack->r_up_only = 0; 19730 break; 19731 case TCP_PACING_RATE_CAP: 19732 RACK_OPTS_INC(tcp_pacing_rate_cap); 19733 rack->r_ctl.bw_rate_cap = loptval; 19734 break; 19735 case TCP_RACK_PROFILE: 19736 RACK_OPTS_INC(tcp_profile); 19737 error = rack_set_profile(rack, optval); 19738 break; 19739 case TCP_USE_CMP_ACKS: 19740 RACK_OPTS_INC(tcp_use_cmp_acks); 19741 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) { 19742 /* You can't turn it off once its on! */ 19743 error = EINVAL; 19744 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) { 19745 rack->r_use_cmp_ack = 1; 19746 rack->r_mbuf_queue = 1; 19747 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19748 } 19749 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 19750 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 19751 break; 19752 case TCP_SHARED_CWND_TIME_LIMIT: 19753 RACK_OPTS_INC(tcp_lscwnd); 19754 if (optval) 19755 rack->r_limit_scw = 1; 19756 else 19757 rack->r_limit_scw = 0; 19758 break; 19759 case TCP_RACK_PACE_TO_FILL: 19760 RACK_OPTS_INC(tcp_fillcw); 19761 if (optval == 0) 19762 rack->rc_pace_to_cwnd = 0; 19763 else { 19764 rack->rc_pace_to_cwnd = 1; 19765 if (optval > 1) 19766 rack->r_fill_less_agg = 1; 19767 } 19768 if ((optval >= rack_gp_rtt_maxmul) && 19769 rack_gp_rtt_maxmul && 19770 (optval < 0xf)) { 19771 rack->rc_pace_fill_if_rttin_range = 1; 19772 rack->rtt_limit_mul = optval; 19773 } else { 19774 rack->rc_pace_fill_if_rttin_range = 0; 19775 rack->rtt_limit_mul = 0; 19776 } 19777 break; 19778 case TCP_RACK_NO_PUSH_AT_MAX: 19779 RACK_OPTS_INC(tcp_npush); 19780 if (optval == 0) 19781 rack->r_ctl.rc_no_push_at_mrtt = 0; 19782 else if (optval < 0xff) 19783 rack->r_ctl.rc_no_push_at_mrtt = optval; 19784 else 19785 error = EINVAL; 19786 break; 19787 case TCP_SHARED_CWND_ENABLE: 19788 RACK_OPTS_INC(tcp_rack_scwnd); 19789 if (optval == 0) 19790 rack->rack_enable_scwnd = 0; 19791 else 19792 rack->rack_enable_scwnd = 1; 19793 break; 19794 case TCP_RACK_MBUF_QUEUE: 19795 /* Now do we use the LRO mbuf-queue feature */ 19796 RACK_OPTS_INC(tcp_rack_mbufq); 19797 if (optval || rack->r_use_cmp_ack) 19798 rack->r_mbuf_queue = 1; 19799 else 19800 rack->r_mbuf_queue = 0; 19801 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19802 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19803 else 19804 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19805 break; 19806 case TCP_RACK_NONRXT_CFG_RATE: 19807 RACK_OPTS_INC(tcp_rack_cfg_rate); 19808 if (optval == 0) 19809 rack->rack_rec_nonrxt_use_cr = 0; 19810 else 19811 rack->rack_rec_nonrxt_use_cr = 1; 19812 break; 19813 case TCP_NO_PRR: 19814 RACK_OPTS_INC(tcp_rack_noprr); 19815 if (optval == 0) 19816 rack->rack_no_prr = 0; 19817 else if (optval == 1) 19818 rack->rack_no_prr = 1; 19819 else if (optval == 2) 19820 rack->no_prr_addback = 1; 19821 else 19822 error = EINVAL; 19823 break; 19824 case TCP_TIMELY_DYN_ADJ: 19825 RACK_OPTS_INC(tcp_timely_dyn); 19826 if (optval == 0) 19827 rack->rc_gp_dyn_mul = 0; 19828 else { 19829 rack->rc_gp_dyn_mul = 1; 19830 if (optval >= 100) { 19831 /* 19832 * If the user sets something 100 or more 19833 * its the gp_ca value. 19834 */ 19835 rack->r_ctl.rack_per_of_gp_ca = optval; 19836 } 19837 } 19838 break; 19839 case TCP_RACK_DO_DETECTION: 19840 RACK_OPTS_INC(tcp_rack_do_detection); 19841 if (optval == 0) 19842 rack->do_detection = 0; 19843 else 19844 rack->do_detection = 1; 19845 break; 19846 case TCP_RACK_TLP_USE: 19847 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { 19848 error = EINVAL; 19849 break; 19850 } 19851 RACK_OPTS_INC(tcp_tlp_use); 19852 rack->rack_tlp_threshold_use = optval; 19853 break; 19854 case TCP_RACK_TLP_REDUCE: 19855 /* RACK TLP cwnd reduction (bool) */ 19856 RACK_OPTS_INC(tcp_rack_tlp_reduce); 19857 rack->r_ctl.rc_tlp_cwnd_reduce = optval; 19858 break; 19859 /* Pacing related ones */ 19860 case TCP_RACK_PACE_ALWAYS: 19861 /* 19862 * zero is old rack method, 1 is new 19863 * method using a pacing rate. 19864 */ 19865 RACK_OPTS_INC(tcp_rack_pace_always); 19866 if (optval > 0) { 19867 if (rack->rc_always_pace) { 19868 error = EALREADY; 19869 break; 19870 } else if (tcp_can_enable_pacing()) { 19871 rack->rc_always_pace = 1; 19872 if (rack->use_fixed_rate || rack->gp_ready) 19873 rack_set_cc_pacing(rack); 19874 } 19875 else { 19876 error = ENOSPC; 19877 break; 19878 } 19879 } else { 19880 if (rack->rc_always_pace) { 19881 tcp_decrement_paced_conn(); 19882 rack->rc_always_pace = 0; 19883 rack_undo_cc_pacing(rack); 19884 } 19885 } 19886 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19887 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19888 