xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision afc571b1a6fb341b0e3f603d4f3a2538093e91f5)
1 /*-
2  * Copyright (c) 2016-9 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #ifdef KERN_TLS
52 #include <sys/ktls.h>
53 #endif
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #ifdef STATS
57 #include <sys/qmath.h>
58 #include <sys/tree.h>
59 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
60 #endif
61 #include <sys/refcount.h>
62 #include <sys/tree.h>
63 #include <sys/queue.h>
64 #include <sys/smp.h>
65 #include <sys/kthread.h>
66 #include <sys/kern_prefetch.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/route.h>
71 #include <net/vnet.h>
72 
73 #define TCPSTATES		/* for logging */
74 
75 #include <netinet/in.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
80 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
81 #include <netinet/ip_var.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/tcp.h>
86 #define	TCPOUTFLAGS
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_log_buf.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_hpts.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/cc/cc.h>
95 #include <netinet/tcp_fastopen.h>
96 #include <netinet/tcp_lro.h>
97 #ifdef TCPDEBUG
98 #include <netinet/tcp_debug.h>
99 #endif				/* TCPDEBUG */
100 #ifdef TCP_OFFLOAD
101 #include <netinet/tcp_offload.h>
102 #endif
103 #ifdef INET6
104 #include <netinet6/tcp6_var.h>
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif				/* IPSEC */
113 
114 #include <netinet/udp.h>
115 #include <netinet/udp_var.h>
116 #include <machine/in_cksum.h>
117 
118 #ifdef MAC
119 #include <security/mac/mac_framework.h>
120 #endif
121 #include "sack_filter.h"
122 #include "tcp_rack.h"
123 #include "rack_bbr_common.h"
124 
125 uma_zone_t rack_zone;
126 uma_zone_t rack_pcb_zone;
127 
128 #ifndef TICKS2SBT
129 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
130 #endif
131 
132 struct sysctl_ctx_list rack_sysctl_ctx;
133 struct sysctl_oid *rack_sysctl_root;
134 
135 #define CUM_ACKED 1
136 #define SACKED 2
137 
138 /*
139  * The RACK module incorporates a number of
140  * TCP ideas that have been put out into the IETF
141  * over the last few years:
142  * - Matt Mathis's Rate Halving which slowly drops
143  *    the congestion window so that the ack clock can
144  *    be maintained during a recovery.
145  * - Yuchung Cheng's RACK TCP (for which its named) that
146  *    will stop us using the number of dup acks and instead
147  *    use time as the gage of when we retransmit.
148  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
149  *    of Dukkipati et.al.
150  * RACK depends on SACK, so if an endpoint arrives that
151  * cannot do SACK the state machine below will shuttle the
152  * connection back to using the "default" TCP stack that is
153  * in FreeBSD.
154  *
155  * To implement RACK the original TCP stack was first decomposed
156  * into a functional state machine with individual states
157  * for each of the possible TCP connection states. The do_segement
158  * functions role in life is to mandate the connection supports SACK
159  * initially and then assure that the RACK state matches the conenction
160  * state before calling the states do_segment function. Each
161  * state is simplified due to the fact that the original do_segment
162  * has been decomposed and we *know* what state we are in (no
163  * switches on the state) and all tests for SACK are gone. This
164  * greatly simplifies what each state does.
165  *
166  * TCP output is also over-written with a new version since it
167  * must maintain the new rack scoreboard.
168  *
169  */
170 static int32_t rack_tlp_thresh = 1;
171 static int32_t rack_reorder_thresh = 2;
172 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
173 						 * - 60 seconds */
174 /* Attack threshold detections */
175 static uint32_t rack_highest_sack_thresh_seen = 0;
176 static uint32_t rack_highest_move_thresh_seen = 0;
177 
178 static int32_t rack_pkt_delay = 1;
179 static int32_t rack_min_pace_time = 0;
180 static int32_t rack_early_recovery = 1;
181 static int32_t rack_send_a_lot_in_prr = 1;
182 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
183 static int32_t rack_verbose_logging = 0;
184 static int32_t rack_ignore_data_after_close = 1;
185 static int32_t use_rack_cheat = 1;
186 static int32_t rack_persist_min = 250;	/* 250ms */
187 static int32_t rack_persist_max = 1000;	/* 1 Second */
188 static int32_t rack_sack_not_required = 0;	/* set to one to allow non-sack to use rack */
189 static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
190 
191 /*
192  * Currently regular tcp has a rto_min of 30ms
193  * the backoff goes 12 times so that ends up
194  * being a total of 122.850 seconds before a
195  * connection is killed.
196  */
197 static int32_t rack_tlp_min = 10;
198 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
199 static int32_t rack_rto_max = 4000;	/* 4 seconds */
200 static const int32_t rack_free_cache = 2;
201 static int32_t rack_hptsi_segments = 40;
202 static int32_t rack_rate_sample_method = USE_RTT_LOW;
203 static int32_t rack_pace_every_seg = 0;
204 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
205 static int32_t rack_slot_reduction = 4;
206 static int32_t rack_lower_cwnd_at_tlp = 0;
207 static int32_t rack_use_proportional_reduce = 0;
208 static int32_t rack_proportional_rate = 10;
209 static int32_t rack_tlp_max_resend = 2;
210 static int32_t rack_limited_retran = 0;
211 static int32_t rack_always_send_oldest = 0;
212 static int32_t rack_use_sack_filter = 1;
213 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
214 static int32_t rack_per_of_gp = 50;
215 
216 /* Rack specific counters */
217 counter_u64_t rack_badfr;
218 counter_u64_t rack_badfr_bytes;
219 counter_u64_t rack_rtm_prr_retran;
220 counter_u64_t rack_rtm_prr_newdata;
221 counter_u64_t rack_timestamp_mismatch;
222 counter_u64_t rack_reorder_seen;
223 counter_u64_t rack_paced_segments;
224 counter_u64_t rack_unpaced_segments;
225 counter_u64_t rack_calc_zero;
226 counter_u64_t rack_calc_nonzero;
227 counter_u64_t rack_saw_enobuf;
228 counter_u64_t rack_saw_enetunreach;
229 counter_u64_t rack_per_timer_hole;
230 
231 /* Tail loss probe counters */
232 counter_u64_t rack_tlp_tot;
233 counter_u64_t rack_tlp_newdata;
234 counter_u64_t rack_tlp_retran;
235 counter_u64_t rack_tlp_retran_bytes;
236 counter_u64_t rack_tlp_retran_fail;
237 counter_u64_t rack_to_tot;
238 counter_u64_t rack_to_arm_rack;
239 counter_u64_t rack_to_arm_tlp;
240 counter_u64_t rack_to_alloc;
241 counter_u64_t rack_to_alloc_hard;
242 counter_u64_t rack_to_alloc_emerg;
243 counter_u64_t rack_to_alloc_limited;
244 counter_u64_t rack_alloc_limited_conns;
245 counter_u64_t rack_split_limited;
246 
247 counter_u64_t rack_sack_proc_all;
248 counter_u64_t rack_sack_proc_short;
249 counter_u64_t rack_sack_proc_restart;
250 counter_u64_t rack_sack_attacks_detected;
251 counter_u64_t rack_sack_attacks_reversed;
252 counter_u64_t rack_sack_used_next_merge;
253 counter_u64_t rack_sack_splits;
254 counter_u64_t rack_sack_used_prev_merge;
255 counter_u64_t rack_sack_skipped_acked;
256 counter_u64_t rack_ack_total;
257 counter_u64_t rack_express_sack;
258 counter_u64_t rack_sack_total;
259 counter_u64_t rack_move_none;
260 counter_u64_t rack_move_some;
261 
262 counter_u64_t rack_used_tlpmethod;
263 counter_u64_t rack_used_tlpmethod2;
264 counter_u64_t rack_enter_tlp_calc;
265 counter_u64_t rack_input_idle_reduces;
266 counter_u64_t rack_collapsed_win;
267 counter_u64_t rack_tlp_does_nada;
268 
269 /* Counters for HW TLS */
270 counter_u64_t rack_tls_rwnd;
271 counter_u64_t rack_tls_cwnd;
272 counter_u64_t rack_tls_app;
273 counter_u64_t rack_tls_other;
274 counter_u64_t rack_tls_filled;
275 counter_u64_t rack_tls_rxt;
276 counter_u64_t rack_tls_tlp;
277 
278 /* Temp CPU counters */
279 counter_u64_t rack_find_high;
280 
281 counter_u64_t rack_progress_drops;
282 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
283 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
284 
285 static void
286 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
287 
288 static int
289 rack_process_ack(struct mbuf *m, struct tcphdr *th,
290     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
291     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
292 static int
293 rack_process_data(struct mbuf *m, struct tcphdr *th,
294     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
295     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
296 static void
297 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
298     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
299 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
300 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
301     uint8_t limit_type);
302 static struct rack_sendmap *
303 rack_check_recovery_mode(struct tcpcb *tp,
304     uint32_t tsused);
305 static void
306 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
307     uint32_t type);
308 static void rack_counter_destroy(void);
309 static int
310 rack_ctloutput(struct socket *so, struct sockopt *sopt,
311     struct inpcb *inp, struct tcpcb *tp);
312 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
313 static void
314 rack_do_segment(struct mbuf *m, struct tcphdr *th,
315     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
316     uint8_t iptos);
317 static void rack_dtor(void *mem, int32_t size, void *arg);
318 static void
319 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
320     uint32_t t, uint32_t cts);
321 static struct rack_sendmap *
322 rack_find_high_nonack(struct tcp_rack *rack,
323     struct rack_sendmap *rsm);
324 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
325 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
326 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
327 static int
328 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
329     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
330 static int32_t rack_handoff_ok(struct tcpcb *tp);
331 static int32_t rack_init(struct tcpcb *tp);
332 static void rack_init_sysctls(void);
333 static void
334 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
335     struct tcphdr *th);
336 static void
337 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
338     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
339     uint8_t pass, struct rack_sendmap *hintrsm);
340 static void
341 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
342     struct rack_sendmap *rsm);
343 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
344 static int32_t rack_output(struct tcpcb *tp);
345 
346 static uint32_t
347 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
348     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
349     uint32_t cts, int *moved_two);
350 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
351 static void rack_remxt_tmr(struct tcpcb *tp);
352 static int
353 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
354     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
355 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
356 static int32_t rack_stopall(struct tcpcb *tp);
357 static void
358 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
359     uint32_t delta);
360 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
361 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
362 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
363 static uint32_t
364 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
365     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
366 static void
367 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
368     struct rack_sendmap *rsm, uint32_t ts);
369 static int
370 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
371     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
372 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
373 static int
374 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
375     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
376     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
377 static int
378 rack_do_closing(struct mbuf *m, struct tcphdr *th,
379     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
380     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
381 static int
382 rack_do_established(struct mbuf *m, struct tcphdr *th,
383     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
384     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
385 static int
386 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
387     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
388     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
389 static int
390 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
391     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
392     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
393 static int
394 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
395     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
396     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
397 static int
398 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
399     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
400     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
401 static int
402 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
403     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
404     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
405 static int
406 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
407     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
408     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
409 struct rack_sendmap *
410 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
411     uint32_t tsused);
412 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
413 static void
414      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
415 
416 int32_t rack_clear_counter=0;
417 
418 
419 static int
420 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
421 {
422 	uint32_t stat;
423 	int32_t error;
424 
425 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
426 	if (error || req->newptr == NULL)
427 		return error;
428 
429 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
430 	if (error)
431 		return (error);
432 	if (stat == 1) {
433 #ifdef INVARIANTS
434 		printf("Clearing RACK counters\n");
435 #endif
436 		counter_u64_zero(rack_badfr);
437 		counter_u64_zero(rack_badfr_bytes);
438 		counter_u64_zero(rack_rtm_prr_retran);
439 		counter_u64_zero(rack_rtm_prr_newdata);
440 		counter_u64_zero(rack_timestamp_mismatch);
441 		counter_u64_zero(rack_reorder_seen);
442 		counter_u64_zero(rack_tlp_tot);
443 		counter_u64_zero(rack_tlp_newdata);
444 		counter_u64_zero(rack_tlp_retran);
445 		counter_u64_zero(rack_tlp_retran_bytes);
446 		counter_u64_zero(rack_tlp_retran_fail);
447 		counter_u64_zero(rack_to_tot);
448 		counter_u64_zero(rack_to_arm_rack);
449 		counter_u64_zero(rack_to_arm_tlp);
450 		counter_u64_zero(rack_paced_segments);
451 		counter_u64_zero(rack_calc_zero);
452 		counter_u64_zero(rack_calc_nonzero);
453 		counter_u64_zero(rack_unpaced_segments);
454 		counter_u64_zero(rack_saw_enobuf);
455 		counter_u64_zero(rack_saw_enetunreach);
456 		counter_u64_zero(rack_per_timer_hole);
457 		counter_u64_zero(rack_to_alloc_hard);
458 		counter_u64_zero(rack_to_alloc_emerg);
459 		counter_u64_zero(rack_sack_proc_all);
460 		counter_u64_zero(rack_sack_proc_short);
461 		counter_u64_zero(rack_sack_proc_restart);
462 		counter_u64_zero(rack_to_alloc);
463 		counter_u64_zero(rack_to_alloc_limited);
464 		counter_u64_zero(rack_alloc_limited_conns);
465 		counter_u64_zero(rack_split_limited);
466 		counter_u64_zero(rack_find_high);
467 		counter_u64_zero(rack_tls_rwnd);
468 		counter_u64_zero(rack_tls_cwnd);
469 		counter_u64_zero(rack_tls_app);
470 		counter_u64_zero(rack_tls_other);
471 		counter_u64_zero(rack_tls_filled);
472 		counter_u64_zero(rack_tls_rxt);
473 		counter_u64_zero(rack_tls_tlp);
474 		counter_u64_zero(rack_sack_attacks_detected);
475 		counter_u64_zero(rack_sack_attacks_reversed);
476 		counter_u64_zero(rack_sack_used_next_merge);
477 		counter_u64_zero(rack_sack_used_prev_merge);
478 		counter_u64_zero(rack_sack_splits);
479 		counter_u64_zero(rack_sack_skipped_acked);
480 		counter_u64_zero(rack_ack_total);
481 		counter_u64_zero(rack_express_sack);
482 		counter_u64_zero(rack_sack_total);
483 		counter_u64_zero(rack_move_none);
484 		counter_u64_zero(rack_move_some);
485 		counter_u64_zero(rack_used_tlpmethod);
486 		counter_u64_zero(rack_used_tlpmethod2);
487 		counter_u64_zero(rack_enter_tlp_calc);
488 		counter_u64_zero(rack_progress_drops);
489 		counter_u64_zero(rack_tlp_does_nada);
490 		counter_u64_zero(rack_collapsed_win);
491 
492 	}
493 	rack_clear_counter = 0;
494 	return (0);
495 }
496 
497 
498 
499 static void
500 rack_init_sysctls(void)
501 {
502 	struct sysctl_oid *rack_counters;
503 	struct sysctl_oid *rack_attack;
504 
505 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
506 	    SYSCTL_CHILDREN(rack_sysctl_root),
507 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
508 	    &rack_rate_sample_method , USE_RTT_LOW,
509 	    "What method should we use for rate sampling 0=high, 1=low ");
510 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
511 	    SYSCTL_CHILDREN(rack_sysctl_root),
512 	    OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
513 	    &rack_hw_tls_max_seg , 0,
514 	    "Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
515 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
516 	    SYSCTL_CHILDREN(rack_sysctl_root),
517 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
518 	    &rack_ignore_data_after_close, 0,
519 	    "Do we hold off sending a RST until all pending data is ack'd");
520 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
521 	    SYSCTL_CHILDREN(rack_sysctl_root),
522 	    OID_AUTO, "cheat_rxt", CTLFLAG_RW,
523 	    &use_rack_cheat, 1,
524 	    "Do we use the rxt cheat for rack?");
525 
526 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
527 	    SYSCTL_CHILDREN(rack_sysctl_root),
528 	    OID_AUTO, "persmin", CTLFLAG_RW,
529 	    &rack_persist_min, 250,
530 	    "What is the minimum time in milliseconds between persists");
531 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
532 	    SYSCTL_CHILDREN(rack_sysctl_root),
533 	    OID_AUTO, "persmax", CTLFLAG_RW,
534 	    &rack_persist_max, 1000,
535 	    "What is the largest delay in milliseconds between persists");
536 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
537 	    SYSCTL_CHILDREN(rack_sysctl_root),
538 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
539 	    &rack_sack_not_required, 0,
540 	    "Do we allow rack to run on connections not supporting SACK?");
541 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
542 	    SYSCTL_CHILDREN(rack_sysctl_root),
543 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
544 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
545 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
546 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
547 	    SYSCTL_CHILDREN(rack_sysctl_root),
548 	    OID_AUTO, "gp_percentage", CTLFLAG_RW,
549 	    &rack_per_of_gp, 50,
550 	    "Do we pace to percentage of goodput (0=old method)?");
551 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
552 	    SYSCTL_CHILDREN(rack_sysctl_root),
553 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
554 	    &rack_min_pace_time, 0,
555 	    "Should we enforce a minimum pace time of 1ms");
556 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
557 	    SYSCTL_CHILDREN(rack_sysctl_root),
558 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
559 	    &rack_verbose_logging, 0,
560 	    "Should RACK black box logging be verbose");
561 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
562 	    SYSCTL_CHILDREN(rack_sysctl_root),
563 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
564 	    &rack_use_sack_filter, 1,
565 	    "Do we use sack filtering?");
566 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
567 	    SYSCTL_CHILDREN(rack_sysctl_root),
568 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
569 	    &rack_delayed_ack_time, 200,
570 	    "Delayed ack time (200ms)");
571 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
572 	    SYSCTL_CHILDREN(rack_sysctl_root),
573 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
574 	    &rack_tlp_min, 10,
575 	    "TLP minimum timeout per the specification (10ms)");
576 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
577 	    SYSCTL_CHILDREN(rack_sysctl_root),
578 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
579 	    &rack_always_send_oldest, 1,
580 	    "Should we always send the oldest TLP and RACK-TLP");
581 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
582 	    SYSCTL_CHILDREN(rack_sysctl_root),
583 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
584 	    &rack_limited_retran, 0,
585 	    "How many times can a rack timeout drive out sends");
586 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
587 	    SYSCTL_CHILDREN(rack_sysctl_root),
588 	    OID_AUTO, "minrto", CTLFLAG_RW,
589 	    &rack_rto_min, 0,
590 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
591 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
592 	    SYSCTL_CHILDREN(rack_sysctl_root),
593 	    OID_AUTO, "maxrto", CTLFLAG_RW,
594 	    &rack_rto_max, 0,
595 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
596 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
597 	    SYSCTL_CHILDREN(rack_sysctl_root),
598 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
599 	    &rack_tlp_max_resend, 2,
600 	    "How many times does TLP retry a single segment or multiple with no ACK");
601 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
602 	    SYSCTL_CHILDREN(rack_sysctl_root),
603 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
604 	    &rack_use_proportional_reduce, 0,
605 	    "Should we proportionaly reduce cwnd based on the number of losses ");
606 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
607 	    SYSCTL_CHILDREN(rack_sysctl_root),
608 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
609 	    &rack_proportional_rate, 10,
610 	    "What percent reduction per loss");
611 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
612 	    SYSCTL_CHILDREN(rack_sysctl_root),
613 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
614 	    &rack_lower_cwnd_at_tlp, 0,
615 	    "When a TLP completes a retran should we enter recovery?");
616 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
617 	    SYSCTL_CHILDREN(rack_sysctl_root),
618 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
619 	    &rack_slot_reduction, 4,
620 	    "When setting a slot should we reduce by divisor");
621 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
622 	    SYSCTL_CHILDREN(rack_sysctl_root),
623 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
624 	    &rack_pace_every_seg, 0,
625 	    "Should we use the original pacing mechanism that did not pace much?");
626 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
627 	    SYSCTL_CHILDREN(rack_sysctl_root),
628 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
629 	    &rack_hptsi_segments, 40,
630 	    "Should we pace out only a limited size of segments");
631 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
632 	    SYSCTL_CHILDREN(rack_sysctl_root),
633 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
634 	    &rack_send_a_lot_in_prr, 1,
635 	    "Send a lot in prr");
636 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
637 	    SYSCTL_CHILDREN(rack_sysctl_root),
638 	    OID_AUTO, "minto", CTLFLAG_RW,
639 	    &rack_min_to, 1,
640 	    "Minimum rack timeout in milliseconds");
641 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
642 	    SYSCTL_CHILDREN(rack_sysctl_root),
643 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
644 	    &rack_early_recovery, 1,
645 	    "Do we do early recovery with rack");
646 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
647 	    SYSCTL_CHILDREN(rack_sysctl_root),
648 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
649 	    &rack_reorder_thresh, 2,
650 	    "What factor for rack will be added when seeing reordering (shift right)");
651 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
652 	    SYSCTL_CHILDREN(rack_sysctl_root),
653 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
654 	    &rack_tlp_thresh, 1,
655 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
656 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
657 	    SYSCTL_CHILDREN(rack_sysctl_root),
658 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
659 	    &rack_reorder_fade, 0,
660 	    "Does reorder detection fade, if so how many ms (0 means never)");
661 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
662 	    SYSCTL_CHILDREN(rack_sysctl_root),
663 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
664 	    &rack_pkt_delay, 1,
665 	    "Extra RACK time (in ms) besides reordering thresh");
666 
667 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
668 	    SYSCTL_CHILDREN(rack_sysctl_root),
669 	    OID_AUTO,
670 	    "stats",
671 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
672 	    "Rack Counters");
673 	rack_badfr = counter_u64_alloc(M_WAITOK);
674 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
675 	    SYSCTL_CHILDREN(rack_counters),
676 	    OID_AUTO, "badfr", CTLFLAG_RD,
677 	    &rack_badfr, "Total number of bad FRs");
678 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
680 	    SYSCTL_CHILDREN(rack_counters),
681 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
682 	    &rack_badfr_bytes, "Total number of bad FRs");
683 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
685 	    SYSCTL_CHILDREN(rack_counters),
686 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
687 	    &rack_rtm_prr_retran,
688 	    "Total number of prr based retransmits");
689 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
691 	    SYSCTL_CHILDREN(rack_counters),
692 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
693 	    &rack_rtm_prr_newdata,
694 	    "Total number of prr based new transmits");
695 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
697 	    SYSCTL_CHILDREN(rack_counters),
698 	    OID_AUTO, "tsnf", CTLFLAG_RD,
699 	    &rack_timestamp_mismatch,
700 	    "Total number of timestamps that we could not find the reported ts");
701 	rack_find_high = counter_u64_alloc(M_WAITOK);
702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
703 	    SYSCTL_CHILDREN(rack_counters),
704 	    OID_AUTO, "findhigh", CTLFLAG_RD,
705 	    &rack_find_high,
706 	    "Total number of FIN causing find-high");
707 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
709 	    SYSCTL_CHILDREN(rack_counters),
710 	    OID_AUTO, "reordering", CTLFLAG_RD,
711 	    &rack_reorder_seen,
712 	    "Total number of times we added delay due to reordering");
713 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
715 	    SYSCTL_CHILDREN(rack_counters),
716 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
717 	    &rack_tlp_tot,
718 	    "Total number of tail loss probe expirations");
719 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
721 	    SYSCTL_CHILDREN(rack_counters),
722 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
723 	    &rack_tlp_newdata,
724 	    "Total number of tail loss probe sending new data");
725 
726 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
727 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
728 	    SYSCTL_CHILDREN(rack_counters),
729 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
730 	    &rack_tlp_retran,
731 	    "Total number of tail loss probe sending retransmitted data");
732 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
733 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
734 	    SYSCTL_CHILDREN(rack_counters),
735 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
736 	    &rack_tlp_retran_bytes,
737 	    "Total bytes of tail loss probe sending retransmitted data");
738 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
739 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
740 	    SYSCTL_CHILDREN(rack_counters),
741 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
742 	    &rack_tlp_retran_fail,
743 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
744 	rack_to_tot = counter_u64_alloc(M_WAITOK);
745 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
746 	    SYSCTL_CHILDREN(rack_counters),
747 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
748 	    &rack_to_tot,
749 	    "Total number of times the rack to expired?");
750 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
751 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
752 	    SYSCTL_CHILDREN(rack_counters),
753 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
754 	    &rack_to_arm_rack,
755 	    "Total number of times the rack timer armed?");
756 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
757 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
758 	    SYSCTL_CHILDREN(rack_counters),
759 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
760 	    &rack_to_arm_tlp,
761 	    "Total number of times the tlp timer armed?");
762 
763 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
764 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
765 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
766 	    SYSCTL_CHILDREN(rack_counters),
767 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
768 	    &rack_calc_zero,
769 	    "Total number of times pacing time worked out to zero?");
770 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
771 	    SYSCTL_CHILDREN(rack_counters),
772 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
773 	    &rack_calc_nonzero,
774 	    "Total number of times pacing time worked out to non-zero?");
775 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
776 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
777 	    SYSCTL_CHILDREN(rack_counters),
778 	    OID_AUTO, "paced", CTLFLAG_RD,
779 	    &rack_paced_segments,
780 	    "Total number of times a segment send caused hptsi");
781 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
782 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
783 	    SYSCTL_CHILDREN(rack_counters),
784 	    OID_AUTO, "unpaced", CTLFLAG_RD,
785 	    &rack_unpaced_segments,
786 	    "Total number of times a segment did not cause hptsi");
787 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
788 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
789 	    SYSCTL_CHILDREN(rack_counters),
790 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
791 	    &rack_saw_enobuf,
792 	    "Total number of times a segment did not cause hptsi");
793 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
794 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_counters),
796 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
797 	    &rack_saw_enetunreach,
798 	    "Total number of times a segment did not cause hptsi");
799 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
800 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
801 	    SYSCTL_CHILDREN(rack_counters),
802 	    OID_AUTO, "allocs", CTLFLAG_RD,
803 	    &rack_to_alloc,
804 	    "Total allocations of tracking structures");
805 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
806 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
807 	    SYSCTL_CHILDREN(rack_counters),
808 	    OID_AUTO, "allochard", CTLFLAG_RD,
809 	    &rack_to_alloc_hard,
810 	    "Total allocations done with sleeping the hard way");
811 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
812 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
813 	    SYSCTL_CHILDREN(rack_counters),
814 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
815 	    &rack_to_alloc_emerg,
816 	    "Total allocations done from emergency cache");
817 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
818 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
819 	    SYSCTL_CHILDREN(rack_counters),
820 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
821 	    &rack_to_alloc_limited,
822 	    "Total allocations dropped due to limit");
823 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
824 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
825 	    SYSCTL_CHILDREN(rack_counters),
826 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
827 	    &rack_alloc_limited_conns,
828 	    "Connections with allocations dropped due to limit");
829 	rack_split_limited = counter_u64_alloc(M_WAITOK);
830 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
831 	    SYSCTL_CHILDREN(rack_counters),
832 	    OID_AUTO, "split_limited", CTLFLAG_RD,
833 	    &rack_split_limited,
834 	    "Split allocations dropped due to limit");
835 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
836 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
837 	    SYSCTL_CHILDREN(rack_counters),
838 	    OID_AUTO, "sack_long", CTLFLAG_RD,
839 	    &rack_sack_proc_all,
840 	    "Total times we had to walk whole list for sack processing");
841 
842 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
844 	    SYSCTL_CHILDREN(rack_counters),
845 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
846 	    &rack_sack_proc_restart,
847 	    "Total times we had to walk whole list due to a restart");
848 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_counters),
851 	    OID_AUTO, "sack_short", CTLFLAG_RD,
852 	    &rack_sack_proc_short,
853 	    "Total times we took shortcut for sack processing");
854 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
856 	    SYSCTL_CHILDREN(rack_counters),
857 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
858 	    &rack_enter_tlp_calc,
859 	    "Total times we called calc-tlp");
860 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
862 	    SYSCTL_CHILDREN(rack_counters),
863 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
864 	    &rack_used_tlpmethod,
865 	    "Total number of runt sacks");
866 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
867 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
868 	    SYSCTL_CHILDREN(rack_counters),
869 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
870 	    &rack_used_tlpmethod2,
871 	    "Total number of times we hit TLP method 2");
872 	/* Sack Attacker detection stuff */
873 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
874 	    SYSCTL_CHILDREN(rack_sysctl_root),
875 	    OID_AUTO,
876 	    "sack_attack",
877 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
878 	    "Rack Sack Attack Counters and Controls");
879 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
880 	    SYSCTL_CHILDREN(rack_attack),
881 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
882 	    &rack_highest_sack_thresh_seen, 0,
883 	    "Highest sack to ack ratio seen");
884 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
885 	    SYSCTL_CHILDREN(rack_attack),
886 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
887 	    &rack_highest_move_thresh_seen, 0,
888 	    "Highest move to non-move ratio seen");
889 	rack_ack_total = counter_u64_alloc(M_WAITOK);
890 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_attack),
892 	    OID_AUTO, "acktotal", CTLFLAG_RD,
893 	    &rack_ack_total,
894 	    "Total number of Ack's");
895 
896 	rack_express_sack = counter_u64_alloc(M_WAITOK);
897 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
898 	    SYSCTL_CHILDREN(rack_attack),
899 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
900 	    &rack_express_sack,
901 	    "Total expresss number of Sack's");
902 	rack_sack_total = counter_u64_alloc(M_WAITOK);
903 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
904 	    SYSCTL_CHILDREN(rack_attack),
905 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
906 	    &rack_sack_total,
907 	    "Total number of SACK's");
908 	rack_move_none = counter_u64_alloc(M_WAITOK);
909 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
910 	    SYSCTL_CHILDREN(rack_attack),
911 	    OID_AUTO, "move_none", CTLFLAG_RD,
912 	    &rack_move_none,
913 	    "Total number of SACK index reuse of postions under threshold");
914 	rack_move_some = counter_u64_alloc(M_WAITOK);
915 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
916 	    SYSCTL_CHILDREN(rack_attack),
917 	    OID_AUTO, "move_some", CTLFLAG_RD,
918 	    &rack_move_some,
919 	    "Total number of SACK index reuse of postions over threshold");
920 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
921 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
922 	    SYSCTL_CHILDREN(rack_attack),
923 	    OID_AUTO, "attacks", CTLFLAG_RD,
924 	    &rack_sack_attacks_detected,
925 	    "Total number of SACK attackers that had sack disabled");
926 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
927 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
928 	    SYSCTL_CHILDREN(rack_attack),
929 	    OID_AUTO, "reversed", CTLFLAG_RD,
930 	    &rack_sack_attacks_reversed,
931 	    "Total number of SACK attackers that were later determined false positive");
932 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
933 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
934 	    SYSCTL_CHILDREN(rack_attack),
935 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
936 	    &rack_sack_used_next_merge,
937 	    "Total number of times we used the next merge");
938 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
939 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
940 	    SYSCTL_CHILDREN(rack_attack),
941 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
942 	    &rack_sack_used_prev_merge,
943 	    "Total number of times we used the prev merge");
944 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
945 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
946 	    SYSCTL_CHILDREN(rack_attack),
947 	    OID_AUTO, "skipacked", CTLFLAG_RD,
948 	    &rack_sack_skipped_acked,
949 	    "Total number of times we skipped previously sacked");
950 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
951 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
952 	    SYSCTL_CHILDREN(rack_attack),
953 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
954 	    &rack_sack_splits,
955 	    "Total number of times we did the old fashion tree split");
956 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
957 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
958 	    SYSCTL_CHILDREN(rack_counters),
959 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
960 	    &rack_progress_drops,
961 	    "Total number of progress drops");
962 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
963 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
964 	    SYSCTL_CHILDREN(rack_counters),
965 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
966 	    &rack_input_idle_reduces,
967 	    "Total number of idle reductions on input");
968 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
969 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
970 	    SYSCTL_CHILDREN(rack_counters),
971 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
972 	    &rack_collapsed_win,
973 	    "Total number of collapsed windows");
974 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
975 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
976 	    SYSCTL_CHILDREN(rack_counters),
977 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
978 	    &rack_tlp_does_nada,
979 	    "Total number of nada tlp calls");
980 
981 	rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
982 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
983 	    SYSCTL_CHILDREN(rack_counters),
984 	    OID_AUTO, "tls_rwnd", CTLFLAG_RD,
985 	    &rack_tls_rwnd,
986 	    "Total hdwr tls rwnd limited");
987 
988 	rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
989 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
990 	    SYSCTL_CHILDREN(rack_counters),
991 	    OID_AUTO, "tls_cwnd", CTLFLAG_RD,
992 	    &rack_tls_cwnd,
993 	    "Total hdwr tls cwnd limited");
994 
995 	rack_tls_app = counter_u64_alloc(M_WAITOK);
996 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
997 	    SYSCTL_CHILDREN(rack_counters),
998 	    OID_AUTO, "tls_app", CTLFLAG_RD,
999 	    &rack_tls_app,
1000 	    "Total hdwr tls app limited");
1001 
1002 	rack_tls_other = counter_u64_alloc(M_WAITOK);
1003 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1004 	    SYSCTL_CHILDREN(rack_counters),
1005 	    OID_AUTO, "tls_other", CTLFLAG_RD,
1006 	    &rack_tls_other,
1007 	    "Total hdwr tls other limited");
1008 
1009 	rack_tls_filled = counter_u64_alloc(M_WAITOK);
1010 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1011 	    SYSCTL_CHILDREN(rack_counters),
1012 	    OID_AUTO, "tls_filled", CTLFLAG_RD,
1013 	    &rack_tls_filled,
1014 	    "Total hdwr tls filled");
1015 
1016 	rack_tls_rxt = counter_u64_alloc(M_WAITOK);
1017 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1018 	    SYSCTL_CHILDREN(rack_counters),
1019 	    OID_AUTO, "tls_rxt", CTLFLAG_RD,
1020 	    &rack_tls_rxt,
1021 	    "Total hdwr rxt");
1022 
1023 	rack_tls_tlp = counter_u64_alloc(M_WAITOK);
1024 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1025 	    SYSCTL_CHILDREN(rack_counters),
1026 	    OID_AUTO, "tls_tlp", CTLFLAG_RD,
1027 	    &rack_tls_tlp,
1028 	    "Total hdwr tls tlp");
1029 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1030 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1031 	    SYSCTL_CHILDREN(rack_counters),
1032 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1033 	    &rack_per_timer_hole,
1034 	    "Total persists start in timer hole");
1035 
1036 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1037 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1038 	    OID_AUTO, "outsize", CTLFLAG_RD,
1039 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1040 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1041 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1042 	    OID_AUTO, "opts", CTLFLAG_RD,
1043 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1044 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1045 	    SYSCTL_CHILDREN(rack_sysctl_root),
1046 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1047 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1048 }
1049 
1050 static __inline int
1051 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1052 {
1053 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1054 	    SEQ_LT(b->r_start, a->r_end)) {
1055 		/*
1056 		 * The entry b is within the
1057 		 * block a. i.e.:
1058 		 * a --   |-------------|
1059 		 * b --   |----|
1060 		 * <or>
1061 		 * b --       |------|
1062 		 * <or>
1063 		 * b --       |-----------|
1064 		 */
1065 		return (0);
1066 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1067 		/*
1068 		 * b falls as either the next
1069 		 * sequence block after a so a
1070 		 * is said to be smaller than b.
1071 		 * i.e:
1072 		 * a --   |------|
1073 		 * b --          |--------|
1074 		 * or
1075 		 * b --              |-----|
1076 		 */
1077 		return (1);
1078 	}
1079 	/*
1080 	 * Whats left is where a is
1081 	 * larger than b. i.e:
1082 	 * a --         |-------|
1083 	 * b --  |---|
1084 	 * or even possibly
1085 	 * b --   |--------------|
1086 	 */
1087 	return (-1);
1088 }
1089 
1090 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1091 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1092 
1093 static inline int32_t
1094 rack_progress_timeout_check(struct tcpcb *tp)
1095 {
1096 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1097 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1098 			/*
1099 			 * There is an assumption that the caller
1100 			 * will drop the connection so we will
1101 			 * increment the counters here.
1102 			 */
1103 			struct tcp_rack *rack;
1104 			rack = (struct tcp_rack *)tp->t_fb_ptr;
1105 			counter_u64_add(rack_progress_drops, 1);
1106 #ifdef NETFLIX_STATS
1107 			TCPSTAT_INC(tcps_progdrops);
1108 #endif
1109 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
1110 			return (1);
1111 		}
1112 	}
1113 	return (0);
1114 }
1115 
1116 
1117 
1118 static void
1119 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1120 {
1121 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1122 		union tcp_log_stackspecific log;
1123 		struct timeval tv;
1124 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1125 		log.u_bbr.flex1 = tsused;
1126 		log.u_bbr.flex2 = thresh;
1127 		log.u_bbr.flex3 = rsm->r_flags;
1128 		log.u_bbr.flex4 = rsm->r_dupack;
1129 		log.u_bbr.flex5 = rsm->r_start;
1130 		log.u_bbr.flex6 = rsm->r_end;
1131 		log.u_bbr.flex8 = mod;
1132 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1133 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1134 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1135 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1136 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1137 		    &rack->rc_inp->inp_socket->so_rcv,
1138 		    &rack->rc_inp->inp_socket->so_snd,
1139 		    BBR_LOG_SETTINGS_CHG, 0,
1140 		    0, &log, false, &tv);
1141 	}
1142 }
1143 
1144 
1145 
1146 static void
1147 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1148 {
1149 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1150 		union tcp_log_stackspecific log;
1151 		struct timeval tv;
1152 
1153 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1154 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1155 		log.u_bbr.flex2 = to;
1156 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1157 		log.u_bbr.flex4 = slot;
1158 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1159 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1160 		log.u_bbr.flex7 = rack->rc_in_persist;
1161 		log.u_bbr.flex8 = which;
1162 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1163 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1164 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1165 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1166 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1167 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1168 		    &rack->rc_inp->inp_socket->so_rcv,
1169 		    &rack->rc_inp->inp_socket->so_snd,
1170 		    BBR_LOG_TIMERSTAR, 0,
1171 		    0, &log, false, &tv);
1172 	}
1173 }
1174 
1175 static void
1176 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
1177 {
1178 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1179 		union tcp_log_stackspecific log;
1180 		struct timeval tv;
1181 
1182 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1183 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1184 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1185 		log.u_bbr.flex8 = to_num;
1186 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1187 		log.u_bbr.flex2 = rack->rc_rack_rtt;
1188 		log.u_bbr.flex3 = no;
1189 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1190 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1191 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1192 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1193 		    &rack->rc_inp->inp_socket->so_rcv,
1194 		    &rack->rc_inp->inp_socket->so_snd,
1195 		    BBR_LOG_RTO, 0,
1196 		    0, &log, false, &tv);
1197 	}
1198 }
1199 
1200 static void
1201 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
1202     uint32_t o_srtt, uint32_t o_var)
1203 {
1204 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1205 		union tcp_log_stackspecific log;
1206 		struct timeval tv;
1207 
1208 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1209 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1210 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1211 		log.u_bbr.flex1 = t;
1212 		log.u_bbr.flex2 = o_srtt;
1213 		log.u_bbr.flex3 = o_var;
1214 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
1215 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
1216 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1217 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
1218 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1219 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1220 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1221 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1222 		TCP_LOG_EVENTP(tp, NULL,
1223 		    &rack->rc_inp->inp_socket->so_rcv,
1224 		    &rack->rc_inp->inp_socket->so_snd,
1225 		    BBR_LOG_BBRRTT, 0,
1226 		    0, &log, false, &tv);
1227 	}
1228 }
1229 
1230 static void
1231 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1232 {
1233 	/*
1234 	 * Log the rtt sample we are
1235 	 * applying to the srtt algorithm in
1236 	 * useconds.
