1 /*- 2 * Copyright (c) 2016-2020 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 #include "opt_inet.h" 29 #include "opt_inet6.h" 30 #include "opt_ipsec.h" 31 #include "opt_ratelimit.h" 32 #include "opt_kern_tls.h" 33 #if defined(INET) || defined(INET6) 34 #include <sys/param.h> 35 #include <sys/arb.h> 36 #include <sys/module.h> 37 #include <sys/kernel.h> 38 #ifdef TCP_HHOOK 39 #include <sys/hhook.h> 40 #endif 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/mbuf.h> 46 #include <sys/proc.h> /* for proc0 declaration */ 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #ifdef STATS 52 #include <sys/qmath.h> 53 #include <sys/tree.h> 54 #include <sys/stats.h> /* Must come after qmath.h and tree.h */ 55 #else 56 #include <sys/tree.h> 57 #endif 58 #include <sys/refcount.h> 59 #include <sys/queue.h> 60 #include <sys/tim_filter.h> 61 #include <sys/smp.h> 62 #include <sys/kthread.h> 63 #include <sys/kern_prefetch.h> 64 #include <sys/protosw.h> 65 #ifdef TCP_ACCOUNTING 66 #include <sys/sched.h> 67 #include <machine/cpu.h> 68 #endif 69 #include <vm/uma.h> 70 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #define TCPSTATES /* for logging */ 76 77 #include <netinet/in.h> 78 #include <netinet/in_kdtrace.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 82 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 83 #include <netinet/ip_var.h> 84 #include <netinet/ip6.h> 85 #include <netinet6/in6_pcb.h> 86 #include <netinet6/ip6_var.h> 87 #include <netinet/tcp.h> 88 #define TCPOUTFLAGS 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/tcp_log_buf.h> 94 #include <netinet/tcp_syncache.h> 95 #include <netinet/tcp_hpts.h> 96 #include <netinet/tcp_ratelimit.h> 97 #include <netinet/tcp_accounting.h> 98 #include <netinet/tcpip.h> 99 #include <netinet/cc/cc.h> 100 #include <netinet/cc/cc_newreno.h> 101 #include <netinet/tcp_fastopen.h> 102 #include <netinet/tcp_lro.h> 103 #ifdef NETFLIX_SHARED_CWND 104 #include <netinet/tcp_shared_cwnd.h> 105 #endif 106 #ifdef TCP_OFFLOAD 107 #include <netinet/tcp_offload.h> 108 #endif 109 #ifdef INET6 110 #include <netinet6/tcp6_var.h> 111 #endif 112 #include <netinet/tcp_ecn.h> 113 114 #include <netipsec/ipsec_support.h> 115 116 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 117 #include <netipsec/ipsec.h> 118 #include <netipsec/ipsec6.h> 119 #endif /* IPSEC */ 120 121 #include <netinet/udp.h> 122 #include <netinet/udp_var.h> 123 #include <machine/in_cksum.h> 124 125 #ifdef MAC 126 #include <security/mac/mac_framework.h> 127 #endif 128 #include "sack_filter.h" 129 #include "tcp_rack.h" 130 #include "tailq_hash.h" 131 #include "rack_bbr_common.h" 132 133 uma_zone_t rack_zone; 134 uma_zone_t rack_pcb_zone; 135 136 #ifndef TICKS2SBT 137 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) 138 #endif 139 140 VNET_DECLARE(uint32_t, newreno_beta); 141 VNET_DECLARE(uint32_t, newreno_beta_ecn); 142 #define V_newreno_beta VNET(newreno_beta) 143 #define V_newreno_beta_ecn VNET(newreno_beta_ecn) 144 145 146 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block"); 147 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options"); 148 149 struct sysctl_ctx_list rack_sysctl_ctx; 150 struct sysctl_oid *rack_sysctl_root; 151 152 #define CUM_ACKED 1 153 #define SACKED 2 154 155 /* 156 * The RACK module incorporates a number of 157 * TCP ideas that have been put out into the IETF 158 * over the last few years: 159 * - Matt Mathis's Rate Halving which slowly drops 160 * the congestion window so that the ack clock can 161 * be maintained during a recovery. 162 * - Yuchung Cheng's RACK TCP (for which its named) that 163 * will stop us using the number of dup acks and instead 164 * use time as the gage of when we retransmit. 165 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft 166 * of Dukkipati et.al. 167 * RACK depends on SACK, so if an endpoint arrives that 168 * cannot do SACK the state machine below will shuttle the 169 * connection back to using the "default" TCP stack that is 170 * in FreeBSD. 171 * 172 * To implement RACK the original TCP stack was first decomposed 173 * into a functional state machine with individual states 174 * for each of the possible TCP connection states. The do_segment 175 * functions role in life is to mandate the connection supports SACK 176 * initially and then assure that the RACK state matches the conenction 177 * state before calling the states do_segment function. Each 178 * state is simplified due to the fact that the original do_segment 179 * has been decomposed and we *know* what state we are in (no 180 * switches on the state) and all tests for SACK are gone. This 181 * greatly simplifies what each state does. 182 * 183 * TCP output is also over-written with a new version since it 184 * must maintain the new rack scoreboard. 185 * 186 */ 187 static int32_t rack_tlp_thresh = 1; 188 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ 189 static int32_t rack_tlp_use_greater = 1; 190 static int32_t rack_reorder_thresh = 2; 191 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000 192 * - 60 seconds */ 193 static uint32_t rack_clamp_ss_upper = 110; 194 static uint32_t rack_clamp_ca_upper = 105; 195 static uint32_t rack_rxt_min_rnds = 10; /* Min rounds if drastic rxt clamp is in place */ 196 static uint32_t rack_unclamp_round_thresh = 100; /* number of perfect rounds before we unclamp */ 197 static uint32_t rack_unclamp_rxt_thresh = 5; /* .5% and under */ 198 static uint64_t rack_rxt_clamp_thresh = 0; /* Do we do the rxt clamp thing */ 199 static int32_t rack_dnd_default = 0; /* For rr_conf = 3, what is the default for dnd */ 200 static int32_t rack_rxt_controls = 0; 201 static int32_t rack_fill_cw_state = 0; 202 static uint8_t rack_req_measurements = 1; 203 /* Attack threshold detections */ 204 static uint32_t rack_highest_sack_thresh_seen = 0; 205 static uint32_t rack_highest_move_thresh_seen = 0; 206 static uint32_t rack_merge_out_sacks_on_attack = 0; 207 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */ 208 static int32_t rack_hw_pace_extra_slots = 0; /* 2 extra MSS time betweens */ 209 static int32_t rack_hw_rate_caps = 0; /* 1; */ 210 static int32_t rack_hw_rate_cap_per = 0; /* 0 -- off */ 211 static int32_t rack_hw_rate_min = 0; /* 1500000;*/ 212 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */ 213 static int32_t rack_hw_up_only = 0; 214 static int32_t rack_stats_gets_ms_rtt = 1; 215 static int32_t rack_prr_addbackmax = 2; 216 static int32_t rack_do_hystart = 0; 217 static int32_t rack_apply_rtt_with_reduced_conf = 0; 218 static int32_t rack_hibeta_setting = 0; 219 static int32_t rack_default_pacing_divisor = 250; 220 static int32_t rack_uses_full_dgp_in_rec = 1; 221 static uint16_t rack_pacing_min_seg = 0; 222 223 224 static uint32_t sad_seg_size_per = 800; /* 80.0 % */ 225 static int32_t rack_pkt_delay = 1000; 226 static int32_t rack_send_a_lot_in_prr = 1; 227 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */ 228 static int32_t rack_verbose_logging = 0; 229 static int32_t rack_ignore_data_after_close = 1; 230 static int32_t rack_enable_shared_cwnd = 1; 231 static int32_t rack_use_cmp_acks = 1; 232 static int32_t rack_use_fsb = 1; 233 static int32_t rack_use_rfo = 1; 234 static int32_t rack_use_rsm_rfo = 1; 235 static int32_t rack_max_abc_post_recovery = 2; 236 static int32_t rack_client_low_buf = 0; 237 static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */ 238 static int32_t rack_bw_multipler = 2; /* Limit on fill cw's jump up to be this x gp_est */ 239 #ifdef TCP_ACCOUNTING 240 static int32_t rack_tcp_accounting = 0; 241 #endif 242 static int32_t rack_limits_scwnd = 1; 243 static int32_t rack_enable_mqueue_for_nonpaced = 0; 244 static int32_t rack_hybrid_allow_set_maxseg = 0; 245 static int32_t rack_disable_prr = 0; 246 static int32_t use_rack_rr = 1; 247 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ 248 static int32_t rack_persist_min = 250000; /* 250usec */ 249 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */ 250 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */ 251 static int32_t rack_default_init_window = 0; /* Use system default */ 252 static int32_t rack_limit_time_with_srtt = 0; 253 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */ 254 static int32_t rack_enobuf_hw_boost_mult = 0; /* How many times the hw rate we boost slot using time_between */ 255 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */ 256 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */ 257 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */ 258 static int32_t rack_hw_check_queue = 0; /* Do we always pre-check queue depth of a hw queue */ 259 static int32_t rack_full_buffer_discount = 10; 260 /* 261 * Currently regular tcp has a rto_min of 30ms 262 * the backoff goes 12 times so that ends up 263 * being a total of 122.850 seconds before a 264 * connection is killed. 265 */ 266 static uint32_t rack_def_data_window = 20; 267 static uint32_t rack_goal_bdp = 2; 268 static uint32_t rack_min_srtts = 1; 269 static uint32_t rack_min_measure_usec = 0; 270 static int32_t rack_tlp_min = 10000; /* 10ms */ 271 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */ 272 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */ 273 static const int32_t rack_free_cache = 2; 274 static int32_t rack_hptsi_segments = 40; 275 static int32_t rack_rate_sample_method = USE_RTT_LOW; 276 static int32_t rack_pace_every_seg = 0; 277 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */ 278 static int32_t rack_slot_reduction = 4; 279 static int32_t rack_wma_divisor = 8; /* For WMA calculation */ 280 static int32_t rack_cwnd_block_ends_measure = 0; 281 static int32_t rack_rwnd_block_ends_measure = 0; 282 static int32_t rack_def_profile = 0; 283 284 static int32_t rack_lower_cwnd_at_tlp = 0; 285 static int32_t rack_limited_retran = 0; 286 static int32_t rack_always_send_oldest = 0; 287 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; 288 289 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ 290 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ 291 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ 292 293 /* Probertt */ 294 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ 295 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ 296 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ 297 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ 298 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ 299 300 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ 301 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ 302 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ 303 static uint32_t rack_probertt_use_min_rtt_exit = 0; 304 static uint32_t rack_probe_rtt_sets_cwnd = 0; 305 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ 306 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */ 307 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ 308 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ 309 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */ 310 static uint32_t rack_probertt_filter_life = 10000000; 311 static uint32_t rack_probertt_lower_within = 10; 312 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */ 313 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ 314 static int32_t rack_probertt_clear_is = 1; 315 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ 316 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ 317 318 /* Part of pacing */ 319 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ 320 321 /* Timely information: 322 * 323 * Here we have various control parameters on how 324 * timely may change the multiplier. rack_gain_p5_ub 325 * is associated with timely but not directly influencing 326 * the rate decision like the other variables. It controls 327 * the way fill-cw interacts with timely and caps how much 328 * timely can boost the fill-cw b/w. 329 * 330 * The other values are various boost/shrink numbers as well 331 * as potential caps when adjustments are made to the timely 332 * gain (returned by rack_get_output_gain(). Remember too that 333 * the gain returned can be overriden by other factors such as 334 * probeRTT as well as fixed-rate-pacing. 335 */ 336 static int32_t rack_gain_p5_ub = 250; 337 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ 338 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ 339 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ 340 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ 341 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ 342 static int32_t rack_gp_decrease_per = 80; /* Beta value of timely decrease (.8) = 80 */ 343 static int32_t rack_gp_increase_per = 2; /* 2% increase in multiplier */ 344 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ 345 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ 346 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ 347 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ 348 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ 349 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ 350 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ 351 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ 352 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ 353 static int32_t rack_use_max_for_nobackoff = 0; 354 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ 355 static int32_t rack_timely_no_stopping = 0; 356 static int32_t rack_down_raise_thresh = 100; 357 static int32_t rack_req_segs = 1; 358 static uint64_t rack_bw_rate_cap = 0; 359 360 361 /* Rack specific counters */ 362 counter_u64_t rack_saw_enobuf; 363 counter_u64_t rack_saw_enobuf_hw; 364 counter_u64_t rack_saw_enetunreach; 365 counter_u64_t rack_persists_sends; 366 counter_u64_t rack_persists_acks; 367 counter_u64_t rack_persists_loss; 368 counter_u64_t rack_persists_lost_ends; 369 counter_u64_t rack_total_bytes; 370 #ifdef INVARIANTS 371 counter_u64_t rack_adjust_map_bw; 372 #endif 373 /* Tail loss probe counters */ 374 counter_u64_t rack_tlp_tot; 375 counter_u64_t rack_tlp_newdata; 376 counter_u64_t rack_tlp_retran; 377 counter_u64_t rack_tlp_retran_bytes; 378 counter_u64_t rack_to_tot; 379 counter_u64_t rack_hot_alloc; 380 counter_u64_t rack_to_alloc; 381 counter_u64_t rack_to_alloc_hard; 382 counter_u64_t rack_to_alloc_emerg; 383 counter_u64_t rack_to_alloc_limited; 384 counter_u64_t rack_alloc_limited_conns; 385 counter_u64_t rack_split_limited; 386 counter_u64_t rack_rxt_clamps_cwnd; 387 counter_u64_t rack_rxt_clamps_cwnd_uniq; 388 389 counter_u64_t rack_multi_single_eq; 390 counter_u64_t rack_proc_non_comp_ack; 391 392 counter_u64_t rack_fto_send; 393 counter_u64_t rack_fto_rsm_send; 394 counter_u64_t rack_nfto_resend; 395 counter_u64_t rack_non_fto_send; 396 counter_u64_t rack_extended_rfo; 397 398 counter_u64_t rack_sack_proc_all; 399 counter_u64_t rack_sack_proc_short; 400 counter_u64_t rack_sack_proc_restart; 401 counter_u64_t rack_sack_attacks_detected; 402 counter_u64_t rack_sack_attacks_reversed; 403 counter_u64_t rack_sack_attacks_suspect; 404 counter_u64_t rack_sack_used_next_merge; 405 counter_u64_t rack_sack_splits; 406 counter_u64_t rack_sack_used_prev_merge; 407 counter_u64_t rack_sack_skipped_acked; 408 counter_u64_t rack_ack_total; 409 counter_u64_t rack_express_sack; 410 counter_u64_t rack_sack_total; 411 counter_u64_t rack_move_none; 412 counter_u64_t rack_move_some; 413 414 counter_u64_t rack_input_idle_reduces; 415 counter_u64_t rack_collapsed_win; 416 counter_u64_t rack_collapsed_win_seen; 417 counter_u64_t rack_collapsed_win_rxt; 418 counter_u64_t rack_collapsed_win_rxt_bytes; 419 counter_u64_t rack_try_scwnd; 420 counter_u64_t rack_hw_pace_init_fail; 421 counter_u64_t rack_hw_pace_lost; 422 423 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; 424 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; 425 426 427 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2))) 428 429 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \ 430 (tv) = (value) + slop; \ 431 if ((u_long)(tv) < (u_long)(tvmin)) \ 432 (tv) = (tvmin); \ 433 if ((u_long)(tv) > (u_long)(tvmax)) \ 434 (tv) = (tvmax); \ 435 } while (0) 436 437 static void 438 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); 439 440 static int 441 rack_process_ack(struct mbuf *m, struct tcphdr *th, 442 struct socket *so, struct tcpcb *tp, struct tcpopt *to, 443 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); 444 static int 445 rack_process_data(struct mbuf *m, struct tcphdr *th, 446 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 447 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); 448 static void 449 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, 450 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery); 451 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); 452 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, 453 uint8_t limit_type); 454 static struct rack_sendmap * 455 rack_check_recovery_mode(struct tcpcb *tp, 456 uint32_t tsused); 457 static void 458 rack_cong_signal(struct tcpcb *tp, 459 uint32_t type, uint32_t ack, int ); 460 static void rack_counter_destroy(void); 461 static int 462 rack_ctloutput(struct tcpcb *tp, struct sockopt *sopt); 463 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); 464 static void 465 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override); 466 static void 467 rack_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 468 int32_t drop_hdrlen, int32_t tlen, uint8_t iptos); 469 static void rack_dtor(void *mem, int32_t size, void *arg); 470 static void 471 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 472 uint32_t flex1, uint32_t flex2, 473 uint32_t flex3, uint32_t flex4, 474 uint32_t flex5, uint32_t flex6, 475 uint16_t flex7, uint8_t mod); 476 477 static void 478 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 479 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, 480 struct rack_sendmap *rsm, uint8_t quality); 481 static struct rack_sendmap * 482 rack_find_high_nonack(struct tcp_rack *rack, 483 struct rack_sendmap *rsm); 484 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); 485 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); 486 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); 487 static int rack_get_sockopt(struct tcpcb *tp, struct sockopt *sopt); 488 static void 489 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 490 tcp_seq th_ack, int line, uint8_t quality); 491 static void 492 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm); 493 494 static uint32_t 495 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); 496 static int32_t rack_handoff_ok(struct tcpcb *tp); 497 static int32_t rack_init(struct tcpcb *tp, void **ptr); 498 static void rack_init_sysctls(void); 499 500 static void 501 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, 502 struct tcphdr *th, int entered_rec, int dup_ack_struck, 503 int *dsack_seen, int *sacks_seen); 504 static void 505 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 506 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts, 507 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls, int segsiz); 508 509 static uint64_t rack_get_gp_est(struct tcp_rack *rack); 510 511 static void 512 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, 513 struct rack_sendmap *rsm); 514 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); 515 static int32_t rack_output(struct tcpcb *tp); 516 517 static uint32_t 518 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, 519 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, 520 uint32_t cts, int *no_extra, int *moved_two, uint32_t segsiz); 521 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq); 522 static void rack_remxt_tmr(struct tcpcb *tp); 523 static int rack_set_sockopt(struct tcpcb *tp, struct sockopt *sopt); 524 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); 525 static int32_t rack_stopall(struct tcpcb *tp); 526 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); 527 static uint32_t 528 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 529 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag, int segsiz); 530 static void 531 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 532 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag, int segsiz); 533 static int 534 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 535 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); 536 static int32_t tcp_addrack(module_t mod, int32_t type, void *data); 537 static int 538 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, 539 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 540 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 541 static int 542 rack_do_closing(struct mbuf *m, struct tcphdr *th, 543 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 544 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 545 static int 546 rack_do_established(struct mbuf *m, struct tcphdr *th, 547 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 548 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 549 static int 550 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, 551 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 552 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); 553 static int 554 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, 555 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 556 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 557 static int 558 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, 559 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 560 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 561 static int 562 rack_do_lastack(struct mbuf *m, struct tcphdr *th, 563 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 564 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 565 static int 566 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, 567 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 568 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 569 static int 570 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, 571 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 572 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 573 static void rack_chk_req_and_hybrid_on_out(struct tcp_rack *rack, tcp_seq seq, uint32_t len, uint64_t cts); 574 struct rack_sendmap * 575 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, 576 uint32_t tsused); 577 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, 578 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); 579 static void 580 tcp_rack_partialack(struct tcpcb *tp); 581 static int 582 rack_set_profile(struct tcp_rack *rack, int prof); 583 static void 584 rack_apply_deferred_options(struct tcp_rack *rack); 585 586 int32_t rack_clear_counter=0; 587 588 static uint64_t 589 rack_get_lt_bw(struct tcp_rack *rack) 590 { 591 struct timeval tv; 592 uint64_t tim, bytes; 593 594 tim = rack->r_ctl.lt_bw_time; 595 bytes = rack->r_ctl.lt_bw_bytes; 596 if (rack->lt_bw_up) { 597 /* Include all the current bytes too */ 598 microuptime(&tv); 599 bytes += (rack->rc_tp->snd_una - rack->r_ctl.lt_seq); 600 tim += (tcp_tv_to_lusectick(&tv) - rack->r_ctl.lt_timemark); 601 } 602 if ((bytes != 0) && (tim != 0)) 603 return ((bytes * (uint64_t)1000000) / tim); 604 else 605 return (0); 606 } 607 608 static void 609 rack_swap_beta_values(struct tcp_rack *rack, uint8_t flex8) 610 { 611 struct sockopt sopt; 612 struct cc_newreno_opts opt; 613 struct newreno old; 614 struct tcpcb *tp; 615 int error, failed = 0; 616 617 tp = rack->rc_tp; 618 if (tp->t_cc == NULL) { 619 /* Tcb is leaving */ 620 return; 621 } 622 rack->rc_pacing_cc_set = 1; 623 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) { 624 /* Not new-reno we can't play games with beta! */ 625 failed = 1; 626 goto out; 627 628 } 629 if (CC_ALGO(tp)->ctl_output == NULL) { 630 /* Huh, not using new-reno so no swaps.? */ 631 failed = 2; 632 goto out; 633 } 634 /* Get the current values out */ 635 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 636 sopt.sopt_dir = SOPT_GET; 637 opt.name = CC_NEWRENO_BETA; 638 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 639 if (error) { 640 failed = 3; 641 goto out; 642 } 643 old.beta = opt.val; 644 opt.name = CC_NEWRENO_BETA_ECN; 645 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 646 if (error) { 647 failed = 4; 648 goto out; 649 } 650 old.beta_ecn = opt.val; 651 652 /* Now lets set in the values we have stored */ 653 sopt.sopt_dir = SOPT_SET; 654 opt.name = CC_NEWRENO_BETA; 655 opt.val = rack->r_ctl.rc_saved_beta.beta; 656 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 657 if (error) { 658 failed = 5; 659 goto out; 660 } 661 opt.name = CC_NEWRENO_BETA_ECN; 662 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn; 663 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 664 if (error) { 665 failed = 6; 666 goto out; 667 } 668 /* Save off the values for restoral */ 669 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 670 out: 671 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 672 union tcp_log_stackspecific log; 673 struct timeval tv; 674 struct newreno *ptr; 675 676 ptr = ((struct newreno *)tp->t_ccv.cc_data); 677 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 678 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 679 log.u_bbr.flex1 = ptr->beta; 680 log.u_bbr.flex2 = ptr->beta_ecn; 681 log.u_bbr.flex3 = ptr->newreno_flags; 682 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 683 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 684 log.u_bbr.flex6 = failed; 685 log.u_bbr.flex7 = rack->gp_ready; 686 log.u_bbr.flex7 <<= 1; 687 log.u_bbr.flex7 |= rack->use_fixed_rate; 688 log.u_bbr.flex7 <<= 1; 689 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 690 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 691 log.u_bbr.flex8 = flex8; 692 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, error, 693 0, &log, false, NULL, NULL, 0, &tv); 694 } 695 } 696 697 static void 698 rack_set_cc_pacing(struct tcp_rack *rack) 699 { 700 if (rack->rc_pacing_cc_set) 701 return; 702 /* 703 * Use the swap utility placing in 3 for flex8 to id a 704 * set of a new set of values. 705 */ 706 rack->rc_pacing_cc_set = 1; 707 rack_swap_beta_values(rack, 3); 708 } 709 710 static void 711 rack_undo_cc_pacing(struct tcp_rack *rack) 712 { 713 if (rack->rc_pacing_cc_set == 0) 714 return; 715 /* 716 * Use the swap utility placing in 4 for flex8 to id a 717 * restoral of the old values. 718 */ 719 rack->rc_pacing_cc_set = 0; 720 rack_swap_beta_values(rack, 4); 721 } 722 723 static void 724 rack_log_gpset(struct tcp_rack *rack, uint32_t seq_end, uint32_t ack_end_t, 725 uint32_t send_end_t, int line, uint8_t mode, struct rack_sendmap *rsm) 726 { 727 if (tcp_bblogging_on(rack->rc_tp) && (rack_verbose_logging != 0)) { 728 union tcp_log_stackspecific log; 729 struct timeval tv; 730 731 memset(&log, 0, sizeof(log)); 732 log.u_bbr.flex1 = seq_end; 733 log.u_bbr.flex2 = rack->rc_tp->gput_seq; 734 log.u_bbr.flex3 = ack_end_t; 735 log.u_bbr.flex4 = rack->rc_tp->gput_ts; 736 log.u_bbr.flex5 = send_end_t; 737 log.u_bbr.flex6 = rack->rc_tp->gput_ack; 738 log.u_bbr.flex7 = mode; 739 log.u_bbr.flex8 = 69; 740 log.u_bbr.rttProp = rack->r_ctl.rc_gp_cumack_ts; 741 log.u_bbr.delRate = rack->r_ctl.rc_gp_output_ts; 742 log.u_bbr.pkts_out = line; 743 log.u_bbr.cwnd_gain = rack->app_limited_needs_set; 744 log.u_bbr.pkt_epoch = rack->r_ctl.rc_app_limited_cnt; 745 if (rsm != NULL) { 746 log.u_bbr.applimited = rsm->r_start; 747 log.u_bbr.delivered = rsm->r_end; 748 log.u_bbr.epoch = rsm->r_flags; 749 } 750 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 751 TCP_LOG_EVENTP(rack->rc_tp, NULL, 752 &rack->rc_inp->inp_socket->so_rcv, 753 &rack->rc_inp->inp_socket->so_snd, 754 BBR_LOG_HPTSI_CALC, 0, 755 0, &log, false, &tv); 756 } 757 } 758 759 static int 760 sysctl_rack_clear(SYSCTL_HANDLER_ARGS) 761 { 762 uint32_t stat; 763 int32_t error; 764 765 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); 766 if (error || req->newptr == NULL) 767 return error; 768 769 error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); 770 if (error) 771 return (error); 772 if (stat == 1) { 773 #ifdef INVARIANTS 774 printf("Clearing RACK counters\n"); 775 #endif 776 counter_u64_zero(rack_tlp_tot); 777 counter_u64_zero(rack_tlp_newdata); 778 counter_u64_zero(rack_tlp_retran); 779 counter_u64_zero(rack_tlp_retran_bytes); 780 counter_u64_zero(rack_to_tot); 781 counter_u64_zero(rack_saw_enobuf); 782 counter_u64_zero(rack_saw_enobuf_hw); 783 counter_u64_zero(rack_saw_enetunreach); 784 counter_u64_zero(rack_persists_sends); 785 counter_u64_zero(rack_total_bytes); 786 counter_u64_zero(rack_persists_acks); 787 counter_u64_zero(rack_persists_loss); 788 counter_u64_zero(rack_persists_lost_ends); 789 #ifdef INVARIANTS 790 counter_u64_zero(rack_adjust_map_bw); 791 #endif 792 counter_u64_zero(rack_to_alloc_hard); 793 counter_u64_zero(rack_to_alloc_emerg); 794 counter_u64_zero(rack_sack_proc_all); 795 counter_u64_zero(rack_fto_send); 796 counter_u64_zero(rack_fto_rsm_send); 797 counter_u64_zero(rack_extended_rfo); 798 counter_u64_zero(rack_hw_pace_init_fail); 799 counter_u64_zero(rack_hw_pace_lost); 800 counter_u64_zero(rack_non_fto_send); 801 counter_u64_zero(rack_nfto_resend); 802 counter_u64_zero(rack_sack_proc_short); 803 counter_u64_zero(rack_sack_proc_restart); 804 counter_u64_zero(rack_to_alloc); 805 counter_u64_zero(rack_to_alloc_limited); 806 counter_u64_zero(rack_alloc_limited_conns); 807 counter_u64_zero(rack_split_limited); 808 counter_u64_zero(rack_rxt_clamps_cwnd); 809 counter_u64_zero(rack_rxt_clamps_cwnd_uniq); 810 counter_u64_zero(rack_multi_single_eq); 811 counter_u64_zero(rack_proc_non_comp_ack); 812 counter_u64_zero(rack_sack_attacks_detected); 813 counter_u64_zero(rack_sack_attacks_reversed); 814 counter_u64_zero(rack_sack_attacks_suspect); 815 counter_u64_zero(rack_sack_used_next_merge); 816 counter_u64_zero(rack_sack_used_prev_merge); 817 counter_u64_zero(rack_sack_splits); 818 counter_u64_zero(rack_sack_skipped_acked); 819 counter_u64_zero(rack_ack_total); 820 counter_u64_zero(rack_express_sack); 821 counter_u64_zero(rack_sack_total); 822 counter_u64_zero(rack_move_none); 823 counter_u64_zero(rack_move_some); 824 counter_u64_zero(rack_try_scwnd); 825 counter_u64_zero(rack_collapsed_win); 826 counter_u64_zero(rack_collapsed_win_rxt); 827 counter_u64_zero(rack_collapsed_win_seen); 828 counter_u64_zero(rack_collapsed_win_rxt_bytes); 829 } else if (stat == 2) { 830 #ifdef INVARIANTS 831 printf("Clearing RACK option array\n"); 832 #endif 833 COUNTER_ARRAY_ZERO(rack_opts_arry, RACK_OPTS_SIZE); 834 } else if (stat == 3) { 835 printf("Rack has no stats counters to clear (use 1 to clear all stats in sysctl node)\n"); 836 } else if (stat == 4) { 837 #ifdef INVARIANTS 838 printf("Clearing RACK out size array\n"); 839 #endif 840 COUNTER_ARRAY_ZERO(rack_out_size, TCP_MSS_ACCT_SIZE); 841 } 842 rack_clear_counter = 0; 843 return (0); 844 } 845 846 static void 847 rack_init_sysctls(void) 848 { 849 struct sysctl_oid *rack_counters; 850 struct sysctl_oid *rack_attack; 851 struct sysctl_oid *rack_pacing; 852 struct sysctl_oid *rack_timely; 853 struct sysctl_oid *rack_timers; 854 struct sysctl_oid *rack_tlp; 855 struct sysctl_oid *rack_misc; 856 struct sysctl_oid *rack_features; 857 struct sysctl_oid *rack_measure; 858 struct sysctl_oid *rack_probertt; 859 struct sysctl_oid *rack_hw_pacing; 860 861 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 862 SYSCTL_CHILDREN(rack_sysctl_root), 863 OID_AUTO, 864 "sack_attack", 865 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 866 "Rack Sack Attack Counters and Controls"); 867 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 868 SYSCTL_CHILDREN(rack_sysctl_root), 869 OID_AUTO, 870 "stats", 871 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 872 "Rack Counters"); 873 SYSCTL_ADD_S32(&rack_sysctl_ctx, 874 SYSCTL_CHILDREN(rack_sysctl_root), 875 OID_AUTO, "rate_sample_method", CTLFLAG_RW, 876 &rack_rate_sample_method , USE_RTT_LOW, 877 "What method should we use for rate sampling 0=high, 1=low "); 878 /* Probe rtt related controls */ 879 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 880 SYSCTL_CHILDREN(rack_sysctl_root), 881 OID_AUTO, 882 "probertt", 883 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 884 "ProbeRTT related Controls"); 885 SYSCTL_ADD_U16(&rack_sysctl_ctx, 886 SYSCTL_CHILDREN(rack_probertt), 887 OID_AUTO, "exit_per_hpb", CTLFLAG_RW, 888 &rack_atexit_prtt_hbp, 130, 889 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); 890 SYSCTL_ADD_U16(&rack_sysctl_ctx, 891 SYSCTL_CHILDREN(rack_probertt), 892 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, 893 &rack_atexit_prtt, 130, 894 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); 895 SYSCTL_ADD_U16(&rack_sysctl_ctx, 896 SYSCTL_CHILDREN(rack_probertt), 897 OID_AUTO, "gp_per_mul", CTLFLAG_RW, 898 &rack_per_of_gp_probertt, 60, 899 "What percentage of goodput do we pace at in probertt"); 900 SYSCTL_ADD_U16(&rack_sysctl_ctx, 901 SYSCTL_CHILDREN(rack_probertt), 902 OID_AUTO, "gp_per_reduce", CTLFLAG_RW, 903 &rack_per_of_gp_probertt_reduce, 10, 904 "What percentage of goodput do we reduce every gp_srtt"); 905 SYSCTL_ADD_U16(&rack_sysctl_ctx, 906 SYSCTL_CHILDREN(rack_probertt), 907 OID_AUTO, "gp_per_low", CTLFLAG_RW, 908 &rack_per_of_gp_lowthresh, 40, 909 "What percentage of goodput do we allow the multiplier to fall to"); 910 SYSCTL_ADD_U32(&rack_sysctl_ctx, 911 SYSCTL_CHILDREN(rack_probertt), 912 OID_AUTO, "time_between", CTLFLAG_RW, 913 & rack_time_between_probertt, 96000000, 914 "How many useconds between the lowest rtt falling must past before we enter probertt"); 915 SYSCTL_ADD_U32(&rack_sysctl_ctx, 916 SYSCTL_CHILDREN(rack_probertt), 917 OID_AUTO, "safety", CTLFLAG_RW, 918 &rack_probe_rtt_safety_val, 2000000, 919 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); 920 SYSCTL_ADD_U32(&rack_sysctl_ctx, 921 SYSCTL_CHILDREN(rack_probertt), 922 OID_AUTO, "sets_cwnd", CTLFLAG_RW, 923 &rack_probe_rtt_sets_cwnd, 0, 924 "Do we set the cwnd too (if always_lower is on)"); 925 SYSCTL_ADD_U32(&rack_sysctl_ctx, 926 SYSCTL_CHILDREN(rack_probertt), 927 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, 928 &rack_max_drain_wait, 2, 929 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); 930 SYSCTL_ADD_U32(&rack_sysctl_ctx, 931 SYSCTL_CHILDREN(rack_probertt), 932 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, 933 &rack_must_drain, 1, 934 "We must drain this many gp_srtt's waiting for flight to reach goal"); 935 SYSCTL_ADD_U32(&rack_sysctl_ctx, 936 SYSCTL_CHILDREN(rack_probertt), 937 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, 938 &rack_probertt_use_min_rtt_entry, 1, 939 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); 940 SYSCTL_ADD_U32(&rack_sysctl_ctx, 941 SYSCTL_CHILDREN(rack_probertt), 942 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, 943 &rack_probertt_use_min_rtt_exit, 0, 944 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); 945 SYSCTL_ADD_U32(&rack_sysctl_ctx, 946 SYSCTL_CHILDREN(rack_probertt), 947 OID_AUTO, "length_div", CTLFLAG_RW, 948 &rack_probertt_gpsrtt_cnt_div, 0, 949 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); 950 SYSCTL_ADD_U32(&rack_sysctl_ctx, 951 SYSCTL_CHILDREN(rack_probertt), 952 OID_AUTO, "length_mul", CTLFLAG_RW, 953 &rack_probertt_gpsrtt_cnt_mul, 0, 954 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); 955 SYSCTL_ADD_U32(&rack_sysctl_ctx, 956 SYSCTL_CHILDREN(rack_probertt), 957 OID_AUTO, "holdtim_at_target", CTLFLAG_RW, 958 &rack_min_probertt_hold, 200000, 959 "What is the minimum time we hold probertt at target"); 960 SYSCTL_ADD_U32(&rack_sysctl_ctx, 961 SYSCTL_CHILDREN(rack_probertt), 962 OID_AUTO, "filter_life", CTLFLAG_RW, 963 &rack_probertt_filter_life, 10000000, 964 "What is the time for the filters life in useconds"); 965 SYSCTL_ADD_U32(&rack_sysctl_ctx, 966 SYSCTL_CHILDREN(rack_probertt), 967 OID_AUTO, "lower_within", CTLFLAG_RW, 968 &rack_probertt_lower_within, 10, 969 "If the rtt goes lower within this percentage of the time, go into probe-rtt"); 970 SYSCTL_ADD_U32(&rack_sysctl_ctx, 971 SYSCTL_CHILDREN(rack_probertt), 972 OID_AUTO, "must_move", CTLFLAG_RW, 973 &rack_min_rtt_movement, 250, 974 "How much is the minimum movement in rtt to count as a drop for probertt purposes"); 975 SYSCTL_ADD_U32(&rack_sysctl_ctx, 976 SYSCTL_CHILDREN(rack_probertt), 977 OID_AUTO, "clear_is_cnts", CTLFLAG_RW, 978 &rack_probertt_clear_is, 1, 979 "Do we clear I/S counts on exiting probe-rtt"); 980 SYSCTL_ADD_S32(&rack_sysctl_ctx, 981 SYSCTL_CHILDREN(rack_probertt), 982 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, 983 &rack_max_drain_hbp, 1, 984 "How many extra drain gpsrtt's do we get in highly buffered paths"); 985 SYSCTL_ADD_S32(&rack_sysctl_ctx, 986 SYSCTL_CHILDREN(rack_probertt), 987 OID_AUTO, "hbp_threshold", CTLFLAG_RW, 988 &rack_hbp_thresh, 3, 989 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); 990 /* Pacing related sysctls */ 991 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 992 SYSCTL_CHILDREN(rack_sysctl_root), 993 OID_AUTO, 994 "pacing", 995 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 996 "Pacing related Controls"); 997 SYSCTL_ADD_S32(&rack_sysctl_ctx, 998 SYSCTL_CHILDREN(rack_pacing), 999 OID_AUTO, "fulldgpinrec", CTLFLAG_RW, 1000 &rack_uses_full_dgp_in_rec, 1, 1001 "Do we use all DGP features in recovery (fillcw, timely et.al.)?"); 1002 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1003 SYSCTL_CHILDREN(rack_pacing), 1004 OID_AUTO, "fullbufdisc", CTLFLAG_RW, 1005 &rack_full_buffer_discount, 10, 1006 "What percentage b/w reduction over the GP estimate for a full buffer (default=0 off)?"); 1007 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1008 SYSCTL_CHILDREN(rack_pacing), 1009 OID_AUTO, "fillcw", CTLFLAG_RW, 1010 &rack_fill_cw_state, 0, 1011 "Enable fillcw on new connections (default=0 off)?"); 1012 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1013 SYSCTL_CHILDREN(rack_pacing), 1014 OID_AUTO, "min_burst", CTLFLAG_RW, 1015 &rack_pacing_min_seg, 0, 1016 "What is the min burst size for pacing (0 disables)?"); 1017 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1018 SYSCTL_CHILDREN(rack_pacing), 1019 OID_AUTO, "divisor", CTLFLAG_RW, 1020 &rack_default_pacing_divisor, 4, 1021 "What is the default divisor given to the rl code?"); 1022 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1023 SYSCTL_CHILDREN(rack_pacing), 1024 OID_AUTO, "fillcw_max_mult", CTLFLAG_RW, 1025 &rack_bw_multipler, 2, 1026 "What is the multiplier of the current gp_est that fillcw can increase the b/w too?"); 1027 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1028 SYSCTL_CHILDREN(rack_pacing), 1029 OID_AUTO, "max_pace_over", CTLFLAG_RW, 1030 &rack_max_per_above, 30, 1031 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); 1032 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1033 SYSCTL_CHILDREN(rack_pacing), 1034 OID_AUTO, "allow1mss", CTLFLAG_RW, 1035 &rack_pace_one_seg, 0, 1036 "Do we allow low b/w pacing of 1MSS instead of two (1.2Meg and less)?"); 1037 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1038 SYSCTL_CHILDREN(rack_pacing), 1039 OID_AUTO, "limit_wsrtt", CTLFLAG_RW, 1040 &rack_limit_time_with_srtt, 0, 1041 "Do we limit pacing time based on srtt"); 1042 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1043 SYSCTL_CHILDREN(rack_pacing), 1044 OID_AUTO, "init_win", CTLFLAG_RW, 1045 &rack_default_init_window, 0, 1046 "Do we have a rack initial window 0 = system default"); 1047 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1048 SYSCTL_CHILDREN(rack_pacing), 1049 OID_AUTO, "gp_per_ss", CTLFLAG_RW, 1050 &rack_per_of_gp_ss, 250, 1051 "If non zero, what percentage of goodput to pace at in slow start"); 1052 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1053 SYSCTL_CHILDREN(rack_pacing), 1054 OID_AUTO, "gp_per_ca", CTLFLAG_RW, 1055 &rack_per_of_gp_ca, 150, 1056 "If non zero, what percentage of goodput to pace at in congestion avoidance"); 1057 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1058 SYSCTL_CHILDREN(rack_pacing), 1059 OID_AUTO, "gp_per_rec", CTLFLAG_RW, 1060 &rack_per_of_gp_rec, 200, 1061 "If non zero, what percentage of goodput to pace at in recovery"); 1062 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1063 SYSCTL_CHILDREN(rack_pacing), 1064 OID_AUTO, "pace_max_seg", CTLFLAG_RW, 1065 &rack_hptsi_segments, 40, 1066 "What size is the max for TSO segments in pacing and burst mitigation"); 1067 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1068 SYSCTL_CHILDREN(rack_pacing), 1069 OID_AUTO, "burst_reduces", CTLFLAG_RW, 1070 &rack_slot_reduction, 4, 1071 "When doing only burst mitigation what is the reduce divisor"); 1072 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1073 SYSCTL_CHILDREN(rack_sysctl_root), 1074 OID_AUTO, "use_pacing", CTLFLAG_RW, 1075 &rack_pace_every_seg, 0, 1076 "If set we use pacing, if clear we use only the original burst mitigation"); 1077 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1078 SYSCTL_CHILDREN(rack_pacing), 1079 OID_AUTO, "rate_cap", CTLFLAG_RW, 1080 &rack_bw_rate_cap, 0, 1081 "If set we apply this value to the absolute rate cap used by pacing"); 1082 SYSCTL_ADD_U8(&rack_sysctl_ctx, 1083 SYSCTL_CHILDREN(rack_sysctl_root), 1084 OID_AUTO, "req_measure_cnt", CTLFLAG_RW, 1085 &rack_req_measurements, 1, 1086 "If doing dynamic pacing, how many measurements must be in before we start pacing?"); 1087 /* Hardware pacing */ 1088 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1089 SYSCTL_CHILDREN(rack_sysctl_root), 1090 OID_AUTO, 1091 "hdwr_pacing", 1092 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1093 "Pacing related Controls"); 1094 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1095 SYSCTL_CHILDREN(rack_hw_pacing), 1096 OID_AUTO, "rwnd_factor", CTLFLAG_RW, 1097 &rack_hw_rwnd_factor, 2, 1098 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?"); 1099 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1100 SYSCTL_CHILDREN(rack_hw_pacing), 1101 OID_AUTO, "precheck", CTLFLAG_RW, 1102 &rack_hw_check_queue, 0, 1103 "Do we always precheck the hdwr pacing queue to avoid ENOBUF's?"); 1104 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1105 SYSCTL_CHILDREN(rack_hw_pacing), 1106 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW, 1107 &rack_enobuf_hw_boost_mult, 0, 1108 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?"); 1109 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1110 SYSCTL_CHILDREN(rack_hw_pacing), 1111 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW, 1112 &rack_enobuf_hw_max, 2, 1113 "What is the max boost the pacing time if we see a ENOBUFS?"); 1114 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1115 SYSCTL_CHILDREN(rack_hw_pacing), 1116 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW, 1117 &rack_enobuf_hw_min, 2, 1118 "What is the min boost the pacing time if we see a ENOBUFS?"); 1119 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1120 SYSCTL_CHILDREN(rack_hw_pacing), 1121 OID_AUTO, "enable", CTLFLAG_RW, 1122 &rack_enable_hw_pacing, 0, 1123 "Should RACK attempt to use hw pacing?"); 1124 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1125 SYSCTL_CHILDREN(rack_hw_pacing), 1126 OID_AUTO, "rate_cap", CTLFLAG_RW, 1127 &rack_hw_rate_caps, 0, 1128 "Does the highest hardware pacing rate cap the rate we will send at??"); 1129 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1130 SYSCTL_CHILDREN(rack_hw_pacing), 1131 OID_AUTO, "uncap_per", CTLFLAG_RW, 1132 &rack_hw_rate_cap_per, 0, 1133 "If you go over b/w by this amount you will be uncapped (0 = never)"); 1134 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1135 SYSCTL_CHILDREN(rack_hw_pacing), 1136 OID_AUTO, "rate_min", CTLFLAG_RW, 1137 &rack_hw_rate_min, 0, 1138 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?"); 1139 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1140 SYSCTL_CHILDREN(rack_hw_pacing), 1141 OID_AUTO, "rate_to_low", CTLFLAG_RW, 1142 &rack_hw_rate_to_low, 0, 1143 "If we fall below this rate, dis-engage hw pacing?"); 1144 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1145 SYSCTL_CHILDREN(rack_hw_pacing), 1146 OID_AUTO, "up_only", CTLFLAG_RW, 1147 &rack_hw_up_only, 0, 1148 "Do we allow hw pacing to lower the rate selected?"); 1149 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1150 SYSCTL_CHILDREN(rack_hw_pacing), 1151 OID_AUTO, "extra_mss_precise", CTLFLAG_RW, 1152 &rack_hw_pace_extra_slots, 0, 1153 "If the rates between software and hardware match precisely how many extra time_betweens do we get?"); 1154 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1155 SYSCTL_CHILDREN(rack_sysctl_root), 1156 OID_AUTO, 1157 "timely", 1158 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1159 "Rack Timely RTT Controls"); 1160 /* Timely based GP dynmics */ 1161 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1162 SYSCTL_CHILDREN(rack_timely), 1163 OID_AUTO, "upper", CTLFLAG_RW, 1164 &rack_gp_per_bw_mul_up, 2, 1165 "Rack timely upper range for equal b/w (in percentage)"); 1166 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1167 SYSCTL_CHILDREN(rack_timely), 1168 OID_AUTO, "lower", CTLFLAG_RW, 1169 &rack_gp_per_bw_mul_down, 4, 1170 "Rack timely lower range for equal b/w (in percentage)"); 1171 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1172 SYSCTL_CHILDREN(rack_timely), 1173 OID_AUTO, "rtt_max_mul", CTLFLAG_RW, 1174 &rack_gp_rtt_maxmul, 3, 1175 "Rack timely multiplier of lowest rtt for rtt_max"); 1176 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1177 SYSCTL_CHILDREN(rack_timely), 1178 OID_AUTO, "rtt_min_div", CTLFLAG_RW, 1179 &rack_gp_rtt_mindiv, 4, 1180 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1181 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1182 SYSCTL_CHILDREN(rack_timely), 1183 OID_AUTO, "rtt_min_mul", CTLFLAG_RW, 1184 &rack_gp_rtt_minmul, 1, 1185 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1186 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1187 SYSCTL_CHILDREN(rack_timely), 1188 OID_AUTO, "decrease", CTLFLAG_RW, 1189 &rack_gp_decrease_per, 80, 1190 "Rack timely Beta value 80 = .8 (scaled by 100)"); 1191 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1192 SYSCTL_CHILDREN(rack_timely), 1193 OID_AUTO, "increase", CTLFLAG_RW, 1194 &rack_gp_increase_per, 2, 1195 "Rack timely increase perentage of our GP multiplication factor"); 1196 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1197 SYSCTL_CHILDREN(rack_timely), 1198 OID_AUTO, "lowerbound", CTLFLAG_RW, 1199 &rack_per_lower_bound, 50, 1200 "Rack timely lowest percentage we allow GP multiplier to fall to"); 1201 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1202 SYSCTL_CHILDREN(rack_timely), 1203 OID_AUTO, "p5_upper", CTLFLAG_RW, 1204 &rack_gain_p5_ub, 250, 1205 "Profile 5 upper bound to timely gain"); 1206 1207 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1208 SYSCTL_CHILDREN(rack_timely), 1209 OID_AUTO, "upperboundss", CTLFLAG_RW, 1210 &rack_per_upper_bound_ss, 0, 1211 "Rack timely highest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); 1212 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1213 SYSCTL_CHILDREN(rack_timely), 1214 OID_AUTO, "upperboundca", CTLFLAG_RW, 1215 &rack_per_upper_bound_ca, 0, 1216 "Rack timely highest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); 1217 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1218 SYSCTL_CHILDREN(rack_timely), 1219 OID_AUTO, "dynamicgp", CTLFLAG_RW, 1220 &rack_do_dyn_mul, 0, 1221 "Rack timely do we enable dynmaic timely goodput by default"); 1222 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1223 SYSCTL_CHILDREN(rack_timely), 1224 OID_AUTO, "no_rec_red", CTLFLAG_RW, 1225 &rack_gp_no_rec_chg, 1, 1226 "Rack timely do we prohibit the recovery multiplier from being lowered"); 1227 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1228 SYSCTL_CHILDREN(rack_timely), 1229 OID_AUTO, "red_clear_cnt", CTLFLAG_RW, 1230 &rack_timely_dec_clear, 6, 1231 "Rack timely what threshold do we count to before another boost during b/w decent"); 1232 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1233 SYSCTL_CHILDREN(rack_timely), 1234 OID_AUTO, "max_push_rise", CTLFLAG_RW, 1235 &rack_timely_max_push_rise, 3, 1236 "Rack timely how many times do we push up with b/w increase"); 1237 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1238 SYSCTL_CHILDREN(rack_timely), 1239 OID_AUTO, "max_push_drop", CTLFLAG_RW, 1240 &rack_timely_max_push_drop, 3, 1241 "Rack timely how many times do we push back on b/w decent"); 1242 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1243 SYSCTL_CHILDREN(rack_timely), 1244 OID_AUTO, "min_segs", CTLFLAG_RW, 1245 &rack_timely_min_segs, 4, 1246 "Rack timely when setting the cwnd what is the min num segments"); 1247 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1248 SYSCTL_CHILDREN(rack_timely), 1249 OID_AUTO, "noback_max", CTLFLAG_RW, 1250 &rack_use_max_for_nobackoff, 0, 1251 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); 1252 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1253 SYSCTL_CHILDREN(rack_timely), 1254 OID_AUTO, "interim_timely_only", CTLFLAG_RW, 1255 &rack_timely_int_timely_only, 0, 1256 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); 1257 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1258 SYSCTL_CHILDREN(rack_timely), 1259 OID_AUTO, "nonstop", CTLFLAG_RW, 1260 &rack_timely_no_stopping, 0, 1261 "Rack timely don't stop increase"); 1262 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1263 SYSCTL_CHILDREN(rack_timely), 1264 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, 1265 &rack_down_raise_thresh, 100, 1266 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); 1267 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1268 SYSCTL_CHILDREN(rack_timely), 1269 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, 1270 &rack_req_segs, 1, 1271 "Bottom dragging if not these many segments outstanding and room"); 1272 1273 /* TLP and Rack related parameters */ 1274 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1275 SYSCTL_CHILDREN(rack_sysctl_root), 1276 OID_AUTO, 1277 "tlp", 1278 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1279 "TLP and Rack related Controls"); 1280 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1281 SYSCTL_CHILDREN(rack_tlp), 1282 OID_AUTO, "use_rrr", CTLFLAG_RW, 1283 &use_rack_rr, 1, 1284 "Do we use Rack Rapid Recovery"); 1285 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1286 SYSCTL_CHILDREN(rack_tlp), 1287 OID_AUTO, "post_rec_labc", CTLFLAG_RW, 1288 &rack_max_abc_post_recovery, 2, 1289 "Since we do early recovery, do we override the l_abc to a value, if so what?"); 1290 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1291 SYSCTL_CHILDREN(rack_tlp), 1292 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, 1293 &rack_non_rxt_use_cr, 0, 1294 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); 1295 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1296 SYSCTL_CHILDREN(rack_tlp), 1297 OID_AUTO, "tlpmethod", CTLFLAG_RW, 1298 &rack_tlp_threshold_use, TLP_USE_TWO_ONE, 1299 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); 1300 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1301 SYSCTL_CHILDREN(rack_tlp), 1302 OID_AUTO, "limit", CTLFLAG_RW, 1303 &rack_tlp_limit, 2, 1304 "How many TLP's can be sent without sending new data"); 1305 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1306 SYSCTL_CHILDREN(rack_tlp), 1307 OID_AUTO, "use_greater", CTLFLAG_RW, 1308 &rack_tlp_use_greater, 1, 1309 "Should we use the rack_rtt time if its greater than srtt"); 1310 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1311 SYSCTL_CHILDREN(rack_tlp), 1312 OID_AUTO, "tlpminto", CTLFLAG_RW, 1313 &rack_tlp_min, 10000, 1314 "TLP minimum timeout per the specification (in microseconds)"); 1315 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1316 SYSCTL_CHILDREN(rack_tlp), 1317 OID_AUTO, "send_oldest", CTLFLAG_RW, 1318 &rack_always_send_oldest, 0, 1319 "Should we always send the oldest TLP and RACK-TLP"); 1320 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1321 SYSCTL_CHILDREN(rack_tlp), 1322 OID_AUTO, "rack_tlimit", CTLFLAG_RW, 1323 &rack_limited_retran, 0, 1324 "How many times can a rack timeout drive out sends"); 1325 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1326 SYSCTL_CHILDREN(rack_tlp), 1327 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, 1328 &rack_lower_cwnd_at_tlp, 0, 1329 "When a TLP completes a retran should we enter recovery"); 1330 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1331 SYSCTL_CHILDREN(rack_tlp), 1332 OID_AUTO, "reorder_thresh", CTLFLAG_RW, 1333 &rack_reorder_thresh, 2, 1334 "What factor for rack will be added when seeing reordering (shift right)"); 1335 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1336 SYSCTL_CHILDREN(rack_tlp), 1337 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, 1338 &rack_tlp_thresh, 1, 1339 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); 1340 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1341 SYSCTL_CHILDREN(rack_tlp), 1342 OID_AUTO, "reorder_fade", CTLFLAG_RW, 1343 &rack_reorder_fade, 60000000, 1344 "Does reorder detection fade, if so how many microseconds (0 means never)"); 1345 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1346 SYSCTL_CHILDREN(rack_tlp), 1347 OID_AUTO, "pktdelay", CTLFLAG_RW, 1348 &rack_pkt_delay, 1000, 1349 "Extra RACK time (in microseconds) besides reordering thresh"); 1350 1351 /* Timer related controls */ 1352 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1353 SYSCTL_CHILDREN(rack_sysctl_root), 1354 OID_AUTO, 1355 "timers", 1356 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1357 "Timer related controls"); 1358 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1359 SYSCTL_CHILDREN(rack_timers), 1360 OID_AUTO, "persmin", CTLFLAG_RW, 1361 &rack_persist_min, 250000, 1362 "What is the minimum time in microseconds between persists"); 1363 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1364 SYSCTL_CHILDREN(rack_timers), 1365 OID_AUTO, "persmax", CTLFLAG_RW, 1366 &rack_persist_max, 2000000, 1367 "What is the largest delay in microseconds between persists"); 1368 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1369 SYSCTL_CHILDREN(rack_timers), 1370 OID_AUTO, "delayed_ack", CTLFLAG_RW, 1371 &rack_delayed_ack_time, 40000, 1372 "Delayed ack time (40ms in microseconds)"); 1373 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1374 SYSCTL_CHILDREN(rack_timers), 1375 OID_AUTO, "minrto", CTLFLAG_RW, 1376 &rack_rto_min, 30000, 1377 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP"); 1378 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1379 SYSCTL_CHILDREN(rack_timers), 1380 OID_AUTO, "maxrto", CTLFLAG_RW, 1381 &rack_rto_max, 4000000, 1382 "Maximum RTO in microseconds -- should be at least as large as min_rto"); 1383 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1384 SYSCTL_CHILDREN(rack_timers), 1385 OID_AUTO, "minto", CTLFLAG_RW, 1386 &rack_min_to, 1000, 1387 "Minimum rack timeout in microseconds"); 1388 /* Measure controls */ 1389 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1390 SYSCTL_CHILDREN(rack_sysctl_root), 1391 OID_AUTO, 1392 "measure", 1393 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1394 "Measure related controls"); 1395 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1396 SYSCTL_CHILDREN(rack_measure), 1397 OID_AUTO, "wma_divisor", CTLFLAG_RW, 1398 &rack_wma_divisor, 8, 1399 "When doing b/w calculation what is the divisor for the WMA"); 1400 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1401 SYSCTL_CHILDREN(rack_measure), 1402 OID_AUTO, "end_cwnd", CTLFLAG_RW, 1403 &rack_cwnd_block_ends_measure, 0, 1404 "Does a cwnd just-return end the measurement window (app limited)"); 1405 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1406 SYSCTL_CHILDREN(rack_measure), 1407 OID_AUTO, "end_rwnd", CTLFLAG_RW, 1408 &rack_rwnd_block_ends_measure, 0, 1409 "Does an rwnd just-return end the measurement window (app limited -- not persists)"); 1410 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1411 SYSCTL_CHILDREN(rack_measure), 1412 OID_AUTO, "min_target", CTLFLAG_RW, 1413 &rack_def_data_window, 20, 1414 "What is the minimum target window (in mss) for a GP measurements"); 1415 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1416 SYSCTL_CHILDREN(rack_measure), 1417 OID_AUTO, "goal_bdp", CTLFLAG_RW, 1418 &rack_goal_bdp, 2, 1419 "What is the goal BDP to measure"); 1420 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1421 SYSCTL_CHILDREN(rack_measure), 1422 OID_AUTO, "min_srtts", CTLFLAG_RW, 1423 &rack_min_srtts, 1, 1424 "What is the goal BDP to measure"); 1425 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1426 SYSCTL_CHILDREN(rack_measure), 1427 OID_AUTO, "min_measure_tim", CTLFLAG_RW, 1428 &rack_min_measure_usec, 0, 1429 "What is the Minimum time time for a measurement if 0, this is off"); 1430 /* Features */ 1431 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1432 SYSCTL_CHILDREN(rack_sysctl_root), 1433 OID_AUTO, 1434 "features", 1435 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1436 "Feature controls"); 1437 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1438 SYSCTL_CHILDREN(rack_features), 1439 OID_AUTO, "rxt_clamp_thresh", CTLFLAG_RW, 1440 &rack_rxt_clamp_thresh, 0, 1441 "Bit encoded clamping setup bits CCCC CCCCC UUUU UULF PPPP PPPP PPPP PPPP"); 1442 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1443 SYSCTL_CHILDREN(rack_features), 1444 OID_AUTO, "hybrid_set_maxseg", CTLFLAG_RW, 1445 &rack_hybrid_allow_set_maxseg, 0, 1446 "Should hybrid pacing allow the setmss command"); 1447 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1448 SYSCTL_CHILDREN(rack_features), 1449 OID_AUTO, "cmpack", CTLFLAG_RW, 1450 &rack_use_cmp_acks, 1, 1451 "Should RACK have LRO send compressed acks"); 1452 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1453 SYSCTL_CHILDREN(rack_features), 1454 OID_AUTO, "fsb", CTLFLAG_RW, 1455 &rack_use_fsb, 1, 1456 "Should RACK use the fast send block?"); 1457 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1458 SYSCTL_CHILDREN(rack_features), 1459 OID_AUTO, "rfo", CTLFLAG_RW, 1460 &rack_use_rfo, 1, 1461 "Should RACK use rack_fast_output()?"); 1462 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1463 SYSCTL_CHILDREN(rack_features), 1464 OID_AUTO, "rsmrfo", CTLFLAG_RW, 1465 &rack_use_rsm_rfo, 1, 1466 "Should RACK use rack_fast_rsm_output()?"); 1467 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1468 SYSCTL_CHILDREN(rack_features), 1469 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, 1470 &rack_enable_mqueue_for_nonpaced, 0, 1471 "Should RACK use mbuf queuing for non-paced connections"); 1472 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1473 SYSCTL_CHILDREN(rack_features), 1474 OID_AUTO, "hystartplusplus", CTLFLAG_RW, 1475 &rack_do_hystart, 0, 1476 "Should RACK enable HyStart++ on connections?"); 1477 /* Misc rack controls */ 1478 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1479 SYSCTL_CHILDREN(rack_sysctl_root), 1480 OID_AUTO, 1481 "misc", 1482 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1483 "Misc related controls"); 1484 #ifdef TCP_ACCOUNTING 1485 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1486 SYSCTL_CHILDREN(rack_misc), 1487 OID_AUTO, "tcp_acct", CTLFLAG_RW, 1488 &rack_tcp_accounting, 0, 1489 "Should we turn on TCP accounting for all rack sessions?"); 1490 #endif 1491 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1492 SYSCTL_CHILDREN(rack_misc), 1493 OID_AUTO, "dnd", CTLFLAG_RW, 1494 &rack_dnd_default, 0, 1495 "Do not disturb default for rack_rrr = 3"); 1496 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1497 SYSCTL_CHILDREN(rack_misc), 1498 OID_AUTO, "sad_seg_per", CTLFLAG_RW, 1499 &sad_seg_size_per, 800, 1500 "Percentage of segment size needed in a sack 800 = 80.0?"); 1501 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1502 SYSCTL_CHILDREN(rack_misc), 1503 OID_AUTO, "rxt_controls", CTLFLAG_RW, 1504 &rack_rxt_controls, 0, 1505 "Retransmit sending size controls (valid values 0, 1, 2 default=1)?"); 1506 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1507 SYSCTL_CHILDREN(rack_misc), 1508 OID_AUTO, "rack_hibeta", CTLFLAG_RW, 1509 &rack_hibeta_setting, 0, 1510 "Do we ue a high beta (80 instead of 50)?"); 1511 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1512 SYSCTL_CHILDREN(rack_misc), 1513 OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW, 1514 &rack_apply_rtt_with_reduced_conf, 0, 1515 "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?"); 1516 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1517 SYSCTL_CHILDREN(rack_misc), 1518 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW, 1519 &rack_dsack_std_based, 3, 1520 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?"); 1521 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1522 SYSCTL_CHILDREN(rack_misc), 1523 OID_AUTO, "prr_addback_max", CTLFLAG_RW, 1524 &rack_prr_addbackmax, 2, 1525 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?"); 1526 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1527 SYSCTL_CHILDREN(rack_misc), 1528 OID_AUTO, "stats_gets_ms", CTLFLAG_RW, 1529 &rack_stats_gets_ms_rtt, 1, 1530 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?"); 1531 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1532 SYSCTL_CHILDREN(rack_misc), 1533 OID_AUTO, "clientlowbuf", CTLFLAG_RW, 1534 &rack_client_low_buf, 0, 1535 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?"); 1536 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1537 SYSCTL_CHILDREN(rack_misc), 1538 OID_AUTO, "defprofile", CTLFLAG_RW, 1539 &rack_def_profile, 0, 1540 "Should RACK use a default profile (0=no, num == profile num)?"); 1541 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1542 SYSCTL_CHILDREN(rack_misc), 1543 OID_AUTO, "shared_cwnd", CTLFLAG_RW, 1544 &rack_enable_shared_cwnd, 1, 1545 "Should RACK try to use the shared cwnd on connections where allowed"); 1546 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1547 SYSCTL_CHILDREN(rack_misc), 1548 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, 1549 &rack_limits_scwnd, 1, 1550 "Should RACK place low end time limits on the shared cwnd feature"); 1551 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1552 SYSCTL_CHILDREN(rack_misc), 1553 OID_AUTO, "no_prr", CTLFLAG_RW, 1554 &rack_disable_prr, 0, 1555 "Should RACK not use prr and only pace (must have pacing on)"); 1556 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1557 SYSCTL_CHILDREN(rack_misc), 1558 OID_AUTO, "bb_verbose", CTLFLAG_RW, 1559 &rack_verbose_logging, 0, 1560 "Should RACK black box logging be verbose"); 1561 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1562 SYSCTL_CHILDREN(rack_misc), 1563 OID_AUTO, "data_after_close", CTLFLAG_RW, 1564 &rack_ignore_data_after_close, 1, 1565 "Do we hold off sending a RST until all pending data is ack'd"); 1566 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1567 SYSCTL_CHILDREN(rack_misc), 1568 OID_AUTO, "no_sack_needed", CTLFLAG_RW, 1569 &rack_sack_not_required, 1, 1570 "Do we allow rack to run on connections not supporting SACK"); 1571 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1572 SYSCTL_CHILDREN(rack_misc), 1573 OID_AUTO, "prr_sendalot", CTLFLAG_RW, 1574 &rack_send_a_lot_in_prr, 1, 1575 "Send a lot in prr"); 1576 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1577 SYSCTL_CHILDREN(rack_misc), 1578 OID_AUTO, "autoscale", CTLFLAG_RW, 1579 &rack_autosndbuf_inc, 20, 1580 "What percentage should rack scale up its snd buffer by?"); 1581 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1582 SYSCTL_CHILDREN(rack_misc), 1583 OID_AUTO, "rnds_for_rxt_clamp", CTLFLAG_RW, 1584 &rack_rxt_min_rnds, 10, 1585 "Number of rounds needed between RTT clamps due to high loss rates"); 1586 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1587 SYSCTL_CHILDREN(rack_misc), 1588 OID_AUTO, "rnds_for_unclamp", CTLFLAG_RW, 1589 &rack_unclamp_round_thresh, 100, 1590 "Number of rounds needed with no loss to unclamp"); 1591 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1592 SYSCTL_CHILDREN(rack_misc), 1593 OID_AUTO, "rxt_threshs_for_unclamp", CTLFLAG_RW, 1594 &rack_unclamp_rxt_thresh, 5, 1595 "Percentage of retransmits we need to be under to unclamp (5 = .5 percent)\n"); 1596 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1597 SYSCTL_CHILDREN(rack_misc), 1598 OID_AUTO, "clamp_ss_upper", CTLFLAG_RW, 1599 &rack_clamp_ss_upper, 110, 1600 "Clamp percentage ceiling in SS?"); 1601 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1602 SYSCTL_CHILDREN(rack_misc), 1603 OID_AUTO, "clamp_ca_upper", CTLFLAG_RW, 1604 &rack_clamp_ca_upper, 110, 1605 "Clamp percentage ceiling in CA?"); 1606 /* Sack Attacker detection stuff */ 1607 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1608 SYSCTL_CHILDREN(rack_attack), 1609 OID_AUTO, "merge_out", CTLFLAG_RW, 1610 &rack_merge_out_sacks_on_attack, 0, 1611 "Do we merge the sendmap when we decide we are being attacked?"); 1612 1613 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1614 SYSCTL_CHILDREN(rack_attack), 1615 OID_AUTO, "detect_highsackratio", CTLFLAG_RW, 1616 &rack_highest_sack_thresh_seen, 0, 1617 "Highest sack to ack ratio seen"); 1618 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1619 SYSCTL_CHILDREN(rack_attack), 1620 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, 1621 &rack_highest_move_thresh_seen, 0, 1622 "Highest move to non-move ratio seen"); 1623 rack_ack_total = counter_u64_alloc(M_WAITOK); 1624 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1625 SYSCTL_CHILDREN(rack_attack), 1626 OID_AUTO, "acktotal", CTLFLAG_RD, 1627 &rack_ack_total, 1628 "Total number of Ack's"); 1629 rack_express_sack = counter_u64_alloc(M_WAITOK); 1630 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1631 SYSCTL_CHILDREN(rack_attack), 1632 OID_AUTO, "exp_sacktotal", CTLFLAG_RD, 1633 &rack_express_sack, 1634 "Total expresss number of Sack's"); 1635 rack_sack_total = counter_u64_alloc(M_WAITOK); 1636 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1637 SYSCTL_CHILDREN(rack_attack), 1638 OID_AUTO, "sacktotal", CTLFLAG_RD, 1639 &rack_sack_total, 1640 "Total number of SACKs"); 1641 rack_move_none = counter_u64_alloc(M_WAITOK); 1642 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1643 SYSCTL_CHILDREN(rack_attack), 1644 OID_AUTO, "move_none", CTLFLAG_RD, 1645 &rack_move_none, 1646 "Total number of SACK index reuse of positions under threshold"); 1647 rack_move_some = counter_u64_alloc(M_WAITOK); 1648 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1649 SYSCTL_CHILDREN(rack_attack), 1650 OID_AUTO, "move_some", CTLFLAG_RD, 1651 &rack_move_some, 1652 "Total number of SACK index reuse of positions over threshold"); 1653 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); 1654 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1655 SYSCTL_CHILDREN(rack_attack), 1656 OID_AUTO, "attacks", CTLFLAG_RD, 1657 &rack_sack_attacks_detected, 1658 "Total number of SACK attackers that had sack disabled"); 1659 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); 1660 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1661 SYSCTL_CHILDREN(rack_attack), 1662 OID_AUTO, "reversed", CTLFLAG_RD, 1663 &rack_sack_attacks_reversed, 1664 "Total number of SACK attackers that were later determined false positive"); 1665 rack_sack_attacks_suspect = counter_u64_alloc(M_WAITOK); 1666 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1667 SYSCTL_CHILDREN(rack_attack), 1668 OID_AUTO, "suspect", CTLFLAG_RD, 1669 &rack_sack_attacks_suspect, 1670 "Total number of SACKs that triggered early detection"); 1671 1672 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); 1673 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1674 SYSCTL_CHILDREN(rack_attack), 1675 OID_AUTO, "nextmerge", CTLFLAG_RD, 1676 &rack_sack_used_next_merge, 1677 "Total number of times we used the next merge"); 1678 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); 1679 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1680 SYSCTL_CHILDREN(rack_attack), 1681 OID_AUTO, "prevmerge", CTLFLAG_RD, 1682 &rack_sack_used_prev_merge, 1683 "Total number of times we used the prev merge"); 1684 /* Counters */ 1685 rack_total_bytes = counter_u64_alloc(M_WAITOK); 1686 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1687 SYSCTL_CHILDREN(rack_counters), 1688 OID_AUTO, "totalbytes", CTLFLAG_RD, 1689 &rack_total_bytes, 1690 "Total number of bytes sent"); 1691 rack_fto_send = counter_u64_alloc(M_WAITOK); 1692 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1693 SYSCTL_CHILDREN(rack_counters), 1694 OID_AUTO, "fto_send", CTLFLAG_RD, 1695 &rack_fto_send, "Total number of rack_fast_output sends"); 1696 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK); 1697 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1698 SYSCTL_CHILDREN(rack_counters), 1699 OID_AUTO, "fto_rsm_send", CTLFLAG_RD, 1700 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends"); 1701 rack_nfto_resend = counter_u64_alloc(M_WAITOK); 1702 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1703 SYSCTL_CHILDREN(rack_counters), 1704 OID_AUTO, "nfto_resend", CTLFLAG_RD, 1705 &rack_nfto_resend, "Total number of rack_output retransmissions"); 1706 rack_non_fto_send = counter_u64_alloc(M_WAITOK); 1707 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1708 SYSCTL_CHILDREN(rack_counters), 1709 OID_AUTO, "nfto_send", CTLFLAG_RD, 1710 &rack_non_fto_send, "Total number of rack_output first sends"); 1711 rack_extended_rfo = counter_u64_alloc(M_WAITOK); 1712 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1713 SYSCTL_CHILDREN(rack_counters), 1714 OID_AUTO, "rfo_extended", CTLFLAG_RD, 1715 &rack_extended_rfo, "Total number of times we extended rfo"); 1716 1717 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK); 1718 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1719 SYSCTL_CHILDREN(rack_counters), 1720 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD, 1721 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing"); 1722 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK); 1723 1724 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1725 SYSCTL_CHILDREN(rack_counters), 1726 OID_AUTO, "hwpace_lost", CTLFLAG_RD, 1727 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing"); 1728 rack_tlp_tot = counter_u64_alloc(M_WAITOK); 1729 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1730 SYSCTL_CHILDREN(rack_counters), 1731 OID_AUTO, "tlp_to_total", CTLFLAG_RD, 1732 &rack_tlp_tot, 1733 "Total number of tail loss probe expirations"); 1734 rack_tlp_newdata = counter_u64_alloc(M_WAITOK); 1735 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1736 SYSCTL_CHILDREN(rack_counters), 1737 OID_AUTO, "tlp_new", CTLFLAG_RD, 1738 &rack_tlp_newdata, 1739 "Total number of tail loss probe sending new data"); 1740 rack_tlp_retran = counter_u64_alloc(M_WAITOK); 1741 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1742 SYSCTL_CHILDREN(rack_counters), 1743 OID_AUTO, "tlp_retran", CTLFLAG_RD, 1744 &rack_tlp_retran, 1745 "Total number of tail loss probe sending retransmitted data"); 1746 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); 1747 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1748 SYSCTL_CHILDREN(rack_counters), 1749 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, 1750 &rack_tlp_retran_bytes, 1751 "Total bytes of tail loss probe sending retransmitted data"); 1752 rack_to_tot = counter_u64_alloc(M_WAITOK); 1753 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1754 SYSCTL_CHILDREN(rack_counters), 1755 OID_AUTO, "rack_to_tot", CTLFLAG_RD, 1756 &rack_to_tot, 1757 "Total number of times the rack to expired"); 1758 rack_saw_enobuf = counter_u64_alloc(M_WAITOK); 1759 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1760 SYSCTL_CHILDREN(rack_counters), 1761 OID_AUTO, "saw_enobufs", CTLFLAG_RD, 1762 &rack_saw_enobuf, 1763 "Total number of times a sends returned enobuf for non-hdwr paced connections"); 1764 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK); 1765 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1766 SYSCTL_CHILDREN(rack_counters), 1767 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD, 1768 &rack_saw_enobuf_hw, 1769 "Total number of times a send returned enobuf for hdwr paced connections"); 1770 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); 1771 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1772 SYSCTL_CHILDREN(rack_counters), 1773 OID_AUTO, "saw_enetunreach", CTLFLAG_RD, 1774 &rack_saw_enetunreach, 1775 "Total number of times a send received a enetunreachable"); 1776 rack_hot_alloc = counter_u64_alloc(M_WAITOK); 1777 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1778 SYSCTL_CHILDREN(rack_counters), 1779 OID_AUTO, "alloc_hot", CTLFLAG_RD, 1780 &rack_hot_alloc, 1781 "Total allocations from the top of our list"); 1782 rack_to_alloc = counter_u64_alloc(M_WAITOK); 1783 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1784 SYSCTL_CHILDREN(rack_counters), 1785 OID_AUTO, "allocs", CTLFLAG_RD, 1786 &rack_to_alloc, 1787 "Total allocations of tracking structures"); 1788 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); 1789 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1790 SYSCTL_CHILDREN(rack_counters), 1791 OID_AUTO, "allochard", CTLFLAG_RD, 1792 &rack_to_alloc_hard, 1793 "Total allocations done with sleeping the hard way"); 1794 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); 1795 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1796 SYSCTL_CHILDREN(rack_counters), 1797 OID_AUTO, "allocemerg", CTLFLAG_RD, 1798 &rack_to_alloc_emerg, 1799 "Total allocations done from emergency cache"); 1800 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); 1801 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1802 SYSCTL_CHILDREN(rack_counters), 1803 OID_AUTO, "alloc_limited", CTLFLAG_RD, 1804 &rack_to_alloc_limited, 1805 "Total allocations dropped due to limit"); 1806 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); 1807 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1808 SYSCTL_CHILDREN(rack_counters), 1809 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, 1810 &rack_alloc_limited_conns, 1811 "Connections with allocations dropped due to limit"); 1812 rack_split_limited = counter_u64_alloc(M_WAITOK); 1813 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1814 SYSCTL_CHILDREN(rack_counters), 1815 OID_AUTO, "split_limited", CTLFLAG_RD, 1816 &rack_split_limited, 1817 "Split allocations dropped due to limit"); 1818 rack_rxt_clamps_cwnd = counter_u64_alloc(M_WAITOK); 1819 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1820 SYSCTL_CHILDREN(rack_counters), 1821 OID_AUTO, "rxt_clamps_cwnd", CTLFLAG_RD, 1822 &rack_rxt_clamps_cwnd, 1823 "Number of times that excessive rxt clamped the cwnd down"); 1824 rack_rxt_clamps_cwnd_uniq = counter_u64_alloc(M_WAITOK); 1825 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1826 SYSCTL_CHILDREN(rack_counters), 1827 OID_AUTO, "rxt_clamps_cwnd_uniq", CTLFLAG_RD, 1828 &rack_rxt_clamps_cwnd_uniq, 1829 "Number of connections that have had excessive rxt clamped the cwnd down"); 1830 rack_persists_sends = counter_u64_alloc(M_WAITOK); 1831 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1832 SYSCTL_CHILDREN(rack_counters), 1833 OID_AUTO, "persist_sends", CTLFLAG_RD, 1834 &rack_persists_sends, 1835 "Number of times we sent a persist probe"); 1836 rack_persists_acks = counter_u64_alloc(M_WAITOK); 1837 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1838 SYSCTL_CHILDREN(rack_counters), 1839 OID_AUTO, "persist_acks", CTLFLAG_RD, 1840 &rack_persists_acks, 1841 "Number of times a persist probe was acked"); 1842 rack_persists_loss = counter_u64_alloc(M_WAITOK); 1843 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1844 SYSCTL_CHILDREN(rack_counters), 1845 OID_AUTO, "persist_loss", CTLFLAG_RD, 1846 &rack_persists_loss, 1847 "Number of times we detected a lost persist probe (no ack)"); 1848 rack_persists_lost_ends = counter_u64_alloc(M_WAITOK); 1849 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1850 SYSCTL_CHILDREN(rack_counters), 1851 OID_AUTO, "persist_loss_ends", CTLFLAG_RD, 1852 &rack_persists_lost_ends, 1853 "Number of lost persist probe (no ack) that the run ended with a PERSIST abort"); 1854 #ifdef INVARIANTS 1855 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK); 1856 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1857 SYSCTL_CHILDREN(rack_counters), 1858 OID_AUTO, "map_adjust_req", CTLFLAG_RD, 1859 &rack_adjust_map_bw, 1860 "Number of times we hit the case where the sb went up and down on a sendmap entry"); 1861 #endif 1862 rack_multi_single_eq = counter_u64_alloc(M_WAITOK); 1863 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1864 SYSCTL_CHILDREN(rack_counters), 1865 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD, 1866 &rack_multi_single_eq, 1867 "Number of compressed acks total represented"); 1868 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK); 1869 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1870 SYSCTL_CHILDREN(rack_counters), 1871 OID_AUTO, "cmp_ack_not", CTLFLAG_RD, 1872 &rack_proc_non_comp_ack, 1873 "Number of non compresseds acks that we processed"); 1874 1875 1876 rack_sack_proc_all = counter_u64_alloc(M_WAITOK); 1877 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1878 SYSCTL_CHILDREN(rack_counters), 1879 OID_AUTO, "sack_long", CTLFLAG_RD, 1880 &rack_sack_proc_all, 1881 "Total times we had to walk whole list for sack processing"); 1882 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); 1883 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1884 SYSCTL_CHILDREN(rack_counters), 1885 OID_AUTO, "sack_restart", CTLFLAG_RD, 1886 &rack_sack_proc_restart, 1887 "Total times we had to walk whole list due to a restart"); 1888 rack_sack_proc_short = counter_u64_alloc(M_WAITOK); 1889 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1890 SYSCTL_CHILDREN(rack_counters), 1891 OID_AUTO, "sack_short", CTLFLAG_RD, 1892 &rack_sack_proc_short, 1893 "Total times we took shortcut for sack processing"); 1894 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); 1895 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1896 SYSCTL_CHILDREN(rack_attack), 1897 OID_AUTO, "skipacked", CTLFLAG_RD, 1898 &rack_sack_skipped_acked, 1899 "Total number of times we skipped previously sacked"); 1900 rack_sack_splits = counter_u64_alloc(M_WAITOK); 1901 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1902 SYSCTL_CHILDREN(rack_attack), 1903 OID_AUTO, "ofsplit", CTLFLAG_RD, 1904 &rack_sack_splits, 1905 "Total number of times we did the old fashion tree split"); 1906 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); 1907 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1908 SYSCTL_CHILDREN(rack_counters), 1909 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, 1910 &rack_input_idle_reduces, 1911 "Total number of idle reductions on input"); 1912 rack_collapsed_win_seen = counter_u64_alloc(M_WAITOK); 1913 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1914 SYSCTL_CHILDREN(rack_counters), 1915 OID_AUTO, "collapsed_win_seen", CTLFLAG_RD, 1916 &rack_collapsed_win_seen, 1917 "Total number of collapsed window events seen (where our window shrinks)"); 1918 1919 rack_collapsed_win = counter_u64_alloc(M_WAITOK); 1920 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1921 SYSCTL_CHILDREN(rack_counters), 1922 OID_AUTO, "collapsed_win", CTLFLAG_RD, 1923 &rack_collapsed_win, 1924 "Total number of collapsed window events where we mark packets"); 1925 rack_collapsed_win_rxt = counter_u64_alloc(M_WAITOK); 1926 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1927 SYSCTL_CHILDREN(rack_counters), 1928 OID_AUTO, "collapsed_win_rxt", CTLFLAG_RD, 1929 &rack_collapsed_win_rxt, 1930 "Total number of packets that were retransmitted"); 1931 rack_collapsed_win_rxt_bytes = counter_u64_alloc(M_WAITOK); 1932 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1933 SYSCTL_CHILDREN(rack_counters), 1934 OID_AUTO, "collapsed_win_bytes", CTLFLAG_RD, 1935 &rack_collapsed_win_rxt_bytes, 1936 "Total number of bytes that were retransmitted"); 1937 rack_try_scwnd = counter_u64_alloc(M_WAITOK); 1938 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1939 SYSCTL_CHILDREN(rack_counters), 1940 OID_AUTO, "tried_scwnd", CTLFLAG_RD, 1941 &rack_try_scwnd, 1942 "Total number of scwnd attempts"); 1943 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); 1944 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1945 OID_AUTO, "outsize", CTLFLAG_RD, 1946 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); 1947 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); 1948 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1949 OID_AUTO, "opts", CTLFLAG_RD, 1950 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); 1951 SYSCTL_ADD_PROC(&rack_sysctl_ctx, 1952 SYSCTL_CHILDREN(rack_sysctl_root), 1953 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1954 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); 1955 } 1956 1957 static uint32_t 1958 rc_init_window(struct tcp_rack *rack) 1959 { 1960 uint32_t win; 1961 1962 if (rack->rc_init_win == 0) { 1963 /* 1964 * Nothing set by the user, use the system stack 1965 * default. 1966 */ 1967 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); 1968 } 1969 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; 1970 return (win); 1971 } 1972 1973 static uint64_t 1974 rack_get_fixed_pacing_bw(struct tcp_rack *rack) 1975 { 1976 if (IN_FASTRECOVERY(rack->rc_tp->t_flags)) 1977 return (rack->r_ctl.rc_fixed_pacing_rate_rec); 1978 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 1979 return (rack->r_ctl.rc_fixed_pacing_rate_ss); 1980 else 1981 return (rack->r_ctl.rc_fixed_pacing_rate_ca); 1982 } 1983 1984 static void 1985 rack_log_hybrid_bw(struct tcp_rack *rack, uint32_t seq, uint64_t cbw, uint64_t tim, 1986 uint64_t data, uint8_t mod, uint16_t aux, 1987 struct tcp_sendfile_track *cur, int line) 1988 { 1989 #ifdef TCP_REQUEST_TRK 1990 int do_log = 0; 1991 1992 /* 1993 * The rate cap one is noisy and only should come out when normal BB logging 1994 * is enabled, the other logs (not RATE_CAP and NOT CAP_CALC) only come out 1995 * once per chunk and make up the BBpoint that can be turned on by the client. 1996 */ 1997 if ((mod == HYBRID_LOG_RATE_CAP) || (mod == HYBRID_LOG_CAP_CALC)) { 1998 /* 1999 * The very noisy two need to only come out when 2000 * we have verbose logging on. 2001 */ 2002 if (rack_verbose_logging != 0) 2003 do_log = tcp_bblogging_on(rack->rc_tp); 2004 else 2005 do_log = 0; 2006 } else if (mod != HYBRID_LOG_BW_MEASURE) { 2007 /* 2008 * All other less noisy logs here except the measure which 2009 * also needs to come out on the point and the log. 2010 */ 2011 do_log = tcp_bblogging_on(rack->rc_tp); 2012 } else { 2013 do_log = tcp_bblogging_point_on(rack->rc_tp, TCP_BBPOINT_REQ_LEVEL_LOGGING); 2014 } 2015 2016 if (do_log) { 2017 union tcp_log_stackspecific log; 2018 struct timeval tv; 2019 uint64_t lt_bw; 2020 2021 /* Convert our ms to a microsecond */ 2022 memset(&log, 0, sizeof(log)); 2023 2024 log.u_bbr.cwnd_gain = line; 2025 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2026 log.u_bbr.rttProp = tim; 2027 log.u_bbr.bw_inuse = cbw; 2028 log.u_bbr.delRate = rack_get_gp_est(rack); 2029 lt_bw = rack_get_lt_bw(rack); 2030 log.u_bbr.flex1 = seq; 2031 log.u_bbr.pacing_gain = aux; 2032 /* lt_bw = < flex3 | flex2 > */ 2033 log.u_bbr.flex2 = (uint32_t)(lt_bw & 0x00000000ffffffff); 2034 log.u_bbr.flex3 = (uint32_t)((lt_bw >> 32) & 0x00000000ffffffff); 2035 /* Record the last obtained us rtt in inflight */ 2036 if (cur == NULL) { 2037 /* Make sure we are looking at the right log if an overide comes in */ 2038 cur = rack->r_ctl.rc_last_sft; 2039 } 2040 if (rack->r_ctl.rack_rs.rs_flags != RACK_RTT_EMPTY) 2041 log.u_bbr.inflight = rack->r_ctl.rack_rs.rs_us_rtt; 2042 else { 2043 /* Use the last known rtt i.e. the rack-rtt */ 2044 log.u_bbr.inflight = rack->rc_rack_rtt; 2045 } 2046 if (cur != NULL) { 2047 uint64_t off; 2048 2049 log.u_bbr.cur_del_rate = cur->deadline; 2050 if ((mod == HYBRID_LOG_RATE_CAP) || (mod == HYBRID_LOG_CAP_CALC)) { 2051 /* start = < lost | pkt_epoch > */ 2052 log.u_bbr.pkt_epoch = (uint32_t)(cur->start & 0x00000000ffffffff); 2053 log.u_bbr.lost = (uint32_t)((cur->start >> 32) & 0x00000000ffffffff); 2054 log.u_bbr.flex6 = cur->start_seq; 2055 log.u_bbr.pkts_out = cur->end_seq; 2056 } else { 2057 /* start = < lost | pkt_epoch > */ 2058 log.u_bbr.pkt_epoch = (uint32_t)(cur->start & 0x00000000ffffffff); 2059 log.u_bbr.lost = (uint32_t)((cur->start >> 32) & 0x00000000ffffffff); 2060 /* end = < pkts_out | flex6 > */ 2061 log.u_bbr.flex6 = (uint32_t)(cur->end & 0x00000000ffffffff); 2062 log.u_bbr.pkts_out = (uint32_t)((cur->end >> 32) & 0x00000000ffffffff); 2063 } 2064 /* first_send = <lt_epoch | epoch> */ 2065 log.u_bbr.epoch = (uint32_t)(cur->first_send & 0x00000000ffffffff); 2066 log.u_bbr.lt_epoch = (uint32_t)((cur->first_send >> 32) & 0x00000000ffffffff); 2067 /* localtime = <delivered | applimited>*/ 2068 log.u_bbr.applimited = (uint32_t)(cur->localtime & 0x00000000ffffffff); 2069 log.u_bbr.delivered = (uint32_t)((cur->localtime >> 32) & 0x00000000ffffffff); 2070 #ifdef TCP_REQUEST_TRK 2071 off = (uint64_t)(cur) - (uint64_t)(&rack->rc_tp->t_tcpreq_info[0]); 2072 log.u_bbr.bbr_substate = (uint8_t)(off / sizeof(struct tcp_sendfile_track)); 2073 #endif 2074 log.u_bbr.flex4 = (uint32_t)(rack->rc_tp->t_sndbytes - cur->sent_at_fs); 2075 log.u_bbr.flex5 = (uint32_t)(rack->rc_tp->t_snd_rxt_bytes - cur->rxt_at_fs); 2076 log.u_bbr.flex7 = (uint16_t)cur->hybrid_flags; 2077 } else { 2078 log.u_bbr.flex7 = 0xffff; 2079 log.u_bbr.cur_del_rate = 0xffffffffffffffff; 2080 } 2081 /* 2082 * Compose bbr_state to be a bit wise 0000ADHF 2083 * where A is the always_pace flag 2084 * where D is the dgp_on flag 2085 * where H is the hybrid_mode on flag 2086 * where F is the use_fixed_rate flag. 2087 */ 2088 log.u_bbr.bbr_state = rack->rc_always_pace; 2089 log.u_bbr.bbr_state <<= 1; 2090 log.u_bbr.bbr_state |= rack->dgp_on; 2091 log.u_bbr.bbr_state <<= 1; 2092 log.u_bbr.bbr_state |= rack->rc_hybrid_mode; 2093 log.u_bbr.bbr_state <<= 1; 2094 log.u_bbr.bbr_state |= rack->use_fixed_rate; 2095 log.u_bbr.flex8 = mod; 2096 tcp_log_event(rack->rc_tp, NULL, 2097 &rack->rc_inp->inp_socket->so_rcv, 2098 &rack->rc_inp->inp_socket->so_snd, 2099 TCP_HYBRID_PACING_LOG, 0, 2100 0, &log, false, NULL, __func__, __LINE__, &tv); 2101 2102 } 2103 #endif 2104 } 2105 2106 #ifdef TCP_REQUEST_TRK 2107 static void 2108 rack_log_hybrid_sends(struct tcp_rack *rack, struct tcp_sendfile_track *cur, int line) 2109 { 2110 if (tcp_bblogging_point_on(rack->rc_tp, TCP_BBPOINT_REQ_LEVEL_LOGGING)) { 2111 union tcp_log_stackspecific log; 2112 struct timeval tv; 2113 uint64_t off; 2114 2115 /* Convert our ms to a microsecond */ 2116 memset(&log, 0, sizeof(log)); 2117 2118 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2119 log.u_bbr.cur_del_rate = rack->rc_tp->t_sndbytes; 2120 log.u_bbr.delRate = cur->sent_at_fs; 2121 log.u_bbr.rttProp = rack->rc_tp->t_snd_rxt_bytes; 2122 log.u_bbr.bw_inuse = cur->rxt_at_fs; 2123 log.u_bbr.cwnd_gain = line; 2124 off = (uint64_t)(cur) - (uint64_t)(&rack->rc_tp->t_tcpreq_info[0]); 2125 log.u_bbr.bbr_substate = (uint8_t)(off / sizeof(struct tcp_sendfile_track)); 2126 /* start = < flex1 | flex2 > */ 2127 log.u_bbr.flex2 = (uint32_t)(cur->start & 0x00000000ffffffff); 2128 log.u_bbr.flex1 = (uint32_t)((cur->start >> 32) & 0x00000000ffffffff); 2129 /* end = < flex3 | flex4 > */ 2130 log.u_bbr.flex4 = (uint32_t)(cur->end & 0x00000000ffffffff); 2131 log.u_bbr.flex3 = (uint32_t)((cur->end >> 32) & 0x00000000ffffffff); 2132 2133 /* localtime = <delivered | applimited>*/ 2134 log.u_bbr.applimited = (uint32_t)(cur->localtime & 0x00000000ffffffff); 2135 log.u_bbr.delivered = (uint32_t)((cur->localtime >> 32) & 0x00000000ffffffff); 2136 /* client timestamp = <lt_epoch | epoch>*/ 2137 log.u_bbr.epoch = (uint32_t)(cur->timestamp & 0x00000000ffffffff); 2138 log.u_bbr.lt_epoch = (uint32_t)((cur->timestamp >> 32) & 0x00000000ffffffff); 2139 /* now set all the flags in */ 2140 log.u_bbr.pkts_out = cur->hybrid_flags; 2141 log.u_bbr.flex6 = cur->flags; 2142 /* 2143 * Last send time = <flex5 | pkt_epoch> note we do not distinguish cases 2144 * where a false retransmit occurred so first_send <-> lastsend may 2145 * include longer time then it actually took if we have a false rxt. 2146 */ 2147 log.u_bbr.pkt_epoch = (uint32_t)(rack->r_ctl.last_tmit_time_acked & 0x00000000ffffffff); 2148 log.u_bbr.flex5 = (uint32_t)((rack->r_ctl.last_tmit_time_acked >> 32) & 0x00000000ffffffff); 2149 2150 log.u_bbr.flex8 = HYBRID_LOG_SENT_LOST; 2151 tcp_log_event(rack->rc_tp, NULL, 2152 &rack->rc_inp->inp_socket->so_rcv, 2153 &rack->rc_inp->inp_socket->so_snd, 2154 TCP_HYBRID_PACING_LOG, 0, 2155 0, &log, false, NULL, __func__, __LINE__, &tv); 2156 } 2157 } 2158 #endif 2159 2160 static inline uint64_t 2161 rack_compensate_for_linerate(struct tcp_rack *rack, uint64_t bw) 2162 { 2163 uint64_t ret_bw, ether; 2164 uint64_t u_segsiz; 2165 2166 ether = rack->rc_tp->t_maxseg + sizeof(struct tcphdr); 2167 if (rack->r_is_v6){ 2168 #ifdef INET6 2169 ether += sizeof(struct ip6_hdr); 2170 #endif 2171 ether += 14; /* eheader size 6+6+2 */ 2172 } else { 2173 #ifdef INET 2174 ether += sizeof(struct ip); 2175 #endif 2176 ether += 14; /* eheader size 6+6+2 */ 2177 } 2178 u_segsiz = (uint64_t)min(ctf_fixed_maxseg(rack->rc_tp), rack->r_ctl.rc_pace_min_segs); 2179 ret_bw = bw; 2180 ret_bw *= ether; 2181 ret_bw /= u_segsiz; 2182 return (ret_bw); 2183 } 2184 2185 static void 2186 rack_rate_cap_bw(struct tcp_rack *rack, uint64_t *bw, int *capped) 2187 { 2188 #ifdef TCP_REQUEST_TRK 2189 struct timeval tv; 2190 uint64_t timenow, timeleft, lenleft, lengone, calcbw; 2191 #endif 2192 2193 if (rack->r_ctl.bw_rate_cap == 0) 2194 return; 2195 #ifdef TCP_REQUEST_TRK 2196 if (rack->rc_catch_up && rack->rc_hybrid_mode && 2197 (rack->r_ctl.rc_last_sft != NULL)) { 2198 /* 2199 * We have a dynamic cap. The original target 2200 * is in bw_rate_cap, but we need to look at 2201 * how long it is until we hit the deadline. 