else 19889 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19890 /* A rate may be set irate or other, if so set seg size */ 19891 rack_update_seg(rack); 19892 break; 19893 case TCP_BBR_RACK_INIT_RATE: 19894 RACK_OPTS_INC(tcp_initial_rate); 19895 val = optval; 19896 /* Change from kbits per second to bytes per second */ 19897 val *= 1000; 19898 val /= 8; 19899 rack->r_ctl.init_rate = val; 19900 if (rack->rc_init_win != rack_default_init_window) { 19901 uint32_t win, snt; 19902 19903 /* 19904 * Options don't always get applied 19905 * in the order you think. So in order 19906 * to assure we update a cwnd we need 19907 * to check and see if we are still 19908 * where we should raise the cwnd. 19909 */ 19910 win = rc_init_window(rack); 19911 if (SEQ_GT(tp->snd_max, tp->iss)) 19912 snt = tp->snd_max - tp->iss; 19913 else 19914 snt = 0; 19915 if ((snt < win) && 19916 (tp->snd_cwnd < win)) 19917 tp->snd_cwnd = win; 19918 } 19919 if (rack->rc_always_pace) 19920 rack_update_seg(rack); 19921 break; 19922 case TCP_BBR_IWINTSO: 19923 RACK_OPTS_INC(tcp_initial_win); 19924 if (optval && (optval <= 0xff)) { 19925 uint32_t win, snt; 19926 19927 rack->rc_init_win = optval; 19928 win = rc_init_window(rack); 19929 if (SEQ_GT(tp->snd_max, tp->iss)) 19930 snt = tp->snd_max - tp->iss; 19931 else 19932 snt = 0; 19933 if ((snt < win) && 19934 (tp->t_srtt | 19935 #ifdef NETFLIX_PEAKRATE 19936 tp->t_maxpeakrate | 19937 #endif 19938 rack->r_ctl.init_rate)) { 19939 /* 19940 * We are not past the initial window 19941 * and we have some bases for pacing, 19942 * so we need to possibly adjust up 19943 * the cwnd. Note even if we don't set 19944 * the cwnd, its still ok to raise the rc_init_win 19945 * which can be used coming out of idle when we 19946 * would have a rate. 19947 */ 19948 if (tp->snd_cwnd < win) 19949 tp->snd_cwnd = win; 19950 } 19951 if (rack->rc_always_pace) 19952 rack_update_seg(rack); 19953 } else 19954 error = EINVAL; 19955 break; 19956 case TCP_RACK_FORCE_MSEG: 19957 RACK_OPTS_INC(tcp_rack_force_max_seg); 19958 if (optval) 19959 rack->rc_force_max_seg = 1; 19960 else 19961 rack->rc_force_max_seg = 0; 19962 break; 19963 case TCP_RACK_PACE_MAX_SEG: 19964 /* Max segments size in a pace in bytes */ 19965 RACK_OPTS_INC(tcp_rack_max_seg); 19966 rack->rc_user_set_max_segs = optval; 19967 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19968 break; 19969 case TCP_RACK_PACE_RATE_REC: 19970 /* Set the fixed pacing rate in Bytes per second ca */ 19971 RACK_OPTS_INC(tcp_rack_pace_rate_rec); 19972 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19973 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 19974 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19975 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 19976 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19977 rack->use_fixed_rate = 1; 19978 if (rack->rc_always_pace) 19979 rack_set_cc_pacing(rack); 19980 rack_log_pacing_delay_calc(rack, 19981 rack->r_ctl.rc_fixed_pacing_rate_ss, 19982 rack->r_ctl.rc_fixed_pacing_rate_ca, 19983 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 19984 __LINE__, NULL,0); 19985 break; 19986 19987 case TCP_RACK_PACE_RATE_SS: 19988 /* Set the fixed pacing rate in Bytes per second ca */ 19989 RACK_OPTS_INC(tcp_rack_pace_rate_ss); 19990 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19991 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 19992 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19993 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 19994 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19995 rack->use_fixed_rate = 1; 19996 if (rack->rc_always_pace) 19997 rack_set_cc_pacing(rack); 19998 rack_log_pacing_delay_calc(rack, 19999 rack->r_ctl.rc_fixed_pacing_rate_ss, 20000 rack->r_ctl.rc_fixed_pacing_rate_ca, 20001 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20002 __LINE__, NULL, 0); 20003 break; 20004 20005 case TCP_RACK_PACE_RATE_CA: 20006 /* Set the fixed pacing rate in Bytes per second ca */ 20007 RACK_OPTS_INC(tcp_rack_pace_rate_ca); 20008 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 20009 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 20010 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 20011 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 20012 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 20013 rack->use_fixed_rate = 1; 20014 if (rack->rc_always_pace) 20015 rack_set_cc_pacing(rack); 20016 rack_log_pacing_delay_calc(rack, 20017 rack->r_ctl.rc_fixed_pacing_rate_ss, 20018 rack->r_ctl.rc_fixed_pacing_rate_ca, 20019 