xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision ab1e0d2410ece7d391a5b1e2cbc9d1e9857c2fdb)
1 /*-
2  * Copyright (c) 2016-2018
3  *	Netflix Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipsec.h"
34 #include "opt_tcpdebug.h"
35 
36 #include <sys/param.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #ifdef TCP_HHOOK
40 #include <sys/hhook.h>
41 #endif
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #ifdef NETFLIX_STATS
53 #include <sys/stats.h>
54 #endif
55 #include <sys/refcount.h>
56 #include <sys/queue.h>
57 #include <sys/smp.h>
58 #include <sys/kthread.h>
59 #include <sys/kern_prefetch.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #define TCPSTATES		/* for logging */
67 
68 #include <netinet/in.h>
69 #include <netinet/in_kdtrace.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip.h>
72 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
73 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
74 #include <netinet/ip_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet6/in6_pcb.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet/tcp.h>
79 #define	TCPOUTFLAGS
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_log_buf.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/tcp_hpts.h>
86 #include <netinet/tcpip.h>
87 #include <netinet/cc/cc.h>
88 #ifdef NETFLIX_CWV
89 #include <netinet/tcp_newcwv.h>
90 #endif
91 #include <netinet/tcp_fastopen.h>
92 #ifdef TCPDEBUG
93 #include <netinet/tcp_debug.h>
94 #endif				/* TCPDEBUG */
95 #ifdef TCP_OFFLOAD
96 #include <netinet/tcp_offload.h>
97 #endif
98 #ifdef INET6
99 #include <netinet6/tcp6_var.h>
100 #endif
101 
102 #include <netipsec/ipsec_support.h>
103 
104 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
105 #include <netipsec/ipsec.h>
106 #include <netipsec/ipsec6.h>
107 #endif				/* IPSEC */
108 
109 #include <netinet/udp.h>
110 #include <netinet/udp_var.h>
111 #include <machine/in_cksum.h>
112 
113 #ifdef MAC
114 #include <security/mac/mac_framework.h>
115 #endif
116 #include "sack_filter.h"
117 #include "tcp_rack.h"
118 #include "rack_bbr_common.h"
119 
120 uma_zone_t rack_zone;
121 uma_zone_t rack_pcb_zone;
122 
123 #ifndef TICKS2SBT
124 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
125 #endif
126 
127 struct sysctl_ctx_list rack_sysctl_ctx;
128 struct sysctl_oid *rack_sysctl_root;
129 
130 #define CUM_ACKED 1
131 #define SACKED 2
132 
133 /*
134  * The RACK module incorporates a number of
135  * TCP ideas that have been put out into the IETF
136  * over the last few years:
137  * - Matt Mathis's Rate Halving which slowly drops
138  *    the congestion window so that the ack clock can
139  *    be maintained during a recovery.
140  * - Yuchung Cheng's RACK TCP (for which its named) that
141  *    will stop us using the number of dup acks and instead
142  *    use time as the gage of when we retransmit.
143  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
144  *    of Dukkipati et.al.
145  * RACK depends on SACK, so if an endpoint arrives that
146  * cannot do SACK the state machine below will shuttle the
147  * connection back to using the "default" TCP stack that is
148  * in FreeBSD.
149  *
150  * To implement RACK the original TCP stack was first decomposed
151  * into a functional state machine with individual states
152  * for each of the possible TCP connection states. The do_segement
153  * functions role in life is to mandate the connection supports SACK
154  * initially and then assure that the RACK state matches the conenction
155  * state before calling the states do_segment function. Each
156  * state is simplified due to the fact that the original do_segment
157  * has been decomposed and we *know* what state we are in (no
158  * switches on the state) and all tests for SACK are gone. This
159  * greatly simplifies what each state does.
160  *
161  * TCP output is also over-written with a new version since it
162  * must maintain the new rack scoreboard.
163  *
164  */
165 static int32_t rack_precache = 1;
166 static int32_t rack_tlp_thresh = 1;
167 static int32_t rack_reorder_thresh = 2;
168 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
169 						 * - 60 seconds */
170 static int32_t rack_pkt_delay = 1;
171 static int32_t rack_inc_var = 0;/* For TLP */
172 static int32_t rack_reduce_largest_on_idle = 0;
173 static int32_t rack_min_pace_time = 0;
174 static int32_t rack_min_pace_time_seg_req=6;
175 static int32_t rack_early_recovery = 1;
176 static int32_t rack_early_recovery_max_seg = 6;
177 static int32_t rack_send_a_lot_in_prr = 1;
178 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
179 static int32_t rack_tlp_in_recovery = 1;	/* Can we do TLP in recovery? */
180 static int32_t rack_verbose_logging = 0;
181 static int32_t rack_ignore_data_after_close = 1;
182 /*
183  * Currently regular tcp has a rto_min of 30ms
184  * the backoff goes 12 times so that ends up
185  * being a total of 122.850 seconds before a
186  * connection is killed.
187  */
188 static int32_t rack_tlp_min = 10;
189 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
190 static int32_t rack_rto_max = 30000;	/* 30 seconds */
191 static const int32_t rack_free_cache = 2;
192 static int32_t rack_hptsi_segments = 40;
193 static int32_t rack_rate_sample_method = USE_RTT_LOW;
194 static int32_t rack_pace_every_seg = 1;
195 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
196 static int32_t rack_slot_reduction = 4;
197 static int32_t rack_lower_cwnd_at_tlp = 0;
198 static int32_t rack_use_proportional_reduce = 0;
199 static int32_t rack_proportional_rate = 10;
200 static int32_t rack_tlp_max_resend = 2;
201 static int32_t rack_limited_retran = 0;
202 static int32_t rack_always_send_oldest = 0;
203 static int32_t rack_sack_block_limit = 128;
204 static int32_t rack_use_sack_filter = 1;
205 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
206 
207 /* Rack specific counters */
208 counter_u64_t rack_badfr;
209 counter_u64_t rack_badfr_bytes;
210 counter_u64_t rack_rtm_prr_retran;
211 counter_u64_t rack_rtm_prr_newdata;
212 counter_u64_t rack_timestamp_mismatch;
213 counter_u64_t rack_reorder_seen;
214 counter_u64_t rack_paced_segments;
215 counter_u64_t rack_unpaced_segments;
216 counter_u64_t rack_saw_enobuf;
217 counter_u64_t rack_saw_enetunreach;
218 
219 /* Tail loss probe counters */
220 counter_u64_t rack_tlp_tot;
221 counter_u64_t rack_tlp_newdata;
222 counter_u64_t rack_tlp_retran;
223 counter_u64_t rack_tlp_retran_bytes;
224 counter_u64_t rack_tlp_retran_fail;
225 counter_u64_t rack_to_tot;
226 counter_u64_t rack_to_arm_rack;
227 counter_u64_t rack_to_arm_tlp;
228 counter_u64_t rack_to_alloc;
229 counter_u64_t rack_to_alloc_hard;
230 counter_u64_t rack_to_alloc_emerg;
231 
232 counter_u64_t rack_sack_proc_all;
233 counter_u64_t rack_sack_proc_short;
234 counter_u64_t rack_sack_proc_restart;
235 counter_u64_t rack_runt_sacks;
236 counter_u64_t rack_used_tlpmethod;
237 counter_u64_t rack_used_tlpmethod2;
238 counter_u64_t rack_enter_tlp_calc;
239 counter_u64_t rack_input_idle_reduces;
240 counter_u64_t rack_tlp_does_nada;
241 
242 /* Temp CPU counters */
243 counter_u64_t rack_find_high;
244 
245 counter_u64_t rack_progress_drops;
246 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
247 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
248 
249 static void
250 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
251 
252 static int
253 rack_process_ack(struct mbuf *m, struct tcphdr *th,
254     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
255     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
256 static int
257 rack_process_data(struct mbuf *m, struct tcphdr *th,
258     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
259     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
260 static void
261 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
262     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
263 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
264 static struct rack_sendmap *
265 rack_check_recovery_mode(struct tcpcb *tp,
266     uint32_t tsused);
267 static void
268 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
269     uint32_t type);
270 static void rack_counter_destroy(void);
271 static int
272 rack_ctloutput(struct socket *so, struct sockopt *sopt,
273     struct inpcb *inp, struct tcpcb *tp);
274 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
275 static void
276 rack_do_segment(struct mbuf *m, struct tcphdr *th,
277     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
278     uint8_t iptos);
279 static void rack_dtor(void *mem, int32_t size, void *arg);
280 static void
281 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
282     uint32_t t, uint32_t cts);
283 static struct rack_sendmap *
284 rack_find_high_nonack(struct tcp_rack *rack,
285     struct rack_sendmap *rsm);
286 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
287 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
288 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
289 static int
290 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
291     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
292 static int32_t rack_handoff_ok(struct tcpcb *tp);
293 static int32_t rack_init(struct tcpcb *tp);
294 static void rack_init_sysctls(void);
295 static void
296 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
297     struct tcphdr *th);
298 static void
299 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
300     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
301     uint8_t pass, struct rack_sendmap *hintrsm);
302 static void
303 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
304     struct rack_sendmap *rsm);
305 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num);
306 static int32_t rack_output(struct tcpcb *tp);
307 static void
308 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th,
309     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
310     uint8_t iptos, int32_t nxt_pkt, struct timeval *tv);
311 
312 static uint32_t
313 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
314     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
315     uint32_t cts);
316 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
317 static void rack_remxt_tmr(struct tcpcb *tp);
318 static int
319 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
320     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
321 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
322 static int32_t rack_stopall(struct tcpcb *tp);
323 static void
324 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
325     uint32_t delta);
326 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
327 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
328 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
329 static uint32_t
330 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
331     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
332 static void
333 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
334     struct rack_sendmap *rsm, uint32_t ts);
335 static int
336 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
337     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
338 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
339 static void
340 rack_challenge_ack(struct mbuf *m, struct tcphdr *th,
341     struct tcpcb *tp, int32_t * ret_val);
342 static int
343 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
344     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
345     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
346 static int
347 rack_do_closing(struct mbuf *m, struct tcphdr *th,
348     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
349     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
350 static void
351 rack_do_drop(struct mbuf *m, struct tcpcb *tp);
352 static void
353 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp,
354     struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val);
355 static void
356 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp,
357 	struct tcphdr *th, int32_t rstreason, int32_t tlen);
358 static int
359 rack_do_established(struct mbuf *m, struct tcphdr *th,
360     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
361     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
362 static int
363 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
364     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
365     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt);
366 static int
367 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
368     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
369     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
370 static int
371 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
372     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
373     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
374 static int
375 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
376     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
377     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
378 static int
379 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
380     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
381     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
382 static int
383 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
384     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
385     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
386 static int
387 rack_drop_checks(struct tcpopt *to, struct mbuf *m,
388     struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * thf,
389     int32_t * drop_hdrlen, int32_t * ret_val);
390 static int
391 rack_process_rst(struct mbuf *m, struct tcphdr *th,
392     struct socket *so, struct tcpcb *tp);
393 struct rack_sendmap *
394 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
395     uint32_t tsused);
396 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
397 static void
398      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
399 
400 static int
401 rack_ts_check(struct mbuf *m, struct tcphdr *th,
402     struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t * ret_val);
403 
404 int32_t rack_clear_counter=0;
405 
406 
407 static int
408 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
409 {
410 	uint32_t stat;
411 	int32_t error;
412 
413 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
414 	if (error || req->newptr == NULL)
415 		return error;
416 
417 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
418 	if (error)
419 		return (error);
420 	if (stat == 1) {
421 #ifdef INVARIANTS
422 		printf("Clearing RACK counters\n");
423 #endif
424 		counter_u64_zero(rack_badfr);
425 		counter_u64_zero(rack_badfr_bytes);
426 		counter_u64_zero(rack_rtm_prr_retran);
427 		counter_u64_zero(rack_rtm_prr_newdata);
428 		counter_u64_zero(rack_timestamp_mismatch);
429 		counter_u64_zero(rack_reorder_seen);
430 		counter_u64_zero(rack_tlp_tot);
431 		counter_u64_zero(rack_tlp_newdata);
432 		counter_u64_zero(rack_tlp_retran);
433 		counter_u64_zero(rack_tlp_retran_bytes);
434 		counter_u64_zero(rack_tlp_retran_fail);
435 		counter_u64_zero(rack_to_tot);
436 		counter_u64_zero(rack_to_arm_rack);
437 		counter_u64_zero(rack_to_arm_tlp);
438 		counter_u64_zero(rack_paced_segments);
439 		counter_u64_zero(rack_unpaced_segments);
440 		counter_u64_zero(rack_saw_enobuf);
441 		counter_u64_zero(rack_saw_enetunreach);
442 		counter_u64_zero(rack_to_alloc_hard);
443 		counter_u64_zero(rack_to_alloc_emerg);
444 		counter_u64_zero(rack_sack_proc_all);
445 		counter_u64_zero(rack_sack_proc_short);
446 		counter_u64_zero(rack_sack_proc_restart);
447 		counter_u64_zero(rack_to_alloc);
448 		counter_u64_zero(rack_find_high);
449 		counter_u64_zero(rack_runt_sacks);
450 		counter_u64_zero(rack_used_tlpmethod);
451 		counter_u64_zero(rack_used_tlpmethod2);
452 		counter_u64_zero(rack_enter_tlp_calc);
453 		counter_u64_zero(rack_progress_drops);
454 		counter_u64_zero(rack_tlp_does_nada);
455 	}
456 	rack_clear_counter = 0;
457 	return (0);
458 }
459 
460 
461 
462 static void
463 rack_init_sysctls()
464 {
465 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
466 	    SYSCTL_CHILDREN(rack_sysctl_root),
467 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
468 	    &rack_rate_sample_method , USE_RTT_LOW,
469 	    "What method should we use for rate sampling 0=high, 1=low ");
470 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
471 	    SYSCTL_CHILDREN(rack_sysctl_root),
472 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
473 	    &rack_ignore_data_after_close, 0,
474 	    "Do we hold off sending a RST until all pending data is ack'd");
475 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
476 	    SYSCTL_CHILDREN(rack_sysctl_root),
477 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
478 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
479 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
480 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
481 	    SYSCTL_CHILDREN(rack_sysctl_root),
482 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
483 	    &rack_min_pace_time, 0,
484 	    "Should we enforce a minimum pace time of 1ms");
485 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
486 	    SYSCTL_CHILDREN(rack_sysctl_root),
487 	    OID_AUTO, "min_pace_segs", CTLFLAG_RW,
488 	    &rack_min_pace_time_seg_req, 6,
489 	    "How many segments have to be in the len to enforce min-pace-time");
490 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
491 	    SYSCTL_CHILDREN(rack_sysctl_root),
492 	    OID_AUTO, "idle_reduce_high", CTLFLAG_RW,
493 	    &rack_reduce_largest_on_idle, 0,
494 	    "Should we reduce the largest cwnd seen to IW on idle reduction");
495 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
496 	    SYSCTL_CHILDREN(rack_sysctl_root),
497 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
498 	    &rack_verbose_logging, 0,
499 	    "Should RACK black box logging be verbose");
500 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
501 	    SYSCTL_CHILDREN(rack_sysctl_root),
502 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
503 	    &rack_use_sack_filter, 1,
504 	    "Do we use sack filtering?");
505 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
506 	    SYSCTL_CHILDREN(rack_sysctl_root),
507 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
508 	    &rack_delayed_ack_time, 200,
509 	    "Delayed ack time (200ms)");
510 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
511 	    SYSCTL_CHILDREN(rack_sysctl_root),
512 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
513 	    &rack_tlp_min, 10,
514 	    "TLP minimum timeout per the specification (10ms)");
515 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
516 	    SYSCTL_CHILDREN(rack_sysctl_root),
517 	    OID_AUTO, "precache", CTLFLAG_RW,
518 	    &rack_precache, 0,
519 	    "Where should we precache the mcopy (0 is not at all)");
520 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
521 	    SYSCTL_CHILDREN(rack_sysctl_root),
522 	    OID_AUTO, "sblklimit", CTLFLAG_RW,
523 	    &rack_sack_block_limit, 128,
524 	    "When do we start paying attention to small sack blocks");
525 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
526 	    SYSCTL_CHILDREN(rack_sysctl_root),
527 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
528 	    &rack_always_send_oldest, 1,
529 	    "Should we always send the oldest TLP and RACK-TLP");
530 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
531 	    SYSCTL_CHILDREN(rack_sysctl_root),
532 	    OID_AUTO, "rack_tlp_in_recovery", CTLFLAG_RW,
533 	    &rack_tlp_in_recovery, 1,
534 	    "Can we do a TLP during recovery?");
535 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
536 	    SYSCTL_CHILDREN(rack_sysctl_root),
537 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
538 	    &rack_limited_retran, 0,
539 	    "How many times can a rack timeout drive out sends");
540 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
541 	    SYSCTL_CHILDREN(rack_sysctl_root),
542 	    OID_AUTO, "minrto", CTLFLAG_RW,
543 	    &rack_rto_min, 0,
544 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
545 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
546 	    SYSCTL_CHILDREN(rack_sysctl_root),
547 	    OID_AUTO, "maxrto", CTLFLAG_RW,
548 	    &rack_rto_max, 0,
549 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
550 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
551 	    SYSCTL_CHILDREN(rack_sysctl_root),
552 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
553 	    &rack_tlp_max_resend, 2,
554 	    "How many times does TLP retry a single segment or multiple with no ACK");
555 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
556 	    SYSCTL_CHILDREN(rack_sysctl_root),
557 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
558 	    &rack_use_proportional_reduce, 0,
559 	    "Should we proportionaly reduce cwnd based on the number of losses ");
560 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
561 	    SYSCTL_CHILDREN(rack_sysctl_root),
562 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
563 	    &rack_proportional_rate, 10,
564 	    "What percent reduction per loss");
565 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
566 	    SYSCTL_CHILDREN(rack_sysctl_root),
567 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
568 	    &rack_lower_cwnd_at_tlp, 0,
569 	    "When a TLP completes a retran should we enter recovery?");
570 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
571 	    SYSCTL_CHILDREN(rack_sysctl_root),
572 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
573 	    &rack_slot_reduction, 4,
574 	    "When setting a slot should we reduce by divisor");
575 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
576 	    SYSCTL_CHILDREN(rack_sysctl_root),
577 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
578 	    &rack_pace_every_seg, 1,
579 	    "Should we pace out every segment hptsi");
580 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
581 	    SYSCTL_CHILDREN(rack_sysctl_root),
582 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
583 	    &rack_hptsi_segments, 6,
584 	    "Should we pace out only a limited size of segments");
585 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
586 	    SYSCTL_CHILDREN(rack_sysctl_root),
587 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
588 	    &rack_send_a_lot_in_prr, 1,
589 	    "Send a lot in prr");
590 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
591 	    SYSCTL_CHILDREN(rack_sysctl_root),
592 	    OID_AUTO, "minto", CTLFLAG_RW,
593 	    &rack_min_to, 1,
594 	    "Minimum rack timeout in milliseconds");
595 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
596 	    SYSCTL_CHILDREN(rack_sysctl_root),
597 	    OID_AUTO, "earlyrecoveryseg", CTLFLAG_RW,
598 	    &rack_early_recovery_max_seg, 6,
599 	    "Max segments in early recovery");
600 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
601 	    SYSCTL_CHILDREN(rack_sysctl_root),
602 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
603 	    &rack_early_recovery, 1,
604 	    "Do we do early recovery with rack");
605 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
606 	    SYSCTL_CHILDREN(rack_sysctl_root),
607 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
608 	    &rack_reorder_thresh, 2,
609 	    "What factor for rack will be added when seeing reordering (shift right)");
610 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
611 	    SYSCTL_CHILDREN(rack_sysctl_root),
612 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
613 	    &rack_tlp_thresh, 1,
614 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
615 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
616 	    SYSCTL_CHILDREN(rack_sysctl_root),
617 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
618 	    &rack_reorder_fade, 0,
619 	    "Does reorder detection fade, if so how many ms (0 means never)");
620 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
621 	    SYSCTL_CHILDREN(rack_sysctl_root),
622 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
623 	    &rack_pkt_delay, 1,
624 	    "Extra RACK time (in ms) besides reordering thresh");
625 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
626 	    SYSCTL_CHILDREN(rack_sysctl_root),
627 	    OID_AUTO, "inc_var", CTLFLAG_RW,
628 	    &rack_inc_var, 0,
629 	    "Should rack add to the TLP timer the variance in rtt calculation");
630 	rack_badfr = counter_u64_alloc(M_WAITOK);
631 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
632 	    SYSCTL_CHILDREN(rack_sysctl_root),
633 	    OID_AUTO, "badfr", CTLFLAG_RD,
634 	    &rack_badfr, "Total number of bad FRs");
635 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
636 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
637 	    SYSCTL_CHILDREN(rack_sysctl_root),
638 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
639 	    &rack_badfr_bytes, "Total number of bad FRs");
640 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
641 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
642 	    SYSCTL_CHILDREN(rack_sysctl_root),
643 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
644 	    &rack_rtm_prr_retran,
645 	    "Total number of prr based retransmits");
646 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
647 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
648 	    SYSCTL_CHILDREN(rack_sysctl_root),
649 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
650 	    &rack_rtm_prr_newdata,
651 	    "Total number of prr based new transmits");
652 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
653 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
654 	    SYSCTL_CHILDREN(rack_sysctl_root),
655 	    OID_AUTO, "tsnf", CTLFLAG_RD,
656 	    &rack_timestamp_mismatch,
657 	    "Total number of timestamps that we could not find the reported ts");
658 	rack_find_high = counter_u64_alloc(M_WAITOK);
659 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
660 	    SYSCTL_CHILDREN(rack_sysctl_root),
661 	    OID_AUTO, "findhigh", CTLFLAG_RD,
662 	    &rack_find_high,
663 	    "Total number of FIN causing find-high");
664 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
665 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
666 	    SYSCTL_CHILDREN(rack_sysctl_root),
667 	    OID_AUTO, "reordering", CTLFLAG_RD,
668 	    &rack_reorder_seen,
669 	    "Total number of times we added delay due to reordering");
670 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
671 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
672 	    SYSCTL_CHILDREN(rack_sysctl_root),
673 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
674 	    &rack_tlp_tot,
675 	    "Total number of tail loss probe expirations");
676 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
677 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
678 	    SYSCTL_CHILDREN(rack_sysctl_root),
679 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
680 	    &rack_tlp_newdata,
681 	    "Total number of tail loss probe sending new data");
682 
683 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
685 	    SYSCTL_CHILDREN(rack_sysctl_root),
686 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
687 	    &rack_tlp_retran,
688 	    "Total number of tail loss probe sending retransmitted data");
689 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
691 	    SYSCTL_CHILDREN(rack_sysctl_root),
692 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
693 	    &rack_tlp_retran_bytes,
694 	    "Total bytes of tail loss probe sending retransmitted data");
695 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
697 	    SYSCTL_CHILDREN(rack_sysctl_root),
698 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
699 	    &rack_tlp_retran_fail,
700 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
701 	rack_to_tot = counter_u64_alloc(M_WAITOK);
702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
703 	    SYSCTL_CHILDREN(rack_sysctl_root),
704 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
705 	    &rack_to_tot,
706 	    "Total number of times the rack to expired?");
707 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
709 	    SYSCTL_CHILDREN(rack_sysctl_root),
710 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
711 	    &rack_to_arm_rack,
712 	    "Total number of times the rack timer armed?");
713 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
715 	    SYSCTL_CHILDREN(rack_sysctl_root),
716 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
717 	    &rack_to_arm_tlp,
718 	    "Total number of times the tlp timer armed?");
719 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
721 	    SYSCTL_CHILDREN(rack_sysctl_root),
722 	    OID_AUTO, "paced", CTLFLAG_RD,
723 	    &rack_paced_segments,
724 	    "Total number of times a segment send caused hptsi");
725 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
726 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
727 	    SYSCTL_CHILDREN(rack_sysctl_root),
728 	    OID_AUTO, "unpaced", CTLFLAG_RD,
729 	    &rack_unpaced_segments,
730 	    "Total number of times a segment did not cause hptsi");
731 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
732 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
733 	    SYSCTL_CHILDREN(rack_sysctl_root),
734 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
735 	    &rack_saw_enobuf,
736 	    "Total number of times a segment did not cause hptsi");
737 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
738 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
739 	    SYSCTL_CHILDREN(rack_sysctl_root),
740 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
741 	    &rack_saw_enetunreach,
742 	    "Total number of times a segment did not cause hptsi");
743 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
744 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
745 	    SYSCTL_CHILDREN(rack_sysctl_root),
746 	    OID_AUTO, "allocs", CTLFLAG_RD,
747 	    &rack_to_alloc,
748 	    "Total allocations of tracking structures");
749 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
750 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
751 	    SYSCTL_CHILDREN(rack_sysctl_root),
752 	    OID_AUTO, "allochard", CTLFLAG_RD,
753 	    &rack_to_alloc_hard,
754 	    "Total allocations done with sleeping the hard way");
755 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
756 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
757 	    SYSCTL_CHILDREN(rack_sysctl_root),
758 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
759 	    &rack_to_alloc_emerg,
760 	    "Total alocations done from emergency cache");
761 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
762 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
763 	    SYSCTL_CHILDREN(rack_sysctl_root),
764 	    OID_AUTO, "sack_long", CTLFLAG_RD,
765 	    &rack_sack_proc_all,
766 	    "Total times we had to walk whole list for sack processing");
767 
768 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
769 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
770 	    SYSCTL_CHILDREN(rack_sysctl_root),
771 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
772 	    &rack_sack_proc_restart,
773 	    "Total times we had to walk whole list due to a restart");
774 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
775 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
776 	    SYSCTL_CHILDREN(rack_sysctl_root),
777 	    OID_AUTO, "sack_short", CTLFLAG_RD,
778 	    &rack_sack_proc_short,
779 	    "Total times we took shortcut for sack processing");
780 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
781 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
782 	    SYSCTL_CHILDREN(rack_sysctl_root),
783 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
784 	    &rack_enter_tlp_calc,
785 	    "Total times we called calc-tlp");
786 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
787 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
788 	    SYSCTL_CHILDREN(rack_sysctl_root),
789 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
790 	    &rack_used_tlpmethod,
791 	    "Total number of runt sacks");
792 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
793 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
794 	    SYSCTL_CHILDREN(rack_sysctl_root),
795 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
796 	    &rack_used_tlpmethod2,
797 	    "Total number of runt sacks 2");
798 	rack_runt_sacks = counter_u64_alloc(M_WAITOK);
799 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
800 	    SYSCTL_CHILDREN(rack_sysctl_root),
801 	    OID_AUTO, "runtsacks", CTLFLAG_RD,
802 	    &rack_runt_sacks,
803 	    "Total number of runt sacks");
804 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
805 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
806 	    SYSCTL_CHILDREN(rack_sysctl_root),
807 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
808 	    &rack_progress_drops,
809 	    "Total number of progress drops");
810 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
811 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
812 	    SYSCTL_CHILDREN(rack_sysctl_root),
813 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
814 	    &rack_input_idle_reduces,
815 	    "Total number of idle reductions on input");
816 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
817 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
818 	    SYSCTL_CHILDREN(rack_sysctl_root),
819 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
820 	    &rack_tlp_does_nada,
821 	    "Total number of nada tlp calls");
822 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
823 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
824 	    OID_AUTO, "outsize", CTLFLAG_RD,
825 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
826 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
827 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
828 	    OID_AUTO, "opts", CTLFLAG_RD,
829 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
830 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
831 	    SYSCTL_CHILDREN(rack_sysctl_root),
832 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
833 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
834 }
835 
836 static inline int32_t
837 rack_progress_timeout_check(struct tcpcb *tp)
838 {
839 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
840 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
841 			/*
842 			 * There is an assumption that the caller
843 			 * will drop the connection so we will
844 			 * increment the counters here.
845 			 */
846 			struct tcp_rack *rack;
847 			rack = (struct tcp_rack *)tp->t_fb_ptr;
848 			counter_u64_add(rack_progress_drops, 1);
849 #ifdef NETFLIX_STATS
850 			TCPSTAT_INC(tcps_progdrops);
851 #endif
852 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
853 			return (1);
854 		}
855 	}
856 	return (0);
857 }
858 
859 
860 static void
861 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
862 {
863 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
864 		union tcp_log_stackspecific log;
865 
866 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
867 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
868 		log.u_bbr.flex2 = to;
869 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
870 		log.u_bbr.flex4 = slot;
871 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
872 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
873 		log.u_bbr.flex8 = which;
874 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
875 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
876 		TCP_LOG_EVENT(rack->rc_tp, NULL,
877 		    &rack->rc_inp->inp_socket->so_rcv,
878 		    &rack->rc_inp->inp_socket->so_snd,
879 		    BBR_LOG_TIMERSTAR, 0,
880 		    0, &log, false);
881 	}
882 }
883 
884 static void
885 rack_log_to_event(struct tcp_rack *rack, int32_t to_num)
886 {
887 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
888 		union tcp_log_stackspecific log;
889 
890 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
891 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
892 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
893 		log.u_bbr.flex8 = to_num;
894 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
895 		log.u_bbr.flex2 = rack->rc_rack_rtt;
896 		TCP_LOG_EVENT(rack->rc_tp, NULL,
897 		    &rack->rc_inp->inp_socket->so_rcv,
898 		    &rack->rc_inp->inp_socket->so_snd,
899 		    BBR_LOG_RTO, 0,
900 		    0, &log, false);
901 	}
902 }
903 
904 static void
905 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
906     uint32_t o_srtt, uint32_t o_var)
907 {
908 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
909 		union tcp_log_stackspecific log;
910 
911 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
912 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
913 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
914 		log.u_bbr.flex1 = t;
915 		log.u_bbr.flex2 = o_srtt;
916 		log.u_bbr.flex3 = o_var;
917 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
918 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
919 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
920 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
921 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
922 		TCP_LOG_EVENT(tp, NULL,
923 		    &rack->rc_inp->inp_socket->so_rcv,
924 		    &rack->rc_inp->inp_socket->so_snd,
925 		    BBR_LOG_BBRRTT, 0,
926 		    0, &log, false);
927 	}
928 }
929 
930 static void
931 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
932 {
933 	/*
934 	 * Log the rtt sample we are
935 	 * applying to the srtt algorithm in
936 	 * useconds.
937 	 */
938 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
939 		union tcp_log_stackspecific log;
940 		struct timeval tv;
941 
942 		/* Convert our ms to a microsecond */
943 		log.u_bbr.flex1 = rtt * 1000;
944 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
945 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
946 		    &rack->rc_inp->inp_socket->so_rcv,
947 		    &rack->rc_inp->inp_socket->so_snd,
948 		    TCP_LOG_RTT, 0,
949 		    0, &log, false, &tv);
950 	}
951 }
952 
953 
954 static inline void
955 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
956 {
957 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
958 		union tcp_log_stackspecific log;
959 
960 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
961 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
962 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
963 		log.u_bbr.flex1 = line;
964 		log.u_bbr.flex2 = tick;
965 		log.u_bbr.flex3 = tp->t_maxunacktime;
966 		log.u_bbr.flex4 = tp->t_acktime;
967 		log.u_bbr.flex8 = event;
968 		TCP_LOG_EVENT(tp, NULL,
969 		    &rack->rc_inp->inp_socket->so_rcv,
970 		    &rack->rc_inp->inp_socket->so_snd,
971 		    BBR_LOG_PROGRESS, 0,
972 		    0, &log, false);
973 	}
974 }
975 
976 static void
977 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
978 {
979 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
980 		union tcp_log_stackspecific log;
981 
982 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
983 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
984 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
985 		log.u_bbr.flex1 = slot;
986 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
987 		log.u_bbr.flex8 = rack->rc_in_persist;
988 		TCP_LOG_EVENT(rack->rc_tp, NULL,
989 		    &rack->rc_inp->inp_socket->so_rcv,
990 		    &rack->rc_inp->inp_socket->so_snd,
991 		    BBR_LOG_BBRSND, 0,
992 		    0, &log, false);
993 	}
994 }
995 
996 static void
997 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
998 {
999 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1000 		union tcp_log_stackspecific log;
1001 		log.u_bbr.flex1 = did_out;
1002 		log.u_bbr.flex2 = nxt_pkt;
1003 		log.u_bbr.flex3 = way_out;
1004 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1005 		log.u_bbr.flex7 = rack->r_wanted_output;
1006 		log.u_bbr.flex8 = rack->rc_in_persist;
1007 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1008 		    &rack->rc_inp->inp_socket->so_rcv,
1009 		    &rack->rc_inp->inp_socket->so_snd,
1010 		    BBR_LOG_DOSEG_DONE, 0,
1011 		    0, &log, false);
1012 	}
1013 }
1014 
1015 
1016 static void
1017 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1018 {
1019 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1020 		union tcp_log_stackspecific log;
1021 
1022 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1023 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1024 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1025 		log.u_bbr.flex1 = slot;
1026 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1027 		log.u_bbr.flex7 = hpts_calling;
1028 		log.u_bbr.flex8 = rack->rc_in_persist;
1029 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1030 		    &rack->rc_inp->inp_socket->so_rcv,
1031 		    &rack->rc_inp->inp_socket->so_snd,
1032 		    BBR_LOG_JUSTRET, 0,
1033 		    tlen, &log, false);
1034 	}
1035 }
1036 
1037 static void
1038 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1039 {
1040 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1041 		union tcp_log_stackspecific log;
1042 
1043 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1044 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1045 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1046 		log.u_bbr.flex1 = line;
1047 		log.u_bbr.flex2 = 0;
1048 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1049 		log.u_bbr.flex4 = 0;
1050 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1051 		log.u_bbr.flex8 = hpts_removed;
1052 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1053 		    &rack->rc_inp->inp_socket->so_rcv,
1054 		    &rack->rc_inp->inp_socket->so_snd,
1055 		    BBR_LOG_TIMERCANC, 0,
1056 		    0, &log, false);
1057 	}
1058 }
1059 
1060 static void
1061 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1062 {
1063 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1064 		union tcp_log_stackspecific log;
1065 
1066 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1067 		log.u_bbr.flex1 = timers;
1068 		log.u_bbr.flex2 = ret;
1069 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1070 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1071 		log.u_bbr.flex5 = cts;
1072 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1073 		    &rack->rc_inp->inp_socket->so_rcv,
1074 		    &rack->rc_inp->inp_socket->so_snd,
1075 		    BBR_LOG_TO_PROCESS, 0,
1076 		    0, &log, false);
1077 	}
1078 }
1079 
1080 static void
1081 rack_counter_destroy()
1082 {
1083 	counter_u64_free(rack_badfr);
1084 	counter_u64_free(rack_badfr_bytes);
1085 	counter_u64_free(rack_rtm_prr_retran);
1086 	counter_u64_free(rack_rtm_prr_newdata);
1087 	counter_u64_free(rack_timestamp_mismatch);
1088 	counter_u64_free(rack_reorder_seen);
1089 	counter_u64_free(rack_tlp_tot);
1090 	counter_u64_free(rack_tlp_newdata);
1091 	counter_u64_free(rack_tlp_retran);
1092 	counter_u64_free(rack_tlp_retran_bytes);
1093 	counter_u64_free(rack_tlp_retran_fail);
1094 	counter_u64_free(rack_to_tot);
1095 	counter_u64_free(rack_to_arm_rack);
1096 	counter_u64_free(rack_to_arm_tlp);
1097 	counter_u64_free(rack_paced_segments);
1098 	counter_u64_free(rack_unpaced_segments);
1099 	counter_u64_free(rack_saw_enobuf);
1100 	counter_u64_free(rack_saw_enetunreach);
1101 	counter_u64_free(rack_to_alloc_hard);
1102 	counter_u64_free(rack_to_alloc_emerg);
1103 	counter_u64_free(rack_sack_proc_all);
1104 	counter_u64_free(rack_sack_proc_short);
1105 	counter_u64_free(rack_sack_proc_restart);
1106 	counter_u64_free(rack_to_alloc);
1107 	counter_u64_free(rack_find_high);
1108 	counter_u64_free(rack_runt_sacks);
1109 	counter_u64_free(rack_enter_tlp_calc);
1110 	counter_u64_free(rack_used_tlpmethod);
1111 	counter_u64_free(rack_used_tlpmethod2);
1112 	counter_u64_free(rack_progress_drops);
1113 	counter_u64_free(rack_input_idle_reduces);
1114 	counter_u64_free(rack_tlp_does_nada);
1115 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1116 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1117 }
1118 
1119 static struct rack_sendmap *
1120 rack_alloc(struct tcp_rack *rack)
1121 {
1122 	struct rack_sendmap *rsm;
1123 
1124 	counter_u64_add(rack_to_alloc, 1);
1125 	rack->r_ctl.rc_num_maps_alloced++;
1126 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1127 	if (rsm) {
1128 		return (rsm);
1129 	}
1130 	if (rack->rc_free_cnt) {
1131 		counter_u64_add(rack_to_alloc_emerg, 1);
1132 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1133 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
1134 		rack->rc_free_cnt--;
1135 		return (rsm);
1136 	}
1137 	return (NULL);
1138 }
1139 
1140 static void
1141 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1142 {
1143 	rack->r_ctl.rc_num_maps_alloced--;
1144 	if (rack->r_ctl.rc_tlpsend == rsm)
1145 		rack->r_ctl.rc_tlpsend = NULL;
1146 	if (rack->r_ctl.rc_next == rsm)
1147 		rack->r_ctl.rc_next = NULL;
1148 	if (rack->r_ctl.rc_sacklast == rsm)
1149 		rack->r_ctl.rc_sacklast = NULL;
1150 	if (rack->rc_free_cnt < rack_free_cache) {
1151 		memset(rsm, 0, sizeof(struct rack_sendmap));
1152 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
1153 		rack->rc_free_cnt++;
1154 		return;
1155 	}
1156 	uma_zfree(rack_zone, rsm);
1157 }
1158 
1159 /*
1160  * CC wrapper hook functions
1161  */
1162 static void
1163 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1164     uint16_t type, int32_t recovery)
1165 {
1166 #ifdef NETFLIX_STATS
1167 	int32_t gput;
1168 #endif
1169 #ifdef NETFLIX_CWV
1170 	u_long old_cwnd = tp->snd_cwnd;
1171 #endif
1172 
1173 	INP_WLOCK_ASSERT(tp->t_inpcb);
1174 	tp->ccv->nsegs = nsegs;
1175 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1176 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1177 		uint32_t max;
1178 
1179 		max = rack->r_ctl.rc_early_recovery_segs * tp->t_maxseg;
1180 		if (tp->ccv->bytes_this_ack > max) {
1181 			tp->ccv->bytes_this_ack = max;
1182 		}
1183 	}
1184 	if (tp->snd_cwnd <= tp->snd_wnd)
1185 		tp->ccv->flags |= CCF_CWND_LIMITED;
1186 	else
1187 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1188 
1189 	if (type == CC_ACK) {
1190 #ifdef NETFLIX_STATS
1191 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1192 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1193 		if ((tp->t_flags & TF_GPUTINPROG) &&
1194 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1195 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1196 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1197 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1198 			    gput);
1199 			/*
1200 			 * XXXLAS: This is a temporary hack, and should be
1201 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1202 			 * API to deal with chained VOIs.