2202 */ 2203 struct tcp_sendfile_track *ent; 2204 2205 ent = rack->r_ctl.rc_last_sft; 2206 microuptime(&tv); 2207 timenow = tcp_tv_to_lusectick(&tv); 2208 if (timenow >= ent->deadline) { 2209 /* No time left we do DGP only */ 2210 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2211 0, 0, 0, HYBRID_LOG_OUTOFTIME, 0, ent, __LINE__); 2212 rack->r_ctl.bw_rate_cap = 0; 2213 return; 2214 } 2215 /* We have the time */ 2216 timeleft = rack->r_ctl.rc_last_sft->deadline - timenow; 2217 if (timeleft < HPTS_MSEC_IN_SEC) { 2218 /* If there is less than a ms left just use DGPs rate */ 2219 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2220 0, timeleft, 0, HYBRID_LOG_OUTOFTIME, 0, ent, __LINE__); 2221 rack->r_ctl.bw_rate_cap = 0; 2222 return; 2223 } 2224 /* 2225 * Now lets find the amount of data left to send. 2226 * 2227 * Now ideally we want to use the end_seq to figure out how much more 2228 * but it might not be possible (only if we have the TRACK_FG_COMP on the entry.. 2229 */ 2230 if (ent->flags & TCP_TRK_TRACK_FLG_COMP) { 2231 if (SEQ_GT(ent->end_seq, rack->rc_tp->snd_una)) 2232 lenleft = ent->end_seq - rack->rc_tp->snd_una; 2233 else { 2234 /* TSNH, we should catch it at the send */ 2235 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2236 0, timeleft, 0, HYBRID_LOG_CAPERROR, 0, ent, __LINE__); 2237 rack->r_ctl.bw_rate_cap = 0; 2238 return; 2239 } 2240 } else { 2241 /* 2242 * The hard way, figure out how much is gone and then 2243 * take that away from the total the client asked for 2244 * (thats off by tls overhead if this is tls). 2245 */ 2246 if (SEQ_GT(rack->rc_tp->snd_una, ent->start_seq)) 2247 lengone = rack->rc_tp->snd_una - ent->start_seq; 2248 else 2249 lengone = 0; 2250 if (lengone < (ent->end - ent->start)) 2251 lenleft = (ent->end - ent->start) - lengone; 2252 else { 2253 /* TSNH, we should catch it at the send */ 2254 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2255 0, timeleft, lengone, HYBRID_LOG_CAPERROR, 0, ent, __LINE__); 2256 rack->r_ctl.bw_rate_cap = 0; 2257 return; 2258 } 2259 } 2260 if (lenleft == 0) { 2261 /* We have it all sent */ 2262 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2263 0, timeleft, lenleft, HYBRID_LOG_ALLSENT, 0, ent, __LINE__); 2264 if (rack->r_ctl.bw_rate_cap) 2265 goto normal_ratecap; 2266 else 2267 return; 2268 } 2269 calcbw = lenleft * HPTS_USEC_IN_SEC; 2270 calcbw /= timeleft; 2271 /* Now we must compensate for IP/TCP overhead */ 2272 calcbw = rack_compensate_for_linerate(rack, calcbw); 2273 /* Update the bit rate cap */ 2274 rack->r_ctl.bw_rate_cap = calcbw; 2275 if ((rack->r_ctl.rc_last_sft->hybrid_flags & TCP_HYBRID_PACING_S_MSS) && 2276 (rack_hybrid_allow_set_maxseg == 1) && 2277 ((rack->r_ctl.rc_last_sft->hybrid_flags & TCP_HYBRID_PACING_SETMSS) == 0)) { 2278 /* Lets set in a smaller mss possibly here to match our rate-cap */ 2279 uint32_t orig_max; 2280 2281 orig_max = rack->r_ctl.rc_pace_max_segs; 2282 rack->r_ctl.rc_last_sft->hybrid_flags |= TCP_HYBRID_PACING_SETMSS; 2283 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, calcbw, ctf_fixed_maxseg(rack->rc_tp)); 2284 rack_log_type_pacing_sizes(rack->rc_tp, rack, rack->r_ctl.client_suggested_maxseg, orig_max, __LINE__, 5); 2285 } 2286 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2287 calcbw, timeleft, lenleft, HYBRID_LOG_CAP_CALC, 0, ent, __LINE__); 2288 if ((calcbw > 0) && (*bw > calcbw)) { 2289 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2290 *bw, ent->deadline, lenleft, HYBRID_LOG_RATE_CAP, 0, ent, __LINE__); 2291 *capped = 1; 2292 *bw = calcbw; 2293 } 2294 return; 2295 } 2296 normal_ratecap: 2297 #endif 2298 if ((rack->r_ctl.bw_rate_cap > 0) && (*bw > rack->r_ctl.bw_rate_cap)) { 2299 #ifdef TCP_REQUEST_TRK 2300 if (rack->rc_hybrid_mode && 2301 rack->rc_catch_up && 2302 (rack->r_ctl.rc_last_sft->hybrid_flags & TCP_HYBRID_PACING_S_MSS) && 2303 (rack_hybrid_allow_set_maxseg == 1) && 2304 ((rack->r_ctl.rc_last_sft->hybrid_flags & TCP_HYBRID_PACING_SETMSS) == 0)) { 2305 /* Lets set in a smaller mss possibly here to match our rate-cap */ 2306 uint32_t orig_max; 2307 2308 orig_max = rack->r_ctl.rc_pace_max_segs; 2309 rack->r_ctl.rc_last_sft->hybrid_flags |= TCP_HYBRID_PACING_SETMSS; 2310 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, rack->r_ctl.bw_rate_cap, ctf_fixed_maxseg(rack->rc_tp)); 2311 rack_log_type_pacing_sizes(rack->rc_tp, rack, rack->r_ctl.client_suggested_maxseg, orig_max, __LINE__, 5); 2312 } 2313 #endif 2314 *capped = 1; 2315 *bw = rack->r_ctl.bw_rate_cap; 2316 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 2317 *bw, 0, 0, 2318 HYBRID_LOG_RATE_CAP, 1, NULL, __LINE__); 2319 } 2320 } 2321 2322 static uint64_t 2323 rack_get_gp_est(struct tcp_rack *rack) 2324 { 2325 uint64_t bw, lt_bw, ret_bw; 2326 2327 if (rack->rc_gp_filled == 0) { 2328 /* 2329 * We have yet no b/w measurement, 2330 * if we have a user set initial bw 2331 * return it. If we don't have that and 2332 * we have an srtt, use the tcp IW (10) to 2333 * calculate a fictional b/w over the SRTT 2334 * which is more or less a guess. Note 2335 * we don't use our IW from rack on purpose 2336 * so if we have like IW=30, we are not 2337 * calculating a "huge" b/w. 2338 */ 2339 uint64_t srtt; 2340 2341 lt_bw = rack_get_lt_bw(rack); 2342 if (lt_bw) { 2343 /* 2344 * No goodput bw but a long-term b/w does exist 2345 * lets use that. 2346 */ 2347 ret_bw = lt_bw; 2348 goto compensate; 2349 } 2350 if (rack->r_ctl.init_rate) 2351 return (rack->r_ctl.init_rate); 2352 2353 /* Ok lets come up with the IW guess, if we have a srtt */ 2354 if (rack->rc_tp->t_srtt == 0) { 2355 /* 2356 * Go with old pacing method 2357 * i.e. burst mitigation only. 2358 */ 2359 return (0); 2360 } 2361 /* Ok lets get the initial TCP win (not racks) */ 2362 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); 2363 srtt = (uint64_t)rack->rc_tp->t_srtt; 2364 bw *= (uint64_t)USECS_IN_SECOND; 2365 bw /= srtt; 2366 ret_bw = bw; 2367 goto compensate; 2368 2369 } 2370 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 2371 /* Averaging is done, we can return the value */ 2372 bw = rack->r_ctl.gp_bw; 2373 } else { 2374 /* Still doing initial average must calculate */ 2375 bw = rack->r_ctl.gp_bw / max(rack->r_ctl.num_measurements, 1); 2376 } 2377 lt_bw = rack_get_lt_bw(rack); 2378 if (lt_bw == 0) { 2379 /* If we don't have one then equate it to the gp_bw */ 2380 lt_bw = rack->r_ctl.gp_bw; 2381 } 2382 if ((rack->r_cwnd_was_clamped == 1) && (rack->r_clamped_gets_lower > 0)){ 2383 /* if clamped take the lowest */ 2384 if (lt_bw < bw) 2385 ret_bw = lt_bw; 2386 else 2387 ret_bw = bw; 2388 } else { 2389 /* If not set for clamped to get lowest, take the highest */ 2390 if (lt_bw > bw) 2391 ret_bw = lt_bw; 2392 else 2393 ret_bw = bw; 2394 } 2395 /* 2396 * Now lets compensate based on the TCP/IP overhead. Our 2397 * Goodput estimate does not include this so we must pace out 2398 * a bit faster since our pacing calculations do. The pacing 2399 * calculations use the base ETHERNET_SEGMENT_SIZE and the segsiz 2400 * we are using to do this, so we do that here in the opposite 2401 * direction as well. This means that if we are tunneled and the 2402 * segsiz is say 1200 bytes we will get quite a boost, but its 2403 * compensated for in the pacing time the opposite way. 2404 */ 2405 compensate: 2406 ret_bw = rack_compensate_for_linerate(rack, ret_bw); 2407 return(ret_bw); 2408 } 2409 2410 2411 static uint64_t 2412 rack_get_bw(struct tcp_rack *rack) 2413 { 2414 uint64_t bw; 2415 2416 if (rack->use_fixed_rate) { 2417 /* Return the fixed pacing rate */ 2418 return (rack_get_fixed_pacing_bw(rack)); 2419 } 2420 bw = rack_get_gp_est(rack); 2421 return (bw); 2422 } 2423 2424 static uint16_t 2425 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) 2426 { 2427 if (rack->use_fixed_rate) { 2428 return (100); 2429 } else if (rack->in_probe_rtt && (rsm == NULL)) 2430 return (rack->r_ctl.rack_per_of_gp_probertt); 2431 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) && 2432 rack->r_ctl.rack_per_of_gp_rec)) { 2433 if (rsm) { 2434 /* a retransmission always use the recovery rate */ 2435 return (rack->r_ctl.rack_per_of_gp_rec); 2436 } else if (rack->rack_rec_nonrxt_use_cr) { 2437 /* Directed to use the configured rate */ 2438 goto configured_rate; 2439 } else if (rack->rack_no_prr && 2440 (rack->r_ctl.rack_per_of_gp_rec > 100)) { 2441 /* No PRR, lets just use the b/w estimate only */ 2442 return (100); 2443 } else { 2444 /* 2445 * Here we may have a non-retransmit but we 2446 * have no overrides, so just use the recovery 2447 * rate (prr is in effect). 2448 */ 2449 return (rack->r_ctl.rack_per_of_gp_rec); 2450 } 2451 } 2452 configured_rate: 2453 /* For the configured rate we look at our cwnd vs the ssthresh */ 2454 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 2455 return (rack->r_ctl.rack_per_of_gp_ss); 2456 else 2457 return (rack->r_ctl.rack_per_of_gp_ca); 2458 } 2459 2460 static void 2461 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6) 2462 { 2463 /* 2464 * Types of logs (mod value) 2465 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit. 2466 * 2 = a dsack round begins, persist is reset to 16. 2467 * 3 = a dsack round ends 2468 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh 2469 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack 2470 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh. 2471 */ 2472 if (tcp_bblogging_on(rack->rc_tp)) { 2473 union tcp_log_stackspecific log; 2474 struct timeval tv; 2475 2476 memset(&log, 0, sizeof(log)); 2477 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based; 2478 log.u_bbr.flex1 <<= 1; 2479 log.u_bbr.flex1 |= rack->rc_rack_use_dsack; 2480 log.u_bbr.flex1 <<= 1; 2481 log.u_bbr.flex1 |= rack->rc_dsack_round_seen; 2482 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end; 2483 log.u_bbr.flex3 = rack->r_ctl.num_dsack; 2484 log.u_bbr.flex4 = flex4; 2485 log.u_bbr.flex5 = flex5; 2486 log.u_bbr.flex6 = flex6; 2487 log.u_bbr.flex7 = rack->r_ctl.dsack_persist; 2488 log.u_bbr.flex8 = mod; 2489 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2490 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2491 &rack->rc_inp->inp_socket->so_rcv, 2492 &rack->rc_inp->inp_socket->so_snd, 2493 RACK_DSACK_HANDLING, 0, 2494 0, &log, false, &tv); 2495 } 2496 } 2497 2498 static void 2499 rack_log_hdwr_pacing(struct tcp_rack *rack, 2500 uint64_t rate, uint64_t hw_rate, int line, 2501 int error, uint16_t mod) 2502 { 2503 if (tcp_bblogging_on(rack->rc_tp)) { 2504 union tcp_log_stackspecific log; 2505 struct timeval tv; 2506 const struct ifnet *ifp; 2507 2508 memset(&log, 0, sizeof(log)); 2509 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); 2510 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); 2511 if (rack->r_ctl.crte) { 2512 ifp = rack->r_ctl.crte->ptbl->rs_ifp; 2513 } else if (rack->rc_inp->inp_route.ro_nh && 2514 rack->rc_inp->inp_route.ro_nh->nh_ifp) { 2515 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp; 2516 } else 2517 ifp = NULL; 2518 if (ifp) { 2519 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); 2520 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); 2521 } 2522 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2523 log.u_bbr.bw_inuse = rate; 2524 log.u_bbr.flex5 = line; 2525 log.u_bbr.flex6 = error; 2526 log.u_bbr.flex7 = mod; 2527 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; 2528 log.u_bbr.flex8 = rack->use_fixed_rate; 2529 log.u_bbr.flex8 <<= 1; 2530 log.u_bbr.flex8 |= rack->rack_hdrw_pacing; 2531 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 2532 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate; 2533 if (rack->r_ctl.crte) 2534 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate; 2535 else 2536 log.u_bbr.cur_del_rate = 0; 2537 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req; 2538 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2539 &rack->rc_inp->inp_socket->so_rcv, 2540 &rack->rc_inp->inp_socket->so_snd, 2541 BBR_LOG_HDWR_PACE, 0, 2542 0, &log, false, &tv); 2543 } 2544 } 2545 2546 static uint64_t 2547 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped) 2548 { 2549 /* 2550 * We allow rack_per_of_gp_xx to dictate our bw rate we want. 2551 */ 2552 uint64_t bw_est, high_rate; 2553 uint64_t gain; 2554 2555 if ((rack->r_pacing_discount == 0) || 2556 (rack_full_buffer_discount == 0)) { 2557 /* 2558 * No buffer level based discount from client buffer 2559 * level is enabled or the feature is disabled. 2560 */ 2561 gain = (uint64_t)rack_get_output_gain(rack, rsm); 2562 bw_est = bw * gain; 2563 bw_est /= (uint64_t)100; 2564 } else { 2565 /* 2566 * We have a discount in place apply it with 2567 * just a 100% gain (we get no boost if the buffer 2568 * is full). 2569 */ 2570 uint64_t discount; 2571 2572 discount = bw * (uint64_t)(rack_full_buffer_discount * rack->r_ctl.pacing_discount_amm); 2573 discount /= 100; 2574 /* What %% of the b/w do we discount */ 2575 bw_est = bw - discount; 2576 } 2577 /* Never fall below the minimum (def 64kbps) */ 2578 if (bw_est < RACK_MIN_BW) 2579 bw_est = RACK_MIN_BW; 2580 if (rack->r_rack_hw_rate_caps) { 2581 /* Rate caps are in place */ 2582 if (rack->r_ctl.crte != NULL) { 2583 /* We have a hdwr rate already */ 2584 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 2585 if (bw_est >= high_rate) { 2586 /* We are capping bw at the highest rate table entry */ 2587 if (rack_hw_rate_cap_per && 2588 (((high_rate * (100 + rack_hw_rate_cap_per)) / 100) < bw_est)) { 2589 rack->r_rack_hw_rate_caps = 0; 2590 goto done; 2591 } 2592 rack_log_hdwr_pacing(rack, 2593 bw_est, high_rate, __LINE__, 2594 0, 3); 2595 bw_est = high_rate; 2596 if (capped) 2597 *capped = 1; 2598 } 2599 } else if ((rack->rack_hdrw_pacing == 0) && 2600 (rack->rack_hdw_pace_ena) && 2601 (rack->rack_attempt_hdwr_pace == 0) && 2602 (rack->rc_inp->inp_route.ro_nh != NULL) && 2603 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 2604 /* 2605 * Special case, we have not yet attempted hardware 2606 * pacing, and yet we may, when we do, find out if we are 2607 * above the highest rate. We need to know the maxbw for the interface 2608 * in question (if it supports ratelimiting). We get back 2609 * a 0, if the interface is not found in the RL lists. 2610 */ 2611 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 2612 if (high_rate) { 2613 /* Yep, we have a rate is it above this rate? */ 2614 if (bw_est > high_rate) { 2615 bw_est = high_rate; 2616 if (capped) 2617 *capped = 1; 2618 } 2619 } 2620 } 2621 } 2622 done: 2623 return (bw_est); 2624 } 2625 2626 static void 2627 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) 2628 { 2629 if (tcp_bblogging_on(rack->rc_tp)) { 2630 union tcp_log_stackspecific log; 2631 struct timeval tv; 2632 2633 if (rack->sack_attack_disable > 0) 2634 goto log_anyway; 2635 if ((mod != 1) && (rack_verbose_logging == 0)) { 2636 /* 2637 * We get 3 values currently for mod 2638 * 1 - We are retransmitting and this tells the reason. 2639 * 2 - We are clearing a dup-ack count. 2640 * 3 - We are incrementing a dup-ack count. 2641 * 2642 * The clear/increment are only logged 2643 * if you have BBverbose on. 2644 */ 2645 return; 2646 } 2647 log_anyway: 2648 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2649 log.u_bbr.flex1 = tsused; 2650 log.u_bbr.flex2 = thresh; 2651 log.u_bbr.flex3 = rsm->r_flags; 2652 log.u_bbr.flex4 = rsm->r_dupack; 2653 log.u_bbr.flex5 = rsm->r_start; 2654 log.u_bbr.flex6 = rsm->r_end; 2655 log.u_bbr.flex8 = mod; 2656 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2657 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2658 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2659 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2660 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2661 log.u_bbr.pacing_gain = rack->r_must_retran; 2662 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2663 &rack->rc_inp->inp_socket->so_rcv, 2664 &rack->rc_inp->inp_socket->so_snd, 2665 BBR_LOG_SETTINGS_CHG, 0, 2666 0, &log, false, &tv); 2667 } 2668 } 2669 2670 static void 2671 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) 2672 { 2673 if (tcp_bblogging_on(rack->rc_tp)) { 2674 union tcp_log_stackspecific log; 2675 struct timeval tv; 2676 2677 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2678 log.u_bbr.flex1 = rack->rc_tp->t_srtt; 2679 log.u_bbr.flex2 = to; 2680 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; 2681 log.u_bbr.flex4 = slot; 2682 log.u_bbr.flex5 = rack->rc_tp->t_hpts_slot; 2683 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2684 log.u_bbr.flex7 = rack->rc_in_persist; 2685 log.u_bbr.flex8 = which; 2686 if (rack->rack_no_prr) 2687 log.u_bbr.pkts_out = 0; 2688 else 2689 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 2690 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2691 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2692 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2693 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2694 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2695 log.u_bbr.pacing_gain = rack->r_must_retran; 2696 log.u_bbr.cwnd_gain = rack->rack_deferred_inited; 2697 log.u_bbr.pkt_epoch = rack->rc_has_collapsed; 2698 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift; 2699 log.u_bbr.lost = rack_rto_min; 2700 log.u_bbr.epoch = rack->r_ctl.roundends; 2701 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2702 &rack->rc_inp->inp_socket->so_rcv, 2703 &rack->rc_inp->inp_socket->so_snd, 2704 BBR_LOG_TIMERSTAR, 0, 2705 0, &log, false, &tv); 2706 } 2707 } 2708 2709 static void 2710 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) 2711 { 2712 if (tcp_bblogging_on(rack->rc_tp)) { 2713 union tcp_log_stackspecific log; 2714 struct timeval tv; 2715 2716 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2717 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2718 log.u_bbr.flex8 = to_num; 2719 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; 2720 log.u_bbr.flex2 = rack->rc_rack_rtt; 2721 if (rsm == NULL) 2722 log.u_bbr.flex3 = 0; 2723 else 2724 log.u_bbr.flex3 = rsm->r_end - rsm->r_start; 2725 if (rack->rack_no_prr) 2726 log.u_bbr.flex5 = 0; 2727 else 2728 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2729 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2730 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2731 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2732 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2733 log.u_bbr.pacing_gain = rack->r_must_retran; 2734 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2735 &rack->rc_inp->inp_socket->so_rcv, 2736 &rack->rc_inp->inp_socket->so_snd, 2737 BBR_LOG_RTO, 0, 2738 0, &log, false, &tv); 2739 } 2740 } 2741 2742 static void 2743 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, 2744 struct rack_sendmap *prev, 2745 struct rack_sendmap *rsm, 2746 struct rack_sendmap *next, 2747 int flag, uint32_t th_ack, int line) 2748 { 2749 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 2750 union tcp_log_stackspecific log; 2751 struct timeval tv; 2752 2753 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2754 log.u_bbr.flex8 = flag; 2755 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2756 log.u_bbr.cur_del_rate = (uint64_t)prev; 2757 log.u_bbr.delRate = (uint64_t)rsm; 2758 log.u_bbr.rttProp = (uint64_t)next; 2759 log.u_bbr.flex7 = 0; 2760 if (prev) { 2761 log.u_bbr.flex1 = prev->r_start; 2762 log.u_bbr.flex2 = prev->r_end; 2763 log.u_bbr.flex7 |= 0x4; 2764 } 2765 if (rsm) { 2766 log.u_bbr.flex3 = rsm->r_start; 2767 log.u_bbr.flex4 = rsm->r_end; 2768 log.u_bbr.flex7 |= 0x2; 2769 } 2770 if (next) { 2771 log.u_bbr.flex5 = next->r_start; 2772 log.u_bbr.flex6 = next->r_end; 2773 log.u_bbr.flex7 |= 0x1; 2774 } 2775 log.u_bbr.applimited = line; 2776 log.u_bbr.pkts_out = th_ack; 2777 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2778 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2779 if (rack->rack_no_prr) 2780 log.u_bbr.lost = 0; 2781 else 2782 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt; 2783 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2784 &rack->rc_inp->inp_socket->so_rcv, 2785 &rack->rc_inp->inp_socket->so_snd, 2786 TCP_LOG_MAPCHG, 0, 2787 0, &log, false, &tv); 2788 } 2789 } 2790 2791 static void 2792 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, 2793 struct rack_sendmap *rsm, int conf) 2794 { 2795 if (tcp_bblogging_on(tp)) { 2796 union tcp_log_stackspecific log; 2797 struct timeval tv; 2798 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2799 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2800 log.u_bbr.flex1 = t; 2801 log.u_bbr.flex2 = len; 2802 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt; 2803 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest; 2804 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest; 2805 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2806 log.u_bbr.flex7 = conf; 2807 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot; 2808 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; 2809 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2810 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2811 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; 2812 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2813 if (rsm) { 2814 log.u_bbr.pkt_epoch = rsm->r_start; 2815 log.u_bbr.lost = rsm->r_end; 2816 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; 2817 /* We loose any upper of the 24 bits */ 2818 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags; 2819 } else { 2820 /* Its a SYN */ 2821 log.u_bbr.pkt_epoch = rack->rc_tp->iss; 2822 log.u_bbr.lost = 0; 2823 log.u_bbr.cwnd_gain = 0; 2824 log.u_bbr.pacing_gain = 0; 2825 } 2826 /* Write out general bits of interest rrs here */ 2827 log.u_bbr.use_lt_bw = rack->rc_highly_buffered; 2828 log.u_bbr.use_lt_bw <<= 1; 2829 log.u_bbr.use_lt_bw |= rack->forced_ack; 2830 log.u_bbr.use_lt_bw <<= 1; 2831 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; 2832 log.u_bbr.use_lt_bw <<= 1; 2833 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 2834 log.u_bbr.use_lt_bw <<= 1; 2835 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 2836 log.u_bbr.use_lt_bw <<= 1; 2837 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 2838 log.u_bbr.use_lt_bw <<= 1; 2839 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 2840 log.u_bbr.use_lt_bw <<= 1; 2841 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; 2842 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; 2843 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; 2844 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; 2845 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; 2846 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; 2847 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 2848 log.u_bbr.bw_inuse <<= 32; 2849 if (rsm) 2850 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); 2851 TCP_LOG_EVENTP(tp, NULL, 2852 &rack->rc_inp->inp_socket->so_rcv, 2853 &rack->rc_inp->inp_socket->so_snd, 2854 BBR_LOG_BBRRTT, 0, 2855 0, &log, false, &tv); 2856 2857 2858 } 2859 } 2860 2861 static void 2862 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) 2863 { 2864 /* 2865 * Log the rtt sample we are 2866 * applying to the srtt algorithm in 2867 * useconds. 2868 */ 2869 if (tcp_bblogging_on(rack->rc_tp)) { 2870 union tcp_log_stackspecific log; 2871 struct timeval tv; 2872 2873 /* Convert our ms to a microsecond */ 2874 memset(&log, 0, sizeof(log)); 2875 log.u_bbr.flex1 = rtt; 2876 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2877 log.u_bbr.flex3 = rack->r_ctl.sack_count; 2878 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2879 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; 2880 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2881 log.u_bbr.flex7 = 1; 2882 log.u_bbr.flex8 = rack->sack_attack_disable; 2883 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2884 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2885 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2886 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2887 log.u_bbr.pacing_gain = rack->r_must_retran; 2888 /* 2889 * We capture in delRate the upper 32 bits as 2890 * the confidence level we had declared, and the 2891 * lower 32 bits as the actual RTT using the arrival 2892 * timestamp. 2893 */ 2894 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence; 2895 log.u_bbr.delRate <<= 32; 2896 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt; 2897 /* Lets capture all the things that make up t_rtxcur */ 2898 log.u_bbr.applimited = rack_rto_min; 2899 log.u_bbr.epoch = rack_rto_max; 2900 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop; 2901 log.u_bbr.lost = rack_rto_min; 2902 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop); 2903 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp); 2904 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec; 2905 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC; 2906 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec; 2907 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2908 &rack->rc_inp->inp_socket->so_rcv, 2909 &rack->rc_inp->inp_socket->so_snd, 2910 TCP_LOG_RTT, 0, 2911 0, &log, false, &tv); 2912 } 2913 } 2914 2915 static void 2916 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where) 2917 { 2918 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 2919 union tcp_log_stackspecific log; 2920 struct timeval tv; 2921 2922 /* Convert our ms to a microsecond */ 2923 memset(&log, 0, sizeof(log)); 2924 log.u_bbr.flex1 = rtt; 2925 log.u_bbr.flex2 = send_time; 2926 log.u_bbr.flex3 = ack_time; 2927 log.u_bbr.flex4 = where; 2928 log.u_bbr.flex7 = 2; 2929 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2930 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2931 &rack->rc_inp->inp_socket->so_rcv, 2932 &rack->rc_inp->inp_socket->so_snd, 2933 TCP_LOG_RTT, 0, 2934 0, &log, false, &tv); 2935 } 2936 } 2937 2938 2939 static void 2940 rack_log_rtt_sendmap(struct tcp_rack *rack, uint32_t idx, uint64_t tsv, uint32_t tsecho) 2941 { 2942 if (tcp_bblogging_on(rack->rc_tp)) { 2943 union tcp_log_stackspecific log; 2944 struct timeval tv; 2945 2946 /* Convert our ms to a microsecond */ 2947 memset(&log, 0, sizeof(log)); 2948 log.u_bbr.flex1 = idx; 2949 log.u_bbr.flex2 = rack_ts_to_msec(tsv); 2950 log.u_bbr.flex3 = tsecho; 2951 log.u_bbr.flex7 = 3; 2952 log.u_bbr.rttProp = tsv; 2953 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2954 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2955 &rack->rc_inp->inp_socket->so_rcv, 2956 &rack->rc_inp->inp_socket->so_snd, 2957 TCP_LOG_RTT, 0, 2958 0, &log, false, &tv); 2959 } 2960 } 2961 2962 2963 static inline void 2964 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) 2965 { 2966 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 2967 union tcp_log_stackspecific log; 2968 struct timeval tv; 2969 2970 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2971 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2972 log.u_bbr.flex1 = line; 2973 log.u_bbr.flex2 = tick; 2974 log.u_bbr.flex3 = tp->t_maxunacktime; 2975 log.u_bbr.flex4 = tp->t_acktime; 2976 log.u_bbr.flex8 = event; 2977 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2978 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2979 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2980 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2981 log.u_bbr.pacing_gain = rack->r_must_retran; 2982 TCP_LOG_EVENTP(tp, NULL, 2983 &rack->rc_inp->inp_socket->so_rcv, 2984 &rack->rc_inp->inp_socket->so_snd, 2985 BBR_LOG_PROGRESS, 0, 2986 0, &log, false, &tv); 2987 } 2988 } 2989 2990 static void 2991 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv, int line) 2992 { 2993 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 2994 union tcp_log_stackspecific log; 2995 2996 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2997 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 2998 log.u_bbr.flex1 = slot; 2999 if (rack->rack_no_prr) 3000 log.u_bbr.flex2 = 0; 3001 else 3002 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; 3003 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 3004 log.u_bbr.flex5 = rack->r_ctl.ack_during_sd; 3005 log.u_bbr.flex6 = line; 3006 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); 3007 log.u_bbr.flex8 = rack->rc_in_persist; 3008 log.u_bbr.timeStamp = cts; 3009 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3010 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3011 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3012 log.u_bbr.pacing_gain = rack->r_must_retran; 3013 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3014 &rack->rc_inp->inp_socket->so_rcv, 3015 &rack->rc_inp->inp_socket->so_snd, 3016 BBR_LOG_BBRSND, 0, 3017 0, &log, false, tv); 3018 } 3019 } 3020 3021 static void 3022 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs) 3023 { 3024 if (tcp_bblogging_on(rack->rc_tp)) { 3025 union tcp_log_stackspecific log; 3026 struct timeval tv; 3027 3028 memset(&log, 0, sizeof(log)); 3029 log.u_bbr.flex1 = did_out; 3030 log.u_bbr.flex2 = nxt_pkt; 3031 log.u_bbr.flex3 = way_out; 3032 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 3033 if (rack->rack_no_prr) 3034 log.u_bbr.flex5 = 0; 3035 else 3036 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 3037 log.u_bbr.flex6 = nsegs; 3038 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; 3039 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */ 3040 log.u_bbr.flex7 <<= 1; 3041 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */ 3042 log.u_bbr.flex7 <<= 1; 3043 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */ 3044 log.u_bbr.flex8 = rack->rc_in_persist; 3045 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 3046 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3047 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3048 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 3049 log.u_bbr.use_lt_bw <<= 1; 3050 log.u_bbr.use_lt_bw |= rack->r_might_revert; 3051 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3052 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3053 log.u_bbr.pacing_gain = rack->r_must_retran; 3054 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3055 &rack->rc_inp->inp_socket->so_rcv, 3056 &rack->rc_inp->inp_socket->so_snd, 3057 BBR_LOG_DOSEG_DONE, 0, 3058 0, &log, false, &tv); 3059 } 3060 } 3061 3062 static void 3063 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm) 3064 { 3065 if (tcp_bblogging_on(rack->rc_tp)) { 3066 union tcp_log_stackspecific log; 3067 struct timeval tv; 3068 3069 memset(&log, 0, sizeof(log)); 3070 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; 3071 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 3072 log.u_bbr.flex4 = arg1; 3073 log.u_bbr.flex5 = arg2; 3074 log.u_bbr.flex7 = rack->r_ctl.rc_user_set_min_segs; 3075 log.u_bbr.flex6 = arg3; 3076 log.u_bbr.flex8 = frm; 3077 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3078 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3079 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3080 log.u_bbr.applimited = rack->r_ctl.rc_sacked; 3081 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3082 log.u_bbr.pacing_gain = rack->r_must_retran; 3083 TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv, 3084 &tptosocket(tp)->so_snd, 3085 TCP_HDWR_PACE_SIZE, 0, 0, &log, false, &tv); 3086 } 3087 } 3088 3089 static void 3090 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, 3091 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) 3092 { 3093 if (tcp_bblogging_on(rack->rc_tp)) { 3094 union tcp_log_stackspecific log; 3095 struct timeval tv; 3096 3097 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3098 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 3099 log.u_bbr.flex1 = slot; 3100 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; 3101 log.u_bbr.flex4 = reason; 3102 if (rack->rack_no_prr) 3103 log.u_bbr.flex5 = 0; 3104 else 3105 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 3106 log.u_bbr.flex7 = hpts_calling; 3107 log.u_bbr.flex8 = rack->rc_in_persist; 3108 log.u_bbr.lt_epoch = cwnd_to_use; 3109 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3110 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3111 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3112 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3113 log.u_bbr.pacing_gain = rack->r_must_retran; 3114 log.u_bbr.cwnd_gain = rack->rc_has_collapsed; 3115 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3116 &rack->rc_inp->inp_socket->so_rcv, 3117 &rack->rc_inp->inp_socket->so_snd, 3118 BBR_LOG_JUSTRET, 0, 3119 tlen, &log, false, &tv); 3120 } 3121 } 3122 3123 static void 3124 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, 3125 struct timeval *tv, uint32_t flags_on_entry) 3126 { 3127 if (tcp_bblogging_on(rack->rc_tp)) { 3128 union tcp_log_stackspecific log; 3129 3130 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3131 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 3132 log.u_bbr.flex1 = line; 3133 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; 3134 log.u_bbr.flex3 = flags_on_entry; 3135 log.u_bbr.flex4 = us_cts; 3136 if (rack->rack_no_prr) 3137 log.u_bbr.flex5 = 0; 3138 else 3139 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 3140 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 3141 log.u_bbr.flex7 = hpts_removed; 3142 log.u_bbr.flex8 = 1; 3143 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; 3144 log.u_bbr.timeStamp = us_cts; 3145 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3146 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3147 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3148 log.u_bbr.pacing_gain = rack->r_must_retran; 3149 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3150 &rack->rc_inp->inp_socket->so_rcv, 3151 &rack->rc_inp->inp_socket->so_snd, 3152 BBR_LOG_TIMERCANC, 0, 3153 0, &log, false, tv); 3154 } 3155 } 3156 3157 static void 3158 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 3159 uint32_t flex1, uint32_t flex2, 3160 uint32_t flex3, uint32_t flex4, 3161 uint32_t flex5, uint32_t flex6, 3162 uint16_t flex7, uint8_t mod) 3163 { 3164 if (tcp_bblogging_on(rack->rc_tp)) { 3165 union tcp_log_stackspecific log; 3166 struct timeval tv; 3167 3168 if (mod == 1) { 3169 /* No you can't use 1, its for the real to cancel */ 3170 return; 3171 } 3172 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3173 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3174 log.u_bbr.flex1 = flex1; 3175 log.u_bbr.flex2 = flex2; 3176 log.u_bbr.flex3 = flex3; 3177 log.u_bbr.flex4 = flex4; 3178 log.u_bbr.flex5 = flex5; 3179 log.u_bbr.flex6 = flex6; 3180 log.u_bbr.flex7 = flex7; 3181 log.u_bbr.flex8 = mod; 3182 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3183 &rack->rc_inp->inp_socket->so_rcv, 3184 &rack->rc_inp->inp_socket->so_snd, 3185 BBR_LOG_TIMERCANC, 0, 3186 0, &log, false, &tv); 3187 } 3188 } 3189 3190 static void 3191 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) 3192 { 3193 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 3194 union tcp_log_stackspecific log; 3195 struct timeval tv; 3196 3197 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3198 log.u_bbr.flex1 = timers; 3199 log.u_bbr.flex2 = ret; 3200 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; 3201 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 3202 log.u_bbr.flex5 = cts; 3203 if (rack->rack_no_prr) 3204 log.u_bbr.flex6 = 0; 3205 else 3206 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; 3207 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 3208 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 3209 log.u_bbr.pacing_gain = rack->r_must_retran; 3210 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3211 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3212 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3213 &rack->rc_inp->inp_socket->so_rcv, 3214 &rack->rc_inp->inp_socket->so_snd, 3215 BBR_LOG_TO_PROCESS, 0, 3216 0, &log, false, &tv); 3217 } 3218 } 3219 3220 static void 3221 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd, int line) 3222 { 3223 if (tcp_bblogging_on(rack->rc_tp)) { 3224 union tcp_log_stackspecific log; 3225 struct timeval tv; 3226 3227 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3228 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; 3229 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; 3230 if (rack->rack_no_prr) 3231 log.u_bbr.flex3 = 0; 3232 else 3233 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; 3234 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; 3235 log.u_bbr.flex5 = rack->r_ctl.rc_sacked; 3236 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; 3237 log.u_bbr.flex7 = line; 3238 log.u_bbr.flex8 = frm; 3239 log.u_bbr.pkts_out = orig_cwnd; 3240 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3241 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3242 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 3243 log.u_bbr.use_lt_bw <<= 1; 3244 log.u_bbr.use_lt_bw |= rack->r_might_revert; 3245 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3246 &rack->rc_inp->inp_socket->so_rcv, 3247 &rack->rc_inp->inp_socket->so_snd, 3248 BBR_LOG_BBRUPD, 0, 3249 0, &log, false, &tv); 3250 } 3251 } 3252 3253 #ifdef TCP_SAD_DETECTION 3254 static void 3255 rack_log_sad(struct tcp_rack *rack, int event) 3256 { 3257 if (tcp_bblogging_on(rack->rc_tp)) { 3258 union tcp_log_stackspecific log; 3259 struct timeval tv; 3260 3261 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3262 log.u_bbr.flex1 = rack->r_ctl.sack_count; 3263 log.u_bbr.flex2 = rack->r_ctl.ack_count; 3264 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; 3265 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 3266 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; 3267 log.u_bbr.flex6 = tcp_sack_to_ack_thresh; 3268 log.u_bbr.pkts_out = tcp_sack_to_move_thresh; 3269 log.u_bbr.lt_epoch = (tcp_force_detection << 8); 3270 log.u_bbr.lt_epoch |= rack->do_detection; 3271 log.u_bbr.applimited = tcp_map_minimum; 3272 log.u_bbr.flex7 = rack->sack_attack_disable; 3273 log.u_bbr.flex8 = event; 3274 log.u_bbr.bbr_state = rack->rc_suspicious; 3275 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3276 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3277 log.u_bbr.delivered = tcp_sad_decay_val; 3278 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3279 &rack->rc_inp->inp_socket->so_rcv, 3280 &rack->rc_inp->inp_socket->so_snd, 3281 TCP_SAD_DETECT, 0, 3282 0, &log, false, &tv); 3283 } 3284 } 3285 #endif 3286 3287 static void 3288 rack_counter_destroy(void) 3289 { 3290 counter_u64_free(rack_total_bytes); 3291 counter_u64_free(rack_fto_send); 3292 counter_u64_free(rack_fto_rsm_send); 3293 counter_u64_free(rack_nfto_resend); 3294 counter_u64_free(rack_hw_pace_init_fail); 3295 counter_u64_free(rack_hw_pace_lost); 3296 counter_u64_free(rack_non_fto_send); 3297 counter_u64_free(rack_extended_rfo); 3298 counter_u64_free(rack_ack_total); 3299 counter_u64_free(rack_express_sack); 3300 counter_u64_free(rack_sack_total); 3301 counter_u64_free(rack_move_none); 3302 counter_u64_free(rack_move_some); 3303 counter_u64_free(rack_sack_attacks_detected); 3304 counter_u64_free(rack_sack_attacks_reversed); 3305 counter_u64_free(rack_sack_attacks_suspect); 3306 counter_u64_free(rack_sack_used_next_merge); 3307 counter_u64_free(rack_sack_used_prev_merge); 3308 counter_u64_free(rack_tlp_tot); 3309 counter_u64_free(rack_tlp_newdata); 3310 counter_u64_free(rack_tlp_retran); 3311 counter_u64_free(rack_tlp_retran_bytes); 3312 counter_u64_free(rack_to_tot); 3313 counter_u64_free(rack_saw_enobuf); 3314 counter_u64_free(rack_saw_enobuf_hw); 3315 counter_u64_free(rack_saw_enetunreach); 3316 counter_u64_free(rack_hot_alloc); 3317 counter_u64_free(rack_to_alloc); 3318 counter_u64_free(rack_to_alloc_hard); 3319 counter_u64_free(rack_to_alloc_emerg); 3320 counter_u64_free(rack_to_alloc_limited); 3321 counter_u64_free(rack_alloc_limited_conns); 3322 counter_u64_free(rack_split_limited); 3323 counter_u64_free(rack_multi_single_eq); 3324 counter_u64_free(rack_rxt_clamps_cwnd); 3325 counter_u64_free(rack_rxt_clamps_cwnd_uniq); 3326 counter_u64_free(rack_proc_non_comp_ack); 3327 counter_u64_free(rack_sack_proc_all); 3328 counter_u64_free(rack_sack_proc_restart); 3329 counter_u64_free(rack_sack_proc_short); 3330 counter_u64_free(rack_sack_skipped_acked); 3331 counter_u64_free(rack_sack_splits); 3332 counter_u64_free(rack_input_idle_reduces); 3333 counter_u64_free(rack_collapsed_win); 3334 counter_u64_free(rack_collapsed_win_rxt); 3335 counter_u64_free(rack_collapsed_win_rxt_bytes); 3336 counter_u64_free(rack_collapsed_win_seen); 3337 counter_u64_free(rack_try_scwnd); 3338 counter_u64_free(rack_persists_sends); 3339 counter_u64_free(rack_persists_acks); 3340 counter_u64_free(rack_persists_loss); 3341 counter_u64_free(rack_persists_lost_ends); 3342 #ifdef INVARIANTS 3343 counter_u64_free(rack_adjust_map_bw); 3344 #endif 3345 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); 3346 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); 3347 } 3348 3349 static struct rack_sendmap * 3350 rack_alloc(struct tcp_rack *rack) 3351 { 3352 struct rack_sendmap *rsm; 3353 3354 /* 3355 * First get the top of the list it in 3356 * theory is the "hottest" rsm we have, 3357 * possibly just freed by ack processing. 3358 */ 3359 if (rack->rc_free_cnt > rack_free_cache) { 3360 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 3361 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3362 counter_u64_add(rack_hot_alloc, 1); 3363 rack->rc_free_cnt--; 3364 return (rsm); 3365 } 3366 /* 3367 * Once we get under our free cache we probably 3368 * no longer have a "hot" one available. Lets 3369 * get one from UMA. 3370 */ 3371 rsm = uma_zalloc(rack_zone, M_NOWAIT); 3372 if (rsm) { 3373 rack->r_ctl.rc_num_maps_alloced++; 3374 counter_u64_add(rack_to_alloc, 1); 3375 return (rsm); 3376 } 3377 /* 3378 * Dig in to our aux rsm's (the last two) since 3379 * UMA failed to get us one. 3380 */ 3381 if (rack->rc_free_cnt) { 3382 counter_u64_add(rack_to_alloc_emerg, 1); 3383 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 3384 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3385 rack->rc_free_cnt--; 3386 return (rsm); 3387 } 3388 return (NULL); 3389 } 3390 3391 static struct rack_sendmap * 3392 rack_alloc_full_limit(struct tcp_rack *rack) 3393 { 3394 if ((V_tcp_map_entries_limit > 0) && 3395 (rack->do_detection == 0) && 3396 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 3397 counter_u64_add(rack_to_alloc_limited, 1); 3398 if (!rack->alloc_limit_reported) { 3399 rack->alloc_limit_reported = 1; 3400 counter_u64_add(rack_alloc_limited_conns, 1); 3401 } 3402 return (NULL); 3403 } 3404 return (rack_alloc(rack)); 3405 } 3406 3407 /* wrapper to allocate a sendmap entry, subject to a specific limit */ 3408 static struct rack_sendmap * 3409 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) 3410 { 3411 struct rack_sendmap *rsm; 3412 3413 if (limit_type) { 3414 /* currently there is only one limit type */ 3415 if (rack->r_ctl.rc_split_limit > 0 && 3416 (rack->do_detection == 0) && 3417 rack->r_ctl.rc_num_split_allocs >= rack->r_ctl.rc_split_limit) { 3418 counter_u64_add(rack_split_limited, 1); 3419 if (!rack->alloc_limit_reported) { 3420 rack->alloc_limit_reported = 1; 3421 counter_u64_add(rack_alloc_limited_conns, 1); 3422 } 3423 return (NULL); 3424 #ifdef TCP_SAD_DETECTION 3425 } else if ((tcp_sad_limit != 0) && 3426 (rack->do_detection == 1) && 3427 (rack->r_ctl.rc_num_split_allocs >= tcp_sad_limit)) { 3428 counter_u64_add(rack_split_limited, 1); 3429 if (!rack->alloc_limit_reported) { 3430 rack->alloc_limit_reported = 1; 3431 counter_u64_add(rack_alloc_limited_conns, 1); 3432 } 3433 return (NULL); 3434 #endif 3435 } 3436 } 3437 3438 /* allocate and mark in the limit type, if set */ 3439 rsm = rack_alloc(rack); 3440 if (rsm != NULL && limit_type) { 3441 rsm->r_limit_type = limit_type; 3442 rack->r_ctl.rc_num_split_allocs++; 3443 } 3444 return (rsm); 3445 } 3446 3447 static void 3448 rack_free_trim(struct tcp_rack *rack) 3449 { 3450 struct rack_sendmap *rsm; 3451 3452 /* 3453 * Free up all the tail entries until 3454 * we get our list down to the limit. 3455 */ 3456 while (rack->rc_free_cnt > rack_free_cache) { 3457 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head); 3458 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3459 rack->rc_free_cnt--; 3460 rack->r_ctl.rc_num_maps_alloced--; 3461 uma_zfree(rack_zone, rsm); 3462 } 3463 } 3464 3465 static void 3466 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) 3467 { 3468 if (rsm->r_flags & RACK_APP_LIMITED) { 3469 if (rack->r_ctl.rc_app_limited_cnt > 0) { 3470 rack->r_ctl.rc_app_limited_cnt--; 3471 } 3472 } 3473 if (rsm->r_limit_type) { 3474 /* currently there is only one limit type */ 3475 rack->r_ctl.rc_num_split_allocs--; 3476 } 3477 if (rsm == rack->r_ctl.rc_first_appl) { 3478 if (rack->r_ctl.rc_app_limited_cnt == 0) 3479 rack->r_ctl.rc_first_appl = NULL; 3480 else 3481 rack->r_ctl.rc_first_appl = tqhash_find(rack->r_ctl.tqh, rsm->r_nseq_appl); 3482 } 3483 if (rsm == rack->r_ctl.rc_resend) 3484 rack->r_ctl.rc_resend = NULL; 3485 if (rsm == rack->r_ctl.rc_end_appl) 3486 rack->r_ctl.rc_end_appl = NULL; 3487 if (rack->r_ctl.rc_tlpsend == rsm) 3488 rack->r_ctl.rc_tlpsend = NULL; 3489 if (rack->r_ctl.rc_sacklast == rsm) 3490 rack->r_ctl.rc_sacklast = NULL; 3491 memset(rsm, 0, sizeof(struct rack_sendmap)); 3492 /* Make sure we are not going to overrun our count limit of 0xff */ 3493 if ((rack->rc_free_cnt + 1) > 0xff) { 3494 rack_free_trim(rack); 3495 } 3496 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext); 3497 rack->rc_free_cnt++; 3498 } 3499 3500 static uint32_t 3501 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) 3502 { 3503 uint64_t srtt, bw, len, tim; 3504 uint32_t segsiz, def_len, minl; 3505 3506 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3507 def_len = rack_def_data_window * segsiz; 3508 if (rack->rc_gp_filled == 0) { 3509 /* 3510 * We have no measurement (IW is in flight?) so 3511 * we can only guess using our data_window sysctl 3512 * value (usually 20MSS). 3513 */ 3514 return (def_len); 3515 } 3516 /* 3517 * Now we have a number of factors to consider. 3518 * 3519 * 1) We have a desired BDP which is usually 3520 * at least 2. 3521 * 2) We have a minimum number of rtt's usually 1 SRTT 3522 * but we allow it too to be more. 3523 * 3) We want to make sure a measurement last N useconds (if 3524 * we have set rack_min_measure_usec. 3525 * 3526 * We handle the first concern here by trying to create a data 3527 * window of max(rack_def_data_window, DesiredBDP). The 3528 * second concern we handle in not letting the measurement 3529 * window end normally until at least the required SRTT's 3530 * have gone by which is done further below in 3531 * rack_enough_for_measurement(). Finally the third concern 3532 * we also handle here by calculating how long that time 3533 * would take at the current BW and then return the 3534 * max of our first calculation and that length. Note 3535 * that if rack_min_measure_usec is 0, we don't deal 3536 * with concern 3. Also for both Concern 1 and 3 an 3537 * application limited period could end the measurement 3538 * earlier. 3539 * 3540 * So lets calculate the BDP with the "known" b/w using 3541 * the SRTT has our rtt and then multiply it by the 3542 * goal. 3543 */ 3544 bw = rack_get_bw(rack); 3545 srtt = (uint64_t)tp->t_srtt; 3546 len = bw * srtt; 3547 len /= (uint64_t)HPTS_USEC_IN_SEC; 3548 len *= max(1, rack_goal_bdp); 3549 /* Now we need to round up to the nearest MSS */ 3550 len = roundup(len, segsiz); 3551 if (rack_min_measure_usec) { 3552 /* Now calculate our min length for this b/w */ 3553 tim = rack_min_measure_usec; 3554 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; 3555 if (minl == 0) 3556 minl = 1; 3557 minl = roundup(minl, segsiz); 3558 if (len < minl) 3559 len = minl; 3560 } 3561 /* 3562 * Now if we have a very small window we want 3563 * to attempt to get the window that is 3564 * as small as possible. This happens on 3565 * low b/w connections and we don't want to 3566 * span huge numbers of rtt's between measurements. 3567 * 3568 * We basically include 2 over our "MIN window" so 3569 * that the measurement can be shortened (possibly) by 3570 * an ack'ed packet. 3571 */ 3572 if (len < def_len) 3573 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); 3574 else 3575 return (max((uint32_t)len, def_len)); 3576 3577 } 3578 3579 static int 3580 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality) 3581 { 3582 uint32_t tim, srtts, segsiz; 3583 3584 /* 3585 * Has enough time passed for the GP measurement to be valid? 3586 */ 3587 if (SEQ_LT(th_ack, tp->gput_seq)) { 3588 /* Not enough bytes yet */ 3589 return (0); 3590 } 3591 if ((tp->snd_max == tp->snd_una) || 3592 (th_ack == tp->snd_max)){ 3593 /* 3594 * All is acked quality of all acked is 3595 * usually low or medium, but we in theory could split 3596 * all acked into two cases, where you got 3597 * a signifigant amount of your window and 3598 * where you did not. For now we leave it 3599 * but it is something to contemplate in the 3600 * future. The danger here is that delayed ack 3601 * is effecting the last byte (which is a 50:50 chance). 3602 */ 3603 *quality = RACK_QUALITY_ALLACKED; 3604 return (1); 3605 } 3606 if (SEQ_GEQ(th_ack, tp->gput_ack)) { 3607 /* 3608 * We obtained our entire window of data we wanted 3609 * no matter if we are in recovery or not then 3610 * its ok since expanding the window does not 3611 * make things fuzzy (or at least not as much). 3612 */ 3613 *quality = RACK_QUALITY_HIGH; 3614 return (1); 3615 } 3616 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3617 if (SEQ_LT(th_ack, tp->gput_ack) && 3618 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 3619 /* Not enough bytes yet */ 3620 return (0); 3621 } 3622 if (rack->r_ctl.rc_first_appl && 3623 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) { 3624 /* 3625 * We are up to the app limited send point 3626 * we have to measure irrespective of the time.. 3627 */ 3628 *quality = RACK_QUALITY_APPLIMITED; 3629 return (1); 3630 } 3631 /* Now what about time? */ 3632 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); 3633 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; 3634 if ((tim >= srtts) && (IN_RECOVERY(rack->rc_tp->t_flags) == 0)) { 3635 /* 3636 * We do not allow a measurement if we are in recovery 3637 * that would shrink the goodput window we wanted. 3638 * This is to prevent cloudyness of when the last send 3639 * was actually made. 3640 */ 3641 *quality = RACK_QUALITY_HIGH; 3642 return (1); 3643 } 3644 /* Nope not even a full SRTT has passed */ 3645 return (0); 3646 } 3647 3648 static void 3649 rack_log_timely(struct tcp_rack *rack, 3650 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, 3651 uint64_t up_bnd, int line, uint8_t method) 3652 { 3653 if (tcp_bblogging_on(rack->rc_tp)) { 3654 union tcp_log_stackspecific log; 3655 struct timeval tv; 3656 3657 memset(&log, 0, sizeof(log)); 3658 log.u_bbr.flex1 = logged; 3659 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; 3660 log.u_bbr.flex2 <<= 4; 3661 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; 3662 log.u_bbr.flex2 <<= 4; 3663 log.u_bbr.flex2 |= rack->rc_gp_incr; 3664 log.u_bbr.flex2 <<= 4; 3665 log.u_bbr.flex2 |= rack->rc_gp_bwred; 3666 log.u_bbr.flex3 = rack->rc_gp_incr; 3667 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3668 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; 3669 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; 3670 log.u_bbr.flex7 = rack->rc_gp_bwred; 3671 log.u_bbr.flex8 = method; 3672 log.u_bbr.cur_del_rate = cur_bw; 3673 log.u_bbr.delRate = low_bnd; 3674 log.u_bbr.bw_inuse = up_bnd; 3675 log.u_bbr.rttProp = rack_get_bw(rack); 3676 log.u_bbr.pkt_epoch = line; 3677 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3678 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3679 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3680 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3681 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3682 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; 3683 log.u_bbr.cwnd_gain <<= 1; 3684 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; 3685 log.u_bbr.cwnd_gain <<= 1; 3686 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 3687 log.u_bbr.cwnd_gain <<= 1; 3688 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 3689 log.u_bbr.lost = rack->r_ctl.rc_loss_count; 3690 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3691 &rack->rc_inp->inp_socket->so_rcv, 3692 &rack->rc_inp->inp_socket->so_snd, 3693 TCP_TIMELY_WORK, 0, 3694 0, &log, false, &tv); 3695 } 3696 } 3697 3698 static int 3699 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) 3700 { 3701 /* 3702 * Before we increase we need to know if 3703 * the estimate just made was less than 3704 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) 3705 * 3706 * If we already are pacing at a fast enough 3707 * rate to push us faster there is no sense of 3708 * increasing. 3709 * 3710 * We first caculate our actual pacing rate (ss or ca multiplier 3711 * times our cur_bw). 3712 * 3713 * Then we take the last measured rate and multipy by our 3714 * maximum pacing overage to give us a max allowable rate. 3715 * 3716 * If our act_rate is smaller than our max_allowable rate 3717 * then we should increase. Else we should hold steady. 3718 * 3719 */ 3720 uint64_t act_rate, max_allow_rate; 3721 3722 if (rack_timely_no_stopping) 3723 return (1); 3724 3725 if ((cur_bw == 0) || (last_bw_est == 0)) { 3726 /* 3727 * Initial startup case or 3728 * everything is acked case. 3729 */ 3730 rack_log_timely(rack, mult, cur_bw, 0, 0, 3731 __LINE__, 9); 3732 return (1); 3733 } 3734 if (mult <= 100) { 3735 /* 3736 * We can always pace at or slightly above our rate. 3737 */ 3738 rack_log_timely(rack, mult, cur_bw, 0, 0, 3739 __LINE__, 9); 3740 return (1); 3741 } 3742 act_rate = cur_bw * (uint64_t)mult; 3743 act_rate /= 100; 3744 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); 3745 max_allow_rate /= 100; 3746 if (act_rate < max_allow_rate) { 3747 /* 3748 * Here the rate we are actually pacing at 3749 * is smaller than 10% above our last measurement. 3750 * This means we are pacing below what we would 3751 * like to try to achieve (plus some wiggle room). 3752 */ 3753 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3754 __LINE__, 9); 3755 return (1); 3756 } else { 3757 /* 3758 * Here we are already pacing at least rack_max_per_above(10%) 3759 * what we are getting back. This indicates most likely 3760 * that we are being limited (cwnd/rwnd/app) and can't 3761 * get any more b/w. There is no sense of trying to 3762 * raise up the pacing rate its not speeding us up 3763 * and we already are pacing faster than we are getting. 3764 */ 3765 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3766 __LINE__, 8); 3767 return (0); 3768 } 3769 } 3770 3771 static void 3772 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) 3773 { 3774 /* 3775 * When we drag bottom, we want to assure 3776 * that no multiplier is below 1.0, if so 3777 * we want to restore it to at least that. 3778 */ 3779 if (rack->r_ctl.rack_per_of_gp_rec < 100) { 3780 /* This is unlikely we usually do not touch recovery */ 3781 rack->r_ctl.rack_per_of_gp_rec = 100; 3782 } 3783 if (rack->r_ctl.rack_per_of_gp_ca < 100) { 3784 rack->r_ctl.rack_per_of_gp_ca = 100; 3785 } 3786 if (rack->r_ctl.rack_per_of_gp_ss < 100) { 3787 rack->r_ctl.rack_per_of_gp_ss = 100; 3788 } 3789 } 3790 3791 static void 3792 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) 3793 { 3794 if (rack->r_ctl.rack_per_of_gp_ca > 100) { 3795 rack->r_ctl.rack_per_of_gp_ca = 100; 3796 } 3797 if (rack->r_ctl.rack_per_of_gp_ss > 100) { 3798 rack->r_ctl.rack_per_of_gp_ss = 100; 3799 } 3800 } 3801 3802 static void 3803 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) 3804 { 3805 int32_t calc, logged, plus; 3806 3807 logged = 0; 3808 3809 if (override) { 3810 /* 3811 * override is passed when we are 3812 * loosing b/w and making one last 3813 * gasp at trying to not loose out 3814 * to a new-reno flow. 3815 */ 3816 goto extra_boost; 3817 } 3818 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ 3819 if (rack->rc_gp_incr && 3820 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { 3821 /* 3822 * Reset and get 5 strokes more before the boost. Note 3823 * that the count is 0 based so we have to add one. 3824 */ 3825 extra_boost: 3826 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; 3827 rack->rc_gp_timely_inc_cnt = 0; 3828 } else 3829 plus = (uint32_t)rack_gp_increase_per; 3830 /* Must be at least 1% increase for true timely increases */ 3831 if ((plus < 1) && 3832 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) 3833 plus = 1; 3834 if (rack->rc_gp_saw_rec && 3835 (rack->rc_gp_no_rec_chg == 0) && 3836 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3837 rack->r_ctl.rack_per_of_gp_rec)) { 3838 /* We have been in recovery ding it too */ 3839 calc = rack->r_ctl.rack_per_of_gp_rec + plus; 3840 if (calc > 0xffff) 3841 calc = 0xffff; 3842 logged |= 1; 3843 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; 3844 if (rack->r_ctl.rack_per_upper_bound_ca && 3845 (rack->rc_dragged_bottom == 0) && 3846 (rack->r_ctl.rack_per_of_gp_rec > rack->r_ctl.rack_per_upper_bound_ca)) 3847 rack->r_ctl.rack_per_of_gp_rec = rack->r_ctl.rack_per_upper_bound_ca; 3848 } 3849 if (rack->rc_gp_saw_ca && 3850 (rack->rc_gp_saw_ss == 0) && 3851 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3852 rack->r_ctl.rack_per_of_gp_ca)) { 3853 /* In CA */ 3854 calc = rack->r_ctl.rack_per_of_gp_ca + plus; 3855 if (calc > 0xffff) 3856 calc = 0xffff; 3857 logged |= 2; 3858 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; 3859 if (rack->r_ctl.rack_per_upper_bound_ca && 3860 (rack->rc_dragged_bottom == 0) && 3861 (rack->r_ctl.rack_per_of_gp_ca > rack->r_ctl.rack_per_upper_bound_ca)) 3862 rack->r_ctl.rack_per_of_gp_ca = rack->r_ctl.rack_per_upper_bound_ca; 3863 } 3864 if (rack->rc_gp_saw_ss && 3865 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3866 rack->r_ctl.rack_per_of_gp_ss)) { 3867 /* In SS */ 3868 calc = rack->r_ctl.rack_per_of_gp_ss + plus; 3869 if (calc > 0xffff) 3870 calc = 0xffff; 3871 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; 3872 if (rack->r_ctl.rack_per_upper_bound_ss && 3873 (rack->rc_dragged_bottom == 0) && 3874 (rack->r_ctl.rack_per_of_gp_ss > rack->r_ctl.rack_per_upper_bound_ss)) 3875 rack->r_ctl.rack_per_of_gp_ss = rack->r_ctl.rack_per_upper_bound_ss; 3876 logged |= 4; 3877 } 3878 if (logged && 3879 (rack->rc_gp_incr == 0)){ 3880 /* Go into increment mode */ 3881 rack->rc_gp_incr = 1; 3882 rack->rc_gp_timely_inc_cnt = 0; 3883 } 3884 if (rack->rc_gp_incr && 3885 logged && 3886 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { 3887 rack->rc_gp_timely_inc_cnt++; 3888 } 3889 rack_log_timely(rack, logged, plus, 0, 0, 3890 __LINE__, 1); 3891 } 3892 3893 static uint32_t 3894 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) 3895 { 3896 /*- 3897 * norm_grad = rtt_diff / minrtt; 3898 * new_per = curper * (1 - B * norm_grad) 3899 * 3900 * B = rack_gp_decrease_per (default 80%) 3901 * rtt_dif = input var current rtt-diff 3902 * curper = input var current percentage 3903 * minrtt = from rack filter 3904 * 3905 * In order to do the floating point calculations above we 3906 * do an integer conversion. The code looks confusing so let me 3907 * translate it into something that use more variables and 3908 * is clearer for us humans :) 3909 * 3910 * uint64_t norm_grad, inverse, reduce_by, final_result; 3911 * uint32_t perf; 3912 * 3913 * norm_grad = (((uint64_t)rtt_diff * 1000000) / 3914 * (uint64_t)get_filter_small(&rack->r_ctl.rc_gp_min_rtt)); 3915 * inverse = ((uint64_t)rack_gp_decrease * (uint64_t)1000000) * norm_grad; 3916 * inverse /= 1000000; 3917 * reduce_by = (1000000 - inverse); 3918 * final_result = (cur_per * reduce_by) / 1000000; 3919 * perf = (uint32_t)final_result; 3920 */ 3921 uint64_t perf; 3922 3923 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3924 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * 3925 (((uint64_t)rtt_diff * (uint64_t)1000000)/ 3926 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ 3927 (uint64_t)1000000)) / 3928 (uint64_t)1000000); 3929 if (perf > curper) { 3930 /* TSNH */ 3931 perf = curper - 1; 3932 } 3933 return ((uint32_t)perf); 3934 } 3935 3936 static uint32_t 3937 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) 3938 { 3939 /* 3940 * highrttthresh 3941 * result = curper * (1 - (B * ( 1 - ------ )) 3942 * gp_srtt 3943 * 3944 * B = rack_gp_decrease_per (default .8 i.e. 80) 3945 * highrttthresh = filter_min * rack_gp_rtt_maxmul 3946 */ 3947 uint64_t perf; 3948 uint32_t highrttthresh; 3949 3950 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 3951 3952 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3953 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - 3954 ((uint64_t)highrttthresh * (uint64_t)1000000) / 3955 (uint64_t)rtt)) / 100)) /(uint64_t)1000000); 3956 if (tcp_bblogging_on(rack->rc_tp)) { 3957 uint64_t log1; 3958 3959 log1 = rtt; 3960 log1 <<= 32; 3961 log1 |= highrttthresh; 3962 rack_log_timely(rack, 3963 rack_gp_decrease_per, 3964 (uint64_t)curper, 3965 log1, 3966 perf, 3967 __LINE__, 3968 15); 3969 } 3970 return (perf); 3971 } 3972 3973 static void 3974 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) 3975 { 3976 uint64_t logvar, logvar2, logvar3; 3977 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; 3978 3979 if (rack->rc_gp_incr) { 3980 /* Turn off increment counting */ 3981 rack->rc_gp_incr = 0; 3982 rack->rc_gp_timely_inc_cnt = 0; 3983 } 3984 ss_red = ca_red = rec_red = 0; 3985 logged = 0; 3986 /* Calculate the reduction value */ 3987 if (rtt_diff < 0) { 3988 rtt_diff *= -1; 3989 } 3990 /* Must be at least 1% reduction */ 3991 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { 3992 /* We have been in recovery ding it too */ 3993 if (timely_says == 2) { 3994 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); 3995 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3996 if (alt < new_per) 3997 val = alt; 3998 else 3999 val = new_per; 4000 } else 4001 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 4002 if (rack->r_ctl.rack_per_of_gp_rec > val) { 4003 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); 4004 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; 4005 } else { 4006 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 4007 rec_red = 0; 4008 } 4009 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) 4010 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 4011 logged |= 1; 4012 } 4013 if (rack->rc_gp_saw_ss) { 4014 /* Sent in SS */ 4015 if (timely_says == 2) { 4016 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); 4017 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 4018 if (alt < new_per) 4019 val = alt; 4020 else 4021 val = new_per; 4022 } else 4023 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 4024 if (rack->r_ctl.rack_per_of_gp_ss > new_per) { 4025 ss_red = rack->r_ctl.rack_per_of_gp_ss - val; 4026 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; 4027 } else { 4028 ss_red = new_per; 4029 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 4030 logvar = new_per; 4031 logvar <<= 32; 4032 logvar |= alt; 4033 logvar2 = (uint32_t)rtt; 4034 logvar2 <<= 32; 4035 logvar2 |= (uint32_t)rtt_diff; 4036 logvar3 = rack_gp_rtt_maxmul; 4037 logvar3 <<= 32; 4038 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 4039 rack_log_timely(rack, timely_says, 4040 logvar2, logvar3, 4041 logvar, __LINE__, 10); 4042 } 4043 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) 4044 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 4045 logged |= 4; 4046 } else if (rack->rc_gp_saw_ca) { 4047 /* Sent in CA */ 4048 if (timely_says == 2) { 4049 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); 4050 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 4051 if (alt < new_per) 4052 val = alt; 4053 else 4054 val = new_per; 4055 } else 4056 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 4057 if (rack->r_ctl.rack_per_of_gp_ca > val) { 4058 ca_red = rack->r_ctl.rack_per_of_gp_ca - val; 4059 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; 4060 } else { 4061 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 4062 ca_red = 0; 4063 logvar = new_per; 4064 logvar <<= 32; 4065 logvar |= alt; 4066 logvar2 = (uint32_t)rtt; 4067 logvar2 <<= 32; 4068 logvar2 |= (uint32_t)rtt_diff; 4069 logvar3 = rack_gp_rtt_maxmul; 4070 logvar3 <<= 32; 4071 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 4072 rack_log_timely(rack, timely_says, 4073 logvar2, logvar3, 4074 logvar, __LINE__, 10); 4075 } 4076 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) 4077 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 4078 logged |= 2; 4079 } 4080 if (rack->rc_gp_timely_dec_cnt < 0x7) { 4081 rack->rc_gp_timely_dec_cnt++; 4082 if (rack_timely_dec_clear && 4083 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) 4084 rack->rc_gp_timely_dec_cnt = 0; 4085 } 4086 logvar = ss_red; 4087 logvar <<= 32; 4088 logvar |= ca_red; 4089 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, 4090 __LINE__, 2); 4091 } 4092 4093 static void 4094 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, 4095 uint32_t rtt, uint32_t line, uint8_t reas) 4096 { 4097 if (tcp_bblogging_on(rack->rc_tp)) { 4098 union tcp_log_stackspecific log; 4099 struct timeval tv; 4100 4101 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4102 log.u_bbr.flex1 = line; 4103 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; 4104 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; 4105 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 4106 log.u_bbr.flex5 = rtt; 4107 log.u_bbr.flex6 = rack->rc_highly_buffered; 4108 log.u_bbr.flex6 <<= 1; 4109 log.u_bbr.flex6 |= rack->forced_ack; 4110 log.u_bbr.flex6 <<= 1; 4111 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; 4112 log.u_bbr.flex6 <<= 1; 4113 log.u_bbr.flex6 |= rack->in_probe_rtt; 4114 log.u_bbr.flex6 <<= 1; 4115 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; 4116 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; 4117 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; 4118 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; 4119 log.u_bbr.flex8 = reas; 4120 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4121 log.u_bbr.delRate = rack_get_bw(rack); 4122 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; 4123 log.u_bbr.cur_del_rate <<= 32; 4124 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; 4125 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; 4126 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 4127 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 4128 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 4129 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 4130 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; 4131 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; 4132 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 4133 log.u_bbr.rttProp = us_cts; 4134 log.u_bbr.rttProp <<= 32; 4135 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; 4136 TCP_LOG_EVENTP(rack->rc_tp, NULL, 4137 &rack->rc_inp->inp_socket->so_rcv, 4138 &rack->rc_inp->inp_socket->so_snd, 4139 BBR_LOG_RTT_SHRINKS, 0, 4140 0, &log, false, &rack->r_ctl.act_rcv_time); 4141 } 4142 } 4143 4144 static void 4145 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) 4146 { 4147 uint64_t bwdp; 4148 4149 bwdp = rack_get_bw(rack); 4150 bwdp *= (uint64_t)rtt; 4151 bwdp /= (uint64_t)HPTS_USEC_IN_SEC; 4152 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); 4153 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { 4154 /* 4155 * A window protocol must be able to have 4 packets 4156 * outstanding as the floor in order to function 4157 * (especially considering delayed ack :D). 4158 */ 4159 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); 4160 } 4161 } 4162 4163 static void 4164 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) 4165 { 4166 /** 4167 * ProbeRTT is a bit different in rack_pacing than in 4168 * BBR. It is like BBR in that it uses the lowering of 4169 * the RTT as a signal that we saw something new and 4170 * counts from there for how long between. But it is 4171 * different in that its quite simple. It does not 4172 * play with the cwnd and wait until we get down 4173 * to N segments outstanding and hold that for 4174 * 200ms. Instead it just sets the pacing reduction 4175 * rate to a set percentage (70 by default) and hold 4176 * that for a number of recent GP Srtt's. 4177 */ 4178 uint32_t segsiz; 4179 4180 if (rack->rc_gp_dyn_mul == 0) 4181 return; 4182 4183 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { 4184 /* We are idle */ 4185 return; 4186 } 4187 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 4188 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 4189 /* 4190 * Stop the goodput now, the idea here is 4191 * that future measurements with in_probe_rtt 4192 * won't register if they are not greater so 4193 * we want to get what info (if any) is available 4194 * now. 4195 */ 4196 rack_do_goodput_measurement(rack->rc_tp, rack, 4197 rack->rc_tp->snd_una, __LINE__, 4198 RACK_QUALITY_PROBERTT); 4199 } 4200 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 4201 rack->r_ctl.rc_time_probertt_entered = us_cts; 4202 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 4203 rack->r_ctl.rc_pace_min_segs); 4204 rack->in_probe_rtt = 1; 4205 rack->measure_saw_probe_rtt = 1; 4206 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 4207 rack->r_ctl.rc_time_probertt_starts = 0; 4208 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; 4209 if (rack_probertt_use_min_rtt_entry) 4210 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 4211 else 4212 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); 4213 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4214 __LINE__, RACK_RTTS_ENTERPROBE); 4215 } 4216 4217 static void 4218 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) 4219 { 4220 struct rack_sendmap *rsm; 4221 uint32_t segsiz; 4222 4223 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 4224 rack->r_ctl.rc_pace_min_segs); 4225 rack->in_probe_rtt = 0; 4226 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 4227 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 4228 /* 4229 * Stop the goodput now, the idea here is 4230 * that future measurements with in_probe_rtt 4231 * won't register if they are not greater so 4232 * we want to get what info (if any) is available 4233 * now. 4234 */ 4235 rack_do_goodput_measurement(rack->rc_tp, rack, 4236 rack->rc_tp->snd_una, __LINE__, 4237 RACK_QUALITY_PROBERTT); 4238 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 4239 /* 4240 * We don't have enough data to make a measurement. 4241 * So lets just stop and start here after exiting 4242 * probe-rtt. We probably are not interested in 4243 * the results anyway. 4244 */ 4245 rack->rc_tp->t_flags &= ~TF_GPUTINPROG; 4246 } 4247 /* 4248 * Measurements through the current snd_max are going 4249 * to be limited by the slower pacing rate. 4250 * 4251 * We need to mark these as app-limited so we 4252 * don't collapse the b/w. 4253 */ 4254 rsm = tqhash_max(rack->r_ctl.tqh); 4255 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 4256 if (rack->r_ctl.rc_app_limited_cnt == 0) 4257 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 4258 else { 4259 /* 4260 * Go out to the end app limited and mark 4261 * this new one as next and move the end_appl up 4262 * to this guy. 4263 */ 4264 if (rack->r_ctl.rc_end_appl) 4265 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 4266 rack->r_ctl.rc_end_appl = rsm; 4267 } 4268 rsm->r_flags |= RACK_APP_LIMITED; 4269 rack->r_ctl.rc_app_limited_cnt++; 4270 } 4271 /* 4272 * Now, we need to examine our pacing rate multipliers. 4273 * If its under 100%, we need to kick it back up to 4274 * 100%. We also don't let it be over our "max" above 4275 * the actual rate i.e. 100% + rack_clamp_atexit_prtt. 4276 * Note setting clamp_atexit_prtt to 0 has the effect 4277 * of setting CA/SS to 100% always at exit (which is 4278 * the default behavior). 4279 */ 4280 if (rack_probertt_clear_is) { 4281 rack->rc_gp_incr = 0; 4282 rack->rc_gp_bwred = 0; 4283 rack->rc_gp_timely_inc_cnt = 0; 4284 rack->rc_gp_timely_dec_cnt = 0; 4285 } 4286 /* Do we do any clamping at exit? */ 4287 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { 4288 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; 4289 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; 4290 } 4291 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { 4292 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; 4293 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; 4294 } 4295 /* 4296 * Lets set rtt_diff to 0, so that we will get a "boost" 4297 * after exiting. 4298 */ 4299 rack->r_ctl.rc_rtt_diff = 0; 4300 4301 /* Clear all flags so we start fresh */ 4302 rack->rc_tp->t_bytes_acked = 0; 4303 rack->rc_tp->t_ccv.flags &= ~CCF_ABC_SENTAWND; 4304 /* 4305 * If configured to, set the cwnd and ssthresh to 4306 * our targets. 4307 */ 4308 if (rack_probe_rtt_sets_cwnd) { 4309 uint64_t ebdp; 4310 uint32_t setto; 4311 4312 /* Set ssthresh so we get into CA once we hit our target */ 4313 if (rack_probertt_use_min_rtt_exit == 1) { 4314 /* Set to min rtt */ 4315 rack_set_prtt_target(rack, segsiz, 4316 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 4317 } else if (rack_probertt_use_min_rtt_exit == 2) { 4318 /* Set to current gp rtt */ 4319 rack_set_prtt_target(rack, segsiz, 4320 rack->r_ctl.rc_gp_srtt); 4321 } else if (rack_probertt_use_min_rtt_exit == 3) { 4322 /* Set to entry gp rtt */ 4323 rack_set_prtt_target(rack, segsiz, 4324 rack->r_ctl.rc_entry_gp_rtt); 4325 } else { 4326 uint64_t sum; 4327 uint32_t setval; 4328 4329 sum = rack->r_ctl.rc_entry_gp_rtt; 4330 sum *= 10; 4331 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); 4332 if (sum >= 20) { 4333 /* 4334 * A highly buffered path needs 4335 * cwnd space for timely to work. 4336 * Lets set things up as if 4337 * we are heading back here again. 4338 */ 4339 setval = rack->r_ctl.rc_entry_gp_rtt; 4340 } else if (sum >= 15) { 4341 /* 4342 * Lets take the smaller of the 4343 * two since we are just somewhat 4344 * buffered. 4345 */ 4346 setval = rack->r_ctl.rc_gp_srtt; 4347 if (setval > rack->r_ctl.rc_entry_gp_rtt) 4348 setval = rack->r_ctl.rc_entry_gp_rtt; 4349 } else { 4350 /* 4351 * Here we are not highly buffered 4352 * and should pick the min we can to 4353 * keep from causing loss. 4354 */ 4355 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 4356 } 4357 rack_set_prtt_target(rack, segsiz, 4358 setval); 4359 } 4360 if (rack_probe_rtt_sets_cwnd > 1) { 4361 /* There is a percentage here to boost */ 4362 ebdp = rack->r_ctl.rc_target_probertt_flight; 4363 ebdp *= rack_probe_rtt_sets_cwnd; 4364 ebdp /= 100; 4365 setto = rack->r_ctl.rc_target_probertt_flight + ebdp; 4366 } else 4367 setto = rack->r_ctl.rc_target_probertt_flight; 4368 rack->rc_tp->snd_cwnd = roundup(setto, segsiz); 4369 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { 4370 /* Enforce a min */ 4371 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; 4372 } 4373 /* If we set in the cwnd also set the ssthresh point so we are in CA */ 4374 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); 4375 } 4376 rack_log_rtt_shrinks(rack, us_cts, 4377 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4378 __LINE__, RACK_RTTS_EXITPROBE); 4379 /* Clear times last so log has all the info */ 4380 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; 4381 rack->r_ctl.rc_time_probertt_entered = us_cts; 4382 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 4383 rack->r_ctl.rc_time_of_last_probertt = us_cts; 4384 } 4385 4386 static void 4387 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) 4388 { 4389 /* Check in on probe-rtt */ 4390 if (rack->rc_gp_filled == 0) { 4391 /* We do not do p-rtt unless we have gp measurements */ 4392 return; 4393 } 4394 if (rack->in_probe_rtt) { 4395 uint64_t no_overflow; 4396 uint32_t endtime, must_stay; 4397 4398 if (rack->r_ctl.rc_went_idle_time && 4399 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { 4400 /* 4401 * We went idle during prtt, just exit now. 4402 */ 4403 rack_exit_probertt(rack, us_cts); 4404 } else if (rack_probe_rtt_safety_val && 4405 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && 4406 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { 4407 /* 4408 * Probe RTT safety value triggered! 4409 */ 4410 rack_log_rtt_shrinks(rack, us_cts, 4411 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4412 __LINE__, RACK_RTTS_SAFETY); 4413 rack_exit_probertt(rack, us_cts); 4414 } 4415 /* Calculate the max we will wait */ 4416 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); 4417 if (rack->rc_highly_buffered) 4418 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); 4419 /* Calculate the min we must wait */ 4420 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); 4421 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && 4422 TSTMP_LT(us_cts, endtime)) { 4423 uint32_t calc; 4424 /* Do we lower more? */ 4425 no_exit: 4426 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) 4427 calc = us_cts - rack->r_ctl.rc_time_probertt_entered; 4428 else 4429 calc = 0; 4430 calc /= max(rack->r_ctl.rc_gp_srtt, 1); 4431 if (calc) { 4432 /* Maybe */ 4433 calc *= rack_per_of_gp_probertt_reduce; 4434 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; 4435 /* Limit it too */ 4436 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) 4437 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; 4438 } 4439 /* We must reach target or the time set */ 4440 return; 4441 } 4442 if (rack->r_ctl.rc_time_probertt_starts == 0) { 4443 if ((TSTMP_LT(us_cts, must_stay) && 4444 rack->rc_highly_buffered) || 4445 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > 4446 rack->r_ctl.rc_target_probertt_flight)) { 4447 /* We are not past the must_stay time */ 4448 goto no_exit; 4449 } 4450 rack_log_rtt_shrinks(rack, us_cts, 4451 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4452 __LINE__, RACK_RTTS_REACHTARGET); 4453 rack->r_ctl.rc_time_probertt_starts = us_cts; 4454 if (rack->r_ctl.rc_time_probertt_starts == 0) 4455 rack->r_ctl.rc_time_probertt_starts = 1; 4456 /* Restore back to our rate we want to pace at in prtt */ 4457 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 4458 } 4459 /* 4460 * Setup our end time, some number of gp_srtts plus 200ms. 4461 */ 4462 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * 4463 (uint64_t)rack_probertt_gpsrtt_cnt_mul); 4464 if (rack_probertt_gpsrtt_cnt_div) 4465 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); 4466 else 4467 endtime = 0; 4468 endtime += rack_min_probertt_hold; 4469 endtime += rack->r_ctl.rc_time_probertt_starts; 4470 if (TSTMP_GEQ(us_cts, endtime)) { 4471 /* yes, exit probertt */ 4472 rack_exit_probertt(rack, us_cts); 4473 } 4474 4475 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { 4476 /* Go into probertt, its been too long since we went lower */ 4477 rack_enter_probertt(rack, us_cts); 4478 } 4479 } 4480 4481 static void 4482 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, 4483 uint32_t rtt, int32_t rtt_diff) 4484 { 4485 uint64_t cur_bw, up_bnd, low_bnd, subfr; 4486 uint32_t losses; 4487 4488 if ((rack->rc_gp_dyn_mul == 0) || 4489 (rack->use_fixed_rate) || 4490 (rack->in_probe_rtt) || 4491 (rack->rc_always_pace == 0)) { 4492 /* No dynamic GP multiplier in play */ 4493 return; 4494 } 4495 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; 4496 cur_bw = rack_get_bw(rack); 4497 /* Calculate our up and down range */ 4498 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; 4499 up_bnd /= 100; 4500 up_bnd += rack->r_ctl.last_gp_comp_bw; 4501 4502 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; 4503 subfr /= 100; 4504 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; 4505 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { 4506 /* 4507 * This is the case where our RTT is above 4508 * the max target and we have been configured 4509 * to just do timely no bonus up stuff in that case. 4510 * 4511 * There are two configurations, set to 1, and we 4512 * just do timely if we are over our max. If its 4513 * set above 1 then we slam the multipliers down 4514 * to 100 and then decrement per timely. 4515 */ 4516 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4517 __LINE__, 3); 4518 if (rack->r_ctl.rc_no_push_at_mrtt > 1) 4519 rack_validate_multipliers_at_or_below_100(rack); 4520 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4521 } else if ((timely_says != 0) && (last_bw_est < low_bnd) && !losses) { 4522 /* 4523 * We are decreasing this is a bit complicated this 4524 * means we are loosing ground. This could be 4525 * because another flow entered and we are competing 4526 * for b/w with it. This will push the RTT up which 4527 * makes timely unusable unless we want to get shoved 4528 * into a corner and just be backed off (the age 4529 * old problem with delay based CC). 4530 * 4531 * On the other hand if it was a route change we 4532 * would like to stay somewhat contained and not 4533 * blow out the buffers. 4534 */ 4535 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4536 __LINE__, 3); 4537 rack->r_ctl.last_gp_comp_bw = cur_bw; 4538 if (rack->rc_gp_bwred == 0) { 4539 /* Go into reduction counting */ 4540 rack->rc_gp_bwred = 1; 4541 rack->rc_gp_timely_dec_cnt = 0; 4542 } 4543 if (rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) { 4544 /* 4545 * Push another time with a faster pacing 4546 * to try to gain back (we include override to 4547 * get a full raise factor). 4548 */ 4549 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || 4550 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || 4551 (timely_says == 0) || 4552 (rack_down_raise_thresh == 0)) { 4553 /* 4554 * Do an override up in b/w if we were 4555 * below the threshold or if the threshold 4556 * is zero we always do the raise. 4557 */ 4558 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); 4559 } else { 4560 /* Log it stays the same */ 4561 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, 4562 __LINE__, 11); 4563 } 4564 rack->rc_gp_timely_dec_cnt++; 4565 /* We are not incrementing really no-count */ 4566 rack->rc_gp_incr = 0; 4567 rack->rc_gp_timely_inc_cnt = 0; 4568 } else { 4569 /* 4570 * Lets just use the RTT 4571 * information and give up 4572 * pushing. 4573 */ 4574 goto use_timely; 4575 } 4576 } else if ((timely_says != 2) && 4577 !losses && 4578 (last_bw_est > up_bnd)) { 4579 /* 4580 * We are increasing b/w lets keep going, updating 4581 * our b/w and ignoring any timely input, unless 4582 * of course we are at our max raise (if there is one). 4583 */ 4584 4585 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4586 __LINE__, 3); 4587 rack->r_ctl.last_gp_comp_bw = cur_bw; 4588 if (rack->rc_gp_saw_ss && 4589 rack->r_ctl.rack_per_upper_bound_ss && 4590 (rack->r_ctl.rack_per_of_gp_ss == rack->r_ctl.rack_per_upper_bound_ss)) { 4591 /* 4592 * In cases where we can't go higher 4593 * we should just use timely. 4594 */ 4595 goto use_timely; 4596 } 4597 if (rack->rc_gp_saw_ca && 4598 rack->r_ctl.rack_per_upper_bound_ca && 4599 (rack->r_ctl.rack_per_of_gp_ca == rack->r_ctl.rack_per_upper_bound_ca)) { 4600 /* 4601 * In cases where we can't go higher 4602 * we should just use timely. 4603 */ 4604 goto use_timely; 4605 } 4606 rack->rc_gp_bwred = 0; 4607 rack->rc_gp_timely_dec_cnt = 0; 4608 /* You get a set number of pushes if timely is trying to reduce */ 4609 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { 4610 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4611 } else { 4612 /* Log it stays the same */ 4613 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, 4614 __LINE__, 12); 4615 } 4616 return; 4617 } else { 4618 /* 4619 * We are staying between the lower and upper range bounds 4620 * so use timely to decide. 4621 */ 4622 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4623 __LINE__, 3); 4624 use_timely: 4625 if (timely_says) { 4626 rack->rc_gp_incr = 0; 4627 rack->rc_gp_timely_inc_cnt = 0; 4628 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && 4629 !losses && 4630 (last_bw_est < low_bnd)) { 4631 /* We are loosing ground */ 4632 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4633 rack->rc_gp_timely_dec_cnt++; 4634 /* We are not incrementing really no-count */ 4635 rack->rc_gp_incr = 0; 4636 rack->rc_gp_timely_inc_cnt = 0; 4637 } else 4638 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4639 } else { 4640 rack->rc_gp_bwred = 0; 4641 rack->rc_gp_timely_dec_cnt = 0; 4642 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4643 } 4644 } 4645 } 4646 4647 static int32_t 4648 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) 4649 { 4650 int32_t timely_says; 4651 uint64_t log_mult, log_rtt_a_diff; 4652 4653 log_rtt_a_diff = rtt; 4654 log_rtt_a_diff <<= 32; 4655 log_rtt_a_diff |= (uint32_t)rtt_diff; 4656 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * 4657 rack_gp_rtt_maxmul)) { 4658 /* Reduce the b/w multiplier */ 4659 timely_says = 2; 4660 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 4661 log_mult <<= 32; 4662 log_mult |= prev_rtt; 4663 rack_log_timely(rack, timely_says, log_mult, 4664 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4665 log_rtt_a_diff, __LINE__, 4); 4666 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4667 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4668 max(rack_gp_rtt_mindiv , 1)))) { 4669 /* Increase the b/w multiplier */ 4670 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4671 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4672 max(rack_gp_rtt_mindiv , 1)); 4673 log_mult <<= 32; 4674 log_mult |= prev_rtt; 4675 timely_says = 0; 4676 rack_log_timely(rack, timely_says, log_mult , 4677 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4678 log_rtt_a_diff, __LINE__, 5); 4679 } else { 4680 /* 4681 * Use a gradient to find it the timely gradient 4682 * is: 4683 * grad = rc_rtt_diff / min_rtt; 4684 * 4685 * anything below or equal to 0 will be 4686 * a increase indication. Anything above 4687 * zero is a decrease. Note we take care 4688 * of the actual gradient calculation 4689 * in the reduction (its not needed for 4690 * increase). 