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 20020 __LINE__, NULL, 0); 20021 break; 20022 case TCP_RACK_GP_INCREASE_REC: 20023 RACK_OPTS_INC(tcp_gp_inc_rec); 20024 rack->r_ctl.rack_per_of_gp_rec = optval; 20025 rack_log_pacing_delay_calc(rack, 20026 rack->r_ctl.rack_per_of_gp_ss, 20027 rack->r_ctl.rack_per_of_gp_ca, 20028 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20029 __LINE__, NULL, 0); 20030 break; 20031 case TCP_RACK_GP_INCREASE_CA: 20032 RACK_OPTS_INC(tcp_gp_inc_ca); 20033 ca = optval; 20034 if (ca < 100) { 20035 /* 20036 * We don't allow any reduction 20037 * over the GP b/w. 20038 */ 20039 error = EINVAL; 20040 break; 20041 } 20042 rack->r_ctl.rack_per_of_gp_ca = ca; 20043 rack_log_pacing_delay_calc(rack, 20044 rack->r_ctl.rack_per_of_gp_ss, 20045 rack->r_ctl.rack_per_of_gp_ca, 20046 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20047 __LINE__, NULL, 0); 20048 break; 20049 case TCP_RACK_GP_INCREASE_SS: 20050 RACK_OPTS_INC(tcp_gp_inc_ss); 20051 ss = optval; 20052 if (ss < 100) { 20053 /* 20054 * We don't allow any reduction 20055 * over the GP b/w. 20056 */ 20057 error = EINVAL; 20058 break; 20059 } 20060 rack->r_ctl.rack_per_of_gp_ss = ss; 20061 rack_log_pacing_delay_calc(rack, 20062 rack->r_ctl.rack_per_of_gp_ss, 20063 rack->r_ctl.rack_per_of_gp_ca, 20064 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 20065 __LINE__, NULL, 0); 20066 break; 20067 case TCP_RACK_RR_CONF: 20068 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); 20069 if (optval && optval <= 3) 20070 rack->r_rr_config = optval; 20071 else 20072 rack->r_rr_config = 0; 20073 break; 20074 case TCP_HDWR_RATE_CAP: 20075 RACK_OPTS_INC(tcp_hdwr_rate_cap); 20076 if (optval) { 20077 if (rack->r_rack_hw_rate_caps == 0) 20078 rack->r_rack_hw_rate_caps = 1; 20079 else 20080 error = EALREADY; 20081 } else { 20082 rack->r_rack_hw_rate_caps = 0; 20083 } 20084 break; 20085 case TCP_BBR_HDWR_PACE: 20086 RACK_OPTS_INC(tcp_hdwr_pacing); 20087 if (optval){ 20088 if (rack->rack_hdrw_pacing == 0) { 20089 rack->rack_hdw_pace_ena = 1; 20090 rack->rack_attempt_hdwr_pace = 0; 20091 } else 20092 error = EALREADY; 20093 } else { 20094 rack->rack_hdw_pace_ena = 0; 20095 #ifdef RATELIMIT 20096 if (rack->r_ctl.crte != NULL) { 20097 rack->rack_hdrw_pacing = 0; 20098 rack->rack_attempt_hdwr_pace = 0; 20099 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 20100 rack->r_ctl.crte = NULL; 20101 } 20102 #endif 20103 } 20104 break; 20105 /* End Pacing related ones */ 20106 case TCP_RACK_PRR_SENDALOT: 20107 /* Allow PRR to send more than one seg */ 20108 RACK_OPTS_INC(tcp_rack_prr_sendalot); 20109 rack->r_ctl.rc_prr_sendalot = optval; 20110 break; 20111 case TCP_RACK_MIN_TO: 20112 /* Minimum time between rack t-o's in ms */ 20113 RACK_OPTS_INC(tcp_rack_min_to); 20114 rack->r_ctl.rc_min_to = optval; 20115 break; 20116 case TCP_RACK_EARLY_SEG: 20117 /* If early recovery max segments */ 20118 RACK_OPTS_INC(tcp_rack_early_seg); 20119 rack->r_ctl.rc_early_recovery_segs = optval; 20120 break; 20121 case TCP_RACK_ENABLE_HYSTART: 20122 { 20123 struct sockopt sopt; 20124 struct cc_newreno_opts opt; 20125 20126 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 20127 sopt.sopt_dir = SOPT_SET; 20128 opt.name = CC_NEWRENO_ENABLE_HYSTART; 20129 opt.val = optval; 20130 if (CC_ALGO(tp)->ctl_output != NULL) 20131 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 20132 else 20133 error = EINVAL; 20134 } 20135 break; 20136 case TCP_RACK_REORD_THRESH: 20137 /* RACK reorder threshold (shift amount) */ 20138 RACK_OPTS_INC(tcp_rack_reord_thresh); 20139 if ((optval > 0) && (optval < 31)) 20140 rack->r_ctl.rc_reorder_shift = optval; 20141 else 20142 error = EINVAL; 20143 break; 20144 case TCP_RACK_REORD_FADE: 20145 /* Does reordering fade after ms time */ 20146 RACK_OPTS_INC(tcp_rack_reord_fade); 20147 rack->r_ctl.rc_reorder_fade = optval; 20148 break; 20149 case TCP_RACK_TLP_THRESH: 20150 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20151 RACK_OPTS_INC(tcp_rack_tlp_thresh); 20152 if (optval) 20153 rack->r_ctl.rc_tlp_threshold = optval; 20154 else 20155 error = EINVAL; 20156 break; 20157 case TCP_BBR_USE_RACK_RR: 20158 RACK_OPTS_INC(tcp_rack_rr); 20159 if (optval) 20160 rack->use_rack_rr = 1; 20161 else 20162 rack->use_rack_rr = 0; 20163 break; 20164 case TCP_FAST_RSM_HACK: 20165 RACK_OPTS_INC(tcp_rack_fastrsm_hack); 20166 if (optval) 20167 rack->fast_rsm_hack = 1; 20168 else 20169 rack->fast_rsm_hack = 0; 20170 break; 20171 case TCP_RACK_PKT_DELAY: 20172 /* RACK added ms i.e. rack-rtt + reord + N */ 20173 RACK_OPTS_INC(tcp_rack_pkt_delay); 20174 