1203 			 */
1204 			if (tp->t_stats_gput_prev > 0)
1205 				stats_voi_update_abs_s32(tp->t_stats,
1206 				    VOI_TCP_GPUT_ND,
1207 				    ((gput - tp->t_stats_gput_prev) * 100) /
1208 				    tp->t_stats_gput_prev);
1209 			tp->t_flags &= ~TF_GPUTINPROG;
1210 			tp->t_stats_gput_prev = gput;
1211 #ifdef NETFLIX_CWV
1212 			if (tp->t_maxpeakrate) {
1213 				/*
1214 				 * We update t_peakrate_thr. This gives us roughly
1215 				 * one update per round trip time.
1216 				 */
1217 				tcp_update_peakrate_thr(tp);
1218 			}
1219 #endif
1220 		}
1221 #endif
1222 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1223 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1224 			    nsegs * V_tcp_abc_l_var * tp->t_maxseg);
1225 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1226 				tp->t_bytes_acked -= tp->snd_cwnd;
1227 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1228 			}
1229 		} else {
1230 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1231 			tp->t_bytes_acked = 0;
1232 		}
1233 	}
1234 	if (CC_ALGO(tp)->ack_received != NULL) {
1235 		/* XXXLAS: Find a way to live without this */
1236 		tp->ccv->curack = th->th_ack;
1237 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1238 	}
1239 #ifdef NETFLIX_STATS
1240 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1241 #endif
1242 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1243 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1244 	}
1245 #ifdef NETFLIX_CWV
1246 	if (tp->cwv_enabled) {
1247 		/*
1248 		 * Per RFC 7661: The behaviour in the non-validated phase is
1249 		 * specified as: o  A sender determines whether to increase
1250 		 * the cwnd based upon whether it is cwnd-limited (see
1251 		 * Section 4.5.3): * A sender that is cwnd-limited MAY use
1252 		 * the standard TCP method to increase cwnd (i.e., the
1253 		 * standard method permits a TCP sender that fully utilises
1254 		 * the cwnd to increase the cwnd each time it receives an
1255 		 * ACK). * A sender that is not cwnd-limited MUST NOT
1256 		 * increase the cwnd when ACK packets are received in this
1257 		 * phase (i.e., needs to avoid growing the cwnd when it has
1258 		 * not recently sent using the current size of cwnd).
1259 		 */
1260 		if ((tp->snd_cwnd > old_cwnd) &&
1261 		    (tp->cwv_cwnd_valid == 0) &&
1262 		    (!(tp->ccv->flags & CCF_CWND_LIMITED))) {
1263 			tp->snd_cwnd = old_cwnd;
1264 		}
1265 		/* Try to update pipeAck and NCWV state */
1266 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
1267 		    !IN_RECOVERY(tp->t_flags)) {
1268 			uint32_t data = sbavail(&(tp->t_inpcb->inp_socket->so_snd));
1269 
1270 			tcp_newcwv_update_pipeack(tp, data);
1271 		}
1272 	}
1273 	/* we enforce max peak rate if it is set. */
1274 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1275 		tp->snd_cwnd = tp->t_peakrate_thr;
1276 	}
1277 #endif
1278 }
1279 
1280 static void
1281 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1282 {
1283 	struct tcp_rack *rack;
1284 
1285 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1286 	INP_WLOCK_ASSERT(tp->t_inpcb);
1287 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1288 		rack->r_wanted_output++;
1289 }
1290 
1291 static void
1292 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1293 {
1294 	struct tcp_rack *rack;
1295 
1296 	INP_WLOCK_ASSERT(tp->t_inpcb);
1297 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1298 	if (CC_ALGO(tp)->post_recovery != NULL) {
1299 		tp->ccv->curack = th->th_ack;
1300 		CC_ALGO(tp)->post_recovery(tp->ccv);
1301 	}
1302 	/*
1303 	 * Here we can in theory adjust cwnd to be based on the number of
1304 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1305 	 * based on the rack_use_proportional flag.
1306 	 */
1307 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1308 		int32_t reduce;
1309 
1310 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1311 		if (reduce > 50) {
1312 			reduce = 50;
1313 		}
1314 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1315 	} else {
1316 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1317 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1318 			tp->snd_cwnd = tp->snd_ssthresh;
1319 		}
1320 	}
1321 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1322 		/* Suck the next prr cnt back into cwnd */
1323 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1324 		rack->r_ctl.rc_prr_sndcnt = 0;
1325 	}
1326 	EXIT_RECOVERY(tp->t_flags);
1327 
1328 
1329 #ifdef NETFLIX_CWV
1330 	if (tp->cwv_enabled) {
1331 		if ((tp->cwv_cwnd_valid == 0) &&
1332 		    (tp->snd_cwv.in_recovery))
1333 			tcp_newcwv_end_recovery(tp);
1334 	}
1335 #endif
1336 }
1337 
1338 static void
1339 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1340 {
1341 	struct tcp_rack *rack;
1342 
1343 	INP_WLOCK_ASSERT(tp->t_inpcb);
1344 
1345 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1346 	switch (type) {
1347 	case CC_NDUPACK:
1348 /*		rack->r_ctl.rc_ssthresh_set = 1;*/
1349 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1350 			rack->r_ctl.rc_tlp_rtx_out = 0;
1351 			rack->r_ctl.rc_prr_delivered = 0;
1352 			rack->r_ctl.rc_prr_out = 0;
1353 			rack->r_ctl.rc_loss_count = 0;
1354 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
1355 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1356 			tp->snd_recover = tp->snd_max;
1357 			if (tp->t_flags & TF_ECN_PERMIT)
1358 				tp->t_flags |= TF_ECN_SND_CWR;
1359 		}
1360 		break;
1361 	case CC_ECN:
1362 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1363 			TCPSTAT_INC(tcps_ecn_rcwnd);
1364 			tp->snd_recover = tp->snd_max;
1365 			if (tp->t_flags & TF_ECN_PERMIT)
1366 				tp->t_flags |= TF_ECN_SND_CWR;
1367 		}
1368 		break;
1369 	case CC_RTO:
1370 		tp->t_dupacks = 0;
1371 		tp->t_bytes_acked = 0;
1372 		EXIT_RECOVERY(tp->t_flags);
1373 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1374 		    tp->t_maxseg) * tp->t_maxseg;
1375 		tp->snd_cwnd = tp->t_maxseg;
1376 		break;
1377 	case CC_RTO_ERR:
1378 		TCPSTAT_INC(tcps_sndrexmitbad);
1379 		/* RTO was unnecessary, so reset everything. */
1380 		tp->snd_cwnd = tp->snd_cwnd_prev;
1381 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1382 		tp->snd_recover = tp->snd_recover_prev;
1383 		if (tp->t_flags & TF_WASFRECOVERY)
1384 			ENTER_FASTRECOVERY(tp->t_flags);
1385 		if (tp->t_flags & TF_WASCRECOVERY)
1386 			ENTER_CONGRECOVERY(tp->t_flags);
1387 		tp->snd_nxt = tp->snd_max;
1388 		tp->t_badrxtwin = 0;
1389 		break;
1390 	}
1391 
1392 	if (CC_ALGO(tp)->cong_signal != NULL) {
1393 		if (th != NULL)
1394 			tp->ccv->curack = th->th_ack;
1395 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1396 	}
1397 #ifdef NETFLIX_CWV
1398 	if (tp->cwv_enabled) {
1399 		if (tp->snd_cwv.in_recovery == 0 && IN_RECOVERY(tp->t_flags)) {
1400 			tcp_newcwv_enter_recovery(tp);
1401 		}
1402 		if (type == CC_RTO) {
1403 			tcp_newcwv_reset(tp);
1404 		}
1405 	}
1406 #endif
1407 }
1408 
1409 
1410 
1411 static inline void
1412 rack_cc_after_idle(struct tcpcb *tp, int reduce_largest)
1413 {
1414 	uint32_t i_cwnd;
1415 
1416 	INP_WLOCK_ASSERT(tp->t_inpcb);
1417 
1418 #ifdef NETFLIX_STATS
1419 	TCPSTAT_INC(tcps_idle_restarts);
1420 	if (tp->t_state == TCPS_ESTABLISHED)
1421 		TCPSTAT_INC(tcps_idle_estrestarts);
1422 #endif
1423 	if (CC_ALGO(tp)->after_idle != NULL)
1424 		CC_ALGO(tp)->after_idle(tp->ccv);
1425 
1426 	if (tp->snd_cwnd == 1)
1427 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1428 	else if (V_tcp_initcwnd_segments)
1429 		i_cwnd = min((V_tcp_initcwnd_segments * tp->t_maxseg),
1430 		    max(2 * tp->t_maxseg, V_tcp_initcwnd_segments * 1460));
1431 	else if (V_tcp_do_rfc3390)
1432 		i_cwnd = min(4 * tp->t_maxseg,
1433 		    max(2 * tp->t_maxseg, 4380));
1434 	else {
1435 		/* Per RFC5681 Section 3.1 */
1436 		if (tp->t_maxseg > 2190)
1437 			i_cwnd = 2 * tp->t_maxseg;
1438 		else if (tp->t_maxseg > 1095)
1439 			i_cwnd = 3 * tp->t_maxseg;
1440 		else
1441 			i_cwnd = 4 * tp->t_maxseg;
1442 	}
1443 	if (reduce_largest) {
1444 		/*
1445 		 * Do we reduce the largest cwnd to make
1446 		 * rack play nice on restart hptsi wise?
1447 		 */
1448 		if (((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd  > i_cwnd)
1449 			((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd = i_cwnd;
1450 	}
1451 	/*
1452 	 * Being idle is no differnt than the initial window. If the cc
1453 	 * clamps it down below the initial window raise it to the initial
1454 	 * window.
1455 	 */
1456 	if (tp->snd_cwnd < i_cwnd) {
1457 		tp->snd_cwnd = i_cwnd;
1458 	}
1459 }
1460 
1461 
1462 /*
1463  * Indicate whether this ack should be delayed.  We can delay the ack if
1464  * following conditions are met:
1465  *	- There is no delayed ack timer in progress.
1466  *	- Our last ack wasn't a 0-sized window. We never want to delay
1467  *	  the ack that opens up a 0-sized window.
1468  *	- LRO wasn't used for this segment. We make sure by checking that the
1469  *	  segment size is not larger than the MSS.
1470  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1471  *	  connection.
1472  */
1473 #define DELAY_ACK(tp, tlen)			 \
1474 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1475 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1476 	(tlen <= tp->t_maxseg) &&		 \
1477 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1478 
1479 static inline void
1480 rack_calc_rwin(struct socket *so, struct tcpcb *tp)
1481 {
1482 	int32_t win;
1483 
1484 	/*
1485 	 * Calculate amount of space in receive window, and then do TCP
1486 	 * input processing. Receive window is amount of space in rcv queue,
1487 	 * but not less than advertised window.
1488 	 */
1489 	win = sbspace(&so->so_rcv);
1490 	if (win < 0)
1491 		win = 0;
1492 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1493 }
1494 
1495 static void
1496 rack_do_drop(struct mbuf *m, struct tcpcb *tp)
1497 {
1498 	/*
1499 	 * Drop space held by incoming segment and return.
1500 	 */
1501 	if (tp != NULL)
1502 		INP_WUNLOCK(tp->t_inpcb);
1503 	if (m)
1504 		m_freem(m);
1505 }
1506 
1507 static void
1508 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
1509     int32_t rstreason, int32_t tlen)
1510 {
1511 	if (tp != NULL) {
1512 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1513 		INP_WUNLOCK(tp->t_inpcb);
1514 	} else
1515 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1516 }
1517 
1518 /*
1519  * The value in ret_val informs the caller
1520  * if we dropped the tcb (and lock) or not.
1521  * 1 = we dropped it, 0 = the TCB is still locked
1522  * and valid.
1523  */
1524 static void
1525 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
1526 {
1527 	/*
1528 	 * Generate an ACK dropping incoming segment if it occupies sequence
1529 	 * space, where the ACK reflects our state.
1530 	 *
1531 	 * We can now skip the test for the RST flag since all paths to this
1532 	 * code happen after packets containing RST have been dropped.
1533 	 *
1534 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
1535 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
1536 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
1537 	 * prevents an ACK storm between two listening ports that have been
1538 	 * sent forged SYN segments, each with the source address of the
1539 	 * other.
1540 	 */
1541 	struct tcp_rack *rack;
1542 
1543 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
1544 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
1545 	    SEQ_GT(th->th_ack, tp->snd_max))) {
1546 		*ret_val = 1;
1547 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
1548 		return;
1549 	} else
1550 		*ret_val = 0;
1551 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1552 	rack->r_wanted_output++;
1553 	tp->t_flags |= TF_ACKNOW;
1554 	if (m)
1555 		m_freem(m);
1556 }
1557 
1558 
1559 static int
1560 rack_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
1561 {
1562 	/*
1563 	 * RFC5961 Section 3.2
1564 	 *
1565 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
1566 	 * window, we send challenge ACK.
1567 	 *
1568 	 * Note: to take into account delayed ACKs, we should test against
1569 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
1570 	 * of closed window, not covered by the RFC.
1571 	 */
1572 	int dropped = 0;
1573 
1574 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
1575 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1576 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1577 
1578 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1579 		KASSERT(tp->t_state != TCPS_SYN_SENT,
1580 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
1581 		    __func__, th, tp));
1582 
1583 		if (V_tcp_insecure_rst ||
1584 		    (tp->last_ack_sent == th->th_seq) ||
1585 		    (tp->rcv_nxt == th->th_seq) ||
1586 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
1587 			TCPSTAT_INC(tcps_drops);
1588 			/* Drop the connection. */
1589 			switch (tp->t_state) {
1590 			case TCPS_SYN_RECEIVED:
1591 				so->so_error = ECONNREFUSED;
1592 				goto close;
1593 			case TCPS_ESTABLISHED:
1594 			case TCPS_FIN_WAIT_1:
1595 			case TCPS_FIN_WAIT_2:
1596 			case TCPS_CLOSE_WAIT:
1597 			case TCPS_CLOSING:
1598 			case TCPS_LAST_ACK:
1599 				so->so_error = ECONNRESET;
1600 		close:
1601 				tcp_state_change(tp, TCPS_CLOSED);
1602 				/* FALLTHROUGH */
1603 			default:
1604 				tp = tcp_close(tp);
1605 			}
1606 			dropped = 1;
1607 			rack_do_drop(m, tp);
1608 		} else {
1609 			TCPSTAT_INC(tcps_badrst);
1610 			/* Send challenge ACK. */
1611 			tcp_respond(tp, mtod(m, void *), th, m,
1612 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
1613 			tp->last_ack_sent = tp->rcv_nxt;
1614 		}
1615 	} else {
1616 		m_freem(m);
1617 	}
1618 	return (dropped);
1619 }
1620 
1621 /*
1622  * The value in ret_val informs the caller
1623  * if we dropped the tcb (and lock) or not.
1624  * 1 = we dropped it, 0 = the TCB is still locked
1625  * and valid.
1626  */
1627 static void
1628 rack_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
1629 {
1630 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1631 
1632 	TCPSTAT_INC(tcps_badsyn);
1633 	if (V_tcp_insecure_syn &&
1634 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1635 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1636 		tp = tcp_drop(tp, ECONNRESET);
1637 		*ret_val = 1;
1638 		rack_do_drop(m, tp);
1639 	} else {
1640 		/* Send challenge ACK. */
1641 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
1642 		    tp->snd_nxt, TH_ACK);
1643 		tp->last_ack_sent = tp->rcv_nxt;
1644 		m = NULL;
1645 		*ret_val = 0;
1646 		rack_do_drop(m, NULL);
1647 	}
1648 }
1649 
1650 /*
1651  * rack_ts_check returns 1 for you should not proceed. It places
1652  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1653  * that the TCB is unlocked and probably dropped. The 0 indicates the
1654  * TCB is still valid and locked.
1655  */
1656 static int
1657 rack_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t * ret_val)
1658 {
1659 
1660 	/* Check to see if ts_recent is over 24 days old.  */
1661 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
1662 		/*
1663 		 * Invalidate ts_recent.  If this segment updates ts_recent,
1664 		 * the age will be reset later and ts_recent will get a
1665 		 * valid value.  If it does not, setting ts_recent to zero
1666 		 * will at least satisfy the requirement that zero be placed
1667 		 * in the timestamp echo reply when ts_recent isn't valid.
1668 		 * The age isn't reset until we get a valid ts_recent
1669 		 * because we don't want out-of-order segments to be dropped
1670 		 * when ts_recent is old.
1671 		 */
1672 		tp->ts_recent = 0;
1673 	} else {
1674 		TCPSTAT_INC(tcps_rcvduppack);
1675 		TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1676 		TCPSTAT_INC(tcps_pawsdrop);
1677 		*ret_val = 0;
1678 		if (tlen) {
1679 			rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
1680 		} else {
1681 			rack_do_drop(m, NULL);
1682 		}
1683 		return (1);
1684 	}
1685 	return (0);
1686 }
1687 
1688 /*
1689  * rack_drop_checks returns 1 for you should not proceed. It places
1690  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1691  * that the TCB is unlocked and probably dropped. The 0 indicates the
1692  * TCB is still valid and locked.
1693  */
1694 static int
1695 rack_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
1696 {
1697 	int32_t todrop;
1698 	int32_t thflags;
1699 	int32_t tlen;
1700 
1701 	thflags = *thf;
1702 	tlen = *tlenp;
1703 	todrop = tp->rcv_nxt - th->th_seq;
1704 	if (todrop > 0) {
1705 		if (thflags & TH_SYN) {
1706 			thflags &= ~TH_SYN;
1707 			th->th_seq++;
1708 			if (th->th_urp > 1)
1709 				th->th_urp--;
1710 			else
1711 				thflags &= ~TH_URG;
1712 			todrop--;
1713 		}
1714 		/*
1715 		 * Following if statement from Stevens, vol. 2, p. 960.
1716 		 */
1717 		if (todrop > tlen
1718 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1719 			/*
1720 			 * Any valid FIN must be to the left of the window.
1721 			 * At this point the FIN must be a duplicate or out
1722 			 * of sequence; drop it.
1723 			 */
1724 			thflags &= ~TH_FIN;
1725 			/*
1726 			 * Send an ACK to resynchronize and drop any data.
1727 			 * But keep on processing for RST or ACK.
1728 			 */
1729 			tp->t_flags |= TF_ACKNOW;
1730 			todrop = tlen;
1731 			TCPSTAT_INC(tcps_rcvduppack);
1732 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1733 		} else {
1734 			TCPSTAT_INC(tcps_rcvpartduppack);
1735 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1736 		}
1737 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
1738 		th->th_seq += todrop;
1739 		tlen -= todrop;
1740 		if (th->th_urp > todrop)
1741 			th->th_urp -= todrop;
1742 		else {
1743 			thflags &= ~TH_URG;
1744 			th->th_urp = 0;
1745 		}
1746 	}
1747 	/*
1748 	 * If segment ends after window, drop trailing data (and PUSH and
1749 	 * FIN); if nothing left, just ACK.
1750 	 */
1751 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1752 	if (todrop > 0) {
1753 		TCPSTAT_INC(tcps_rcvpackafterwin);
1754 		if (todrop >= tlen) {
1755 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1756 			/*
1757 			 * If window is closed can only take segments at
1758 			 * window edge, and have to drop data and PUSH from
1759 			 * incoming segments.  Continue processing, but
1760 			 * remember to ack.  Otherwise, drop segment and
1761 			 * ack.
1762 			 */
1763 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1764 				tp->t_flags |= TF_ACKNOW;
1765 				TCPSTAT_INC(tcps_rcvwinprobe);
1766 			} else {
1767 				rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
1768 				return (1);
1769 			}
1770 		} else
1771 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1772 		m_adj(m, -todrop);
1773 		tlen -= todrop;
1774 		thflags &= ~(TH_PUSH | TH_FIN);
1775 	}
1776 	*thf = thflags;
1777 	*tlenp = tlen;
1778 	return (0);
1779 }
1780 
1781 static struct rack_sendmap *
1782 rack_find_lowest_rsm(struct tcp_rack *rack)
1783 {
1784 	struct rack_sendmap *rsm;
1785 
1786 	/*
1787 	 * Walk the time-order transmitted list looking for an rsm that is
1788 	 * not acked. This will be the one that was sent the longest time
1789 	 * ago that is still outstanding.
1790 	 */
1791 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1792 		if (rsm->r_flags & RACK_ACKED) {
1793 			continue;
1794 		}
1795 		goto finish;
1796 	}
1797 finish:
1798 	return (rsm);
1799 }
1800 
1801 static struct rack_sendmap *
1802 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1803 {
1804 	struct rack_sendmap *prsm;
1805 
1806 	/*
1807 	 * Walk the sequence order list backward until we hit and arrive at
1808 	 * the highest seq not acked. In theory when this is called it
1809 	 * should be the last segment (which it was not).
1810 	 */
1811 	counter_u64_add(rack_find_high, 1);
1812 	prsm = rsm;
1813 	TAILQ_FOREACH_REVERSE_FROM(prsm, &rack->r_ctl.rc_map, rack_head, r_next) {
1814 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1815 			continue;
1816 		}
1817 		return (prsm);
1818 	}
1819 	return (NULL);
1820 }
1821 
1822 
1823 static uint32_t
1824 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1825 {
1826 	int32_t lro;
1827 	uint32_t thresh;
1828 
1829 	/*
1830 	 * lro is the flag we use to determine if we have seen reordering.
1831 	 * If it gets set we have seen reordering. The reorder logic either
1832 	 * works in one of two ways:
1833 	 *
1834 	 * If reorder-fade is configured, then we track the last time we saw
1835 	 * re-ordering occur. If we reach the point where enough time as
1836 	 * passed we no longer consider reordering has occuring.
1837 	 *
1838 	 * Or if reorder-face is 0, then once we see reordering we consider
1839 	 * the connection to alway be subject to reordering and just set lro
1840 	 * to 1.
1841 	 *
1842 	 * In the end if lro is non-zero we add the extra time for
1843 	 * reordering in.
1844 	 */
1845 	if (srtt == 0)
1846 		srtt = 1;
1847 	if (rack->r_ctl.rc_reorder_ts) {
1848 		if (rack->r_ctl.rc_reorder_fade) {
1849 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1850 				lro = cts - rack->r_ctl.rc_reorder_ts;
1851 				if (lro == 0) {
1852 					/*
1853 					 * No time as passed since the last
1854 					 * reorder, mark it as reordering.
1855 					 */
1856 					lro = 1;
1857 				}
1858 			} else {
1859 				/* Negative time? */
1860 				lro = 0;
1861 			}
1862 			if (lro > rack->r_ctl.rc_reorder_fade) {
1863 				/* Turn off reordering seen too */
1864 				rack->r_ctl.rc_reorder_ts = 0;
1865 				lro = 0;
1866 			}
1867 		} else {
1868 			/* Reodering does not fade */
1869 			lro = 1;
1870 		}
1871 	} else {
1872 		lro = 0;
1873 	}
1874 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1875 	if (lro) {
1876 		/* It must be set, if not you get 1/4 rtt */
1877 		if (rack->r_ctl.rc_reorder_shift)
1878 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1879 		else
1880 			thresh += (srtt >> 2);
1881 	} else {
1882 		thresh += 1;
1883 	}
1884 	/* We don't let the rack timeout be above a RTO */
1885 
1886 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
1887 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
1888 	}
1889 	/* And we don't want it above the RTO max either */
1890 	if (thresh > rack_rto_max) {
1891 		thresh = rack_rto_max;
1892 	}
1893 	return (thresh);
1894 }
1895 
1896 static uint32_t
1897 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
1898 		     struct rack_sendmap *rsm, uint32_t srtt)
1899 {
1900 	struct rack_sendmap *prsm;
1901 	uint32_t thresh, len;
1902 	int maxseg;
1903 
1904 	if (srtt == 0)
1905 		srtt = 1;
1906 	if (rack->r_ctl.rc_tlp_threshold)
1907 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
1908 	else
1909 		thresh = (srtt * 2);
1910 
1911 	/* Get the previous sent packet, if any  */
1912 	maxseg = tcp_maxseg(tp);
1913 	counter_u64_add(rack_enter_tlp_calc, 1);
1914 	len = rsm->r_end - rsm->r_start;
1915 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
1916 		/* Exactly like the ID */
1917 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
1918 			uint32_t alt_thresh;
1919 			/*
1920 			 * Compensate for delayed-ack with the d-ack time.
1921 			 */
1922 			counter_u64_add(rack_used_tlpmethod, 1);
1923 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1924 			if (alt_thresh > thresh)
1925 				thresh = alt_thresh;
1926 		}
1927 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
1928 		/* 2.1 behavior */
1929 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
1930 		if (prsm && (len <= maxseg)) {
1931 			/*
1932 			 * Two packets outstanding, thresh should be (2*srtt) +
1933 			 * possible inter-packet delay (if any).
1934 			 */
1935 			uint32_t inter_gap = 0;
1936 			int idx, nidx;
1937 
1938 			counter_u64_add(rack_used_tlpmethod, 1);
1939 			idx = rsm->r_rtr_cnt - 1;
1940 			nidx = prsm->r_rtr_cnt - 1;
1941 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
1942 				/* Yes it was sent later (or at the same time) */
1943 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
1944 			}
1945 			thresh += inter_gap;
1946 		} else 	if (len <= maxseg) {
1947 			/*
1948 			 * Possibly compensate for delayed-ack.
1949 			 */
1950 			uint32_t alt_thresh;
1951 
1952 			counter_u64_add(rack_used_tlpmethod2, 1);
1953 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1954 			if (alt_thresh > thresh)
1955 				thresh = alt_thresh;
1956 		}
1957 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
1958 		/* 2.2 behavior */
1959 		if (len <= maxseg) {
1960 			uint32_t alt_thresh;
1961 			/*
1962 			 * Compensate for delayed-ack with the d-ack time.
1963 			 */
1964 			counter_u64_add(rack_used_tlpmethod, 1);
1965 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1966 			if (alt_thresh > thresh)
1967 				thresh = alt_thresh;
1968 		}
1969 	}
1970  	/* Not above an RTO */
1971 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
1972 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
1973 	}
1974 	/* Not above a RTO max */
1975 	if (thresh > rack_rto_max) {
1976 		thresh = rack_rto_max;
1977 	}
1978 	/* Apply user supplied min TLP */
1979 	if (thresh < rack_tlp_min) {
1980 		thresh = rack_tlp_min;
1981 	}
1982 	return (thresh);
1983 }
1984 
1985 static struct rack_sendmap *
1986 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
1987 {
1988 	/*
1989 	 * Check to see that we don't need to fall into recovery. We will
1990 	 * need to do so if our oldest transmit is past the time we should
1991 	 * have had an ack.
1992 	 */
1993 	struct tcp_rack *rack;
1994 	struct rack_sendmap *rsm;
1995 	int32_t idx;
1996 	uint32_t srtt_cur, srtt, thresh;
1997 
1998 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1999 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
2000 		return (NULL);
2001 	}
2002 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
2003 	srtt = TICKS_2_MSEC(srtt_cur);
2004 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
2005 		srtt = rack->rc_rack_rtt;
2006 
2007 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2008 	if (rsm == NULL)
2009 		return (NULL);
2010 
2011 	if (rsm->r_flags & RACK_ACKED) {
2012 		rsm = rack_find_lowest_rsm(rack);
2013 		if (rsm == NULL)
2014 			return (NULL);
2015 	}
2016 	idx = rsm->r_rtr_cnt - 1;
2017 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2018 	if (tsused < rsm->r_tim_lastsent[idx]) {
2019 		return (NULL);
2020 	}
2021 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2022 		return (NULL);
2023 	}
2024 	/* Ok if we reach here we are over-due */
2025 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2026 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2027 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2028 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2029 	return (rsm);
2030 }
2031 
2032 static uint32_t
2033 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2034 {
2035 	int32_t t;
2036 	int32_t tt;
2037 	uint32_t ret_val;
2038 
2039 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2040 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2041 	    tcp_persmin, tcp_persmax);
2042 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2043 		tp->t_rxtshift++;
2044 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2045 	ret_val = (uint32_t)tt;
2046 	return (ret_val);
2047 }
2048 
2049 static uint32_t
2050 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2051 {
2052 	/*
2053 	 * Start the FR timer, we do this based on getting the first one in
2054 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2055 	 * events we need to stop the running timer (if its running) before
2056 	 * starting the new one.
2057 	 */
2058 	uint32_t thresh, exp, to, srtt, time_since_sent;
2059 	uint32_t srtt_cur;
2060 	int32_t idx;
2061 	int32_t is_tlp_timer = 0;
2062 	struct rack_sendmap *rsm;
2063 
2064 	if (rack->t_timers_stopped) {
2065 		/* All timers have been stopped none are to run */
2066 		return (0);
2067 	}
2068 	if (rack->rc_in_persist) {
2069 		/* We can't start any timer in persists */
2070 		return (rack_get_persists_timer_val(tp, rack));
2071 	}
2072 	if (tp->t_state < TCPS_ESTABLISHED)
2073 		goto activate_rxt;
2074 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2075 	if (rsm == NULL) {
2076 		/* Nothing on the send map */
2077 activate_rxt:
2078 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2079 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2080 			to = TICKS_2_MSEC(tp->t_rxtcur);
2081 			if (to == 0)
2082 				to = 1;
2083 			return (to);
2084 		}
2085 		return (0);
2086 	}
2087 	if (rsm->r_flags & RACK_ACKED) {
2088 		rsm = rack_find_lowest_rsm(rack);
2089 		if (rsm == NULL) {
2090 			/* No lowest? */
2091 			goto activate_rxt;
2092 		}
2093 	}
2094 	/* Convert from ms to usecs */
2095 	if (rsm->r_flags & RACK_SACK_PASSED) {
2096 		if ((tp->t_flags & TF_SENTFIN) &&
2097 		    ((tp->snd_max - tp->snd_una) == 1) &&
2098 		    (rsm->r_flags & RACK_HAS_FIN)) {
2099 			/*
2100 			 * We don't start a rack timer if all we have is a
2101 			 * FIN outstanding.
2102 			 */
2103 			goto activate_rxt;
2104 		}
2105 		if (tp->t_srtt) {
2106 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2107 			srtt = TICKS_2_MSEC(srtt_cur);
2108 		} else
2109 			srtt = RACK_INITIAL_RTO;
2110 
2111 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2112 		idx = rsm->r_rtr_cnt - 1;
2113 		exp = rsm->r_tim_lastsent[idx] + thresh;
2114 		if (SEQ_GEQ(exp, cts)) {
2115 			to = exp - cts;
2116 			if (to < rack->r_ctl.rc_min_to) {
2117 				to = rack->r_ctl.rc_min_to;
2118 			}
2119 		} else {
2120 			to = rack->r_ctl.rc_min_to;
2121 		}
2122 	} else {
2123 		/* Ok we need to do a TLP not RACK */
2124 		if ((rack->rc_tlp_in_progress != 0) ||
2125 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2126 			/*
2127 			 * The previous send was a TLP or a tlp_rtx is in
2128 			 * process.
2129 			 */
2130 			goto activate_rxt;
2131 		}
2132 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2133 		if (rsm == NULL) {
2134 			/* We found no rsm to TLP with. */
2135 			goto activate_rxt;
2136 		}
2137 		if (rsm->r_flags & RACK_HAS_FIN) {
2138 			/* If its a FIN we dont do TLP */
2139 			rsm = NULL;
2140 			goto activate_rxt;
2141 		}
2142 		idx = rsm->r_rtr_cnt - 1;
2143 		if (TSTMP_GT(cts,  rsm->r_tim_lastsent[idx]))
2144 			time_since_sent = cts - rsm->r_tim_lastsent[idx];
2145 		else
2146 			time_since_sent = 0;
2147 		is_tlp_timer = 1;
2148 		if (tp->t_srtt) {
2149 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2150 			srtt = TICKS_2_MSEC(srtt_cur);
2151 		} else
2152 			srtt = RACK_INITIAL_RTO;
2153 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2154 		if (thresh > time_since_sent)
2155 			to = thresh - time_since_sent;
2156 		else
2157 			to = rack->r_ctl.rc_min_to;
2158 		if (to > TCPTV_REXMTMAX) {
2159 			/*
2160 			 * If the TLP time works out to larger than the max
2161 			 * RTO lets not do TLP.. just RTO.
2162 			 */
2163 			goto activate_rxt;
2164 		}
2165 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2166 			/*
2167 			 * The tail is no longer the last one I did a probe
2168 			 * on
2169 			 */
2170 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2171 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2172 		}
2173 	}
2174 	if (is_tlp_timer == 0) {
2175 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2176 	} else {
2177 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2178 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2179 			/*
2180 			 * We have exceeded how many times we can retran the
2181 			 * current TLP timer, switch to the RTO timer.
2182 			 */
2183 			goto activate_rxt;
2184 		} else {
2185 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2186 		}
2187 	}
2188 	if (to == 0)
2189 		to = 1;
2190 	return (to);
2191 }
2192 
2193 static void
2194 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2195 {
2196 	if (rack->rc_in_persist == 0) {
2197 		if (((tp->t_flags & TF_SENTFIN) == 0) &&
2198 		    (tp->snd_max - tp->snd_una) >= sbavail(&rack->rc_inp->inp_socket->so_snd))
2199 			/* Must need to send more data to enter persist */
2200 			return;
2201 		rack->r_ctl.rc_went_idle_time = cts;
2202 		rack_timer_cancel(tp, rack, cts, __LINE__);
2203 		tp->t_rxtshift = 0;
2204 		rack->rc_in_persist = 1;
2205 	}
2206 }
2207 
2208 static void
2209 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2210 {
2211 	if (rack->rc_inp->inp_in_hpts)  {
2212 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2213 		rack->r_ctl.rc_hpts_flags  = 0;
2214 	}
2215 	rack->rc_in_persist = 0;
2216 	rack->r_ctl.rc_went_idle_time = 0;
2217 	tp->t_flags &= ~TF_FORCEDATA;
2218 	tp->t_rxtshift = 0;
2219 }
2220 
2221 static void
2222 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, int32_t line,
2223     int32_t slot, uint32_t tot_len_this_send, int32_t frm_out_sbavail)
2224 {
2225 	struct inpcb *inp;
2226 	uint32_t delayed_ack = 0;
2227 	uint32_t hpts_timeout;
2228 	uint8_t stopped;
2229 	uint32_t left = 0;
2230 
2231 	inp = tp->t_inpcb;
2232 	if (inp->inp_in_hpts) {
2233 		/* A previous call is already set up */
2234 		return;
2235 	}
2236 	if (tp->t_state == TCPS_CLOSED) {
2237 		return;
2238 	}
2239 	stopped = rack->rc_tmr_stopped;
2240 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2241 		left = rack->r_ctl.rc_timer_exp - cts;
2242 	}
2243 	rack->r_ctl.rc_timer_exp = 0;
2244 	if (rack->rc_inp->inp_in_hpts == 0) {
2245 		rack->r_ctl.rc_hpts_flags = 0;
2246 	}
2247 	if (slot) {
2248 		/* We are hptsi too */
2249 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2250 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2251 		/*
2252 		 * We are still left on the hpts when the to goes
2253 		 * it will be for output.
2254 		 */
2255 		if (TSTMP_GT(cts, rack->r_ctl.rc_last_output_to))
2256 			slot = cts - rack->r_ctl.rc_last_output_to;
2257 		else
2258 			slot = 1;
2259 	}
2260 	if ((tp->snd_wnd == 0) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2261 		/* No send window.. we must enter persist */
2262 		rack_enter_persist(tp, rack, cts);
2263 	} else if ((frm_out_sbavail &&
2264 		    (frm_out_sbavail > (tp->snd_max - tp->snd_una)) &&
2265 		    (tp->snd_wnd < tp->t_maxseg)) &&
2266 	    TCPS_HAVEESTABLISHED(tp->t_state)) {
2267 		/*
2268 		 * If we have no window or we can't send a segment (and have
2269 		 * data to send.. we cheat here and frm_out_sbavail is
2270 		 * passed in with the sbavail(sb) only from bbr_output) and
2271 		 * we are established, then we must enter persits (if not
2272 		 * already in persits).
2273 		 */
2274 		rack_enter_persist(tp, rack, cts);
2275 	}
2276 	hpts_timeout = rack_timer_start(tp, rack, cts);
2277 	if (tp->t_flags & TF_DELACK) {
2278 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2279 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2280 	}
2281 	if (delayed_ack && ((hpts_timeout == 0) ||
2282 			    (delayed_ack < hpts_timeout)))
2283 		hpts_timeout = delayed_ack;
2284 	else
2285 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2286 	/*
2287 	 * If no timers are going to run and we will fall off the hptsi
2288 	 * wheel, we resort to a keep-alive timer if its configured.
2289 	 */
2290 	if ((hpts_timeout == 0) &&
2291 	    (slot == 0)) {
2292 		if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2293 		    (tp->t_state <= TCPS_CLOSING)) {
2294 			/*
2295 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2296 			 * del-ack), we don't have segments being paced. So
2297 			 * all that is left is the keepalive timer.
2298 			 */
2299 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2300 				/* Get the established keep-alive time */
2301 				hpts_timeout = TP_KEEPIDLE(tp);
2302 			} else {
2303 				/* Get the initial setup keep-alive time */
2304 				hpts_timeout = TP_KEEPINIT(tp);
2305 			}
2306 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2307 		}
2308 	}
2309 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2310 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2311 		/*
2312 		 * RACK, TLP, persists and RXT timers all are restartable
2313 		 * based on actions input .. i.e we received a packet (ack
2314 		 * or sack) and that changes things (rw, or snd_una etc).
2315 		 * Thus we can restart them with a new value. For
2316 		 * keep-alive, delayed_ack we keep track of what was left
2317 		 * and restart the timer with a smaller value.
2318 		 */
2319 		if (left < hpts_timeout)
2320 			hpts_timeout = left;
2321 	}
2322 	if (hpts_timeout) {
2323 		/*
2324 		 * Hack alert for now we can't time-out over 2,147,483
2325 		 * seconds (a bit more than 596 hours), which is probably ok
2326 		 * :).