1237 	 */
1238 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1239 		union tcp_log_stackspecific log;
1240 		struct timeval tv;
1241 
1242 		/* Convert our ms to a microsecond */
1243 		memset(&log, 0, sizeof(log));
1244 		log.u_bbr.flex1 = rtt * 1000;
1245 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1246 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
1247 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1248 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1249 		log.u_bbr.flex8 = rack->sack_attack_disable;
1250 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1251 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1252 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1253 		    &rack->rc_inp->inp_socket->so_rcv,
1254 		    &rack->rc_inp->inp_socket->so_snd,
1255 		    TCP_LOG_RTT, 0,
1256 		    0, &log, false, &tv);
1257 	}
1258 }
1259 
1260 
1261 static inline void
1262 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1263 {
1264 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1265 		union tcp_log_stackspecific log;
1266 		struct timeval tv;
1267 
1268 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1269 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1270 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1271 		log.u_bbr.flex1 = line;
1272 		log.u_bbr.flex2 = tick;
1273 		log.u_bbr.flex3 = tp->t_maxunacktime;
1274 		log.u_bbr.flex4 = tp->t_acktime;
1275 		log.u_bbr.flex8 = event;
1276 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1277 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1278 		TCP_LOG_EVENTP(tp, NULL,
1279 		    &rack->rc_inp->inp_socket->so_rcv,
1280 		    &rack->rc_inp->inp_socket->so_snd,
1281 		    BBR_LOG_PROGRESS, 0,
1282 		    0, &log, false, &tv);
1283 	}
1284 }
1285 
1286 static void
1287 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1288 {
1289 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1290 		union tcp_log_stackspecific log;
1291 		struct timeval tv;
1292 
1293 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1294 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1295 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1296 		log.u_bbr.flex1 = slot;
1297 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1298 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1299 		log.u_bbr.flex8 = rack->rc_in_persist;
1300 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1301 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1302 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1303 		    &rack->rc_inp->inp_socket->so_rcv,
1304 		    &rack->rc_inp->inp_socket->so_snd,
1305 		    BBR_LOG_BBRSND, 0,
1306 		    0, &log, false, &tv);
1307 	}
1308 }
1309 
1310 static void
1311 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1312 {
1313 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1314 		union tcp_log_stackspecific log;
1315 		struct timeval tv;
1316 
1317 		memset(&log, 0, sizeof(log));
1318 		log.u_bbr.flex1 = did_out;
1319 		log.u_bbr.flex2 = nxt_pkt;
1320 		log.u_bbr.flex3 = way_out;
1321 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1322 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1323 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1324 		log.u_bbr.flex7 = rack->r_wanted_output;
1325 		log.u_bbr.flex8 = rack->rc_in_persist;
1326 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1327 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1328 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1329 		    &rack->rc_inp->inp_socket->so_rcv,
1330 		    &rack->rc_inp->inp_socket->so_snd,
1331 		    BBR_LOG_DOSEG_DONE, 0,
1332 		    0, &log, false, &tv);
1333 	}
1334 }
1335 
1336 static void
1337 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1338 {
1339 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1340 		union tcp_log_stackspecific log;
1341 		struct timeval tv;
1342 		uint32_t cts;
1343 
1344 		memset(&log, 0, sizeof(log));
1345 		cts = tcp_get_usecs(&tv);
1346 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1347 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1348 		log.u_bbr.flex4 = len;
1349 		log.u_bbr.flex5 = orig_len;
1350 		log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1351 		log.u_bbr.flex7 = mod;
1352 		log.u_bbr.flex8 = frm;
1353 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1354 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1355 		TCP_LOG_EVENTP(tp, NULL,
1356 		    &tp->t_inpcb->inp_socket->so_rcv,
1357 		    &tp->t_inpcb->inp_socket->so_snd,
1358 		    TCP_HDWR_TLS, 0,
1359 		    0, &log, false, &tv);
1360 	}
1361 }
1362 
1363 static void
1364 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1365 {
1366 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1367 		union tcp_log_stackspecific log;
1368 		struct timeval tv;
1369 
1370 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1371 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1372 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1373 		log.u_bbr.flex1 = slot;
1374 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1375 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1376 		log.u_bbr.flex7 = hpts_calling;
1377 		log.u_bbr.flex8 = rack->rc_in_persist;
1378 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1379 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1380 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1381 		    &rack->rc_inp->inp_socket->so_rcv,
1382 		    &rack->rc_inp->inp_socket->so_snd,
1383 		    BBR_LOG_JUSTRET, 0,
1384 		    tlen, &log, false, &tv);
1385 	}
1386 }
1387 
1388 static void
1389 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1390 {
1391 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1392 		union tcp_log_stackspecific log;
1393 		struct timeval tv;
1394 
1395 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1396 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1397 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1398 		log.u_bbr.flex1 = line;
1399 		log.u_bbr.flex2 = 0;
1400 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1401 		log.u_bbr.flex4 = 0;
1402 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1403 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1404 		log.u_bbr.flex8 = hpts_removed;
1405 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1406 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1407 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1408 		    &rack->rc_inp->inp_socket->so_rcv,
1409 		    &rack->rc_inp->inp_socket->so_snd,
1410 		    BBR_LOG_TIMERCANC, 0,
1411 		    0, &log, false, &tv);
1412 	}
1413 }
1414 
1415 static void
1416 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1417 {
1418 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1419 		union tcp_log_stackspecific log;
1420 		struct timeval tv;
1421 
1422 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1423 		log.u_bbr.flex1 = timers;
1424 		log.u_bbr.flex2 = ret;
1425 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1426 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1427 		log.u_bbr.flex5 = cts;
1428 		log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
1429 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1430 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1431 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1432 		    &rack->rc_inp->inp_socket->so_rcv,
1433 		    &rack->rc_inp->inp_socket->so_snd,
1434 		    BBR_LOG_TO_PROCESS, 0,
1435 		    0, &log, false, &tv);
1436 	}
1437 }
1438 
1439 static void
1440 rack_log_to_prr(struct tcp_rack *rack, int frm)
1441 {
1442 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1443 		union tcp_log_stackspecific log;
1444 		struct timeval tv;
1445 
1446 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1447 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
1448 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
1449 		log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
1450 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
1451 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
1452 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
1453 		log.u_bbr.flex8 = frm;
1454 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1455 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1456 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1457 		    &rack->rc_inp->inp_socket->so_rcv,
1458 		    &rack->rc_inp->inp_socket->so_snd,
1459 		    BBR_LOG_BBRUPD, 0,
1460 		    0, &log, false, &tv);
1461 	}
1462 }
1463 
1464 #ifdef NETFLIX_EXP_DETECTION
1465 static void
1466 rack_log_sad(struct tcp_rack *rack, int event)
1467 {
1468 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1469 		union tcp_log_stackspecific log;
1470 		struct timeval tv;
1471 
1472 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1473 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
1474 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1475 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
1476 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1477 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
1478 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
1479 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
1480 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
1481 		log.u_bbr.lt_epoch |= rack->do_detection;
1482 		log.u_bbr.applimited = tcp_map_minimum;
1483 		log.u_bbr.flex7 = rack->sack_attack_disable;
1484 		log.u_bbr.flex8 = event;
1485 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1486 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1487 		log.u_bbr.delivered = tcp_sad_decay_val;
1488 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1489 		    &rack->rc_inp->inp_socket->so_rcv,
1490 		    &rack->rc_inp->inp_socket->so_snd,
1491 		    TCP_SAD_DETECTION, 0,
1492 		    0, &log, false, &tv);
1493 	}
1494 }
1495 #endif
1496 
1497 static void
1498 rack_counter_destroy(void)
1499 {
1500 	counter_u64_free(rack_badfr);
1501 	counter_u64_free(rack_badfr_bytes);
1502 	counter_u64_free(rack_rtm_prr_retran);
1503 	counter_u64_free(rack_rtm_prr_newdata);
1504 	counter_u64_free(rack_timestamp_mismatch);
1505 	counter_u64_free(rack_reorder_seen);
1506 	counter_u64_free(rack_tlp_tot);
1507 	counter_u64_free(rack_tlp_newdata);
1508 	counter_u64_free(rack_tlp_retran);
1509 	counter_u64_free(rack_tlp_retran_bytes);
1510 	counter_u64_free(rack_tlp_retran_fail);
1511 	counter_u64_free(rack_to_tot);
1512 	counter_u64_free(rack_to_arm_rack);
1513 	counter_u64_free(rack_to_arm_tlp);
1514 	counter_u64_free(rack_paced_segments);
1515 	counter_u64_free(rack_unpaced_segments);
1516 	counter_u64_free(rack_saw_enobuf);
1517 	counter_u64_free(rack_saw_enetunreach);
1518 	counter_u64_free(rack_to_alloc_hard);
1519 	counter_u64_free(rack_to_alloc_emerg);
1520 	counter_u64_free(rack_sack_proc_all);
1521 	counter_u64_free(rack_sack_proc_short);
1522 	counter_u64_free(rack_sack_proc_restart);
1523 	counter_u64_free(rack_to_alloc);
1524 	counter_u64_free(rack_to_alloc_limited);
1525 	counter_u64_free(rack_alloc_limited_conns);
1526 	counter_u64_free(rack_split_limited);
1527 	counter_u64_free(rack_find_high);
1528 	counter_u64_free(rack_enter_tlp_calc);
1529 	counter_u64_free(rack_used_tlpmethod);
1530 	counter_u64_free(rack_used_tlpmethod2);
1531 	counter_u64_free(rack_progress_drops);
1532 	counter_u64_free(rack_input_idle_reduces);
1533 	counter_u64_free(rack_collapsed_win);
1534 	counter_u64_free(rack_tlp_does_nada);
1535 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1536 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1537 }
1538 
1539 static struct rack_sendmap *
1540 rack_alloc(struct tcp_rack *rack)
1541 {
1542 	struct rack_sendmap *rsm;
1543 
1544 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1545 	if (rsm) {
1546 		rack->r_ctl.rc_num_maps_alloced++;
1547 		counter_u64_add(rack_to_alloc, 1);
1548 		return (rsm);
1549 	}
1550 	if (rack->rc_free_cnt) {
1551 		counter_u64_add(rack_to_alloc_emerg, 1);
1552 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1553 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
1554 		rack->rc_free_cnt--;
1555 		return (rsm);
1556 	}
1557 	return (NULL);
1558 }
1559 
1560 static struct rack_sendmap *
1561 rack_alloc_full_limit(struct tcp_rack *rack)
1562 {
1563 	if ((V_tcp_map_entries_limit > 0) &&
1564 	    (rack->do_detection == 0) &&
1565 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
1566 		counter_u64_add(rack_to_alloc_limited, 1);
1567 		if (!rack->alloc_limit_reported) {
1568 			rack->alloc_limit_reported = 1;
1569 			counter_u64_add(rack_alloc_limited_conns, 1);
1570 		}
1571 		return (NULL);
1572 	}
1573 	return (rack_alloc(rack));
1574 }
1575 
1576 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1577 static struct rack_sendmap *
1578 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1579 {
1580 	struct rack_sendmap *rsm;
1581 
1582 	if (limit_type) {
1583 		/* currently there is only one limit type */
1584 		if (V_tcp_map_split_limit > 0 &&
1585 		    (rack->do_detection == 0) &&
1586 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
1587 			counter_u64_add(rack_split_limited, 1);
1588 			if (!rack->alloc_limit_reported) {
1589 				rack->alloc_limit_reported = 1;
1590 				counter_u64_add(rack_alloc_limited_conns, 1);
1591 			}
1592 			return (NULL);
1593 		}
1594 	}
1595 
1596 	/* allocate and mark in the limit type, if set */
1597 	rsm = rack_alloc(rack);
1598 	if (rsm != NULL && limit_type) {
1599 		rsm->r_limit_type = limit_type;
1600 		rack->r_ctl.rc_num_split_allocs++;
1601 	}
1602 	return (rsm);
1603 }
1604 
1605 static void
1606 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1607 {
1608 	if (rsm->r_limit_type) {
1609 		/* currently there is only one limit type */
1610 		rack->r_ctl.rc_num_split_allocs--;
1611 	}
1612 	if (rack->r_ctl.rc_tlpsend == rsm)
1613 		rack->r_ctl.rc_tlpsend = NULL;
1614 	if (rack->r_ctl.rc_sacklast == rsm)
1615 		rack->r_ctl.rc_sacklast = NULL;
1616 	if (rack->rc_free_cnt < rack_free_cache) {
1617 		memset(rsm, 0, sizeof(struct rack_sendmap));
1618 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
1619 		rsm->r_limit_type = 0;
1620 		rack->rc_free_cnt++;
1621 		return;
1622 	}
1623 	rack->r_ctl.rc_num_maps_alloced--;
1624 	uma_zfree(rack_zone, rsm);
1625 }
1626 
1627 /*
1628  * CC wrapper hook functions
1629  */
1630 static void
1631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1632     uint16_t type, int32_t recovery)
1633 {
1634 #ifdef STATS
1635 	int32_t gput;
1636 #endif
1637 
1638 	INP_WLOCK_ASSERT(tp->t_inpcb);
1639 	tp->ccv->nsegs = nsegs;
1640 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1641 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1642 		uint32_t max;
1643 
1644 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
1645 		if (tp->ccv->bytes_this_ack > max) {
1646 			tp->ccv->bytes_this_ack = max;
1647 		}
1648 	}
1649 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
1650 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
1651 	     (tp->snd_cwnd < (ctf_flight_size(tp, rack->r_ctl.rc_sacked) * 2))))
1652 		tp->ccv->flags |= CCF_CWND_LIMITED;
1653 	else
1654 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1655 
1656 	if (type == CC_ACK) {
1657 #ifdef STATS
1658 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1659 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1660 		if ((tp->t_flags & TF_GPUTINPROG) &&
1661 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1662 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1663 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1664 			/* We store it in bytes per ms (or kbytes per sec) */
1665 			rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
1666 			rack->r_ctl.rc_gp_hist_idx++;
1667 			if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
1668 				rack->r_ctl.rc_gp_hist_filled = 1;
1669 			rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
1670 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1671 			    gput);
1672 			/*
1673 			 * XXXLAS: This is a temporary hack, and should be
1674 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1675 			 * API to deal with chained VOIs.
1676 			 */
1677 			if (tp->t_stats_gput_prev > 0)
1678 				stats_voi_update_abs_s32(tp->t_stats,
1679 				    VOI_TCP_GPUT_ND,
1680 				    ((gput - tp->t_stats_gput_prev) * 100) /
1681 				    tp->t_stats_gput_prev);
1682 			tp->t_flags &= ~TF_GPUTINPROG;
1683 			tp->t_stats_gput_prev = gput;
1684 #ifdef NETFLIX_PEAKRATE
1685 			if (tp->t_maxpeakrate) {
1686 				/*
1687 				 * We update t_peakrate_thr. This gives us roughly
1688 				 * one update per round trip time.
1689 				 */
1690 				tcp_update_peakrate_thr(tp);
1691 			}
1692 #endif
1693 		}
1694 #endif
1695 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1696 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1697 			    nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
1698 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1699 				tp->t_bytes_acked -= tp->snd_cwnd;
1700 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1701 			}
1702 		} else {
1703 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1704 			tp->t_bytes_acked = 0;
1705 		}
1706 	}
1707 	if (CC_ALGO(tp)->ack_received != NULL) {
1708 		/* XXXLAS: Find a way to live without this */
1709 		tp->ccv->curack = th->th_ack;
1710 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1711 	}
1712 #ifdef STATS
1713 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1714 #endif
1715 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1716 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1717 	}
1718 	/* we enforce max peak rate if it is set. */
1719 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1720 		tp->snd_cwnd = tp->t_peakrate_thr;
1721 	}
1722 }
1723 
1724 static void
1725 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1726 {
1727 	struct tcp_rack *rack;
1728 
1729 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1730 	INP_WLOCK_ASSERT(tp->t_inpcb);
1731 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1732 		rack->r_wanted_output++;
1733 }
1734 
1735 static void
1736 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1737 {
1738 	struct tcp_rack *rack;
1739 
1740 	INP_WLOCK_ASSERT(tp->t_inpcb);
1741 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1742 	if (CC_ALGO(tp)->post_recovery != NULL) {
1743 		tp->ccv->curack = th->th_ack;
1744 		CC_ALGO(tp)->post_recovery(tp->ccv);
1745 	}
1746 	/*
1747 	 * Here we can in theory adjust cwnd to be based on the number of
1748 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1749 	 * based on the rack_use_proportional flag.
1750 	 */
1751 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1752 		int32_t reduce;
1753 
1754 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1755 		if (reduce > 50) {
1756 			reduce = 50;
1757 		}
1758 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1759 	} else {
1760 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1761 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1762 			tp->snd_cwnd = tp->snd_ssthresh;
1763 		}
1764 	}
1765 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1766 		/* Suck the next prr cnt back into cwnd */
1767 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1768 		rack->r_ctl.rc_prr_sndcnt = 0;
1769 		rack_log_to_prr(rack, 1);
1770 	}
1771 	tp->snd_recover = tp->snd_una;
1772 	EXIT_RECOVERY(tp->t_flags);
1773 
1774 
1775 }
1776 
1777 static void
1778 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1779 {
1780 	struct tcp_rack *rack;
1781 
1782 	INP_WLOCK_ASSERT(tp->t_inpcb);
1783 
1784 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1785 	switch (type) {
1786 	case CC_NDUPACK:
1787 		tp->t_flags &= ~TF_WASFRECOVERY;
1788 		tp->t_flags &= ~TF_WASCRECOVERY;
1789 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1790 			rack->r_ctl.rc_tlp_rtx_out = 0;
1791 			rack->r_ctl.rc_prr_delivered = 0;
1792 			rack->r_ctl.rc_prr_out = 0;
1793 			rack->r_ctl.rc_loss_count = 0;
1794 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
1795 			rack_log_to_prr(rack, 2);
1796 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1797 			tp->snd_recover = tp->snd_max;
1798 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1799 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1800 		}
1801 		break;
1802 	case CC_ECN:
1803 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1804 			TCPSTAT_INC(tcps_ecn_rcwnd);
1805 			tp->snd_recover = tp->snd_max;
1806 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1807 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1808 		}
1809 		break;
1810 	case CC_RTO:
1811 		tp->t_dupacks = 0;
1812 		tp->t_bytes_acked = 0;
1813 		EXIT_RECOVERY(tp->t_flags);
1814 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1815 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
1816 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
1817 		if (tp->t_flags2 & TF2_ECN_PERMIT)
1818 			tp->t_flags2 |= TF2_ECN_SND_CWR;
1819 		break;
1820 	case CC_RTO_ERR:
1821 		TCPSTAT_INC(tcps_sndrexmitbad);
1822 		/* RTO was unnecessary, so reset everything. */
1823 		tp->snd_cwnd = tp->snd_cwnd_prev;
1824 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1825 		tp->snd_recover = tp->snd_recover_prev;
1826 		if (tp->t_flags & TF_WASFRECOVERY) {
1827 			ENTER_FASTRECOVERY(tp->t_flags);
1828 			tp->t_flags &= ~TF_WASFRECOVERY;
1829 		}
1830 		if (tp->t_flags & TF_WASCRECOVERY) {
1831 			ENTER_CONGRECOVERY(tp->t_flags);
1832 			tp->t_flags &= ~TF_WASCRECOVERY;
1833 		}
1834 		tp->snd_nxt = tp->snd_max;
1835 		tp->t_badrxtwin = 0;
1836 		break;
1837 	}
1838 
1839 	if (CC_ALGO(tp)->cong_signal != NULL) {
1840 		if (th != NULL)
1841 			tp->ccv->curack = th->th_ack;
1842 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1843 	}
1844 }
1845 
1846 
1847 
1848 static inline void
1849 rack_cc_after_idle(struct tcpcb *tp)
1850 {
1851 	uint32_t i_cwnd;
1852 
1853 	INP_WLOCK_ASSERT(tp->t_inpcb);
1854 
1855 #ifdef NETFLIX_STATS
1856 	TCPSTAT_INC(tcps_idle_restarts);
1857 	if (tp->t_state == TCPS_ESTABLISHED)
1858 		TCPSTAT_INC(tcps_idle_estrestarts);
1859 #endif
1860 	if (CC_ALGO(tp)->after_idle != NULL)
1861 		CC_ALGO(tp)->after_idle(tp->ccv);
1862 
1863 	if (tp->snd_cwnd == 1)
1864 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1865 	else
1866 		i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
1867 
1868 	/*
1869 	 * Being idle is no differnt than the initial window. If the cc
1870 	 * clamps it down below the initial window raise it to the initial
1871 	 * window.
1872 	 */
1873 	if (tp->snd_cwnd < i_cwnd) {
1874 		tp->snd_cwnd = i_cwnd;
1875 	}
1876 }
1877 
1878 
1879 /*
1880  * Indicate whether this ack should be delayed.  We can delay the ack if
1881  * following conditions are met:
1882  *	- There is no delayed ack timer in progress.
1883  *	- Our last ack wasn't a 0-sized window. We never want to delay
1884  *	  the ack that opens up a 0-sized window.
1885  *	- LRO wasn't used for this segment. We make sure by checking that the
1886  *	  segment size is not larger than the MSS.
1887  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1888  *	  connection.
1889  */
1890 #define DELAY_ACK(tp, tlen)			 \
1891 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1892 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1893 	(tlen <= tp->t_maxseg) &&		 \
1894 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1895 
1896 static struct rack_sendmap *
1897 rack_find_lowest_rsm(struct tcp_rack *rack)
1898 {
1899 	struct rack_sendmap *rsm;
1900 
1901 	/*
1902 	 * Walk the time-order transmitted list looking for an rsm that is
1903 	 * not acked. This will be the one that was sent the longest time
1904 	 * ago that is still outstanding.
1905 	 */
1906 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1907 		if (rsm->r_flags & RACK_ACKED) {
1908 			continue;
1909 		}
1910 		goto finish;
1911 	}
1912 finish:
1913 	return (rsm);
1914 }
1915 
1916 static struct rack_sendmap *
1917 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1918 {
1919 	struct rack_sendmap *prsm;
1920 
1921 	/*
1922 	 * Walk the sequence order list backward until we hit and arrive at
1923 	 * the highest seq not acked. In theory when this is called it
1924 	 * should be the last segment (which it was not).
1925 	 */
1926 	counter_u64_add(rack_find_high, 1);
1927 	prsm = rsm;
1928 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
1929 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1930 			continue;
1931 		}
1932 		return (prsm);
1933 	}
1934 	return (NULL);
1935 }
1936 
1937 
1938 static uint32_t
1939 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1940 {
1941 	int32_t lro;
1942 	uint32_t thresh;
1943 
1944 	/*
1945 	 * lro is the flag we use to determine if we have seen reordering.
1946 	 * If it gets set we have seen reordering. The reorder logic either
1947 	 * works in one of two ways:
1948 	 *
1949 	 * If reorder-fade is configured, then we track the last time we saw
1950 	 * re-ordering occur. If we reach the point where enough time as
1951 	 * passed we no longer consider reordering has occuring.
1952 	 *
1953 	 * Or if reorder-face is 0, then once we see reordering we consider
1954 	 * the connection to alway be subject to reordering and just set lro
1955 	 * to 1.
1956 	 *
1957 	 * In the end if lro is non-zero we add the extra time for
1958 	 * reordering in.
1959 	 */
1960 	if (srtt == 0)
1961 		srtt = 1;
1962 	if (rack->r_ctl.rc_reorder_ts) {
1963 		if (rack->r_ctl.rc_reorder_fade) {
1964 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1965 				lro = cts - rack->r_ctl.rc_reorder_ts;
1966 				if (lro == 0) {
1967 					/*
1968 					 * No time as passed since the last
1969 					 * reorder, mark it as reordering.
1970 					 */
1971 					lro = 1;
1972 				}
1973 			} else {
1974 				/* Negative time? */
1975 				lro = 0;
1976 			}
1977 			if (lro > rack->r_ctl.rc_reorder_fade) {
1978 				/* Turn off reordering seen too */
1979 				rack->r_ctl.rc_reorder_ts = 0;
1980 				lro = 0;
1981 			}
1982 		} else {
1983 			/* Reodering does not fade */
1984 			lro = 1;
1985 		}
1986 	} else {
1987 		lro = 0;
1988 	}
1989 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1990 	if (lro) {
1991 		/* It must be set, if not you get 1/4 rtt */
1992 		if (rack->r_ctl.rc_reorder_shift)
1993 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1994 		else
1995 			thresh += (srtt >> 2);
1996 	} else {
1997 		thresh += 1;
1998 	}
1999 	/* We don't let the rack timeout be above a RTO */
2000 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
2001 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
2002 	}
2003 	/* And we don't want it above the RTO max either */
2004 	if (thresh > rack_rto_max) {
2005 		thresh = rack_rto_max;
2006 	}
2007 	return (thresh);
2008 }
2009 
2010 static uint32_t
2011 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
2012 		     struct rack_sendmap *rsm, uint32_t srtt)
2013 {
2014 	struct rack_sendmap *prsm;
2015 	uint32_t thresh, len;
2016 	int maxseg;
2017 
2018 	if (srtt == 0)
2019 		srtt = 1;
2020 	if (rack->r_ctl.rc_tlp_threshold)
2021 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
2022 	else
2023 		thresh = (srtt * 2);
2024 
2025 	/* Get the previous sent packet, if any  */
2026 	maxseg = ctf_fixed_maxseg(tp);
2027 	counter_u64_add(rack_enter_tlp_calc, 1);
2028 	len = rsm->r_end - rsm->r_start;
2029 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
2030 		/* Exactly like the ID */
2031 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
2032 			uint32_t alt_thresh;
2033 			/*
2034 			 * Compensate for delayed-ack with the d-ack time.
2035 			 */
2036 			counter_u64_add(rack_used_tlpmethod, 1);
2037 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2038 			if (alt_thresh > thresh)
2039 				thresh = alt_thresh;
2040 		}
2041 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
2042 		/* 2.1 behavior */
2043 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
2044 		if (prsm && (len <= maxseg)) {
2045 			/*
2046 			 * Two packets outstanding, thresh should be (2*srtt) +
2047 			 * possible inter-packet delay (if any).
2048 			 */
2049 			uint32_t inter_gap = 0;
2050 			int idx, nidx;
2051 
2052 			counter_u64_add(rack_used_tlpmethod, 1);
2053 			idx = rsm->r_rtr_cnt - 1;
2054 			nidx = prsm->r_rtr_cnt - 1;
2055 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
2056 				/* Yes it was sent later (or at the same time) */
2057 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
2058 			}
2059 			thresh += inter_gap;
2060 		} else 	if (len <= maxseg) {
2061 			/*
2062 			 * Possibly compensate for delayed-ack.
2063 			 */
2064 			uint32_t alt_thresh;
2065 
2066 			counter_u64_add(rack_used_tlpmethod2, 1);
2067 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2068 			if (alt_thresh > thresh)
2069 				thresh = alt_thresh;
2070 		}
2071 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2072 		/* 2.2 behavior */
2073 		if (len <= maxseg) {
2074 			uint32_t alt_thresh;
2075 			/*
2076 			 * Compensate for delayed-ack with the d-ack time.
2077 			 */
2078 			counter_u64_add(rack_used_tlpmethod, 1);
2079 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2080 			if (alt_thresh > thresh)
2081 				thresh = alt_thresh;
2082 		}
2083 	}
2084  	/* Not above an RTO */
2085 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2086 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2087 	}
2088 	/* Not above a RTO max */
2089 	if (thresh > rack_rto_max) {
2090 		thresh = rack_rto_max;
2091 	}
2092 	/* Apply user supplied min TLP */
2093 	if (thresh < rack_tlp_min) {
2094 		thresh = rack_tlp_min;
2095 	}
2096 	return (thresh);
2097 }
2098 
2099 static uint32_t
2100 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
2101 {
2102 	/*
2103 	 * We want the rack_rtt which is the
2104 	 * last rtt we measured. However if that
2105 	 * does not exist we fallback to the srtt (which
2106 	 * we probably will never do) and then as a last
2107 	 * resort we use RACK_INITIAL_RTO if no srtt is
2108 	 * yet set.
2109 	 */
2110 	if (rack->rc_rack_rtt)
2111 		return(rack->rc_rack_rtt);
2112 	else if (tp->t_srtt == 0)
2113 		return(RACK_INITIAL_RTO);
2114 	return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
2115 }
2116 
2117 static struct rack_sendmap *
2118 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2119 {
2120 	/*
2121 	 * Check to see that we don't need to fall into recovery. We will
2122 	 * need to do so if our oldest transmit is past the time we should
2123 	 * have had an ack.
2124 	 */
2125 	struct tcp_rack *rack;
2126 	struct rack_sendmap *rsm;
2127 	int32_t idx;
2128 	uint32_t srtt, thresh;
2129 
2130 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2131 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
2132 		return (NULL);
2133 	}
2134 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2135 	if (rsm == NULL)
2136 		return (NULL);
2137 
2138 	if (rsm->r_flags & RACK_ACKED) {
2139 		rsm = rack_find_lowest_rsm(rack);
2140 		if (rsm == NULL)
2141 			return (NULL);
2142 	}
2143 	idx = rsm->r_rtr_cnt - 1;
2144 	srtt = rack_grab_rtt(tp, rack);
2145 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2146 	if (tsused < rsm->r_tim_lastsent[idx]) {
2147 		return (NULL);
2148 	}
2149 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2150 		return (NULL);
2151 	}
2152 	/* Ok if we reach here we are over-due */
2153 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2154 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2155 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2156 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2157 	return (rsm);
2158 }
2159 
2160 static uint32_t
2161 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2162 {
2163 	int32_t t;
2164 	int32_t tt;
2165 	uint32_t ret_val;
2166 
2167 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2168 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2169 	    rack_persist_min, rack_persist_max);
2170 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2171 		tp->t_rxtshift++;
2172 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2173 	ret_val = (uint32_t)tt;
2174 	return (ret_val);
2175 }
2176 
2177 static uint32_t
2178 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
2179 {
2180 	/*
2181 	 * Start the FR timer, we do this based on getting the first one in
2182 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2183 	 * events we need to stop the running timer (if its running) before
2184 	 * starting the new one.
2185 	 */
2186 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
2187 	uint32_t srtt_cur;
2188 	int32_t idx;
2189 	int32_t is_tlp_timer = 0;
2190 	struct rack_sendmap *rsm;
2191 
2192 	if (rack->t_timers_stopped) {
2193 		/* All timers have been stopped none are to run */
2194 		return (0);
2195 	}
2196 	if (rack->rc_in_persist) {
2197 		/* We can't start any timer in persists */
2198 		return (rack_get_persists_timer_val(tp, rack));
2199 	}
2200 	if ((tp->t_state < TCPS_ESTABLISHED) ||
2201 	    ((tp->t_flags & TF_SACK_PERMIT) == 0))
2202 		goto activate_rxt;
2203 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2204 	if ((rsm == NULL) || sup_rack) {
2205 		/* Nothing on the send map */
2206 activate_rxt:
2207 		time_since_sent = 0;
2208 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2209 		if (rsm) {
2210 			idx = rsm->r_rtr_cnt - 1;
2211 			if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2212 				tstmp_touse = rsm->r_tim_lastsent[idx];
2213 			else
2214 				tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2215 			if (TSTMP_GT(tstmp_touse, cts))
2216 			    time_since_sent = cts - tstmp_touse;
2217 		}
2218 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2219 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2220 			to = TICKS_2_MSEC(tp->t_rxtcur);
2221 			if (to > time_since_sent)
2222 				to -= time_since_sent;
2223 			else
2224 				to = rack->r_ctl.rc_min_to;
2225 			if (to == 0)
2226 				to = 1;
2227 			return (to);
2228 		}
2229 		return (0);
2230 	}
2231 	if (rsm->r_flags & RACK_ACKED) {
2232 		rsm = rack_find_lowest_rsm(rack);
2233 		if (rsm == NULL) {
2234 			/* No lowest? */
2235 			goto activate_rxt;
2236 		}
2237 	}
2238 	if (rack->sack_attack_disable) {
2239 		/*
2240 		 * We don't want to do
2241 		 * any TLP's if you are an attacker.
2242 		 * Though if you are doing what
2243 		 * is expected you may still have
2244 		 * SACK-PASSED marks.
2245 		 */
2246 		goto activate_rxt;
2247 	}
2248 	/* Convert from ms to usecs */
2249 	if (rsm->r_flags & RACK_SACK_PASSED) {
2250 		if ((tp->t_flags & TF_SENTFIN) &&
2251 		    ((tp->snd_max - tp->snd_una) == 1) &&
2252 		    (rsm->r_flags & RACK_HAS_FIN)) {
2253 			/*
2254 			 * We don't start a rack timer if all we have is a
2255 			 * FIN outstanding.
2256 			 */
2257 			goto activate_rxt;
2258 		}
2259 		if ((rack->use_rack_cheat == 0) &&
2260 		    (IN_RECOVERY(tp->t_flags)) &&
2261 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
2262 			/*
2263 			 * We are not cheating, in recovery  and
2264 			 * not enough ack's to yet get our next
2265 			 * retransmission out.
2266 			 *
2267 			 * Note that classified attackers do not
2268 			 * get to use the rack-cheat.
2269 			 */
2270 			goto activate_tlp;
2271 		}
2272 		srtt = rack_grab_rtt(tp, rack);
2273 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2274 		idx = rsm->r_rtr_cnt - 1;
2275 		exp = rsm->r_tim_lastsent[idx] + thresh;
2276 		if (SEQ_GEQ(exp, cts)) {
2277 			to = exp - cts;
2278 			if (to < rack->r_ctl.rc_min_to) {
2279 				to = rack->r_ctl.rc_min_to;
2280 			}
2281 		} else {
2282 			to = rack->r_ctl.rc_min_to;
2283 		}
2284 	} else {
2285 		/* Ok we need to do a TLP not RACK */
2286 activate_tlp:
2287 		if ((rack->rc_tlp_in_progress != 0) ||
2288 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2289 			/*
2290 			 * The previous send was a TLP or a tlp_rtx is in
2291 			 * process.
2292 			 */
2293 			goto activate_rxt;
2294 		}
2295 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2296 		if (rsm == NULL) {
2297 			/* We found no rsm to TLP with. */
2298 			goto activate_rxt;
2299 		}
2300 		if (rsm->r_flags & RACK_HAS_FIN) {
2301 			/* If its a FIN we dont do TLP */
2302 			rsm = NULL;
2303 			goto activate_rxt;
2304 		}
2305 		idx = rsm->r_rtr_cnt - 1;
2306 		time_since_sent = 0;
2307 		if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2308 			tstmp_touse = rsm->r_tim_lastsent[idx];
2309 		else
2310 			tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2311 		if (TSTMP_GT(tstmp_touse, cts))
2312 		    time_since_sent = cts - tstmp_touse;
2313 		is_tlp_timer = 1;
2314 		if (tp->t_srtt) {
2315 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2316 			srtt = TICKS_2_MSEC(srtt_cur);
2317 		} else
2318 			srtt = RACK_INITIAL_RTO;
2319 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2320 		if (thresh > time_since_sent)
2321 			to = thresh - time_since_sent;
2322 		else
2323 			to = rack->r_ctl.rc_min_to;
2324 		if (to > TCPTV_REXMTMAX) {
2325 			/*
2326 			 * If the TLP time works out to larger than the max
2327 			 * RTO lets not do TLP.. just RTO.
2328 			 */
2329 			goto activate_rxt;
2330 		}
2331 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2332 			/*
2333 			 * The tail is no longer the last one I did a probe
2334 			 * on
2335 			 */
2336 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2337 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2338 		}
2339 	}
2340 	if (is_tlp_timer == 0) {
2341 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2342 	} else {
2343 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2344 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2345 			/*
2346 			 * We have exceeded how many times we can retran the
2347 			 * current TLP timer, switch to the RTO timer.
2348 			 */
2349 			goto activate_rxt;
2350 		} else {
2351 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2352 		}
2353 	}
2354 	if (to == 0)
2355 		to = 1;
2356 	return (to);
2357 }
2358 
2359 static void
2360 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2361 {
2362 	if (rack->rc_in_persist == 0) {
2363 		rack->r_ctl.rc_went_idle_time = cts;
2364 		rack_timer_cancel(tp, rack, cts, __LINE__);
2365 		tp->t_rxtshift = 0;
2366 		rack->rc_in_persist = 1;
2367 	}
2368 }
2369 
2370 static void
2371 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2372 {
2373 	if (rack->rc_inp->inp_in_hpts)  {
2374 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2375 		rack->r_ctl.rc_hpts_flags  = 0;
2376 	}
2377 	rack->rc_in_persist = 0;
2378 	rack->r_ctl.rc_went_idle_time = 0;
2379 	tp->t_flags &= ~TF_FORCEDATA;
2380 	tp->t_rxtshift = 0;
2381 }
2382 
2383 static void
2384 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
2385       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
2386 {
2387 	struct inpcb *inp;
2388 	uint32_t delayed_ack = 0;
2389 	uint32_t hpts_timeout;
2390 	uint8_t stopped;
2391 	uint32_t left = 0;
2392 
2393 	inp = tp->t_inpcb;
2394 	if (inp->inp_in_hpts) {
2395 		/* A previous call is already set up */
2396 		return;
2397 	}
2398 	if ((tp->t_state == TCPS_CLOSED) ||
2399 	    (tp->t_state == TCPS_LISTEN)) {
2400 		return;
2401 	}
2402 	stopped = rack->rc_tmr_stopped;
2403 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2404 		left = rack->r_ctl.rc_timer_exp - cts;
2405 	}
2406 	rack->tlp_timer_up = 0;
2407 	rack->r_ctl.rc_timer_exp = 0;
2408 	if (rack->rc_inp->inp_in_hpts == 0) {
2409 		rack->r_ctl.rc_hpts_flags = 0;
2410 	}
2411 	if (slot) {
2412 		/* We are hptsi too */
2413 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2414 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2415 		/*
2416 		 * We are still left on the hpts when the to goes
2417 		 * it will be for output.
2418 		 */
2419 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2420 			slot = rack->r_ctl.rc_last_output_to - cts;
2421 		else
2422 			slot = 1;
2423 	}
2424 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
2425 #ifdef NETFLIX_EXP_DETECTION
2426 	if (rack->sack_attack_disable &&
2427 	    (slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
2428 		/*
2429 		 * We have a potential attacker on
2430 		 * the line. We have possibly some
2431 		 * (or now) pacing time set. We want to
2432 		 * slow down the processing of sacks by some
2433 		 * amount (if it is an attacker). Set the default
2434 		 * slot for attackers in place (unless the orginal
2435 		 * interval is longer). Its stored in
2436 		 * micro-seconds, so lets convert to msecs.
2437 		 */
2438 		slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
2439 	}
2440 #endif
2441 	if (tp->t_flags & TF_DELACK) {
2442 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2443 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2444 	}
2445 	if (delayed_ack && ((hpts_timeout == 0) ||
2446 			    (delayed_ack < hpts_timeout)))
2447 		hpts_timeout = delayed_ack;
2448 	else
2449 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2450 	/*
2451 	 * If no timers are going to run and we will fall off the hptsi
2452 	 * wheel, we resort to a keep-alive timer if its configured.
2453 	 */
2454 	if ((hpts_timeout == 0) &&
2455 	    (slot == 0)) {
2456 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2457 		    (tp->t_state <= TCPS_CLOSING)) {
2458 			/*
2459 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2460 			 * del-ack), we don't have segments being paced. So
2461 			 * all that is left is the keepalive timer.
2462 			 */
2463 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2464 				/* Get the established keep-alive time */
2465 				hpts_timeout = TP_KEEPIDLE(tp);
2466 			} else {
2467 				/* Get the initial setup keep-alive time */
2468 				hpts_timeout = TP_KEEPINIT(tp);
2469 			}
2470 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2471 		}
2472 	}
2473 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2474 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2475 		/*
2476 		 * RACK, TLP, persists and RXT timers all are restartable
2477 		 * based on actions input .. i.e we received a packet (ack
2478 		 * or sack) and that changes things (rw, or snd_una etc).
2479 		 * Thus we can restart them with a new value. For
2480 		 * keep-alive, delayed_ack we keep track of what was left
2481 		 * and restart the timer with a smaller value.
2482 		 */
2483 		if (left < hpts_timeout)
2484 			hpts_timeout = left;
2485 	}
2486 	if (hpts_timeout) {
2487 		/*
2488 		 * Hack alert for now we can't time-out over 2,147,483
2489 		 * seconds (a bit more than 596 hours), which is probably ok
2490 		 * :).
2491 		 */
2492 		if (hpts_timeout > 0x7ffffffe)
2493 			hpts_timeout = 0x7ffffffe;
2494 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2495 	}
2496 	if (slot) {
2497 		rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2498 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
2499 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2500 		else
2501 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2502 		rack->r_ctl.rc_last_output_to = cts + slot;
2503 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2504 			if (rack->rc_inp->inp_in_hpts == 0)
2505 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2506 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2507 		} else {
2508 			/*
2509 			 * Arrange for the hpts to kick back in after the
2510 			 * t-o if the t-o does not cause a send.
2511 			 */
2512 			if (rack->rc_inp->inp_in_hpts == 0)
2513 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2514 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2515 		}
2516 	} else if (hpts_timeout) {
2517 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
2518 			/* For a rack timer, don't wake us */
2519 			rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2520 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2521 		} else {
2522 			/* All other timers wake us up */
2523 			rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
2524 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2525 		}
2526 		if (rack->rc_inp->inp_in_hpts == 0)
2527 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2528 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2529 	} else {
2530 		/* No timer starting */
2531 #ifdef INVARIANTS
2532 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2533 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2534 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2535 		}
2536 #endif
2537 	}
2538 	rack->rc_tmr_stopped = 0;
2539 	if (slot)
2540 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2541 }
2542 
2543 /*
2544  * RACK Timer, here we simply do logging and house keeping.
2545  * the normal rack_output() function will call the
2546  * appropriate thing to check if we need to do a RACK retransmit.
2547  * We return 1, saying don't proceed with rack_output only
2548  * when all timers have been stopped (destroyed PCB?).
2549  */
2550 static int
2551 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2552 {
2553 	/*
2554 	 * This timer simply provides an internal trigger to send out data.
2555 	 * The check_recovery_mode call will see if there are needed
2556 	 * retransmissions, if so we will enter fast-recovery. The output
2557 	 * call may or may not do the same thing depending on sysctl
2558 	 * settings.
2559 	 */
2560 	struct rack_sendmap *rsm;
2561 	int32_t recovery, ll;
2562 
2563 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2564 		return (1);
2565 	}
2566 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2567 		/* Its not time yet */
2568 		return (0);
2569 	}
2570 	recovery = IN_RECOVERY(tp->t_flags);
2571 	counter_u64_add(rack_to_tot, 1);
2572 	if (rack->r_state && (rack->r_state != tp->t_state))
2573 		rack_set_state(tp, rack);
2574 	rsm = rack_check_recovery_mode(tp, cts);
2575 	if (rsm)
2576 		ll = rsm->r_end - rsm->r_start;
2577 	else
2578 		ll = 0;
2579 	rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
2580 	if (rsm) {
2581 		uint32_t rtt;
2582 
2583 		rtt = rack->rc_rack_rtt;
2584 		if (rtt == 0)
2585 			rtt = 1;
2586 		if ((recovery == 0) &&
2587 		    (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
2588 			/*
2589 			 * The rack-timeout that enter's us into recovery
2590 			 * will force out one MSS and set us up so that we
2591 			 * can do one more send in 2*rtt (transitioning the
2592 			 * rack timeout into a rack-tlp).
2593 			 */
2594 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2595 			rack_log_to_prr(rack, 3);
2596 		} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
2597 			   rack->use_rack_cheat) {
2598 			/*
2599 			 * When a rack timer goes, if the rack cheat is
2600 			 * on, arrange it so we can send a full segment.
2601 			 */
2602 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2603 			rack_log_to_prr(rack, 4);
2604 		}
2605 	} else {
2606 		/* This is a case that should happen rarely if ever */
2607 		counter_u64_add(rack_tlp_does_nada, 1);
2608 #ifdef TCP_BLACKBOX
2609 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2610 #endif
2611 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2612 	}
2613 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2614 	return (0);
2615 }
2616 
2617 static __inline void
2618 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
2619 	       struct rack_sendmap *rsm, uint32_t start)
2620 {
2621 	int idx;
2622 
2623 	nrsm->r_start = start;
2624 	nrsm->r_end = rsm->r_end;
2625 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2626 	nrsm->r_flags = rsm->r_flags;
2627 	nrsm->r_dupack = rsm->r_dupack;
2628 	nrsm->r_rtr_bytes = 0;
2629 	rsm->r_end = nrsm->r_start;
2630 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2631 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2632 	}
2633 }
2634 
2635 static struct rack_sendmap *
2636 rack_merge_rsm(struct tcp_rack *rack,
2637 	       struct rack_sendmap *l_rsm,
2638 	       struct rack_sendmap *r_rsm)
2639 {
2640 	/*
2641 	 * We are merging two ack'd RSM's,
2642 	 * the l_rsm is on the left (lower seq
2643 	 * values) and the r_rsm is on the right
2644 	 * (higher seq value). The simplest way
2645 	 * to merge these is to move the right
2646 	 * one into the left. I don't think there
2647 	 * is any reason we need to try to find
2648 	 * the oldest (or last oldest retransmitted).
2649 	 */
2650 	struct rack_sendmap *rm;
2651 
2652 	l_rsm->r_end = r_rsm->r_end;
2653 	if (l_rsm->r_dupack < r_rsm->r_dupack)
2654 		l_rsm->r_dupack = r_rsm->r_dupack;
2655 	if (r_rsm->r_rtr_bytes)
2656 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2657 	if (r_rsm->r_in_tmap) {
2658 		/* This really should not happen */
2659 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2660 		r_rsm->r_in_tmap = 0;
2661 	}
2662 	/* Now the flags */
2663 	if (r_rsm->r_flags & RACK_HAS_FIN)
2664 		l_rsm->r_flags |= RACK_HAS_FIN;
2665 	if (r_rsm->r_flags & RACK_TLP)
2666 		l_rsm->r_flags |= RACK_TLP;
2667 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
2668 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
2669 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
2670 #ifdef INVARIANTS
2671 	if (rm != r_rsm) {
2672 		panic("removing head in rack:%p rsm:%p rm:%p",
2673 		      rack, r_rsm, rm);
2674 	}
2675 #endif
2676 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2677 		/* Transfer the split limit to the map we free */
2678 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2679 		l_rsm->r_limit_type = 0;
2680 	}
2681 	rack_free(rack, r_rsm);
2682 	return(l_rsm);
2683 }
2684 
2685 /*
2686  * TLP Timer, here we simply setup what segment we want to
2687  * have the TLP expire on, the normal rack_output() will then
2688  * send it out.
2689  *
2690  * We return 1, saying don't proceed with rack_output only
2691  * when all timers have been stopped (destroyed PCB?).
2692  */
2693 static int
2694 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2695 {
2696 	/*
2697 	 * Tail Loss Probe.
2698 	 */
2699 	struct rack_sendmap *rsm = NULL;
2700 	struct rack_sendmap *insret;
2701 	struct socket *so;
2702 	uint32_t amm, old_prr_snd = 0;
2703 	uint32_t out, avail;
2704 	int collapsed_win = 0;
2705 
2706 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2707 		return (1);
2708 	}
2709 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2710 		/* Its not time yet */
2711 		return (0);
2712 	}
2713 	if (rack_progress_timeout_check(tp)) {
2714 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2715 		return (1);
2716 	}
2717 	/*
2718 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2719 	 * need to figure out how to force a full MSS segment out.
2720 	 */
2721 	rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
2722 	counter_u64_add(rack_tlp_tot, 1);
2723 	if (rack->r_state && (rack->r_state != tp->t_state))
2724 		rack_set_state(tp, rack);
2725 	so = tp->t_inpcb->inp_socket;
2726 #ifdef KERN_TLS
2727 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
2728 		/*
2729 		 * For hardware TLS we do *not* want to send
2730 		 * new data, lets instead just do a retransmission.