rack->r_ctl.rc_pkt_delay = optval; 20175 break; 20176 case TCP_DELACK: 20177 RACK_OPTS_INC(tcp_rack_delayed_ack); 20178 if (optval == 0) 20179 tp->t_delayed_ack = 0; 20180 else 20181 tp->t_delayed_ack = 1; 20182 if (tp->t_flags & TF_DELACK) { 20183 tp->t_flags &= ~TF_DELACK; 20184 tp->t_flags |= TF_ACKNOW; 20185 NET_EPOCH_ENTER(et); 20186 rack_output(tp); 20187 NET_EPOCH_EXIT(et); 20188 } 20189 break; 20190 20191 case TCP_BBR_RACK_RTT_USE: 20192 RACK_OPTS_INC(tcp_rack_rtt_use); 20193 if ((optval != USE_RTT_HIGH) && 20194 (optval != USE_RTT_LOW) && 20195 (optval != USE_RTT_AVG)) 20196 error = EINVAL; 20197 else 20198 rack->r_ctl.rc_rate_sample_method = optval; 20199 break; 20200 case TCP_DATA_AFTER_CLOSE: 20201 RACK_OPTS_INC(tcp_data_after_close); 20202 if (optval) 20203 rack->rc_allow_data_af_clo = 1; 20204 else 20205 rack->rc_allow_data_af_clo = 0; 20206 break; 20207 default: 20208 break; 20209 } 20210 #ifdef NETFLIX_STATS 20211 tcp_log_socket_option(tp, sopt_name, optval, error); 20212 #endif 20213 return (error); 20214 } 20215 20216 20217 static void 20218 rack_apply_deferred_options(struct tcp_rack *rack) 20219 { 20220 struct deferred_opt_list *dol, *sdol; 20221 uint32_t s_optval; 20222 20223 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) { 20224 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 20225 /* Disadvantage of deferal is you loose the error return */ 20226 s_optval = (uint32_t)dol->optval; 20227 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval); 20228 free(dol, M_TCPDO); 20229 } 20230 } 20231 20232 static void 20233 rack_hw_tls_change(struct tcpcb *tp, int chg) 20234 { 20235 /* 20236 * HW tls state has changed.. fix all 20237 * rsm's in flight. 20238 */ 20239 struct tcp_rack *rack; 20240 struct rack_sendmap *rsm; 20241 20242 rack = (struct tcp_rack *)tp->t_fb_ptr; 20243 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 20244 if (chg) 20245 rsm->r_hw_tls = 1; 20246 else 20247 rsm->r_hw_tls = 0; 20248 } 20249 if (chg) 20250 rack->r_ctl.fsb.hw_tls = 1; 20251 else 20252 rack->r_ctl.fsb.hw_tls = 0; 20253 } 20254 20255 static int 20256 rack_pru_options(struct tcpcb *tp, int flags) 20257 { 20258 if (flags & PRUS_OOB) 20259 return (EOPNOTSUPP); 20260 return (0); 20261 } 20262 20263 static struct tcp_function_block __tcp_rack = { 20264 .tfb_tcp_block_name = __XSTRING(STACKNAME), 20265 .tfb_tcp_output = rack_output, 20266 .tfb_do_queued_segments = ctf_do_queued_segments, 20267 .tfb_do_segment_nounlock = rack_do_segment_nounlock, 20268 .tfb_tcp_do_segment = rack_do_segment, 20269 .tfb_tcp_ctloutput = rack_ctloutput, 20270 .tfb_tcp_fb_init = rack_init, 20271 .tfb_tcp_fb_fini = rack_fini, 20272 .tfb_tcp_timer_stop_all = rack_stopall, 20273 .tfb_tcp_timer_activate = rack_timer_activate, 20274 .tfb_tcp_timer_active = rack_timer_active, 20275 .tfb_tcp_timer_stop = rack_timer_stop, 20276 .tfb_tcp_rexmit_tmr = rack_remxt_tmr, 20277 .tfb_tcp_handoff_ok = rack_handoff_ok, 20278 .tfb_tcp_mtu_chg = rack_mtu_change, 20279 .tfb_pru_options = rack_pru_options, 20280 .tfb_hwtls_change = rack_hw_tls_change, 20281 }; 20282 20283 /* 20284 * rack_ctloutput() must drop the inpcb lock before performing copyin on 20285 * socket option arguments. When it re-acquires the lock after the copy, it 20286 * has to revalidate that the connection is still valid for the socket 20287 * option. 20288 */ 20289 static int 20290 rack_set_sockopt(struct socket *so, struct sockopt *sopt, 20291 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) 20292 { 20293 #ifdef INET6 20294 struct ip6_hdr *ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 20295 #endif 20296 #ifdef INET 20297 struct ip *ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 20298 #endif 20299 uint64_t loptval; 20300 int32_t error = 0, optval; 20301 20302 switch (sopt->sopt_level) { 20303 #ifdef INET6 20304 case IPPROTO_IPV6: 20305 MPASS(inp->inp_vflag & INP_IPV6PROTO); 20306 switch (sopt->sopt_name) { 20307 case IPV6_USE_MIN_MTU: 20308 tcp6_use_min_mtu(tp); 20309 break; 20310 case IPV6_TCLASS: 20311 /* 20312 * The DSCP codepoint has changed, update the fsb. 20313 */ 20314 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 20315 (rack->rc_inp->inp_flow & IPV6_FLOWINFO_MASK); 20316 break; 20317 } 20318 INP_WUNLOCK(inp); 20319 return (0); 20320 #endif 20321 #ifdef INET 20322 case IPPROTO_IP: 20323 switch (sopt->sopt_name) { 20324 case IP_TOS: 20325 /* 20326 * The DSCP codepoint has changed, update the fsb. 20327 */ 20328 ip->ip_tos = rack->rc_inp->inp_ip_tos; 20329 break; 20330 case IP_TTL: 20331 /* 20332 * The TTL has changed, update the fsb. 20333 */ 20334 