2327 		 */
2328 		if (hpts_timeout > 0x7ffffffe)
2329 			hpts_timeout = 0x7ffffffe;
2330 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2331 	}
2332 	if (slot) {
2333 		rack->r_ctl.rc_last_output_to = cts + slot;
2334 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2335 			if (rack->rc_inp->inp_in_hpts == 0)
2336 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2337 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2338 		} else {
2339 			/*
2340 			 * Arrange for the hpts to kick back in after the
2341 			 * t-o if the t-o does not cause a send.
2342 			 */
2343 			if (rack->rc_inp->inp_in_hpts == 0)
2344 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2345 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2346 		}
2347 	} else if (hpts_timeout) {
2348 		if (rack->rc_inp->inp_in_hpts == 0)
2349 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2350 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2351 	} else {
2352 		/* No timer starting */
2353 #ifdef INVARIANTS
2354 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2355 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2356 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2357 		}
2358 #endif
2359 	}
2360 	rack->rc_tmr_stopped = 0;
2361 	if (slot)
2362 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2363 }
2364 
2365 /*
2366  * RACK Timer, here we simply do logging and house keeping.
2367  * the normal rack_output() function will call the
2368  * appropriate thing to check if we need to do a RACK retransmit.
2369  * We return 1, saying don't proceed with rack_output only
2370  * when all timers have been stopped (destroyed PCB?).
2371  */
2372 static int
2373 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2374 {
2375 	/*
2376 	 * This timer simply provides an internal trigger to send out data.
2377 	 * The check_recovery_mode call will see if there are needed
2378 	 * retransmissions, if so we will enter fast-recovery. The output
2379 	 * call may or may not do the same thing depending on sysctl
2380 	 * settings.
2381 	 */
2382 	struct rack_sendmap *rsm;
2383 	int32_t recovery;
2384 
2385 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2386 		return (1);
2387 	}
2388 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2389 		/* Its not time yet */
2390 		return (0);
2391 	}
2392 	rack_log_to_event(rack, RACK_TO_FRM_RACK);
2393 	recovery = IN_RECOVERY(tp->t_flags);
2394 	counter_u64_add(rack_to_tot, 1);
2395 	if (rack->r_state && (rack->r_state != tp->t_state))
2396 		rack_set_state(tp, rack);
2397 	rsm = rack_check_recovery_mode(tp, cts);
2398 	if (rsm) {
2399 		uint32_t rtt;
2400 
2401 		rtt = rack->rc_rack_rtt;
2402 		if (rtt == 0)
2403 			rtt = 1;
2404 		if ((recovery == 0) &&
2405 		    (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)) {
2406 			/*
2407 			 * The rack-timeout that enter's us into recovery
2408 			 * will force out one MSS and set us up so that we
2409 			 * can do one more send in 2*rtt (transitioning the
2410 			 * rack timeout into a rack-tlp).
2411 			 */
2412 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2413 		} else if ((rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg) &&
2414 		    ((rsm->r_end - rsm->r_start) > rack->r_ctl.rc_prr_sndcnt)) {
2415 			/*
2416 			 * When a rack timer goes, we have to send at
2417 			 * least one segment. They will be paced a min of 1ms
2418 			 * apart via the next rack timer (or further
2419 			 * if the rack timer dictates it).
2420 			 */
2421 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2422 		}
2423 	} else {
2424 		/* This is a case that should happen rarely if ever */
2425 		counter_u64_add(rack_tlp_does_nada, 1);
2426 #ifdef TCP_BLACKBOX
2427 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2428 #endif
2429 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2430 	}
2431 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2432 	return (0);
2433 }
2434 
2435 /*
2436  * TLP Timer, here we simply setup what segment we want to
2437  * have the TLP expire on, the normal rack_output() will then
2438  * send it out.
2439  *
2440  * We return 1, saying don't proceed with rack_output only
2441  * when all timers have been stopped (destroyed PCB?).
2442  */
2443 static int
2444 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2445 {
2446 	/*
2447 	 * Tail Loss Probe.
2448 	 */
2449 	struct rack_sendmap *rsm = NULL;
2450 	struct socket *so;
2451 	uint32_t amm, old_prr_snd = 0;
2452 	uint32_t out, avail;
2453 
2454 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2455 		return (1);
2456 	}
2457 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2458 		/* Its not time yet */
2459 		return (0);
2460 	}
2461 	if (rack_progress_timeout_check(tp)) {
2462 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2463 		return (1);
2464 	}
2465 	/*
2466 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2467 	 * need to figure out how to force a full MSS segment out.
2468 	 */
2469 	rack_log_to_event(rack, RACK_TO_FRM_TLP);
2470 	counter_u64_add(rack_tlp_tot, 1);
2471 	if (rack->r_state && (rack->r_state != tp->t_state))
2472 		rack_set_state(tp, rack);
2473 	so = tp->t_inpcb->inp_socket;
2474 	avail = sbavail(&so->so_snd);
2475 	out = tp->snd_max - tp->snd_una;
2476 	rack->rc_timer_up = 1;
2477 	/*
2478 	 * If we are in recovery we can jazz out a segment if new data is
2479 	 * present simply by setting rc_prr_sndcnt to a segment.
2480 	 */
2481 	if ((avail > out) &&
2482 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2483 		/* New data is available */
2484 		amm = avail - out;
2485 		if (amm > tp->t_maxseg) {
2486 			amm = tp->t_maxseg;
2487 		} else if ((amm < tp->t_maxseg) && ((tp->t_flags & TF_NODELAY) == 0)) {
2488 			/* not enough to fill a MTU and no-delay is off */
2489 			goto need_retran;
2490 		}
2491 		if (IN_RECOVERY(tp->t_flags)) {
2492 			/* Unlikely */
2493 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2494 			if (out + amm <= tp->snd_wnd)
2495 				rack->r_ctl.rc_prr_sndcnt = amm;
2496 			else
2497 				goto need_retran;
2498 		} else {
2499 			/* Set the send-new override */
2500 			if (out + amm <= tp->snd_wnd)
2501 				rack->r_ctl.rc_tlp_new_data = amm;
2502 			else
2503 				goto need_retran;
2504 		}
2505 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2506 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2507 		rack->r_ctl.rc_tlpsend = NULL;
2508 		counter_u64_add(rack_tlp_newdata, 1);
2509 		goto send;
2510 	}
2511 need_retran:
2512 	/*
2513 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2514 	 * optionally the first un-acked segment.
2515 	 */
2516 	if (rack_always_send_oldest)
2517 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2518 	else {
2519 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
2520 		if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2521 			rsm = rack_find_high_nonack(rack, rsm);
2522 		}
2523 	}
2524 	if (rsm == NULL) {
2525 		counter_u64_add(rack_tlp_does_nada, 1);
2526 #ifdef TCP_BLACKBOX
2527 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2528 #endif
2529 		goto out;
2530 	}
2531 	if ((rsm->r_end - rsm->r_start) > tp->t_maxseg) {
2532 		/*
2533 		 * We need to split this the last segment in two.
2534 		 */
2535 		int32_t idx;
2536 		struct rack_sendmap *nrsm;
2537 
2538 		nrsm = rack_alloc(rack);
2539 		if (nrsm == NULL) {
2540 			/*
2541 			 * No memory to split, we will just exit and punt
2542 			 * off to the RXT timer.
2543 			 */
2544 			counter_u64_add(rack_tlp_does_nada, 1);
2545 			goto out;
2546 		}
2547 		nrsm->r_start = (rsm->r_end - tp->t_maxseg);
2548 		nrsm->r_end = rsm->r_end;
2549 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2550 		nrsm->r_flags = rsm->r_flags;
2551 		nrsm->r_sndcnt = rsm->r_sndcnt;
2552 		nrsm->r_rtr_bytes = 0;
2553 		rsm->r_end = nrsm->r_start;
2554 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2555 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2556 		}
2557 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
2558 		if (rsm->r_in_tmap) {
2559 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2560 			nrsm->r_in_tmap = 1;
2561 		}
2562 		rsm->r_flags &= (~RACK_HAS_FIN);
2563 		rsm = nrsm;
2564 	}
2565 	rack->r_ctl.rc_tlpsend = rsm;
2566 	rack->r_ctl.rc_tlp_rtx_out = 1;
2567 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2568 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2569 		tp->t_rxtshift++;
2570 	} else {
2571 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2572 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2573 	}
2574 send:
2575 	rack->r_ctl.rc_tlp_send_cnt++;
2576 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2577 		/*
2578 		 * Can't [re]/transmit a segment we have not heard from the
2579 		 * peer in max times. We need the retransmit timer to take
2580 		 * over.
2581 		 */
2582 restore:
2583 		rack->r_ctl.rc_tlpsend = NULL;
2584 		if (rsm)
2585 			rsm->r_flags &= ~RACK_TLP;
2586 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2587 		counter_u64_add(rack_tlp_retran_fail, 1);
2588 		goto out;
2589 	} else if (rsm) {
2590 		rsm->r_flags |= RACK_TLP;
2591 	}
2592 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2593 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2594 		/*
2595 		 * We don't want to send a single segment more than the max
2596 		 * either.
2597 		 */
2598 		goto restore;
2599 	}
2600 	rack->r_timer_override = 1;
2601 	rack->r_tlp_running = 1;
2602 	rack->rc_tlp_in_progress = 1;
2603 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2604 	return (0);
2605 out:
2606 	rack->rc_timer_up = 0;
2607 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2608 	return (0);
2609 }
2610 
2611 /*
2612  * Delayed ack Timer, here we simply need to setup the
2613  * ACK_NOW flag and remove the DELACK flag. From there
2614  * the output routine will send the ack out.
2615  *
2616  * We only return 1, saying don't proceed, if all timers
2617  * are stopped (destroyed PCB?).
2618  */
2619 static int
2620 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2621 {
2622 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2623 		return (1);
2624 	}
2625 	rack_log_to_event(rack, RACK_TO_FRM_DELACK);
2626 	tp->t_flags &= ~TF_DELACK;
2627 	tp->t_flags |= TF_ACKNOW;
2628 	TCPSTAT_INC(tcps_delack);
2629 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2630 	return (0);
2631 }
2632 
2633 /*
2634  * Persists timer, here we simply need to setup the
2635  * FORCE-DATA flag the output routine will send
2636  * the one byte send.
2637  *
2638  * We only return 1, saying don't proceed, if all timers
2639  * are stopped (destroyed PCB?).
2640  */
2641 static int
2642 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2643 {
2644 	struct inpcb *inp;
2645 	int32_t retval = 0;
2646 
2647 	inp = tp->t_inpcb;
2648 
2649 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2650 		return (1);
2651 	}
2652 	if (rack->rc_in_persist == 0)
2653 		return (0);
2654 	if (rack_progress_timeout_check(tp)) {
2655 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2656 		return (1);
2657 	}
2658 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2659 	/*
2660 	 * Persistence timer into zero window. Force a byte to be output, if
2661 	 * possible.
2662 	 */
2663 	TCPSTAT_INC(tcps_persisttimeo);
2664 	/*
2665 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2666 	 * window is closed.  After a full backoff, drop the connection if
2667 	 * the idle time (no responses to probes) reaches the maximum
2668 	 * backoff that we would use if retransmitting.
2669 	 */
2670 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2671 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2672 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2673 		TCPSTAT_INC(tcps_persistdrop);
2674 		retval = 1;
2675 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2676 		goto out;
2677 	}
2678 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2679 	    tp->snd_una == tp->snd_max)
2680 		rack_exit_persist(tp, rack);
2681 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2682 	/*
2683 	 * If the user has closed the socket then drop a persisting
2684 	 * connection after a much reduced timeout.
2685 	 */
2686 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2687 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2688 		retval = 1;
2689 		TCPSTAT_INC(tcps_persistdrop);
2690 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2691 		goto out;
2692 	}
2693 	tp->t_flags |= TF_FORCEDATA;
2694 out:
2695 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST);
2696 	return (retval);
2697 }
2698 
2699 /*
2700  * If a keepalive goes off, we had no other timers
2701  * happening. We always return 1 here since this
2702  * routine either drops the connection or sends
2703  * out a segment with respond.
2704  */
2705 static int
2706 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2707 {
2708 	struct tcptemp *t_template;
2709 	struct inpcb *inp;
2710 
2711 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2712 		return (1);
2713 	}
2714 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
2715 	inp = tp->t_inpcb;
2716 	rack_log_to_event(rack, RACK_TO_FRM_KEEP);
2717 	/*
2718 	 * Keep-alive timer went off; send something or drop connection if
2719 	 * idle for too long.
2720 	 */
2721 	TCPSTAT_INC(tcps_keeptimeo);
2722 	if (tp->t_state < TCPS_ESTABLISHED)
2723 		goto dropit;
2724 	if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2725 	    tp->t_state <= TCPS_CLOSING) {
2726 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
2727 			goto dropit;
2728 		/*
2729 		 * Send a packet designed to force a response if the peer is
2730 		 * up and reachable: either an ACK if the connection is
2731 		 * still alive, or an RST if the peer has closed the
2732 		 * connection due to timeout or reboot. Using sequence
2733 		 * number tp->snd_una-1 causes the transmitted zero-length
2734 		 * segment to lie outside the receive window; by the
2735 		 * protocol spec, this requires the correspondent TCP to
2736 		 * respond.
2737 		 */
2738 		TCPSTAT_INC(tcps_keepprobe);
2739 		t_template = tcpip_maketemplate(inp);
2740 		if (t_template) {
2741 			tcp_respond(tp, t_template->tt_ipgen,
2742 			    &t_template->tt_t, (struct mbuf *)NULL,
2743 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2744 			free(t_template, M_TEMP);
2745 		}
2746 	}
2747 	rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
2748 	return (1);
2749 dropit:
2750 	TCPSTAT_INC(tcps_keepdrops);
2751 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2752 	return (1);
2753 }
2754 
2755 /*
2756  * Retransmit helper function, clear up all the ack
2757  * flags and take care of important book keeping.
2758  */
2759 static void
2760 rack_remxt_tmr(struct tcpcb *tp)
2761 {
2762 	/*
2763 	 * The retransmit timer went off, all sack'd blocks must be
2764 	 * un-acked.
2765 	 */
2766 	struct rack_sendmap *rsm, *trsm = NULL;
2767 	struct tcp_rack *rack;
2768 	int32_t cnt = 0;
2769 
2770 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2771 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
2772 	rack_log_to_event(rack, RACK_TO_FRM_TMR);
2773 	if (rack->r_state && (rack->r_state != tp->t_state))
2774 		rack_set_state(tp, rack);
2775 	/*
2776 	 * Ideally we would like to be able to
2777 	 * mark SACK-PASS on anything not acked here.
2778 	 * However, if we do that we would burst out
2779 	 * all that data 1ms apart. This would be unwise,
2780 	 * so for now we will just let the normal rxt timer
2781 	 * and tlp timer take care of it.
2782 	 */
2783 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
2784 		if (rsm->r_flags & RACK_ACKED) {
2785 			cnt++;
2786 			rsm->r_sndcnt = 0;
2787 			if (rsm->r_in_tmap == 0) {
2788 				/* We must re-add it back to the tlist */
2789 				if (trsm == NULL) {
2790 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
2791 				} else {
2792 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
2793 				}
2794 				rsm->r_in_tmap = 1;
2795 				trsm = rsm;
2796 			}
2797 		}
2798 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
2799 	}
2800 	/* Clear the count (we just un-acked them) */
2801 	rack->r_ctl.rc_sacked = 0;
2802 	/* Clear the tlp rtx mark */
2803 	rack->r_ctl.rc_tlp_rtx_out = 0;
2804 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2805 	rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_map);
2806 	/* Setup so we send one segment */
2807 	if (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)
2808 		rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2809 	rack->r_timer_override = 1;
2810 }
2811 
2812 /*
2813  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
2814  * we will setup to retransmit the lowest seq number outstanding.
2815  */
2816 static int
2817 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2818 {
2819 	int32_t rexmt;
2820 	struct inpcb *inp;
2821 	int32_t retval = 0;
2822 
2823 	inp = tp->t_inpcb;
2824 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2825 		return (1);
2826 	}
2827 	if (rack_progress_timeout_check(tp)) {
2828 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2829 		return (1);
2830 	}
2831 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
2832 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
2833 	    (tp->snd_una == tp->snd_max)) {
2834 		/* Nothing outstanding .. nothing to do */
2835 		return (0);
2836 	}
2837 	/*
2838 	 * Retransmission timer went off.  Message has not been acked within
2839 	 * retransmit interval.  Back off to a longer retransmit interval
2840 	 * and retransmit one segment.
2841 	 */
2842 	if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
2843 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
2844 		TCPSTAT_INC(tcps_timeoutdrop);
2845 		retval = 1;
2846 		tcp_set_inp_to_drop(rack->rc_inp,
2847 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
2848 		goto out;
2849 	}
2850 	rack_remxt_tmr(tp);
2851 	if (tp->t_state == TCPS_SYN_SENT) {
2852 		/*
2853 		 * If the SYN was retransmitted, indicate CWND to be limited
2854 		 * to 1 segment in cc_conn_init().
2855 		 */
2856 		tp->snd_cwnd = 1;
2857 	} else if (tp->t_rxtshift == 1) {
2858 		/*
2859 		 * first retransmit; record ssthresh and cwnd so they can be
2860 		 * recovered if this turns out to be a "bad" retransmit. A
2861 		 * retransmit is considered "bad" if an ACK for this segment
2862 		 * is received within RTT/2 interval; the assumption here is
2863 		 * that the ACK was already in flight.  See "On Estimating
2864 		 * End-to-End Network Path Properties" by Allman and Paxson
2865 		 * for more details.
2866 		 */
2867 		tp->snd_cwnd_prev = tp->snd_cwnd;
2868 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
2869 		tp->snd_recover_prev = tp->snd_recover;
2870 		if (IN_FASTRECOVERY(tp->t_flags))
2871 			tp->t_flags |= TF_WASFRECOVERY;
2872 		else
2873 			tp->t_flags &= ~TF_WASFRECOVERY;
2874 		if (IN_CONGRECOVERY(tp->t_flags))
2875 			tp->t_flags |= TF_WASCRECOVERY;
2876 		else
2877 			tp->t_flags &= ~TF_WASCRECOVERY;
2878 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
2879 		tp->t_flags |= TF_PREVVALID;
2880 	} else
2881 		tp->t_flags &= ~TF_PREVVALID;
2882 	TCPSTAT_INC(tcps_rexmttimeo);
2883 	if ((tp->t_state == TCPS_SYN_SENT) ||
2884 	    (tp->t_state == TCPS_SYN_RECEIVED))
2885 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_syn_backoff[tp->t_rxtshift]);
2886 	else
2887 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
2888 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
2889 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
2890 	   MSEC_2_TICKS(rack_rto_max));
2891 	/*
2892 	 * We enter the path for PLMTUD if connection is established or, if
2893 	 * connection is FIN_WAIT_1 status, reason for the last is that if
2894 	 * amount of data we send is very small, we could send it in couple
2895 	 * of packets and process straight to FIN. In that case we won't
2896 	 * catch ESTABLISHED state.
2897 	 */
2898 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
2899 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
2900 #ifdef INET6
2901 		int32_t isipv6;
2902 #endif
2903 
2904 		/*
2905 		 * Idea here is that at each stage of mtu probe (usually,
2906 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
2907 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
2908 		 * should take care of that.
2909 		 */
2910 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
2911 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
2912 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
2913 		    tp->t_rxtshift % 2 == 0)) {
2914 			/*
2915 			 * Enter Path MTU Black-hole Detection mechanism: -
2916 			 * Disable Path MTU Discovery (IP "DF" bit). -
2917 			 * Reduce MTU to lower value than what we negotiated
2918 			 * with peer.
2919 			 */
2920 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
2921 				/* Record that we may have found a black hole. */
2922 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
2923 				/* Keep track of previous MSS. */
2924 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
2925 			}
2926 
2927 			/*
2928 			 * Reduce the MSS to blackhole value or to the
2929 			 * default in an attempt to retransmit.
2930 			 */
2931 #ifdef INET6
2932 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
2933 			if (isipv6 &&
2934 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
2935 				/* Use the sysctl tuneable blackhole MSS. */
2936 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
2937 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
2938 			} else if (isipv6) {
2939 				/* Use the default MSS. */
2940 				tp->t_maxseg = V_tcp_v6mssdflt;
2941 				/*
2942 				 * Disable Path MTU Discovery when we switch
2943 				 * to minmss.
2944 				 */
2945 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
2946 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
2947 			}
2948 #endif
2949 #if defined(INET6) && defined(INET)
2950 			else
2951 #endif
2952 #ifdef INET
2953 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
2954 				/* Use the sysctl tuneable blackhole MSS. */
2955 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
2956 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
2957 			} else {
2958 				/* Use the default MSS. */
2959 				tp->t_maxseg = V_tcp_mssdflt;
2960 				/*
2961 				 * Disable Path MTU Discovery when we switch
2962 				 * to minmss.
2963 				 */
2964 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
2965 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
2966 			}
2967 #endif
2968 		} else {
2969 			/*
2970 			 * If further retransmissions are still unsuccessful
2971 			 * with a lowered MTU, maybe this isn't a blackhole
2972 			 * and we restore the previous MSS and blackhole
2973 			 * detection flags. The limit '6' is determined by
2974 			 * giving each probe stage (1448, 1188, 524) 2
2975 			 * chances to recover.
2976 			 */
2977 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
2978 			    (tp->t_rxtshift >= 6)) {
2979 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
2980 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
2981 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
2982 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
2983 			}
2984 		}
2985 	}
2986 	/*
2987 	 * Disable RFC1323 and SACK if we haven't got any response to our
2988 	 * third SYN to work-around some broken terminal servers (most of
2989 	 * which have hopefully been retired) that have bad VJ header
2990 	 * compression code which trashes TCP segments containing
2991 	 * unknown-to-them TCP options.
2992 	 */
2993 	if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
2994 	    (tp->t_rxtshift == 3))
2995 		tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_SACK_PERMIT);
2996 	/*
2997 	 * If we backed off this far, our srtt estimate is probably bogus.
2998 	 * Clobber it so we'll take the next rtt measurement as our srtt;
2999 	 * move the current srtt into rttvar to keep the current retransmit
3000 	 * times until then.
3001 	 */
3002 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3003 #ifdef INET6
3004 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3005 			in6_losing(tp->t_inpcb);
3006 		else
3007 #endif
3008 			in_losing(tp->t_inpcb);
3009 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3010 		tp->t_srtt = 0;
3011 	}
3012 	if (rack_use_sack_filter)
3013 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3014 	tp->snd_recover = tp->snd_max;
3015 	tp->t_flags |= TF_ACKNOW;
3016 	tp->t_rtttime = 0;
3017 	rack_cong_signal(tp, NULL, CC_RTO);
3018 out:
3019 	return (retval);
3020 }
3021 
3022 static int
3023 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3024 {
3025 	int32_t ret = 0;
3026 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3027 
3028 	if (timers == 0) {
3029 		return (0);
3030 	}
3031 	if (tp->t_state == TCPS_LISTEN) {
3032 		/* no timers on listen sockets */
3033 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3034 			return (0);
3035 		return (1);
3036 	}
3037 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3038 		uint32_t left;
3039 
3040 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3041 			ret = -1;
3042 			rack_log_to_processing(rack, cts, ret, 0);
3043 			return (0);
3044 		}
3045 		if (hpts_calling == 0) {
3046 			ret = -2;
3047 			rack_log_to_processing(rack, cts, ret, 0);
3048 			return (0);
3049 		}
3050 		/*
3051 		 * Ok our timer went off early and we are not paced false
3052 		 * alarm, go back to sleep.
3053 		 */
3054 		ret = -3;
3055 		left = rack->r_ctl.rc_timer_exp - cts;
3056 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3057 		rack_log_to_processing(rack, cts, ret, left);
3058 		rack->rc_last_pto_set = 0;
3059 		return (1);
3060 	}
3061 	rack->rc_tmr_stopped = 0;
3062 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3063 	if (timers & PACE_TMR_DELACK) {
3064 		ret = rack_timeout_delack(tp, rack, cts);
3065 	} else if (timers & PACE_TMR_RACK) {
3066 		ret = rack_timeout_rack(tp, rack, cts);
3067 	} else if (timers & PACE_TMR_TLP) {
3068 		ret = rack_timeout_tlp(tp, rack, cts);
3069 	} else if (timers & PACE_TMR_RXT) {
3070 		ret = rack_timeout_rxt(tp, rack, cts);
3071 	} else if (timers & PACE_TMR_PERSIT) {
3072 		ret = rack_timeout_persist(tp, rack, cts);
3073 	} else if (timers & PACE_TMR_KEEP) {
3074 		ret = rack_timeout_keepalive(tp, rack, cts);
3075 	}
3076 	rack_log_to_processing(rack, cts, ret, timers);
3077 	return (ret);
3078 }
3079 
3080 static void
3081 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3082 {
3083 	uint8_t hpts_removed = 0;
3084 
3085 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3086 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3087 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3088 		hpts_removed = 1;
3089 	}
3090 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3091 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3092 		if (rack->rc_inp->inp_in_hpts &&
3093 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3094 			/*
3095 			 * Canceling timer's when we have no output being
3096 			 * paced. We also must remove ourselves from the
3097 			 * hpts.
3098 			 */
3099 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3100 			hpts_removed = 1;
3101 		}
3102 		rack_log_to_cancel(rack, hpts_removed, line);
3103 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3104 	}
3105 }
3106 
3107 static void
3108 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3109 {
3110 	return;
3111 }
3112 
3113 static int
3114 rack_stopall(struct tcpcb *tp)
3115 {
3116 	struct tcp_rack *rack;
3117 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3118 	rack->t_timers_stopped = 1;
3119 	return (0);
3120 }
3121 
3122 static void
3123 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3124 {
3125 	return;
3126 }
3127 
3128 static int
3129 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3130 {
3131 	return (0);
3132 }
3133 
3134 static void
3135 rack_stop_all_timers(struct tcpcb *tp)
3136 {
3137 	struct tcp_rack *rack;
3138 
3139 	/*
3140 	 * Assure no timers are running.
3141 	 */
3142 	if (tcp_timer_active(tp, TT_PERSIST)) {
3143 		/* We enter in persists, set the flag appropriately */
3144 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3145 		rack->rc_in_persist = 1;
3146 	}
3147 	tcp_timer_suspend(tp, TT_PERSIST);
3148 	tcp_timer_suspend(tp, TT_REXMT);
3149 	tcp_timer_suspend(tp, TT_KEEP);
3150 	tcp_timer_suspend(tp, TT_DELACK);
3151 }
3152 
3153 static void
3154 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3155     struct rack_sendmap *rsm, uint32_t ts)
3156 {
3157 	int32_t idx;
3158 
3159 	rsm->r_rtr_cnt++;
3160 	rsm->r_sndcnt++;
3161 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3162 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3163 		rsm->r_flags |= RACK_OVERMAX;
3164 	}
3165 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3166 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3167 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3168 	}
3169 	idx = rsm->r_rtr_cnt - 1;
3170 	rsm->r_tim_lastsent[idx] = ts;
3171 	if (rsm->r_flags & RACK_ACKED) {
3172 		/* Problably MTU discovery messing with us */
3173 		rsm->r_flags &= ~RACK_ACKED;
3174 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3175 	}
3176 	if (rsm->r_in_tmap) {
3177 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3178 	}
3179 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3180 	rsm->r_in_tmap = 1;
3181 	if (rsm->r_flags & RACK_SACK_PASSED) {
3182 		/* We have retransmitted due to the SACK pass */
3183 		rsm->r_flags &= ~RACK_SACK_PASSED;
3184 		rsm->r_flags |= RACK_WAS_SACKPASS;
3185 	}
3186 	/* Update memory for next rtr */
3187 	rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3188 }
3189 
3190 
3191 static uint32_t
3192 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3193     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp)
3194 {
3195 	/*
3196 	 * We (re-)transmitted starting at rsm->r_start for some length
3197 	 * (possibly less than r_end.
3198 	 */
3199 	struct rack_sendmap *nrsm;
3200 	uint32_t c_end;
3201 	int32_t len;
3202 	int32_t idx;
3203 
3204 	len = *lenp;
3205 	c_end = rsm->r_start + len;
3206 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3207 		/*
3208 		 * We retransmitted the whole piece or more than the whole
3209 		 * slopping into the next rsm.
3210 		 */
3211 		rack_update_rsm(tp, rack, rsm, ts);
3212 		if (c_end == rsm->r_end) {
3213 			*lenp = 0;
3214 			return (0);
3215 		} else {
3216 			int32_t act_len;
3217 
3218 			/* Hangs over the end return whats left */
3219 			act_len = rsm->r_end - rsm->r_start;
3220 			*lenp = (len - act_len);
3221 			return (rsm->r_end);
3222 		}
3223 		/* We don't get out of this block. */
3224 	}
3225 	/*
3226 	 * Here we retransmitted less than the whole thing which means we
3227 	 * have to split this into what was transmitted and what was not.
3228 	 */
3229 	nrsm = rack_alloc(rack);
3230 	if (nrsm == NULL) {
3231 		/*
3232 		 * We can't get memory, so lets not proceed.
3233 		 */
3234 		*lenp = 0;
3235 		return (0);
3236 	}
3237 	/*
3238 	 * So here we are going to take the original rsm and make it what we
3239 	 * retransmitted. nrsm will be the tail portion we did not
3240 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3241 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3242 	 * 1, 6 and the new piece will be 6, 11.
3243 	 */
3244 	nrsm->r_start = c_end;
3245 	nrsm->r_end = rsm->r_end;
3246 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3247 	nrsm->r_flags = rsm->r_flags;
3248 	nrsm->r_sndcnt = rsm->r_sndcnt;
3249 	nrsm->r_rtr_bytes = 0;
3250 	rsm->r_end = c_end;
3251 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3252 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3253 	}
3254 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3255 	if (rsm->r_in_tmap) {
3256 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3257 		nrsm->r_in_tmap = 1;
3258 	}
3259 	rsm->r_flags &= (~RACK_HAS_FIN);
3260 	rack_update_rsm(tp, rack, rsm, ts);
3261 	*lenp = 0;
3262 	return (0);
3263 }
3264 
3265 
3266 static void
3267 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3268     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3269     uint8_t pass, struct rack_sendmap *hintrsm)
3270 {
3271 	struct tcp_rack *rack;
3272 	struct rack_sendmap *rsm, *nrsm;
3273 	register uint32_t snd_max, snd_una;
3274 	int32_t idx;
3275 
3276 	/*
3277 	 * Add to the RACK log of packets in flight or retransmitted. If
3278 	 * there is a TS option we will use the TS echoed, if not we will
3279 	 * grab a TS.
3280 	 *
3281 	 * Retransmissions will increment the count and move the ts to its
3282 	 * proper place. Note that if options do not include TS's then we
3283 	 * won't be able to effectively use the ACK for an RTT on a retran.
3284 	 *
3285 	 * Notes about r_start and r_end. Lets consider a send starting at
3286 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3287 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3288 	 * This means that r_end is actually the first sequence for the next
3289 	 * slot (11).
3290 	 *
3291 	 */
3292 	/*
3293 	 * If err is set what do we do XXXrrs? should we not add the thing?
3294 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3295 	 * i.e. proceed with add ** do this for now.
3296 	 */
3297 	INP_WLOCK_ASSERT(tp->t_inpcb);
3298 	if (err)
3299 		/*
3300 		 * We don't log errors -- we could but snd_max does not
3301 		 * advance in this case either.
3302 		 */
3303 		return;
3304 
3305 	if (th_flags & TH_RST) {
3306 		/*
3307 		 * We don't log resets and we return immediately from
3308 		 * sending
3309 		 */
3310 		return;
3311 	}
3312 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3313 	snd_una = tp->snd_una;
3314 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3315 		/* Are sending an old segment to induce an ack (keep-alive)? */
3316 		return;
3317 	}
3318 	if (SEQ_LT(seq_out, snd_una)) {
3319 		/* huh? should we panic? */
3320 		uint32_t end;
3321 
3322 		end = seq_out + len;
3323 		seq_out = snd_una;
3324 		len = end - seq_out;
3325 	}
3326 	snd_max = tp->snd_max;
3327 	if (th_flags & (TH_SYN | TH_FIN)) {
3328 		/*
3329 		 * The call to rack_log_output is made before bumping
3330 		 * snd_max. This means we can record one extra byte on a SYN
3331 		 * or FIN if seq_out is adding more on and a FIN is present
3332 		 * (and we are not resending).
3333 		 */
3334 		if (th_flags & TH_SYN)
3335 			len++;
3336 		if (th_flags & TH_FIN)
3337 			len++;
3338 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3339 			/*
3340 			 * The add/update as not been done for the FIN/SYN
3341 			 * yet.
3342 			 */
3343 			snd_max = tp->snd_nxt;
3344 		}
3345 	}
3346 	if (len == 0) {
3347 		/* We don't log zero window probes */
3348 		return;
3349 	}
3350 	rack->r_ctl.rc_time_last_sent = ts;
3351 	if (IN_RECOVERY(tp->t_flags)) {
3352 		rack->r_ctl.rc_prr_out += len;
3353 	}
3354 	/* First question is it a retransmission? */
3355 	if (seq_out == snd_max) {
3356 again:
3357 		rsm = rack_alloc(rack);
3358 		if (rsm == NULL) {
3359 			/*
3360 			 * Hmm out of memory and the tcb got destroyed while
3361 			 * we tried to wait.
3362 			 */
3363 #ifdef INVARIANTS
3364 			panic("Out of memory when we should not be rack:%p", rack);
3365 #endif
3366 			return;
3367 		}
3368 		if (th_flags & TH_FIN) {
3369 			rsm->r_flags = RACK_HAS_FIN;
3370 		} else {
3371 			rsm->r_flags = 0;
3372 		}
3373 		rsm->r_tim_lastsent[0] = ts;
3374 		rsm->r_rtr_cnt = 1;
3375 		rsm->r_rtr_bytes = 0;
3376 		if (th_flags & TH_SYN) {
3377 			/* The data space is one beyond snd_una */
3378 			rsm->r_start = seq_out + 1;
3379 			rsm->r_end = rsm->r_start + (len - 1);
3380 		} else {
3381 			/* Normal case */
3382 			rsm->r_start = seq_out;
3383 			rsm->r_end = rsm->r_start + len;
3384 		}
3385 		rsm->r_sndcnt = 0;
3386 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
3387 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3388 		rsm->r_in_tmap = 1;
3389 		return;
3390 	}
3391 	/*
3392 	 * If we reach here its a retransmission and we need to find it.
3393 	 */
3394 more:
3395 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3396 		rsm = hintrsm;
3397 		hintrsm = NULL;
3398 	} else if (rack->r_ctl.rc_next) {
3399 		/* We have a hint from a previous run */
3400 		rsm = rack->r_ctl.rc_next;
3401 	} else {
3402 		/* No hints sorry */
3403 		rsm = NULL;
3404 	}
3405 	if ((rsm) && (rsm->r_start == seq_out)) {
3406 		/*
3407 		 * We used rc_next or hintrsm  to retransmit, hopefully the
3408 		 * likely case.
3409 		 */
3410 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3411 		if (len == 0) {
3412 			return;
3413 		} else {
3414 			goto more;
3415 		}
3416 	}
3417 	/* Ok it was not the last pointer go through it the hard way. */
3418 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3419 		if (rsm->r_start == seq_out) {
3420 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3421 			rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3422 			if (len == 0) {
3423 				return;
3424 			} else {
3425 				continue;
3426 			}
3427 		}
3428 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3429 			/* Transmitted within this piece */
3430 			/*
3431 			 * Ok we must split off the front and then let the
3432 			 * update do the rest
3433 			 */
3434 			nrsm = rack_alloc(rack);
3435 			if (nrsm == NULL) {
3436 #ifdef INVARIANTS
3437 				panic("Ran out of memory that was preallocated? rack:%p", rack);
3438 #endif
3439 				rack_update_rsm(tp, rack, rsm, ts);
3440 				return;
3441 			}
3442 			/*
3443 			 * copy rsm to nrsm and then trim the front of rsm
3444 			 * to not include this part.
3445 			 */
3446 			nrsm->r_start = seq_out;
3447 			nrsm->r_end = rsm->r_end;
3448 			nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3449 			nrsm->r_flags = rsm->r_flags;
3450 			nrsm->r_sndcnt = rsm->r_sndcnt;
3451 			nrsm->r_rtr_bytes = 0;
3452 			for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3453 				nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3454 			}
3455 			rsm->r_end = nrsm->r_start;
3456 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3457 			if (rsm->r_in_tmap) {
3458 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3459 				nrsm->r_in_tmap = 1;
3460 			}
3461 			rsm->r_flags &= (~RACK_HAS_FIN);
3462 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3463 			if (len == 0) {
3464 				return;
3465 			}
3466 		}
3467 	}
3468 	/*
3469 	 * Hmm not found in map did they retransmit both old and on into the
3470 	 * new?
3471 	 */
3472 	if (seq_out == tp->snd_max) {
3473 		goto again;
3474 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3475 #ifdef INVARIANTS
3476 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3477 		    seq_out, len, tp->snd_una, tp->snd_max);
3478 		printf("Starting Dump of all rack entries\n");
3479 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3480 			printf("rsm:%p start:%u end:%u\n",
3481 			    rsm, rsm->r_start, rsm->r_end);
3482 		}
3483 		printf("Dump complete\n");
3484 		panic("seq_out not found rack:%p tp:%p",
3485 		    rack, tp);
3486 #endif
3487 	} else {
3488 #ifdef INVARIANTS
3489 		/*
3490 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3491 		 * flag)
3492 		 */
3493 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3494 		    seq_out, len, tp->snd_max, tp);
3495 #endif
3496 	}
3497 }
3498 
3499 /*
3500  * Record one of the RTT updates from an ack into
3501  * our sample structure.
3502  */
3503 static void
3504 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3505 {
3506 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3507 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3508 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3509 	}
3510 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3511 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3512 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3513 	}
3514 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3515 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3516 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3517 }
3518 
3519 /*
3520  * Collect new round-trip time estimate
3521  * and update averages and current timeout.
3522  */
3523 static void
3524 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3525 {
3526 	int32_t delta;
3527 	uint32_t o_srtt, o_var;
3528 	int32_t rtt;
3529 
3530 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3531 		/* No valid sample */
3532 		return;
3533 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3534 		/* We are to use the lowest RTT seen in a single ack */
3535 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3536 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3537 		/* We are to use the highest RTT seen in a single ack */
3538 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3539 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3540 		/* We are to use the average RTT seen in a single ack */
3541 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3542 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3543 	} else {
3544 #ifdef INVARIANTS
3545 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3546 #endif
3547 		return;
3548 	}
3549 	if (rtt == 0)
3550 		rtt = 1;
3551 	rack_log_rtt_sample(rack, rtt);
3552 	o_srtt = tp->t_srtt;
3553 	o_var = tp->t_rttvar;
3554 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3555 	if (tp->t_srtt != 0) {
3556 		/*
3557 		 * srtt is stored as fixed point with 5 bits after the
3558 		 * binary point (i.e., scaled by 8).  The following magic is
3559 		 * equivalent to the smoothing algorithm in rfc793 with an
3560 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3561 		 * Adjust rtt to origin 0.