4691 */ 4692 log_mult = prev_rtt; 4693 if (rtt_diff <= 0) { 4694 /* 4695 * Rttdiff is less than zero, increase the 4696 * b/w multiplier (its 0 or negative) 4697 */ 4698 timely_says = 0; 4699 rack_log_timely(rack, timely_says, log_mult, 4700 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); 4701 } else { 4702 /* Reduce the b/w multiplier */ 4703 timely_says = 1; 4704 rack_log_timely(rack, timely_says, log_mult, 4705 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); 4706 } 4707 } 4708 return (timely_says); 4709 } 4710 4711 static __inline int 4712 rack_in_gp_window(struct tcpcb *tp, struct rack_sendmap *rsm) 4713 { 4714 if (SEQ_GEQ(rsm->r_start, tp->gput_seq) && 4715 SEQ_LEQ(rsm->r_end, tp->gput_ack)) { 4716 /** 4717 * This covers the case that the 4718 * resent is completely inside 4719 * the gp range or up to it. 4720 * |----------------| 4721 * |-----| <or> 4722 * |----| 4723 * <or> |---| 4724 */ 4725 return (1); 4726 } else if (SEQ_LT(rsm->r_start, tp->gput_seq) && 4727 SEQ_GT(rsm->r_end, tp->gput_seq)){ 4728 /** 4729 * This covers the case of 4730 * |--------------| 4731 * |-------->| 4732 */ 4733 return (1); 4734 } else if (SEQ_GEQ(rsm->r_start, tp->gput_seq) && 4735 SEQ_LT(rsm->r_start, tp->gput_ack) && 4736 SEQ_GEQ(rsm->r_end, tp->gput_ack)) { 4737 4738 /** 4739 * This covers the case of 4740 * |--------------| 4741 * |-------->| 4742 */ 4743 return (1); 4744 } 4745 return (0); 4746 } 4747 4748 static __inline void 4749 rack_mark_in_gp_win(struct tcpcb *tp, struct rack_sendmap *rsm) 4750 { 4751 4752 if ((tp->t_flags & TF_GPUTINPROG) == 0) 4753 return; 4754 /* 4755 * We have a Goodput measurement in progress. Mark 4756 * the send if its within the window. If its not 4757 * in the window make sure it does not have the mark. 4758 */ 4759 if (rack_in_gp_window(tp, rsm)) 4760 rsm->r_flags |= RACK_IN_GP_WIN; 4761 else 4762 rsm->r_flags &= ~RACK_IN_GP_WIN; 4763 } 4764 4765 static __inline void 4766 rack_clear_gp_marks(struct tcpcb *tp, struct tcp_rack *rack) 4767 { 4768 /* A GP measurement is ending, clear all marks on the send map*/ 4769 struct rack_sendmap *rsm = NULL; 4770 4771 rsm = tqhash_find(rack->r_ctl.tqh, tp->gput_seq); 4772 if (rsm == NULL) { 4773 rsm = tqhash_min(rack->r_ctl.tqh); 4774 } 4775 /* Nothing left? */ 4776 while ((rsm != NULL) && (SEQ_GEQ(tp->gput_ack, rsm->r_start))){ 4777 rsm->r_flags &= ~RACK_IN_GP_WIN; 4778 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 4779 } 4780 } 4781 4782 4783 static __inline void 4784 rack_tend_gp_marks(struct tcpcb *tp, struct tcp_rack *rack) 4785 { 4786 struct rack_sendmap *rsm = NULL; 4787 4788 if (tp->snd_una == tp->snd_max) { 4789 /* Nothing outstanding yet, nothing to do here */ 4790 return; 4791 } 4792 if (SEQ_GT(tp->gput_seq, tp->snd_una)) { 4793 /* 4794 * We are measuring ahead of some outstanding 4795 * data. We need to walk through up until we get 4796 * to gp_seq marking so that no rsm is set incorrectly 4797 * with RACK_IN_GP_WIN. 4798 */ 4799 rsm = tqhash_min(rack->r_ctl.tqh); 4800 while (rsm != NULL) { 4801 rack_mark_in_gp_win(tp, rsm); 4802 if (SEQ_GEQ(rsm->r_end, tp->gput_seq)) 4803 break; 4804 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 4805 } 4806 } 4807 if (rsm == NULL) { 4808 /* 4809 * Need to find the GP seq, if rsm is 4810 * set we stopped as we hit it. 4811 */ 4812 rsm = tqhash_find(rack->r_ctl.tqh, tp->gput_seq); 4813 if (rsm == NULL) 4814 return; 4815 rack_mark_in_gp_win(tp, rsm); 4816 } 4817 /* 4818 * Now we may need to mark already sent rsm, ahead of 4819 * gput_seq in the window since they may have been sent 4820 * *before* we started our measurment. The rsm, if non-null 4821 * has been marked (note if rsm would have been NULL we would have 4822 * returned in the previous block). So we go to the next, and continue 4823 * until we run out of entries or we exceed the gp_ack value. 4824 */ 4825 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 4826 while (rsm) { 4827 rack_mark_in_gp_win(tp, rsm); 4828 if (SEQ_GT(rsm->r_end, tp->gput_ack)) 4829 break; 4830 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 4831 } 4832 } 4833 4834 static void 4835 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 4836 tcp_seq th_ack, int line, uint8_t quality) 4837 { 4838 uint64_t tim, bytes_ps, stim, utim; 4839 uint32_t segsiz, bytes, reqbytes, us_cts; 4840 int32_t gput, new_rtt_diff, timely_says; 4841 uint64_t resid_bw, subpart = 0, addpart = 0, srtt; 4842 int did_add = 0; 4843 4844 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4845 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 4846 if (TSTMP_GEQ(us_cts, tp->gput_ts)) 4847 tim = us_cts - tp->gput_ts; 4848 else 4849 tim = 0; 4850 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts) 4851 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; 4852 else 4853 stim = 0; 4854 /* 4855 * Use the larger of the send time or ack time. This prevents us 4856 * from being influenced by ack artifacts to come up with too 4857 * high of measurement. Note that since we are spanning over many more 4858 * bytes in most of our measurements hopefully that is less likely to 4859 * occur. 4860 */ 4861 if (tim > stim) 4862 utim = max(tim, 1); 4863 else 4864 utim = max(stim, 1); 4865 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); 4866 rack_log_gpset(rack, th_ack, us_cts, rack->r_ctl.rc_gp_cumack_ts, __LINE__, 3, NULL); 4867 if ((tim == 0) && (stim == 0)) { 4868 /* 4869 * Invalid measurement time, maybe 4870 * all on one ack/one send? 4871 */ 4872 bytes = 0; 4873 bytes_ps = 0; 4874 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4875 0, 0, 0, 10, __LINE__, NULL, quality); 4876 goto skip_measurement; 4877 } 4878 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { 4879 /* We never made a us_rtt measurement? */ 4880 bytes = 0; 4881 bytes_ps = 0; 4882 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4883 0, 0, 0, 10, __LINE__, NULL, quality); 4884 goto skip_measurement; 4885 } 4886 /* 4887 * Calculate the maximum possible b/w this connection 4888 * could have. We base our calculation on the lowest 4889 * rtt we have seen during the measurement and the 4890 * largest rwnd the client has given us in that time. This 4891 * forms a BDP that is the maximum that we could ever 4892 * get to the client. Anything larger is not valid. 4893 * 4894 * I originally had code here that rejected measurements 4895 * where the time was less than 1/2 the latest us_rtt. 4896 * But after thinking on that I realized its wrong since 4897 * say you had a 150Mbps or even 1Gbps link, and you 4898 * were a long way away.. example I am in Europe (100ms rtt) 4899 * talking to my 1Gbps link in S.C. Now measuring say 150,000 4900 * bytes my time would be 1.2ms, and yet my rtt would say 4901 * the measurement was invalid the time was < 50ms. The 4902 * same thing is true for 150Mb (8ms of time). 4903 * 4904 * A better way I realized is to look at what the maximum 4905 * the connection could possibly do. This is gated on 4906 * the lowest RTT we have seen and the highest rwnd. 4907 * We should in theory never exceed that, if we are 4908 * then something on the path is storing up packets 4909 * and then feeding them all at once to our endpoint 4910 * messing up our measurement. 4911 */ 4912 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; 4913 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; 4914 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; 4915 if (SEQ_LT(th_ack, tp->gput_seq)) { 4916 /* No measurement can be made */ 4917 bytes = 0; 4918 bytes_ps = 0; 4919 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4920 0, 0, 0, 10, __LINE__, NULL, quality); 4921 goto skip_measurement; 4922 } else 4923 bytes = (th_ack - tp->gput_seq); 4924 bytes_ps = (uint64_t)bytes; 4925 /* 4926 * Don't measure a b/w for pacing unless we have gotten at least 4927 * an initial windows worth of data in this measurement interval. 4928 * 4929 * Small numbers of bytes get badly influenced by delayed ack and 4930 * other artifacts. Note we take the initial window or our 4931 * defined minimum GP (defaulting to 10 which hopefully is the 4932 * IW). 4933 */ 4934 if (rack->rc_gp_filled == 0) { 4935 /* 4936 * The initial estimate is special. We 4937 * have blasted out an IW worth of packets 4938 * without a real valid ack ts results. We 4939 * then setup the app_limited_needs_set flag, 4940 * this should get the first ack in (probably 2 4941 * MSS worth) to be recorded as the timestamp. 4942 * We thus allow a smaller number of bytes i.e. 4943 * IW - 2MSS. 4944 */ 4945 reqbytes -= (2 * segsiz); 4946 /* Also lets fill previous for our first measurement to be neutral */ 4947 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4948 } 4949 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { 4950 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4951 rack->r_ctl.rc_app_limited_cnt, 4952 0, 0, 10, __LINE__, NULL, quality); 4953 goto skip_measurement; 4954 } 4955 /* 4956 * We now need to calculate the Timely like status so 4957 * we can update (possibly) the b/w multipliers. 4958 */ 4959 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; 4960 if (rack->rc_gp_filled == 0) { 4961 /* No previous reading */ 4962 rack->r_ctl.rc_rtt_diff = new_rtt_diff; 4963 } else { 4964 if (rack->measure_saw_probe_rtt == 0) { 4965 /* 4966 * We don't want a probertt to be counted 4967 * since it will be negative incorrectly. We 4968 * expect to be reducing the RTT when we 4969 * pace at a slower rate. 4970 */ 4971 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); 4972 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); 4973 } 4974 } 4975 timely_says = rack_make_timely_judgement(rack, 4976 rack->r_ctl.rc_gp_srtt, 4977 rack->r_ctl.rc_rtt_diff, 4978 rack->r_ctl.rc_prev_gp_srtt 4979 ); 4980 bytes_ps *= HPTS_USEC_IN_SEC; 4981 bytes_ps /= utim; 4982 if (bytes_ps > rack->r_ctl.last_max_bw) { 4983 /* 4984 * Something is on path playing 4985 * since this b/w is not possible based 4986 * on our BDP (highest rwnd and lowest rtt 4987 * we saw in the measurement window). 4988 * 4989 * Another option here would be to 4990 * instead skip the measurement. 4991 */ 4992 rack_log_pacing_delay_calc(rack, bytes, reqbytes, 4993 bytes_ps, rack->r_ctl.last_max_bw, 0, 4994 11, __LINE__, NULL, quality); 4995 bytes_ps = rack->r_ctl.last_max_bw; 4996 } 4997 /* We store gp for b/w in bytes per second */ 4998 if (rack->rc_gp_filled == 0) { 4999 /* Initial measurement */ 5000 if (bytes_ps) { 5001 rack->r_ctl.gp_bw = bytes_ps; 5002 rack->rc_gp_filled = 1; 5003 rack->r_ctl.num_measurements = 1; 5004 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 5005 } else { 5006 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 5007 rack->r_ctl.rc_app_limited_cnt, 5008 0, 0, 10, __LINE__, NULL, quality); 5009 } 5010 if (tcp_in_hpts(rack->rc_tp) && 5011 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 5012 /* 5013 * Ok we can't trust the pacer in this case 5014 * where we transition from un-paced to paced. 5015 * Or for that matter when the burst mitigation 5016 * was making a wild guess and got it wrong. 5017 * Stop the pacer and clear up all the aggregate 5018 * delays etc. 5019 */ 5020 tcp_hpts_remove(rack->rc_tp); 5021 rack->r_ctl.rc_hpts_flags = 0; 5022 rack->r_ctl.rc_last_output_to = 0; 5023 } 5024 did_add = 2; 5025 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) { 5026 /* Still a small number run an average */ 5027 rack->r_ctl.gp_bw += bytes_ps; 5028 addpart = rack->r_ctl.num_measurements; 5029 rack->r_ctl.num_measurements++; 5030 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 5031 /* We have collected enough to move forward */ 5032 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements; 5033 } 5034 rack_set_pace_segments(tp, rack, __LINE__, NULL); 5035 did_add = 3; 5036 } else { 5037 /* 5038 * We want to take 1/wma of the goodput and add in to 7/8th 5039 * of the old value weighted by the srtt. So if your measurement 5040 * period is say 2 SRTT's long you would get 1/4 as the 5041 * value, if it was like 1/2 SRTT then you would get 1/16th. 5042 * 5043 * But we must be careful not to take too much i.e. if the 5044 * srtt is say 20ms and the measurement is taken over 5045 * 400ms our weight would be 400/20 i.e. 20. On the 5046 * other hand if we get a measurement over 1ms with a 5047 * 10ms rtt we only want to take a much smaller portion. 5048 */ 5049 if (rack->r_ctl.num_measurements < 0xff) { 5050 rack->r_ctl.num_measurements++; 5051 } 5052 srtt = (uint64_t)tp->t_srtt; 5053 if (srtt == 0) { 5054 /* 5055 * Strange why did t_srtt go back to zero? 5056 */ 5057 if (rack->r_ctl.rc_rack_min_rtt) 5058 srtt = rack->r_ctl.rc_rack_min_rtt; 5059 else 5060 srtt = HPTS_USEC_IN_MSEC; 5061 } 5062 /* 5063 * XXXrrs: Note for reviewers, in playing with 5064 * dynamic pacing I discovered this GP calculation 5065 * as done originally leads to some undesired results. 5066 * Basically you can get longer measurements contributing 5067 * too much to the WMA. Thus I changed it if you are doing 5068 * dynamic adjustments to only do the aportioned adjustment 5069 * if we have a very small (time wise) measurement. Longer 5070 * measurements just get there weight (defaulting to 1/8) 5071 * add to the WMA. We may want to think about changing 5072 * this to always do that for both sides i.e. dynamic 5073 * and non-dynamic... but considering lots of folks 5074 * were playing with this I did not want to change the 5075 * calculation per.se. without your thoughts.. Lawerence? 5076 * Peter?? 5077 */ 5078 if (rack->rc_gp_dyn_mul == 0) { 5079 subpart = rack->r_ctl.gp_bw * utim; 5080 subpart /= (srtt * 8); 5081 if (subpart < (rack->r_ctl.gp_bw / 2)) { 5082 /* 5083 * The b/w update takes no more 5084 * away then 1/2 our running total 5085 * so factor it in. 5086 */ 5087 addpart = bytes_ps * utim; 5088 addpart /= (srtt * 8); 5089 } else { 5090 /* 5091 * Don't allow a single measurement 5092 * to account for more than 1/2 of the 5093 * WMA. This could happen on a retransmission 5094 * where utim becomes huge compared to 5095 * srtt (multiple retransmissions when using 5096 * the sending rate which factors in all the 5097 * transmissions from the first one). 5098 */ 5099 subpart = rack->r_ctl.gp_bw / 2; 5100 addpart = bytes_ps / 2; 5101 } 5102 resid_bw = rack->r_ctl.gp_bw - subpart; 5103 rack->r_ctl.gp_bw = resid_bw + addpart; 5104 did_add = 1; 5105 } else { 5106 if ((utim / srtt) <= 1) { 5107 /* 5108 * The b/w update was over a small period 5109 * of time. The idea here is to prevent a small 5110 * measurement time period from counting 5111 * too much. So we scale it based on the 5112 * time so it attributes less than 1/rack_wma_divisor 5113 * of its measurement. 5114 */ 5115 subpart = rack->r_ctl.gp_bw * utim; 5116 subpart /= (srtt * rack_wma_divisor); 5117 addpart = bytes_ps * utim; 5118 addpart /= (srtt * rack_wma_divisor); 5119 } else { 5120 /* 5121 * The scaled measurement was long 5122 * enough so lets just add in the 5123 * portion of the measurement i.e. 1/rack_wma_divisor 5124 */ 5125 subpart = rack->r_ctl.gp_bw / rack_wma_divisor; 5126 addpart = bytes_ps / rack_wma_divisor; 5127 } 5128 if ((rack->measure_saw_probe_rtt == 0) || 5129 (bytes_ps > rack->r_ctl.gp_bw)) { 5130 /* 5131 * For probe-rtt we only add it in 5132 * if its larger, all others we just 5133 * add in. 5134 */ 5135 did_add = 1; 5136 resid_bw = rack->r_ctl.gp_bw - subpart; 5137 rack->r_ctl.gp_bw = resid_bw + addpart; 5138 } 5139 } 5140 rack_set_pace_segments(tp, rack, __LINE__, NULL); 5141 } 5142 if ((rack->gp_ready == 0) && 5143 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 5144 /* We have enough measurements now */ 5145 rack->gp_ready = 1; 5146 if (rack->dgp_on || 5147 rack->rack_hibeta) 5148 rack_set_cc_pacing(rack); 5149 if (rack->defer_options) 5150 rack_apply_deferred_options(rack); 5151 } 5152 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim, 5153 rack_get_bw(rack), 22, did_add, NULL, quality); 5154 /* We do not update any multipliers if we are in or have seen a probe-rtt */ 5155 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) 5156 rack_update_multiplier(rack, timely_says, bytes_ps, 5157 rack->r_ctl.rc_gp_srtt, 5158 rack->r_ctl.rc_rtt_diff); 5159 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, 5160 rack_get_bw(rack), 3, line, NULL, quality); 5161 rack_log_pacing_delay_calc(rack, 5162 bytes, /* flex2 */ 5163 tim, /* flex1 */ 5164 bytes_ps, /* bw_inuse */ 5165 rack->r_ctl.gp_bw, /* delRate */ 5166 rack_get_lt_bw(rack), /* rttProp */ 5167 20, line, NULL, 0); 5168 /* reset the gp srtt and setup the new prev */ 5169 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 5170 /* Record the lost count for the next measurement */ 5171 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; 5172 skip_measurement: 5173 /* 5174 * We restart our diffs based on the gpsrtt in the 5175 * measurement window. 5176 */ 5177 rack->rc_gp_rtt_set = 0; 5178 rack->rc_gp_saw_rec = 0; 5179 rack->rc_gp_saw_ca = 0; 5180 rack->rc_gp_saw_ss = 0; 5181 rack->rc_dragged_bottom = 0; 5182 5183 if (quality == RACK_QUALITY_HIGH) { 5184 /* 5185 * Gput in the stats world is in kbps where bytes_ps is 5186 * bytes per second so we do ((x * 8)/ 1000). 5187 */ 5188 gput = (int32_t)((bytes_ps << 3) / (uint64_t)1000); 5189 #ifdef STATS 5190 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 5191 gput); 5192 /* 5193 * XXXLAS: This is a temporary hack, and should be 5194 * chained off VOI_TCP_GPUT when stats(9) grows an 5195 * API to deal with chained VOIs. 5196 */ 5197 if (tp->t_stats_gput_prev > 0) 5198 stats_voi_update_abs_s32(tp->t_stats, 5199 VOI_TCP_GPUT_ND, 5200 ((gput - tp->t_stats_gput_prev) * 100) / 5201 tp->t_stats_gput_prev); 5202 #endif 5203 tp->t_stats_gput_prev = gput; 5204 } 5205 tp->t_flags &= ~TF_GPUTINPROG; 5206 /* 5207 * Now are we app limited now and there is space from where we 5208 * were to where we want to go? 5209 * 5210 * We don't do the other case i.e. non-applimited here since 5211 * the next send will trigger us picking up the missing data. 5212 */ 5213 if (rack->r_ctl.rc_first_appl && 5214 TCPS_HAVEESTABLISHED(tp->t_state) && 5215 rack->r_ctl.rc_app_limited_cnt && 5216 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && 5217 ((rack->r_ctl.rc_first_appl->r_end - th_ack) > 5218 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 5219 /* 5220 * Yep there is enough outstanding to make a measurement here. 5221 */ 5222 struct rack_sendmap *rsm; 5223 5224 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 5225 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 5226 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 5227 rack->app_limited_needs_set = 0; 5228 tp->gput_seq = th_ack; 5229 if (rack->in_probe_rtt) 5230 rack->measure_saw_probe_rtt = 1; 5231 else if ((rack->measure_saw_probe_rtt) && 5232 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 5233 rack->measure_saw_probe_rtt = 0; 5234 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) { 5235 /* There is a full window to gain info from */ 5236 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 5237 } else { 5238 /* We can only measure up to the applimited point */ 5239 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack); 5240 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 5241 /* 5242 * We don't have enough to make a measurement. 5243 */ 5244 tp->t_flags &= ~TF_GPUTINPROG; 5245 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 5246 0, 0, 0, 6, __LINE__, NULL, quality); 5247 return; 5248 } 5249 } 5250 if (tp->t_state >= TCPS_FIN_WAIT_1) { 5251 /* 5252 * We will get no more data into the SB 5253 * this means we need to have the data available 5254 * before we start a measurement. 5255 */ 5256 if (sbavail(&tptosocket(tp)->so_snd) < (tp->gput_ack - tp->gput_seq)) { 5257 /* Nope not enough data. */ 5258 return; 5259 } 5260 } 5261 tp->t_flags |= TF_GPUTINPROG; 5262 /* 5263 * Now we need to find the timestamp of the send at tp->gput_seq 5264 * for the send based measurement. 5265 */ 5266 rack->r_ctl.rc_gp_cumack_ts = 0; 5267 rsm = tqhash_find(rack->r_ctl.tqh, tp->gput_seq); 5268 if (rsm) { 5269 /* Ok send-based limit is set */ 5270 if (SEQ_LT(rsm->r_start, tp->gput_seq)) { 5271 /* 5272 * Move back to include the earlier part 5273 * so our ack time lines up right (this may 5274 * make an overlapping measurement but thats 5275 * ok). 5276 */ 5277 tp->gput_seq = rsm->r_start; 5278 } 5279 if (rsm->r_flags & RACK_ACKED) { 5280 struct rack_sendmap *nrsm; 5281 5282 tp->gput_ts = (uint32_t)rsm->r_ack_arrival; 5283 tp->gput_seq = rsm->r_end; 5284 nrsm = tqhash_next(rack->r_ctl.tqh, rsm); 5285 if (nrsm) 5286 rsm = nrsm; 5287 else { 5288 rack->app_limited_needs_set = 1; 5289 } 5290 } else 5291 rack->app_limited_needs_set = 1; 5292 /* We always go from the first send */ 5293 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[0]; 5294 } else { 5295 /* 5296 * If we don't find the rsm due to some 5297 * send-limit set the current time, which 5298 * basically disables the send-limit. 5299 */ 5300 struct timeval tv; 5301 5302 microuptime(&tv); 5303 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 5304 } 5305 rack_tend_gp_marks(tp, rack); 5306 rack_log_pacing_delay_calc(rack, 5307 tp->gput_seq, 5308 tp->gput_ack, 5309 (uint64_t)rsm, 5310 tp->gput_ts, 5311 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | (uint64_t)rack->r_ctl.rc_gp_output_ts), 5312 9, 5313 __LINE__, rsm, quality); 5314 rack_log_gpset(rack, tp->gput_ack, 0, 0, __LINE__, 1, NULL); 5315 } else { 5316 /* 5317 * To make sure proper timestamp merging occurs, we need to clear 5318 * all GP marks if we don't start a measurement. 5319 */ 5320 rack_clear_gp_marks(tp, rack); 5321 } 5322 } 5323 5324 /* 5325 * CC wrapper hook functions 5326 */ 5327 static void 5328 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, 5329 uint16_t type, int32_t recovery) 5330 { 5331 uint32_t prior_cwnd, acked; 5332 struct tcp_log_buffer *lgb = NULL; 5333 uint8_t labc_to_use, quality; 5334 5335 INP_WLOCK_ASSERT(tptoinpcb(tp)); 5336 tp->t_ccv.nsegs = nsegs; 5337 acked = tp->t_ccv.bytes_this_ack = (th_ack - tp->snd_una); 5338 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { 5339 uint32_t max; 5340 5341 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); 5342 if (tp->t_ccv.bytes_this_ack > max) { 5343 tp->t_ccv.bytes_this_ack = max; 5344 } 5345 } 5346 #ifdef STATS 5347 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 5348 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); 5349 #endif 5350 if ((th_ack == tp->snd_max) && rack->lt_bw_up) { 5351 /* We will ack all, time 5352 * to end any lt_bw_up we 5353 * have running until something 5354 * new is sent. 5355 */ 5356 struct timeval tv; 5357 5358 rack->r_ctl.lt_bw_bytes += (tp->snd_max - rack->r_ctl.lt_seq); 5359 rack->r_ctl.lt_seq = tp->snd_max; 5360 (void)tcp_get_usecs(&tv); 5361 rack->r_ctl.lt_bw_time += (tcp_tv_to_lusectick(&tv) - rack->r_ctl.lt_timemark); 5362 rack->lt_bw_up = 0; 5363 } 5364 quality = RACK_QUALITY_NONE; 5365 if ((tp->t_flags & TF_GPUTINPROG) && 5366 rack_enough_for_measurement(tp, rack, th_ack, &quality)) { 5367 /* Measure the Goodput */ 5368 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality); 5369 } 5370 /* Which way our we limited, if not cwnd limited no advance in CA */ 5371 if (tp->snd_cwnd <= tp->snd_wnd) 5372 tp->t_ccv.flags |= CCF_CWND_LIMITED; 5373 else 5374 tp->t_ccv.flags &= ~CCF_CWND_LIMITED; 5375 if (tp->snd_cwnd > tp->snd_ssthresh) { 5376 tp->t_bytes_acked += min(tp->t_ccv.bytes_this_ack, 5377 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); 5378 /* For the setting of a window past use the actual scwnd we are using */ 5379 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { 5380 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; 5381 tp->t_ccv.flags |= CCF_ABC_SENTAWND; 5382 } 5383 } else { 5384 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND; 5385 tp->t_bytes_acked = 0; 5386 } 5387 prior_cwnd = tp->snd_cwnd; 5388 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec || 5389 (rack_client_low_buf && rack->client_bufferlvl && 5390 (rack->client_bufferlvl < rack_client_low_buf))) 5391 labc_to_use = rack->rc_labc; 5392 else 5393 labc_to_use = rack_max_abc_post_recovery; 5394 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 5395 union tcp_log_stackspecific log; 5396 struct timeval tv; 5397 5398 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5399 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5400 log.u_bbr.flex1 = th_ack; 5401 log.u_bbr.flex2 = tp->t_ccv.flags; 5402 log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack; 5403 log.u_bbr.flex4 = tp->t_ccv.nsegs; 5404 log.u_bbr.flex5 = labc_to_use; 5405 log.u_bbr.flex6 = prior_cwnd; 5406 log.u_bbr.flex7 = V_tcp_do_newsack; 5407 log.u_bbr.flex8 = 1; 5408 lgb = tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 5409 0, &log, false, NULL, __func__, __LINE__,&tv); 5410 } 5411 if (CC_ALGO(tp)->ack_received != NULL) { 5412 /* XXXLAS: Find a way to live without this */ 5413 tp->t_ccv.curack = th_ack; 5414 tp->t_ccv.labc = labc_to_use; 5415 tp->t_ccv.flags |= CCF_USE_LOCAL_ABC; 5416 CC_ALGO(tp)->ack_received(&tp->t_ccv, type); 5417 } 5418 if (lgb) { 5419 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd; 5420 } 5421 if (rack->r_must_retran) { 5422 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) { 5423 /* 5424 * We now are beyond the rxt point so lets disable 5425 * the flag. 5426 */ 5427 rack->r_ctl.rc_out_at_rto = 0; 5428 rack->r_must_retran = 0; 5429 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) { 5430 /* 5431 * Only decrement the rc_out_at_rto if the cwnd advances 5432 * at least a whole segment. Otherwise next time the peer 5433 * acks, we won't be able to send this generaly happens 5434 * when we are in Congestion Avoidance. 5435 */ 5436 if (acked <= rack->r_ctl.rc_out_at_rto){ 5437 rack->r_ctl.rc_out_at_rto -= acked; 5438 } else { 5439 rack->r_ctl.rc_out_at_rto = 0; 5440 } 5441 } 5442 } 5443 #ifdef STATS 5444 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); 5445 #endif 5446 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { 5447 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; 5448 } 5449 } 5450 5451 static void 5452 tcp_rack_partialack(struct tcpcb *tp) 5453 { 5454 struct tcp_rack *rack; 5455 5456 rack = (struct tcp_rack *)tp->t_fb_ptr; 5457 INP_WLOCK_ASSERT(tptoinpcb(tp)); 5458 /* 5459 * If we are doing PRR and have enough 5460 * room to send <or> we are pacing and prr 5461 * is disabled we will want to see if we 5462 * can send data (by setting r_wanted_output to 5463 * true). 5464 */ 5465 if ((rack->r_ctl.rc_prr_sndcnt > 0) || 5466 rack->rack_no_prr) 5467 rack->r_wanted_output = 1; 5468 } 5469 5470 static inline void 5471 rack_set_most_aggr(struct tcp_rack *rack) 5472 { 5473 rack->r_fill_less_agg = 0; 5474 /* Once the cwnd as been clamped we don't do fill_cw */ 5475 if (rack->r_cwnd_was_clamped == 0) 5476 rack->rc_pace_to_cwnd = 1; 5477 rack->r_pacing_discount = 0; 5478 } 5479 5480 static inline void 5481 rack_limit_fillcw(struct tcp_rack *rack) 5482 { 5483 rack->r_fill_less_agg = 1; 5484 /* Once the cwnd as been clamped we don't do fill_cw */ 5485 if (rack->r_cwnd_was_clamped == 0) 5486 rack->rc_pace_to_cwnd = 1; 5487 rack->r_pacing_discount = 0; 5488 } 5489 5490 static inline void 5491 rack_disable_fillcw(struct tcp_rack *rack) 5492 { 5493 rack->r_fill_less_agg = 1; 5494 rack->rc_pace_to_cwnd = 0; 5495 rack->r_pacing_discount = 0; 5496 } 5497 5498 static void 5499 rack_client_buffer_level_set(struct tcp_rack *rack) 5500 { 5501 /* 5502 * Only if DGP is on do we do anything that 5503 * changes stack behavior. If DGP is off all 5504 * we will do is issue a BB log (if BB logging is 5505 * on) and return. 5506 */ 5507 if (rack->dgp_on == 0) { 5508 rack_log_pacing_delay_calc(rack, 0, rack->client_bufferlvl, 5509 0, 0, 0, 30, __LINE__, NULL, 0); 5510 return; 5511 } 5512 if (IN_RECOVERY(rack->rc_tp->t_flags) && rack->r_ctl.full_dgp_in_rec) { 5513 goto set_most_agg; 5514 } 5515 /* 5516 * We are in DGP so what setting should we 5517 * apply based on where the client is? 5518 */ 5519 switch(rack->r_ctl.rc_dgp_bl_agg) { 5520 default: 5521 case DGP_LEVEL0: 5522 set_most_agg: 5523 rack_set_most_aggr(rack); 5524 break; 5525 case DGP_LEVEL1: 5526 if (rack->client_bufferlvl == 4) 5527 rack_limit_fillcw(rack); 5528 else if (rack->client_bufferlvl == 5) 5529 rack_disable_fillcw(rack); 5530 else 5531 rack_set_most_aggr(rack); 5532 break; 5533 case DGP_LEVEL2: 5534 if (rack->client_bufferlvl == 3) 5535 rack_limit_fillcw(rack); 5536 else if (rack->client_bufferlvl == 4) 5537 rack_disable_fillcw(rack); 5538 else if (rack->client_bufferlvl == 5) { 5539 rack_disable_fillcw(rack); 5540 rack->r_pacing_discount = 1; 5541 rack->r_ctl.pacing_discount_amm = 1; 5542 } else 5543 rack_set_most_aggr(rack); 5544 break; 5545 case DGP_LEVEL3: 5546 if (rack->client_bufferlvl == 2) 5547 rack_limit_fillcw(rack); 5548 else if (rack->client_bufferlvl == 3) 5549 rack_disable_fillcw(rack); 5550 else if (rack->client_bufferlvl == 4) { 5551 rack_disable_fillcw(rack); 5552 rack->r_pacing_discount = 1; 5553 rack->r_ctl.pacing_discount_amm = 1; 5554 } else if (rack->client_bufferlvl == 5) { 5555 rack_disable_fillcw(rack); 5556 rack->r_pacing_discount = 1; 5557 rack->r_ctl.pacing_discount_amm = 2; 5558 } else 5559 rack_set_most_aggr(rack); 5560 break; 5561 } 5562 rack_log_pacing_delay_calc(rack, rack->r_ctl.rc_dgp_bl_agg, rack->client_bufferlvl, 0, 5563 0, 0, 30, __LINE__, NULL, 0); 5564 } 5565 5566 static void 5567 do_rack_check_for_unclamp(struct tcpcb *tp, struct tcp_rack *rack) 5568 { 5569 /* 5570 * Can we unclamp. We unclamp if more than 5571 * N rounds have transpired with no loss. 5572 */ 5573 uint64_t snds, rxts, rxt_per; 5574 uint32_t rnds; 5575 5576 rnds = rack->r_ctl.current_round - rack->r_ctl.last_rnd_rxt_clamped; 5577 if ((rack_unclamp_round_thresh > 0) && 5578 (rnds >= rack_unclamp_round_thresh)) { 5579 snds = tp->t_sndbytes - rack->r_ctl.last_sndbytes; 5580 KASSERT ((snds > 0), ("rack:%p tp:%p snds:%ju is 0", rack, tp, 5581 (uintmax_t)snds)); 5582 rxts = tp->t_snd_rxt_bytes - rack->r_ctl.last_snd_rxt_bytes; 5583 rxt_per = rxts * 1000; 5584 rxt_per /= snds; 5585 if ((uint32_t)rxt_per <= rack_unclamp_rxt_thresh) { 5586 /* Unclamp */ 5587 if (tcp_bblogging_on(rack->rc_tp)) { 5588 union tcp_log_stackspecific log; 5589 struct timeval tv; 5590 5591 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5592 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5593 log.u_bbr.flex3 = rnds; 5594 log.u_bbr.flex4 = rack_unclamp_round_thresh; 5595 log.u_bbr.flex5 = (uint32_t)rxt_per; 5596 log.u_bbr.flex8 = 6; 5597 log.u_bbr.pkt_epoch = rack->r_ctl.rc_pace_max_segs; 5598 log.u_bbr.bbr_state = rack->rc_pace_to_cwnd; 5599 log.u_bbr.delivered = rack->r_ctl.num_of_clamps_applied; 5600 log.u_bbr.applimited = rack->r_ctl.max_clamps; 5601 log.u_bbr.epoch = rack->r_ctl.clamp_options; 5602 log.u_bbr.cur_del_rate = rxts; 5603 log.u_bbr.bw_inuse = rack_get_lt_bw(rack); 5604 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 5605 log.u_bbr.lt_epoch = (uint32_t)((rack->r_ctl.gp_bw >> 32) & 0x00000000ffffffff); 5606 log.u_bbr.pkts_out = (uint32_t)(rack->r_ctl.gp_bw & 0x00000000ffffffff); 5607 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 5608 0, &log, false, NULL, NULL, 0, &tv); 5609 } 5610 rack->r_ctl.num_of_clamps_applied = 0; 5611 rack->r_cwnd_was_clamped = 0; 5612 rack->excess_rxt_on = 1; 5613 if (rack->r_ctl.clamp_options) { 5614 /* 5615 * We only allow fillcw to be toggled 5616 * if you are setting a max seg too. 5617 */ 5618 if (rack->r_ctl.clamp_options & 0x1) { 5619 if ((rack->rc_pace_to_cwnd == 0) && (rack->dgp_on == 0)) { 5620 /* turn on fill cw for non-dgp*/ 5621 rack->rc_pace_to_cwnd = 0; 5622 } else if ((rack->dgp_on == 1) && (rack->rc_pace_to_cwnd == 1)) { 5623 /* For DGP we want it off */ 5624 rack->rc_pace_to_cwnd = 1; 5625 } 5626 } 5627 } 5628 if (rack->dgp_on) { 5629 /* Reset all multipliers to 100.0 so just the measured bw */ 5630 /* Crash any per boosts down to 100% */ 5631 rack->r_ctl.rack_per_of_gp_rec = 100; 5632 rack->r_ctl.rack_per_of_gp_ss = 100; 5633 rack->r_ctl.rack_per_of_gp_ca = 100; 5634 /* Set in an upper bound for ss/ca % increase */ 5635 rack->r_ctl.rack_per_upper_bound_ss = (uint8_t)rack_per_upper_bound_ss; 5636 rack->r_ctl.rack_per_upper_bound_ca = (uint8_t)rack_per_upper_bound_ca; 5637 } 5638 } 5639 } 5640 } 5641 5642 static void 5643 do_rack_excess_rxt(struct tcpcb *tp, struct tcp_rack *rack) 5644 { 5645 /* 5646 * Rack excess rxt accounting is turned on. If we 5647 * are above a threshold of rxt's in at least N 5648 * rounds, then back off the cwnd and ssthresh 5649 * to fit into the long-term b/w. 5650 */ 5651 uint64_t snds, rxts, rxt_per, lt_bw, bdp; 5652 uint32_t rnds, new_cwnd, new_ssthresh, rtt, shared_cwnd_was_enabled = 0; 5653 5654 /* Is it shut off by 0 rounds? */ 5655 if (rack_rxt_min_rnds == 0) 5656 return; 5657 if ((rack->r_ctl.max_clamps > 0) && 5658 (rack->r_ctl.num_of_clamps_applied >= rack->r_ctl.max_clamps)) { 5659 /* 5660 * The idea, if max_clamps is set, is that if clamping it 5661 * N times did not work again, then there is no sense 5662 * clamping it again. The link is just a lossy link and 5663 * our clamps are doing no good. Turn it off so we don't come 5664 * back here again. 5665 */ 5666 rack->excess_rxt_on = 0; 5667 rack->r_cwnd_was_clamped = 0; 5668 rack->r_ctl.num_of_clamps_applied = 0; 5669 return; 5670 } 5671 snds = tp->t_sndbytes - rack->r_ctl.last_sndbytes; 5672 rxts = tp->t_snd_rxt_bytes - rack->r_ctl.last_snd_rxt_bytes; 5673 rnds = rack->r_ctl.current_round - rack->r_ctl.last_rnd_rxt_clamped; 5674 /* Has enough rounds progressed for us to re-measure? */ 5675 if ((rnds >= rack_rxt_min_rnds) && 5676 (rack->r_ctl.rxt_threshold > 0)){ 5677 rxt_per = rxts * 1000; 5678 rxt_per /= snds; 5679 if (rxt_per >= rack->r_ctl.rxt_threshold) { 5680 /* 5681 * Action required: 5682 * We are above our excess retransmit level, lets 5683 * cut down the cwnd and ssthresh to match the long-term 5684 * b/w we are getting. 5685 */ 5686 /* First disable scwnd if enabled */ 5687 #ifdef NETFLIX_SHARED_CWND 5688 rack->rack_enable_scwnd = 0; 5689 if (rack->r_ctl.rc_scw) { 5690 uint32_t limit; 5691 5692 shared_cwnd_was_enabled = 1; 5693 if (rack->r_limit_scw) 5694 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 5695 else 5696 limit = 0; 5697 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 5698 rack->r_ctl.rc_scw_index, 5699 limit); 5700 rack->r_ctl.rc_scw = NULL; 5701 } 5702 5703 #endif 5704 /* Calculate what the cwnd and ssthresh should be */ 5705 tcp_trace_point(rack->rc_tp, TCP_TP_EXCESS_RXT); 5706 lt_bw = rack_get_lt_bw(rack); 5707 if (lt_bw == 0) { 5708 /* 5709 * No lt_bw, lets chop things to one MSS 5710 * and the ssthresh to the iwnd. 5711 */ 5712 reset_to_iw: 5713 new_cwnd = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 5714 new_ssthresh = tcp_compute_initwnd(tcp_maxseg(tp)); 5715 } else { 5716 rtt = rack->rc_rack_rtt; 5717 if (rtt == 0) { 5718 /* If we have no rack_rtt drop to the IW situation */ 5719 goto reset_to_iw; 5720 } 5721 bdp = lt_bw * (uint64_t)rtt; 5722 bdp /= HPTS_USEC_IN_SEC; 5723 new_cwnd = (uint32_t)bdp; 5724 new_ssthresh = new_cwnd - 1; 5725 if (new_cwnd < ctf_fixed_maxseg(tp)) { 5726 /* Rock bottom, goto IW settings */ 5727 goto reset_to_iw; 5728 } 5729 } 5730 rack->r_cwnd_was_clamped = 1; 5731 rack->r_ctl.num_of_clamps_applied++; 5732 /* Reset the counter fromn now */ 5733 tp->t_bytes_acked = 0; 5734 /* 5735 * Now what about options? 5736 * We look at the bottom 8 bits: 5737 * F = fill cw bit (toggle it if set) 5738 * S = Segment bits 5739 * M = set max segment bit 5740 * 5741 * SSSS SSMF 5742 */ 5743 if (rack->r_ctl.clamp_options) { 5744 if (rack->r_ctl.clamp_options & 0x1) { 5745 if ((rack->rc_pace_to_cwnd == 0) && (rack->dgp_on == 0)) { 5746 /* turn on fill cw for non-dgp*/ 5747 rack->rc_pace_to_cwnd = 1; 5748 } else if ((rack->dgp_on == 1) && (rack->rc_pace_to_cwnd == 1)) { 5749 /* For DGP we want it off */ 5750 rack->rc_pace_to_cwnd = 0; 5751 } 5752 } 5753 } 5754 if (rack->dgp_on) { 5755 /* Reset all multipliers to 100.0 so just the measured bw */ 5756 /* Crash any per boosts down to 100% */ 5757 rack->r_ctl.rack_per_of_gp_rec = 100; 5758 rack->r_ctl.rack_per_of_gp_ss = 100; 5759 rack->r_ctl.rack_per_of_gp_ca = 100; 5760 /* Set in an upper bound for ss/ca % increase */ 5761 rack->r_ctl.rack_per_upper_bound_ss = (uint8_t)rack_clamp_ss_upper; 5762 rack->r_ctl.rack_per_upper_bound_ca = (uint8_t)rack_clamp_ca_upper; 5763 /* Now move to the lt_bw */ 5764 rack->r_ctl.gp_bw = lt_bw; 5765 rack->rc_gp_filled = 1; 5766 rack->r_ctl.num_measurements = RACK_REQ_AVG; 5767 } 5768 if (tcp_bblogging_on(rack->rc_tp)) { 5769 union tcp_log_stackspecific log; 5770 struct timeval tv; 5771 5772 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5773 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5774 log.u_bbr.flex1 = new_cwnd; 5775 log.u_bbr.flex2 = new_ssthresh; 5776 log.u_bbr.flex3 = rnds; 5777 log.u_bbr.flex4 = rack_rxt_min_rnds; 5778 log.u_bbr.flex5 = rtt; 5779 log.u_bbr.flex6 = shared_cwnd_was_enabled; 5780 log.u_bbr.flex8 = 5; 5781 log.u_bbr.pkt_epoch = rack->r_ctl.rc_pace_max_segs; 5782 log.u_bbr.bbr_state = rack->rc_pace_to_cwnd; 5783 log.u_bbr.delivered = rack->r_ctl.num_of_clamps_applied; 5784 log.u_bbr.applimited = rack->r_ctl.max_clamps; 5785 log.u_bbr.epoch = rack->r_ctl.clamp_options; 5786 log.u_bbr.cur_del_rate = rxts; 5787 log.u_bbr.delRate = snds; 5788 log.u_bbr.rttProp = rack->r_ctl.rxt_threshold; 5789 log.u_bbr.bw_inuse = lt_bw; 5790 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 5791 log.u_bbr.lt_epoch = (uint32_t)((rack->r_ctl.gp_bw >> 32) & 0x00000000ffffffff); 5792 log.u_bbr.pkts_out = (uint32_t)(rack->r_ctl.gp_bw & 0x00000000ffffffff); 5793 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 5794 0, &log, false, NULL, NULL, 0, &tv); 5795 } 5796 /* Update our point where we did it */ 5797 if (rack->r_ctl.already_had_a_excess == 0) { 5798 rack->r_ctl.already_had_a_excess = 1; 5799 counter_u64_add(rack_rxt_clamps_cwnd_uniq, 1); 5800 } 5801 counter_u64_add(rack_rxt_clamps_cwnd, 1); 5802 rack->r_ctl.last_sndbytes = tp->t_sndbytes; 5803 rack->r_ctl.last_snd_rxt_bytes = tp->t_snd_rxt_bytes; 5804 rack->r_ctl.last_rnd_rxt_clamped = rack->r_ctl.current_round; 5805 if (new_cwnd < tp->snd_cwnd) 5806 tp->snd_cwnd = new_cwnd; 5807 if (new_ssthresh < tp->snd_ssthresh) 5808 tp->snd_ssthresh = new_ssthresh; 5809 } 5810 } 5811 } 5812 5813 static void 5814 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack) 5815 { 5816 struct tcp_rack *rack; 5817 uint32_t orig_cwnd; 5818 5819 orig_cwnd = tp->snd_cwnd; 5820 INP_WLOCK_ASSERT(tptoinpcb(tp)); 5821 rack = (struct tcp_rack *)tp->t_fb_ptr; 5822 /* only alert CC if we alerted when we entered */ 5823 if (CC_ALGO(tp)->post_recovery != NULL) { 5824 tp->t_ccv.curack = th_ack; 5825 CC_ALGO(tp)->post_recovery(&tp->t_ccv); 5826 if (tp->snd_cwnd < tp->snd_ssthresh) { 5827 /* 5828 * Rack has burst control and pacing 5829 * so lets not set this any lower than 5830 * snd_ssthresh per RFC-6582 (option 2). 5831 */ 5832 tp->snd_cwnd = tp->snd_ssthresh; 5833 } 5834 } 5835 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 5836 union tcp_log_stackspecific log; 5837 struct timeval tv; 5838 5839 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5840 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5841 log.u_bbr.flex1 = th_ack; 5842 log.u_bbr.flex2 = tp->t_ccv.flags; 5843 log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack; 5844 log.u_bbr.flex4 = tp->t_ccv.nsegs; 5845 log.u_bbr.flex5 = V_tcp_abc_l_var; 5846 log.u_bbr.flex6 = orig_cwnd; 5847 log.u_bbr.flex7 = V_tcp_do_newsack; 5848 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 5849 log.u_bbr.flex8 = 2; 5850 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 5851 0, &log, false, NULL, __func__, __LINE__, &tv); 5852 } 5853 if ((rack->rack_no_prr == 0) && 5854 (rack->no_prr_addback == 0) && 5855 (rack->r_ctl.rc_prr_sndcnt > 0)) { 5856 /* 5857 * Suck the next prr cnt back into cwnd, but 5858 * only do that if we are not application limited. 5859 */ 5860 if (ctf_outstanding(tp) <= sbavail(&tptosocket(tp)->so_snd)) { 5861 /* 5862 * We are allowed to add back to the cwnd the amount we did 5863 * not get out if: 5864 * a) no_prr_addback is off. 5865 * b) we are not app limited 5866 * c) we are doing prr 5867 * <and> 5868 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none). 5869 */ 5870 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax), 5871 rack->r_ctl.rc_prr_sndcnt); 5872 } 5873 rack->r_ctl.rc_prr_sndcnt = 0; 5874 rack_log_to_prr(rack, 1, 0, __LINE__); 5875 } 5876 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__); 5877 tp->snd_recover = tp->snd_una; 5878 if (rack->r_ctl.dsack_persist) { 5879 rack->r_ctl.dsack_persist--; 5880 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 5881 rack->r_ctl.num_dsack = 0; 5882 } 5883 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 5884 } 5885 EXIT_RECOVERY(tp->t_flags); 5886 if (rack->r_ctl.full_dgp_in_rec) 5887 rack_client_buffer_level_set(rack); 5888 } 5889 5890 static void 5891 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack, int line) 5892 { 5893 struct tcp_rack *rack; 5894 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd; 5895 5896 INP_WLOCK_ASSERT(tptoinpcb(tp)); 5897 #ifdef STATS 5898 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 5899 #endif 5900 if (IN_RECOVERY(tp->t_flags) == 0) { 5901 in_rec_at_entry = 0; 5902 ssthresh_enter = tp->snd_ssthresh; 5903 cwnd_enter = tp->snd_cwnd; 5904 } else 5905 in_rec_at_entry = 1; 5906 rack = (struct tcp_rack *)tp->t_fb_ptr; 5907 switch (type) { 5908 case CC_NDUPACK: 5909 tp->t_flags &= ~TF_WASFRECOVERY; 5910 tp->t_flags &= ~TF_WASCRECOVERY; 5911 if (!IN_FASTRECOVERY(tp->t_flags)) { 5912 if (rack->dgp_on && rack->r_cwnd_was_clamped) { 5913 /* Reset the gains so that on exit we will be softer longer */ 5914 rack->r_ctl.rack_per_of_gp_rec = 100; 5915 rack->r_ctl.rack_per_of_gp_ss = 98; 5916 rack->r_ctl.rack_per_of_gp_ca = 98; 5917 } 5918 rack->r_ctl.rc_prr_delivered = 0; 5919 rack->r_ctl.rc_prr_out = 0; 5920 rack->r_fast_output = 0; 5921 if (rack->rack_no_prr == 0) { 5922 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 5923 rack_log_to_prr(rack, 2, in_rec_at_entry, line); 5924 } 5925 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; 5926 tp->snd_recover = tp->snd_max; 5927 if (tp->t_flags2 & TF2_ECN_PERMIT) 5928 tp->t_flags2 |= TF2_ECN_SND_CWR; 5929 } 5930 break; 5931 case CC_ECN: 5932 if (!IN_CONGRECOVERY(tp->t_flags) || 5933 /* 5934 * Allow ECN reaction on ACK to CWR, if 5935 * that data segment was also CE marked. 5936 */ 5937 SEQ_GEQ(ack, tp->snd_recover)) { 5938 EXIT_CONGRECOVERY(tp->t_flags); 5939 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); 5940 rack->r_fast_output = 0; 5941 tp->snd_recover = tp->snd_max + 1; 5942 if (tp->t_flags2 & TF2_ECN_PERMIT) 5943 tp->t_flags2 |= TF2_ECN_SND_CWR; 5944 } 5945 break; 5946 case CC_RTO: 5947 tp->t_dupacks = 0; 5948 tp->t_bytes_acked = 0; 5949 rack->r_fast_output = 0; 5950 EXIT_RECOVERY(tp->t_flags); 5951 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / 5952 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); 5953 orig_cwnd = tp->snd_cwnd; 5954 tp->snd_cwnd = ctf_fixed_maxseg(tp); 5955 rack_log_to_prr(rack, 16, orig_cwnd, line); 5956 if (tp->t_flags2 & TF2_ECN_PERMIT) 5957 tp->t_flags2 |= TF2_ECN_SND_CWR; 5958 break; 5959 case CC_RTO_ERR: 5960 KMOD_TCPSTAT_INC(tcps_sndrexmitbad); 5961 /* RTO was unnecessary, so reset everything. */ 5962 tp->snd_cwnd = tp->snd_cwnd_prev; 5963 tp->snd_ssthresh = tp->snd_ssthresh_prev; 5964 tp->snd_recover = tp->snd_recover_prev; 5965 if (tp->t_flags & TF_WASFRECOVERY) { 5966 ENTER_FASTRECOVERY(tp->t_flags); 5967 tp->t_flags &= ~TF_WASFRECOVERY; 5968 } 5969 if (tp->t_flags & TF_WASCRECOVERY) { 5970 ENTER_CONGRECOVERY(tp->t_flags); 5971 tp->t_flags &= ~TF_WASCRECOVERY; 5972 } 5973 tp->snd_nxt = tp->snd_max; 5974 tp->t_badrxtwin = 0; 5975 break; 5976 } 5977 if ((CC_ALGO(tp)->cong_signal != NULL) && 5978 (type != CC_RTO)){ 5979 tp->t_ccv.curack = ack; 5980 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type); 5981 } 5982 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) { 5983 rack_log_to_prr(rack, 15, cwnd_enter, line); 5984 if (rack->r_ctl.full_dgp_in_rec) 5985 rack_client_buffer_level_set(rack); 5986 rack->r_ctl.dsack_byte_cnt = 0; 5987 rack->r_ctl.retran_during_recovery = 0; 5988 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter; 5989 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter; 5990 rack->r_ent_rec_ns = 1; 5991 } 5992 } 5993 5994 static inline void 5995 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) 5996 { 5997 uint32_t i_cwnd; 5998 5999 INP_WLOCK_ASSERT(tptoinpcb(tp)); 6000 6001 if (CC_ALGO(tp)->after_idle != NULL) 6002 CC_ALGO(tp)->after_idle(&tp->t_ccv); 6003 6004 if (tp->snd_cwnd == 1) 6005 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 6006 else 6007 i_cwnd = rc_init_window(rack); 6008 6009 /* 6010 * Being idle is no different than the initial window. If the cc 6011 * clamps it down below the initial window raise it to the initial 6012 * window. 6013 */ 6014 if (tp->snd_cwnd < i_cwnd) { 6015 tp->snd_cwnd = i_cwnd; 6016 } 6017 } 6018 6019 /* 6020 * Indicate whether this ack should be delayed. We can delay the ack if 6021 * following conditions are met: 6022 * - There is no delayed ack timer in progress. 6023 * - Our last ack wasn't a 0-sized window. We never want to delay 6024 * the ack that opens up a 0-sized window. 6025 * - LRO wasn't used for this segment. We make sure by checking that the 6026 * segment size is not larger than the MSS. 6027 * - Delayed acks are enabled or this is a half-synchronized T/TCP 6028 * connection. 6029 */ 6030 #define DELAY_ACK(tp, tlen) \ 6031 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ 6032 ((tp->t_flags & TF_DELACK) == 0) && \ 6033 (tlen <= tp->t_maxseg) && \ 6034 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) 6035 6036 static struct rack_sendmap * 6037 rack_find_lowest_rsm(struct tcp_rack *rack) 6038 { 6039 struct rack_sendmap *rsm; 6040 6041 /* 6042 * Walk the time-order transmitted list looking for an rsm that is 6043 * not acked. This will be the one that was sent the longest time 6044 * ago that is still outstanding. 6045 */ 6046 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 6047 if (rsm->r_flags & RACK_ACKED) { 6048 continue; 6049 } 6050 goto finish; 6051 } 6052 finish: 6053 return (rsm); 6054 } 6055 6056 static struct rack_sendmap * 6057 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) 6058 { 6059 struct rack_sendmap *prsm; 6060 6061 /* 6062 * Walk the sequence order list backward until we hit and arrive at 6063 * the highest seq not acked. In theory when this is called it 6064 * should be the last segment (which it was not). 6065 */ 6066 prsm = rsm; 6067 6068 TQHASH_FOREACH_REVERSE_FROM(prsm, rack->r_ctl.tqh) { 6069 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { 6070 continue; 6071 } 6072 return (prsm); 6073 } 6074 return (NULL); 6075 } 6076 6077 static uint32_t 6078 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) 6079 { 6080 int32_t lro; 6081 uint32_t thresh; 6082 6083 /* 6084 * lro is the flag we use to determine if we have seen reordering. 6085 * If it gets set we have seen reordering. The reorder logic either 6086 * works in one of two ways: 6087 * 6088 * If reorder-fade is configured, then we track the last time we saw 6089 * re-ordering occur. If we reach the point where enough time as 6090 * passed we no longer consider reordering has occuring. 6091 * 6092 * Or if reorder-face is 0, then once we see reordering we consider 6093 * the connection to alway be subject to reordering and just set lro 6094 * to 1. 6095 * 6096 * In the end if lro is non-zero we add the extra time for 6097 * reordering in. 6098 */ 6099 if (srtt == 0) 6100 srtt = 1; 6101 if (rack->r_ctl.rc_reorder_ts) { 6102 if (rack->r_ctl.rc_reorder_fade) { 6103 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { 6104 lro = cts - rack->r_ctl.rc_reorder_ts; 6105 if (lro == 0) { 6106 /* 6107 * No time as passed since the last 6108 * reorder, mark it as reordering. 6109 */ 6110 lro = 1; 6111 } 6112 } else { 6113 /* Negative time? */ 6114 lro = 0; 6115 } 6116 if (lro > rack->r_ctl.rc_reorder_fade) { 6117 /* Turn off reordering seen too */ 6118 rack->r_ctl.rc_reorder_ts = 0; 6119 lro = 0; 6120 } 6121 } else { 6122 /* Reodering does not fade */ 6123 lro = 1; 6124 } 6125 } else { 6126 lro = 0; 6127 } 6128 if (rack->rc_rack_tmr_std_based == 0) { 6129 thresh = srtt + rack->r_ctl.rc_pkt_delay; 6130 } else { 6131 /* Standards based pkt-delay is 1/4 srtt */ 6132 thresh = srtt + (srtt >> 2); 6133 } 6134 if (lro && (rack->rc_rack_tmr_std_based == 0)) { 6135 /* It must be set, if not you get 1/4 rtt */ 6136 if (rack->r_ctl.rc_reorder_shift) 6137 thresh += (srtt >> rack->r_ctl.rc_reorder_shift); 6138 else 6139 thresh += (srtt >> 2); 6140 } 6141 if (rack->rc_rack_use_dsack && 6142 lro && 6143 (rack->r_ctl.num_dsack > 0)) { 6144 /* 6145 * We only increase the reordering window if we 6146 * have seen reordering <and> we have a DSACK count. 6147 */ 6148 thresh += rack->r_ctl.num_dsack * (srtt >> 2); 6149 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh); 6150 } 6151 /* SRTT * 2 is the ceiling */ 6152 if (thresh > (srtt * 2)) { 6153 thresh = srtt * 2; 6154 } 6155 /* And we don't want it above the RTO max either */ 6156 if (thresh > rack_rto_max) { 6157 thresh = rack_rto_max; 6158 } 6159 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh); 6160 return (thresh); 6161 } 6162 6163 static uint32_t 6164 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, 6165 struct rack_sendmap *rsm, uint32_t srtt) 6166 { 6167 struct rack_sendmap *prsm; 6168 uint32_t thresh, len; 6169 int segsiz; 6170 6171 if (srtt == 0) 6172 srtt = 1; 6173 if (rack->r_ctl.rc_tlp_threshold) 6174 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); 6175 else 6176 thresh = (srtt * 2); 6177 6178 /* Get the previous sent packet, if any */ 6179 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 6180 len = rsm->r_end - rsm->r_start; 6181 if (rack->rack_tlp_threshold_use == TLP_USE_ID) { 6182 /* Exactly like the ID */ 6183 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { 6184 uint32_t alt_thresh; 6185 /* 6186 * Compensate for delayed-ack with the d-ack time. 6187 */ 6188 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 6189 if (alt_thresh > thresh) 6190 thresh = alt_thresh; 6191 } 6192 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { 6193 /* 2.1 behavior */ 6194 prsm = TAILQ_PREV(rsm, rack_head, r_tnext); 6195 if (prsm && (len <= segsiz)) { 6196 /* 6197 * Two packets outstanding, thresh should be (2*srtt) + 6198 * possible inter-packet delay (if any). 6199 */ 6200 uint32_t inter_gap = 0; 6201 int idx, nidx; 6202 6203 idx = rsm->r_rtr_cnt - 1; 6204 nidx = prsm->r_rtr_cnt - 1; 6205 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) { 6206 /* Yes it was sent later (or at the same time) */ 6207 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; 6208 } 6209 thresh += inter_gap; 6210 } else if (len <= segsiz) { 6211 /* 6212 * Possibly compensate for delayed-ack. 6213 */ 6214 uint32_t alt_thresh; 6215 6216 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 6217 if (alt_thresh > thresh) 6218 thresh = alt_thresh; 6219 } 6220 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { 6221 /* 2.2 behavior */ 6222 if (len <= segsiz) { 6223 uint32_t alt_thresh; 6224 /* 6225 * Compensate for delayed-ack with the d-ack time. 6226 */ 6227 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 6228 if (alt_thresh > thresh) 6229 thresh = alt_thresh; 6230 } 6231 } 6232 /* Not above an RTO */ 6233 if (thresh > tp->t_rxtcur) { 6234 thresh = tp->t_rxtcur; 6235 } 6236 /* Not above a RTO max */ 6237 if (thresh > rack_rto_max) { 6238 thresh = rack_rto_max; 6239 } 6240 /* Apply user supplied min TLP */ 6241 if (thresh < rack_tlp_min) { 6242 thresh = rack_tlp_min; 6243 } 6244 return (thresh); 6245 } 6246 6247 static uint32_t 6248 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) 6249 { 6250 /* 6251 * We want the rack_rtt which is the 6252 * last rtt we measured. However if that 6253 * does not exist we fallback to the srtt (which 6254 * we probably will never do) and then as a last 6255 * resort we use RACK_INITIAL_RTO if no srtt is 6256 * yet set. 6257 */ 6258 if (rack->rc_rack_rtt) 6259 return (rack->rc_rack_rtt); 6260 else if (tp->t_srtt == 0) 6261 return (RACK_INITIAL_RTO); 6262 return (tp->t_srtt); 6263 } 6264 6265 static struct rack_sendmap * 6266 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) 6267 { 6268 /* 6269 * Check to see that we don't need to fall into recovery. We will 6270 * need to do so if our oldest transmit is past the time we should 6271 * have had an ack. 6272 */ 6273 struct tcp_rack *rack; 6274 struct rack_sendmap *rsm; 6275 int32_t idx; 6276 uint32_t srtt, thresh; 6277 6278 rack = (struct tcp_rack *)tp->t_fb_ptr; 6279 if (tqhash_empty(rack->r_ctl.tqh)) { 6280 return (NULL); 6281 } 6282 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6283 if (rsm == NULL) 6284 return (NULL); 6285 6286 6287 if (rsm->r_flags & RACK_ACKED) { 6288 rsm = rack_find_lowest_rsm(rack); 6289 if (rsm == NULL) 6290 return (NULL); 6291 } 6292 idx = rsm->r_rtr_cnt - 1; 6293 srtt = rack_grab_rtt(tp, rack); 6294 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 6295 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) { 6296 return (NULL); 6297 } 6298 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) { 6299 return (NULL); 6300 } 6301 /* Ok if we reach here we are over-due and this guy can be sent */ 6302 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 6303 return (rsm); 6304 } 6305 6306 static uint32_t 6307 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) 6308 { 6309 int32_t t; 6310 int32_t tt; 6311 uint32_t ret_val; 6312 6313 t = (tp->t_srtt + (tp->t_rttvar << 2)); 6314 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], 6315 rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop); 6316 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; 6317 ret_val = (uint32_t)tt; 6318 return (ret_val); 6319 } 6320 6321 static uint32_t 6322 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) 6323 { 6324 /* 6325 * Start the FR timer, we do this based on getting the first one in 6326 * the rc_tmap. Note that if its NULL we must stop the timer. in all 6327 * events we need to stop the running timer (if its running) before 6328 * starting the new one. 6329 */ 6330 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; 6331 uint32_t srtt_cur; 6332 int32_t idx; 6333 int32_t is_tlp_timer = 0; 6334 struct rack_sendmap *rsm; 6335 6336 if (rack->t_timers_stopped) { 6337 /* All timers have been stopped none are to run */ 6338 return (0); 6339 } 6340 if (rack->rc_in_persist) { 6341 /* We can't start any timer in persists */ 6342 return (rack_get_persists_timer_val(tp, rack)); 6343 } 6344 rack->rc_on_min_to = 0; 6345 if ((tp->t_state < TCPS_ESTABLISHED) || 6346 (rack->sack_attack_disable > 0) || 6347 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 6348 goto activate_rxt; 6349 } 6350 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6351 if ((rsm == NULL) || sup_rack) { 6352 /* Nothing on the send map or no rack */ 6353 activate_rxt: 6354 time_since_sent = 0; 6355 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6356 if (rsm) { 6357 /* 6358 * Should we discount the RTX timer any? 6359 * 6360 * We want to discount it the smallest amount. 6361 * If a timer (Rack/TLP or RXT) has gone off more 6362 * recently thats the discount we want to use (now - timer time). 6363 * If the retransmit of the oldest packet was more recent then 6364 * we want to use that (now - oldest-packet-last_transmit_time). 6365 * 6366 */ 6367 idx = rsm->r_rtr_cnt - 1; 6368 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx]))) 6369 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 6370 else 6371 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 6372 if (TSTMP_GT(cts, tstmp_touse)) 6373 time_since_sent = cts - tstmp_touse; 6374 } 6375 if (SEQ_LT(tp->snd_una, tp->snd_max) || 6376 sbavail(&tptosocket(tp)->so_snd)) { 6377 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; 6378 to = tp->t_rxtcur; 6379 if (to > time_since_sent) 6380 to -= time_since_sent; 6381 else 6382 to = rack->r_ctl.rc_min_to; 6383 if (to == 0) 6384 to = 1; 6385 /* Special case for KEEPINIT */ 6386 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 6387 (TP_KEEPINIT(tp) != 0) && 6388 rsm) { 6389 /* 6390 * We have to put a ceiling on the rxt timer 6391 * of the keep-init timeout. 6392 */ 6393 uint32_t max_time, red; 6394 6395 max_time = TICKS_2_USEC(TP_KEEPINIT(tp)); 6396 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) { 6397 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]); 6398 if (red < max_time) 6399 max_time -= red; 6400 else 6401 max_time = 1; 6402 } 6403 /* Reduce timeout to the keep value if needed */ 6404 if (max_time < to) 6405 to = max_time; 6406 } 6407 return (to); 6408 } 6409 return (0); 6410 } 6411 if (rsm->r_flags & RACK_ACKED) { 6412 rsm = rack_find_lowest_rsm(rack); 6413 if (rsm == NULL) { 6414 /* No lowest? */ 6415 goto activate_rxt; 6416 } 6417 } 6418 if (rack->sack_attack_disable) { 6419 /* 6420 * We don't want to do 6421 * any TLP's if you are an attacker. 6422 * Though if you are doing what 6423 * is expected you may still have 6424 * SACK-PASSED marks. 6425 */ 6426 goto activate_rxt; 6427 } 6428 /* Convert from ms to usecs */ 6429 if ((rsm->r_flags & RACK_SACK_PASSED) || 6430 (rsm->r_flags & RACK_RWND_COLLAPSED) || 6431 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 6432 if ((tp->t_flags & TF_SENTFIN) && 6433 ((tp->snd_max - tp->snd_una) == 1) && 6434 (rsm->r_flags & RACK_HAS_FIN)) { 6435 /* 6436 * We don't start a rack timer if all we have is a 6437 * FIN outstanding. 6438 */ 6439 goto activate_rxt; 6440 } 6441 if ((rack->use_rack_rr == 0) && 6442 (IN_FASTRECOVERY(tp->t_flags)) && 6443 (rack->rack_no_prr == 0) && 6444 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { 6445 /* 6446 * We are not cheating, in recovery and 6447 * not enough ack's to yet get our next 6448 * retransmission out. 6449 * 6450 * Note that classified attackers do not 6451 * get to use the rack-cheat. 6452 */ 6453 goto activate_tlp; 6454 } 6455 srtt = rack_grab_rtt(tp, rack); 6456 thresh = rack_calc_thresh_rack(rack, srtt, cts); 6457 idx = rsm->r_rtr_cnt - 1; 6458 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh; 6459 if (SEQ_GEQ(exp, cts)) { 6460 to = exp - cts; 6461 if (to < rack->r_ctl.rc_min_to) { 6462 to = rack->r_ctl.rc_min_to; 6463 if (rack->r_rr_config == 3) 6464 rack->rc_on_min_to = 1; 6465 } 6466 } else { 6467 to = rack->r_ctl.rc_min_to; 6468 if (rack->r_rr_config == 3) 6469 rack->rc_on_min_to = 1; 6470 } 6471 } else { 6472 /* Ok we need to do a TLP not RACK */ 6473 activate_tlp: 6474 if ((rack->rc_tlp_in_progress != 0) && 6475 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { 6476 /* 6477 * The previous send was a TLP and we have sent 6478 * N TLP's without sending new data. 6479 */ 6480 goto activate_rxt; 6481 } 6482 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 6483 if (rsm == NULL) { 6484 /* We found no rsm to TLP with. */ 6485 goto activate_rxt; 6486 } 6487 if (rsm->r_flags & RACK_HAS_FIN) { 6488 /* If its a FIN we dont do TLP */ 6489 rsm = NULL; 6490 goto activate_rxt; 6491 } 6492 idx = rsm->r_rtr_cnt - 1; 6493 time_since_sent = 0; 6494 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time)) 6495 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 6496 else 6497 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 6498 if (TSTMP_GT(cts, tstmp_touse)) 6499 time_since_sent = cts - tstmp_touse; 6500 is_tlp_timer = 1; 6501 if (tp->t_srtt) { 6502 if ((rack->rc_srtt_measure_made == 0) && 6503 (tp->t_srtt == 1)) { 6504 /* 6505 * If another stack as run and set srtt to 1, 6506 * then the srtt was 0, so lets use the initial. 6507 */ 6508 srtt = RACK_INITIAL_RTO; 6509 } else { 6510 srtt_cur = tp->t_srtt; 6511 srtt = srtt_cur; 6512 } 6513 } else 6514 srtt = RACK_INITIAL_RTO; 6515 /* 6516 * If the SRTT is not keeping up and the 6517 * rack RTT has spiked we want to use 6518 * the last RTT not the smoothed one. 6519 */ 6520 if (rack_tlp_use_greater && 6521 tp->t_srtt && 6522 (srtt < rack_grab_rtt(tp, rack))) { 6523 srtt = rack_grab_rtt(tp, rack); 6524 } 6525 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); 6526 if (thresh > time_since_sent) { 6527 to = thresh - time_since_sent; 6528 } else { 6529 to = rack->r_ctl.rc_min_to; 6530 rack_log_alt_to_to_cancel(rack, 6531 thresh, /* flex1 */ 6532 time_since_sent, /* flex2 */ 6533 tstmp_touse, /* flex3 */ 6534 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ 6535 (uint32_t)rsm->r_tim_lastsent[idx], 6536 srtt, 6537 idx, 99); 6538 } 6539 if (to < rack_tlp_min) { 6540 to = rack_tlp_min; 6541 } 6542 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) { 6543 /* 6544 * If the TLP time works out to larger than the max 6545 * RTO lets not do TLP.. just RTO. 6546 */ 6547 goto activate_rxt; 6548 } 6549 } 6550 if (is_tlp_timer == 0) { 6551 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; 6552 } else { 6553 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; 6554 } 6555 if (to == 0) 6556 to = 1; 6557 return (to); 6558 } 6559 6560 static void 6561 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, tcp_seq snd_una) 6562 { 6563 struct timeval tv; 6564 6565 if (rack->rc_in_persist == 0) { 6566 if (tp->t_flags & TF_GPUTINPROG) { 6567 /* 6568 * Stop the goodput now, the calling of the 6569 * measurement function clears the flag. 6570 */ 6571 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__, 6572 RACK_QUALITY_PERSIST); 6573 } 6574 #ifdef NETFLIX_SHARED_CWND 6575 if (rack->r_ctl.rc_scw) { 6576 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 6577 rack->rack_scwnd_is_idle = 1; 6578 } 6579 #endif 6580 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(&tv); 6581 if (rack->lt_bw_up) { 6582 /* Suspend our LT BW measurement */ 6583 uint64_t tmark; 6584 6585 rack->r_ctl.lt_bw_bytes += (snd_una - rack->r_ctl.lt_seq); 6586 rack->r_ctl.lt_seq = snd_una; 6587 tmark = tcp_tv_to_lusectick(&tv); 6588 rack->r_ctl.lt_bw_time += (tmark - rack->r_ctl.lt_timemark); 6589 rack->r_ctl.lt_timemark = tmark; 6590 rack->lt_bw_up = 0; 6591 rack->r_persist_lt_bw_off = 1; 6592 } 6593 if (rack->r_ctl.rc_went_idle_time == 0) 6594 rack->r_ctl.rc_went_idle_time = 1; 6595 rack_timer_cancel(tp, rack, cts, __LINE__); 6596 rack->r_ctl.persist_lost_ends = 0; 6597 rack->probe_not_answered = 0; 6598 rack->forced_ack = 0; 6599 tp->t_rxtshift = 0; 6600 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 6601 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 6602 rack->rc_in_persist = 1; 6603 } 6604 } 6605 6606 static void 6607 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6608 { 6609 struct timeval tv; 6610 uint32_t t_time; 6611 6612 if (tcp_in_hpts(rack->rc_tp)) { 6613 tcp_hpts_remove(rack->rc_tp); 6614 rack->r_ctl.rc_hpts_flags = 0; 6615 } 6616 #ifdef NETFLIX_SHARED_CWND 6617 if (rack->r_ctl.rc_scw) { 6618 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 6619 rack->rack_scwnd_is_idle = 0; 6620 } 6621 #endif 6622 t_time = tcp_get_usecs(&tv); 6623 if (rack->rc_gp_dyn_mul && 6624 (rack->use_fixed_rate == 0) && 6625 (rack->rc_always_pace)) { 6626 /* 6627 * Do we count this as if a probe-rtt just 6628 * finished? 6629 */ 6630 uint32_t time_idle, idle_min; 6631 6632 time_idle = t_time - rack->r_ctl.rc_went_idle_time; 6633 idle_min = rack_min_probertt_hold; 6634 if (rack_probertt_gpsrtt_cnt_div) { 6635 uint64_t extra; 6636 extra = (uint64_t)rack->r_ctl.rc_gp_srtt * 6637 (uint64_t)rack_probertt_gpsrtt_cnt_mul; 6638 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; 6639 idle_min += (uint32_t)extra; 6640 } 6641 if (time_idle >= idle_min) { 6642 /* Yes, we count it as a probe-rtt. */ 6643 uint32_t us_cts; 6644 6645 us_cts = tcp_get_usecs(NULL); 6646 if (rack->in_probe_rtt == 0) { 6647 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 6648 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 6649 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 6650 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 6651 } else { 6652 rack_exit_probertt(rack, us_cts); 6653 } 6654 } 6655 } 6656 if (rack->r_persist_lt_bw_off) { 6657 /* Continue where we left off */ 6658 rack->r_ctl.lt_timemark = tcp_tv_to_lusectick(&tv); 6659 rack->lt_bw_up = 1; 6660 rack->r_persist_lt_bw_off = 0; 6661 } 6662 rack->rc_in_persist = 0; 6663 rack->r_ctl.rc_went_idle_time = 0; 6664 tp->t_rxtshift = 0; 6665 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 6666 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 6667 rack->r_ctl.rc_agg_delayed = 0; 6668 rack->r_early = 0; 6669 rack->r_late = 0; 6670 rack->r_ctl.rc_agg_early = 0; 6671 } 6672 6673 static void 6674 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, 6675 struct hpts_diag *diag, struct timeval *tv) 6676 { 6677 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 6678 union tcp_log_stackspecific log; 6679 6680 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 6681 log.u_bbr.flex1 = diag->p_nxt_slot; 6682 log.u_bbr.flex2 = diag->p_cur_slot; 6683 log.u_bbr.flex3 = diag->slot_req; 6684 log.u_bbr.flex4 = diag->inp_hptsslot; 6685 log.u_bbr.flex5 = diag->slot_remaining; 6686 log.u_bbr.flex6 = diag->need_new_to; 6687 log.u_bbr.flex7 = diag->p_hpts_active; 6688 log.u_bbr.flex8 = diag->p_on_min_sleep; 6689 /* Hijack other fields as needed */ 6690 log.u_bbr.epoch = diag->have_slept; 6691 log.u_bbr.lt_epoch = diag->yet_to_sleep; 6692 log.u_bbr.pkts_out = diag->co_ret; 6693 log.u_bbr.applimited = diag->hpts_sleep_time; 6694 log.u_bbr.delivered = diag->p_prev_slot; 6695 log.u_bbr.inflight = diag->p_runningslot; 6696 log.u_bbr.bw_inuse = diag->wheel_slot; 6697 log.u_bbr.rttProp = diag->wheel_cts; 6698 log.u_bbr.timeStamp = cts; 6699 log.u_bbr.delRate = diag->maxslots; 6700 log.u_bbr.cur_del_rate = diag->p_curtick; 6701 log.u_bbr.cur_del_rate <<= 32; 6702 log.u_bbr.cur_del_rate |= diag->p_lasttick; 6703 TCP_LOG_EVENTP(rack->rc_tp, NULL, 6704 &rack->rc_inp->inp_socket->so_rcv, 6705 &rack->rc_inp->inp_socket->so_snd, 6706 BBR_LOG_HPTSDIAG, 0, 6707 0, &log, false, tv); 6708 } 6709 6710 } 6711 6712 static void 6713 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type) 6714 { 6715 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 6716 union tcp_log_stackspecific log; 6717 struct timeval tv; 6718 6719 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 6720 log.u_bbr.flex1 = sb->sb_flags; 6721 log.u_bbr.flex2 = len; 6722 log.u_bbr.flex3 = sb->sb_state; 6723 log.u_bbr.flex8 = type; 6724 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 6725 TCP_LOG_EVENTP(rack->rc_tp, NULL, 6726 &rack->rc_inp->inp_socket->so_rcv, 6727 &rack->rc_inp->inp_socket->so_snd, 6728 TCP_LOG_SB_WAKE, 0, 6729 len, &log, false, &tv); 6730 } 6731 } 6732 6733 static void 6734 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, 6735 int32_t slot, uint32_t tot_len_this_send, int sup_rack) 6736 { 6737 struct hpts_diag diag; 6738 struct inpcb *inp = tptoinpcb(tp); 6739 struct timeval tv; 6740 uint32_t delayed_ack = 0; 6741 uint32_t hpts_timeout; 6742 uint32_t entry_slot = slot; 6743 uint8_t stopped; 6744 uint32_t left = 0; 6745 uint32_t us_cts; 6746 6747 if ((tp->t_state == TCPS_CLOSED) || 6748 (tp->t_state == TCPS_LISTEN)) { 6749 return; 6750 } 6751 if (tcp_in_hpts(tp)) { 6752 /* Already on the pacer */ 6753 return; 6754 } 6755 stopped = rack->rc_tmr_stopped; 6756 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 6757 left = rack->r_ctl.rc_timer_exp - cts; 6758 } 6759 rack->r_ctl.rc_timer_exp = 0; 6760 rack->r_ctl.rc_hpts_flags = 0; 6761 us_cts = tcp_get_usecs(&tv); 6762 /* Now early/late accounting */ 6763 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0); 6764 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) { 6765 /* 6766 * We have a early carry over set, 6767 * we can always add more time so we 6768 * can always make this compensation. 6769 * 6770 * Note if ack's are allowed to wake us do not 6771 * penalize the next timer for being awoke 6772 * by an ack aka the rc_agg_early (non-paced mode). 6773 */ 6774 slot += rack->r_ctl.rc_agg_early; 6775 rack->r_early = 0; 6776 rack->r_ctl.rc_agg_early = 0; 6777 } 6778 if (rack->r_late) { 6779 /* 6780 * This is harder, we can 6781 * compensate some but it 6782 * really depends on what 6783 * the current pacing time is. 6784 */ 6785 if (rack->r_ctl.rc_agg_delayed >= slot) { 6786 /* 6787 * We can't compensate for it all. 6788 * And we have to have some time 6789 * on the clock. We always have a min 6790 * 10 slots (10 x 10 i.e. 100 usecs). 6791 */ 6792 if (slot <= HPTS_TICKS_PER_SLOT) { 6793 /* We gain delay */ 6794 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot); 6795 slot = HPTS_TICKS_PER_SLOT; 6796 } else { 6797 /* We take off some */ 6798 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT); 6799 slot = HPTS_TICKS_PER_SLOT; 6800 } 6801 } else { 6802 slot -= rack->r_ctl.rc_agg_delayed; 6803 rack->r_ctl.rc_agg_delayed = 0; 6804 /* Make sure we have 100 useconds at minimum */ 6805 if (slot < HPTS_TICKS_PER_SLOT) { 6806 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot; 6807 slot = HPTS_TICKS_PER_SLOT; 6808 } 6809 if (rack->r_ctl.rc_agg_delayed == 0) 6810 rack->r_late = 0; 6811 } 6812 } 6813 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); 6814 #ifdef TCP_SAD_DETECTION 6815 if (rack->sack_attack_disable && 6816 (rack->r_ctl.ack_during_sd > 0) && 6817 (slot < tcp_sad_pacing_interval)) { 6818 /* 6819 * We have a potential attacker on 6820 * the line. We have possibly some 6821 * (or now) pacing time set. We want to 6822 * slow down the processing of sacks by some 6823 * amount (if it is an attacker). Set the default 6824 * slot for attackers in place (unless the original 6825 * interval is longer). Its stored in 6826 * micro-seconds, so lets convert to msecs. 6827 */ 6828 slot = tcp_sad_pacing_interval; 6829 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv, __LINE__); 6830 rack->r_ctl.ack_during_sd = 0; 6831 } 6832 #endif 6833 if (tp->t_flags & TF_DELACK) { 6834 delayed_ack = TICKS_2_USEC(tcp_delacktime); 6835 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; 6836 } 6837 if (delayed_ack && ((hpts_timeout == 0) || 6838 (delayed_ack < hpts_timeout))) 6839 hpts_timeout = delayed_ack; 6840 else 6841 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 6842 /* 6843 * If no timers are going to run and we will fall off the hptsi 6844 * wheel, we resort to a keep-alive timer if its configured. 6845 */ 6846 if ((hpts_timeout == 0) && 6847 (slot == 0)) { 6848 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 6849 (tp->t_state <= TCPS_CLOSING)) { 6850 /* 6851 * Ok we have no timer (persists, rack, tlp, rxt or 6852 * del-ack), we don't have segments being paced. So 6853 * all that is left is the keepalive timer. 6854 */ 6855 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 6856 /* Get the established keep-alive time */ 6857 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); 6858 } else { 6859 /* 6860 * Get the initial setup keep-alive time, 6861 * note that this is probably not going to 6862 * happen, since rack will be running a rxt timer 6863 * if a SYN of some sort is outstanding. It is 6864 * actually handled in rack_timeout_rxt(). 6865 */ 6866 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); 6867 } 6868 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; 6869 if (rack->in_probe_rtt) { 6870 /* 6871 * We want to instead not wake up a long time from 6872 * now but to wake up about the time we would 6873 * exit probe-rtt and initiate a keep-alive ack. 6874 * This will get us out of probe-rtt and update 6875 * our min-rtt. 6876 */ 6877 hpts_timeout = rack_min_probertt_hold; 6878 } 6879 } 6880 } 6881 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == 6882 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { 6883 /* 6884 * RACK, TLP, persists and RXT timers all are restartable 6885 * based on actions input .. i.e we received a packet (ack 6886 * or sack) and that changes things (rw, or snd_una etc). 6887 * Thus we can restart them with a new value. For 6888 * keep-alive, delayed_ack we keep track of what was left 6889 * and restart the timer with a smaller value. 6890 */ 6891 if (left < hpts_timeout) 6892 hpts_timeout = left; 6893 } 6894 if (hpts_timeout) { 6895 /* 6896 * Hack alert for now we can't time-out over 2,147,483 6897 * seconds (a bit more than 596 hours), which is probably ok 6898 * :). 6899 */ 6900 if (hpts_timeout > 0x7ffffffe) 6901 hpts_timeout = 0x7ffffffe; 6902 rack->r_ctl.rc_timer_exp = cts + hpts_timeout; 6903 } 6904 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0); 6905 if ((rack->gp_ready == 0) && 6906 (rack->use_fixed_rate == 0) && 6907 (hpts_timeout < slot) && 6908 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { 6909 /* 6910 * We have no good estimate yet for the 6911 * old clunky burst mitigation or the 6912 * real pacing. And the tlp or rxt is smaller 6913 * than the pacing calculation. Lets not 6914 * pace that long since we know the calculation 6915 * so far is not accurate. 6916 */ 6917 slot = hpts_timeout; 6918 } 6919 /** 6920 * Turn off all the flags for queuing by default. The 6921 * flags have important meanings to what happens when 6922 * LRO interacts with the transport. Most likely (by default now) 6923 * mbuf_queueing and ack compression are on. So the transport 6924 * has a couple of flags that control what happens (if those 6925 * are not on then these flags won't have any effect since it 6926 * won't go through the queuing LRO path). 6927 * 6928 * TF2_MBUF_QUEUE_READY - This flags says that I am busy 6929 * pacing output, so don't disturb. But 6930 * it also means LRO can wake me if there 6931 * is a SACK arrival. 6932 * 6933 * TF2_DONT_SACK_QUEUE - This flag is used in conjunction 6934 * with the above flag (QUEUE_READY) and 6935 * when present it says don't even wake me 6936 * if a SACK arrives. 6937 * 6938 * The idea behind these flags is that if we are pacing we 6939 * set the MBUF_QUEUE_READY and only get woken up if 6940 * a SACK arrives (which could change things) or if 6941 * our pacing timer expires. If, however, we have a rack 6942 * timer running, then we don't even want a sack to wake 6943 * us since the rack timer has to expire before we can send. 6944 * 6945 * Other cases should usually have none of the flags set 6946 * so LRO can call into us. 6947 */ 6948 tp->t_flags2 &= ~(TF2_DONT_SACK_QUEUE|TF2_MBUF_QUEUE_READY); 6949 if (slot) { 6950 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; 6951 rack->r_ctl.rc_last_output_to = us_cts + slot; 6952 /* 6953 * A pacing timer (slot) is being set, in 6954 * such a case we cannot send (we are blocked by 6955 * the timer). So lets tell LRO that it should not 6956 * wake us unless there is a SACK. Note this only 6957 * will be effective if mbuf queueing is on or 6958 * compressed acks are being processed. 6959 */ 6960 tp->t_flags2 |= TF2_MBUF_QUEUE_READY; 6961 /* 6962 * But wait if we have a Rack timer running 6963 * even a SACK should not disturb us (with 6964 * the exception of r_rr_config 3). 6965 */ 6966 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) || 6967 (IN_RECOVERY(tp->t_flags))) { 6968 if (rack->r_rr_config != 3) 6969 tp->t_flags2 |= TF2_DONT_SACK_QUEUE; 6970 else if (rack->rc_pace_dnd) { 6971 /* 6972 * When DND is on, we only let a sack 6973 * interrupt us if we are not in recovery. 6974 * 6975 * If DND is off, then we never hit here 6976 * and let all sacks wake us up. 6977 * 6978 */ 6979 tp->t_flags2 |= TF2_DONT_SACK_QUEUE; 6980 } 6981 } 6982 /* For sack attackers we want to ignore sack */ 6983 if (rack->sack_attack_disable == 1) { 6984 tp->t_flags2 |= (TF2_DONT_SACK_QUEUE | 6985 TF2_MBUF_QUEUE_READY); 6986 } else if (rack->rc_ack_can_sendout_data) { 6987 /* 6988 * Ahh but wait, this is that special case 6989 * where the pacing timer can be disturbed 6990 * backout the changes (used for non-paced 6991 * burst limiting). 6992 */ 6993 tp->t_flags2 &= ~(TF2_DONT_SACK_QUEUE | 6994 TF2_MBUF_QUEUE_READY); 6995 } 6996 if ((rack->use_rack_rr) && 6997 (rack->r_rr_config < 2) && 6998 ((hpts_timeout) && (hpts_timeout < slot))) { 6999 /* 7000 * Arrange for the hpts to kick back in after the 7001 * t-o if the t-o does not cause a send. 7002 */ 7003 (void)tcp_hpts_insert_diag(tp, HPTS_USEC_TO_SLOTS(hpts_timeout), 7004 __LINE__, &diag); 7005 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 7006 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 7007 } else { 7008 (void)tcp_hpts_insert_diag(tp, HPTS_USEC_TO_SLOTS(slot), 7009 __LINE__, &diag); 7010 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 7011 rack_log_to_start(rack, cts, hpts_timeout, slot, 1); 7012 } 7013 } else if (hpts_timeout) { 7014 /* 7015 * With respect to t_flags2(?) here, lets let any new acks wake 7016 * us up here. Since we are not pacing (no pacing timer), output 7017 * can happen so we should let it. If its a Rack timer, then any inbound 7018 * packet probably won't change the sending (we will be blocked) 7019 * but it may change the prr stats so letting it in (the set defaults 7020 * at the start of this block) are good enough. 7021 */ 7022 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7023 (void)tcp_hpts_insert_diag(tp, HPTS_USEC_TO_SLOTS(hpts_timeout), 7024 __LINE__, &diag); 7025 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 7026 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 7027 } else { 7028 /* No timer starting */ 7029 #ifdef INVARIANTS 7030 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 7031 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", 7032 tp, rack, tot_len_this_send, cts, slot, hpts_timeout); 7033 } 7034 #endif 7035 } 7036 rack->rc_tmr_stopped = 0; 7037 if (slot) 7038 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv, __LINE__); 7039 } 7040 7041 /* 7042 * RACK Timer, here we simply do logging and house keeping. 7043 * the normal rack_output() function will call the 7044 * appropriate thing to check if we need to do a RACK retransmit. 7045 * We return 1, saying don't proceed with rack_output only 7046 * when all timers have been stopped (destroyed PCB?). 7047 */ 7048 static int 7049 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 7050 { 7051 /* 7052 * This timer simply provides an internal trigger to send out data. 7053 * The check_recovery_mode call will see if there are needed 7054 * retransmissions, if so we will enter fast-recovery. The output 7055 * call may or may not do the same thing depending on sysctl 7056 * settings. 7057 */ 7058 struct rack_sendmap *rsm; 7059 7060 counter_u64_add(rack_to_tot, 1); 7061 if (rack->r_state && (rack->r_state != tp->t_state)) 7062 rack_set_state(tp, rack); 7063 rack->rc_on_min_to = 0; 7064 rsm = rack_check_recovery_mode(tp, cts); 7065 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); 7066 if (rsm) { 7067 rack->r_ctl.rc_resend = rsm; 7068 rack->r_timer_override = 1; 7069 if (rack->use_rack_rr) { 7070 /* 7071 * Don't accumulate extra pacing delay 7072 * we are allowing the rack timer to 7073 * over-ride pacing i.e. rrr takes precedence 7074 * if the pacing interval is longer than the rrr 7075 * time (in other words we get the min pacing 7076 * time versus rrr pacing time). 7077 */ 7078 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7079 } 7080 } 7081 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; 7082 if (rsm == NULL) { 7083 /* restart a timer and return 1 */ 7084 rack_start_hpts_timer(rack, tp, cts, 7085 0, 0, 0); 7086 return (1); 7087 } 7088 return (0); 7089 } 7090 7091 7092 7093 static void 7094 rack_adjust_orig_mlen(struct rack_sendmap *rsm) 7095 { 7096 7097 if ((M_TRAILINGROOM(rsm->m) != rsm->orig_t_space)) { 7098 /* 7099 * The trailing space changed, mbufs can grow 7100 * at the tail but they can't shrink from 7101 * it, KASSERT that. Adjust the orig_m_len to 7102 * compensate for this change. 7103 */ 7104 KASSERT((rsm->orig_t_space > M_TRAILINGROOM(rsm->m)), 7105 ("mbuf:%p rsm:%p trailing_space:%jd ots:%u oml:%u mlen:%u\n", 7106 rsm->m, 7107 rsm, 7108 (intmax_t)M_TRAILINGROOM(rsm->m), 7109 rsm->orig_t_space, 7110 rsm->orig_m_len, 7111 rsm->m->m_len)); 7112 rsm->orig_m_len += (rsm->orig_t_space - M_TRAILINGROOM(rsm->m)); 7113 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 7114 } 7115 if (rsm->m->m_len < rsm->orig_m_len) { 7116 /* 7117 * Mbuf shrank, trimmed off the top by an ack, our 7118 * offset changes. 7119 */ 7120 KASSERT((rsm->soff >= (rsm->orig_m_len - rsm->m->m_len)), 7121 ("mbuf:%p len:%u rsm:%p oml:%u soff:%u\n", 7122 rsm->m, rsm->m->m_len, 7123 rsm, rsm->orig_m_len, 7124 rsm->soff)); 7125 if (rsm->soff >= (rsm->orig_m_len - rsm->m->m_len)) 7126 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len); 7127 else 7128 rsm->soff = 0; 7129 rsm->orig_m_len = rsm->m->m_len; 7130 #ifdef INVARIANTS 7131 } else if (rsm->m->m_len > rsm->orig_m_len) { 7132 panic("rsm:%p m:%p m_len grew outside of t_space compensation", 7133 rsm, rsm->m); 7134 #endif 7135 } 7136 } 7137 7138 static void 7139 rack_setup_offset_for_rsm(struct tcp_rack *rack, struct rack_sendmap *src_rsm, struct rack_sendmap *rsm) 7140 { 7141 struct mbuf *m; 7142 uint32_t soff; 7143 7144 if (src_rsm->m && 7145 ((src_rsm->orig_m_len != src_rsm->m->m_len) || 7146 (M_TRAILINGROOM(src_rsm->m) != src_rsm->orig_t_space))) { 7147 /* Fix up the orig_m_len and possibly the mbuf offset */ 7148 rack_adjust_orig_mlen(src_rsm); 7149 } 7150 m = src_rsm->m; 7151 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start); 7152 while (soff >= m->m_len) { 7153 /* Move out past this mbuf */ 7154 soff -= m->m_len; 7155 m = m->m_next; 7156 KASSERT((m != NULL), 7157 ("rsm:%p nrsm:%p hit at soff:%u null m", 7158 src_rsm, rsm, soff)); 7159 if (m == NULL) { 7160 /* This should *not* happen which is why there is a kassert */ 7161 src_rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 7162 (src_rsm->r_start - rack->rc_tp->snd_una), 7163 &src_rsm->soff); 7164 src_rsm->orig_m_len = src_rsm->m->m_len; 7165 src_rsm->orig_t_space = M_TRAILINGROOM(src_rsm->m); 7166 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 7167 (rsm->r_start - rack->rc_tp->snd_una), 7168 &rsm->soff); 7169 rsm->orig_m_len = rsm->m->m_len; 7170 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 7171 return; 7172 } 7173 } 7174 rsm->m = m; 7175 rsm->soff = soff; 7176 rsm->orig_m_len = m->m_len; 7177 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 7178 } 7179 7180 static __inline void 7181 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, 7182 struct rack_sendmap *rsm, uint32_t start) 7183 { 7184 int idx; 7185 7186 nrsm->r_start = start; 7187 nrsm->r_end = rsm->r_end; 7188 nrsm->r_rtr_cnt = rsm->r_rtr_cnt; 7189 nrsm->r_flags = rsm->r_flags; 7190 nrsm->r_dupack = rsm->r_dupack; 7191 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed; 7192 nrsm->r_rtr_bytes = 0; 7193 nrsm->r_fas = rsm->r_fas; 7194 nrsm->r_bas = rsm->r_bas; 7195 rsm->r_end = nrsm->r_start; 7196 nrsm->r_just_ret = rsm->r_just_ret; 7197 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { 7198 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; 7199 } 7200 /* Now if we have SYN flag we keep it on the left edge */ 7201 if (nrsm->r_flags & RACK_HAS_SYN) 7202 nrsm->r_flags &= ~RACK_HAS_SYN; 7203 /* Now if we have a FIN flag we keep it on the right edge */ 7204 if (rsm->r_flags & RACK_HAS_FIN) 7205 rsm->r_flags &= ~RACK_HAS_FIN; 7206 /* Push bit must go to the right edge as well */ 7207 if (rsm->r_flags & RACK_HAD_PUSH) 7208 rsm->r_flags &= ~RACK_HAD_PUSH; 7209 /* Clone over the state of the hw_tls flag */ 7210 nrsm->r_hw_tls = rsm->r_hw_tls; 7211 /* 7212 * Now we need to find nrsm's new location in the mbuf chain 7213 * we basically calculate a new offset, which is soff + 7214 * how much is left in original rsm. Then we walk out the mbuf 7215 * chain to find the righ position, it may be the same mbuf 7216 * or maybe not. 7217 */ 7218 KASSERT(((rsm->m != NULL) || 7219 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))), 7220 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack)); 7221 if (rsm->m) 7222 rack_setup_offset_for_rsm(rack, rsm, nrsm); 7223 } 7224 7225 static struct rack_sendmap * 7226 rack_merge_rsm(struct tcp_rack *rack, 7227 struct rack_sendmap *l_rsm, 7228 struct rack_sendmap *r_rsm) 7229 { 7230 /* 7231 * We are merging two ack'd RSM's, 7232 * the l_rsm is on the left (lower seq 7233 * values) and the r_rsm is on the right 7234 * (higher seq value). The simplest way 7235 * to merge these is to move the right 7236 * one into the left. I don't think there 7237 * is any reason we need to try to find 7238 * the oldest (or last oldest retransmitted). 7239 */ 7240 rack_log_map_chg(rack->rc_tp, rack, NULL, 7241 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__); 7242 l_rsm->r_end = r_rsm->r_end; 7243 if (l_rsm->r_dupack < r_rsm->r_dupack) 7244 l_rsm->r_dupack = r_rsm->r_dupack; 7245 if (r_rsm->r_rtr_bytes) 7246 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; 7247 if (r_rsm->r_in_tmap) { 7248 /* This really should not happen */ 7249 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); 7250 r_rsm->r_in_tmap = 0; 7251 } 7252 7253 /* Now the flags */ 7254 if (r_rsm->r_flags & RACK_HAS_FIN) 7255 l_rsm->r_flags |= RACK_HAS_FIN; 7256 if (r_rsm->r_flags & RACK_TLP) 7257 l_rsm->r_flags |= RACK_TLP; 7258 if (r_rsm->r_flags & RACK_RWND_COLLAPSED) 7259 l_rsm->r_flags |= RACK_RWND_COLLAPSED; 7260 if ((r_rsm->r_flags & RACK_APP_LIMITED) && 7261 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { 7262 /* 7263 * If both are app-limited then let the 7264 * free lower the count. If right is app 7265 * limited and left is not, transfer. 7266 */ 7267 l_rsm->r_flags |= RACK_APP_LIMITED; 7268 r_rsm->r_flags &= ~RACK_APP_LIMITED; 7269 if (r_rsm == rack->r_ctl.rc_first_appl) 7270 rack->r_ctl.rc_first_appl = l_rsm; 7271 } 7272 tqhash_remove(rack->r_ctl.tqh, r_rsm, REMOVE_TYPE_MERGE); 7273 /* 7274 * We keep the largest value, which is the newest 7275 * send. We do this in case a segment that is 7276 * joined together and not part of a GP estimate 7277 * later gets expanded into the GP estimate. 7278 * 7279 * We prohibit the merging of unlike kinds i.e. 7280 * all pieces that are in the GP estimate can be 7281 * merged and all pieces that are not in a GP estimate 7282 * can be merged, but not disimilar pieces. Combine 7283 * this with taking the highest here and we should 7284 * be ok unless of course the client reneges. Then 7285 * all bets are off. 7286 */ 7287 if(l_rsm->r_tim_lastsent[(l_rsm->r_rtr_cnt-1)] < 7288 r_rsm->r_tim_lastsent[(r_rsm->r_rtr_cnt-1)]) { 7289 l_rsm->r_tim_lastsent[(l_rsm->r_rtr_cnt-1)] = r_rsm->r_tim_lastsent[(r_rsm->r_rtr_cnt-1)]; 7290 } 7291 /* 7292 * When merging two RSM's we also need to consider the ack time and keep 7293 * newest. If the ack gets merged into a measurement then that is the 7294 * one we will want to be using. 7295 */ 7296 if(l_rsm->r_ack_arrival < r_rsm->r_ack_arrival) 7297 l_rsm->r_ack_arrival = r_rsm->r_ack_arrival; 7298 7299 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { 7300 /* Transfer the split limit to the map we free */ 7301 r_rsm->r_limit_type = l_rsm->r_limit_type; 7302 l_rsm->r_limit_type = 0; 7303 } 7304 rack_free(rack, r_rsm); 7305 l_rsm->r_flags |= RACK_MERGED; 7306 return (l_rsm); 7307 } 7308 7309 /* 7310 * TLP Timer, here we simply setup what segment we want to 7311 * have the TLP expire on, the normal rack_output() will then 7312 * send it out. 7313 * 7314 * We return 1, saying don't proceed with rack_output only 7315 * when all timers have been stopped (destroyed PCB?). 7316 */ 7317 static int 7318 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp) 7319 { 7320 /* 7321 * Tail Loss Probe. 7322 */ 7323 struct rack_sendmap *rsm = NULL; 7324 int insret __diagused; 7325 struct socket *so = tptosocket(tp); 7326 uint32_t amm; 7327 uint32_t out, avail; 7328 int collapsed_win = 0; 7329 7330 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 7331 /* Its not time yet */ 7332 return (0); 7333 } 7334 if (ctf_progress_timeout_check(tp, true)) { 7335 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 7336 return (-ETIMEDOUT); /* tcp_drop() */ 7337 } 7338 /* 7339 * A TLP timer has expired. We have been idle for 2 rtts. So we now 7340 * need to figure out how to force a full MSS segment out. 7341 */ 7342 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); 7343 rack->r_ctl.retran_during_recovery = 0; 7344 rack->r_ctl.dsack_byte_cnt = 0; 7345 counter_u64_add(rack_tlp_tot, 1); 7346 if (rack->r_state && (rack->r_state != tp->t_state)) 7347 rack_set_state(tp, rack); 7348 avail = sbavail(&so->so_snd); 7349 out = tp->snd_max - tp->snd_una; 7350 if ((out > tp->snd_wnd) || rack->rc_has_collapsed) { 7351 /* special case, we need a retransmission */ 7352 collapsed_win = 1; 7353 goto need_retran; 7354 } 7355 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) { 7356 rack->r_ctl.dsack_persist--; 7357 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 7358 rack->r_ctl.num_dsack = 0; 7359 } 7360 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 7361 } 7362 if ((tp->t_flags & TF_GPUTINPROG) && 7363 (rack->r_ctl.rc_tlp_cnt_out == 1)) { 7364 /* 7365 * If this is the second in a row 7366 * TLP and we are doing a measurement 7367 * its time to abandon the measurement. 