ip->ip_ttl = rack->rc_inp->inp_ip_ttl; 20335 break; 20336 } 20337 INP_WUNLOCK(inp); 20338 return (0); 20339 #endif 20340 } 20341 20342 switch (sopt->sopt_name) { 20343 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ 20344 /* Pacing related ones */ 20345 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ 20346 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ 20347 case TCP_BBR_IWINTSO: /* URL:tso_iwin */ 20348 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ 20349 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ 20350 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ 20351 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ 20352 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ 20353 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ 20354 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ 20355 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ 20356 case TCP_RACK_RR_CONF: /* URL:rrr_conf */ 20357 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ 20358 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */ 20359 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */ 20360 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */ 20361 /* End pacing related */ 20362 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */ 20363 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */ 20364 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ 20365 case TCP_RACK_MIN_TO: /* URL:min_to */ 20366 case TCP_RACK_EARLY_SEG: /* URL:early_seg */ 20367 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ 20368 case TCP_RACK_REORD_FADE: /* URL:reord_fade */ 20369 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ 20370 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ 20371 case TCP_RACK_TLP_USE: /* URL:tlp_use */ 20372 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ 20373 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ 20374 case TCP_RACK_DO_DETECTION: /* URL:detect */ 20375 case TCP_NO_PRR: /* URL:noprr */ 20376 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ 20377 case TCP_DATA_AFTER_CLOSE: /* no URL */ 20378 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ 20379 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ 20380 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ 20381 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ 20382 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ 20383 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ 20384 case TCP_RACK_PROFILE: /* URL:profile */ 20385 case TCP_USE_CMP_ACKS: /* URL:cmpack */ 20386 case TCP_RACK_ABC_VAL: /* URL:labc */ 20387 case TCP_REC_ABC_VAL: /* URL:reclabc */ 20388 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */ 20389 case TCP_DEFER_OPTIONS: /* URL:defer */ 20390 case TCP_RACK_DSACK_OPT: /* URL:dsack */ 20391 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */ 20392 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */ 20393 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */ 20394 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */ 20395 break; 20396 default: 20397 /* Filter off all unknown options to the base stack */ 20398 return (tcp_default_ctloutput(so, sopt, inp, tp)); 20399 break; 20400 } 20401 INP_WUNLOCK(inp); 20402 if (sopt->sopt_name == TCP_PACING_RATE_CAP) { 20403 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval)); 20404 /* 20405 * We truncate it down to 32 bits for the socket-option trace this 20406 * means rates > 34Gbps won't show right, but thats probably ok. 20407 */ 20408 optval = (uint32_t)loptval; 20409 } else { 20410 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); 20411 /* Save it in 64 bit form too */ 20412 loptval = optval; 20413 } 20414 if (error) 20415 return (error); 20416 INP_WLOCK(inp); 20417 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 20418 INP_WUNLOCK(inp); 20419 return (ECONNRESET); 20420 } 20421 if (tp->t_fb != &__tcp_rack) { 20422 INP_WUNLOCK(inp); 20423 return (ENOPROTOOPT); 20424 } 20425 if (rack->defer_options && (rack->gp_ready == 0) && 20426 (sopt->sopt_name != TCP_DEFER_OPTIONS) && 20427 (sopt->sopt_name != TCP_RACK_PACING_BETA) && 20428 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) && 20429 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) { 20430 /* Options are beind deferred */ 20431 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) { 20432 INP_WUNLOCK(inp); 20433 return (0); 20434 } else { 20435 /* No memory to defer, fail */ 20436 INP_WUNLOCK(inp); 20437 return (ENOMEM); 20438 } 20439 } 20440 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval); 20441 