2731 		 */
2732 		goto need_retran;
2733 	}
2734 #endif
2735 	avail = sbavail(&so->so_snd);
2736 	out = tp->snd_max - tp->snd_una;
2737 	rack->tlp_timer_up = 1;
2738 	if (out > tp->snd_wnd) {
2739 		/* special case, we need a retransmission */
2740 		collapsed_win = 1;
2741 		goto need_retran;
2742 	}
2743 	/*
2744 	 * If we are in recovery we can jazz out a segment if new data is
2745 	 * present simply by setting rc_prr_sndcnt to a segment.
2746 	 */
2747 	if ((avail > out) &&
2748 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2749 		/* New data is available */
2750 		amm = avail - out;
2751 		if (amm > ctf_fixed_maxseg(tp)) {
2752 			amm = ctf_fixed_maxseg(tp);
2753 		} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
2754 			/* not enough to fill a MTU and no-delay is off */
2755 			goto need_retran;
2756 		}
2757 		if (IN_RECOVERY(tp->t_flags)) {
2758 			/* Unlikely */
2759 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2760 			if (out + amm <= tp->snd_wnd) {
2761 				rack->r_ctl.rc_prr_sndcnt = amm;
2762 				rack_log_to_prr(rack, 4);
2763 			} else
2764 				goto need_retran;
2765 		} else {
2766 			/* Set the send-new override */
2767 			if (out + amm <= tp->snd_wnd)
2768 				rack->r_ctl.rc_tlp_new_data = amm;
2769 			else
2770 				goto need_retran;
2771 		}
2772 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2773 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2774 		rack->r_ctl.rc_tlpsend = NULL;
2775 		counter_u64_add(rack_tlp_newdata, 1);
2776 		goto send;
2777 	}
2778 need_retran:
2779 	/*
2780 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2781 	 * optionally the first un-acked segment.
2782 	 */
2783 	if (collapsed_win == 0) {
2784 		if (rack_always_send_oldest)
2785 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2786 		else {
2787 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2788 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2789 				rsm = rack_find_high_nonack(rack, rsm);
2790 			}
2791 		}
2792 		if (rsm == NULL) {
2793 			counter_u64_add(rack_tlp_does_nada, 1);
2794 #ifdef TCP_BLACKBOX
2795 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2796 #endif
2797 			goto out;
2798 		}
2799 	} else {
2800 		/*
2801 		 * We must find the last segment
2802 		 * that was acceptable by the client.
2803 		 */
2804 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
2805 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
2806 				/* Found one */
2807 				break;
2808 			}
2809 		}
2810 		if (rsm == NULL) {
2811 			/* None? if so send the first */
2812 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2813 			if (rsm == NULL) {
2814 				counter_u64_add(rack_tlp_does_nada, 1);
2815 #ifdef TCP_BLACKBOX
2816 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2817 #endif
2818 				goto out;
2819 			}
2820 		}
2821 	}
2822 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
2823 		/*
2824 		 * We need to split this the last segment in two.
2825 		 */
2826 		struct rack_sendmap *nrsm;
2827 
2828 
2829 		nrsm = rack_alloc_full_limit(rack);
2830 		if (nrsm == NULL) {
2831 			/*
2832 			 * No memory to split, we will just exit and punt
2833 			 * off to the RXT timer.
2834 			 */
2835 			counter_u64_add(rack_tlp_does_nada, 1);
2836 			goto out;
2837 		}
2838 		rack_clone_rsm(rack, nrsm, rsm,
2839 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
2840 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
2841 #ifdef INVARIANTS
2842 		if (insret != NULL) {
2843 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
2844 			      nrsm, insret, rack, rsm);
2845 		}
2846 #endif
2847 		if (rsm->r_in_tmap) {
2848 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2849 			nrsm->r_in_tmap = 1;
2850 		}
2851 		rsm->r_flags &= (~RACK_HAS_FIN);
2852 		rsm = nrsm;
2853 	}
2854 	rack->r_ctl.rc_tlpsend = rsm;
2855 	rack->r_ctl.rc_tlp_rtx_out = 1;
2856 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2857 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2858 		tp->t_rxtshift++;
2859 	} else {
2860 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2861 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2862 	}
2863 send:
2864 	rack->r_ctl.rc_tlp_send_cnt++;
2865 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2866 		/*
2867 		 * Can't [re]/transmit a segment we have not heard from the
2868 		 * peer in max times. We need the retransmit timer to take
2869 		 * over.
2870 		 */
2871 	restore:
2872 		rack->r_ctl.rc_tlpsend = NULL;
2873 		if (rsm)
2874 			rsm->r_flags &= ~RACK_TLP;
2875 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2876 		rack_log_to_prr(rack, 5);
2877 		counter_u64_add(rack_tlp_retran_fail, 1);
2878 		goto out;
2879 	} else if (rsm) {
2880 		rsm->r_flags |= RACK_TLP;
2881 	}
2882 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2883 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2884 		/*
2885 		 * We don't want to send a single segment more than the max
2886 		 * either.
2887 		 */
2888 		goto restore;
2889 	}
2890 	rack->r_timer_override = 1;
2891 	rack->r_tlp_running = 1;
2892 	rack->rc_tlp_in_progress = 1;
2893 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2894 	return (0);
2895 out:
2896 	rack->tlp_timer_up = 0;
2897 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2898 	return (0);
2899 }
2900 
2901 /*
2902  * Delayed ack Timer, here we simply need to setup the
2903  * ACK_NOW flag and remove the DELACK flag. From there
2904  * the output routine will send the ack out.
2905  *
2906  * We only return 1, saying don't proceed, if all timers
2907  * are stopped (destroyed PCB?).
2908  */
2909 static int
2910 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2911 {
2912 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2913 		return (1);
2914 	}
2915 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
2916 	tp->t_flags &= ~TF_DELACK;
2917 	tp->t_flags |= TF_ACKNOW;
2918 	TCPSTAT_INC(tcps_delack);
2919 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2920 	return (0);
2921 }
2922 
2923 /*
2924  * Persists timer, here we simply need to setup the
2925  * FORCE-DATA flag the output routine will send
2926  * the one byte send.
2927  *
2928  * We only return 1, saying don't proceed, if all timers
2929  * are stopped (destroyed PCB?).
2930  */
2931 static int
2932 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2933 {
2934 	struct tcptemp *t_template;
2935 	struct inpcb *inp;
2936 	int32_t retval = 1;
2937 
2938 	inp = tp->t_inpcb;
2939 
2940 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2941 		return (1);
2942 	}
2943 	if (rack->rc_in_persist == 0)
2944 		return (0);
2945 	if (rack_progress_timeout_check(tp)) {
2946 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2947 		return (1);
2948 	}
2949 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2950 	/*
2951 	 * Persistence timer into zero window. Force a byte to be output, if
2952 	 * possible.
2953 	 */
2954 	TCPSTAT_INC(tcps_persisttimeo);
2955 	/*
2956 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2957 	 * window is closed.  After a full backoff, drop the connection if
2958 	 * the idle time (no responses to probes) reaches the maximum
2959 	 * backoff that we would use if retransmitting.
2960 	 */
2961 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2962 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2963 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2964 		TCPSTAT_INC(tcps_persistdrop);
2965 		retval = 1;
2966 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2967 		goto out;
2968 	}
2969 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2970 	    tp->snd_una == tp->snd_max)
2971 		rack_exit_persist(tp, rack);
2972 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2973 	/*
2974 	 * If the user has closed the socket then drop a persisting
2975 	 * connection after a much reduced timeout.
2976 	 */
2977 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2978 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2979 		retval = 1;
2980 		TCPSTAT_INC(tcps_persistdrop);
2981 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2982 		goto out;
2983 	}
2984 	t_template = tcpip_maketemplate(rack->rc_inp);
2985 	if (t_template) {
2986 		tcp_respond(tp, t_template->tt_ipgen,
2987 			    &t_template->tt_t, (struct mbuf *)NULL,
2988 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2989 		/* This sends an ack */
2990 		if (tp->t_flags & TF_DELACK)
2991 			tp->t_flags &= ~TF_DELACK;
2992 		free(t_template, M_TEMP);
2993 	}
2994 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2995 		tp->t_rxtshift++;
2996 out:
2997 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
2998 	rack_start_hpts_timer(rack, tp, cts,
2999 			      0, 0, 0);
3000 	return (retval);
3001 }
3002 
3003 /*
3004  * If a keepalive goes off, we had no other timers
3005  * happening. We always return 1 here since this
3006  * routine either drops the connection or sends
3007  * out a segment with respond.
3008  */
3009 static int
3010 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3011 {
3012 	struct tcptemp *t_template;
3013 	struct inpcb *inp;
3014 
3015 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3016 		return (1);
3017 	}
3018 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
3019 	inp = tp->t_inpcb;
3020 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
3021 	/*
3022 	 * Keep-alive timer went off; send something or drop connection if
3023 	 * idle for too long.
3024 	 */
3025 	TCPSTAT_INC(tcps_keeptimeo);
3026 	if (tp->t_state < TCPS_ESTABLISHED)
3027 		goto dropit;
3028 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
3029 	    tp->t_state <= TCPS_CLOSING) {
3030 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
3031 			goto dropit;
3032 		/*
3033 		 * Send a packet designed to force a response if the peer is
3034 		 * up and reachable: either an ACK if the connection is
3035 		 * still alive, or an RST if the peer has closed the
3036 		 * connection due to timeout or reboot. Using sequence
3037 		 * number tp->snd_una-1 causes the transmitted zero-length
3038 		 * segment to lie outside the receive window; by the
3039 		 * protocol spec, this requires the correspondent TCP to
3040 		 * respond.
3041 		 */
3042 		TCPSTAT_INC(tcps_keepprobe);
3043 		t_template = tcpip_maketemplate(inp);
3044 		if (t_template) {
3045 			tcp_respond(tp, t_template->tt_ipgen,
3046 			    &t_template->tt_t, (struct mbuf *)NULL,
3047 			    tp->rcv_nxt, tp->snd_una - 1, 0);
3048 			free(t_template, M_TEMP);
3049 		}
3050 	}
3051 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
3052 	return (1);
3053 dropit:
3054 	TCPSTAT_INC(tcps_keepdrops);
3055 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
3056 	return (1);
3057 }
3058 
3059 /*
3060  * Retransmit helper function, clear up all the ack
3061  * flags and take care of important book keeping.
3062  */
3063 static void
3064 rack_remxt_tmr(struct tcpcb *tp)
3065 {
3066 	/*
3067 	 * The retransmit timer went off, all sack'd blocks must be
3068 	 * un-acked.
3069 	 */
3070 	struct rack_sendmap *rsm, *trsm = NULL;
3071 	struct tcp_rack *rack;
3072 	int32_t cnt = 0;
3073 
3074 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3075 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
3076 	rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
3077 	if (rack->r_state && (rack->r_state != tp->t_state))
3078 		rack_set_state(tp, rack);
3079 	/*
3080 	 * Ideally we would like to be able to
3081 	 * mark SACK-PASS on anything not acked here.
3082 	 * However, if we do that we would burst out
3083 	 * all that data 1ms apart. This would be unwise,
3084 	 * so for now we will just let the normal rxt timer
3085 	 * and tlp timer take care of it.
3086 	 */
3087 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3088 		if (rsm->r_flags & RACK_ACKED) {
3089 			cnt++;
3090 			rsm->r_dupack = 0;
3091 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3092 			if (rsm->r_in_tmap == 0) {
3093 				/* We must re-add it back to the tlist */
3094 				if (trsm == NULL) {
3095 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3096 				} else {
3097 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
3098 				}
3099 				rsm->r_in_tmap = 1;
3100 			}
3101 		}
3102 		trsm = rsm;
3103 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
3104 	}
3105 	/* Clear the count (we just un-acked them) */
3106 	rack->r_ctl.rc_sacked = 0;
3107 	/* Clear the tlp rtx mark */
3108 	rack->r_ctl.rc_tlp_rtx_out = 0;
3109 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
3110 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3111 	rack->r_ctl.rc_prr_sndcnt = 0;
3112 	rack_log_to_prr(rack, 6);
3113 	rack->r_timer_override = 1;
3114 }
3115 
3116 /*
3117  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
3118  * we will setup to retransmit the lowest seq number outstanding.
3119  */
3120 static int
3121 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3122 {
3123 	int32_t rexmt;
3124 	struct inpcb *inp;
3125 	int32_t retval = 0;
3126 
3127 	inp = tp->t_inpcb;
3128 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3129 		return (1);
3130 	}
3131 	if (rack_progress_timeout_check(tp)) {
3132 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
3133 		return (1);
3134 	}
3135 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
3136 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
3137 	    (tp->snd_una == tp->snd_max)) {
3138 		/* Nothing outstanding .. nothing to do */
3139 		return (0);
3140 	}
3141 	/*
3142 	 * Retransmission timer went off.  Message has not been acked within
3143 	 * retransmit interval.  Back off to a longer retransmit interval
3144 	 * and retransmit one segment.
3145 	 */
3146 	rack_remxt_tmr(tp);
3147 	if ((rack->r_ctl.rc_resend == NULL) ||
3148 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
3149 		/*
3150 		 * If the rwnd collapsed on
3151 		 * the one we are retransmitting
3152 		 * it does not count against the
3153 		 * rxt count.
3154 		 */
3155 		tp->t_rxtshift++;
3156 	}
3157 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
3158 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
3159 		TCPSTAT_INC(tcps_timeoutdrop);
3160 		retval = 1;
3161 		tcp_set_inp_to_drop(rack->rc_inp,
3162 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
3163 		goto out;
3164 	}
3165 	if (tp->t_state == TCPS_SYN_SENT) {
3166 		/*
3167 		 * If the SYN was retransmitted, indicate CWND to be limited
3168 		 * to 1 segment in cc_conn_init().
3169 		 */
3170 		tp->snd_cwnd = 1;
3171 	} else if (tp->t_rxtshift == 1) {
3172 		/*
3173 		 * first retransmit; record ssthresh and cwnd so they can be
3174 		 * recovered if this turns out to be a "bad" retransmit. A
3175 		 * retransmit is considered "bad" if an ACK for this segment
3176 		 * is received within RTT/2 interval; the assumption here is
3177 		 * that the ACK was already in flight.  See "On Estimating
3178 		 * End-to-End Network Path Properties" by Allman and Paxson
3179 		 * for more details.
3180 		 */
3181 		tp->snd_cwnd_prev = tp->snd_cwnd;
3182 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
3183 		tp->snd_recover_prev = tp->snd_recover;
3184 		if (IN_FASTRECOVERY(tp->t_flags))
3185 			tp->t_flags |= TF_WASFRECOVERY;
3186 		else
3187 			tp->t_flags &= ~TF_WASFRECOVERY;
3188 		if (IN_CONGRECOVERY(tp->t_flags))
3189 			tp->t_flags |= TF_WASCRECOVERY;
3190 		else
3191 			tp->t_flags &= ~TF_WASCRECOVERY;
3192 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
3193 		tp->t_flags |= TF_PREVVALID;
3194 	} else
3195 		tp->t_flags &= ~TF_PREVVALID;
3196 	TCPSTAT_INC(tcps_rexmttimeo);
3197 	if ((tp->t_state == TCPS_SYN_SENT) ||
3198 	    (tp->t_state == TCPS_SYN_RECEIVED))
3199 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
3200 	else
3201 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
3202 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
3203 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
3204 	   MSEC_2_TICKS(rack_rto_max));
3205 	/*
3206 	 * We enter the path for PLMTUD if connection is established or, if
3207 	 * connection is FIN_WAIT_1 status, reason for the last is that if
3208 	 * amount of data we send is very small, we could send it in couple
3209 	 * of packets and process straight to FIN. In that case we won't
3210 	 * catch ESTABLISHED state.
3211 	 */
3212 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
3213 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
3214 #ifdef INET6
3215 		int32_t isipv6;
3216 #endif
3217 
3218 		/*
3219 		 * Idea here is that at each stage of mtu probe (usually,
3220 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
3221 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3222 		 * should take care of that.
3223 		 */
3224 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3225 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3226 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3227 		    tp->t_rxtshift % 2 == 0)) {
3228 			/*
3229 			 * Enter Path MTU Black-hole Detection mechanism: -
3230 			 * Disable Path MTU Discovery (IP "DF" bit). -
3231 			 * Reduce MTU to lower value than what we negotiated
3232 			 * with peer.
3233 			 */
3234 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3235 				/* Record that we may have found a black hole. */
3236 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3237 				/* Keep track of previous MSS. */
3238 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3239 			}
3240 
3241 			/*
3242 			 * Reduce the MSS to blackhole value or to the
3243 			 * default in an attempt to retransmit.
3244 			 */
3245 #ifdef INET6
3246 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
3247 			if (isipv6 &&
3248 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3249 				/* Use the sysctl tuneable blackhole MSS. */
3250 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3251 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3252 			} else if (isipv6) {
3253 				/* Use the default MSS. */
3254 				tp->t_maxseg = V_tcp_v6mssdflt;
3255 				/*
3256 				 * Disable Path MTU Discovery when we switch
3257 				 * to minmss.
3258 				 */
3259 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3260 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3261 			}
3262 #endif
3263 #if defined(INET6) && defined(INET)
3264 			else
3265 #endif
3266 #ifdef INET
3267 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3268 				/* Use the sysctl tuneable blackhole MSS. */
3269 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3270 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3271 			} else {
3272 				/* Use the default MSS. */
3273 				tp->t_maxseg = V_tcp_mssdflt;
3274 				/*
3275 				 * Disable Path MTU Discovery when we switch
3276 				 * to minmss.
3277 				 */
3278 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3279 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3280 			}
3281 #endif
3282 		} else {
3283 			/*
3284 			 * If further retransmissions are still unsuccessful
3285 			 * with a lowered MTU, maybe this isn't a blackhole
3286 			 * and we restore the previous MSS and blackhole
3287 			 * detection flags. The limit '6' is determined by
3288 			 * giving each probe stage (1448, 1188, 524) 2
3289 			 * chances to recover.
3290 			 */
3291 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3292 			    (tp->t_rxtshift >= 6)) {
3293 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3294 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3295 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3296 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3297 			}
3298 		}
3299 	}
3300 	/*
3301 	 * If we backed off this far, our srtt estimate is probably bogus.
3302 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3303 	 * move the current srtt into rttvar to keep the current retransmit
3304 	 * times until then.
3305 	 */
3306 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3307 #ifdef INET6
3308 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3309 			in6_losing(tp->t_inpcb);
3310 		else
3311 #endif
3312 			in_losing(tp->t_inpcb);
3313 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3314 		tp->t_srtt = 0;
3315 	}
3316 	if (rack_use_sack_filter)
3317 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3318 	tp->snd_recover = tp->snd_max;
3319 	tp->t_flags |= TF_ACKNOW;
3320 	tp->t_rtttime = 0;
3321 	rack_cong_signal(tp, NULL, CC_RTO);
3322 out:
3323 	return (retval);
3324 }
3325 
3326 static int
3327 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3328 {
3329 	int32_t ret = 0;
3330 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3331 
3332 	if (timers == 0) {
3333 		return (0);
3334 	}
3335 	if (tp->t_state == TCPS_LISTEN) {
3336 		/* no timers on listen sockets */
3337 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3338 			return (0);
3339 		return (1);
3340 	}
3341 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3342 		uint32_t left;
3343 
3344 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3345 			ret = -1;
3346 			rack_log_to_processing(rack, cts, ret, 0);
3347 			return (0);
3348 		}
3349 		if (hpts_calling == 0) {
3350 			ret = -2;
3351 			rack_log_to_processing(rack, cts, ret, 0);
3352 			return (0);
3353 		}
3354 		/*
3355 		 * Ok our timer went off early and we are not paced false
3356 		 * alarm, go back to sleep.
3357 		 */
3358 		ret = -3;
3359 		left = rack->r_ctl.rc_timer_exp - cts;
3360 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3361 		rack_log_to_processing(rack, cts, ret, left);
3362 		rack->rc_last_pto_set = 0;
3363 		return (1);
3364 	}
3365 	rack->rc_tmr_stopped = 0;
3366 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3367 	if (timers & PACE_TMR_DELACK) {
3368 		ret = rack_timeout_delack(tp, rack, cts);
3369 	} else if (timers & PACE_TMR_RACK) {
3370 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3371 		ret = rack_timeout_rack(tp, rack, cts);
3372 	} else if (timers & PACE_TMR_TLP) {
3373 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3374 		ret = rack_timeout_tlp(tp, rack, cts);
3375 	} else if (timers & PACE_TMR_RXT) {
3376 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3377 		ret = rack_timeout_rxt(tp, rack, cts);
3378 	} else if (timers & PACE_TMR_PERSIT) {
3379 		ret = rack_timeout_persist(tp, rack, cts);
3380 	} else if (timers & PACE_TMR_KEEP) {
3381 		ret = rack_timeout_keepalive(tp, rack, cts);
3382 	}
3383 	rack_log_to_processing(rack, cts, ret, timers);
3384 	return (ret);
3385 }
3386 
3387 static void
3388 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3389 {
3390 	uint8_t hpts_removed = 0;
3391 
3392 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3393 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3394 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3395 		hpts_removed = 1;
3396 	}
3397 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3398 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3399 		if (rack->rc_inp->inp_in_hpts &&
3400 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3401 			/*
3402 			 * Canceling timer's when we have no output being
3403 			 * paced. We also must remove ourselves from the
3404 			 * hpts.
3405 			 */
3406 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3407 			hpts_removed = 1;
3408 		}
3409 		rack_log_to_cancel(rack, hpts_removed, line);
3410 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3411 	}
3412 }
3413 
3414 static void
3415 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3416 {
3417 	return;
3418 }
3419 
3420 static int
3421 rack_stopall(struct tcpcb *tp)
3422 {
3423 	struct tcp_rack *rack;
3424 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3425 	rack->t_timers_stopped = 1;
3426 	return (0);
3427 }
3428 
3429 static void
3430 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3431 {
3432 	return;
3433 }
3434 
3435 static int
3436 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3437 {
3438 	return (0);
3439 }
3440 
3441 static void
3442 rack_stop_all_timers(struct tcpcb *tp)
3443 {
3444 	struct tcp_rack *rack;
3445 
3446 	/*
3447 	 * Assure no timers are running.
3448 	 */
3449 	if (tcp_timer_active(tp, TT_PERSIST)) {
3450 		/* We enter in persists, set the flag appropriately */
3451 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3452 		rack->rc_in_persist = 1;
3453 	}
3454 	tcp_timer_suspend(tp, TT_PERSIST);
3455 	tcp_timer_suspend(tp, TT_REXMT);
3456 	tcp_timer_suspend(tp, TT_KEEP);
3457 	tcp_timer_suspend(tp, TT_DELACK);
3458 }
3459 
3460 static void
3461 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3462     struct rack_sendmap *rsm, uint32_t ts)
3463 {
3464 	int32_t idx;
3465 
3466 	rsm->r_rtr_cnt++;
3467 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3468 	rsm->r_dupack = 0;
3469 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3470 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3471 		rsm->r_flags |= RACK_OVERMAX;
3472 	}
3473 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3474 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3475 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3476 	}
3477 	idx = rsm->r_rtr_cnt - 1;
3478 	rsm->r_tim_lastsent[idx] = ts;
3479 	if (rsm->r_flags & RACK_ACKED) {
3480 		/* Problably MTU discovery messing with us */
3481 		rsm->r_flags &= ~RACK_ACKED;
3482 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3483 	}
3484 	if (rsm->r_in_tmap) {
3485 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3486 		rsm->r_in_tmap = 0;
3487 	}
3488 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3489 	rsm->r_in_tmap = 1;
3490 	if (rsm->r_flags & RACK_SACK_PASSED) {
3491 		/* We have retransmitted due to the SACK pass */
3492 		rsm->r_flags &= ~RACK_SACK_PASSED;
3493 		rsm->r_flags |= RACK_WAS_SACKPASS;
3494 	}
3495 }
3496 
3497 
3498 static uint32_t
3499 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3500     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
3501 {
3502 	/*
3503 	 * We (re-)transmitted starting at rsm->r_start for some length
3504 	 * (possibly less than r_end.
3505 	 */
3506 	struct rack_sendmap *nrsm, *insret;
3507 	uint32_t c_end;
3508 	int32_t len;
3509 
3510 	len = *lenp;
3511 	c_end = rsm->r_start + len;
3512 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3513 		/*
3514 		 * We retransmitted the whole piece or more than the whole
3515 		 * slopping into the next rsm.
3516 		 */
3517 		rack_update_rsm(tp, rack, rsm, ts);
3518 		if (c_end == rsm->r_end) {
3519 			*lenp = 0;
3520 			return (0);
3521 		} else {
3522 			int32_t act_len;
3523 
3524 			/* Hangs over the end return whats left */
3525 			act_len = rsm->r_end - rsm->r_start;
3526 			*lenp = (len - act_len);
3527 			return (rsm->r_end);
3528 		}
3529 		/* We don't get out of this block. */
3530 	}
3531 	/*
3532 	 * Here we retransmitted less than the whole thing which means we
3533 	 * have to split this into what was transmitted and what was not.
3534 	 */
3535 	nrsm = rack_alloc_full_limit(rack);
3536 	if (nrsm == NULL) {
3537 		/*
3538 		 * We can't get memory, so lets not proceed.
3539 		 */
3540 		*lenp = 0;
3541 		return (0);
3542 	}
3543 	/*
3544 	 * So here we are going to take the original rsm and make it what we
3545 	 * retransmitted. nrsm will be the tail portion we did not
3546 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3547 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3548 	 * 1, 6 and the new piece will be 6, 11.
3549 	 */
3550 	rack_clone_rsm(rack, nrsm, rsm, c_end);
3551 	nrsm->r_dupack = 0;
3552 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
3553 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3554 #ifdef INVARIANTS
3555 	if (insret != NULL) {
3556 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3557 		      nrsm, insret, rack, rsm);
3558 	}
3559 #endif
3560 	if (rsm->r_in_tmap) {
3561 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3562 		nrsm->r_in_tmap = 1;
3563 	}
3564 	rsm->r_flags &= (~RACK_HAS_FIN);
3565 	rack_update_rsm(tp, rack, rsm, ts);
3566 	*lenp = 0;
3567 	return (0);
3568 }
3569 
3570 
3571 static void
3572 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3573     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3574     uint8_t pass, struct rack_sendmap *hintrsm)
3575 {
3576 	struct tcp_rack *rack;
3577 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
3578 	register uint32_t snd_max, snd_una;
3579 
3580 	/*
3581 	 * Add to the RACK log of packets in flight or retransmitted. If
3582 	 * there is a TS option we will use the TS echoed, if not we will
3583 	 * grab a TS.
3584 	 *
3585 	 * Retransmissions will increment the count and move the ts to its
3586 	 * proper place. Note that if options do not include TS's then we
3587 	 * won't be able to effectively use the ACK for an RTT on a retran.
3588 	 *
3589 	 * Notes about r_start and r_end. Lets consider a send starting at
3590 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3591 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3592 	 * This means that r_end is actually the first sequence for the next
3593 	 * slot (11).
3594 	 *
3595 	 */
3596 	/*
3597 	 * If err is set what do we do XXXrrs? should we not add the thing?
3598 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3599 	 * i.e. proceed with add ** do this for now.
3600 	 */
3601 	INP_WLOCK_ASSERT(tp->t_inpcb);
3602 	if (err)
3603 		/*
3604 		 * We don't log errors -- we could but snd_max does not
3605 		 * advance in this case either.
3606 		 */
3607 		return;
3608 
3609 	if (th_flags & TH_RST) {
3610 		/*
3611 		 * We don't log resets and we return immediately from
3612 		 * sending
3613 		 */
3614 		return;
3615 	}
3616 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3617 	snd_una = tp->snd_una;
3618 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3619 		/* Are sending an old segment to induce an ack (keep-alive)? */
3620 		return;
3621 	}
3622 	if (SEQ_LT(seq_out, snd_una)) {
3623 		/* huh? should we panic? */
3624 		uint32_t end;
3625 
3626 		end = seq_out + len;
3627 		seq_out = snd_una;
3628 		if (SEQ_GEQ(end, seq_out))
3629 			len = end - seq_out;
3630 		else
3631 			len = 0;
3632 	}
3633 	snd_max = tp->snd_max;
3634 	if (th_flags & (TH_SYN | TH_FIN)) {
3635 		/*
3636 		 * The call to rack_log_output is made before bumping
3637 		 * snd_max. This means we can record one extra byte on a SYN
3638 		 * or FIN if seq_out is adding more on and a FIN is present
3639 		 * (and we are not resending).
3640 		 */
3641 		if (th_flags & TH_SYN)
3642 			len++;
3643 		if (th_flags & TH_FIN)
3644 			len++;
3645 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3646 			/*
3647 			 * The add/update as not been done for the FIN/SYN
3648 			 * yet.
3649 			 */
3650 			snd_max = tp->snd_nxt;
3651 		}
3652 	}
3653 	if (len == 0) {
3654 		/* We don't log zero window probes */
3655 		return;
3656 	}
3657 	rack->r_ctl.rc_time_last_sent = ts;
3658 	if (IN_RECOVERY(tp->t_flags)) {
3659 		rack->r_ctl.rc_prr_out += len;
3660 	}
3661 	/* First question is it a retransmission or new? */
3662 	if (seq_out == snd_max) {
3663 		/* Its new */
3664 again:
3665 		rsm = rack_alloc(rack);
3666 		if (rsm == NULL) {
3667 			/*
3668 			 * Hmm out of memory and the tcb got destroyed while
3669 			 * we tried to wait.
3670 			 */
3671 			return;
3672 		}
3673 		if (th_flags & TH_FIN) {
3674 			rsm->r_flags = RACK_HAS_FIN;
3675 		} else {
3676 			rsm->r_flags = 0;
3677 		}
3678 		rsm->r_tim_lastsent[0] = ts;
3679 		rsm->r_rtr_cnt = 1;
3680 		rsm->r_rtr_bytes = 0;
3681 		if (th_flags & TH_SYN) {
3682 			/* The data space is one beyond snd_una */
3683 			rsm->r_start = seq_out + 1;
3684 			rsm->r_end = rsm->r_start + (len - 1);
3685 		} else {
3686 			/* Normal case */
3687 			rsm->r_start = seq_out;
3688 			rsm->r_end = rsm->r_start + len;
3689 		}
3690 		rsm->r_dupack = 0;
3691 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3692 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
3693 #ifdef INVARIANTS
3694 		if (insret != NULL) {
3695 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3696 			      nrsm, insret, rack, rsm);
3697 		}
3698 #endif
3699 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3700 		rsm->r_in_tmap = 1;
3701 		return;
3702 	}
3703 	/*
3704 	 * If we reach here its a retransmission and we need to find it.
3705 	 */
3706 	memset(&fe, 0, sizeof(fe));
3707 more:
3708 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3709 		rsm = hintrsm;
3710 		hintrsm = NULL;
3711 	} else {
3712 		/* No hints sorry */
3713 		rsm = NULL;
3714 	}
3715 	if ((rsm) && (rsm->r_start == seq_out)) {
3716 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3717 		if (len == 0) {
3718 			return;
3719 		} else {
3720 			goto more;
3721 		}
3722 	}
3723 	/* Ok it was not the last pointer go through it the hard way. */
3724 refind:
3725 	fe.r_start = seq_out;
3726 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3727 	if (rsm) {
3728 		if (rsm->r_start == seq_out) {
3729 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3730 			if (len == 0) {
3731 				return;
3732 			} else {
3733 				goto refind;
3734 			}
3735 		}
3736 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3737 			/* Transmitted within this piece */
3738 			/*
3739 			 * Ok we must split off the front and then let the
3740 			 * update do the rest
3741 			 */
3742 			nrsm = rack_alloc_full_limit(rack);
3743 			if (nrsm == NULL) {
3744 				rack_update_rsm(tp, rack, rsm, ts);
3745 				return;
3746 			}
3747 			/*
3748 			 * copy rsm to nrsm and then trim the front of rsm
3749 			 * to not include this part.
3750 			 */
3751 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
3752 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3753 #ifdef INVARIANTS
3754 			if (insret != NULL) {
3755 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3756 				      nrsm, insret, rack, rsm);
3757 			}
3758 #endif
3759 			if (rsm->r_in_tmap) {
3760 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3761 				nrsm->r_in_tmap = 1;
3762 			}
3763 			rsm->r_flags &= (~RACK_HAS_FIN);
3764 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3765 			if (len == 0) {
3766 				return;
3767 			} else if (len > 0)
3768 				goto refind;
3769 		}
3770 	}
3771 	/*
3772 	 * Hmm not found in map did they retransmit both old and on into the
3773 	 * new?
3774 	 */
3775 	if (seq_out == tp->snd_max) {
3776 		goto again;
3777 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3778 #ifdef INVARIANTS
3779 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3780 		    seq_out, len, tp->snd_una, tp->snd_max);
3781 		printf("Starting Dump of all rack entries\n");
3782 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3783 			printf("rsm:%p start:%u end:%u\n",
3784 			    rsm, rsm->r_start, rsm->r_end);
3785 		}
3786 		printf("Dump complete\n");
3787 		panic("seq_out not found rack:%p tp:%p",
3788 		    rack, tp);
3789 #endif
3790 	} else {
3791 #ifdef INVARIANTS
3792 		/*
3793 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3794 		 * flag)
3795 		 */
3796 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3797 		    seq_out, len, tp->snd_max, tp);
3798 #endif
3799 	}
3800 }
3801 
3802 /*
3803  * Record one of the RTT updates from an ack into
3804  * our sample structure.
3805  */
3806 static void
3807 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3808 {
3809 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3810 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3811 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3812 	}
3813 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3814 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3815 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3816 	}
3817 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3818 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3819 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3820 }
3821 
3822 /*
3823  * Collect new round-trip time estimate
3824  * and update averages and current timeout.
3825  */
3826 static void
3827 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3828 {
3829 	int32_t delta;
3830 	uint32_t o_srtt, o_var;
3831 	int32_t rtt;
3832 
3833 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3834 		/* No valid sample */
3835 		return;
3836 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3837 		/* We are to use the lowest RTT seen in a single ack */
3838 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3839 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3840 		/* We are to use the highest RTT seen in a single ack */
3841 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3842 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3843 		/* We are to use the average RTT seen in a single ack */
3844 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3845 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3846 	} else {
3847 #ifdef INVARIANTS
3848 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3849 #endif
3850 		return;
3851 	}
3852 	if (rtt == 0)
3853 		rtt = 1;
3854 	rack_log_rtt_sample(rack, rtt);
3855 	o_srtt = tp->t_srtt;
3856 	o_var = tp->t_rttvar;
3857 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3858 	if (tp->t_srtt != 0) {
3859 		/*
3860 		 * srtt is stored as fixed point with 5 bits after the
3861 		 * binary point (i.e., scaled by 8).  The following magic is
3862 		 * equivalent to the smoothing algorithm in rfc793 with an
3863 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3864 		 * Adjust rtt to origin 0.
3865 		 */
3866 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3867 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3868 
3869 		tp->t_srtt += delta;
3870 		if (tp->t_srtt <= 0)
3871 			tp->t_srtt = 1;
3872 
3873 		/*
3874 		 * We accumulate a smoothed rtt variance (actually, a
3875 		 * smoothed mean difference), then set the retransmit timer
3876 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3877 		 * is stored as fixed point with 4 bits after the binary
3878 		 * point (scaled by 16).  The following is equivalent to
3879 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3880 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3881 		 * wired-in beta.
3882 		 */
3883 		if (delta < 0)
3884 			delta = -delta;
3885 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3886 		tp->t_rttvar += delta;
3887 		if (tp->t_rttvar <= 0)
3888 			tp->t_rttvar = 1;
3889 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3890 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3891 	} else {
3892 		/*
3893 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3894 		 * variance to half the rtt (so our first retransmit happens
3895 		 * at 3*rtt).
3896 		 */
3897 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3898 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3899 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3900 	}
3901 	TCPSTAT_INC(tcps_rttupdated);
3902 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3903 	tp->t_rttupdated++;
3904 #ifdef STATS
3905 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3906 #endif
3907 	tp->t_rxtshift = 0;
3908 
3909 	/*
3910 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3911 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3912 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3913 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3914 	 * uncertainty in the firing of the timer.  The bias will give us
3915 	 * exactly the 1.5 tick we need.  But, because the bias is
3916 	 * statistical, we have to test that we don't drop below the minimum
3917 	 * feasible timer (which is 2 ticks).
3918 	 */
3919 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3920 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3921 	tp->t_softerror = 0;
3922 }
3923 
3924 static void
3925 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3926     uint32_t t, uint32_t cts)
3927 {
3928 	/*
3929 	 * For this RSM, we acknowledged the data from a previous
3930 	 * transmission, not the last one we made. This means we did a false
3931 	 * retransmit.
3932 	 */
3933 	struct tcp_rack *rack;
3934 
3935 	if (rsm->r_flags & RACK_HAS_FIN) {
3936 		/*
3937 		 * The sending of the FIN often is multiple sent when we
3938 		 * have everything outstanding ack'd. We ignore this case
3939 		 * since its over now.
3940 		 */
3941 		return;
3942 	}
3943 	if (rsm->r_flags & RACK_TLP) {
3944 		/*
3945 		 * We expect TLP's to have this occur.
3946 		 */
3947 		return;
3948 	}
3949 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3950 	/* should we undo cc changes and exit recovery? */
3951 	if (IN_RECOVERY(tp->t_flags)) {
3952 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3953 			/*
3954 			 * Undo what we ratched down and exit recovery if
3955 			 * possible
3956 			 */
3957 			EXIT_RECOVERY(tp->t_flags);
3958 			tp->snd_recover = tp->snd_una;
3959 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3960 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3961 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3962 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3963 		}
3964 	}
3965 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3966 		/*
3967 		 * We retransmitted based on a sack and the earlier
3968 		 * retransmission ack'd it - re-ordering is occuring.
3969 		 */
3970 		counter_u64_add(rack_reorder_seen, 1);
3971 		rack->r_ctl.rc_reorder_ts = cts;
3972 	}
3973 	counter_u64_add(rack_badfr, 1);
3974 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3975 }
3976 
3977 
3978 static int
3979 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3980     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3981 {
3982 	int32_t i;
3983 	uint32_t t;
3984 
3985 	if (rsm->r_flags & RACK_ACKED)
3986 		/* Already done */
3987 		return (0);
3988 
3989 
3990 	if ((rsm->r_rtr_cnt == 1) ||
3991 	    ((ack_type == CUM_ACKED) &&
3992 	    (to->to_flags & TOF_TS) &&
3993 	    (to->to_tsecr) &&
3994 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3995 	    ) {
3996 		/*
3997 		 * We will only find a matching timestamp if its cum-acked.
3998 		 * But if its only one retransmission its for-sure matching
3999 		 * :-)
4000 		 */
4001 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4002 		if ((int)t <= 0)
4003 			t = 1;
4004 		if (!tp->t_rttlow || tp->t_rttlow > t)
4005 			tp->t_rttlow = t;
4006 		if (!rack->r_ctl.rc_rack_min_rtt ||
4007 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4008 			rack->r_ctl.rc_rack_min_rtt = t;
4009 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
4010 				rack->r_ctl.rc_rack_min_rtt = 1;
4011 			}
4012 		}
4013 		tcp_rack_xmit_timer(rack, t + 1);
4014 		if ((rsm->r_flags & RACK_TLP) &&
4015 		    (!IN_RECOVERY(tp->t_flags))) {
4016 			/* Segment was a TLP and our retrans matched */
4017 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
4018 				rack->r_ctl.rc_rsm_start = tp->snd_max;
4019 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4020 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4021 				rack_cong_signal(tp, NULL, CC_NDUPACK);
4022 				/*
4023 				 * When we enter recovery we need to assure
4024 				 * we send one packet.
4025 				 */
4026 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4027 				rack_log_to_prr(rack, 7);
4028 			}
4029 		}
4030 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4031 			/* New more recent rack_tmit_time */
4032 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4033 			rack->rc_rack_rtt = t;
4034 		}
4035 		return (1);
4036 	}
4037 	/*
4038 	 * We clear the soft/rxtshift since we got an ack.
4039 	 * There is no assurance we will call the commit() function
4040 	 * so we need to clear these to avoid incorrect handling.
4041 	 */
4042 	tp->t_rxtshift = 0;
4043 	tp->t_softerror = 0;
4044 	if ((to->to_flags & TOF_TS) &&
4045 	    (ack_type == CUM_ACKED) &&
4046 	    (to->to_tsecr) &&
4047 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
4048 		/*
4049 		 * Now which timestamp does it match? In this block the ACK
4050 		 * must be coming from a previous transmission.
4051 		 */
4052 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
4053 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
4054 				t = cts - rsm->r_tim_lastsent[i];
4055 				if ((int)t <= 0)
4056 					t = 1;
4057 				if ((i + 1) < rsm->r_rtr_cnt) {
4058 					/* Likely */
4059 					rack_earlier_retran(tp, rsm, t, cts);
4060 				}
4061 				if (!tp->t_rttlow || tp->t_rttlow > t)
4062 					tp->t_rttlow = t;
4063 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4064 					rack->r_ctl.rc_rack_min_rtt = t;
4065 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
4066 						rack->r_ctl.rc_rack_min_rtt = 1;
4067 					}
4068 				}
4069                                 /*
4070 				 * Note the following calls to
4071 				 * tcp_rack_xmit_timer() are being commented
4072 				 * out for now. They give us no more accuracy
4073 				 * and often lead to a wrong choice. We have
4074 				 * enough samples that have not been
4075 				 * retransmitted. I leave the commented out
4076 				 * code in here in case in the future we
4077 				 * decide to add it back (though I can't forsee
4078 				 * doing that). That way we will easily see
4079 				 * where they need to be placed.
4080 				 */
4081 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
4082 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4083 					/* New more recent rack_tmit_time */
4084 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4085 					rack->rc_rack_rtt = t;
4086 				}
4087 				return (1);
4088 			}
4089 		}
4090 		goto ts_not_found;
4091 	} else {
4092 		/*
4093 		 * Ok its a SACK block that we retransmitted. or a windows
4094 		 * machine without timestamps. We can tell nothing from the
4095 		 * time-stamp since its not there or the time the peer last
4096 		 * recieved a segment that moved forward its cum-ack point.
4097 		 */
4098 ts_not_found:
4099 		i = rsm->r_rtr_cnt - 1;
4100 		t = cts - rsm->r_tim_lastsent[i];
4101 		if ((int)t <= 0)
4102 			t = 1;
4103 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4104 			/*
4105 			 * We retransmitted and the ack came back in less
4106 			 * than the smallest rtt we have observed. We most
4107 			 * likey did an improper retransmit as outlined in
4108 			 * 4.2 Step 3 point 2 in the rack-draft.
4109 			 */
4110 			i = rsm->r_rtr_cnt - 2;
4111 			t = cts - rsm->r_tim_lastsent[i];
4112 			rack_earlier_retran(tp, rsm, t, cts);
4113 		} else if (rack->r_ctl.rc_rack_min_rtt) {
4114 			/*
4115 			 * We retransmitted it and the retransmit did the
4116 			 * job.