7368 * Something is likely broken on 7369 * the clients network and measuring a 7370 * broken network does us no good. 7371 */ 7372 tp->t_flags &= ~TF_GPUTINPROG; 7373 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 7374 rack->r_ctl.rc_gp_srtt /*flex1*/, 7375 tp->gput_seq, 7376 0, 0, 18, __LINE__, NULL, 0); 7377 } 7378 /* 7379 * Check our send oldest always settings, and if 7380 * there is an oldest to send jump to the need_retran. 7381 */ 7382 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) 7383 goto need_retran; 7384 7385 if (avail > out) { 7386 /* New data is available */ 7387 amm = avail - out; 7388 if (amm > ctf_fixed_maxseg(tp)) { 7389 amm = ctf_fixed_maxseg(tp); 7390 if ((amm + out) > tp->snd_wnd) { 7391 /* We are rwnd limited */ 7392 goto need_retran; 7393 } 7394 } else if (amm < ctf_fixed_maxseg(tp)) { 7395 /* not enough to fill a MTU */ 7396 goto need_retran; 7397 } 7398 if (IN_FASTRECOVERY(tp->t_flags)) { 7399 /* Unlikely */ 7400 if (rack->rack_no_prr == 0) { 7401 if (out + amm <= tp->snd_wnd) { 7402 rack->r_ctl.rc_prr_sndcnt = amm; 7403 rack->r_ctl.rc_tlp_new_data = amm; 7404 rack_log_to_prr(rack, 4, 0, __LINE__); 7405 } 7406 } else 7407 goto need_retran; 7408 } else { 7409 /* Set the send-new override */ 7410 if (out + amm <= tp->snd_wnd) 7411 rack->r_ctl.rc_tlp_new_data = amm; 7412 else 7413 goto need_retran; 7414 } 7415 rack->r_ctl.rc_tlpsend = NULL; 7416 counter_u64_add(rack_tlp_newdata, 1); 7417 goto send; 7418 } 7419 need_retran: 7420 /* 7421 * Ok we need to arrange the last un-acked segment to be re-sent, or 7422 * optionally the first un-acked segment. 7423 */ 7424 if (collapsed_win == 0) { 7425 if (rack_always_send_oldest) 7426 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 7427 else { 7428 rsm = tqhash_max(rack->r_ctl.tqh); 7429 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { 7430 rsm = rack_find_high_nonack(rack, rsm); 7431 } 7432 } 7433 if (rsm == NULL) { 7434 #ifdef TCP_BLACKBOX 7435 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 7436 #endif 7437 goto out; 7438 } 7439 } else { 7440 /* 7441 * We had a collapsed window, lets find 7442 * the point before the collapse. 7443 */ 7444 if (SEQ_GT((rack->r_ctl.last_collapse_point - 1), rack->rc_tp->snd_una)) 7445 rsm = tqhash_find(rack->r_ctl.tqh, (rack->r_ctl.last_collapse_point - 1)); 7446 else { 7447 rsm = tqhash_min(rack->r_ctl.tqh); 7448 } 7449 if (rsm == NULL) { 7450 /* Huh */ 7451 goto out; 7452 } 7453 } 7454 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { 7455 /* 7456 * We need to split this the last segment in two. 7457 */ 7458 struct rack_sendmap *nrsm; 7459 7460 nrsm = rack_alloc_full_limit(rack); 7461 if (nrsm == NULL) { 7462 /* 7463 * No memory to split, we will just exit and punt 7464 * off to the RXT timer. 7465 */ 7466 goto out; 7467 } 7468 rack_clone_rsm(rack, nrsm, rsm, 7469 (rsm->r_end - ctf_fixed_maxseg(tp))); 7470 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7471 #ifndef INVARIANTS 7472 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 7473 #else 7474 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 7475 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 7476 nrsm, insret, rack, rsm); 7477 } 7478 #endif 7479 if (rsm->r_in_tmap) { 7480 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7481 nrsm->r_in_tmap = 1; 7482 } 7483 rsm = nrsm; 7484 } 7485 rack->r_ctl.rc_tlpsend = rsm; 7486 send: 7487 /* Make sure output path knows we are doing a TLP */ 7488 *doing_tlp = 1; 7489 rack->r_timer_override = 1; 7490 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 7491 return (0); 7492 out: 7493 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 7494 return (0); 7495 } 7496 7497 /* 7498 * Delayed ack Timer, here we simply need to setup the 7499 * ACK_NOW flag and remove the DELACK flag. From there 7500 * the output routine will send the ack out. 7501 * 7502 * We only return 1, saying don't proceed, if all timers 7503 * are stopped (destroyed PCB?). 7504 */ 7505 static int 7506 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 7507 { 7508 7509 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); 7510 tp->t_flags &= ~TF_DELACK; 7511 tp->t_flags |= TF_ACKNOW; 7512 KMOD_TCPSTAT_INC(tcps_delack); 7513 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 7514 return (0); 7515 } 7516 7517 /* 7518 * Persists timer, here we simply send the 7519 * same thing as a keepalive will. 7520 * the one byte send. 7521 * 7522 * We only return 1, saying don't proceed, if all timers 7523 * are stopped (destroyed PCB?). 7524 */ 7525 static int 7526 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 7527 { 7528 struct tcptemp *t_template; 7529 int32_t retval = 1; 7530 7531 if (rack->rc_in_persist == 0) 7532 return (0); 7533 if (ctf_progress_timeout_check(tp, false)) { 7534 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 7535 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 7536 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 7537 return (-ETIMEDOUT); /* tcp_drop() */ 7538 } 7539 /* 7540 * Persistence timer into zero window. Force a byte to be output, if 7541 * possible. 7542 */ 7543 KMOD_TCPSTAT_INC(tcps_persisttimeo); 7544 /* 7545 * Hack: if the peer is dead/unreachable, we do not time out if the 7546 * window is closed. After a full backoff, drop the connection if 7547 * the idle time (no responses to probes) reaches the maximum 7548 * backoff that we would use if retransmitting. 7549 */ 7550 if (tp->t_rxtshift >= V_tcp_retries && 7551 (ticks - tp->t_rcvtime >= tcp_maxpersistidle || 7552 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) { 7553 KMOD_TCPSTAT_INC(tcps_persistdrop); 7554 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 7555 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 7556 retval = -ETIMEDOUT; /* tcp_drop() */ 7557 goto out; 7558 } 7559 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && 7560 tp->snd_una == tp->snd_max) 7561 rack_exit_persist(tp, rack, cts); 7562 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; 7563 /* 7564 * If the user has closed the socket then drop a persisting 7565 * connection after a much reduced timeout. 7566 */ 7567 if (tp->t_state > TCPS_CLOSE_WAIT && 7568 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { 7569 KMOD_TCPSTAT_INC(tcps_persistdrop); 7570 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 7571 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends); 7572 retval = -ETIMEDOUT; /* tcp_drop() */ 7573 goto out; 7574 } 7575 t_template = tcpip_maketemplate(rack->rc_inp); 7576 if (t_template) { 7577 /* only set it if we were answered */ 7578 if (rack->forced_ack == 0) { 7579 rack->forced_ack = 1; 7580 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 7581 } else { 7582 rack->probe_not_answered = 1; 7583 counter_u64_add(rack_persists_loss, 1); 7584 rack->r_ctl.persist_lost_ends++; 7585 } 7586 counter_u64_add(rack_persists_sends, 1); 7587 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); 7588 tcp_respond(tp, t_template->tt_ipgen, 7589 &t_template->tt_t, (struct mbuf *)NULL, 7590 tp->rcv_nxt, tp->snd_una - 1, 0); 7591 /* This sends an ack */ 7592 if (tp->t_flags & TF_DELACK) 7593 tp->t_flags &= ~TF_DELACK; 7594 free(t_template, M_TEMP); 7595 } 7596 if (tp->t_rxtshift < V_tcp_retries) 7597 tp->t_rxtshift++; 7598 out: 7599 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); 7600 rack_start_hpts_timer(rack, tp, cts, 7601 0, 0, 0); 7602 return (retval); 7603 } 7604 7605 /* 7606 * If a keepalive goes off, we had no other timers 7607 * happening. We always return 1 here since this 7608 * routine either drops the connection or sends 7609 * out a segment with respond. 7610 */ 7611 static int 7612 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 7613 { 7614 struct tcptemp *t_template; 7615 struct inpcb *inp = tptoinpcb(tp); 7616 7617 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; 7618 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); 7619 /* 7620 * Keep-alive timer went off; send something or drop connection if 7621 * idle for too long. 7622 */ 7623 KMOD_TCPSTAT_INC(tcps_keeptimeo); 7624 if (tp->t_state < TCPS_ESTABLISHED) 7625 goto dropit; 7626 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 7627 tp->t_state <= TCPS_CLOSING) { 7628 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) 7629 goto dropit; 7630 /* 7631 * Send a packet designed to force a response if the peer is 7632 * up and reachable: either an ACK if the connection is 7633 * still alive, or an RST if the peer has closed the 7634 * connection due to timeout or reboot. Using sequence 7635 * number tp->snd_una-1 causes the transmitted zero-length 7636 * segment to lie outside the receive window; by the 7637 * protocol spec, this requires the correspondent TCP to 7638 * respond. 7639 */ 7640 KMOD_TCPSTAT_INC(tcps_keepprobe); 7641 t_template = tcpip_maketemplate(inp); 7642 if (t_template) { 7643 if (rack->forced_ack == 0) { 7644 rack->forced_ack = 1; 7645 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 7646 } else { 7647 rack->probe_not_answered = 1; 7648 } 7649 tcp_respond(tp, t_template->tt_ipgen, 7650 &t_template->tt_t, (struct mbuf *)NULL, 7651 tp->rcv_nxt, tp->snd_una - 1, 0); 7652 free(t_template, M_TEMP); 7653 } 7654 } 7655 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 7656 return (1); 7657 dropit: 7658 KMOD_TCPSTAT_INC(tcps_keepdrops); 7659 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 7660 return (-ETIMEDOUT); /* tcp_drop() */ 7661 } 7662 7663 /* 7664 * Retransmit helper function, clear up all the ack 7665 * flags and take care of important book keeping. 7666 */ 7667 static void 7668 rack_remxt_tmr(struct tcpcb *tp) 7669 { 7670 /* 7671 * The retransmit timer went off, all sack'd blocks must be 7672 * un-acked. 7673 */ 7674 struct rack_sendmap *rsm, *trsm = NULL; 7675 struct tcp_rack *rack; 7676 7677 rack = (struct tcp_rack *)tp->t_fb_ptr; 7678 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__); 7679 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); 7680 if (rack->r_state && (rack->r_state != tp->t_state)) 7681 rack_set_state(tp, rack); 7682 /* 7683 * Ideally we would like to be able to 7684 * mark SACK-PASS on anything not acked here. 7685 * 7686 * However, if we do that we would burst out 7687 * all that data 1ms apart. This would be unwise, 7688 * so for now we will just let the normal rxt timer 7689 * and tlp timer take care of it. 7690 * 7691 * Also we really need to stick them back in sequence 7692 * order. This way we send in the proper order and any 7693 * sacks that come floating in will "re-ack" the data. 7694 * To do this we zap the tmap with an INIT and then 7695 * walk through and place every rsm in the RB tree 7696 * back in its seq ordered place. 7697 */ 7698 TAILQ_INIT(&rack->r_ctl.rc_tmap); 7699 7700 TQHASH_FOREACH(rsm, rack->r_ctl.tqh) { 7701 rsm->r_dupack = 0; 7702 if (rack_verbose_logging) 7703 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7704 /* We must re-add it back to the tlist */ 7705 if (trsm == NULL) { 7706 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7707 } else { 7708 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 7709 } 7710 rsm->r_in_tmap = 1; 7711 trsm = rsm; 7712 if (rsm->r_flags & RACK_ACKED) 7713 rsm->r_flags |= RACK_WAS_ACKED; 7714 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS | RACK_RWND_COLLAPSED); 7715 rsm->r_flags |= RACK_MUST_RXT; 7716 } 7717 /* Clear the count (we just un-acked them) */ 7718 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una; 7719 rack->r_ctl.rc_sacked = 0; 7720 rack->r_ctl.rc_sacklast = NULL; 7721 rack->r_ctl.rc_agg_delayed = 0; 7722 rack->r_early = 0; 7723 rack->r_ctl.rc_agg_early = 0; 7724 rack->r_late = 0; 7725 /* Clear the tlp rtx mark */ 7726 rack->r_ctl.rc_resend = tqhash_min(rack->r_ctl.tqh); 7727 if (rack->r_ctl.rc_resend != NULL) 7728 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT; 7729 rack->r_ctl.rc_prr_sndcnt = 0; 7730 rack_log_to_prr(rack, 6, 0, __LINE__); 7731 rack->r_timer_override = 1; 7732 if ((((tp->t_flags & TF_SACK_PERMIT) == 0) 7733 #ifdef TCP_SAD_DETECTION 7734 || (rack->sack_attack_disable != 0) 7735 #endif 7736 ) && ((tp->t_flags & TF_SENTFIN) == 0)) { 7737 /* 7738 * For non-sack customers new data 7739 * needs to go out as retransmits until 7740 * we retransmit up to snd_max. 7741 */ 7742 rack->r_must_retran = 1; 7743 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp, 7744 rack->r_ctl.rc_sacked); 7745 } 7746 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 7747 } 7748 7749 static void 7750 rack_convert_rtts(struct tcpcb *tp) 7751 { 7752 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_USEC); 7753 tp->t_rxtcur = RACK_REXMTVAL(tp); 7754 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 7755 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop); 7756 } 7757 if (tp->t_rxtcur > rack_rto_max) { 7758 tp->t_rxtcur = rack_rto_max; 7759 } 7760 } 7761 7762 static void 7763 rack_cc_conn_init(struct tcpcb *tp) 7764 { 7765 struct tcp_rack *rack; 7766 uint32_t srtt; 7767 7768 rack = (struct tcp_rack *)tp->t_fb_ptr; 7769 srtt = tp->t_srtt; 7770 cc_conn_init(tp); 7771 /* 7772 * Now convert to rack's internal format, 7773 * if required. 7774 */ 7775 if ((srtt == 0) && (tp->t_srtt != 0)) 7776 rack_convert_rtts(tp); 7777 /* 7778 * We want a chance to stay in slowstart as 7779 * we create a connection. TCP spec says that 7780 * initially ssthresh is infinite. For our 7781 * purposes that is the snd_wnd. 7782 */ 7783 if (tp->snd_ssthresh < tp->snd_wnd) { 7784 tp->snd_ssthresh = tp->snd_wnd; 7785 } 7786 /* 7787 * We also want to assure a IW worth of 7788 * data can get inflight. 7789 */ 7790 if (rc_init_window(rack) < tp->snd_cwnd) 7791 tp->snd_cwnd = rc_init_window(rack); 7792 } 7793 7794 /* 7795 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise 7796 * we will setup to retransmit the lowest seq number outstanding. 7797 */ 7798 static int 7799 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 7800 { 7801 struct inpcb *inp = tptoinpcb(tp); 7802 int32_t rexmt; 7803 int32_t retval = 0; 7804 bool isipv6; 7805 7806 if ((tp->t_flags & TF_GPUTINPROG) && 7807 (tp->t_rxtshift)) { 7808 /* 7809 * We have had a second timeout 7810 * measurements on successive rxt's are not profitable. 7811 * It is unlikely to be of any use (the network is 7812 * broken or the client went away). 7813 */ 7814 tp->t_flags &= ~TF_GPUTINPROG; 7815 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 7816 rack->r_ctl.rc_gp_srtt /*flex1*/, 7817 tp->gput_seq, 7818 0, 0, 18, __LINE__, NULL, 0); 7819 } 7820 if (ctf_progress_timeout_check(tp, false)) { 7821 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 7822 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 7823 return (-ETIMEDOUT); /* tcp_drop() */ 7824 } 7825 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; 7826 rack->r_ctl.retran_during_recovery = 0; 7827 rack->rc_ack_required = 1; 7828 rack->r_ctl.dsack_byte_cnt = 0; 7829 if (IN_FASTRECOVERY(tp->t_flags)) 7830 tp->t_flags |= TF_WASFRECOVERY; 7831 else 7832 tp->t_flags &= ~TF_WASFRECOVERY; 7833 if (IN_CONGRECOVERY(tp->t_flags)) 7834 tp->t_flags |= TF_WASCRECOVERY; 7835 else 7836 tp->t_flags &= ~TF_WASCRECOVERY; 7837 if (TCPS_HAVEESTABLISHED(tp->t_state) && 7838 (tp->snd_una == tp->snd_max)) { 7839 /* Nothing outstanding .. nothing to do */ 7840 return (0); 7841 } 7842 if (rack->r_ctl.dsack_persist) { 7843 rack->r_ctl.dsack_persist--; 7844 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) { 7845 rack->r_ctl.num_dsack = 0; 7846 } 7847 rack_log_dsack_event(rack, 1, __LINE__, 0, 0); 7848 } 7849 /* 7850 * Rack can only run one timer at a time, so we cannot 7851 * run a KEEPINIT (gating SYN sending) and a retransmit 7852 * timer for the SYN. So if we are in a front state and 7853 * have a KEEPINIT timer we need to check the first transmit 7854 * against now to see if we have exceeded the KEEPINIT time 7855 * (if one is set). 7856 */ 7857 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 7858 (TP_KEEPINIT(tp) != 0)) { 7859 struct rack_sendmap *rsm; 7860 7861 rsm = tqhash_min(rack->r_ctl.tqh); 7862 if (rsm) { 7863 /* Ok we have something outstanding to test keepinit with */ 7864 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) && 7865 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) { 7866 /* We have exceeded the KEEPINIT time */ 7867 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 7868 goto drop_it; 7869 } 7870 } 7871 } 7872 /* 7873 * Retransmission timer went off. Message has not been acked within 7874 * retransmit interval. Back off to a longer retransmit interval 7875 * and retransmit one segment. 7876 */ 7877 rack_remxt_tmr(tp); 7878 if ((rack->r_ctl.rc_resend == NULL) || 7879 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { 7880 /* 7881 * If the rwnd collapsed on 7882 * the one we are retransmitting 7883 * it does not count against the 7884 * rxt count. 7885 */ 7886 tp->t_rxtshift++; 7887 } 7888 if (tp->t_rxtshift > V_tcp_retries) { 7889 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 7890 drop_it: 7891 tp->t_rxtshift = V_tcp_retries; 7892 KMOD_TCPSTAT_INC(tcps_timeoutdrop); 7893 /* XXXGL: previously t_softerror was casted to uint16_t */ 7894 MPASS(tp->t_softerror >= 0); 7895 retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT; 7896 goto out; /* tcp_drop() */ 7897 } 7898 if (tp->t_state == TCPS_SYN_SENT) { 7899 /* 7900 * If the SYN was retransmitted, indicate CWND to be limited 7901 * to 1 segment in cc_conn_init(). 7902 */ 7903 tp->snd_cwnd = 1; 7904 } else if (tp->t_rxtshift == 1) { 7905 /* 7906 * first retransmit; record ssthresh and cwnd so they can be 7907 * recovered if this turns out to be a "bad" retransmit. A 7908 * retransmit is considered "bad" if an ACK for this segment 7909 * is received within RTT/2 interval; the assumption here is 7910 * that the ACK was already in flight. See "On Estimating 7911 * End-to-End Network Path Properties" by Allman and Paxson 7912 * for more details. 7913 */ 7914 tp->snd_cwnd_prev = tp->snd_cwnd; 7915 tp->snd_ssthresh_prev = tp->snd_ssthresh; 7916 tp->snd_recover_prev = tp->snd_recover; 7917 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2); 7918 tp->t_flags |= TF_PREVVALID; 7919 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0) 7920 tp->t_flags &= ~TF_PREVVALID; 7921 KMOD_TCPSTAT_INC(tcps_rexmttimeo); 7922 if ((tp->t_state == TCPS_SYN_SENT) || 7923 (tp->t_state == TCPS_SYN_RECEIVED)) 7924 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]; 7925 else 7926 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift]; 7927 7928 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt, 7929 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop); 7930 /* 7931 * We enter the path for PLMTUD if connection is established or, if 7932 * connection is FIN_WAIT_1 status, reason for the last is that if 7933 * amount of data we send is very small, we could send it in couple 7934 * of packets and process straight to FIN. In that case we won't 7935 * catch ESTABLISHED state. 7936 */ 7937 #ifdef INET6 7938 isipv6 = (inp->inp_vflag & INP_IPV6) ? true : false; 7939 #else 7940 isipv6 = false; 7941 #endif 7942 if (((V_tcp_pmtud_blackhole_detect == 1) || 7943 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || 7944 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && 7945 ((tp->t_state == TCPS_ESTABLISHED) || 7946 (tp->t_state == TCPS_FIN_WAIT_1))) { 7947 /* 7948 * Idea here is that at each stage of mtu probe (usually, 7949 * 1448 -> 1188 -> 524) should be given 2 chances to recover 7950 * before further clamping down. 'tp->t_rxtshift % 2 == 0' 7951 * should take care of that. 7952 */ 7953 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == 7954 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && 7955 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && 7956 tp->t_rxtshift % 2 == 0)) { 7957 /* 7958 * Enter Path MTU Black-hole Detection mechanism: - 7959 * Disable Path MTU Discovery (IP "DF" bit). - 7960 * Reduce MTU to lower value than what we negotiated 7961 * with peer. 7962 */ 7963 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { 7964 /* Record that we may have found a black hole. */ 7965 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; 7966 /* Keep track of previous MSS. */ 7967 tp->t_pmtud_saved_maxseg = tp->t_maxseg; 7968 } 7969 7970 /* 7971 * Reduce the MSS to blackhole value or to the 7972 * default in an attempt to retransmit. 7973 */ 7974 #ifdef INET6 7975 if (isipv6 && 7976 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { 7977 /* Use the sysctl tuneable blackhole MSS. */ 7978 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; 7979 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 7980 } else if (isipv6) { 7981 /* Use the default MSS. */ 7982 tp->t_maxseg = V_tcp_v6mssdflt; 7983 /* 7984 * Disable Path MTU Discovery when we switch 7985 * to minmss. 7986 */ 7987 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 7988 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 7989 } 7990 #endif 7991 #if defined(INET6) && defined(INET) 7992 else 7993 #endif 7994 #ifdef INET 7995 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { 7996 /* Use the sysctl tuneable blackhole MSS. */ 7997 tp->t_maxseg = V_tcp_pmtud_blackhole_mss; 7998 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 7999 } else { 8000 /* Use the default MSS. */ 8001 tp->t_maxseg = V_tcp_mssdflt; 8002 /* 8003 * Disable Path MTU Discovery when we switch 8004 * to minmss. 8005 */ 8006 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 8007 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 8008 } 8009 #endif 8010 } else { 8011 /* 8012 * If further retransmissions are still unsuccessful 8013 * with a lowered MTU, maybe this isn't a blackhole 8014 * and we restore the previous MSS and blackhole 8015 * detection flags. The limit '6' is determined by 8016 * giving each probe stage (1448, 1188, 524) 2 8017 * chances to recover. 8018 */ 8019 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && 8020 (tp->t_rxtshift >= 6)) { 8021 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 8022 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; 8023 tp->t_maxseg = tp->t_pmtud_saved_maxseg; 8024 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); 8025 } 8026 } 8027 } 8028 /* 8029 * Disable RFC1323 and SACK if we haven't got any response to 8030 * our third SYN to work-around some broken terminal servers 8031 * (most of which have hopefully been retired) that have bad VJ 8032 * header compression code which trashes TCP segments containing 8033 * unknown-to-them TCP options. 8034 */ 8035 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && 8036 (tp->t_rxtshift == 3)) 8037 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT); 8038 /* 8039 * If we backed off this far, our srtt estimate is probably bogus. 8040 * Clobber it so we'll take the next rtt measurement as our srtt; 8041 * move the current srtt into rttvar to keep the current retransmit 8042 * times until then. 8043 */ 8044 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { 8045 #ifdef INET6 8046 if ((inp->inp_vflag & INP_IPV6) != 0) 8047 in6_losing(inp); 8048 else 8049 #endif 8050 in_losing(inp); 8051 tp->t_rttvar += tp->t_srtt; 8052 tp->t_srtt = 0; 8053 } 8054 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 8055 tp->snd_recover = tp->snd_max; 8056 tp->t_flags |= TF_ACKNOW; 8057 tp->t_rtttime = 0; 8058 rack_cong_signal(tp, CC_RTO, tp->snd_una, __LINE__); 8059 out: 8060 return (retval); 8061 } 8062 8063 static int 8064 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp) 8065 { 8066 int32_t ret = 0; 8067 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); 8068 8069 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 8070 (tp->t_flags & TF_GPUTINPROG)) { 8071 /* 8072 * We have a goodput in progress 8073 * and we have entered a late state. 8074 * Do we have enough data in the sb 8075 * to handle the GPUT request? 8076 */ 8077 uint32_t bytes; 8078 8079 bytes = tp->gput_ack - tp->gput_seq; 8080 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 8081 bytes += tp->gput_seq - tp->snd_una; 8082 if (bytes > sbavail(&tptosocket(tp)->so_snd)) { 8083 /* 8084 * There are not enough bytes in the socket 8085 * buffer that have been sent to cover this 8086 * measurement. Cancel it. 8087 */ 8088 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 8089 rack->r_ctl.rc_gp_srtt /*flex1*/, 8090 tp->gput_seq, 8091 0, 0, 18, __LINE__, NULL, 0); 8092 tp->t_flags &= ~TF_GPUTINPROG; 8093 } 8094 } 8095 if (timers == 0) { 8096 return (0); 8097 } 8098 if (tp->t_state == TCPS_LISTEN) { 8099 /* no timers on listen sockets */ 8100 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) 8101 return (0); 8102 return (1); 8103 } 8104 if ((timers & PACE_TMR_RACK) && 8105 rack->rc_on_min_to) { 8106 /* 8107 * For the rack timer when we 8108 * are on a min-timeout (which means rrr_conf = 3) 8109 * we don't want to check the timer. It may 8110 * be going off for a pace and thats ok we 8111 * want to send the retransmit (if its ready). 8112 * 8113 * If its on a normal rack timer (non-min) then 8114 * we will check if its expired. 8115 */ 8116 goto skip_time_check; 8117 } 8118 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 8119 uint32_t left; 8120 8121 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 8122 ret = -1; 8123 rack_log_to_processing(rack, cts, ret, 0); 8124 return (0); 8125 } 8126 if (hpts_calling == 0) { 8127 /* 8128 * A user send or queued mbuf (sack) has called us? We 8129 * return 0 and let the pacing guards 8130 * deal with it if they should or 8131 * should not cause a send. 8132 */ 8133 ret = -2; 8134 rack_log_to_processing(rack, cts, ret, 0); 8135 return (0); 8136 } 8137 /* 8138 * Ok our timer went off early and we are not paced false 8139 * alarm, go back to sleep. We make sure we don't have 8140 * no-sack wakeup on since we no longer have a PKT_OUTPUT 8141 * flag in place. 8142 */ 8143 rack->rc_tp->t_flags2 &= ~TF2_DONT_SACK_QUEUE; 8144 ret = -3; 8145 left = rack->r_ctl.rc_timer_exp - cts; 8146 tcp_hpts_insert(tp, HPTS_MS_TO_SLOTS(left)); 8147 rack_log_to_processing(rack, cts, ret, left); 8148 return (1); 8149 } 8150 skip_time_check: 8151 rack->rc_tmr_stopped = 0; 8152 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; 8153 if (timers & PACE_TMR_DELACK) { 8154 ret = rack_timeout_delack(tp, rack, cts); 8155 } else if (timers & PACE_TMR_RACK) { 8156 rack->r_ctl.rc_tlp_rxt_last_time = cts; 8157 rack->r_fast_output = 0; 8158 ret = rack_timeout_rack(tp, rack, cts); 8159 } else if (timers & PACE_TMR_TLP) { 8160 rack->r_ctl.rc_tlp_rxt_last_time = cts; 8161 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp); 8162 } else if (timers & PACE_TMR_RXT) { 8163 rack->r_ctl.rc_tlp_rxt_last_time = cts; 8164 rack->r_fast_output = 0; 8165 ret = rack_timeout_rxt(tp, rack, cts); 8166 } else if (timers & PACE_TMR_PERSIT) { 8167 ret = rack_timeout_persist(tp, rack, cts); 8168 } else if (timers & PACE_TMR_KEEP) { 8169 ret = rack_timeout_keepalive(tp, rack, cts); 8170 } 8171 rack_log_to_processing(rack, cts, ret, timers); 8172 return (ret); 8173 } 8174 8175 static void 8176 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) 8177 { 8178 struct timeval tv; 8179 uint32_t us_cts, flags_on_entry; 8180 uint8_t hpts_removed = 0; 8181 8182 flags_on_entry = rack->r_ctl.rc_hpts_flags; 8183 us_cts = tcp_get_usecs(&tv); 8184 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 8185 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || 8186 ((tp->snd_max - tp->snd_una) == 0))) { 8187 tcp_hpts_remove(rack->rc_tp); 8188 hpts_removed = 1; 8189 /* If we were not delayed cancel out the flag. */ 8190 if ((tp->snd_max - tp->snd_una) == 0) 8191 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 8192 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 8193 } 8194 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 8195 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 8196 if (tcp_in_hpts(rack->rc_tp) && 8197 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { 8198 /* 8199 * Canceling timer's when we have no output being 8200 * paced. We also must remove ourselves from the 8201 * hpts. 8202 */ 8203 tcp_hpts_remove(rack->rc_tp); 8204 hpts_removed = 1; 8205 } 8206 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); 8207 } 8208 if (hpts_removed == 0) 8209 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 8210 } 8211 8212 static int 8213 rack_stopall(struct tcpcb *tp) 8214 { 8215 struct tcp_rack *rack; 8216 rack = (struct tcp_rack *)tp->t_fb_ptr; 8217 rack->t_timers_stopped = 1; 8218 return (0); 8219 } 8220 8221 static void 8222 rack_stop_all_timers(struct tcpcb *tp, struct tcp_rack *rack) 8223 { 8224 /* 8225 * Assure no timers are running. 8226 */ 8227 if (tcp_timer_active(tp, TT_PERSIST)) { 8228 /* We enter in persists, set the flag appropriately */ 8229 rack->rc_in_persist = 1; 8230 } 8231 if (tcp_in_hpts(rack->rc_tp)) { 8232 tcp_hpts_remove(rack->rc_tp); 8233 } 8234 } 8235 8236 static void 8237 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 8238 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag, int segsiz) 8239 { 8240 int32_t idx; 8241 8242 rsm->r_rtr_cnt++; 8243 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8244 rsm->r_dupack = 0; 8245 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { 8246 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; 8247 rsm->r_flags |= RACK_OVERMAX; 8248 } 8249 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { 8250 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); 8251 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); 8252 } 8253 idx = rsm->r_rtr_cnt - 1; 8254 rsm->r_tim_lastsent[idx] = ts; 8255 /* 8256 * Here we don't add in the len of send, since its already 8257 * in snduna <->snd_max. 8258 */ 8259 rsm->r_fas = ctf_flight_size(rack->rc_tp, 8260 rack->r_ctl.rc_sacked); 8261 if (rsm->r_flags & RACK_ACKED) { 8262 /* Problably MTU discovery messing with us */ 8263 rsm->r_flags &= ~RACK_ACKED; 8264 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 8265 } 8266 if (rsm->r_in_tmap) { 8267 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8268 rsm->r_in_tmap = 0; 8269 } 8270 /* Lets make sure it really is in or not the GP window */ 8271 rack_mark_in_gp_win(tp, rsm); 8272 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8273 rsm->r_in_tmap = 1; 8274 rsm->r_bas = (uint8_t)(((rsm->r_end - rsm->r_start) + segsiz - 1) / segsiz); 8275 /* Take off the must retransmit flag, if its on */ 8276 if (rsm->r_flags & RACK_MUST_RXT) { 8277 if (rack->r_must_retran) 8278 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 8279 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 8280 /* 8281 * We have retransmitted all we need. Clear 8282 * any must retransmit flags. 8283 */ 8284 rack->r_must_retran = 0; 8285 rack->r_ctl.rc_out_at_rto = 0; 8286 } 8287 rsm->r_flags &= ~RACK_MUST_RXT; 8288 } 8289 /* Remove any collapsed flag */ 8290 rsm->r_flags &= ~RACK_RWND_COLLAPSED; 8291 if (rsm->r_flags & RACK_SACK_PASSED) { 8292 /* We have retransmitted due to the SACK pass */ 8293 rsm->r_flags &= ~RACK_SACK_PASSED; 8294 rsm->r_flags |= RACK_WAS_SACKPASS; 8295 } 8296 } 8297 8298 static uint32_t 8299 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 8300 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag, int segsiz) 8301 { 8302 /* 8303 * We (re-)transmitted starting at rsm->r_start for some length 8304 * (possibly less than r_end. 8305 */ 8306 struct rack_sendmap *nrsm; 8307 int insret __diagused; 8308 uint32_t c_end; 8309 int32_t len; 8310 8311 len = *lenp; 8312 c_end = rsm->r_start + len; 8313 if (SEQ_GEQ(c_end, rsm->r_end)) { 8314 /* 8315 * We retransmitted the whole piece or more than the whole 8316 * slopping into the next rsm. 8317 */ 8318 rack_update_rsm(tp, rack, rsm, ts, add_flag, segsiz); 8319 if (c_end == rsm->r_end) { 8320 *lenp = 0; 8321 return (0); 8322 } else { 8323 int32_t act_len; 8324 8325 /* Hangs over the end return whats left */ 8326 act_len = rsm->r_end - rsm->r_start; 8327 *lenp = (len - act_len); 8328 return (rsm->r_end); 8329 } 8330 /* We don't get out of this block. */ 8331 } 8332 /* 8333 * Here we retransmitted less than the whole thing which means we 8334 * have to split this into what was transmitted and what was not. 8335 */ 8336 nrsm = rack_alloc_full_limit(rack); 8337 if (nrsm == NULL) { 8338 /* 8339 * We can't get memory, so lets not proceed. 8340 */ 8341 *lenp = 0; 8342 return (0); 8343 } 8344 /* 8345 * So here we are going to take the original rsm and make it what we 8346 * retransmitted. nrsm will be the tail portion we did not 8347 * retransmit. For example say the chunk was 1, 11 (10 bytes). And 8348 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to 8349 * 1, 6 and the new piece will be 6, 11. 8350 */ 8351 rack_clone_rsm(rack, nrsm, rsm, c_end); 8352 nrsm->r_dupack = 0; 8353 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 8354 #ifndef INVARIANTS 8355 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 8356 #else 8357 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 8358 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 8359 nrsm, insret, rack, rsm); 8360 } 8361 #endif 8362 if (rsm->r_in_tmap) { 8363 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8364 nrsm->r_in_tmap = 1; 8365 } 8366 rsm->r_flags &= (~RACK_HAS_FIN); 8367 rack_update_rsm(tp, rack, rsm, ts, add_flag, segsiz); 8368 /* Log a split of rsm into rsm and nrsm */ 8369 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 8370 *lenp = 0; 8371 return (0); 8372 } 8373 8374 static void 8375 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 8376 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts, 8377 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, 8378 uint32_t s_moff, int hw_tls, int segsiz) 8379 { 8380 struct tcp_rack *rack; 8381 struct rack_sendmap *rsm, *nrsm; 8382 int insret __diagused; 8383 8384 register uint32_t snd_max, snd_una; 8385 8386 /* 8387 * Add to the RACK log of packets in flight or retransmitted. If 8388 * there is a TS option we will use the TS echoed, if not we will 8389 * grab a TS. 8390 * 8391 * Retransmissions will increment the count and move the ts to its 8392 * proper place. Note that if options do not include TS's then we 8393 * won't be able to effectively use the ACK for an RTT on a retran. 8394 * 8395 * Notes about r_start and r_end. Lets consider a send starting at 8396 * sequence 1 for 10 bytes. In such an example the r_start would be 8397 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. 8398 * This means that r_end is actually the first sequence for the next 8399 * slot (11). 8400 * 8401 */ 8402 /* 8403 * If err is set what do we do XXXrrs? should we not add the thing? 8404 * -- i.e. return if err != 0 or should we pretend we sent it? -- 8405 * i.e. proceed with add ** do this for now. 8406 */ 8407 INP_WLOCK_ASSERT(tptoinpcb(tp)); 8408 if (err) 8409 /* 8410 * We don't log errors -- we could but snd_max does not 8411 * advance in this case either. 8412 */ 8413 return; 8414 8415 if (th_flags & TH_RST) { 8416 /* 8417 * We don't log resets and we return immediately from 8418 * sending 8419 */ 8420 return; 8421 } 8422 rack = (struct tcp_rack *)tp->t_fb_ptr; 8423 snd_una = tp->snd_una; 8424 snd_max = tp->snd_max; 8425 if (th_flags & (TH_SYN | TH_FIN)) { 8426 /* 8427 * The call to rack_log_output is made before bumping 8428 * snd_max. This means we can record one extra byte on a SYN 8429 * or FIN if seq_out is adding more on and a FIN is present 8430 * (and we are not resending). 8431 */ 8432 if ((th_flags & TH_SYN) && (seq_out == tp->iss)) 8433 len++; 8434 if (th_flags & TH_FIN) 8435 len++; 8436 if (SEQ_LT(snd_max, tp->snd_nxt)) { 8437 /* 8438 * The add/update as not been done for the FIN/SYN 8439 * yet. 8440 */ 8441 snd_max = tp->snd_nxt; 8442 } 8443 } 8444 if (SEQ_LEQ((seq_out + len), snd_una)) { 8445 /* Are sending an old segment to induce an ack (keep-alive)? */ 8446 return; 8447 } 8448 if (SEQ_LT(seq_out, snd_una)) { 8449 /* huh? should we panic? */ 8450 uint32_t end; 8451 8452 end = seq_out + len; 8453 seq_out = snd_una; 8454 if (SEQ_GEQ(end, seq_out)) 8455 len = end - seq_out; 8456 else 8457 len = 0; 8458 } 8459 if (len == 0) { 8460 /* We don't log zero window probes */ 8461 return; 8462 } 8463 if (IN_FASTRECOVERY(tp->t_flags)) { 8464 rack->r_ctl.rc_prr_out += len; 8465 } 8466 /* First question is it a retransmission or new? */ 8467 if (seq_out == snd_max) { 8468 /* Its new */ 8469 rack_chk_req_and_hybrid_on_out(rack, seq_out, len, cts); 8470 again: 8471 rsm = rack_alloc(rack); 8472 if (rsm == NULL) { 8473 /* 8474 * Hmm out of memory and the tcb got destroyed while 8475 * we tried to wait. 8476 */ 8477 return; 8478 } 8479 if (th_flags & TH_FIN) { 8480 rsm->r_flags = RACK_HAS_FIN|add_flag; 8481 } else { 8482 rsm->r_flags = add_flag; 8483 } 8484 if (hw_tls) 8485 rsm->r_hw_tls = 1; 8486 rsm->r_tim_lastsent[0] = cts; 8487 rsm->r_rtr_cnt = 1; 8488 rsm->r_rtr_bytes = 0; 8489 if (th_flags & TH_SYN) { 8490 /* The data space is one beyond snd_una */ 8491 rsm->r_flags |= RACK_HAS_SYN; 8492 } 8493 rsm->r_start = seq_out; 8494 rsm->r_end = rsm->r_start + len; 8495 rack_mark_in_gp_win(tp, rsm); 8496 rsm->r_dupack = 0; 8497 /* 8498 * save off the mbuf location that 8499 * sndmbuf_noadv returned (which is 8500 * where we started copying from).. 8501 */ 8502 rsm->m = s_mb; 8503 rsm->soff = s_moff; 8504 /* 8505 * Here we do add in the len of send, since its not yet 8506 * reflected in in snduna <->snd_max 8507 */ 8508 rsm->r_fas = (ctf_flight_size(rack->rc_tp, 8509 rack->r_ctl.rc_sacked) + 8510 (rsm->r_end - rsm->r_start)); 8511 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */ 8512 if (rsm->m) { 8513 if (rsm->m->m_len <= rsm->soff) { 8514 /* 8515 * XXXrrs Question, will this happen? 8516 * 8517 * If sbsndptr is set at the correct place 8518 * then s_moff should always be somewhere 8519 * within rsm->m. But if the sbsndptr was 8520 * off then that won't be true. If it occurs 8521 * we need to walkout to the correct location. 8522 */ 8523 struct mbuf *lm; 8524 8525 lm = rsm->m; 8526 while (lm->m_len <= rsm->soff) { 8527 rsm->soff -= lm->m_len; 8528 lm = lm->m_next; 8529 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u", 8530 __func__, rack, s_moff, s_mb, rsm->soff)); 8531 } 8532 rsm->m = lm; 8533 } 8534 rsm->orig_m_len = rsm->m->m_len; 8535 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 8536 } else { 8537 rsm->orig_m_len = 0; 8538 rsm->orig_t_space = 0; 8539 } 8540 rsm->r_bas = (uint8_t)((len + segsiz - 1) / segsiz); 8541 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8542 /* Log a new rsm */ 8543 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__); 8544 #ifndef INVARIANTS 8545 (void)tqhash_insert(rack->r_ctl.tqh, rsm); 8546 #else 8547 if ((insret = tqhash_insert(rack->r_ctl.tqh, rsm)) != 0) { 8548 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 8549 nrsm, insret, rack, rsm); 8550 } 8551 #endif 8552 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8553 rsm->r_in_tmap = 1; 8554 /* 8555 * Special case detection, is there just a single 8556 * packet outstanding when we are not in recovery? 8557 * 8558 * If this is true mark it so. 8559 */ 8560 if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 8561 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { 8562 struct rack_sendmap *prsm; 8563 8564 prsm = tqhash_prev(rack->r_ctl.tqh, rsm); 8565 if (prsm) 8566 prsm->r_one_out_nr = 1; 8567 } 8568 return; 8569 } 8570 /* 8571 * If we reach here its a retransmission and we need to find it. 8572 */ 8573 more: 8574 if (hintrsm && (hintrsm->r_start == seq_out)) { 8575 rsm = hintrsm; 8576 hintrsm = NULL; 8577 } else { 8578 /* No hints sorry */ 8579 rsm = NULL; 8580 } 8581 if ((rsm) && (rsm->r_start == seq_out)) { 8582 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag, segsiz); 8583 if (len == 0) { 8584 return; 8585 } else { 8586 goto more; 8587 } 8588 } 8589 /* Ok it was not the last pointer go through it the hard way. */ 8590 refind: 8591 rsm = tqhash_find(rack->r_ctl.tqh, seq_out); 8592 if (rsm) { 8593 if (rsm->r_start == seq_out) { 8594 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag, segsiz); 8595 if (len == 0) { 8596 return; 8597 } else { 8598 goto refind; 8599 } 8600 } 8601 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { 8602 /* Transmitted within this piece */ 8603 /* 8604 * Ok we must split off the front and then let the 8605 * update do the rest 8606 */ 8607 nrsm = rack_alloc_full_limit(rack); 8608 if (nrsm == NULL) { 8609 rack_update_rsm(tp, rack, rsm, cts, add_flag, segsiz); 8610 return; 8611 } 8612 /* 8613 * copy rsm to nrsm and then trim the front of rsm 8614 * to not include this part. 8615 */ 8616 rack_clone_rsm(rack, nrsm, rsm, seq_out); 8617 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 8618 #ifndef INVARIANTS 8619 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 8620 #else 8621 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 8622 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 8623 nrsm, insret, rack, rsm); 8624 } 8625 #endif 8626 if (rsm->r_in_tmap) { 8627 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8628 nrsm->r_in_tmap = 1; 8629 } 8630 rsm->r_flags &= (~RACK_HAS_FIN); 8631 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag, segsiz); 8632 if (len == 0) { 8633 return; 8634 } else if (len > 0) 8635 goto refind; 8636 } 8637 } 8638 /* 8639 * Hmm not found in map did they retransmit both old and on into the 8640 * new? 8641 */ 8642 if (seq_out == tp->snd_max) { 8643 goto again; 8644 } else if (SEQ_LT(seq_out, tp->snd_max)) { 8645 #ifdef INVARIANTS 8646 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", 8647 seq_out, len, tp->snd_una, tp->snd_max); 8648 printf("Starting Dump of all rack entries\n"); 8649 TQHASH_FOREACH(rsm, rack->r_ctl.tqh) { 8650 printf("rsm:%p start:%u end:%u\n", 8651 rsm, rsm->r_start, rsm->r_end); 8652 } 8653 printf("Dump complete\n"); 8654 panic("seq_out not found rack:%p tp:%p", 8655 rack, tp); 8656 #endif 8657 } else { 8658 #ifdef INVARIANTS 8659 /* 8660 * Hmm beyond sndmax? (only if we are using the new rtt-pack 8661 * flag) 8662 */ 8663 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", 8664 seq_out, len, tp->snd_max, tp); 8665 #endif 8666 } 8667 } 8668 8669 /* 8670 * Record one of the RTT updates from an ack into 8671 * our sample structure. 8672 */ 8673 8674 static void 8675 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, 8676 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) 8677 { 8678 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 8679 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { 8680 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; 8681 } 8682 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 8683 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { 8684 rack->r_ctl.rack_rs.rs_rtt_highest = rtt; 8685 } 8686 if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 8687 if (us_rtt < rack->r_ctl.rc_gp_lowrtt) 8688 rack->r_ctl.rc_gp_lowrtt = us_rtt; 8689 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) 8690 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 8691 } 8692 if ((confidence == 1) && 8693 ((rsm == NULL) || 8694 (rsm->r_just_ret) || 8695 (rsm->r_one_out_nr && 8696 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { 8697 /* 8698 * If the rsm had a just return 8699 * hit it then we can't trust the 8700 * rtt measurement for buffer deterimination 8701 * Note that a confidence of 2, indicates 8702 * SACK'd which overrides the r_just_ret or 8703 * the r_one_out_nr. If it was a CUM-ACK and 8704 * we had only two outstanding, but get an 8705 * ack for only 1. Then that also lowers our 8706 * confidence. 8707 */ 8708 confidence = 0; 8709 } 8710 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 8711 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { 8712 if (rack->r_ctl.rack_rs.confidence == 0) { 8713 /* 8714 * We take anything with no current confidence 8715 * saved. 8716 */ 8717 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 8718 rack->r_ctl.rack_rs.confidence = confidence; 8719 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 8720 } else if (confidence != 0) { 8721 /* 8722 * Once we have a confident number, 8723 * we can update it with a smaller 8724 * value since this confident number 8725 * may include the DSACK time until 8726 * the next segment (the second one) arrived. 8727 */ 8728 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 8729 rack->r_ctl.rack_rs.confidence = confidence; 8730 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 8731 } 8732 } 8733 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); 8734 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; 8735 rack->r_ctl.rack_rs.rs_rtt_tot += rtt; 8736 rack->r_ctl.rack_rs.rs_rtt_cnt++; 8737 } 8738 8739 /* 8740 * Collect new round-trip time estimate 8741 * and update averages and current timeout. 8742 */ 8743 static void 8744 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) 8745 { 8746 int32_t delta; 8747 int32_t rtt; 8748 8749 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) 8750 /* No valid sample */ 8751 return; 8752 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { 8753 /* We are to use the lowest RTT seen in a single ack */ 8754 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 8755 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { 8756 /* We are to use the highest RTT seen in a single ack */ 8757 rtt = rack->r_ctl.rack_rs.rs_rtt_highest; 8758 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { 8759 /* We are to use the average RTT seen in a single ack */ 8760 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / 8761 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); 8762 } else { 8763 #ifdef INVARIANTS 8764 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); 8765 #endif 8766 return; 8767 } 8768 if (rtt == 0) 8769 rtt = 1; 8770 if (rack->rc_gp_rtt_set == 0) { 8771 /* 8772 * With no RTT we have to accept 8773 * even one we are not confident of. 8774 */ 8775 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; 8776 rack->rc_gp_rtt_set = 1; 8777 } else if (rack->r_ctl.rack_rs.confidence) { 8778 /* update the running gp srtt */ 8779 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); 8780 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; 8781 } 8782 if (rack->r_ctl.rack_rs.confidence) { 8783 /* 8784 * record the low and high for highly buffered path computation, 8785 * we only do this if we are confident (not a retransmission). 8786 */ 8787 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { 8788 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 8789 } 8790 if (rack->rc_highly_buffered == 0) { 8791 /* 8792 * Currently once we declare a path has 8793 * highly buffered there is no going 8794 * back, which may be a problem... 8795 */ 8796 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { 8797 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, 8798 rack->r_ctl.rc_highest_us_rtt, 8799 rack->r_ctl.rc_lowest_us_rtt, 8800 RACK_RTTS_SEEHBP); 8801 rack->rc_highly_buffered = 1; 8802 } 8803 } 8804 } 8805 if ((rack->r_ctl.rack_rs.confidence) || 8806 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { 8807 /* 8808 * If we are highly confident of it <or> it was 8809 * never retransmitted we accept it as the last us_rtt. 8810 */ 8811 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 8812 /* The lowest rtt can be set if its was not retransmited */ 8813 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { 8814 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 8815 if (rack->r_ctl.rc_lowest_us_rtt == 0) 8816 rack->r_ctl.rc_lowest_us_rtt = 1; 8817 } 8818 } 8819 rack = (struct tcp_rack *)tp->t_fb_ptr; 8820 if (tp->t_srtt != 0) { 8821 /* 8822 * We keep a simple srtt in microseconds, like our rtt 8823 * measurement. We don't need to do any tricks with shifting 8824 * etc. Instead we just add in 1/8th of the new measurement 8825 * and subtract out 1/8 of the old srtt. We do the same with 8826 * the variance after finding the absolute value of the 8827 * difference between this sample and the current srtt. 8828 */ 8829 delta = tp->t_srtt - rtt; 8830 /* Take off 1/8th of the current sRTT */ 8831 tp->t_srtt -= (tp->t_srtt >> 3); 8832 /* Add in 1/8th of the new RTT just measured */ 8833 tp->t_srtt += (rtt >> 3); 8834 if (tp->t_srtt <= 0) 8835 tp->t_srtt = 1; 8836 /* Now lets make the absolute value of the variance */ 8837 if (delta < 0) 8838 delta = -delta; 8839 /* Subtract out 1/8th */ 8840 tp->t_rttvar -= (tp->t_rttvar >> 3); 8841 /* Add in 1/8th of the new variance we just saw */ 8842 tp->t_rttvar += (delta >> 3); 8843 if (tp->t_rttvar <= 0) 8844 tp->t_rttvar = 1; 8845 } else { 8846 /* 8847 * No rtt measurement yet - use the unsmoothed rtt. Set the 8848 * variance to half the rtt (so our first retransmit happens 8849 * at 3*rtt). 8850 */ 8851 tp->t_srtt = rtt; 8852 tp->t_rttvar = rtt >> 1; 8853 } 8854 rack->rc_srtt_measure_made = 1; 8855 KMOD_TCPSTAT_INC(tcps_rttupdated); 8856 if (tp->t_rttupdated < UCHAR_MAX) 8857 tp->t_rttupdated++; 8858 #ifdef STATS 8859 if (rack_stats_gets_ms_rtt == 0) { 8860 /* Send in the microsecond rtt used for rxt timeout purposes */ 8861 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); 8862 } else if (rack_stats_gets_ms_rtt == 1) { 8863 /* Send in the millisecond rtt used for rxt timeout purposes */ 8864 int32_t ms_rtt; 8865 8866 /* Round up */ 8867 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 8868 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 8869 } else if (rack_stats_gets_ms_rtt == 2) { 8870 /* Send in the millisecond rtt has close to the path RTT as we can get */ 8871 int32_t ms_rtt; 8872 8873 /* Round up */ 8874 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 8875 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 8876 } else { 8877 /* Send in the microsecond rtt has close to the path RTT as we can get */ 8878 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 8879 } 8880 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_PATHRTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 8881 #endif 8882 /* 8883 * the retransmit should happen at rtt + 4 * rttvar. Because of the 8884 * way we do the smoothing, srtt and rttvar will each average +1/2 8885 * tick of bias. When we compute the retransmit timer, we want 1/2 8886 * tick of rounding and 1 extra tick because of +-1/2 tick 8887 * uncertainty in the firing of the timer. The bias will give us 8888 * exactly the 1.5 tick we need. But, because the bias is 8889 * statistical, we have to test that we don't drop below the minimum 8890 * feasible timer (which is 2 ticks). 8891 */ 8892 tp->t_rxtshift = 0; 8893 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 8894 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop); 8895 rack_log_rtt_sample(rack, rtt); 8896 tp->t_softerror = 0; 8897 } 8898 8899 8900 static void 8901 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) 8902 { 8903 /* 8904 * Apply to filter the inbound us-rtt at us_cts. 8905 */ 8906 uint32_t old_rtt; 8907 8908 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 8909 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, 8910 us_rtt, us_cts); 8911 if (old_rtt > us_rtt) { 8912 /* We just hit a new lower rtt time */ 8913 rack_log_rtt_shrinks(rack, us_cts, old_rtt, 8914 __LINE__, RACK_RTTS_NEWRTT); 8915 /* 8916 * Only count it if its lower than what we saw within our 8917 * calculated range. 8918 */ 8919 if ((old_rtt - us_rtt) > rack_min_rtt_movement) { 8920 if (rack_probertt_lower_within && 8921 rack->rc_gp_dyn_mul && 8922 (rack->use_fixed_rate == 0) && 8923 (rack->rc_always_pace)) { 8924 /* 8925 * We are seeing a new lower rtt very close 8926 * to the time that we would have entered probe-rtt. 8927 * This is probably due to the fact that a peer flow 8928 * has entered probe-rtt. Lets go in now too. 8929 */ 8930 uint32_t val; 8931 8932 val = rack_probertt_lower_within * rack_time_between_probertt; 8933 val /= 100; 8934 if ((rack->in_probe_rtt == 0) && 8935 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { 8936 rack_enter_probertt(rack, us_cts); 8937 } 8938 } 8939 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 8940 } 8941 } 8942 } 8943 8944 static int 8945 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 8946 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) 8947 { 8948 uint32_t us_rtt; 8949 int32_t i, all; 8950 uint32_t t, len_acked; 8951 8952 if ((rsm->r_flags & RACK_ACKED) || 8953 (rsm->r_flags & RACK_WAS_ACKED)) 8954 /* Already done */ 8955 return (0); 8956 if (rsm->r_no_rtt_allowed) { 8957 /* Not allowed */ 8958 return (0); 8959 } 8960 if (ack_type == CUM_ACKED) { 8961 if (SEQ_GT(th_ack, rsm->r_end)) { 8962 len_acked = rsm->r_end - rsm->r_start; 8963 all = 1; 8964 } else { 8965 len_acked = th_ack - rsm->r_start; 8966 all = 0; 8967 } 8968 } else { 8969 len_acked = rsm->r_end - rsm->r_start; 8970 all = 0; 8971 } 8972 if (rsm->r_rtr_cnt == 1) { 8973 8974 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 8975 if ((int)t <= 0) 8976 t = 1; 8977 if (!tp->t_rttlow || tp->t_rttlow > t) 8978 tp->t_rttlow = t; 8979 if (!rack->r_ctl.rc_rack_min_rtt || 8980 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 8981 rack->r_ctl.rc_rack_min_rtt = t; 8982 if (rack->r_ctl.rc_rack_min_rtt == 0) { 8983 rack->r_ctl.rc_rack_min_rtt = 1; 8984 } 8985 } 8986 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) 8987 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8988 else 8989 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8990 if (us_rtt == 0) 8991 us_rtt = 1; 8992 if (CC_ALGO(tp)->rttsample != NULL) { 8993 /* Kick the RTT to the CC */ 8994 CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas); 8995 } 8996 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 8997 if (ack_type == SACKED) { 8998 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1); 8999 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); 9000 } else { 9001 /* 9002 * We need to setup what our confidence 9003 * is in this ack. 9004 * 9005 * If the rsm was app limited and it is 9006 * less than a mss in length (the end 9007 * of the send) then we have a gap. If we 9008 * were app limited but say we were sending 9009 * multiple MSS's then we are more confident 9010 * int it. 9011 * 9012 * When we are not app-limited then we see if 9013 * the rsm is being included in the current 9014 * measurement, we tell this by the app_limited_needs_set 9015 * flag. 9016 * 9017 * Note that being cwnd blocked is not applimited 9018 * as well as the pacing delay between packets which 9019 * are sending only 1 or 2 MSS's also will show up 9020 * in the RTT. We probably need to examine this algorithm 9021 * a bit more and enhance it to account for the delay 9022 * between rsm's. We could do that by saving off the 9023 * pacing delay of each rsm (in an rsm) and then 9024 * factoring that in somehow though for now I am 9025 * not sure how :) 9026 */ 9027 int calc_conf = 0; 9028 9029 if (rsm->r_flags & RACK_APP_LIMITED) { 9030 if (all && (len_acked <= ctf_fixed_maxseg(tp))) 9031 calc_conf = 0; 9032 else 9033 calc_conf = 1; 9034 } else if (rack->app_limited_needs_set == 0) { 9035 calc_conf = 1; 9036 } else { 9037 calc_conf = 0; 9038 } 9039 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2); 9040 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 9041 calc_conf, rsm, rsm->r_rtr_cnt); 9042 } 9043 if ((rsm->r_flags & RACK_TLP) && 9044 (!IN_FASTRECOVERY(tp->t_flags))) { 9045 /* Segment was a TLP and our retrans matched */ 9046 if (rack->r_ctl.rc_tlp_cwnd_reduce) { 9047 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 9048 } 9049 } 9050 if ((rack->r_ctl.rc_rack_tmit_time == 0) || 9051 (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 9052 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]))) { 9053 /* New more recent rack_tmit_time */ 9054 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 9055 if (rack->r_ctl.rc_rack_tmit_time == 0) 9056 rack->r_ctl.rc_rack_tmit_time = 1; 9057 rack->rc_rack_rtt = t; 9058 } 9059 return (1); 9060 } 9061 /* 9062 * We clear the soft/rxtshift since we got an ack. 9063 * There is no assurance we will call the commit() function 9064 * so we need to clear these to avoid incorrect handling. 9065 */ 9066 tp->t_rxtshift = 0; 9067 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 9068 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 9069 tp->t_softerror = 0; 9070 if (to && (to->to_flags & TOF_TS) && 9071 (ack_type == CUM_ACKED) && 9072 (to->to_tsecr) && 9073 ((rsm->r_flags & RACK_OVERMAX) == 0)) { 9074 /* 9075 * Now which timestamp does it match? In this block the ACK 9076 * must be coming from a previous transmission. 9077 */ 9078 for (i = 0; i < rsm->r_rtr_cnt; i++) { 9079 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) { 9080 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 9081 if ((int)t <= 0) 9082 t = 1; 9083 if (CC_ALGO(tp)->rttsample != NULL) { 9084 /* 9085 * Kick the RTT to the CC, here 9086 * we lie a bit in that we know the 9087 * retransmission is correct even though 9088 * we retransmitted. This is because 9089 * we match the timestamps. 9090 */ 9091 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i])) 9092 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i]; 9093 else 9094 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i]; 9095 CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas); 9096 } 9097 if ((i + 1) < rsm->r_rtr_cnt) { 9098 /* 9099 * The peer ack'd from our previous 9100 * transmission. We have a spurious 9101 * retransmission and thus we dont 9102 * want to update our rack_rtt. 9103 * 9104 * Hmm should there be a CC revert here? 9105 * 9106 */ 9107 return (0); 9108 } 9109 if (!tp->t_rttlow || tp->t_rttlow > t) 9110 tp->t_rttlow = t; 9111 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 9112 rack->r_ctl.rc_rack_min_rtt = t; 9113 if (rack->r_ctl.rc_rack_min_rtt == 0) { 9114 rack->r_ctl.rc_rack_min_rtt = 1; 9115 } 9116 } 9117 if ((rack->r_ctl.rc_rack_tmit_time == 0) || 9118 (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 9119 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]))) { 9120 /* New more recent rack_tmit_time */ 9121 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 9122 if (rack->r_ctl.rc_rack_tmit_time == 0) 9123 rack->r_ctl.rc_rack_tmit_time = 1; 9124 rack->rc_rack_rtt = t; 9125 } 9126 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3); 9127 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm, 9128 rsm->r_rtr_cnt); 9129 return (1); 9130 } 9131 } 9132 /* If we are logging log out the sendmap */ 9133 if (tcp_bblogging_on(rack->rc_tp)) { 9134 for (i = 0; i < rsm->r_rtr_cnt; i++) { 9135 rack_log_rtt_sendmap(rack, i, rsm->r_tim_lastsent[i], to->to_tsecr); 9136 } 9137 } 9138 goto ts_not_found; 9139 } else { 9140 /* 9141 * Ok its a SACK block that we retransmitted. or a windows 9142 * machine without timestamps. We can tell nothing from the 9143 * time-stamp since its not there or the time the peer last 9144 * recieved a segment that moved forward its cum-ack point. 9145 */ 9146 ts_not_found: 9147 i = rsm->r_rtr_cnt - 1; 9148 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 9149 if ((int)t <= 0) 9150 t = 1; 9151 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 9152 /* 9153 * We retransmitted and the ack came back in less 9154 * than the smallest rtt we have observed. We most 9155 * likely did an improper retransmit as outlined in 9156 * 6.2 Step 2 point 2 in the rack-draft so we 9157 * don't want to update our rack_rtt. We in 9158 * theory (in future) might want to think about reverting our 9159 * cwnd state but we won't for now. 9160 */ 9161 return (0); 9162 } else if (rack->r_ctl.rc_rack_min_rtt) { 9163 /* 9164 * We retransmitted it and the retransmit did the 9165 * job. 9166 */ 9167 if (!rack->r_ctl.rc_rack_min_rtt || 9168 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 9169 rack->r_ctl.rc_rack_min_rtt = t; 9170 if (rack->r_ctl.rc_rack_min_rtt == 0) { 9171 rack->r_ctl.rc_rack_min_rtt = 1; 9172 } 9173 } 9174 if ((rack->r_ctl.rc_rack_tmit_time == 0) || 9175 (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 9176 (uint32_t)rsm->r_tim_lastsent[i]))) { 9177 /* New more recent rack_tmit_time */ 9178 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i]; 9179 if (rack->r_ctl.rc_rack_tmit_time == 0) 9180 rack->r_ctl.rc_rack_tmit_time = 1; 9181 rack->rc_rack_rtt = t; 9182 } 9183 return (1); 9184 } 9185 } 9186 return (0); 9187 } 9188 9189 /* 9190 * Mark the SACK_PASSED flag on all entries prior to rsm send wise. 9191 */ 9192 static void 9193 rack_log_sack_passed(struct tcpcb *tp, 9194 struct tcp_rack *rack, struct rack_sendmap *rsm) 9195 { 9196 struct rack_sendmap *nrsm; 9197 9198 nrsm = rsm; 9199 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, 9200 rack_head, r_tnext) { 9201 if (nrsm == rsm) { 9202 /* Skip original segment he is acked */ 9203 continue; 9204 } 9205 if (nrsm->r_flags & RACK_ACKED) { 9206 /* 9207 * Skip ack'd segments, though we 9208 * should not see these, since tmap 9209 * should not have ack'd segments. 9210 */ 9211 continue; 9212 } 9213 if (nrsm->r_flags & RACK_RWND_COLLAPSED) { 9214 /* 9215 * If the peer dropped the rwnd on 9216 * these then we don't worry about them. 9217 */ 9218 continue; 9219 } 9220 if (nrsm->r_flags & RACK_SACK_PASSED) { 9221 /* 9222 * We found one that is already marked 9223 * passed, we have been here before and 9224 * so all others below this are marked. 9225 */ 9226 break; 9227 } 9228 nrsm->r_flags |= RACK_SACK_PASSED; 9229 nrsm->r_flags &= ~RACK_WAS_SACKPASS; 9230 } 9231 } 9232 9233 static void 9234 rack_need_set_test(struct tcpcb *tp, 9235 struct tcp_rack *rack, 9236 struct rack_sendmap *rsm, 9237 tcp_seq th_ack, 9238 int line, 9239 int use_which) 9240 { 9241 struct rack_sendmap *s_rsm; 9242 9243 if ((tp->t_flags & TF_GPUTINPROG) && 9244 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 9245 /* 9246 * We were app limited, and this ack 9247 * butts up or goes beyond the point where we want 9248 * to start our next measurement. We need 9249 * to record the new gput_ts as here and 9250 * possibly update the start sequence. 9251 */ 9252 uint32_t seq, ts; 9253 9254 if (rsm->r_rtr_cnt > 1) { 9255 /* 9256 * This is a retransmit, can we 9257 * really make any assessment at this 9258 * point? We are not really sure of 9259 * the timestamp, is it this or the 9260 * previous transmission? 9261 * 9262 * Lets wait for something better that 9263 * is not retransmitted. 9264 */ 9265 return; 9266 } 9267 seq = tp->gput_seq; 9268 ts = tp->gput_ts; 9269 rack->app_limited_needs_set = 0; 9270 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 9271 /* Do we start at a new end? */ 9272 if ((use_which == RACK_USE_BEG) && 9273 SEQ_GEQ(rsm->r_start, tp->gput_seq)) { 9274 /* 9275 * When we get an ACK that just eats 9276 * up some of the rsm, we set RACK_USE_BEG 9277 * since whats at r_start (i.e. th_ack) 9278 * is left unacked and thats where the 9279 * measurement now starts. 9280 */ 9281 tp->gput_seq = rsm->r_start; 9282 } 9283 if ((use_which == RACK_USE_END) && 9284 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 9285 /* 9286 * We use the end when the cumack 9287 * is moving forward and completely 9288 * deleting the rsm passed so basically 9289 * r_end holds th_ack. 9290 * 9291 * For SACK's we also want to use the end 9292 * since this piece just got sacked and 9293 * we want to target anything after that 9294 * in our measurement. 9295 */ 9296 tp->gput_seq = rsm->r_end; 9297 } 9298 if (use_which == RACK_USE_END_OR_THACK) { 9299 /* 9300 * special case for ack moving forward, 9301 * not a sack, we need to move all the 9302 * way up to where this ack cum-ack moves 9303 * to. 9304 */ 9305 if (SEQ_GT(th_ack, rsm->r_end)) 9306 tp->gput_seq = th_ack; 9307 else 9308 tp->gput_seq = rsm->r_end; 9309 } 9310 if (SEQ_LT(tp->gput_seq, tp->snd_max)) 9311 s_rsm = tqhash_find(rack->r_ctl.tqh, tp->gput_seq); 9312 else 9313 s_rsm = NULL; 9314 /* 9315 * Pick up the correct send time if we can the rsm passed in 9316 * may be equal to s_rsm if the RACK_USE_BEG was set. For the other 9317 * two cases (RACK_USE_THACK or RACK_USE_END) most likely we will 9318 * find a different seq i.e. the next send up. 9319 * 9320 * If that has not been sent, s_rsm will be NULL and we must 9321 * arrange it so this function will get called again by setting 9322 * app_limited_needs_set. 9323 */ 9324 if (s_rsm) 9325 rack->r_ctl.rc_gp_output_ts = s_rsm->r_tim_lastsent[0]; 9326 else { 9327 /* If we hit here we have to have *not* sent tp->gput_seq */ 9328 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[0]; 9329 /* Set it up so we will go through here again */ 9330 rack->app_limited_needs_set = 1; 9331 } 9332 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { 9333 /* 9334 * We moved beyond this guy's range, re-calculate 9335 * the new end point. 9336 */ 9337 if (rack->rc_gp_filled == 0) { 9338 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 9339 } else { 9340 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 9341 } 9342 } 9343 /* 9344 * We are moving the goal post, we may be able to clear the 9345 * measure_saw_probe_rtt flag. 9346 */ 9347 if ((rack->in_probe_rtt == 0) && 9348 (rack->measure_saw_probe_rtt) && 9349 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 9350 rack->measure_saw_probe_rtt = 0; 9351 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, 9352 seq, tp->gput_seq, 9353 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | 9354 (uint64_t)rack->r_ctl.rc_gp_output_ts), 9355 5, line, NULL, 0); 9356 if (rack->rc_gp_filled && 9357 ((tp->gput_ack - tp->gput_seq) < 9358 max(rc_init_window(rack), (MIN_GP_WIN * 9359 ctf_fixed_maxseg(tp))))) { 9360 uint32_t ideal_amount; 9361 9362 ideal_amount = rack_get_measure_window(tp, rack); 9363 if (ideal_amount > sbavail(&tptosocket(tp)->so_snd)) { 9364 /* 9365 * There is no sense of continuing this measurement 9366 * because its too small to gain us anything we 9367 * trust. Skip it and that way we can start a new 9368 * measurement quicker. 9369 */ 9370 tp->t_flags &= ~TF_GPUTINPROG; 9371 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 9372 0, 0, 9373 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | 9374 (uint64_t)rack->r_ctl.rc_gp_output_ts), 9375 6, __LINE__, NULL, 0); 9376 } else { 9377 /* 9378 * Reset the window further out. 9379 */ 9380 tp->gput_ack = tp->gput_seq + ideal_amount; 9381 } 9382 } 9383 rack_tend_gp_marks(tp, rack); 9384 rack_log_gpset(rack, tp->gput_ack, 0, 0, line, 2, rsm); 9385 } 9386 } 9387 9388 static inline int 9389 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm) 9390 { 9391 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) { 9392 /* Behind our TLP definition or right at */ 9393 return (0); 9394 } 9395 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) { 9396 /* The start is beyond or right at our end of TLP definition */ 9397 return (0); 9398 } 9399 /* It has to be a sub-part of the original TLP recorded */ 9400 return (1); 9401 } 9402 9403 9404 9405 static uint32_t 9406 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, 9407 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, 9408 int *no_extra, 9409 int *moved_two, uint32_t segsiz) 9410 { 9411 uint32_t start, end, changed = 0; 9412 struct rack_sendmap stack_map; 9413 struct rack_sendmap *rsm, *nrsm, *prev, *next; 9414 int insret __diagused; 9415 int32_t used_ref = 1; 9416 int moved = 0; 9417 #ifdef TCP_SAD_DETECTION 9418 int allow_segsiz; 9419 int first_time_through = 1; 9420 #endif 9421 int noextra = 0; 9422 int can_use_hookery = 0; 9423 9424 start = sack->start; 9425 end = sack->end; 9426 rsm = *prsm; 9427 9428 #ifdef TCP_SAD_DETECTION 9429 /* 9430 * There are a strange number of proxys and meddle boxes in the world 9431 * that seem to cut up segments on different boundaries. This gets us 9432 * smaller sacks that are still ok in terms of it being an attacker. 9433 * We use the base segsiz to calculate an allowable smallness but 9434 * also enforce a min on the segsiz in case it is an attacker playing 9435 * games with MSS. So basically if the sack arrives and it is 9436 * larger than a worse case 960 bytes, we don't classify the guy 9437 * as supicious. 9438 */ 9439 allow_segsiz = max(segsiz, 1200) * sad_seg_size_per; 9440 allow_segsiz /= 1000; 9441 #endif 9442 do_rest_ofb: 9443 if ((rsm == NULL) || 9444 (SEQ_LT(end, rsm->r_start)) || 9445 (SEQ_GEQ(start, rsm->r_end)) || 9446 (SEQ_LT(start, rsm->r_start))) { 9447 /* 9448 * We are not in the right spot, 9449 * find the correct spot in the tree. 9450 */ 9451 used_ref = 0; 9452 rsm = tqhash_find(rack->r_ctl.tqh, start); 9453 moved++; 9454 } 9455 if (rsm == NULL) { 9456 /* TSNH */ 9457 goto out; 9458 } 9459 #ifdef TCP_SAD_DETECTION 9460 /* Now we must check for suspicous activity */ 9461 if ((first_time_through == 1) && 9462 ((end - start) < min((rsm->r_end - rsm->r_start), allow_segsiz)) && 9463 ((rsm->r_flags & RACK_PMTU_CHG) == 0) && 9464 ((rsm->r_flags & RACK_TLP) == 0)) { 9465 /* 9466 * Its less than a full MSS or the segment being acked 9467 * this should only happen if the rsm in question had the 9468 * r_just_ret flag set <and> the end matches the end of 9469 * the rsm block. 9470 * 9471 * Note we do not look at segments that have had TLP's on 9472 * them since we can get un-reported rwnd collapses that 9473 * basically we TLP on and then we get back a sack block 9474 * that goes from the start to only a small way. 9475 * 9476 */ 9477 int loss, ok; 9478 9479 ok = 0; 9480 if (SEQ_GEQ(end, rsm->r_end)) { 9481 if (rsm->r_just_ret == 1) { 9482 /* This was at the end of a send which is ok */ 9483 ok = 1; 9484 } else { 9485 /* A bit harder was it the end of our segment */ 9486 int segs, len; 9487 9488 len = (rsm->r_end - rsm->r_start); 9489 segs = len / segsiz; 9490 segs *= segsiz; 9491 if ((segs + (rsm->r_end - start)) == len) { 9492 /* 9493 * So this last bit was the 9494 * end of our send if we cut it 9495 * up into segsiz pieces so its ok. 9496 */ 9497 ok = 1; 9498 } 9499 } 9500 } 9501 if (ok == 0) { 9502 /* 9503 * This guy is doing something suspicious 9504 * lets start detection. 9505 */ 9506 if (rack->rc_suspicious == 0) { 9507 tcp_trace_point(rack->rc_tp, TCP_TP_SAD_SUSPECT); 9508 counter_u64_add(rack_sack_attacks_suspect, 1); 9509 rack->rc_suspicious = 1; 9510 rack_log_sad(rack, 4); 9511 if (tcp_bblogging_on(rack->rc_tp)) { 9512 union tcp_log_stackspecific log; 9513 struct timeval tv; 9514 9515 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 9516 log.u_bbr.flex1 = end; 9517 log.u_bbr.flex2 = start; 9518 log.u_bbr.flex3 = rsm->r_end; 9519 log.u_bbr.flex4 = rsm->r_start; 9520 log.u_bbr.flex5 = segsiz; 9521 log.u_bbr.flex6 = rsm->r_fas; 9522 log.u_bbr.flex7 = rsm->r_bas; 9523 log.u_bbr.flex8 = 5; 9524 log.u_bbr.pkts_out = rsm->r_flags; 9525 log.u_bbr.bbr_state = rack->rc_suspicious; 9526 log.u_bbr.bbr_substate = rsm->r_just_ret; 9527 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 9528 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 9529 TCP_LOG_EVENTP(rack->rc_tp, NULL, 9530 &rack->rc_inp->inp_socket->so_rcv, 9531 &rack->rc_inp->inp_socket->so_snd, 9532 TCP_SAD_DETECTION, 0, 9533 0, &log, false, &tv); 9534 } 9535 } 9536 /* You loose some ack count every time you sack 9537 * a small bit that is not butting to the end of 9538 * what we have sent. This is because we never 9539 * send small bits unless its the end of the sb. 9540 * Anyone sending a sack that is not at the end 9541 * is thus very very suspicious. 9542 */ 9543 loss = (segsiz/2) / (end - start); 9544 if (loss < rack->r_ctl.ack_count) 9545 rack->r_ctl.ack_count -= loss; 9546 else 9547 rack->r_ctl.ack_count = 0; 9548 } 9549 } 9550 first_time_through = 0; 9551 #endif 9552 /* Ok we have an ACK for some piece of this rsm */ 9553 if (rsm->r_start != start) { 9554 if ((rsm->r_flags & RACK_ACKED) == 0) { 9555 /* 9556 * Before any splitting or hookery is 9557 * done is it a TLP of interest i.e. rxt? 9558 */ 9559 if ((rsm->r_flags & RACK_TLP) && 9560 (rsm->r_rtr_cnt > 1)) { 9561 /* 9562 * We are splitting a rxt TLP, check 9563 * if we need to save off the start/end 9564 */ 9565 if (rack->rc_last_tlp_acked_set && 9566 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9567 /* 9568 * We already turned this on since we are inside 9569 * the previous one was a partially sack now we 9570 * are getting another one (maybe all of it). 9571 * 9572 */ 9573 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9574 /* 9575 * Lets make sure we have all of it though. 9576 */ 9577 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9578 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9579 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9580 rack->r_ctl.last_tlp_acked_end); 9581 } 9582 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9583 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9584 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9585 rack->r_ctl.last_tlp_acked_end); 9586 } 9587 } else { 9588 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9589 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9590 rack->rc_last_tlp_past_cumack = 0; 9591 rack->rc_last_tlp_acked_set = 1; 9592 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9593 } 9594 } 9595 /** 9596 * Need to split this in two pieces the before and after, 9597 * the before remains in the map, the after must be 9598 * added. In other words we have: 9599 * rsm |--------------| 9600 * sackblk |-------> 9601 * rsm will become 9602 * rsm |---| 9603 * and nrsm will be the sacked piece 9604 * nrsm |----------| 9605 * 9606 * But before we start down that path lets 9607 * see if the sack spans over on top of 9608 * the next guy and it is already sacked. 9609 * 9610 */ 9611 /* 9612 * Hookery can only be used if the two entries 9613 * are in the same bucket and neither one of 9614 * them staddle the bucket line. 9615 */ 9616 next = tqhash_next(rack->r_ctl.tqh, rsm); 9617 if (next && 9618 (rsm->bindex == next->bindex) && 9619 ((rsm->r_flags & RACK_STRADDLE) == 0) && 9620 ((next->r_flags & RACK_STRADDLE) == 0) && 9621 (rsm->r_flags & RACK_IN_GP_WIN) && 9622 (next->r_flags & RACK_IN_GP_WIN)) 9623 can_use_hookery = 1; 9624 else if (next && 9625 (rsm->bindex == next->bindex) && 9626 ((rsm->r_flags & RACK_STRADDLE) == 0) && 9627 ((next->r_flags & RACK_STRADDLE) == 0) && 9628 ((rsm->r_flags & RACK_IN_GP_WIN) == 0) && 9629 ((next->r_flags & RACK_IN_GP_WIN) == 0)) 9630 can_use_hookery = 1; 9631 else 9632 can_use_hookery = 0; 9633 if (next && can_use_hookery && 9634 (next->r_flags & RACK_ACKED) && 9635 SEQ_GEQ(end, next->r_start)) { 9636 /** 9637 * So the next one is already acked, and 9638 * we can thus by hookery use our stack_map 9639 * to reflect the piece being sacked and 9640 * then adjust the two tree entries moving 9641 * the start and ends around. So we start like: 9642 * rsm |------------| (not-acked) 9643 * next |-----------| (acked) 9644 * sackblk |--------> 9645 * We want to end like so: 9646 * rsm |------| (not-acked) 9647 * next |-----------------| (acked) 9648 * nrsm |-----| 9649 * Where nrsm is a temporary stack piece we 9650 * use to update all the gizmos. 9651 */ 9652 /* Copy up our fudge block */ 9653 noextra++; 9654 nrsm = &stack_map; 9655 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 9656 /* Now adjust our tree blocks */ 9657 rsm->r_end = start; 9658 next->r_start = start; 9659 rsm->r_flags |= RACK_SHUFFLED; 9660 next->r_flags |= RACK_SHUFFLED; 9661 /* Now we must adjust back where next->m is */ 9662 rack_setup_offset_for_rsm(rack, rsm, next); 9663 /* 9664 * Which timestamp do we keep? It is rather 9665 * important in GP measurements to have the 9666 * accurate end of the send window. 9667 * 9668 * We keep the largest value, which is the newest 9669 * send. We do this in case a segment that is 9670 * joined together and not part of a GP estimate 9671 * later gets expanded into the GP estimate. 9672 * 9673 * We prohibit the merging of unlike kinds i.e. 9674 * all pieces that are in the GP estimate can be 9675 * merged and all pieces that are not in a GP estimate 9676 * can be merged, but not disimilar pieces. Combine 9677 * this with taking the highest here and we should 9678 * be ok unless of course the client reneges. Then 9679 * all bets are off. 9680 */ 9681 if (next->r_tim_lastsent[(next->r_rtr_cnt-1)] < 9682 nrsm->r_tim_lastsent[(nrsm->r_rtr_cnt-1)]) 9683 next->r_tim_lastsent[(next->r_rtr_cnt-1)] = nrsm->r_tim_lastsent[(nrsm->r_rtr_cnt-1)]; 9684 /* 9685 * And we must keep the newest ack arrival time. 9686 */ 9687 if (next->r_ack_arrival < 9688 rack_to_usec_ts(&rack->r_ctl.act_rcv_time)) 9689 next->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 9690 9691 9692 /* We don't need to adjust rsm, it did not change */ 9693 /* Clear out the dup ack count of the remainder */ 9694 rsm->r_dupack = 0; 9695 rsm->r_just_ret = 0; 9696 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 9697 /* Now lets make sure our fudge block is right */ 9698 nrsm->r_start = start; 9699 /* Now lets update all the stats and such */ 9700 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 9701 if (rack->app_limited_needs_set) 9702 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 9703 changed += (nrsm->r_end - nrsm->r_start); 9704 /* You get a count for acking a whole segment or more */ 9705 if ((nrsm->r_end - nrsm->r_start) >= segsiz) 9706 rack->r_ctl.ack_count += ((nrsm->r_end - nrsm->r_start) / segsiz); 9707 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 9708 if (nrsm->r_flags & RACK_SACK_PASSED) { 9709 rack->r_ctl.rc_reorder_ts = cts; 9710 if (rack->r_ctl.rc_reorder_ts == 0) 9711 rack->r_ctl.rc_reorder_ts = 1; 9712 } 9713 /* 9714 * Now we want to go up from rsm (the 9715 * one left un-acked) to the next one 9716 * in the tmap. We do this so when 9717 * we walk backwards we include marking 9718 * sack-passed on rsm (The one passed in 9719 * is skipped since it is generally called 9720 * on something sacked before removing it 9721 * from the tmap). 9722 */ 9723 if (rsm->r_in_tmap) { 9724 nrsm = TAILQ_NEXT(rsm, r_tnext); 9725 /* 9726 * Now that we have the next 9727 * one walk backwards from there. 9728 */ 9729 if (nrsm && nrsm->r_in_tmap) 9730 rack_log_sack_passed(tp, rack, nrsm); 9731 } 9732 /* Now are we done? */ 9733 if (SEQ_LT(end, next->r_end) || 9734 (end == next->r_end)) { 9735 /* Done with block */ 9736 goto out; 9737 } 9738 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__); 9739 counter_u64_add(rack_sack_used_next_merge, 1); 9740 /* Postion for the next block */ 9741 start = next->r_end; 9742 rsm = tqhash_next(rack->r_ctl.tqh, next); 9743 if (rsm == NULL) 9744 goto out; 9745 } else { 9746 /** 9747 * We can't use any hookery here, so we 9748 * need to split the map. We enter like 9749 * so: 9750 * rsm |--------| 9751 * sackblk |-----> 9752 * We will add the new block nrsm and 9753 * that will be the new portion, and then 9754 * fall through after reseting rsm. So we 9755 * split and look like this: 9756 * rsm |----| 9757 * sackblk |-----> 9758 * nrsm |---| 9759 * We then fall through reseting 9760 * rsm to nrsm, so the next block 9761 * picks it up. 9762 */ 9763 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 9764 if (nrsm == NULL) { 9765 /* 9766 * failed XXXrrs what can we do but loose the sack 9767 * info? 9768 */ 9769 goto out; 9770 } 9771 counter_u64_add(rack_sack_splits, 1); 9772 rack_clone_rsm(rack, nrsm, rsm, start); 9773 moved++; 9774 rsm->r_just_ret = 0; 9775 #ifndef INVARIANTS 9776 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 9777 #else 9778 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 9779 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 9780 nrsm, insret, rack, rsm); 9781 } 9782 #endif 9783 if (rsm->r_in_tmap) { 9784 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 9785 nrsm->r_in_tmap = 1; 9786 } 9787 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__); 9788 rsm->r_flags &= (~RACK_HAS_FIN); 9789 /* Position us to point to the new nrsm that starts the sack blk */ 9790 rsm = nrsm; 9791 } 9792 } else { 9793 /* Already sacked this piece */ 9794 counter_u64_add(rack_sack_skipped_acked, 1); 9795 moved++; 9796 if (end == rsm->r_end) { 9797 /* Done with block */ 9798 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 9799 goto out; 9800 } else if (SEQ_LT(end, rsm->r_end)) { 9801 /* A partial sack to a already sacked block */ 9802 moved++; 9803 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 9804 goto out; 9805 } else { 9806 /* 9807 * The end goes beyond this guy 9808 * reposition the start to the 9809 * next block. 9810 */ 9811 start = rsm->r_end; 9812 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 9813 if (rsm == NULL) 9814 goto out; 9815 } 9816 } 9817 } 9818 if (SEQ_GEQ(end, rsm->r_end)) { 9819 /** 9820 * The end of this block is either beyond this guy or right 9821 * at this guy. I.e.: 9822 * rsm --- |-----| 9823 * end |-----| 9824 * <or> 9825 * end |---------| 9826 */ 9827 if ((rsm->r_flags & RACK_ACKED) == 0) { 9828 /* 9829 * Is it a TLP of interest? 9830 */ 9831 if ((rsm->r_flags & RACK_TLP) && 9832 (rsm->r_rtr_cnt > 1)) { 9833 /* 9834 * We are splitting a rxt TLP, check 9835 * if we need to save off the start/end 9836 */ 9837 if (rack->rc_last_tlp_acked_set && 9838 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9839 /* 9840 * We already turned this on since we are inside 9841 * the previous one was a partially sack now we 9842 * are getting another one (maybe all of it). 9843 */ 9844 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9845 /* 9846 * Lets make sure we have all of it though. 9847 */ 9848 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9849 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9850 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9851 rack->r_ctl.last_tlp_acked_end); 9852 } 9853 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9854 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9855 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9856 rack->r_ctl.last_tlp_acked_end); 9857 } 9858 } else { 9859 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9860 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9861 rack->rc_last_tlp_past_cumack = 0; 9862 rack->rc_last_tlp_acked_set = 1; 9863 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9864 } 9865 } 9866 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 9867 changed += (rsm->r_end - rsm->r_start); 9868 /* You get a count for acking a whole segment or more */ 9869 if ((rsm->r_end - rsm->r_start) >= segsiz) 9870 rack->r_ctl.ack_count += ((rsm->r_end - rsm->r_start) / segsiz); 9871 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 9872 if (rsm->r_in_tmap) /* should be true */ 9873 rack_log_sack_passed(tp, rack, rsm); 9874 /* Is Reordering occuring? */ 9875 if (rsm->r_flags & RACK_SACK_PASSED) { 9876 rsm->r_flags &= ~RACK_SACK_PASSED; 9877 rack->r_ctl.rc_reorder_ts = cts; 9878 if (rack->r_ctl.rc_reorder_ts == 0) 9879 rack->r_ctl.rc_reorder_ts = 1; 9880 } 9881 if (rack->app_limited_needs_set) 9882 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 9883 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 9884 rsm->r_flags |= RACK_ACKED; 9885 if (rsm->r_in_tmap) { 9886 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 9887 rsm->r_in_tmap = 0; 9888 } 9889 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__); 9890 } else { 9891 counter_u64_add(rack_sack_skipped_acked, 1); 9892 moved++; 9893 } 9894 if (end == rsm->r_end) { 9895 /* This block only - done, setup for next */ 9896 goto out; 9897 } 9898 /* 9899 * There is more not coverend by this rsm move on 9900 * to the next block in the RB tree. 9901 */ 9902 nrsm = tqhash_next(rack->r_ctl.tqh, rsm); 9903 start = rsm->r_end; 9904 rsm = nrsm; 9905 if (rsm == NULL) 9906 goto out; 9907 goto do_rest_ofb; 9908 } 9909 /** 9910 * The end of this sack block is smaller than 9911 * our rsm i.e.: 9912 * rsm --- |-----| 9913 * end |--| 9914 */ 9915 if ((rsm->r_flags & RACK_ACKED) == 0) { 9916 /* 9917 * Is it a TLP of interest? 9918 */ 9919 if ((rsm->r_flags & RACK_TLP) && 9920 (rsm->r_rtr_cnt > 1)) { 9921 /* 9922 * We are splitting a rxt TLP, check 9923 * if we need to save off the start/end 9924 */ 9925 if (rack->rc_last_tlp_acked_set && 9926 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 9927 /* 9928 * We already turned this on since we are inside 9929 * the previous one was a partially sack now we 9930 * are getting another one (maybe all of it). 9931 */ 9932 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 9933 /* 9934 * Lets make sure we have all of it though. 9935 */ 9936 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 9937 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9938 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9939 rack->r_ctl.last_tlp_acked_end); 9940 } 9941 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 9942 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9943 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 9944 rack->r_ctl.last_tlp_acked_end); 9945 } 9946 } else { 9947 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 9948 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 9949 rack->rc_last_tlp_past_cumack = 0; 9950 rack->rc_last_tlp_acked_set = 1; 9951 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 9952 } 9953 } 9954 /* 9955 * Hookery can only be used if the two entries 9956 * are in the same bucket and neither one of 9957 * them staddle the bucket line. 9958 */ 9959 prev = tqhash_prev(rack->r_ctl.tqh, rsm); 9960 if (prev && 9961 (rsm->bindex == prev->bindex) && 9962 ((rsm->r_flags & RACK_STRADDLE) == 0) && 9963 ((prev->r_flags & RACK_STRADDLE) == 0) && 9964 (rsm->r_flags & RACK_IN_GP_WIN) && 9965 (prev->r_flags & RACK_IN_GP_WIN)) 9966 can_use_hookery = 1; 9967 else if (prev && 9968 (rsm->bindex == prev->bindex) && 9969 ((rsm->r_flags & RACK_STRADDLE) == 0) && 9970 ((prev->r_flags & RACK_STRADDLE) == 0) && 9971 ((rsm->r_flags & RACK_IN_GP_WIN) == 0) && 9972 ((prev->r_flags & RACK_IN_GP_WIN) == 0)) 9973 can_use_hookery = 1; 9974 else 9975 can_use_hookery = 0; 9976 9977 if (prev && can_use_hookery && 9978 (prev->r_flags & RACK_ACKED)) { 9979 /** 9980 * Goal, we want the right remainder of rsm to shrink 9981 * in place and span from (rsm->r_start = end) to rsm->r_end. 9982 * We want to expand prev to go all the way 9983 * to prev->r_end <- end. 9984 * so in the tree we have before: 9985 * prev |--------| (acked) 9986 * rsm |-------| (non-acked) 9987 * sackblk |-| 9988 * We churn it so we end up with 9989 * prev |----------| (acked) 9990 * rsm |-----| (non-acked) 9991 * nrsm |-| (temporary) 9992 * 9993 * Note if either prev/rsm is a TLP we don't 9994 * do this. 9995 */ 9996 noextra++; 9997 nrsm = &stack_map; 9998 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 9999 prev->r_end = end; 10000 rsm->r_start = end; 10001 rsm->r_flags |= RACK_SHUFFLED; 10002 prev->r_flags |= RACK_SHUFFLED; 10003 /* Now adjust nrsm (stack copy) to be 10004 * the one that is the small 10005 * piece that was "sacked". 10006 */ 10007 nrsm->r_end = end; 10008 rsm->r_dupack = 0; 10009 /* 10010 * Which timestamp do we keep? It is rather 10011 * important in GP measurements to have the 10012 * accurate end of the send window. 10013 * 10014 * We keep the largest value, which is the newest 10015 * send. We do this in case a segment that is 10016 * joined together and not part of a GP estimate 10017 * later gets expanded into the GP estimate. 10018 * 10019 * We prohibit the merging of unlike kinds i.e. 10020 * all pieces that are in the GP estimate can be 10021 * merged and all pieces that are not in a GP estimate 10022 * can be merged, but not disimilar pieces. Combine 10023 * this with taking the highest here and we should 10024 * be ok unless of course the client reneges. Then 10025 * all bets are off. 10026 */ 10027 if(prev->r_tim_lastsent[(prev->r_rtr_cnt-1)] < 10028 nrsm->r_tim_lastsent[(nrsm->r_rtr_cnt-1)]) { 10029 prev->r_tim_lastsent[(prev->r_rtr_cnt-1)] = nrsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 10030 } 10031 /* 10032 * And we must keep the newest ack arrival time. 10033 */ 10034 10035 if(prev->r_ack_arrival < 10036 rack_to_usec_ts(&rack->r_ctl.act_rcv_time)) 10037 prev->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 10038 10039 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 10040 /* 10041 * Now that the rsm has had its start moved forward 10042 * lets go ahead and get its new place in the world. 10043 */ 10044 rack_setup_offset_for_rsm(rack, prev, rsm); 10045 /* 10046 * Now nrsm is our new little piece 10047 * that is acked (which was merged 10048 * to prev). Update the rtt and changed 10049 * based on that. Also check for reordering. 