INP_WUNLOCK(inp); 20442 return (error); 20443 } 20444 20445 static void 20446 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti) 20447 { 20448 20449 INP_WLOCK_ASSERT(tp->t_inpcb); 20450 bzero(ti, sizeof(*ti)); 20451 20452 ti->tcpi_state = tp->t_state; 20453 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) 20454 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; 20455 if (tp->t_flags & TF_SACK_PERMIT) 20456 ti->tcpi_options |= TCPI_OPT_SACK; 20457 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { 20458 ti->tcpi_options |= TCPI_OPT_WSCALE; 20459 ti->tcpi_snd_wscale = tp->snd_scale; 20460 ti->tcpi_rcv_wscale = tp->rcv_scale; 20461 } 20462 if (tp->t_flags2 & TF2_ECN_PERMIT) 20463 ti->tcpi_options |= TCPI_OPT_ECN; 20464 if (tp->t_flags & TF_FASTOPEN) 20465 ti->tcpi_options |= TCPI_OPT_TFO; 20466 /* still kept in ticks is t_rcvtime */ 20467 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; 20468 /* Since we hold everything in precise useconds this is easy */ 20469 ti->tcpi_rtt = tp->t_srtt; 20470 ti->tcpi_rttvar = tp->t_rttvar; 20471 ti->tcpi_rto = tp->t_rxtcur; 20472 ti->tcpi_snd_ssthresh = tp->snd_ssthresh; 20473 ti->tcpi_snd_cwnd = tp->snd_cwnd; 20474 /* 20475 * FreeBSD-specific extension fields for tcp_info. 20476 */ 20477 ti->tcpi_rcv_space = tp->rcv_wnd; 20478 ti->tcpi_rcv_nxt = tp->rcv_nxt; 20479 ti->tcpi_snd_wnd = tp->snd_wnd; 20480 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ 20481 ti->tcpi_snd_nxt = tp->snd_nxt; 20482 ti->tcpi_snd_mss = tp->t_maxseg; 20483 ti->tcpi_rcv_mss = tp->t_maxseg; 20484 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; 20485 ti->tcpi_rcv_ooopack = tp->t_rcvoopack; 20486 ti->tcpi_snd_zerowin = tp->t_sndzerowin; 20487 #ifdef NETFLIX_STATS 20488 ti->tcpi_total_tlp = tp->t_sndtlppack; 20489 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte; 20490 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo)); 20491 #endif 20492 #ifdef TCP_OFFLOAD 20493 if (tp->t_flags & TF_TOE) { 20494 ti->tcpi_options |= TCPI_OPT_TOE; 20495 tcp_offload_tcp_info(tp, ti); 20496 } 20497 #endif 20498 } 20499 20500 static int 20501 rack_get_sockopt(struct socket *so, struct sockopt *sopt, 20502 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) 20503 { 20504 int32_t error, optval; 20505 uint64_t val, loptval; 20506 struct tcp_info ti; 20507 /* 20508 * Because all our options are either boolean or an int, we can just 20509 * pull everything into optval and then unlock and copy. If we ever 20510 * add a option that is not a int, then this will have quite an 20511 * impact to this routine. 20512 */ 20513 error = 0; 20514 switch (sopt->sopt_name) { 20515 case TCP_INFO: 20516 /* First get the info filled */ 20517 rack_fill_info(tp, &ti); 20518 /* Fix up the rtt related fields if needed */ 20519 INP_WUNLOCK(inp); 20520 error = sooptcopyout(sopt, &ti, sizeof ti); 20521 return (error); 20522 /* 20523 * Beta is the congestion control value for NewReno that influences how 20524 * much of a backoff happens when loss is detected. It is normally set 20525 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value 20526 * when you exit recovery. 20527 */ 20528 case TCP_RACK_PACING_BETA: 20529 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20530 error = EINVAL; 20531 else if (rack->rc_pacing_cc_set == 0) 20532 optval = rack->r_ctl.rc_saved_beta.beta; 20533 else { 20534 /* 20535 * Reach out into the CC data and report back what 20536 * I have previously set. Yeah it looks hackish but 20537 * we don't want to report the saved values. 20538 */ 20539 if (tp->ccv->cc_data) 20540 optval = ((struct newreno *)tp->ccv->cc_data)->beta; 20541 else 20542 error = EINVAL; 20543 } 20544 break; 20545 /* 20546 * Beta_ecn is the congestion control value for NewReno that influences how 20547 * much of a backoff happens when a ECN mark is detected. It is normally set 20548 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when 20549 * you exit recovery. Note that classic ECN has a beta of 50, it is only 20550 * ABE Ecn that uses this "less" value, but we do too with pacing :) 20551 */ 20552 20553 case TCP_RACK_PACING_BETA_ECN: 20554 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 20555 error = EINVAL; 20556 else if (rack->rc_pacing_cc_set == 0) 20557 optval = rack->r_ctl.rc_saved_beta.beta_ecn; 20558 else { 20559 /* 20560 * Reach out into the CC data and report back what 20561 * I have previously set. Yeah it looks hackish but 20562 * we don't want to report the saved values. 