4117 			 */
4118 			if (!rack->r_ctl.rc_rack_min_rtt ||
4119 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4120 				rack->r_ctl.rc_rack_min_rtt = t;
4121 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
4122 					rack->r_ctl.rc_rack_min_rtt = 1;
4123 				}
4124 			}
4125 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
4126 				/* New more recent rack_tmit_time */
4127 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
4128 				rack->rc_rack_rtt = t;
4129 			}
4130 			return (1);
4131 		}
4132 	}
4133 	return (0);
4134 }
4135 
4136 /*
4137  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
4138  */
4139 static void
4140 rack_log_sack_passed(struct tcpcb *tp,
4141     struct tcp_rack *rack, struct rack_sendmap *rsm)
4142 {
4143 	struct rack_sendmap *nrsm;
4144 
4145 	nrsm = rsm;
4146 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
4147 	    rack_head, r_tnext) {
4148 		if (nrsm == rsm) {
4149 			/* Skip orginal segment he is acked */
4150 			continue;
4151 		}
4152 		if (nrsm->r_flags & RACK_ACKED) {
4153 			/*
4154 			 * Skip ack'd segments, though we
4155 			 * should not see these, since tmap
4156 			 * should not have ack'd segments.
4157 			 */
4158 			continue;
4159 		}
4160 		if (nrsm->r_flags & RACK_SACK_PASSED) {
4161 			/*
4162 			 * We found one that is already marked
4163 			 * passed, we have been here before and
4164 			 * so all others below this are marked.
4165 			 */
4166 			break;
4167 		}
4168 		nrsm->r_flags |= RACK_SACK_PASSED;
4169 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
4170 	}
4171 }
4172 
4173 static uint32_t
4174 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
4175 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
4176 {
4177 	uint32_t start, end, changed = 0;
4178 	struct rack_sendmap stack_map;
4179 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
4180 	int32_t used_ref = 1;
4181 	int moved = 0;
4182 
4183 	start = sack->start;
4184 	end = sack->end;
4185 	rsm = *prsm;
4186 	memset(&fe, 0, sizeof(fe));
4187 do_rest_ofb:
4188 	if ((rsm == NULL) ||
4189 	    (SEQ_LT(end, rsm->r_start)) ||
4190 	    (SEQ_GEQ(start, rsm->r_end)) ||
4191 	    (SEQ_LT(start, rsm->r_start))) {
4192 		/*
4193 		 * We are not in the right spot,
4194 		 * find the correct spot in the tree.
4195 		 */
4196 		used_ref = 0;
4197 		fe.r_start = start;
4198 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4199 		moved++;
4200 	}
4201 	if (rsm == NULL) {
4202 		/* TSNH */
4203 		goto out;
4204 	}
4205 	/* Ok we have an ACK for some piece of this rsm */
4206 	if (rsm->r_start != start) {
4207 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4208 			/**
4209 			 * Need to split this in two pieces the before and after,
4210 			 * the before remains in the map, the after must be
4211 			 * added. In other words we have:
4212 			 * rsm        |--------------|
4213 			 * sackblk        |------->
4214 			 * rsm will become
4215 			 *     rsm    |---|
4216 			 * and nrsm will be  the sacked piece
4217 			 *     nrsm       |----------|
4218 			 *
4219 			 * But before we start down that path lets
4220 			 * see if the sack spans over on top of
4221 			 * the next guy and it is already sacked.
4222 			 */
4223 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4224 			if (next && (next->r_flags & RACK_ACKED) &&
4225 			    SEQ_GEQ(end, next->r_start)) {
4226 				/**
4227 				 * So the next one is already acked, and
4228 				 * we can thus by hookery use our stack_map
4229 				 * to reflect the piece being sacked and
4230 				 * then adjust the two tree entries moving
4231 				 * the start and ends around. So we start like:
4232 				 *  rsm     |------------|             (not-acked)
4233 				 *  next                 |-----------| (acked)
4234 				 *  sackblk        |-------->
4235 				 *  We want to end like so:
4236 				 *  rsm     |------|                   (not-acked)
4237 				 *  next           |-----------------| (acked)
4238 				 *  nrsm           |-----|
4239 				 * Where nrsm is a temporary stack piece we
4240 				 * use to update all the gizmos.
4241 				 */
4242 				/* Copy up our fudge block */
4243 				nrsm = &stack_map;
4244 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4245 				/* Now adjust our tree blocks */
4246 				rsm->r_end = start;
4247 				next->r_start = start;
4248 				/* Clear out the dup ack count of the remainder */
4249 				rsm->r_dupack = 0;
4250 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4251 				/* Now lets make sure our fudge block is right */
4252 				nrsm->r_start = start;
4253 				/* Now lets update all the stats and such */
4254 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4255 				changed += (nrsm->r_end - nrsm->r_start);
4256 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4257 				if (nrsm->r_flags & RACK_SACK_PASSED) {
4258 					counter_u64_add(rack_reorder_seen, 1);
4259 					rack->r_ctl.rc_reorder_ts = cts;
4260 				}
4261 				/*
4262 				 * Now we want to go up from rsm (the
4263 				 * one left un-acked) to the next one
4264 				 * in the tmap. We do this so when
4265 				 * we walk backwards we include marking
4266 				 * sack-passed on rsm (The one passed in
4267 				 * is skipped since it is generally called
4268 				 * on something sacked before removing it
4269 				 * from the tmap).
4270 				 */
4271 				if (rsm->r_in_tmap) {
4272 					nrsm = TAILQ_NEXT(rsm, r_tnext);
4273 					/*
4274 					 * Now that we have the next
4275 					 * one walk backwards from there.
4276 					 */
4277 					if (nrsm && nrsm->r_in_tmap)
4278 						rack_log_sack_passed(tp, rack, nrsm);
4279 				}
4280 				/* Now are we done? */
4281 				if (SEQ_LT(end, next->r_end) ||
4282 				    (end == next->r_end)) {
4283 					/* Done with block */
4284 					goto out;
4285 				}
4286 				counter_u64_add(rack_sack_used_next_merge, 1);
4287 				/* Postion for the next block */
4288 				start = next->r_end;
4289 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
4290 				if (rsm == NULL)
4291 					goto out;
4292 			} else {
4293 				/**
4294 				 * We can't use any hookery here, so we
4295 				 * need to split the map. We enter like
4296 				 * so:
4297 				 *  rsm      |--------|
4298 				 *  sackblk       |----->
4299 				 * We will add the new block nrsm and
4300 				 * that will be the new portion, and then
4301 				 * fall through after reseting rsm. So we
4302 				 * split and look like this:
4303 				 *  rsm      |----|
4304 				 *  sackblk       |----->
4305 				 *  nrsm          |---|
4306 				 * We then fall through reseting
4307 				 * rsm to nrsm, so the next block
4308 				 * picks it up.
4309 				 */
4310 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4311 				if (nrsm == NULL) {
4312 					/*
4313 					 * failed XXXrrs what can we do but loose the sack
4314 					 * info?
4315 					 */
4316 					goto out;
4317 				}
4318 				counter_u64_add(rack_sack_splits, 1);
4319 				rack_clone_rsm(rack, nrsm, rsm, start);
4320 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4321 #ifdef INVARIANTS
4322 				if (insret != NULL) {
4323 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4324 					      nrsm, insret, rack, rsm);
4325 				}
4326 #endif
4327 				if (rsm->r_in_tmap) {
4328 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4329 					nrsm->r_in_tmap = 1;
4330 				}
4331 				rsm->r_flags &= (~RACK_HAS_FIN);
4332 				/* Position us to point to the new nrsm that starts the sack blk */
4333 				rsm = nrsm;
4334 			}
4335 		} else {
4336 			/* Already sacked this piece */
4337 			counter_u64_add(rack_sack_skipped_acked, 1);
4338 			moved++;
4339 			if (end == rsm->r_end) {
4340 				/* Done with block */
4341 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4342 				goto out;
4343 			} else if (SEQ_LT(end, rsm->r_end)) {
4344 				/* A partial sack to a already sacked block */
4345 				moved++;
4346 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4347 				goto out;
4348 			} else {
4349 				/*
4350 				 * The end goes beyond this guy
4351 				 * repostion the start to the
4352 				 * next block.
4353 				 */
4354 				start = rsm->r_end;
4355 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4356 				if (rsm == NULL)
4357 					goto out;
4358 			}
4359 		}
4360 	}
4361 	if (SEQ_GEQ(end, rsm->r_end)) {
4362 		/**
4363 		 * The end of this block is either beyond this guy or right
4364 		 * at this guy. I.e.:
4365 		 *  rsm ---                 |-----|
4366 		 *  end                     |-----|
4367 		 *  <or>
4368 		 *  end                     |---------|
4369 		 */
4370 		if (rsm->r_flags & RACK_TLP)
4371 			rack->r_ctl.rc_tlp_rtx_out = 0;
4372 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4373 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4374 			changed += (rsm->r_end - rsm->r_start);
4375 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4376 			if (rsm->r_in_tmap) /* should be true */
4377 				rack_log_sack_passed(tp, rack, rsm);
4378 			/* Is Reordering occuring? */
4379 			if (rsm->r_flags & RACK_SACK_PASSED) {
4380 				rsm->r_flags &= ~RACK_SACK_PASSED;
4381 				counter_u64_add(rack_reorder_seen, 1);
4382 				rack->r_ctl.rc_reorder_ts = cts;
4383 			}
4384 			rsm->r_flags |= RACK_ACKED;
4385 			rsm->r_flags &= ~RACK_TLP;
4386 			if (rsm->r_in_tmap) {
4387 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4388 				rsm->r_in_tmap = 0;
4389 			}
4390 		} else {
4391 			counter_u64_add(rack_sack_skipped_acked, 1);
4392 			moved++;
4393 		}
4394 		if (end == rsm->r_end) {
4395 			/* This block only - done, setup for next  */
4396 			goto out;
4397 		}
4398 		/*
4399 		 * There is more not coverend by this rsm move on
4400 		 * to the next block in the RB tree.
4401 		 */
4402 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4403 		start = rsm->r_end;
4404 		rsm = nrsm;
4405 		if (rsm == NULL)
4406 			goto out;
4407 		goto do_rest_ofb;
4408 	}
4409 	/**
4410 	 * The end of this sack block is smaller than
4411 	 * our rsm i.e.:
4412 	 *  rsm ---                 |-----|
4413 	 *  end                     |--|
4414 	 */
4415 	if ((rsm->r_flags & RACK_ACKED) == 0) {
4416 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4417 		if (prev && (prev->r_flags & RACK_ACKED)) {
4418 			/**
4419 			 * Goal, we want the right remainder of rsm to shrink
4420 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
4421 			 * We want to expand prev to go all the way
4422 			 * to prev->r_end <- end.
4423 			 * so in the tree we have before:
4424 			 *   prev     |--------|         (acked)
4425 			 *   rsm               |-------| (non-acked)
4426 			 *   sackblk           |-|
4427 			 * We churn it so we end up with
4428 			 *   prev     |----------|       (acked)
4429 			 *   rsm                 |-----| (non-acked)
4430 			 *   nrsm              |-| (temporary)
4431 			 */
4432 			nrsm = &stack_map;
4433 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4434 			prev->r_end = end;
4435 			rsm->r_start = end;
4436 			/* Now adjust nrsm (stack copy) to be
4437 			 * the one that is the small
4438 			 * piece that was "sacked".
4439 			 */
4440 			nrsm->r_end = end;
4441 			rsm->r_dupack = 0;
4442 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4443 			/*
4444 			 * Now nrsm is our new little piece
4445 			 * that is acked (which was merged
4446 			 * to prev). Update the rtt and changed
4447 			 * based on that. Also check for reordering.
4448 			 */
4449 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4450 			changed += (nrsm->r_end - nrsm->r_start);
4451 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4452 			if (nrsm->r_flags & RACK_SACK_PASSED) {
4453 				counter_u64_add(rack_reorder_seen, 1);
4454 				rack->r_ctl.rc_reorder_ts = cts;
4455 			}
4456 			rsm = prev;
4457 			counter_u64_add(rack_sack_used_prev_merge, 1);
4458 		} else {
4459 			/**
4460 			 * This is the case where our previous
4461 			 * block is not acked either, so we must
4462 			 * split the block in two.
4463 			 */
4464 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4465 			if (nrsm == NULL) {
4466 				/* failed rrs what can we do but loose the sack info? */
4467 				goto out;
4468 			}
4469 			/**
4470 			 * In this case nrsm becomes
4471 			 * nrsm->r_start = end;
4472 			 * nrsm->r_end = rsm->r_end;
4473 			 * which is un-acked.
4474 			 * <and>
4475 			 * rsm->r_end = nrsm->r_start;
4476 			 * i.e. the remaining un-acked
4477 			 * piece is left on the left
4478 			 * hand side.
4479 			 *
4480 			 * So we start like this
4481 			 * rsm      |----------| (not acked)
4482 			 * sackblk  |---|
4483 			 * build it so we have
4484 			 * rsm      |---|         (acked)
4485 			 * nrsm         |------|  (not acked)
4486 			 */
4487 			counter_u64_add(rack_sack_splits, 1);
4488 			rack_clone_rsm(rack, nrsm, rsm, end);
4489 			rsm->r_flags &= (~RACK_HAS_FIN);
4490 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4491 #ifdef INVARIANTS
4492 			if (insret != NULL) {
4493 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4494 				      nrsm, insret, rack, rsm);
4495 			}
4496 #endif
4497 			if (rsm->r_in_tmap) {
4498 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4499 				nrsm->r_in_tmap = 1;
4500 			}
4501 			nrsm->r_dupack = 0;
4502 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
4503 			if (rsm->r_flags & RACK_TLP)
4504 				rack->r_ctl.rc_tlp_rtx_out = 0;
4505 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4506 			changed += (rsm->r_end - rsm->r_start);
4507 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4508 			if (rsm->r_in_tmap) /* should be true */
4509 				rack_log_sack_passed(tp, rack, rsm);
4510 			/* Is Reordering occuring? */
4511 			if (rsm->r_flags & RACK_SACK_PASSED) {
4512 				rsm->r_flags &= ~RACK_SACK_PASSED;
4513 				counter_u64_add(rack_reorder_seen, 1);
4514 				rack->r_ctl.rc_reorder_ts = cts;
4515 			}
4516 			rsm->r_flags |= RACK_ACKED;
4517 			rsm->r_flags &= ~RACK_TLP;
4518 			if (rsm->r_in_tmap) {
4519 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4520 				rsm->r_in_tmap = 0;
4521 			}
4522 		}
4523 	} else if (start != end){
4524 		/*
4525 		 * The block was already acked.
4526 		 */
4527 		counter_u64_add(rack_sack_skipped_acked, 1);
4528 		moved++;
4529 	}
4530 out:
4531 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4532 		/*
4533 		 * Now can we merge where we worked
4534 		 * with either the previous or
4535 		 * next block?
4536 		 */
4537 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4538 		while (next) {
4539 		    if (next->r_flags & RACK_ACKED) {
4540 			/* yep this and next can be merged */
4541 			rsm = rack_merge_rsm(rack, rsm, next);
4542 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4543 		    } else
4544 			    break;
4545 		}
4546 		/* Now what about the previous? */
4547 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4548 		while (prev) {
4549 		    if (prev->r_flags & RACK_ACKED) {
4550 			/* yep the previous and this can be merged */
4551 			rsm = rack_merge_rsm(rack, prev, rsm);
4552 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4553 		    } else
4554 			    break;
4555 		}
4556 	}
4557 	if (used_ref == 0) {
4558 		counter_u64_add(rack_sack_proc_all, 1);
4559 	} else {
4560 		counter_u64_add(rack_sack_proc_short, 1);
4561 	}
4562 	/* Save off the next one for quick reference. */
4563 	if (rsm)
4564 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4565 	else
4566 		nrsm = NULL;
4567 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
4568 	/* Pass back the moved. */
4569 	*moved_two = moved;
4570 	return (changed);
4571 }
4572 
4573 static void inline
4574 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4575 {
4576 	struct rack_sendmap *tmap;
4577 
4578 	tmap = NULL;
4579 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4580 		/* Its no longer sacked, mark it so */
4581 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4582 #ifdef INVARIANTS
4583 		if (rsm->r_in_tmap) {
4584 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4585 			      rack, rsm, rsm->r_flags);
4586 		}
4587 #endif
4588 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4589 		/* Rebuild it into our tmap */
4590 		if (tmap == NULL) {
4591 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4592 			tmap = rsm;
4593 		} else {
4594 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4595 			tmap = rsm;
4596 		}
4597 		tmap->r_in_tmap = 1;
4598 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4599 	}
4600 	/*
4601 	 * Now lets possibly clear the sack filter so we start
4602 	 * recognizing sacks that cover this area.
4603 	 */
4604 	if (rack_use_sack_filter)
4605 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4606 
4607 }
4608 
4609 static void
4610 rack_do_decay(struct tcp_rack *rack)
4611 {
4612 #ifdef NETFLIX_EXP_DETECTION
4613 	struct timeval res;
4614 
4615 #define	timersub(tvp, uvp, vvp)						\
4616 	do {								\
4617 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
4618 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
4619 		if ((vvp)->tv_usec < 0) {				\
4620 			(vvp)->tv_sec--;				\
4621 			(vvp)->tv_usec += 1000000;			\
4622 		}							\
4623 	} while (0)
4624 
4625 	timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
4626 #undef timersub
4627 
4628 	rack->r_ctl.input_pkt++;
4629 	if ((rack->rc_in_persist) ||
4630 	    (res.tv_sec >= 1) ||
4631 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
4632 		/*
4633 		 * Check for decay of non-SAD,
4634 		 * we want all SAD detection metrics to
4635 		 * decay 1/4 per second (or more) passed.
4636 		 */
4637 		uint32_t pkt_delta;
4638 
4639 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
4640 		/* Update our saved tracking values */
4641 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
4642 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
4643 		/* Now do we escape without decay? */
4644 		if (rack->rc_in_persist ||
4645 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
4646 		    (pkt_delta < tcp_sad_low_pps)){
4647 			/*
4648 			 * We don't decay idle connections
4649 			 * or ones that have a low input pps.
4650 			 */
4651 			return;
4652 		}
4653 		/* Decay the counters */
4654 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
4655 							tcp_sad_decay_val);
4656 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
4657 							 tcp_sad_decay_val);
4658 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
4659 							       tcp_sad_decay_val);
4660 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
4661 								tcp_sad_decay_val);
4662 	}
4663 #endif
4664 }
4665 
4666 static void
4667 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4668 {
4669 	uint32_t changed, entered_recovery = 0;
4670 	struct tcp_rack *rack;
4671 	struct rack_sendmap *rsm, *rm;
4672 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4673 	register uint32_t th_ack;
4674 	int32_t i, j, k, num_sack_blks = 0;
4675 	uint32_t cts, acked, ack_point, sack_changed = 0;
4676 	int loop_start = 0, moved_two = 0;
4677 
4678 	INP_WLOCK_ASSERT(tp->t_inpcb);
4679 	if (th->th_flags & TH_RST) {
4680 		/* We don't log resets */
4681 		return;
4682 	}
4683 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4684 	cts = tcp_ts_getticks();
4685 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4686 	changed = 0;
4687 	th_ack = th->th_ack;
4688 	if (rack->sack_attack_disable == 0)
4689 		rack_do_decay(rack);
4690 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
4691 		/*
4692 		 * You only get credit for
4693 		 * MSS and greater (and you get extra
4694 		 * credit for larger cum-ack moves).
4695 		 */
4696 		int ac;
4697 
4698 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
4699 		rack->r_ctl.ack_count += ac;
4700 		counter_u64_add(rack_ack_total, ac);
4701 	}
4702 	if (rack->r_ctl.ack_count > 0xfff00000) {
4703 		/*
4704 		 * reduce the number to keep us under
4705 		 * a uint32_t.
4706 		 */
4707 		rack->r_ctl.ack_count /= 2;
4708 		rack->r_ctl.sack_count /= 2;
4709 	}
4710 	if (SEQ_GT(th_ack, tp->snd_una)) {
4711 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4712 		tp->t_acktime = ticks;
4713 	}
4714 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4715 		changed = th_ack - rsm->r_start;
4716 	if (changed) {
4717 		/*
4718 		 * The ACK point is advancing to th_ack, we must drop off
4719 		 * the packets in the rack log and calculate any eligble
4720 		 * RTT's.
4721 		 */
4722 		rack->r_wanted_output++;
4723 	more:
4724 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4725 		if (rsm == NULL) {
4726 			if ((th_ack - 1) == tp->iss) {
4727 				/*
4728 				 * For the SYN incoming case we will not
4729 				 * have called tcp_output for the sending of
4730 				 * the SYN, so there will be no map. All
4731 				 * other cases should probably be a panic.
4732 				 */
4733 				goto proc_sack;
4734 			}
4735 			if (tp->t_flags & TF_SENTFIN) {
4736 				/* if we send a FIN we will not hav a map */
4737 				goto proc_sack;
4738 			}
4739 #ifdef INVARIANTS
4740 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4741 			      tp,
4742 			      th, tp->t_state, rack,
4743 			      tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4744 #endif
4745 			goto proc_sack;
4746 		}
4747 		if (SEQ_LT(th_ack, rsm->r_start)) {
4748 			/* Huh map is missing this */
4749 #ifdef INVARIANTS
4750 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4751 			       rsm->r_start,
4752 			       th_ack, tp->t_state, rack->r_state);
4753 #endif
4754 			goto proc_sack;
4755 		}
4756 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4757 		/* Now do we consume the whole thing? */
4758 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4759 			/* Its all consumed. */
4760 			uint32_t left;
4761 
4762 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4763 			rsm->r_rtr_bytes = 0;
4764 			if (rsm->r_flags & RACK_TLP)
4765 				rack->r_ctl.rc_tlp_rtx_out = 0;
4766 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4767 #ifdef INVARIANTS
4768 			if (rm != rsm) {
4769 				panic("removing head in rack:%p rsm:%p rm:%p",
4770 				      rack, rsm, rm);
4771 			}
4772 #endif
4773 			if (rsm->r_in_tmap) {
4774 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4775 				rsm->r_in_tmap = 0;
4776 			}
4777 			if (rsm->r_flags & RACK_ACKED) {
4778 				/*
4779 				 * It was acked on the scoreboard -- remove
4780 				 * it from total
4781 				 */
4782 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4783 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4784 				/*
4785 				 * There are segments ACKED on the
4786 				 * scoreboard further up. We are seeing
4787 				 * reordering.
4788 				 */
4789 				rsm->r_flags &= ~RACK_SACK_PASSED;
4790 				counter_u64_add(rack_reorder_seen, 1);
4791 				rsm->r_flags |= RACK_ACKED;
4792 				rack->r_ctl.rc_reorder_ts = cts;
4793 			}
4794 			left = th_ack - rsm->r_end;
4795 			if (rsm->r_rtr_cnt > 1) {
4796 				/*
4797 				 * Technically we should make r_rtr_cnt be
4798 				 * monotonicly increasing and just mod it to
4799 				 * the timestamp it is replacing.. that way
4800 				 * we would have the last 3 retransmits. Now
4801 				 * rc_loss_count will be wrong if we
4802 				 * retransmit something more than 2 times in
4803 				 * recovery :(
4804 				 */
4805 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4806 			}
4807 			/* Free back to zone */
4808 			rack_free(rack, rsm);
4809 			if (left) {
4810 				goto more;
4811 			}
4812 			goto proc_sack;
4813 		}
4814 		if (rsm->r_flags & RACK_ACKED) {
4815 			/*
4816 			 * It was acked on the scoreboard -- remove it from
4817 			 * total for the part being cum-acked.
4818 			 */
4819 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4820 		}
4821 		/*
4822 		 * Clear the dup ack count for
4823 		 * the piece that remains.
4824 		 */
4825 		rsm->r_dupack = 0;
4826 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4827 		if (rsm->r_rtr_bytes) {
4828 			/*
4829 			 * It was retransmitted adjust the
4830 			 * sack holes for what was acked.
4831 			 */
4832 			int ack_am;
4833 
4834 			ack_am = (th_ack - rsm->r_start);
4835 			if (ack_am >= rsm->r_rtr_bytes) {
4836 				rack->r_ctl.rc_holes_rxt -= ack_am;
4837 				rsm->r_rtr_bytes -= ack_am;
4838 			}
4839 		}
4840 		/* Update where the piece starts */
4841 		rsm->r_start = th_ack;
4842 	}
4843 proc_sack:
4844 	/* Check for reneging */
4845 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4846 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4847 		/*
4848 		 * The peer has moved snd_una up to
4849 		 * the edge of this send, i.e. one
4850 		 * that it had previously acked. The only
4851 		 * way that can be true if the peer threw
4852 		 * away data (space issues) that it had
4853 		 * previously sacked (else it would have
4854 		 * given us snd_una up to (rsm->r_end).
4855 		 * We need to undo the acked markings here.
4856 		 *
4857 		 * Note we have to look to make sure th_ack is
4858 		 * our rsm->r_start in case we get an old ack
4859 		 * where th_ack is behind snd_una.
4860 		 */
4861 		rack_peer_reneges(rack, rsm, th->th_ack);
4862 	}
4863 	if ((to->to_flags & TOF_SACK) == 0) {
4864 		/* We are done nothing left */
4865 		goto out;
4866 	}
4867 	/* Sack block processing */
4868 	if (SEQ_GT(th_ack, tp->snd_una))
4869 		ack_point = th_ack;
4870 	else
4871 		ack_point = tp->snd_una;
4872 	for (i = 0; i < to->to_nsacks; i++) {
4873 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4874 		      &sack, sizeof(sack));
4875 		sack.start = ntohl(sack.start);
4876 		sack.end = ntohl(sack.end);
4877 		if (SEQ_GT(sack.end, sack.start) &&
4878 		    SEQ_GT(sack.start, ack_point) &&
4879 		    SEQ_LT(sack.start, tp->snd_max) &&
4880 		    SEQ_GT(sack.end, ack_point) &&
4881 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4882 			sack_blocks[num_sack_blks] = sack;
4883 			num_sack_blks++;
4884 #ifdef NETFLIX_STATS
4885 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4886 			   SEQ_LEQ(sack.end, th_ack)) {
4887 			/*
4888 			 * Its a D-SACK block.
4889 			 */
4890 			tcp_record_dsack(sack.start, sack.end);
4891 #endif
4892 		}
4893 
4894 	}
4895 	/*
4896 	 * Sort the SACK blocks so we can update the rack scoreboard with
4897 	 * just one pass.
4898 	 */
4899 	if (rack_use_sack_filter) {
4900 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4901 						 num_sack_blks, th->th_ack);
4902 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4903 	}
4904 	if (num_sack_blks == 0)  {
4905 		/* Nothing to sack (DSACKs?) */
4906 		goto out_with_totals;
4907 	}
4908 	if (num_sack_blks < 2) {
4909 		/* Only one, we don't need to sort */
4910 		goto do_sack_work;
4911 	}
4912 	/* Sort the sacks */
4913 	for (i = 0; i < num_sack_blks; i++) {
4914 		for (j = i + 1; j < num_sack_blks; j++) {
4915 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4916 				sack = sack_blocks[i];
4917 				sack_blocks[i] = sack_blocks[j];
4918 				sack_blocks[j] = sack;
4919 			}
4920 		}
4921 	}
4922 	/*
4923 	 * Now are any of the sack block ends the same (yes some
4924 	 * implementations send these)?
4925 	 */
4926 again:
4927 	if (num_sack_blks == 0)
4928 		goto out_with_totals;
4929 	if (num_sack_blks > 1) {
4930 		for (i = 0; i < num_sack_blks; i++) {
4931 			for (j = i + 1; j < num_sack_blks; j++) {
4932 				if (sack_blocks[i].end == sack_blocks[j].end) {
4933 					/*
4934 					 * Ok these two have the same end we
4935 					 * want the smallest end and then
4936 					 * throw away the larger and start
4937 					 * again.
4938 					 */
4939 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4940 						/*
4941 						 * The second block covers
4942 						 * more area use that
4943 						 */
4944 						sack_blocks[i].start = sack_blocks[j].start;
4945 					}
4946 					/*
4947 					 * Now collapse out the dup-sack and
4948 					 * lower the count
4949 					 */
4950 					for (k = (j + 1); k < num_sack_blks; k++) {
4951 						sack_blocks[j].start = sack_blocks[k].start;
4952 						sack_blocks[j].end = sack_blocks[k].end;
4953 						j++;
4954 					}
4955 					num_sack_blks--;
4956 					goto again;
4957 				}
4958 			}
4959 		}
4960 	}
4961 do_sack_work:
4962 	/*
4963 	 * First lets look to see if
4964 	 * we have retransmitted and
4965 	 * can use the transmit next?
4966 	 */
4967 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4968 	if (rsm &&
4969 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
4970 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
4971 		/*
4972 		 * We probably did the FR and the next
4973 		 * SACK in continues as we would expect.
4974 		 */
4975 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
4976 		if (acked) {
4977 			rack->r_wanted_output++;
4978 			changed += acked;
4979 			sack_changed += acked;
4980 		}
4981 		if (num_sack_blks == 1) {
4982 			/*
4983 			 * This is what we would expect from
4984 			 * a normal implementation to happen
4985 			 * after we have retransmitted the FR,
4986 			 * i.e the sack-filter pushes down
4987 			 * to 1 block and the next to be retransmitted
4988 			 * is the sequence in the sack block (has more
4989 			 * are acked). Count this as ACK'd data to boost
4990 			 * up the chances of recovering any false positives.
4991 			 */
4992 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
4993 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
4994 			counter_u64_add(rack_express_sack, 1);
4995 			if (rack->r_ctl.ack_count > 0xfff00000) {
4996 				/*
4997 				 * reduce the number to keep us under
4998 				 * a uint32_t.
4999 				 */
5000 				rack->r_ctl.ack_count /= 2;
5001 				rack->r_ctl.sack_count /= 2;
5002 			}
5003 			goto out_with_totals;
5004 		} else {
5005 			/*
5006 			 * Start the loop through the
5007 			 * rest of blocks, past the first block.
5008 			 */
5009 			moved_two = 0;
5010 			loop_start = 1;
5011 		}
5012 	}
5013 	/* Its a sack of some sort */
5014 	rack->r_ctl.sack_count++;
5015 	if (rack->r_ctl.sack_count > 0xfff00000) {
5016 		/*
5017 		 * reduce the number to keep us under
5018 		 * a uint32_t.
5019 		 */
5020 		rack->r_ctl.ack_count /= 2;
5021 		rack->r_ctl.sack_count /= 2;
5022 	}
5023 	counter_u64_add(rack_sack_total, 1);
5024 	if (rack->sack_attack_disable) {
5025 		/* An attacker disablement is in place */
5026 		if (num_sack_blks > 1) {
5027 			rack->r_ctl.sack_count += (num_sack_blks - 1);
5028 			rack->r_ctl.sack_moved_extra++;
5029 			counter_u64_add(rack_move_some, 1);
5030 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
5031 				rack->r_ctl.sack_moved_extra /= 2;
5032 				rack->r_ctl.sack_noextra_move /= 2;
5033 			}
5034 		}
5035 		goto out;
5036 	}
5037 	rsm = rack->r_ctl.rc_sacklast;
5038 	for (i = loop_start; i < num_sack_blks; i++) {
5039 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
5040 		if (acked) {
5041 			rack->r_wanted_output++;
5042 			changed += acked;
5043 			sack_changed += acked;
5044 		}
5045 		if (moved_two) {
5046 			/*
5047 			 * If we did not get a SACK for at least a MSS and
5048 			 * had to move at all, or if we moved more than our
5049 			 * threshold, it counts against the "extra" move.
5050 			 */
5051 			rack->r_ctl.sack_moved_extra += moved_two;
5052 			counter_u64_add(rack_move_some, 1);
5053 		} else {
5054 			/*
5055 			 * else we did not have to move
5056 			 * any more than we would expect.
5057 			 */
5058 			rack->r_ctl.sack_noextra_move++;
5059 			counter_u64_add(rack_move_none, 1);
5060 		}
5061 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
5062 			/*
5063 			 * If the SACK was not a full MSS then
5064 			 * we add to sack_count the number of
5065 			 * MSS's (or possibly more than
5066 			 * a MSS if its a TSO send) we had to skip by.
5067 			 */
5068 			rack->r_ctl.sack_count += moved_two;
5069 			counter_u64_add(rack_sack_total, moved_two);
5070 		}
5071 		/*
5072 		 * Now we need to setup for the next
5073 		 * round. First we make sure we won't
5074 		 * exceed the size of our uint32_t on
5075 		 * the various counts, and then clear out
5076 		 * moved_two.
5077 		 */
5078 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
5079 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
5080 			rack->r_ctl.sack_moved_extra /= 2;
5081 			rack->r_ctl.sack_noextra_move /= 2;
5082 		}
5083 		if (rack->r_ctl.sack_count > 0xfff00000) {
5084 			rack->r_ctl.ack_count /= 2;
5085 			rack->r_ctl.sack_count /= 2;
5086 		}
5087 		moved_two = 0;
5088 	}
5089 out_with_totals:
5090 	if (num_sack_blks > 1) {
5091 		/*
5092 		 * You get an extra stroke if
5093 		 * you have more than one sack-blk, this
5094 		 * could be where we are skipping forward
5095 		 * and the sack-filter is still working, or
5096 		 * it could be an attacker constantly
5097 		 * moving us.
5098 		 */
5099 		rack->r_ctl.sack_moved_extra++;
5100 		counter_u64_add(rack_move_some, 1);
5101 	}
5102 out:
5103 #ifdef NETFLIX_EXP_DETECTION
5104 	if ((rack->do_detection || tcp_force_detection) &&
5105 	    tcp_sack_to_ack_thresh &&
5106 	    tcp_sack_to_move_thresh &&
5107 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
5108 		/*
5109 		 * We have thresholds set to find
5110 		 * possible attackers and disable sack.
5111 		 * Check them.
5112 		 */
5113 		uint64_t ackratio, moveratio, movetotal;
5114 
5115 		/* Log detecting */
5116 		rack_log_sad(rack, 1);
5117 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
5118 		ackratio *= (uint64_t)(1000);
5119 		if (rack->r_ctl.ack_count)
5120 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
5121 		else {
5122 			/* We really should not hit here */
5123 			ackratio = 1000;
5124 		}
5125 		if ((rack->sack_attack_disable  == 0) &&
5126 		    (ackratio > rack_highest_sack_thresh_seen))
5127 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
5128 		movetotal = rack->r_ctl.sack_moved_extra;
5129 		movetotal += rack->r_ctl.sack_noextra_move;
5130 		moveratio = rack->r_ctl.sack_moved_extra;
5131 		moveratio *= (uint64_t)1000;
5132 		if (movetotal)
5133 			moveratio /= movetotal;
5134 		else {
5135 			/* No moves, thats pretty good */
5136 			moveratio = 0;
5137 		}
5138 		if ((rack->sack_attack_disable == 0) &&
5139 		    (moveratio > rack_highest_move_thresh_seen))
5140 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
5141 		if (rack->sack_attack_disable == 0) {
5142 			if ((ackratio > tcp_sack_to_ack_thresh) &&
5143 			    (moveratio > tcp_sack_to_move_thresh)) {
5144 				/* Disable sack processing */
5145 				rack->sack_attack_disable = 1;
5146 				if (rack->r_rep_attack == 0) {
5147 					rack->r_rep_attack = 1;
5148 					counter_u64_add(rack_sack_attacks_detected, 1);
5149 				}
5150 				if (tcp_attack_on_turns_on_logging) {
5151 					/*
5152 					 * Turn on logging, used for debugging
5153 					 * false positives.
5154 					 */
5155 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
5156 				}
5157 				/* Clamp the cwnd at flight size */
5158 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
5159 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
5160 				rack_log_sad(rack, 2);
5161 			}
5162 		} else {
5163 			/* We are sack-disabled check for false positives */
5164 			if ((ackratio <= tcp_restoral_thresh) ||
5165 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
5166 				rack->sack_attack_disable  = 0;
5167 				rack_log_sad(rack, 3);
5168 				/* Restart counting */
5169 				rack->r_ctl.sack_count = 0;
5170 				rack->r_ctl.sack_moved_extra = 0;
5171 				rack->r_ctl.sack_noextra_move = 1;
5172 				rack->r_ctl.ack_count = max(1,
5173 				      (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
5174 
5175 				if (rack->r_rep_reverse == 0) {
5176 					rack->r_rep_reverse = 1;
5177 					counter_u64_add(rack_sack_attacks_reversed, 1);
5178 				}
5179 				/* Restore the cwnd */
5180 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
5181 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
5182 			}
5183 		}
5184 	}
5185 #endif
5186 	if (changed) {
5187 		/* Something changed cancel the rack timer */
5188 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5189 	}
5190 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
5191 		/*
5192 		 * Ok we have a high probability that we need to go in to
5193 		 * recovery since we have data sack'd
5194 		 */
5195 		struct rack_sendmap *rsm;
5196 		uint32_t tsused;
5197 
5198 		tsused = tcp_ts_getticks();
5199 		rsm = tcp_rack_output(tp, rack, tsused);
5200 		if (rsm) {
5201 			/* Enter recovery */
5202 			rack->r_ctl.rc_rsm_start = rsm->r_start;
5203 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5204 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5205 			entered_recovery = 1;
5206 			rack_cong_signal(tp, NULL, CC_NDUPACK);
5207 			/*
5208 			 * When we enter recovery we need to assure we send
5209 			 * one packet.
5210 			 */
5211 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5212 			rack_log_to_prr(rack, 8);
5213 			rack->r_timer_override = 1;
5214 		}
5215 	}
5216 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
5217 		/* Deal with changed and PRR here (in recovery only) */
5218 		uint32_t pipe, snd_una;
5219 
5220 		rack->r_ctl.rc_prr_delivered += changed;
5221 		/* Compute prr_sndcnt */
5222 		if (SEQ_GT(tp->snd_una, th_ack)) {
5223 			snd_una = tp->snd_una;
5224 		} else {
5225 			snd_una = th_ack;
5226 		}
5227 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
5228 		if (pipe > tp->snd_ssthresh) {
5229 			long sndcnt;
5230 
5231 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
5232 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
5233 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
5234 			else {
5235 				rack->r_ctl.rc_prr_sndcnt = 0;
5236 				rack_log_to_prr(rack, 9);
5237 				sndcnt = 0;
5238 			}
5239 			sndcnt++;
5240 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
5241 				sndcnt -= rack->r_ctl.rc_prr_out;
5242 			else
5243 				sndcnt = 0;
5244 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
5245 			rack_log_to_prr(rack, 10);
5246 		} else {
5247 			uint32_t limit;
5248 
5249 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
5250 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
5251 			else
5252 				limit = 0;
5253 			if (changed > limit)
5254 				limit = changed;
5255 			limit += ctf_fixed_maxseg(tp);
5256 			if (tp->snd_ssthresh > pipe) {
5257 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
5258 				rack_log_to_prr(rack, 11);
5259 			} else {
5260 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
5261 				rack_log_to_prr(rack, 12);
5262 			}
5263 		}
5264 		if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
5265 			rack->r_timer_override = 1;
5266 		}
5267 	}
5268 }
5269 
5270 static void
5271 rack_strike_dupack(struct tcp_rack *rack)
5272 {
5273 	struct rack_sendmap *rsm;
5274 
5275 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5276 	if (rsm && (rsm->r_dupack < 0xff)) {
5277 		rsm->r_dupack++;
5278 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
5279 			rack->r_wanted_output = 1;
5280 			rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
5281 		} else {
5282 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
5283 		}
5284 	}
5285 }
5286 
5287 /*
5288  * Return value of 1, we do not need to call rack_process_data().
5289  * return value of 0, rack_process_data can be called.
5290  * For ret_val if its 0 the TCP is locked, if its non-zero
5291  * its unlocked and probably unsafe to touch the TCB.
5292  */
5293 static int
5294 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5295     struct tcpcb *tp, struct tcpopt *to,
5296     uint32_t tiwin, int32_t tlen,
5297     int32_t * ofia, int32_t thflags, int32_t * ret_val)
5298 {
5299 	int32_t ourfinisacked = 0;
5300 	int32_t nsegs, acked_amount;
5301 	int32_t acked;
5302 	struct mbuf *mfree;
5303 	struct tcp_rack *rack;
5304 	int32_t recovery = 0;
5305 
5306 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5307 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
5308 		ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
5309 		rack->r_wanted_output++;
5310 		return (1);
5311 	}
5312 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
5313 		if (rack->rc_in_persist)
5314 			tp->t_rxtshift = 0;
5315 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
5316 			rack_strike_dupack(rack);
5317 		rack_log_ack(tp, to, th);
5318 	}
5319 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5320 		/*
5321 		 * Old ack, behind (or duplicate to) the last one rcv'd
5322 		 * Note: Should mark reordering is occuring! We should also
5323 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
5324 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
5325 		 * retran and> ack 3
5326 		 */
5327 		return (0);
5328 	}
5329 	/*
5330 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
5331 	 * something we sent.
5332 	 */
5333 	if (tp->t_flags & TF_NEEDSYN) {
5334 		/*
5335 		 * T/TCP: Connection was half-synchronized, and our SYN has
5336 		 * been ACK'd (so connection is now fully synchronized).  Go
5337 		 * to non-starred state, increment snd_una for ACK of SYN,
5338 		 * and check if we can do window scaling.
5339 		 */
5340 		tp->t_flags &= ~TF_NEEDSYN;
5341 		tp->snd_una++;
5342 		/* Do window scaling? */
5343 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5344 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5345 			tp->rcv_scale = tp->request_r_scale;
5346 			/* Send window already scaled. */
5347 		}
5348 	}
5349 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5350 	INP_WLOCK_ASSERT(tp->t_inpcb);
5351 
5352 	acked = BYTES_THIS_ACK(tp, th);
5353 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5354 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5355 
5356 	/*
5357 	 * If we just performed our first retransmit, and the ACK arrives
5358 	 * within our recovery window, then it was a mistake to do the
5359 	 * retransmit in the first place.  Recover our original cwnd and
5360 	 * ssthresh, and proceed to transmit where we left off.
5361 	 */
5362 	if (tp->t_flags & TF_PREVVALID) {
5363 		tp->t_flags &= ~TF_PREVVALID;
5364 		if (tp->t_rxtshift == 1 &&
5365 		    (int)(ticks - tp->t_badrxtwin) < 0)
5366 			rack_cong_signal(tp, th, CC_RTO_ERR);
5367 	}
5368 	/*
5369 	 * If we have a timestamp reply, update smoothed round trip time. If
5370 	 * no timestamp is present but transmit timer is running and timed
5371 	 * sequence number was acked, update smoothed round trip time. Since
5372 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
5373 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
5374 	 * timer.
5375 	 *
5376 	 * Some boxes send broken timestamp replies during the SYN+ACK
5377 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5378 	 * and blow up the retransmit timer.
5379 	 */
5380 	/*
5381 	 * If all outstanding data is acked, stop retransmit timer and
5382 	 * remember to restart (more output or persist). If there is more
5383 	 * data to be acked, restart retransmit timer, using current
5384 	 * (possibly backed-off) value.
5385 	 */
5386 	if (th->th_ack == tp->snd_max) {
5387 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5388 		rack->r_wanted_output++;
5389 	}
5390 	if (acked == 0) {
5391 		if (ofia)
5392 			*ofia = ourfinisacked;
5393 		return (0);
5394 	}
5395 	if (rack->r_ctl.rc_early_recovery) {
5396 		if (IN_RECOVERY(tp->t_flags)) {
5397 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5398 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5399 				tcp_rack_partialack(tp, th);
5400 			} else {
5401 				rack_post_recovery(tp, th);
5402 				recovery = 1;
5403 			}
5404 		}
5405 	}
5406 	/*
5407 	 * Let the congestion control algorithm update congestion control
5408 	 * related information. This typically means increasing the
5409 	 * congestion window.