10050 */ 10051 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 10052 if (rack->app_limited_needs_set) 10053 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 10054 changed += (nrsm->r_end - nrsm->r_start); 10055 /* You get a count for acking a whole segment or more */ 10056 if ((nrsm->r_end - nrsm->r_start) >= segsiz) 10057 rack->r_ctl.ack_count += ((nrsm->r_end - nrsm->r_start) / segsiz); 10058 10059 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 10060 if (nrsm->r_flags & RACK_SACK_PASSED) { 10061 rack->r_ctl.rc_reorder_ts = cts; 10062 if (rack->r_ctl.rc_reorder_ts == 0) 10063 rack->r_ctl.rc_reorder_ts = 1; 10064 } 10065 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__); 10066 rsm = prev; 10067 counter_u64_add(rack_sack_used_prev_merge, 1); 10068 } else { 10069 /** 10070 * This is the case where our previous 10071 * block is not acked either, so we must 10072 * split the block in two. 10073 */ 10074 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 10075 if (nrsm == NULL) { 10076 /* failed rrs what can we do but loose the sack info? */ 10077 goto out; 10078 } 10079 if ((rsm->r_flags & RACK_TLP) && 10080 (rsm->r_rtr_cnt > 1)) { 10081 /* 10082 * We are splitting a rxt TLP, check 10083 * if we need to save off the start/end 10084 */ 10085 if (rack->rc_last_tlp_acked_set && 10086 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 10087 /* 10088 * We already turned this on since this block is inside 10089 * the previous one was a partially sack now we 10090 * are getting another one (maybe all of it). 10091 */ 10092 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 10093 /* 10094 * Lets make sure we have all of it though. 10095 */ 10096 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 10097 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 10098 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 10099 rack->r_ctl.last_tlp_acked_end); 10100 } 10101 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 10102 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 10103 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 10104 rack->r_ctl.last_tlp_acked_end); 10105 } 10106 } else { 10107 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 10108 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 10109 rack->rc_last_tlp_acked_set = 1; 10110 rack->rc_last_tlp_past_cumack = 0; 10111 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 10112 } 10113 } 10114 /** 10115 * In this case nrsm becomes 10116 * nrsm->r_start = end; 10117 * nrsm->r_end = rsm->r_end; 10118 * which is un-acked. 10119 * <and> 10120 * rsm->r_end = nrsm->r_start; 10121 * i.e. the remaining un-acked 10122 * piece is left on the left 10123 * hand side. 10124 * 10125 * So we start like this 10126 * rsm |----------| (not acked) 10127 * sackblk |---| 10128 * build it so we have 10129 * rsm |---| (acked) 10130 * nrsm |------| (not acked) 10131 */ 10132 counter_u64_add(rack_sack_splits, 1); 10133 rack_clone_rsm(rack, nrsm, rsm, end); 10134 moved++; 10135 rsm->r_flags &= (~RACK_HAS_FIN); 10136 rsm->r_just_ret = 0; 10137 #ifndef INVARIANTS 10138 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 10139 #else 10140 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 10141 panic("Insert in rb tree of %p fails ret:% rack:%p rsm:%p", 10142 nrsm, insret, rack, rsm); 10143 } 10144 #endif 10145 if (rsm->r_in_tmap) { 10146 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 10147 nrsm->r_in_tmap = 1; 10148 } 10149 nrsm->r_dupack = 0; 10150 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 10151 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 10152 changed += (rsm->r_end - rsm->r_start); 10153 /* You get a count for acking a whole segment or more */ 10154 if ((rsm->r_end - rsm->r_start) >= segsiz) 10155 rack->r_ctl.ack_count += ((rsm->r_end - rsm->r_start) / segsiz); 10156 10157 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 10158 if (rsm->r_in_tmap) /* should be true */ 10159 rack_log_sack_passed(tp, rack, rsm); 10160 /* Is Reordering occuring? */ 10161 if (rsm->r_flags & RACK_SACK_PASSED) { 10162 rsm->r_flags &= ~RACK_SACK_PASSED; 10163 rack->r_ctl.rc_reorder_ts = cts; 10164 if (rack->r_ctl.rc_reorder_ts == 0) 10165 rack->r_ctl.rc_reorder_ts = 1; 10166 } 10167 if (rack->app_limited_needs_set) 10168 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 10169 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 10170 rsm->r_flags |= RACK_ACKED; 10171 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__); 10172 if (rsm->r_in_tmap) { 10173 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 10174 rsm->r_in_tmap = 0; 10175 } 10176 } 10177 } else if (start != end){ 10178 /* 10179 * The block was already acked. 10180 */ 10181 counter_u64_add(rack_sack_skipped_acked, 1); 10182 moved++; 10183 } 10184 out: 10185 if (rsm && 10186 ((rsm->r_flags & RACK_TLP) == 0) && 10187 (rsm->r_flags & RACK_ACKED)) { 10188 /* 10189 * Now can we merge where we worked 10190 * with either the previous or 10191 * next block? 10192 */ 10193 next = tqhash_next(rack->r_ctl.tqh, rsm); 10194 while (next) { 10195 if (next->r_flags & RACK_TLP) 10196 break; 10197 /* Only allow merges between ones in or out of GP window */ 10198 if ((next->r_flags & RACK_IN_GP_WIN) && 10199 ((rsm->r_flags & RACK_IN_GP_WIN) == 0)) { 10200 break; 10201 } 10202 if ((rsm->r_flags & RACK_IN_GP_WIN) && 10203 ((next->r_flags & RACK_IN_GP_WIN) == 0)) { 10204 break; 10205 } 10206 if (rsm->bindex != next->bindex) 10207 break; 10208 if (rsm->r_flags & RACK_STRADDLE) 10209 break; 10210 if (next->r_flags & RACK_STRADDLE) 10211 break; 10212 if (next->r_flags & RACK_ACKED) { 10213 /* yep this and next can be merged */ 10214 rsm = rack_merge_rsm(rack, rsm, next); 10215 noextra++; 10216 next = tqhash_next(rack->r_ctl.tqh, rsm); 10217 } else 10218 break; 10219 } 10220 /* Now what about the previous? */ 10221 prev = tqhash_prev(rack->r_ctl.tqh, rsm); 10222 while (prev) { 10223 if (prev->r_flags & RACK_TLP) 10224 break; 10225 /* Only allow merges between ones in or out of GP window */ 10226 if ((prev->r_flags & RACK_IN_GP_WIN) && 10227 ((rsm->r_flags & RACK_IN_GP_WIN) == 0)) { 10228 break; 10229 } 10230 if ((rsm->r_flags & RACK_IN_GP_WIN) && 10231 ((prev->r_flags & RACK_IN_GP_WIN) == 0)) { 10232 break; 10233 } 10234 if (rsm->bindex != prev->bindex) 10235 break; 10236 if (rsm->r_flags & RACK_STRADDLE) 10237 break; 10238 if (prev->r_flags & RACK_STRADDLE) 10239 break; 10240 if (prev->r_flags & RACK_ACKED) { 10241 /* yep the previous and this can be merged */ 10242 rsm = rack_merge_rsm(rack, prev, rsm); 10243 noextra++; 10244 prev = tqhash_prev(rack->r_ctl.tqh, rsm); 10245 } else 10246 break; 10247 } 10248 } 10249 if (used_ref == 0) { 10250 counter_u64_add(rack_sack_proc_all, 1); 10251 } else { 10252 counter_u64_add(rack_sack_proc_short, 1); 10253 } 10254 /* Save off the next one for quick reference. */ 10255 nrsm = tqhash_find(rack->r_ctl.tqh, end); 10256 *prsm = rack->r_ctl.rc_sacklast = nrsm; 10257 /* Pass back the moved. */ 10258 *moved_two = moved; 10259 *no_extra = noextra; 10260 return (changed); 10261 } 10262 10263 static void inline 10264 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) 10265 { 10266 struct rack_sendmap *tmap; 10267 10268 tmap = NULL; 10269 while (rsm && (rsm->r_flags & RACK_ACKED)) { 10270 /* Its no longer sacked, mark it so */ 10271 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 10272 #ifdef INVARIANTS 10273 if (rsm->r_in_tmap) { 10274 panic("rack:%p rsm:%p flags:0x%x in tmap?", 10275 rack, rsm, rsm->r_flags); 10276 } 10277 #endif 10278 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); 10279 /* Rebuild it into our tmap */ 10280 if (tmap == NULL) { 10281 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 10282 tmap = rsm; 10283 } else { 10284 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); 10285 tmap = rsm; 10286 } 10287 tmap->r_in_tmap = 1; 10288 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 10289 } 10290 /* 10291 * Now lets possibly clear the sack filter so we start 10292 * recognizing sacks that cover this area. 10293 */ 10294 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); 10295 10296 } 10297 10298 static void 10299 rack_do_decay(struct tcp_rack *rack) 10300 { 10301 struct timeval res; 10302 10303 #define timersub(tvp, uvp, vvp) \ 10304 do { \ 10305 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 10306 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 10307 if ((vvp)->tv_usec < 0) { \ 10308 (vvp)->tv_sec--; \ 10309 (vvp)->tv_usec += 1000000; \ 10310 } \ 10311 } while (0) 10312 10313 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); 10314 #undef timersub 10315 10316 rack->r_ctl.input_pkt++; 10317 if ((rack->rc_in_persist) || 10318 (res.tv_sec >= 1) || 10319 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { 10320 /* 10321 * Check for decay of non-SAD, 10322 * we want all SAD detection metrics to 10323 * decay 1/4 per second (or more) passed. 10324 * Current default is 800 so it decays 10325 * 80% every second. 10326 */ 10327 #ifdef TCP_SAD_DETECTION 10328 uint32_t pkt_delta; 10329 10330 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; 10331 #endif 10332 /* Update our saved tracking values */ 10333 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; 10334 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 10335 /* Now do we escape without decay? */ 10336 #ifdef TCP_SAD_DETECTION 10337 if (rack->rc_in_persist || 10338 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || 10339 (pkt_delta < tcp_sad_low_pps)){ 10340 /* 10341 * We don't decay idle connections 10342 * or ones that have a low input pps. 10343 */ 10344 return; 10345 } 10346 /* Decay the counters */ 10347 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, 10348 tcp_sad_decay_val); 10349 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, 10350 tcp_sad_decay_val); 10351 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, 10352 tcp_sad_decay_val); 10353 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, 10354 tcp_sad_decay_val); 10355 #endif 10356 } 10357 } 10358 10359 static void inline 10360 rack_rsm_sender_update(struct tcp_rack *rack, struct tcpcb *tp, struct rack_sendmap *rsm, uint8_t from) 10361 { 10362 /* 10363 * We look at advancing the end send time for our GP 10364 * measurement tracking only as the cumulative acknowledgment 10365 * moves forward. You might wonder about this, why not 10366 * at every transmission or retransmission within the 10367 * GP window update the rc_gp_cumack_ts? Well its rather 10368 * nuanced but basically the GP window *may* expand (as 10369 * it does below) or worse and harder to track it may shrink. 10370 * 10371 * This last makes it impossible to track at the time of 10372 * the send, since you may set forward your rc_gp_cumack_ts 10373 * when you send, because that send *is* in your currently 10374 * "guessed" window, but then it shrinks. Now which was 10375 * the send time of the last bytes in the window, by the 10376 * time you ask that question that part of the sendmap 10377 * is freed. So you don't know and you will have too 10378 * long of send window. Instead by updating the time 10379 * marker only when the cumack advances this assures us 10380 * that we will have only the sends in the window of our 10381 * GP measurement. 10382 * 10383 * Another complication from this is the 10384 * merging of sendmap entries. During SACK processing this 10385 * can happen to conserve the sendmap size. That breaks 10386 * everything down in tracking the send window of the GP 10387 * estimate. So to prevent that and keep it working with 10388 * a tiny bit more limited merging, we only allow like 10389 * types to be merged. I.e. if two sends are in the GP window 10390 * then its ok to merge them together. If two sends are not 10391 * in the GP window its ok to merge them together too. Though 10392 * one send in and one send out cannot be merged. We combine 10393 * this with never allowing the shrinking of the GP window when 10394 * we are in recovery so that we can properly calculate the 10395 * sending times. 10396 * 10397 * This all of course seems complicated, because it is.. :) 10398 * 10399 * The cum-ack is being advanced upon the sendmap. 10400 * If we are not doing a GP estimate don't 10401 * proceed. 10402 */ 10403 uint64_t ts; 10404 10405 if ((tp->t_flags & TF_GPUTINPROG) == 0) 10406 return; 10407 /* 10408 * If this sendmap entry is going 10409 * beyond the measurement window we had picked, 10410 * expand the measurement window by that much. 10411 */ 10412 if (SEQ_GT(rsm->r_end, tp->gput_ack)) { 10413 tp->gput_ack = rsm->r_end; 10414 } 10415 /* 10416 * If we have not setup a ack, then we 10417 * have no idea if the newly acked pieces 10418 * will be "in our seq measurement range". If 10419 * it is when we clear the app_limited_needs_set 10420 * flag the timestamp will be updated. 10421 */ 10422 if (rack->app_limited_needs_set) 10423 return; 10424 /* 10425 * Finally, we grab out the latest timestamp 10426 * that this packet was sent and then see 10427 * if: 10428 * a) The packet touches are newly defined GP range. 10429 * b) The time is greater than (newer) than the 10430 * one we currently have. If so we update 10431 * our sending end time window. 10432 * 10433 * Note we *do not* do this at send time. The reason 10434 * is that if you do you *may* pick up a newer timestamp 10435 * for a range you are not going to measure. We project 10436 * out how far and then sometimes modify that to be 10437 * smaller. If that occurs then you will have a send 10438 * that does not belong to the range included. 10439 */ 10440 if ((ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]) <= 10441 rack->r_ctl.rc_gp_cumack_ts) 10442 return; 10443 if (rack_in_gp_window(tp, rsm)) { 10444 rack->r_ctl.rc_gp_cumack_ts = ts; 10445 rack_log_gpset(rack, tp->gput_ack, (uint32_t)ts, rsm->r_end, 10446 __LINE__, from, rsm); 10447 } 10448 } 10449 10450 static void 10451 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to, uint64_t acktime) 10452 { 10453 struct rack_sendmap *rsm; 10454 /* 10455 * The ACK point is advancing to th_ack, we must drop off 10456 * the packets in the rack log and calculate any eligble 10457 * RTT's. 10458 */ 10459 10460 rack->r_wanted_output = 1; 10461 if (SEQ_GT(th_ack, tp->snd_una)) 10462 rack->r_ctl.last_cumack_advance = acktime; 10463 10464 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */ 10465 if ((rack->rc_last_tlp_acked_set == 1)&& 10466 (rack->rc_last_tlp_past_cumack == 1) && 10467 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) { 10468 /* 10469 * We have reached the point where our last rack 10470 * tlp retransmit sequence is ahead of the cum-ack. 10471 * This can only happen when the cum-ack moves all 10472 * the way around (its been a full 2^^31+1 bytes 10473 * or more since we sent a retransmitted TLP). Lets 10474 * turn off the valid flag since its not really valid. 10475 * 10476 * Note since sack's also turn on this event we have 10477 * a complication, we have to wait to age it out until 10478 * the cum-ack is by the TLP before checking which is 10479 * what the next else clause does. 10480 */ 10481 rack_log_dsack_event(rack, 9, __LINE__, 10482 rack->r_ctl.last_tlp_acked_start, 10483 rack->r_ctl.last_tlp_acked_end); 10484 rack->rc_last_tlp_acked_set = 0; 10485 rack->rc_last_tlp_past_cumack = 0; 10486 } else if ((rack->rc_last_tlp_acked_set == 1) && 10487 (rack->rc_last_tlp_past_cumack == 0) && 10488 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) { 10489 /* 10490 * It is safe to start aging TLP's out. 10491 */ 10492 rack->rc_last_tlp_past_cumack = 1; 10493 } 10494 /* We do the same for the tlp send seq as well */ 10495 if ((rack->rc_last_sent_tlp_seq_valid == 1) && 10496 (rack->rc_last_sent_tlp_past_cumack == 1) && 10497 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) { 10498 rack_log_dsack_event(rack, 9, __LINE__, 10499 rack->r_ctl.last_sent_tlp_seq, 10500 (rack->r_ctl.last_sent_tlp_seq + 10501 rack->r_ctl.last_sent_tlp_len)); 10502 rack->rc_last_sent_tlp_seq_valid = 0; 10503 rack->rc_last_sent_tlp_past_cumack = 0; 10504 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) && 10505 (rack->rc_last_sent_tlp_past_cumack == 0) && 10506 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) { 10507 /* 10508 * It is safe to start aging TLP's send. 10509 */ 10510 rack->rc_last_sent_tlp_past_cumack = 1; 10511 } 10512 more: 10513 rsm = tqhash_min(rack->r_ctl.tqh); 10514 if (rsm == NULL) { 10515 if ((th_ack - 1) == tp->iss) { 10516 /* 10517 * For the SYN incoming case we will not 10518 * have called tcp_output for the sending of 10519 * the SYN, so there will be no map. All 10520 * other cases should probably be a panic. 10521 */ 10522 return; 10523 } 10524 if (tp->t_flags & TF_SENTFIN) { 10525 /* if we sent a FIN we often will not have map */ 10526 return; 10527 } 10528 #ifdef INVARIANTS 10529 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n", 10530 tp, 10531 tp->t_state, th_ack, rack, 10532 tp->snd_una, tp->snd_max, tp->snd_nxt); 10533 #endif 10534 return; 10535 } 10536 if (SEQ_LT(th_ack, rsm->r_start)) { 10537 /* Huh map is missing this */ 10538 #ifdef INVARIANTS 10539 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", 10540 rsm->r_start, 10541 th_ack, tp->t_state, rack->r_state); 10542 #endif 10543 return; 10544 } 10545 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); 10546 10547 /* Now was it a retransmitted TLP? */ 10548 if ((rsm->r_flags & RACK_TLP) && 10549 (rsm->r_rtr_cnt > 1)) { 10550 /* 10551 * Yes, this rsm was a TLP and retransmitted, remember that 10552 * since if a DSACK comes back on this we don't want 10553 * to think of it as a reordered segment. This may 10554 * get updated again with possibly even other TLPs 10555 * in flight, but thats ok. Only when we don't send 10556 * a retransmitted TLP for 1/2 the sequences space 10557 * will it get turned off (above). 10558 */ 10559 if (rack->rc_last_tlp_acked_set && 10560 (is_rsm_inside_declared_tlp_block(rack, rsm))) { 10561 /* 10562 * We already turned this on since the end matches, 10563 * the previous one was a partially ack now we 10564 * are getting another one (maybe all of it). 10565 */ 10566 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end); 10567 /* 10568 * Lets make sure we have all of it though. 10569 */ 10570 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) { 10571 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 10572 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 10573 rack->r_ctl.last_tlp_acked_end); 10574 } 10575 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) { 10576 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 10577 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start, 10578 rack->r_ctl.last_tlp_acked_end); 10579 } 10580 } else { 10581 rack->rc_last_tlp_past_cumack = 1; 10582 rack->r_ctl.last_tlp_acked_start = rsm->r_start; 10583 rack->r_ctl.last_tlp_acked_end = rsm->r_end; 10584 rack->rc_last_tlp_acked_set = 1; 10585 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end); 10586 } 10587 } 10588 /* Now do we consume the whole thing? */ 10589 rack->r_ctl.last_tmit_time_acked = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 10590 if (SEQ_GEQ(th_ack, rsm->r_end)) { 10591 /* Its all consumed. */ 10592 uint32_t left; 10593 uint8_t newly_acked; 10594 10595 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__); 10596 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; 10597 rsm->r_rtr_bytes = 0; 10598 /* 10599 * Record the time of highest cumack sent if its in our measurement 10600 * window and possibly bump out the end. 10601 */ 10602 rack_rsm_sender_update(rack, tp, rsm, 4); 10603 tqhash_remove(rack->r_ctl.tqh, rsm, REMOVE_TYPE_CUMACK); 10604 if (rsm->r_in_tmap) { 10605 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 10606 rsm->r_in_tmap = 0; 10607 } 10608 newly_acked = 1; 10609 if (rsm->r_flags & RACK_ACKED) { 10610 /* 10611 * It was acked on the scoreboard -- remove 10612 * it from total 10613 */ 10614 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 10615 newly_acked = 0; 10616 } else if (rsm->r_flags & RACK_SACK_PASSED) { 10617 /* 10618 * There are segments ACKED on the 10619 * scoreboard further up. We are seeing 10620 * reordering. 10621 */ 10622 rsm->r_flags &= ~RACK_SACK_PASSED; 10623 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 10624 rsm->r_flags |= RACK_ACKED; 10625 rack->r_ctl.rc_reorder_ts = cts; 10626 if (rack->r_ctl.rc_reorder_ts == 0) 10627 rack->r_ctl.rc_reorder_ts = 1; 10628 if (rack->r_ent_rec_ns) { 10629 /* 10630 * We have sent no more, and we saw an sack 10631 * then ack arrive. 10632 */ 10633 rack->r_might_revert = 1; 10634 } 10635 } 10636 if ((rsm->r_flags & RACK_TO_REXT) && 10637 (tp->t_flags & TF_RCVD_TSTMP) && 10638 (to->to_flags & TOF_TS) && 10639 (to->to_tsecr != 0) && 10640 (tp->t_flags & TF_PREVVALID)) { 10641 /* 10642 * We can use the timestamp to see 10643 * if this retransmission was from the 10644 * first transmit. If so we made a mistake. 10645 */ 10646 tp->t_flags &= ~TF_PREVVALID; 10647 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) { 10648 /* The first transmit is what this ack is for */ 10649 rack_cong_signal(tp, CC_RTO_ERR, th_ack, __LINE__); 10650 } 10651 } 10652 left = th_ack - rsm->r_end; 10653 if (rack->app_limited_needs_set && newly_acked) 10654 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); 10655 /* Free back to zone */ 10656 rack_free(rack, rsm); 10657 if (left) { 10658 goto more; 10659 } 10660 /* Check for reneging */ 10661 rsm = tqhash_min(rack->r_ctl.tqh); 10662 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { 10663 /* 10664 * The peer has moved snd_una up to 10665 * the edge of this send, i.e. one 10666 * that it had previously acked. The only 10667 * way that can be true if the peer threw 10668 * away data (space issues) that it had 10669 * previously sacked (else it would have 10670 * given us snd_una up to (rsm->r_end). 10671 * We need to undo the acked markings here. 10672 * 10673 * Note we have to look to make sure th_ack is 10674 * our rsm->r_start in case we get an old ack 10675 * where th_ack is behind snd_una. 10676 */ 10677 rack_peer_reneges(rack, rsm, th_ack); 10678 } 10679 return; 10680 } 10681 if (rsm->r_flags & RACK_ACKED) { 10682 /* 10683 * It was acked on the scoreboard -- remove it from 10684 * total for the part being cum-acked. 10685 */ 10686 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); 10687 } 10688 /* 10689 * Clear the dup ack count for 10690 * the piece that remains. 10691 */ 10692 rsm->r_dupack = 0; 10693 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 10694 if (rsm->r_rtr_bytes) { 10695 /* 10696 * It was retransmitted adjust the 10697 * sack holes for what was acked. 10698 */ 10699 int ack_am; 10700 10701 ack_am = (th_ack - rsm->r_start); 10702 if (ack_am >= rsm->r_rtr_bytes) { 10703 rack->r_ctl.rc_holes_rxt -= ack_am; 10704 rsm->r_rtr_bytes -= ack_am; 10705 } 10706 } 10707 /* 10708 * Update where the piece starts and record 10709 * the time of send of highest cumack sent if 10710 * its in our GP range. 10711 */ 10712 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__); 10713 /* Now we need to move our offset forward too */ 10714 if (rsm->m && 10715 ((rsm->orig_m_len != rsm->m->m_len) || 10716 (M_TRAILINGROOM(rsm->m) != rsm->orig_t_space))) { 10717 /* Fix up the orig_m_len and possibly the mbuf offset */ 10718 rack_adjust_orig_mlen(rsm); 10719 } 10720 rsm->soff += (th_ack - rsm->r_start); 10721 rack_rsm_sender_update(rack, tp, rsm, 5); 10722 /* The trim will move th_ack into r_start for us */ 10723 tqhash_trim(rack->r_ctl.tqh, th_ack); 10724 /* Now do we need to move the mbuf fwd too? */ 10725 { 10726 struct mbuf *m; 10727 uint32_t soff; 10728 10729 m = rsm->m; 10730 soff = rsm->soff; 10731 if (m) { 10732 while (soff >= m->m_len) { 10733 soff -= m->m_len; 10734 KASSERT((m->m_next != NULL), 10735 (" rsm:%p off:%u soff:%u m:%p", 10736 rsm, rsm->soff, soff, m)); 10737 m = m->m_next; 10738 if (m == NULL) { 10739 /* 10740 * This is a fall-back that prevents a panic. In reality 10741 * we should be able to walk the mbuf's and find our place. 10742 * At this point snd_una has not been updated with the sbcut() yet 10743 * but tqhash_trim did update rsm->r_start so the offset calcuation 10744 * should work fine. This is undesirable since we will take cache 10745 * hits to access the socket buffer. And even more puzzling is that 10746 * it happens occasionally. It should not :( 10747 */ 10748 m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 10749 (rsm->r_start - tp->snd_una), 10750 &soff); 10751 break; 10752 } 10753 } 10754 /* 10755 * Now save in our updated values. 10756 */ 10757 rsm->m = m; 10758 rsm->soff = soff; 10759 rsm->orig_m_len = rsm->m->m_len; 10760 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 10761 } 10762 } 10763 if (rack->app_limited_needs_set && 10764 SEQ_GEQ(th_ack, tp->gput_seq)) 10765 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); 10766 } 10767 10768 static void 10769 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack) 10770 { 10771 struct rack_sendmap *rsm; 10772 int sack_pass_fnd = 0; 10773 10774 if (rack->r_might_revert) { 10775 /* 10776 * Ok we have reordering, have not sent anything, we 10777 * might want to revert the congestion state if nothing 10778 * further has SACK_PASSED on it. Lets check. 10779 * 10780 * We also get here when we have DSACKs come in for 10781 * all the data that we FR'd. Note that a rxt or tlp 10782 * timer clears this from happening. 10783 */ 10784 10785 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 10786 if (rsm->r_flags & RACK_SACK_PASSED) { 10787 sack_pass_fnd = 1; 10788 break; 10789 } 10790 } 10791 if (sack_pass_fnd == 0) { 10792 /* 10793 * We went into recovery 10794 * incorrectly due to reordering! 10795 */ 10796 int orig_cwnd; 10797 10798 rack->r_ent_rec_ns = 0; 10799 orig_cwnd = tp->snd_cwnd; 10800 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec; 10801 tp->snd_recover = tp->snd_una; 10802 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__); 10803 EXIT_RECOVERY(tp->t_flags); 10804 } 10805 rack->r_might_revert = 0; 10806 } 10807 } 10808 10809 #ifdef TCP_SAD_DETECTION 10810 10811 static void 10812 rack_merge_out_sacks(struct tcp_rack *rack) 10813 { 10814 struct rack_sendmap *cur, *next, *rsm, *trsm = NULL; 10815 10816 cur = tqhash_min(rack->r_ctl.tqh); 10817 while(cur) { 10818 next = tqhash_next(rack->r_ctl.tqh, cur); 10819 /* 10820 * The idea is to go through all and merge back 10821 * together the pieces sent together, 10822 */ 10823 if ((next != NULL) && 10824 (cur->r_tim_lastsent[0] == next->r_tim_lastsent[0])) { 10825 rack_merge_rsm(rack, cur, next); 10826 } else { 10827 cur = next; 10828 } 10829 } 10830 /* 10831 * now treat it like a rxt event, everything is outstanding 10832 * and sent nothing acvked and dupacks are all zero. If this 10833 * is not an attacker it will have to dupack its way through 10834 * it all. 10835 */ 10836 TAILQ_INIT(&rack->r_ctl.rc_tmap); 10837 TQHASH_FOREACH(rsm, rack->r_ctl.tqh) { 10838 rsm->r_dupack = 0; 10839 /* We must re-add it back to the tlist */ 10840 if (trsm == NULL) { 10841 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 10842 } else { 10843 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 10844 } 10845 rsm->r_in_tmap = 1; 10846 trsm = rsm; 10847 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS | RACK_RWND_COLLAPSED); 10848 } 10849 sack_filter_clear(&rack->r_ctl.rack_sf, rack->rc_tp->snd_una); 10850 } 10851 10852 static void 10853 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz) 10854 { 10855 int do_detection = 0; 10856 10857 if (rack->sack_attack_disable || rack->rc_suspicious) { 10858 /* 10859 * If we have been disabled we must detect 10860 * to possibly reverse it. Or if the guy has 10861 * sent in suspicious sacks we want to do detection too. 10862 */ 10863 do_detection = 1; 10864 10865 } else if ((rack->do_detection || tcp_force_detection) && 10866 (tcp_sack_to_ack_thresh > 0) && 10867 (tcp_sack_to_move_thresh > 0) && 10868 (rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum)) { 10869 /* 10870 * We only detect here if: 10871 * 1) System wide forcing is on <or> do_detection is on 10872 * <and> 10873 * 2) We have thresholds for move and ack (set one to 0 and we are off) 10874 * <and> 10875 * 3) We have maps allocated larger than our min (500). 10876 */ 10877 do_detection = 1; 10878 } 10879 if (do_detection > 0) { 10880 /* 10881 * We have thresholds set to find 10882 * possible attackers and disable sack. 10883 * Check them. 10884 */ 10885 uint64_t ackratio, moveratio, movetotal; 10886 10887 /* Log detecting */ 10888 rack_log_sad(rack, 1); 10889 /* Do we establish a ack ratio */ 10890 if ((rack->r_ctl.sack_count > tcp_map_minimum) || 10891 (rack->rc_suspicious == 1) || 10892 (rack->sack_attack_disable > 0)) { 10893 ackratio = (uint64_t)(rack->r_ctl.sack_count); 10894 ackratio *= (uint64_t)(1000); 10895 if (rack->r_ctl.ack_count) 10896 ackratio /= (uint64_t)(rack->r_ctl.ack_count); 10897 else { 10898 /* We can hit this due to ack totals degregation (via small sacks) */ 10899 ackratio = 1000; 10900 } 10901 } else { 10902 /* 10903 * No ack ratio needed if we have not 10904 * seen more sacks then the number of map entries. 10905 * The exception to that is if we have disabled sack then 10906 * we need to find a ratio. 10907 */ 10908 ackratio = 0; 10909 } 10910 10911 if ((rack->sack_attack_disable == 0) && 10912 (ackratio > rack_highest_sack_thresh_seen)) 10913 rack_highest_sack_thresh_seen = (uint32_t)ackratio; 10914 /* Do we establish a move ratio? */ 10915 if ((rack->r_ctl.sack_moved_extra > tcp_map_minimum) || 10916 (rack->rc_suspicious == 1) || 10917 (rack->sack_attack_disable > 0)) { 10918 /* 10919 * We need to have more sack moves than maps 10920 * allocated to have a move ratio considered. 10921 */ 10922 movetotal = rack->r_ctl.sack_moved_extra; 10923 movetotal += rack->r_ctl.sack_noextra_move; 10924 moveratio = rack->r_ctl.sack_moved_extra; 10925 moveratio *= (uint64_t)1000; 10926 if (movetotal) 10927 moveratio /= movetotal; 10928 else { 10929 /* No moves, thats pretty good */ 10930 moveratio = 0; 10931 } 10932 } else { 10933 /* 10934 * Not enough moves have occured to consider 10935 * if we are out of whack in that ratio. 10936 * The exception to that is if we have disabled sack then 10937 * we need to find a ratio. 10938 */ 10939 moveratio = 0; 10940 } 10941 if ((rack->sack_attack_disable == 0) && 10942 (moveratio > rack_highest_move_thresh_seen)) 10943 rack_highest_move_thresh_seen = (uint32_t)moveratio; 10944 /* Now the tests */ 10945 if (rack->sack_attack_disable == 0) { 10946 /* Not disabled, do we need to disable? */ 10947 if ((ackratio > tcp_sack_to_ack_thresh) && 10948 (moveratio > tcp_sack_to_move_thresh)) { 10949 /* Disable sack processing */ 10950 tcp_trace_point(rack->rc_tp, TCP_TP_SAD_TRIGGERED); 10951 rack->sack_attack_disable = 1; 10952 /* set it so we have the built in delay */ 10953 rack->r_ctl.ack_during_sd = 1; 10954 if (rack_merge_out_sacks_on_attack) 10955 rack_merge_out_sacks(rack); 10956 counter_u64_add(rack_sack_attacks_detected, 1); 10957 tcp_trace_point(rack->rc_tp, TCP_TP_SAD_TRIGGERED); 10958 /* Clamp the cwnd at flight size */ 10959 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; 10960 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 10961 rack_log_sad(rack, 2); 10962 } 10963 } else { 10964 /* We are sack-disabled check for false positives */ 10965 if ((ackratio <= tcp_restoral_thresh) || 10966 ((rack_merge_out_sacks_on_attack == 0) && 10967 (rack->rc_suspicious == 0) && 10968 (rack->r_ctl.rc_num_maps_alloced <= (tcp_map_minimum/2)))) { 10969 rack->sack_attack_disable = 0; 10970 rack_log_sad(rack, 3); 10971 /* Restart counting */ 10972 rack->r_ctl.sack_count = 0; 10973 rack->r_ctl.sack_moved_extra = 0; 10974 rack->r_ctl.sack_noextra_move = 1; 10975 rack->rc_suspicious = 0; 10976 rack->r_ctl.ack_count = max(1, 10977 (bytes_this_ack / segsiz)); 10978 10979 counter_u64_add(rack_sack_attacks_reversed, 1); 10980 /* Restore the cwnd */ 10981 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) 10982 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; 10983 } 10984 } 10985 } 10986 } 10987 #endif 10988 10989 static int 10990 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end) 10991 { 10992 10993 uint32_t am, l_end; 10994 int was_tlp = 0; 10995 10996 if (SEQ_GT(end, start)) 10997 am = end - start; 10998 else 10999 am = 0; 11000 if ((rack->rc_last_tlp_acked_set ) && 11001 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) && 11002 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) { 11003 /* 11004 * The DSACK is because of a TLP which we don't 11005 * do anything with the reordering window over since 11006 * it was not reordering that caused the DSACK but 11007 * our previous retransmit TLP. 11008 */ 11009 rack_log_dsack_event(rack, 7, __LINE__, start, end); 11010 was_tlp = 1; 11011 goto skip_dsack_round; 11012 } 11013 if (rack->rc_last_sent_tlp_seq_valid) { 11014 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len; 11015 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) && 11016 (SEQ_LEQ(end, l_end))) { 11017 /* 11018 * This dsack is from the last sent TLP, ignore it 11019 * for reordering purposes. 11020 */ 11021 rack_log_dsack_event(rack, 7, __LINE__, start, end); 11022 was_tlp = 1; 11023 goto skip_dsack_round; 11024 } 11025 } 11026 if (rack->rc_dsack_round_seen == 0) { 11027 rack->rc_dsack_round_seen = 1; 11028 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max; 11029 rack->r_ctl.num_dsack++; 11030 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */ 11031 rack_log_dsack_event(rack, 2, __LINE__, 0, 0); 11032 } 11033 skip_dsack_round: 11034 /* 11035 * We keep track of how many DSACK blocks we get 11036 * after a recovery incident. 11037 */ 11038 rack->r_ctl.dsack_byte_cnt += am; 11039 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) && 11040 rack->r_ctl.retran_during_recovery && 11041 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) { 11042 /* 11043 * False recovery most likely culprit is reordering. If 11044 * nothing else is missing we need to revert. 11045 */ 11046 rack->r_might_revert = 1; 11047 rack_handle_might_revert(rack->rc_tp, rack); 11048 rack->r_might_revert = 0; 11049 rack->r_ctl.retran_during_recovery = 0; 11050 rack->r_ctl.dsack_byte_cnt = 0; 11051 } 11052 return (was_tlp); 11053 } 11054 11055 static uint32_t 11056 do_rack_compute_pipe(struct tcpcb *tp, struct tcp_rack *rack, uint32_t snd_una) 11057 { 11058 return (((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt); 11059 } 11060 11061 static int32_t 11062 rack_compute_pipe(struct tcpcb *tp) 11063 { 11064 return ((int32_t)do_rack_compute_pipe(tp, 11065 (struct tcp_rack *)tp->t_fb_ptr, 11066 tp->snd_una)); 11067 } 11068 11069 static void 11070 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack) 11071 { 11072 /* Deal with changed and PRR here (in recovery only) */ 11073 uint32_t pipe, snd_una; 11074 11075 rack->r_ctl.rc_prr_delivered += changed; 11076 11077 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) { 11078 /* 11079 * It is all outstanding, we are application limited 11080 * and thus we don't need more room to send anything. 11081 * Note we use tp->snd_una here and not th_ack because 11082 * the data as yet not been cut from the sb. 11083 */ 11084 rack->r_ctl.rc_prr_sndcnt = 0; 11085 return; 11086 } 11087 /* Compute prr_sndcnt */ 11088 if (SEQ_GT(tp->snd_una, th_ack)) { 11089 snd_una = tp->snd_una; 11090 } else { 11091 snd_una = th_ack; 11092 } 11093 pipe = do_rack_compute_pipe(tp, rack, snd_una); 11094 if (pipe > tp->snd_ssthresh) { 11095 long sndcnt; 11096 11097 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; 11098 if (rack->r_ctl.rc_prr_recovery_fs > 0) 11099 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; 11100 else { 11101 rack->r_ctl.rc_prr_sndcnt = 0; 11102 rack_log_to_prr(rack, 9, 0, __LINE__); 11103 sndcnt = 0; 11104 } 11105 sndcnt++; 11106 if (sndcnt > (long)rack->r_ctl.rc_prr_out) 11107 sndcnt -= rack->r_ctl.rc_prr_out; 11108 else 11109 sndcnt = 0; 11110 rack->r_ctl.rc_prr_sndcnt = sndcnt; 11111 rack_log_to_prr(rack, 10, 0, __LINE__); 11112 } else { 11113 uint32_t limit; 11114 11115 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) 11116 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); 11117 else 11118 limit = 0; 11119 if (changed > limit) 11120 limit = changed; 11121 limit += ctf_fixed_maxseg(tp); 11122 if (tp->snd_ssthresh > pipe) { 11123 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); 11124 rack_log_to_prr(rack, 11, 0, __LINE__); 11125 } else { 11126 rack->r_ctl.rc_prr_sndcnt = min(0, limit); 11127 rack_log_to_prr(rack, 12, 0, __LINE__); 11128 } 11129 } 11130 } 11131 11132 static void 11133 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck, 11134 int *dsack_seen, int *sacks_seen) 11135 { 11136 uint32_t changed; 11137 struct tcp_rack *rack; 11138 struct rack_sendmap *rsm; 11139 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; 11140 register uint32_t th_ack; 11141 int32_t i, j, k, num_sack_blks = 0; 11142 uint32_t cts, acked, ack_point; 11143 int loop_start = 0, moved_two = 0, no_extra = 0; 11144 uint32_t tsused; 11145 uint32_t segsiz, o_cnt; 11146 11147 11148 INP_WLOCK_ASSERT(tptoinpcb(tp)); 11149 if (tcp_get_flags(th) & TH_RST) { 11150 /* We don't log resets */ 11151 return; 11152 } 11153 rack = (struct tcp_rack *)tp->t_fb_ptr; 11154 cts = tcp_get_usecs(NULL); 11155 rsm = tqhash_min(rack->r_ctl.tqh); 11156 changed = 0; 11157 th_ack = th->th_ack; 11158 if (rack->sack_attack_disable == 0) 11159 rack_do_decay(rack); 11160 segsiz = ctf_fixed_maxseg(rack->rc_tp); 11161 if (BYTES_THIS_ACK(tp, th) >= segsiz) { 11162 /* 11163 * You only get credit for 11164 * MSS and greater (and you get extra 11165 * credit for larger cum-ack moves). 11166 */ 11167 int ac; 11168 11169 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); 11170 rack->r_ctl.ack_count += ac; 11171 counter_u64_add(rack_ack_total, ac); 11172 } 11173 if (rack->r_ctl.ack_count > 0xfff00000) { 11174 /* 11175 * reduce the number to keep us under 11176 * a uint32_t. 11177 */ 11178 rack->r_ctl.ack_count /= 2; 11179 rack->r_ctl.sack_count /= 2; 11180 } 11181 if (SEQ_GT(th_ack, tp->snd_una)) { 11182 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); 11183 tp->t_acktime = ticks; 11184 } 11185 if (rsm && SEQ_GT(th_ack, rsm->r_start)) 11186 changed = th_ack - rsm->r_start; 11187 if (changed) { 11188 rack_process_to_cumack(tp, rack, th_ack, cts, to, 11189 tcp_tv_to_lusectick(&rack->r_ctl.act_rcv_time)); 11190 } 11191 if ((to->to_flags & TOF_SACK) == 0) { 11192 /* We are done nothing left and no sack. */ 11193 rack_handle_might_revert(tp, rack); 11194 /* 11195 * For cases where we struck a dup-ack 11196 * with no SACK, add to the changes so 11197 * PRR will work right. 11198 */ 11199 if (dup_ack_struck && (changed == 0)) { 11200 changed += ctf_fixed_maxseg(rack->rc_tp); 11201 } 11202 goto out; 11203 } 11204 /* Sack block processing */ 11205 if (SEQ_GT(th_ack, tp->snd_una)) 11206 ack_point = th_ack; 11207 else 11208 ack_point = tp->snd_una; 11209 for (i = 0; i < to->to_nsacks; i++) { 11210 bcopy((to->to_sacks + i * TCPOLEN_SACK), 11211 &sack, sizeof(sack)); 11212 sack.start = ntohl(sack.start); 11213 sack.end = ntohl(sack.end); 11214 if (SEQ_GT(sack.end, sack.start) && 11215 SEQ_GT(sack.start, ack_point) && 11216 SEQ_LT(sack.start, tp->snd_max) && 11217 SEQ_GT(sack.end, ack_point) && 11218 SEQ_LEQ(sack.end, tp->snd_max)) { 11219 sack_blocks[num_sack_blks] = sack; 11220 num_sack_blks++; 11221 } else if (SEQ_LEQ(sack.start, th_ack) && 11222 SEQ_LEQ(sack.end, th_ack)) { 11223 int was_tlp; 11224 11225 if (dsack_seen != NULL) 11226 *dsack_seen = 1; 11227 was_tlp = rack_note_dsack(rack, sack.start, sack.end); 11228 /* 11229 * Its a D-SACK block. 11230 */ 11231 tcp_record_dsack(tp, sack.start, sack.end, was_tlp); 11232 } 11233 } 11234 if (rack->rc_dsack_round_seen) { 11235 /* Is the dsack roound over? */ 11236 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) { 11237 /* Yes it is */ 11238 rack->rc_dsack_round_seen = 0; 11239 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 11240 } 11241 } 11242 /* 11243 * Sort the SACK blocks so we can update the rack scoreboard with 11244 * just one pass. 11245 */ 11246 o_cnt = num_sack_blks; 11247 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, 11248 num_sack_blks, th->th_ack); 11249 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); 11250 if (sacks_seen != NULL) 11251 *sacks_seen = num_sack_blks; 11252 if (num_sack_blks == 0) { 11253 /* Nothing to sack, but we need to update counts */ 11254 if ((o_cnt == 1) && 11255 (*dsack_seen != 1)) 11256 rack->r_ctl.sack_count++; 11257 else if (o_cnt > 1) 11258 rack->r_ctl.sack_count++; 11259 goto out_with_totals; 11260 } 11261 if (rack->sack_attack_disable) { 11262 /* 11263 * An attacker disablement is in place, for 11264 * every sack block that is not at least a full MSS 11265 * count up sack_count. 11266 */ 11267 for (i = 0; i < num_sack_blks; i++) { 11268 if ((sack_blocks[i].end - sack_blocks[i].start) < segsiz) { 11269 rack->r_ctl.sack_count++; 11270 } 11271 if (rack->r_ctl.sack_count > 0xfff00000) { 11272 /* 11273 * reduce the number to keep us under 11274 * a uint32_t. 11275 */ 11276 rack->r_ctl.ack_count /= 2; 11277 rack->r_ctl.sack_count /= 2; 11278 } 11279 } 11280 goto out; 11281 } 11282 /* Its a sack of some sort */ 11283 rack->r_ctl.sack_count += num_sack_blks; 11284 if (rack->r_ctl.sack_count > 0xfff00000) { 11285 /* 11286 * reduce the number to keep us under 11287 * a uint32_t. 11288 */ 11289 rack->r_ctl.ack_count /= 2; 11290 rack->r_ctl.sack_count /= 2; 11291 } 11292 if (num_sack_blks < 2) { 11293 /* Only one, we don't need to sort */ 11294 goto do_sack_work; 11295 } 11296 /* Sort the sacks */ 11297 for (i = 0; i < num_sack_blks; i++) { 11298 for (j = i + 1; j < num_sack_blks; j++) { 11299 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { 11300 sack = sack_blocks[i]; 11301 sack_blocks[i] = sack_blocks[j]; 11302 sack_blocks[j] = sack; 11303 } 11304 } 11305 } 11306 /* 11307 * Now are any of the sack block ends the same (yes some 11308 * implementations send these)? 11309 */ 11310 again: 11311 if (num_sack_blks == 0) 11312 goto out_with_totals; 11313 if (num_sack_blks > 1) { 11314 for (i = 0; i < num_sack_blks; i++) { 11315 for (j = i + 1; j < num_sack_blks; j++) { 11316 if (sack_blocks[i].end == sack_blocks[j].end) { 11317 /* 11318 * Ok these two have the same end we 11319 * want the smallest end and then 11320 * throw away the larger and start 11321 * again. 11322 */ 11323 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { 11324 /* 11325 * The second block covers 11326 * more area use that 11327 */ 11328 sack_blocks[i].start = sack_blocks[j].start; 11329 } 11330 /* 11331 * Now collapse out the dup-sack and 11332 * lower the count 11333 */ 11334 for (k = (j + 1); k < num_sack_blks; k++) { 11335 sack_blocks[j].start = sack_blocks[k].start; 11336 sack_blocks[j].end = sack_blocks[k].end; 11337 j++; 11338 } 11339 num_sack_blks--; 11340 goto again; 11341 } 11342 } 11343 } 11344 } 11345 do_sack_work: 11346 /* 11347 * First lets look to see if 11348 * we have retransmitted and 11349 * can use the transmit next? 11350 */ 11351 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 11352 if (rsm && 11353 SEQ_GT(sack_blocks[0].end, rsm->r_start) && 11354 SEQ_LT(sack_blocks[0].start, rsm->r_end)) { 11355 /* 11356 * We probably did the FR and the next 11357 * SACK in continues as we would expect. 11358 */ 11359 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &no_extra, &moved_two, segsiz); 11360 if (acked) { 11361 rack->r_wanted_output = 1; 11362 changed += acked; 11363 } 11364 if (num_sack_blks == 1) { 11365 /* 11366 * This is what we would expect from 11367 * a normal implementation to happen 11368 * after we have retransmitted the FR, 11369 * i.e the sack-filter pushes down 11370 * to 1 block and the next to be retransmitted 11371 * is the sequence in the sack block (has more 11372 * are acked). Count this as ACK'd data to boost 11373 * up the chances of recovering any false positives. 11374 */ 11375 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); 11376 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); 11377 counter_u64_add(rack_express_sack, 1); 11378 if (rack->r_ctl.ack_count > 0xfff00000) { 11379 /* 11380 * reduce the number to keep us under 11381 * a uint32_t. 11382 */ 11383 rack->r_ctl.ack_count /= 2; 11384 rack->r_ctl.sack_count /= 2; 11385 } 11386 if (moved_two) { 11387 /* 11388 * If we did not get a SACK for at least a MSS and 11389 * had to move at all, or if we moved more than our 11390 * threshold, it counts against the "extra" move. 11391 */ 11392 rack->r_ctl.sack_moved_extra += moved_two; 11393 rack->r_ctl.sack_noextra_move += no_extra; 11394 counter_u64_add(rack_move_some, 1); 11395 } else { 11396 /* 11397 * else we did not have to move 11398 * any more than we would expect. 11399 */ 11400 rack->r_ctl.sack_noextra_move += no_extra; 11401 rack->r_ctl.sack_noextra_move++; 11402 counter_u64_add(rack_move_none, 1); 11403 } 11404 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 11405 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 11406 rack->r_ctl.sack_moved_extra /= 2; 11407 rack->r_ctl.sack_noextra_move /= 2; 11408 } 11409 goto out_with_totals; 11410 } else { 11411 /* 11412 * Start the loop through the 11413 * rest of blocks, past the first block. 11414 */ 11415 loop_start = 1; 11416 } 11417 } 11418 counter_u64_add(rack_sack_total, 1); 11419 rsm = rack->r_ctl.rc_sacklast; 11420 for (i = loop_start; i < num_sack_blks; i++) { 11421 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &no_extra, &moved_two, segsiz); 11422 if (acked) { 11423 rack->r_wanted_output = 1; 11424 changed += acked; 11425 } 11426 if (moved_two) { 11427 /* 11428 * If we did not get a SACK for at least a MSS and 11429 * had to move at all, or if we moved more than our 11430 * threshold, it counts against the "extra" move. 11431 */ 11432 rack->r_ctl.sack_moved_extra += moved_two; 11433 rack->r_ctl.sack_noextra_move += no_extra; 11434 counter_u64_add(rack_move_some, 1); 11435 } else { 11436 /* 11437 * else we did not have to move 11438 * any more than we would expect. 11439 */ 11440 rack->r_ctl.sack_noextra_move += no_extra; 11441 rack->r_ctl.sack_noextra_move++; 11442 counter_u64_add(rack_move_none, 1); 11443 } 11444 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 11445 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 11446 rack->r_ctl.sack_moved_extra /= 2; 11447 rack->r_ctl.sack_noextra_move /= 2; 11448 } 11449 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { 11450 /* 11451 * If the SACK was not a full MSS then 11452 * we add to sack_count the number of 11453 * MSS's (or possibly more than 11454 * a MSS if its a TSO send) we had to skip by. 11455 */ 11456 rack->r_ctl.sack_count += moved_two; 11457 if (rack->r_ctl.sack_count > 0xfff00000) { 11458 rack->r_ctl.ack_count /= 2; 11459 rack->r_ctl.sack_count /= 2; 11460 } 11461 counter_u64_add(rack_sack_total, moved_two); 11462 } 11463 /* 11464 * Now we need to setup for the next 11465 * round. First we make sure we won't 11466 * exceed the size of our uint32_t on 11467 * the various counts, and then clear out 11468 * moved_two. 11469 */ 11470 moved_two = 0; 11471 no_extra = 0; 11472 } 11473 out_with_totals: 11474 if (num_sack_blks > 1) { 11475 /* 11476 * You get an extra stroke if 11477 * you have more than one sack-blk, this 11478 * could be where we are skipping forward 11479 * and the sack-filter is still working, or 11480 * it could be an attacker constantly 11481 * moving us. 11482 */ 11483 rack->r_ctl.sack_moved_extra++; 11484 counter_u64_add(rack_move_some, 1); 11485 } 11486 out: 11487 #ifdef TCP_SAD_DETECTION 11488 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp)); 11489 #endif 11490 if (changed) { 11491 /* Something changed cancel the rack timer */ 11492 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 11493 } 11494 tsused = tcp_get_usecs(NULL); 11495 rsm = tcp_rack_output(tp, rack, tsused); 11496 if ((!IN_FASTRECOVERY(tp->t_flags)) && 11497 rsm && 11498 ((rsm->r_flags & RACK_MUST_RXT) == 0)) { 11499 /* Enter recovery */ 11500 entered_recovery = 1; 11501 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 11502 /* 11503 * When we enter recovery we need to assure we send 11504 * one packet. 11505 */ 11506 if (rack->rack_no_prr == 0) { 11507 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 11508 rack_log_to_prr(rack, 8, 0, __LINE__); 11509 } 11510 rack->r_timer_override = 1; 11511 rack->r_early = 0; 11512 rack->r_ctl.rc_agg_early = 0; 11513 } else if (IN_FASTRECOVERY(tp->t_flags) && 11514 rsm && 11515 (rack->r_rr_config == 3)) { 11516 /* 11517 * Assure we can output and we get no 11518 * remembered pace time except the retransmit. 11519 */ 11520 rack->r_timer_override = 1; 11521 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 11522 rack->r_ctl.rc_resend = rsm; 11523 } 11524 if (IN_FASTRECOVERY(tp->t_flags) && 11525 (rack->rack_no_prr == 0) && 11526 (entered_recovery == 0)) { 11527 rack_update_prr(tp, rack, changed, th_ack); 11528 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && 11529 ((tcp_in_hpts(rack->rc_tp) == 0) && 11530 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { 11531 /* 11532 * If you are pacing output you don't want 11533 * to override. 11534 */ 11535 rack->r_early = 0; 11536 rack->r_ctl.rc_agg_early = 0; 11537 rack->r_timer_override = 1; 11538 } 11539 } 11540 } 11541 11542 static void 11543 rack_strike_dupack(struct tcp_rack *rack) 11544 { 11545 struct rack_sendmap *rsm; 11546 11547 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 11548 while (rsm) { 11549 /* 11550 * We need to skip anything already set 11551 * to be retransmitted. 11552 */ 11553 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 11554 (rsm->r_flags & RACK_MUST_RXT)) { 11555 rsm = TAILQ_NEXT(rsm, r_tnext); 11556 continue; 11557 } 11558 break; 11559 } 11560 if (rsm && (rsm->r_dupack < 0xff)) { 11561 rsm->r_dupack++; 11562 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { 11563 struct timeval tv; 11564 uint32_t cts; 11565 /* 11566 * Here we see if we need to retransmit. For 11567 * a SACK type connection if enough time has passed 11568 * we will get a return of the rsm. For a non-sack 11569 * connection we will get the rsm returned if the 11570 * dupack value is 3 or more. 11571 */ 11572 cts = tcp_get_usecs(&tv); 11573 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts); 11574 if (rack->r_ctl.rc_resend != NULL) { 11575 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) { 11576 rack_cong_signal(rack->rc_tp, CC_NDUPACK, 11577 rack->rc_tp->snd_una, __LINE__); 11578 } 11579 rack->r_wanted_output = 1; 11580 rack->r_timer_override = 1; 11581 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); 11582 } 11583 } else { 11584 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); 11585 } 11586 } 11587 } 11588 11589 static void 11590 rack_check_bottom_drag(struct tcpcb *tp, 11591 struct tcp_rack *rack, 11592 struct socket *so) 11593 { 11594 uint32_t segsiz, minseg; 11595 11596 segsiz = ctf_fixed_maxseg(tp); 11597 minseg = segsiz; 11598 if (tp->snd_max == tp->snd_una) { 11599 /* 11600 * We are doing dynamic pacing and we are way 11601 * under. Basically everything got acked while 11602 * we were still waiting on the pacer to expire. 11603 * 11604 * This means we need to boost the b/w in 11605 * addition to any earlier boosting of 11606 * the multiplier. 11607 */ 11608 uint64_t lt_bw; 11609 11610 lt_bw = rack_get_lt_bw(rack); 11611 rack->rc_dragged_bottom = 1; 11612 rack_validate_multipliers_at_or_above100(rack); 11613 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && 11614 (lt_bw > 0)) { 11615 /* 11616 * Lets use the long-term b/w we have 11617 * been getting as a base. 11618 */ 11619 if (rack->rc_gp_filled == 0) { 11620 if (lt_bw > ONE_POINT_TWO_MEG) { 11621 /* 11622 * If we have no measurement 11623 * don't let us set in more than 11624 * 1.2Mbps. If we are still too 11625 * low after pacing with this we 11626 * will hopefully have a max b/w 11627 * available to sanity check things. 11628 */ 11629 lt_bw = ONE_POINT_TWO_MEG; 11630 } 11631 rack->r_ctl.rc_rtt_diff = 0; 11632 rack->r_ctl.gp_bw = lt_bw; 11633 rack->rc_gp_filled = 1; 11634 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 11635 rack->r_ctl.num_measurements = RACK_REQ_AVG; 11636 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 11637 } else if (lt_bw > rack->r_ctl.gp_bw) { 11638 rack->r_ctl.rc_rtt_diff = 0; 11639 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 11640 rack->r_ctl.num_measurements = RACK_REQ_AVG; 11641 rack->r_ctl.gp_bw = lt_bw; 11642 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 11643 } else 11644 rack_increase_bw_mul(rack, -1, 0, 0, 1); 11645 if ((rack->gp_ready == 0) && 11646 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 11647 /* We have enough measurements now */ 11648 rack->gp_ready = 1; 11649 if (rack->dgp_on || 11650 rack->rack_hibeta) 11651 rack_set_cc_pacing(rack); 11652 if (rack->defer_options) 11653 rack_apply_deferred_options(rack); 11654 } 11655 } else { 11656 /* 11657 * zero rtt possibly?, settle for just an old increase. 11658 */ 11659 rack_increase_bw_mul(rack, -1, 0, 0, 1); 11660 } 11661 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 11662 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), 11663 minseg)) && 11664 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && 11665 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && 11666 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= 11667 (segsiz * rack_req_segs))) { 11668 /* 11669 * We are doing dynamic GP pacing and 11670 * we have everything except 1MSS or less 11671 * bytes left out. We are still pacing away. 11672 * And there is data that could be sent, This 11673 * means we are inserting delayed ack time in 11674 * our measurements because we are pacing too slow. 11675 */ 11676 rack_validate_multipliers_at_or_above100(rack); 11677 rack->rc_dragged_bottom = 1; 11678 rack_increase_bw_mul(rack, -1, 0, 0, 1); 11679 } 11680 } 11681 11682 #ifdef TCP_REQUEST_TRK 11683 static void 11684 rack_log_hybrid(struct tcp_rack *rack, uint32_t seq, 11685 struct tcp_sendfile_track *cur, uint8_t mod, int line, int err) 11686 { 11687 int do_log; 11688 11689 do_log = tcp_bblogging_on(rack->rc_tp); 11690 if (do_log == 0) { 11691 if ((do_log = tcp_bblogging_point_on(rack->rc_tp, TCP_BBPOINT_REQ_LEVEL_LOGGING) )== 0) 11692 return; 11693 /* We only allow the three below with point logging on */ 11694 if ((mod != HYBRID_LOG_RULES_APP) && 11695 (mod != HYBRID_LOG_RULES_SET) && 11696 (mod != HYBRID_LOG_REQ_COMP)) 11697 return; 11698 11699 } 11700 if (do_log) { 11701 union tcp_log_stackspecific log; 11702 struct timeval tv; 11703 11704 /* Convert our ms to a microsecond */ 11705 memset(&log, 0, sizeof(log)); 11706 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 11707 log.u_bbr.flex1 = seq; 11708 log.u_bbr.cwnd_gain = line; 11709 if (cur != NULL) { 11710 uint64_t off; 11711 11712 log.u_bbr.flex2 = cur->start_seq; 11713 log.u_bbr.flex3 = cur->end_seq; 11714 log.u_bbr.flex4 = (uint32_t)((cur->localtime >> 32) & 0x00000000ffffffff); 11715 log.u_bbr.flex5 = (uint32_t)(cur->localtime & 0x00000000ffffffff); 11716 log.u_bbr.flex6 = cur->flags; 11717 log.u_bbr.pkts_out = cur->hybrid_flags; 11718 log.u_bbr.rttProp = cur->timestamp; 11719 log.u_bbr.cur_del_rate = cur->cspr; 11720 log.u_bbr.bw_inuse = cur->start; 11721 log.u_bbr.applimited = (uint32_t)(cur->end & 0x00000000ffffffff); 11722 log.u_bbr.delivered = (uint32_t)((cur->end >> 32) & 0x00000000ffffffff) ; 11723 log.u_bbr.epoch = (uint32_t)(cur->deadline & 0x00000000ffffffff); 11724 log.u_bbr.lt_epoch = (uint32_t)((cur->deadline >> 32) & 0x00000000ffffffff) ; 11725 log.u_bbr.bbr_state = 1; 11726 #ifdef TCP_REQUEST_TRK 11727 off = (uint64_t)(cur) - (uint64_t)(&rack->rc_tp->t_tcpreq_info[0]); 11728 log.u_bbr.use_lt_bw = (uint8_t)(off / sizeof(struct tcp_sendfile_track)); 11729 #endif 11730 } else { 11731 log.u_bbr.flex2 = err; 11732 } 11733 /* 11734 * Fill in flex7 to be CHD (catchup|hybrid|DGP) 11735 */ 11736 log.u_bbr.flex7 = rack->rc_catch_up; 11737 log.u_bbr.flex7 <<= 1; 11738 log.u_bbr.flex7 |= rack->rc_hybrid_mode; 11739 log.u_bbr.flex7 <<= 1; 11740 log.u_bbr.flex7 |= rack->dgp_on; 11741 log.u_bbr.flex8 = mod; 11742 log.u_bbr.delRate = rack->r_ctl.bw_rate_cap; 11743 log.u_bbr.bbr_substate = rack->r_ctl.client_suggested_maxseg; 11744 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 11745 log.u_bbr.pkt_epoch = rack->rc_tp->tcp_hybrid_start; 11746 log.u_bbr.lost = rack->rc_tp->tcp_hybrid_error; 11747 log.u_bbr.pacing_gain = (uint16_t)rack->rc_tp->tcp_hybrid_stop; 11748 tcp_log_event(rack->rc_tp, NULL, 11749 &rack->rc_inp->inp_socket->so_rcv, 11750 &rack->rc_inp->inp_socket->so_snd, 11751 TCP_HYBRID_PACING_LOG, 0, 11752 0, &log, false, NULL, __func__, __LINE__, &tv); 11753 } 11754 } 11755 #endif 11756 11757 #ifdef TCP_REQUEST_TRK 11758 static void 11759 rack_set_dgp_hybrid_mode(struct tcp_rack *rack, tcp_seq seq, uint32_t len) 11760 { 11761 struct tcp_sendfile_track *rc_cur; 11762 struct tcpcb *tp; 11763 int err = 0; 11764 11765 rc_cur = tcp_req_find_req_for_seq(rack->rc_tp, seq); 11766 if (rc_cur == NULL) { 11767 /* If not in the beginning what about the end piece */ 11768 if (rack->rc_hybrid_mode) 11769 rack_log_hybrid(rack, seq, NULL, HYBRID_LOG_NO_RANGE, __LINE__, err); 11770 rc_cur = tcp_req_find_req_for_seq(rack->rc_tp, (seq + len - 1)); 11771 } else { 11772 err = 12345; 11773 } 11774 /* If we find no parameters we are in straight DGP mode */ 11775 if(rc_cur == NULL) { 11776 /* None found for this seq, just DGP for now */ 11777 rack->r_ctl.client_suggested_maxseg = 0; 11778 rack->rc_catch_up = 0; 11779 rack->r_ctl.bw_rate_cap = 0; 11780 if (rack->rc_hybrid_mode) 11781 rack_log_hybrid(rack, (seq + len - 1), NULL, HYBRID_LOG_NO_RANGE, __LINE__, err); 11782 if (rack->r_ctl.rc_last_sft) { 11783 rack->r_ctl.rc_last_sft = NULL; 11784 } 11785 return; 11786 } 11787 if ((rc_cur->hybrid_flags & TCP_HYBRID_PACING_WASSET) == 0) { 11788 /* This entry was never setup for hybrid pacing on/off etc */ 11789 return; 11790 } 11791 /* 11792 * Ok if we have a new entry *or* have never 11793 * set up an entry we need to proceed. If 11794 * we have already set it up this entry we 11795 * just continue along with what we already 11796 * setup. 11797 */ 11798 tp = rack->rc_tp; 11799 if ((rack->r_ctl.rc_last_sft != NULL) && 11800 (rack->r_ctl.rc_last_sft == rc_cur)) { 11801 /* Its already in place */ 11802 if (rack->rc_hybrid_mode) 11803 rack_log_hybrid(rack, seq, rc_cur, HYBRID_LOG_ISSAME, __LINE__, 0); 11804 return; 11805 } 11806 if (rack->rc_hybrid_mode == 0) { 11807 rack->r_ctl.rc_last_sft = rc_cur; 11808 rack_log_hybrid(rack, seq, rc_cur, HYBRID_LOG_RULES_APP, __LINE__, 0); 11809 return; 11810 } 11811 if ((rc_cur->hybrid_flags & TCP_HYBRID_PACING_CSPR) && rc_cur->cspr){ 11812 /* Compensate for all the header overhead's */ 11813 rack->r_ctl.bw_rate_cap = rack_compensate_for_linerate(rack, rc_cur->cspr); 11814 } else 11815 rack->r_ctl.bw_rate_cap = 0; 11816 if (rc_cur->hybrid_flags & TCP_HYBRID_PACING_H_MS) 11817 rack->r_ctl.client_suggested_maxseg = rc_cur->hint_maxseg; 11818 else 11819 rack->r_ctl.client_suggested_maxseg = 0; 11820 if ((rc_cur->hybrid_flags & TCP_HYBRID_PACING_CU) && 11821 (rc_cur->cspr > 0)) { 11822 uint64_t len; 11823 11824 rack->rc_catch_up = 1; 11825 /* 11826 * Calculate the deadline time, first set the 11827 * time to when the request arrived. 11828 */ 11829 rc_cur->deadline = rc_cur->localtime; 11830 /* 11831 * Next calculate the length and compensate for 11832 * TLS if need be. 11833 */ 11834 len = rc_cur->end - rc_cur->start; 11835 if (tp->t_inpcb.inp_socket->so_snd.sb_tls_info) { 11836 /* 11837 * This session is doing TLS. Take a swag guess 11838 * at the overhead. 11839 */ 11840 len += tcp_estimate_tls_overhead(tp->t_inpcb.inp_socket, len); 11841 } 11842 /* 11843 * Now considering the size, and the cspr, what is the time that 11844 * would be required at the cspr rate. Here we use the raw 11845 * cspr value since the client only looks at the raw data. We 11846 * do use len which includes TLS overhead, but not the TCP/IP etc. 11847 * That will get made up for in the CU pacing rate set. 11848 */ 11849 len *= HPTS_USEC_IN_SEC; 11850 len /= rc_cur->cspr; 11851 rc_cur->deadline += len; 11852 } else { 11853 rack->rc_catch_up = 0; 11854 rc_cur->deadline = 0; 11855 } 11856 if (rack->r_ctl.client_suggested_maxseg != 0) { 11857 /* 11858 * We need to reset the max pace segs if we have a 11859 * client_suggested_maxseg. 11860 */ 11861 rack_set_pace_segments(tp, rack, __LINE__, NULL); 11862 } 11863 rack_log_hybrid(rack, seq, rc_cur, HYBRID_LOG_RULES_APP, __LINE__, 0); 11864 /* Remember it for next time and for CU mode */ 11865 rack->r_ctl.rc_last_sft = rc_cur; 11866 } 11867 #endif 11868 11869 static void 11870 rack_chk_req_and_hybrid_on_out(struct tcp_rack *rack, tcp_seq seq, uint32_t len, uint64_t cts) 11871 { 11872 #ifdef TCP_REQUEST_TRK 11873 struct tcp_sendfile_track *ent; 11874 11875 ent = rack->r_ctl.rc_last_sft; 11876 if ((ent == NULL) || 11877 (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) || 11878 (SEQ_GEQ(seq, ent->end_seq))) { 11879 /* Time to update the track. */ 11880 rack_set_dgp_hybrid_mode(rack, seq, len); 11881 ent = rack->r_ctl.rc_last_sft; 11882 } 11883 /* Out of all */ 11884 if (ent == NULL) { 11885 return; 11886 } 11887 if (SEQ_LT(ent->end_seq, (seq + len))) { 11888 /* 11889 * This is the case where our end_seq guess 11890 * was wrong. This is usually due to TLS having 11891 * more bytes then our guess. It could also be the 11892 * case that the client sent in two requests closely 11893 * and the SB is full of both so we are sending part 11894 * of each (end|beg). In such a case lets move this 11895 * guys end to match the end of this send. That 11896 * way it will complete when all of it is acked. 11897 */ 11898 ent->end_seq = (seq + len); 11899 if (rack->rc_hybrid_mode) 11900 rack_log_hybrid_bw(rack, seq, len, 0, 0, HYBRID_LOG_EXTEND, 0, ent, __LINE__); 11901 } 11902 /* Now validate we have set the send time of this one */ 11903 if ((ent->flags & TCP_TRK_TRACK_FLG_FSND) == 0) { 11904 ent->flags |= TCP_TRK_TRACK_FLG_FSND; 11905 ent->first_send = cts; 11906 ent->sent_at_fs = rack->rc_tp->t_sndbytes; 11907 ent->rxt_at_fs = rack->rc_tp->t_snd_rxt_bytes; 11908 } 11909 #endif 11910 } 11911 11912 static void 11913 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount) 11914 { 11915 /* 11916 * The fast output path is enabled and we 11917 * have moved the cumack forward. Lets see if 11918 * we can expand forward the fast path length by 11919 * that amount. What we would ideally like to 11920 * do is increase the number of bytes in the 11921 * fast path block (left_to_send) by the 11922 * acked amount. However we have to gate that 11923 * by two factors: 11924 * 1) The amount outstanding and the rwnd of the peer 11925 * (i.e. we don't want to exceed the rwnd of the peer). 11926 * <and> 11927 * 2) The amount of data left in the socket buffer (i.e. 11928 * we can't send beyond what is in the buffer). 11929 * 11930 * Note that this does not take into account any increase 11931 * in the cwnd. We will only extend the fast path by 11932 * what was acked. 11933 */ 11934 uint32_t new_total, gating_val; 11935 11936 new_total = acked_amount + rack->r_ctl.fsb.left_to_send; 11937 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)), 11938 (tp->snd_wnd - (tp->snd_max - tp->snd_una))); 11939 if (new_total <= gating_val) { 11940 /* We can increase left_to_send by the acked amount */ 11941 counter_u64_add(rack_extended_rfo, 1); 11942 rack->r_ctl.fsb.left_to_send = new_total; 11943 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))), 11944 ("rack:%p left_to_send:%u sbavail:%u out:%u", 11945 rack, rack->r_ctl.fsb.left_to_send, 11946 sbavail(&rack->rc_inp->inp_socket->so_snd), 11947 (tp->snd_max - tp->snd_una))); 11948 11949 } 11950 } 11951 11952 static void 11953 rack_adjust_sendmap_head(struct tcp_rack *rack, struct sockbuf *sb) 11954 { 11955 /* 11956 * Here any sendmap entry that points to the 11957 * beginning mbuf must be adjusted to the correct 11958 * offset. This must be called with: 11959 * 1) The socket buffer locked 11960 * 2) snd_una adjusted to its new position. 11961 * 11962 * Note that (2) implies rack_ack_received has also 11963 * been called and all the sbcut's have been done. 11964 * 11965 * We grab the first mbuf in the socket buffer and 11966 * then go through the front of the sendmap, recalculating 11967 * the stored offset for any sendmap entry that has 11968 * that mbuf. We must use the sb functions to do this 11969 * since its possible an add was done has well as 11970 * the subtraction we may have just completed. This should 11971 * not be a penalty though, since we just referenced the sb 11972 * to go in and trim off the mbufs that we freed (of course 11973 * there will be a penalty for the sendmap references though). 11974 * 11975 * Note also with INVARIANT on, we validate with a KASSERT 11976 * that the first sendmap entry has a soff of 0. 11977 * 11978 */ 11979 struct mbuf *m; 11980 struct rack_sendmap *rsm; 11981 tcp_seq snd_una; 11982 #ifdef INVARIANTS 11983 int first_processed = 0; 11984 #endif 11985 11986 snd_una = rack->rc_tp->snd_una; 11987 SOCKBUF_LOCK_ASSERT(sb); 11988 m = sb->sb_mb; 11989 rsm = tqhash_min(rack->r_ctl.tqh); 11990 if ((rsm == NULL) || (m == NULL)) { 11991 /* Nothing outstanding */ 11992 return; 11993 } 11994 /* The very first RSM's mbuf must point to the head mbuf in the sb */ 11995 KASSERT((rsm->m == m), 11996 ("Rack:%p sb:%p rsm:%p -- first rsm mbuf not aligned to sb", 11997 rack, sb, rsm)); 11998 while (rsm->m && (rsm->m == m)) { 11999 /* one to adjust */ 12000 #ifdef INVARIANTS 12001 struct mbuf *tm; 12002 uint32_t soff; 12003 12004 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff); 12005 if ((rsm->orig_m_len != m->m_len) || 12006 (rsm->orig_t_space != M_TRAILINGROOM(m))){ 12007 rack_adjust_orig_mlen(rsm); 12008 } 12009 if (first_processed == 0) { 12010 KASSERT((rsm->soff == 0), 12011 ("Rack:%p rsm:%p -- rsm at head but soff not zero", 12012 rack, rsm)); 12013 first_processed = 1; 12014 } 12015 if ((rsm->soff != soff) || (rsm->m != tm)) { 12016 /* 12017 * This is not a fatal error, we anticipate it 12018 * might happen (the else code), so we count it here 12019 * so that under invariant we can see that it really 12020 * does happen. 12021 */ 12022 counter_u64_add(rack_adjust_map_bw, 1); 12023 } 12024 rsm->m = tm; 12025 rsm->soff = soff; 12026 if (tm) { 12027 rsm->orig_m_len = rsm->m->m_len; 12028 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 12029 } else { 12030 rsm->orig_m_len = 0; 12031 rsm->orig_t_space = 0; 12032 } 12033 #else 12034 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff); 12035 if (rsm->m) { 12036 rsm->orig_m_len = rsm->m->m_len; 12037 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 12038 } else { 12039 rsm->orig_m_len = 0; 12040 rsm->orig_t_space = 0; 12041 } 12042 #endif 12043 rsm = tqhash_next(rack->r_ctl.tqh, rsm); 12044 if (rsm == NULL) 12045 break; 12046 } 12047 } 12048 12049 #ifdef TCP_REQUEST_TRK 12050 static inline void 12051 rack_req_check_for_comp(struct tcp_rack *rack, tcp_seq th_ack) 12052 { 12053 struct tcp_sendfile_track *ent; 12054 int i; 12055 12056 if ((rack->rc_hybrid_mode == 0) && 12057 (tcp_bblogging_point_on(rack->rc_tp, TCP_BBPOINT_REQ_LEVEL_LOGGING) == 0)) { 12058 /* 12059 * Just do normal completions hybrid pacing is not on 12060 * and CLDL is off as well. 12061 */ 12062 tcp_req_check_for_comp(rack->rc_tp, th_ack); 12063 return; 12064 } 12065 /* 12066 * Originally I was just going to find the th_ack associated 12067 * with an entry. But then I realized a large strech ack could 12068 * in theory ack two or more requests at once. So instead we 12069 * need to find all entries that are completed by th_ack not 12070 * just a single entry and do our logging. 12071 */ 12072 ent = tcp_req_find_a_req_that_is_completed_by(rack->rc_tp, th_ack, &i); 12073 while (ent != NULL) { 12074 /* 12075 * We may be doing hybrid pacing or CLDL and need more details possibly 12076 * so we do it manually instead of calling 12077 * tcp_req_check_for_comp() 12078 */ 12079 uint64_t laa, tim, data, cbw, ftim; 12080 12081 /* Ok this ack frees it */ 12082 rack_log_hybrid(rack, th_ack, 12083 ent, HYBRID_LOG_REQ_COMP, __LINE__, 0); 12084 rack_log_hybrid_sends(rack, ent, __LINE__); 12085 /* calculate the time based on the ack arrival */ 12086 data = ent->end - ent->start; 12087 laa = tcp_tv_to_lusectick(&rack->r_ctl.act_rcv_time); 12088 if (ent->flags & TCP_TRK_TRACK_FLG_FSND) { 12089 if (ent->first_send > ent->localtime) 12090 ftim = ent->first_send; 12091 else 12092 ftim = ent->localtime; 12093 } else { 12094 /* TSNH */ 12095 ftim = ent->localtime; 12096 } 12097 if (laa > ent->localtime) 12098 tim = laa - ftim; 12099 else 12100 tim = 0; 12101 cbw = data * HPTS_USEC_IN_SEC; 12102 if (tim > 0) 12103 cbw /= tim; 12104 else 12105 cbw = 0; 12106 rack_log_hybrid_bw(rack, th_ack, cbw, tim, data, HYBRID_LOG_BW_MEASURE, 0, ent, __LINE__); 12107 /* 12108 * Check to see if we are freeing what we are pointing to send wise 12109 * if so be sure to NULL the pointer so we know we are no longer 12110 * set to anything. 12111 */ 12112 if (ent == rack->r_ctl.rc_last_sft) 12113 rack->r_ctl.rc_last_sft = NULL; 12114 /* Generate the log that the tcp_netflix call would have */ 12115 tcp_req_log_req_info(rack->rc_tp, ent, 12116 i, TCP_TRK_REQ_LOG_FREED, 0, 0); 12117 /* Free it and see if there is another one */ 12118 tcp_req_free_a_slot(rack->rc_tp, ent); 12119 ent = tcp_req_find_a_req_that_is_completed_by(rack->rc_tp, th_ack, &i); 12120 } 12121 } 12122 #endif 12123 12124 12125 /* 12126 * Return value of 1, we do not need to call rack_process_data(). 12127 * return value of 0, rack_process_data can be called. 12128 * For ret_val if its 0 the TCP is locked, if its non-zero 12129 * its unlocked and probably unsafe to touch the TCB. 12130 */ 12131 static int 12132 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, 12133 struct tcpcb *tp, struct tcpopt *to, 12134 uint32_t tiwin, int32_t tlen, 12135 int32_t * ofia, int32_t thflags, int32_t *ret_val) 12136 { 12137 int32_t ourfinisacked = 0; 12138 int32_t nsegs, acked_amount; 12139 int32_t acked; 12140 struct mbuf *mfree; 12141 struct tcp_rack *rack; 12142 int32_t under_pacing = 0; 12143 int32_t recovery = 0; 12144 12145 INP_WLOCK_ASSERT(tptoinpcb(tp)); 12146 12147 rack = (struct tcp_rack *)tp->t_fb_ptr; 12148 if (SEQ_GT(th->th_ack, tp->snd_max)) { 12149 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, 12150 &rack->r_ctl.challenge_ack_ts, 12151 &rack->r_ctl.challenge_ack_cnt); 12152 rack->r_wanted_output = 1; 12153 return (1); 12154 } 12155 if (rack->gp_ready && 12156 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 12157 under_pacing = 1; 12158 } 12159 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { 12160 int in_rec, dup_ack_struck = 0; 12161 int dsack_seen = 0, sacks_seen = 0; 12162 12163 in_rec = IN_FASTRECOVERY(tp->t_flags); 12164 if (rack->rc_in_persist) { 12165 tp->t_rxtshift = 0; 12166 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 12167 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 12168 } 12169 12170 if ((th->th_ack == tp->snd_una) && 12171 (tiwin == tp->snd_wnd) && 12172 ((to->to_flags & TOF_SACK) == 0)) { 12173 rack_strike_dupack(rack); 12174 dup_ack_struck = 1; 12175 } 12176 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), 12177 dup_ack_struck, &dsack_seen, &sacks_seen); 12178 if ((rack->sack_attack_disable > 0) && 12179 (th->th_ack == tp->snd_una) && 12180 (tiwin == tp->snd_wnd) && 12181 (dsack_seen == 0) && 12182 (sacks_seen > 0)) { 12183 /* 12184 * If sacks have been disabled we may 12185 * want to strike a dup-ack "ignoring" the 12186 * sack as long as the sack was not a "dsack". Note 12187 * that if no sack is sent (TOF_SACK is off) then the 12188 * normal dsack code above rack_log_ack() would have 12189 * already struck. So this is just to catch the case 12190 * were we are ignoring sacks from this guy due to 12191 * it being a suspected attacker. 12192 */ 12193 rack_strike_dupack(rack); 12194 } 12195 12196 } 12197 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 12198 /* 12199 * Old ack, behind (or duplicate to) the last one rcv'd 12200 * Note: We mark reordering is occuring if its 12201 * less than and we have not closed our window. 12202 */ 12203 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) { 12204 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12205 if (rack->r_ctl.rc_reorder_ts == 0) 12206 rack->r_ctl.rc_reorder_ts = 1; 12207 } 12208 return (0); 12209 } 12210 /* 12211 * If we reach this point, ACK is not a duplicate, i.e., it ACKs 12212 * something we sent. 12213 */ 12214 if (tp->t_flags & TF_NEEDSYN) { 12215 /* 12216 * T/TCP: Connection was half-synchronized, and our SYN has 12217 * been ACK'd (so connection is now fully synchronized). Go 12218 * to non-starred state, increment snd_una for ACK of SYN, 12219 * and check if we can do window scaling. 12220 */ 12221 tp->t_flags &= ~TF_NEEDSYN; 12222 tp->snd_una++; 12223 /* Do window scaling? */ 12224 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 12225 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 12226 tp->rcv_scale = tp->request_r_scale; 12227 /* Send window already scaled. */ 12228 } 12229 } 12230 nsegs = max(1, m->m_pkthdr.lro_nsegs); 12231 12232 acked = BYTES_THIS_ACK(tp, th); 12233 if (acked) { 12234 /* 12235 * Any time we move the cum-ack forward clear 12236 * keep-alive tied probe-not-answered. The 12237 * persists clears its own on entry. 12238 */ 12239 rack->probe_not_answered = 0; 12240 } 12241 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 12242 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 12243 /* 12244 * If we just performed our first retransmit, and the ACK arrives 12245 * within our recovery window, then it was a mistake to do the 12246 * retransmit in the first place. Recover our original cwnd and 12247 * ssthresh, and proceed to transmit where we left off. 12248 */ 12249 if ((tp->t_flags & TF_PREVVALID) && 12250 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 12251 tp->t_flags &= ~TF_PREVVALID; 12252 if (tp->t_rxtshift == 1 && 12253 (int)(ticks - tp->t_badrxtwin) < 0) 12254 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__); 12255 } 12256 if (acked) { 12257 /* assure we are not backed off */ 12258 tp->t_rxtshift = 0; 12259 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 12260 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 12261 rack->rc_tlp_in_progress = 0; 12262 rack->r_ctl.rc_tlp_cnt_out = 0; 12263 /* 12264 * If it is the RXT timer we want to 12265 * stop it, so we can restart a TLP. 12266 */ 12267 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 12268 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 12269 #ifdef TCP_REQUEST_TRK 12270 rack_req_check_for_comp(rack, th->th_ack); 12271 #endif 12272 } 12273 /* 12274 * If we have a timestamp reply, update smoothed round trip time. If 12275 * no timestamp is present but transmit timer is running and timed 12276 * sequence number was acked, update smoothed round trip time. Since 12277 * we now have an rtt measurement, cancel the timer backoff (cf., 12278 * Phil Karn's retransmit alg.). Recompute the initial retransmit 12279 * timer. 12280 * 12281 * Some boxes send broken timestamp replies during the SYN+ACK 12282 * phase, ignore timestamps of 0 or we could calculate a huge RTT 12283 * and blow up the retransmit timer. 12284 */ 12285 /* 12286 * If all outstanding data is acked, stop retransmit timer and 12287 * remember to restart (more output or persist). If there is more 12288 * data to be acked, restart retransmit timer, using current 12289 * (possibly backed-off) value. 12290 */ 12291 if (acked == 0) { 12292 if (ofia) 12293 *ofia = ourfinisacked; 12294 return (0); 12295 } 12296 if (IN_RECOVERY(tp->t_flags)) { 12297 if (SEQ_LT(th->th_ack, tp->snd_recover) && 12298 (SEQ_LT(th->th_ack, tp->snd_max))) { 12299 tcp_rack_partialack(tp); 12300 } else { 12301 rack_post_recovery(tp, th->th_ack); 12302 recovery = 1; 12303 } 12304 } 12305 /* 12306 * Let the congestion control algorithm update congestion control 12307 * related information. This typically means increasing the 12308 * congestion window. 12309 */ 12310 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery); 12311 SOCKBUF_LOCK(&so->so_snd); 12312 acked_amount = min(acked, (int)sbavail(&so->so_snd)); 12313 tp->snd_wnd -= acked_amount; 12314 mfree = sbcut_locked(&so->so_snd, acked_amount); 12315 if ((sbused(&so->so_snd) == 0) && 12316 (acked > acked_amount) && 12317 (tp->t_state >= TCPS_FIN_WAIT_1) && 12318 (tp->t_flags & TF_SENTFIN)) { 12319 /* 12320 * We must be sure our fin 12321 * was sent and acked (we can be 12322 * in FIN_WAIT_1 without having 12323 * sent the fin). 12324 */ 12325 ourfinisacked = 1; 12326 } 12327 tp->snd_una = th->th_ack; 12328 /* wakeups? */ 12329 if (acked_amount && sbavail(&so->so_snd)) 12330 rack_adjust_sendmap_head(rack, &so->so_snd); 12331 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 12332 /* NB: sowwakeup_locked() does an implicit unlock. */ 12333 sowwakeup_locked(so); 12334 /* now check the rxt clamps */ 12335 if ((recovery == 1) && 12336 (rack->excess_rxt_on) && 12337 (rack->r_cwnd_was_clamped == 0)) { 12338 do_rack_excess_rxt(tp, rack); 12339 } else if (rack->r_cwnd_was_clamped) 12340 do_rack_check_for_unclamp(tp, rack); 12341 m_freem(mfree); 12342 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 12343 tp->snd_recover = tp->snd_una; 12344 12345 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { 12346 tp->snd_nxt = tp->snd_una; 12347 } 12348 if (under_pacing && 12349 (rack->use_fixed_rate == 0) && 12350 (rack->in_probe_rtt == 0) && 12351 rack->rc_gp_dyn_mul && 12352 rack->rc_always_pace) { 12353 /* Check if we are dragging bottom */ 12354 rack_check_bottom_drag(tp, rack, so); 12355 } 12356 if (tp->snd_una == tp->snd_max) { 12357 /* Nothing left outstanding */ 12358 tp->t_flags &= ~TF_PREVVALID; 12359 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 12360 rack->r_ctl.retran_during_recovery = 0; 12361 rack->r_ctl.dsack_byte_cnt = 0; 12362 if (rack->r_ctl.rc_went_idle_time == 0) 12363 rack->r_ctl.rc_went_idle_time = 1; 12364 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 12365 if (sbavail(&tptosocket(tp)->so_snd) == 0) 12366 tp->t_acktime = 0; 12367 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 12368 rack->rc_suspicious = 0; 12369 /* Set need output so persist might get set */ 12370 rack->r_wanted_output = 1; 12371 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 12372 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 12373 (sbavail(&so->so_snd) == 0) && 12374 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 12375 /* 12376 * The socket was gone and the 12377 * peer sent data (now or in the past), time to 12378 * reset him. 12379 */ 12380 *ret_val = 1; 12381 /* tcp_close will kill the inp pre-log the Reset */ 12382 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 12383 tp = tcp_close(tp); 12384 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); 12385 return (1); 12386 } 12387 } 12388 if (ofia) 12389 *ofia = ourfinisacked; 12390 return (0); 12391 } 12392 12393 12394 static void 12395 rack_log_collapse(struct tcp_rack *rack, uint32_t cnt, uint32_t split, uint32_t out, int line, 12396 int dir, uint32_t flags, struct rack_sendmap *rsm) 12397 { 12398 if (tcp_bblogging_on(rack->rc_tp)) { 12399 union tcp_log_stackspecific log; 12400 struct timeval tv; 12401 12402 memset(&log, 0, sizeof(log)); 12403 log.u_bbr.flex1 = cnt; 12404 log.u_bbr.flex2 = split; 12405 log.u_bbr.flex3 = out; 12406 log.u_bbr.flex4 = line; 12407 log.u_bbr.flex5 = rack->r_must_retran; 12408 log.u_bbr.flex6 = flags; 12409 log.u_bbr.flex7 = rack->rc_has_collapsed; 12410 log.u_bbr.flex8 = dir; /* 12411 * 1 is collapsed, 0 is uncollapsed, 12412 * 2 is log of a rsm being marked, 3 is a split. 12413 */ 12414 if (rsm == NULL) 12415 log.u_bbr.rttProp = 0; 12416 else 12417 log.u_bbr.rttProp = (uint64_t)rsm; 12418 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 12419 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 12420 TCP_LOG_EVENTP(rack->rc_tp, NULL, 12421 &rack->rc_inp->inp_socket->so_rcv, 12422 &rack->rc_inp->inp_socket->so_snd, 12423 TCP_RACK_LOG_COLLAPSE, 0, 12424 0, &log, false, &tv); 12425 } 12426 } 12427 12428 static void 12429 rack_collapsed_window(struct tcp_rack *rack, uint32_t out, tcp_seq th_ack, int line) 12430 { 12431 /* 12432 * Here all we do is mark the collapsed point and set the flag. 12433 * This may happen again and again, but there is no 12434 * sense splitting our map until we know where the 12435 * peer finally lands in the collapse. 12436 */ 12437 tcp_trace_point(rack->rc_tp, TCP_TP_COLLAPSED_WND); 12438 if ((rack->rc_has_collapsed == 0) || 12439 (rack->r_ctl.last_collapse_point != (th_ack + rack->rc_tp->snd_wnd))) 12440 counter_u64_add(rack_collapsed_win_seen, 1); 12441 rack->r_ctl.last_collapse_point = th_ack + rack->rc_tp->snd_wnd; 12442 rack->r_ctl.high_collapse_point = rack->rc_tp->snd_max; 12443 rack->rc_has_collapsed = 1; 12444 rack->r_collapse_point_valid = 1; 12445 rack_log_collapse(rack, 0, th_ack, rack->r_ctl.last_collapse_point, line, 1, 0, NULL); 12446 } 12447 12448 static void 12449 rack_un_collapse_window(struct tcp_rack *rack, int line) 12450 { 12451 struct rack_sendmap *nrsm, *rsm; 12452 int cnt = 0, split = 0; 12453 int insret __diagused; 12454 12455 12456 tcp_trace_point(rack->rc_tp, TCP_TP_COLLAPSED_WND); 12457 rack->rc_has_collapsed = 0; 12458 rsm = tqhash_find(rack->r_ctl.tqh, rack->r_ctl.last_collapse_point); 12459 if (rsm == NULL) { 12460 /* Nothing to do maybe the peer ack'ed it all */ 12461 rack_log_collapse(rack, 0, 0, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL); 12462 return; 12463 } 12464 /* Now do we need to split this one? */ 12465 if (SEQ_GT(rack->r_ctl.last_collapse_point, rsm->r_start)) { 12466 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 12467 rack->r_ctl.last_collapse_point, line, 3, rsm->r_flags, rsm); 12468 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 12469 if (nrsm == NULL) { 12470 /* We can't get a rsm, mark all? */ 12471 nrsm = rsm; 12472 goto no_split; 12473 } 12474 /* Clone it */ 12475 split = 1; 12476 rack_clone_rsm(rack, nrsm, rsm, rack->r_ctl.last_collapse_point); 12477 #ifndef INVARIANTS 12478 (void)tqhash_insert(rack->r_ctl.tqh, nrsm); 12479 #else 12480 if ((insret = tqhash_insert(rack->r_ctl.tqh, nrsm)) != 0) { 12481 panic("Insert in rb tree of %p fails ret:%d rack:%p rsm:%p", 12482 nrsm, insret, rack, rsm); 12483 } 12484 #endif 12485 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 12486 rack->r_ctl.last_collapse_point, __LINE__); 12487 if (rsm->r_in_tmap) { 12488 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 12489 nrsm->r_in_tmap = 1; 12490 } 12491 /* 12492 * Set in the new RSM as the 12493 * collapsed starting point 12494 */ 12495 rsm = nrsm; 12496 } 12497 12498 no_split: 12499 TQHASH_FOREACH_FROM(nrsm, rack->r_ctl.tqh, rsm) { 12500 cnt++; 12501 nrsm->r_flags |= RACK_RWND_COLLAPSED; 12502 rack_log_collapse(rack, nrsm->r_start, nrsm->r_end, 0, line, 4, nrsm->r_flags, nrsm); 12503 cnt++; 12504 } 12505 if (cnt) { 12506 counter_u64_add(rack_collapsed_win, 1); 12507 } 12508 rack_log_collapse(rack, cnt, split, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL); 12509 } 12510 12511 static void 12512 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, 12513 int32_t tlen, int32_t tfo_syn) 12514 { 12515 if (DELAY_ACK(tp, tlen) || tfo_syn) { 12516 rack_timer_cancel(tp, rack, 12517 rack->r_ctl.rc_rcvtime, __LINE__); 12518 tp->t_flags |= TF_DELACK; 12519 } else { 12520 rack->r_wanted_output = 1; 12521 tp->t_flags |= TF_ACKNOW; 12522 } 12523 } 12524 12525 static void 12526 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack) 12527 { 12528 /* 12529 * If fast output is in progress, lets validate that 12530 * the new window did not shrink on us and make it 12531 * so fast output should end. 12532 */ 12533 if (rack->r_fast_output) { 12534 uint32_t out; 12535 12536 /* 12537 * Calculate what we will send if left as is 12538 * and compare that to our send window. 12539 */ 12540 out = ctf_outstanding(tp); 12541 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) { 12542 /* ok we have an issue */ 12543 if (out >= tp->snd_wnd) { 12544 /* Turn off fast output the window is met or collapsed */ 12545 rack->r_fast_output = 0; 12546 } else { 12547 /* we have some room left */ 12548 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out; 12549 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) { 12550 /* If not at least 1 full segment never mind */ 12551 rack->r_fast_output = 0; 12552 } 12553 } 12554 } 12555 } 12556 } 12557 12558 12559 /* 12560 * Return value of 1, the TCB is unlocked and most 12561 * likely gone, return value of 0, the TCP is still 12562 * locked. 12563 */ 12564 static int 12565 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, 12566 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 12567 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) 12568 { 12569 /* 12570 * Update window information. Don't look at window if no ACK: TAC's 12571 * send garbage on first SYN. 12572 */ 12573 int32_t nsegs; 12574 int32_t tfo_syn; 12575 struct tcp_rack *rack; 12576 12577 INP_WLOCK_ASSERT(tptoinpcb(tp)); 12578 12579 rack = (struct tcp_rack *)tp->t_fb_ptr; 12580 nsegs = max(1, m->m_pkthdr.lro_nsegs); 12581 if ((thflags & TH_ACK) && 12582 (SEQ_LT(tp->snd_wl1, th->th_seq) || 12583 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 12584 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 12585 /* keep track of pure window updates */ 12586 if (tlen == 0 && 12587 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 12588 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 12589 tp->snd_wnd = tiwin; 12590 rack_validate_fo_sendwin_up(tp, rack); 12591 tp->snd_wl1 = th->th_seq; 12592 tp->snd_wl2 = th->th_ack; 12593 if (tp->snd_wnd > tp->max_sndwnd) 12594 tp->max_sndwnd = tp->snd_wnd; 12595 rack->r_wanted_output = 1; 12596 } else if (thflags & TH_ACK) { 12597 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { 12598 tp->snd_wnd = tiwin; 12599 rack_validate_fo_sendwin_up(tp, rack); 12600 tp->snd_wl1 = th->th_seq; 12601 tp->snd_wl2 = th->th_ack; 12602 } 12603 } 12604 if (tp->snd_wnd < ctf_outstanding(tp)) 12605 /* The peer collapsed the window */ 12606 rack_collapsed_window(rack, ctf_outstanding(tp), th->th_ack, __LINE__); 12607 else if (rack->rc_has_collapsed) 12608 rack_un_collapse_window(rack, __LINE__); 12609 if ((rack->r_collapse_point_valid) && 12610 (SEQ_GT(th->th_ack, rack->r_ctl.high_collapse_point))) 12611 rack->r_collapse_point_valid = 0; 12612 /* Was persist timer active and now we have window space? */ 12613 if ((rack->rc_in_persist != 0) && 12614 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 12615 rack->r_ctl.rc_pace_min_segs))) { 12616 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); 12617 tp->snd_nxt = tp->snd_max; 12618 /* Make sure we output to start the timer */ 12619 rack->r_wanted_output = 1; 12620 } 12621 /* Do we enter persists? */ 12622 if ((rack->rc_in_persist == 0) && 12623 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 12624 TCPS_HAVEESTABLISHED(tp->t_state) && 12625 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 12626 sbavail(&tptosocket(tp)->so_snd) && 12627 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) { 12628 /* 12629 * Here the rwnd is less than 12630 * the pacing size, we are established, 12631 * nothing is outstanding, and there is 12632 * data to send. Enter persists. 12633 */ 12634 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime, tp->snd_una); 12635 } 12636 if (tp->t_flags2 & TF2_DROP_AF_DATA) { 12637 m_freem(m); 12638 return (0); 12639 } 12640 /* 12641 * don't process the URG bit, ignore them drag 12642 * along the up. 12643 */ 12644 tp->rcv_up = tp->rcv_nxt; 12645 12646 /* 12647 * Process the segment text, merging it into the TCP sequencing 12648 * queue, and arranging for acknowledgment of receipt if necessary. 12649 * This process logically involves adjusting tp->rcv_wnd as data is 12650 * presented to the user (this happens in tcp_usrreq.c, case 12651 * PRU_RCVD). If a FIN has already been received on this connection 12652 * then we just ignore the text. 12653 */ 12654 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 12655 IS_FASTOPEN(tp->t_flags)); 12656 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 12657 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 12658 tcp_seq save_start = th->th_seq; 12659 tcp_seq save_rnxt = tp->rcv_nxt; 12660 int save_tlen = tlen; 12661 12662 m_adj(m, drop_hdrlen); /* delayed header drop */ 12663 /* 12664 * Insert segment which includes th into TCP reassembly 12665 * queue with control block tp. Set thflags to whether 12666 * reassembly now includes a segment with FIN. This handles 12667 * the common case inline (segment is the next to be 12668 * received on an established connection, and the queue is 12669 * empty), avoiding linkage into and removal from the queue 12670 * and repetition of various conversions. Set DELACK for 12671 * segments received in order, but ack immediately when 12672 * segments are out of order (so fast retransmit can work). 