20563 */ 20564 if (tp->ccv->cc_data) 20565 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn; 20566 else 20567 error = EINVAL; 20568 } 20569 break; 20570 case TCP_RACK_DSACK_OPT: 20571 optval = 0; 20572 if (rack->rc_rack_tmr_std_based) { 20573 optval |= 1; 20574 } 20575 if (rack->rc_rack_use_dsack) { 20576 optval |= 2; 20577 } 20578 break; 20579 case TCP_RACK_ENABLE_HYSTART: 20580 { 20581 struct sockopt sopt; 20582 struct cc_newreno_opts opt; 20583 20584 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 20585 sopt.sopt_dir = SOPT_GET; 20586 opt.name = CC_NEWRENO_ENABLE_HYSTART; 20587 if (CC_ALGO(tp)->ctl_output != NULL) 20588 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 20589 else 20590 error = EINVAL; 20591 optval = opt.val; 20592 } 20593 break; 20594 case TCP_FAST_RSM_HACK: 20595 optval = rack->fast_rsm_hack; 20596 break; 20597 case TCP_DEFER_OPTIONS: 20598 optval = rack->defer_options; 20599 break; 20600 case TCP_RACK_MEASURE_CNT: 20601 optval = rack->r_ctl.req_measurements; 20602 break; 20603 case TCP_REC_ABC_VAL: 20604 optval = rack->r_use_labc_for_rec; 20605 break; 20606 case TCP_RACK_ABC_VAL: 20607 optval = rack->rc_labc; 20608 break; 20609 case TCP_HDWR_UP_ONLY: 20610 optval= rack->r_up_only; 20611 break; 20612 case TCP_PACING_RATE_CAP: 20613 loptval = rack->r_ctl.bw_rate_cap; 20614 break; 20615 case TCP_RACK_PROFILE: 20616 /* You cannot retrieve a profile, its write only */ 20617 error = EINVAL; 20618 break; 20619 case TCP_USE_CMP_ACKS: 20620 optval = rack->r_use_cmp_ack; 20621 break; 20622 case TCP_RACK_PACE_TO_FILL: 20623 optval = rack->rc_pace_to_cwnd; 20624 if (optval && rack->r_fill_less_agg) 20625 optval++; 20626 break; 20627 case TCP_RACK_NO_PUSH_AT_MAX: 20628 optval = rack->r_ctl.rc_no_push_at_mrtt; 20629 break; 20630 case TCP_SHARED_CWND_ENABLE: 20631 optval = rack->rack_enable_scwnd; 20632 break; 20633 case TCP_RACK_NONRXT_CFG_RATE: 20634 optval = rack->rack_rec_nonrxt_use_cr; 20635 break; 20636 case TCP_NO_PRR: 20637 if (rack->rack_no_prr == 1) 20638 optval = 1; 20639 else if (rack->no_prr_addback == 1) 20640 optval = 2; 20641 else 20642 optval = 0; 20643 break; 20644 case TCP_RACK_DO_DETECTION: 20645 optval = rack->do_detection; 20646 break; 20647 case TCP_RACK_MBUF_QUEUE: 20648 /* Now do we use the LRO mbuf-queue feature */ 20649 optval = rack->r_mbuf_queue; 20650 break; 20651 case TCP_TIMELY_DYN_ADJ: 20652 optval = rack->rc_gp_dyn_mul; 20653 break; 20654 case TCP_BBR_IWINTSO: 20655 optval = rack->rc_init_win; 20656 break; 20657 case TCP_RACK_TLP_REDUCE: 20658 /* RACK TLP cwnd reduction (bool) */ 20659 optval = rack->r_ctl.rc_tlp_cwnd_reduce; 20660 break; 20661 case TCP_BBR_RACK_INIT_RATE: 20662 val = rack->r_ctl.init_rate; 20663 /* convert to kbits per sec */ 20664 val *= 8; 20665 val /= 1000; 20666 optval = (uint32_t)val; 20667 break; 20668 case TCP_RACK_FORCE_MSEG: 20669 optval = rack->rc_force_max_seg; 20670 break; 20671 case TCP_RACK_PACE_MAX_SEG: 20672 /* Max segments in a pace */ 20673 optval = rack->rc_user_set_max_segs; 20674 break; 20675 case TCP_RACK_PACE_ALWAYS: 20676 /* Use the always pace method */ 20677 optval = rack->rc_always_pace; 20678 break; 20679 case TCP_RACK_PRR_SENDALOT: 20680 /* Allow PRR to send more than one seg */ 20681 optval = rack->r_ctl.rc_prr_sendalot; 20682 break; 20683 case TCP_RACK_MIN_TO: 20684 /* Minimum time between rack t-o's in ms */ 20685 optval = rack->r_ctl.rc_min_to; 20686 break; 20687 case TCP_RACK_EARLY_SEG: 20688 /* If early recovery max segments */ 20689 optval = rack->r_ctl.rc_early_recovery_segs; 20690 break; 20691 case TCP_RACK_REORD_THRESH: 20692 /* RACK reorder threshold (shift amount) */ 20693 optval = rack->r_ctl.rc_reorder_shift; 20694 break; 20695 case TCP_RACK_REORD_FADE: 20696 /* Does reordering fade after ms time */ 20697 optval = rack->r_ctl.rc_reorder_fade; 20698 break; 20699 case TCP_BBR_USE_RACK_RR: 20700 /* Do we use the rack cheat for rxt */ 20701 optval = rack->use_rack_rr; 20702 break; 20703 case TCP_RACK_RR_CONF: 20704 optval = rack->r_rr_config; 20705 break; 20706 case TCP_HDWR_RATE_CAP: 20707 optval = rack->r_rack_hw_rate_caps; 20708 break; 20709 case TCP_BBR_HDWR_PACE: 20710 optval = rack->rack_hdw_pace_ena; 20711 break; 20712 case TCP_RACK_TLP_THRESH: 20713 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 20714 optval = rack->r_ctl.rc_tlp_threshold; 20715 break; 20716 case TCP_RACK_PKT_DELAY: 20717 /* RACK added ms i.e. rack-rtt + reord + N */ 20718 optval = rack->r_ctl.rc_pkt_delay; 20719 break; 20720 case TCP_RACK_TLP_USE: 20721 optval = rack->rack_tlp_threshold_use; 20722 break; 20723 case TCP_RACK_PACE_RATE_CA: 20724 optval = rack->r_ctl.rc_fixed_pacing_rate_ca; 20725 break; 20726 case TCP_RACK_PACE_RATE_SS: 