5410 	 */
5411 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
5412 	SOCKBUF_LOCK(&so->so_snd);
5413 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
5414 	tp->snd_wnd -= acked_amount;
5415 	mfree = sbcut_locked(&so->so_snd, acked_amount);
5416 	if ((sbused(&so->so_snd) == 0) &&
5417 	    (acked > acked_amount) &&
5418 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
5419 		ourfinisacked = 1;
5420 	}
5421 	/* NB: sowwakeup_locked() does an implicit unlock. */
5422 	sowwakeup_locked(so);
5423 	m_freem(mfree);
5424 	if (rack->r_ctl.rc_early_recovery == 0) {
5425 		if (IN_RECOVERY(tp->t_flags)) {
5426 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5427 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5428 				tcp_rack_partialack(tp, th);
5429 			} else {
5430 				rack_post_recovery(tp, th);
5431 			}
5432 		}
5433 	}
5434 	tp->snd_una = th->th_ack;
5435 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
5436 		tp->snd_recover = tp->snd_una;
5437 
5438 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
5439 		tp->snd_nxt = tp->snd_una;
5440 	}
5441 	if (tp->snd_una == tp->snd_max) {
5442 		/* Nothing left outstanding */
5443 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5444 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
5445 			tp->t_acktime = 0;
5446 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5447 		/* Set need output so persist might get set */
5448 		rack->r_wanted_output++;
5449 		if (rack_use_sack_filter)
5450 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5451 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
5452 		    (sbavail(&so->so_snd) == 0) &&
5453 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
5454 			/*
5455 			 * The socket was gone and the
5456 			 * peer sent data, time to
5457 			 * reset him.
5458 			 */
5459 			*ret_val = 1;
5460 			tp = tcp_close(tp);
5461 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
5462 			return (1);
5463 		}
5464 	}
5465 	if (ofia)
5466 		*ofia = ourfinisacked;
5467 	return (0);
5468 }
5469 
5470 static void
5471 rack_collapsed_window(struct tcp_rack *rack)
5472 {
5473 	/*
5474 	 * Now we must walk the
5475 	 * send map and divide the
5476 	 * ones left stranded. These
5477 	 * guys can't cause us to abort
5478 	 * the connection and are really
5479 	 * "unsent". However if a buggy
5480 	 * client actually did keep some
5481 	 * of the data i.e. collapsed the win
5482 	 * and refused to ack and then opened
5483 	 * the win and acked that data. We would
5484 	 * get into an ack war, the simplier
5485 	 * method then of just pretending we
5486 	 * did not send those segments something
5487 	 * won't work.
5488 	 */
5489 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
5490 	tcp_seq max_seq;
5491 	uint32_t maxseg;
5492 
5493 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
5494 	maxseg = ctf_fixed_maxseg(rack->rc_tp);
5495 	memset(&fe, 0, sizeof(fe));
5496 	fe.r_start = max_seq;
5497 	/* Find the first seq past or at maxseq */
5498 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
5499 	if (rsm == NULL) {
5500 		/* Nothing to do strange */
5501 		rack->rc_has_collapsed = 0;
5502 		return;
5503 	}
5504 	/*
5505 	 * Now do we need to split at
5506 	 * the collapse point?
5507 	 */
5508 	if (SEQ_GT(max_seq, rsm->r_start)) {
5509 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
5510 		if (nrsm == NULL) {
5511 			/* We can't get a rsm, mark all? */
5512 			nrsm = rsm;
5513 			goto no_split;
5514 		}
5515 		/* Clone it */
5516 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
5517 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5518 #ifdef INVARIANTS
5519 		if (insret != NULL) {
5520 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5521 			      nrsm, insret, rack, rsm);
5522 		}
5523 #endif
5524 		if (rsm->r_in_tmap) {
5525 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5526 			nrsm->r_in_tmap = 1;
5527 		}
5528 		/*
5529 		 * Set in the new RSM as the
5530 		 * collapsed starting point
5531 		 */
5532 		rsm = nrsm;
5533 	}
5534 no_split:
5535 	counter_u64_add(rack_collapsed_win, 1);
5536 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
5537 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
5538 		rack->rc_has_collapsed = 1;
5539 	}
5540 }
5541 
5542 static void
5543 rack_un_collapse_window(struct tcp_rack *rack)
5544 {
5545 	struct rack_sendmap *rsm;
5546 
5547 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5548 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
5549 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
5550 		else
5551 			break;
5552 	}
5553 	rack->rc_has_collapsed = 0;
5554 }
5555 
5556 /*
5557  * Return value of 1, the TCB is unlocked and most
5558  * likely gone, return value of 0, the TCP is still
5559  * locked.
5560  */
5561 static int
5562 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
5563     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
5564     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5565 {
5566 	/*
5567 	 * Update window information. Don't look at window if no ACK: TAC's
5568 	 * send garbage on first SYN.
5569 	 */
5570 	int32_t nsegs;
5571 	int32_t tfo_syn;
5572 	struct tcp_rack *rack;
5573 
5574 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5575 	INP_WLOCK_ASSERT(tp->t_inpcb);
5576 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5577 	if ((thflags & TH_ACK) &&
5578 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
5579 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
5580 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
5581 		/* keep track of pure window updates */
5582 		if (tlen == 0 &&
5583 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
5584 			TCPSTAT_INC(tcps_rcvwinupd);
5585 		tp->snd_wnd = tiwin;
5586 		tp->snd_wl1 = th->th_seq;
5587 		tp->snd_wl2 = th->th_ack;
5588 		if (tp->snd_wnd > tp->max_sndwnd)
5589 			tp->max_sndwnd = tp->snd_wnd;
5590 		rack->r_wanted_output++;
5591 	} else if (thflags & TH_ACK) {
5592 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
5593 			tp->snd_wnd = tiwin;
5594 			tp->snd_wl1 = th->th_seq;
5595 			tp->snd_wl2 = th->th_ack;
5596 		}
5597 	}
5598 	if (tp->snd_wnd < ctf_outstanding(tp))
5599 		/* The peer collapsed the window */
5600 		rack_collapsed_window(rack);
5601 	else if (rack->rc_has_collapsed)
5602 		rack_un_collapse_window(rack);
5603 	/* Was persist timer active and now we have window space? */
5604 	if ((rack->rc_in_persist != 0) &&
5605 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
5606 				rack->r_ctl.rc_pace_min_segs))) {
5607 		rack_exit_persist(tp, rack);
5608 		tp->snd_nxt = tp->snd_max;
5609 		/* Make sure we output to start the timer */
5610 		rack->r_wanted_output++;
5611 	}
5612 	/* Do we enter persists? */
5613 	if ((rack->rc_in_persist == 0) &&
5614 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
5615 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
5616 	    (tp->snd_max == tp->snd_una) &&
5617 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
5618 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
5619 		/*
5620 		 * Here the rwnd is less than
5621 		 * the pacing size, we are established,
5622 		 * nothing is outstanding, and there is
5623 		 * data to send. Enter persists.
5624 		 */
5625 		tp->snd_nxt = tp->snd_una;
5626 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
5627 	}
5628 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
5629 		m_freem(m);
5630 		return (0);
5631 	}
5632 	/*
5633 	 * Process segments with URG.
5634 	 */
5635 	if ((thflags & TH_URG) && th->th_urp &&
5636 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5637 		/*
5638 		 * This is a kludge, but if we receive and accept random
5639 		 * urgent pointers, we'll crash in soreceive.  It's hard to
5640 		 * imagine someone actually wanting to send this much urgent
5641 		 * data.
5642 		 */
5643 		SOCKBUF_LOCK(&so->so_rcv);
5644 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
5645 			th->th_urp = 0;	/* XXX */
5646 			thflags &= ~TH_URG;	/* XXX */
5647 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
5648 			goto dodata;	/* XXX */
5649 		}
5650 		/*
5651 		 * If this segment advances the known urgent pointer, then
5652 		 * mark the data stream.  This should not happen in
5653 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
5654 		 * FIN has been received from the remote side. In these
5655 		 * states we ignore the URG.
5656 		 *
5657 		 * According to RFC961 (Assigned Protocols), the urgent
5658 		 * pointer points to the last octet of urgent data.  We
5659 		 * continue, however, to consider it to indicate the first
5660 		 * octet of data past the urgent section as the original
5661 		 * spec states (in one of two places).
5662 		 */
5663 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
5664 			tp->rcv_up = th->th_seq + th->th_urp;
5665 			so->so_oobmark = sbavail(&so->so_rcv) +
5666 			    (tp->rcv_up - tp->rcv_nxt) - 1;
5667 			if (so->so_oobmark == 0)
5668 				so->so_rcv.sb_state |= SBS_RCVATMARK;
5669 			sohasoutofband(so);
5670 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
5671 		}
5672 		SOCKBUF_UNLOCK(&so->so_rcv);
5673 		/*
5674 		 * Remove out of band data so doesn't get presented to user.
5675 		 * This can happen independent of advancing the URG pointer,
5676 		 * but if two URG's are pending at once, some out-of-band
5677 		 * data may creep in... ick.
5678 		 */
5679 		if (th->th_urp <= (uint32_t) tlen &&
5680 		    !(so->so_options & SO_OOBINLINE)) {
5681 			/* hdr drop is delayed */
5682 			tcp_pulloutofband(so, th, m, drop_hdrlen);
5683 		}
5684 	} else {
5685 		/*
5686 		 * If no out of band data is expected, pull receive urgent
5687 		 * pointer along with the receive window.
5688 		 */
5689 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
5690 			tp->rcv_up = tp->rcv_nxt;
5691 	}
5692 dodata:				/* XXX */
5693 	INP_WLOCK_ASSERT(tp->t_inpcb);
5694 
5695 	/*
5696 	 * Process the segment text, merging it into the TCP sequencing
5697 	 * queue, and arranging for acknowledgment of receipt if necessary.
5698 	 * This process logically involves adjusting tp->rcv_wnd as data is
5699 	 * presented to the user (this happens in tcp_usrreq.c, case
5700 	 * PRU_RCVD).  If a FIN has already been received on this connection
5701 	 * then we just ignore the text.
5702 	 */
5703 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
5704 		   IS_FASTOPEN(tp->t_flags));
5705 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
5706 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5707 		tcp_seq save_start = th->th_seq;
5708 		tcp_seq save_rnxt  = tp->rcv_nxt;
5709 		int     save_tlen  = tlen;
5710 
5711 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5712 		/*
5713 		 * Insert segment which includes th into TCP reassembly
5714 		 * queue with control block tp.  Set thflags to whether
5715 		 * reassembly now includes a segment with FIN.  This handles
5716 		 * the common case inline (segment is the next to be
5717 		 * received on an established connection, and the queue is
5718 		 * empty), avoiding linkage into and removal from the queue
5719 		 * and repetition of various conversions. Set DELACK for
5720 		 * segments received in order, but ack immediately when
5721 		 * segments are out of order (so fast retransmit can work).
5722 		 */
5723 		if (th->th_seq == tp->rcv_nxt &&
5724 		    SEGQ_EMPTY(tp) &&
5725 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
5726 		    tfo_syn)) {
5727 #ifdef NETFLIX_SB_LIMITS
5728 			u_int mcnt, appended;
5729 
5730 			if (so->so_rcv.sb_shlim) {
5731 				mcnt = m_memcnt(m);
5732 				appended = 0;
5733 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5734 				    CFO_NOSLEEP, NULL) == false) {
5735 					counter_u64_add(tcp_sb_shlim_fails, 1);
5736 					m_freem(m);
5737 					return (0);
5738 				}
5739 			}
5740 #endif
5741 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
5742 				rack_timer_cancel(tp, rack,
5743 				    rack->r_ctl.rc_rcvtime, __LINE__);
5744 				tp->t_flags |= TF_DELACK;
5745 			} else {
5746 				rack->r_wanted_output++;
5747 				tp->t_flags |= TF_ACKNOW;
5748 			}
5749 			tp->rcv_nxt += tlen;
5750 			thflags = th->th_flags & TH_FIN;
5751 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
5752 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
5753 			SOCKBUF_LOCK(&so->so_rcv);
5754 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5755 				m_freem(m);
5756 			} else
5757 #ifdef NETFLIX_SB_LIMITS
5758 				appended =
5759 #endif
5760 					sbappendstream_locked(&so->so_rcv, m, 0);
5761 			/* NB: sorwakeup_locked() does an implicit unlock. */
5762 			sorwakeup_locked(so);
5763 #ifdef NETFLIX_SB_LIMITS
5764 			if (so->so_rcv.sb_shlim && appended != mcnt)
5765 				counter_fo_release(so->so_rcv.sb_shlim,
5766 				    mcnt - appended);
5767 #endif
5768 		} else {
5769 			/*
5770 			 * XXX: Due to the header drop above "th" is
5771 			 * theoretically invalid by now.  Fortunately
5772 			 * m_adj() doesn't actually frees any mbufs when
5773 			 * trimming from the head.
5774 			 */
5775 			tcp_seq temp = save_start;
5776 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
5777 			tp->t_flags |= TF_ACKNOW;
5778 		}
5779 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
5780 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
5781 				/*
5782 				 * DSACK actually handled in the fastpath
5783 				 * above.
5784 				 */
5785 				tcp_update_sack_list(tp, save_start,
5786 				    save_start + save_tlen);
5787 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
5788 				if ((tp->rcv_numsacks >= 1) &&
5789 				    (tp->sackblks[0].end == save_start)) {
5790 					/*
5791 					 * Partial overlap, recorded at todrop
5792 					 * above.
5793 					 */
5794 					tcp_update_sack_list(tp,
5795 					    tp->sackblks[0].start,
5796 					    tp->sackblks[0].end);
5797 				} else {
5798 					tcp_update_dsack_list(tp, save_start,
5799 					    save_start + save_tlen);
5800 				}
5801 			} else if (tlen >= save_tlen) {
5802 				/* Update of sackblks. */
5803 				tcp_update_dsack_list(tp, save_start,
5804 				    save_start + save_tlen);
5805 			} else if (tlen > 0) {
5806 				tcp_update_dsack_list(tp, save_start,
5807 				    save_start + tlen);
5808 			}
5809 		}
5810 	} else {
5811 		m_freem(m);
5812 		thflags &= ~TH_FIN;
5813 	}
5814 
5815 	/*
5816 	 * If FIN is received ACK the FIN and let the user know that the
5817 	 * connection is closing.
5818 	 */
5819 	if (thflags & TH_FIN) {
5820 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5821 			socantrcvmore(so);
5822 			/*
5823 			 * If connection is half-synchronized (ie NEEDSYN
5824 			 * flag on) then delay ACK, so it may be piggybacked
5825 			 * when SYN is sent. Otherwise, since we received a
5826 			 * FIN then no more input can be expected, send ACK
5827 			 * now.
5828 			 */
5829 			if (tp->t_flags & TF_NEEDSYN) {
5830 				rack_timer_cancel(tp, rack,
5831 				    rack->r_ctl.rc_rcvtime, __LINE__);
5832 				tp->t_flags |= TF_DELACK;
5833 			} else {
5834 				tp->t_flags |= TF_ACKNOW;
5835 			}
5836 			tp->rcv_nxt++;
5837 		}
5838 		switch (tp->t_state) {
5839 
5840 			/*
5841 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
5842 			 * CLOSE_WAIT state.
5843 			 */
5844 		case TCPS_SYN_RECEIVED:
5845 			tp->t_starttime = ticks;
5846 			/* FALLTHROUGH */
5847 		case TCPS_ESTABLISHED:
5848 			rack_timer_cancel(tp, rack,
5849 			    rack->r_ctl.rc_rcvtime, __LINE__);
5850 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
5851 			break;
5852 
5853 			/*
5854 			 * If still in FIN_WAIT_1 STATE FIN has not been
5855 			 * acked so enter the CLOSING state.
5856 			 */
5857 		case TCPS_FIN_WAIT_1:
5858 			rack_timer_cancel(tp, rack,
5859 			    rack->r_ctl.rc_rcvtime, __LINE__);
5860 			tcp_state_change(tp, TCPS_CLOSING);
5861 			break;
5862 
5863 			/*
5864 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5865 			 * starting the time-wait timer, turning off the
5866 			 * other standard timers.
5867 			 */
5868 		case TCPS_FIN_WAIT_2:
5869 			rack_timer_cancel(tp, rack,
5870 			    rack->r_ctl.rc_rcvtime, __LINE__);
5871 			tcp_twstart(tp);
5872 			return (1);
5873 		}
5874 	}
5875 	/*
5876 	 * Return any desired output.
5877 	 */
5878 	if ((tp->t_flags & TF_ACKNOW) ||
5879 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5880 		rack->r_wanted_output++;
5881 	}
5882 	INP_WLOCK_ASSERT(tp->t_inpcb);
5883 	return (0);
5884 }
5885 
5886 /*
5887  * Here nothing is really faster, its just that we
5888  * have broken out the fast-data path also just like
5889  * the fast-ack.
5890  */
5891 static int
5892 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5893     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5894     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
5895 {
5896 	int32_t nsegs;
5897 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5898 	struct tcp_rack *rack;
5899 #ifdef NETFLIX_SB_LIMITS
5900 	u_int mcnt, appended;
5901 #endif
5902 #ifdef TCPDEBUG
5903 	/*
5904 	 * The size of tcp_saveipgen must be the size of the max ip header,
5905 	 * now IPv6.
5906 	 */
5907 	u_char tcp_saveipgen[IP6_HDR_LEN];
5908 	struct tcphdr tcp_savetcp;
5909 	short ostate = 0;
5910 
5911 #endif
5912 	/*
5913 	 * If last ACK falls within this segment's sequence numbers, record
5914 	 * the timestamp. NOTE that the test is modified according to the
5915 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5916 	 */
5917 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5918 		return (0);
5919 	}
5920 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5921 		return (0);
5922 	}
5923 	if (tiwin && tiwin != tp->snd_wnd) {
5924 		return (0);
5925 	}
5926 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5927 		return (0);
5928 	}
5929 	if (__predict_false((to->to_flags & TOF_TS) &&
5930 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5931 		return (0);
5932 	}
5933 	if (__predict_false((th->th_ack != tp->snd_una))) {
5934 		return (0);
5935 	}
5936 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5937 		return (0);
5938 	}
5939 	if ((to->to_flags & TOF_TS) != 0 &&
5940 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5941 		tp->ts_recent_age = tcp_ts_getticks();
5942 		tp->ts_recent = to->to_tsval;
5943 	}
5944 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5945 	/*
5946 	 * This is a pure, in-sequence data packet with nothing on the
5947 	 * reassembly queue and we have enough buffer space to take it.
5948 	 */
5949 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5950 
5951 #ifdef NETFLIX_SB_LIMITS
5952 	if (so->so_rcv.sb_shlim) {
5953 		mcnt = m_memcnt(m);
5954 		appended = 0;
5955 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5956 		    CFO_NOSLEEP, NULL) == false) {
5957 			counter_u64_add(tcp_sb_shlim_fails, 1);
5958 			m_freem(m);
5959 			return (1);
5960 		}
5961 	}
5962 #endif
5963 	/* Clean receiver SACK report if present */
5964 	if (tp->rcv_numsacks)
5965 		tcp_clean_sackreport(tp);
5966 	TCPSTAT_INC(tcps_preddat);
5967 	tp->rcv_nxt += tlen;
5968 	/*
5969 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5970 	 */
5971 	tp->snd_wl1 = th->th_seq;
5972 	/*
5973 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5974 	 */
5975 	tp->rcv_up = tp->rcv_nxt;
5976 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
5977 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
5978 #ifdef TCPDEBUG
5979 	if (so->so_options & SO_DEBUG)
5980 		tcp_trace(TA_INPUT, ostate, tp,
5981 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5982 #endif
5983 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5984 
5985 	/* Add data to socket buffer. */
5986 	SOCKBUF_LOCK(&so->so_rcv);
5987 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5988 		m_freem(m);
5989 	} else {
5990 		/*
5991 		 * Set new socket buffer size. Give up when limit is
5992 		 * reached.
5993 		 */
5994 		if (newsize)
5995 			if (!sbreserve_locked(&so->so_rcv,
5996 			    newsize, so, NULL))
5997 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
5998 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5999 #ifdef NETFLIX_SB_LIMITS
6000 		appended =
6001 #endif
6002 			sbappendstream_locked(&so->so_rcv, m, 0);
6003 		ctf_calc_rwin(so, tp);
6004 	}
6005 	/* NB: sorwakeup_locked() does an implicit unlock. */
6006 	sorwakeup_locked(so);
6007 #ifdef NETFLIX_SB_LIMITS
6008 	if (so->so_rcv.sb_shlim && mcnt != appended)
6009 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
6010 #endif
6011 	if (DELAY_ACK(tp, tlen)) {
6012 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6013 		tp->t_flags |= TF_DELACK;
6014 	} else {
6015 		tp->t_flags |= TF_ACKNOW;
6016 		rack->r_wanted_output++;
6017 	}
6018 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
6019 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6020 	return (1);
6021 }
6022 
6023 /*
6024  * This subfunction is used to try to highly optimize the
6025  * fast path. We again allow window updates that are
6026  * in sequence to remain in the fast-path. We also add
6027  * in the __predict's to attempt to help the compiler.
6028  * Note that if we return a 0, then we can *not* process
6029  * it and the caller should push the packet into the
6030  * slow-path.
6031  */
6032 static int
6033 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6034     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6035     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts, uint8_t iptos)
6036 {
6037 	int32_t acked;
6038 	int32_t nsegs;
6039 
6040 #ifdef TCPDEBUG
6041 	/*
6042 	 * The size of tcp_saveipgen must be the size of the max ip header,
6043 	 * now IPv6.
6044 	 */
6045 	u_char tcp_saveipgen[IP6_HDR_LEN];
6046 	struct tcphdr tcp_savetcp;
6047 	short ostate = 0;
6048 
6049 #endif
6050 	struct tcp_rack *rack;
6051 
6052 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
6053 		/* Old ack, behind (or duplicate to) the last one rcv'd */
6054 		return (0);
6055 	}
6056 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
6057 		/* Above what we have sent? */
6058 		return (0);
6059 	}
6060 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
6061 		/* We are retransmitting */
6062 		return (0);
6063 	}
6064 	if (__predict_false(tiwin == 0)) {
6065 		/* zero window */
6066 		return (0);
6067 	}
6068 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
6069 		/* We need a SYN or a FIN, unlikely.. */
6070 		return (0);
6071 	}
6072 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
6073 		/* Timestamp is behind .. old ack with seq wrap? */
6074 		return (0);
6075 	}
6076 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
6077 		/* Still recovering */
6078 		return (0);
6079 	}
6080 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6081 	if (rack->r_ctl.rc_sacked) {
6082 		/* We have sack holes on our scoreboard */
6083 		return (0);
6084 	}
6085 	/* Ok if we reach here, we can process a fast-ack */
6086 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
6087 	rack_log_ack(tp, to, th);
6088 	/*
6089 	 * We made progress, clear the tlp
6090 	 * out flag so we could start a TLP
6091 	 * again.
6092 	 */
6093 	rack->r_ctl.rc_tlp_rtx_out = 0;
6094 	/* Did the window get updated? */
6095 	if (tiwin != tp->snd_wnd) {
6096 		tp->snd_wnd = tiwin;
6097 		tp->snd_wl1 = th->th_seq;
6098 		if (tp->snd_wnd > tp->max_sndwnd)
6099 			tp->max_sndwnd = tp->snd_wnd;
6100 	}
6101 	/* Do we exit persists? */
6102 	if ((rack->rc_in_persist != 0) &&
6103 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
6104 			       rack->r_ctl.rc_pace_min_segs))) {
6105 		rack_exit_persist(tp, rack);
6106 	}
6107 	/* Do we enter persists? */
6108 	if ((rack->rc_in_persist == 0) &&
6109 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
6110 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
6111 	    (tp->snd_max == tp->snd_una) &&
6112 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
6113 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
6114 		/*
6115 		 * Here the rwnd is less than
6116 		 * the pacing size, we are established,
6117 		 * nothing is outstanding, and there is
6118 		 * data to send. Enter persists.
6119 		 */
6120 		tp->snd_nxt = tp->snd_una;
6121 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
6122 	}
6123 	/*
6124 	 * If last ACK falls within this segment's sequence numbers, record
6125 	 * the timestamp. NOTE that the test is modified according to the
6126 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
6127 	 */
6128 	if ((to->to_flags & TOF_TS) != 0 &&
6129 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
6130 		tp->ts_recent_age = tcp_ts_getticks();
6131 		tp->ts_recent = to->to_tsval;
6132 	}
6133 	/*
6134 	 * This is a pure ack for outstanding data.
6135 	 */
6136 	TCPSTAT_INC(tcps_predack);
6137 
6138 	/*
6139 	 * "bad retransmit" recovery.
6140 	 */
6141 	if (tp->t_flags & TF_PREVVALID) {
6142 		tp->t_flags &= ~TF_PREVVALID;
6143 		if (tp->t_rxtshift == 1 &&
6144 		    (int)(ticks - tp->t_badrxtwin) < 0)
6145 			rack_cong_signal(tp, th, CC_RTO_ERR);
6146 	}
6147 	/*
6148 	 * Recalculate the transmit timer / rtt.
6149 	 *
6150 	 * Some boxes send broken timestamp replies during the SYN+ACK
6151 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
6152 	 * and blow up the retransmit timer.
6153 	 */
6154 	acked = BYTES_THIS_ACK(tp, th);
6155 
6156 #ifdef TCP_HHOOK
6157 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
6158 	hhook_run_tcp_est_in(tp, th, to);
6159 #endif
6160 
6161 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
6162 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
6163 	sbdrop(&so->so_snd, acked);
6164 	/*
6165 	 * Let the congestion control algorithm update congestion control
6166 	 * related information. This typically means increasing the
6167 	 * congestion window.
6168 	 */
6169 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
6170 
6171 	tp->snd_una = th->th_ack;
6172 	if (tp->snd_wnd < ctf_outstanding(tp)) {
6173 		/* The peer collapsed the window */
6174 		rack_collapsed_window(rack);
6175 	} else if (rack->rc_has_collapsed)
6176 		rack_un_collapse_window(rack);
6177 
6178 	/*
6179 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
6180 	 */
6181 	tp->snd_wl2 = th->th_ack;
6182 	tp->t_dupacks = 0;
6183 	m_freem(m);
6184 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
6185 
6186 	/*
6187 	 * If all outstanding data are acked, stop retransmit timer,
6188 	 * otherwise restart timer using current (possibly backed-off)
6189 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
6190 	 * If data are ready to send, let tcp_output decide between more
6191 	 * output or persist.
6192 	 */
6193 #ifdef TCPDEBUG
6194 	if (so->so_options & SO_DEBUG)
6195 		tcp_trace(TA_INPUT, ostate, tp,
6196 		    (void *)tcp_saveipgen,
6197 		    &tcp_savetcp, 0);
6198 #endif
6199 	if (tp->snd_una == tp->snd_max) {
6200 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
6201 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
6202 			tp->t_acktime = 0;
6203 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6204 	}
6205 	/* Wake up the socket if we have room to write more */
6206 	sowwakeup(so);
6207 	if (sbavail(&so->so_snd)) {
6208 		rack->r_wanted_output++;
6209 	}
6210 	return (1);
6211 }
6212 
6213 /*
6214  * Return value of 1, the TCB is unlocked and most
6215  * likely gone, return value of 0, the TCP is still
6216  * locked.
6217  */
6218 static int
6219 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
6220     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6221     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t tos)
6222 {
6223 	int32_t ret_val = 0;
6224 	int32_t todrop;
6225 	int32_t ourfinisacked = 0;
6226 	struct tcp_rack *rack;
6227 
6228 	ctf_calc_rwin(so, tp);
6229 	/*
6230 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
6231 	 * SYN, drop the input. if seg contains a RST, then drop the
6232 	 * connection. if seg does not contain SYN, then drop it. Otherwise
6233 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
6234 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
6235 	 * contains an ECE and ECN support is enabled, the stream is ECN
6236 	 * capable. if SYN has been acked change to ESTABLISHED else
6237 	 * SYN_RCVD state arrange for segment to be acked (eventually)
6238 	 * continue processing rest of data/controls, beginning with URG
6239 	 */
6240 	if ((thflags & TH_ACK) &&
6241 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
6242 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6243 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6244 		return (1);
6245 	}
6246 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
6247 		TCP_PROBE5(connect__refused, NULL, tp,
6248 		    mtod(m, const char *), tp, th);
6249 		tp = tcp_drop(tp, ECONNREFUSED);
6250 		ctf_do_drop(m, tp);
6251 		return (1);
6252 	}
6253 	if (thflags & TH_RST) {
6254 		ctf_do_drop(m, tp);
6255 		return (1);
6256 	}
6257 	if (!(thflags & TH_SYN)) {
6258 		ctf_do_drop(m, tp);
6259 		return (1);
6260 	}
6261 	tp->irs = th->th_seq;
6262 	tcp_rcvseqinit(tp);
6263 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6264 	if (thflags & TH_ACK) {
6265 		int tfo_partial = 0;
6266 
6267 		TCPSTAT_INC(tcps_connects);
6268 		soisconnected(so);
6269 #ifdef MAC
6270 		mac_socketpeer_set_from_mbuf(m, so);
6271 #endif
6272 		/* Do window scaling on this connection? */
6273 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6274 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6275 			tp->rcv_scale = tp->request_r_scale;
6276 		}
6277 		tp->rcv_adv += min(tp->rcv_wnd,
6278 		    TCP_MAXWIN << tp->rcv_scale);
6279 		/*
6280 		 * If not all the data that was sent in the TFO SYN
6281 		 * has been acked, resend the remainder right away.
6282 		 */
6283 		if (IS_FASTOPEN(tp->t_flags) &&
6284 		    (tp->snd_una != tp->snd_max)) {
6285 			tp->snd_nxt = th->th_ack;
6286 			tfo_partial = 1;
6287 		}
6288 		/*
6289 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
6290 		 * will be turned on later.
6291 		 */
6292 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
6293 			rack_timer_cancel(tp, rack,
6294 					  rack->r_ctl.rc_rcvtime, __LINE__);
6295 			tp->t_flags |= TF_DELACK;
6296 		} else {
6297 			rack->r_wanted_output++;
6298 			tp->t_flags |= TF_ACKNOW;
6299 		}
6300 
6301 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
6302 		    (V_tcp_do_ecn == 1)) {
6303 			tp->t_flags2 |= TF2_ECN_PERMIT;
6304 			TCPSTAT_INC(tcps_ecn_shs);
6305 		}
6306 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
6307 			/*
6308 			 * We advance snd_una for the
6309 			 * fast open case. If th_ack is
6310 			 * acknowledging data beyond
6311 			 * snd_una we can't just call
6312 			 * ack-processing since the
6313 			 * data stream in our send-map
6314 			 * will start at snd_una + 1 (one
6315 			 * beyond the SYN). If its just
6316 			 * equal we don't need to do that
6317 			 * and there is no send_map.
6318 			 */
6319 			tp->snd_una++;
6320 		}
6321 		/*
6322 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
6323 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
6324 		 */
6325 		tp->t_starttime = ticks;
6326 		if (tp->t_flags & TF_NEEDFIN) {
6327 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
6328 			tp->t_flags &= ~TF_NEEDFIN;
6329 			thflags &= ~TH_SYN;
6330 		} else {
6331 			tcp_state_change(tp, TCPS_ESTABLISHED);
6332 			TCP_PROBE5(connect__established, NULL, tp,
6333 			    mtod(m, const char *), tp, th);
6334 			cc_conn_init(tp);
6335 		}
6336 	} else {
6337 		/*
6338 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
6339 		 * open.  If segment contains CC option and there is a
6340 		 * cached CC, apply TAO test. If it succeeds, connection is *
6341 		 * half-synchronized. Otherwise, do 3-way handshake:
6342 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
6343 		 * there was no CC option, clear cached CC value.
6344 		 */
6345 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
6346 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
6347 	}
6348 	INP_WLOCK_ASSERT(tp->t_inpcb);
6349 	/*
6350 	 * Advance th->th_seq to correspond to first data byte. If data,
6351 	 * trim to stay within window, dropping FIN if necessary.
6352 	 */
6353 	th->th_seq++;
6354 	if (tlen > tp->rcv_wnd) {
6355 		todrop = tlen - tp->rcv_wnd;
6356 		m_adj(m, -todrop);
6357 		tlen = tp->rcv_wnd;
6358 		thflags &= ~TH_FIN;
6359 		TCPSTAT_INC(tcps_rcvpackafterwin);
6360 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
6361 	}
6362 	tp->snd_wl1 = th->th_seq - 1;
6363 	tp->rcv_up = th->th_seq;
6364 	/*
6365 	 * Client side of transaction: already sent SYN and data. If the
6366 	 * remote host used T/TCP to validate the SYN, our data will be
6367 	 * ACK'd; if so, enter normal data segment processing in the middle
6368 	 * of step 5, ack processing. Otherwise, goto step 6.
6369 	 */
6370 	if (thflags & TH_ACK) {
6371 		/* For syn-sent we need to possibly update the rtt */
6372 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6373 			uint32_t t;
6374 
6375 			t = tcp_ts_getticks() - to->to_tsecr;
6376 			if (!tp->t_rttlow || tp->t_rttlow > t)
6377 				tp->t_rttlow = t;
6378 			tcp_rack_xmit_timer(rack, t + 1);
6379 			tcp_rack_xmit_timer_commit(rack, tp);
6380 		}
6381 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
6382 			return (ret_val);
6383 		/* We may have changed to FIN_WAIT_1 above */
6384 		if (tp->t_state == TCPS_FIN_WAIT_1) {
6385 			/*
6386 			 * In FIN_WAIT_1 STATE in addition to the processing
6387 			 * for the ESTABLISHED state if our FIN is now
6388 			 * acknowledged then enter FIN_WAIT_2.
6389 			 */
6390 			if (ourfinisacked) {
6391 				/*
6392 				 * If we can't receive any more data, then
6393 				 * closing user can proceed. Starting the
6394 				 * timer is contrary to the specification,
6395 				 * but if we don't get a FIN we'll hang
6396 				 * forever.
6397 				 *
6398 				 * XXXjl: we should release the tp also, and
6399 				 * use a compressed state.
6400 				 */
6401 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6402 					soisdisconnected(so);
6403 					tcp_timer_activate(tp, TT_2MSL,
6404 					    (tcp_fast_finwait2_recycle ?
6405 					    tcp_finwait2_timeout :
6406 					    TP_MAXIDLE(tp)));
6407 				}
6408 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
6409 			}
6410 		}
6411 	}
6412 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6413 	   tiwin, thflags, nxt_pkt));
6414 }
6415 
6416 /*
6417  * Return value of 1, the TCB is unlocked and most
6418  * likely gone, return value of 0, the TCP is still
6419  * locked.
6420  */
6421 static int
6422 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
6423     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6424     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6425 {
6426 	struct tcp_rack *rack;
6427 	int32_t ret_val = 0;
6428 	int32_t ourfinisacked = 0;
6429 
6430 	ctf_calc_rwin(so, tp);
6431 	if ((thflags & TH_ACK) &&
6432 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
6433 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6434 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6435 		return (1);
6436 	}
6437 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6438 	if (IS_FASTOPEN(tp->t_flags)) {
6439 		/*
6440 		 * When a TFO connection is in SYN_RECEIVED, the
6441 		 * only valid packets are the initial SYN, a
6442 		 * retransmit/copy of the initial SYN (possibly with
6443 		 * a subset of the original data), a valid ACK, a
6444 		 * FIN, or a RST.
6445 		 */
6446 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
6447 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6448 			return (1);
6449 		} else if (thflags & TH_SYN) {
6450 			/* non-initial SYN is ignored */
6451 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
6452 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
6453 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
6454 				ctf_do_drop(m, NULL);
6455 				return (0);
6456 			}
6457 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
6458 			ctf_do_drop(m, NULL);
6459 			return (0);
6460 		}
6461 	}
6462 	if ((thflags & TH_RST) ||
6463 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6464 		return (ctf_process_rst(m, th, so, tp));
6465 	/*
6466 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6467 	 * it's less than ts_recent, drop it.
6468 	 */
6469 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6470 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6471 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6472 			return (ret_val);
6473 	}
6474 	/*
6475 	 * In the SYN-RECEIVED state, validate that the packet belongs to
6476 	 * this connection before trimming the data to fit the receive
6477 	 * window.  Check the sequence number versus IRS since we know the
6478 	 * sequence numbers haven't wrapped.  This is a partial fix for the
6479 	 * "LAND" DoS attack.
6480 	 */
6481 	if (SEQ_LT(th->th_seq, tp->irs)) {
6482 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6483 		return (1);
6484 	}
6485 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6486 		return (ret_val);
6487 	}
6488 	/*
6489 	 * If last ACK falls within this segment's sequence numbers, record
6490 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6491 	 * from the latest proposal of the tcplw@cray.com list (Braden
6492 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6493 	 * with our earlier PAWS tests, so this check should be solely
6494 	 * predicated on the sequence space of this segment. 3) That we
6495 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6496 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6497 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6498 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6499 	 * p.869. In such cases, we can still calculate the RTT correctly
6500 	 * when RCV.NXT == Last.ACK.Sent.
6501 	 */
6502 	if ((to->to_flags & TOF_TS) != 0 &&
6503 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6504 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6505 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6506 		tp->ts_recent_age = tcp_ts_getticks();
6507 		tp->ts_recent = to->to_tsval;
6508 	}
6509 	tp->snd_wnd = tiwin;
6510 	/*
6511 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6512 	 * is on (half-synchronized state), then queue data for later
6513 	 * processing; else drop segment and return.
6514 	 */
6515 	if ((thflags & TH_ACK) == 0) {
6516 		if (IS_FASTOPEN(tp->t_flags)) {
6517 			cc_conn_init(tp);
6518 		}
6519 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6520 		    tiwin, thflags, nxt_pkt));
6521 	}
6522 	TCPSTAT_INC(tcps_connects);
6523 	soisconnected(so);
6524 	/* Do window scaling? */
6525 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6526 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6527 		tp->rcv_scale = tp->request_r_scale;
6528 	}
6529 	/*
6530 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
6531 	 * FIN-WAIT-1
6532 	 */
6533 	tp->t_starttime = ticks;
6534 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
6535 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
6536 		tp->t_tfo_pending = NULL;
6537 
6538 		/*
6539 		 * Account for the ACK of our SYN prior to
6540 		 * regular ACK processing below.
6541 		 */
6542 		tp->snd_una++;
6543 	}
6544 	if (tp->t_flags & TF_NEEDFIN) {
6545 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
6546 		tp->t_flags &= ~TF_NEEDFIN;
6547 	} else {
6548 		tcp_state_change(tp, TCPS_ESTABLISHED);
6549 		TCP_PROBE5(accept__established, NULL, tp,
6550 		    mtod(m, const char *), tp, th);
6551 		/*
6552 		 * TFO connections call cc_conn_init() during SYN
6553 		 * processing.  Calling it again here for such connections
6554 		 * is not harmless as it would undo the snd_cwnd reduction
6555 		 * that occurs when a TFO SYN|ACK is retransmitted.
6556 		 */
6557 		if (!IS_FASTOPEN(tp->t_flags))
6558 			cc_conn_init(tp);
6559 	}
6560 	/*
6561 	 * If segment contains data or ACK, will call tcp_reass() later; if
6562 	 * not, do so now to pass queued data to user.
6563 	 */
6564 	if (tlen == 0 && (thflags & TH_FIN) == 0)
6565 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
6566 		    (struct mbuf *)0);
6567 	tp->snd_wl1 = th->th_seq - 1;
6568 	/* For syn-recv we need to possibly update the rtt */
6569 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6570 		uint32_t t;
6571 
6572 		t = tcp_ts_getticks() - to->to_tsecr;
6573 		if (!tp->t_rttlow || tp->t_rttlow > t)
6574 			tp->t_rttlow = t;
6575 		tcp_rack_xmit_timer(rack, t + 1);
6576 		tcp_rack_xmit_timer_commit(rack, tp);
6577 	}
6578 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6579 		return (ret_val);
6580 	}
6581 	if (tp->t_state == TCPS_FIN_WAIT_1) {
6582 		/* We could have went to FIN_WAIT_1 (or EST) above */
6583 		/*
6584 		 * In FIN_WAIT_1 STATE in addition to the processing for the
6585 		 * ESTABLISHED state if our FIN is now acknowledged then
6586 		 * enter FIN_WAIT_2.
6587 		 */
6588 		if (ourfinisacked) {
6589 			/*
6590 			 * If we can't receive any more data, then closing
6591 			 * user can proceed. Starting the timer is contrary
6592 			 * to the specification, but if we don't get a FIN
6593 			 * we'll hang forever.
6594 			 *
6595 			 * XXXjl: we should release the tp also, and use a
6596 			 * compressed state.
6597 			 */
6598 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6599 				soisdisconnected(so);
6600 				tcp_timer_activate(tp, TT_2MSL,
6601 				    (tcp_fast_finwait2_recycle ?
6602 				    tcp_finwait2_timeout :
6603 				    TP_MAXIDLE(tp)));
6604 			}
6605 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
6606 		}
6607 	}
6608 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6609 	    tiwin, thflags, nxt_pkt));
6610 }
6611 
6612 /*
6613  * Return value of 1, the TCB is unlocked and most
6614  * likely gone, return value of 0, the TCP is still
6615  * locked.
6616  */
6617 static int
6618 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
6619     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6620     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6621 {
6622 	int32_t ret_val = 0;
6623 
6624 	/*
6625 	 * Header prediction: check for the two common cases of a
6626 	 * uni-directional data xfer.  If the packet has no control flags,
6627 	 * is in-sequence, the window didn't change and we're not
6628 	 * retransmitting, it's a candidate.  If the length is zero and the
6629 	 * ack moved forward, we're the sender side of the xfer.  Just free
6630 	 * the data acked & wake any higher level process that was blocked
6631 	 * waiting for space.  If the length is non-zero and the ack didn't
6632 	 * move, we're the receiver side.  If we're getting packets in-order
6633 	 * (the reassembly queue is empty), add the data toc The socket
6634 	 * buffer and note that we need a delayed ack. Make sure that the
6635 	 * hidden state-flags are also off. Since we check for
6636 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
6637 	 */
6638 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
6639 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
6640 	    __predict_true(SEGQ_EMPTY(tp)) &&
6641 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
6642 		struct tcp_rack *rack;
6643 
6644 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6645 		if (tlen == 0) {
6646 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
6647 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime, iptos)) {
6648 				return (0);
6649 			}
6650 		} else {
6651 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
6652 			    tiwin, nxt_pkt, iptos)) {
6653 				return (0);
6654 			}
6655 		}
6656 	}
6657 	ctf_calc_rwin(so, tp);
6658 
6659 	if ((thflags & TH_RST) ||
6660 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6661 		return (ctf_process_rst(m, th, so, tp));
6662 
6663 	/*
6664 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6665 	 * synchronized state.
6666 	 */
6667 	if (thflags & TH_SYN) {
6668 		ctf_challenge_ack(m, th, tp, &ret_val);
6669 		return (ret_val);
6670 	}
6671 	/*
6672 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6673 	 * it's less than ts_recent, drop it.
6674 	 */
6675 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6676 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6677 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6678 			return (ret_val);
6679 	}
6680 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6681 		return (ret_val);
6682 	}
6683 	/*
6684 	 * If last ACK falls within this segment's sequence numbers, record
6685 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6686 	 * from the latest proposal of the tcplw@cray.com list (Braden
6687 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6688 	 * with our earlier PAWS tests, so this check should be solely
6689 	 * predicated on the sequence space of this segment. 3) That we
6690 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6691 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6692 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6693 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6694 	 * p.869. In such cases, we can still calculate the RTT correctly
6695 	 * when RCV.NXT == Last.ACK.Sent.
6696 	 */
6697 	if ((to->to_flags & TOF_TS) != 0 &&
6698 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6699 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6700 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6701 		tp->ts_recent_age = tcp_ts_getticks();
6702 		tp->ts_recent = to->to_tsval;
6703 	}
6704 	/*
6705 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6706 	 * is on (half-synchronized state), then queue data for later
6707 	 * processing; else drop segment and return.