12673 */ 12674 if (th->th_seq == tp->rcv_nxt && 12675 SEGQ_EMPTY(tp) && 12676 (TCPS_HAVEESTABLISHED(tp->t_state) || 12677 tfo_syn)) { 12678 #ifdef NETFLIX_SB_LIMITS 12679 u_int mcnt, appended; 12680 12681 if (so->so_rcv.sb_shlim) { 12682 mcnt = m_memcnt(m); 12683 appended = 0; 12684 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 12685 CFO_NOSLEEP, NULL) == false) { 12686 counter_u64_add(tcp_sb_shlim_fails, 1); 12687 m_freem(m); 12688 return (0); 12689 } 12690 } 12691 #endif 12692 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); 12693 tp->rcv_nxt += tlen; 12694 if (tlen && 12695 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 12696 (tp->t_fbyte_in == 0)) { 12697 tp->t_fbyte_in = ticks; 12698 if (tp->t_fbyte_in == 0) 12699 tp->t_fbyte_in = 1; 12700 if (tp->t_fbyte_out && tp->t_fbyte_in) 12701 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 12702 } 12703 thflags = tcp_get_flags(th) & TH_FIN; 12704 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 12705 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 12706 SOCKBUF_LOCK(&so->so_rcv); 12707 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 12708 m_freem(m); 12709 } else 12710 #ifdef NETFLIX_SB_LIMITS 12711 appended = 12712 #endif 12713 sbappendstream_locked(&so->so_rcv, m, 0); 12714 12715 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 12716 /* NB: sorwakeup_locked() does an implicit unlock. */ 12717 sorwakeup_locked(so); 12718 #ifdef NETFLIX_SB_LIMITS 12719 if (so->so_rcv.sb_shlim && appended != mcnt) 12720 counter_fo_release(so->so_rcv.sb_shlim, 12721 mcnt - appended); 12722 #endif 12723 } else { 12724 /* 12725 * XXX: Due to the header drop above "th" is 12726 * theoretically invalid by now. Fortunately 12727 * m_adj() doesn't actually frees any mbufs when 12728 * trimming from the head. 12729 */ 12730 tcp_seq temp = save_start; 12731 12732 thflags = tcp_reass(tp, th, &temp, &tlen, m); 12733 tp->t_flags |= TF_ACKNOW; 12734 if (tp->t_flags & TF_WAKESOR) { 12735 tp->t_flags &= ~TF_WAKESOR; 12736 /* NB: sorwakeup_locked() does an implicit unlock. */ 12737 sorwakeup_locked(so); 12738 } 12739 } 12740 if ((tp->t_flags & TF_SACK_PERMIT) && 12741 (save_tlen > 0) && 12742 TCPS_HAVEESTABLISHED(tp->t_state)) { 12743 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 12744 /* 12745 * DSACK actually handled in the fastpath 12746 * above. 12747 */ 12748 tcp_update_sack_list(tp, save_start, 12749 save_start + save_tlen); 12750 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 12751 if ((tp->rcv_numsacks >= 1) && 12752 (tp->sackblks[0].end == save_start)) { 12753 /* 12754 * Partial overlap, recorded at todrop 12755 * above. 12756 */ 12757 tcp_update_sack_list(tp, 12758 tp->sackblks[0].start, 12759 tp->sackblks[0].end); 12760 } else { 12761 tcp_update_dsack_list(tp, save_start, 12762 save_start + save_tlen); 12763 } 12764 } else if (tlen >= save_tlen) { 12765 /* Update of sackblks. */ 12766 tcp_update_dsack_list(tp, save_start, 12767 save_start + save_tlen); 12768 } else if (tlen > 0) { 12769 tcp_update_dsack_list(tp, save_start, 12770 save_start + tlen); 12771 } 12772 } 12773 } else { 12774 m_freem(m); 12775 thflags &= ~TH_FIN; 12776 } 12777 12778 /* 12779 * If FIN is received ACK the FIN and let the user know that the 12780 * connection is closing. 12781 */ 12782 if (thflags & TH_FIN) { 12783 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 12784 /* The socket upcall is handled by socantrcvmore. */ 12785 socantrcvmore(so); 12786 /* 12787 * If connection is half-synchronized (ie NEEDSYN 12788 * flag on) then delay ACK, so it may be piggybacked 12789 * when SYN is sent. Otherwise, since we received a 12790 * FIN then no more input can be expected, send ACK 12791 * now. 12792 */ 12793 if (tp->t_flags & TF_NEEDSYN) { 12794 rack_timer_cancel(tp, rack, 12795 rack->r_ctl.rc_rcvtime, __LINE__); 12796 tp->t_flags |= TF_DELACK; 12797 } else { 12798 tp->t_flags |= TF_ACKNOW; 12799 } 12800 tp->rcv_nxt++; 12801 } 12802 switch (tp->t_state) { 12803 /* 12804 * In SYN_RECEIVED and ESTABLISHED STATES enter the 12805 * CLOSE_WAIT state. 12806 */ 12807 case TCPS_SYN_RECEIVED: 12808 tp->t_starttime = ticks; 12809 /* FALLTHROUGH */ 12810 case TCPS_ESTABLISHED: 12811 rack_timer_cancel(tp, rack, 12812 rack->r_ctl.rc_rcvtime, __LINE__); 12813 tcp_state_change(tp, TCPS_CLOSE_WAIT); 12814 break; 12815 12816 /* 12817 * If still in FIN_WAIT_1 STATE FIN has not been 12818 * acked so enter the CLOSING state. 12819 */ 12820 case TCPS_FIN_WAIT_1: 12821 rack_timer_cancel(tp, rack, 12822 rack->r_ctl.rc_rcvtime, __LINE__); 12823 tcp_state_change(tp, TCPS_CLOSING); 12824 break; 12825 12826 /* 12827 * In FIN_WAIT_2 state enter the TIME_WAIT state, 12828 * starting the time-wait timer, turning off the 12829 * other standard timers. 12830 */ 12831 case TCPS_FIN_WAIT_2: 12832 rack_timer_cancel(tp, rack, 12833 rack->r_ctl.rc_rcvtime, __LINE__); 12834 tcp_twstart(tp); 12835 return (1); 12836 } 12837 } 12838 /* 12839 * Return any desired output. 12840 */ 12841 if ((tp->t_flags & TF_ACKNOW) || 12842 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { 12843 rack->r_wanted_output = 1; 12844 } 12845 return (0); 12846 } 12847 12848 /* 12849 * Here nothing is really faster, its just that we 12850 * have broken out the fast-data path also just like 12851 * the fast-ack. 12852 */ 12853 static int 12854 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, 12855 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12856 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) 12857 { 12858 int32_t nsegs; 12859 int32_t newsize = 0; /* automatic sockbuf scaling */ 12860 struct tcp_rack *rack; 12861 #ifdef NETFLIX_SB_LIMITS 12862 u_int mcnt, appended; 12863 #endif 12864 12865 /* 12866 * If last ACK falls within this segment's sequence numbers, record 12867 * the timestamp. NOTE that the test is modified according to the 12868 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 12869 */ 12870 if (__predict_false(th->th_seq != tp->rcv_nxt)) { 12871 return (0); 12872 } 12873 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 12874 return (0); 12875 } 12876 if (tiwin && tiwin != tp->snd_wnd) { 12877 return (0); 12878 } 12879 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { 12880 return (0); 12881 } 12882 if (__predict_false((to->to_flags & TOF_TS) && 12883 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { 12884 return (0); 12885 } 12886 if (__predict_false((th->th_ack != tp->snd_una))) { 12887 return (0); 12888 } 12889 if (__predict_false(tlen > sbspace(&so->so_rcv))) { 12890 return (0); 12891 } 12892 if ((to->to_flags & TOF_TS) != 0 && 12893 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 12894 tp->ts_recent_age = tcp_ts_getticks(); 12895 tp->ts_recent = to->to_tsval; 12896 } 12897 rack = (struct tcp_rack *)tp->t_fb_ptr; 12898 /* 12899 * This is a pure, in-sequence data packet with nothing on the 12900 * reassembly queue and we have enough buffer space to take it. 12901 */ 12902 nsegs = max(1, m->m_pkthdr.lro_nsegs); 12903 12904 #ifdef NETFLIX_SB_LIMITS 12905 if (so->so_rcv.sb_shlim) { 12906 mcnt = m_memcnt(m); 12907 appended = 0; 12908 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 12909 CFO_NOSLEEP, NULL) == false) { 12910 counter_u64_add(tcp_sb_shlim_fails, 1); 12911 m_freem(m); 12912 return (1); 12913 } 12914 } 12915 #endif 12916 /* Clean receiver SACK report if present */ 12917 if (tp->rcv_numsacks) 12918 tcp_clean_sackreport(tp); 12919 KMOD_TCPSTAT_INC(tcps_preddat); 12920 tp->rcv_nxt += tlen; 12921 if (tlen && 12922 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 12923 (tp->t_fbyte_in == 0)) { 12924 tp->t_fbyte_in = ticks; 12925 if (tp->t_fbyte_in == 0) 12926 tp->t_fbyte_in = 1; 12927 if (tp->t_fbyte_out && tp->t_fbyte_in) 12928 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 12929 } 12930 /* 12931 * Pull snd_wl1 up to prevent seq wrap relative to th_seq. 12932 */ 12933 tp->snd_wl1 = th->th_seq; 12934 /* 12935 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. 12936 */ 12937 tp->rcv_up = tp->rcv_nxt; 12938 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 12939 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 12940 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 12941 12942 /* Add data to socket buffer. */ 12943 SOCKBUF_LOCK(&so->so_rcv); 12944 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 12945 m_freem(m); 12946 } else { 12947 /* 12948 * Set new socket buffer size. Give up when limit is 12949 * reached. 12950 */ 12951 if (newsize) 12952 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 12953 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 12954 m_adj(m, drop_hdrlen); /* delayed header drop */ 12955 #ifdef NETFLIX_SB_LIMITS 12956 appended = 12957 #endif 12958 sbappendstream_locked(&so->so_rcv, m, 0); 12959 ctf_calc_rwin(so, tp); 12960 } 12961 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 12962 /* NB: sorwakeup_locked() does an implicit unlock. */ 12963 sorwakeup_locked(so); 12964 #ifdef NETFLIX_SB_LIMITS 12965 if (so->so_rcv.sb_shlim && mcnt != appended) 12966 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); 12967 #endif 12968 rack_handle_delayed_ack(tp, rack, tlen, 0); 12969 if (tp->snd_una == tp->snd_max) 12970 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 12971 return (1); 12972 } 12973 12974 /* 12975 * This subfunction is used to try to highly optimize the 12976 * fast path. We again allow window updates that are 12977 * in sequence to remain in the fast-path. We also add 12978 * in the __predict's to attempt to help the compiler. 12979 * Note that if we return a 0, then we can *not* process 12980 * it and the caller should push the packet into the 12981 * slow-path. 12982 */ 12983 static int 12984 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 12985 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 12986 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) 12987 { 12988 int32_t acked; 12989 int32_t nsegs; 12990 int32_t under_pacing = 0; 12991 struct tcp_rack *rack; 12992 12993 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 12994 /* Old ack, behind (or duplicate to) the last one rcv'd */ 12995 return (0); 12996 } 12997 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { 12998 /* Above what we have sent? */ 12999 return (0); 13000 } 13001 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 13002 /* We are retransmitting */ 13003 return (0); 13004 } 13005 if (__predict_false(tiwin == 0)) { 13006 /* zero window */ 13007 return (0); 13008 } 13009 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { 13010 /* We need a SYN or a FIN, unlikely.. */ 13011 return (0); 13012 } 13013 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { 13014 /* Timestamp is behind .. old ack with seq wrap? */ 13015 return (0); 13016 } 13017 if (__predict_false(IN_RECOVERY(tp->t_flags))) { 13018 /* Still recovering */ 13019 return (0); 13020 } 13021 rack = (struct tcp_rack *)tp->t_fb_ptr; 13022 if (rack->r_ctl.rc_sacked) { 13023 /* We have sack holes on our scoreboard */ 13024 return (0); 13025 } 13026 /* Ok if we reach here, we can process a fast-ack */ 13027 if (rack->gp_ready && 13028 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 13029 under_pacing = 1; 13030 } 13031 nsegs = max(1, m->m_pkthdr.lro_nsegs); 13032 rack_log_ack(tp, to, th, 0, 0, NULL, NULL); 13033 /* Did the window get updated? */ 13034 if (tiwin != tp->snd_wnd) { 13035 tp->snd_wnd = tiwin; 13036 rack_validate_fo_sendwin_up(tp, rack); 13037 tp->snd_wl1 = th->th_seq; 13038 if (tp->snd_wnd > tp->max_sndwnd) 13039 tp->max_sndwnd = tp->snd_wnd; 13040 } 13041 /* Do we exit persists? */ 13042 if ((rack->rc_in_persist != 0) && 13043 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 13044 rack->r_ctl.rc_pace_min_segs))) { 13045 rack_exit_persist(tp, rack, cts); 13046 } 13047 /* Do we enter persists? */ 13048 if ((rack->rc_in_persist == 0) && 13049 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 13050 TCPS_HAVEESTABLISHED(tp->t_state) && 13051 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 13052 sbavail(&tptosocket(tp)->so_snd) && 13053 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) { 13054 /* 13055 * Here the rwnd is less than 13056 * the pacing size, we are established, 13057 * nothing is outstanding, and there is 13058 * data to send. Enter persists. 13059 */ 13060 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime, th->th_ack); 13061 } 13062 /* 13063 * If last ACK falls within this segment's sequence numbers, record 13064 * the timestamp. NOTE that the test is modified according to the 13065 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 13066 */ 13067 if ((to->to_flags & TOF_TS) != 0 && 13068 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 13069 tp->ts_recent_age = tcp_ts_getticks(); 13070 tp->ts_recent = to->to_tsval; 13071 } 13072 /* 13073 * This is a pure ack for outstanding data. 13074 */ 13075 KMOD_TCPSTAT_INC(tcps_predack); 13076 13077 /* 13078 * "bad retransmit" recovery. 13079 */ 13080 if ((tp->t_flags & TF_PREVVALID) && 13081 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 13082 tp->t_flags &= ~TF_PREVVALID; 13083 if (tp->t_rxtshift == 1 && 13084 (int)(ticks - tp->t_badrxtwin) < 0) 13085 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__); 13086 } 13087 /* 13088 * Recalculate the transmit timer / rtt. 13089 * 13090 * Some boxes send broken timestamp replies during the SYN+ACK 13091 * phase, ignore timestamps of 0 or we could calculate a huge RTT 13092 * and blow up the retransmit timer. 13093 */ 13094 acked = BYTES_THIS_ACK(tp, th); 13095 13096 #ifdef TCP_HHOOK 13097 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 13098 hhook_run_tcp_est_in(tp, th, to); 13099 #endif 13100 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 13101 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 13102 if (acked) { 13103 struct mbuf *mfree; 13104 13105 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0); 13106 SOCKBUF_LOCK(&so->so_snd); 13107 mfree = sbcut_locked(&so->so_snd, acked); 13108 tp->snd_una = th->th_ack; 13109 /* Note we want to hold the sb lock through the sendmap adjust */ 13110 rack_adjust_sendmap_head(rack, &so->so_snd); 13111 /* Wake up the socket if we have room to write more */ 13112 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 13113 sowwakeup_locked(so); 13114 m_freem(mfree); 13115 tp->t_rxtshift = 0; 13116 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 13117 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 13118 rack->rc_tlp_in_progress = 0; 13119 rack->r_ctl.rc_tlp_cnt_out = 0; 13120 /* 13121 * If it is the RXT timer we want to 13122 * stop it, so we can restart a TLP. 13123 */ 13124 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 13125 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13126 13127 #ifdef TCP_REQUEST_TRK 13128 rack_req_check_for_comp(rack, th->th_ack); 13129 #endif 13130 } 13131 /* 13132 * Let the congestion control algorithm update congestion control 13133 * related information. This typically means increasing the 13134 * congestion window. 13135 */ 13136 if (tp->snd_wnd < ctf_outstanding(tp)) { 13137 /* The peer collapsed the window */ 13138 rack_collapsed_window(rack, ctf_outstanding(tp), th->th_ack, __LINE__); 13139 } else if (rack->rc_has_collapsed) 13140 rack_un_collapse_window(rack, __LINE__); 13141 if ((rack->r_collapse_point_valid) && 13142 (SEQ_GT(tp->snd_una, rack->r_ctl.high_collapse_point))) 13143 rack->r_collapse_point_valid = 0; 13144 /* 13145 * Pull snd_wl2 up to prevent seq wrap relative to th_ack. 13146 */ 13147 tp->snd_wl2 = th->th_ack; 13148 tp->t_dupacks = 0; 13149 m_freem(m); 13150 /* ND6_HINT(tp); *//* Some progress has been made. */ 13151 13152 /* 13153 * If all outstanding data are acked, stop retransmit timer, 13154 * otherwise restart timer using current (possibly backed-off) 13155 * value. If process is waiting for space, wakeup/selwakeup/signal. 13156 * If data are ready to send, let tcp_output decide between more 13157 * output or persist. 13158 */ 13159 if (under_pacing && 13160 (rack->use_fixed_rate == 0) && 13161 (rack->in_probe_rtt == 0) && 13162 rack->rc_gp_dyn_mul && 13163 rack->rc_always_pace) { 13164 /* Check if we are dragging bottom */ 13165 rack_check_bottom_drag(tp, rack, so); 13166 } 13167 if (tp->snd_una == tp->snd_max) { 13168 tp->t_flags &= ~TF_PREVVALID; 13169 rack->r_ctl.retran_during_recovery = 0; 13170 rack->rc_suspicious = 0; 13171 rack->r_ctl.dsack_byte_cnt = 0; 13172 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 13173 if (rack->r_ctl.rc_went_idle_time == 0) 13174 rack->r_ctl.rc_went_idle_time = 1; 13175 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 13176 if (sbavail(&tptosocket(tp)->so_snd) == 0) 13177 tp->t_acktime = 0; 13178 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13179 } 13180 if (acked && rack->r_fast_output) 13181 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked); 13182 if (sbavail(&so->so_snd)) { 13183 rack->r_wanted_output = 1; 13184 } 13185 return (1); 13186 } 13187 13188 /* 13189 * Return value of 1, the TCB is unlocked and most 13190 * likely gone, return value of 0, the TCP is still 13191 * locked. 13192 */ 13193 static int 13194 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, 13195 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 13196 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 13197 { 13198 int32_t ret_val = 0; 13199 int32_t todrop; 13200 int32_t ourfinisacked = 0; 13201 struct tcp_rack *rack; 13202 13203 INP_WLOCK_ASSERT(tptoinpcb(tp)); 13204 13205 ctf_calc_rwin(so, tp); 13206 /* 13207 * If the state is SYN_SENT: if seg contains an ACK, but not for our 13208 * SYN, drop the input. if seg contains a RST, then drop the 13209 * connection. if seg does not contain SYN, then drop it. Otherwise 13210 * this is an acceptable SYN segment initialize tp->rcv_nxt and 13211 * tp->irs if seg contains ack then advance tp->snd_una if seg 13212 * contains an ECE and ECN support is enabled, the stream is ECN 13213 * capable. if SYN has been acked change to ESTABLISHED else 13214 * SYN_RCVD state arrange for segment to be acked (eventually) 13215 * continue processing rest of data/controls. 13216 */ 13217 if ((thflags & TH_ACK) && 13218 (SEQ_LEQ(th->th_ack, tp->iss) || 13219 SEQ_GT(th->th_ack, tp->snd_max))) { 13220 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 13221 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13222 return (1); 13223 } 13224 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { 13225 TCP_PROBE5(connect__refused, NULL, tp, 13226 mtod(m, const char *), tp, th); 13227 tp = tcp_drop(tp, ECONNREFUSED); 13228 ctf_do_drop(m, tp); 13229 return (1); 13230 } 13231 if (thflags & TH_RST) { 13232 ctf_do_drop(m, tp); 13233 return (1); 13234 } 13235 if (!(thflags & TH_SYN)) { 13236 ctf_do_drop(m, tp); 13237 return (1); 13238 } 13239 tp->irs = th->th_seq; 13240 tcp_rcvseqinit(tp); 13241 rack = (struct tcp_rack *)tp->t_fb_ptr; 13242 if (thflags & TH_ACK) { 13243 int tfo_partial = 0; 13244 13245 KMOD_TCPSTAT_INC(tcps_connects); 13246 soisconnected(so); 13247 #ifdef MAC 13248 mac_socketpeer_set_from_mbuf(m, so); 13249 #endif 13250 /* Do window scaling on this connection? */ 13251 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 13252 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 13253 tp->rcv_scale = tp->request_r_scale; 13254 } 13255 tp->rcv_adv += min(tp->rcv_wnd, 13256 TCP_MAXWIN << tp->rcv_scale); 13257 /* 13258 * If not all the data that was sent in the TFO SYN 13259 * has been acked, resend the remainder right away. 13260 */ 13261 if (IS_FASTOPEN(tp->t_flags) && 13262 (tp->snd_una != tp->snd_max)) { 13263 tp->snd_nxt = th->th_ack; 13264 tfo_partial = 1; 13265 } 13266 /* 13267 * If there's data, delay ACK; if there's also a FIN ACKNOW 13268 * will be turned on later. 13269 */ 13270 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { 13271 rack_timer_cancel(tp, rack, 13272 rack->r_ctl.rc_rcvtime, __LINE__); 13273 tp->t_flags |= TF_DELACK; 13274 } else { 13275 rack->r_wanted_output = 1; 13276 tp->t_flags |= TF_ACKNOW; 13277 } 13278 13279 tcp_ecn_input_syn_sent(tp, thflags, iptos); 13280 13281 if (SEQ_GT(th->th_ack, tp->snd_una)) { 13282 /* 13283 * We advance snd_una for the 13284 * fast open case. If th_ack is 13285 * acknowledging data beyond 13286 * snd_una we can't just call 13287 * ack-processing since the 13288 * data stream in our send-map 13289 * will start at snd_una + 1 (one 13290 * beyond the SYN). If its just 13291 * equal we don't need to do that 13292 * and there is no send_map. 13293 */ 13294 tp->snd_una++; 13295 } 13296 /* 13297 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions: 13298 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 13299 */ 13300 tp->t_starttime = ticks; 13301 if (tp->t_flags & TF_NEEDFIN) { 13302 tcp_state_change(tp, TCPS_FIN_WAIT_1); 13303 tp->t_flags &= ~TF_NEEDFIN; 13304 thflags &= ~TH_SYN; 13305 } else { 13306 tcp_state_change(tp, TCPS_ESTABLISHED); 13307 TCP_PROBE5(connect__established, NULL, tp, 13308 mtod(m, const char *), tp, th); 13309 rack_cc_conn_init(tp); 13310 } 13311 } else { 13312 /* 13313 * Received initial SYN in SYN-SENT[*] state => simultaneous 13314 * open. If segment contains CC option and there is a 13315 * cached CC, apply TAO test. If it succeeds, connection is * 13316 * half-synchronized. Otherwise, do 3-way handshake: 13317 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If 13318 * there was no CC option, clear cached CC value. 13319 */ 13320 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN); 13321 tcp_state_change(tp, TCPS_SYN_RECEIVED); 13322 } 13323 /* 13324 * Advance th->th_seq to correspond to first data byte. If data, 13325 * trim to stay within window, dropping FIN if necessary. 13326 */ 13327 th->th_seq++; 13328 if (tlen > tp->rcv_wnd) { 13329 todrop = tlen - tp->rcv_wnd; 13330 m_adj(m, -todrop); 13331 tlen = tp->rcv_wnd; 13332 thflags &= ~TH_FIN; 13333 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); 13334 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 13335 } 13336 tp->snd_wl1 = th->th_seq - 1; 13337 tp->rcv_up = th->th_seq; 13338 /* 13339 * Client side of transaction: already sent SYN and data. If the 13340 * remote host used T/TCP to validate the SYN, our data will be 13341 * ACK'd; if so, enter normal data segment processing in the middle 13342 * of step 5, ack processing. Otherwise, goto step 6. 13343 */ 13344 if (thflags & TH_ACK) { 13345 /* For syn-sent we need to possibly update the rtt */ 13346 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 13347 uint32_t t, mcts; 13348 13349 mcts = tcp_ts_getticks(); 13350 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 13351 if (!tp->t_rttlow || tp->t_rttlow > t) 13352 tp->t_rttlow = t; 13353 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4); 13354 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 13355 tcp_rack_xmit_timer_commit(rack, tp); 13356 } 13357 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) 13358 return (ret_val); 13359 /* We may have changed to FIN_WAIT_1 above */ 13360 if (tp->t_state == TCPS_FIN_WAIT_1) { 13361 /* 13362 * In FIN_WAIT_1 STATE in addition to the processing 13363 * for the ESTABLISHED state if our FIN is now 13364 * acknowledged then enter FIN_WAIT_2. 13365 */ 13366 if (ourfinisacked) { 13367 /* 13368 * If we can't receive any more data, then 13369 * closing user can proceed. Starting the 13370 * timer is contrary to the specification, 13371 * but if we don't get a FIN we'll hang 13372 * forever. 13373 * 13374 * XXXjl: we should release the tp also, and 13375 * use a compressed state. 13376 */ 13377 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13378 soisdisconnected(so); 13379 tcp_timer_activate(tp, TT_2MSL, 13380 (tcp_fast_finwait2_recycle ? 13381 tcp_finwait2_timeout : 13382 TP_MAXIDLE(tp))); 13383 } 13384 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13385 } 13386 } 13387 } 13388 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13389 tiwin, thflags, nxt_pkt)); 13390 } 13391 13392 /* 13393 * Return value of 1, the TCB is unlocked and most 13394 * likely gone, return value of 0, the TCP is still 13395 * locked. 13396 */ 13397 static int 13398 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, 13399 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 13400 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 13401 { 13402 struct tcp_rack *rack; 13403 int32_t ret_val = 0; 13404 int32_t ourfinisacked = 0; 13405 13406 rack = (struct tcp_rack *)tp->t_fb_ptr; 13407 ctf_calc_rwin(so, tp); 13408 if ((thflags & TH_RST) || 13409 (tp->t_fin_is_rst && (thflags & TH_FIN))) 13410 return (__ctf_process_rst(m, th, so, tp, 13411 &rack->r_ctl.challenge_ack_ts, 13412 &rack->r_ctl.challenge_ack_cnt)); 13413 if ((thflags & TH_ACK) && 13414 (SEQ_LEQ(th->th_ack, tp->snd_una) || 13415 SEQ_GT(th->th_ack, tp->snd_max))) { 13416 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 13417 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13418 return (1); 13419 } 13420 if (IS_FASTOPEN(tp->t_flags)) { 13421 /* 13422 * When a TFO connection is in SYN_RECEIVED, the 13423 * only valid packets are the initial SYN, a 13424 * retransmit/copy of the initial SYN (possibly with 13425 * a subset of the original data), a valid ACK, a 13426 * FIN, or a RST. 13427 */ 13428 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { 13429 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 13430 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13431 return (1); 13432 } else if (thflags & TH_SYN) { 13433 /* non-initial SYN is ignored */ 13434 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || 13435 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || 13436 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { 13437 ctf_do_drop(m, NULL); 13438 return (0); 13439 } 13440 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { 13441 ctf_do_drop(m, NULL); 13442 return (0); 13443 } 13444 } 13445 13446 /* 13447 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 13448 * it's less than ts_recent, drop it. 13449 */ 13450 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 13451 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 13452 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 13453 return (ret_val); 13454 } 13455 /* 13456 * In the SYN-RECEIVED state, validate that the packet belongs to 13457 * this connection before trimming the data to fit the receive 13458 * window. Check the sequence number versus IRS since we know the 13459 * sequence numbers haven't wrapped. This is a partial fix for the 13460 * "LAND" DoS attack. 13461 */ 13462 if (SEQ_LT(th->th_seq, tp->irs)) { 13463 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 13464 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13465 return (1); 13466 } 13467 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 13468 &rack->r_ctl.challenge_ack_ts, 13469 &rack->r_ctl.challenge_ack_cnt)) { 13470 return (ret_val); 13471 } 13472 /* 13473 * If last ACK falls within this segment's sequence numbers, record 13474 * its timestamp. NOTE: 1) That the test incorporates suggestions 13475 * from the latest proposal of the tcplw@cray.com list (Braden 13476 * 1993/04/26). 2) That updating only on newer timestamps interferes 13477 * with our earlier PAWS tests, so this check should be solely 13478 * predicated on the sequence space of this segment. 3) That we 13479 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 13480 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 13481 * SEG.Len, This modified check allows us to overcome RFC1323's 13482 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 13483 * p.869. In such cases, we can still calculate the RTT correctly 13484 * when RCV.NXT == Last.ACK.Sent. 13485 */ 13486 if ((to->to_flags & TOF_TS) != 0 && 13487 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 13488 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 13489 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 13490 tp->ts_recent_age = tcp_ts_getticks(); 13491 tp->ts_recent = to->to_tsval; 13492 } 13493 tp->snd_wnd = tiwin; 13494 rack_validate_fo_sendwin_up(tp, rack); 13495 /* 13496 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 13497 * is on (half-synchronized state), then queue data for later 13498 * processing; else drop segment and return. 13499 */ 13500 if ((thflags & TH_ACK) == 0) { 13501 if (IS_FASTOPEN(tp->t_flags)) { 13502 rack_cc_conn_init(tp); 13503 } 13504 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13505 tiwin, thflags, nxt_pkt)); 13506 } 13507 KMOD_TCPSTAT_INC(tcps_connects); 13508 if (tp->t_flags & TF_SONOTCONN) { 13509 tp->t_flags &= ~TF_SONOTCONN; 13510 soisconnected(so); 13511 } 13512 /* Do window scaling? */ 13513 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 13514 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 13515 tp->rcv_scale = tp->request_r_scale; 13516 } 13517 /* 13518 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> 13519 * FIN-WAIT-1 13520 */ 13521 tp->t_starttime = ticks; 13522 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 13523 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 13524 tp->t_tfo_pending = NULL; 13525 } 13526 if (tp->t_flags & TF_NEEDFIN) { 13527 tcp_state_change(tp, TCPS_FIN_WAIT_1); 13528 tp->t_flags &= ~TF_NEEDFIN; 13529 } else { 13530 tcp_state_change(tp, TCPS_ESTABLISHED); 13531 TCP_PROBE5(accept__established, NULL, tp, 13532 mtod(m, const char *), tp, th); 13533 /* 13534 * TFO connections call cc_conn_init() during SYN 13535 * processing. Calling it again here for such connections 13536 * is not harmless as it would undo the snd_cwnd reduction 13537 * that occurs when a TFO SYN|ACK is retransmitted. 13538 */ 13539 if (!IS_FASTOPEN(tp->t_flags)) 13540 rack_cc_conn_init(tp); 13541 } 13542 /* 13543 * Account for the ACK of our SYN prior to 13544 * regular ACK processing below, except for 13545 * simultaneous SYN, which is handled later. 13546 */ 13547 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 13548 tp->snd_una++; 13549 /* 13550 * If segment contains data or ACK, will call tcp_reass() later; if 13551 * not, do so now to pass queued data to user. 13552 */ 13553 if (tlen == 0 && (thflags & TH_FIN) == 0) { 13554 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 13555 (struct mbuf *)0); 13556 if (tp->t_flags & TF_WAKESOR) { 13557 tp->t_flags &= ~TF_WAKESOR; 13558 /* NB: sorwakeup_locked() does an implicit unlock. */ 13559 sorwakeup_locked(so); 13560 } 13561 } 13562 tp->snd_wl1 = th->th_seq - 1; 13563 /* For syn-recv we need to possibly update the rtt */ 13564 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 13565 uint32_t t, mcts; 13566 13567 mcts = tcp_ts_getticks(); 13568 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 13569 if (!tp->t_rttlow || tp->t_rttlow > t) 13570 tp->t_rttlow = t; 13571 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5); 13572 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 13573 tcp_rack_xmit_timer_commit(rack, tp); 13574 } 13575 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 13576 return (ret_val); 13577 } 13578 if (tp->t_state == TCPS_FIN_WAIT_1) { 13579 /* We could have went to FIN_WAIT_1 (or EST) above */ 13580 /* 13581 * In FIN_WAIT_1 STATE in addition to the processing for the 13582 * ESTABLISHED state if our FIN is now acknowledged then 13583 * enter FIN_WAIT_2. 13584 */ 13585 if (ourfinisacked) { 13586 /* 13587 * If we can't receive any more data, then closing 13588 * user can proceed. Starting the timer is contrary 13589 * to the specification, but if we don't get a FIN 13590 * we'll hang forever. 13591 * 13592 * XXXjl: we should release the tp also, and use a 13593 * compressed state. 13594 */ 13595 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13596 soisdisconnected(so); 13597 tcp_timer_activate(tp, TT_2MSL, 13598 (tcp_fast_finwait2_recycle ? 13599 tcp_finwait2_timeout : 13600 TP_MAXIDLE(tp))); 13601 } 13602 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13603 } 13604 } 13605 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13606 tiwin, thflags, nxt_pkt)); 13607 } 13608 13609 /* 13610 * Return value of 1, the TCB is unlocked and most 13611 * likely gone, return value of 0, the TCP is still 13612 * locked. 13613 */ 13614 static int 13615 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, 13616 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 13617 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 13618 { 13619 int32_t ret_val = 0; 13620 struct tcp_rack *rack; 13621 13622 /* 13623 * Header prediction: check for the two common cases of a 13624 * uni-directional data xfer. If the packet has no control flags, 13625 * is in-sequence, the window didn't change and we're not 13626 * retransmitting, it's a candidate. If the length is zero and the 13627 * ack moved forward, we're the sender side of the xfer. Just free 13628 * the data acked & wake any higher level process that was blocked 13629 * waiting for space. If the length is non-zero and the ack didn't 13630 * move, we're the receiver side. If we're getting packets in-order 13631 * (the reassembly queue is empty), add the data toc The socket 13632 * buffer and note that we need a delayed ack. Make sure that the 13633 * hidden state-flags are also off. Since we check for 13634 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. 13635 */ 13636 rack = (struct tcp_rack *)tp->t_fb_ptr; 13637 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && 13638 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && 13639 __predict_true(SEGQ_EMPTY(tp)) && 13640 __predict_true(th->th_seq == tp->rcv_nxt)) { 13641 if (tlen == 0) { 13642 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, 13643 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { 13644 return (0); 13645 } 13646 } else { 13647 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, 13648 tiwin, nxt_pkt, iptos)) { 13649 return (0); 13650 } 13651 } 13652 } 13653 ctf_calc_rwin(so, tp); 13654 13655 if ((thflags & TH_RST) || 13656 (tp->t_fin_is_rst && (thflags & TH_FIN))) 13657 return (__ctf_process_rst(m, th, so, tp, 13658 &rack->r_ctl.challenge_ack_ts, 13659 &rack->r_ctl.challenge_ack_cnt)); 13660 13661 /* 13662 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 13663 * synchronized state. 13664 */ 13665 if (thflags & TH_SYN) { 13666 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 13667 return (ret_val); 13668 } 13669 /* 13670 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 13671 * it's less than ts_recent, drop it. 13672 */ 13673 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 13674 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 13675 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 13676 return (ret_val); 13677 } 13678 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 13679 &rack->r_ctl.challenge_ack_ts, 13680 &rack->r_ctl.challenge_ack_cnt)) { 13681 return (ret_val); 13682 } 13683 /* 13684 * If last ACK falls within this segment's sequence numbers, record 13685 * its timestamp. NOTE: 1) That the test incorporates suggestions 13686 * from the latest proposal of the tcplw@cray.com list (Braden 13687 * 1993/04/26). 2) That updating only on newer timestamps interferes 13688 * with our earlier PAWS tests, so this check should be solely 13689 * predicated on the sequence space of this segment. 3) That we 13690 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 13691 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 13692 * SEG.Len, This modified check allows us to overcome RFC1323's 13693 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 13694 * p.869. In such cases, we can still calculate the RTT correctly 13695 * when RCV.NXT == Last.ACK.Sent. 13696 */ 13697 if ((to->to_flags & TOF_TS) != 0 && 13698 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 13699 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 13700 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 13701 tp->ts_recent_age = tcp_ts_getticks(); 13702 tp->ts_recent = to->to_tsval; 13703 } 13704 /* 13705 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 13706 * is on (half-synchronized state), then queue data for later 13707 * processing; else drop segment and return. 13708 */ 13709 if ((thflags & TH_ACK) == 0) { 13710 if (tp->t_flags & TF_NEEDSYN) { 13711 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13712 tiwin, thflags, nxt_pkt)); 13713 13714 } else if (tp->t_flags & TF_ACKNOW) { 13715 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 13716 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 13717 return (ret_val); 13718 } else { 13719 ctf_do_drop(m, NULL); 13720 return (0); 13721 } 13722 } 13723 /* 13724 * Ack processing. 13725 */ 13726 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 13727 return (ret_val); 13728 } 13729 if (sbavail(&so->so_snd)) { 13730 if (ctf_progress_timeout_check(tp, true)) { 13731 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 13732 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13733 return (1); 13734 } 13735 } 13736 /* State changes only happen in rack_process_data() */ 13737 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13738 tiwin, thflags, nxt_pkt)); 13739 } 13740 13741 /* 13742 * Return value of 1, the TCB is unlocked and most 13743 * likely gone, return value of 0, the TCP is still 13744 * locked. 13745 */ 13746 static int 13747 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, 13748 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 13749 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 13750 { 13751 int32_t ret_val = 0; 13752 struct tcp_rack *rack; 13753 13754 rack = (struct tcp_rack *)tp->t_fb_ptr; 13755 ctf_calc_rwin(so, tp); 13756 if ((thflags & TH_RST) || 13757 (tp->t_fin_is_rst && (thflags & TH_FIN))) 13758 return (__ctf_process_rst(m, th, so, tp, 13759 &rack->r_ctl.challenge_ack_ts, 13760 &rack->r_ctl.challenge_ack_cnt)); 13761 /* 13762 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 13763 * synchronized state. 13764 */ 13765 if (thflags & TH_SYN) { 13766 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 13767 return (ret_val); 13768 } 13769 /* 13770 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 13771 * it's less than ts_recent, drop it. 13772 */ 13773 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 13774 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 13775 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 13776 return (ret_val); 13777 } 13778 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 13779 &rack->r_ctl.challenge_ack_ts, 13780 &rack->r_ctl.challenge_ack_cnt)) { 13781 return (ret_val); 13782 } 13783 /* 13784 * If last ACK falls within this segment's sequence numbers, record 13785 * its timestamp. NOTE: 1) That the test incorporates suggestions 13786 * from the latest proposal of the tcplw@cray.com list (Braden 13787 * 1993/04/26). 2) That updating only on newer timestamps interferes 13788 * with our earlier PAWS tests, so this check should be solely 13789 * predicated on the sequence space of this segment. 3) That we 13790 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 13791 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 13792 * SEG.Len, This modified check allows us to overcome RFC1323's 13793 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 13794 * p.869. In such cases, we can still calculate the RTT correctly 13795 * when RCV.NXT == Last.ACK.Sent. 13796 */ 13797 if ((to->to_flags & TOF_TS) != 0 && 13798 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 13799 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 13800 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 13801 tp->ts_recent_age = tcp_ts_getticks(); 13802 tp->ts_recent = to->to_tsval; 13803 } 13804 /* 13805 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 13806 * is on (half-synchronized state), then queue data for later 13807 * processing; else drop segment and return. 13808 */ 13809 if ((thflags & TH_ACK) == 0) { 13810 if (tp->t_flags & TF_NEEDSYN) { 13811 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13812 tiwin, thflags, nxt_pkt)); 13813 13814 } else if (tp->t_flags & TF_ACKNOW) { 13815 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 13816 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 13817 return (ret_val); 13818 } else { 13819 ctf_do_drop(m, NULL); 13820 return (0); 13821 } 13822 } 13823 /* 13824 * Ack processing. 13825 */ 13826 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 13827 return (ret_val); 13828 } 13829 if (sbavail(&so->so_snd)) { 13830 if (ctf_progress_timeout_check(tp, true)) { 13831 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 13832 tp, tick, PROGRESS_DROP, __LINE__); 13833 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13834 return (1); 13835 } 13836 } 13837 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13838 tiwin, thflags, nxt_pkt)); 13839 } 13840 13841 static int 13842 rack_check_data_after_close(struct mbuf *m, 13843 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) 13844 { 13845 struct tcp_rack *rack; 13846 13847 rack = (struct tcp_rack *)tp->t_fb_ptr; 13848 if (rack->rc_allow_data_af_clo == 0) { 13849 close_now: 13850 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 13851 /* tcp_close will kill the inp pre-log the Reset */ 13852 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 13853 tp = tcp_close(tp); 13854 KMOD_TCPSTAT_INC(tcps_rcvafterclose); 13855 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); 13856 return (1); 13857 } 13858 if (sbavail(&so->so_snd) == 0) 13859 goto close_now; 13860 /* Ok we allow data that is ignored and a followup reset */ 13861 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 13862 tp->rcv_nxt = th->th_seq + *tlen; 13863 tp->t_flags2 |= TF2_DROP_AF_DATA; 13864 rack->r_wanted_output = 1; 13865 *tlen = 0; 13866 return (0); 13867 } 13868 13869 /* 13870 * Return value of 1, the TCB is unlocked and most 13871 * likely gone, return value of 0, the TCP is still 13872 * locked. 13873 */ 13874 static int 13875 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, 13876 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 13877 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 13878 { 13879 int32_t ret_val = 0; 13880 int32_t ourfinisacked = 0; 13881 struct tcp_rack *rack; 13882 13883 rack = (struct tcp_rack *)tp->t_fb_ptr; 13884 ctf_calc_rwin(so, tp); 13885 13886 if ((thflags & TH_RST) || 13887 (tp->t_fin_is_rst && (thflags & TH_FIN))) 13888 return (__ctf_process_rst(m, th, so, tp, 13889 &rack->r_ctl.challenge_ack_ts, 13890 &rack->r_ctl.challenge_ack_cnt)); 13891 /* 13892 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 13893 * synchronized state. 13894 */ 13895 if (thflags & TH_SYN) { 13896 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 13897 return (ret_val); 13898 } 13899 /* 13900 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 13901 * it's less than ts_recent, drop it. 13902 */ 13903 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 13904 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 13905 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 13906 return (ret_val); 13907 } 13908 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 13909 &rack->r_ctl.challenge_ack_ts, 13910 &rack->r_ctl.challenge_ack_cnt)) { 13911 return (ret_val); 13912 } 13913 /* 13914 * If new data are received on a connection after the user processes 13915 * are gone, then RST the other end. 13916 */ 13917 if ((tp->t_flags & TF_CLOSED) && tlen && 13918 rack_check_data_after_close(m, tp, &tlen, th, so)) 13919 return (1); 13920 /* 13921 * If last ACK falls within this segment's sequence numbers, record 13922 * its timestamp. NOTE: 1) That the test incorporates suggestions 13923 * from the latest proposal of the tcplw@cray.com list (Braden 13924 * 1993/04/26). 2) That updating only on newer timestamps interferes 13925 * with our earlier PAWS tests, so this check should be solely 13926 * predicated on the sequence space of this segment. 3) That we 13927 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 13928 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 13929 * SEG.Len, This modified check allows us to overcome RFC1323's 13930 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 13931 * p.869. In such cases, we can still calculate the RTT correctly 13932 * when RCV.NXT == Last.ACK.Sent. 13933 */ 13934 if ((to->to_flags & TOF_TS) != 0 && 13935 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 13936 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 13937 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 13938 tp->ts_recent_age = tcp_ts_getticks(); 13939 tp->ts_recent = to->to_tsval; 13940 } 13941 /* 13942 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 13943 * is on (half-synchronized state), then queue data for later 13944 * processing; else drop segment and return. 13945 */ 13946 if ((thflags & TH_ACK) == 0) { 13947 if (tp->t_flags & TF_NEEDSYN) { 13948 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13949 tiwin, thflags, nxt_pkt)); 13950 } else if (tp->t_flags & TF_ACKNOW) { 13951 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 13952 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 13953 return (ret_val); 13954 } else { 13955 ctf_do_drop(m, NULL); 13956 return (0); 13957 } 13958 } 13959 /* 13960 * Ack processing. 13961 */ 13962 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 13963 return (ret_val); 13964 } 13965 if (ourfinisacked) { 13966 /* 13967 * If we can't receive any more data, then closing user can 13968 * proceed. Starting the timer is contrary to the 13969 * specification, but if we don't get a FIN we'll hang 13970 * forever. 13971 * 13972 * XXXjl: we should release the tp also, and use a 13973 * compressed state. 13974 */ 13975 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13976 soisdisconnected(so); 13977 tcp_timer_activate(tp, TT_2MSL, 13978 (tcp_fast_finwait2_recycle ? 13979 tcp_finwait2_timeout : 13980 TP_MAXIDLE(tp))); 13981 } 13982 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13983 } 13984 if (sbavail(&so->so_snd)) { 13985 if (ctf_progress_timeout_check(tp, true)) { 13986 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 13987 tp, tick, PROGRESS_DROP, __LINE__); 13988 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13989 return (1); 13990 } 13991 } 13992 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 13993 tiwin, thflags, nxt_pkt)); 13994 } 13995 13996 /* 13997 * Return value of 1, the TCB is unlocked and most 13998 * likely gone, return value of 0, the TCP is still 13999 * locked. 14000 */ 14001 static int 14002 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, 14003 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 14004 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 14005 { 14006 int32_t ret_val = 0; 14007 int32_t ourfinisacked = 0; 14008 struct tcp_rack *rack; 14009 14010 rack = (struct tcp_rack *)tp->t_fb_ptr; 14011 ctf_calc_rwin(so, tp); 14012 14013 if ((thflags & TH_RST) || 14014 (tp->t_fin_is_rst && (thflags & TH_FIN))) 14015 return (__ctf_process_rst(m, th, so, tp, 14016 &rack->r_ctl.challenge_ack_ts, 14017 &rack->r_ctl.challenge_ack_cnt)); 14018 /* 14019 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 14020 * synchronized state. 14021 */ 14022 if (thflags & TH_SYN) { 14023 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 14024 return (ret_val); 14025 } 14026 /* 14027 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 14028 * it's less than ts_recent, drop it. 14029 */ 14030 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 14031 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 14032 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 14033 return (ret_val); 14034 } 14035 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 14036 &rack->r_ctl.challenge_ack_ts, 14037 &rack->r_ctl.challenge_ack_cnt)) { 14038 return (ret_val); 14039 } 14040 /* 14041 * If new data are received on a connection after the user processes 14042 * are gone, then RST the other end. 14043 */ 14044 if ((tp->t_flags & TF_CLOSED) && tlen && 14045 rack_check_data_after_close(m, tp, &tlen, th, so)) 14046 return (1); 14047 /* 14048 * If last ACK falls within this segment's sequence numbers, record 14049 * its timestamp. NOTE: 1) That the test incorporates suggestions 14050 * from the latest proposal of the tcplw@cray.com list (Braden 14051 * 1993/04/26). 2) That updating only on newer timestamps interferes 14052 * with our earlier PAWS tests, so this check should be solely 14053 * predicated on the sequence space of this segment. 3) That we 14054 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 14055 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 14056 * SEG.Len, This modified check allows us to overcome RFC1323's 14057 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 14058 * p.869. In such cases, we can still calculate the RTT correctly 14059 * when RCV.NXT == Last.ACK.Sent. 14060 */ 14061 if ((to->to_flags & TOF_TS) != 0 && 14062 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 14063 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 14064 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 14065 tp->ts_recent_age = tcp_ts_getticks(); 14066 tp->ts_recent = to->to_tsval; 14067 } 14068 /* 14069 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 14070 * is on (half-synchronized state), then queue data for later 14071 * processing; else drop segment and return. 14072 */ 14073 if ((thflags & TH_ACK) == 0) { 14074 if (tp->t_flags & TF_NEEDSYN) { 14075 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14076 tiwin, thflags, nxt_pkt)); 14077 } else if (tp->t_flags & TF_ACKNOW) { 14078 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 14079 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 14080 return (ret_val); 14081 } else { 14082 ctf_do_drop(m, NULL); 14083 return (0); 14084 } 14085 } 14086 /* 14087 * Ack processing. 14088 */ 14089 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 14090 return (ret_val); 14091 } 14092 if (ourfinisacked) { 14093 tcp_twstart(tp); 14094 m_freem(m); 14095 return (1); 14096 } 14097 if (sbavail(&so->so_snd)) { 14098 if (ctf_progress_timeout_check(tp, true)) { 14099 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 14100 tp, tick, PROGRESS_DROP, __LINE__); 14101 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14102 return (1); 14103 } 14104 } 14105 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14106 tiwin, thflags, nxt_pkt)); 14107 } 14108 14109 /* 14110 * Return value of 1, the TCB is unlocked and most 14111 * likely gone, return value of 0, the TCP is still 14112 * locked. 14113 */ 14114 static int 14115 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 14116 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 14117 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 14118 { 14119 int32_t ret_val = 0; 14120 int32_t ourfinisacked = 0; 14121 struct tcp_rack *rack; 14122 14123 rack = (struct tcp_rack *)tp->t_fb_ptr; 14124 ctf_calc_rwin(so, tp); 14125 14126 if ((thflags & TH_RST) || 14127 (tp->t_fin_is_rst && (thflags & TH_FIN))) 14128 return (__ctf_process_rst(m, th, so, tp, 14129 &rack->r_ctl.challenge_ack_ts, 14130 &rack->r_ctl.challenge_ack_cnt)); 14131 /* 14132 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 14133 * synchronized state. 14134 */ 14135 if (thflags & TH_SYN) { 14136 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 14137 return (ret_val); 14138 } 14139 /* 14140 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 14141 * it's less than ts_recent, drop it. 14142 */ 14143 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 14144 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 14145 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 14146 return (ret_val); 14147 } 14148 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 14149 &rack->r_ctl.challenge_ack_ts, 14150 &rack->r_ctl.challenge_ack_cnt)) { 14151 return (ret_val); 14152 } 14153 /* 14154 * If new data are received on a connection after the user processes 14155 * are gone, then RST the other end. 14156 */ 14157 if ((tp->t_flags & TF_CLOSED) && tlen && 14158 rack_check_data_after_close(m, tp, &tlen, th, so)) 14159 return (1); 14160 /* 14161 * If last ACK falls within this segment's sequence numbers, record 14162 * its timestamp. NOTE: 1) That the test incorporates suggestions 14163 * from the latest proposal of the tcplw@cray.com list (Braden 14164 * 1993/04/26). 2) That updating only on newer timestamps interferes 14165 * with our earlier PAWS tests, so this check should be solely 14166 * predicated on the sequence space of this segment. 3) That we 14167 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 14168 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 14169 * SEG.Len, This modified check allows us to overcome RFC1323's 14170 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 14171 * p.869. In such cases, we can still calculate the RTT correctly 14172 * when RCV.NXT == Last.ACK.Sent. 14173 */ 14174 if ((to->to_flags & TOF_TS) != 0 && 14175 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 14176 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 14177 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 14178 tp->ts_recent_age = tcp_ts_getticks(); 14179 tp->ts_recent = to->to_tsval; 14180 } 14181 /* 14182 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 14183 * is on (half-synchronized state), then queue data for later 14184 * processing; else drop segment and return. 14185 */ 14186 if ((thflags & TH_ACK) == 0) { 14187 if (tp->t_flags & TF_NEEDSYN) { 14188 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14189 tiwin, thflags, nxt_pkt)); 14190 } else if (tp->t_flags & TF_ACKNOW) { 14191 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 14192 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 14193 return (ret_val); 14194 } else { 14195 ctf_do_drop(m, NULL); 14196 return (0); 14197 } 14198 } 14199 /* 14200 * case TCPS_LAST_ACK: Ack processing. 14201 */ 14202 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 14203 return (ret_val); 14204 } 14205 if (ourfinisacked) { 14206 tp = tcp_close(tp); 14207 ctf_do_drop(m, tp); 14208 return (1); 14209 } 14210 if (sbavail(&so->so_snd)) { 14211 if (ctf_progress_timeout_check(tp, true)) { 14212 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 14213 tp, tick, PROGRESS_DROP, __LINE__); 14214 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14215 return (1); 14216 } 14217 } 14218 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14219 tiwin, thflags, nxt_pkt)); 14220 } 14221 14222 /* 14223 * Return value of 1, the TCB is unlocked and most 14224 * likely gone, return value of 0, the TCP is still 14225 * locked. 14226 */ 14227 static int 14228 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, 14229 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 14230 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 14231 { 14232 int32_t ret_val = 0; 14233 int32_t ourfinisacked = 0; 14234 struct tcp_rack *rack; 14235 14236 rack = (struct tcp_rack *)tp->t_fb_ptr; 14237 ctf_calc_rwin(so, tp); 14238 14239 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 14240 if ((thflags & TH_RST) || 14241 (tp->t_fin_is_rst && (thflags & TH_FIN))) 14242 return (__ctf_process_rst(m, th, so, tp, 14243 &rack->r_ctl.challenge_ack_ts, 14244 &rack->r_ctl.challenge_ack_cnt)); 14245 /* 14246 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 14247 * synchronized state. 14248 */ 14249 if (thflags & TH_SYN) { 14250 ctf_challenge_ack(m, th, tp, iptos, &ret_val); 14251 return (ret_val); 14252 } 14253 /* 14254 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 14255 * it's less than ts_recent, drop it. 14256 */ 14257 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 14258 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 14259 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 14260 return (ret_val); 14261 } 14262 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 14263 &rack->r_ctl.challenge_ack_ts, 14264 &rack->r_ctl.challenge_ack_cnt)) { 14265 return (ret_val); 14266 } 14267 /* 14268 * If new data are received on a connection after the user processes 14269 * are gone, then RST the other end. 14270 */ 14271 if ((tp->t_flags & TF_CLOSED) && tlen && 14272 rack_check_data_after_close(m, tp, &tlen, th, so)) 14273 return (1); 14274 /* 14275 * If last ACK falls within this segment's sequence numbers, record 14276 * its timestamp. NOTE: 1) That the test incorporates suggestions 14277 * from the latest proposal of the tcplw@cray.com list (Braden 14278 * 1993/04/26). 2) That updating only on newer timestamps interferes 14279 * with our earlier PAWS tests, so this check should be solely 14280 * predicated on the sequence space of this segment. 3) That we 14281 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 14282 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 14283 * SEG.Len, This modified check allows us to overcome RFC1323's 14284 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 14285 * p.869. In such cases, we can still calculate the RTT correctly 14286 * when RCV.NXT == Last.ACK.Sent. 14287 */ 14288 if ((to->to_flags & TOF_TS) != 0 && 14289 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 14290 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 14291 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 14292 tp->ts_recent_age = tcp_ts_getticks(); 14293 tp->ts_recent = to->to_tsval; 14294 } 14295 /* 14296 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 14297 * is on (half-synchronized state), then queue data for later 14298 * processing; else drop segment and return. 14299 */ 14300 if ((thflags & TH_ACK) == 0) { 14301 if (tp->t_flags & TF_NEEDSYN) { 14302 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14303 tiwin, thflags, nxt_pkt)); 14304 } else if (tp->t_flags & TF_ACKNOW) { 14305 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 14306 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 14307 return (ret_val); 14308 } else { 14309 ctf_do_drop(m, NULL); 14310 return (0); 14311 } 14312 } 14313 /* 14314 * Ack processing. 14315 */ 14316 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 14317 return (ret_val); 14318 } 14319 if (sbavail(&so->so_snd)) { 14320 if (ctf_progress_timeout_check(tp, true)) { 14321 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 14322 tp, tick, PROGRESS_DROP, __LINE__); 14323 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 14324 return (1); 14325 } 14326 } 14327 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 14328 tiwin, thflags, nxt_pkt)); 14329 } 14330 14331 static void inline 14332 rack_clear_rate_sample(struct tcp_rack *rack) 14333 { 14334 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; 14335 rack->r_ctl.rack_rs.rs_rtt_cnt = 0; 14336 rack->r_ctl.rack_rs.rs_rtt_tot = 0; 14337 } 14338 14339 static void 14340 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override) 14341 { 14342 uint64_t bw_est, rate_wanted; 14343 int chged = 0; 14344 uint32_t user_max, orig_min, orig_max; 14345 14346 #ifdef TCP_REQUEST_TRK 14347 if (rack->rc_hybrid_mode && 14348 (rack->r_ctl.rc_pace_max_segs != 0) && 14349 (rack_hybrid_allow_set_maxseg == 1) && 14350 (rack->r_ctl.rc_last_sft != NULL)) { 14351 rack->r_ctl.rc_last_sft->hybrid_flags &= ~TCP_HYBRID_PACING_SETMSS; 14352 return; 14353 } 14354 #endif 14355 orig_min = rack->r_ctl.rc_pace_min_segs; 14356 orig_max = rack->r_ctl.rc_pace_max_segs; 14357 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; 14358 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) 14359 chged = 1; 14360 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); 14361 if (rack->use_fixed_rate || rack->rc_force_max_seg) { 14362 if (user_max != rack->r_ctl.rc_pace_max_segs) 14363 chged = 1; 14364 } 14365 if (rack->rc_force_max_seg) { 14366 rack->r_ctl.rc_pace_max_segs = user_max; 14367 } else if (rack->use_fixed_rate) { 14368 bw_est = rack_get_bw(rack); 14369 if ((rack->r_ctl.crte == NULL) || 14370 (bw_est != rack->r_ctl.crte->rate)) { 14371 rack->r_ctl.rc_pace_max_segs = user_max; 14372 } else { 14373 /* We are pacing right at the hardware rate */ 14374 uint32_t segsiz, pace_one; 14375 14376 if (rack_pace_one_seg || 14377 (rack->r_ctl.rc_user_set_min_segs == 1)) 14378 pace_one = 1; 14379 else 14380 pace_one = 0; 14381 segsiz = min(ctf_fixed_maxseg(tp), 14382 rack->r_ctl.rc_pace_min_segs); 14383 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size_w_divisor( 14384 tp, bw_est, segsiz, pace_one, 14385 rack->r_ctl.crte, NULL, rack->r_ctl.pace_len_divisor); 14386 } 14387 } else if (rack->rc_always_pace) { 14388 if (rack->r_ctl.gp_bw || 14389 rack->r_ctl.init_rate) { 14390 /* We have a rate of some sort set */ 14391 uint32_t orig; 14392 14393 bw_est = rack_get_bw(rack); 14394 orig = rack->r_ctl.rc_pace_max_segs; 14395 if (fill_override) 14396 rate_wanted = *fill_override; 14397 else 14398 rate_wanted = rack_get_gp_est(rack); 14399 if (rate_wanted) { 14400 /* We have something */ 14401 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, 14402 rate_wanted, 14403 ctf_fixed_maxseg(rack->rc_tp)); 14404 } else 14405 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; 14406 if (orig != rack->r_ctl.rc_pace_max_segs) 14407 chged = 1; 14408 } else if ((rack->r_ctl.gp_bw == 0) && 14409 (rack->r_ctl.rc_pace_max_segs == 0)) { 14410 /* 14411 * If we have nothing limit us to bursting 14412 * out IW sized pieces. 14413 */ 14414 chged = 1; 14415 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); 14416 } 14417 } 14418 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { 14419 chged = 1; 14420 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; 14421 } 14422 if (chged) 14423 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2); 14424 } 14425 14426 14427 static void 14428 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack, int32_t flags) 14429 { 14430 #ifdef INET6 14431 struct ip6_hdr *ip6 = NULL; 14432 #endif 14433 #ifdef INET 14434 struct ip *ip = NULL; 14435 #endif 14436 struct udphdr *udp = NULL; 14437 14438 /* Ok lets fill in the fast block, it can only be used with no IP options! */ 14439 #ifdef INET6 14440 if (rack->r_is_v6) { 14441 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 14442 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 14443 if (tp->t_port) { 14444 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 14445 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 14446 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 14447 udp->uh_dport = tp->t_port; 14448 rack->r_ctl.fsb.udp = udp; 14449 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 14450 } else 14451 { 14452 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1); 14453 rack->r_ctl.fsb.udp = NULL; 14454 } 14455 tcpip_fillheaders(rack->rc_inp, 14456 tp->t_port, 14457 ip6, rack->r_ctl.fsb.th); 14458 rack->r_ctl.fsb.hoplimit = in6_selecthlim(rack->rc_inp, NULL); 14459 } else 14460 #endif /* INET6 */ 14461 #ifdef INET 14462 { 14463 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr); 14464 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 14465 if (tp->t_port) { 14466 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 14467 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 14468 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 14469 udp->uh_dport = tp->t_port; 14470 rack->r_ctl.fsb.udp = udp; 14471 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 14472 } else 14473 { 14474 rack->r_ctl.fsb.udp = NULL; 14475 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1); 14476 } 14477 tcpip_fillheaders(rack->rc_inp, 14478 tp->t_port, 14479 ip, rack->r_ctl.fsb.th); 14480 rack->r_ctl.fsb.hoplimit = tptoinpcb(tp)->inp_ip_ttl; 14481 } 14482 #endif 14483 rack->r_ctl.fsb.recwin = lmin(lmax(sbspace(&tptosocket(tp)->so_rcv), 0), 14484 (long)TCP_MAXWIN << tp->rcv_scale); 14485 rack->r_fsb_inited = 1; 14486 } 14487 14488 static int 14489 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack) 14490 { 14491 /* 14492 * Allocate the larger of spaces V6 if available else just 14493 * V4 and include udphdr (overbook) 14494 */ 14495 #ifdef INET6 14496 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr); 14497 #else 14498 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr); 14499 #endif 14500 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len, 14501 M_TCPFSB, M_NOWAIT|M_ZERO); 14502 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) { 14503 return (ENOMEM); 14504 } 14505 rack->r_fsb_inited = 0; 14506 return (0); 14507 } 14508 14509 static void 14510 rack_log_hystart_event(struct tcp_rack *rack, uint32_t high_seq, uint8_t mod) 14511 { 14512 /* 14513 * Types of logs (mod value) 14514 * 20 - Initial round setup 14515 * 21 - Rack declares a new round. 14516 */ 14517 struct tcpcb *tp; 14518 14519 tp = rack->rc_tp; 14520 if (tcp_bblogging_on(tp)) { 14521 union tcp_log_stackspecific log; 14522 struct timeval tv; 14523 14524 memset(&log, 0, sizeof(log)); 14525 log.u_bbr.flex1 = rack->r_ctl.current_round; 14526 log.u_bbr.flex2 = rack->r_ctl.roundends; 14527 log.u_bbr.flex3 = high_seq; 14528 log.u_bbr.flex4 = tp->snd_max; 14529 log.u_bbr.flex8 = mod; 14530 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14531 log.u_bbr.cur_del_rate = rack->rc_tp->t_sndbytes; 14532 log.u_bbr.delRate = rack->rc_tp->t_snd_rxt_bytes; 14533 TCP_LOG_EVENTP(tp, NULL, 14534 &tptosocket(tp)->so_rcv, 14535 &tptosocket(tp)->so_snd, 14536 TCP_HYSTART, 0, 14537 0, &log, false, &tv); 14538 } 14539 } 14540 14541 static void 14542 rack_deferred_init(struct tcpcb *tp, struct tcp_rack *rack) 14543 { 14544 rack->rack_deferred_inited = 1; 14545 rack->r_ctl.roundends = tp->snd_max; 14546 rack->r_ctl.rc_high_rwnd = tp->snd_wnd; 14547 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 14548 } 14549 14550 static void 14551 rack_init_retransmit_value(struct tcp_rack *rack, int ctl) 14552 { 14553 /* Retransmit bit controls. 14554 * 14555 * The setting of these values control one of 14556 * three settings you can have and dictate 14557 * how rack does retransmissions. Note this 14558 * is in *any* mode i.e. pacing on or off DGP 14559 * fixed rate pacing, or just bursting rack. 14560 * 14561 * 1 - Use full sized retransmits i.e. limit 14562 * the size to whatever the pace_max_segments 14563 * size is. 14564 * 14565 * 2 - Use pacer min granularity as a guide to 14566 * the size combined with the current calculated 14567 * goodput b/w measurement. So for example if 14568 * the goodput is measured at 20Mbps we would 14569 * calculate 8125 (pacer minimum 250usec in 14570 * that b/w) and then round it up to the next 14571 * MSS i.e. for 1448 mss 6 MSS or 8688 bytes. 14572 * 14573 * 0 - The rack default 1 MSS (anything not 0/1/2 14574 * fall here too if we are setting via rack_init()). 14575 * 14576 */ 14577 if (ctl == 1) { 14578 rack->full_size_rxt = 1; 14579 rack->shape_rxt_to_pacing_min = 0; 14580 } else if (ctl == 2) { 14581 rack->full_size_rxt = 0; 14582 rack->shape_rxt_to_pacing_min = 1; 14583 } else { 14584 rack->full_size_rxt = 0; 14585 rack->shape_rxt_to_pacing_min = 0; 14586 } 14587 } 14588 14589 static void 14590 rack_log_chg_info(struct tcpcb *tp, struct tcp_rack *rack, uint8_t mod, 14591 uint32_t flex1, 14592 uint32_t flex2, 14593 uint32_t flex3) 14594 { 14595 if (tcp_bblogging_on(rack->rc_tp)) { 14596 union tcp_log_stackspecific log; 14597 struct timeval tv; 14598 14599 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14600 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14601 log.u_bbr.flex8 = mod; 14602 log.u_bbr.flex1 = flex1; 14603 log.u_bbr.flex2 = flex2; 14604 log.u_bbr.flex3 = flex3; 14605 tcp_log_event(tp, NULL, NULL, NULL, TCP_CHG_QUERY, 0, 14606 0, &log, false, NULL, __func__, __LINE__, &tv); 14607 } 14608 } 14609 14610 static int 14611 rack_chg_query(struct tcpcb *tp, struct tcp_query_resp *reqr) 14612 { 14613 struct tcp_rack *rack; 14614 struct rack_sendmap *rsm; 14615 int i; 14616 14617 14618 rack = (struct tcp_rack *)tp->t_fb_ptr; 14619 switch (reqr->req) { 14620 case TCP_QUERY_SENDMAP: 14621 if ((reqr->req_param == tp->snd_max) || 14622 (tp->snd_max == tp->snd_una)){ 14623 /* Unlikely */ 14624 return (0); 14625 } 14626 rsm = tqhash_find(rack->r_ctl.tqh, reqr->req_param); 14627 if (rsm == NULL) { 14628 /* Can't find that seq -- unlikely */ 14629 return (0); 14630 } 14631 reqr->sendmap_start = rsm->r_start; 14632 reqr->sendmap_end = rsm->r_end; 14633 reqr->sendmap_send_cnt = rsm->r_rtr_cnt; 14634 reqr->sendmap_fas = rsm->r_fas; 14635 if (reqr->sendmap_send_cnt > SNDMAP_NRTX) 14636 reqr->sendmap_send_cnt = SNDMAP_NRTX; 14637 for(i=0; i<reqr->sendmap_send_cnt; i++) 14638 reqr->sendmap_time[i] = rsm->r_tim_lastsent[i]; 14639 reqr->sendmap_ack_arrival = rsm->r_ack_arrival; 14640 reqr->sendmap_flags = rsm->r_flags & SNDMAP_MASK; 14641 reqr->sendmap_r_rtr_bytes = rsm->r_rtr_bytes; 14642 reqr->sendmap_dupacks = rsm->r_dupack; 14643 rack_log_chg_info(tp, rack, 1, 14644 rsm->r_start, 14645 rsm->r_end, 14646 rsm->r_flags); 14647 return(1); 14648 break; 14649 case TCP_QUERY_TIMERS_UP: 14650 if (rack->r_ctl.rc_hpts_flags == 0) { 14651 /* no timers up */ 14652 return (0); 14653 } 14654 reqr->timer_hpts_flags = rack->r_ctl.rc_hpts_flags; 14655 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 14656 reqr->timer_pacing_to = rack->r_ctl.rc_last_output_to; 14657 } 14658 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 14659 reqr->timer_timer_exp = rack->r_ctl.rc_timer_exp; 14660 } 14661 rack_log_chg_info(tp, rack, 2, 14662 rack->r_ctl.rc_hpts_flags, 14663 rack->r_ctl.rc_last_output_to, 14664 rack->r_ctl.rc_timer_exp); 14665 return (1); 14666 break; 14667 case TCP_QUERY_RACK_TIMES: 14668 /* Reordering items */ 14669 reqr->rack_num_dsacks = rack->r_ctl.num_dsack; 14670 reqr->rack_reorder_ts = rack->r_ctl.rc_reorder_ts; 14671 /* Timerstamps and timers */ 14672 reqr->rack_rxt_last_time = rack->r_ctl.rc_tlp_rxt_last_time; 14673 reqr->rack_min_rtt = rack->r_ctl.rc_rack_min_rtt; 14674 reqr->rack_rtt = rack->rc_rack_rtt; 14675 reqr->rack_tmit_time = rack->r_ctl.rc_rack_tmit_time; 14676 reqr->rack_srtt_measured = rack->rc_srtt_measure_made; 14677 /* PRR data */ 14678 reqr->rack_sacked = rack->r_ctl.rc_sacked; 14679 reqr->rack_holes_rxt = rack->r_ctl.rc_holes_rxt; 14680 reqr->rack_prr_delivered = rack->r_ctl.rc_prr_delivered; 14681 reqr->rack_prr_recovery_fs = rack->r_ctl.rc_prr_recovery_fs; 14682 reqr->rack_prr_sndcnt = rack->r_ctl.rc_prr_sndcnt; 14683 reqr->rack_prr_out = rack->r_ctl.rc_prr_out; 14684 /* TLP and persists info */ 14685 reqr->rack_tlp_out = rack->rc_tlp_in_progress; 14686 reqr->rack_tlp_cnt_out = rack->r_ctl.rc_tlp_cnt_out; 14687 if (rack->rc_in_persist) { 14688 reqr->rack_time_went_idle = rack->r_ctl.rc_went_idle_time; 14689 reqr->rack_in_persist = 1; 14690 } else { 14691 reqr->rack_time_went_idle = 0; 14692 reqr->rack_in_persist = 0; 14693 } 14694 if (rack->r_wanted_output) 14695 reqr->rack_wanted_output = 1; 14696 else 14697 reqr->rack_wanted_output = 0; 14698 return (1); 14699 break; 14700 default: 14701 return (-EINVAL); 14702 } 14703 } 14704 14705 static void 14706 rack_switch_failed(struct tcpcb *tp) 14707 { 14708 /* 14709 * This method gets called if a stack switch was 14710 * attempted and it failed. We are left 14711 * but our hpts timers were stopped and we 14712 * need to validate time units and t_flags2. 14713 */ 14714 struct tcp_rack *rack; 14715 struct timeval tv; 14716 uint32_t cts; 14717 uint32_t toval; 14718 struct hpts_diag diag; 14719 14720 rack = (struct tcp_rack *)tp->t_fb_ptr; 14721 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_USEC); 14722 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 14723 tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 14724 else 14725 tp->t_flags2 &= ~TF2_SUPPORTS_MBUFQ; 14726 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 14727 tp->t_flags2 |= TF2_MBUF_ACKCMP; 14728 if (tp->t_in_hpts > IHPTS_NONE) { 14729 /* Strange */ 14730 return; 14731 } 14732 cts = tcp_get_usecs(&tv); 14733 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 14734 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 14735 toval = rack->r_ctl.rc_last_output_to - cts; 14736 } else { 14737 /* one slot please */ 14738 toval = HPTS_TICKS_PER_SLOT; 14739 } 14740 } else if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 14741 if (TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 14742 toval = rack->r_ctl.rc_timer_exp - cts; 14743 } else { 14744 /* one slot please */ 14745 toval = HPTS_TICKS_PER_SLOT; 14746 } 14747 } else 14748 toval = HPTS_TICKS_PER_SLOT; 14749 (void)tcp_hpts_insert_diag(tp, HPTS_USEC_TO_SLOTS(toval), 14750 __LINE__, &diag); 14751 rack_log_hpts_diag(rack, cts, &diag, &tv); 14752 } 14753 14754 static int 14755 rack_init_outstanding(struct tcpcb *tp, struct tcp_rack *rack, uint32_t us_cts, void *ptr) 14756 { 14757 struct rack_sendmap *rsm, *ersm; 14758 int insret __diagused; 14759 /* 14760 * When initing outstanding, we must be quite careful 14761 * to not refer to tp->t_fb_ptr. This has the old rack 14762 * pointer in it, not the "new" one (when we are doing 14763 * a stack switch). 14764 */ 14765 14766 14767 if (tp->t_fb->tfb_chg_query == NULL) { 14768 /* Create a send map for the current outstanding data */ 14769 14770 rsm = rack_alloc(rack); 14771 if (rsm == NULL) { 14772 uma_zfree(rack_pcb_zone, ptr); 14773 return (ENOMEM); 14774 } 14775 rsm->r_no_rtt_allowed = 1; 14776 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 14777 rsm->r_rtr_cnt = 1; 14778 rsm->r_rtr_bytes = 0; 14779 if (tp->t_flags & TF_SENTFIN) 14780 rsm->r_flags |= RACK_HAS_FIN; 14781 rsm->r_end = tp->snd_max; 14782 if (tp->snd_una == tp->iss) { 14783 /* The data space is one beyond snd_una */ 14784 rsm->r_flags |= RACK_HAS_SYN; 14785 rsm->r_start = tp->iss; 14786 rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una); 14787 } else 14788 rsm->r_start = tp->snd_una; 14789 rsm->r_dupack = 0; 14790 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) { 14791 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff); 14792 if (rsm->m) { 14793 rsm->orig_m_len = rsm->m->m_len; 14794 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 14795 } else { 14796 rsm->orig_m_len = 0; 14797 rsm->orig_t_space = 0; 14798 } 14799 } else { 14800 /* 14801 * This can happen if we have a stand-alone FIN or 14802 * SYN. 14803 */ 14804 rsm->m = NULL; 14805 rsm->orig_m_len = 0; 14806 rsm->orig_t_space = 0; 14807 rsm->soff = 0; 14808 } 14809 #ifdef INVARIANTS 14810 if ((insret = tqhash_insert(rack->r_ctl.tqh, rsm)) != 0) { 14811 panic("Insert in rb tree fails ret:%d rack:%p rsm:%p", 14812 insret, rack, rsm); 14813 } 14814 #else 14815 (void)tqhash_insert(rack->r_ctl.tqh, rsm); 14816 #endif 14817 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 14818 rsm->r_in_tmap = 1; 14819 } else { 14820 /* We have a query mechanism, lets use it */ 14821 struct tcp_query_resp qr; 14822 int i; 14823 tcp_seq at; 14824 14825 at = tp->snd_una; 14826 while (at != tp->snd_max) { 14827 memset(&qr, 0, sizeof(qr)); 14828 qr.req = TCP_QUERY_SENDMAP; 14829 qr.req_param = at; 14830 if ((*tp->t_fb->tfb_chg_query)(tp, &qr) == 0) 14831 break; 14832 /* Move forward */ 14833 at = qr.sendmap_end; 14834 /* Now lets build the entry for this one */ 14835 rsm = rack_alloc(rack); 14836 if (rsm == NULL) { 14837 uma_zfree(rack_pcb_zone, ptr); 14838 return (ENOMEM); 14839 } 14840 memset(rsm, 0, sizeof(struct rack_sendmap)); 14841 /* Now configure the rsm and insert it */ 14842 rsm->r_dupack = qr.sendmap_dupacks; 14843 rsm->r_start = qr.sendmap_start; 14844 rsm->r_end = qr.sendmap_end; 14845 if (qr.sendmap_fas) 14846 rsm->r_fas = qr.sendmap_end; 14847 else 14848 rsm->r_fas = rsm->r_start - tp->snd_una; 14849 /* 14850 * We have carefully aligned the bits 14851 * so that all we have to do is copy over 14852 * the bits with the mask. 14853 */ 14854 rsm->r_flags = qr.sendmap_flags & SNDMAP_MASK; 14855 rsm->r_rtr_bytes = qr.sendmap_r_rtr_bytes; 14856 rsm->r_rtr_cnt = qr.sendmap_send_cnt; 14857 rsm->r_ack_arrival = qr.sendmap_ack_arrival; 14858 for (i=0 ; i<rsm->r_rtr_cnt; i++) 14859 rsm->r_tim_lastsent[i] = qr.sendmap_time[i]; 14860 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 14861 (rsm->r_start - tp->snd_una), &rsm->soff); 14862 if (rsm->m) { 14863 rsm->orig_m_len = rsm->m->m_len; 14864 rsm->orig_t_space = M_TRAILINGROOM(rsm->m); 14865 } else { 14866 rsm->orig_m_len = 0; 14867 rsm->orig_t_space = 0; 14868 } 14869 #ifdef INVARIANTS 14870 if ((insret = tqhash_insert(rack->r_ctl.tqh, rsm)) != 0) { 14871 panic("Insert in rb tree fails ret:%d rack:%p rsm:%p", 14872 insret, rack, rsm); 14873 } 14874 #else 14875 (void)tqhash_insert(rack->r_ctl.tqh, rsm); 14876 #endif 14877 if ((rsm->r_flags & RACK_ACKED) == 0) { 14878 TAILQ_FOREACH(ersm, &rack->r_ctl.rc_tmap, r_tnext) { 14879 if (ersm->r_tim_lastsent[(ersm->r_rtr_cnt-1)] > 14880 rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]) { 14881 /* 14882 * If the existing ersm was sent at 14883 * a later time than the new one, then 14884 * the new one should appear ahead of this 14885 * ersm. 14886 */ 14887 rsm->r_in_tmap = 1; 14888 TAILQ_INSERT_BEFORE(ersm, rsm, r_tnext); 14889 break; 14890 } 14891 } 14892 if (rsm->r_in_tmap == 0) { 14893 /* 14894 * Not found so shove it on the tail. 14895 */ 14896 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 14897 rsm->r_in_tmap = 1; 14898 } 14899 } else { 14900 if ((rack->r_ctl.rc_sacklast == NULL) || 14901 (SEQ_GT(rsm->r_end, rack->r_ctl.rc_sacklast->r_end))) { 14902 rack->r_ctl.rc_sacklast = rsm; 14903 } 14904 } 14905 rack_log_chg_info(tp, rack, 3, 14906 rsm->r_start, 14907 rsm->r_end, 14908 rsm->r_flags); 14909 } 14910 } 14911 return (0); 14912 } 14913 14914 static void 14915 rack_translate_clamp_value(struct tcp_rack *rack, uint32_t optval) 14916 { 14917 /* 14918 * P = percent bits 14919 * F = fill cw bit -- Toggle fillcw if this bit is set. 14920 * S = Segment bits 14921 * M = set max segment bit 14922 * U = Unclamined 14923 * C = If set to non-zero override the max number of clamps. 14924 * L = Bit to indicate if clamped gets lower. 14925 * 14926 * CCCC CCCCC UUUU UULF PPPP PPPP PPPP PPPP 14927 * 14928 * The lowest 3 nibbles is the perentage .1 - 6553.5% 14929 * where 10.1 = 101, max 6553.5 14930 * The upper 16 bits holds some options. 14931 * The F bit will turn on fill-cw on if you are 14932 * not pacing, it will turn it off if dgp is on. 14933 * The L bit will change it so when clamped we get 14934 * the min(gp, lt-bw) for dgp. 14935 */ 14936 uint16_t per; 14937 14938 rack->r_ctl.saved_rxt_clamp_val = optval; 14939 per = optval & 0x0000ffff; 14940 rack->r_ctl.rxt_threshold = (uint64_t)(per & 0xffff); 14941 if (optval > 0) { 14942 uint16_t clamp_opt; 14943 14944 rack->excess_rxt_on = 1; 14945 clamp_opt = ((optval & 0xffff0000) >> 16); 14946 rack->r_ctl.clamp_options = clamp_opt & 0x00ff; 14947 if (clamp_opt & 0xff00) { 14948 /* A max clamps is also present */ 14949 rack->r_ctl.max_clamps = (clamp_opt >> 8); 14950 } else { 14951 /* No specified clamps means no limit */ 14952 rack->r_ctl.max_clamps = 0; 14953 } 14954 if (rack->r_ctl.clamp_options & 0x0002) { 14955 rack->r_clamped_gets_lower = 1; 14956 } else { 14957 rack->r_clamped_gets_lower = 0; 14958 } 14959 } else { 14960 /* Turn it off back to default */ 14961 rack->excess_rxt_on = 0; 14962 rack->r_clamped_gets_lower = 0; 14963 } 14964 14965 } 14966 14967 14968 static int32_t 14969 rack_init(struct tcpcb *tp, void **ptr) 14970 { 14971 struct inpcb *inp = tptoinpcb(tp); 14972 struct tcp_rack *rack = NULL; 14973 uint32_t iwin, snt, us_cts; 14974 int err, no_query; 14975 14976 /* 14977 * First are we the initial or are we a switched stack? 14978 * If we are initing via tcp_newtcppcb the ptr passed 14979 * will be tp->t_fb_ptr. If its a stack switch that 14980 * has a previous stack we can query it will be a local 14981 * var that will in the end be set into t_fb_ptr. 14982 */ 14983 if (ptr == &tp->t_fb_ptr) 14984 no_query = 1; 14985 else 14986 no_query = 0; 14987 *ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); 14988 if (*ptr == NULL) { 14989 /* 14990 * We need to allocate memory but cant. The INP and INP_INFO 14991 * locks and they are recursive (happens during setup. So a 14992 * scheme to drop the locks fails :( 14993 * 14994 */ 14995 return(ENOMEM); 14996 } 14997 memset(*ptr, 0, sizeof(struct tcp_rack)); 14998 rack = (struct tcp_rack *)*ptr; 14999 rack->r_ctl.tqh = malloc(sizeof(struct tailq_hash), M_TCPFSB, M_NOWAIT); 15000 if (rack->r_ctl.tqh == NULL) { 15001 uma_zfree(rack_pcb_zone, rack); 15002 return(ENOMEM); 15003 } 15004 tqhash_init(rack->r_ctl.tqh); 15005 TAILQ_INIT(&rack->r_ctl.rc_free); 15006 TAILQ_INIT(&rack->r_ctl.rc_tmap); 15007 rack->rc_tp = tp; 15008 rack->rc_inp = inp; 15009 /* Set the flag */ 15010 rack->r_is_v6 = (inp->inp_vflag & INP_IPV6) != 0; 15011 /* Probably not needed but lets be sure */ 15012 rack_clear_rate_sample(rack); 15013 /* 15014 * Save off the default values, socket options will poke 15015 * at these if pacing is not on or we have not yet 15016 * reached where pacing is on (gp_ready/fixed enabled). 15017 * When they get set into the CC module (when gp_ready 15018 * is enabled or we enable fixed) then we will set these 15019 * values into the CC and place in here the old values 15020 * so we have a restoral. Then we will set the flag 15021 * rc_pacing_cc_set. That way whenever we turn off pacing 15022 * or switch off this stack, we will know to go restore 15023 * the saved values. 15024 * 15025 * We specifically put into the beta the ecn value for pacing. 15026 */ 15027 rack->rc_new_rnd_needed = 1; 15028 rack->r_ctl.rc_split_limit = V_tcp_map_split_limit; 15029 /* We want abe like behavior as well */ 15030 rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED; 15031 rack->r_ctl.rc_reorder_fade = rack_reorder_fade; 15032 rack->rc_allow_data_af_clo = rack_ignore_data_after_close; 15033 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; 15034 if (rack_rxt_clamp_thresh) { 15035 rack_translate_clamp_value(rack, rack_rxt_clamp_thresh); 15036 rack->excess_rxt_on = 1; 15037 } 15038 if (rack_uses_full_dgp_in_rec) 15039 rack->r_ctl.full_dgp_in_rec = 1; 15040 if (rack_fill_cw_state) 15041 rack->rc_pace_to_cwnd = 1; 15042 if (rack_pacing_min_seg) 15043 rack->r_ctl.rc_user_set_min_segs = rack_pacing_min_seg; 15044 if (use_rack_rr) 15045 rack->use_rack_rr = 1; 15046 if (rack_dnd_default) { 15047 rack->rc_pace_dnd = 1; 15048 } 15049 if (V_tcp_delack_enabled) 15050 tp->t_delayed_ack = 1; 15051 else 15052 tp->t_delayed_ack = 0; 15053 #ifdef TCP_ACCOUNTING 15054 if (rack_tcp_accounting) { 15055 tp->t_flags2 |= TF2_TCP_ACCOUNTING; 15056 } 15057 #endif 15058 rack->r_ctl.rack_per_upper_bound_ss = (uint8_t)rack_per_upper_bound_ss; 15059 rack->r_ctl.rack_per_upper_bound_ca = (uint8_t)rack_per_upper_bound_ca; 15060 if (rack_enable_shared_cwnd) 15061 rack->rack_enable_scwnd = 1; 15062 rack->r_ctl.pace_len_divisor = rack_default_pacing_divisor; 15063 rack->rc_user_set_max_segs = rack_hptsi_segments; 15064 rack->rc_force_max_seg = 0; 15065 TAILQ_INIT(&rack->r_ctl.opt_list); 15066 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn; 15067 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn; 15068 if (rack_hibeta_setting) { 15069 rack->rack_hibeta = 1; 15070 if ((rack_hibeta_setting >= 50) && 15071 (rack_hibeta_setting <= 100)) { 15072 rack->r_ctl.rc_saved_beta.beta = rack_hibeta_setting; 15073 rack->r_ctl.saved_hibeta = rack_hibeta_setting; 15074 } 15075 } else { 15076 rack->r_ctl.saved_hibeta = 50; 15077 } 15078 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; 15079 rack->r_ctl.rc_pkt_delay = rack_pkt_delay; 15080 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; 15081 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; 15082 rack->r_ctl.rc_highest_us_rtt = 0; 15083 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap; 15084 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop); 15085 if (rack_use_cmp_acks) 15086 rack->r_use_cmp_ack = 1; 15087 if (rack_disable_prr) 15088 rack->rack_no_prr = 1; 15089 if (rack_gp_no_rec_chg) 15090 rack->rc_gp_no_rec_chg = 1; 15091 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 15092 rack->rc_always_pace = 1; 15093 if (rack->rack_hibeta) 15094 rack_set_cc_pacing(rack); 15095 } else 15096 rack->rc_always_pace = 0; 15097 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) 15098 rack->r_mbuf_queue = 1; 15099 else 15100 rack->r_mbuf_queue = 0; 15101 rack_set_pace_segments(tp, rack, __LINE__, NULL); 15102 if (rack_limits_scwnd) 15103 rack->r_limit_scw = 1; 15104 else 15105 rack->r_limit_scw = 0; 15106 rack_init_retransmit_value(rack, rack_rxt_controls); 15107 rack->rc_labc = V_tcp_abc_l_var; 15108 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; 15109 rack->rack_tlp_threshold_use = rack_tlp_threshold_use; 15110 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; 15111 rack->r_ctl.rc_min_to = rack_min_to; 15112 microuptime(&rack->r_ctl.act_rcv_time); 15113 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 15114 rack->rc_init_win = rack_default_init_window; 15115 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; 15116 if (rack_hw_up_only) 15117 rack->r_up_only = 1; 15118 if (rack_do_dyn_mul) { 15119 /* When dynamic adjustment is on CA needs to start at 100% */ 15120 rack->rc_gp_dyn_mul = 1; 15121 if (rack_do_dyn_mul >= 100) 15122 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 15123 } else 15124 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 15125 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; 15126 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 15127 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); 15128 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, 15129 rack_probertt_filter_life); 15130 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 15131 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 15132 rack->r_ctl.rc_time_of_last_probertt = us_cts; 15133 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks(); 15134 rack->r_ctl.rc_time_probertt_starts = 0; 15135 if (rack_dsack_std_based & 0x1) { 15136 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 15137 rack->rc_rack_tmr_std_based = 1; 15138 } 15139 if (rack_dsack_std_based & 0x2) { 15140 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 15141 rack->rc_rack_use_dsack = 1; 15142 } 15143 /* We require at least one measurement, even if the sysctl is 0 */ 15144 if (rack_req_measurements) 15145 rack->r_ctl.req_measurements = rack_req_measurements; 15146 else 15147 rack->r_ctl.req_measurements = 1; 15148 if (rack_enable_hw_pacing) 15149 rack->rack_hdw_pace_ena = 1; 15150 if (rack_hw_rate_caps) 15151 rack->r_rack_hw_rate_caps = 1; 15152 #ifdef TCP_SAD_DETECTION 15153 rack->do_detection = 1; 15154 #else 15155 rack->do_detection = 0; 15156 #endif 15157 if (rack_non_rxt_use_cr) 15158 rack->rack_rec_nonrxt_use_cr = 1; 15159 /* Lets setup the fsb block */ 15160 err = rack_init_fsb(tp, rack); 15161 if (err) { 15162 uma_zfree(rack_pcb_zone, *ptr); 15163 *ptr = NULL; 15164 return (err); 15165 } 15166 if (rack_do_hystart) { 15167 tp->t_ccv.flags |= CCF_HYSTART_ALLOWED; 15168 if (rack_do_hystart > 1) 15169 tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND; 15170 if (rack_do_hystart > 2) 15171 tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH; 15172 } 15173 /* Log what we will do with queries */ 15174 rack_log_chg_info(tp, rack, 7, 15175 no_query, 0, 0); 15176 if (rack_def_profile) 15177 rack_set_profile(rack, rack_def_profile); 15178 /* Cancel the GP measurement in progress */ 15179 tp->t_flags &= ~TF_GPUTINPROG; 15180 if ((tp->t_state != TCPS_CLOSED) && 15181 (tp->t_state != TCPS_TIME_WAIT)) { 15182 /* 15183 * We are already open, we may 15184 * need to adjust a few things. 15185 */ 15186 if (SEQ_GT(tp->snd_max, tp->iss)) 15187 snt = tp->snd_max - tp->iss; 15188 else 15189 snt = 0; 15190 iwin = rc_init_window(rack); 15191 if ((snt < iwin) && 15192 (no_query == 1)) { 15193 /* We are not past the initial window 15194 * on the first init (i.e. a stack switch 15195 * has not yet occured) so we need to make 15196 * sure cwnd and ssthresh is correct. 