3562 		 */
3563 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3564 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3565 
3566 		tp->t_srtt += delta;
3567 		if (tp->t_srtt <= 0)
3568 			tp->t_srtt = 1;
3569 
3570 		/*
3571 		 * We accumulate a smoothed rtt variance (actually, a
3572 		 * smoothed mean difference), then set the retransmit timer
3573 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3574 		 * is stored as fixed point with 4 bits after the binary
3575 		 * point (scaled by 16).  The following is equivalent to
3576 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3577 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3578 		 * wired-in beta.
3579 		 */
3580 		if (delta < 0)
3581 			delta = -delta;
3582 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3583 		tp->t_rttvar += delta;
3584 		if (tp->t_rttvar <= 0)
3585 			tp->t_rttvar = 1;
3586 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3587 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3588 	} else {
3589 		/*
3590 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3591 		 * variance to half the rtt (so our first retransmit happens
3592 		 * at 3*rtt).
3593 		 */
3594 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3595 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3596 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3597 	}
3598 	TCPSTAT_INC(tcps_rttupdated);
3599 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3600 	tp->t_rttupdated++;
3601 #ifdef NETFLIX_STATS
3602 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3603 #endif
3604 	tp->t_rxtshift = 0;
3605 
3606 	/*
3607 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3608 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3609 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3610 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3611 	 * uncertainty in the firing of the timer.  The bias will give us
3612 	 * exactly the 1.5 tick we need.  But, because the bias is
3613 	 * statistical, we have to test that we don't drop below the minimum
3614 	 * feasible timer (which is 2 ticks).
3615 	 */
3616 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3617 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3618 	tp->t_softerror = 0;
3619 }
3620 
3621 static void
3622 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3623     uint32_t t, uint32_t cts)
3624 {
3625 	/*
3626 	 * For this RSM, we acknowledged the data from a previous
3627 	 * transmission, not the last one we made. This means we did a false
3628 	 * retransmit.
3629 	 */
3630 	struct tcp_rack *rack;
3631 
3632 	if (rsm->r_flags & RACK_HAS_FIN) {
3633 		/*
3634 		 * The sending of the FIN often is multiple sent when we
3635 		 * have everything outstanding ack'd. We ignore this case
3636 		 * since its over now.
3637 		 */
3638 		return;
3639 	}
3640 	if (rsm->r_flags & RACK_TLP) {
3641 		/*
3642 		 * We expect TLP's to have this occur.
3643 		 */
3644 		return;
3645 	}
3646 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3647 	/* should we undo cc changes and exit recovery? */
3648 	if (IN_RECOVERY(tp->t_flags)) {
3649 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3650 			/*
3651 			 * Undo what we ratched down and exit recovery if
3652 			 * possible
3653 			 */
3654 			EXIT_RECOVERY(tp->t_flags);
3655 			tp->snd_recover = tp->snd_una;
3656 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3657 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3658 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3659 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3660 		}
3661 	}
3662 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3663 		/*
3664 		 * We retransmitted based on a sack and the earlier
3665 		 * retransmission ack'd it - re-ordering is occuring.
3666 		 */
3667 		counter_u64_add(rack_reorder_seen, 1);
3668 		rack->r_ctl.rc_reorder_ts = cts;
3669 	}
3670 	counter_u64_add(rack_badfr, 1);
3671 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3672 }
3673 
3674 
3675 static int
3676 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3677     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3678 {
3679 	int32_t i;
3680 	uint32_t t;
3681 
3682 	if (rsm->r_flags & RACK_ACKED)
3683 		/* Already done */
3684 		return (0);
3685 
3686 
3687 	if ((rsm->r_rtr_cnt == 1) ||
3688 	    ((ack_type == CUM_ACKED) &&
3689 	    (to->to_flags & TOF_TS) &&
3690 	    (to->to_tsecr) &&
3691 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3692 	    ) {
3693 		/*
3694 		 * We will only find a matching timestamp if its cum-acked.
3695 		 * But if its only one retransmission its for-sure matching
3696 		 * :-)
3697 		 */
3698 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3699 		if ((int)t <= 0)
3700 			t = 1;
3701 		if (!tp->t_rttlow || tp->t_rttlow > t)
3702 			tp->t_rttlow = t;
3703 		if (!rack->r_ctl.rc_rack_min_rtt ||
3704 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3705 			rack->r_ctl.rc_rack_min_rtt = t;
3706 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
3707 				rack->r_ctl.rc_rack_min_rtt = 1;
3708 			}
3709 		}
3710 		tcp_rack_xmit_timer(rack, TCP_TS_TO_TICKS(t) + 1);
3711 		if ((rsm->r_flags & RACK_TLP) &&
3712 		    (!IN_RECOVERY(tp->t_flags))) {
3713 			/* Segment was a TLP and our retrans matched */
3714 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
3715 				rack->r_ctl.rc_rsm_start = tp->snd_max;
3716 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
3717 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
3718 				rack_cong_signal(tp, NULL, CC_NDUPACK);
3719 				/*
3720 				 * When we enter recovery we need to assure
3721 				 * we send one packet.
3722 				 */
3723 				rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
3724 			} else
3725 				rack->r_ctl.rc_tlp_rtx_out = 0;
3726 		}
3727 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3728 			/* New more recent rack_tmit_time */
3729 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3730 			rack->rc_rack_rtt = t;
3731 		}
3732 		return (1);
3733 	}
3734 	/*
3735 	 * We clear the soft/rxtshift since we got an ack.
3736 	 * There is no assurance we will call the commit() function
3737 	 * so we need to clear these to avoid incorrect handling.
3738 	 */
3739 	tp->t_rxtshift = 0;
3740 	tp->t_softerror = 0;
3741 	if ((to->to_flags & TOF_TS) &&
3742 	    (ack_type == CUM_ACKED) &&
3743 	    (to->to_tsecr) &&
3744 	    ((rsm->r_flags & (RACK_DEFERRED | RACK_OVERMAX)) == 0)) {
3745 		/*
3746 		 * Now which timestamp does it match? In this block the ACK
3747 		 * must be coming from a previous transmission.
3748 		 */
3749 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
3750 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
3751 				t = cts - rsm->r_tim_lastsent[i];
3752 				if ((int)t <= 0)
3753 					t = 1;
3754 				if ((i + 1) < rsm->r_rtr_cnt) {
3755 					/* Likely */
3756 					rack_earlier_retran(tp, rsm, t, cts);
3757 				}
3758 				if (!tp->t_rttlow || tp->t_rttlow > t)
3759 					tp->t_rttlow = t;
3760 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3761 					rack->r_ctl.rc_rack_min_rtt = t;
3762 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
3763 						rack->r_ctl.rc_rack_min_rtt = 1;
3764 					}
3765 				}
3766                                 /*
3767 				 * Note the following calls to
3768 				 * tcp_rack_xmit_timer() are being commented
3769 				 * out for now. They give us no more accuracy
3770 				 * and often lead to a wrong choice. We have
3771 				 * enough samples that have not been
3772 				 * retransmitted. I leave the commented out
3773 				 * code in here in case in the future we
3774 				 * decide to add it back (though I can't forsee
3775 				 * doing that). That way we will easily see
3776 				 * where they need to be placed.
3777 				 */
3778 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
3779 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3780 					/* New more recent rack_tmit_time */
3781 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3782 					rack->rc_rack_rtt = t;
3783 				}
3784 				return (1);
3785 			}
3786 		}
3787 		goto ts_not_found;
3788 	} else {
3789 		/*
3790 		 * Ok its a SACK block that we retransmitted. or a windows
3791 		 * machine without timestamps. We can tell nothing from the
3792 		 * time-stamp since its not there or the time the peer last
3793 		 * recieved a segment that moved forward its cum-ack point.
3794 		 */
3795 ts_not_found:
3796 		i = rsm->r_rtr_cnt - 1;
3797 		t = cts - rsm->r_tim_lastsent[i];
3798 		if ((int)t <= 0)
3799 			t = 1;
3800 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3801 			/*
3802 			 * We retransmitted and the ack came back in less
3803 			 * than the smallest rtt we have observed. We most
3804 			 * likey did an improper retransmit as outlined in
3805 			 * 4.2 Step 3 point 2 in the rack-draft.
3806 			 */
3807 			i = rsm->r_rtr_cnt - 2;
3808 			t = cts - rsm->r_tim_lastsent[i];
3809 			rack_earlier_retran(tp, rsm, t, cts);
3810 		} else if (rack->r_ctl.rc_rack_min_rtt) {
3811 			/*
3812 			 * We retransmitted it and the retransmit did the
3813 			 * job.
3814 			 */
3815 			if (!rack->r_ctl.rc_rack_min_rtt ||
3816 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3817 				rack->r_ctl.rc_rack_min_rtt = t;
3818 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
3819 					rack->r_ctl.rc_rack_min_rtt = 1;
3820 				}
3821 			}
3822 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
3823 				/* New more recent rack_tmit_time */
3824 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
3825 				rack->rc_rack_rtt = t;
3826 			}
3827 			return (1);
3828 		}
3829 	}
3830 	return (0);
3831 }
3832 
3833 /*
3834  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
3835  */
3836 static void
3837 rack_log_sack_passed(struct tcpcb *tp,
3838     struct tcp_rack *rack, struct rack_sendmap *rsm)
3839 {
3840 	struct rack_sendmap *nrsm;
3841 	uint32_t ts;
3842 	int32_t idx;
3843 
3844 	idx = rsm->r_rtr_cnt - 1;
3845 	ts = rsm->r_tim_lastsent[idx];
3846 	nrsm = rsm;
3847 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
3848 	    rack_head, r_tnext) {
3849 		if (nrsm == rsm) {
3850 			/* Skip orginal segment he is acked */
3851 			continue;
3852 		}
3853 		if (nrsm->r_flags & RACK_ACKED) {
3854 			/* Skip ack'd segments */
3855 			continue;
3856 		}
3857 		idx = nrsm->r_rtr_cnt - 1;
3858 		if (ts == nrsm->r_tim_lastsent[idx]) {
3859 			/*
3860 			 * For this case lets use seq no, if we sent in a
3861 			 * big block (TSO) we would have a bunch of segments
3862 			 * sent at the same time.
3863 			 *
3864 			 * We would only get a report if its SEQ is earlier.
3865 			 * If we have done multiple retransmits the times
3866 			 * would not be equal.
3867 			 */
3868 			if (SEQ_LT(nrsm->r_start, rsm->r_start)) {
3869 				nrsm->r_flags |= RACK_SACK_PASSED;
3870 				nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3871 			}
3872 		} else {
3873 			/*
3874 			 * Here they were sent at different times, not a big
3875 			 * block. Since we transmitted this one later and
3876 			 * see it sack'd then this must also be missing (or
3877 			 * we would have gotten a sack block for it)
3878 			 */
3879 			nrsm->r_flags |= RACK_SACK_PASSED;
3880 			nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3881 		}
3882 	}
3883 }
3884 
3885 static uint32_t
3886 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
3887     struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts)
3888 {
3889 	int32_t idx;
3890 	int32_t times = 0;
3891 	uint32_t start, end, changed = 0;
3892 	struct rack_sendmap *rsm, *nrsm;
3893 	int32_t used_ref = 1;
3894 
3895 	start = sack->start;
3896 	end = sack->end;
3897 	rsm = *prsm;
3898 	if (rsm && SEQ_LT(start, rsm->r_start)) {
3899 		TAILQ_FOREACH_REVERSE_FROM(rsm, &rack->r_ctl.rc_map, rack_head, r_next) {
3900 			if (SEQ_GEQ(start, rsm->r_start) &&
3901 			    SEQ_LT(start, rsm->r_end)) {
3902 				goto do_rest_ofb;
3903 			}
3904 		}
3905 	}
3906 	if (rsm == NULL) {
3907 start_at_beginning:
3908 		rsm = NULL;
3909 		used_ref = 0;
3910 	}
3911 	/* First lets locate the block where this guy is */
3912 	TAILQ_FOREACH_FROM(rsm, &rack->r_ctl.rc_map, r_next) {
3913 		if (SEQ_GEQ(start, rsm->r_start) &&
3914 		    SEQ_LT(start, rsm->r_end)) {
3915 			break;
3916 		}
3917 	}
3918 do_rest_ofb:
3919 	if (rsm == NULL) {
3920 		/*
3921 		 * This happens when we get duplicate sack blocks with the
3922 		 * same end. For example SACK 4: 100 SACK 3: 100 The sort
3923 		 * will not change there location so we would just start at
3924 		 * the end of the first one and get lost.
3925 		 */
3926 		if (tp->t_flags & TF_SENTFIN) {
3927 			/*
3928 			 * Check to see if we have not logged the FIN that
3929 			 * went out.
3930 			 */
3931 			nrsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
3932 			if (nrsm && (nrsm->r_end + 1) == tp->snd_max) {
3933 				/*
3934 				 * Ok we did not get the FIN logged.
3935 				 */
3936 				nrsm->r_end++;
3937 				rsm = nrsm;
3938 				goto do_rest_ofb;
3939 			}
3940 		}
3941 		if (times == 1) {
3942 #ifdef INVARIANTS
3943 			panic("tp:%p rack:%p sack:%p to:%p prsm:%p",
3944 			    tp, rack, sack, to, prsm);
3945 #else
3946 			goto out;
3947 #endif
3948 		}
3949 		times++;
3950 		counter_u64_add(rack_sack_proc_restart, 1);
3951 		goto start_at_beginning;
3952 	}
3953 	/* Ok we have an ACK for some piece of rsm */
3954 	if (rsm->r_start != start) {
3955 		/*
3956 		 * Need to split this in two pieces the before and after.
3957 		 */
3958 		nrsm = rack_alloc(rack);
3959 		if (nrsm == NULL) {
3960 			/*
3961 			 * failed XXXrrs what can we do but loose the sack
3962 			 * info?
3963 			 */
3964 			goto out;
3965 		}
3966 		nrsm->r_start = start;
3967 		nrsm->r_rtr_bytes = 0;
3968 		nrsm->r_end = rsm->r_end;
3969 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3970 		nrsm->r_flags = rsm->r_flags;
3971 		nrsm->r_sndcnt = rsm->r_sndcnt;
3972 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3973 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3974 		}
3975 		rsm->r_end = nrsm->r_start;
3976 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3977 		if (rsm->r_in_tmap) {
3978 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3979 			nrsm->r_in_tmap = 1;
3980 		}
3981 		rsm->r_flags &= (~RACK_HAS_FIN);
3982 		rsm = nrsm;
3983 	}
3984 	if (SEQ_GEQ(end, rsm->r_end)) {
3985 		/*
3986 		 * The end of this block is either beyond this guy or right
3987 		 * at this guy.
3988 		 */
3989 
3990 		if ((rsm->r_flags & RACK_ACKED) == 0) {
3991 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
3992 			changed += (rsm->r_end - rsm->r_start);
3993 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
3994 			rack_log_sack_passed(tp, rack, rsm);
3995 			/* Is Reordering occuring? */
3996 			if (rsm->r_flags & RACK_SACK_PASSED) {
3997 				counter_u64_add(rack_reorder_seen, 1);
3998 				rack->r_ctl.rc_reorder_ts = cts;
3999 			}
4000 			rsm->r_flags |= RACK_ACKED;
4001 			rsm->r_flags &= ~RACK_TLP;
4002 			if (rsm->r_in_tmap) {
4003 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4004 				rsm->r_in_tmap = 0;
4005 			}
4006 		}
4007 		if (end == rsm->r_end) {
4008 			/* This block only - done */
4009 			goto out;
4010 		}
4011 		/* There is more not coverend by this rsm move on */
4012 		start = rsm->r_end;
4013 		nrsm = TAILQ_NEXT(rsm, r_next);
4014 		rsm = nrsm;
4015 		times = 0;
4016 		goto do_rest_ofb;
4017 	}
4018 	/* Ok we need to split off this one at the tail */
4019 	nrsm = rack_alloc(rack);
4020 	if (nrsm == NULL) {
4021 		/* failed rrs what can we do but loose the sack info? */
4022 		goto out;
4023 	}
4024 	/* Clone it */
4025 	nrsm->r_start = end;
4026 	nrsm->r_end = rsm->r_end;
4027 	nrsm->r_rtr_bytes = 0;
4028 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
4029 	nrsm->r_flags = rsm->r_flags;
4030 	nrsm->r_sndcnt = rsm->r_sndcnt;
4031 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
4032 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
4033 	}
4034 	/* The sack block does not cover this guy fully */
4035 	rsm->r_flags &= (~RACK_HAS_FIN);
4036 	rsm->r_end = end;
4037 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
4038 	if (rsm->r_in_tmap) {
4039 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4040 		nrsm->r_in_tmap = 1;
4041 	}
4042 	if (rsm->r_flags & RACK_ACKED) {
4043 		/* Been here done that */
4044 		goto out;
4045 	}
4046 	rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4047 	changed += (rsm->r_end - rsm->r_start);
4048 	rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4049 	rack_log_sack_passed(tp, rack, rsm);
4050 	/* Is Reordering occuring? */
4051 	if (rsm->r_flags & RACK_SACK_PASSED) {
4052 		counter_u64_add(rack_reorder_seen, 1);
4053 		rack->r_ctl.rc_reorder_ts = cts;
4054 	}
4055 	rsm->r_flags |= RACK_ACKED;
4056 	rsm->r_flags &= ~RACK_TLP;
4057 	if (rsm->r_in_tmap) {
4058 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4059 		rsm->r_in_tmap = 0;
4060 	}
4061 out:
4062 	if (used_ref == 0) {
4063 		counter_u64_add(rack_sack_proc_all, 1);
4064 	} else {
4065 		counter_u64_add(rack_sack_proc_short, 1);
4066 	}
4067 	/* Save off where we last were */
4068 	if (rsm)
4069 		rack->r_ctl.rc_sacklast = TAILQ_NEXT(rsm, r_next);
4070 	else
4071 		rack->r_ctl.rc_sacklast = NULL;
4072 	*prsm = rsm;
4073 	return (changed);
4074 }
4075 
4076 static void inline
4077 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4078 {
4079 	struct rack_sendmap *tmap;
4080 
4081 	tmap = NULL;
4082 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4083 		/* Its no longer sacked, mark it so */
4084 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4085 #ifdef INVARIANTS
4086 		if (rsm->r_in_tmap) {
4087 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4088 			      rack, rsm, rsm->r_flags);
4089 		}
4090 #endif
4091 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4092 		/* Rebuild it into our tmap */
4093 		if (tmap == NULL) {
4094 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4095 			tmap = rsm;
4096 		} else {
4097 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4098 			tmap = rsm;
4099 		}
4100 		tmap->r_in_tmap = 1;
4101 		rsm = TAILQ_NEXT(rsm, r_next);
4102 	}
4103 	/*
4104 	 * Now lets possibly clear the sack filter so we start
4105 	 * recognizing sacks that cover this area.
4106 	 */
4107 	if (rack_use_sack_filter)
4108 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4109 
4110 }
4111 
4112 static void
4113 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4114 {
4115 	uint32_t changed, last_seq, entered_recovery = 0;
4116 	struct tcp_rack *rack;
4117 	struct rack_sendmap *rsm;
4118 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4119 	register uint32_t th_ack;
4120 	int32_t i, j, k, num_sack_blks = 0;
4121 	uint32_t cts, acked, ack_point, sack_changed = 0;
4122 
4123 	INP_WLOCK_ASSERT(tp->t_inpcb);
4124 	if (th->th_flags & TH_RST) {
4125 		/* We don't log resets */
4126 		return;
4127 	}
4128 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4129 	cts = tcp_ts_getticks();
4130 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4131 	changed = 0;
4132 	th_ack = th->th_ack;
4133 
4134 	if (SEQ_GT(th_ack, tp->snd_una)) {
4135 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4136 		tp->t_acktime = ticks;
4137 	}
4138 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4139 		changed = th_ack - rsm->r_start;
4140 	if (changed) {
4141 		/*
4142 		 * The ACK point is advancing to th_ack, we must drop off
4143 		 * the packets in the rack log and calculate any eligble
4144 		 * RTT's.
4145 		 */
4146 		rack->r_wanted_output++;
4147 more:
4148 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4149 		if (rsm == NULL) {
4150 			if ((th_ack - 1) == tp->iss) {
4151 				/*
4152 				 * For the SYN incoming case we will not
4153 				 * have called tcp_output for the sending of
4154 				 * the SYN, so there will be no map. All
4155 				 * other cases should probably be a panic.
4156 				 */
4157 				goto proc_sack;
4158 			}
4159 			if (tp->t_flags & TF_SENTFIN) {
4160 				/* if we send a FIN we will not hav a map */
4161 				goto proc_sack;
4162 			}
4163 #ifdef INVARIANTS
4164 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4165 			    tp,
4166 			    th, tp->t_state, rack,
4167 			    tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4168 #endif
4169 			goto proc_sack;
4170 		}
4171 		if (SEQ_LT(th_ack, rsm->r_start)) {
4172 			/* Huh map is missing this */
4173 #ifdef INVARIANTS
4174 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4175 			    rsm->r_start,
4176 			    th_ack, tp->t_state, rack->r_state);
4177 #endif
4178 			goto proc_sack;
4179 		}
4180 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4181 		/* Now do we consume the whole thing? */
4182 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4183 			/* Its all consumed. */
4184 			uint32_t left;
4185 
4186 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4187 			rsm->r_rtr_bytes = 0;
4188 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
4189 			if (rsm->r_in_tmap) {
4190 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4191 				rsm->r_in_tmap = 0;
4192 			}
4193 			if (rack->r_ctl.rc_next == rsm) {
4194 				/* scoot along the marker */
4195 				rack->r_ctl.rc_next = TAILQ_FIRST(&rack->r_ctl.rc_map);
4196 			}
4197 			if (rsm->r_flags & RACK_ACKED) {
4198 				/*
4199 				 * It was acked on the scoreboard -- remove
4200 				 * it from total
4201 				 */
4202 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4203 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4204 				/*
4205 				 * There are acked segments ACKED on the
4206 				 * scoreboard further up. We are seeing
4207 				 * reordering.
4208 				 */
4209 				counter_u64_add(rack_reorder_seen, 1);
4210 				rsm->r_flags |= RACK_ACKED;
4211 				rack->r_ctl.rc_reorder_ts = cts;
4212 			}
4213 			left = th_ack - rsm->r_end;
4214 			if (rsm->r_rtr_cnt > 1) {
4215 				/*
4216 				 * Technically we should make r_rtr_cnt be
4217 				 * monotonicly increasing and just mod it to
4218 				 * the timestamp it is replacing.. that way
4219 				 * we would have the last 3 retransmits. Now
4220 				 * rc_loss_count will be wrong if we
4221 				 * retransmit something more than 2 times in
4222 				 * recovery :(
4223 				 */
4224 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4225 			}
4226 			/* Free back to zone */
4227 			rack_free(rack, rsm);
4228 			if (left) {
4229 				goto more;
4230 			}
4231 			goto proc_sack;
4232 		}
4233 		if (rsm->r_flags & RACK_ACKED) {
4234 			/*
4235 			 * It was acked on the scoreboard -- remove it from
4236 			 * total for the part being cum-acked.
4237 			 */
4238 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4239 		}
4240 		rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4241 		rsm->r_rtr_bytes = 0;
4242 		rsm->r_start = th_ack;
4243 	}
4244 proc_sack:
4245 	/* Check for reneging */
4246 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4247 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4248 		/*
4249 		 * The peer has moved snd_una up to
4250 		 * the edge of this send, i.e. one
4251 		 * that it had previously acked. The only
4252 		 * way that can be true if the peer threw
4253 		 * away data (space issues) that it had
4254 		 * previously sacked (else it would have
4255 		 * given us snd_una up to (rsm->r_end).
4256 		 * We need to undo the acked markings here.
4257 		 *
4258 		 * Note we have to look to make sure th_ack is
4259 		 * our rsm->r_start in case we get an old ack
4260 		 * where th_ack is behind snd_una.
4261 		 */
4262 		rack_peer_reneges(rack, rsm, th->th_ack);
4263 	}
4264 	if ((to->to_flags & TOF_SACK) == 0) {
4265 		/* We are done nothing left to log */
4266 		goto out;
4267 	}
4268 	rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
4269 	if (rsm) {
4270 		last_seq = rsm->r_end;
4271 	} else {
4272 		last_seq = tp->snd_max;
4273 	}
4274 	/* Sack block processing */
4275 	if (SEQ_GT(th_ack, tp->snd_una))
4276 		ack_point = th_ack;
4277 	else
4278 		ack_point = tp->snd_una;
4279 	for (i = 0; i < to->to_nsacks; i++) {
4280 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4281 		    &sack, sizeof(sack));
4282 		sack.start = ntohl(sack.start);
4283 		sack.end = ntohl(sack.end);
4284 		if (SEQ_GT(sack.end, sack.start) &&
4285 		    SEQ_GT(sack.start, ack_point) &&
4286 		    SEQ_LT(sack.start, tp->snd_max) &&
4287 		    SEQ_GT(sack.end, ack_point) &&
4288 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4289 			if ((rack->r_ctl.rc_num_maps_alloced > rack_sack_block_limit) &&
4290 			    (SEQ_LT(sack.end, last_seq)) &&
4291 			    ((sack.end - sack.start) < (tp->t_maxseg / 8))) {
4292 				/*
4293 				 * Not the last piece and its smaller than
4294 				 * 1/8th of a MSS. We ignore this.
4295 				 */
4296 				counter_u64_add(rack_runt_sacks, 1);
4297 				continue;
4298 			}
4299 			sack_blocks[num_sack_blks] = sack;
4300 			num_sack_blks++;
4301 #ifdef NETFLIX_STATS
4302 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4303 			   SEQ_LEQ(sack.end, th_ack)) {
4304 			/*
4305 			 * Its a D-SACK block.
4306 			 */
4307 			tcp_record_dsack(sack.start, sack.end);
4308 #endif
4309 		}
4310 
4311 	}
4312 	if (num_sack_blks == 0)
4313 		goto out;
4314 	/*
4315 	 * Sort the SACK blocks so we can update the rack scoreboard with
4316 	 * just one pass.
4317 	 */
4318 	if (rack_use_sack_filter) {
4319 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, num_sack_blks, th->th_ack);
4320 	}
4321 	if (num_sack_blks < 2) {
4322 		goto do_sack_work;
4323 	}
4324 	/* Sort the sacks */
4325 	for (i = 0; i < num_sack_blks; i++) {
4326 		for (j = i + 1; j < num_sack_blks; j++) {
4327 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4328 				sack = sack_blocks[i];
4329 				sack_blocks[i] = sack_blocks[j];
4330 				sack_blocks[j] = sack;
4331 			}
4332 		}
4333 	}
4334 	/*
4335 	 * Now are any of the sack block ends the same (yes some
4336 	 * implememtations send these)?
4337 	 */
4338 again:
4339 	if (num_sack_blks > 1) {
4340 		for (i = 0; i < num_sack_blks; i++) {
4341 			for (j = i + 1; j < num_sack_blks; j++) {
4342 				if (sack_blocks[i].end == sack_blocks[j].end) {
4343 					/*
4344 					 * Ok these two have the same end we
4345 					 * want the smallest end and then
4346 					 * throw away the larger and start
4347 					 * again.
4348 					 */
4349 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4350 						/*
4351 						 * The second block covers
4352 						 * more area use that
4353 						 */
4354 						sack_blocks[i].start = sack_blocks[j].start;
4355 					}
4356 					/*
4357 					 * Now collapse out the dup-sack and
4358 					 * lower the count
4359 					 */
4360 					for (k = (j + 1); k < num_sack_blks; k++) {
4361 						sack_blocks[j].start = sack_blocks[k].start;
4362 						sack_blocks[j].end = sack_blocks[k].end;
4363 						j++;
4364 					}
4365 					num_sack_blks--;
4366 					goto again;
4367 				}
4368 			}
4369 		}
4370 	}
4371 do_sack_work:
4372 	rsm = rack->r_ctl.rc_sacklast;
4373 	for (i = 0; i < num_sack_blks; i++) {
4374 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts);
4375 		if (acked) {
4376 			rack->r_wanted_output++;
4377 			changed += acked;
4378 			sack_changed += acked;
4379 		}
4380 	}
4381 out:
4382 	if (changed) {
4383 		/* Something changed cancel the rack timer */
4384 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4385 	}
4386 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
4387 		/*
4388 		 * Ok we have a high probability that we need to go in to
4389 		 * recovery since we have data sack'd
4390 		 */
4391 		struct rack_sendmap *rsm;
4392 		uint32_t tsused;
4393 
4394 		tsused = tcp_ts_getticks();
4395 		rsm = tcp_rack_output(tp, rack, tsused);
4396 		if (rsm) {
4397 			/* Enter recovery */
4398 			rack->r_ctl.rc_rsm_start = rsm->r_start;
4399 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4400 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4401 			entered_recovery = 1;
4402 			rack_cong_signal(tp, NULL, CC_NDUPACK);
4403 			/*
4404 			 * When we enter recovery we need to assure we send
4405 			 * one packet.
4406 			 */
4407 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
4408 			rack->r_timer_override = 1;
4409 		}
4410 	}
4411 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
4412 		/* Deal with changed an PRR here (in recovery only) */
4413 		uint32_t pipe, snd_una;
4414 
4415 		rack->r_ctl.rc_prr_delivered += changed;
4416 		/* Compute prr_sndcnt */
4417 		if (SEQ_GT(tp->snd_una, th_ack)) {
4418 			snd_una = tp->snd_una;
4419 		} else {
4420 			snd_una = th_ack;
4421 		}
4422 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
4423 		if (pipe > tp->snd_ssthresh) {
4424 			long sndcnt;
4425 
4426 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
4427 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
4428 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
4429 			else {
4430 				rack->r_ctl.rc_prr_sndcnt = 0;
4431 				sndcnt = 0;
4432 			}
4433 			sndcnt++;
4434 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
4435 				sndcnt -= rack->r_ctl.rc_prr_out;
4436 			else
4437 				sndcnt = 0;
4438 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
4439 		} else {
4440 			uint32_t limit;
4441 
4442 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
4443 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
4444 			else
4445 				limit = 0;
4446 			if (changed > limit)
4447 				limit = changed;
4448 			limit += tp->t_maxseg;
4449 			if (tp->snd_ssthresh > pipe) {
4450 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
4451 			} else {
4452 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
4453 			}
4454 		}
4455 		if (rack->r_ctl.rc_prr_sndcnt >= tp->t_maxseg) {
4456 			rack->r_timer_override = 1;
4457 		}
4458 	}
4459 }
4460 
4461 /*
4462  * Return value of 1, we do not need to call rack_process_data().
4463  * return value of 0, rack_process_data can be called.
4464  * For ret_val if its 0 the TCP is locked, if its non-zero
4465  * its unlocked and probably unsafe to touch the TCB.
4466  */
4467 static int
4468 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
4469     struct tcpcb *tp, struct tcpopt *to,
4470     uint32_t tiwin, int32_t tlen,
4471     int32_t * ofia, int32_t thflags, int32_t * ret_val)
4472 {
4473 	int32_t ourfinisacked = 0;
4474 	int32_t nsegs, acked_amount;
4475 	int32_t acked;
4476 	struct mbuf *mfree;
4477 	struct tcp_rack *rack;
4478 	int32_t recovery = 0;
4479 
4480 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4481 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
4482 		rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
4483 		return (1);
4484 	}
4485 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
4486 		rack_log_ack(tp, to, th);
4487 	}
4488 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
4489 		/*
4490 		 * Old ack, behind (or duplicate to) the last one rcv'd
4491 		 * Note: Should mark reordering is occuring! We should also
4492 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
4493 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
4494 		 * retran and> ack 3
4495 		 */
4496 		return (0);
4497 	}
4498 	/*
4499 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
4500 	 * something we sent.
4501 	 */
4502 	if (tp->t_flags & TF_NEEDSYN) {
4503 		/*
4504 		 * T/TCP: Connection was half-synchronized, and our SYN has
4505 		 * been ACK'd (so connection is now fully synchronized).  Go
4506 		 * to non-starred state, increment snd_una for ACK of SYN,
4507 		 * and check if we can do window scaling.
4508 		 */
4509 		tp->t_flags &= ~TF_NEEDSYN;
4510 		tp->snd_una++;
4511 		/* Do window scaling? */
4512 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
4513 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
4514 			tp->rcv_scale = tp->request_r_scale;
4515 			/* Send window already scaled. */
4516 		}
4517 	}
4518 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4519 	INP_WLOCK_ASSERT(tp->t_inpcb);
4520 
4521 	acked = BYTES_THIS_ACK(tp, th);
4522 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
4523 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
4524 
4525 	/*
4526 	 * If we just performed our first retransmit, and the ACK arrives
4527 	 * within our recovery window, then it was a mistake to do the
4528 	 * retransmit in the first place.  Recover our original cwnd and
4529 	 * ssthresh, and proceed to transmit where we left off.
4530 	 */
4531 	if (tp->t_flags & TF_PREVVALID) {
4532 		tp->t_flags &= ~TF_PREVVALID;
4533 		if (tp->t_rxtshift == 1 &&
4534 		    (int)(ticks - tp->t_badrxtwin) < 0)
4535 			rack_cong_signal(tp, th, CC_RTO_ERR);
4536 	}
4537 	/*
4538 	 * If we have a timestamp reply, update smoothed round trip time. If
4539 	 * no timestamp is present but transmit timer is running and timed
4540 	 * sequence number was acked, update smoothed round trip time. Since
4541 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
4542 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
4543 	 * timer.
4544 	 *
4545 	 * Some boxes send broken timestamp replies during the SYN+ACK
4546 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
4547 	 * and blow up the retransmit timer.
4548 	 */
4549 	/*
4550 	 * If all outstanding data is acked, stop retransmit timer and
4551 	 * remember to restart (more output or persist). If there is more
4552 	 * data to be acked, restart retransmit timer, using current
4553 	 * (possibly backed-off) value.
4554 	 */
4555 	if (th->th_ack == tp->snd_max) {
4556 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4557 		rack->r_wanted_output++;
4558 	}
4559 	/*
4560 	 * If no data (only SYN) was ACK'd, skip rest of ACK processing.
4561 	 */
4562 	if (acked == 0) {
4563 		if (ofia)
4564 			*ofia = ourfinisacked;
4565 		return (0);
4566 	}
4567 	if (rack->r_ctl.rc_early_recovery) {
4568 		if (IN_FASTRECOVERY(tp->t_flags)) {
4569 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4570 				tcp_rack_partialack(tp, th);
4571 			} else {
4572 				rack_post_recovery(tp, th);
4573 				recovery = 1;
4574 			}
4575 		}
4576 	}
4577 	/*
4578 	 * Let the congestion control algorithm update congestion control
4579 	 * related information. This typically means increasing the
4580 	 * congestion window.
4581 	 */
4582 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
4583 	SOCKBUF_LOCK(&so->so_snd);
4584 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
4585 	tp->snd_wnd -= acked_amount;
4586 	mfree = sbcut_locked(&so->so_snd, acked_amount);
4587 	if ((sbused(&so->so_snd) == 0) &&
4588 	    (acked > acked_amount) &&
4589 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
4590 		ourfinisacked = 1;
4591 	}
4592 	/* NB: sowwakeup_locked() does an implicit unlock. */
4593 	sowwakeup_locked(so);
4594 	m_freem(mfree);
4595 	if (rack->r_ctl.rc_early_recovery == 0) {
4596 		if (IN_FASTRECOVERY(tp->t_flags)) {
4597 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4598 				tcp_rack_partialack(tp, th);
4599 			} else {
4600 				rack_post_recovery(tp, th);
4601 			}
4602 		}
4603 	}
4604 	tp->snd_una = th->th_ack;
4605 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
4606 		tp->snd_recover = tp->snd_una;
4607 
4608 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4609 		tp->snd_nxt = tp->snd_una;
4610 	}
4611 	if (tp->snd_una == tp->snd_max) {
4612 		/* Nothing left outstanding */
4613 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
4614 		tp->t_acktime = 0;
4615 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4616 		/* Set need output so persist might get set */
4617 		rack->r_wanted_output++;
4618 		if (rack_use_sack_filter)
4619 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
4620 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
4621 		    (sbavail(&so->so_snd) == 0) &&
4622 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
4623 			/*
4624 			 * The socket was gone and the
4625 			 * peer sent data, time to
4626 			 * reset him.
4627 			 */
4628 			*ret_val = 1;
4629 			tp = tcp_close(tp);
4630 			rack_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
4631 			return (1);
4632 		}
4633 	}
4634 	if (ofia)
4635 		*ofia = ourfinisacked;
4636 	return (0);
4637 }
4638 
4639 
4640 /*
4641  * Return value of 1, the TCB is unlocked and most
4642  * likely gone, return value of 0, the TCP is still
4643  * locked.
4644  */
4645 static int
4646 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
4647     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
4648     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
4649 {
4650 	/*
4651 	 * Update window information. Don't look at window if no ACK: TAC's
4652 	 * send garbage on first SYN.
4653 	 */
4654 	int32_t nsegs;
4655 	int32_t tfo_syn;
4656 	struct tcp_rack *rack;
4657 
4658 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4659 	INP_WLOCK_ASSERT(tp->t_inpcb);
4660 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4661 	if ((thflags & TH_ACK) &&
4662 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
4663 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
4664 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
4665 		/* keep track of pure window updates */
4666 		if (tlen == 0 &&
4667 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
4668 			TCPSTAT_INC(tcps_rcvwinupd);
4669 		tp->snd_wnd = tiwin;
4670 		tp->snd_wl1 = th->th_seq;
4671 		tp->snd_wl2 = th->th_ack;
4672 		if (tp->snd_wnd > tp->max_sndwnd)
4673 			tp->max_sndwnd = tp->snd_wnd;
4674 		rack->r_wanted_output++;
4675 	} else if (thflags & TH_ACK) {
4676 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
4677 			tp->snd_wnd = tiwin;
4678 			tp->snd_wl1 = th->th_seq;
4679 			tp->snd_wl2 = th->th_ack;
4680 		}
4681 	}
4682 	/* Was persist timer active and now we have window space? */
4683 	if ((rack->rc_in_persist != 0) && tp->snd_wnd) {
4684 		rack_exit_persist(tp, rack);
4685 		tp->snd_nxt = tp->snd_max;
4686 		/* Make sure we output to start the timer */
4687 		rack->r_wanted_output++;
4688 	}
4689 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
4690 		m_freem(m);
4691 		return (0);
4692 	}
4693 	/*
4694 	 * Process segments with URG.