6708 	 */
6709 	if ((thflags & TH_ACK) == 0) {
6710 		if (tp->t_flags & TF_NEEDSYN) {
6711 
6712 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6713 			    tiwin, thflags, nxt_pkt));
6714 
6715 		} else if (tp->t_flags & TF_ACKNOW) {
6716 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6717 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6718 			return (ret_val);
6719 		} else {
6720 			ctf_do_drop(m, NULL);
6721 			return (0);
6722 		}
6723 	}
6724 	/*
6725 	 * Ack processing.
6726 	 */
6727 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6728 		return (ret_val);
6729 	}
6730 	if (sbavail(&so->so_snd)) {
6731 		if (rack_progress_timeout_check(tp)) {
6732 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6733 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6734 			return (1);
6735 		}
6736 	}
6737 	/* State changes only happen in rack_process_data() */
6738 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6739 	    tiwin, thflags, nxt_pkt));
6740 }
6741 
6742 /*
6743  * Return value of 1, the TCB is unlocked and most
6744  * likely gone, return value of 0, the TCP is still
6745  * locked.
6746  */
6747 static int
6748 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
6749     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6750     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6751 {
6752 	int32_t ret_val = 0;
6753 
6754 	ctf_calc_rwin(so, tp);
6755 	if ((thflags & TH_RST) ||
6756 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6757 		return (ctf_process_rst(m, th, so, tp));
6758 	/*
6759 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6760 	 * synchronized state.
6761 	 */
6762 	if (thflags & TH_SYN) {
6763 		ctf_challenge_ack(m, th, tp, &ret_val);
6764 		return (ret_val);
6765 	}
6766 	/*
6767 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6768 	 * it's less than ts_recent, drop it.
6769 	 */
6770 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6771 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6772 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6773 			return (ret_val);
6774 	}
6775 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6776 		return (ret_val);
6777 	}
6778 	/*
6779 	 * If last ACK falls within this segment's sequence numbers, record
6780 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6781 	 * from the latest proposal of the tcplw@cray.com list (Braden
6782 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6783 	 * with our earlier PAWS tests, so this check should be solely
6784 	 * predicated on the sequence space of this segment. 3) That we
6785 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6786 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6787 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6788 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6789 	 * p.869. In such cases, we can still calculate the RTT correctly
6790 	 * when RCV.NXT == Last.ACK.Sent.
6791 	 */
6792 	if ((to->to_flags & TOF_TS) != 0 &&
6793 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6794 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6795 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6796 		tp->ts_recent_age = tcp_ts_getticks();
6797 		tp->ts_recent = to->to_tsval;
6798 	}
6799 	/*
6800 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6801 	 * is on (half-synchronized state), then queue data for later
6802 	 * processing; else drop segment and return.
6803 	 */
6804 	if ((thflags & TH_ACK) == 0) {
6805 		if (tp->t_flags & TF_NEEDSYN) {
6806 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6807 			    tiwin, thflags, nxt_pkt));
6808 
6809 		} else if (tp->t_flags & TF_ACKNOW) {
6810 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6811 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6812 			return (ret_val);
6813 		} else {
6814 			ctf_do_drop(m, NULL);
6815 			return (0);
6816 		}
6817 	}
6818 	/*
6819 	 * Ack processing.
6820 	 */
6821 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6822 		return (ret_val);
6823 	}
6824 	if (sbavail(&so->so_snd)) {
6825 		if (rack_progress_timeout_check(tp)) {
6826 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6827 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6828 			return (1);
6829 		}
6830 	}
6831 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6832 	    tiwin, thflags, nxt_pkt));
6833 }
6834 
6835 static int
6836 rack_check_data_after_close(struct mbuf *m,
6837     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
6838 {
6839 	struct tcp_rack *rack;
6840 
6841 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6842 	if (rack->rc_allow_data_af_clo == 0) {
6843 	close_now:
6844 		tp = tcp_close(tp);
6845 		TCPSTAT_INC(tcps_rcvafterclose);
6846 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
6847 		return (1);
6848 	}
6849 	if (sbavail(&so->so_snd) == 0)
6850 		goto close_now;
6851 	/* Ok we allow data that is ignored and a followup reset */
6852 	tp->rcv_nxt = th->th_seq + *tlen;
6853 	tp->t_flags2 |= TF2_DROP_AF_DATA;
6854 	rack->r_wanted_output = 1;
6855 	*tlen = 0;
6856 	return (0);
6857 }
6858 
6859 /*
6860  * Return value of 1, the TCB is unlocked and most
6861  * likely gone, return value of 0, the TCP is still
6862  * locked.
6863  */
6864 static int
6865 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
6866     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6867     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6868 {
6869 	int32_t ret_val = 0;
6870 	int32_t ourfinisacked = 0;
6871 
6872 	ctf_calc_rwin(so, tp);
6873 
6874 	if ((thflags & TH_RST) ||
6875 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6876 		return (ctf_process_rst(m, th, so, tp));
6877 	/*
6878 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6879 	 * synchronized state.
6880 	 */
6881 	if (thflags & TH_SYN) {
6882 		ctf_challenge_ack(m, th, tp, &ret_val);
6883 		return (ret_val);
6884 	}
6885 	/*
6886 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6887 	 * it's less than ts_recent, drop it.
6888 	 */
6889 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6890 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6891 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6892 			return (ret_val);
6893 	}
6894 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6895 		return (ret_val);
6896 	}
6897 	/*
6898 	 * If new data are received on a connection after the user processes
6899 	 * are gone, then RST the other end.
6900 	 */
6901 	if ((so->so_state & SS_NOFDREF) && tlen) {
6902 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6903 			return (1);
6904 	}
6905 	/*
6906 	 * If last ACK falls within this segment's sequence numbers, record
6907 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6908 	 * from the latest proposal of the tcplw@cray.com list (Braden
6909 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6910 	 * with our earlier PAWS tests, so this check should be solely
6911 	 * predicated on the sequence space of this segment. 3) That we
6912 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6913 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6914 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6915 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6916 	 * p.869. In such cases, we can still calculate the RTT correctly
6917 	 * when RCV.NXT == Last.ACK.Sent.
6918 	 */
6919 	if ((to->to_flags & TOF_TS) != 0 &&
6920 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6921 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6922 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6923 		tp->ts_recent_age = tcp_ts_getticks();
6924 		tp->ts_recent = to->to_tsval;
6925 	}
6926 	/*
6927 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6928 	 * is on (half-synchronized state), then queue data for later
6929 	 * processing; else drop segment and return.
6930 	 */
6931 	if ((thflags & TH_ACK) == 0) {
6932 		if (tp->t_flags & TF_NEEDSYN) {
6933 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6934 			    tiwin, thflags, nxt_pkt));
6935 		} else if (tp->t_flags & TF_ACKNOW) {
6936 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6937 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6938 			return (ret_val);
6939 		} else {
6940 			ctf_do_drop(m, NULL);
6941 			return (0);
6942 		}
6943 	}
6944 	/*
6945 	 * Ack processing.
6946 	 */
6947 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6948 		return (ret_val);
6949 	}
6950 	if (ourfinisacked) {
6951 		/*
6952 		 * If we can't receive any more data, then closing user can
6953 		 * proceed. Starting the timer is contrary to the
6954 		 * specification, but if we don't get a FIN we'll hang
6955 		 * forever.
6956 		 *
6957 		 * XXXjl: we should release the tp also, and use a
6958 		 * compressed state.
6959 		 */
6960 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6961 			soisdisconnected(so);
6962 			tcp_timer_activate(tp, TT_2MSL,
6963 			    (tcp_fast_finwait2_recycle ?
6964 			    tcp_finwait2_timeout :
6965 			    TP_MAXIDLE(tp)));
6966 		}
6967 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6968 	}
6969 	if (sbavail(&so->so_snd)) {
6970 		if (rack_progress_timeout_check(tp)) {
6971 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6972 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6973 			return (1);
6974 		}
6975 	}
6976 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6977 	    tiwin, thflags, nxt_pkt));
6978 }
6979 
6980 /*
6981  * Return value of 1, the TCB is unlocked and most
6982  * likely gone, return value of 0, the TCP is still
6983  * locked.
6984  */
6985 static int
6986 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6987     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6988     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6989 {
6990 	int32_t ret_val = 0;
6991 	int32_t ourfinisacked = 0;
6992 
6993 	ctf_calc_rwin(so, tp);
6994 
6995 	if ((thflags & TH_RST) ||
6996 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6997 		return (ctf_process_rst(m, th, so, tp));
6998 	/*
6999 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7000 	 * synchronized state.
7001 	 */
7002 	if (thflags & TH_SYN) {
7003 		ctf_challenge_ack(m, th, tp, &ret_val);
7004 		return (ret_val);
7005 	}
7006 	/*
7007 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7008 	 * it's less than ts_recent, drop it.
7009 	 */
7010 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7011 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7012 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7013 			return (ret_val);
7014 	}
7015 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7016 		return (ret_val);
7017 	}
7018 	/*
7019 	 * If new data are received on a connection after the user processes
7020 	 * are gone, then RST the other end.
7021 	 */
7022 	if ((so->so_state & SS_NOFDREF) && tlen) {
7023 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7024 			return (1);
7025 	}
7026 	/*
7027 	 * If last ACK falls within this segment's sequence numbers, record
7028 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7029 	 * from the latest proposal of the tcplw@cray.com list (Braden
7030 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7031 	 * with our earlier PAWS tests, so this check should be solely
7032 	 * predicated on the sequence space of this segment. 3) That we
7033 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7034 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7035 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7036 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7037 	 * p.869. In such cases, we can still calculate the RTT correctly
7038 	 * when RCV.NXT == Last.ACK.Sent.
7039 	 */
7040 	if ((to->to_flags & TOF_TS) != 0 &&
7041 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7042 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7043 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7044 		tp->ts_recent_age = tcp_ts_getticks();
7045 		tp->ts_recent = to->to_tsval;
7046 	}
7047 	/*
7048 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7049 	 * is on (half-synchronized state), then queue data for later
7050 	 * processing; else drop segment and return.
7051 	 */
7052 	if ((thflags & TH_ACK) == 0) {
7053 		if (tp->t_flags & TF_NEEDSYN) {
7054 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7055 			    tiwin, thflags, nxt_pkt));
7056 		} else if (tp->t_flags & TF_ACKNOW) {
7057 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7058 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7059 			return (ret_val);
7060 		} else {
7061 			ctf_do_drop(m, NULL);
7062 			return (0);
7063 		}
7064 	}
7065 	/*
7066 	 * Ack processing.
7067 	 */
7068 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7069 		return (ret_val);
7070 	}
7071 	if (ourfinisacked) {
7072 		tcp_twstart(tp);
7073 		m_freem(m);
7074 		return (1);
7075 	}
7076 	if (sbavail(&so->so_snd)) {
7077 		if (rack_progress_timeout_check(tp)) {
7078 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7079 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7080 			return (1);
7081 		}
7082 	}
7083 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7084 	    tiwin, thflags, nxt_pkt));
7085 }
7086 
7087 /*
7088  * Return value of 1, the TCB is unlocked and most
7089  * likely gone, return value of 0, the TCP is still
7090  * locked.
7091  */
7092 static int
7093 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
7094     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7095     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7096 {
7097 	int32_t ret_val = 0;
7098 	int32_t ourfinisacked = 0;
7099 
7100 	ctf_calc_rwin(so, tp);
7101 
7102 	if ((thflags & TH_RST) ||
7103 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7104 		return (ctf_process_rst(m, th, so, tp));
7105 	/*
7106 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7107 	 * synchronized state.
7108 	 */
7109 	if (thflags & TH_SYN) {
7110 		ctf_challenge_ack(m, th, tp, &ret_val);
7111 		return (ret_val);
7112 	}
7113 	/*
7114 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7115 	 * it's less than ts_recent, drop it.
7116 	 */
7117 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7118 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7119 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7120 			return (ret_val);
7121 	}
7122 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7123 		return (ret_val);
7124 	}
7125 	/*
7126 	 * If new data are received on a connection after the user processes
7127 	 * are gone, then RST the other end.
7128 	 */
7129 	if ((so->so_state & SS_NOFDREF) && tlen) {
7130 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7131 			return (1);
7132 	}
7133 	/*
7134 	 * If last ACK falls within this segment's sequence numbers, record
7135 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7136 	 * from the latest proposal of the tcplw@cray.com list (Braden
7137 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7138 	 * with our earlier PAWS tests, so this check should be solely
7139 	 * predicated on the sequence space of this segment. 3) That we
7140 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7141 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7142 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7143 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7144 	 * p.869. In such cases, we can still calculate the RTT correctly
7145 	 * when RCV.NXT == Last.ACK.Sent.
7146 	 */
7147 	if ((to->to_flags & TOF_TS) != 0 &&
7148 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7149 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7150 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7151 		tp->ts_recent_age = tcp_ts_getticks();
7152 		tp->ts_recent = to->to_tsval;
7153 	}
7154 	/*
7155 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7156 	 * is on (half-synchronized state), then queue data for later
7157 	 * processing; else drop segment and return.
7158 	 */
7159 	if ((thflags & TH_ACK) == 0) {
7160 		if (tp->t_flags & TF_NEEDSYN) {
7161 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7162 			    tiwin, thflags, nxt_pkt));
7163 		} else if (tp->t_flags & TF_ACKNOW) {
7164 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7165 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7166 			return (ret_val);
7167 		} else {
7168 			ctf_do_drop(m, NULL);
7169 			return (0);
7170 		}
7171 	}
7172 	/*
7173 	 * case TCPS_LAST_ACK: Ack processing.
7174 	 */
7175 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7176 		return (ret_val);
7177 	}
7178 	if (ourfinisacked) {
7179 		tp = tcp_close(tp);
7180 		ctf_do_drop(m, tp);
7181 		return (1);
7182 	}
7183 	if (sbavail(&so->so_snd)) {
7184 		if (rack_progress_timeout_check(tp)) {
7185 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7186 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7187 			return (1);
7188 		}
7189 	}
7190 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7191 	    tiwin, thflags, nxt_pkt));
7192 }
7193 
7194 
7195 /*
7196  * Return value of 1, the TCB is unlocked and most
7197  * likely gone, return value of 0, the TCP is still
7198  * locked.
7199  */
7200 static int
7201 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
7202     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7203     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7204 {
7205 	int32_t ret_val = 0;
7206 	int32_t ourfinisacked = 0;
7207 
7208 	ctf_calc_rwin(so, tp);
7209 
7210 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
7211 	if ((thflags & TH_RST) ||
7212 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7213 		return (ctf_process_rst(m, th, so, tp));
7214 	/*
7215 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7216 	 * synchronized state.
7217 	 */
7218 	if (thflags & TH_SYN) {
7219 		ctf_challenge_ack(m, th, tp, &ret_val);
7220 		return (ret_val);
7221 	}
7222 	/*
7223 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7224 	 * it's less than ts_recent, drop it.
7225 	 */
7226 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7227 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7228 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7229 			return (ret_val);
7230 	}
7231 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7232 		return (ret_val);
7233 	}
7234 	/*
7235 	 * If new data are received on a connection after the user processes
7236 	 * are gone, then RST the other end.
7237 	 */
7238 	if ((so->so_state & SS_NOFDREF) &&
7239 	    tlen) {
7240 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7241 			return (1);
7242 	}
7243 	/*
7244 	 * If last ACK falls within this segment's sequence numbers, record
7245 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7246 	 * from the latest proposal of the tcplw@cray.com list (Braden
7247 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7248 	 * with our earlier PAWS tests, so this check should be solely
7249 	 * predicated on the sequence space of this segment. 3) That we
7250 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7251 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7252 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7253 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7254 	 * p.869. In such cases, we can still calculate the RTT correctly
7255 	 * when RCV.NXT == Last.ACK.Sent.
7256 	 */
7257 	if ((to->to_flags & TOF_TS) != 0 &&
7258 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7259 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7260 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7261 		tp->ts_recent_age = tcp_ts_getticks();
7262 		tp->ts_recent = to->to_tsval;
7263 	}
7264 	/*
7265 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7266 	 * is on (half-synchronized state), then queue data for later
7267 	 * processing; else drop segment and return.
7268 	 */
7269 	if ((thflags & TH_ACK) == 0) {
7270 		if (tp->t_flags & TF_NEEDSYN) {
7271 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7272 			    tiwin, thflags, nxt_pkt));
7273 		} else if (tp->t_flags & TF_ACKNOW) {
7274 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7275 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7276 			return (ret_val);
7277 		} else {
7278 			ctf_do_drop(m, NULL);
7279 			return (0);
7280 		}
7281 	}
7282 	/*
7283 	 * Ack processing.
7284 	 */
7285 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7286 		return (ret_val);
7287 	}
7288 	if (sbavail(&so->so_snd)) {
7289 		if (rack_progress_timeout_check(tp)) {
7290 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7291 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7292 			return (1);
7293 		}
7294 	}
7295 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7296 	    tiwin, thflags, nxt_pkt));
7297 }
7298 
7299 
7300 static void inline
7301 rack_clear_rate_sample(struct tcp_rack *rack)
7302 {
7303 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
7304 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
7305 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
7306 }
7307 
7308 static void
7309 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
7310 {
7311 	uint32_t tls_seg = 0;
7312 
7313 #ifdef KERN_TLS
7314 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
7315 		tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
7316 		rack->r_ctl.rc_pace_min_segs = tls_seg;
7317 	} else
7318 #endif
7319 		rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
7320 	rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
7321 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
7322 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
7323 #ifdef KERN_TLS
7324 	if (tls_seg != 0) {
7325 		if (rack_hw_tls_max_seg > 1) {
7326 			rack->r_ctl.rc_pace_max_segs /= tls_seg;
7327 			if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
7328 				rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
7329 		} else {
7330 			rack->r_ctl.rc_pace_max_segs = 1;
7331 		}
7332 		if (rack->r_ctl.rc_pace_max_segs == 0)
7333 			rack->r_ctl.rc_pace_max_segs = 1;
7334 		rack->r_ctl.rc_pace_max_segs *= tls_seg;
7335 	}
7336 #endif
7337 	rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
7338 }
7339 
7340 static int
7341 rack_init(struct tcpcb *tp)
7342 {
7343 	struct tcp_rack *rack = NULL;
7344 	struct rack_sendmap *insret;
7345 
7346 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
7347 	if (tp->t_fb_ptr == NULL) {
7348 		/*
7349 		 * We need to allocate memory but cant. The INP and INP_INFO
7350 		 * locks and they are recusive (happens during setup. So a
7351 		 * scheme to drop the locks fails :(
7352 		 *
7353 		 */
7354 		return (ENOMEM);
7355 	}
7356 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
7357 
7358 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7359 	RB_INIT(&rack->r_ctl.rc_mtree);
7360 	TAILQ_INIT(&rack->r_ctl.rc_free);
7361 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
7362 	rack->rc_tp = tp;
7363 	if (tp->t_inpcb) {
7364 		rack->rc_inp = tp->t_inpcb;
7365 	}
7366 	tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
7367 	/* Probably not needed but lets be sure */
7368 	rack_clear_rate_sample(rack);
7369 	rack->r_cpu = 0;
7370 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
7371 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
7372 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
7373 	rack->rc_pace_reduce = rack_slot_reduction;
7374 	if (use_rack_cheat)
7375 		rack->use_rack_cheat = 1;
7376 	if (V_tcp_delack_enabled)
7377 		tp->t_delayed_ack = 1;
7378 	else
7379 		tp->t_delayed_ack = 0;
7380 	rack->rc_pace_max_segs = rack_hptsi_segments;
7381 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
7382 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
7383 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
7384 	rack->r_enforce_min_pace = rack_min_pace_time;
7385 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
7386 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
7387 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
7388 	rack->rc_always_pace = rack_pace_every_seg;
7389 	rack_set_pace_segments(tp, rack);
7390 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
7391 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
7392 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
7393 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
7394 	rack->r_ctl.rc_min_to = rack_min_to;
7395 	rack->rack_per_of_gp = rack_per_of_gp;
7396 	microuptime(&rack->r_ctl.rc_last_ack);
7397 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
7398 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
7399 	/* Do we force on detection? */
7400 #ifdef NETFLIX_EXP_DETECTION
7401 	if (tcp_force_detection)
7402 		rack->do_detection = 1;
7403 	else
7404 #endif
7405 		rack->do_detection = 0;
7406 	if (tp->snd_una != tp->snd_max) {
7407 		/* Create a send map for the current outstanding data */
7408 		struct rack_sendmap *rsm;
7409 
7410 		rsm = rack_alloc(rack);
7411 		if (rsm == NULL) {
7412 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7413 			tp->t_fb_ptr = NULL;
7414 			return (ENOMEM);
7415 		}
7416 		rsm->r_flags = RACK_OVERMAX;
7417 		rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
7418 		rsm->r_rtr_cnt = 1;
7419 		rsm->r_rtr_bytes = 0;
7420 		rsm->r_start = tp->snd_una;
7421 		rsm->r_end = tp->snd_max;
7422 		rsm->r_dupack = 0;
7423 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7424 #ifdef INVARIANTS
7425 		if (insret != NULL) {
7426 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
7427 			      insret, rack, rsm);
7428 		}
7429 #endif
7430 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7431 		rsm->r_in_tmap = 1;
7432 	}
7433 	rack_stop_all_timers(tp);
7434 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7435 	return (0);
7436 }
7437 
7438 static int
7439 rack_handoff_ok(struct tcpcb *tp)
7440 {
7441 	if ((tp->t_state == TCPS_CLOSED) ||
7442 	    (tp->t_state == TCPS_LISTEN)) {
7443 		/* Sure no problem though it may not stick */
7444 		return (0);
7445 	}
7446 	if ((tp->t_state == TCPS_SYN_SENT) ||
7447 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
7448 		/*
7449 		 * We really don't know you have to get to ESTAB or beyond
7450 		 * to tell.
7451 		 */
7452 		return (EAGAIN);
7453 	}
7454 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
7455 		return (0);
7456 	}
7457 	/*
7458 	 * If we reach here we don't do SACK on this connection so we can
7459 	 * never do rack.
7460 	 */
7461 	return (EINVAL);
7462 }
7463 
7464 static void
7465 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
7466 {
7467 	if (tp->t_fb_ptr) {
7468 		struct tcp_rack *rack;
7469 		struct rack_sendmap *rsm, *nrsm, *rm;
7470 		if (tp->t_inpcb) {
7471 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
7472 			tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
7473 		}
7474 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7475 #ifdef TCP_BLACKBOX
7476 		tcp_log_flowend(tp);
7477 #endif
7478 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
7479 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7480 #ifdef INVARIANTS
7481 			if (rm != rsm) {
7482 				panic("At fini, rack:%p rsm:%p rm:%p",
7483 				      rack, rsm, rm);
7484 			}
7485 #endif
7486 			uma_zfree(rack_zone, rsm);
7487 		}
7488 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7489 		while (rsm) {
7490 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
7491 			uma_zfree(rack_zone, rsm);
7492 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7493 		}
7494 		rack->rc_free_cnt = 0;
7495 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7496 		tp->t_fb_ptr = NULL;
7497 	}
7498 	/* Make sure snd_nxt is correctly set */
7499 	tp->snd_nxt = tp->snd_max;
7500 }
7501 
7502 
7503 static void
7504 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
7505 {
7506 	switch (tp->t_state) {
7507 	case TCPS_SYN_SENT:
7508 		rack->r_state = TCPS_SYN_SENT;
7509 		rack->r_substate = rack_do_syn_sent;
7510 		break;
7511 	case TCPS_SYN_RECEIVED:
7512 		rack->r_state = TCPS_SYN_RECEIVED;
7513 		rack->r_substate = rack_do_syn_recv;
7514 		break;
7515 	case TCPS_ESTABLISHED:
7516 		rack_set_pace_segments(tp, rack);
7517 		rack->r_state = TCPS_ESTABLISHED;
7518 		rack->r_substate = rack_do_established;
7519 		break;
7520 	case TCPS_CLOSE_WAIT:
7521 		rack->r_state = TCPS_CLOSE_WAIT;
7522 		rack->r_substate = rack_do_close_wait;
7523 		break;
7524 	case TCPS_FIN_WAIT_1:
7525 		rack->r_state = TCPS_FIN_WAIT_1;
7526 		rack->r_substate = rack_do_fin_wait_1;
7527 		break;
7528 	case TCPS_CLOSING:
7529 		rack->r_state = TCPS_CLOSING;
7530 		rack->r_substate = rack_do_closing;
7531 		break;
7532 	case TCPS_LAST_ACK:
7533 		rack->r_state = TCPS_LAST_ACK;
7534 		rack->r_substate = rack_do_lastack;
7535 		break;
7536 	case TCPS_FIN_WAIT_2:
7537 		rack->r_state = TCPS_FIN_WAIT_2;
7538 		rack->r_substate = rack_do_fin_wait_2;
7539 		break;
7540 	case TCPS_LISTEN:
7541 	case TCPS_CLOSED:
7542 	case TCPS_TIME_WAIT:
7543 	default:
7544 		break;
7545 	};
7546 }
7547 
7548 
7549 static void
7550 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
7551 {
7552 	/*
7553 	 * We received an ack, and then did not
7554 	 * call send or were bounced out due to the
7555 	 * hpts was running. Now a timer is up as well, is
7556 	 * it the right timer?
7557 	 */
7558 	struct rack_sendmap *rsm;
7559 	int tmr_up;
7560 
7561 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7562 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
7563 		return;
7564 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7565 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
7566 	    (tmr_up == PACE_TMR_RXT)) {
7567 		/* Should be an RXT */
7568 		return;
7569 	}
7570 	if (rsm == NULL) {
7571 		/* Nothing outstanding? */
7572 		if (tp->t_flags & TF_DELACK) {
7573 			if (tmr_up == PACE_TMR_DELACK)
7574 				/* We are supposed to have delayed ack up and we do */
7575 				return;
7576 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
7577 			/*
7578 			 * if we hit enobufs then we would expect the possiblity
7579 			 * of nothing outstanding and the RXT up (and the hptsi timer).
7580 			 */
7581 			return;
7582 		} else if (((V_tcp_always_keepalive ||
7583 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7584 			    (tp->t_state <= TCPS_CLOSING)) &&
7585 			   (tmr_up == PACE_TMR_KEEP) &&
7586 			   (tp->snd_max == tp->snd_una)) {
7587 			/* We should have keep alive up and we do */
7588 			return;
7589 		}
7590 	}
7591 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
7592 		   ((tmr_up == PACE_TMR_TLP) ||
7593 		    (tmr_up == PACE_TMR_RACK) ||
7594 		    (tmr_up == PACE_TMR_RXT))) {
7595 		/*
7596 		 * Either a Rack, TLP or RXT is fine if  we
7597 		 * have outstanding data.
7598 		 */
7599 		return;
7600 	} else if (tmr_up == PACE_TMR_DELACK) {
7601 		/*
7602 		 * If the delayed ack was going to go off
7603 		 * before the rtx/tlp/rack timer were going to
7604 		 * expire, then that would be the timer in control.
7605 		 * Note we don't check the time here trusting the
7606 		 * code is correct.
7607 		 */
7608 		return;
7609 	}
7610 	/*
7611 	 * Ok the timer originally started is not what we want now.
7612 	 * We will force the hpts to be stopped if any, and restart
7613 	 * with the slot set to what was in the saved slot.
7614 	 */
7615 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7616 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7617 }
7618 
7619 static int
7620 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
7621     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
7622     int32_t nxt_pkt, struct timeval *tv)
7623 {
7624 	int32_t thflags, retval, did_out = 0;
7625 	int32_t way_out = 0;
7626 	uint32_t cts;
7627 	uint32_t tiwin;
7628 	struct tcpopt to;
7629 	struct tcp_rack *rack;
7630 	struct rack_sendmap *rsm;
7631 	int32_t prev_state = 0;
7632 
7633 	if (m->m_flags & M_TSTMP_LRO) {
7634 		tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7635 		tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7636 	}
7637 	cts = tcp_tv_to_mssectick(tv);
7638 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7639 
7640 	kern_prefetch(rack, &prev_state);
7641 	prev_state = 0;
7642 	thflags = th->th_flags;
7643 
7644 	NET_EPOCH_ASSERT();
7645 	INP_WLOCK_ASSERT(tp->t_inpcb);
7646 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
7647 	    __func__));
7648 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
7649 	    __func__));
7650 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
7651 		union tcp_log_stackspecific log;
7652 		struct timeval tv;
7653 
7654 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
7655 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
7656 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
7657 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
7658 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
7659 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
7660 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7661 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
7662 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
7663 		    tlen, &log, true, &tv);
7664 	}
7665 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
7666 		way_out = 4;
7667 		retval = 0;
7668 		goto done_with_input;
7669 	}
7670 	/*
7671 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
7672 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
7673 	 */
7674 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
7675 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
7676 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7677 		return(1);
7678 	}
7679 	/*
7680 	 * Segment received on connection. Reset idle time and keep-alive
7681 	 * timer. XXX: This should be done after segment validation to
7682 	 * ignore broken/spoofed segs.
7683 	 */
7684 	if  (tp->t_idle_reduce &&
7685 	     (tp->snd_max == tp->snd_una) &&
7686 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
7687 		counter_u64_add(rack_input_idle_reduces, 1);
7688 		rack_cc_after_idle(tp);
7689 	}
7690 	tp->t_rcvtime = ticks;
7691 
7692 	/*
7693 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
7694 	 * the scale is zero.
7695 	 */
7696 	tiwin = th->th_win << tp->snd_scale;
7697 #ifdef STATS
7698 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
7699 #endif
7700 	if (tiwin > rack->r_ctl.rc_high_rwnd)
7701 		rack->r_ctl.rc_high_rwnd = tiwin;
7702 	/*
7703 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
7704 	 * this to occur after we've validated the segment.
7705 	 */
7706 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
7707 		if (thflags & TH_CWR) {
7708 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
7709 			tp->t_flags |= TF_ACKNOW;
7710 		}
7711 		switch (iptos & IPTOS_ECN_MASK) {
7712 		case IPTOS_ECN_CE:
7713 			tp->t_flags2 |= TF2_ECN_SND_ECE;
7714 			TCPSTAT_INC(tcps_ecn_ce);
7715 			break;
7716 		case IPTOS_ECN_ECT0:
7717 			TCPSTAT_INC(tcps_ecn_ect0);
7718 			break;
7719 		case IPTOS_ECN_ECT1:
7720 			TCPSTAT_INC(tcps_ecn_ect1);
7721 			break;
7722 		}
7723 
7724 		/* Process a packet differently from RFC3168. */
7725 		cc_ecnpkt_handler(tp, th, iptos);
7726 
7727 		/* Congestion experienced. */
7728 		if (thflags & TH_ECE) {
7729 			rack_cong_signal(tp, th, CC_ECN);
7730 		}
7731 	}
7732 	/*
7733 	 * Parse options on any incoming segment.
7734 	 */
7735 	tcp_dooptions(&to, (u_char *)(th + 1),
7736 	    (th->th_off << 2) - sizeof(struct tcphdr),
7737 	    (thflags & TH_SYN) ? TO_SYN : 0);
7738 
7739 	/*
7740 	 * If echoed timestamp is later than the current time, fall back to
7741 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
7742 	 * were used when this connection was established.
7743 	 */
7744 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
7745 		to.to_tsecr -= tp->ts_offset;
7746 		if (TSTMP_GT(to.to_tsecr, cts))
7747 			to.to_tsecr = 0;
7748 	}
7749 	/*
7750 	 * If its the first time in we need to take care of options and
7751 	 * verify we can do SACK for rack!
7752 	 */
7753 	if (rack->r_state == 0) {
7754 		/* Should be init'd by rack_init() */
7755 		KASSERT(rack->rc_inp != NULL,
7756 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
7757 		if (rack->rc_inp == NULL) {
7758 			rack->rc_inp = tp->t_inpcb;
7759 		}
7760 
7761 		/*
7762 		 * Process options only when we get SYN/ACK back. The SYN
7763 		 * case for incoming connections is handled in tcp_syncache.
7764 		 * According to RFC1323 the window field in a SYN (i.e., a
7765 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
7766 		 * this is traditional behavior, may need to be cleaned up.
7767 		 */
7768 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
7769 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
7770 			if ((to.to_flags & TOF_SCALE) &&
7771 			    (tp->t_flags & TF_REQ_SCALE)) {
7772 				tp->t_flags |= TF_RCVD_SCALE;
7773 				tp->snd_scale = to.to_wscale;
7774 			}
7775 			/*
7776 			 * Initial send window.  It will be updated with the
7777 			 * next incoming segment to the scaled value.
7778 			 */
7779 			tp->snd_wnd = th->th_win;
7780 			if (to.to_flags & TOF_TS) {
7781 				tp->t_flags |= TF_RCVD_TSTMP;
7782 				tp->ts_recent = to.to_tsval;
7783 				tp->ts_recent_age = cts;
7784 			}
7785 			if (to.to_flags & TOF_MSS)
7786 				tcp_mss(tp, to.to_mss);
7787 			if ((tp->t_flags & TF_SACK_PERMIT) &&
7788 			    (to.to_flags & TOF_SACKPERM) == 0)
7789 				tp->t_flags &= ~TF_SACK_PERMIT;
7790 			if (IS_FASTOPEN(tp->t_flags)) {
7791 				if (to.to_flags & TOF_FASTOPEN) {
7792 					uint16_t mss;
7793 
7794 					if (to.to_flags & TOF_MSS)
7795 						mss = to.to_mss;
7796 					else
7797 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
7798 							mss = TCP6_MSS;
7799 						else
7800 							mss = TCP_MSS;
7801 					tcp_fastopen_update_cache(tp, mss,
7802 					    to.to_tfo_len, to.to_tfo_cookie);
7803 				} else
7804 					tcp_fastopen_disable_path(tp);
7805 			}
7806 		}
7807 		/*
7808 		 * At this point we are at the initial call. Here we decide
7809 		 * if we are doing RACK or not. We do this by seeing if
7810 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
7811 		 * we switch to the default code.
7812 		 */
7813 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
7814 			tcp_switch_back_to_default(tp);
7815 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
7816 			    tlen, iptos);
7817 			return (1);
7818 		}
7819 		/* Set the flag */
7820 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
7821 		tcp_set_hpts(tp->t_inpcb);
7822 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
7823 	}
7824 	/*
7825 	 * This is the one exception case where we set the rack state
7826 	 * always. All other times (timers etc) we must have a rack-state
7827 	 * set (so we assure we have done the checks above for SACK).
7828 	 */
7829 	memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
7830 	rack->r_ctl.rc_rcvtime = cts;
7831 	if (rack->r_state != tp->t_state)
7832 		rack_set_state(tp, rack);
7833 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
7834 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
7835 		kern_prefetch(rsm, &prev_state);
7836 	prev_state = rack->r_state;
7837 	rack->r_ctl.rc_tlp_send_cnt = 0;
7838 	rack_clear_rate_sample(rack);
7839 	retval = (*rack->r_substate) (m, th, so,
7840 	    tp, &to, drop_hdrlen,
7841 	    tlen, tiwin, thflags, nxt_pkt, iptos);
7842 #ifdef INVARIANTS
7843 	if ((retval == 0) &&
7844 	    (tp->t_inpcb == NULL)) {
7845 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
7846 		    retval, tp, prev_state);
7847 	}
7848 #endif
7849 	if (retval == 0) {
7850 		/*
7851 		 * If retval is 1 the tcb is unlocked and most likely the tp
7852 		 * is gone.
7853 		 */
7854 		INP_WLOCK_ASSERT(tp->t_inpcb);
7855 		if (rack->set_pacing_done_a_iw == 0) {
7856 			/* How much has been acked? */
7857 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
7858 				/* We have enough to set in the pacing segment size */
7859 				rack->set_pacing_done_a_iw = 1;
7860 				rack_set_pace_segments(tp, rack);
7861 			}
7862 		}
7863 		tcp_rack_xmit_timer_commit(rack, tp);
7864 		if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
7865 			if (rack->r_wanted_output != 0) {
7866 				did_out = 1;
7867 				(void)tp->t_fb->tfb_tcp_output(tp);
7868 			}
7869 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
7870 		}
7871 		if ((nxt_pkt == 0) &&
7872 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
7873 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
7874 		     (tp->t_flags & TF_DELACK) ||
7875 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7876 		      (tp->t_state <= TCPS_CLOSING)))) {
7877 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
7878 			if ((tp->snd_max == tp->snd_una) &&
7879 			    ((tp->t_flags & TF_DELACK) == 0) &&
7880 			    (rack->rc_inp->inp_in_hpts) &&
7881 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
7882 				/* keep alive not needed if we are hptsi output yet */
7883 				;
7884 			} else {
7885 				if (rack->rc_inp->inp_in_hpts) {
7886 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7887 					counter_u64_add(rack_per_timer_hole, 1);
7888 				}
7889 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7890 			}
7891 			way_out = 1;
7892 		} else if (nxt_pkt == 0) {
7893 			/* Do we have the correct timer running? */
7894 			rack_timer_audit(tp, rack, &so->so_snd);
7895 			way_out = 2;
7896 		}
7897 	done_with_input:
7898 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
7899 		if (did_out)
7900 			rack->r_wanted_output = 0;
7901 #ifdef INVARIANTS
7902 		if (tp->t_inpcb == NULL) {
7903 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
7904 			      did_out,
7905 			      retval, tp, prev_state);
7906 		}
7907 #endif
7908 	}
7909 	return (retval);
7910 }
7911 
7912 void
7913 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
7914     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
7915 {
7916 	struct timeval tv;
7917 
7918 	/* First lets see if we have old packets */
7919 	if (tp->t_in_pkt) {
7920 		if (ctf_do_queued_segments(so, tp, 1)) {
7921 			m_freem(m);
7922 			return;
7923 		}
7924 	}
7925 	if (m->m_flags & M_TSTMP_LRO) {
7926 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7927 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7928 	} else {
7929 		/* Should not be should we kassert instead? */
7930 		tcp_get_usecs(&tv);
7931 	}
7932 	if(rack_do_segment_nounlock(m, th, so, tp,
7933 				    drop_hdrlen, tlen, iptos, 0, &tv) == 0)
7934 		INP_WUNLOCK(tp->t_inpcb);
7935 }
7936 
7937 struct rack_sendmap *
7938 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
7939 {
7940 	struct rack_sendmap *rsm = NULL;
7941 	int32_t idx;
7942 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
7943 
7944 	/* Return the next guy to be re-transmitted */
7945 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
7946 		return (NULL);
7947 	}
7948 	if (tp->t_flags & TF_SENTFIN) {
7949 		/* retran the end FIN? */
7950 		return (NULL);
7951 	}
7952 	/* ok lets look at this one */
7953 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7954 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
7955 		goto check_it;
7956 	}
7957 	rsm = rack_find_lowest_rsm(rack);
7958 	if (rsm == NULL) {
7959 		return (NULL);
7960 	}
7961 check_it:
7962 	if (rsm->r_flags & RACK_ACKED) {
7963 		return (NULL);
7964 	}
7965 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
7966 		/* Its not yet ready */
7967 		return (NULL);
7968 	}
7969 	srtt = rack_grab_rtt(tp, rack);
7970 	idx = rsm->r_rtr_cnt - 1;
7971 	ts_low = rsm->r_tim_lastsent[idx];
7972 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
7973 	if ((tsused == ts_low) ||
7974 	    (TSTMP_LT(tsused, ts_low))) {
7975 		/* No time since sending */
7976 		return (NULL);
7977 	}
7978 	if ((tsused - ts_low) < thresh) {
7979 		/* It has not been long enough yet */
7980 		return (NULL);
7981 	}
7982 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
7983 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
7984 	     (rack->sack_attack_disable == 0))) {
7985 		/*
7986 		 * We have passed the dup-ack threshold <or>
7987 		 * a SACK has indicated this is missing.
7988 		 * Note that if you are a declared attacker
7989 		 * it is only the dup-ack threshold that
7990 		 * will cause retransmits.
7991 		 */
7992 		/* log retransmit reason */
7993 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
7994 		return (rsm);
7995 	}
7996 	return (NULL);
7997 }
7998 
7999 static int32_t
8000 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
8001 {
8002 	int32_t slot = 0;
8003 
8004 	if ((rack->rack_per_of_gp == 0) ||
8005 	    (rack->rc_always_pace == 0)) {
8006 		/*
8007 		 * We use the most optimistic possible cwnd/srtt for
8008 		 * sending calculations. This will make our
8009 		 * calculation anticipate getting more through
8010 		 * quicker then possible. But thats ok we don't want
8011 		 * the peer to have a gap in data sending.
8012 		 */
8013 		uint32_t srtt, cwnd, tr_perms = 0;
8014 
8015 old_method:
8016 		if (rack->r_ctl.rc_rack_min_rtt)
8017 			srtt = rack->r_ctl.rc_rack_min_rtt;
8018 		else
8019 			srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8020 		if (rack->r_ctl.rc_rack_largest_cwnd)
8021 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8022 		else
8023 			cwnd = tp->snd_cwnd;
8024 		tr_perms = cwnd / srtt;
8025 		if (tr_perms == 0) {
8026 			tr_perms = ctf_fixed_maxseg(tp);
8027 		}
8028 		/*
8029 		 * Calculate how long this will take to drain, if
8030 		 * the calculation comes out to zero, thats ok we
8031 		 * will use send_a_lot to possibly spin around for
8032 		 * more increasing tot_len_this_send to the point
8033 		 * that its going to require a pace, or we hit the
8034 		 * cwnd. Which in that case we are just waiting for
8035 		 * a ACK.
8036 		 */
8037 		slot = len / tr_perms;
8038 		/* Now do we reduce the time so we don't run dry? */
8039 		if (slot && rack->rc_pace_reduce) {
8040 			int32_t reduce;
8041 
8042 			reduce = (slot / rack->rc_pace_reduce);
8043 			if (reduce < slot) {
8044 				slot -= reduce;
8045 			} else
8046 				slot = 0;
8047 		}
8048 	} else {
8049 		int cnt;
8050 		uint64_t bw_est, bw_raise, res, lentim;
8051 
8052 		bw_est = 0;
8053 		for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
8054 			if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
8055 			    (rack->r_ctl.rc_gp_history[cnt] == 0))
8056 				break;
8057 			bw_est += rack->r_ctl.rc_gp_history[cnt];
8058 		}
8059 		if (bw_est == 0) {
8060 			/*
8061 			 * No way yet to make a b/w estimate
8062 			 * (no goodput est yet).
8063 			 */
8064 			goto old_method;
8065 		}
8066 		/* Covert to bytes per second */
8067 		bw_est *= MSEC_IN_SECOND;
8068 		/*
8069 		 * Now ratchet it up by our percentage. Note
8070 		 * that the minimum you can do is 1 which would
8071 		 * get you 101% of the average last N goodput estimates.
8072 		 * The max you can do is 256 which would yeild you
8073 		 * 356% of the last N goodput estimates.