15197 */ 15198 if (tp->snd_cwnd < iwin) 15199 tp->snd_cwnd = iwin; 15200 /* 15201 * If we are within the initial window 15202 * we want ssthresh to be unlimited. Setting 15203 * it to the rwnd (which the default stack does 15204 * and older racks) is not really a good idea 15205 * since we want to be in SS and grow both the 15206 * cwnd and the rwnd (via dynamic rwnd growth). If 15207 * we set it to the rwnd then as the peer grows its 15208 * rwnd we will be stuck in CA and never hit SS. 15209 * 15210 * Its far better to raise it up high (this takes the 15211 * risk that there as been a loss already, probably 15212 * we should have an indicator in all stacks of loss 15213 * but we don't), but considering the normal use this 15214 * is a risk worth taking. The consequences of not 15215 * hitting SS are far worse than going one more time 15216 * into it early on (before we have sent even a IW). 15217 * It is highly unlikely that we will have had a loss 15218 * before getting the IW out. 15219 */ 15220 tp->snd_ssthresh = 0xffffffff; 15221 } 15222 /* 15223 * Any init based on sequence numbers 15224 * should be done in the deferred init path 15225 * since we can be CLOSED and not have them 15226 * inited when rack_init() is called. We 15227 * are not closed so lets call it. 15228 */ 15229 rack_deferred_init(tp, rack); 15230 } 15231 if ((tp->t_state != TCPS_CLOSED) && 15232 (tp->t_state != TCPS_TIME_WAIT) && 15233 (no_query == 0) && 15234 (tp->snd_una != tp->snd_max)) { 15235 err = rack_init_outstanding(tp, rack, us_cts, *ptr); 15236 if (err) { 15237 *ptr = NULL; 15238 return(err); 15239 } 15240 } 15241 rack_stop_all_timers(tp, rack); 15242 /* Setup all the t_flags2 */ 15243 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 15244 tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 15245 else 15246 tp->t_flags2 &= ~TF2_SUPPORTS_MBUFQ; 15247 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 15248 tp->t_flags2 |= TF2_MBUF_ACKCMP; 15249 /* 15250 * Timers in Rack are kept in microseconds so lets 15251 * convert any initial incoming variables 15252 * from ticks into usecs. Note that we 15253 * also change the values of t_srtt and t_rttvar, if 15254 * they are non-zero. They are kept with a 5 15255 * bit decimal so we have to carefully convert 15256 * these to get the full precision. 15257 */ 15258 rack_convert_rtts(tp); 15259 rack_log_hystart_event(rack, rack->r_ctl.roundends, 20); 15260 if ((tptoinpcb(tp)->inp_flags & INP_DROPPED) == 0) { 15261 /* We do not start any timers on DROPPED connections */ 15262 if (tp->t_fb->tfb_chg_query == NULL) { 15263 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 15264 } else { 15265 struct tcp_query_resp qr; 15266 int ret; 15267 15268 memset(&qr, 0, sizeof(qr)); 15269 15270 /* Get the misc time stamps and such for rack */ 15271 qr.req = TCP_QUERY_RACK_TIMES; 15272 ret = (*tp->t_fb->tfb_chg_query)(tp, &qr); 15273 if (ret == 1) { 15274 rack->r_ctl.rc_reorder_ts = qr.rack_reorder_ts; 15275 rack->r_ctl.num_dsack = qr.rack_num_dsacks; 15276 rack->r_ctl.rc_tlp_rxt_last_time = qr.rack_rxt_last_time; 15277 rack->r_ctl.rc_rack_min_rtt = qr.rack_min_rtt; 15278 rack->rc_rack_rtt = qr.rack_rtt; 15279 rack->r_ctl.rc_rack_tmit_time = qr.rack_tmit_time; 15280 rack->r_ctl.rc_sacked = qr.rack_sacked; 15281 rack->r_ctl.rc_holes_rxt = qr.rack_holes_rxt; 15282 rack->r_ctl.rc_prr_delivered = qr.rack_prr_delivered; 15283 rack->r_ctl.rc_prr_recovery_fs = qr.rack_prr_recovery_fs; 15284 rack->r_ctl.rc_prr_sndcnt = qr.rack_prr_sndcnt; 15285 rack->r_ctl.rc_prr_out = qr.rack_prr_out; 15286 if (qr.rack_tlp_out) { 15287 rack->rc_tlp_in_progress = 1; 15288 rack->r_ctl.rc_tlp_cnt_out = qr.rack_tlp_cnt_out; 15289 } else { 15290 rack->rc_tlp_in_progress = 0; 15291 rack->r_ctl.rc_tlp_cnt_out = 0; 15292 } 15293 if (qr.rack_srtt_measured) 15294 rack->rc_srtt_measure_made = 1; 15295 if (qr.rack_in_persist == 1) { 15296 rack->r_ctl.rc_went_idle_time = qr.rack_time_went_idle; 15297 #ifdef NETFLIX_SHARED_CWND 15298 if (rack->r_ctl.rc_scw) { 15299 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 15300 rack->rack_scwnd_is_idle = 1; 15301 } 15302 #endif 15303 rack->r_ctl.persist_lost_ends = 0; 15304 rack->probe_not_answered = 0; 15305 rack->forced_ack = 0; 15306 tp->t_rxtshift = 0; 15307 rack->rc_in_persist = 1; 15308 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 15309 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 15310 } 15311 if (qr.rack_wanted_output) 15312 rack->r_wanted_output = 1; 15313 rack_log_chg_info(tp, rack, 6, 15314 qr.rack_min_rtt, 15315 qr.rack_rtt, 15316 qr.rack_reorder_ts); 15317 } 15318 /* Get the old stack timers */ 15319 qr.req_param = 0; 15320 qr.req = TCP_QUERY_TIMERS_UP; 15321 ret = (*tp->t_fb->tfb_chg_query)(tp, &qr); 15322 if (ret) { 15323 /* 15324 * non-zero return means we have a timer('s) 15325 * to start. Zero means no timer (no keepalive 15326 * I suppose). 15327 */ 15328 uint32_t tov = 0; 15329 15330 rack->r_ctl.rc_hpts_flags = qr.timer_hpts_flags; 15331 if (qr.timer_hpts_flags & PACE_PKT_OUTPUT) { 15332 rack->r_ctl.rc_last_output_to = qr.timer_pacing_to; 15333 if (TSTMP_GT(qr.timer_pacing_to, us_cts)) 15334 tov = qr.timer_pacing_to - us_cts; 15335 else 15336 tov = HPTS_TICKS_PER_SLOT; 15337 } 15338 if (qr.timer_hpts_flags & PACE_TMR_MASK) { 15339 rack->r_ctl.rc_timer_exp = qr.timer_timer_exp; 15340 if (tov == 0) { 15341 if (TSTMP_GT(qr.timer_timer_exp, us_cts)) 15342 tov = qr.timer_timer_exp - us_cts; 15343 else 15344 tov = HPTS_TICKS_PER_SLOT; 15345 } 15346 } 15347 rack_log_chg_info(tp, rack, 4, 15348 rack->r_ctl.rc_hpts_flags, 15349 rack->r_ctl.rc_last_output_to, 15350 rack->r_ctl.rc_timer_exp); 15351 if (tov) { 15352 struct hpts_diag diag; 15353 15354 (void)tcp_hpts_insert_diag(tp, HPTS_USEC_TO_SLOTS(tov), 15355 __LINE__, &diag); 15356 rack_log_hpts_diag(rack, us_cts, &diag, &rack->r_ctl.act_rcv_time); 15357 } 15358 } 15359 } 15360 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur, 15361 __LINE__, RACK_RTTS_INIT); 15362 } 15363 return (0); 15364 } 15365 15366 static int 15367 rack_handoff_ok(struct tcpcb *tp) 15368 { 15369 if ((tp->t_state == TCPS_CLOSED) || 15370 (tp->t_state == TCPS_LISTEN)) { 15371 /* Sure no problem though it may not stick */ 15372 return (0); 15373 } 15374 if ((tp->t_state == TCPS_SYN_SENT) || 15375 (tp->t_state == TCPS_SYN_RECEIVED)) { 15376 /* 15377 * We really don't know if you support sack, 15378 * you have to get to ESTAB or beyond to tell. 15379 */ 15380 return (EAGAIN); 15381 } 15382 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) { 15383 /* 15384 * Rack will only send a FIN after all data is acknowledged. 15385 * So in this case we have more data outstanding. We can't 15386 * switch stacks until either all data and only the FIN 15387 * is left (in which case rack_init() now knows how 15388 * to deal with that) <or> all is acknowledged and we 15389 * are only left with incoming data, though why you 15390 * would want to switch to rack after all data is acknowledged 15391 * I have no idea (rrs)! 15392 */ 15393 return (EAGAIN); 15394 } 15395 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ 15396 return (0); 15397 } 15398 /* 15399 * If we reach here we don't do SACK on this connection so we can 15400 * never do rack. 15401 */ 15402 return (EINVAL); 15403 } 15404 15405 static void 15406 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) 15407 { 15408 15409 if (tp->t_fb_ptr) { 15410 uint32_t cnt_free = 0; 15411 struct tcp_rack *rack; 15412 struct rack_sendmap *rsm; 15413 15414 tcp_handle_orphaned_packets(tp); 15415 tp->t_flags &= ~TF_FORCEDATA; 15416 rack = (struct tcp_rack *)tp->t_fb_ptr; 15417 rack_log_pacing_delay_calc(rack, 15418 0, 15419 0, 15420 0, 15421 rack_get_gp_est(rack), /* delRate */ 15422 rack_get_lt_bw(rack), /* rttProp */ 15423 20, __LINE__, NULL, 0); 15424 #ifdef NETFLIX_SHARED_CWND 15425 if (rack->r_ctl.rc_scw) { 15426 uint32_t limit; 15427 15428 if (rack->r_limit_scw) 15429 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 15430 else 15431 limit = 0; 15432 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 15433 rack->r_ctl.rc_scw_index, 15434 limit); 15435 rack->r_ctl.rc_scw = NULL; 15436 } 15437 #endif 15438 if (rack->r_ctl.fsb.tcp_ip_hdr) { 15439 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB); 15440 rack->r_ctl.fsb.tcp_ip_hdr = NULL; 15441 rack->r_ctl.fsb.th = NULL; 15442 } 15443 if (rack->rc_always_pace) { 15444 tcp_decrement_paced_conn(); 15445 rack_undo_cc_pacing(rack); 15446 rack->rc_always_pace = 0; 15447 } 15448 /* Clean up any options if they were not applied */ 15449 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) { 15450 struct deferred_opt_list *dol; 15451 15452 dol = TAILQ_FIRST(&rack->r_ctl.opt_list); 15453 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 15454 free(dol, M_TCPDO); 15455 } 15456 /* rack does not use force data but other stacks may clear it */ 15457 if (rack->r_ctl.crte != NULL) { 15458 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 15459 rack->rack_hdrw_pacing = 0; 15460 rack->r_ctl.crte = NULL; 15461 } 15462 #ifdef TCP_BLACKBOX 15463 tcp_log_flowend(tp); 15464 #endif 15465 /* 15466 * Lets take a different approach to purging just 15467 * get each one and free it like a cum-ack would and 15468 * not use a foreach loop. 15469 */ 15470 rsm = tqhash_min(rack->r_ctl.tqh); 15471 while (rsm) { 15472 tqhash_remove(rack->r_ctl.tqh, rsm, REMOVE_TYPE_CUMACK); 15473 rack->r_ctl.rc_num_maps_alloced--; 15474 uma_zfree(rack_zone, rsm); 15475 rsm = tqhash_min(rack->r_ctl.tqh); 15476 } 15477 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 15478 while (rsm) { 15479 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 15480 rack->r_ctl.rc_num_maps_alloced--; 15481 rack->rc_free_cnt--; 15482 cnt_free++; 15483 uma_zfree(rack_zone, rsm); 15484 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 15485 } 15486 if ((rack->r_ctl.rc_num_maps_alloced > 0) && 15487 (tcp_bblogging_on(tp))) { 15488 union tcp_log_stackspecific log; 15489 struct timeval tv; 15490 15491 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15492 log.u_bbr.flex8 = 10; 15493 log.u_bbr.flex1 = rack->r_ctl.rc_num_maps_alloced; 15494 log.u_bbr.flex2 = rack->rc_free_cnt; 15495 log.u_bbr.flex3 = cnt_free; 15496 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15497 rsm = tqhash_min(rack->r_ctl.tqh); 15498 log.u_bbr.delRate = (uint64_t)rsm; 15499 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 15500 log.u_bbr.cur_del_rate = (uint64_t)rsm; 15501 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 15502 log.u_bbr.pkt_epoch = __LINE__; 15503 (void)tcp_log_event(tp, NULL, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 15504 0, &log, false, NULL, NULL, 0, &tv); 15505 } 15506 KASSERT((rack->r_ctl.rc_num_maps_alloced == 0), 15507 ("rack:%p num_aloc:%u after freeing all?", 15508 rack, 15509 rack->r_ctl.rc_num_maps_alloced)); 15510 rack->rc_free_cnt = 0; 15511 free(rack->r_ctl.tqh, M_TCPFSB); 15512 rack->r_ctl.tqh = NULL; 15513 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 15514 tp->t_fb_ptr = NULL; 15515 } 15516 /* Make sure snd_nxt is correctly set */ 15517 tp->snd_nxt = tp->snd_max; 15518 } 15519 15520 static void 15521 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) 15522 { 15523 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) { 15524 rack->r_is_v6 = (tptoinpcb(tp)->inp_vflag & INP_IPV6) != 0; 15525 } 15526 switch (tp->t_state) { 15527 case TCPS_SYN_SENT: 15528 rack->r_state = TCPS_SYN_SENT; 15529 rack->r_substate = rack_do_syn_sent; 15530 break; 15531 case TCPS_SYN_RECEIVED: 15532 rack->r_state = TCPS_SYN_RECEIVED; 15533 rack->r_substate = rack_do_syn_recv; 15534 break; 15535 case TCPS_ESTABLISHED: 15536 rack_set_pace_segments(tp, rack, __LINE__, NULL); 15537 rack->r_state = TCPS_ESTABLISHED; 15538 rack->r_substate = rack_do_established; 15539 break; 15540 case TCPS_CLOSE_WAIT: 15541 rack->r_state = TCPS_CLOSE_WAIT; 15542 rack->r_substate = rack_do_close_wait; 15543 break; 15544 case TCPS_FIN_WAIT_1: 15545 rack_set_pace_segments(tp, rack, __LINE__, NULL); 15546 rack->r_state = TCPS_FIN_WAIT_1; 15547 rack->r_substate = rack_do_fin_wait_1; 15548 break; 15549 case TCPS_CLOSING: 15550 rack_set_pace_segments(tp, rack, __LINE__, NULL); 15551 rack->r_state = TCPS_CLOSING; 15552 rack->r_substate = rack_do_closing; 15553 break; 15554 case TCPS_LAST_ACK: 15555 rack_set_pace_segments(tp, rack, __LINE__, NULL); 15556 rack->r_state = TCPS_LAST_ACK; 15557 rack->r_substate = rack_do_lastack; 15558 break; 15559 case TCPS_FIN_WAIT_2: 15560 rack->r_state = TCPS_FIN_WAIT_2; 15561 rack->r_substate = rack_do_fin_wait_2; 15562 break; 15563 case TCPS_LISTEN: 15564 case TCPS_CLOSED: 15565 case TCPS_TIME_WAIT: 15566 default: 15567 break; 15568 }; 15569 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 15570 rack->rc_tp->t_flags2 |= TF2_MBUF_ACKCMP; 15571 15572 } 15573 15574 static void 15575 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) 15576 { 15577 /* 15578 * We received an ack, and then did not 15579 * call send or were bounced out due to the 15580 * hpts was running. Now a timer is up as well, is 15581 * it the right timer? 15582 */ 15583 struct rack_sendmap *rsm; 15584 int tmr_up; 15585 15586 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 15587 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) 15588 return; 15589 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 15590 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && 15591 (tmr_up == PACE_TMR_RXT)) { 15592 /* Should be an RXT */ 15593 return; 15594 } 15595 if (rsm == NULL) { 15596 /* Nothing outstanding? */ 15597 if (tp->t_flags & TF_DELACK) { 15598 if (tmr_up == PACE_TMR_DELACK) 15599 /* We are supposed to have delayed ack up and we do */ 15600 return; 15601 } else if (sbavail(&tptosocket(tp)->so_snd) && (tmr_up == PACE_TMR_RXT)) { 15602 /* 15603 * if we hit enobufs then we would expect the possibility 15604 * of nothing outstanding and the RXT up (and the hptsi timer). 15605 */ 15606 return; 15607 } else if (((V_tcp_always_keepalive || 15608 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 15609 (tp->t_state <= TCPS_CLOSING)) && 15610 (tmr_up == PACE_TMR_KEEP) && 15611 (tp->snd_max == tp->snd_una)) { 15612 /* We should have keep alive up and we do */ 15613 return; 15614 } 15615 } 15616 if (SEQ_GT(tp->snd_max, tp->snd_una) && 15617 ((tmr_up == PACE_TMR_TLP) || 15618 (tmr_up == PACE_TMR_RACK) || 15619 (tmr_up == PACE_TMR_RXT))) { 15620 /* 15621 * Either a Rack, TLP or RXT is fine if we 15622 * have outstanding data. 15623 */ 15624 return; 15625 } else if (tmr_up == PACE_TMR_DELACK) { 15626 /* 15627 * If the delayed ack was going to go off 15628 * before the rtx/tlp/rack timer were going to 15629 * expire, then that would be the timer in control. 15630 * Note we don't check the time here trusting the 15631 * code is correct. 15632 */ 15633 return; 15634 } 15635 /* 15636 * Ok the timer originally started is not what we want now. 15637 * We will force the hpts to be stopped if any, and restart 15638 * with the slot set to what was in the saved slot. 15639 */ 15640 if (tcp_in_hpts(rack->rc_tp)) { 15641 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 15642 uint32_t us_cts; 15643 15644 us_cts = tcp_get_usecs(NULL); 15645 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 15646 rack->r_early = 1; 15647 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 15648 } 15649 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 15650 } 15651 tcp_hpts_remove(rack->rc_tp); 15652 } 15653 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 15654 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 15655 } 15656 15657 15658 static void 15659 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts) 15660 { 15661 if ((SEQ_LT(tp->snd_wl1, seq) || 15662 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) || 15663 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) { 15664 /* keep track of pure window updates */ 15665 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd)) 15666 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 15667 tp->snd_wnd = tiwin; 15668 rack_validate_fo_sendwin_up(tp, rack); 15669 tp->snd_wl1 = seq; 15670 tp->snd_wl2 = ack; 15671 if (tp->snd_wnd > tp->max_sndwnd) 15672 tp->max_sndwnd = tp->snd_wnd; 15673 rack->r_wanted_output = 1; 15674 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) { 15675 tp->snd_wnd = tiwin; 15676 rack_validate_fo_sendwin_up(tp, rack); 15677 tp->snd_wl1 = seq; 15678 tp->snd_wl2 = ack; 15679 } else { 15680 /* Not a valid win update */ 15681 return; 15682 } 15683 if (tp->snd_wnd > tp->max_sndwnd) 15684 tp->max_sndwnd = tp->snd_wnd; 15685 /* Do we exit persists? */ 15686 if ((rack->rc_in_persist != 0) && 15687 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 15688 rack->r_ctl.rc_pace_min_segs))) { 15689 rack_exit_persist(tp, rack, cts); 15690 } 15691 /* Do we enter persists? */ 15692 if ((rack->rc_in_persist == 0) && 15693 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 15694 TCPS_HAVEESTABLISHED(tp->t_state) && 15695 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) && 15696 sbavail(&tptosocket(tp)->so_snd) && 15697 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) { 15698 /* 15699 * Here the rwnd is less than 15700 * the pacing size, we are established, 15701 * nothing is outstanding, and there is 15702 * data to send. Enter persists. 15703 */ 15704 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime, ack); 15705 } 15706 } 15707 15708 static void 15709 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq) 15710 { 15711 15712 if (tcp_bblogging_on(rack->rc_tp)) { 15713 struct inpcb *inp = tptoinpcb(tp); 15714 union tcp_log_stackspecific log; 15715 struct timeval ltv; 15716 char tcp_hdr_buf[60]; 15717 struct tcphdr *th; 15718 struct timespec ts; 15719 uint32_t orig_snd_una; 15720 uint8_t xx = 0; 15721 15722 #ifdef TCP_REQUEST_TRK 15723 struct tcp_sendfile_track *tcp_req; 15724 15725 if (SEQ_GT(ae->ack, tp->snd_una)) { 15726 tcp_req = tcp_req_find_req_for_seq(tp, (ae->ack-1)); 15727 } else { 15728 tcp_req = tcp_req_find_req_for_seq(tp, ae->ack); 15729 } 15730 #endif 15731 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15732 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 15733 if (rack->rack_no_prr == 0) 15734 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 15735 else 15736 log.u_bbr.flex1 = 0; 15737 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 15738 log.u_bbr.use_lt_bw <<= 1; 15739 log.u_bbr.use_lt_bw |= rack->r_might_revert; 15740 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 15741 log.u_bbr.bbr_state = rack->rc_free_cnt; 15742 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 15743 log.u_bbr.pkts_out = tp->t_maxseg; 15744 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 15745 log.u_bbr.flex7 = 1; 15746 log.u_bbr.lost = ae->flags; 15747 log.u_bbr.cwnd_gain = ackval; 15748 log.u_bbr.pacing_gain = 0x2; 15749 if (ae->flags & TSTMP_HDWR) { 15750 /* Record the hardware timestamp if present */ 15751 log.u_bbr.flex3 = M_TSTMP; 15752 ts.tv_sec = ae->timestamp / 1000000000; 15753 ts.tv_nsec = ae->timestamp % 1000000000; 15754 ltv.tv_sec = ts.tv_sec; 15755 ltv.tv_usec = ts.tv_nsec / 1000; 15756 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 15757 } else if (ae->flags & TSTMP_LRO) { 15758 /* Record the LRO the arrival timestamp */ 15759 log.u_bbr.flex3 = M_TSTMP_LRO; 15760 ts.tv_sec = ae->timestamp / 1000000000; 15761 ts.tv_nsec = ae->timestamp % 1000000000; 15762 ltv.tv_sec = ts.tv_sec; 15763 ltv.tv_usec = ts.tv_nsec / 1000; 15764 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 15765 } 15766 log.u_bbr.timeStamp = tcp_get_usecs(<v); 15767 /* Log the rcv time */ 15768 log.u_bbr.delRate = ae->timestamp; 15769 #ifdef TCP_REQUEST_TRK 15770 log.u_bbr.applimited = tp->t_tcpreq_closed; 15771 log.u_bbr.applimited <<= 8; 15772 log.u_bbr.applimited |= tp->t_tcpreq_open; 15773 log.u_bbr.applimited <<= 8; 15774 log.u_bbr.applimited |= tp->t_tcpreq_req; 15775 if (tcp_req) { 15776 /* Copy out any client req info */ 15777 /* seconds */ 15778 log.u_bbr.pkt_epoch = (tcp_req->localtime / HPTS_USEC_IN_SEC); 15779 /* useconds */ 15780 log.u_bbr.delivered = (tcp_req->localtime % HPTS_USEC_IN_SEC); 15781 log.u_bbr.rttProp = tcp_req->timestamp; 15782 log.u_bbr.cur_del_rate = tcp_req->start; 15783 if (tcp_req->flags & TCP_TRK_TRACK_FLG_OPEN) { 15784 log.u_bbr.flex8 |= 1; 15785 } else { 15786 log.u_bbr.flex8 |= 2; 15787 log.u_bbr.bw_inuse = tcp_req->end; 15788 } 15789 log.u_bbr.flex6 = tcp_req->start_seq; 15790 if (tcp_req->flags & TCP_TRK_TRACK_FLG_COMP) { 15791 log.u_bbr.flex8 |= 4; 15792 log.u_bbr.epoch = tcp_req->end_seq; 15793 } 15794 } 15795 #endif 15796 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf)); 15797 th = (struct tcphdr *)tcp_hdr_buf; 15798 th->th_seq = ae->seq; 15799 th->th_ack = ae->ack; 15800 th->th_win = ae->win; 15801 /* Now fill in the ports */ 15802 th->th_sport = inp->inp_fport; 15803 th->th_dport = inp->inp_lport; 15804 tcp_set_flags(th, ae->flags); 15805 /* Now do we have a timestamp option? */ 15806 if (ae->flags & HAS_TSTMP) { 15807 u_char *cp; 15808 uint32_t val; 15809 15810 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2); 15811 cp = (u_char *)(th + 1); 15812 *cp = TCPOPT_NOP; 15813 cp++; 15814 *cp = TCPOPT_NOP; 15815 cp++; 15816 *cp = TCPOPT_TIMESTAMP; 15817 cp++; 15818 *cp = TCPOLEN_TIMESTAMP; 15819 cp++; 15820 val = htonl(ae->ts_value); 15821 bcopy((char *)&val, 15822 (char *)cp, sizeof(uint32_t)); 15823 val = htonl(ae->ts_echo); 15824 bcopy((char *)&val, 15825 (char *)(cp + 4), sizeof(uint32_t)); 15826 } else 15827 th->th_off = (sizeof(struct tcphdr) >> 2); 15828 15829 /* 15830 * For sane logging we need to play a little trick. 15831 * If the ack were fully processed we would have moved 15832 * snd_una to high_seq, but since compressed acks are 15833 * processed in two phases, at this point (logging) snd_una 15834 * won't be advanced. So we would see multiple acks showing 15835 * the advancement. We can prevent that by "pretending" that 15836 * snd_una was advanced and then un-advancing it so that the 15837 * logging code has the right value for tlb_snd_una. 15838 */ 15839 if (tp->snd_una != high_seq) { 15840 orig_snd_una = tp->snd_una; 15841 tp->snd_una = high_seq; 15842 xx = 1; 15843 } else 15844 xx = 0; 15845 TCP_LOG_EVENTP(tp, th, 15846 &tptosocket(tp)->so_rcv, 15847 &tptosocket(tp)->so_snd, TCP_LOG_IN, 0, 15848 0, &log, true, <v); 15849 if (xx) { 15850 tp->snd_una = orig_snd_una; 15851 } 15852 } 15853 15854 } 15855 15856 static void 15857 rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts) 15858 { 15859 uint32_t us_rtt; 15860 /* 15861 * A persist or keep-alive was forced out, update our 15862 * min rtt time. Note now worry about lost responses. 15863 * When a subsequent keep-alive or persist times out 15864 * and forced_ack is still on, then the last probe 15865 * was not responded to. In such cases we have a 15866 * sysctl that controls the behavior. Either we apply 15867 * the rtt but with reduced confidence (0). Or we just 15868 * plain don't apply the rtt estimate. Having data flow 15869 * will clear the probe_not_answered flag i.e. cum-ack 15870 * move forward <or> exiting and reentering persists. 15871 */ 15872 15873 rack->forced_ack = 0; 15874 rack->rc_tp->t_rxtshift = 0; 15875 if ((rack->rc_in_persist && 15876 (tiwin == rack->rc_tp->snd_wnd)) || 15877 (rack->rc_in_persist == 0)) { 15878 /* 15879 * In persists only apply the RTT update if this is 15880 * a response to our window probe. And that 15881 * means the rwnd sent must match the current 15882 * snd_wnd. If it does not, then we got a 15883 * window update ack instead. For keepalive 15884 * we allow the answer no matter what the window. 15885 * 15886 * Note that if the probe_not_answered is set then 15887 * the forced_ack_ts is the oldest one i.e. the first 15888 * probe sent that might have been lost. This assures 15889 * us that if we do calculate an RTT it is longer not 15890 * some short thing. 15891 */ 15892 if (rack->rc_in_persist) 15893 counter_u64_add(rack_persists_acks, 1); 15894 us_rtt = us_cts - rack->r_ctl.forced_ack_ts; 15895 if (us_rtt == 0) 15896 us_rtt = 1; 15897 if (rack->probe_not_answered == 0) { 15898 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 15899 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1); 15900 } else { 15901 /* We have a retransmitted probe here too */ 15902 if (rack_apply_rtt_with_reduced_conf) { 15903 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 15904 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1); 15905 } 15906 } 15907 } 15908 } 15909 15910 static int 15911 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv) 15912 { 15913 /* 15914 * Handle a "special" compressed ack mbuf. Each incoming 15915 * ack has only four possible dispositions: 15916 * 15917 * A) It moves the cum-ack forward 15918 * B) It is behind the cum-ack. 15919 * C) It is a window-update ack. 15920 * D) It is a dup-ack. 15921 * 15922 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES 15923 * in the incoming mbuf. We also need to still pay attention 15924 * to nxt_pkt since there may be another packet after this 15925 * one. 15926 */ 15927 #ifdef TCP_ACCOUNTING 15928 uint64_t ts_val; 15929 uint64_t rdstc; 15930 #endif 15931 int segsiz; 15932 struct timespec ts; 15933 struct tcp_rack *rack; 15934 struct tcp_ackent *ae; 15935 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack; 15936 int cnt, i, did_out, ourfinisacked = 0; 15937 struct tcpopt to_holder, *to = NULL; 15938 #ifdef TCP_ACCOUNTING 15939 int win_up_req = 0; 15940 #endif 15941 int nsegs = 0; 15942 int under_pacing = 0; 15943 int recovery = 0; 15944 #ifdef TCP_ACCOUNTING 15945 sched_pin(); 15946 #endif 15947 rack = (struct tcp_rack *)tp->t_fb_ptr; 15948 if (rack->gp_ready && 15949 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) 15950 under_pacing = 1; 15951 15952 if (rack->r_state != tp->t_state) 15953 rack_set_state(tp, rack); 15954 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 15955 (tp->t_flags & TF_GPUTINPROG)) { 15956 /* 15957 * We have a goodput in progress 15958 * and we have entered a late state. 15959 * Do we have enough data in the sb 15960 * to handle the GPUT request? 15961 */ 15962 uint32_t bytes; 15963 15964 bytes = tp->gput_ack - tp->gput_seq; 15965 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 15966 bytes += tp->gput_seq - tp->snd_una; 15967 if (bytes > sbavail(&tptosocket(tp)->so_snd)) { 15968 /* 15969 * There are not enough bytes in the socket 15970 * buffer that have been sent to cover this 15971 * measurement. Cancel it. 15972 */ 15973 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 15974 rack->r_ctl.rc_gp_srtt /*flex1*/, 15975 tp->gput_seq, 15976 0, 0, 18, __LINE__, NULL, 0); 15977 tp->t_flags &= ~TF_GPUTINPROG; 15978 } 15979 } 15980 to = &to_holder; 15981 to->to_flags = 0; 15982 KASSERT((m->m_len >= sizeof(struct tcp_ackent)), 15983 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len)); 15984 cnt = m->m_len / sizeof(struct tcp_ackent); 15985 counter_u64_add(rack_multi_single_eq, cnt); 15986 high_seq = tp->snd_una; 15987 the_win = tp->snd_wnd; 15988 win_seq = tp->snd_wl1; 15989 win_upd_ack = tp->snd_wl2; 15990 cts = tcp_tv_to_usectick(tv); 15991 ms_cts = tcp_tv_to_mssectick(tv); 15992 rack->r_ctl.rc_rcvtime = cts; 15993 segsiz = ctf_fixed_maxseg(tp); 15994 if ((rack->rc_gp_dyn_mul) && 15995 (rack->use_fixed_rate == 0) && 15996 (rack->rc_always_pace)) { 15997 /* Check in on probertt */ 15998 rack_check_probe_rtt(rack, cts); 15999 } 16000 for (i = 0; i < cnt; i++) { 16001 #ifdef TCP_ACCOUNTING 16002 ts_val = get_cyclecount(); 16003 #endif 16004 rack_clear_rate_sample(rack); 16005 ae = ((mtod(m, struct tcp_ackent *)) + i); 16006 if (ae->flags & TH_FIN) 16007 rack_log_pacing_delay_calc(rack, 16008 0, 16009 0, 16010 0, 16011 rack_get_gp_est(rack), /* delRate */ 16012 rack_get_lt_bw(rack), /* rttProp */ 16013 20, __LINE__, NULL, 0); 16014 /* Setup the window */ 16015 tiwin = ae->win << tp->snd_scale; 16016 if (tiwin > rack->r_ctl.rc_high_rwnd) 16017 rack->r_ctl.rc_high_rwnd = tiwin; 16018 /* figure out the type of ack */ 16019 if (SEQ_LT(ae->ack, high_seq)) { 16020 /* Case B*/ 16021 ae->ack_val_set = ACK_BEHIND; 16022 } else if (SEQ_GT(ae->ack, high_seq)) { 16023 /* Case A */ 16024 ae->ack_val_set = ACK_CUMACK; 16025 } else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){ 16026 /* Case D */ 16027 ae->ack_val_set = ACK_DUPACK; 16028 } else { 16029 /* Case C */ 16030 ae->ack_val_set = ACK_RWND; 16031 } 16032 if (rack->sack_attack_disable > 0) { 16033 rack_log_type_bbrsnd(rack, 0, 0, cts, tv, __LINE__); 16034 rack->r_ctl.ack_during_sd++; 16035 } 16036 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq); 16037 /* Validate timestamp */ 16038 if (ae->flags & HAS_TSTMP) { 16039 /* Setup for a timestamp */ 16040 to->to_flags = TOF_TS; 16041 ae->ts_echo -= tp->ts_offset; 16042 to->to_tsecr = ae->ts_echo; 16043 to->to_tsval = ae->ts_value; 16044 /* 16045 * If echoed timestamp is later than the current time, fall back to 16046 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 16047 * were used when this connection was established. 16048 */ 16049 if (TSTMP_GT(ae->ts_echo, ms_cts)) 16050 to->to_tsecr = 0; 16051 if (tp->ts_recent && 16052 TSTMP_LT(ae->ts_value, tp->ts_recent)) { 16053 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) { 16054 #ifdef TCP_ACCOUNTING 16055 rdstc = get_cyclecount(); 16056 if (rdstc > ts_val) { 16057 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16058 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 16059 } 16060 } 16061 #endif 16062 continue; 16063 } 16064 } 16065 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) && 16066 SEQ_LEQ(tp->last_ack_sent, ae->seq)) { 16067 tp->ts_recent_age = tcp_ts_getticks(); 16068 tp->ts_recent = ae->ts_value; 16069 } 16070 } else { 16071 /* Setup for a no options */ 16072 to->to_flags = 0; 16073 } 16074 /* Update the rcv time and perform idle reduction possibly */ 16075 if (tp->t_idle_reduce && 16076 (tp->snd_max == tp->snd_una) && 16077 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 16078 counter_u64_add(rack_input_idle_reduces, 1); 16079 rack_cc_after_idle(rack, tp); 16080 } 16081 tp->t_rcvtime = ticks; 16082 /* Now what about ECN of a chain of pure ACKs? */ 16083 if (tcp_ecn_input_segment(tp, ae->flags, 0, 16084 tcp_packets_this_ack(tp, ae->ack), 16085 ae->codepoint)) 16086 rack_cong_signal(tp, CC_ECN, ae->ack, __LINE__); 16087 #ifdef TCP_ACCOUNTING 16088 /* Count for the specific type of ack in */ 16089 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16090 tp->tcp_cnt_counters[ae->ack_val_set]++; 16091 } 16092 #endif 16093 /* 16094 * Note how we could move up these in the determination 16095 * above, but we don't so that way the timestamp checks (and ECN) 16096 * is done first before we do any processing on the ACK. 16097 * The non-compressed path through the code has this 16098 * weakness (noted by @jtl) that it actually does some 16099 * processing before verifying the timestamp information. 16100 * We don't take that path here which is why we set 16101 * the ack_val_set first, do the timestamp and ecn 16102 * processing, and then look at what we have setup. 16103 */ 16104 if (ae->ack_val_set == ACK_BEHIND) { 16105 /* 16106 * Case B flag reordering, if window is not closed 16107 * or it could be a keep-alive or persists 16108 */ 16109 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) { 16110 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 16111 if (rack->r_ctl.rc_reorder_ts == 0) 16112 rack->r_ctl.rc_reorder_ts = 1; 16113 } 16114 } else if (ae->ack_val_set == ACK_DUPACK) { 16115 /* Case D */ 16116 rack_strike_dupack(rack); 16117 } else if (ae->ack_val_set == ACK_RWND) { 16118 /* Case C */ 16119 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 16120 ts.tv_sec = ae->timestamp / 1000000000; 16121 ts.tv_nsec = ae->timestamp % 1000000000; 16122 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 16123 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 16124 } else { 16125 rack->r_ctl.act_rcv_time = *tv; 16126 } 16127 if (rack->forced_ack) { 16128 rack_handle_probe_response(rack, tiwin, 16129 tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 16130 } 16131 #ifdef TCP_ACCOUNTING 16132 win_up_req = 1; 16133 #endif 16134 win_upd_ack = ae->ack; 16135 win_seq = ae->seq; 16136 the_win = tiwin; 16137 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts); 16138 } else { 16139 /* Case A */ 16140 if (SEQ_GT(ae->ack, tp->snd_max)) { 16141 /* 16142 * We just send an ack since the incoming 16143 * ack is beyond the largest seq we sent. 16144 */ 16145 if ((tp->t_flags & TF_ACKNOW) == 0) { 16146 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt); 16147 if (tp->t_flags && TF_ACKNOW) 16148 rack->r_wanted_output = 1; 16149 } 16150 } else { 16151 nsegs++; 16152 /* If the window changed setup to update */ 16153 if (tiwin != tp->snd_wnd) { 16154 win_upd_ack = ae->ack; 16155 win_seq = ae->seq; 16156 the_win = tiwin; 16157 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts); 16158 } 16159 #ifdef TCP_ACCOUNTING 16160 /* Account for the acks */ 16161 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16162 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz); 16163 } 16164 #endif 16165 high_seq = ae->ack; 16166 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) 16167 rack_log_hystart_event(rack, high_seq, 8); 16168 /* Setup our act_rcv_time */ 16169 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 16170 ts.tv_sec = ae->timestamp / 1000000000; 16171 ts.tv_nsec = ae->timestamp % 1000000000; 16172 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 16173 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 16174 } else { 16175 rack->r_ctl.act_rcv_time = *tv; 16176 } 16177 rack_process_to_cumack(tp, rack, ae->ack, cts, to, 16178 tcp_tv_to_lusectick(&rack->r_ctl.act_rcv_time)); 16179 #ifdef TCP_REQUEST_TRK 16180 rack_req_check_for_comp(rack, high_seq); 16181 #endif 16182 if (rack->rc_dsack_round_seen) { 16183 /* Is the dsack round over? */ 16184 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) { 16185 /* Yes it is */ 16186 rack->rc_dsack_round_seen = 0; 16187 rack_log_dsack_event(rack, 3, __LINE__, 0, 0); 16188 } 16189 } 16190 } 16191 } 16192 /* And lets be sure to commit the rtt measurements for this ack */ 16193 tcp_rack_xmit_timer_commit(rack, tp); 16194 #ifdef TCP_ACCOUNTING 16195 rdstc = get_cyclecount(); 16196 if (rdstc > ts_val) { 16197 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16198 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 16199 if (ae->ack_val_set == ACK_CUMACK) 16200 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val); 16201 } 16202 } 16203 #endif 16204 } 16205 #ifdef TCP_ACCOUNTING 16206 ts_val = get_cyclecount(); 16207 #endif 16208 /* Tend to any collapsed window */ 16209 if (SEQ_GT(tp->snd_max, high_seq) && (tp->snd_wnd < (tp->snd_max - high_seq))) { 16210 /* The peer collapsed the window */ 16211 rack_collapsed_window(rack, (tp->snd_max - high_seq), high_seq, __LINE__); 16212 } else if (rack->rc_has_collapsed) 16213 rack_un_collapse_window(rack, __LINE__); 16214 if ((rack->r_collapse_point_valid) && 16215 (SEQ_GT(high_seq, rack->r_ctl.high_collapse_point))) 16216 rack->r_collapse_point_valid = 0; 16217 acked_amount = acked = (high_seq - tp->snd_una); 16218 if (acked) { 16219 /* 16220 * The draft (v3) calls for us to use SEQ_GEQ, but that 16221 * causes issues when we are just going app limited. Lets 16222 * instead use SEQ_GT <or> where its equal but more data 16223 * is outstanding. 16224 * 16225 * Also make sure we are on the last ack of a series. We 16226 * have to have all the ack's processed in queue to know 16227 * if there is something left outstanding. 16228 * 16229 */ 16230 if (SEQ_GEQ(high_seq, rack->r_ctl.roundends) && 16231 (rack->rc_new_rnd_needed == 0) && 16232 (nxt_pkt == 0)) { 16233 rack_log_hystart_event(rack, high_seq, 21); 16234 rack->r_ctl.current_round++; 16235 /* Force the next send to setup the next round */ 16236 rack->rc_new_rnd_needed = 1; 16237 if (CC_ALGO(tp)->newround != NULL) { 16238 CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round); 16239 } 16240 } 16241 /* 16242 * Clear the probe not answered flag 16243 * since cum-ack moved forward. 16244 */ 16245 rack->probe_not_answered = 0; 16246 if (rack->sack_attack_disable == 0) 16247 rack_do_decay(rack); 16248 if (acked >= segsiz) { 16249 /* 16250 * You only get credit for 16251 * MSS and greater (and you get extra 16252 * credit for larger cum-ack moves). 16253 */ 16254 int ac; 16255 16256 ac = acked / segsiz; 16257 rack->r_ctl.ack_count += ac; 16258 counter_u64_add(rack_ack_total, ac); 16259 } 16260 if (rack->r_ctl.ack_count > 0xfff00000) { 16261 /* 16262 * reduce the number to keep us under 16263 * a uint32_t. 16264 */ 16265 rack->r_ctl.ack_count /= 2; 16266 rack->r_ctl.sack_count /= 2; 16267 } 16268 if (tp->t_flags & TF_NEEDSYN) { 16269 /* 16270 * T/TCP: Connection was half-synchronized, and our SYN has 16271 * been ACK'd (so connection is now fully synchronized). Go 16272 * to non-starred state, increment snd_una for ACK of SYN, 16273 * and check if we can do window scaling. 16274 */ 16275 tp->t_flags &= ~TF_NEEDSYN; 16276 tp->snd_una++; 16277 acked_amount = acked = (high_seq - tp->snd_una); 16278 } 16279 if (acked > sbavail(&so->so_snd)) 16280 acked_amount = sbavail(&so->so_snd); 16281 #ifdef TCP_SAD_DETECTION 16282 /* 16283 * We only care on a cum-ack move if we are in a sack-disabled 16284 * state. We have already added in to the ack_count, and we never 16285 * would disable on a cum-ack move, so we only care to do the 16286 * detection if it may "undo" it, i.e. we were in disabled already. 16287 */ 16288 if (rack->sack_attack_disable) 16289 rack_do_detection(tp, rack, acked_amount, segsiz); 16290 #endif 16291 if (IN_FASTRECOVERY(tp->t_flags) && 16292 (rack->rack_no_prr == 0)) 16293 rack_update_prr(tp, rack, acked_amount, high_seq); 16294 if (IN_RECOVERY(tp->t_flags)) { 16295 if (SEQ_LT(high_seq, tp->snd_recover) && 16296 (SEQ_LT(high_seq, tp->snd_max))) { 16297 tcp_rack_partialack(tp); 16298 } else { 16299 rack_post_recovery(tp, high_seq); 16300 recovery = 1; 16301 } 16302 } 16303 /* Handle the rack-log-ack part (sendmap) */ 16304 if ((sbused(&so->so_snd) == 0) && 16305 (acked > acked_amount) && 16306 (tp->t_state >= TCPS_FIN_WAIT_1) && 16307 (tp->t_flags & TF_SENTFIN)) { 16308 /* 16309 * We must be sure our fin 16310 * was sent and acked (we can be 16311 * in FIN_WAIT_1 without having 16312 * sent the fin). 16313 */ 16314 ourfinisacked = 1; 16315 /* 16316 * Lets make sure snd_una is updated 16317 * since most likely acked_amount = 0 (it 16318 * should be). 16319 */ 16320 tp->snd_una = high_seq; 16321 } 16322 /* Did we make a RTO error? */ 16323 if ((tp->t_flags & TF_PREVVALID) && 16324 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 16325 tp->t_flags &= ~TF_PREVVALID; 16326 if (tp->t_rxtshift == 1 && 16327 (int)(ticks - tp->t_badrxtwin) < 0) 16328 rack_cong_signal(tp, CC_RTO_ERR, high_seq, __LINE__); 16329 } 16330 /* Handle the data in the socket buffer */ 16331 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1); 16332 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 16333 if (acked_amount > 0) { 16334 struct mbuf *mfree; 16335 16336 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery); 16337 SOCKBUF_LOCK(&so->so_snd); 16338 mfree = sbcut_locked(&so->so_snd, acked_amount); 16339 tp->snd_una = high_seq; 16340 /* Note we want to hold the sb lock through the sendmap adjust */ 16341 rack_adjust_sendmap_head(rack, &so->so_snd); 16342 /* Wake up the socket if we have room to write more */ 16343 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 16344 sowwakeup_locked(so); 16345 if ((recovery == 1) && 16346 (rack->excess_rxt_on) && 16347 (rack->r_cwnd_was_clamped == 0)) { 16348 do_rack_excess_rxt(tp, rack); 16349 } else if (rack->r_cwnd_was_clamped) 16350 do_rack_check_for_unclamp(tp, rack); 16351 m_freem(mfree); 16352 } 16353 /* update progress */ 16354 tp->t_acktime = ticks; 16355 rack_log_progress_event(rack, tp, tp->t_acktime, 16356 PROGRESS_UPDATE, __LINE__); 16357 /* Clear out shifts and such */ 16358 tp->t_rxtshift = 0; 16359 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 16360 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop); 16361 rack->rc_tlp_in_progress = 0; 16362 rack->r_ctl.rc_tlp_cnt_out = 0; 16363 /* Send recover and snd_nxt must be dragged along */ 16364 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 16365 tp->snd_recover = tp->snd_una; 16366 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 16367 tp->snd_nxt = tp->snd_una; 16368 /* 16369 * If the RXT timer is running we want to 16370 * stop it, so we can restart a TLP (or new RXT). 16371 */ 16372 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 16373 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 16374 tp->snd_wl2 = high_seq; 16375 tp->t_dupacks = 0; 16376 if (under_pacing && 16377 (rack->use_fixed_rate == 0) && 16378 (rack->in_probe_rtt == 0) && 16379 rack->rc_gp_dyn_mul && 16380 rack->rc_always_pace) { 16381 /* Check if we are dragging bottom */ 16382 rack_check_bottom_drag(tp, rack, so); 16383 } 16384 if (tp->snd_una == tp->snd_max) { 16385 tp->t_flags &= ~TF_PREVVALID; 16386 rack->r_ctl.retran_during_recovery = 0; 16387 rack->rc_suspicious = 0; 16388 rack->r_ctl.dsack_byte_cnt = 0; 16389 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 16390 if (rack->r_ctl.rc_went_idle_time == 0) 16391 rack->r_ctl.rc_went_idle_time = 1; 16392 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 16393 if (sbavail(&tptosocket(tp)->so_snd) == 0) 16394 tp->t_acktime = 0; 16395 /* Set so we might enter persists... */ 16396 rack->r_wanted_output = 1; 16397 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 16398 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 16399 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 16400 (sbavail(&so->so_snd) == 0) && 16401 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 16402 /* 16403 * The socket was gone and the 16404 * peer sent data (not now in the past), time to 16405 * reset him. 16406 */ 16407 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 16408 /* tcp_close will kill the inp pre-log the Reset */ 16409 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 16410 #ifdef TCP_ACCOUNTING 16411 rdstc = get_cyclecount(); 16412 if (rdstc > ts_val) { 16413 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16414 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16415 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16416 } 16417 } 16418 #endif 16419 m_freem(m); 16420 tp = tcp_close(tp); 16421 if (tp == NULL) { 16422 #ifdef TCP_ACCOUNTING 16423 sched_unpin(); 16424 #endif 16425 return (1); 16426 } 16427 /* 16428 * We would normally do drop-with-reset which would 16429 * send back a reset. We can't since we don't have 16430 * all the needed bits. Instead lets arrange for 16431 * a call to tcp_output(). That way since we 16432 * are in the closed state we will generate a reset. 16433 * 16434 * Note if tcp_accounting is on we don't unpin since 16435 * we do that after the goto label. 16436 */ 16437 goto send_out_a_rst; 16438 } 16439 if ((sbused(&so->so_snd) == 0) && 16440 (tp->t_state >= TCPS_FIN_WAIT_1) && 16441 (tp->t_flags & TF_SENTFIN)) { 16442 /* 16443 * If we can't receive any more data, then closing user can 16444 * proceed. Starting the timer is contrary to the 16445 * specification, but if we don't get a FIN we'll hang 16446 * forever. 16447 * 16448 */ 16449 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 16450 soisdisconnected(so); 16451 tcp_timer_activate(tp, TT_2MSL, 16452 (tcp_fast_finwait2_recycle ? 16453 tcp_finwait2_timeout : 16454 TP_MAXIDLE(tp))); 16455 } 16456 if (ourfinisacked == 0) { 16457 /* 16458 * We don't change to fin-wait-2 if we have our fin acked 16459 * which means we are probably in TCPS_CLOSING. 16460 */ 16461 tcp_state_change(tp, TCPS_FIN_WAIT_2); 16462 } 16463 } 16464 } 16465 /* Wake up the socket if we have room to write more */ 16466 if (sbavail(&so->so_snd)) { 16467 rack->r_wanted_output = 1; 16468 if (ctf_progress_timeout_check(tp, true)) { 16469 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 16470 tp, tick, PROGRESS_DROP, __LINE__); 16471 /* 16472 * We cheat here and don't send a RST, we should send one 16473 * when the pacer drops the connection. 16474 */ 16475 #ifdef TCP_ACCOUNTING 16476 rdstc = get_cyclecount(); 16477 if (rdstc > ts_val) { 16478 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16479 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16480 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16481 } 16482 } 16483 sched_unpin(); 16484 #endif 16485 (void)tcp_drop(tp, ETIMEDOUT); 16486 m_freem(m); 16487 return (1); 16488 } 16489 } 16490 if (ourfinisacked) { 16491 switch(tp->t_state) { 16492 case TCPS_CLOSING: 16493 #ifdef TCP_ACCOUNTING 16494 rdstc = get_cyclecount(); 16495 if (rdstc > ts_val) { 16496 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16497 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16498 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16499 } 16500 } 16501 sched_unpin(); 16502 #endif 16503 tcp_twstart(tp); 16504 m_freem(m); 16505 return (1); 16506 break; 16507 case TCPS_LAST_ACK: 16508 #ifdef TCP_ACCOUNTING 16509 rdstc = get_cyclecount(); 16510 if (rdstc > ts_val) { 16511 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16512 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16513 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16514 } 16515 } 16516 sched_unpin(); 16517 #endif 16518 tp = tcp_close(tp); 16519 ctf_do_drop(m, tp); 16520 return (1); 16521 break; 16522 case TCPS_FIN_WAIT_1: 16523 #ifdef TCP_ACCOUNTING 16524 rdstc = get_cyclecount(); 16525 if (rdstc > ts_val) { 16526 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16527 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16528 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16529 } 16530 } 16531 #endif 16532 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 16533 soisdisconnected(so); 16534 tcp_timer_activate(tp, TT_2MSL, 16535 (tcp_fast_finwait2_recycle ? 16536 tcp_finwait2_timeout : 16537 TP_MAXIDLE(tp))); 16538 } 16539 tcp_state_change(tp, TCPS_FIN_WAIT_2); 16540 break; 16541 default: 16542 break; 16543 } 16544 } 16545 if (rack->r_fast_output) { 16546 /* 16547 * We re doing fast output.. can we expand that? 16548 */ 16549 rack_gain_for_fastoutput(rack, tp, so, acked_amount); 16550 } 16551 #ifdef TCP_ACCOUNTING 16552 rdstc = get_cyclecount(); 16553 if (rdstc > ts_val) { 16554 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16555 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 16556 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 16557 } 16558 } 16559 16560 } else if (win_up_req) { 16561 rdstc = get_cyclecount(); 16562 if (rdstc > ts_val) { 16563 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16564 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val); 16565 } 16566 } 16567 #endif 16568 } 16569 /* Now is there a next packet, if so we are done */ 16570 m_freem(m); 16571 did_out = 0; 16572 if (nxt_pkt) { 16573 #ifdef TCP_ACCOUNTING 16574 sched_unpin(); 16575 #endif 16576 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs); 16577 return (0); 16578 } 16579 rack_handle_might_revert(tp, rack); 16580 ctf_calc_rwin(so, tp); 16581 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 16582 send_out_a_rst: 16583 if (tcp_output(tp) < 0) { 16584 #ifdef TCP_ACCOUNTING 16585 sched_unpin(); 16586 #endif 16587 return (1); 16588 } 16589 did_out = 1; 16590 } 16591 if (tp->t_flags2 & TF2_HPTS_CALLS) 16592 tp->t_flags2 &= ~TF2_HPTS_CALLS; 16593 rack_free_trim(rack); 16594 #ifdef TCP_ACCOUNTING 16595 sched_unpin(); 16596 #endif 16597 rack_timer_audit(tp, rack, &so->so_snd); 16598 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs); 16599 return (0); 16600 } 16601 16602 #define TCP_LRO_TS_OPTION \ 16603 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 16604 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 16605 16606 static int 16607 rack_do_segment_nounlock(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 16608 int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, int32_t nxt_pkt, 16609 struct timeval *tv) 16610 { 16611 struct inpcb *inp = tptoinpcb(tp); 16612 struct socket *so = tptosocket(tp); 16613 #ifdef TCP_ACCOUNTING 16614 uint64_t ts_val; 16615 #endif 16616 int32_t thflags, retval, did_out = 0; 16617 int32_t way_out = 0; 16618 /* 16619 * cts - is the current time from tv (caller gets ts) in microseconds. 16620 * ms_cts - is the current time from tv in milliseconds. 16621 * us_cts - is the time that LRO or hardware actually got the packet in microseconds. 16622 */ 16623 uint32_t cts, us_cts, ms_cts; 16624 uint32_t tiwin, high_seq; 16625 struct timespec ts; 16626 struct tcpopt to; 16627 struct tcp_rack *rack; 16628 struct rack_sendmap *rsm; 16629 int32_t prev_state = 0; 16630 int no_output = 0; 16631 int slot_remaining = 0; 16632 #ifdef TCP_ACCOUNTING 16633 int ack_val_set = 0xf; 16634 #endif 16635 int nsegs; 16636 16637 NET_EPOCH_ASSERT(); 16638 INP_WLOCK_ASSERT(inp); 16639 16640 /* 16641 * tv passed from common code is from either M_TSTMP_LRO or 16642 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. 16643 */ 16644 rack = (struct tcp_rack *)tp->t_fb_ptr; 16645 if (rack->rack_deferred_inited == 0) { 16646 /* 16647 * If we are the connecting socket we will 16648 * hit rack_init() when no sequence numbers 16649 * are setup. This makes it so we must defer 16650 * some initialization. Call that now. 16651 */ 16652 rack_deferred_init(tp, rack); 16653 } 16654 /* 16655 * Check to see if we need to skip any output plans. This 16656 * can happen in the non-LRO path where we are pacing and 16657 * must process the ack coming in but need to defer sending 16658 * anything becase a pacing timer is running. 16659 */ 16660 us_cts = tcp_tv_to_usectick(tv); 16661 if (m->m_flags & M_ACKCMP) { 16662 /* 16663 * All compressed ack's are ack's by definition so 16664 * remove any ack required flag and then do the processing. 16665 */ 16666 rack->rc_ack_required = 0; 16667 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv)); 16668 } 16669 thflags = tcp_get_flags(th); 16670 if ((rack->rc_always_pace == 1) && 16671 (rack->rc_ack_can_sendout_data == 0) && 16672 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16673 (TSTMP_LT(us_cts, rack->r_ctl.rc_last_output_to))) { 16674 /* 16675 * Ok conditions are right for queuing the packets 16676 * but we do have to check the flags in the inp, it 16677 * could be, if a sack is present, we want to be awoken and 16678 * so should process the packets. 16679 */ 16680 slot_remaining = rack->r_ctl.rc_last_output_to - us_cts; 16681 if (rack->rc_tp->t_flags2 & TF2_DONT_SACK_QUEUE) { 16682 no_output = 1; 16683 } else { 16684 /* 16685 * If there is no options, or just a 16686 * timestamp option, we will want to queue 16687 * the packets. This is the same that LRO does 16688 * and will need to change with accurate ECN. 16689 */ 16690 uint32_t *ts_ptr; 16691 int optlen; 16692 16693 optlen = (th->th_off << 2) - sizeof(struct tcphdr); 16694 ts_ptr = (uint32_t *)(th + 1); 16695 if ((optlen == 0) || 16696 ((optlen == TCPOLEN_TSTAMP_APPA) && 16697 (*ts_ptr == TCP_LRO_TS_OPTION))) 16698 no_output = 1; 16699 } 16700 if ((no_output == 1) && (slot_remaining < tcp_min_hptsi_time)) { 16701 /* 16702 * It is unrealistic to think we can pace in less than 16703 * the minimum granularity of the pacer (def:250usec). So 16704 * if we have less than that time remaining we should go 16705 * ahead and allow output to be "early". We will attempt to 16706 * make up for it in any pacing time we try to apply on 16707 * the outbound packet. 16708 */ 16709 no_output = 0; 16710 } 16711 } 16712 /* 16713 * If there is a RST or FIN lets dump out the bw 16714 * with a FIN the connection may go on but we 16715 * may not. 16716 */ 16717 if ((thflags & TH_FIN) || (thflags & TH_RST)) 16718 rack_log_pacing_delay_calc(rack, 16719 rack->r_ctl.gp_bw, 16720 0, 16721 0, 16722 rack_get_gp_est(rack), /* delRate */ 16723 rack_get_lt_bw(rack), /* rttProp */ 16724 20, __LINE__, NULL, 0); 16725 if (m->m_flags & M_ACKCMP) { 16726 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp); 16727 } 16728 cts = tcp_tv_to_usectick(tv); 16729 ms_cts = tcp_tv_to_mssectick(tv); 16730 nsegs = m->m_pkthdr.lro_nsegs; 16731 counter_u64_add(rack_proc_non_comp_ack, 1); 16732 #ifdef TCP_ACCOUNTING 16733 sched_pin(); 16734 if (thflags & TH_ACK) 16735 ts_val = get_cyclecount(); 16736 #endif 16737 if ((m->m_flags & M_TSTMP) || 16738 (m->m_flags & M_TSTMP_LRO)) { 16739 mbuf_tstmp2timespec(m, &ts); 16740 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 16741 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 16742 } else 16743 rack->r_ctl.act_rcv_time = *tv; 16744 kern_prefetch(rack, &prev_state); 16745 prev_state = 0; 16746 /* 16747 * Unscale the window into a 32-bit value. For the SYN_SENT state 16748 * the scale is zero. 16749 */ 16750 tiwin = th->th_win << tp->snd_scale; 16751 #ifdef TCP_ACCOUNTING 16752 if (thflags & TH_ACK) { 16753 /* 16754 * We have a tradeoff here. We can either do what we are 16755 * doing i.e. pinning to this CPU and then doing the accounting 16756 * <or> we could do a critical enter, setup the rdtsc and cpu 16757 * as in below, and then validate we are on the same CPU on 16758 * exit. I have choosen to not do the critical enter since 16759 * that often will gain you a context switch, and instead lock 16760 * us (line above this if) to the same CPU with sched_pin(). This 16761 * means we may be context switched out for a higher priority 16762 * interupt but we won't be moved to another CPU. 16763 * 16764 * If this occurs (which it won't very often since we most likely 16765 * are running this code in interupt context and only a higher 16766 * priority will bump us ... clock?) we will falsely add in 16767 * to the time the interupt processing time plus the ack processing 16768 * time. This is ok since its a rare event. 16769 */ 16770 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin, 16771 ctf_fixed_maxseg(tp)); 16772 } 16773 #endif 16774 /* 16775 * Parse options on any incoming segment. 16776 */ 16777 memset(&to, 0, sizeof(to)); 16778 tcp_dooptions(&to, (u_char *)(th + 1), 16779 (th->th_off << 2) - sizeof(struct tcphdr), 16780 (thflags & TH_SYN) ? TO_SYN : 0); 16781 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 16782 __func__)); 16783 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 16784 __func__)); 16785 16786 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 16787 (tp->t_flags & TF_GPUTINPROG)) { 16788 /* 16789 * We have a goodput in progress 16790 * and we have entered a late state. 16791 * Do we have enough data in the sb 16792 * to handle the GPUT request? 16793 */ 16794 uint32_t bytes; 16795 16796 bytes = tp->gput_ack - tp->gput_seq; 16797 if (SEQ_GT(tp->gput_seq, tp->snd_una)) 16798 bytes += tp->gput_seq - tp->snd_una; 16799 if (bytes > sbavail(&tptosocket(tp)->so_snd)) { 16800 /* 16801 * There are not enough bytes in the socket 16802 * buffer that have been sent to cover this 16803 * measurement. Cancel it. 16804 */ 16805 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 16806 rack->r_ctl.rc_gp_srtt /*flex1*/, 16807 tp->gput_seq, 16808 0, 0, 18, __LINE__, NULL, 0); 16809 tp->t_flags &= ~TF_GPUTINPROG; 16810 } 16811 } 16812 high_seq = th->th_ack; 16813 if (tcp_bblogging_on(rack->rc_tp)) { 16814 union tcp_log_stackspecific log; 16815 struct timeval ltv; 16816 #ifdef TCP_REQUEST_TRK 16817 struct tcp_sendfile_track *tcp_req; 16818 16819 if (SEQ_GT(th->th_ack, tp->snd_una)) { 16820 tcp_req = tcp_req_find_req_for_seq(tp, (th->th_ack-1)); 16821 } else { 16822 tcp_req = tcp_req_find_req_for_seq(tp, th->th_ack); 16823 } 16824 #endif 16825 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 16826 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 16827 if (rack->rack_no_prr == 0) 16828 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 16829 else 16830 log.u_bbr.flex1 = 0; 16831 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 16832 log.u_bbr.use_lt_bw <<= 1; 16833 log.u_bbr.use_lt_bw |= rack->r_might_revert; 16834 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 16835 log.u_bbr.bbr_state = rack->rc_free_cnt; 16836 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 16837 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 16838 log.u_bbr.flex3 = m->m_flags; 16839 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 16840 log.u_bbr.lost = thflags; 16841 log.u_bbr.pacing_gain = 0x1; 16842 #ifdef TCP_ACCOUNTING 16843 log.u_bbr.cwnd_gain = ack_val_set; 16844 #endif 16845 log.u_bbr.flex7 = 2; 16846 if (m->m_flags & M_TSTMP) { 16847 /* Record the hardware timestamp if present */ 16848 mbuf_tstmp2timespec(m, &ts); 16849 ltv.tv_sec = ts.tv_sec; 16850 ltv.tv_usec = ts.tv_nsec / 1000; 16851 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 16852 } else if (m->m_flags & M_TSTMP_LRO) { 16853 /* Record the LRO the arrival timestamp */ 16854 mbuf_tstmp2timespec(m, &ts); 16855 ltv.tv_sec = ts.tv_sec; 16856 ltv.tv_usec = ts.tv_nsec / 1000; 16857 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 16858 } 16859 log.u_bbr.timeStamp = tcp_get_usecs(<v); 16860 /* Log the rcv time */ 16861 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; 16862 #ifdef TCP_REQUEST_TRK 16863 log.u_bbr.applimited = tp->t_tcpreq_closed; 16864 log.u_bbr.applimited <<= 8; 16865 log.u_bbr.applimited |= tp->t_tcpreq_open; 16866 log.u_bbr.applimited <<= 8; 16867 log.u_bbr.applimited |= tp->t_tcpreq_req; 16868 if (tcp_req) { 16869 /* Copy out any client req info */ 16870 /* seconds */ 16871 log.u_bbr.pkt_epoch = (tcp_req->localtime / HPTS_USEC_IN_SEC); 16872 /* useconds */ 16873 log.u_bbr.delivered = (tcp_req->localtime % HPTS_USEC_IN_SEC); 16874 log.u_bbr.rttProp = tcp_req->timestamp; 16875 log.u_bbr.cur_del_rate = tcp_req->start; 16876 if (tcp_req->flags & TCP_TRK_TRACK_FLG_OPEN) { 16877 log.u_bbr.flex8 |= 1; 16878 } else { 16879 log.u_bbr.flex8 |= 2; 16880 log.u_bbr.bw_inuse = tcp_req->end; 16881 } 16882 log.u_bbr.flex6 = tcp_req->start_seq; 16883 if (tcp_req->flags & TCP_TRK_TRACK_FLG_COMP) { 16884 log.u_bbr.flex8 |= 4; 16885 log.u_bbr.epoch = tcp_req->end_seq; 16886 } 16887 } 16888 #endif 16889 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 16890 tlen, &log, true, <v); 16891 } 16892 /* Remove ack required flag if set, we have one */ 16893 if (thflags & TH_ACK) 16894 rack->rc_ack_required = 0; 16895 if (rack->sack_attack_disable > 0) { 16896 rack->r_ctl.ack_during_sd++; 16897 rack_log_type_bbrsnd(rack, 0, 0, cts, tv, __LINE__); 16898 } 16899 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 16900 way_out = 4; 16901 retval = 0; 16902 m_freem(m); 16903 goto done_with_input; 16904 } 16905 /* 16906 * If a segment with the ACK-bit set arrives in the SYN-SENT state 16907 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. 16908 */ 16909 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 16910 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 16911 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 16912 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 16913 #ifdef TCP_ACCOUNTING 16914 sched_unpin(); 16915 #endif 16916 return (1); 16917 } 16918 /* 16919 * If timestamps were negotiated during SYN/ACK and a 16920 * segment without a timestamp is received, silently drop 16921 * the segment, unless it is a RST segment or missing timestamps are 16922 * tolerated. 16923 * See section 3.2 of RFC 7323. 16924 */ 16925 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) && 16926 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) { 16927 way_out = 5; 16928 retval = 0; 16929 m_freem(m); 16930 goto done_with_input; 16931 } 16932 16933 /* 16934 * Segment received on connection. Reset idle time and keep-alive 16935 * timer. XXX: This should be done after segment validation to 16936 * ignore broken/spoofed segs. 16937 */ 16938 if (tp->t_idle_reduce && 16939 (tp->snd_max == tp->snd_una) && 16940 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 16941 counter_u64_add(rack_input_idle_reduces, 1); 16942 rack_cc_after_idle(rack, tp); 16943 } 16944 tp->t_rcvtime = ticks; 16945 #ifdef STATS 16946 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 16947 #endif 16948 if (tiwin > rack->r_ctl.rc_high_rwnd) 16949 rack->r_ctl.rc_high_rwnd = tiwin; 16950 /* 16951 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move 16952 * this to occur after we've validated the segment. 16953 */ 16954 if (tcp_ecn_input_segment(tp, thflags, tlen, 16955 tcp_packets_this_ack(tp, th->th_ack), 16956 iptos)) 16957 rack_cong_signal(tp, CC_ECN, th->th_ack, __LINE__); 16958 16959 /* 16960 * If echoed timestamp is later than the current time, fall back to 16961 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 16962 * were used when this connection was established. 16963 */ 16964 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 16965 to.to_tsecr -= tp->ts_offset; 16966 if (TSTMP_GT(to.to_tsecr, ms_cts)) 16967 to.to_tsecr = 0; 16968 } 16969 16970 /* 16971 * If its the first time in we need to take care of options and 16972 * verify we can do SACK for rack! 16973 */ 16974 if (rack->r_state == 0) { 16975 /* Should be init'd by rack_init() */ 16976 KASSERT(rack->rc_inp != NULL, 16977 ("%s: rack->rc_inp unexpectedly NULL", __func__)); 16978 if (rack->rc_inp == NULL) { 16979 rack->rc_inp = inp; 16980 } 16981 16982 /* 16983 * Process options only when we get SYN/ACK back. The SYN 16984 * case for incoming connections is handled in tcp_syncache. 16985 * According to RFC1323 the window field in a SYN (i.e., a 16986 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX 16987 * this is traditional behavior, may need to be cleaned up. 16988 */ 16989 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 16990 /* Handle parallel SYN for ECN */ 16991 tcp_ecn_input_parallel_syn(tp, thflags, iptos); 16992 if ((to.to_flags & TOF_SCALE) && 16993 (tp->t_flags & TF_REQ_SCALE)) { 16994 tp->t_flags |= TF_RCVD_SCALE; 16995 tp->snd_scale = to.to_wscale; 16996 } else 16997 tp->t_flags &= ~TF_REQ_SCALE; 16998 /* 16999 * Initial send window. It will be updated with the 17000 * next incoming segment to the scaled value. 17001 */ 17002 tp->snd_wnd = th->th_win; 17003 rack_validate_fo_sendwin_up(tp, rack); 17004 if ((to.to_flags & TOF_TS) && 17005 (tp->t_flags & TF_REQ_TSTMP)) { 17006 tp->t_flags |= TF_RCVD_TSTMP; 17007 tp->ts_recent = to.to_tsval; 17008 tp->ts_recent_age = cts; 17009 } else 17010 tp->t_flags &= ~TF_REQ_TSTMP; 17011 if (to.to_flags & TOF_MSS) { 17012 tcp_mss(tp, to.to_mss); 17013 } 17014 if ((tp->t_flags & TF_SACK_PERMIT) && 17015 (to.to_flags & TOF_SACKPERM) == 0) 17016 tp->t_flags &= ~TF_SACK_PERMIT; 17017 if (IS_FASTOPEN(tp->t_flags)) { 17018 if (to.to_flags & TOF_FASTOPEN) { 17019 uint16_t mss; 17020 17021 if (to.to_flags & TOF_MSS) 17022 mss = to.to_mss; 17023 else 17024 if ((inp->inp_vflag & INP_IPV6) != 0) 17025 mss = TCP6_MSS; 17026 else 17027 mss = TCP_MSS; 17028 tcp_fastopen_update_cache(tp, mss, 17029 to.to_tfo_len, to.to_tfo_cookie); 17030 } else 17031 tcp_fastopen_disable_path(tp); 17032 } 17033 } 17034 /* 17035 * At this point we are at the initial call. Here we decide 17036 * if we are doing RACK or not. We do this by seeing if 17037 * TF_SACK_PERMIT is set and the sack-not-required is clear. 17038 * The code now does do dup-ack counting so if you don't 17039 * switch back you won't get rack & TLP, but you will still 17040 * get this stack. 17041 */ 17042 17043 if ((rack_sack_not_required == 0) && 17044 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 17045 tcp_switch_back_to_default(tp); 17046 (*tp->t_fb->tfb_tcp_do_segment)(tp, m, th, drop_hdrlen, 17047 tlen, iptos); 17048 #ifdef TCP_ACCOUNTING 17049 sched_unpin(); 17050 #endif 17051 return (1); 17052 } 17053 tcp_set_hpts(tp); 17054 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); 17055 } 17056 if (thflags & TH_FIN) 17057 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 17058 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 17059 if ((rack->rc_gp_dyn_mul) && 17060 (rack->use_fixed_rate == 0) && 17061 (rack->rc_always_pace)) { 17062 /* Check in on probertt */ 17063 rack_check_probe_rtt(rack, us_cts); 17064 } 17065 rack_clear_rate_sample(rack); 17066 if ((rack->forced_ack) && 17067 ((tcp_get_flags(th) & TH_RST) == 0)) { 17068 rack_handle_probe_response(rack, tiwin, us_cts); 17069 } 17070 /* 17071 * This is the one exception case where we set the rack state 17072 * always. All other times (timers etc) we must have a rack-state 17073 * set (so we assure we have done the checks above for SACK). 17074 */ 17075 rack->r_ctl.rc_rcvtime = cts; 17076 if (rack->r_state != tp->t_state) 17077 rack_set_state(tp, rack); 17078 if (SEQ_GT(th->th_ack, tp->snd_una) && 17079 (rsm = tqhash_min(rack->r_ctl.tqh)) != NULL) 17080 kern_prefetch(rsm, &prev_state); 17081 prev_state = rack->r_state; 17082 if ((thflags & TH_RST) && 17083 ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 17084 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || 17085 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq))) { 17086 /* The connection will be killed by a reset check the tracepoint */ 17087 tcp_trace_point(rack->rc_tp, TCP_TP_RESET_RCV); 17088 } 17089 retval = (*rack->r_substate) (m, th, so, 17090 tp, &to, drop_hdrlen, 17091 tlen, tiwin, thflags, nxt_pkt, iptos); 17092 if (retval == 0) { 17093 /* 17094 * If retval is 1 the tcb is unlocked and most likely the tp 17095 * is gone. 17096 */ 17097 INP_WLOCK_ASSERT(inp); 17098 if ((rack->rc_gp_dyn_mul) && 17099 (rack->rc_always_pace) && 17100 (rack->use_fixed_rate == 0) && 17101 rack->in_probe_rtt && 17102 (rack->r_ctl.rc_time_probertt_starts == 0)) { 17103 /* 17104 * If we are going for target, lets recheck before 17105 * we output. 17106 */ 17107 rack_check_probe_rtt(rack, us_cts); 17108 } 17109 if (rack->set_pacing_done_a_iw == 0) { 17110 /* How much has been acked? */ 17111 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { 17112 /* We have enough to set in the pacing segment size */ 17113 rack->set_pacing_done_a_iw = 1; 17114 rack_set_pace_segments(tp, rack, __LINE__, NULL); 17115 } 17116 } 17117 tcp_rack_xmit_timer_commit(rack, tp); 17118 #ifdef TCP_ACCOUNTING 17119 /* 17120 * If we set the ack_val_se to what ack processing we are doing 17121 * we also want to track how many cycles we burned. Note 17122 * the bits after tcp_output we let be "free". This is because 17123 * we are also tracking the tcp_output times as well. Note the 17124 * use of 0xf here since we only have 11 counter (0 - 0xa) and 17125 * 0xf cannot be returned and is what we initialize it too to 17126 * indicate we are not doing the tabulations. 17127 */ 17128 if (ack_val_set != 0xf) { 17129 uint64_t crtsc; 17130 17131 crtsc = get_cyclecount(); 17132 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17133 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val); 17134 } 17135 } 17136 #endif 17137 if ((nxt_pkt == 0) && (no_output == 0)) { 17138 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 17139 do_output_now: 17140 if (tcp_output(tp) < 0) { 17141 #ifdef TCP_ACCOUNTING 17142 sched_unpin(); 17143 #endif 17144 return (1); 17145 } 17146 did_out = 1; 17147 } 17148 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 17149 rack_free_trim(rack); 17150 } else if ((no_output == 1) && 17151 (nxt_pkt == 0) && 17152 (tcp_in_hpts(rack->rc_tp) == 0)) { 17153 /* 17154 * We are not in hpts and we had a pacing timer up. Use 17155 * the remaining time (slot_remaining) to restart the timer. 17156 */ 17157 KASSERT ((slot_remaining != 0), ("slot remaining is zero for rack:%p tp:%p", rack, tp)); 17158 rack_start_hpts_timer(rack, tp, cts, slot_remaining, 0, 0); 17159 rack_free_trim(rack); 17160 } 17161 /* Clear the flag, it may have been cleared by output but we may not have */ 17162 if ((nxt_pkt == 0) && (tp->t_flags2 & TF2_HPTS_CALLS)) 17163 tp->t_flags2 &= ~TF2_HPTS_CALLS; 17164 /* Update any rounds needed */ 17165 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) 17166 rack_log_hystart_event(rack, high_seq, 8); 17167 /* 17168 * The draft (v3) calls for us to use SEQ_GEQ, but that 17169 * causes issues when we are just going app limited. Lets 17170 * instead use SEQ_GT <or> where its equal but more data 17171 * is outstanding. 17172 * 17173 * Also make sure we are on the last ack of a series. We 17174 * have to have all the ack's processed in queue to know 17175 * if there is something left outstanding. 17176 */ 17177 if (SEQ_GEQ(tp->snd_una, rack->r_ctl.roundends) && 17178 (rack->rc_new_rnd_needed == 0) && 17179 (nxt_pkt == 0)) { 17180 rack_log_hystart_event(rack, tp->snd_una, 21); 17181 rack->r_ctl.current_round++; 17182 /* Force the next send to setup the next round */ 17183 rack->rc_new_rnd_needed = 1; 17184 if (CC_ALGO(tp)->newround != NULL) { 17185 CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round); 17186 } 17187 } 17188 if ((nxt_pkt == 0) && 17189 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && 17190 (SEQ_GT(tp->snd_max, tp->snd_una) || 17191 (tp->t_flags & TF_DELACK) || 17192 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 17193 (tp->t_state <= TCPS_CLOSING)))) { 17194 /* We could not send (probably in the hpts but stopped the timer earlier)? */ 17195 if ((tp->snd_max == tp->snd_una) && 17196 ((tp->t_flags & TF_DELACK) == 0) && 17197 (tcp_in_hpts(rack->rc_tp)) && 17198 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 17199 /* keep alive not needed if we are hptsi output yet */ 17200 ; 17201 } else { 17202 int late = 0; 17203 if (tcp_in_hpts(tp)) { 17204 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 17205 us_cts = tcp_get_usecs(NULL); 17206 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 17207 rack->r_early = 1; 17208 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 17209 } else 17210 late = 1; 17211 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 17212 } 17213 tcp_hpts_remove(tp); 17214 } 17215 if (late && (did_out == 0)) { 17216 /* 17217 * We are late in the sending 17218 * and we did not call the output 17219 * (this probably should not happen). 17220 */ 17221 goto do_output_now; 17222 } 17223 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 17224 } 17225 way_out = 1; 17226 } else if (nxt_pkt == 0) { 17227 /* Do we have the correct timer running? */ 17228 rack_timer_audit(tp, rack, &so->so_snd); 17229 way_out = 2; 17230 } 17231 done_with_input: 17232 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs)); 17233 if (did_out) 17234 rack->r_wanted_output = 0; 17235 } 17236 #ifdef TCP_ACCOUNTING 17237 sched_unpin(); 17238 #endif 17239 return (retval); 17240 } 17241 17242 static void 17243 rack_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 17244 int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) 17245 { 17246 struct timeval tv; 17247 17248 /* First lets see if we have old packets */ 17249 if (!STAILQ_EMPTY(&tp->t_inqueue)) { 17250 if (ctf_do_queued_segments(tp, 1)) { 17251 m_freem(m); 17252 return; 17253 } 17254 } 17255 if (m->m_flags & M_TSTMP_LRO) { 17256 mbuf_tstmp2timeval(m, &tv); 17257 } else { 17258 /* Should not be should we kassert instead? */ 17259 tcp_get_usecs(&tv); 17260 } 17261 if (rack_do_segment_nounlock(tp, m, th, drop_hdrlen, tlen, iptos, 0, 17262 &tv) == 0) { 17263 INP_WUNLOCK(tptoinpcb(tp)); 17264 } 17265 } 17266 17267 struct rack_sendmap * 17268 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) 17269 { 17270 struct rack_sendmap *rsm = NULL; 17271 int32_t idx; 17272 uint32_t srtt = 0, thresh = 0, ts_low = 0; 17273 int no_sack = 0; 17274 17275 /* Return the next guy to be re-transmitted */ 17276 if (tqhash_empty(rack->r_ctl.tqh)) { 17277 return (NULL); 17278 } 17279 if (tp->t_flags & TF_SENTFIN) { 17280 /* retran the end FIN? */ 17281 return (NULL); 17282 } 17283 /* ok lets look at this one */ 17284 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 17285 if (rack->r_must_retran && rsm && (rsm->r_flags & RACK_MUST_RXT)) { 17286 return (rsm); 17287 } 17288 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { 17289 goto check_it; 17290 } 17291 rsm = rack_find_lowest_rsm(rack); 17292 if (rsm == NULL) { 17293 return (NULL); 17294 } 17295 check_it: 17296 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) || 17297 (rack->sack_attack_disable > 0)) { 17298 no_sack = 1; 17299 } 17300 if ((no_sack > 0) && 17301 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 17302 /* 17303 * No sack so we automatically do the 3 strikes and 17304 * retransmit (no rack timer would be started). 17305 */ 17306 return (rsm); 17307 } 17308 if (rsm->r_flags & RACK_ACKED) { 17309 return (NULL); 17310 } 17311 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && 17312 (rsm->r_dupack < DUP_ACK_THRESHOLD)) { 17313 /* Its not yet ready */ 17314 return (NULL); 17315 } 17316 srtt = rack_grab_rtt(tp, rack); 17317 idx = rsm->r_rtr_cnt - 1; 17318 ts_low = (uint32_t)rsm->r_tim_lastsent[idx]; 17319 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 17320 if ((tsused == ts_low) || 17321 (TSTMP_LT(tsused, ts_low))) { 17322 /* No time since sending */ 17323 return (NULL); 17324 } 17325 if ((tsused - ts_low) < thresh) { 17326 /* It has not been long enough yet */ 17327 return (NULL); 17328 } 17329 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 17330 ((rsm->r_flags & RACK_SACK_PASSED) && 17331 (rack->sack_attack_disable == 0))) { 17332 /* 17333 * We have passed the dup-ack threshold <or> 17334 * a SACK has indicated this is missing. 17335 * Note that if you are a declared attacker 17336 * it is only the dup-ack threshold that 17337 * will cause retransmits. 17338 */ 17339 /* log retransmit reason */ 17340 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); 17341 rack->r_fast_output = 0; 17342 return (rsm); 17343 } 17344 return (NULL); 17345 } 17346 17347 static void 17348 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 17349 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, 17350 int line, struct rack_sendmap *rsm, uint8_t quality) 17351 { 17352 if (tcp_bblogging_on(rack->rc_tp)) { 17353 union tcp_log_stackspecific log; 17354 struct timeval tv; 17355 17356 if (rack_verbose_logging == 0) { 17357 /* 17358 * We are not verbose screen out all but 17359 * ones we always want. 17360 */ 17361 if ((method != 2) && 17362 (method != 3) && 17363 (method != 7) && 17364 (method != 14) && 17365 (method != 20)) { 17366 return; 17367 } 17368 } 17369 memset(&log, 0, sizeof(log)); 17370 log.u_bbr.flex1 = slot; 17371 log.u_bbr.flex2 = len; 17372 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; 17373 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; 17374 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; 17375 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; 17376 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data; 17377 log.u_bbr.use_lt_bw <<= 1; 17378 log.u_bbr.use_lt_bw |= rack->r_late; 17379 log.u_bbr.use_lt_bw <<= 1; 17380 log.u_bbr.use_lt_bw |= rack->r_early; 17381 log.u_bbr.use_lt_bw <<= 1; 17382 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 17383 log.u_bbr.use_lt_bw <<= 1; 17384 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 17385 log.u_bbr.use_lt_bw <<= 1; 17386 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 17387 log.u_bbr.use_lt_bw <<= 1; 17388 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 17389 log.u_bbr.use_lt_bw <<= 1; 17390 log.u_bbr.use_lt_bw |= rack->gp_ready; 17391 log.u_bbr.pkt_epoch = line; 17392 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed; 17393 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early; 17394 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; 17395 log.u_bbr.bw_inuse = bw_est; 17396 log.u_bbr.delRate = bw; 17397 if (rack->r_ctl.gp_bw == 0) 17398 log.u_bbr.cur_del_rate = 0; 17399 else 17400 log.u_bbr.cur_del_rate = rack_get_bw(rack); 17401 log.u_bbr.rttProp = len_time; 17402 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; 17403 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; 17404 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 17405 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { 17406 /* We are in slow start */ 17407 log.u_bbr.flex7 = 1; 17408 } else { 17409 /* we are on congestion avoidance */ 17410 log.u_bbr.flex7 = 0; 17411 } 17412 log.u_bbr.flex8 = method; 17413 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 17414 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 17415 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; 17416 log.u_bbr.cwnd_gain <<= 1; 17417 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 17418 log.u_bbr.cwnd_gain <<= 1; 17419 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 17420 log.u_bbr.bbr_substate = quality; 17421 log.u_bbr.bbr_state = rack->dgp_on; 17422 log.u_bbr.bbr_state <<= 1; 17423 log.u_bbr.bbr_state |= rack->r_fill_less_agg; 17424 log.u_bbr.bbr_state <<= 1; 17425 log.u_bbr.bbr_state |= rack->rc_pace_to_cwnd; 17426 log.u_bbr.bbr_state <<= 2; 17427 log.u_bbr.bbr_state |= rack->r_pacing_discount; 17428 log.u_bbr.flex7 = ((rack->r_ctl.pacing_discount_amm << 1) | log.u_bbr.flex7); 17429 TCP_LOG_EVENTP(rack->rc_tp, NULL, 17430 &rack->rc_inp->inp_socket->so_rcv, 17431 &rack->rc_inp->inp_socket->so_snd, 17432 BBR_LOG_HPTSI_CALC, 0, 17433 0, &log, false, &tv); 17434 } 17435 } 17436 17437 static uint32_t 17438 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) 17439 { 17440 uint32_t new_tso, user_max, pace_one; 17441 17442 user_max = rack->rc_user_set_max_segs * mss; 17443 if (rack->rc_force_max_seg) { 17444 return (user_max); 17445 } 17446 if (rack->use_fixed_rate && 17447 ((rack->r_ctl.crte == NULL) || 17448 (bw != rack->r_ctl.crte->rate))) { 17449 /* Use the user mss since we are not exactly matched */ 17450 return (user_max); 17451 } 17452 if (rack_pace_one_seg || 17453 (rack->r_ctl.rc_user_set_min_segs == 1)) 17454 pace_one = 1; 17455 else 17456 pace_one = 0; 17457 17458 new_tso = tcp_get_pacing_burst_size_w_divisor(rack->rc_tp, bw, mss, 17459 pace_one, rack->r_ctl.crte, NULL, rack->r_ctl.pace_len_divisor); 17460 if (new_tso > user_max) 17461 new_tso = user_max; 17462 if (rack->rc_hybrid_mode && rack->r_ctl.client_suggested_maxseg) { 17463 if (((uint32_t)rack->r_ctl.client_suggested_maxseg * mss) > new_tso) 17464 new_tso = (uint32_t)rack->r_ctl.client_suggested_maxseg * mss; 17465 } 17466 if (rack->r_ctl.rc_user_set_min_segs && 17467 ((rack->r_ctl.rc_user_set_min_segs * mss) > new_tso)) 17468 new_tso = rack->r_ctl.rc_user_set_min_segs * mss; 17469 return (new_tso); 17470 } 17471 17472 static uint64_t 17473 rack_arrive_at_discounted_rate(struct tcp_rack *rack, uint64_t window_input, uint32_t *rate_set, uint32_t *gain_b) 17474 { 17475 uint64_t reduced_win; 17476 uint32_t gain; 17477 17478 if (window_input < rc_init_window(rack)) { 17479 /* 17480 * The cwnd is collapsed to 17481 * nearly zero, maybe because of a time-out? 17482 * Lets drop back to the lt-bw. 17483 */ 17484 reduced_win = rack_get_lt_bw(rack); 17485 /* Set the flag so the caller knows its a rate and not a reduced window */ 17486 *rate_set = 1; 17487 gain = 100; 17488 } else if (IN_RECOVERY(rack->rc_tp->t_flags)) { 17489 /* 17490 * If we are in recover our cwnd needs to be less for 17491 * our pacing consideration. 17492 */ 17493 if (rack->rack_hibeta == 0) { 17494 reduced_win = window_input / 2; 17495 gain = 50; 17496 } else { 17497 reduced_win = window_input * rack->r_ctl.saved_hibeta; 17498 reduced_win /= 100; 17499 gain = rack->r_ctl.saved_hibeta; 17500 } 17501 } else { 17502 /* 17503 * Apply Timely factor to increase/decrease the 17504 * amount we are pacing at. 17505 */ 17506 gain = rack_get_output_gain(rack, NULL); 17507 if (gain > rack_gain_p5_ub) { 17508 gain = rack_gain_p5_ub; 17509 } 17510 reduced_win = window_input * gain; 17511 reduced_win /= 100; 17512 } 17513 if (gain_b != NULL) 17514 *gain_b = gain; 17515 /* 17516 * What is being returned here is a trimmed down 17517 * window values in all cases where rate_set is left 17518 * at 0. In one case we actually return the rate (lt_bw). 17519 * the "reduced_win" is returned as a slimmed down cwnd that 17520 * is then calculated by the caller into a rate when rate_set 17521 * is 0. 17522 */ 17523 return (reduced_win); 17524 } 17525 17526 static int32_t 17527 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced) 17528 { 17529 uint64_t lentim, fill_bw; 17530 17531 /* Lets first see if we are full, if so continue with normal rate */ 17532 rack->r_via_fill_cw = 0; 17533 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) 17534 return (slot); 17535 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) 17536 return (slot); 17537 if (rack->r_ctl.rc_last_us_rtt == 0) 17538 return (slot); 17539 if (rack->rc_pace_fill_if_rttin_range && 17540 (rack->r_ctl.rc_last_us_rtt >= 17541 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { 17542 /* The rtt is huge, N * smallest, lets not fill */ 17543 return (slot); 17544 } 17545 /* 17546 * first lets calculate the b/w based on the last us-rtt 17547 * and the the smallest send window. 17548 */ 17549 fill_bw = min(rack->rc_tp->snd_cwnd, rack->r_ctl.cwnd_to_use); 17550 if (rack->rc_fillcw_apply_discount) { 17551 uint32_t rate_set = 0; 17552 17553 fill_bw = rack_arrive_at_discounted_rate(rack, fill_bw, &rate_set, NULL); 17554 if (rate_set) { 17555 goto at_lt_bw; 17556 } 17557 } 17558 /* Take the rwnd if its smaller */ 17559 if (fill_bw > rack->rc_tp->snd_wnd) 17560 fill_bw = rack->rc_tp->snd_wnd; 17561 /* Now lets make it into a b/w */ 17562 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; 17563 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 17564 at_lt_bw: 17565 if (rack->r_fill_less_agg) { 17566 /* 17567 * We want the average of the rate_wanted 17568 * and our fill-cw calculated bw. We also want 17569 * to cap any increase to be no more than 17570 * X times the lt_bw (where X is the rack_bw_multipler). 17571 */ 17572 uint64_t lt_bw, rate; 17573 17574 lt_bw = rack_get_lt_bw(rack); 17575 if (lt_bw > *rate_wanted) 17576 rate = lt_bw; 17577 else 17578 rate = *rate_wanted; 17579 fill_bw += rate; 17580 fill_bw /= 2; 17581 if (rack_bw_multipler && (fill_bw > (rate * rack_bw_multipler))) { 17582 fill_bw = rate * rack_bw_multipler; 17583 } 17584 } 17585 /* We are below the min b/w */ 17586 if (non_paced) 17587 *rate_wanted = fill_bw; 17588 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted)) 17589 return (slot); 17590 rack->r_via_fill_cw = 1; 17591 if (rack->r_rack_hw_rate_caps && 17592 (rack->r_ctl.crte != NULL)) { 17593 uint64_t high_rate; 17594 17595 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 17596 if (fill_bw > high_rate) { 17597 /* We are capping bw at the highest rate table entry */ 17598 if (*rate_wanted > high_rate) { 17599 /* The original rate was also capped */ 17600 rack->r_via_fill_cw = 0; 17601 } 17602 rack_log_hdwr_pacing(rack, 17603 fill_bw, high_rate, __LINE__, 17604 0, 3); 17605 fill_bw = high_rate; 17606 if (capped) 17607 *capped = 1; 17608 } 17609 } else if ((rack->r_ctl.crte == NULL) && 17610 (rack->rack_hdrw_pacing == 0) && 17611 (rack->rack_hdw_pace_ena) && 17612 rack->r_rack_hw_rate_caps && 17613 (rack->rack_attempt_hdwr_pace == 0) && 17614 (rack->rc_inp->inp_route.ro_nh != NULL) && 17615 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 17616 /* 17617 * Ok we may have a first attempt that is greater than our top rate 17618 * lets check. 17619 */ 17620 uint64_t high_rate; 17621 17622 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 17623 if (high_rate) { 17624 if (fill_bw > high_rate) { 17625 fill_bw = high_rate; 17626 if (capped) 17627 *capped = 1; 17628 } 17629 } 17630 } 17631 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap)) { 17632 if (rack->rc_hybrid_mode) 17633 rack_log_hybrid_bw(rack, rack->rc_tp->snd_max, 17634 fill_bw, 0, 0, HYBRID_LOG_RATE_CAP, 2, NULL, __LINE__); 17635 fill_bw = rack->r_ctl.bw_rate_cap; 17636 } 17637 /* 17638 * Ok fill_bw holds our mythical b/w to fill the cwnd 17639 * in an rtt (unless it was capped), what does that 17640 * time wise equate too? 17641 */ 17642 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; 17643 lentim /= fill_bw; 17644 *rate_wanted = fill_bw; 17645 if (non_paced || (lentim < slot)) { 17646 rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 17647 0, lentim, 12, __LINE__, NULL, 0); 17648 return ((int32_t)lentim); 17649 } else 17650 return (slot); 17651 } 17652 17653 static int32_t 17654 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) 17655 { 17656 uint64_t srtt; 17657 int32_t slot = 0; 17658 int32_t minslot = 0; 17659 int can_start_hw_pacing = 1; 17660 int err; 17661 int pace_one; 17662 17663 if (rack_pace_one_seg || 17664 (rack->r_ctl.rc_user_set_min_segs == 1)) 17665 pace_one = 1; 17666 else 17667 pace_one = 0; 17668 if (rack->rc_always_pace == 0) { 17669 /* 17670 * We use the most optimistic possible cwnd/srtt for 17671 * sending calculations. This will make our 17672 * calculation anticipate getting more through 17673 * quicker then possible. But thats ok we don't want 17674 * the peer to have a gap in data sending. 17675 */ 17676 uint64_t cwnd, tr_perms = 0; 17677 int32_t reduce = 0; 17678 17679 old_method: 17680 /* 17681 * We keep no precise pacing with the old method 17682 * instead we use the pacer to mitigate bursts. 17683 */ 17684 if (rack->r_ctl.rc_rack_min_rtt) 17685 srtt = rack->r_ctl.rc_rack_min_rtt; 17686 else 17687 srtt = max(tp->t_srtt, 1); 17688 if (rack->r_ctl.rc_rack_largest_cwnd) 17689 cwnd = rack->r_ctl.rc_rack_largest_cwnd; 17690 else 17691 cwnd = rack->r_ctl.cwnd_to_use; 17692 /* Inflate cwnd by 1000 so srtt of usecs is in ms */ 17693 tr_perms = (cwnd * 1000) / srtt; 17694 if (tr_perms == 0) { 17695 tr_perms = ctf_fixed_maxseg(tp); 17696 } 17697 /* 17698 * Calculate how long this will take to drain, if 17699 * the calculation comes out to zero, thats ok we 17700 * will use send_a_lot to possibly spin around for 17701 * more increasing tot_len_this_send to the point 17702 * that its going to require a pace, or we hit the 17703 * cwnd. Which in that case we are just waiting for 17704 * a ACK. 17705 */ 17706 slot = len / tr_perms; 17707 /* Now do we reduce the time so we don't run dry? */ 17708 if (slot && rack_slot_reduction) { 17709 reduce = (slot / rack_slot_reduction); 17710 if (reduce < slot) { 17711 slot -= reduce; 17712 } else 17713 slot = 0; 17714 } 17715 slot *= HPTS_USEC_IN_MSEC; 17716 if (rack->rc_pace_to_cwnd) { 17717 uint64_t rate_wanted = 0; 17718 17719 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1); 17720 rack->rc_ack_can_sendout_data = 1; 17721 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0); 17722 } else 17723 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0); 17724 /*******************************************************/ 17725 /* RRS: We insert non-paced call to stats here for len */ 17726 /*******************************************************/ 17727 } else { 17728 uint64_t bw_est, res, lentim, rate_wanted; 17729 uint32_t segs, oh; 17730 int capped = 0; 17731 int prev_fill; 17732 17733 if ((rack->r_rr_config == 1) && rsm) { 17734 return (rack->r_ctl.rc_min_to); 17735 } 17736 if (rack->use_fixed_rate) { 17737 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); 17738 } else if ((rack->r_ctl.init_rate == 0) && 17739 (rack->r_ctl.gp_bw == 0)) { 17740 /* no way to yet do an estimate */ 17741 bw_est = rate_wanted = 0; 17742 } else if (rack->dgp_on) { 17743 bw_est = rack_get_bw(rack); 17744 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped); 17745 } else { 17746 uint32_t gain, rate_set = 0; 17747 17748 rate_wanted = min(rack->rc_tp->snd_cwnd, rack->r_ctl.cwnd_to_use); 17749 rate_wanted = rack_arrive_at_discounted_rate(rack, rate_wanted, &rate_set, &gain); 17750 if (rate_set == 0) { 17751 if (rate_wanted > rack->rc_tp->snd_wnd) 17752 rate_wanted = rack->rc_tp->snd_wnd; 17753 /* Now lets make it into a b/w */ 17754 rate_wanted *= (uint64_t)HPTS_USEC_IN_SEC; 17755 rate_wanted /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 17756 } 17757 bw_est = rate_wanted; 17758 rack_log_pacing_delay_calc(rack, rack->rc_tp->snd_cwnd, 17759 rack->r_ctl.cwnd_to_use, 17760 rate_wanted, bw_est, 17761 rack->r_ctl.rc_last_us_rtt, 17762 88, __LINE__, NULL, gain); 17763 } 17764 if ((bw_est == 0) || (rate_wanted == 0) || 17765 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) { 17766 /* 17767 * No way yet to make a b/w estimate or 17768 * our raise is set incorrectly. 17769 */ 17770 goto old_method; 17771 } 17772 rack_rate_cap_bw(rack, &rate_wanted, &capped); 17773 /* We need to account for all the overheads */ 17774 segs = (len + segsiz - 1) / segsiz; 17775 /* 17776 * We need the diff between 1514 bytes (e-mtu with e-hdr) 17777 * and how much data we put in each packet. Yes this 17778 * means we may be off if we are larger than 1500 bytes 17779 * or smaller. But this just makes us more conservative. 