4695 	 */
4696 	if ((thflags & TH_URG) && th->th_urp &&
4697 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4698 		/*
4699 		 * This is a kludge, but if we receive and accept random
4700 		 * urgent pointers, we'll crash in soreceive.  It's hard to
4701 		 * imagine someone actually wanting to send this much urgent
4702 		 * data.
4703 		 */
4704 		SOCKBUF_LOCK(&so->so_rcv);
4705 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
4706 			th->th_urp = 0;	/* XXX */
4707 			thflags &= ~TH_URG;	/* XXX */
4708 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
4709 			goto dodata;	/* XXX */
4710 		}
4711 		/*
4712 		 * If this segment advances the known urgent pointer, then
4713 		 * mark the data stream.  This should not happen in
4714 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
4715 		 * FIN has been received from the remote side. In these
4716 		 * states we ignore the URG.
4717 		 *
4718 		 * According to RFC961 (Assigned Protocols), the urgent
4719 		 * pointer points to the last octet of urgent data.  We
4720 		 * continue, however, to consider it to indicate the first
4721 		 * octet of data past the urgent section as the original
4722 		 * spec states (in one of two places).
4723 		 */
4724 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
4725 			tp->rcv_up = th->th_seq + th->th_urp;
4726 			so->so_oobmark = sbavail(&so->so_rcv) +
4727 			    (tp->rcv_up - tp->rcv_nxt) - 1;
4728 			if (so->so_oobmark == 0)
4729 				so->so_rcv.sb_state |= SBS_RCVATMARK;
4730 			sohasoutofband(so);
4731 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4732 		}
4733 		SOCKBUF_UNLOCK(&so->so_rcv);
4734 		/*
4735 		 * Remove out of band data so doesn't get presented to user.
4736 		 * This can happen independent of advancing the URG pointer,
4737 		 * but if two URG's are pending at once, some out-of-band
4738 		 * data may creep in... ick.
4739 		 */
4740 		if (th->th_urp <= (uint32_t) tlen &&
4741 		    !(so->so_options & SO_OOBINLINE)) {
4742 			/* hdr drop is delayed */
4743 			tcp_pulloutofband(so, th, m, drop_hdrlen);
4744 		}
4745 	} else {
4746 		/*
4747 		 * If no out of band data is expected, pull receive urgent
4748 		 * pointer along with the receive window.
4749 		 */
4750 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
4751 			tp->rcv_up = tp->rcv_nxt;
4752 	}
4753 dodata:				/* XXX */
4754 	INP_WLOCK_ASSERT(tp->t_inpcb);
4755 
4756 	/*
4757 	 * Process the segment text, merging it into the TCP sequencing
4758 	 * queue, and arranging for acknowledgment of receipt if necessary.
4759 	 * This process logically involves adjusting tp->rcv_wnd as data is
4760 	 * presented to the user (this happens in tcp_usrreq.c, case
4761 	 * PRU_RCVD).  If a FIN has already been received on this connection
4762 	 * then we just ignore the text.
4763 	 */
4764 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
4765 		   IS_FASTOPEN(tp->t_flags));
4766 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
4767 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4768 		tcp_seq save_start = th->th_seq;
4769 
4770 		m_adj(m, drop_hdrlen);	/* delayed header drop */
4771 		/*
4772 		 * Insert segment which includes th into TCP reassembly
4773 		 * queue with control block tp.  Set thflags to whether
4774 		 * reassembly now includes a segment with FIN.  This handles
4775 		 * the common case inline (segment is the next to be
4776 		 * received on an established connection, and the queue is
4777 		 * empty), avoiding linkage into and removal from the queue
4778 		 * and repetition of various conversions. Set DELACK for
4779 		 * segments received in order, but ack immediately when
4780 		 * segments are out of order (so fast retransmit can work).
4781 		 */
4782 		if (th->th_seq == tp->rcv_nxt &&
4783 		    SEGQ_EMPTY(tp) &&
4784 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
4785 		    tfo_syn)) {
4786 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
4787 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4788 				tp->t_flags |= TF_DELACK;
4789 			} else {
4790 				rack->r_wanted_output++;
4791 				tp->t_flags |= TF_ACKNOW;
4792 			}
4793 			tp->rcv_nxt += tlen;
4794 			thflags = th->th_flags & TH_FIN;
4795 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
4796 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
4797 			SOCKBUF_LOCK(&so->so_rcv);
4798 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4799 				m_freem(m);
4800 			else
4801 				sbappendstream_locked(&so->so_rcv, m, 0);
4802 			/* NB: sorwakeup_locked() does an implicit unlock. */
4803 			sorwakeup_locked(so);
4804 		} else {
4805 			/*
4806 			 * XXX: Due to the header drop above "th" is
4807 			 * theoretically invalid by now.  Fortunately
4808 			 * m_adj() doesn't actually frees any mbufs when
4809 			 * trimming from the head.
4810 			 */
4811 			thflags = tcp_reass(tp, th, &save_start, &tlen, m);
4812 			tp->t_flags |= TF_ACKNOW;
4813 		}
4814 		if (tlen > 0)
4815 			tcp_update_sack_list(tp, save_start, save_start + tlen);
4816 	} else {
4817 		m_freem(m);
4818 		thflags &= ~TH_FIN;
4819 	}
4820 
4821 	/*
4822 	 * If FIN is received ACK the FIN and let the user know that the
4823 	 * connection is closing.
4824 	 */
4825 	if (thflags & TH_FIN) {
4826 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4827 			socantrcvmore(so);
4828 			/*
4829 			 * If connection is half-synchronized (ie NEEDSYN
4830 			 * flag on) then delay ACK, so it may be piggybacked
4831 			 * when SYN is sent. Otherwise, since we received a
4832 			 * FIN then no more input can be expected, send ACK
4833 			 * now.
4834 			 */
4835 			if (tp->t_flags & TF_NEEDSYN) {
4836 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4837 				tp->t_flags |= TF_DELACK;
4838 			} else {
4839 				tp->t_flags |= TF_ACKNOW;
4840 			}
4841 			tp->rcv_nxt++;
4842 		}
4843 		switch (tp->t_state) {
4844 
4845 			/*
4846 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
4847 			 * CLOSE_WAIT state.
4848 			 */
4849 		case TCPS_SYN_RECEIVED:
4850 			tp->t_starttime = ticks;
4851 			/* FALLTHROUGH */
4852 		case TCPS_ESTABLISHED:
4853 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4854 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
4855 			break;
4856 
4857 			/*
4858 			 * If still in FIN_WAIT_1 STATE FIN has not been
4859 			 * acked so enter the CLOSING state.
4860 			 */
4861 		case TCPS_FIN_WAIT_1:
4862 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4863 			tcp_state_change(tp, TCPS_CLOSING);
4864 			break;
4865 
4866 			/*
4867 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
4868 			 * starting the time-wait timer, turning off the
4869 			 * other standard timers.
4870 			 */
4871 		case TCPS_FIN_WAIT_2:
4872 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4873 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
4874 			tcp_twstart(tp);
4875 			return (1);
4876 		}
4877 	}
4878 	/*
4879 	 * Return any desired output.
4880 	 */
4881 	if ((tp->t_flags & TF_ACKNOW) || (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
4882 		rack->r_wanted_output++;
4883 	}
4884 	INP_WLOCK_ASSERT(tp->t_inpcb);
4885 	return (0);
4886 }
4887 
4888 /*
4889  * Here nothing is really faster, its just that we
4890  * have broken out the fast-data path also just like
4891  * the fast-ack.
4892  */
4893 static int
4894 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
4895     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
4896     uint32_t tiwin, int32_t nxt_pkt)
4897 {
4898 	int32_t nsegs;
4899 	int32_t newsize = 0;	/* automatic sockbuf scaling */
4900 	struct tcp_rack *rack;
4901 #ifdef TCPDEBUG
4902 	/*
4903 	 * The size of tcp_saveipgen must be the size of the max ip header,
4904 	 * now IPv6.
4905 	 */
4906 	u_char tcp_saveipgen[IP6_HDR_LEN];
4907 	struct tcphdr tcp_savetcp;
4908 	short ostate = 0;
4909 
4910 #endif
4911 	/*
4912 	 * If last ACK falls within this segment's sequence numbers, record
4913 	 * the timestamp. NOTE that the test is modified according to the
4914 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
4915 	 */
4916 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
4917 		return (0);
4918 	}
4919 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
4920 		return (0);
4921 	}
4922 	if (tiwin && tiwin != tp->snd_wnd) {
4923 		return (0);
4924 	}
4925 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
4926 		return (0);
4927 	}
4928 	if (__predict_false((to->to_flags & TOF_TS) &&
4929 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
4930 		return (0);
4931 	}
4932 	if (__predict_false((th->th_ack != tp->snd_una))) {
4933 		return (0);
4934 	}
4935 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
4936 		return (0);
4937 	}
4938 	if ((to->to_flags & TOF_TS) != 0 &&
4939 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
4940 		tp->ts_recent_age = tcp_ts_getticks();
4941 		tp->ts_recent = to->to_tsval;
4942 	}
4943 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4944 	/*
4945 	 * This is a pure, in-sequence data packet with nothing on the
4946 	 * reassembly queue and we have enough buffer space to take it.
4947 	 */
4948 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4949 
4950 
4951 	/* Clean receiver SACK report if present */
4952 	if (tp->rcv_numsacks)
4953 		tcp_clean_sackreport(tp);
4954 	TCPSTAT_INC(tcps_preddat);
4955 	tp->rcv_nxt += tlen;
4956 	/*
4957 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
4958 	 */
4959 	tp->snd_wl1 = th->th_seq;
4960 	/*
4961 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
4962 	 */
4963 	tp->rcv_up = tp->rcv_nxt;
4964 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
4965 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
4966 #ifdef TCPDEBUG
4967 	if (so->so_options & SO_DEBUG)
4968 		tcp_trace(TA_INPUT, ostate, tp,
4969 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
4970 #endif
4971 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
4972 
4973 	/* Add data to socket buffer. */
4974 	SOCKBUF_LOCK(&so->so_rcv);
4975 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4976 		m_freem(m);
4977 	} else {
4978 		/*
4979 		 * Set new socket buffer size. Give up when limit is
4980 		 * reached.
4981 		 */
4982 		if (newsize)
4983 			if (!sbreserve_locked(&so->so_rcv,
4984 			    newsize, so, NULL))
4985 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
4986 		m_adj(m, drop_hdrlen);	/* delayed header drop */
4987 		sbappendstream_locked(&so->so_rcv, m, 0);
4988 		rack_calc_rwin(so, tp);
4989 	}
4990 	/* NB: sorwakeup_locked() does an implicit unlock. */
4991 	sorwakeup_locked(so);
4992 	if (DELAY_ACK(tp, tlen)) {
4993 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4994 		tp->t_flags |= TF_DELACK;
4995 	} else {
4996 		tp->t_flags |= TF_ACKNOW;
4997 		rack->r_wanted_output++;
4998 	}
4999 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
5000 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5001 	return (1);
5002 }
5003 
5004 /*
5005  * This subfunction is used to try to highly optimize the
5006  * fast path. We again allow window updates that are
5007  * in sequence to remain in the fast-path. We also add
5008  * in the __predict's to attempt to help the compiler.
5009  * Note that if we return a 0, then we can *not* process
5010  * it and the caller should push the packet into the
5011  * slow-path.
5012  */
5013 static int
5014 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5015     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5016     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
5017 {
5018 	int32_t acked;
5019 	int32_t nsegs;
5020 
5021 #ifdef TCPDEBUG
5022 	/*
5023 	 * The size of tcp_saveipgen must be the size of the max ip header,
5024 	 * now IPv6.
5025 	 */
5026 	u_char tcp_saveipgen[IP6_HDR_LEN];
5027 	struct tcphdr tcp_savetcp;
5028 	short ostate = 0;
5029 
5030 #endif
5031 	struct tcp_rack *rack;
5032 
5033 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5034 		/* Old ack, behind (or duplicate to) the last one rcv'd */
5035 		return (0);
5036 	}
5037 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
5038 		/* Above what we have sent? */
5039 		return (0);
5040 	}
5041 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5042 		/* We are retransmitting */
5043 		return (0);
5044 	}
5045 	if (__predict_false(tiwin == 0)) {
5046 		/* zero window */
5047 		return (0);
5048 	}
5049 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
5050 		/* We need a SYN or a FIN, unlikely.. */
5051 		return (0);
5052 	}
5053 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
5054 		/* Timestamp is behind .. old ack with seq wrap? */
5055 		return (0);
5056 	}
5057 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
5058 		/* Still recovering */
5059 		return (0);
5060 	}
5061 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5062 	if (rack->r_ctl.rc_sacked) {
5063 		/* We have sack holes on our scoreboard */
5064 		return (0);
5065 	}
5066 	/* Ok if we reach here, we can process a fast-ack */
5067 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5068 	rack_log_ack(tp, to, th);
5069 	/* Did the window get updated? */
5070 	if (tiwin != tp->snd_wnd) {
5071 		tp->snd_wnd = tiwin;
5072 		tp->snd_wl1 = th->th_seq;
5073 		if (tp->snd_wnd > tp->max_sndwnd)
5074 			tp->max_sndwnd = tp->snd_wnd;
5075 	}
5076 	if ((rack->rc_in_persist != 0) && (tp->snd_wnd >= tp->t_maxseg)) {
5077 		rack_exit_persist(tp, rack);
5078 	}
5079 	/*
5080 	 * If last ACK falls within this segment's sequence numbers, record
5081 	 * the timestamp. NOTE that the test is modified according to the
5082 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5083 	 */
5084 	if ((to->to_flags & TOF_TS) != 0 &&
5085 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5086 		tp->ts_recent_age = tcp_ts_getticks();
5087 		tp->ts_recent = to->to_tsval;
5088 	}
5089 	/*
5090 	 * This is a pure ack for outstanding data.
5091 	 */
5092 	TCPSTAT_INC(tcps_predack);
5093 
5094 	/*
5095 	 * "bad retransmit" recovery.
5096 	 */
5097 	if (tp->t_flags & TF_PREVVALID) {
5098 		tp->t_flags &= ~TF_PREVVALID;
5099 		if (tp->t_rxtshift == 1 &&
5100 		    (int)(ticks - tp->t_badrxtwin) < 0)
5101 			rack_cong_signal(tp, th, CC_RTO_ERR);
5102 	}
5103 	/*
5104 	 * Recalculate the transmit timer / rtt.
5105 	 *
5106 	 * Some boxes send broken timestamp replies during the SYN+ACK
5107 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5108 	 * and blow up the retransmit timer.
5109 	 */
5110 	acked = BYTES_THIS_ACK(tp, th);
5111 
5112 #ifdef TCP_HHOOK
5113 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
5114 	hhook_run_tcp_est_in(tp, th, to);
5115 #endif
5116 
5117 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5118 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5119 	sbdrop(&so->so_snd, acked);
5120 	/*
5121 	 * Let the congestion control algorithm update congestion control
5122 	 * related information. This typically means increasing the
5123 	 * congestion window.
5124 	 */
5125 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
5126 
5127 	tp->snd_una = th->th_ack;
5128 	/*
5129 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
5130 	 */
5131 	tp->snd_wl2 = th->th_ack;
5132 	tp->t_dupacks = 0;
5133 	m_freem(m);
5134 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
5135 
5136 	/*
5137 	 * If all outstanding data are acked, stop retransmit timer,
5138 	 * otherwise restart timer using current (possibly backed-off)
5139 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
5140 	 * If data are ready to send, let tcp_output decide between more
5141 	 * output or persist.
5142 	 */
5143 #ifdef TCPDEBUG
5144 	if (so->so_options & SO_DEBUG)
5145 		tcp_trace(TA_INPUT, ostate, tp,
5146 		    (void *)tcp_saveipgen,
5147 		    &tcp_savetcp, 0);
5148 #endif
5149 	if (tp->snd_una == tp->snd_max) {
5150 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5151 		tp->t_acktime = 0;
5152 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5153 	}
5154 	/* Wake up the socket if we have room to write more */
5155 	sowwakeup(so);
5156 	if (sbavail(&so->so_snd)) {
5157 		rack->r_wanted_output++;
5158 	}
5159 	return (1);
5160 }
5161 
5162 /*
5163  * Return value of 1, the TCB is unlocked and most
5164  * likely gone, return value of 0, the TCP is still
5165  * locked.
5166  */
5167 static int
5168 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
5169     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5170     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5171 {
5172 	int32_t ret_val = 0;
5173 	int32_t todrop;
5174 	int32_t ourfinisacked = 0;
5175 
5176 	rack_calc_rwin(so, tp);
5177 	/*
5178 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
5179 	 * SYN, drop the input. if seg contains a RST, then drop the
5180 	 * connection. if seg does not contain SYN, then drop it. Otherwise
5181 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
5182 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
5183 	 * contains an ECE and ECN support is enabled, the stream is ECN
5184 	 * capable. if SYN has been acked change to ESTABLISHED else
5185 	 * SYN_RCVD state arrange for segment to be acked (eventually)
5186 	 * continue processing rest of data/controls, beginning with URG
5187 	 */
5188 	if ((thflags & TH_ACK) &&
5189 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
5190 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5191 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5192 		return (1);
5193 	}
5194 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
5195 		TCP_PROBE5(connect__refused, NULL, tp,
5196 		    mtod(m, const char *), tp, th);
5197 		tp = tcp_drop(tp, ECONNREFUSED);
5198 		rack_do_drop(m, tp);
5199 		return (1);
5200 	}
5201 	if (thflags & TH_RST) {
5202 		rack_do_drop(m, tp);
5203 		return (1);
5204 	}
5205 	if (!(thflags & TH_SYN)) {
5206 		rack_do_drop(m, tp);
5207 		return (1);
5208 	}
5209 	tp->irs = th->th_seq;
5210 	tcp_rcvseqinit(tp);
5211 	if (thflags & TH_ACK) {
5212 		int tfo_partial = 0;
5213 
5214 		TCPSTAT_INC(tcps_connects);
5215 		soisconnected(so);
5216 #ifdef MAC
5217 		mac_socketpeer_set_from_mbuf(m, so);
5218 #endif
5219 		/* Do window scaling on this connection? */
5220 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5221 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5222 			tp->rcv_scale = tp->request_r_scale;
5223 		}
5224 		tp->rcv_adv += min(tp->rcv_wnd,
5225 		    TCP_MAXWIN << tp->rcv_scale);
5226 		/*
5227 		 * If not all the data that was sent in the TFO SYN
5228 		 * has been acked, resend the remainder right away.
5229 		 */
5230 		if (IS_FASTOPEN(tp->t_flags) &&
5231 		    (tp->snd_una != tp->snd_max)) {
5232 			tp->snd_nxt = th->th_ack;
5233 			tfo_partial = 1;
5234 		}
5235 		/*
5236 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
5237 		 * will be turned on later.
5238 		 */
5239 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
5240 			rack_timer_cancel(tp, (struct tcp_rack *)tp->t_fb_ptr,
5241 					  ((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rcvtime, __LINE__);
5242 			tp->t_flags |= TF_DELACK;
5243 		} else {
5244 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
5245 			tp->t_flags |= TF_ACKNOW;
5246 		}
5247 
5248 		if ((thflags & TH_ECE) && V_tcp_do_ecn) {
5249 			tp->t_flags |= TF_ECN_PERMIT;
5250 			TCPSTAT_INC(tcps_ecn_shs);
5251 		}
5252 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
5253 			/*
5254 			 * We advance snd_una for the
5255 			 * fast open case. If th_ack is
5256 			 * acknowledging data beyond
5257 			 * snd_una we can't just call
5258 			 * ack-processing since the
5259 			 * data stream in our send-map
5260 			 * will start at snd_una + 1 (one
5261 			 * beyond the SYN). If its just
5262 			 * equal we don't need to do that
5263 			 * and there is no send_map.
5264 			 */
5265 			tp->snd_una++;
5266 		}
5267 		/*
5268 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
5269 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
5270 		 */
5271 		tp->t_starttime = ticks;
5272 		if (tp->t_flags & TF_NEEDFIN) {
5273 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
5274 			tp->t_flags &= ~TF_NEEDFIN;
5275 			thflags &= ~TH_SYN;
5276 		} else {
5277 			tcp_state_change(tp, TCPS_ESTABLISHED);
5278 			TCP_PROBE5(connect__established, NULL, tp,
5279 			    mtod(m, const char *), tp, th);
5280 			cc_conn_init(tp);
5281 		}
5282 	} else {
5283 		/*
5284 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
5285 		 * open.  If segment contains CC option and there is a
5286 		 * cached CC, apply TAO test. If it succeeds, connection is *
5287 		 * half-synchronized. Otherwise, do 3-way handshake:
5288 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
5289 		 * there was no CC option, clear cached CC value.
5290 		 */
5291 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
5292 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
5293 	}
5294 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5295 	INP_WLOCK_ASSERT(tp->t_inpcb);
5296 	/*
5297 	 * Advance th->th_seq to correspond to first data byte. If data,
5298 	 * trim to stay within window, dropping FIN if necessary.
5299 	 */
5300 	th->th_seq++;
5301 	if (tlen > tp->rcv_wnd) {
5302 		todrop = tlen - tp->rcv_wnd;
5303 		m_adj(m, -todrop);
5304 		tlen = tp->rcv_wnd;
5305 		thflags &= ~TH_FIN;
5306 		TCPSTAT_INC(tcps_rcvpackafterwin);
5307 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
5308 	}
5309 	tp->snd_wl1 = th->th_seq - 1;
5310 	tp->rcv_up = th->th_seq;
5311 	/*
5312 	 * Client side of transaction: already sent SYN and data. If the
5313 	 * remote host used T/TCP to validate the SYN, our data will be
5314 	 * ACK'd; if so, enter normal data segment processing in the middle
5315 	 * of step 5, ack processing. Otherwise, goto step 6.
5316 	 */
5317 	if (thflags & TH_ACK) {
5318 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
5319 			return (ret_val);
5320 		/* We may have changed to FIN_WAIT_1 above */
5321 		if (tp->t_state == TCPS_FIN_WAIT_1) {
5322 			/*
5323 			 * In FIN_WAIT_1 STATE in addition to the processing
5324 			 * for the ESTABLISHED state if our FIN is now
5325 			 * acknowledged then enter FIN_WAIT_2.
5326 			 */
5327 			if (ourfinisacked) {
5328 				/*
5329 				 * If we can't receive any more data, then
5330 				 * closing user can proceed. Starting the
5331 				 * timer is contrary to the specification,
5332 				 * but if we don't get a FIN we'll hang
5333 				 * forever.
5334 				 *
5335 				 * XXXjl: we should release the tp also, and
5336 				 * use a compressed state.
5337 				 */
5338 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5339 					soisdisconnected(so);
5340 					tcp_timer_activate(tp, TT_2MSL,
5341 					    (tcp_fast_finwait2_recycle ?
5342 					    tcp_finwait2_timeout :
5343 					    TP_MAXIDLE(tp)));
5344 				}
5345 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
5346 			}
5347 		}
5348 	}
5349 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5350 	   tiwin, thflags, nxt_pkt));
5351 }
5352 
5353 /*
5354  * Return value of 1, the TCB is unlocked and most
5355  * likely gone, return value of 0, the TCP is still
5356  * locked.
5357  */
5358 static int
5359 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
5360     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5361     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5362 {
5363 	int32_t ret_val = 0;
5364 	int32_t ourfinisacked = 0;
5365 
5366 	rack_calc_rwin(so, tp);
5367 
5368 	if ((thflags & TH_ACK) &&
5369 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
5370 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5371 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5372 		return (1);
5373 	}
5374 	if (IS_FASTOPEN(tp->t_flags)) {
5375 		/*
5376 		 * When a TFO connection is in SYN_RECEIVED, the
5377 		 * only valid packets are the initial SYN, a
5378 		 * retransmit/copy of the initial SYN (possibly with
5379 		 * a subset of the original data), a valid ACK, a
5380 		 * FIN, or a RST.
5381 		 */
5382 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
5383 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5384 			return (1);
5385 		} else if (thflags & TH_SYN) {
5386 			/* non-initial SYN is ignored */
5387 			struct tcp_rack *rack;
5388 
5389 			rack = (struct tcp_rack *)tp->t_fb_ptr;
5390 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
5391 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
5392 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
5393 				rack_do_drop(m, NULL);
5394 				return (0);
5395 			}
5396 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
5397 			rack_do_drop(m, NULL);
5398 			return (0);
5399 		}
5400 	}
5401 	if (thflags & TH_RST)
5402 		return (rack_process_rst(m, th, so, tp));
5403 	/*
5404 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5405 	 * it's less than ts_recent, drop it.
5406 	 */
5407 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5408 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5409 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5410 			return (ret_val);
5411 	}
5412 	/*
5413 	 * In the SYN-RECEIVED state, validate that the packet belongs to
5414 	 * this connection before trimming the data to fit the receive
5415 	 * window.  Check the sequence number versus IRS since we know the
5416 	 * sequence numbers haven't wrapped.  This is a partial fix for the
5417 	 * "LAND" DoS attack.
5418 	 */
5419 	if (SEQ_LT(th->th_seq, tp->irs)) {
5420 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5421 		return (1);
5422 	}
5423 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5424 		return (ret_val);
5425 	}
5426 	/*
5427 	 * If last ACK falls within this segment's sequence numbers, record
5428 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5429 	 * from the latest proposal of the tcplw@cray.com list (Braden
5430 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5431 	 * with our earlier PAWS tests, so this check should be solely
5432 	 * predicated on the sequence space of this segment. 3) That we
5433 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5434 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5435 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5436 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5437 	 * p.869. In such cases, we can still calculate the RTT correctly
5438 	 * when RCV.NXT == Last.ACK.Sent.
5439 	 */
5440 	if ((to->to_flags & TOF_TS) != 0 &&
5441 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5442 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5443 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5444 		tp->ts_recent_age = tcp_ts_getticks();
5445 		tp->ts_recent = to->to_tsval;
5446 	}
5447 	/*
5448 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5449 	 * is on (half-synchronized state), then queue data for later
5450 	 * processing; else drop segment and return.
5451 	 */
5452 	if ((thflags & TH_ACK) == 0) {
5453 		if (IS_FASTOPEN(tp->t_flags)) {
5454 			tp->snd_wnd = tiwin;
5455 			cc_conn_init(tp);
5456 		}
5457 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5458 		    tiwin, thflags, nxt_pkt));
5459 	}
5460 	TCPSTAT_INC(tcps_connects);
5461 	soisconnected(so);
5462 	/* Do window scaling? */
5463 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5464 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5465 		tp->rcv_scale = tp->request_r_scale;
5466 		tp->snd_wnd = tiwin;
5467 	}
5468 	/*
5469 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
5470 	 * FIN-WAIT-1
5471 	 */
5472 	tp->t_starttime = ticks;
5473 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
5474 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
5475 		tp->t_tfo_pending = NULL;
5476 
5477 		/*
5478 		 * Account for the ACK of our SYN prior to
5479 		 * regular ACK processing below.
5480 		 */
5481 		tp->snd_una++;
5482 	}
5483 	if (tp->t_flags & TF_NEEDFIN) {
5484 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
5485 		tp->t_flags &= ~TF_NEEDFIN;
5486 	} else {
5487 		tcp_state_change(tp, TCPS_ESTABLISHED);
5488 		TCP_PROBE5(accept__established, NULL, tp,
5489 		    mtod(m, const char *), tp, th);
5490 		/*
5491 		 * TFO connections call cc_conn_init() during SYN
5492 		 * processing.  Calling it again here for such connections
5493 		 * is not harmless as it would undo the snd_cwnd reduction
5494 		 * that occurs when a TFO SYN|ACK is retransmitted.
5495 		 */
5496 		if (!IS_FASTOPEN(tp->t_flags))
5497 			cc_conn_init(tp);
5498 	}
5499 	/*
5500 	 * If segment contains data or ACK, will call tcp_reass() later; if
5501 	 * not, do so now to pass queued data to user.
5502 	 */
5503 	if (tlen == 0 && (thflags & TH_FIN) == 0)
5504 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
5505 		    (struct mbuf *)0);
5506 	tp->snd_wl1 = th->th_seq - 1;
5507 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5508 		return (ret_val);
5509 	}
5510 	if (tp->t_state == TCPS_FIN_WAIT_1) {
5511 		/* We could have went to FIN_WAIT_1 (or EST) above */
5512 		/*
5513 		 * In FIN_WAIT_1 STATE in addition to the processing for the
5514 		 * ESTABLISHED state if our FIN is now acknowledged then
5515 		 * enter FIN_WAIT_2.
5516 		 */
5517 		if (ourfinisacked) {
5518 			/*
5519 			 * If we can't receive any more data, then closing
5520 			 * user can proceed. Starting the timer is contrary
5521 			 * to the specification, but if we don't get a FIN
5522 			 * we'll hang forever.
5523 			 *
5524 			 * XXXjl: we should release the tp also, and use a
5525 			 * compressed state.
5526 			 */
5527 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5528 				soisdisconnected(so);
5529 				tcp_timer_activate(tp, TT_2MSL,
5530 				    (tcp_fast_finwait2_recycle ?
5531 				    tcp_finwait2_timeout :
5532 				    TP_MAXIDLE(tp)));
5533 			}
5534 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
5535 		}
5536 	}
5537 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5538 	    tiwin, thflags, nxt_pkt));
5539 }
5540 
5541 /*
5542  * Return value of 1, the TCB is unlocked and most
5543  * likely gone, return value of 0, the TCP is still
5544  * locked.
5545  */
5546 static int
5547 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
5548     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5549     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5550 {
5551 	int32_t ret_val = 0;
5552 
5553 	/*
5554 	 * Header prediction: check for the two common cases of a
5555 	 * uni-directional data xfer.  If the packet has no control flags,
5556 	 * is in-sequence, the window didn't change and we're not
5557 	 * retransmitting, it's a candidate.  If the length is zero and the
5558 	 * ack moved forward, we're the sender side of the xfer.  Just free
5559 	 * the data acked & wake any higher level process that was blocked
5560 	 * waiting for space.  If the length is non-zero and the ack didn't
5561 	 * move, we're the receiver side.  If we're getting packets in-order
5562 	 * (the reassembly queue is empty), add the data toc The socket
5563 	 * buffer and note that we need a delayed ack. Make sure that the
5564 	 * hidden state-flags are also off. Since we check for
5565 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
5566 	 */
5567 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
5568 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
5569 	    __predict_true(SEGQ_EMPTY(tp)) &&
5570 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
5571 		struct tcp_rack *rack;
5572 
5573 		rack = (struct tcp_rack *)tp->t_fb_ptr;
5574 		if (tlen == 0) {
5575 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
5576 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
5577 				return (0);
5578 			}
5579 		} else {
5580 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
5581 			    tiwin, nxt_pkt)) {
5582 				return (0);
5583 			}
5584 		}
5585 	}
5586 	rack_calc_rwin(so, tp);
5587 
5588 	if (thflags & TH_RST)
5589 		return (rack_process_rst(m, th, so, tp));
5590 
5591 	/*
5592 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5593 	 * synchronized state.
5594 	 */
5595 	if (thflags & TH_SYN) {
5596 		rack_challenge_ack(m, th, tp, &ret_val);
5597 		return (ret_val);
5598 	}
5599 	/*
5600 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5601 	 * it's less than ts_recent, drop it.
5602 	 */
5603 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5604 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5605 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5606 			return (ret_val);
5607 	}
5608 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5609 		return (ret_val);
5610 	}
5611 	/*
5612 	 * If last ACK falls within this segment's sequence numbers, record
5613 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5614 	 * from the latest proposal of the tcplw@cray.com list (Braden
5615 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5616 	 * with our earlier PAWS tests, so this check should be solely
5617 	 * predicated on the sequence space of this segment. 3) That we
5618 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5619 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5620 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5621 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5622 	 * p.869. In such cases, we can still calculate the RTT correctly
5623 	 * when RCV.NXT == Last.ACK.Sent.
5624 	 */
5625 	if ((to->to_flags & TOF_TS) != 0 &&
5626 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5627 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5628 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5629 		tp->ts_recent_age = tcp_ts_getticks();
5630 		tp->ts_recent = to->to_tsval;
5631 	}
5632 	/*
5633 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5634 	 * is on (half-synchronized state), then queue data for later
5635 	 * processing; else drop segment and return.
5636 	 */
5637 	if ((thflags & TH_ACK) == 0) {
5638 		if (tp->t_flags & TF_NEEDSYN) {
5639 
5640 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5641 			    tiwin, thflags, nxt_pkt));
5642 
5643 		} else if (tp->t_flags & TF_ACKNOW) {
5644 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5645 			return (ret_val);
5646 		} else {
5647 			rack_do_drop(m, NULL);
5648 			return (0);
5649 		}
5650 	}
5651 	/*
5652 	 * Ack processing.
5653 	 */
5654 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
5655 		return (ret_val);
5656 	}
5657 	if (sbavail(&so->so_snd)) {
5658 		if (rack_progress_timeout_check(tp)) {
5659 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5660 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5661 			return (1);
5662 		}
5663 	}
5664 	/* State changes only happen in rack_process_data() */
5665 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5666 	    tiwin, thflags, nxt_pkt));
5667 }
5668 
5669 /*
5670  * Return value of 1, the TCB is unlocked and most
5671  * likely gone, return value of 0, the TCP is still
5672  * locked.
5673  */
5674 static int
5675 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
5676     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5677     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5678 {
5679 	int32_t ret_val = 0;
5680 
5681 	rack_calc_rwin(so, tp);
5682 	if (thflags & TH_RST)
5683 		return (rack_process_rst(m, th, so, tp));
5684 	/*
5685 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5686 	 * synchronized state.
5687 	 */
5688 	if (thflags & TH_SYN) {
5689 		rack_challenge_ack(m, th, tp, &ret_val);
5690 		return (ret_val);
5691 	}
5692 	/*
5693 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5694 	 * it's less than ts_recent, drop it.
5695 	 */
5696 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5697 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5698 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5699 			return (ret_val);
5700 	}
5701 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5702 		return (ret_val);
5703 	}
5704 	/*
5705 	 * If last ACK falls within this segment's sequence numbers, record
5706 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5707 	 * from the latest proposal of the tcplw@cray.com list (Braden
5708 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5709 	 * with our earlier PAWS tests, so this check should be solely
5710 	 * predicated on the sequence space of this segment. 3) That we
5711 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5712 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5713 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5714 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5715 	 * p.869. In such cases, we can still calculate the RTT correctly
5716 	 * when RCV.NXT == Last.ACK.Sent.
5717 	 */
5718 	if ((to->to_flags & TOF_TS) != 0 &&
5719 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5720 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5721 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5722 		tp->ts_recent_age = tcp_ts_getticks();
5723 		tp->ts_recent = to->to_tsval;
5724 	}
5725 	/*
5726 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5727 	 * is on (half-synchronized state), then queue data for later
5728 	 * processing; else drop segment and return.
5729 	 */
5730 	if ((thflags & TH_ACK) == 0) {
5731 		if (tp->t_flags & TF_NEEDSYN) {
5732 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5733 			    tiwin, thflags, nxt_pkt));
5734 
5735 		} else if (tp->t_flags & TF_ACKNOW) {
5736 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5737 			return (ret_val);
5738 		} else {
5739 			rack_do_drop(m, NULL);
5740 			return (0);
5741 		}
5742 	}
5743 	/*
5744 	 * Ack processing.
5745 	 */
5746 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
5747 		return (ret_val);
5748 	}
5749 	if (sbavail(&so->so_snd)) {
5750 		if (rack_progress_timeout_check(tp)) {
5751 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5752 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5753 			return (1);
5754 		}
5755 	}
5756 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5757 	    tiwin, thflags, nxt_pkt));
5758 }
5759 
5760 static int
5761 rack_check_data_after_close(struct mbuf *m,
5762     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
5763 {
5764 	struct tcp_rack *rack;
5765 
5766 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5767 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5768 	if (rack->rc_allow_data_af_clo == 0) {
5769 	close_now:
5770 		tp = tcp_close(tp);
5771 		TCPSTAT_INC(tcps_rcvafterclose);
5772 		rack_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
5773 		return (1);
5774 	}
5775 	if (sbavail(&so->so_snd) == 0)
5776 		goto close_now;
5777 	/* Ok we allow data that is ignored and a followup reset */
5778 	tp->rcv_nxt = th->th_seq + *tlen;
5779 	tp->t_flags2 |= TF2_DROP_AF_DATA;
5780 	rack->r_wanted_output = 1;
5781 	*tlen = 0;
5782 	return (0);
5783 }
5784 
5785 /*
5786  * Return value of 1, the TCB is unlocked and most
5787  * likely gone, return value of 0, the TCP is still
5788  * locked.
5789  */
5790 static int
5791 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
5792     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5793     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5794 {
5795 	int32_t ret_val = 0;
5796 	int32_t ourfinisacked = 0;
5797 
5798 	rack_calc_rwin(so, tp);
5799 
5800 	if (thflags & TH_RST)
5801 		return (rack_process_rst(m, th, so, tp));
5802 	/*
5803 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5804 	 * synchronized state.
5805 	 */
5806 	if (thflags & TH_SYN) {
5807 		rack_challenge_ack(m, th, tp, &ret_val);
5808 		return (ret_val);
5809 	}
5810 	/*
5811 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5812 	 * it's less than ts_recent, drop it.
5813 	 */
5814 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5815 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5816 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5817 			return (ret_val);
5818 	}
5819 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5820 		return (ret_val);
5821 	}
5822 	/*
5823 	 * If new data are received on a connection after the user processes
5824 	 * are gone, then RST the other end.
5825 	 */
5826 	if ((so->so_state & SS_NOFDREF) && tlen) {
5827 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
5828 			return (1);
5829 	}
5830 	/*
5831 	 * If last ACK falls within this segment's sequence numbers, record
5832 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5833 	 * from the latest proposal of the tcplw@cray.com list (Braden
5834 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5835 	 * with our earlier PAWS tests, so this check should be solely
5836 	 * predicated on the sequence space of this segment. 3) That we
5837 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5838 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5839 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5840 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5841 	 * p.869. In such cases, we can still calculate the RTT correctly
5842 	 * when RCV.NXT == Last.ACK.Sent.
5843 	 */
5844 	if ((to->to_flags & TOF_TS) != 0 &&
5845 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5846 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5847 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5848 		tp->ts_recent_age = tcp_ts_getticks();
5849 		tp->ts_recent = to->to_tsval;
5850 	}
5851 	/*
5852 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5853 	 * is on (half-synchronized state), then queue data for later
5854 	 * processing; else drop segment and return.