20727 optval = rack->r_ctl.rc_fixed_pacing_rate_ss; 20728 break; 20729 case TCP_RACK_PACE_RATE_REC: 20730 optval = rack->r_ctl.rc_fixed_pacing_rate_rec; 20731 break; 20732 case TCP_RACK_GP_INCREASE_SS: 20733 optval = rack->r_ctl.rack_per_of_gp_ca; 20734 break; 20735 case TCP_RACK_GP_INCREASE_CA: 20736 optval = rack->r_ctl.rack_per_of_gp_ss; 20737 break; 20738 case TCP_BBR_RACK_RTT_USE: 20739 optval = rack->r_ctl.rc_rate_sample_method; 20740 break; 20741 case TCP_DELACK: 20742 optval = tp->t_delayed_ack; 20743 break; 20744 case TCP_DATA_AFTER_CLOSE: 20745 optval = rack->rc_allow_data_af_clo; 20746 break; 20747 case TCP_SHARED_CWND_TIME_LIMIT: 20748 optval = rack->r_limit_scw; 20749 break; 20750 case TCP_RACK_TIMER_SLOP: 20751 optval = rack->r_ctl.timer_slop; 20752 break; 20753 default: 20754 return (tcp_default_ctloutput(so, sopt, inp, tp)); 20755 break; 20756 } 20757 INP_WUNLOCK(inp); 20758 if (error == 0) { 20759 if (TCP_PACING_RATE_CAP) 20760 error = sooptcopyout(sopt, &loptval, sizeof loptval); 20761 else 20762 error = sooptcopyout(sopt, &optval, sizeof optval); 20763 } 20764 return (error); 20765 } 20766 20767 static int 20768 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp) 20769 { 20770 int32_t error = EINVAL; 20771 struct tcp_rack *rack; 20772 20773 rack = (struct tcp_rack *)tp->t_fb_ptr; 20774 if (rack == NULL) { 20775 /* Huh? */ 20776 goto out; 20777 } 20778 if (sopt->sopt_dir == SOPT_SET) { 20779 return (rack_set_sockopt(so, sopt, inp, tp, rack)); 20780 } else if (sopt->sopt_dir == SOPT_GET) { 20781 return (rack_get_sockopt(so, sopt, inp, tp, rack)); 20782 } 20783 out: 20784 INP_WUNLOCK(inp); 20785 return (error); 20786 } 20787 20788 static const char *rack_stack_names[] = { 20789 __XSTRING(STACKNAME), 20790 #ifdef STACKALIAS 20791 __XSTRING(STACKALIAS), 20792 #endif 20793 }; 20794 20795 static int 20796 rack_ctor(void *mem, int32_t size, void *arg, int32_t how) 20797 { 20798 memset(mem, 0, size); 20799 return (0); 20800 } 20801 20802 static void 20803 rack_dtor(void *mem, int32_t size, void *arg) 20804 { 20805 20806 } 20807 20808 static bool rack_mod_inited = false; 20809 20810 static int 20811 tcp_addrack(module_t mod, int32_t type, void *data) 20812 { 20813 int32_t err = 0; 20814 int num_stacks; 20815 20816 switch (type) { 20817 case MOD_LOAD: 20818 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", 20819 sizeof(struct rack_sendmap), 20820 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 20821 20822 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", 20823 sizeof(struct tcp_rack), 20824 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 20825 20826 sysctl_ctx_init(&rack_sysctl_ctx); 20827 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 20828 SYSCTL_STATIC_CHILDREN(_net_inet_tcp), 20829 OID_AUTO, 20830 #ifdef STACKALIAS 20831 __XSTRING(STACKALIAS), 20832 #else 20833 __XSTRING(STACKNAME), 20834 #endif 20835 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 20836 ""); 20837 if (rack_sysctl_root == NULL) { 20838 printf("Failed to add sysctl node\n"); 20839 err = EFAULT; 20840 goto free_uma; 20841 } 20842 rack_init_sysctls(); 20843 num_stacks = nitems(rack_stack_names); 20844 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, 20845 rack_stack_names, &num_stacks); 20846 if (err) { 20847 printf("Failed to register %s stack name for " 20848 "%s module\n", rack_stack_names[num_stacks], 20849 __XSTRING(MODNAME)); 20850 sysctl_ctx_free(&rack_sysctl_ctx); 20851 free_uma: 20852 uma_zdestroy(rack_zone); 20853 uma_zdestroy(rack_pcb_zone); 20854 rack_counter_destroy(); 20855 printf("Failed to register rack module -- err:%d\n", err); 20856 return (err); 20857 } 20858 tcp_lro_reg_mbufq(); 20859 rack_mod_inited = true; 20860 break; 20861 case MOD_QUIESCE: 20862 err = deregister_tcp_functions(&__tcp_rack, true, false); 20863 break; 20864 case MOD_UNLOAD: 20865 err = deregister_tcp_functions(&__tcp_rack, false, true); 20866 if (err == EBUSY) 20867 break; 20868 if (rack_mod_inited) { 20869 uma_zdestroy(rack_zone); 20870 uma_zdestroy(rack_pcb_zone); 20871 sysctl_ctx_free(&rack_sysctl_ctx); 20872 rack_counter_destroy(); 20873 rack_mod_inited = false; 20874 } 20875 tcp_lro_dereg_mbufq(); 20876 err = 0; 20877 break; 20878 default: 20879 return (EOPNOTSUPP); 20880 } 20881 return (err); 20882 } 20883 20884 static moduledata_t tcp_rack = { 20885 .name = __XSTRING(MODNAME), 20886 .evhand = tcp_addrack, 20887 .priv = 0 20888 }; 20889 20890 MODULE_VERSION(MODNAME, 1); 20891 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); 20892 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1); 20893