8074 		 */
8075 		bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
8076 		bw_est += bw_raise;
8077 		/* average by the number we added */
8078 		bw_est /= cnt;
8079 		/* Now calculate a rate based on this b/w */
8080 		lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
8081 		res = lentim / bw_est;
8082 		slot = (uint32_t)res;
8083 	}
8084 	if (rack->r_enforce_min_pace &&
8085 	    (slot == 0)) {
8086 		/* We are enforcing a minimum pace time of 1ms */
8087 		slot = rack->r_enforce_min_pace;
8088 	}
8089 	if (slot)
8090 		counter_u64_add(rack_calc_nonzero, 1);
8091 	else
8092 		counter_u64_add(rack_calc_zero, 1);
8093 	return (slot);
8094 }
8095 
8096 static int
8097 rack_output(struct tcpcb *tp)
8098 {
8099 	struct socket *so;
8100 	uint32_t recwin, sendwin;
8101 	uint32_t sb_offset;
8102 	int32_t len, flags, error = 0;
8103 	struct mbuf *m;
8104 	struct mbuf *mb;
8105 	uint32_t if_hw_tsomaxsegcount = 0;
8106 	uint32_t if_hw_tsomaxsegsize = 0;
8107 	int32_t maxseg;
8108 	long tot_len_this_send = 0;
8109 	struct ip *ip = NULL;
8110 #ifdef TCPDEBUG
8111 	struct ipovly *ipov = NULL;
8112 #endif
8113 	struct udphdr *udp = NULL;
8114 	struct tcp_rack *rack;
8115 	struct tcphdr *th;
8116 	uint8_t pass = 0;
8117 	uint8_t wanted_cookie = 0;
8118 	u_char opt[TCP_MAXOLEN];
8119 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
8120 	uint32_t rack_seq;
8121 
8122 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8123 	unsigned ipsec_optlen = 0;
8124 
8125 #endif
8126 	int32_t idle, sendalot;
8127 	int32_t sub_from_prr = 0;
8128 	volatile int32_t sack_rxmit;
8129 	struct rack_sendmap *rsm = NULL;
8130 	int32_t tso, mtu;
8131 	struct tcpopt to;
8132 	int32_t slot = 0;
8133 	int32_t sup_rack = 0;
8134 	uint32_t cts;
8135 	uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
8136 	int32_t do_a_prefetch;
8137 	int32_t prefetch_rsm = 0;
8138 	int force_tso = 0;
8139 	int32_t orig_len;
8140 	int32_t prefetch_so_done = 0;
8141 	struct tcp_log_buffer *lgb = NULL;
8142 	struct inpcb *inp;
8143 	struct sockbuf *sb;
8144 #ifdef INET6
8145 	struct ip6_hdr *ip6 = NULL;
8146 	int32_t isipv6;
8147 #endif
8148 	uint8_t filled_all = 0;
8149 	bool hw_tls = false;
8150 
8151 	/* setup and take the cache hits here */
8152 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8153 	inp = rack->rc_inp;
8154 	so = inp->inp_socket;
8155 	sb = &so->so_snd;
8156 	kern_prefetch(sb, &do_a_prefetch);
8157 	do_a_prefetch = 1;
8158 
8159 #ifdef KERN_TLS
8160 	hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
8161 #endif
8162 
8163 	NET_EPOCH_ASSERT();
8164 	INP_WLOCK_ASSERT(inp);
8165 
8166 #ifdef TCP_OFFLOAD
8167 	if (tp->t_flags & TF_TOE)
8168 		return (tcp_offload_output(tp));
8169 #endif
8170 	maxseg = ctf_fixed_maxseg(tp);
8171 	/*
8172 	 * For TFO connections in SYN_RECEIVED, only allow the initial
8173 	 * SYN|ACK and those sent by the retransmit timer.
8174 	 */
8175 	if (IS_FASTOPEN(tp->t_flags) &&
8176 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
8177 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
8178 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
8179 		return (0);
8180 #ifdef INET6
8181 	if (rack->r_state) {
8182 		/* Use the cache line loaded if possible */
8183 		isipv6 = rack->r_is_v6;
8184 	} else {
8185 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
8186 	}
8187 #endif
8188 	cts = tcp_ts_getticks();
8189 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
8190 	    inp->inp_in_hpts) {
8191 		/*
8192 		 * We are on the hpts for some timer but not hptsi output.
8193 		 * Remove from the hpts unconditionally.
8194 		 */
8195 		rack_timer_cancel(tp, rack, cts, __LINE__);
8196 	}
8197 	/* Mark that we have called rack_output(). */
8198 	if ((rack->r_timer_override) ||
8199 	    (tp->t_flags & TF_FORCEDATA) ||
8200 	    (tp->t_state < TCPS_ESTABLISHED)) {
8201 		if (tp->t_inpcb->inp_in_hpts)
8202 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
8203 	} else if (tp->t_inpcb->inp_in_hpts) {
8204 		/*
8205 		 * On the hpts you can't pass even if ACKNOW is on, we will
8206 		 * when the hpts fires.
8207 		 */
8208 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
8209 		return (0);
8210 	}
8211 	hpts_calling = inp->inp_hpts_calls;
8212 	inp->inp_hpts_calls = 0;
8213 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
8214 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
8215 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
8216 			return (0);
8217 		}
8218 	}
8219 	rack->r_wanted_output = 0;
8220 	rack->r_timer_override = 0;
8221 	/*
8222 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
8223 	 * only allow the initial SYN or SYN|ACK and those sent
8224 	 * by the retransmit timer.
8225 	 */
8226 	if (IS_FASTOPEN(tp->t_flags) &&
8227 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
8228 	     (tp->t_state == TCPS_SYN_SENT)) &&
8229 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
8230 	    (tp->t_rxtshift == 0))              /* not a retransmit */
8231 		return (0);
8232 	/*
8233 	 * Determine length of data that should be transmitted, and flags
8234 	 * that will be used. If there is some data or critical controls
8235 	 * (SYN, RST) to send, then transmit; otherwise, investigate
8236 	 * further.
8237 	 */
8238 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
8239 	if (tp->t_idle_reduce) {
8240 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
8241 			rack_cc_after_idle(tp);
8242 	}
8243 	tp->t_flags &= ~TF_LASTIDLE;
8244 	if (idle) {
8245 		if (tp->t_flags & TF_MORETOCOME) {
8246 			tp->t_flags |= TF_LASTIDLE;
8247 			idle = 0;
8248 		}
8249 	}
8250 again:
8251 	/*
8252 	 * If we've recently taken a timeout, snd_max will be greater than
8253 	 * snd_nxt.  There may be SACK information that allows us to avoid
8254 	 * resending already delivered data.  Adjust snd_nxt accordingly.
8255 	 */
8256 	sendalot = 0;
8257 	cts = tcp_ts_getticks();
8258 	tso = 0;
8259 	mtu = 0;
8260 	sb_offset = tp->snd_max - tp->snd_una;
8261 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
8262 
8263 	flags = tcp_outflags[tp->t_state];
8264 	while (rack->rc_free_cnt < rack_free_cache) {
8265 		rsm = rack_alloc(rack);
8266 		if (rsm == NULL) {
8267 			if (inp->inp_hpts_calls)
8268 				/* Retry in a ms */
8269 				slot = 1;
8270 			goto just_return_nolock;
8271 		}
8272 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
8273 		rack->rc_free_cnt++;
8274 		rsm = NULL;
8275 	}
8276 	if (inp->inp_hpts_calls)
8277 		inp->inp_hpts_calls = 0;
8278 	sack_rxmit = 0;
8279 	len = 0;
8280 	rsm = NULL;
8281 	if (flags & TH_RST) {
8282 		SOCKBUF_LOCK(sb);
8283 		goto send;
8284 	}
8285 	if (rack->r_ctl.rc_tlpsend) {
8286 		/* Tail loss probe */
8287 		long cwin;
8288 		long tlen;
8289 
8290 		doing_tlp = 1;
8291 		/*
8292 		 * Check if we can do a TLP with a RACK'd packet
8293 		 * this can happen if we are not doing the rack
8294 		 * cheat and we skipped to a TLP and it
8295 		 * went off.
8296 		 */
8297 		rsm = tcp_rack_output(tp, rack, cts);
8298 		if (rsm == NULL)
8299 			rsm = rack->r_ctl.rc_tlpsend;
8300 		rack->r_ctl.rc_tlpsend = NULL;
8301 		sack_rxmit = 1;
8302 		tlen = rsm->r_end - rsm->r_start;
8303 		if (tlen > ctf_fixed_maxseg(tp))
8304 			tlen = ctf_fixed_maxseg(tp);
8305 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8306 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8307 		    __func__, __LINE__,
8308 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8309 		sb_offset = rsm->r_start - tp->snd_una;
8310 		cwin = min(tp->snd_wnd, tlen);
8311 		len = cwin;
8312 	} else if (rack->r_ctl.rc_resend) {
8313 		/* Retransmit timer */
8314 		rsm = rack->r_ctl.rc_resend;
8315 		rack->r_ctl.rc_resend = NULL;
8316 		len = rsm->r_end - rsm->r_start;
8317 		sack_rxmit = 1;
8318 		sendalot = 0;
8319 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8320 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8321 		    __func__, __LINE__,
8322 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8323 		sb_offset = rsm->r_start - tp->snd_una;
8324 		if (len >= ctf_fixed_maxseg(tp)) {
8325 			len = ctf_fixed_maxseg(tp);
8326 		}
8327 	} else if ((rack->rc_in_persist == 0) &&
8328 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
8329 		int maxseg;
8330 
8331 		maxseg = ctf_fixed_maxseg(tp);
8332 		if ((!IN_RECOVERY(tp->t_flags)) &&
8333 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
8334 			/* Enter recovery if not induced by a time-out */
8335 			rack->r_ctl.rc_rsm_start = rsm->r_start;
8336 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
8337 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
8338 			rack_cong_signal(tp, NULL, CC_NDUPACK);
8339 			/*
8340 			 * When we enter recovery we need to assure we send
8341 			 * one packet.
8342 			 */
8343 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
8344 			rack_log_to_prr(rack, 13);
8345 		}
8346 #ifdef INVARIANTS
8347 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
8348 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
8349 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
8350 		}
8351 #endif
8352 		len = rsm->r_end - rsm->r_start;
8353 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8354 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8355 		    __func__, __LINE__,
8356 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8357 		sb_offset = rsm->r_start - tp->snd_una;
8358 		/* Can we send it within the PRR boundary? */
8359 		if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
8360 			/* It does not fit */
8361 			if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
8362 			    (rack->r_ctl.rc_prr_sndcnt < maxseg)) {
8363 				/*
8364 				 * prr is less than a segment, we
8365 				 * have more acks due in besides
8366 				 * what we need to resend. Lets not send
8367 				 * to avoid sending small pieces of
8368 				 * what we need to retransmit.
8369 				 */
8370 				len = 0;
8371 				goto just_return_nolock;
8372 			}
8373 			len = rack->r_ctl.rc_prr_sndcnt;
8374 		}
8375 		sendalot = 0;
8376 		if (len >= maxseg) {
8377 			len = maxseg;
8378 		}
8379 		if (len > 0) {
8380 			sub_from_prr = 1;
8381 			sack_rxmit = 1;
8382 			TCPSTAT_INC(tcps_sack_rexmits);
8383 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
8384 			    min(len, ctf_fixed_maxseg(tp)));
8385 			counter_u64_add(rack_rtm_prr_retran, 1);
8386 		}
8387 	}
8388 	/*
8389 	 * Enforce a connection sendmap count limit if set
8390 	 * as long as we are not retransmiting.
8391 	 */
8392 	if ((rsm == NULL) &&
8393 	    (rack->do_detection == 0) &&
8394 	    (V_tcp_map_entries_limit > 0) &&
8395 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
8396 		counter_u64_add(rack_to_alloc_limited, 1);
8397 		if (!rack->alloc_limit_reported) {
8398 			rack->alloc_limit_reported = 1;
8399 			counter_u64_add(rack_alloc_limited_conns, 1);
8400 		}
8401 		goto just_return_nolock;
8402 	}
8403 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
8404 		/* we are retransmitting the fin */
8405 		len--;
8406 		if (len) {
8407 			/*
8408 			 * When retransmitting data do *not* include the
8409 			 * FIN. This could happen from a TLP probe.
8410 			 */
8411 			flags &= ~TH_FIN;
8412 		}
8413 	}
8414 #ifdef INVARIANTS
8415 	/* For debugging */
8416 	rack->r_ctl.rc_rsm_at_retran = rsm;
8417 #endif
8418 	/*
8419 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
8420 	 * state flags.
8421 	 */
8422 	if (tp->t_flags & TF_NEEDFIN)
8423 		flags |= TH_FIN;
8424 	if (tp->t_flags & TF_NEEDSYN)
8425 		flags |= TH_SYN;
8426 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
8427 		void *end_rsm;
8428 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
8429 		if (end_rsm)
8430 			kern_prefetch(end_rsm, &prefetch_rsm);
8431 		prefetch_rsm = 1;
8432 	}
8433 	SOCKBUF_LOCK(sb);
8434 	/*
8435 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
8436 	 * if window is small but nonzero and time TF_SENTFIN expired, we
8437 	 * will send what we can and go to transmit state.
8438 	 */
8439 	if (tp->t_flags & TF_FORCEDATA) {
8440 		if (sendwin == 0) {
8441 			/*
8442 			 * If we still have some data to send, then clear
8443 			 * the FIN bit.  Usually this would happen below
8444 			 * when it realizes that we aren't sending all the
8445 			 * data.  However, if we have exactly 1 byte of
8446 			 * unsent data, then it won't clear the FIN bit
8447 			 * below, and if we are in persist state, we wind up
8448 			 * sending the packet without recording that we sent
8449 			 * the FIN bit.
8450 			 *
8451 			 * We can't just blindly clear the FIN bit, because
8452 			 * if we don't have any more data to send then the
8453 			 * probe will be the FIN itself.
8454 			 */
8455 			if (sb_offset < sbused(sb))
8456 				flags &= ~TH_FIN;
8457 			sendwin = 1;
8458 		} else {
8459 			if ((rack->rc_in_persist != 0) &&
8460  			    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8461 					       rack->r_ctl.rc_pace_min_segs)))
8462 				rack_exit_persist(tp, rack);
8463 			/*
8464 			 * If we are dropping persist mode then we need to
8465 			 * correct snd_nxt/snd_max and off.
8466 			 */
8467 			tp->snd_nxt = tp->snd_max;
8468 			sb_offset = tp->snd_nxt - tp->snd_una;
8469 		}
8470 	}
8471 	/*
8472 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
8473 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
8474 	 * negative length.  This can also occur when TCP opens up its
8475 	 * congestion window while receiving additional duplicate acks after
8476 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
8477 	 * the fast-retransmit.
8478 	 *
8479 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
8480 	 * set to snd_una, the sb_offset will be 0, and the length may wind
8481 	 * up 0.
8482 	 *
8483 	 * If sack_rxmit is true we are retransmitting from the scoreboard
8484 	 * in which case len is already set.
8485 	 */
8486 	if (sack_rxmit == 0) {
8487 		uint32_t avail;
8488 
8489 		avail = sbavail(sb);
8490 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
8491 			sb_offset = tp->snd_nxt - tp->snd_una;
8492 		else
8493 			sb_offset = 0;
8494 		if (IN_RECOVERY(tp->t_flags) == 0) {
8495 			if (rack->r_ctl.rc_tlp_new_data) {
8496 				/* TLP is forcing out new data */
8497 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
8498 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
8499 				}
8500 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
8501 					len = tp->snd_wnd;
8502 				else
8503 					len = rack->r_ctl.rc_tlp_new_data;
8504 				rack->r_ctl.rc_tlp_new_data = 0;
8505 				new_data_tlp = doing_tlp = 1;
8506 			} else {
8507 				if (sendwin > avail) {
8508 					/* use the available */
8509 					if (avail > sb_offset) {
8510 						len = (int32_t)(avail - sb_offset);
8511 					} else {
8512 						len = 0;
8513 					}
8514 				} else {
8515 					if (sendwin > sb_offset) {
8516 						len = (int32_t)(sendwin - sb_offset);
8517 					} else {
8518 						len = 0;
8519 					}
8520 				}
8521 			}
8522 		} else {
8523 			uint32_t outstanding;
8524 
8525 			/*
8526 			 * We are inside of a SACK recovery episode and are
8527 			 * sending new data, having retransmitted all the
8528 			 * data possible so far in the scoreboard.
8529 			 */
8530 			outstanding = tp->snd_max - tp->snd_una;
8531 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
8532 				if (tp->snd_wnd > outstanding) {
8533 					len = tp->snd_wnd - outstanding;
8534 					/* Check to see if we have the data */
8535 					if (((sb_offset + len) > avail) &&
8536 					    (avail > sb_offset))
8537 						len = avail - sb_offset;
8538 					else
8539 						len = 0;
8540 				} else
8541 					len = 0;
8542 			} else if (avail > sb_offset)
8543 				len = avail - sb_offset;
8544 			else
8545 				len = 0;
8546 			if (len > 0) {
8547 				if (len > rack->r_ctl.rc_prr_sndcnt)
8548 					len = rack->r_ctl.rc_prr_sndcnt;
8549 				if (len > 0) {
8550 					sub_from_prr = 1;
8551 					counter_u64_add(rack_rtm_prr_newdata, 1);
8552 				}
8553 			}
8554 			if (len > ctf_fixed_maxseg(tp)) {
8555 				/*
8556 				 * We should never send more than a MSS when
8557 				 * retransmitting or sending new data in prr
8558 				 * mode unless the override flag is on. Most
8559 				 * likely the PRR algorithm is not going to
8560 				 * let us send a lot as well :-)
8561 				 */
8562 				if (rack->r_ctl.rc_prr_sendalot == 0)
8563 					len = ctf_fixed_maxseg(tp);
8564 			} else if (len < ctf_fixed_maxseg(tp)) {
8565 				/*
8566 				 * Do we send any? The idea here is if the
8567 				 * send empty's the socket buffer we want to
8568 				 * do it. However if not then lets just wait
8569 				 * for our prr_sndcnt to get bigger.
8570 				 */
8571 				long leftinsb;
8572 
8573 				leftinsb = sbavail(sb) - sb_offset;
8574 				if (leftinsb > len) {
8575 					/* This send does not empty the sb */
8576 					len = 0;
8577 				}
8578 			}
8579 		}
8580 	}
8581 	if (prefetch_so_done == 0) {
8582 		kern_prefetch(so, &prefetch_so_done);
8583 		prefetch_so_done = 1;
8584 	}
8585 	/*
8586 	 * Lop off SYN bit if it has already been sent.  However, if this is
8587 	 * SYN-SENT state and if segment contains data and if we don't know
8588 	 * that foreign host supports TAO, suppress sending segment.
8589 	 */
8590 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
8591 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
8592 		if (tp->t_state != TCPS_SYN_RECEIVED)
8593 			flags &= ~TH_SYN;
8594 		/*
8595 		 * When sending additional segments following a TFO SYN|ACK,
8596 		 * do not include the SYN bit.
8597 		 */
8598 		if (IS_FASTOPEN(tp->t_flags) &&
8599 		    (tp->t_state == TCPS_SYN_RECEIVED))
8600 			flags &= ~TH_SYN;
8601 		sb_offset--, len++;
8602 	}
8603 	/*
8604 	 * Be careful not to send data and/or FIN on SYN segments. This
8605 	 * measure is needed to prevent interoperability problems with not
8606 	 * fully conformant TCP implementations.
8607 	 */
8608 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
8609 		len = 0;
8610 		flags &= ~TH_FIN;
8611 	}
8612 	/*
8613 	 * On TFO sockets, ensure no data is sent in the following cases:
8614 	 *
8615 	 *  - When retransmitting SYN|ACK on a passively-created socket
8616 	 *
8617 	 *  - When retransmitting SYN on an actively created socket
8618 	 *
8619 	 *  - When sending a zero-length cookie (cookie request) on an
8620 	 *    actively created socket
8621 	 *
8622 	 *  - When the socket is in the CLOSED state (RST is being sent)
8623 	 */
8624 	if (IS_FASTOPEN(tp->t_flags) &&
8625 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
8626 	     ((tp->t_state == TCPS_SYN_SENT) &&
8627 	      (tp->t_tfo_client_cookie_len == 0)) ||
8628 	     (flags & TH_RST))) {
8629 		sack_rxmit = 0;
8630 		len = 0;
8631 	}
8632 	/* Without fast-open there should never be data sent on a SYN */
8633 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
8634 		len = 0;
8635 	orig_len = len;
8636 	if (len <= 0) {
8637 		/*
8638 		 * If FIN has been sent but not acked, but we haven't been
8639 		 * called to retransmit, len will be < 0.  Otherwise, window
8640 		 * shrank after we sent into it.  If window shrank to 0,
8641 		 * cancel pending retransmit, pull snd_nxt back to (closed)
8642 		 * window, and set the persist timer if it isn't already
8643 		 * going.  If the window didn't close completely, just wait
8644 		 * for an ACK.
8645 		 *
8646 		 * We also do a general check here to ensure that we will
8647 		 * set the persist timer when we have data to send, but a
8648 		 * 0-byte window. This makes sure the persist timer is set
8649 		 * even if the packet hits one of the "goto send" lines
8650 		 * below.
8651 		 */
8652 		len = 0;
8653 		if ((tp->snd_wnd == 0) &&
8654 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8655 		    (tp->snd_una == tp->snd_max) &&
8656 		    (sb_offset < (int)sbavail(sb))) {
8657 			tp->snd_nxt = tp->snd_una;
8658 			rack_enter_persist(tp, rack, cts);
8659 		}
8660 	} else if ((rsm == NULL) &&
8661 		   ((doing_tlp == 0) || (new_data_tlp == 1)) &&
8662 		   (len < rack->r_ctl.rc_pace_max_segs)) {
8663 		/*
8664 		 * We are not sending a full segment for
8665 		 * some reason. Should we not send anything (think
8666 		 * sws or persists)?
8667 		 */
8668 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8669 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8670 		    (len < (int)(sbavail(sb) - sb_offset))) {
8671 			/*
8672 			 * Here the rwnd is less than
8673 			 * the pacing size, this is not a retransmit,
8674 			 * we are established and
8675 			 * the send is not the last in the socket buffer
8676 			 * we send nothing, and may enter persists.
8677 			 */
8678 			len = 0;
8679 			if (tp->snd_max == tp->snd_una) {
8680 				/*
8681 				 * Nothing out we can
8682 				 * go into persists.
8683 				 */
8684 				rack_enter_persist(tp, rack, cts);
8685 				tp->snd_nxt = tp->snd_una;
8686 			}
8687 		} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
8688 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8689 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8690 			   (len < rack->r_ctl.rc_pace_min_segs)) {
8691 			/*
8692 			 * Here we are not retransmitting, and
8693 			 * the cwnd is not so small that we could
8694 			 * not send at least a min size (rxt timer
8695 			 * not having gone off), We have 2 segments or
8696 			 * more already in flight, its not the tail end
8697 			 * of the socket buffer  and the cwnd is blocking
8698 			 * us from sending out a minimum pacing segment size.
8699 			 * Lets not send anything.
8700 			 */
8701 			len = 0;
8702 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
8703 			    min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8704 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8705 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8706 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
8707 			/*
8708 			 * Here we have a send window but we have
8709 			 * filled it up and we can't send another pacing segment.
8710 			 * We also have in flight more than 2 segments
8711 			 * and we are not completing the sb i.e. we allow
8712 			 * the last bytes of the sb to go out even if
8713 			 * its not a full pacing segment.
8714 			 */
8715 			len = 0;
8716 		}
8717 	}
8718 	/* len will be >= 0 after this point. */
8719 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
8720 	tcp_sndbuf_autoscale(tp, so, sendwin);
8721 	/*
8722 	 * Decide if we can use TCP Segmentation Offloading (if supported by
8723 	 * hardware).
8724 	 *
8725 	 * TSO may only be used if we are in a pure bulk sending state.  The
8726 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
8727 	 * options prevent using TSO.  With TSO the TCP header is the same
8728 	 * (except for the sequence number) for all generated packets.  This
8729 	 * makes it impossible to transmit any options which vary per
8730 	 * generated segment or packet.
8731 	 *
8732 	 * IPv4 handling has a clear separation of ip options and ip header
8733 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
8734 	 * the right thing below to provide length of just ip options and thus
8735 	 * checking for ipoptlen is enough to decide if ip options are present.
8736 	 */
8737 
8738 #ifdef INET6
8739 	if (isipv6)
8740 		ipoptlen = ip6_optlen(tp->t_inpcb);
8741 	else
8742 #endif
8743 		if (tp->t_inpcb->inp_options)
8744 			ipoptlen = tp->t_inpcb->inp_options->m_len -
8745 			    offsetof(struct ipoption, ipopt_list);
8746 		else
8747 			ipoptlen = 0;
8748 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8749 	/*
8750 	 * Pre-calculate here as we save another lookup into the darknesses
8751 	 * of IPsec that way and can actually decide if TSO is ok.
8752 	 */
8753 #ifdef INET6
8754 	if (isipv6 && IPSEC_ENABLED(ipv6))
8755 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
8756 #ifdef INET
8757 	else
8758 #endif
8759 #endif				/* INET6 */
8760 #ifdef INET
8761 	if (IPSEC_ENABLED(ipv4))
8762 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
8763 #endif				/* INET */
8764 #endif
8765 
8766 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8767 	ipoptlen += ipsec_optlen;
8768 #endif
8769 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
8770 	    (tp->t_port == 0) &&
8771 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
8772 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
8773 	    ipoptlen == 0)
8774 		tso = 1;
8775 	{
8776 		uint32_t outstanding;
8777 
8778 		outstanding = tp->snd_max - tp->snd_una;
8779 		if (tp->t_flags & TF_SENTFIN) {
8780 			/*
8781 			 * If we sent a fin, snd_max is 1 higher than
8782 			 * snd_una
8783 			 */
8784 			outstanding--;
8785 		}
8786 		if (sack_rxmit) {
8787 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
8788 				flags &= ~TH_FIN;
8789 		} else {
8790 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
8791 			    sbused(sb)))
8792 				flags &= ~TH_FIN;
8793 		}
8794 	}
8795 	recwin = sbspace(&so->so_rcv);
8796 
8797 	/*
8798 	 * Sender silly window avoidance.   We transmit under the following
8799 	 * conditions when len is non-zero:
8800 	 *
8801 	 * - We have a full segment (or more with TSO) - This is the last
8802 	 * buffer in a write()/send() and we are either idle or running
8803 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
8804 	 * then 1/2 the maximum send window's worth of data (receiver may be
8805 	 * limited the window size) - we need to retransmit
8806 	 */
8807 	if (len) {
8808 		if (len >= ctf_fixed_maxseg(tp)) {
8809 			pass = 1;
8810 			goto send;
8811 		}
8812 		/*
8813 		 * NOTE! on localhost connections an 'ack' from the remote
8814 		 * end may occur synchronously with the output and cause us
8815 		 * to flush a buffer queued with moretocome.  XXX
8816 		 *
8817 		 */
8818 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
8819 		    (idle || (tp->t_flags & TF_NODELAY)) &&
8820 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
8821 		    (tp->t_flags & TF_NOPUSH) == 0) {
8822 			pass = 2;
8823 			goto send;
8824 		}
8825 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
8826 			pass = 3;
8827 			goto send;
8828 		}
8829 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
8830 			goto send;
8831 		}
8832 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
8833 			pass = 4;
8834 			goto send;
8835 		}
8836 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
8837 			pass = 5;
8838 			goto send;
8839 		}
8840 		if (sack_rxmit) {
8841 			pass = 6;
8842 			goto send;
8843 		}
8844 	}
8845 	/*
8846 	 * Sending of standalone window updates.
8847 	 *
8848 	 * Window updates are important when we close our window due to a
8849 	 * full socket buffer and are opening it again after the application
8850 	 * reads data from it.  Once the window has opened again and the
8851 	 * remote end starts to send again the ACK clock takes over and
8852 	 * provides the most current window information.
8853 	 *
8854 	 * We must avoid the silly window syndrome whereas every read from
8855 	 * the receive buffer, no matter how small, causes a window update
8856 	 * to be sent.  We also should avoid sending a flurry of window
8857 	 * updates when the socket buffer had queued a lot of data and the
8858 	 * application is doing small reads.
8859 	 *
8860 	 * Prevent a flurry of pointless window updates by only sending an
8861 	 * update when we can increase the advertized window by more than
8862 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
8863 	 * full or is very small be more aggressive and send an update
8864 	 * whenever we can increase by two mss sized segments. In all other
8865 	 * situations the ACK's to new incoming data will carry further
8866 	 * window increases.
8867 	 *
8868 	 * Don't send an independent window update if a delayed ACK is
8869 	 * pending (it will get piggy-backed on it) or the remote side
8870 	 * already has done a half-close and won't send more data.  Skip
8871 	 * this if the connection is in T/TCP half-open state.
8872 	 */
8873 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
8874 	    !(tp->t_flags & TF_DELACK) &&
8875 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
8876 		/*
8877 		 * "adv" is the amount we could increase the window, taking
8878 		 * into account that we are limited by TCP_MAXWIN <<
8879 		 * tp->rcv_scale.
8880 		 */
8881 		int32_t adv;
8882 		int oldwin;
8883 
8884 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
8885 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
8886 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
8887 			adv -= oldwin;
8888 		} else
8889 			oldwin = 0;
8890 
8891 		/*
8892 		 * If the new window size ends up being the same as the old
8893 		 * size when it is scaled, then don't force a window update.
8894 		 */
8895 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
8896 			goto dontupdate;
8897 
8898 		if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
8899 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
8900 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
8901 		     so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
8902 			pass = 7;
8903 			goto send;
8904 		}
8905 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
8906 			goto send;
8907 	}
8908 dontupdate:
8909 
8910 	/*
8911 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
8912 	 * is also a catch-all for the retransmit timer timeout case.
8913 	 */
8914 	if (tp->t_flags & TF_ACKNOW) {
8915 		pass = 8;
8916 		goto send;
8917 	}
8918 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
8919 		pass = 9;
8920 		goto send;
8921 	}
8922 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
8923 		pass = 10;
8924 		goto send;
8925 	}
8926 	/*
8927 	 * If our state indicates that FIN should be sent and we have not
8928 	 * yet done so, then we need to send.
8929 	 */
8930 	if ((flags & TH_FIN) &&
8931 	    (tp->snd_nxt == tp->snd_una)) {
8932 		pass = 11;
8933 		goto send;
8934 	}
8935 	/*
8936 	 * No reason to send a segment, just return.
8937 	 */
8938 just_return:
8939 	SOCKBUF_UNLOCK(sb);
8940 just_return_nolock:
8941 	if (tot_len_this_send == 0)
8942 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
8943 	if (slot) {
8944 		/* set the rack tcb into the slot N */
8945 		counter_u64_add(rack_paced_segments, 1);
8946 	} else if (tot_len_this_send) {
8947 		counter_u64_add(rack_unpaced_segments, 1);
8948 	}
8949 	/* Check if we need to go into persists or not */
8950 	if ((rack->rc_in_persist == 0) &&
8951 	    (tp->snd_max == tp->snd_una) &&
8952 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
8953 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8954 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
8955 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
8956 		/* Yes lets make sure to move to persist before timer-start */
8957 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8958 	}
8959 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
8960 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
8961 	tp->t_flags &= ~TF_FORCEDATA;
8962 	return (0);
8963 
8964 send:
8965 	if ((flags & TH_FIN) &&
8966 	    sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8967 		/*
8968 		 * We do not transmit a FIN
8969 		 * with data outstanding. We
8970 		 * need to make it so all data
8971 		 * is acked first.
8972 		 */
8973 		flags &= ~TH_FIN;
8974 	}
8975 	if (doing_tlp == 0) {
8976 		/*
8977 		 * Data not a TLP, and its not the rxt firing. If it is the
8978 		 * rxt firing, we want to leave the tlp_in_progress flag on
8979 		 * so we don't send another TLP. It has to be a rack timer
8980 		 * or normal send (response to acked data) to clear the tlp
8981 		 * in progress flag.
8982 		 */
8983 		rack->rc_tlp_in_progress = 0;
8984 	}
8985 	SOCKBUF_LOCK_ASSERT(sb);
8986 	if (len > 0) {
8987 		if (len >= ctf_fixed_maxseg(tp))
8988 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
8989 		else
8990 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
8991 	}
8992 	/*
8993 	 * Before ESTABLISHED, force sending of initial options unless TCP
8994 	 * set not to do any options. NOTE: we assume that the IP/TCP header
8995 	 * plus TCP options always fit in a single mbuf, leaving room for a
8996 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
8997 	 * + optlen <= MCLBYTES
8998 	 */
8999 	optlen = 0;
9000 #ifdef INET6
9001 	if (isipv6)
9002 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
9003 	else
9004 #endif
9005 		hdrlen = sizeof(struct tcpiphdr);
9006 
9007 	/*
9008 	 * Compute options for segment. We only have to care about SYN and
9009 	 * established connection segments.  Options for SYN-ACK segments
9010 	 * are handled in TCP syncache.
9011 	 */
9012 	to.to_flags = 0;
9013 	if ((tp->t_flags & TF_NOOPT) == 0) {
9014 		/* Maximum segment size. */
9015 		if (flags & TH_SYN) {
9016 			tp->snd_nxt = tp->iss;
9017 			to.to_mss = tcp_mssopt(&inp->inp_inc);
9018 #ifdef NETFLIX_TCPOUDP
9019 			if (tp->t_port)
9020 				to.to_mss -= V_tcp_udp_tunneling_overhead;
9021 #endif
9022 			to.to_flags |= TOF_MSS;
9023 
9024 			/*
9025 			 * On SYN or SYN|ACK transmits on TFO connections,
9026 			 * only include the TFO option if it is not a
9027 			 * retransmit, as the presence of the TFO option may
9028 			 * have caused the original SYN or SYN|ACK to have
9029 			 * been dropped by a middlebox.
9030 			 */
9031 			if (IS_FASTOPEN(tp->t_flags) &&
9032 			    (tp->t_rxtshift == 0)) {
9033 				if (tp->t_state == TCPS_SYN_RECEIVED) {
9034 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
9035 					to.to_tfo_cookie =
9036 					    (u_int8_t *)&tp->t_tfo_cookie.server;
9037 					to.to_flags |= TOF_FASTOPEN;
9038 					wanted_cookie = 1;
9039 				} else if (tp->t_state == TCPS_SYN_SENT) {
9040 					to.to_tfo_len =
9041 					    tp->t_tfo_client_cookie_len;
9042 					to.to_tfo_cookie =
9043 					    tp->t_tfo_cookie.client;
9044 					to.to_flags |= TOF_FASTOPEN;
9045 					wanted_cookie = 1;
9046 					/*
9047 					 * If we wind up having more data to
9048 					 * send with the SYN than can fit in
9049 					 * one segment, don't send any more
9050 					 * until the SYN|ACK comes back from
9051 					 * the other end.
9052 					 */
9053 					sendalot = 0;
9054 				}
9055 			}
9056 		}
9057 		/* Window scaling. */
9058 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
9059 			to.to_wscale = tp->request_r_scale;
9060 			to.to_flags |= TOF_SCALE;
9061 		}
9062 		/* Timestamps. */
9063 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
9064 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
9065 			to.to_tsval = cts + tp->ts_offset;
9066 			to.to_tsecr = tp->ts_recent;
9067 			to.to_flags |= TOF_TS;
9068 		}
9069 		/* Set receive buffer autosizing timestamp. */
9070 		if (tp->rfbuf_ts == 0 &&
9071 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
9072 			tp->rfbuf_ts = tcp_ts_getticks();
9073 		/* Selective ACK's. */
9074 		if (flags & TH_SYN)
9075 			to.to_flags |= TOF_SACKPERM;
9076 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9077 		    tp->rcv_numsacks > 0) {
9078 			to.to_flags |= TOF_SACK;
9079 			to.to_nsacks = tp->rcv_numsacks;
9080 			to.to_sacks = (u_char *)tp->sackblks;
9081 		}
9082 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9083 		/* TCP-MD5 (RFC2385). */
9084 		if (tp->t_flags & TF_SIGNATURE)
9085 			to.to_flags |= TOF_SIGNATURE;
9086 #endif				/* TCP_SIGNATURE */
9087 
9088 		/* Processing the options. */
9089 		hdrlen += optlen = tcp_addoptions(&to, opt);
9090 		/*
9091 		 * If we wanted a TFO option to be added, but it was unable
9092 		 * to fit, ensure no data is sent.
9093 		 */
9094 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
9095 		    !(to.to_flags & TOF_FASTOPEN))
9096 			len = 0;
9097 	}
9098 #ifdef NETFLIX_TCPOUDP
9099 	if (tp->t_port) {
9100 		if (V_tcp_udp_tunneling_port == 0) {
9101 			/* The port was removed?? */
9102 			SOCKBUF_UNLOCK(&so->so_snd);
9103 			return (EHOSTUNREACH);
9104 		}
9105 		hdrlen += sizeof(struct udphdr);
9106 	}
9107 #endif
9108 #ifdef INET6
9109 	if (isipv6)
9110 		ipoptlen = ip6_optlen(tp->t_inpcb);
9111 	else
9112 #endif
9113 	if (tp->t_inpcb->inp_options)
9114 		ipoptlen = tp->t_inpcb->inp_options->m_len -
9115 		    offsetof(struct ipoption, ipopt_list);
9116 	else
9117 		ipoptlen = 0;
9118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
9119 	ipoptlen += ipsec_optlen;
9120 #endif
9121 
9122 #ifdef KERN_TLS
9123  	/* force TSO for so TLS offload can get mss */
9124  	if (sb->sb_flags & SB_TLS_IFNET) {
9125  		force_tso = 1;
9126  	}
9127 #endif
9128 	/*
9129 	 * Adjust data length if insertion of options will bump the packet
9130 	 * length beyond the t_maxseg length. Clear the FIN bit because we
9131 	 * cut off the tail of the segment.
9132 	 */
9133 	if (len + optlen + ipoptlen > tp->t_maxseg) {
9134 		if (tso) {
9135 			uint32_t if_hw_tsomax;
9136 			uint32_t moff;
9137 			int32_t max_len;
9138 
9139 			/* extract TSO information */
9140 			if_hw_tsomax = tp->t_tsomax;
9141 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
9142 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
9143 			KASSERT(ipoptlen == 0,
9144 			    ("%s: TSO can't do IP options", __func__));
9145 
9146 			/*
9147 			 * Check if we should limit by maximum payload
9148 			 * length:
9149 			 */
9150 			if (if_hw_tsomax != 0) {
9151 				/* compute maximum TSO length */
9152 				max_len = (if_hw_tsomax - hdrlen -
9153 				    max_linkhdr);
9154 				if (max_len <= 0) {
9155 					len = 0;
9156 				} else if (len > max_len) {
9157 					sendalot = 1;
9158 					len = max_len;
9159 				}
9160 			}
9161 			/*
9162 			 * Prevent the last segment from being fractional
9163 			 * unless the send sockbuf can be emptied:
9164 			 */
9165 			max_len = (tp->t_maxseg - optlen);
9166 			if (((sb_offset + len) < sbavail(sb)) &&
9167 			    (hw_tls == 0)) {
9168 				moff = len % (u_int)max_len;
9169 				if (moff != 0) {
9170 					len -= moff;
9171 					sendalot = 1;
9172 				}
9173 			}
9174                         /*
9175 			 * In case there are too many small fragments don't
9176 			 * use TSO:
9177 			 */
9178 			if (len <= maxseg) {
9179 				len = max_len;
9180 				sendalot = 1;
9181 				tso = 0;
9182 			}
9183 			/*
9184 			 * Send the FIN in a separate segment after the bulk
9185 			 * sending is done. We don't trust the TSO
9186 			 * implementations to clear the FIN flag on all but
9187 			 * the last segment.
9188 			 */
9189 			if (tp->t_flags & TF_NEEDFIN)
9190 				sendalot = 1;
9191 
9192 		} else {
9193 			if (optlen + ipoptlen >= tp->t_maxseg) {
9194 				/*
9195 				 * Since we don't have enough space to put
9196 				 * the IP header chain and the TCP header in
9197 				 * one packet as required by RFC 7112, don't
9198 				 * send it. Also ensure that at least one
9199 				 * byte of the payload can be put into the
9200 				 * TCP segment.
9201 				 */
9202 				SOCKBUF_UNLOCK(&so->so_snd);
9203 				error = EMSGSIZE;
9204 				sack_rxmit = 0;
9205 				goto out;
9206 			}
9207 			len = tp->t_maxseg - optlen - ipoptlen;
9208 			sendalot = 1;
9209 		}
9210 	} else
9211 		tso = 0;
9212 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
9213 	    ("%s: len > IP_MAXPACKET", __func__));
9214 #ifdef DIAGNOSTIC
9215 #ifdef INET6
9216 	if (max_linkhdr + hdrlen > MCLBYTES)
9217 #else
9218 	if (max_linkhdr + hdrlen > MHLEN)
9219 #endif
9220 		panic("tcphdr too big");
9221 #endif
9222 
9223 	/*
9224 	 * This KASSERT is here to catch edge cases at a well defined place.
9225 	 * Before, those had triggered (random) panic conditions further
9226 	 * down.
9227 	 */
9228 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
9229 	if ((len == 0) &&
9230 	    (flags & TH_FIN) &&
9231 	    (sbused(sb))) {
9232 		/*
9233 		 * We have outstanding data, don't send a fin by itself!.
9234 		 */
9235 		goto just_return;
9236 	}
9237 	/*
9238 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
9239 	 * and initialize the header from the template for sends on this
9240 	 * connection.
9241 	 */
9242 	if (len) {
9243 		uint32_t max_val;
9244 		uint32_t moff;
9245 
9246 		if (rack->rc_pace_max_segs)
9247 			max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
9248 		else
9249 			max_val = len;
9250 		if (rack->r_ctl.rc_pace_max_segs < max_val)
9251 			max_val = rack->r_ctl.rc_pace_max_segs;
9252 		/*
9253 		 * We allow a limit on sending with hptsi.
9254 		 */
9255 		if (len > max_val) {
9256 			len = max_val;
9257 		}
9258 #ifdef INET6
9259 		if (MHLEN < hdrlen + max_linkhdr)
9260 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
9261 		else
9262 #endif
9263 			m = m_gethdr(M_NOWAIT, MT_DATA);
9264 
9265 		if (m == NULL) {
9266 			SOCKBUF_UNLOCK(sb);
9267 			error = ENOBUFS;
9268 			sack_rxmit = 0;
9269 			goto out;
9270 		}
9271 		m->m_data += max_linkhdr;
9272 		m->m_len = hdrlen;
9273 
9274 		/*
9275 		 * Start the m_copy functions from the closest mbuf to the
9276 		 * sb_offset in the socket buffer chain.
9277 		 */
9278 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
9279 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
9280 			m_copydata(mb, moff, (int)len,
9281 			    mtod(m, caddr_t)+hdrlen);
9282 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9283 				sbsndptr_adv(sb, mb, len);
9284 			m->m_len += len;
9285 		} else {
9286 			struct sockbuf *msb;
9287 
9288 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9289 				msb = NULL;
9290 			else
9291 				msb = sb;
9292 			m->m_next = tcp_m_copym(
9293 #ifdef NETFLIX_COPY_ARGS
9294 				tp,
9295 #endif
9296 				mb, moff, &len,
9297 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
9298 			    ((rsm == NULL) ? hw_tls : 0)
9299 #ifdef NETFLIX_COPY_ARGS
9300 				, &filled_all
9301 #endif
9302 				);
9303 			if (len <= (tp->t_maxseg - optlen)) {
9304 				/*
9305 				 * Must have ran out of mbufs for the copy
9306 				 * shorten it to no longer need tso. Lets
9307 				 * not put on sendalot since we are low on
9308 				 * mbufs.
9309 				 */
9310 				tso = 0;
9311 			}
9312 			if (m->m_next == NULL) {
9313 				SOCKBUF_UNLOCK(sb);
9314 				(void)m_free(m);
9315 				error = ENOBUFS;
9316 				sack_rxmit = 0;
9317 				goto out;
9318 			}
9319 		}
9320 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
9321 			TCPSTAT_INC(tcps_sndprobe);
9322 #ifdef STATS
9323 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9324 				stats_voi_update_abs_u32(tp->t_stats,
9325 				    VOI_TCP_RETXPB, len);
9326 			else
9327 				stats_voi_update_abs_u64(tp->t_stats,
9328 				    VOI_TCP_TXPB, len);
9329 #endif
9330 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
9331 			if (rsm && (rsm->r_flags & RACK_TLP)) {
9332 				/*
9333 				 * TLP should not count in retran count, but
9334 				 * in its own bin
9335 				 */
9336 				counter_u64_add(rack_tlp_retran, 1);
9337 				counter_u64_add(rack_tlp_retran_bytes, len);
9338 			} else {
9339 				tp->t_sndrexmitpack++;
9340 				TCPSTAT_INC(tcps_sndrexmitpack);
9341 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
9342 			}
9343 #ifdef STATS
9344 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
9345 			    len);
9346 #endif
9347 		} else {
9348 			TCPSTAT_INC(tcps_sndpack);
9349 			TCPSTAT_ADD(tcps_sndbyte, len);
9350 #ifdef STATS
9351 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
9352 			    len);
9353 #endif
9354 		}
9355 		/*
9356 		 * If we're sending everything we've got, set PUSH. (This
9357 		 * will keep happy those implementations which only give
9358 		 * data to the user when a buffer fills or a PUSH comes in.)