5855 	 */
5856 	if ((thflags & TH_ACK) == 0) {
5857 		if (tp->t_flags & TF_NEEDSYN) {
5858 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5859 			    tiwin, thflags, nxt_pkt));
5860 		} else if (tp->t_flags & TF_ACKNOW) {
5861 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5862 			return (ret_val);
5863 		} else {
5864 			rack_do_drop(m, NULL);
5865 			return (0);
5866 		}
5867 	}
5868 	/*
5869 	 * Ack processing.
5870 	 */
5871 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5872 		return (ret_val);
5873 	}
5874 	if (ourfinisacked) {
5875 		/*
5876 		 * If we can't receive any more data, then closing user can
5877 		 * proceed. Starting the timer is contrary to the
5878 		 * specification, but if we don't get a FIN we'll hang
5879 		 * forever.
5880 		 *
5881 		 * XXXjl: we should release the tp also, and use a
5882 		 * compressed state.
5883 		 */
5884 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5885 			soisdisconnected(so);
5886 			tcp_timer_activate(tp, TT_2MSL,
5887 			    (tcp_fast_finwait2_recycle ?
5888 			    tcp_finwait2_timeout :
5889 			    TP_MAXIDLE(tp)));
5890 		}
5891 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
5892 	}
5893 	if (sbavail(&so->so_snd)) {
5894 		if (rack_progress_timeout_check(tp)) {
5895 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5896 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5897 			return (1);
5898 		}
5899 	}
5900 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5901 	    tiwin, thflags, nxt_pkt));
5902 }
5903 
5904 /*
5905  * Return value of 1, the TCB is unlocked and most
5906  * likely gone, return value of 0, the TCP is still
5907  * locked.
5908  */
5909 static int
5910 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
5911     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5912     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5913 {
5914 	int32_t ret_val = 0;
5915 	int32_t ourfinisacked = 0;
5916 
5917 	rack_calc_rwin(so, tp);
5918 
5919 	if (thflags & TH_RST)
5920 		return (rack_process_rst(m, th, so, tp));
5921 	/*
5922 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5923 	 * synchronized state.
5924 	 */
5925 	if (thflags & TH_SYN) {
5926 		rack_challenge_ack(m, th, tp, &ret_val);
5927 		return (ret_val);
5928 	}
5929 	/*
5930 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5931 	 * it's less than ts_recent, drop it.
5932 	 */
5933 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5934 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5935 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5936 			return (ret_val);
5937 	}
5938 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5939 		return (ret_val);
5940 	}
5941 	/*
5942 	 * If new data are received on a connection after the user processes
5943 	 * are gone, then RST the other end.
5944 	 */
5945 	if ((so->so_state & SS_NOFDREF) && tlen) {
5946 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
5947 			return (1);
5948 	}
5949 	/*
5950 	 * If last ACK falls within this segment's sequence numbers, record
5951 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5952 	 * from the latest proposal of the tcplw@cray.com list (Braden
5953 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5954 	 * with our earlier PAWS tests, so this check should be solely
5955 	 * predicated on the sequence space of this segment. 3) That we
5956 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5957 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5958 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5959 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5960 	 * p.869. In such cases, we can still calculate the RTT correctly
5961 	 * when RCV.NXT == Last.ACK.Sent.
5962 	 */
5963 	if ((to->to_flags & TOF_TS) != 0 &&
5964 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5965 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5966 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5967 		tp->ts_recent_age = tcp_ts_getticks();
5968 		tp->ts_recent = to->to_tsval;
5969 	}
5970 	/*
5971 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5972 	 * is on (half-synchronized state), then queue data for later
5973 	 * processing; else drop segment and return.
5974 	 */
5975 	if ((thflags & TH_ACK) == 0) {
5976 		if (tp->t_flags & TF_NEEDSYN) {
5977 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5978 			    tiwin, thflags, nxt_pkt));
5979 		} else if (tp->t_flags & TF_ACKNOW) {
5980 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5981 			return (ret_val);
5982 		} else {
5983 			rack_do_drop(m, NULL);
5984 			return (0);
5985 		}
5986 	}
5987 	/*
5988 	 * Ack processing.
5989 	 */
5990 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5991 		return (ret_val);
5992 	}
5993 	if (ourfinisacked) {
5994 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5995 		tcp_twstart(tp);
5996 		m_freem(m);
5997 		return (1);
5998 	}
5999 	if (sbavail(&so->so_snd)) {
6000 		if (rack_progress_timeout_check(tp)) {
6001 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6002 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6003 			return (1);
6004 		}
6005 	}
6006 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6007 	    tiwin, thflags, nxt_pkt));
6008 }
6009 
6010 /*
6011  * Return value of 1, the TCB is unlocked and most
6012  * likely gone, return value of 0, the TCP is still
6013  * locked.
6014  */
6015 static int
6016 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6017     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6018     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6019 {
6020 	int32_t ret_val = 0;
6021 	int32_t ourfinisacked = 0;
6022 
6023 	rack_calc_rwin(so, tp);
6024 
6025 	if (thflags & TH_RST)
6026 		return (rack_process_rst(m, th, so, tp));
6027 	/*
6028 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6029 	 * synchronized state.
6030 	 */
6031 	if (thflags & TH_SYN) {
6032 		rack_challenge_ack(m, th, tp, &ret_val);
6033 		return (ret_val);
6034 	}
6035 	/*
6036 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6037 	 * it's less than ts_recent, drop it.
6038 	 */
6039 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6040 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6041 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
6042 			return (ret_val);
6043 	}
6044 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6045 		return (ret_val);
6046 	}
6047 	/*
6048 	 * If new data are received on a connection after the user processes
6049 	 * are gone, then RST the other end.
6050 	 */
6051 	if ((so->so_state & SS_NOFDREF) && tlen) {
6052 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6053 			return (1);
6054 	}
6055 	/*
6056 	 * If last ACK falls within this segment's sequence numbers, record
6057 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6058 	 * from the latest proposal of the tcplw@cray.com list (Braden
6059 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6060 	 * with our earlier PAWS tests, so this check should be solely
6061 	 * predicated on the sequence space of this segment. 3) That we
6062 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6063 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6064 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6065 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6066 	 * p.869. In such cases, we can still calculate the RTT correctly
6067 	 * when RCV.NXT == Last.ACK.Sent.
6068 	 */
6069 	if ((to->to_flags & TOF_TS) != 0 &&
6070 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6071 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6072 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6073 		tp->ts_recent_age = tcp_ts_getticks();
6074 		tp->ts_recent = to->to_tsval;
6075 	}
6076 	/*
6077 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6078 	 * is on (half-synchronized state), then queue data for later
6079 	 * processing; else drop segment and return.
6080 	 */
6081 	if ((thflags & TH_ACK) == 0) {
6082 		if (tp->t_flags & TF_NEEDSYN) {
6083 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6084 			    tiwin, thflags, nxt_pkt));
6085 		} else if (tp->t_flags & TF_ACKNOW) {
6086 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6087 			return (ret_val);
6088 		} else {
6089 			rack_do_drop(m, NULL);
6090 			return (0);
6091 		}
6092 	}
6093 	/*
6094 	 * case TCPS_LAST_ACK: Ack processing.
6095 	 */
6096 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6097 		return (ret_val);
6098 	}
6099 	if (ourfinisacked) {
6100 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6101 		tp = tcp_close(tp);
6102 		rack_do_drop(m, tp);
6103 		return (1);
6104 	}
6105 	if (sbavail(&so->so_snd)) {
6106 		if (rack_progress_timeout_check(tp)) {
6107 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6108 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6109 			return (1);
6110 		}
6111 	}
6112 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6113 	    tiwin, thflags, nxt_pkt));
6114 }
6115 
6116 
6117 /*
6118  * Return value of 1, the TCB is unlocked and most
6119  * likely gone, return value of 0, the TCP is still
6120  * locked.
6121  */
6122 static int
6123 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
6124     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6125     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6126 {
6127 	int32_t ret_val = 0;
6128 	int32_t ourfinisacked = 0;
6129 
6130 	rack_calc_rwin(so, tp);
6131 
6132 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
6133 	if (thflags & TH_RST)
6134 		return (rack_process_rst(m, th, so, tp));
6135 	/*
6136 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6137 	 * synchronized state.
6138 	 */
6139 	if (thflags & TH_SYN) {
6140 		rack_challenge_ack(m, th, tp, &ret_val);
6141 		return (ret_val);
6142 	}
6143 	/*
6144 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6145 	 * it's less than ts_recent, drop it.
6146 	 */
6147 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6148 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6149 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
6150 			return (ret_val);
6151 	}
6152 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6153 		return (ret_val);
6154 	}
6155 	/*
6156 	 * If new data are received on a connection after the user processes
6157 	 * are gone, then RST the other end.
6158 	 */
6159 	if ((so->so_state & SS_NOFDREF) &&
6160 	    tlen) {
6161 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6162 			return (1);
6163 	}
6164 	/*
6165 	 * If last ACK falls within this segment's sequence numbers, record
6166 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6167 	 * from the latest proposal of the tcplw@cray.com list (Braden
6168 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6169 	 * with our earlier PAWS tests, so this check should be solely
6170 	 * predicated on the sequence space of this segment. 3) That we
6171 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6172 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6173 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6174 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6175 	 * p.869. In such cases, we can still calculate the RTT correctly
6176 	 * when RCV.NXT == Last.ACK.Sent.
6177 	 */
6178 	if ((to->to_flags & TOF_TS) != 0 &&
6179 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6180 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6181 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6182 		tp->ts_recent_age = tcp_ts_getticks();
6183 		tp->ts_recent = to->to_tsval;
6184 	}
6185 	/*
6186 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6187 	 * is on (half-synchronized state), then queue data for later
6188 	 * processing; else drop segment and return.
6189 	 */
6190 	if ((thflags & TH_ACK) == 0) {
6191 		if (tp->t_flags & TF_NEEDSYN) {
6192 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6193 			    tiwin, thflags, nxt_pkt));
6194 		} else if (tp->t_flags & TF_ACKNOW) {
6195 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6196 			return (ret_val);
6197 		} else {
6198 			rack_do_drop(m, NULL);
6199 			return (0);
6200 		}
6201 	}
6202 	/*
6203 	 * Ack processing.
6204 	 */
6205 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6206 		return (ret_val);
6207 	}
6208 	if (sbavail(&so->so_snd)) {
6209 		if (rack_progress_timeout_check(tp)) {
6210 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6211 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6212 			return (1);
6213 		}
6214 	}
6215 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6216 	    tiwin, thflags, nxt_pkt));
6217 }
6218 
6219 
6220 static void inline
6221 rack_clear_rate_sample(struct tcp_rack *rack)
6222 {
6223 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
6224 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
6225 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
6226 }
6227 
6228 static int
6229 rack_init(struct tcpcb *tp)
6230 {
6231 	struct tcp_rack *rack = NULL;
6232 
6233 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
6234 	if (tp->t_fb_ptr == NULL) {
6235 		/*
6236 		 * We need to allocate memory but cant. The INP and INP_INFO
6237 		 * locks and they are recusive (happens during setup. So a
6238 		 * scheme to drop the locks fails :(
6239 		 *
6240 		 */
6241 		return (ENOMEM);
6242 	}
6243 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
6244 
6245 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6246 	TAILQ_INIT(&rack->r_ctl.rc_map);
6247 	TAILQ_INIT(&rack->r_ctl.rc_free);
6248 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
6249 	rack->rc_tp = tp;
6250 	if (tp->t_inpcb) {
6251 		rack->rc_inp = tp->t_inpcb;
6252 	}
6253 	/* Probably not needed but lets be sure */
6254 	rack_clear_rate_sample(rack);
6255 	rack->r_cpu = 0;
6256 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
6257 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
6258 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
6259 	rack->rc_pace_reduce = rack_slot_reduction;
6260 	if (V_tcp_delack_enabled)
6261 		tp->t_delayed_ack = 1;
6262 	else
6263 		tp->t_delayed_ack = 0;
6264 	rack->rc_pace_max_segs = rack_hptsi_segments;
6265 	rack->r_ctl.rc_early_recovery_segs = rack_early_recovery_max_seg;
6266 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
6267 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
6268 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
6269 	rack->r_idle_reduce_largest  = rack_reduce_largest_on_idle;
6270 	rack->r_enforce_min_pace = rack_min_pace_time;
6271 	rack->r_min_pace_seg_thresh = rack_min_pace_time_seg_req;
6272 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
6273 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
6274 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
6275 	rack->rc_always_pace = rack_pace_every_seg;
6276 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
6277 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
6278 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
6279 	rack->r_ctl.rc_min_to = rack_min_to;
6280 	rack->r_ctl.rc_prr_inc_var = rack_inc_var;
6281 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6282 	if (tp->snd_una != tp->snd_max) {
6283 		/* Create a send map for the current outstanding data */
6284 		struct rack_sendmap *rsm;
6285 
6286 		rsm = rack_alloc(rack);
6287 		if (rsm == NULL) {
6288 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6289 			tp->t_fb_ptr = NULL;
6290 			return (ENOMEM);
6291 		}
6292 		rsm->r_flags = RACK_OVERMAX;
6293 		rsm->r_tim_lastsent[0] = tcp_ts_getticks();
6294 		rsm->r_rtr_cnt = 1;
6295 		rsm->r_rtr_bytes = 0;
6296 		rsm->r_start = tp->snd_una;
6297 		rsm->r_end = tp->snd_max;
6298 		rsm->r_sndcnt = 0;
6299 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
6300 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6301 		rsm->r_in_tmap = 1;
6302 	}
6303 	return (0);
6304 }
6305 
6306 static int
6307 rack_handoff_ok(struct tcpcb *tp)
6308 {
6309 	if ((tp->t_state == TCPS_CLOSED) ||
6310 	    (tp->t_state == TCPS_LISTEN)) {
6311 		/* Sure no problem though it may not stick */
6312 		return (0);
6313 	}
6314 	if ((tp->t_state == TCPS_SYN_SENT) ||
6315 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
6316 		/*
6317 		 * We really don't know you have to get to ESTAB or beyond
6318 		 * to tell.
6319 		 */
6320 		return (EAGAIN);
6321 	}
6322 	if (tp->t_flags & TF_SACK_PERMIT) {
6323 		return (0);
6324 	}
6325 	/*
6326 	 * If we reach here we don't do SACK on this connection so we can
6327 	 * never do rack.
6328 	 */
6329 	return (EINVAL);
6330 }
6331 
6332 static void
6333 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
6334 {
6335 	if (tp->t_fb_ptr) {
6336 		struct tcp_rack *rack;
6337 		struct rack_sendmap *rsm;
6338 
6339 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6340 #ifdef TCP_BLACKBOX
6341 		tcp_log_flowend(tp);
6342 #endif
6343 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6344 		while (rsm) {
6345 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
6346 			uma_zfree(rack_zone, rsm);
6347 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6348 		}
6349 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6350 		while (rsm) {
6351 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
6352 			uma_zfree(rack_zone, rsm);
6353 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6354 		}
6355 		rack->rc_free_cnt = 0;
6356 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6357 		tp->t_fb_ptr = NULL;
6358 	}
6359 }
6360 
6361 static void
6362 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
6363 {
6364 	switch (tp->t_state) {
6365 	case TCPS_SYN_SENT:
6366 		rack->r_state = TCPS_SYN_SENT;
6367 		rack->r_substate = rack_do_syn_sent;
6368 		break;
6369 	case TCPS_SYN_RECEIVED:
6370 		rack->r_state = TCPS_SYN_RECEIVED;
6371 		rack->r_substate = rack_do_syn_recv;
6372 		break;
6373 	case TCPS_ESTABLISHED:
6374 		rack->r_state = TCPS_ESTABLISHED;
6375 		rack->r_substate = rack_do_established;
6376 		break;
6377 	case TCPS_CLOSE_WAIT:
6378 		rack->r_state = TCPS_CLOSE_WAIT;
6379 		rack->r_substate = rack_do_close_wait;
6380 		break;
6381 	case TCPS_FIN_WAIT_1:
6382 		rack->r_state = TCPS_FIN_WAIT_1;
6383 		rack->r_substate = rack_do_fin_wait_1;
6384 		break;
6385 	case TCPS_CLOSING:
6386 		rack->r_state = TCPS_CLOSING;
6387 		rack->r_substate = rack_do_closing;
6388 		break;
6389 	case TCPS_LAST_ACK:
6390 		rack->r_state = TCPS_LAST_ACK;
6391 		rack->r_substate = rack_do_lastack;
6392 		break;
6393 	case TCPS_FIN_WAIT_2:
6394 		rack->r_state = TCPS_FIN_WAIT_2;
6395 		rack->r_substate = rack_do_fin_wait_2;
6396 		break;
6397 	case TCPS_LISTEN:
6398 	case TCPS_CLOSED:
6399 	case TCPS_TIME_WAIT:
6400 	default:
6401 #ifdef INVARIANTS
6402 		panic("tcp tp:%p state:%d sees impossible state?", tp, tp->t_state);
6403 #endif
6404 		break;
6405 	};
6406 }
6407 
6408 
6409 static void
6410 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
6411 {
6412 	/*
6413 	 * We received an ack, and then did not
6414 	 * call send or were bounced out due to the
6415 	 * hpts was running. Now a timer is up as well, is
6416 	 * it the right timer?
6417 	 */
6418 	struct rack_sendmap *rsm;
6419 	int tmr_up;
6420 
6421 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
6422 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
6423 		return;
6424 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6425 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
6426 	    (tmr_up == PACE_TMR_RXT)) {
6427 		/* Should be an RXT */
6428 		return;
6429 	}
6430 	if (rsm == NULL) {
6431 		/* Nothing outstanding? */
6432 		if (tp->t_flags & TF_DELACK) {
6433 			if (tmr_up == PACE_TMR_DELACK)
6434 				/* We are supposed to have delayed ack up and we do */
6435 				return;
6436 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
6437 			/*
6438 			 * if we hit enobufs then we would expect the possiblity
6439 			 * of nothing outstanding and the RXT up (and the hptsi timer).
6440 			 */
6441 			return;
6442 		} else if (((tcp_always_keepalive ||
6443 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6444 			    (tp->t_state <= TCPS_CLOSING)) &&
6445 			   (tmr_up == PACE_TMR_KEEP) &&
6446 			   (tp->snd_max == tp->snd_una)) {
6447 			/* We should have keep alive up and we do */
6448 			return;
6449 		}
6450 	}
6451 	if (rsm && (rsm->r_flags & RACK_SACK_PASSED)) {
6452 		if ((tp->t_flags & TF_SENTFIN) &&
6453 		    ((tp->snd_max - tp->snd_una) == 1) &&
6454 		    (rsm->r_flags & RACK_HAS_FIN)) {
6455 			/* needs to be a RXT */
6456 			if (tmr_up == PACE_TMR_RXT)
6457 				return;
6458 		} else if (tmr_up == PACE_TMR_RACK)
6459 			return;
6460 	} else if (SEQ_GT(tp->snd_max,tp->snd_una) &&
6461 		   ((tmr_up == PACE_TMR_TLP) ||
6462 		    (tmr_up == PACE_TMR_RXT))) {
6463 		/*
6464 		 * Either a TLP or RXT is fine if no sack-passed
6465 		 * is in place and data is outstanding.
6466 		 */
6467 		return;
6468 	} else if (tmr_up == PACE_TMR_DELACK) {
6469 		/*
6470 		 * If the delayed ack was going to go off
6471 		 * before the rtx/tlp/rack timer were going to
6472 		 * expire, then that would be the timer in control.
6473 		 * Note we don't check the time here trusting the
6474 		 * code is correct.
6475 		 */
6476 		return;
6477 	}
6478 	/*
6479 	 * Ok the timer originally started is not what we want now.
6480 	 * We will force the hpts to be stopped if any, and restart
6481 	 * with the slot set to what was in the saved slot.
6482 	 */
6483 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6484 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6485 }
6486 
6487 static void
6488 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6489     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
6490     int32_t nxt_pkt, struct timeval *tv)
6491 {
6492 	int32_t thflags, retval, did_out = 0;
6493 	int32_t way_out = 0;
6494 	uint32_t cts;
6495 	uint32_t tiwin;
6496 	struct tcpopt to;
6497 	struct tcp_rack *rack;
6498 	struct rack_sendmap *rsm;
6499 	int32_t prev_state = 0;
6500 
6501 	cts = tcp_tv_to_mssectick(tv);
6502 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6503 
6504 	kern_prefetch(rack, &prev_state);
6505 	prev_state = 0;
6506 	thflags = th->th_flags;
6507 	/*
6508 	 * If this is either a state-changing packet or current state isn't
6509 	 * established, we require a read lock on tcbinfo.  Otherwise, we
6510 	 * allow the tcbinfo to be in either locked or unlocked, as the
6511 	 * caller may have unnecessarily acquired a lock due to a race.
6512 	 */
6513 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
6514 	    tp->t_state != TCPS_ESTABLISHED) {
6515 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6516 	}
6517 	INP_WLOCK_ASSERT(tp->t_inpcb);
6518 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
6519 	    __func__));
6520 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
6521 	    __func__));
6522 	{
6523 		union tcp_log_stackspecific log;
6524 
6525 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
6526 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
6527 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
6528 		TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
6529 		    tlen, &log, true);
6530 	}
6531 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
6532 		way_out = 4;
6533 		goto done_with_input;
6534 	}
6535 	/*
6536 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
6537 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
6538 	 */
6539 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
6540 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
6541 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6542 		return;
6543 	}
6544 	/*
6545 	 * Segment received on connection. Reset idle time and keep-alive
6546 	 * timer. XXX: This should be done after segment validation to
6547 	 * ignore broken/spoofed segs.
6548 	 */
6549 	if  (tp->t_idle_reduce && (tp->snd_max == tp->snd_una)) {
6550 #ifdef NETFLIX_CWV
6551 		if ((tp->cwv_enabled) &&
6552 		    ((tp->cwv_cwnd_valid == 0) &&
6553 		     TCPS_HAVEESTABLISHED(tp->t_state) &&
6554 		     (tp->snd_cwnd > tp->snd_cwv.init_cwnd))) {
6555 			tcp_newcwv_nvp_closedown(tp);
6556 		} else
6557 #endif
6558 		       if ((ticks - tp->t_rcvtime) >= tp->t_rxtcur) {
6559 			counter_u64_add(rack_input_idle_reduces, 1);
6560 			rack_cc_after_idle(tp,
6561 			    (rack->r_idle_reduce_largest ? 1 :0));
6562 		}
6563 	}
6564 	rack->r_ctl.rc_rcvtime = cts;
6565 	tp->t_rcvtime = ticks;
6566 
6567 #ifdef NETFLIX_CWV
6568 	if (tp->cwv_enabled) {
6569 		if ((tp->cwv_cwnd_valid == 0) &&
6570 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
6571 		    (tp->snd_cwnd > tp->snd_cwv.init_cwnd))
6572 			tcp_newcwv_nvp_closedown(tp);
6573 	}
6574 #endif
6575 	/*
6576 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
6577 	 * the scale is zero.
6578 	 */
6579 	tiwin = th->th_win << tp->snd_scale;
6580 #ifdef NETFLIX_STATS
6581 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
6582 #endif
6583 	/*
6584 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
6585 	 * this to occur after we've validated the segment.
6586 	 */
6587 	if (tp->t_flags & TF_ECN_PERMIT) {
6588 		if (thflags & TH_CWR)
6589 			tp->t_flags &= ~TF_ECN_SND_ECE;
6590 		switch (iptos & IPTOS_ECN_MASK) {
6591 		case IPTOS_ECN_CE:
6592 			tp->t_flags |= TF_ECN_SND_ECE;
6593 			TCPSTAT_INC(tcps_ecn_ce);
6594 			break;
6595 		case IPTOS_ECN_ECT0:
6596 			TCPSTAT_INC(tcps_ecn_ect0);
6597 			break;
6598 		case IPTOS_ECN_ECT1:
6599 			TCPSTAT_INC(tcps_ecn_ect1);
6600 			break;
6601 		}
6602 		/* Congestion experienced. */
6603 		if (thflags & TH_ECE) {
6604 			rack_cong_signal(tp, th, CC_ECN);
6605 		}
6606 	}
6607 	/*
6608 	 * Parse options on any incoming segment.
6609 	 */
6610 	tcp_dooptions(&to, (u_char *)(th + 1),
6611 	    (th->th_off << 2) - sizeof(struct tcphdr),
6612 	    (thflags & TH_SYN) ? TO_SYN : 0);
6613 
6614 	/*
6615 	 * If echoed timestamp is later than the current time, fall back to
6616 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
6617 	 * were used when this connection was established.
6618 	 */
6619 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
6620 		to.to_tsecr -= tp->ts_offset;
6621 		if (TSTMP_GT(to.to_tsecr, cts))
6622 			to.to_tsecr = 0;
6623 	}
6624 	/*
6625 	 * If its the first time in we need to take care of options and
6626 	 * verify we can do SACK for rack!
6627 	 */
6628 	if (rack->r_state == 0) {
6629 		/* Should be init'd by rack_init() */
6630 		KASSERT(rack->rc_inp != NULL,
6631 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
6632 		if (rack->rc_inp == NULL) {
6633 			rack->rc_inp = tp->t_inpcb;
6634 		}
6635 
6636 		/*
6637 		 * Process options only when we get SYN/ACK back. The SYN
6638 		 * case for incoming connections is handled in tcp_syncache.
6639 		 * According to RFC1323 the window field in a SYN (i.e., a
6640 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
6641 		 * this is traditional behavior, may need to be cleaned up.
6642 		 */
6643 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
6644 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
6645 			if ((to.to_flags & TOF_SCALE) &&
6646 			    (tp->t_flags & TF_REQ_SCALE)) {
6647 				tp->t_flags |= TF_RCVD_SCALE;
6648 				tp->snd_scale = to.to_wscale;
6649 			}
6650 			/*
6651 			 * Initial send window.  It will be updated with the
6652 			 * next incoming segment to the scaled value.
6653 			 */
6654 			tp->snd_wnd = th->th_win;
6655 			if (to.to_flags & TOF_TS) {
6656 				tp->t_flags |= TF_RCVD_TSTMP;
6657 				tp->ts_recent = to.to_tsval;
6658 				tp->ts_recent_age = cts;
6659 			}
6660 			if (to.to_flags & TOF_MSS)
6661 				tcp_mss(tp, to.to_mss);
6662 			if ((tp->t_flags & TF_SACK_PERMIT) &&
6663 			    (to.to_flags & TOF_SACKPERM) == 0)
6664 				tp->t_flags &= ~TF_SACK_PERMIT;
6665 			if (IS_FASTOPEN(tp->t_flags)) {
6666 				if (to.to_flags & TOF_FASTOPEN) {
6667 					uint16_t mss;
6668 
6669 					if (to.to_flags & TOF_MSS)
6670 						mss = to.to_mss;
6671 					else
6672 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
6673 							mss = TCP6_MSS;
6674 						else
6675 							mss = TCP_MSS;
6676 					tcp_fastopen_update_cache(tp, mss,
6677 					    to.to_tfo_len, to.to_tfo_cookie);
6678 				} else
6679 					tcp_fastopen_disable_path(tp);
6680 			}
6681 		}
6682 		/*
6683 		 * At this point we are at the initial call. Here we decide
6684 		 * if we are doing RACK or not. We do this by seeing if
6685 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
6686 		 * we switch to the default code.
6687 		 */
6688 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
6689 			tcp_switch_back_to_default(tp);
6690 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
6691 			    tlen, iptos);
6692 			return;
6693 		}
6694 		/* Set the flag */
6695 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
6696 		tcp_set_hpts(tp->t_inpcb);
6697 		rack_stop_all_timers(tp);
6698 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
6699 	}
6700 	/*
6701 	 * This is the one exception case where we set the rack state
6702 	 * always. All other times (timers etc) we must have a rack-state
6703 	 * set (so we assure we have done the checks above for SACK).
6704 	 */
6705 	if (rack->r_state != tp->t_state)
6706 		rack_set_state(tp, rack);
6707 	if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = TAILQ_FIRST(&rack->r_ctl.rc_map)) != NULL)
6708 		kern_prefetch(rsm, &prev_state);
6709 	prev_state = rack->r_state;
6710 	rack->r_ctl.rc_tlp_send_cnt = 0;
6711 	rack_clear_rate_sample(rack);
6712 	retval = (*rack->r_substate) (m, th, so,
6713 	    tp, &to, drop_hdrlen,
6714 	    tlen, tiwin, thflags, nxt_pkt);
6715 #ifdef INVARIANTS
6716 	if ((retval == 0) &&
6717 	    (tp->t_inpcb == NULL)) {
6718 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
6719 		    retval, tp, prev_state);
6720 	}
6721 #endif
6722 	if (retval == 0) {
6723 		/*
6724 		 * If retval is 1 the tcb is unlocked and most likely the tp
6725 		 * is gone.
6726 		 */
6727 		INP_WLOCK_ASSERT(tp->t_inpcb);
6728 		tcp_rack_xmit_timer_commit(rack, tp);
6729 		if (((tp->snd_max - tp->snd_una) > tp->snd_wnd) &&
6730 		    (rack->rc_in_persist == 0)){
6731 			/*
6732 			 * The peer shrunk its window on us to the point
6733 			 * where we have sent too much. The only thing
6734 			 * we can do here is stop any timers and
6735 			 * enter persist. We most likely lost the last
6736 			 * bytes we sent but oh well, we will have to
6737 			 * retransmit them after the peer is caught up.
6738 			 */
6739 			if (rack->rc_inp->inp_in_hpts)
6740 				tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
6741 			rack_timer_cancel(tp, rack, cts, __LINE__);
6742 			rack_enter_persist(tp, rack, cts);
6743 			rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6744 			way_out = 3;
6745 			goto done_with_input;
6746 		}
6747 		if (nxt_pkt == 0) {
6748 			if (rack->r_wanted_output != 0) {
6749 				did_out = 1;
6750 				(void)tp->t_fb->tfb_tcp_output(tp);
6751 			}
6752 			rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
6753 		}
6754 		if (((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
6755 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
6756 		     (tp->t_flags & TF_DELACK) ||
6757 		     ((tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6758 		      (tp->t_state <= TCPS_CLOSING)))) {
6759 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
6760 			if ((tp->snd_max == tp->snd_una) &&
6761 			    ((tp->t_flags & TF_DELACK) == 0) &&
6762 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
6763 				/* keep alive not needed if we are hptsi output yet */
6764 				;
6765 			} else {
6766 				if (rack->rc_inp->inp_in_hpts)
6767 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
6768 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6769 			}
6770 			way_out = 1;
6771 		} else {
6772 			/* Do we have the correct timer running? */
6773 			rack_timer_audit(tp, rack, &so->so_snd);
6774 			way_out = 2;
6775 		}
6776 	done_with_input:
6777 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
6778 		if (did_out)
6779 			rack->r_wanted_output = 0;
6780 #ifdef INVARIANTS
6781 		if (tp->t_inpcb == NULL) {
6782 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
6783 			      did_out,
6784 			      retval, tp, prev_state);
6785 		}
6786 #endif
6787 		INP_WUNLOCK(tp->t_inpcb);
6788 	}
6789 }
6790 
6791 void
6792 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6793     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
6794 {
6795 	struct timeval tv;
6796 #ifdef RSS
6797 	struct tcp_function_block *tfb;
6798 	struct tcp_rack *rack;
6799 	struct epoch_tracker et;
6800 
6801 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6802 	if (rack->r_state == 0) {
6803 		/*
6804 		 * Initial input (ACK to SYN-ACK etc)lets go ahead and get
6805 		 * it processed
6806 		 */
6807 		INP_INFO_RLOCK_ET(&V_tcbinfo, et);
6808 		tcp_get_usecs(&tv);
6809 		rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6810 		    tlen, iptos, 0, &tv);
6811 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
6812 		return;
6813 	}
6814 	tcp_queue_to_input(tp, m, th, tlen, drop_hdrlen, iptos);
6815 	INP_WUNLOCK(tp->t_inpcb);
6816 #else
6817 	tcp_get_usecs(&tv);
6818 	rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6819 	    tlen, iptos, 0, &tv);
6820 #endif
6821 }
6822 
6823 struct rack_sendmap *
6824 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
6825 {
6826 	struct rack_sendmap *rsm = NULL;
6827 	int32_t idx;
6828 	uint32_t srtt_cur, srtt = 0, thresh = 0, ts_low = 0;
6829 
6830 	/* Return the next guy to be re-transmitted */
6831 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
6832 		return (NULL);
6833 	}
6834 	if (tp->t_flags & TF_SENTFIN) {
6835 		/* retran the end FIN? */
6836 		return (NULL);
6837 	}
6838 	/* ok lets look at this one */
6839 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6840 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
6841 		goto check_it;
6842 	}
6843 	rsm = rack_find_lowest_rsm(rack);
6844 	if (rsm == NULL) {
6845 		return (NULL);
6846 	}
6847 check_it:
6848 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
6849 	srtt = TICKS_2_MSEC(srtt_cur);
6850 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
6851 		srtt = rack->rc_rack_rtt;
6852 	if (rsm->r_flags & RACK_ACKED) {
6853 		return (NULL);
6854 	}
6855 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
6856 		/* Its not yet ready */
6857 		return (NULL);
6858 	}
6859 	idx = rsm->r_rtr_cnt - 1;
6860 	ts_low = rsm->r_tim_lastsent[idx];
6861 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
6862 	if (tsused <= ts_low) {
6863 		return (NULL);
6864 	}
6865 	if ((tsused - ts_low) >= thresh) {
6866 		return (rsm);
6867 	}
6868 	return (NULL);
6869 }
6870 
6871 static int
6872 rack_output(struct tcpcb *tp)
6873 {
6874 	struct socket *so;
6875 	uint32_t recwin, sendwin;
6876 	uint32_t sb_offset;
6877 	int32_t len, flags, error = 0;
6878 	struct mbuf *m;
6879 	struct mbuf *mb;
6880 	uint32_t if_hw_tsomaxsegcount = 0;
6881 	uint32_t if_hw_tsomaxsegsize;
6882 	long tot_len_this_send = 0;
6883 	struct ip *ip = NULL;
6884 #ifdef TCPDEBUG
6885 	struct ipovly *ipov = NULL;
6886 #endif
6887 	struct udphdr *udp = NULL;
6888 	struct tcp_rack *rack;
6889 	struct tcphdr *th;
6890 	uint8_t pass = 0;
6891 	uint8_t wanted_cookie = 0;
6892 	u_char opt[TCP_MAXOLEN];
6893 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
6894 	uint32_t rack_seq;
6895 
6896 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
6897 	unsigned ipsec_optlen = 0;
6898 
6899 #endif
6900 	int32_t idle, sendalot;
6901 	int32_t sub_from_prr = 0;
6902 	volatile int32_t sack_rxmit;
6903 	struct rack_sendmap *rsm = NULL;
6904 	int32_t tso, mtu, would_have_fin = 0;
6905 	struct tcpopt to;
6906 	int32_t slot = 0;
6907 	uint32_t cts;
6908 	uint8_t hpts_calling, doing_tlp = 0;
6909 	int32_t do_a_prefetch;
6910 	int32_t prefetch_rsm = 0;
6911 	int32_t prefetch_so_done = 0;
6912 	struct tcp_log_buffer *lgb = NULL;
6913 	struct inpcb *inp;
6914 	struct sockbuf *sb;
6915 #ifdef INET6
6916 	struct ip6_hdr *ip6 = NULL;
6917 	int32_t isipv6;
6918 #endif
6919 	/* setup and take the cache hits here */
6920 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6921 	inp = rack->rc_inp;
6922 	so = inp->inp_socket;
6923 	sb = &so->so_snd;
6924 	kern_prefetch(sb, &do_a_prefetch);
6925 	do_a_prefetch = 1;
6926 
6927 	INP_WLOCK_ASSERT(inp);
6928 #ifdef TCP_OFFLOAD
6929 	if (tp->t_flags & TF_TOE)
6930 		return (tcp_offload_output(tp));
6931 #endif
6932 #ifdef INET6
6933 	if (rack->r_state) {
6934 		/* Use the cache line loaded if possible */
6935 		isipv6 = rack->r_is_v6;
6936 	} else {
6937 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
6938 	}
6939 #endif
6940 	cts = tcp_ts_getticks();
6941 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
6942 	    inp->inp_in_hpts) {
6943 		/*
6944 		 * We are on the hpts for some timer but not hptsi output.
6945 		 * Remove from the hpts unconditionally.
6946 		 */
6947 		rack_timer_cancel(tp, rack, cts, __LINE__);
6948 	}
6949 	/* Mark that we have called rack_output(). */
6950 	if ((rack->r_timer_override) ||
6951 	    (tp->t_flags & TF_FORCEDATA) ||
6952 	    (tp->t_state < TCPS_ESTABLISHED)) {
6953 		if (tp->t_inpcb->inp_in_hpts)
6954 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
6955 	} else if (tp->t_inpcb->inp_in_hpts) {
6956 		/*
6957 		 * On the hpts you can't pass even if ACKNOW is on, we will
6958 		 * when the hpts fires.
6959 		 */
6960 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
6961 		return (0);
6962 	}
6963 	hpts_calling = inp->inp_hpts_calls;
6964 	inp->inp_hpts_calls = 0;
6965 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
6966 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
6967 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
6968 			return (0);
6969 		}
6970 	}
6971 	rack->r_wanted_output = 0;
6972 	rack->r_timer_override = 0;
6973 	/*
6974 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
6975 	 * only allow the initial SYN or SYN|ACK and those sent
6976 	 * by the retransmit timer.
6977 	 */
6978 	if (IS_FASTOPEN(tp->t_flags) &&
6979 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
6980 	     (tp->t_state == TCPS_SYN_SENT)) &&
6981 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
6982 	    (tp->t_rxtshift == 0))              /* not a retransmit */
6983 		return (0);
6984 	/*
6985 	 * Determine length of data that should be transmitted, and flags
6986 	 * that will be used. If there is some data or critical controls
6987 	 * (SYN, RST) to send, then transmit; otherwise, investigate
6988 	 * further.
6989 	 */
6990 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
6991 #ifdef NETFLIX_CWV
6992 	if (tp->cwv_enabled) {
6993 		if ((tp->cwv_cwnd_valid == 0) &&
6994 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
6995 		    (tp->snd_cwnd > tp->snd_cwv.init_cwnd))
6996 			tcp_newcwv_nvp_closedown(tp);
6997 	} else
6998 #endif
6999 	if (tp->t_idle_reduce) {
7000 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
7001 			rack_cc_after_idle(tp,
7002 		            (rack->r_idle_reduce_largest ? 1 :0));
7003 	}
7004 	tp->t_flags &= ~TF_LASTIDLE;
7005 	if (idle) {
7006 		if (tp->t_flags & TF_MORETOCOME) {
7007 			tp->t_flags |= TF_LASTIDLE;
7008 			idle = 0;
7009 		}
7010 	}
7011 again:
7012 	/*
7013 	 * If we've recently taken a timeout, snd_max will be greater than
7014 	 * snd_nxt.  There may be SACK information that allows us to avoid
7015 	 * resending already delivered data.  Adjust snd_nxt accordingly.