9359 		 */
9360 		if (sb_offset + len == sbused(sb) &&
9361 		    sbused(sb) &&
9362 		    !(flags & TH_SYN))
9363 			flags |= TH_PUSH;
9364 
9365 		/*
9366 		 * Are we doing pacing, if so we must calculate the slot. We
9367 		 * only do hptsi in ESTABLISHED and with no RESET being
9368 		 * sent where we have data to send.
9369 		 */
9370 		if (((tp->t_state == TCPS_ESTABLISHED) ||
9371 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
9372 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
9373 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
9374 		    ((flags & TH_FIN) == 0))) &&
9375 		    ((flags & TH_RST) == 0)) {
9376 			/* Get our pacing rate */
9377 			tot_len_this_send += len;
9378 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
9379 		}
9380 		SOCKBUF_UNLOCK(sb);
9381 	} else {
9382 		SOCKBUF_UNLOCK(sb);
9383 		if (tp->t_flags & TF_ACKNOW)
9384 			TCPSTAT_INC(tcps_sndacks);
9385 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
9386 			TCPSTAT_INC(tcps_sndctrl);
9387 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
9388 			TCPSTAT_INC(tcps_sndurg);
9389 		else
9390 			TCPSTAT_INC(tcps_sndwinup);
9391 
9392 		m = m_gethdr(M_NOWAIT, MT_DATA);
9393 		if (m == NULL) {
9394 			error = ENOBUFS;
9395 			sack_rxmit = 0;
9396 			goto out;
9397 		}
9398 #ifdef INET6
9399 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
9400 		    MHLEN >= hdrlen) {
9401 			M_ALIGN(m, hdrlen);
9402 		} else
9403 #endif
9404 			m->m_data += max_linkhdr;
9405 		m->m_len = hdrlen;
9406 	}
9407 	SOCKBUF_UNLOCK_ASSERT(sb);
9408 	m->m_pkthdr.rcvif = (struct ifnet *)0;
9409 #ifdef MAC
9410 	mac_inpcb_create_mbuf(inp, m);
9411 #endif
9412 #ifdef INET6
9413 	if (isipv6) {
9414 		ip6 = mtod(m, struct ip6_hdr *);
9415 #ifdef NETFLIX_TCPOUDP
9416 		if (tp->t_port) {
9417 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
9418 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9419 			udp->uh_dport = tp->t_port;
9420 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
9421 			udp->uh_ulen = htons(ulen);
9422 			th = (struct tcphdr *)(udp + 1);
9423 		} else
9424 #endif
9425 			th = (struct tcphdr *)(ip6 + 1);
9426 		tcpip_fillheaders(inp,
9427 #ifdef NETFLIX_TCPOUDP
9428 				  tp->t_port,
9429 #endif
9430 				  ip6, th);
9431 	} else
9432 #endif				/* INET6 */
9433 	{
9434 		ip = mtod(m, struct ip *);
9435 #ifdef TCPDEBUG
9436 		ipov = (struct ipovly *)ip;
9437 #endif
9438 #ifdef NETFLIX_TCPOUDP
9439 		if (tp->t_port) {
9440 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
9441 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9442 			udp->uh_dport = tp->t_port;
9443 			ulen = hdrlen + len - sizeof(struct ip);
9444 			udp->uh_ulen = htons(ulen);
9445 			th = (struct tcphdr *)(udp + 1);
9446 		} else
9447 #endif
9448 			th = (struct tcphdr *)(ip + 1);
9449 		tcpip_fillheaders(inp,
9450 #ifdef NETFLIX_TCPOUDP
9451 				  tp->t_port,
9452 #endif
9453 				  ip, th);
9454 	}
9455 	/*
9456 	 * Fill in fields, remembering maximum advertised window for use in
9457 	 * delaying messages about window sizes. If resending a FIN, be sure
9458 	 * not to use a new sequence number.
9459 	 */
9460 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
9461 	    tp->snd_nxt == tp->snd_max)
9462 		tp->snd_nxt--;
9463 	/*
9464 	 * If we are starting a connection, send ECN setup SYN packet. If we
9465 	 * are on a retransmit, we may resend those bits a number of times
9466 	 * as per RFC 3168.
9467 	 */
9468 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
9469 		if (tp->t_rxtshift >= 1) {
9470 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
9471 				flags |= TH_ECE | TH_CWR;
9472 		} else
9473 			flags |= TH_ECE | TH_CWR;
9474 	}
9475 	if (tp->t_state == TCPS_ESTABLISHED &&
9476 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
9477 		/*
9478 		 * If the peer has ECN, mark data packets with ECN capable
9479 		 * transmission (ECT). Ignore pure ack packets,
9480 		 * retransmissions and window probes.
9481 		 */
9482 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
9483 		    (sack_rxmit == 0) &&
9484 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
9485 #ifdef INET6
9486 			if (isipv6)
9487 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
9488 			else
9489 #endif
9490 				ip->ip_tos |= IPTOS_ECN_ECT0;
9491 			TCPSTAT_INC(tcps_ecn_ect0);
9492 		}
9493 		/*
9494 		 * Reply with proper ECN notifications.
9495 		 */
9496 		if (tp->t_flags2 & TF2_ECN_SND_CWR) {
9497 			flags |= TH_CWR;
9498 			tp->t_flags2 &= ~TF2_ECN_SND_CWR;
9499 		}
9500 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
9501 			flags |= TH_ECE;
9502 	}
9503 	/*
9504 	 * If we are doing retransmissions, then snd_nxt will not reflect
9505 	 * the first unsent octet.  For ACK only packets, we do not want the
9506 	 * sequence number of the retransmitted packet, we want the sequence
9507 	 * number of the next unsent octet.  So, if there is no data (and no
9508 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
9509 	 * ti_seq.  But if we are in persist state, snd_max might reflect
9510 	 * one byte beyond the right edge of the window, so use snd_nxt in
9511 	 * that case, since we know we aren't doing a retransmission.
9512 	 * (retransmit and persist are mutually exclusive...)
9513 	 */
9514 	if (sack_rxmit == 0) {
9515 		if (len || (flags & (TH_SYN | TH_FIN)) ||
9516 		    rack->rc_in_persist) {
9517 			th->th_seq = htonl(tp->snd_nxt);
9518 			rack_seq = tp->snd_nxt;
9519 		} else if (flags & TH_RST) {
9520 			/*
9521 			 * For a Reset send the last cum ack in sequence
9522 			 * (this like any other choice may still generate a
9523 			 * challenge ack, if a ack-update packet is in
9524 			 * flight).
9525 			 */
9526 			th->th_seq = htonl(tp->snd_una);
9527 			rack_seq = tp->snd_una;
9528 		} else {
9529 			th->th_seq = htonl(tp->snd_max);
9530 			rack_seq = tp->snd_max;
9531 		}
9532 	} else {
9533 		th->th_seq = htonl(rsm->r_start);
9534 		rack_seq = rsm->r_start;
9535 	}
9536 	th->th_ack = htonl(tp->rcv_nxt);
9537 	if (optlen) {
9538 		bcopy(opt, th + 1, optlen);
9539 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
9540 	}
9541 	th->th_flags = flags;
9542 	/*
9543 	 * Calculate receive window.  Don't shrink window, but avoid silly
9544 	 * window syndrome.
9545 	 * If a RST segment is sent, advertise a window of zero.
9546 	 */
9547 	if (flags & TH_RST) {
9548 		recwin = 0;
9549 	} else {
9550 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
9551 		    recwin < (long)ctf_fixed_maxseg(tp))
9552 			recwin = 0;
9553 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
9554 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
9555 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
9556 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
9557 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
9558 	}
9559 
9560 	/*
9561 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
9562 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
9563 	 * handled in syncache.
9564 	 */
9565 	if (flags & TH_SYN)
9566 		th->th_win = htons((u_short)
9567 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
9568 	else
9569 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
9570 	/*
9571 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
9572 	 * window.  This may cause the remote transmitter to stall.  This
9573 	 * flag tells soreceive() to disable delayed acknowledgements when
9574 	 * draining the buffer.  This can occur if the receiver is
9575 	 * attempting to read more data than can be buffered prior to
9576 	 * transmitting on the connection.
9577 	 */
9578 	if (th->th_win == 0) {
9579 		tp->t_sndzerowin++;
9580 		tp->t_flags |= TF_RXWIN0SENT;
9581 	} else
9582 		tp->t_flags &= ~TF_RXWIN0SENT;
9583 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
9584 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
9585 		th->th_flags |= TH_URG;
9586 	} else
9587 		/*
9588 		 * If no urgent pointer to send, then we pull the urgent
9589 		 * pointer to the left edge of the send window so that it
9590 		 * doesn't drift into the send window on sequence number
9591 		 * wraparound.
9592 		 */
9593 		tp->snd_up = tp->snd_una;	/* drag it along */
9594 
9595 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9596 	if (to.to_flags & TOF_SIGNATURE) {
9597 		/*
9598 		 * Calculate MD5 signature and put it into the place
9599 		 * determined before.
9600 		 * NOTE: since TCP options buffer doesn't point into
9601 		 * mbuf's data, calculate offset and use it.
9602 		 */
9603 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
9604 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
9605 			/*
9606 			 * Do not send segment if the calculation of MD5
9607 			 * digest has failed.
9608 			 */
9609 			goto out;
9610 		}
9611 	}
9612 #endif
9613 
9614 	/*
9615 	 * Put TCP length in extended header, and then checksum extended
9616 	 * header and data.
9617 	 */
9618 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
9619 #ifdef INET6
9620 	if (isipv6) {
9621 		/*
9622 		 * ip6_plen is not need to be filled now, and will be filled
9623 		 * in ip6_output.
9624 		 */
9625 		if (tp->t_port) {
9626 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
9627 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9628 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
9629 			th->th_sum = htons(0);
9630 			UDPSTAT_INC(udps_opackets);
9631 		} else {
9632 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
9633 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9634 			th->th_sum = in6_cksum_pseudo(ip6,
9635 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
9636 			    0);
9637 		}
9638 	}
9639 #endif
9640 #if defined(INET6) && defined(INET)
9641 	else
9642 #endif
9643 #ifdef INET
9644 	{
9645 		if (tp->t_port) {
9646 			m->m_pkthdr.csum_flags = CSUM_UDP;
9647 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9648 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
9649 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
9650 			th->th_sum = htons(0);
9651 			UDPSTAT_INC(udps_opackets);
9652 		} else {
9653 			m->m_pkthdr.csum_flags = CSUM_TCP;
9654 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9655 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
9656 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
9657 			    IPPROTO_TCP + len + optlen));
9658 		}
9659 		/* IP version must be set here for ipv4/ipv6 checking later */
9660 		KASSERT(ip->ip_v == IPVERSION,
9661 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
9662 	}
9663 #endif
9664 	/*
9665 	 * Enable TSO and specify the size of the segments. The TCP pseudo
9666 	 * header checksum is always provided. XXX: Fixme: This is currently
9667 	 * not the case for IPv6.
9668 	 */
9669 	if (tso || force_tso) {
9670 		KASSERT(force_tso || len > tp->t_maxseg - optlen,
9671 		    ("%s: len <= tso_segsz", __func__));
9672 		m->m_pkthdr.csum_flags |= CSUM_TSO;
9673 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
9674 	}
9675 	KASSERT(len + hdrlen == m_length(m, NULL),
9676 	    ("%s: mbuf chain different than expected: %d + %u != %u",
9677 	    __func__, len, hdrlen, m_length(m, NULL)));
9678 
9679 #ifdef TCP_HHOOK
9680 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
9681 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
9682 #endif
9683 #ifdef TCPDEBUG
9684 	/*
9685 	 * Trace.
9686 	 */
9687 	if (so->so_options & SO_DEBUG) {
9688 		u_short save = 0;
9689 
9690 #ifdef INET6
9691 		if (!isipv6)
9692 #endif
9693 		{
9694 			save = ipov->ih_len;
9695 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
9696 			      * (th->th_off << 2) */ );
9697 		}
9698 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
9699 #ifdef INET6
9700 		if (!isipv6)
9701 #endif
9702 			ipov->ih_len = save;
9703 	}
9704 #endif				/* TCPDEBUG */
9705 
9706 	/* We're getting ready to send; log now. */
9707 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
9708 		union tcp_log_stackspecific log;
9709 		struct timeval tv;
9710 
9711 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
9712 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
9713 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
9714 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
9715 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
9716 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
9717 		log.u_bbr.flex4 = orig_len;
9718 		if (filled_all)
9719 			log.u_bbr.flex5 = 0x80000000;
9720 		else
9721 			log.u_bbr.flex5 = 0;
9722 		if (rsm || sack_rxmit) {
9723 			log.u_bbr.flex8 = 1;
9724 		} else {
9725 			log.u_bbr.flex8 = 0;
9726 		}
9727 		log.u_bbr.pkts_out = tp->t_maxseg;
9728 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
9729 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9730 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
9731 		    len, &log, false, NULL, NULL, 0, &tv);
9732 	} else
9733 		lgb = NULL;
9734 
9735 	/*
9736 	 * Fill in IP length and desired time to live and send to IP level.
9737 	 * There should be a better way to handle ttl and tos; we could keep
9738 	 * them in the template, but need a way to checksum without them.
9739 	 */
9740 	/*
9741 	 * m->m_pkthdr.len should have been set before cksum calcuration,
9742 	 * because in6_cksum() need it.
9743 	 */
9744 #ifdef INET6
9745 	if (isipv6) {
9746 		/*
9747 		 * we separately set hoplimit for every segment, since the
9748 		 * user might want to change the value via setsockopt. Also,
9749 		 * desired default hop limit might be changed via Neighbor
9750 		 * Discovery.
9751 		 */
9752 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
9753 
9754 		/*
9755 		 * Set the packet size here for the benefit of DTrace
9756 		 * probes. ip6_output() will set it properly; it's supposed
9757 		 * to include the option header lengths as well.
9758 		 */
9759 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
9760 
9761 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
9762 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9763 		else
9764 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9765 
9766 		if (tp->t_state == TCPS_SYN_SENT)
9767 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
9768 
9769 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
9770 		/* TODO: IPv6 IP6TOS_ECT bit on */
9771 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
9772 		    &inp->inp_route6,
9773 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
9774 		    NULL, NULL, inp);
9775 
9776 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
9777 			mtu = inp->inp_route6.ro_rt->rt_mtu;
9778 	}
9779 #endif				/* INET6 */
9780 #if defined(INET) && defined(INET6)
9781 	else
9782 #endif
9783 #ifdef INET
9784 	{
9785 		ip->ip_len = htons(m->m_pkthdr.len);
9786 #ifdef INET6
9787 		if (inp->inp_vflag & INP_IPV6PROTO)
9788 			ip->ip_ttl = in6_selecthlim(inp, NULL);
9789 #endif				/* INET6 */
9790 		/*
9791 		 * If we do path MTU discovery, then we set DF on every
9792 		 * packet. This might not be the best thing to do according
9793 		 * to RFC3390 Section 2. However the tcp hostcache migitates
9794 		 * the problem so it affects only the first tcp connection
9795 		 * with a host.
9796 		 *
9797 		 * NB: Don't set DF on small MTU/MSS to have a safe
9798 		 * fallback.
9799 		 */
9800 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
9801 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9802 			if (tp->t_port == 0 || len < V_tcp_minmss) {
9803 				ip->ip_off |= htons(IP_DF);
9804 			}
9805 		} else {
9806 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9807 		}
9808 
9809 		if (tp->t_state == TCPS_SYN_SENT)
9810 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
9811 
9812 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
9813 
9814 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
9815 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
9816 		    inp);
9817 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
9818 			mtu = inp->inp_route.ro_rt->rt_mtu;
9819 	}
9820 #endif				/* INET */
9821 
9822 out:
9823 	if (lgb) {
9824 		lgb->tlb_errno = error;
9825 		lgb = NULL;
9826 	}
9827 	/*
9828 	 * In transmit state, time the transmission and arrange for the
9829 	 * retransmit.  In persist state, just set snd_max.
9830 	 */
9831 	if (error == 0) {
9832 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9833 		    (tp->t_flags & TF_SACK_PERMIT) &&
9834 		    tp->rcv_numsacks > 0)
9835 			tcp_clean_dsack_blocks(tp);
9836 		if (len == 0)
9837 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
9838 		else if (len == 1) {
9839 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
9840 		} else if (len > 1) {
9841 			int idx;
9842 
9843 			idx = (len / ctf_fixed_maxseg(tp)) + 3;
9844 			if (idx >= TCP_MSS_ACCT_ATIMER)
9845 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
9846 			else
9847 				counter_u64_add(rack_out_size[idx], 1);
9848 		}
9849 		if (hw_tls && len > 0) {
9850 			if (filled_all) {
9851 				counter_u64_add(rack_tls_filled, 1);
9852 				rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
9853 			} else {
9854 				if (rsm) {
9855 					counter_u64_add(rack_tls_rxt, 1);
9856 					rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
9857 				} else if (doing_tlp) {
9858 					counter_u64_add(rack_tls_tlp, 1);
9859 					rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
9860 				} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
9861 					counter_u64_add(rack_tls_app, 1);
9862 					rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
9863 				} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
9864 					counter_u64_add(rack_tls_cwnd, 1);
9865 					rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
9866 				} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
9867 					counter_u64_add(rack_tls_rwnd, 1);
9868 					rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
9869 				} else {
9870 					rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
9871 					counter_u64_add(rack_tls_other, 1);
9872 				}
9873 			}
9874 		}
9875 	}
9876 	if (sub_from_prr && (error == 0)) {
9877 		if (rack->r_ctl.rc_prr_sndcnt >= len)
9878 			rack->r_ctl.rc_prr_sndcnt -= len;
9879 		else
9880 			rack->r_ctl.rc_prr_sndcnt = 0;
9881 	}
9882 	sub_from_prr = 0;
9883 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
9884 	    pass, rsm);
9885 	if ((error == 0) &&
9886 	    (len > 0) &&
9887 	    (tp->snd_una == tp->snd_max))
9888 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
9889 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
9890 	    (rack->rc_in_persist == 0)) {
9891 		tcp_seq startseq = tp->snd_nxt;
9892 
9893 		/*
9894 		 * Advance snd_nxt over sequence space of this segment.
9895 		 */
9896 		if (error)
9897 			/* We don't log or do anything with errors */
9898 			goto nomore;
9899 
9900 		if (flags & (TH_SYN | TH_FIN)) {
9901 			if (flags & TH_SYN)
9902 				tp->snd_nxt++;
9903 			if (flags & TH_FIN) {
9904 				tp->snd_nxt++;
9905 				tp->t_flags |= TF_SENTFIN;
9906 			}
9907 		}
9908 		/* In the ENOBUFS case we do *not* update snd_max */
9909 		if (sack_rxmit)
9910 			goto nomore;
9911 
9912 		tp->snd_nxt += len;
9913 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
9914 			if (tp->snd_una == tp->snd_max) {
9915 				/*
9916 				 * Update the time we just added data since
9917 				 * none was outstanding.
9918 				 */
9919 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9920 				tp->t_acktime = ticks;
9921 			}
9922 			tp->snd_max = tp->snd_nxt;
9923 			/*
9924 			 * Time this transmission if not a retransmission and
9925 			 * not currently timing anything.
9926 			 * This is only relevant in case of switching back to
9927 			 * the base stack.
9928 			 */
9929 			if (tp->t_rtttime == 0) {
9930 				tp->t_rtttime = ticks;
9931 				tp->t_rtseq = startseq;
9932 				TCPSTAT_INC(tcps_segstimed);
9933 			}
9934 #ifdef STATS
9935 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
9936 				tp->t_flags |= TF_GPUTINPROG;
9937 				tp->gput_seq = startseq;
9938 				tp->gput_ack = startseq +
9939 				    ulmin(sbavail(sb) - sb_offset, sendwin);
9940 				tp->gput_ts = tcp_ts_getticks();
9941 			}
9942 #endif
9943 		}
9944 	} else {
9945 		/*
9946 		 * Persist case, update snd_max but since we are in persist
9947 		 * mode (no window) we do not update snd_nxt.
9948 		 */
9949 		int32_t xlen = len;
9950 
9951 		if (error)
9952 			goto nomore;
9953 
9954 		if (flags & TH_SYN)
9955 			++xlen;
9956 		if (flags & TH_FIN) {
9957 			++xlen;
9958 			tp->t_flags |= TF_SENTFIN;
9959 		}
9960 		/* In the ENOBUFS case we do *not* update snd_max */
9961 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
9962 			if (tp->snd_una == tp->snd_max) {
9963 				/*
9964 				 * Update the time we just added data since
9965 				 * none was outstanding.
9966 				 */
9967 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9968 				tp->t_acktime = ticks;
9969 			}
9970 			tp->snd_max = tp->snd_nxt + len;
9971 		}
9972 	}
9973 nomore:
9974 	if (error) {
9975 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
9976 		/*
9977 		 * Failures do not advance the seq counter above. For the
9978 		 * case of ENOBUFS we will fall out and retry in 1ms with
9979 		 * the hpts. Everything else will just have to retransmit
9980 		 * with the timer.
9981 		 *
9982 		 * In any case, we do not want to loop around for another
9983 		 * send without a good reason.
9984 		 */
9985 		sendalot = 0;
9986 		switch (error) {
9987 		case EPERM:
9988 			tp->t_flags &= ~TF_FORCEDATA;
9989 			tp->t_softerror = error;
9990 			return (error);
9991 		case ENOBUFS:
9992 			if (slot == 0) {
9993 				/*
9994 				 * Pace us right away to retry in a some
9995 				 * time
9996 				 */
9997 				slot = 1 + rack->rc_enobuf;
9998 				if (rack->rc_enobuf < 255)
9999 					rack->rc_enobuf++;
10000 				if (slot > (rack->rc_rack_rtt / 2)) {
10001 					slot = rack->rc_rack_rtt / 2;
10002 				}
10003 				if (slot < 10)
10004 					slot = 10;
10005 			}
10006 			counter_u64_add(rack_saw_enobuf, 1);
10007 			error = 0;
10008 			goto enobufs;
10009 		case EMSGSIZE:
10010 			/*
10011 			 * For some reason the interface we used initially
10012 			 * to send segments changed to another or lowered
10013 			 * its MTU. If TSO was active we either got an
10014 			 * interface without TSO capabilits or TSO was
10015 			 * turned off. If we obtained mtu from ip_output()
10016 			 * then update it and try again.
10017 			 */
10018 			if (tso)
10019 				tp->t_flags &= ~TF_TSO;
10020 			if (mtu != 0) {
10021 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
10022 				goto again;
10023 			}
10024 			slot = 10;
10025 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10026 			tp->t_flags &= ~TF_FORCEDATA;
10027 			return (error);
10028 		case ENETUNREACH:
10029 			counter_u64_add(rack_saw_enetunreach, 1);
10030 		case EHOSTDOWN:
10031 		case EHOSTUNREACH:
10032 		case ENETDOWN:
10033 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
10034 				tp->t_softerror = error;
10035 			}
10036 			/* FALLTHROUGH */
10037 		default:
10038 			slot = 10;
10039 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10040 			tp->t_flags &= ~TF_FORCEDATA;
10041 			return (error);
10042 		}
10043 	} else {
10044 		rack->rc_enobuf = 0;
10045 	}
10046 	TCPSTAT_INC(tcps_sndtotal);
10047 
10048 	/*
10049 	 * Data sent (as far as we can tell). If this advertises a larger
10050 	 * window than any other segment, then remember the size of the
10051 	 * advertised window. Any pending ACK has now been sent.
10052 	 */
10053 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
10054 		tp->rcv_adv = tp->rcv_nxt + recwin;
10055 	tp->last_ack_sent = tp->rcv_nxt;
10056 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
10057 enobufs:
10058 	rack->r_tlp_running = 0;
10059 	if (flags & TH_RST) {
10060 		/*
10061 		 * We don't send again after sending a RST.
10062 		 */
10063 		slot = 0;
10064 		sendalot = 0;
10065 	}
10066 	if (rsm && (slot == 0)) {
10067 		/*
10068 		 * Dup ack retransmission possibly, so
10069 		 * lets assure we have at least min rack
10070 		 * time, if its a rack resend then the rack
10071 		 * to will also be set to this.
10072 		 */
10073 		slot = rack->r_ctl.rc_min_to;
10074 	}
10075 	if (slot) {
10076 		/* set the rack tcb into the slot N */
10077 		counter_u64_add(rack_paced_segments, 1);
10078 	} else if (sendalot) {
10079 		if (len)
10080 			counter_u64_add(rack_unpaced_segments, 1);
10081 		sack_rxmit = 0;
10082 		tp->t_flags &= ~TF_FORCEDATA;
10083 		goto again;
10084 	} else if (len) {
10085 		counter_u64_add(rack_unpaced_segments, 1);
10086 	}
10087 	tp->t_flags &= ~TF_FORCEDATA;
10088 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
10089 	return (error);
10090 }
10091 
10092 /*
10093  * rack_ctloutput() must drop the inpcb lock before performing copyin on
10094  * socket option arguments.  When it re-acquires the lock after the copy, it
10095  * has to revalidate that the connection is still valid for the socket
10096  * option.
10097  */
10098 static int
10099 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
10100     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10101 {
10102 	struct epoch_tracker et;
10103 	int32_t error = 0, optval;
10104 
10105 	switch (sopt->sopt_name) {
10106 	case TCP_RACK_PROP_RATE:
10107 	case TCP_RACK_PROP:
10108 	case TCP_RACK_TLP_REDUCE:
10109 	case TCP_RACK_EARLY_RECOV:
10110 	case TCP_RACK_PACE_ALWAYS:
10111 	case TCP_DELACK:
10112 	case TCP_RACK_PACE_REDUCE:
10113 	case TCP_RACK_PACE_MAX_SEG:
10114 	case TCP_RACK_PRR_SENDALOT:
10115 	case TCP_RACK_MIN_TO:
10116 	case TCP_RACK_EARLY_SEG:
10117 	case TCP_RACK_REORD_THRESH:
10118 	case TCP_RACK_REORD_FADE:
10119 	case TCP_RACK_TLP_THRESH:
10120 	case TCP_RACK_PKT_DELAY:
10121 	case TCP_RACK_TLP_USE:
10122 	case TCP_RACK_TLP_INC_VAR:
10123 	case TCP_RACK_IDLE_REDUCE_HIGH:
10124 	case TCP_RACK_MIN_PACE:
10125 	case TCP_RACK_GP_INCREASE:
10126 	case TCP_BBR_RACK_RTT_USE:
10127 	case TCP_BBR_USE_RACK_CHEAT:
10128 	case TCP_RACK_DO_DETECTION:
10129 	case TCP_DATA_AFTER_CLOSE:
10130 		break;
10131 	default:
10132 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10133 		break;
10134 	}
10135 	INP_WUNLOCK(inp);
10136 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
10137 	if (error)
10138 		return (error);
10139 	INP_WLOCK(inp);
10140 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
10141 		INP_WUNLOCK(inp);
10142 		return (ECONNRESET);
10143 	}
10144 	tp = intotcpcb(inp);
10145 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10146 	switch (sopt->sopt_name) {
10147 	case TCP_RACK_DO_DETECTION:
10148 		RACK_OPTS_INC(tcp_rack_do_detection);
10149 		if (optval == 0)
10150 			rack->do_detection = 0;
10151 		else
10152 			rack->do_detection = 1;
10153 		break;
10154 	case TCP_RACK_PROP_RATE:
10155 		if ((optval <= 0) || (optval >= 100)) {
10156 			error = EINVAL;
10157 			break;
10158 		}
10159 		RACK_OPTS_INC(tcp_rack_prop_rate);
10160 		rack->r_ctl.rc_prop_rate = optval;
10161 		break;
10162 	case TCP_RACK_TLP_USE:
10163 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
10164 			error = EINVAL;
10165 			break;
10166 		}
10167 		RACK_OPTS_INC(tcp_tlp_use);
10168 		rack->rack_tlp_threshold_use = optval;
10169 		break;
10170 	case TCP_RACK_PROP:
10171 		/* RACK proportional rate reduction (bool) */
10172 		RACK_OPTS_INC(tcp_rack_prop);
10173 		rack->r_ctl.rc_prop_reduce = optval;
10174 		break;
10175 	case TCP_RACK_TLP_REDUCE:
10176 		/* RACK TLP cwnd reduction (bool) */
10177 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
10178 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
10179 		break;
10180 	case TCP_RACK_EARLY_RECOV:
10181 		/* Should recovery happen early (bool) */
10182 		RACK_OPTS_INC(tcp_rack_early_recov);
10183 		rack->r_ctl.rc_early_recovery = optval;
10184 		break;
10185 	case TCP_RACK_PACE_ALWAYS:
10186 		/* Use the always pace method (bool)  */
10187 		RACK_OPTS_INC(tcp_rack_pace_always);
10188 		if (optval > 0)
10189 			rack->rc_always_pace = 1;
10190 		else
10191 			rack->rc_always_pace = 0;
10192 		break;
10193 	case TCP_RACK_PACE_REDUCE:
10194 		/* RACK Hptsi reduction factor (divisor) */
10195 		RACK_OPTS_INC(tcp_rack_pace_reduce);
10196 		if (optval)
10197 			/* Must be non-zero */
10198 			rack->rc_pace_reduce = optval;
10199 		else
10200 			error = EINVAL;
10201 		break;
10202 	case TCP_RACK_PACE_MAX_SEG:
10203 		/* Max segments in a pace */
10204 		RACK_OPTS_INC(tcp_rack_max_seg);
10205 		rack->rc_pace_max_segs = optval;
10206 		rack_set_pace_segments(tp, rack);
10207 		break;
10208 	case TCP_RACK_PRR_SENDALOT:
10209 		/* Allow PRR to send more than one seg */
10210 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
10211 		rack->r_ctl.rc_prr_sendalot = optval;
10212 		break;
10213 	case TCP_RACK_MIN_TO:
10214 		/* Minimum time between rack t-o's in ms */
10215 		RACK_OPTS_INC(tcp_rack_min_to);
10216 		rack->r_ctl.rc_min_to = optval;
10217 		break;
10218 	case TCP_RACK_EARLY_SEG:
10219 		/* If early recovery max segments */
10220 		RACK_OPTS_INC(tcp_rack_early_seg);
10221 		rack->r_ctl.rc_early_recovery_segs = optval;
10222 		break;
10223 	case TCP_RACK_REORD_THRESH:
10224 		/* RACK reorder threshold (shift amount) */
10225 		RACK_OPTS_INC(tcp_rack_reord_thresh);
10226 		if ((optval > 0) && (optval < 31))
10227 			rack->r_ctl.rc_reorder_shift = optval;
10228 		else
10229 			error = EINVAL;
10230 		break;
10231 	case TCP_RACK_REORD_FADE:
10232 		/* Does reordering fade after ms time */
10233 		RACK_OPTS_INC(tcp_rack_reord_fade);
10234 		rack->r_ctl.rc_reorder_fade = optval;
10235 		break;
10236 	case TCP_RACK_TLP_THRESH:
10237 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10238 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
10239 		if (optval)
10240 			rack->r_ctl.rc_tlp_threshold = optval;
10241 		else
10242 			error = EINVAL;
10243 		break;
10244 	case TCP_BBR_USE_RACK_CHEAT:
10245 		RACK_OPTS_INC(tcp_rack_cheat);
10246 		if (optval)
10247 			rack->use_rack_cheat = 1;
10248 		else
10249 			rack->use_rack_cheat = 0;
10250 		break;
10251 	case TCP_RACK_PKT_DELAY:
10252 		/* RACK added ms i.e. rack-rtt + reord + N */
10253 		RACK_OPTS_INC(tcp_rack_pkt_delay);
10254 		rack->r_ctl.rc_pkt_delay = optval;
10255 		break;
10256 	case TCP_RACK_TLP_INC_VAR:
10257 		/* Does TLP include rtt variance in t-o */
10258 		error = EINVAL;
10259 		break;
10260 	case TCP_RACK_IDLE_REDUCE_HIGH:
10261 		error = EINVAL;
10262 		break;
10263 	case TCP_DELACK:
10264 		if (optval == 0)
10265 			tp->t_delayed_ack = 0;
10266 		else
10267 			tp->t_delayed_ack = 1;
10268 		if (tp->t_flags & TF_DELACK) {
10269 			tp->t_flags &= ~TF_DELACK;
10270 			tp->t_flags |= TF_ACKNOW;
10271 			NET_EPOCH_ENTER(et);
10272 			rack_output(tp);
10273 			NET_EPOCH_EXIT(et);
10274 		}
10275 		break;
10276 	case TCP_RACK_MIN_PACE:
10277 		RACK_OPTS_INC(tcp_rack_min_pace);
10278 		if (optval > 3)
10279 			rack->r_enforce_min_pace = 3;
10280 		else
10281 			rack->r_enforce_min_pace = optval;
10282 		break;
10283 	case TCP_RACK_GP_INCREASE:
10284 		if ((optval >= 0) &&
10285 		    (optval <= 256))
10286 			rack->rack_per_of_gp = optval;
10287 		else
10288 			error = EINVAL;
10289 
10290 		break;
10291 	case TCP_BBR_RACK_RTT_USE:
10292 		if ((optval != USE_RTT_HIGH) &&
10293 		    (optval != USE_RTT_LOW) &&
10294 		    (optval != USE_RTT_AVG))
10295 			error = EINVAL;
10296 		else
10297 			rack->r_ctl.rc_rate_sample_method = optval;
10298 		break;
10299 	case TCP_DATA_AFTER_CLOSE:
10300 		if (optval)
10301 			rack->rc_allow_data_af_clo = 1;
10302 		else
10303 			rack->rc_allow_data_af_clo = 0;
10304 		break;
10305 	default:
10306 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10307 		break;
10308 	}
10309 #ifdef NETFLIX_STATS
10310 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
10311 #endif
10312 	INP_WUNLOCK(inp);
10313 	return (error);
10314 }
10315 
10316 static int
10317 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
10318     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10319 {
10320 	int32_t error, optval;
10321 
10322 	/*
10323 	 * Because all our options are either boolean or an int, we can just
10324 	 * pull everything into optval and then unlock and copy. If we ever
10325 	 * add a option that is not a int, then this will have quite an
10326 	 * impact to this routine.
10327 	 */
10328 	error = 0;
10329 	switch (sopt->sopt_name) {
10330 	case TCP_RACK_DO_DETECTION:
10331 		optval = rack->do_detection;
10332 		break;
10333 
10334 	case TCP_RACK_PROP_RATE:
10335 		optval = rack->r_ctl.rc_prop_rate;
10336 		break;
10337 	case TCP_RACK_PROP:
10338 		/* RACK proportional rate reduction (bool) */
10339 		optval = rack->r_ctl.rc_prop_reduce;
10340 		break;
10341 	case TCP_RACK_TLP_REDUCE:
10342 		/* RACK TLP cwnd reduction (bool) */
10343 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
10344 		break;
10345 	case TCP_RACK_EARLY_RECOV:
10346 		/* Should recovery happen early (bool) */
10347 		optval = rack->r_ctl.rc_early_recovery;
10348 		break;
10349 	case TCP_RACK_PACE_REDUCE:
10350 		/* RACK Hptsi reduction factor (divisor) */
10351 		optval = rack->rc_pace_reduce;
10352 		break;
10353 	case TCP_RACK_PACE_MAX_SEG:
10354 		/* Max segments in a pace */
10355 		optval = rack->rc_pace_max_segs;
10356 		break;
10357 	case TCP_RACK_PACE_ALWAYS:
10358 		/* Use the always pace method */
10359 		optval = rack->rc_always_pace;
10360 		break;
10361 	case TCP_RACK_PRR_SENDALOT:
10362 		/* Allow PRR to send more than one seg */
10363 		optval = rack->r_ctl.rc_prr_sendalot;
10364 		break;
10365 	case TCP_RACK_MIN_TO:
10366 		/* Minimum time between rack t-o's in ms */
10367 		optval = rack->r_ctl.rc_min_to;
10368 		break;
10369 	case TCP_RACK_EARLY_SEG:
10370 		/* If early recovery max segments */
10371 		optval = rack->r_ctl.rc_early_recovery_segs;
10372 		break;
10373 	case TCP_RACK_REORD_THRESH:
10374 		/* RACK reorder threshold (shift amount) */
10375 		optval = rack->r_ctl.rc_reorder_shift;
10376 		break;
10377 	case TCP_RACK_REORD_FADE:
10378 		/* Does reordering fade after ms time */
10379 		optval = rack->r_ctl.rc_reorder_fade;
10380 		break;
10381 	case TCP_BBR_USE_RACK_CHEAT:
10382 		/* Do we use the rack cheat for rxt */
10383 		optval = rack->use_rack_cheat;
10384 		break;
10385 	case TCP_RACK_TLP_THRESH:
10386 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10387 		optval = rack->r_ctl.rc_tlp_threshold;
10388 		break;
10389 	case TCP_RACK_PKT_DELAY:
10390 		/* RACK added ms i.e. rack-rtt + reord + N */
10391 		optval = rack->r_ctl.rc_pkt_delay;
10392 		break;
10393 	case TCP_RACK_TLP_USE:
10394 		optval = rack->rack_tlp_threshold_use;
10395 		break;
10396 	case TCP_RACK_TLP_INC_VAR:
10397 		/* Does TLP include rtt variance in t-o */
10398 		error = EINVAL;
10399 		break;
10400 	case TCP_RACK_IDLE_REDUCE_HIGH:
10401 		error = EINVAL;
10402 		break;
10403 	case TCP_RACK_MIN_PACE:
10404 		optval = rack->r_enforce_min_pace;
10405 		break;
10406 	case TCP_RACK_GP_INCREASE:
10407 		optval = rack->rack_per_of_gp;
10408 		break;
10409 	case TCP_BBR_RACK_RTT_USE:
10410 		optval = rack->r_ctl.rc_rate_sample_method;
10411 		break;
10412 	case TCP_DELACK:
10413 		optval = tp->t_delayed_ack;
10414 		break;
10415 	case TCP_DATA_AFTER_CLOSE:
10416 		optval = rack->rc_allow_data_af_clo;
10417 		break;
10418 	default:
10419 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10420 		break;
10421 	}
10422 	INP_WUNLOCK(inp);
10423 	if (error == 0) {
10424 		error = sooptcopyout(sopt, &optval, sizeof optval);
10425 	}
10426 	return (error);
10427 }
10428 
10429 static int
10430 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
10431 {
10432 	int32_t error = EINVAL;
10433 	struct tcp_rack *rack;
10434 
10435 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10436 	if (rack == NULL) {
10437 		/* Huh? */
10438 		goto out;
10439 	}
10440 	if (sopt->sopt_dir == SOPT_SET) {
10441 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
10442 	} else if (sopt->sopt_dir == SOPT_GET) {
10443 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
10444 	}
10445 out:
10446 	INP_WUNLOCK(inp);
10447 	return (error);
10448 }
10449 
10450 
10451 static struct tcp_function_block __tcp_rack = {
10452 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
10453 	.tfb_tcp_output = rack_output,
10454 	.tfb_do_queued_segments = ctf_do_queued_segments,
10455 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
10456 	.tfb_tcp_do_segment = rack_do_segment,
10457 	.tfb_tcp_ctloutput = rack_ctloutput,
10458 	.tfb_tcp_fb_init = rack_init,
10459 	.tfb_tcp_fb_fini = rack_fini,
10460 	.tfb_tcp_timer_stop_all = rack_stopall,
10461 	.tfb_tcp_timer_activate = rack_timer_activate,
10462 	.tfb_tcp_timer_active = rack_timer_active,
10463 	.tfb_tcp_timer_stop = rack_timer_stop,
10464 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
10465 	.tfb_tcp_handoff_ok = rack_handoff_ok
10466 };
10467 
10468 static const char *rack_stack_names[] = {
10469 	__XSTRING(STACKNAME),
10470 #ifdef STACKALIAS
10471 	__XSTRING(STACKALIAS),
10472 #endif
10473 };
10474 
10475 static int
10476 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
10477 {
10478 	memset(mem, 0, size);
10479 	return (0);
10480 }
10481 
10482 static void
10483 rack_dtor(void *mem, int32_t size, void *arg)
10484 {
10485 
10486 }
10487 
10488 static bool rack_mod_inited = false;
10489 
10490 static int
10491 tcp_addrack(module_t mod, int32_t type, void *data)
10492 {
10493 	int32_t err = 0;
10494 	int num_stacks;
10495 
10496 	switch (type) {
10497 	case MOD_LOAD:
10498 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
10499 		    sizeof(struct rack_sendmap),
10500 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
10501 
10502 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
10503 		    sizeof(struct tcp_rack),
10504 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
10505 
10506 		sysctl_ctx_init(&rack_sysctl_ctx);
10507 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
10508 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
10509 		    OID_AUTO,
10510 #ifdef STACKALIAS
10511 		    __XSTRING(STACKALIAS),
10512 #else
10513 		    __XSTRING(STACKNAME),
10514 #endif
10515 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
10516 		    "");
10517 		if (rack_sysctl_root == NULL) {
10518 			printf("Failed to add sysctl node\n");
10519 			err = EFAULT;
10520 			goto free_uma;
10521 		}
10522 		rack_init_sysctls();
10523 		num_stacks = nitems(rack_stack_names);
10524 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
10525 		    rack_stack_names, &num_stacks);
10526 		if (err) {
10527 			printf("Failed to register %s stack name for "
10528 			    "%s module\n", rack_stack_names[num_stacks],
10529 			    __XSTRING(MODNAME));
10530 			sysctl_ctx_free(&rack_sysctl_ctx);
10531 free_uma:
10532 			uma_zdestroy(rack_zone);
10533 			uma_zdestroy(rack_pcb_zone);
10534 			rack_counter_destroy();
10535 			printf("Failed to register rack module -- err:%d\n", err);
10536 			return (err);
10537 		}
10538 		tcp_lro_reg_mbufq();
10539 		rack_mod_inited = true;
10540 		break;
10541 	case MOD_QUIESCE:
10542 		err = deregister_tcp_functions(&__tcp_rack, true, false);
10543 		break;
10544 	case MOD_UNLOAD:
10545 		err = deregister_tcp_functions(&__tcp_rack, false, true);
10546 		if (err == EBUSY)
10547 			break;
10548 		if (rack_mod_inited) {
10549 			uma_zdestroy(rack_zone);
10550 			uma_zdestroy(rack_pcb_zone);
10551 			sysctl_ctx_free(&rack_sysctl_ctx);
10552 			rack_counter_destroy();
10553 			rack_mod_inited = false;
10554 		}
10555 		tcp_lro_dereg_mbufq();
10556 		err = 0;
10557 		break;
10558 	default:
10559 		return (EOPNOTSUPP);
10560 	}
10561 	return (err);
10562 }
10563 
10564 static moduledata_t tcp_rack = {
10565 	.name = __XSTRING(MODNAME),
10566 	.evhand = tcp_addrack,
10567 	.priv = 0
10568 };
10569 
10570 MODULE_VERSION(MODNAME, 1);
10571 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
10572 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
10573