7016 	 */
7017 	sendalot = 0;
7018 	cts = tcp_ts_getticks();
7019 	tso = 0;
7020 	mtu = 0;
7021 	sb_offset = tp->snd_max - tp->snd_una;
7022 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
7023 
7024 	flags = tcp_outflags[tp->t_state];
7025 	/*
7026 	 * Send any SACK-generated retransmissions.  If we're explicitly
7027 	 * trying to send out new data (when sendalot is 1), bypass this
7028 	 * function. If we retransmit in fast recovery mode, decrement
7029 	 * snd_cwnd, since we're replacing a (future) new transmission with
7030 	 * a retransmission now, and we previously incremented snd_cwnd in
7031 	 * tcp_input().
7032 	 */
7033 	/*
7034 	 * Still in sack recovery , reset rxmit flag to zero.
7035 	 */
7036 	while (rack->rc_free_cnt < rack_free_cache) {
7037 		rsm = rack_alloc(rack);
7038 		if (rsm == NULL) {
7039 			if (inp->inp_hpts_calls)
7040 				/* Retry in a ms */
7041 				slot = 1;
7042 			goto just_return_nolock;
7043 		}
7044 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
7045 		rack->rc_free_cnt++;
7046 		rsm = NULL;
7047 	}
7048 	if (inp->inp_hpts_calls)
7049 		inp->inp_hpts_calls = 0;
7050 	sack_rxmit = 0;
7051 	len = 0;
7052 	rsm = NULL;
7053 	if (flags & TH_RST) {
7054 		SOCKBUF_LOCK(sb);
7055 		goto send;
7056 	}
7057 	if (rack->r_ctl.rc_tlpsend) {
7058 		/* Tail loss probe */
7059 		long cwin;
7060 		long tlen;
7061 
7062 		doing_tlp = 1;
7063 		rsm = rack->r_ctl.rc_tlpsend;
7064 		rack->r_ctl.rc_tlpsend = NULL;
7065 		sack_rxmit = 1;
7066 		tlen = rsm->r_end - rsm->r_start;
7067 		if (tlen > tp->t_maxseg)
7068 			tlen = tp->t_maxseg;
7069 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
7070 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
7071 		    __func__, __LINE__,
7072 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
7073 		sb_offset = rsm->r_start - tp->snd_una;
7074 		cwin = min(tp->snd_wnd, tlen);
7075 		len = cwin;
7076 	} else if (rack->r_ctl.rc_resend) {
7077 		/* Retransmit timer */
7078 		rsm = rack->r_ctl.rc_resend;
7079 		rack->r_ctl.rc_resend = NULL;
7080 		len = rsm->r_end - rsm->r_start;
7081 		sack_rxmit = 1;
7082 		sendalot = 0;
7083 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
7084 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
7085 		    __func__, __LINE__,
7086 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
7087 		sb_offset = rsm->r_start - tp->snd_una;
7088 		if (len >= tp->t_maxseg) {
7089 			len = tp->t_maxseg;
7090 		}
7091 	} else if ((rack->rc_in_persist == 0) &&
7092 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
7093 		long tlen;
7094 
7095 		if ((!IN_RECOVERY(tp->t_flags)) &&
7096 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
7097 			/* Enter recovery if not induced by a time-out */
7098 			rack->r_ctl.rc_rsm_start = rsm->r_start;
7099 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7100 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7101 			rack_cong_signal(tp, NULL, CC_NDUPACK);
7102 			/*
7103 			 * When we enter recovery we need to assure we send
7104 			 * one packet.
7105 			 */
7106 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
7107 		}
7108 #ifdef INVARIANTS
7109 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
7110 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
7111 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
7112 		}
7113 #endif
7114 		tlen = rsm->r_end - rsm->r_start;
7115 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
7116 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
7117 		    __func__, __LINE__,
7118 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
7119 		sb_offset = rsm->r_start - tp->snd_una;
7120 		if (tlen > rack->r_ctl.rc_prr_sndcnt) {
7121 			len = rack->r_ctl.rc_prr_sndcnt;
7122 		} else {
7123 			len = tlen;
7124 		}
7125 		if (len >= tp->t_maxseg) {
7126 			sendalot = 1;
7127 			len = tp->t_maxseg;
7128 		} else {
7129 			sendalot = 0;
7130 			if ((rack->rc_timer_up == 0) &&
7131 			    (len < tlen)) {
7132 				/*
7133 				 * If its not a timer don't send a partial
7134 				 * segment.
7135 				 */
7136 				len = 0;
7137 				goto just_return_nolock;
7138 			}
7139 		}
7140 		if (len > 0) {
7141 			sub_from_prr = 1;
7142 			sack_rxmit = 1;
7143 			TCPSTAT_INC(tcps_sack_rexmits);
7144 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
7145 			    min(len, tp->t_maxseg));
7146 			counter_u64_add(rack_rtm_prr_retran, 1);
7147 		}
7148 	}
7149 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
7150 		/* we are retransmitting the fin */
7151 		len--;
7152 		if (len) {
7153 			/*
7154 			 * When retransmitting data do *not* include the
7155 			 * FIN. This could happen from a TLP probe.
7156 			 */
7157 			flags &= ~TH_FIN;
7158 		}
7159 	}
7160 #ifdef INVARIANTS
7161 	/* For debugging */
7162 	rack->r_ctl.rc_rsm_at_retran = rsm;
7163 #endif
7164 	/*
7165 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
7166 	 * state flags.
7167 	 */
7168 	if (tp->t_flags & TF_NEEDFIN)
7169 		flags |= TH_FIN;
7170 	if (tp->t_flags & TF_NEEDSYN)
7171 		flags |= TH_SYN;
7172 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
7173 		void *end_rsm;
7174 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
7175 		if (end_rsm)
7176 			kern_prefetch(end_rsm, &prefetch_rsm);
7177 		prefetch_rsm = 1;
7178 	}
7179 	SOCKBUF_LOCK(sb);
7180 	/*
7181 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
7182 	 * if window is small but nonzero and time TF_SENTFIN expired, we
7183 	 * will send what we can and go to transmit state.
7184 	 */
7185 	if (tp->t_flags & TF_FORCEDATA) {
7186 		if (sendwin == 0) {
7187 			/*
7188 			 * If we still have some data to send, then clear
7189 			 * the FIN bit.  Usually this would happen below
7190 			 * when it realizes that we aren't sending all the
7191 			 * data.  However, if we have exactly 1 byte of
7192 			 * unsent data, then it won't clear the FIN bit
7193 			 * below, and if we are in persist state, we wind up
7194 			 * sending the packet without recording that we sent
7195 			 * the FIN bit.
7196 			 *
7197 			 * We can't just blindly clear the FIN bit, because
7198 			 * if we don't have any more data to send then the
7199 			 * probe will be the FIN itself.
7200 			 */
7201 			if (sb_offset < sbused(sb))
7202 				flags &= ~TH_FIN;
7203 			sendwin = 1;
7204 		} else {
7205 			if (rack->rc_in_persist)
7206 				rack_exit_persist(tp, rack);
7207 			/*
7208 			 * If we are dropping persist mode then we need to
7209 			 * correct snd_nxt/snd_max and off.
7210 			 */
7211 			tp->snd_nxt = tp->snd_max;
7212 			sb_offset = tp->snd_nxt - tp->snd_una;
7213 		}
7214 	}
7215 	/*
7216 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
7217 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
7218 	 * negative length.  This can also occur when TCP opens up its
7219 	 * congestion window while receiving additional duplicate acks after
7220 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
7221 	 * the fast-retransmit.
7222 	 *
7223 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
7224 	 * set to snd_una, the sb_offset will be 0, and the length may wind
7225 	 * up 0.
7226 	 *
7227 	 * If sack_rxmit is true we are retransmitting from the scoreboard
7228 	 * in which case len is already set.
7229 	 */
7230 	if (sack_rxmit == 0) {
7231 		uint32_t avail;
7232 
7233 		avail = sbavail(sb);
7234 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
7235 			sb_offset = tp->snd_nxt - tp->snd_una;
7236 		else
7237 			sb_offset = 0;
7238 		if (IN_RECOVERY(tp->t_flags) == 0) {
7239 			if (rack->r_ctl.rc_tlp_new_data) {
7240 				/* TLP is forcing out new data */
7241 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
7242 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
7243 				}
7244 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
7245 					len = tp->snd_wnd;
7246 				else
7247 					len = rack->r_ctl.rc_tlp_new_data;
7248 				rack->r_ctl.rc_tlp_new_data = 0;
7249 				doing_tlp = 1;
7250 			} else {
7251 				if (sendwin > avail) {
7252 					/* use the available */
7253 					if (avail > sb_offset) {
7254 						len = (int32_t)(avail - sb_offset);
7255 					} else {
7256 						len = 0;
7257 					}
7258 				} else {
7259 					if (sendwin > sb_offset) {
7260 						len = (int32_t)(sendwin - sb_offset);
7261 					} else {
7262 						len = 0;
7263 					}
7264 				}
7265 			}
7266 		} else {
7267 			uint32_t outstanding;
7268 
7269 			/*
7270 			 * We are inside of a SACK recovery episode and are
7271 			 * sending new data, having retransmitted all the
7272 			 * data possible so far in the scoreboard.
7273 			 */
7274 			outstanding = tp->snd_max - tp->snd_una;
7275 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd)
7276 				len = 0;
7277 			else if (avail > sb_offset)
7278 				len = avail - sb_offset;
7279 			else
7280 				len = 0;
7281 			if (len > 0) {
7282 				if (len > rack->r_ctl.rc_prr_sndcnt)
7283 					len = rack->r_ctl.rc_prr_sndcnt;
7284 
7285 				if (len > 0) {
7286 					sub_from_prr = 1;
7287 					counter_u64_add(rack_rtm_prr_newdata, 1);
7288 				}
7289 			}
7290 			if (len > tp->t_maxseg) {
7291 				/*
7292 				 * We should never send more than a MSS when
7293 				 * retransmitting or sending new data in prr
7294 				 * mode unless the override flag is on. Most
7295 				 * likely the PRR algorithm is not going to
7296 				 * let us send a lot as well :-)
7297 				 */
7298 				if (rack->r_ctl.rc_prr_sendalot == 0)
7299 					len = tp->t_maxseg;
7300 			} else if (len < tp->t_maxseg) {
7301 				/*
7302 				 * Do we send any? The idea here is if the
7303 				 * send empty's the socket buffer we want to
7304 				 * do it. However if not then lets just wait
7305 				 * for our prr_sndcnt to get bigger.
7306 				 */
7307 				long leftinsb;
7308 
7309 				leftinsb = sbavail(sb) - sb_offset;
7310 				if (leftinsb > len) {
7311 					/* This send does not empty the sb */
7312 					len = 0;
7313 				}
7314 			}
7315 		}
7316 	}
7317 	if (prefetch_so_done == 0) {
7318 		kern_prefetch(so, &prefetch_so_done);
7319 		prefetch_so_done = 1;
7320 	}
7321 	/*
7322 	 * Lop off SYN bit if it has already been sent.  However, if this is
7323 	 * SYN-SENT state and if segment contains data and if we don't know
7324 	 * that foreign host supports TAO, suppress sending segment.
7325 	 */
7326 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
7327 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
7328 		if (tp->t_state != TCPS_SYN_RECEIVED)
7329 			flags &= ~TH_SYN;
7330 		/*
7331 		 * When sending additional segments following a TFO SYN|ACK,
7332 		 * do not include the SYN bit.
7333 		 */
7334 		if (IS_FASTOPEN(tp->t_flags) &&
7335 		    (tp->t_state == TCPS_SYN_RECEIVED))
7336 			flags &= ~TH_SYN;
7337 		sb_offset--, len++;
7338 	}
7339 	/*
7340 	 * Be careful not to send data and/or FIN on SYN segments. This
7341 	 * measure is needed to prevent interoperability problems with not
7342 	 * fully conformant TCP implementations.
7343 	 */
7344 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
7345 		len = 0;
7346 		flags &= ~TH_FIN;
7347 	}
7348 	/*
7349 	 * On TFO sockets, ensure no data is sent in the following cases:
7350 	 *
7351 	 *  - When retransmitting SYN|ACK on a passively-created socket
7352 	 *
7353 	 *  - When retransmitting SYN on an actively created socket
7354 	 *
7355 	 *  - When sending a zero-length cookie (cookie request) on an
7356 	 *    actively created socket
7357 	 *
7358 	 *  - When the socket is in the CLOSED state (RST is being sent)
7359 	 */
7360 	if (IS_FASTOPEN(tp->t_flags) &&
7361 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
7362 	     ((tp->t_state == TCPS_SYN_SENT) &&
7363 	      (tp->t_tfo_client_cookie_len == 0)) ||
7364 	     (flags & TH_RST))) {
7365 		sack_rxmit = 0;
7366 		len = 0;
7367 	}
7368 	/* Without fast-open there should never be data sent on a SYN */
7369 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
7370 		len = 0;
7371 	if (len <= 0) {
7372 		/*
7373 		 * If FIN has been sent but not acked, but we haven't been
7374 		 * called to retransmit, len will be < 0.  Otherwise, window
7375 		 * shrank after we sent into it.  If window shrank to 0,
7376 		 * cancel pending retransmit, pull snd_nxt back to (closed)
7377 		 * window, and set the persist timer if it isn't already
7378 		 * going.  If the window didn't close completely, just wait
7379 		 * for an ACK.
7380 		 *
7381 		 * We also do a general check here to ensure that we will
7382 		 * set the persist timer when we have data to send, but a
7383 		 * 0-byte window. This makes sure the persist timer is set
7384 		 * even if the packet hits one of the "goto send" lines
7385 		 * below.
7386 		 */
7387 		len = 0;
7388 		if ((tp->snd_wnd == 0) &&
7389 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
7390 		    (sb_offset < (int)sbavail(sb))) {
7391 			tp->snd_nxt = tp->snd_una;
7392 			rack_enter_persist(tp, rack, cts);
7393 		}
7394 	}
7395 	/* len will be >= 0 after this point. */
7396 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7397 	tcp_sndbuf_autoscale(tp, so, sendwin);
7398 	/*
7399 	 * Decide if we can use TCP Segmentation Offloading (if supported by
7400 	 * hardware).
7401 	 *
7402 	 * TSO may only be used if we are in a pure bulk sending state.  The
7403 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
7404 	 * options prevent using TSO.  With TSO the TCP header is the same
7405 	 * (except for the sequence number) for all generated packets.  This
7406 	 * makes it impossible to transmit any options which vary per
7407 	 * generated segment or packet.
7408 	 *
7409 	 * IPv4 handling has a clear separation of ip options and ip header
7410 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
7411 	 * the right thing below to provide length of just ip options and thus
7412 	 * checking for ipoptlen is enough to decide if ip options are present.
7413 	 */
7414 
7415 #ifdef INET6
7416 	if (isipv6)
7417 		ipoptlen = ip6_optlen(tp->t_inpcb);
7418 	else
7419 #endif
7420 		if (tp->t_inpcb->inp_options)
7421 			ipoptlen = tp->t_inpcb->inp_options->m_len -
7422 			    offsetof(struct ipoption, ipopt_list);
7423 		else
7424 			ipoptlen = 0;
7425 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7426 	/*
7427 	 * Pre-calculate here as we save another lookup into the darknesses
7428 	 * of IPsec that way and can actually decide if TSO is ok.
7429 	 */
7430 #ifdef INET6
7431 	if (isipv6 && IPSEC_ENABLED(ipv6))
7432 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
7433 #ifdef INET
7434 	else
7435 #endif
7436 #endif				/* INET6 */
7437 #ifdef INET
7438 	if (IPSEC_ENABLED(ipv4))
7439 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
7440 #endif				/* INET */
7441 #endif
7442 
7443 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7444 	ipoptlen += ipsec_optlen;
7445 #endif
7446 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > tp->t_maxseg &&
7447 	    (tp->t_port == 0) &&
7448 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
7449 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
7450 	    ipoptlen == 0)
7451 		tso = 1;
7452 	{
7453 		uint32_t outstanding;
7454 
7455 		outstanding = tp->snd_max - tp->snd_una;
7456 		if (tp->t_flags & TF_SENTFIN) {
7457 			/*
7458 			 * If we sent a fin, snd_max is 1 higher than
7459 			 * snd_una
7460 			 */
7461 			outstanding--;
7462 		}
7463 		if (outstanding > 0) {
7464 			/*
7465 			 * This is sub-optimal. We only send a stand alone
7466 			 * FIN on its own segment.
7467 			 */
7468 			if (flags & TH_FIN) {
7469 				flags &= ~TH_FIN;
7470 				would_have_fin = 1;
7471 			}
7472 		} else if (sack_rxmit) {
7473 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
7474 				flags &= ~TH_FIN;
7475 		} else {
7476 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
7477 			    sbused(sb)))
7478 				flags &= ~TH_FIN;
7479 		}
7480 	}
7481 	recwin = sbspace(&so->so_rcv);
7482 
7483 	/*
7484 	 * Sender silly window avoidance.   We transmit under the following
7485 	 * conditions when len is non-zero:
7486 	 *
7487 	 * - We have a full segment (or more with TSO) - This is the last
7488 	 * buffer in a write()/send() and we are either idle or running
7489 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
7490 	 * then 1/2 the maximum send window's worth of data (receiver may be
7491 	 * limited the window size) - we need to retransmit
7492 	 */
7493 	if (len) {
7494 		if (len >= tp->t_maxseg) {
7495 			pass = 1;
7496 			goto send;
7497 		}
7498 		/*
7499 		 * NOTE! on localhost connections an 'ack' from the remote
7500 		 * end may occur synchronously with the output and cause us
7501 		 * to flush a buffer queued with moretocome.  XXX
7502 		 *
7503 		 */
7504 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
7505 		    (idle || (tp->t_flags & TF_NODELAY)) &&
7506 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
7507 		    (tp->t_flags & TF_NOPUSH) == 0) {
7508 			pass = 2;
7509 			goto send;
7510 		}
7511 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
7512 			pass = 3;
7513 			goto send;
7514 		}
7515 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
7516 			goto send;
7517 		}
7518 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
7519 			pass = 4;
7520 			goto send;
7521 		}
7522 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
7523 			pass = 5;
7524 			goto send;
7525 		}
7526 		if (sack_rxmit) {
7527 			pass = 6;
7528 			goto send;
7529 		}
7530 	}
7531 	/*
7532 	 * Sending of standalone window updates.
7533 	 *
7534 	 * Window updates are important when we close our window due to a
7535 	 * full socket buffer and are opening it again after the application
7536 	 * reads data from it.  Once the window has opened again and the
7537 	 * remote end starts to send again the ACK clock takes over and
7538 	 * provides the most current window information.
7539 	 *
7540 	 * We must avoid the silly window syndrome whereas every read from
7541 	 * the receive buffer, no matter how small, causes a window update
7542 	 * to be sent.  We also should avoid sending a flurry of window
7543 	 * updates when the socket buffer had queued a lot of data and the
7544 	 * application is doing small reads.
7545 	 *
7546 	 * Prevent a flurry of pointless window updates by only sending an
7547 	 * update when we can increase the advertized window by more than
7548 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
7549 	 * full or is very small be more aggressive and send an update
7550 	 * whenever we can increase by two mss sized segments. In all other
7551 	 * situations the ACK's to new incoming data will carry further
7552 	 * window increases.
7553 	 *
7554 	 * Don't send an independent window update if a delayed ACK is
7555 	 * pending (it will get piggy-backed on it) or the remote side
7556 	 * already has done a half-close and won't send more data.  Skip
7557 	 * this if the connection is in T/TCP half-open state.
7558 	 */
7559 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
7560 	    !(tp->t_flags & TF_DELACK) &&
7561 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
7562 		/*
7563 		 * "adv" is the amount we could increase the window, taking
7564 		 * into account that we are limited by TCP_MAXWIN <<
7565 		 * tp->rcv_scale.
7566 		 */
7567 		int32_t adv;
7568 		int oldwin;
7569 
7570 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
7571 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
7572 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
7573 			adv -= oldwin;
7574 		} else
7575 			oldwin = 0;
7576 
7577 		/*
7578 		 * If the new window size ends up being the same as the old
7579 		 * size when it is scaled, then don't force a window update.
7580 		 */
7581 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
7582 			goto dontupdate;
7583 
7584 		if (adv >= (int32_t)(2 * tp->t_maxseg) &&
7585 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
7586 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
7587 		    so->so_rcv.sb_hiwat <= 8 * tp->t_maxseg)) {
7588 			pass = 7;
7589 			goto send;
7590 		}
7591 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
7592 			goto send;
7593 	}
7594 dontupdate:
7595 
7596 	/*
7597 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
7598 	 * is also a catch-all for the retransmit timer timeout case.
7599 	 */
7600 	if (tp->t_flags & TF_ACKNOW) {
7601 		pass = 8;
7602 		goto send;
7603 	}
7604 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
7605 		pass = 9;
7606 		goto send;
7607 	}
7608 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
7609 		pass = 10;
7610 		goto send;
7611 	}
7612 	/*
7613 	 * If our state indicates that FIN should be sent and we have not
7614 	 * yet done so, then we need to send.
7615 	 */
7616 	if ((flags & TH_FIN) &&
7617 	    (tp->snd_nxt == tp->snd_una)) {
7618 		pass = 11;
7619 		goto send;
7620 	}
7621 	/*
7622 	 * No reason to send a segment, just return.
7623 	 */
7624 just_return:
7625 	SOCKBUF_UNLOCK(sb);
7626 just_return_nolock:
7627 	if (tot_len_this_send == 0)
7628 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
7629 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
7630 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
7631 	tp->t_flags &= ~TF_FORCEDATA;
7632 	return (0);
7633 
7634 send:
7635 	if (doing_tlp == 0) {
7636 		/*
7637 		 * Data not a TLP, and its not the rxt firing. If it is the
7638 		 * rxt firing, we want to leave the tlp_in_progress flag on
7639 		 * so we don't send another TLP. It has to be a rack timer
7640 		 * or normal send (response to acked data) to clear the tlp
7641 		 * in progress flag.
7642 		 */
7643 		rack->rc_tlp_in_progress = 0;
7644 	}
7645 	SOCKBUF_LOCK_ASSERT(sb);
7646 	if (len > 0) {
7647 		if (len >= tp->t_maxseg)
7648 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
7649 		else
7650 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
7651 	}
7652 	/*
7653 	 * Before ESTABLISHED, force sending of initial options unless TCP
7654 	 * set not to do any options. NOTE: we assume that the IP/TCP header
7655 	 * plus TCP options always fit in a single mbuf, leaving room for a
7656 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
7657 	 * + optlen <= MCLBYTES
7658 	 */
7659 	optlen = 0;
7660 #ifdef INET6
7661 	if (isipv6)
7662 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
7663 	else
7664 #endif
7665 		hdrlen = sizeof(struct tcpiphdr);
7666 
7667 	/*
7668 	 * Compute options for segment. We only have to care about SYN and
7669 	 * established connection segments.  Options for SYN-ACK segments
7670 	 * are handled in TCP syncache.
7671 	 */
7672 	to.to_flags = 0;
7673 	if ((tp->t_flags & TF_NOOPT) == 0) {
7674 		/* Maximum segment size. */
7675 		if (flags & TH_SYN) {
7676 			tp->snd_nxt = tp->iss;
7677 			to.to_mss = tcp_mssopt(&inp->inp_inc);
7678 #ifdef NETFLIX_TCPOUDP
7679 			if (tp->t_port)
7680 				to.to_mss -= V_tcp_udp_tunneling_overhead;
7681 #endif
7682 			to.to_flags |= TOF_MSS;
7683 
7684 			/*
7685 			 * On SYN or SYN|ACK transmits on TFO connections,
7686 			 * only include the TFO option if it is not a
7687 			 * retransmit, as the presence of the TFO option may
7688 			 * have caused the original SYN or SYN|ACK to have
7689 			 * been dropped by a middlebox.
7690 			 */
7691 			if (IS_FASTOPEN(tp->t_flags) &&
7692 			    (tp->t_rxtshift == 0)) {
7693 				if (tp->t_state == TCPS_SYN_RECEIVED) {
7694 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
7695 					to.to_tfo_cookie =
7696 					    (u_int8_t *)&tp->t_tfo_cookie.server;
7697 					to.to_flags |= TOF_FASTOPEN;
7698 					wanted_cookie = 1;
7699 				} else if (tp->t_state == TCPS_SYN_SENT) {
7700 					to.to_tfo_len =
7701 					    tp->t_tfo_client_cookie_len;
7702 					to.to_tfo_cookie =
7703 					    tp->t_tfo_cookie.client;
7704 					to.to_flags |= TOF_FASTOPEN;
7705 					wanted_cookie = 1;
7706 					/*
7707 					 * If we wind up having more data to
7708 					 * send with the SYN than can fit in
7709 					 * one segment, don't send any more
7710 					 * until the SYN|ACK comes back from
7711 					 * the other end.
7712 					 */
7713 					sendalot = 0;
7714 				}
7715 			}
7716 		}
7717 		/* Window scaling. */
7718 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
7719 			to.to_wscale = tp->request_r_scale;
7720 			to.to_flags |= TOF_SCALE;
7721 		}
7722 		/* Timestamps. */
7723 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
7724 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
7725 			to.to_tsval = cts + tp->ts_offset;
7726 			to.to_tsecr = tp->ts_recent;
7727 			to.to_flags |= TOF_TS;
7728 		}
7729 		/* Set receive buffer autosizing timestamp. */
7730 		if (tp->rfbuf_ts == 0 &&
7731 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
7732 			tp->rfbuf_ts = tcp_ts_getticks();
7733 		/* Selective ACK's. */
7734 		if (flags & TH_SYN)
7735 			to.to_flags |= TOF_SACKPERM;
7736 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
7737 		    tp->rcv_numsacks > 0) {
7738 			to.to_flags |= TOF_SACK;
7739 			to.to_nsacks = tp->rcv_numsacks;
7740 			to.to_sacks = (u_char *)tp->sackblks;
7741 		}
7742 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
7743 		/* TCP-MD5 (RFC2385). */
7744 		if (tp->t_flags & TF_SIGNATURE)
7745 			to.to_flags |= TOF_SIGNATURE;
7746 #endif				/* TCP_SIGNATURE */
7747 
7748 		/* Processing the options. */
7749 		hdrlen += optlen = tcp_addoptions(&to, opt);
7750 		/*
7751 		 * If we wanted a TFO option to be added, but it was unable
7752 		 * to fit, ensure no data is sent.
7753 		 */
7754 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
7755 		    !(to.to_flags & TOF_FASTOPEN))
7756 			len = 0;
7757 	}
7758 #ifdef NETFLIX_TCPOUDP
7759 	if (tp->t_port) {
7760 		if (V_tcp_udp_tunneling_port == 0) {
7761 			/* The port was removed?? */
7762 			SOCKBUF_UNLOCK(&so->so_snd);
7763 			return (EHOSTUNREACH);
7764 		}
7765 		hdrlen += sizeof(struct udphdr);
7766 	}
7767 #endif
7768 	ipoptlen = 0;
7769 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7770 	ipoptlen += ipsec_optlen;
7771 #endif
7772 
7773 	/*
7774 	 * Adjust data length if insertion of options will bump the packet
7775 	 * length beyond the t_maxseg length. Clear the FIN bit because we
7776 	 * cut off the tail of the segment.
7777 	 */
7778 	if (len + optlen + ipoptlen > tp->t_maxseg) {
7779 		if (flags & TH_FIN) {
7780 			would_have_fin = 1;
7781 			flags &= ~TH_FIN;
7782 		}
7783 		if (tso) {
7784 			uint32_t if_hw_tsomax;
7785 			uint32_t moff;
7786 			int32_t max_len;
7787 
7788 			/* extract TSO information */
7789 			if_hw_tsomax = tp->t_tsomax;
7790 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
7791 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
7792 			KASSERT(ipoptlen == 0,
7793 			    ("%s: TSO can't do IP options", __func__));
7794 
7795 			/*
7796 			 * Check if we should limit by maximum payload
7797 			 * length:
7798 			 */
7799 			if (if_hw_tsomax != 0) {
7800 				/* compute maximum TSO length */
7801 				max_len = (if_hw_tsomax - hdrlen -
7802 				    max_linkhdr);
7803 				if (max_len <= 0) {
7804 					len = 0;
7805 				} else if (len > max_len) {
7806 					sendalot = 1;
7807 					len = max_len;
7808 				}
7809 			}
7810 			/*
7811 			 * Prevent the last segment from being fractional
7812 			 * unless the send sockbuf can be emptied:
7813 			 */
7814 			max_len = (tp->t_maxseg - optlen);
7815 			if ((sb_offset + len) < sbavail(sb)) {
7816 				moff = len % (u_int)max_len;
7817 				if (moff != 0) {
7818 					len -= moff;
7819 					sendalot = 1;
7820 				}
7821 			}
7822 			/*
7823 			 * In case there are too many small fragments don't
7824 			 * use TSO:
7825 			 */
7826 			if (len <= max_len) {
7827 				len = max_len;
7828 				sendalot = 1;
7829 				tso = 0;
7830 			}
7831 			/*
7832 			 * Send the FIN in a separate segment after the bulk
7833 			 * sending is done. We don't trust the TSO
7834 			 * implementations to clear the FIN flag on all but
7835 			 * the last segment.
7836 			 */
7837 			if (tp->t_flags & TF_NEEDFIN)
7838 				sendalot = 1;
7839 
7840 		} else {
7841 			len = tp->t_maxseg - optlen - ipoptlen;
7842 			sendalot = 1;
7843 		}
7844 	} else
7845 		tso = 0;
7846 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
7847 	    ("%s: len > IP_MAXPACKET", __func__));
7848 #ifdef DIAGNOSTIC
7849 #ifdef INET6
7850 	if (max_linkhdr + hdrlen > MCLBYTES)
7851 #else
7852 	if (max_linkhdr + hdrlen > MHLEN)
7853 #endif
7854 		panic("tcphdr too big");
7855 #endif
7856 
7857 	/*
7858 	 * This KASSERT is here to catch edge cases at a well defined place.
7859 	 * Before, those had triggered (random) panic conditions further
7860 	 * down.
7861 	 */
7862 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7863 	if ((len == 0) &&
7864 	    (flags & TH_FIN) &&
7865 	    (sbused(sb))) {
7866 		/*
7867 		 * We have outstanding data, don't send a fin by itself!.
7868 		 */
7869 		goto just_return;
7870 	}
7871 	/*
7872 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
7873 	 * and initialize the header from the template for sends on this
7874 	 * connection.
7875 	 */
7876 	if (len) {
7877 		uint32_t max_val;
7878 		uint32_t moff;
7879 
7880 		if (rack->rc_pace_max_segs)
7881 			max_val = rack->rc_pace_max_segs * tp->t_maxseg;
7882 		else
7883 			max_val = len;
7884 		/*
7885 		 * We allow a limit on sending with hptsi.
7886 		 */
7887 		if (len > max_val) {
7888 			len = max_val;
7889 		}
7890 #ifdef INET6
7891 		if (MHLEN < hdrlen + max_linkhdr)
7892 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
7893 		else
7894 #endif
7895 			m = m_gethdr(M_NOWAIT, MT_DATA);
7896 
7897 		if (m == NULL) {
7898 			SOCKBUF_UNLOCK(sb);
7899 			error = ENOBUFS;
7900 			sack_rxmit = 0;
7901 			goto out;
7902 		}
7903 		m->m_data += max_linkhdr;
7904 		m->m_len = hdrlen;
7905 
7906 		/*
7907 		 * Start the m_copy functions from the closest mbuf to the
7908 		 * sb_offset in the socket buffer chain.
7909 		 */
7910 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
7911 		if (len <= MHLEN - hdrlen - max_linkhdr) {
7912 			m_copydata(mb, moff, (int)len,
7913 			    mtod(m, caddr_t)+hdrlen);
7914 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7915 				sbsndptr_adv(sb, mb, len);
7916 			m->m_len += len;
7917 		} else {
7918 			struct sockbuf *msb;
7919 
7920 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7921 				msb = NULL;
7922 			else
7923 				msb = sb;
7924 			m->m_next = tcp_m_copym(mb, moff, &len,
7925 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb);
7926 			if (len <= (tp->t_maxseg - optlen)) {
7927 				/*
7928 				 * Must have ran out of mbufs for the copy
7929 				 * shorten it to no longer need tso. Lets
7930 				 * not put on sendalot since we are low on
7931 				 * mbufs.
7932 				 */
7933 				tso = 0;
7934 			}
7935 			if (m->m_next == NULL) {
7936 				SOCKBUF_UNLOCK(sb);
7937 				(void)m_free(m);
7938 				error = ENOBUFS;
7939 				sack_rxmit = 0;
7940 				goto out;
7941 			}
7942 		}
7943 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
7944 			TCPSTAT_INC(tcps_sndprobe);
7945 #ifdef NETFLIX_STATS
7946 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7947 				stats_voi_update_abs_u32(tp->t_stats,
7948 				    VOI_TCP_RETXPB, len);
7949 			else
7950 				stats_voi_update_abs_u64(tp->t_stats,
7951 				    VOI_TCP_TXPB, len);
7952 #endif
7953 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
7954 			if (rsm && (rsm->r_flags & RACK_TLP)) {
7955 				/*
7956 				 * TLP should not count in retran count, but
7957 				 * in its own bin
7958 				 */
7959 				counter_u64_add(rack_tlp_retran, 1);
7960 				counter_u64_add(rack_tlp_retran_bytes, len);
7961 			} else {
7962 				tp->t_sndrexmitpack++;
7963 				TCPSTAT_INC(tcps_sndrexmitpack);
7964 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
7965 			}
7966 #ifdef NETFLIX_STATS
7967 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
7968 			    len);
7969 #endif
7970 		} else {
7971 			TCPSTAT_INC(tcps_sndpack);
7972 			TCPSTAT_ADD(tcps_sndbyte, len);
7973 #ifdef NETFLIX_STATS
7974 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
7975 			    len);
7976 #endif
7977 		}
7978 		/*
7979 		 * If we're sending everything we've got, set PUSH. (This
7980 		 * will keep happy those implementations which only give
7981 		 * data to the user when a buffer fills or a PUSH comes in.)
7982 		 */
7983 		if (sb_offset + len == sbused(sb) &&
7984 		    sbused(sb) &&
7985 		    !(flags & TH_SYN))
7986 			flags |= TH_PUSH;
7987 
7988 		/*
7989 		 * Are we doing hptsi, if so we must calculate the slot. We
7990 		 * only do hptsi in ESTABLISHED and with no RESET being
7991 		 * sent where we have data to send.
7992 		 */
7993 		if (((tp->t_state == TCPS_ESTABLISHED) ||
7994 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
7995 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
7996 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
7997 		    ((flags & TH_FIN) == 0))) &&
7998 		    ((flags & TH_RST) == 0) &&
7999 		    (rack->rc_always_pace)) {
8000 			/*
8001 			 * We use the most optimistic possible cwnd/srtt for
8002 			 * sending calculations. This will make our
8003 			 * calculation anticipate getting more through
8004 			 * quicker then possible. But thats ok we don't want
8005 			 * the peer to have a gap in data sending.
8006 			 */
8007 			uint32_t srtt, cwnd, tr_perms = 0;
8008 
8009 			if (rack->r_ctl.rc_rack_min_rtt)
8010 				srtt = rack->r_ctl.rc_rack_min_rtt;
8011 			else
8012 				srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8013 			if (rack->r_ctl.rc_rack_largest_cwnd)
8014 				cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8015 			else
8016 				cwnd = tp->snd_cwnd;
8017 			tr_perms = cwnd / srtt;
8018 			if (tr_perms == 0) {
8019 				tr_perms = tp->t_maxseg;
8020 			}
8021 			tot_len_this_send += len;
8022 			/*
8023 			 * Calculate how long this will take to drain, if
8024 			 * the calculation comes out to zero, thats ok we
8025 			 * will use send_a_lot to possibly spin around for
8026 			 * more increasing tot_len_this_send to the point
8027 			 * that its going to require a pace, or we hit the
8028 			 * cwnd. Which in that case we are just waiting for
8029 			 * a ACK.
8030 			 */
8031 			slot = tot_len_this_send / tr_perms;
8032 			/* Now do we reduce the time so we don't run dry? */
8033 			if (slot && rack->rc_pace_reduce) {
8034 				int32_t reduce;
8035 
8036 				reduce = (slot / rack->rc_pace_reduce);
8037 				if (reduce < slot) {
8038 					slot -= reduce;
8039 				} else
8040 					slot = 0;
8041 			}
8042 			if (rack->r_enforce_min_pace &&
8043 			    (slot == 0) &&
8044 			    (tot_len_this_send >= (rack->r_min_pace_seg_thresh * tp->t_maxseg))) {
8045 				/* We are enforcing a minimum pace time of 1ms */
8046 				slot = rack->r_enforce_min_pace;
8047 			}
8048 		}
8049 		SOCKBUF_UNLOCK(sb);
8050 	} else {
8051 		SOCKBUF_UNLOCK(sb);
8052 		if (tp->t_flags & TF_ACKNOW)
8053 			TCPSTAT_INC(tcps_sndacks);
8054 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
8055 			TCPSTAT_INC(tcps_sndctrl);
8056 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
8057 			TCPSTAT_INC(tcps_sndurg);
8058 		else
8059 			TCPSTAT_INC(tcps_sndwinup);
8060 
8061 		m = m_gethdr(M_NOWAIT, MT_DATA);
8062 		if (m == NULL) {
8063 			error = ENOBUFS;
8064 			sack_rxmit = 0;
8065 			goto out;
8066 		}
8067 #ifdef INET6
8068 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
8069 		    MHLEN >= hdrlen) {
8070 			M_ALIGN(m, hdrlen);
8071 		} else
8072 #endif
8073 			m->m_data += max_linkhdr;
8074 		m->m_len = hdrlen;
8075 	}
8076 	SOCKBUF_UNLOCK_ASSERT(sb);
8077 	m->m_pkthdr.rcvif = (struct ifnet *)0;
8078 #ifdef MAC
8079 	mac_inpcb_create_mbuf(inp, m);
8080 #endif
8081 #ifdef INET6
8082 	if (isipv6) {
8083 		ip6 = mtod(m, struct ip6_hdr *);
8084 #ifdef NETFLIX_TCPOUDP
8085 		if (tp->t_port) {
8086 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
8087 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8088 			udp->uh_dport = tp->t_port;
8089 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
8090 			udp->uh_ulen = htons(ulen);
8091 			th = (struct tcphdr *)(udp + 1);
8092 		} else
8093 #endif
8094 			th = (struct tcphdr *)(ip6 + 1);
8095 		tcpip_fillheaders(inp, ip6, th);
8096 	} else
8097 #endif				/* INET6 */
8098 	{
8099 		ip = mtod(m, struct ip *);
8100 #ifdef TCPDEBUG
8101 		ipov = (struct ipovly *)ip;
8102 #endif
8103 #ifdef NETFLIX_TCPOUDP
8104 		if (tp->t_port) {
8105 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
8106 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8107 			udp->uh_dport = tp->t_port;
8108 			ulen = hdrlen + len - sizeof(struct ip);
8109 			udp->uh_ulen = htons(ulen);
8110 			th = (struct tcphdr *)(udp + 1);
8111 		} else
8112 #endif
8113 			th = (struct tcphdr *)(ip + 1);
8114 		tcpip_fillheaders(inp, ip, th);
8115 	}
8116 	/*
8117 	 * Fill in fields, remembering maximum advertised window for use in
8118 	 * delaying messages about window sizes. If resending a FIN, be sure
8119 	 * not to use a new sequence number.
8120 	 */
8121 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
8122 	    tp->snd_nxt == tp->snd_max)
8123 		tp->snd_nxt--;
8124 	/*
8125 	 * If we are starting a connection, send ECN setup SYN packet. If we
8126 	 * are on a retransmit, we may resend those bits a number of times
8127 	 * as per RFC 3168.
8128 	 */
8129 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
8130 		if (tp->t_rxtshift >= 1) {
8131 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
8132 				flags |= TH_ECE | TH_CWR;
8133 		} else
8134 			flags |= TH_ECE | TH_CWR;
8135 	}
8136 	if (tp->t_state == TCPS_ESTABLISHED &&
8137 	    (tp->t_flags & TF_ECN_PERMIT)) {
8138 		/*
8139 		 * If the peer has ECN, mark data packets with ECN capable
8140 		 * transmission (ECT). Ignore pure ack packets,
8141 		 * retransmissions and window probes.
8142 		 */
8143 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
8144 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
8145 #ifdef INET6
8146 			if (isipv6)
8147 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
8148 			else
8149 #endif
8150 				ip->ip_tos |= IPTOS_ECN_ECT0;
8151 			TCPSTAT_INC(tcps_ecn_ect0);
8152 		}
8153 		/*
8154 		 * Reply with proper ECN notifications.
8155 		 */
8156 		if (tp->t_flags & TF_ECN_SND_CWR) {
8157 			flags |= TH_CWR;
8158 			tp->t_flags &= ~TF_ECN_SND_CWR;
8159 		}
8160 		if (tp->t_flags & TF_ECN_SND_ECE)
8161 			flags |= TH_ECE;
8162 	}
8163 	/*
8164 	 * If we are doing retransmissions, then snd_nxt will not reflect
8165 	 * the first unsent octet.  For ACK only packets, we do not want the
8166 	 * sequence number of the retransmitted packet, we want the sequence
8167 	 * number of the next unsent octet.  So, if there is no data (and no
8168 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
8169 	 * ti_seq.  But if we are in persist state, snd_max might reflect
8170 	 * one byte beyond the right edge of the window, so use snd_nxt in
8171 	 * that case, since we know we aren't doing a retransmission.
8172 	 * (retransmit and persist are mutually exclusive...)
8173 	 */
8174 	if (sack_rxmit == 0) {
8175 		if (len || (flags & (TH_SYN | TH_FIN)) ||
8176 		    rack->rc_in_persist) {
8177 			th->th_seq = htonl(tp->snd_nxt);
8178 			rack_seq = tp->snd_nxt;
8179 		} else if (flags & TH_RST) {
8180 			/*
8181 			 * For a Reset send the last cum ack in sequence
8182 			 * (this like any other choice may still generate a
8183 			 * challenge ack, if a ack-update packet is in
8184 			 * flight).
8185 			 */
8186 			th->th_seq = htonl(tp->snd_una);
8187 			rack_seq = tp->snd_una;
8188 		} else {
8189 			th->th_seq = htonl(tp->snd_max);
8190 			rack_seq = tp->snd_max;
8191 		}
8192 	} else {
8193 		th->th_seq = htonl(rsm->r_start);
8194 		rack_seq = rsm->r_start;
8195 	}
8196 	th->th_ack = htonl(tp->rcv_nxt);
8197 	if (optlen) {
8198 		bcopy(opt, th + 1, optlen);
8199 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
8200 	}
8201 	th->th_flags = flags;
8202 	/*
8203 	 * Calculate receive window.  Don't shrink window, but avoid silly
8204 	 * window syndrome.
8205 	 * If a RST segment is sent, advertise a window of zero.
8206 	 */
8207 	if (flags & TH_RST) {
8208 		recwin = 0;
8209 	} else {
8210 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
8211 		    recwin < (long)tp->t_maxseg)
8212 			recwin = 0;
8213 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
8214 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
8215 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
8216 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
8217 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
8218 	}
8219 
8220 	/*
8221 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
8222 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
8223 	 * handled in syncache.
8224 	 */
8225 	if (flags & TH_SYN)
8226 		th->th_win = htons((u_short)
8227 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
8228 	else
8229 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
8230 	/*
8231 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
8232 	 * window.  This may cause the remote transmitter to stall.  This
8233 	 * flag tells soreceive() to disable delayed acknowledgements when
8234 	 * draining the buffer.  This can occur if the receiver is
8235 	 * attempting to read more data than can be buffered prior to
8236 	 * transmitting on the connection.
8237 	 */
8238 	if (th->th_win == 0) {
8239 		tp->t_sndzerowin++;
8240 		tp->t_flags |= TF_RXWIN0SENT;
8241 	} else
8242 		tp->t_flags &= ~TF_RXWIN0SENT;
8243 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
8244 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
8245 		th->th_flags |= TH_URG;
8246 	} else
8247 		/*
8248 		 * If no urgent pointer to send, then we pull the urgent
8249 		 * pointer to the left edge of the send window so that it
8250 		 * doesn't drift into the send window on sequence number
8251 		 * wraparound.
8252 		 */
8253 		tp->snd_up = tp->snd_una;	/* drag it along */
8254 
8255 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
8256 	if (to.to_flags & TOF_SIGNATURE) {
8257 		/*
8258 		 * Calculate MD5 signature and put it into the place
8259 		 * determined before.
8260 		 * NOTE: since TCP options buffer doesn't point into
8261 		 * mbuf's data, calculate offset and use it.
8262 		 */
8263 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
8264 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
8265 			/*
8266 			 * Do not send segment if the calculation of MD5
8267 			 * digest has failed.
8268 			 */
8269 			goto out;
8270 		}
8271 	}
8272 #endif
8273 
8274 	/*
8275 	 * Put TCP length in extended header, and then checksum extended
8276 	 * header and data.
8277 	 */
8278 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
8279 #ifdef INET6
8280 	if (isipv6) {
8281 		/*
8282 		 * ip6_plen is not need to be filled now, and will be filled
8283 		 * in ip6_output.
8284 		 */
8285 		if (tp->t_port) {
8286 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
8287 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8288 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
8289 			th->th_sum = htons(0);
8290 		} else {
8291 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
8292 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8293 			th->th_sum = in6_cksum_pseudo(ip6,
8294 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
8295 			    0);
8296 		}
8297 	}
8298 #endif
8299 #if defined(INET6) && defined(INET)
8300 	else
8301 #endif
8302 #ifdef INET
8303 	{
8304 		if (tp->t_port) {
8305 			m->m_pkthdr.csum_flags = CSUM_UDP;
8306 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8307 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
8308 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
8309 			th->th_sum = htons(0);
8310 		} else {
8311 			m->m_pkthdr.csum_flags = CSUM_TCP;
8312 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8313 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
8314 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
8315 			    IPPROTO_TCP + len + optlen));
8316 		}
8317 		/* IP version must be set here for ipv4/ipv6 checking later */
8318 		KASSERT(ip->ip_v == IPVERSION,
8319 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
8320 	}
8321 #endif
8322 
8323 	/*
8324 	 * Enable TSO and specify the size of the segments. The TCP pseudo
8325 	 * header checksum is always provided. XXX: Fixme: This is currently
8326 	 * not the case for IPv6.
8327 	 */
8328 	if (tso) {
8329 		KASSERT(len > tp->t_maxseg - optlen,
8330 		    ("%s: len <= tso_segsz", __func__));
8331 		m->m_pkthdr.csum_flags |= CSUM_TSO;
8332 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
8333 	}
8334 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8335 	KASSERT(len + hdrlen + ipoptlen - ipsec_optlen == m_length(m, NULL),
8336 	    ("%s: mbuf chain shorter than expected: %d + %u + %u - %u != %u",
8337 	    __func__, len, hdrlen, ipoptlen, ipsec_optlen, m_length(m, NULL)));
8338 #else
8339 	KASSERT(len + hdrlen + ipoptlen == m_length(m, NULL),
8340 	    ("%s: mbuf chain shorter than expected: %d + %u + %u != %u",
8341 	    __func__, len, hdrlen, ipoptlen, m_length(m, NULL)));
8342 #endif
8343 
8344 #ifdef TCP_HHOOK
8345 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
8346 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
8347 #endif
8348 
8349 #ifdef TCPDEBUG
8350 	/*
8351 	 * Trace.
8352 	 */
8353 	if (so->so_options & SO_DEBUG) {
8354 		u_short save = 0;
8355 
8356 #ifdef INET6
8357 		if (!isipv6)
8358 #endif
8359 		{
8360 			save = ipov->ih_len;
8361 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
8362 			      * (th->th_off << 2) */ );
8363 		}
8364 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
8365 #ifdef INET6
8366 		if (!isipv6)
8367 #endif
8368 			ipov->ih_len = save;
8369 	}
8370 #endif				/* TCPDEBUG */
8371 
8372 	/* We're getting ready to send; log now. */
8373 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
8374 		union tcp_log_stackspecific log;
8375 
8376 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
8377 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
8378 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
8379 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
8380 		if (rsm || sack_rxmit) {
8381 			log.u_bbr.flex8 = 1;
8382 		} else {
8383 			log.u_bbr.flex8 = 0;
8384 		}
8385 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
8386 		    len, &log, false, NULL, NULL, 0, NULL);
8387 	} else
8388 		lgb = NULL;
8389 
8390 	/*
8391 	 * Fill in IP length and desired time to live and send to IP level.
8392 	 * There should be a better way to handle ttl and tos; we could keep
8393 	 * them in the template, but need a way to checksum without them.
8394 	 */
8395 	/*
8396 	 * m->m_pkthdr.len should have been set before cksum calcuration,
8397 	 * because in6_cksum() need it.
8398 	 */
8399 #ifdef INET6
8400 	if (isipv6) {
8401 		/*
8402 		 * we separately set hoplimit for every segment, since the
8403 		 * user might want to change the value via setsockopt. Also,
8404 		 * desired default hop limit might be changed via Neighbor
8405 		 * Discovery.
8406 		 */
8407 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
8408 
8409 		/*
8410 		 * Set the packet size here for the benefit of DTrace
8411 		 * probes. ip6_output() will set it properly; it's supposed
8412 		 * to include the option header lengths as well.
8413 		 */
8414 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
8415 
8416 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
8417 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8418 		else
8419 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8420 
8421 		if (tp->t_state == TCPS_SYN_SENT)
8422 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
8423 
8424 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
8425 		/* TODO: IPv6 IP6TOS_ECT bit on */
8426 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
8427 		    &inp->inp_route6,
8428 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
8429 		    NULL, NULL, inp);
8430 
8431 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
8432 			mtu = inp->inp_route6.ro_rt->rt_mtu;
8433 	}
8434 #endif				/* INET6 */
8435 #if defined(INET) && defined(INET6)
8436 	else
8437 #endif
8438 #ifdef INET
8439 	{
8440 		ip->ip_len = htons(m->m_pkthdr.len);
8441 #ifdef INET6
8442 		if (inp->inp_vflag & INP_IPV6PROTO)
8443 			ip->ip_ttl = in6_selecthlim(inp, NULL);
8444 #endif				/* INET6 */
8445 		/*
8446 		 * If we do path MTU discovery, then we set DF on every
8447 		 * packet. This might not be the best thing to do according
8448 		 * to RFC3390 Section 2. However the tcp hostcache migitates
8449 		 * the problem so it affects only the first tcp connection
8450 		 * with a host.
8451 		 *
8452 		 * NB: Don't set DF on small MTU/MSS to have a safe
8453 		 * fallback.
8454 		 */
8455 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
8456 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8457 			if (tp->t_port == 0 || len < V_tcp_minmss) {
8458 				ip->ip_off |= htons(IP_DF);
8459 			}
8460 		} else {
8461 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8462 		}
8463 
8464 		if (tp->t_state == TCPS_SYN_SENT)
8465 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
8466 
8467 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
8468 
8469 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
8470 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
8471 		    inp);
8472 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
8473 			mtu = inp->inp_route.ro_rt->rt_mtu;
8474 	}
8475 #endif				/* INET */
8476 
8477 out:
8478 	if (lgb) {
8479 		lgb->tlb_errno = error;
8480 		lgb = NULL;
8481 	}
8482 	/*
8483 	 * In transmit state, time the transmission and arrange for the
8484 	 * retransmit.  In persist state, just set snd_max.
8485 	 */
8486 	if (error == 0) {
8487 		if (len == 0)
8488 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
8489 		else if (len == 1) {
8490 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
8491 		} else if (len > 1) {
8492 			int idx;
8493 
8494 			idx = (len / tp->t_maxseg) + 3;
8495 			if (idx >= TCP_MSS_ACCT_ATIMER)
8496 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
8497 			else
8498 				counter_u64_add(rack_out_size[idx], 1);
8499 		}
8500 	}
8501 	if (sub_from_prr && (error == 0)) {
8502 		rack->r_ctl.rc_prr_sndcnt -= len;
8503 	}
8504 	sub_from_prr = 0;
8505 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
8506 	    pass, rsm);
8507 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
8508 	    (rack->rc_in_persist == 0)) {
8509 		tcp_seq startseq = tp->snd_nxt;
8510 
8511 		/*
8512 		 * Advance snd_nxt over sequence space of this segment.
8513 		 */
8514 		if (error)
8515 			/* We don't log or do anything with errors */
8516 			goto timer;
8517 
8518 		if (flags & (TH_SYN | TH_FIN)) {
8519 			if (flags & TH_SYN)
8520 				tp->snd_nxt++;
8521 			if (flags & TH_FIN) {
8522 				tp->snd_nxt++;
8523 				tp->t_flags |= TF_SENTFIN;
8524 			}
8525 		}
8526 		/* In the ENOBUFS case we do *not* update snd_max */
8527 		if (sack_rxmit)
8528 			goto timer;
8529 
8530 		tp->snd_nxt += len;
8531 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
8532 			if (tp->snd_una == tp->snd_max) {
8533 				/*
8534 				 * Update the time we just added data since
8535 				 * none was outstanding.
8536 				 */
8537 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8538 				tp->t_acktime = ticks;
8539 			}
8540 			tp->snd_max = tp->snd_nxt;
8541 			/*
8542 			 * Time this transmission if not a retransmission and
8543 			 * not currently timing anything.
8544 			 * This is only relevant in case of switching back to
8545 			 * the base stack.
8546 			 */
8547 			if (tp->t_rtttime == 0) {
8548 				tp->t_rtttime = ticks;
8549 				tp->t_rtseq = startseq;
8550 				TCPSTAT_INC(tcps_segstimed);
8551 			}
8552 #ifdef NETFLIX_STATS
8553 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
8554 				tp->t_flags |= TF_GPUTINPROG;
8555 				tp->gput_seq = startseq;
8556 				tp->gput_ack = startseq +
8557 				    ulmin(sbavail(sb) - sb_offset, sendwin);
8558 				tp->gput_ts = tcp_ts_getticks();
8559 			}
8560 #endif
8561 		}
8562 		/*
8563 		 * Set retransmit timer if not currently set, and not doing
8564 		 * a pure ack or a keep-alive probe. Initial value for
8565 		 * retransmit timer is smoothed round-trip time + 2 *
8566 		 * round-trip time variance. Initialize shift counter which
8567 		 * is used for backoff of retransmit time.
8568 		 */
8569 timer:
8570 		if ((tp->snd_wnd == 0) &&
8571 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
8572 			/*
8573 			 * If the persists timer was set above (right before
8574 			 * the goto send), and still needs to be on. Lets
8575 			 * make sure all is canceled. If the persist timer
8576 			 * is not running, we want to get it up.
8577 			 */
8578 			if (rack->rc_in_persist == 0) {
8579 				rack_enter_persist(tp, rack, cts);
8580 			}
8581 		}
8582 	} else {
8583 		/*
8584 		 * Persist case, update snd_max but since we are in persist
8585 		 * mode (no window) we do not update snd_nxt.
8586 		 */
8587 		int32_t xlen = len;
8588 
8589 		if (error)
8590 			goto nomore;
8591 
8592 		if (flags & TH_SYN)
8593 			++xlen;
8594 		if (flags & TH_FIN) {
8595 			++xlen;
8596 			tp->t_flags |= TF_SENTFIN;
8597 		}
8598 		/* In the ENOBUFS case we do *not* update snd_max */
8599 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
8600 			if (tp->snd_una == tp->snd_max) {
8601 				/*
8602 				 * Update the time we just added data since
8603 				 * none was outstanding.
8604 				 */
8605 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8606 				tp->t_acktime = ticks;
8607 			}
8608 			tp->snd_max = tp->snd_nxt + len;
8609 		}
8610 	}
8611 nomore:
8612 	if (error) {
8613 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
8614 		/*
8615 		 * Failures do not advance the seq counter above. For the
8616 		 * case of ENOBUFS we will fall out and retry in 1ms with
8617 		 * the hpts. Everything else will just have to retransmit
8618 		 * with the timer.
8619 		 *
8620 		 * In any case, we do not want to loop around for another
8621 		 * send without a good reason.
8622 		 */
8623 		sendalot = 0;
8624 		switch (error) {
8625 		case EPERM:
8626 			tp->t_flags &= ~TF_FORCEDATA;
8627 			tp->t_softerror = error;
8628 			return (error);
8629 		case ENOBUFS:
8630 			if (slot == 0) {
8631 				/*
8632 				 * Pace us right away to retry in a some
8633 				 * time
8634 				 */
8635 				slot = 1 + rack->rc_enobuf;
8636 				if (rack->rc_enobuf < 255)
8637 					rack->rc_enobuf++;
8638 				if (slot > (rack->rc_rack_rtt / 2)) {
8639 					slot = rack->rc_rack_rtt / 2;
8640 				}
8641 				if (slot < 10)
8642 					slot = 10;
8643 			}
8644 			counter_u64_add(rack_saw_enobuf, 1);
8645 			error = 0;
8646 			goto enobufs;
8647 		case EMSGSIZE:
8648 			/*
8649 			 * For some reason the interface we used initially
8650 			 * to send segments changed to another or lowered
8651 			 * its MTU. If TSO was active we either got an
8652 			 * interface without TSO capabilits or TSO was
8653 			 * turned off. If we obtained mtu from ip_output()
8654 			 * then update it and try again.
8655 			 */
8656 			if (tso)
8657 				tp->t_flags &= ~TF_TSO;
8658 			if (mtu != 0) {
8659 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
8660 				goto again;
8661 			}
8662 			slot = 10;
8663 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8664 			tp->t_flags &= ~TF_FORCEDATA;
8665 			return (error);
8666 		case ENETUNREACH:
8667 			counter_u64_add(rack_saw_enetunreach, 1);
8668 		case EHOSTDOWN:
8669 		case EHOSTUNREACH:
8670 		case ENETDOWN:
8671 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
8672 				tp->t_softerror = error;
8673 			}
8674 			/* FALLTHROUGH */
8675 		default:
8676 			slot = 10;
8677 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8678 			tp->t_flags &= ~TF_FORCEDATA;
8679 			return (error);
8680 		}
8681 	} else {
8682 		rack->rc_enobuf = 0;
8683 	}
8684 	TCPSTAT_INC(tcps_sndtotal);
8685 
8686 	/*
8687 	 * Data sent (as far as we can tell). If this advertises a larger
8688 	 * window than any other segment, then remember the size of the
8689 	 * advertised window. Any pending ACK has now been sent.
8690 	 */
8691 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
8692 		tp->rcv_adv = tp->rcv_nxt + recwin;
8693 	tp->last_ack_sent = tp->rcv_nxt;
8694 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
8695 enobufs:
8696 	rack->r_tlp_running = 0;
8697 	if ((flags & TH_RST) || (would_have_fin == 1)) {
8698 		/*
8699 		 * We don't send again after a RST. We also do *not* send
8700 		 * again if we would have had a find, but now have
8701 		 * outstanding data.
8702 		 */
8703 		slot = 0;
8704 		sendalot = 0;
8705 	}
8706 	if (slot) {
8707 		/* set the rack tcb into the slot N */
8708 		counter_u64_add(rack_paced_segments, 1);
8709 	} else if (sendalot) {
8710 		if (len)
8711 			counter_u64_add(rack_unpaced_segments, 1);
8712 		sack_rxmit = 0;
8713 		tp->t_flags &= ~TF_FORCEDATA;
8714 		goto again;
8715 	} else if (len) {
8716 		counter_u64_add(rack_unpaced_segments, 1);
8717 	}
8718 	tp->t_flags &= ~TF_FORCEDATA;
8719 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
8720 	return (error);
8721 }
8722 
8723 /*
8724  * rack_ctloutput() must drop the inpcb lock before performing copyin on
8725  * socket option arguments.  When it re-acquires the lock after the copy, it
8726  * has to revalidate that the connection is still valid for the socket
8727  * option.
8728  */
8729 static int
8730 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
8731     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8732 {
8733 	int32_t error = 0, optval;
8734 
8735 	switch (sopt->sopt_name) {
8736 	case TCP_RACK_PROP_RATE:
8737 	case TCP_RACK_PROP:
8738 	case TCP_RACK_TLP_REDUCE:
8739 	case TCP_RACK_EARLY_RECOV:
8740 	case TCP_RACK_PACE_ALWAYS:
8741 	case TCP_DELACK:
8742 	case TCP_RACK_PACE_REDUCE:
8743 	case TCP_RACK_PACE_MAX_SEG:
8744 	case TCP_RACK_PRR_SENDALOT:
8745 	case TCP_RACK_MIN_TO:
8746 	case TCP_RACK_EARLY_SEG:
8747 	case TCP_RACK_REORD_THRESH:
8748 	case TCP_RACK_REORD_FADE:
8749 	case TCP_RACK_TLP_THRESH:
8750 	case TCP_RACK_PKT_DELAY:
8751 	case TCP_RACK_TLP_USE:
8752 	case TCP_RACK_TLP_INC_VAR:
8753 	case TCP_RACK_IDLE_REDUCE_HIGH:
8754 	case TCP_RACK_MIN_PACE:
8755 	case TCP_RACK_MIN_PACE_SEG:
8756 	case TCP_BBR_RACK_RTT_USE:
8757 	case TCP_DATA_AFTER_CLOSE:
8758 		break;
8759 	default:
8760 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8761 		break;
8762 	}
8763 	INP_WUNLOCK(inp);
8764 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
8765 	if (error)
8766 		return (error);
8767 	INP_WLOCK(inp);
8768 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
8769 		INP_WUNLOCK(inp);
8770 		return (ECONNRESET);
8771 	}
8772 	tp = intotcpcb(inp);
8773 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8774 	switch (sopt->sopt_name) {
8775 	case TCP_RACK_PROP_RATE:
8776 		if ((optval <= 0) || (optval >= 100)) {
8777 			error = EINVAL;
8778 			break;
8779 		}
8780 		RACK_OPTS_INC(tcp_rack_prop_rate);
8781 		rack->r_ctl.rc_prop_rate = optval;
8782 		break;
8783 	case TCP_RACK_TLP_USE:
8784 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
8785 			error = EINVAL;
8786 			break;
8787 		}
8788 		RACK_OPTS_INC(tcp_tlp_use);
8789 		rack->rack_tlp_threshold_use = optval;
8790 		break;
8791 	case TCP_RACK_PROP:
8792 		/* RACK proportional rate reduction (bool) */
8793 		RACK_OPTS_INC(tcp_rack_prop);
8794 		rack->r_ctl.rc_prop_reduce = optval;
8795 		break;
8796 	case TCP_RACK_TLP_REDUCE:
8797 		/* RACK TLP cwnd reduction (bool) */
8798 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
8799 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
8800 		break;
8801 	case TCP_RACK_EARLY_RECOV:
8802 		/* Should recovery happen early (bool) */
8803 		RACK_OPTS_INC(tcp_rack_early_recov);
8804 		rack->r_ctl.rc_early_recovery = optval;
8805 		break;
8806 	case TCP_RACK_PACE_ALWAYS:
8807 		/* Use the always pace method (bool)  */
8808 		RACK_OPTS_INC(tcp_rack_pace_always);
8809 		if (optval > 0)
8810 			rack->rc_always_pace = 1;
8811 		else
8812 			rack->rc_always_pace = 0;
8813 		break;
8814 	case TCP_RACK_PACE_REDUCE:
8815 		/* RACK Hptsi reduction factor (divisor) */
8816 		RACK_OPTS_INC(tcp_rack_pace_reduce);
8817 		if (optval)
8818 			/* Must be non-zero */
8819 			rack->rc_pace_reduce = optval;
8820 		else
8821 			error = EINVAL;
8822 		break;
8823 	case TCP_RACK_PACE_MAX_SEG:
8824 		/* Max segments in a pace */
8825 		RACK_OPTS_INC(tcp_rack_max_seg);
8826 		rack->rc_pace_max_segs = optval;
8827 		break;
8828 	case TCP_RACK_PRR_SENDALOT:
8829 		/* Allow PRR to send more than one seg */
8830 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
8831 		rack->r_ctl.rc_prr_sendalot = optval;
8832 		break;
8833 	case TCP_RACK_MIN_TO:
8834 		/* Minimum time between rack t-o's in ms */
8835 		RACK_OPTS_INC(tcp_rack_min_to);
8836 		rack->r_ctl.rc_min_to = optval;
8837 		break;
8838 	case TCP_RACK_EARLY_SEG:
8839 		/* If early recovery max segments */
8840 		RACK_OPTS_INC(tcp_rack_early_seg);
8841 		rack->r_ctl.rc_early_recovery_segs = optval;
8842 		break;
8843 	case TCP_RACK_REORD_THRESH:
8844 		/* RACK reorder threshold (shift amount) */
8845 		RACK_OPTS_INC(tcp_rack_reord_thresh);
8846 		if ((optval > 0) && (optval < 31))
8847 			rack->r_ctl.rc_reorder_shift = optval;
8848 		else
8849 			error = EINVAL;
8850 		break;
8851 	case TCP_RACK_REORD_FADE:
8852 		/* Does reordering fade after ms time */
8853 		RACK_OPTS_INC(tcp_rack_reord_fade);
8854 		rack->r_ctl.rc_reorder_fade = optval;
8855 		break;
8856 	case TCP_RACK_TLP_THRESH:
8857 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
8858 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
8859 		if (optval)
8860 			rack->r_ctl.rc_tlp_threshold = optval;
8861 		else
8862 			error = EINVAL;
8863 		break;
8864 	case TCP_RACK_PKT_DELAY:
8865 		/* RACK added ms i.e. rack-rtt + reord + N */
8866 		RACK_OPTS_INC(tcp_rack_pkt_delay);
8867 		rack->r_ctl.rc_pkt_delay = optval;
8868 		break;
8869 	case TCP_RACK_TLP_INC_VAR:
8870 		/* Does TLP include rtt variance in t-o */
8871 		RACK_OPTS_INC(tcp_rack_tlp_inc_var);
8872 		rack->r_ctl.rc_prr_inc_var = optval;
8873 		break;
8874 	case TCP_RACK_IDLE_REDUCE_HIGH:
8875 		RACK_OPTS_INC(tcp_rack_idle_reduce_high);
8876 		if (optval)
8877 			rack->r_idle_reduce_largest = 1;
8878 		else
8879 			rack->r_idle_reduce_largest = 0;
8880 		break;
8881 	case TCP_DELACK:
8882 		if (optval == 0)
8883 			tp->t_delayed_ack = 0;
8884 		else
8885 			tp->t_delayed_ack = 1;
8886 		if (tp->t_flags & TF_DELACK) {
8887 			tp->t_flags &= ~TF_DELACK;
8888 			tp->t_flags |= TF_ACKNOW;
8889 			rack_output(tp);
8890 		}
8891 		break;
8892 	case TCP_RACK_MIN_PACE:
8893 		RACK_OPTS_INC(tcp_rack_min_pace);
8894 		if (optval > 3)
8895 			rack->r_enforce_min_pace = 3;
8896 		else
8897 			rack->r_enforce_min_pace = optval;
8898 		break;
8899 	case TCP_RACK_MIN_PACE_SEG:
8900 		RACK_OPTS_INC(tcp_rack_min_pace_seg);
8901 		if (optval >= 16)
8902 			rack->r_min_pace_seg_thresh = 15;
8903 		else
8904 			rack->r_min_pace_seg_thresh = optval;
8905 		break;
8906 	case TCP_BBR_RACK_RTT_USE:
8907 		if ((optval != USE_RTT_HIGH) &&
8908 		    (optval != USE_RTT_LOW) &&
8909 		    (optval != USE_RTT_AVG))
8910 			error = EINVAL;
8911 		else
8912 			rack->r_ctl.rc_rate_sample_method = optval;
8913 		break;
8914 	case TCP_DATA_AFTER_CLOSE:
8915 		if (optval)
8916 			rack->rc_allow_data_af_clo = 1;
8917 		else
8918 			rack->rc_allow_data_af_clo = 0;
8919 		break;
8920 	default:
8921 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8922 		break;
8923 	}
8924 #ifdef NETFLIX_STATS
8925 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
8926 #endif
8927 	INP_WUNLOCK(inp);
8928 	return (error);
8929 }
8930 
8931 static int
8932 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
8933     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8934 {
8935 	int32_t error, optval;
8936 
8937 	/*
8938 	 * Because all our options are either boolean or an int, we can just
8939 	 * pull everything into optval and then unlock and copy. If we ever
8940 	 * add a option that is not a int, then this will have quite an
8941 	 * impact to this routine.
8942 	 */
8943 	switch (sopt->sopt_name) {
8944 	case TCP_RACK_PROP_RATE:
8945 		optval = rack->r_ctl.rc_prop_rate;
8946 		break;
8947 	case TCP_RACK_PROP:
8948 		/* RACK proportional rate reduction (bool) */
8949 		optval = rack->r_ctl.rc_prop_reduce;
8950 		break;
8951 	case TCP_RACK_TLP_REDUCE:
8952 		/* RACK TLP cwnd reduction (bool) */
8953 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
8954 		break;
8955 	case TCP_RACK_EARLY_RECOV:
8956 		/* Should recovery happen early (bool) */
8957 		optval = rack->r_ctl.rc_early_recovery;
8958 		break;
8959 	case TCP_RACK_PACE_REDUCE:
8960 		/* RACK Hptsi reduction factor (divisor) */
8961 		optval = rack->rc_pace_reduce;
8962 		break;
8963 	case TCP_RACK_PACE_MAX_SEG:
8964 		/* Max segments in a pace */
8965 		optval = rack->rc_pace_max_segs;
8966 		break;
8967 	case TCP_RACK_PACE_ALWAYS:
8968 		/* Use the always pace method */
8969 		optval = rack->rc_always_pace;
8970 		break;
8971 	case TCP_RACK_PRR_SENDALOT:
8972 		/* Allow PRR to send more than one seg */
8973 		optval = rack->r_ctl.rc_prr_sendalot;
8974 		break;
8975 	case TCP_RACK_MIN_TO:
8976 		/* Minimum time between rack t-o's in ms */
8977 		optval = rack->r_ctl.rc_min_to;
8978 		break;
8979 	case TCP_RACK_EARLY_SEG:
8980 		/* If early recovery max segments */
8981 		optval = rack->r_ctl.rc_early_recovery_segs;
8982 		break;
8983 	case TCP_RACK_REORD_THRESH:
8984 		/* RACK reorder threshold (shift amount) */
8985 		optval = rack->r_ctl.rc_reorder_shift;
8986 		break;
8987 	case TCP_RACK_REORD_FADE:
8988 		/* Does reordering fade after ms time */
8989 		optval = rack->r_ctl.rc_reorder_fade;
8990 		break;
8991 	case TCP_RACK_TLP_THRESH:
8992 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
8993 		optval = rack->r_ctl.rc_tlp_threshold;
8994 		break;
8995 	case TCP_RACK_PKT_DELAY:
8996 		/* RACK added ms i.e. rack-rtt + reord + N */
8997 		optval = rack->r_ctl.rc_pkt_delay;
8998 		break;
8999 	case TCP_RACK_TLP_USE:
9000 		optval = rack->rack_tlp_threshold_use;
9001 		break;
9002 	case TCP_RACK_TLP_INC_VAR:
9003 		/* Does TLP include rtt variance in t-o */
9004 		optval = rack->r_ctl.rc_prr_inc_var;
9005 		break;
9006 	case TCP_RACK_IDLE_REDUCE_HIGH:
9007 		optval = rack->r_idle_reduce_largest;
9008 		break;
9009 	case TCP_RACK_MIN_PACE:
9010 		optval = rack->r_enforce_min_pace;
9011 		break;
9012 	case TCP_RACK_MIN_PACE_SEG:
9013 		optval = rack->r_min_pace_seg_thresh;
9014 		break;
9015 	case TCP_BBR_RACK_RTT_USE:
9016 		optval = rack->r_ctl.rc_rate_sample_method;
9017 		break;
9018 	case TCP_DELACK:
9019 		optval = tp->t_delayed_ack;
9020 		break;
9021 	case TCP_DATA_AFTER_CLOSE:
9022 		optval = rack->rc_allow_data_af_clo;
9023 		break;
9024 	default:
9025 		return (tcp_default_ctloutput(so, sopt, inp, tp));
9026 		break;
9027 	}
9028 	INP_WUNLOCK(inp);
9029 	error = sooptcopyout(sopt, &optval, sizeof optval);
9030 	return (error);
9031 }
9032 
9033 static int
9034 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
9035 {
9036 	int32_t error = EINVAL;
9037 	struct tcp_rack *rack;
9038 
9039 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9040 	if (rack == NULL) {
9041 		/* Huh? */
9042 		goto out;
9043 	}
9044 	if (sopt->sopt_dir == SOPT_SET) {
9045 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
9046 	} else if (sopt->sopt_dir == SOPT_GET) {
9047 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
9048 	}
9049 out:
9050 	INP_WUNLOCK(inp);
9051 	return (error);
9052 }
9053 
9054 
9055 struct tcp_function_block __tcp_rack = {
9056 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
9057 	.tfb_tcp_output = rack_output,
9058 	.tfb_tcp_do_segment = rack_do_segment,
9059 	.tfb_tcp_hpts_do_segment = rack_hpts_do_segment,
9060 	.tfb_tcp_ctloutput = rack_ctloutput,
9061 	.tfb_tcp_fb_init = rack_init,
9062 	.tfb_tcp_fb_fini = rack_fini,
9063 	.tfb_tcp_timer_stop_all = rack_stopall,
9064 	.tfb_tcp_timer_activate = rack_timer_activate,
9065 	.tfb_tcp_timer_active = rack_timer_active,
9066 	.tfb_tcp_timer_stop = rack_timer_stop,
9067 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
9068 	.tfb_tcp_handoff_ok = rack_handoff_ok
9069 };
9070 
9071 static const char *rack_stack_names[] = {
9072 	__XSTRING(STACKNAME),
9073 #ifdef STACKALIAS
9074 	__XSTRING(STACKALIAS),
9075 #endif
9076 };
9077 
9078 static int
9079 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
9080 {
9081 	memset(mem, 0, size);
9082 	return (0);
9083 }
9084 
9085 static void
9086 rack_dtor(void *mem, int32_t size, void *arg)
9087 {
9088 
9089 }
9090 
9091 static bool rack_mod_inited = false;
9092 
9093 static int
9094 tcp_addrack(module_t mod, int32_t type, void *data)
9095 {
9096 	int32_t err = 0;
9097 	int num_stacks;
9098 
9099 	switch (type) {
9100 	case MOD_LOAD:
9101 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
9102 		    sizeof(struct rack_sendmap),
9103 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
9104 
9105 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
9106 		    sizeof(struct tcp_rack),
9107 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
9108 
9109 		sysctl_ctx_init(&rack_sysctl_ctx);
9110 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
9111 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
9112 		    OID_AUTO,
9113 		    __XSTRING(STACKNAME),
9114 		    CTLFLAG_RW, 0,
9115 		    "");
9116 		if (rack_sysctl_root == NULL) {
9117 			printf("Failed to add sysctl node\n");
9118 			err = EFAULT;
9119 			goto free_uma;
9120 		}
9121 		rack_init_sysctls();
9122 		num_stacks = nitems(rack_stack_names);
9123 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
9124 		    rack_stack_names, &num_stacks);
9125 		if (err) {
9126 			printf("Failed to register %s stack name for "
9127 			    "%s module\n", rack_stack_names[num_stacks],
9128 			    __XSTRING(MODNAME));
9129 			sysctl_ctx_free(&rack_sysctl_ctx);
9130 free_uma:
9131 			uma_zdestroy(rack_zone);
9132 			uma_zdestroy(rack_pcb_zone);
9133 			rack_counter_destroy();
9134 			printf("Failed to register rack module -- err:%d\n", err);
9135 			return (err);
9136 		}
9137 		rack_mod_inited = true;
9138 		break;
9139 	case MOD_QUIESCE:
9140 		err = deregister_tcp_functions(&__tcp_rack, true, false);
9141 		break;
9142 	case MOD_UNLOAD:
9143 		err = deregister_tcp_functions(&__tcp_rack, false, true);
9144 		if (err == EBUSY)
9145 			break;
9146 		if (rack_mod_inited) {
9147 			uma_zdestroy(rack_zone);
9148 			uma_zdestroy(rack_pcb_zone);
9149 			sysctl_ctx_free(&rack_sysctl_ctx);
9150 			rack_counter_destroy();
9151 			rack_mod_inited = false;
9152 		}
9153 		err = 0;
9154 		break;
9155 	default:
9156 		return (EOPNOTSUPP);
9157 	}
9158 	return (err);
9159 }
9160 
9161 static moduledata_t tcp_rack = {
9162 	.name = __XSTRING(MODNAME),
9163 	.evhand = tcp_addrack,
9164 	.priv = 0
9165 };
9166 
9167 MODULE_VERSION(MODNAME, 1);
9168 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
9169 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
9170