17780 */ 17781 17782 oh = (tp->t_maxseg - segsiz) + sizeof(struct tcphdr); 17783 if (rack->r_is_v6) { 17784 #ifdef INET6 17785 oh += sizeof(struct ip6_hdr); 17786 #endif 17787 } else { 17788 #ifdef INET 17789 oh += sizeof(struct ip); 17790 #endif 17791 } 17792 /* We add a fixed 14 for the ethernet header */ 17793 oh += 14; 17794 segs *= oh; 17795 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; 17796 res = lentim / rate_wanted; 17797 slot = (uint32_t)res; 17798 if (rack_hw_rate_min && 17799 (rate_wanted < rack_hw_rate_min)) { 17800 can_start_hw_pacing = 0; 17801 if (rack->r_ctl.crte) { 17802 /* 17803 * Ok we need to release it, we 17804 * have fallen too low. 17805 */ 17806 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 17807 rack->r_ctl.crte = NULL; 17808 rack->rack_attempt_hdwr_pace = 0; 17809 rack->rack_hdrw_pacing = 0; 17810 } 17811 } 17812 if (rack->r_ctl.crte && 17813 (tcp_hw_highest_rate(rack->r_ctl.crte) < rate_wanted)) { 17814 /* 17815 * We want more than the hardware can give us, 17816 * don't start any hw pacing. 17817 */ 17818 can_start_hw_pacing = 0; 17819 if (rack->r_rack_hw_rate_caps == 0) { 17820 /* 17821 * Ok we need to release it, we 17822 * want more than the card can give us and 17823 * no rate cap is in place. Set it up so 17824 * when we want less we can retry. 17825 */ 17826 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 17827 rack->r_ctl.crte = NULL; 17828 rack->rack_attempt_hdwr_pace = 0; 17829 rack->rack_hdrw_pacing = 0; 17830 } 17831 } 17832 if ((rack->r_ctl.crte != NULL) && (rack->rc_inp->inp_snd_tag == NULL)) { 17833 /* 17834 * We lost our rate somehow, this can happen 17835 * if the interface changed underneath us. 17836 */ 17837 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 17838 rack->r_ctl.crte = NULL; 17839 /* Lets re-allow attempting to setup pacing */ 17840 rack->rack_hdrw_pacing = 0; 17841 rack->rack_attempt_hdwr_pace = 0; 17842 rack_log_hdwr_pacing(rack, 17843 rate_wanted, bw_est, __LINE__, 17844 0, 6); 17845 } 17846 prev_fill = rack->r_via_fill_cw; 17847 if ((rack->rc_pace_to_cwnd) && 17848 (capped == 0) && 17849 (rack->dgp_on == 1) && 17850 (rack->use_fixed_rate == 0) && 17851 (rack->in_probe_rtt == 0) && 17852 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) { 17853 /* 17854 * We want to pace at our rate *or* faster to 17855 * fill the cwnd to the max if its not full. 17856 */ 17857 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0); 17858 /* Re-check to make sure we are not exceeding our max b/w */ 17859 if ((rack->r_ctl.crte != NULL) && 17860 (tcp_hw_highest_rate(rack->r_ctl.crte) < rate_wanted)) { 17861 /* 17862 * We want more than the hardware can give us, 17863 * don't start any hw pacing. 17864 */ 17865 can_start_hw_pacing = 0; 17866 if (rack->r_rack_hw_rate_caps == 0) { 17867 /* 17868 * Ok we need to release it, we 17869 * want more than the card can give us and 17870 * no rate cap is in place. Set it up so 17871 * when we want less we can retry. 17872 */ 17873 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 17874 rack->r_ctl.crte = NULL; 17875 rack->rack_attempt_hdwr_pace = 0; 17876 rack->rack_hdrw_pacing = 0; 17877 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 17878 } 17879 } 17880 } 17881 if ((rack->rc_inp->inp_route.ro_nh != NULL) && 17882 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 17883 if ((rack->rack_hdw_pace_ena) && 17884 (can_start_hw_pacing > 0) && 17885 (rack->rack_hdrw_pacing == 0) && 17886 (rack->rack_attempt_hdwr_pace == 0)) { 17887 /* 17888 * Lets attempt to turn on hardware pacing 17889 * if we can. 17890 */ 17891 rack->rack_attempt_hdwr_pace = 1; 17892 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, 17893 rack->rc_inp->inp_route.ro_nh->nh_ifp, 17894 rate_wanted, 17895 RS_PACING_GEQ, 17896 &err, &rack->r_ctl.crte_prev_rate); 17897 if (rack->r_ctl.crte) { 17898 rack->rack_hdrw_pacing = 1; 17899 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size_w_divisor(tp, rate_wanted, segsiz, 17900 pace_one, rack->r_ctl.crte, 17901 NULL, rack->r_ctl.pace_len_divisor); 17902 rack_log_hdwr_pacing(rack, 17903 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 17904 err, 0); 17905 rack->r_ctl.last_hw_bw_req = rate_wanted; 17906 } else { 17907 counter_u64_add(rack_hw_pace_init_fail, 1); 17908 } 17909 } else if (rack->rack_hdrw_pacing && 17910 (rack->r_ctl.last_hw_bw_req != rate_wanted)) { 17911 /* Do we need to adjust our rate? */ 17912 const struct tcp_hwrate_limit_table *nrte; 17913 17914 if (rack->r_up_only && 17915 (rate_wanted < rack->r_ctl.crte->rate)) { 17916 /** 17917 * We have four possible states here 17918 * having to do with the previous time 17919 * and this time. 17920 * previous | this-time 17921 * A) 0 | 0 -- fill_cw not in the picture 17922 * B) 1 | 0 -- we were doing a fill-cw but now are not 17923 * C) 1 | 1 -- all rates from fill_cw 17924 * D) 0 | 1 -- we were doing non-fill and now we are filling 17925 * 17926 * For case A, C and D we don't allow a drop. But for 17927 * case B where we now our on our steady rate we do 17928 * allow a drop. 17929 * 17930 */ 17931 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0))) 17932 goto done_w_hdwr; 17933 } 17934 if ((rate_wanted > rack->r_ctl.crte->rate) || 17935 (rate_wanted <= rack->r_ctl.crte_prev_rate)) { 17936 if (rack_hw_rate_to_low && 17937 (bw_est < rack_hw_rate_to_low)) { 17938 /* 17939 * The pacing rate is too low for hardware, but 17940 * do allow hardware pacing to be restarted. 17941 */ 17942 rack_log_hdwr_pacing(rack, 17943 bw_est, rack->r_ctl.crte->rate, __LINE__, 17944 0, 5); 17945 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 17946 rack->r_ctl.crte = NULL; 17947 rack->rack_attempt_hdwr_pace = 0; 17948 rack->rack_hdrw_pacing = 0; 17949 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 17950 goto done_w_hdwr; 17951 } 17952 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, 17953 rack->rc_tp, 17954 rack->rc_inp->inp_route.ro_nh->nh_ifp, 17955 rate_wanted, 17956 RS_PACING_GEQ, 17957 &err, &rack->r_ctl.crte_prev_rate); 17958 if (nrte == NULL) { 17959 /* 17960 * Lost the rate, lets drop hardware pacing 17961 * period. 17962 */ 17963 rack->rack_hdrw_pacing = 0; 17964 rack->r_ctl.crte = NULL; 17965 rack_log_hdwr_pacing(rack, 17966 rate_wanted, 0, __LINE__, 17967 err, 1); 17968 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 17969 counter_u64_add(rack_hw_pace_lost, 1); 17970 } else if (nrte != rack->r_ctl.crte) { 17971 rack->r_ctl.crte = nrte; 17972 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size_w_divisor(tp, rate_wanted, 17973 segsiz, pace_one, rack->r_ctl.crte, 17974 NULL, rack->r_ctl.pace_len_divisor); 17975 rack_log_hdwr_pacing(rack, 17976 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 17977 err, 2); 17978 rack->r_ctl.last_hw_bw_req = rate_wanted; 17979 } 17980 } else { 17981 /* We just need to adjust the segment size */ 17982 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 17983 rack_log_hdwr_pacing(rack, 17984 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 17985 0, 4); 17986 rack->r_ctl.last_hw_bw_req = rate_wanted; 17987 } 17988 } 17989 } 17990 if (minslot && (minslot > slot)) { 17991 rack_log_pacing_delay_calc(rack, minslot, slot, rack->r_ctl.crte->rate, bw_est, lentim, 17992 98, __LINE__, NULL, 0); 17993 slot = minslot; 17994 } 17995 done_w_hdwr: 17996 if (rack_limit_time_with_srtt && 17997 (rack->use_fixed_rate == 0) && 17998 (rack->rack_hdrw_pacing == 0)) { 17999 /* 18000 * Sanity check, we do not allow the pacing delay 18001 * to be longer than the SRTT of the path. If it is 18002 * a slow path, then adding a packet should increase 18003 * the RTT and compensate for this i.e. the srtt will 18004 * be greater so the allowed pacing time will be greater. 18005 * 18006 * Note this restriction is not for where a peak rate 18007 * is set, we are doing fixed pacing or hardware pacing. 18008 */ 18009 if (rack->rc_tp->t_srtt) 18010 srtt = rack->rc_tp->t_srtt; 18011 else 18012 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ 18013 if (srtt < (uint64_t)slot) { 18014 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0); 18015 slot = srtt; 18016 } 18017 } 18018 /*******************************************************************/ 18019 /* RRS: We insert paced call to stats here for len and rate_wanted */ 18020 /*******************************************************************/ 18021 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0); 18022 } 18023 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) { 18024 /* 18025 * If this rate is seeing enobufs when it 18026 * goes to send then either the nic is out 18027 * of gas or we are mis-estimating the time 18028 * somehow and not letting the queue empty 18029 * completely. Lets add to the pacing time. 18030 */ 18031 int hw_boost_delay; 18032 18033 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult; 18034 if (hw_boost_delay > rack_enobuf_hw_max) 18035 hw_boost_delay = rack_enobuf_hw_max; 18036 else if (hw_boost_delay < rack_enobuf_hw_min) 18037 hw_boost_delay = rack_enobuf_hw_min; 18038 slot += hw_boost_delay; 18039 } 18040 return (slot); 18041 } 18042 18043 static void 18044 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, 18045 tcp_seq startseq, uint32_t sb_offset) 18046 { 18047 struct rack_sendmap *my_rsm = NULL; 18048 18049 if (tp->t_state < TCPS_ESTABLISHED) { 18050 /* 18051 * We don't start any measurements if we are 18052 * not at least established. 18053 */ 18054 return; 18055 } 18056 if (tp->t_state >= TCPS_FIN_WAIT_1) { 18057 /* 18058 * We will get no more data into the SB 18059 * this means we need to have the data available 18060 * before we start a measurement. 18061 */ 18062 18063 if (sbavail(&tptosocket(tp)->so_snd) < 18064 max(rc_init_window(rack), 18065 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) { 18066 /* Nope not enough data */ 18067 return; 18068 } 18069 } 18070 tp->t_flags |= TF_GPUTINPROG; 18071 rack->r_ctl.rc_gp_cumack_ts = 0; 18072 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 18073 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 18074 tp->gput_seq = startseq; 18075 rack->app_limited_needs_set = 0; 18076 if (rack->in_probe_rtt) 18077 rack->measure_saw_probe_rtt = 1; 18078 else if ((rack->measure_saw_probe_rtt) && 18079 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 18080 rack->measure_saw_probe_rtt = 0; 18081 if (rack->rc_gp_filled) 18082 tp->gput_ts = rack->r_ctl.last_cumack_advance; 18083 else { 18084 /* Special case initial measurement */ 18085 struct timeval tv; 18086 18087 tp->gput_ts = tcp_get_usecs(&tv); 18088 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 18089 } 18090 /* 18091 * We take a guess out into the future, 18092 * if we have no measurement and no 18093 * initial rate, we measure the first 18094 * initial-windows worth of data to 18095 * speed up getting some GP measurement and 18096 * thus start pacing. 18097 */ 18098 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { 18099 rack->app_limited_needs_set = 1; 18100 tp->gput_ack = startseq + max(rc_init_window(rack), 18101 (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 18102 rack_log_pacing_delay_calc(rack, 18103 tp->gput_seq, 18104 tp->gput_ack, 18105 0, 18106 tp->gput_ts, 18107 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | (uint64_t)rack->r_ctl.rc_gp_output_ts), 18108 9, 18109 __LINE__, NULL, 0); 18110 rack_tend_gp_marks(tp, rack); 18111 rack_log_gpset(rack, tp->gput_ack, 0, 0, __LINE__, 1, NULL); 18112 return; 18113 } 18114 if (sb_offset) { 18115 /* 18116 * We are out somewhere in the sb 18117 * can we use the already outstanding data? 18118 */ 18119 18120 if (rack->r_ctl.rc_app_limited_cnt == 0) { 18121 /* 18122 * Yes first one is good and in this case 18123 * the tp->gput_ts is correctly set based on 18124 * the last ack that arrived (no need to 18125 * set things up when an ack comes in). 18126 */ 18127 my_rsm = tqhash_min(rack->r_ctl.tqh); 18128 if ((my_rsm == NULL) || 18129 (my_rsm->r_rtr_cnt != 1)) { 18130 /* retransmission? */ 18131 goto use_latest; 18132 } 18133 } else { 18134 if (rack->r_ctl.rc_first_appl == NULL) { 18135 /* 18136 * If rc_first_appl is NULL 18137 * then the cnt should be 0. 18138 * This is probably an error, maybe 18139 * a KASSERT would be approprate. 18140 */ 18141 goto use_latest; 18142 } 18143 /* 18144 * If we have a marker pointer to the last one that is 18145 * app limited we can use that, but we need to set 18146 * things up so that when it gets ack'ed we record 18147 * the ack time (if its not already acked). 18148 */ 18149 rack->app_limited_needs_set = 1; 18150 /* 18151 * We want to get to the rsm that is either 18152 * next with space i.e. over 1 MSS or the one 18153 * after that (after the app-limited). 18154 */ 18155 my_rsm = tqhash_next(rack->r_ctl.tqh, rack->r_ctl.rc_first_appl); 18156 if (my_rsm) { 18157 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) 18158 /* Have to use the next one */ 18159 my_rsm = tqhash_next(rack->r_ctl.tqh, my_rsm); 18160 else { 18161 /* Use after the first MSS of it is acked */ 18162 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); 18163 goto start_set; 18164 } 18165 } 18166 if ((my_rsm == NULL) || 18167 (my_rsm->r_rtr_cnt != 1)) { 18168 /* 18169 * Either its a retransmit or 18170 * the last is the app-limited one. 18171 */ 18172 goto use_latest; 18173 } 18174 } 18175 tp->gput_seq = my_rsm->r_start; 18176 start_set: 18177 if (my_rsm->r_flags & RACK_ACKED) { 18178 /* 18179 * This one has been acked use the arrival ack time 18180 */ 18181 struct rack_sendmap *nrsm; 18182 18183 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 18184 rack->app_limited_needs_set = 0; 18185 /* 18186 * Ok in this path we need to use the r_end now 18187 * since this guy is the starting ack. 18188 */ 18189 tp->gput_seq = my_rsm->r_end; 18190 /* 18191 * We also need to adjust up the sendtime 18192 * to the send of the next data after my_rsm. 18193 */ 18194 nrsm = tqhash_next(rack->r_ctl.tqh, my_rsm); 18195 if (nrsm != NULL) 18196 my_rsm = nrsm; 18197 else { 18198 /* 18199 * The next as not been sent, thats the 18200 * case for using the latest. 18201 */ 18202 goto use_latest; 18203 } 18204 } 18205 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[0]; 18206 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 18207 rack->r_ctl.rc_gp_cumack_ts = 0; 18208 rack_log_pacing_delay_calc(rack, 18209 tp->gput_seq, 18210 tp->gput_ack, 18211 (uint64_t)my_rsm, 18212 tp->gput_ts, 18213 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | (uint64_t)rack->r_ctl.rc_gp_output_ts), 18214 9, 18215 __LINE__, my_rsm, 0); 18216 /* Now lets make sure all are marked as they should be */ 18217 rack_tend_gp_marks(tp, rack); 18218 rack_log_gpset(rack, tp->gput_ack, 0, 0, __LINE__, 1, NULL); 18219 return; 18220 } 18221 18222 use_latest: 18223 /* 18224 * We don't know how long we may have been 18225 * idle or if this is the first-send. Lets 18226 * setup the flag so we will trim off 18227 * the first ack'd data so we get a true 18228 * measurement. 18229 */ 18230 rack->app_limited_needs_set = 1; 18231 tp->gput_ack = startseq + rack_get_measure_window(tp, rack); 18232 rack->r_ctl.rc_gp_cumack_ts = 0; 18233 /* Find this guy so we can pull the send time */ 18234 my_rsm = tqhash_find(rack->r_ctl.tqh, startseq); 18235 if (my_rsm) { 18236 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[0]; 18237 if (my_rsm->r_flags & RACK_ACKED) { 18238 /* 18239 * Unlikely since its probably what was 18240 * just transmitted (but I am paranoid). 18241 */ 18242 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 18243 rack->app_limited_needs_set = 0; 18244 } 18245 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { 18246 /* This also is unlikely */ 18247 tp->gput_seq = my_rsm->r_start; 18248 } 18249 } else { 18250 /* 18251 * TSNH unless we have some send-map limit, 18252 * and even at that it should not be hitting 18253 * that limit (we should have stopped sending). 18254 */ 18255 struct timeval tv; 18256 18257 microuptime(&tv); 18258 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 18259 } 18260 rack_tend_gp_marks(tp, rack); 18261 rack_log_pacing_delay_calc(rack, 18262 tp->gput_seq, 18263 tp->gput_ack, 18264 (uint64_t)my_rsm, 18265 tp->gput_ts, 18266 (((uint64_t)rack->r_ctl.rc_app_limited_cnt << 32) | (uint64_t)rack->r_ctl.rc_gp_output_ts), 18267 9, __LINE__, NULL, 0); 18268 rack_log_gpset(rack, tp->gput_ack, 0, 0, __LINE__, 1, NULL); 18269 } 18270 18271 static inline uint32_t 18272 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, 18273 uint32_t avail, int32_t sb_offset) 18274 { 18275 uint32_t len; 18276 uint32_t sendwin; 18277 18278 if (tp->snd_wnd > cwnd_to_use) 18279 sendwin = cwnd_to_use; 18280 else 18281 sendwin = tp->snd_wnd; 18282 if (ctf_outstanding(tp) >= tp->snd_wnd) { 18283 /* We never want to go over our peers rcv-window */ 18284 len = 0; 18285 } else { 18286 uint32_t flight; 18287 18288 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 18289 if (flight >= sendwin) { 18290 /* 18291 * We have in flight what we are allowed by cwnd (if 18292 * it was rwnd blocking it would have hit above out 18293 * >= tp->snd_wnd). 18294 */ 18295 return (0); 18296 } 18297 len = sendwin - flight; 18298 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { 18299 /* We would send too much (beyond the rwnd) */ 18300 len = tp->snd_wnd - ctf_outstanding(tp); 18301 } 18302 if ((len + sb_offset) > avail) { 18303 /* 18304 * We don't have that much in the SB, how much is 18305 * there? 18306 */ 18307 len = avail - sb_offset; 18308 } 18309 } 18310 return (len); 18311 } 18312 18313 static void 18314 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, 18315 unsigned ipoptlen, int32_t orig_len, int32_t len, int error, 18316 int rsm_is_null, int optlen, int line, uint16_t mode) 18317 { 18318 if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) { 18319 union tcp_log_stackspecific log; 18320 struct timeval tv; 18321 18322 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 18323 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 18324 log.u_bbr.flex1 = error; 18325 log.u_bbr.flex2 = flags; 18326 log.u_bbr.flex3 = rsm_is_null; 18327 log.u_bbr.flex4 = ipoptlen; 18328 log.u_bbr.flex5 = tp->rcv_numsacks; 18329 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 18330 log.u_bbr.flex7 = optlen; 18331 log.u_bbr.flex8 = rack->r_fsb_inited; 18332 log.u_bbr.applimited = rack->r_fast_output; 18333 log.u_bbr.bw_inuse = rack_get_bw(rack); 18334 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 18335 log.u_bbr.cwnd_gain = mode; 18336 log.u_bbr.pkts_out = orig_len; 18337 log.u_bbr.lt_epoch = len; 18338 log.u_bbr.delivered = line; 18339 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 18340 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18341 tcp_log_event(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0, 18342 len, &log, false, NULL, __func__, __LINE__, &tv); 18343 } 18344 } 18345 18346 18347 static struct mbuf * 18348 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, 18349 struct rack_fast_send_blk *fsb, 18350 int32_t seglimit, int32_t segsize, int hw_tls) 18351 { 18352 #ifdef KERN_TLS 18353 struct ktls_session *tls, *ntls; 18354 #ifdef INVARIANTS 18355 struct mbuf *start; 18356 #endif 18357 #endif 18358 struct mbuf *m, *n, **np, *smb; 18359 struct mbuf *top; 18360 int32_t off, soff; 18361 int32_t len = *plen; 18362 int32_t fragsize; 18363 int32_t len_cp = 0; 18364 uint32_t mlen, frags; 18365 18366 soff = off = the_off; 18367 smb = m = the_m; 18368 np = ⊤ 18369 top = NULL; 18370 #ifdef KERN_TLS 18371 if (hw_tls && (m->m_flags & M_EXTPG)) 18372 tls = m->m_epg_tls; 18373 else 18374 tls = NULL; 18375 #ifdef INVARIANTS 18376 start = m; 18377 #endif 18378 #endif 18379 while (len > 0) { 18380 if (m == NULL) { 18381 *plen = len_cp; 18382 break; 18383 } 18384 #ifdef KERN_TLS 18385 if (hw_tls) { 18386 if (m->m_flags & M_EXTPG) 18387 ntls = m->m_epg_tls; 18388 else 18389 ntls = NULL; 18390 18391 /* 18392 * Avoid mixing TLS records with handshake 18393 * data or TLS records from different 18394 * sessions. 18395 */ 18396 if (tls != ntls) { 18397 MPASS(m != start); 18398 *plen = len_cp; 18399 break; 18400 } 18401 } 18402 #endif 18403 mlen = min(len, m->m_len - off); 18404 if (seglimit) { 18405 /* 18406 * For M_EXTPG mbufs, add 3 segments 18407 * + 1 in case we are crossing page boundaries 18408 * + 2 in case the TLS hdr/trailer are used 18409 * It is cheaper to just add the segments 18410 * than it is to take the cache miss to look 18411 * at the mbuf ext_pgs state in detail. 18412 */ 18413 if (m->m_flags & M_EXTPG) { 18414 fragsize = min(segsize, PAGE_SIZE); 18415 frags = 3; 18416 } else { 18417 fragsize = segsize; 18418 frags = 0; 18419 } 18420 18421 /* Break if we really can't fit anymore. */ 18422 if ((frags + 1) >= seglimit) { 18423 *plen = len_cp; 18424 break; 18425 } 18426 18427 /* 18428 * Reduce size if you can't copy the whole 18429 * mbuf. If we can't copy the whole mbuf, also 18430 * adjust len so the loop will end after this 18431 * mbuf. 18432 */ 18433 if ((frags + howmany(mlen, fragsize)) >= seglimit) { 18434 mlen = (seglimit - frags - 1) * fragsize; 18435 len = mlen; 18436 *plen = len_cp + len; 18437 } 18438 frags += howmany(mlen, fragsize); 18439 if (frags == 0) 18440 frags++; 18441 seglimit -= frags; 18442 KASSERT(seglimit > 0, 18443 ("%s: seglimit went too low", __func__)); 18444 } 18445 n = m_get(M_NOWAIT, m->m_type); 18446 *np = n; 18447 if (n == NULL) 18448 goto nospace; 18449 n->m_len = mlen; 18450 soff += mlen; 18451 len_cp += n->m_len; 18452 if (m->m_flags & (M_EXT|M_EXTPG)) { 18453 n->m_data = m->m_data + off; 18454 mb_dupcl(n, m); 18455 } else { 18456 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 18457 (u_int)n->m_len); 18458 } 18459 len -= n->m_len; 18460 off = 0; 18461 m = m->m_next; 18462 np = &n->m_next; 18463 if (len || (soff == smb->m_len)) { 18464 /* 18465 * We have more so we move forward or 18466 * we have consumed the entire mbuf and 18467 * len has fell to 0. 18468 */ 18469 soff = 0; 18470 smb = m; 18471 } 18472 18473 } 18474 if (fsb != NULL) { 18475 fsb->m = smb; 18476 fsb->off = soff; 18477 if (smb) { 18478 /* 18479 * Save off the size of the mbuf. We do 18480 * this so that we can recognize when it 18481 * has been trimmed by sbcut() as acks 18482 * come in. 18483 */ 18484 fsb->o_m_len = smb->m_len; 18485 fsb->o_t_len = M_TRAILINGROOM(smb); 18486 } else { 18487 /* 18488 * This is the case where the next mbuf went to NULL. This 18489 * means with this copy we have sent everything in the sb. 18490 * In theory we could clear the fast_output flag, but lets 18491 * not since its possible that we could get more added 18492 * and acks that call the extend function which would let 18493 * us send more. 18494 */ 18495 fsb->o_m_len = 0; 18496 fsb->o_t_len = 0; 18497 } 18498 } 18499 return (top); 18500 nospace: 18501 if (top) 18502 m_freem(top); 18503 return (NULL); 18504 18505 } 18506 18507 /* 18508 * This is a copy of m_copym(), taking the TSO segment size/limit 18509 * constraints into account, and advancing the sndptr as it goes. 18510 */ 18511 static struct mbuf * 18512 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, 18513 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff) 18514 { 18515 struct mbuf *m, *n; 18516 int32_t soff; 18517 18518 m = rack->r_ctl.fsb.m; 18519 if (M_TRAILINGROOM(m) != rack->r_ctl.fsb.o_t_len) { 18520 /* 18521 * The trailing space changed, mbufs can grow 18522 * at the tail but they can't shrink from 18523 * it, KASSERT that. Adjust the orig_m_len to 18524 * compensate for this change. 18525 */ 18526 KASSERT((rack->r_ctl.fsb.o_t_len > M_TRAILINGROOM(m)), 18527 ("mbuf:%p rack:%p trailing_space:%jd ots:%u oml:%u mlen:%u\n", 18528 m, 18529 rack, 18530 (intmax_t)M_TRAILINGROOM(m), 18531 rack->r_ctl.fsb.o_t_len, 18532 rack->r_ctl.fsb.o_m_len, 18533 m->m_len)); 18534 rack->r_ctl.fsb.o_m_len += (rack->r_ctl.fsb.o_t_len - M_TRAILINGROOM(m)); 18535 rack->r_ctl.fsb.o_t_len = M_TRAILINGROOM(m); 18536 } 18537 if (m->m_len < rack->r_ctl.fsb.o_m_len) { 18538 /* 18539 * Mbuf shrank, trimmed off the top by an ack, our 18540 * offset changes. 18541 */ 18542 KASSERT((rack->r_ctl.fsb.off >= (rack->r_ctl.fsb.o_m_len - m->m_len)), 18543 ("mbuf:%p len:%u rack:%p oml:%u soff:%u\n", 18544 m, m->m_len, 18545 rack, rack->r_ctl.fsb.o_m_len, 18546 rack->r_ctl.fsb.off)); 18547 18548 if (rack->r_ctl.fsb.off >= (rack->r_ctl.fsb.o_m_len- m->m_len)) 18549 rack->r_ctl.fsb.off -= (rack->r_ctl.fsb.o_m_len - m->m_len); 18550 else 18551 rack->r_ctl.fsb.off = 0; 18552 rack->r_ctl.fsb.o_m_len = m->m_len; 18553 #ifdef INVARIANTS 18554 } else if (m->m_len > rack->r_ctl.fsb.o_m_len) { 18555 panic("rack:%p m:%p m_len grew outside of t_space compensation", 18556 rack, m); 18557 #endif 18558 } 18559 soff = rack->r_ctl.fsb.off; 18560 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff)); 18561 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen)); 18562 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?", 18563 __FUNCTION__, 18564 rack, *plen, m, m->m_len)); 18565 /* Save off the right location before we copy and advance */ 18566 *s_soff = soff; 18567 *s_mb = rack->r_ctl.fsb.m; 18568 n = rack_fo_base_copym(m, soff, plen, 18569 &rack->r_ctl.fsb, 18570 seglimit, segsize, rack->r_ctl.fsb.hw_tls); 18571 return (n); 18572 } 18573 18574 /* Log the buffer level */ 18575 static void 18576 rack_log_queue_level(struct tcpcb *tp, struct tcp_rack *rack, 18577 int len, struct timeval *tv, 18578 uint32_t cts) 18579 { 18580 uint32_t p_rate = 0, p_queue = 0, err = 0; 18581 union tcp_log_stackspecific log; 18582 18583 #ifdef RATELIMIT 18584 err = in_pcbquery_txrlevel(rack->rc_inp, &p_queue); 18585 err = in_pcbquery_txrtlmt(rack->rc_inp, &p_rate); 18586 #endif 18587 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 18588 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 18589 log.u_bbr.flex1 = p_rate; 18590 log.u_bbr.flex2 = p_queue; 18591 log.u_bbr.flex4 = (uint32_t)rack->r_ctl.crte->using; 18592 log.u_bbr.flex5 = (uint32_t)rack->r_ctl.crte->rs_num_enobufs; 18593 log.u_bbr.flex6 = rack->r_ctl.crte->time_between; 18594 log.u_bbr.flex7 = 99; 18595 log.u_bbr.flex8 = 0; 18596 log.u_bbr.pkts_out = err; 18597 log.u_bbr.delRate = rack->r_ctl.crte->rate; 18598 log.u_bbr.timeStamp = cts; 18599 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18600 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_HDWR_PACE, 0, 18601 len, &log, false, NULL, __func__, __LINE__, tv); 18602 18603 } 18604 18605 static uint32_t 18606 rack_check_queue_level(struct tcp_rack *rack, struct tcpcb *tp, 18607 struct timeval *tv, uint32_t cts, int len, uint32_t segsiz) 18608 { 18609 uint64_t lentime = 0; 18610 #ifdef RATELIMIT 18611 uint32_t p_rate = 0, p_queue = 0, err; 18612 union tcp_log_stackspecific log; 18613 uint64_t bw; 18614 18615 err = in_pcbquery_txrlevel(rack->rc_inp, &p_queue); 18616 /* Failed or queue is zero */ 18617 if (err || (p_queue == 0)) { 18618 lentime = 0; 18619 goto out; 18620 } 18621 err = in_pcbquery_txrtlmt(rack->rc_inp, &p_rate); 18622 if (err) { 18623 lentime = 0; 18624 goto out; 18625 } 18626 /* 18627 * If we reach here we have some bytes in 18628 * the queue. The number returned is a value 18629 * between 0 and 0xffff where ffff is full 18630 * and 0 is empty. So how best to make this into 18631 * something usable? 18632 * 18633 * The "safer" way is lets take the b/w gotten 18634 * from the query (which should be our b/w rate) 18635 * and pretend that a full send (our rc_pace_max_segs) 18636 * is outstanding. We factor it so its as if a full 18637 * number of our MSS segment is terms of full 18638 * ethernet segments are outstanding. 18639 */ 18640 bw = p_rate / 8; 18641 if (bw) { 18642 lentime = (rack->r_ctl.rc_pace_max_segs / segsiz); 18643 lentime *= ETHERNET_SEGMENT_SIZE; 18644 lentime *= (uint64_t)HPTS_USEC_IN_SEC; 18645 lentime /= bw; 18646 } else { 18647 /* TSNH -- KASSERT? */ 18648 lentime = 0; 18649 } 18650 out: 18651 if (tcp_bblogging_on(tp)) { 18652 memset(&log, 0, sizeof(log)); 18653 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 18654 log.u_bbr.flex1 = p_rate; 18655 log.u_bbr.flex2 = p_queue; 18656 log.u_bbr.flex4 = (uint32_t)rack->r_ctl.crte->using; 18657 log.u_bbr.flex5 = (uint32_t)rack->r_ctl.crte->rs_num_enobufs; 18658 log.u_bbr.flex6 = rack->r_ctl.crte->time_between; 18659 log.u_bbr.flex7 = 99; 18660 log.u_bbr.flex8 = 0; 18661 log.u_bbr.pkts_out = err; 18662 log.u_bbr.delRate = rack->r_ctl.crte->rate; 18663 log.u_bbr.cur_del_rate = lentime; 18664 log.u_bbr.timeStamp = cts; 18665 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 18666 tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_HDWR_PACE, 0, 18667 len, &log, false, NULL, __func__, __LINE__,tv); 18668 } 18669 #endif 18670 return ((uint32_t)lentime); 18671 } 18672 18673 static int 18674 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, 18675 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp) 18676 { 18677 /* 18678 * Enter the fast retransmit path. We are given that a sched_pin is 18679 * in place (if accounting is compliled in) and the cycle count taken 18680 * at the entry is in the ts_val. The concept her is that the rsm 18681 * now holds the mbuf offsets and such so we can directly transmit 18682 * without a lot of overhead, the len field is already set for 18683 * us to prohibit us from sending too much (usually its 1MSS). 18684 */ 18685 struct ip *ip = NULL; 18686 struct udphdr *udp = NULL; 18687 struct tcphdr *th = NULL; 18688 struct mbuf *m = NULL; 18689 struct inpcb *inp; 18690 uint8_t *cpto; 18691 struct tcp_log_buffer *lgb; 18692 #ifdef TCP_ACCOUNTING 18693 uint64_t crtsc; 18694 int cnt_thru = 1; 18695 #endif 18696 struct tcpopt to; 18697 u_char opt[TCP_MAXOLEN]; 18698 uint32_t hdrlen, optlen; 18699 int32_t slot, segsiz, max_val, tso = 0, error = 0, ulen = 0; 18700 uint16_t flags; 18701 uint32_t if_hw_tsomaxsegcount = 0, startseq; 18702 uint32_t if_hw_tsomaxsegsize; 18703 int32_t ip_sendflag = IP_NO_SND_TAG_RL; 18704 18705 #ifdef INET6 18706 struct ip6_hdr *ip6 = NULL; 18707 18708 if (rack->r_is_v6) { 18709 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 18710 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 18711 } else 18712 #endif /* INET6 */ 18713 { 18714 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 18715 hdrlen = sizeof(struct tcpiphdr); 18716 } 18717 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 18718 goto failed; 18719 } 18720 if (doing_tlp) { 18721 /* Its a TLP add the flag, it may already be there but be sure */ 18722 rsm->r_flags |= RACK_TLP; 18723 } else { 18724 /* If it was a TLP it is not not on this retransmit */ 18725 rsm->r_flags &= ~RACK_TLP; 18726 } 18727 startseq = rsm->r_start; 18728 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 18729 inp = rack->rc_inp; 18730 to.to_flags = 0; 18731 flags = tcp_outflags[tp->t_state]; 18732 if (flags & (TH_SYN|TH_RST)) { 18733 goto failed; 18734 } 18735 if (rsm->r_flags & RACK_HAS_FIN) { 18736 /* We can't send a FIN here */ 18737 goto failed; 18738 } 18739 if (flags & TH_FIN) { 18740 /* We never send a FIN */ 18741 flags &= ~TH_FIN; 18742 } 18743 if (tp->t_flags & TF_RCVD_TSTMP) { 18744 to.to_tsval = ms_cts + tp->ts_offset; 18745 to.to_tsecr = tp->ts_recent; 18746 to.to_flags = TOF_TS; 18747 } 18748 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18749 /* TCP-MD5 (RFC2385). */ 18750 if (tp->t_flags & TF_SIGNATURE) 18751 to.to_flags |= TOF_SIGNATURE; 18752 #endif 18753 optlen = tcp_addoptions(&to, opt); 18754 hdrlen += optlen; 18755 udp = rack->r_ctl.fsb.udp; 18756 if (udp) 18757 hdrlen += sizeof(struct udphdr); 18758 if (rack->r_ctl.rc_pace_max_segs) 18759 max_val = rack->r_ctl.rc_pace_max_segs; 18760 else if (rack->rc_user_set_max_segs) 18761 max_val = rack->rc_user_set_max_segs * segsiz; 18762 else 18763 max_val = len; 18764 if ((tp->t_flags & TF_TSO) && 18765 V_tcp_do_tso && 18766 (len > segsiz) && 18767 (tp->t_port == 0)) 18768 tso = 1; 18769 #ifdef INET6 18770 if (MHLEN < hdrlen + max_linkhdr) 18771 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 18772 else 18773 #endif 18774 m = m_gethdr(M_NOWAIT, MT_DATA); 18775 if (m == NULL) 18776 goto failed; 18777 m->m_data += max_linkhdr; 18778 m->m_len = hdrlen; 18779 th = rack->r_ctl.fsb.th; 18780 /* Establish the len to send */ 18781 if (len > max_val) 18782 len = max_val; 18783 if ((tso) && (len + optlen > segsiz)) { 18784 uint32_t if_hw_tsomax; 18785 int32_t max_len; 18786 18787 /* extract TSO information */ 18788 if_hw_tsomax = tp->t_tsomax; 18789 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 18790 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 18791 /* 18792 * Check if we should limit by maximum payload 18793 * length: 18794 */ 18795 if (if_hw_tsomax != 0) { 18796 /* compute maximum TSO length */ 18797 max_len = (if_hw_tsomax - hdrlen - 18798 max_linkhdr); 18799 if (max_len <= 0) { 18800 goto failed; 18801 } else if (len > max_len) { 18802 len = max_len; 18803 } 18804 } 18805 if (len <= segsiz) { 18806 /* 18807 * In case there are too many small fragments don't 18808 * use TSO: 18809 */ 18810 tso = 0; 18811 } 18812 } else { 18813 tso = 0; 18814 } 18815 if ((tso == 0) && (len > segsiz)) 18816 len = segsiz; 18817 (void)tcp_get_usecs(tv); 18818 if ((len == 0) || 18819 (len <= MHLEN - hdrlen - max_linkhdr)) { 18820 goto failed; 18821 } 18822 th->th_seq = htonl(rsm->r_start); 18823 th->th_ack = htonl(tp->rcv_nxt); 18824 /* 18825 * The PUSH bit should only be applied 18826 * if the full retransmission is made. If 18827 * we are sending less than this is the 18828 * left hand edge and should not have 18829 * the PUSH bit. 18830 */ 18831 if ((rsm->r_flags & RACK_HAD_PUSH) && 18832 (len == (rsm->r_end - rsm->r_start))) 18833 flags |= TH_PUSH; 18834 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 18835 if (th->th_win == 0) { 18836 tp->t_sndzerowin++; 18837 tp->t_flags |= TF_RXWIN0SENT; 18838 } else 18839 tp->t_flags &= ~TF_RXWIN0SENT; 18840 if (rsm->r_flags & RACK_TLP) { 18841 /* 18842 * TLP should not count in retran count, but 18843 * in its own bin 18844 */ 18845 counter_u64_add(rack_tlp_retran, 1); 18846 counter_u64_add(rack_tlp_retran_bytes, len); 18847 } else { 18848 tp->t_sndrexmitpack++; 18849 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 18850 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 18851 } 18852 #ifdef STATS 18853 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 18854 len); 18855 #endif 18856 if (rsm->m == NULL) 18857 goto failed; 18858 if (rsm->m && 18859 ((rsm->orig_m_len != rsm->m->m_len) || 18860 (M_TRAILINGROOM(rsm->m) != rsm->orig_t_space))) { 18861 /* Fix up the orig_m_len and possibly the mbuf offset */ 18862 rack_adjust_orig_mlen(rsm); 18863 } 18864 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls); 18865 if (len <= segsiz) { 18866 /* 18867 * Must have ran out of mbufs for the copy 18868 * shorten it to no longer need tso. Lets 18869 * not put on sendalot since we are low on 18870 * mbufs. 18871 */ 18872 tso = 0; 18873 } 18874 if ((m->m_next == NULL) || (len <= 0)){ 18875 goto failed; 18876 } 18877 if (udp) { 18878 if (rack->r_is_v6) 18879 ulen = hdrlen + len - sizeof(struct ip6_hdr); 18880 else 18881 ulen = hdrlen + len - sizeof(struct ip); 18882 udp->uh_ulen = htons(ulen); 18883 } 18884 m->m_pkthdr.rcvif = (struct ifnet *)0; 18885 if (TCPS_HAVERCVDSYN(tp->t_state) && 18886 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 18887 int ect = tcp_ecn_output_established(tp, &flags, len, true); 18888 if ((tp->t_state == TCPS_SYN_RECEIVED) && 18889 (tp->t_flags2 & TF2_ECN_SND_ECE)) 18890 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 18891 #ifdef INET6 18892 if (rack->r_is_v6) { 18893 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 18894 ip6->ip6_flow |= htonl(ect << 20); 18895 } 18896 else 18897 #endif 18898 { 18899 ip->ip_tos &= ~IPTOS_ECN_MASK; 18900 ip->ip_tos |= ect; 18901 } 18902 } 18903 if (rack->r_ctl.crte != NULL) { 18904 /* See if we can send via the hw queue */ 18905 slot = rack_check_queue_level(rack, tp, tv, cts, len, segsiz); 18906 /* If there is nothing in queue (no pacing time) we can send via the hw queue */ 18907 if (slot == 0) 18908 ip_sendflag = 0; 18909 } 18910 tcp_set_flags(th, flags); 18911 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 18912 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 18913 if (to.to_flags & TOF_SIGNATURE) { 18914 /* 18915 * Calculate MD5 signature and put it into the place 18916 * determined before. 18917 * NOTE: since TCP options buffer doesn't point into 18918 * mbuf's data, calculate offset and use it. 18919 */ 18920 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 18921 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 18922 /* 18923 * Do not send segment if the calculation of MD5 18924 * digest has failed. 18925 */ 18926 goto failed; 18927 } 18928 } 18929 #endif 18930 #ifdef INET6 18931 if (rack->r_is_v6) { 18932 if (tp->t_port) { 18933 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 18934 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18935 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 18936 th->th_sum = htons(0); 18937 UDPSTAT_INC(udps_opackets); 18938 } else { 18939 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 18940 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18941 th->th_sum = in6_cksum_pseudo(ip6, 18942 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 18943 0); 18944 } 18945 } 18946 #endif 18947 #if defined(INET6) && defined(INET) 18948 else 18949 #endif 18950 #ifdef INET 18951 { 18952 if (tp->t_port) { 18953 m->m_pkthdr.csum_flags = CSUM_UDP; 18954 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 18955 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 18956 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 18957 th->th_sum = htons(0); 18958 UDPSTAT_INC(udps_opackets); 18959 } else { 18960 m->m_pkthdr.csum_flags = CSUM_TCP; 18961 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 18962 th->th_sum = in_pseudo(ip->ip_src.s_addr, 18963 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 18964 IPPROTO_TCP + len + optlen)); 18965 } 18966 /* IP version must be set here for ipv4/ipv6 checking later */ 18967 KASSERT(ip->ip_v == IPVERSION, 18968 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 18969 } 18970 #endif 18971 if (tso) { 18972 /* 18973 * Here we use segsiz since we have no added options besides 18974 * any standard timestamp options (no DSACKs or SACKS are sent 18975 * via either fast-path). 18976 */ 18977 KASSERT(len > segsiz, 18978 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 18979 m->m_pkthdr.csum_flags |= CSUM_TSO; 18980 m->m_pkthdr.tso_segsz = segsiz; 18981 } 18982 #ifdef INET6 18983 if (rack->r_is_v6) { 18984 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 18985 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 18986 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 18987 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18988 else 18989 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18990 } 18991 #endif 18992 #if defined(INET) && defined(INET6) 18993 else 18994 #endif 18995 #ifdef INET 18996 { 18997 ip->ip_len = htons(m->m_pkthdr.len); 18998 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 18999 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 19000 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 19001 if (tp->t_port == 0 || len < V_tcp_minmss) { 19002 ip->ip_off |= htons(IP_DF); 19003 } 19004 } else { 19005 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 19006 } 19007 } 19008 #endif 19009 if (doing_tlp == 0) { 19010 /* Set we retransmitted */ 19011 rack->rc_gp_saw_rec = 1; 19012 } else { 19013 /* Its a TLP set ca or ss */ 19014 if (tp->snd_cwnd > tp->snd_ssthresh) { 19015 /* Set we sent in CA */ 19016 rack->rc_gp_saw_ca = 1; 19017 } else { 19018 /* Set we sent in SS */ 19019 rack->rc_gp_saw_ss = 1; 19020 } 19021 } 19022 /* Time to copy in our header */ 19023 cpto = mtod(m, uint8_t *); 19024 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 19025 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 19026 if (optlen) { 19027 bcopy(opt, th + 1, optlen); 19028 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 19029 } else { 19030 th->th_off = sizeof(struct tcphdr) >> 2; 19031 } 19032 if (tcp_bblogging_on(rack->rc_tp)) { 19033 union tcp_log_stackspecific log; 19034 19035 if (rsm->r_flags & RACK_RWND_COLLAPSED) { 19036 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm); 19037 counter_u64_add(rack_collapsed_win_rxt, 1); 19038 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start)); 19039 } 19040 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 19041 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 19042 if (rack->rack_no_prr) 19043 log.u_bbr.flex1 = 0; 19044 else 19045 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 19046 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 19047 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 19048 log.u_bbr.flex4 = max_val; 19049 /* Save off the early/late values */ 19050 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 19051 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 19052 log.u_bbr.bw_inuse = rack_get_bw(rack); 19053 log.u_bbr.cur_del_rate = rack->r_ctl.gp_bw; 19054 if (doing_tlp == 0) 19055 log.u_bbr.flex8 = 1; 19056 else 19057 log.u_bbr.flex8 = 2; 19058 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 19059 log.u_bbr.flex7 = 55; 19060 log.u_bbr.pkts_out = tp->t_maxseg; 19061 log.u_bbr.timeStamp = cts; 19062 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 19063 if (rsm && (rsm->r_rtr_cnt > 0)) { 19064 /* 19065 * When we have a retransmit we want to log the 19066 * burst at send and flight at send from before. 19067 */ 19068 log.u_bbr.flex5 = rsm->r_fas; 19069 log.u_bbr.bbr_substate = rsm->r_bas; 19070 } else { 19071 /* 19072 * This is currently unlikely until we do the 19073 * packet pair probes but I will add it for completeness. 19074 */ 19075 log.u_bbr.flex5 = log.u_bbr.inflight; 19076 log.u_bbr.bbr_substate = (uint8_t)((len + segsiz - 1)/segsiz); 19077 } 19078 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 19079 log.u_bbr.delivered = 0; 19080 log.u_bbr.rttProp = (uint64_t)rsm; 19081 log.u_bbr.delRate = rsm->r_flags; 19082 log.u_bbr.delRate <<= 31; 19083 log.u_bbr.delRate |= rack->r_must_retran; 19084 log.u_bbr.delRate <<= 1; 19085 log.u_bbr.delRate |= 1; 19086 log.u_bbr.pkt_epoch = __LINE__; 19087 lgb = tcp_log_event(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 19088 len, &log, false, NULL, __func__, __LINE__, tv); 19089 } else 19090 lgb = NULL; 19091 if ((rack->r_ctl.crte != NULL) && 19092 tcp_bblogging_on(tp)) { 19093 rack_log_queue_level(tp, rack, len, tv, cts); 19094 } 19095 #ifdef INET6 19096 if (rack->r_is_v6) { 19097 error = ip6_output(m, inp->in6p_outputopts, 19098 &inp->inp_route6, 19099 ip_sendflag, NULL, NULL, inp); 19100 } 19101 else 19102 #endif 19103 #ifdef INET 19104 { 19105 error = ip_output(m, NULL, 19106 &inp->inp_route, 19107 ip_sendflag, 0, inp); 19108 } 19109 #endif 19110 m = NULL; 19111 if (lgb) { 19112 lgb->tlb_errno = error; 19113 lgb = NULL; 19114 } 19115 if (error) { 19116 goto failed; 19117 } else if (rack->rc_hw_nobuf && (ip_sendflag != IP_NO_SND_TAG_RL)) { 19118 rack->rc_hw_nobuf = 0; 19119 rack->r_ctl.rc_agg_delayed = 0; 19120 rack->r_early = 0; 19121 rack->r_late = 0; 19122 rack->r_ctl.rc_agg_early = 0; 19123 } 19124 19125 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv), 19126 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls, segsiz); 19127 if (doing_tlp) { 19128 rack->rc_tlp_in_progress = 1; 19129 rack->r_ctl.rc_tlp_cnt_out++; 19130 } 19131 if (error == 0) { 19132 counter_u64_add(rack_total_bytes, len); 19133 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls); 19134 if (doing_tlp) { 19135 rack->rc_last_sent_tlp_past_cumack = 0; 19136 rack->rc_last_sent_tlp_seq_valid = 1; 19137 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 19138 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 19139 } 19140 if (rack->r_ctl.rc_prr_sndcnt >= len) 19141 rack->r_ctl.rc_prr_sndcnt -= len; 19142 else 19143 rack->r_ctl.rc_prr_sndcnt = 0; 19144 } 19145 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 19146 rack->forced_ack = 0; /* If we send something zap the FA flag */ 19147 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 19148 rack->r_ctl.retran_during_recovery += len; 19149 { 19150 int idx; 19151 19152 idx = (len / segsiz) + 3; 19153 if (idx >= TCP_MSS_ACCT_ATIMER) 19154 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 19155 else 19156 counter_u64_add(rack_out_size[idx], 1); 19157 } 19158 if (tp->t_rtttime == 0) { 19159 tp->t_rtttime = ticks; 19160 tp->t_rtseq = startseq; 19161 KMOD_TCPSTAT_INC(tcps_segstimed); 19162 } 19163 counter_u64_add(rack_fto_rsm_send, 1); 19164 if (error && (error == ENOBUFS)) { 19165 if (rack->r_ctl.crte != NULL) { 19166 tcp_trace_point(rack->rc_tp, TCP_TP_HWENOBUF); 19167 if (tcp_bblogging_on(rack->rc_tp)) 19168 rack_log_queue_level(tp, rack, len, tv, cts); 19169 } else 19170 tcp_trace_point(rack->rc_tp, TCP_TP_ENOBUF); 19171 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 19172 if (rack->rc_enobuf < 0x7f) 19173 rack->rc_enobuf++; 19174 if (slot < (10 * HPTS_USEC_IN_MSEC)) 19175 slot = 10 * HPTS_USEC_IN_MSEC; 19176 if (rack->r_ctl.crte != NULL) { 19177 counter_u64_add(rack_saw_enobuf_hw, 1); 19178 tcp_rl_log_enobuf(rack->r_ctl.crte); 19179 } 19180 counter_u64_add(rack_saw_enobuf, 1); 19181 } else 19182 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz); 19183 if ((slot == 0) || 19184 (rack->rc_always_pace == 0) || 19185 (rack->r_rr_config == 1)) { 19186 /* 19187 * We have no pacing set or we 19188 * are using old-style rack or 19189 * we are overridden to use the old 1ms pacing. 19190 */ 19191 slot = rack->r_ctl.rc_min_to; 19192 } 19193 rack_start_hpts_timer(rack, tp, cts, slot, len, 0); 19194 #ifdef TCP_ACCOUNTING 19195 crtsc = get_cyclecount(); 19196 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19197 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 19198 } 19199 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19200 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 19201 } 19202 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19203 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz); 19204 } 19205 sched_unpin(); 19206 #endif 19207 return (0); 19208 failed: 19209 if (m) 19210 m_free(m); 19211 return (-1); 19212 } 19213 19214 static void 19215 rack_sndbuf_autoscale(struct tcp_rack *rack) 19216 { 19217 /* 19218 * Automatic sizing of send socket buffer. Often the send buffer 19219 * size is not optimally adjusted to the actual network conditions 19220 * at hand (delay bandwidth product). Setting the buffer size too 19221 * small limits throughput on links with high bandwidth and high 19222 * delay (eg. trans-continental/oceanic links). Setting the 19223 * buffer size too big consumes too much real kernel memory, 19224 * especially with many connections on busy servers. 19225 * 19226 * The criteria to step up the send buffer one notch are: 19227 * 1. receive window of remote host is larger than send buffer 19228 * (with a fudge factor of 5/4th); 19229 * 2. send buffer is filled to 7/8th with data (so we actually 19230 * have data to make use of it); 19231 * 3. send buffer fill has not hit maximal automatic size; 19232 * 4. our send window (slow start and cogestion controlled) is 19233 * larger than sent but unacknowledged data in send buffer. 19234 * 19235 * Note that the rack version moves things much faster since 19236 * we want to avoid hitting cache lines in the rack_fast_output() 19237 * path so this is called much less often and thus moves 19238 * the SB forward by a percentage. 19239 */ 19240 struct socket *so; 19241 struct tcpcb *tp; 19242 uint32_t sendwin, scaleup; 19243 19244 tp = rack->rc_tp; 19245 so = rack->rc_inp->inp_socket; 19246 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd); 19247 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) { 19248 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && 19249 sbused(&so->so_snd) >= 19250 (so->so_snd.sb_hiwat / 8 * 7) && 19251 sbused(&so->so_snd) < V_tcp_autosndbuf_max && 19252 sendwin >= (sbused(&so->so_snd) - 19253 (tp->snd_nxt - tp->snd_una))) { 19254 if (rack_autosndbuf_inc) 19255 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100; 19256 else 19257 scaleup = V_tcp_autosndbuf_inc; 19258 if (scaleup < V_tcp_autosndbuf_inc) 19259 scaleup = V_tcp_autosndbuf_inc; 19260 scaleup += so->so_snd.sb_hiwat; 19261 if (scaleup > V_tcp_autosndbuf_max) 19262 scaleup = V_tcp_autosndbuf_max; 19263 if (!sbreserve_locked(so, SO_SND, scaleup, curthread)) 19264 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 19265 } 19266 } 19267 } 19268 19269 static int 19270 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, 19271 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err) 19272 { 19273 /* 19274 * Enter to do fast output. We are given that the sched_pin is 19275 * in place (if accounting is compiled in) and the cycle count taken 19276 * at entry is in place in ts_val. The idea here is that 19277 * we know how many more bytes needs to be sent (presumably either 19278 * during pacing or to fill the cwnd and that was greater than 19279 * the max-burst). We have how much to send and all the info we 19280 * need to just send. 19281 */ 19282 #ifdef INET 19283 struct ip *ip = NULL; 19284 #endif 19285 struct udphdr *udp = NULL; 19286 struct tcphdr *th = NULL; 19287 struct mbuf *m, *s_mb; 19288 struct inpcb *inp; 19289 uint8_t *cpto; 19290 struct tcp_log_buffer *lgb; 19291 #ifdef TCP_ACCOUNTING 19292 uint64_t crtsc; 19293 #endif 19294 struct tcpopt to; 19295 u_char opt[TCP_MAXOLEN]; 19296 uint32_t hdrlen, optlen; 19297 #ifdef TCP_ACCOUNTING 19298 int cnt_thru = 1; 19299 #endif 19300 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0; 19301 uint16_t flags; 19302 uint32_t s_soff; 19303 uint32_t if_hw_tsomaxsegcount = 0, startseq; 19304 uint32_t if_hw_tsomaxsegsize; 19305 uint16_t add_flag = RACK_SENT_FP; 19306 #ifdef INET6 19307 struct ip6_hdr *ip6 = NULL; 19308 19309 if (rack->r_is_v6) { 19310 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 19311 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 19312 } else 19313 #endif /* INET6 */ 19314 { 19315 #ifdef INET 19316 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 19317 hdrlen = sizeof(struct tcpiphdr); 19318 #endif 19319 } 19320 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 19321 m = NULL; 19322 goto failed; 19323 } 19324 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 19325 startseq = tp->snd_max; 19326 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 19327 inp = rack->rc_inp; 19328 len = rack->r_ctl.fsb.left_to_send; 19329 to.to_flags = 0; 19330 flags = rack->r_ctl.fsb.tcp_flags; 19331 if (tp->t_flags & TF_RCVD_TSTMP) { 19332 to.to_tsval = ms_cts + tp->ts_offset; 19333 to.to_tsecr = tp->ts_recent; 19334 to.to_flags = TOF_TS; 19335 } 19336 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 19337 /* TCP-MD5 (RFC2385). */ 19338 if (tp->t_flags & TF_SIGNATURE) 19339 to.to_flags |= TOF_SIGNATURE; 19340 #endif 19341 optlen = tcp_addoptions(&to, opt); 19342 hdrlen += optlen; 19343 udp = rack->r_ctl.fsb.udp; 19344 if (udp) 19345 hdrlen += sizeof(struct udphdr); 19346 if (rack->r_ctl.rc_pace_max_segs) 19347 max_val = rack->r_ctl.rc_pace_max_segs; 19348 else if (rack->rc_user_set_max_segs) 19349 max_val = rack->rc_user_set_max_segs * segsiz; 19350 else 19351 max_val = len; 19352 if ((tp->t_flags & TF_TSO) && 19353 V_tcp_do_tso && 19354 (len > segsiz) && 19355 (tp->t_port == 0)) 19356 tso = 1; 19357 again: 19358 #ifdef INET6 19359 if (MHLEN < hdrlen + max_linkhdr) 19360 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 19361 else 19362 #endif 19363 m = m_gethdr(M_NOWAIT, MT_DATA); 19364 if (m == NULL) 19365 goto failed; 19366 m->m_data += max_linkhdr; 19367 m->m_len = hdrlen; 19368 th = rack->r_ctl.fsb.th; 19369 /* Establish the len to send */ 19370 if (len > max_val) 19371 len = max_val; 19372 if ((tso) && (len + optlen > segsiz)) { 19373 uint32_t if_hw_tsomax; 19374 int32_t max_len; 19375 19376 /* extract TSO information */ 19377 if_hw_tsomax = tp->t_tsomax; 19378 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 19379 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 19380 /* 19381 * Check if we should limit by maximum payload 19382 * length: 19383 */ 19384 if (if_hw_tsomax != 0) { 19385 /* compute maximum TSO length */ 19386 max_len = (if_hw_tsomax - hdrlen - 19387 max_linkhdr); 19388 if (max_len <= 0) { 19389 goto failed; 19390 } else if (len > max_len) { 19391 len = max_len; 19392 } 19393 } 19394 if (len <= segsiz) { 19395 /* 19396 * In case there are too many small fragments don't 19397 * use TSO: 19398 */ 19399 tso = 0; 19400 } 19401 } else { 19402 tso = 0; 19403 } 19404 if ((tso == 0) && (len > segsiz)) 19405 len = segsiz; 19406 (void)tcp_get_usecs(tv); 19407 if ((len == 0) || 19408 (len <= MHLEN - hdrlen - max_linkhdr)) { 19409 goto failed; 19410 } 19411 sb_offset = tp->snd_max - tp->snd_una; 19412 th->th_seq = htonl(tp->snd_max); 19413 th->th_ack = htonl(tp->rcv_nxt); 19414 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 19415 if (th->th_win == 0) { 19416 tp->t_sndzerowin++; 19417 tp->t_flags |= TF_RXWIN0SENT; 19418 } else 19419 tp->t_flags &= ~TF_RXWIN0SENT; 19420 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 19421 KMOD_TCPSTAT_INC(tcps_sndpack); 19422 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 19423 #ifdef STATS 19424 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 19425 len); 19426 #endif 19427 if (rack->r_ctl.fsb.m == NULL) 19428 goto failed; 19429 19430 /* s_mb and s_soff are saved for rack_log_output */ 19431 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, 19432 &s_mb, &s_soff); 19433 if (len <= segsiz) { 19434 /* 19435 * Must have ran out of mbufs for the copy 19436 * shorten it to no longer need tso. Lets 19437 * not put on sendalot since we are low on 19438 * mbufs. 19439 */ 19440 tso = 0; 19441 } 19442 if (rack->r_ctl.fsb.rfo_apply_push && 19443 (len == rack->r_ctl.fsb.left_to_send)) { 19444 tcp_set_flags(th, flags | TH_PUSH); 19445 add_flag |= RACK_HAD_PUSH; 19446 } 19447 if ((m->m_next == NULL) || (len <= 0)){ 19448 goto failed; 19449 } 19450 if (udp) { 19451 if (rack->r_is_v6) 19452 ulen = hdrlen + len - sizeof(struct ip6_hdr); 19453 else 19454 ulen = hdrlen + len - sizeof(struct ip); 19455 udp->uh_ulen = htons(ulen); 19456 } 19457 m->m_pkthdr.rcvif = (struct ifnet *)0; 19458 if (TCPS_HAVERCVDSYN(tp->t_state) && 19459 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 19460 int ect = tcp_ecn_output_established(tp, &flags, len, false); 19461 if ((tp->t_state == TCPS_SYN_RECEIVED) && 19462 (tp->t_flags2 & TF2_ECN_SND_ECE)) 19463 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 19464 #ifdef INET6 19465 if (rack->r_is_v6) { 19466 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 19467 ip6->ip6_flow |= htonl(ect << 20); 19468 } 19469 else 19470 #endif 19471 { 19472 #ifdef INET 19473 ip->ip_tos &= ~IPTOS_ECN_MASK; 19474 ip->ip_tos |= ect; 19475 #endif 19476 } 19477 } 19478 tcp_set_flags(th, flags); 19479 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 19480 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 19481 if (to.to_flags & TOF_SIGNATURE) { 19482 /* 19483 * Calculate MD5 signature and put it into the place 19484 * determined before. 19485 * NOTE: since TCP options buffer doesn't point into 19486 * mbuf's data, calculate offset and use it. 19487 */ 19488 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 19489 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 19490 /* 19491 * Do not send segment if the calculation of MD5 19492 * digest has failed. 19493 */ 19494 goto failed; 19495 } 19496 } 19497 #endif 19498 #ifdef INET6 19499 if (rack->r_is_v6) { 19500 if (tp->t_port) { 19501 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 19502 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 19503 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 19504 th->th_sum = htons(0); 19505 UDPSTAT_INC(udps_opackets); 19506 } else { 19507 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 19508 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 19509 th->th_sum = in6_cksum_pseudo(ip6, 19510 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 19511 0); 19512 } 19513 } 19514 #endif 19515 #if defined(INET6) && defined(INET) 19516 else 19517 #endif 19518 #ifdef INET 19519 { 19520 if (tp->t_port) { 19521 m->m_pkthdr.csum_flags = CSUM_UDP; 19522 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 19523 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 19524 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 19525 th->th_sum = htons(0); 19526 UDPSTAT_INC(udps_opackets); 19527 } else { 19528 m->m_pkthdr.csum_flags = CSUM_TCP; 19529 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 19530 th->th_sum = in_pseudo(ip->ip_src.s_addr, 19531 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 19532 IPPROTO_TCP + len + optlen)); 19533 } 19534 /* IP version must be set here for ipv4/ipv6 checking later */ 19535 KASSERT(ip->ip_v == IPVERSION, 19536 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 19537 } 19538 #endif 19539 if (tso) { 19540 /* 19541 * Here we use segsiz since we have no added options besides 19542 * any standard timestamp options (no DSACKs or SACKS are sent 19543 * via either fast-path). 19544 */ 19545 KASSERT(len > segsiz, 19546 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 19547 m->m_pkthdr.csum_flags |= CSUM_TSO; 19548 m->m_pkthdr.tso_segsz = segsiz; 19549 } 19550 #ifdef INET6 19551 if (rack->r_is_v6) { 19552 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 19553 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 19554 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 19555 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 19556 else 19557 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 19558 } 19559 #endif 19560 #if defined(INET) && defined(INET6) 19561 else 19562 #endif 19563 #ifdef INET 19564 { 19565 ip->ip_len = htons(m->m_pkthdr.len); 19566 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 19567 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 19568 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 19569 if (tp->t_port == 0 || len < V_tcp_minmss) { 19570 ip->ip_off |= htons(IP_DF); 19571 } 19572 } else { 19573 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 19574 } 19575 } 19576 #endif 19577 if (tp->snd_cwnd > tp->snd_ssthresh) { 19578 /* Set we sent in CA */ 19579 rack->rc_gp_saw_ca = 1; 19580 } else { 19581 /* Set we sent in SS */ 19582 rack->rc_gp_saw_ss = 1; 19583 } 19584 /* Time to copy in our header */ 19585 cpto = mtod(m, uint8_t *); 19586 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 19587 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 19588 if (optlen) { 19589 bcopy(opt, th + 1, optlen); 19590 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 19591 } else { 19592 th->th_off = sizeof(struct tcphdr) >> 2; 19593 } 19594 if ((rack->r_ctl.crte != NULL) && 19595 tcp_bblogging_on(tp)) { 19596 rack_log_queue_level(tp, rack, len, tv, cts); 19597 } 19598 if (tcp_bblogging_on(rack->rc_tp)) { 19599 union tcp_log_stackspecific log; 19600 19601 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 19602 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 19603 if (rack->rack_no_prr) 19604 log.u_bbr.flex1 = 0; 19605 else 19606 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 19607 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 19608 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 19609 log.u_bbr.flex4 = max_val; 19610 /* Save off the early/late values */ 19611 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 19612 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 19613 log.u_bbr.bw_inuse = rack_get_bw(rack); 19614 log.u_bbr.cur_del_rate = rack->r_ctl.gp_bw; 19615 log.u_bbr.flex8 = 0; 19616 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 19617 log.u_bbr.flex7 = 44; 19618 log.u_bbr.pkts_out = tp->t_maxseg; 19619 log.u_bbr.timeStamp = cts; 19620 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 19621 log.u_bbr.flex5 = log.u_bbr.inflight; 19622 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 19623 log.u_bbr.delivered = 0; 19624 log.u_bbr.rttProp = 0; 19625 log.u_bbr.delRate = rack->r_must_retran; 19626 log.u_bbr.delRate <<= 1; 19627 log.u_bbr.pkt_epoch = __LINE__; 19628 /* For fast output no retrans so just inflight and how many mss we send */ 19629 log.u_bbr.flex5 = log.u_bbr.inflight; 19630 log.u_bbr.bbr_substate = (uint8_t)((len + segsiz - 1)/segsiz); 19631 lgb = tcp_log_event(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 19632 len, &log, false, NULL, __func__, __LINE__, tv); 19633 } else 19634 lgb = NULL; 19635 #ifdef INET6 19636 if (rack->r_is_v6) { 19637 error = ip6_output(m, inp->in6p_outputopts, 19638 &inp->inp_route6, 19639 0, NULL, NULL, inp); 19640 } 19641 #endif 19642 #if defined(INET) && defined(INET6) 19643 else 19644 #endif 19645 #ifdef INET 19646 { 19647 error = ip_output(m, NULL, 19648 &inp->inp_route, 19649 0, 0, inp); 19650 } 19651 #endif 19652 if (lgb) { 19653 lgb->tlb_errno = error; 19654 lgb = NULL; 19655 } 19656 if (error) { 19657 *send_err = error; 19658 m = NULL; 19659 goto failed; 19660 } else if (rack->rc_hw_nobuf) { 19661 rack->rc_hw_nobuf = 0; 19662 rack->r_ctl.rc_agg_delayed = 0; 19663 rack->r_early = 0; 19664 rack->r_late = 0; 19665 rack->r_ctl.rc_agg_early = 0; 19666 } 19667 if ((error == 0) && (rack->lt_bw_up == 0)) { 19668 /* Unlikely */ 19669 rack->r_ctl.lt_timemark = tcp_tv_to_lusectick(tv); 19670 rack->r_ctl.lt_seq = tp->snd_una; 19671 rack->lt_bw_up = 1; 19672 } 19673 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv), 19674 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls, segsiz); 19675 m = NULL; 19676 if (tp->snd_una == tp->snd_max) { 19677 rack->r_ctl.rc_tlp_rxt_last_time = cts; 19678 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 19679 tp->t_acktime = ticks; 19680 } 19681 counter_u64_add(rack_total_bytes, len); 19682 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls); 19683 19684 rack->forced_ack = 0; /* If we send something zap the FA flag */ 19685 tot_len += len; 19686 if ((tp->t_flags & TF_GPUTINPROG) == 0) 19687 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset); 19688 tp->snd_max += len; 19689 tp->snd_nxt = tp->snd_max; 19690 if (rack->rc_new_rnd_needed) { 19691 /* 19692 * Update the rnd to start ticking not 19693 * that from a time perspective all of 19694 * the preceding idle time is "in the round" 19695 */ 19696 rack->rc_new_rnd_needed = 0; 19697 rack->r_ctl.roundends = tp->snd_max; 19698 } 19699 { 19700 int idx; 19701 19702 idx = (len / segsiz) + 3; 19703 if (idx >= TCP_MSS_ACCT_ATIMER) 19704 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 19705 else 19706 counter_u64_add(rack_out_size[idx], 1); 19707 } 19708 if (len <= rack->r_ctl.fsb.left_to_send) 19709 rack->r_ctl.fsb.left_to_send -= len; 19710 else 19711 rack->r_ctl.fsb.left_to_send = 0; 19712 if (rack->r_ctl.fsb.left_to_send < segsiz) { 19713 rack->r_fast_output = 0; 19714 rack->r_ctl.fsb.left_to_send = 0; 19715 /* At the end of fast_output scale up the sb */ 19716 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd); 19717 rack_sndbuf_autoscale(rack); 19718 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd); 19719 } 19720 if (tp->t_rtttime == 0) { 19721 tp->t_rtttime = ticks; 19722 tp->t_rtseq = startseq; 19723 KMOD_TCPSTAT_INC(tcps_segstimed); 19724 } 19725 if ((rack->r_ctl.fsb.left_to_send >= segsiz) && 19726 (max_val > len) && 19727 (tso == 0)) { 19728 max_val -= len; 19729 len = segsiz; 19730 th = rack->r_ctl.fsb.th; 19731 #ifdef TCP_ACCOUNTING 19732 cnt_thru++; 19733 #endif 19734 goto again; 19735 } 19736 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 19737 counter_u64_add(rack_fto_send, 1); 19738 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz); 19739 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0); 19740 #ifdef TCP_ACCOUNTING 19741 crtsc = get_cyclecount(); 19742 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19743 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 19744 } 19745 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19746 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 19747 } 19748 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 19749 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz); 19750 } 19751 sched_unpin(); 19752 #endif 19753 return (0); 19754 failed: 19755 if (m) 19756 m_free(m); 19757 rack->r_fast_output = 0; 19758 return (-1); 19759 } 19760 19761 static inline void 19762 rack_setup_fast_output(struct tcpcb *tp, struct tcp_rack *rack, 19763 struct sockbuf *sb, 19764 int len, int orig_len, int segsiz, uint32_t pace_max_seg, 19765 bool hw_tls, 19766 uint16_t flags) 19767 { 19768 rack->r_fast_output = 1; 19769 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 19770 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 19771 rack->r_ctl.fsb.o_t_len = M_TRAILINGROOM(rack->r_ctl.fsb.m); 19772 rack->r_ctl.fsb.tcp_flags = flags; 19773 rack->r_ctl.fsb.left_to_send = orig_len - len; 19774 if (rack->r_ctl.fsb.left_to_send < pace_max_seg) { 19775 /* Less than a full sized pace, lets not */ 19776 rack->r_fast_output = 0; 19777 return; 19778 } else { 19779 /* Round down to the nearest pace_max_seg */ 19780 rack->r_ctl.fsb.left_to_send = rounddown(rack->r_ctl.fsb.left_to_send, pace_max_seg); 19781 } 19782 if (hw_tls) 19783 rack->r_ctl.fsb.hw_tls = 1; 19784 else 19785 rack->r_ctl.fsb.hw_tls = 0; 19786 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 19787 ("rack:%p left_to_send:%u sbavail:%u out:%u", 19788 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 19789 (tp->snd_max - tp->snd_una))); 19790 if (rack->r_ctl.fsb.left_to_send < segsiz) 19791 rack->r_fast_output = 0; 19792 else { 19793 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 19794 rack->r_ctl.fsb.rfo_apply_push = 1; 19795 else 19796 rack->r_ctl.fsb.rfo_apply_push = 0; 19797 } 19798 } 19799 19800 static uint32_t 19801 rack_get_hpts_pacing_min_for_bw(struct tcp_rack *rack, int32_t segsiz) 19802 { 19803 uint64_t min_time; 19804 uint32_t maxlen; 19805 19806 min_time = (uint64_t)get_hpts_min_sleep_time(); 19807 maxlen = (uint32_t)((rack->r_ctl.gp_bw * min_time) / (uint64_t)HPTS_USEC_IN_SEC); 19808 maxlen = roundup(maxlen, segsiz); 19809 return (maxlen); 19810 } 19811 19812 static struct rack_sendmap * 19813 rack_check_collapsed(struct tcp_rack *rack, uint32_t cts) 19814 { 19815 struct rack_sendmap *rsm = NULL; 19816 int thresh; 19817 19818 restart: 19819 rsm = tqhash_find(rack->r_ctl.tqh, rack->r_ctl.last_collapse_point); 19820 if ((rsm == NULL) || ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0)) { 19821 /* Nothing, strange turn off validity */ 19822 rack->r_collapse_point_valid = 0; 19823 return (NULL); 19824 } 19825 /* Can we send it yet? */ 19826 if (rsm->r_end > (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)) { 19827 /* 19828 * Receiver window has not grown enough for 19829 * the segment to be put on the wire. 19830 */ 19831 return (NULL); 19832 } 19833 if (rsm->r_flags & RACK_ACKED) { 19834 /* 19835 * It has been sacked, lets move to the 19836 * next one if possible. 19837 */ 19838 rack->r_ctl.last_collapse_point = rsm->r_end; 19839 /* Are we done? */ 19840 if (SEQ_GEQ(rack->r_ctl.last_collapse_point, 19841 rack->r_ctl.high_collapse_point)) { 19842 rack->r_collapse_point_valid = 0; 19843 return (NULL); 19844 } 19845 goto restart; 19846 } 19847 /* Now has it been long enough ? */ 19848 thresh = rack_calc_thresh_rack(rack, rack_grab_rtt(rack->rc_tp, rack), cts); 19849 if ((cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) > thresh) { 19850 rack_log_collapse(rack, rsm->r_start, 19851 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])), 19852 thresh, __LINE__, 6, rsm->r_flags, rsm); 19853 return (rsm); 19854 } 19855 /* Not enough time */ 19856 rack_log_collapse(rack, rsm->r_start, 19857 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])), 19858 thresh, __LINE__, 7, rsm->r_flags, rsm); 19859 return (NULL); 19860 } 19861 19862 static inline void 19863 rack_validate_sizes(struct tcp_rack *rack, int32_t *len, int32_t segsiz, uint32_t pace_max_seg) 19864 { 19865 if ((rack->full_size_rxt == 0) && 19866 (rack->shape_rxt_to_pacing_min == 0) && 19867 (*len >= segsiz)) { 19868 *len = segsiz; 19869 } else if (rack->shape_rxt_to_pacing_min && 19870 rack->gp_ready) { 19871 /* We use pacing min as shaping len req */ 19872 uint32_t maxlen; 19873 19874 maxlen = rack_get_hpts_pacing_min_for_bw(rack, segsiz); 19875 if (*len > maxlen) 19876 *len = maxlen; 19877 } else { 19878 /* 19879 * The else is full_size_rxt is on so send it all 19880 * note we do need to check this for exceeding 19881 * our max segment size due to the fact that 19882 * we do sometimes merge chunks together i.e. 19883 * we cannot just assume that we will never have 19884 * a chunk greater than pace_max_seg 19885 */ 19886 if (*len > pace_max_seg) 19887 *len = pace_max_seg; 19888 } 19889 } 19890 19891 static int 19892 rack_output(struct tcpcb *tp) 19893 { 19894 struct socket *so; 19895 uint32_t recwin; 19896 uint32_t sb_offset, s_moff = 0; 19897 int32_t len, error = 0; 19898 uint16_t flags; 19899 struct mbuf *m, *s_mb = NULL; 19900 struct mbuf *mb; 19901 uint32_t if_hw_tsomaxsegcount = 0; 19902 uint32_t if_hw_tsomaxsegsize; 19903 int32_t segsiz, minseg; 19904 long tot_len_this_send = 0; 19905 #ifdef INET 19906 struct ip *ip = NULL; 19907 #endif 19908 struct udphdr *udp = NULL; 19909 struct tcp_rack *rack; 19910 struct tcphdr *th; 19911 uint8_t pass = 0; 19912 uint8_t mark = 0; 19913 uint8_t check_done = 0; 19914 uint8_t wanted_cookie = 0; 19915 u_char opt[TCP_MAXOLEN]; 19916 unsigned ipoptlen, optlen, hdrlen, ulen=0; 19917 uint32_t rack_seq; 19918 19919 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 19920 unsigned ipsec_optlen = 0; 19921 19922 #endif 19923 int32_t idle, sendalot; 19924 int32_t sub_from_prr = 0; 19925 volatile int32_t sack_rxmit; 19926 struct rack_sendmap *rsm = NULL; 19927 int32_t tso, mtu; 19928 struct tcpopt to; 19929 int32_t slot = 0; 19930 int32_t sup_rack = 0; 19931 uint32_t cts, ms_cts, delayed, early; 19932 uint16_t add_flag = RACK_SENT_SP; 19933 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */ 19934 uint8_t doing_tlp = 0; 19935 uint32_t cwnd_to_use, pace_max_seg; 19936 int32_t do_a_prefetch = 0; 19937 int32_t prefetch_rsm = 0; 19938 int32_t orig_len = 0; 19939 struct timeval tv; 19940 int32_t prefetch_so_done = 0; 19941 struct tcp_log_buffer *lgb; 19942 struct inpcb *inp = tptoinpcb(tp); 19943 struct sockbuf *sb; 19944 uint64_t ts_val = 0; 19945 #ifdef TCP_ACCOUNTING 19946 uint64_t crtsc; 19947 #endif 19948 #ifdef INET6 19949 struct ip6_hdr *ip6 = NULL; 19950 int32_t isipv6; 19951 #endif 19952 bool hpts_calling, hw_tls = false; 19953 19954 NET_EPOCH_ASSERT(); 19955 INP_WLOCK_ASSERT(inp); 19956 19957 /* setup and take the cache hits here */ 19958 rack = (struct tcp_rack *)tp->t_fb_ptr; 19959 #ifdef TCP_ACCOUNTING 19960 sched_pin(); 19961 ts_val = get_cyclecount(); 19962 #endif 19963 hpts_calling = !!(tp->t_flags2 & TF2_HPTS_CALLS); 19964 tp->t_flags2 &= ~TF2_HPTS_CALLS; 19965 #ifdef TCP_OFFLOAD 19966 if (tp->t_flags & TF_TOE) { 19967 #ifdef TCP_ACCOUNTING 19968 sched_unpin(); 19969 #endif 19970 return (tcp_offload_output(tp)); 19971 } 19972 #endif 19973 if (rack->rack_deferred_inited == 0) { 19974 /* 19975 * If we are the connecting socket we will 19976 * hit rack_init() when no sequence numbers 19977 * are setup. This makes it so we must defer 19978 * some initialization. Call that now. 19979 */ 19980 rack_deferred_init(tp, rack); 19981 } 19982 /* 19983 * For TFO connections in SYN_RECEIVED, only allow the initial 19984 * SYN|ACK and those sent by the retransmit timer. 19985 */ 19986 if (IS_FASTOPEN(tp->t_flags) && 19987 (tp->t_state == TCPS_SYN_RECEIVED) && 19988 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ 19989 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */ 19990 #ifdef TCP_ACCOUNTING 19991 sched_unpin(); 19992 #endif 19993 return (0); 19994 } 19995 #ifdef INET6 19996 if (rack->r_state) { 19997 /* Use the cache line loaded if possible */ 19998 isipv6 = rack->r_is_v6; 19999 } else { 20000 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0; 20001 } 20002 #endif 20003 early = 0; 20004 cts = tcp_get_usecs(&tv); 20005 ms_cts = tcp_tv_to_mssectick(&tv); 20006 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && 20007 tcp_in_hpts(rack->rc_tp)) { 20008 /* 20009 * We are on the hpts for some timer but not hptsi output. 20010 * Remove from the hpts unconditionally. 20011 */ 20012 rack_timer_cancel(tp, rack, cts, __LINE__); 20013 } 20014 /* Are we pacing and late? */ 20015 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 20016 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) { 20017 /* We are delayed */ 20018 delayed = cts - rack->r_ctl.rc_last_output_to; 20019 } else { 20020 delayed = 0; 20021 } 20022 /* Do the timers, which may override the pacer */ 20023 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 20024 int retval; 20025 20026 retval = rack_process_timers(tp, rack, cts, hpts_calling, 20027 &doing_tlp); 20028 if (retval != 0) { 20029 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); 20030 #ifdef TCP_ACCOUNTING 20031 sched_unpin(); 20032 #endif 20033 /* 20034 * If timers want tcp_drop(), then pass error out, 20035 * otherwise suppress it. 20036 */ 20037 return (retval < 0 ? retval : 0); 20038 } 20039 } 20040 if (rack->rc_in_persist) { 20041 if (tcp_in_hpts(rack->rc_tp) == 0) { 20042 /* Timer is not running */ 20043 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 20044 } 20045 #ifdef TCP_ACCOUNTING 20046 sched_unpin(); 20047 #endif 20048 return (0); 20049 } 20050 if ((rack->rc_ack_required == 1) && 20051 (rack->r_timer_override == 0)){ 20052 /* A timeout occurred and no ack has arrived */ 20053 if (tcp_in_hpts(rack->rc_tp) == 0) { 20054 /* Timer is not running */ 20055 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 20056 } 20057 #ifdef TCP_ACCOUNTING 20058 sched_unpin(); 20059 #endif 20060 return (0); 20061 } 20062 if ((rack->r_timer_override) || 20063 (rack->rc_ack_can_sendout_data) || 20064 (delayed) || 20065 (tp->t_state < TCPS_ESTABLISHED)) { 20066 rack->rc_ack_can_sendout_data = 0; 20067 if (tcp_in_hpts(rack->rc_tp)) 20068 tcp_hpts_remove(rack->rc_tp); 20069 } else if (tcp_in_hpts(rack->rc_tp)) { 20070 /* 20071 * On the hpts you can't pass even if ACKNOW is on, we will 20072 * when the hpts fires. 20073 */ 20074 #ifdef TCP_ACCOUNTING 20075 crtsc = get_cyclecount(); 20076 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 20077 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val); 20078 } 20079 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 20080 tp->tcp_cnt_counters[SND_BLOCKED]++; 20081 } 20082 sched_unpin(); 20083 #endif 20084 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); 20085 return (0); 20086 } 20087 /* Finish out both pacing early and late accounting */ 20088 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 20089 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 20090 early = rack->r_ctl.rc_last_output_to - cts; 20091 } else 20092 early = 0; 20093 if (delayed) { 20094 rack->r_ctl.rc_agg_delayed += delayed; 20095 rack->r_late = 1; 20096 } else if (early) { 20097 rack->r_ctl.rc_agg_early += early; 20098 rack->r_early = 1; 20099 } 20100 /* Now that early/late accounting is done turn off the flag */ 20101 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 20102 rack->r_wanted_output = 0; 20103 rack->r_timer_override = 0; 20104 if ((tp->t_state != rack->r_state) && 20105 TCPS_HAVEESTABLISHED(tp->t_state)) { 20106 rack_set_state(tp, rack); 20107 } 20108 if ((rack->r_fast_output) && 20109 (doing_tlp == 0) && 20110 (tp->rcv_numsacks == 0)) { 20111 int ret; 20112 20113 error = 0; 20114 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 20115 if (ret >= 0) 20116 return(ret); 20117 else if (error) { 20118 inp = rack->rc_inp; 20119 so = inp->inp_socket; 20120 sb = &so->so_snd; 20121 goto nomore; 20122 } 20123 } 20124 inp = rack->rc_inp; 20125 /* 20126 * For TFO connections in SYN_SENT or SYN_RECEIVED, 20127 * only allow the initial SYN or SYN|ACK and those sent 20128 * by the retransmit timer. 20129 */ 20130 if (IS_FASTOPEN(tp->t_flags) && 20131 ((tp->t_state == TCPS_SYN_RECEIVED) || 20132 (tp->t_state == TCPS_SYN_SENT)) && 20133 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ 20134 (tp->t_rxtshift == 0)) { /* not a retransmit */ 20135 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 20136 so = inp->inp_socket; 20137 sb = &so->so_snd; 20138 goto just_return_nolock; 20139 } 20140 /* 20141 * Determine length of data that should be transmitted, and flags 20142 * that will be used. If there is some data or critical controls 20143 * (SYN, RST) to send, then transmit; otherwise, investigate 20144 * further. 20145 */ 20146 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); 20147 if (tp->t_idle_reduce) { 20148 if (idle && (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 20149 rack_cc_after_idle(rack, tp); 20150 } 20151 tp->t_flags &= ~TF_LASTIDLE; 20152 if (idle) { 20153 if (tp->t_flags & TF_MORETOCOME) { 20154 tp->t_flags |= TF_LASTIDLE; 20155 idle = 0; 20156 } 20157 } 20158 if ((tp->snd_una == tp->snd_max) && 20159 rack->r_ctl.rc_went_idle_time && 20160 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) { 20161 idle = cts - rack->r_ctl.rc_went_idle_time; 20162 if (idle > rack_min_probertt_hold) { 20163 /* Count as a probe rtt */ 20164 if (rack->in_probe_rtt == 0) { 20165 rack->r_ctl.rc_lower_rtt_us_cts = cts; 20166 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 20167 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 20168 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 20169 } else { 20170 rack_exit_probertt(rack, cts); 20171 } 20172 } 20173 idle = 0; 20174 } 20175 if (rack_use_fsb && 20176 (rack->r_ctl.fsb.tcp_ip_hdr) && 20177 (rack->r_fsb_inited == 0) && 20178 (rack->r_state != TCPS_CLOSED)) 20179 rack_init_fsb_block(tp, rack, tcp_outflags[tp->t_state]); 20180 again: 20181 /* 20182 * If we've recently taken a timeout, snd_max will be greater than 20183 * snd_nxt. There may be SACK information that allows us to avoid 20184 * resending already delivered data. Adjust snd_nxt accordingly. 20185 */ 20186 sendalot = 0; 20187 cts = tcp_get_usecs(&tv); 20188 ms_cts = tcp_tv_to_mssectick(&tv); 20189 tso = 0; 20190 mtu = 0; 20191 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 20192 minseg = segsiz; 20193 if (rack->r_ctl.rc_pace_max_segs == 0) 20194 pace_max_seg = rack->rc_user_set_max_segs * segsiz; 20195 else 20196 pace_max_seg = rack->r_ctl.rc_pace_max_segs; 20197 sb_offset = tp->snd_max - tp->snd_una; 20198 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 20199 flags = tcp_outflags[tp->t_state]; 20200 while (rack->rc_free_cnt < rack_free_cache) { 20201 rsm = rack_alloc(rack); 20202 if (rsm == NULL) { 20203 if (hpts_calling) 20204 /* Retry in a ms */ 20205 slot = (1 * HPTS_USEC_IN_MSEC); 20206 so = inp->inp_socket; 20207 sb = &so->so_snd; 20208 goto just_return_nolock; 20209 } 20210 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); 20211 rack->rc_free_cnt++; 20212 rsm = NULL; 20213 } 20214 sack_rxmit = 0; 20215 len = 0; 20216 rsm = NULL; 20217 if (flags & TH_RST) { 20218 SOCKBUF_LOCK(&inp->inp_socket->so_snd); 20219 so = inp->inp_socket; 20220 sb = &so->so_snd; 20221 goto send; 20222 } 20223 if (rack->r_ctl.rc_resend) { 20224 /* Retransmit timer */ 20225 rsm = rack->r_ctl.rc_resend; 20226 rack->r_ctl.rc_resend = NULL; 20227 len = rsm->r_end - rsm->r_start; 20228 sack_rxmit = 1; 20229 sendalot = 0; 20230 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 20231 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 20232 __func__, __LINE__, 20233 rsm->r_start, tp->snd_una, tp, rack, rsm)); 20234 sb_offset = rsm->r_start - tp->snd_una; 20235 rack_validate_sizes(rack, &len, segsiz, pace_max_seg); 20236 } else if (rack->r_collapse_point_valid && 20237 ((rsm = rack_check_collapsed(rack, cts)) != NULL)) { 20238 /* 20239 * If an RSM is returned then enough time has passed 20240 * for us to retransmit it. Move up the collapse point, 20241 * since this rsm has its chance to retransmit now. 20242 */ 20243 tcp_trace_point(rack->rc_tp, TCP_TP_COLLAPSED_RXT); 20244 rack->r_ctl.last_collapse_point = rsm->r_end; 20245 /* Are we done? */ 20246 if (SEQ_GEQ(rack->r_ctl.last_collapse_point, 20247 rack->r_ctl.high_collapse_point)) 20248 rack->r_collapse_point_valid = 0; 20249 sack_rxmit = 1; 20250 /* We are not doing a TLP */ 20251 doing_tlp = 0; 20252 len = rsm->r_end - rsm->r_start; 20253 sb_offset = rsm->r_start - tp->snd_una; 20254 sendalot = 0; 20255 rack_validate_sizes(rack, &len, segsiz, pace_max_seg); 20256 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) { 20257 /* We have a retransmit that takes precedence */ 20258 if ((!IN_FASTRECOVERY(tp->t_flags)) && 20259 ((rsm->r_flags & RACK_MUST_RXT) == 0) && 20260 ((tp->t_flags & TF_WASFRECOVERY) == 0)) { 20261 /* Enter recovery if not induced by a time-out */ 20262 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__); 20263 } 20264 #ifdef INVARIANTS 20265 if (SEQ_LT(rsm->r_start, tp->snd_una)) { 20266 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", 20267 tp, rack, rsm, rsm->r_start, tp->snd_una); 20268 } 20269 #endif 20270 len = rsm->r_end - rsm->r_start; 20271 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 20272 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 20273 __func__, __LINE__, 20274 rsm->r_start, tp->snd_una, tp, rack, rsm)); 20275 sb_offset = rsm->r_start - tp->snd_una; 20276 sendalot = 0; 20277 rack_validate_sizes(rack, &len, segsiz, pace_max_seg); 20278 if (len > 0) { 20279 sack_rxmit = 1; 20280 KMOD_TCPSTAT_INC(tcps_sack_rexmits); 20281 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, 20282 min(len, segsiz)); 20283 } 20284 } else if (rack->r_ctl.rc_tlpsend) { 20285 /* Tail loss probe */ 20286 long cwin; 20287 long tlen; 20288 20289 /* 20290 * Check if we can do a TLP with a RACK'd packet 20291 * this can happen if we are not doing the rack 20292 * cheat and we skipped to a TLP and it 20293 * went off. 20294 */ 20295 rsm = rack->r_ctl.rc_tlpsend; 20296 /* We are doing a TLP make sure the flag is preent */ 20297 rsm->r_flags |= RACK_TLP; 20298 rack->r_ctl.rc_tlpsend = NULL; 20299 sack_rxmit = 1; 20300 tlen = rsm->r_end - rsm->r_start; 20301 if (tlen > segsiz) 20302 tlen = segsiz; 20303 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 20304 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 20305 __func__, __LINE__, 20306 rsm->r_start, tp->snd_una, tp, rack, rsm)); 20307 sb_offset = rsm->r_start - tp->snd_una; 20308 cwin = min(tp->snd_wnd, tlen); 20309 len = cwin; 20310 } 20311 if (rack->r_must_retran && 20312 (doing_tlp == 0) && 20313 (SEQ_GT(tp->snd_max, tp->snd_una)) && 20314 (rsm == NULL)) { 20315 /* 20316 * There are two different ways that we 20317 * can get into this block: 20318 * a) This is a non-sack connection, we had a time-out 20319 * and thus r_must_retran was set and everything 20320 * left outstanding as been marked for retransmit. 20321 * b) The MTU of the path shrank, so that everything 20322 * was marked to be retransmitted with the smaller 20323 * mtu and r_must_retran was set. 20324 * 20325 * This means that we expect the sendmap (outstanding) 20326 * to all be marked must. We can use the tmap to 20327 * look at them. 20328 * 20329 */ 20330 int sendwin, flight; 20331 20332 sendwin = min(tp->snd_wnd, tp->snd_cwnd); 20333 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto); 20334 if (flight >= sendwin) { 20335 /* 20336 * We can't send yet. 20337 */ 20338 so = inp->inp_socket; 20339 sb = &so->so_snd; 20340 goto just_return_nolock; 20341 } 20342 /* 20343 * This is the case a/b mentioned above. All 20344 * outstanding/not-acked should be marked. 20345 * We can use the tmap to find them. 20346 */ 20347 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 20348 if (rsm == NULL) { 20349 /* TSNH */ 20350 rack->r_must_retran = 0; 20351 rack->r_ctl.rc_out_at_rto = 0; 20352 so = inp->inp_socket; 20353 sb = &so->so_snd; 20354 goto just_return_nolock; 20355 } 20356 if ((rsm->r_flags & RACK_MUST_RXT) == 0) { 20357 /* 20358 * The first one does not have the flag, did we collapse 20359 * further up in our list? 20360 */ 20361 rack->r_must_retran = 0; 20362 rack->r_ctl.rc_out_at_rto = 0; 20363 rsm = NULL; 20364 sack_rxmit = 0; 20365 } else { 20366 sack_rxmit = 1; 20367 len = rsm->r_end - rsm->r_start; 20368 sb_offset = rsm->r_start - tp->snd_una; 20369 sendalot = 0; 20370 if ((rack->full_size_rxt == 0) && 20371 (rack->shape_rxt_to_pacing_min == 0) && 20372 (len >= segsiz)) 20373 len = segsiz; 20374 else if (rack->shape_rxt_to_pacing_min && 20375 rack->gp_ready) { 20376 /* We use pacing min as shaping len req */ 20377 uint32_t maxlen; 20378 20379 maxlen = rack_get_hpts_pacing_min_for_bw(rack, segsiz); 20380 if (len > maxlen) 20381 len = maxlen; 20382 } 20383 /* 20384 * Delay removing the flag RACK_MUST_RXT so 20385 * that the fastpath for retransmit will 20386 * work with this rsm. 20387 */ 20388 } 20389 } 20390 /* 20391 * Enforce a connection sendmap count limit if set 20392 * as long as we are not retransmiting. 20393 */ 20394 if ((rsm == NULL) && 20395 (rack->do_detection == 0) && 20396 (V_tcp_map_entries_limit > 0) && 20397 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 20398 counter_u64_add(rack_to_alloc_limited, 1); 20399 if (!rack->alloc_limit_reported) { 20400 rack->alloc_limit_reported = 1; 20401 counter_u64_add(rack_alloc_limited_conns, 1); 20402 } 20403 so = inp->inp_socket; 20404 sb = &so->so_snd; 20405 goto just_return_nolock; 20406 } 20407 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { 20408 /* we are retransmitting the fin */ 20409 len--; 20410 if (len) { 20411 /* 20412 * When retransmitting data do *not* include the 20413 * FIN. This could happen from a TLP probe. 20414 */ 20415 flags &= ~TH_FIN; 20416 } 20417 } 20418 if (rsm && rack->r_fsb_inited && 20419 rack_use_rsm_rfo && 20420 ((rsm->r_flags & RACK_HAS_FIN) == 0)) { 20421 int ret; 20422 20423 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp); 20424 if (ret == 0) 20425 return (0); 20426 } 20427 so = inp->inp_socket; 20428 sb = &so->so_snd; 20429 if (do_a_prefetch == 0) { 20430 kern_prefetch(sb, &do_a_prefetch); 20431 do_a_prefetch = 1; 20432 } 20433 #ifdef NETFLIX_SHARED_CWND 20434 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && 20435 rack->rack_enable_scwnd) { 20436 /* We are doing cwnd sharing */ 20437 if (rack->gp_ready && 20438 (rack->rack_attempted_scwnd == 0) && 20439 (rack->r_ctl.rc_scw == NULL) && 20440 tp->t_lib) { 20441 /* The pcbid is in, lets make an attempt */ 20442 counter_u64_add(rack_try_scwnd, 1); 20443 rack->rack_attempted_scwnd = 1; 20444 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, 20445 &rack->r_ctl.rc_scw_index, 20446 segsiz); 20447 } 20448 if (rack->r_ctl.rc_scw && 20449 (rack->rack_scwnd_is_idle == 1) && 20450 sbavail(&so->so_snd)) { 20451 /* we are no longer out of data */ 20452 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 20453 rack->rack_scwnd_is_idle = 0; 20454 } 20455 if (rack->r_ctl.rc_scw) { 20456 /* First lets update and get the cwnd */ 20457 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, 20458 rack->r_ctl.rc_scw_index, 20459 tp->snd_cwnd, tp->snd_wnd, segsiz); 20460 } 20461 } 20462 #endif 20463 /* 20464 * Get standard flags, and add SYN or FIN if requested by 'hidden' 20465 * state flags. 20466 */ 20467 if (tp->t_flags & TF_NEEDFIN) 20468 flags |= TH_FIN; 20469 if (tp->t_flags & TF_NEEDSYN) 20470 flags |= TH_SYN; 20471 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { 20472 void *end_rsm; 20473 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 20474 if (end_rsm) 20475 kern_prefetch(end_rsm, &prefetch_rsm); 20476 prefetch_rsm = 1; 20477 } 20478 SOCKBUF_LOCK(sb); 20479 /* 20480 * If snd_nxt == snd_max and we have transmitted a FIN, the 20481 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a 20482 * negative length. This can also occur when TCP opens up its 20483 * congestion window while receiving additional duplicate acks after 20484 * fast-retransmit because TCP will reset snd_nxt to snd_max after 20485 * the fast-retransmit. 20486 * 20487 * In the normal retransmit-FIN-only case, however, snd_nxt will be 20488 * set to snd_una, the sb_offset will be 0, and the length may wind 20489 * up 0. 20490 * 20491 * If sack_rxmit is true we are retransmitting from the scoreboard 20492 * in which case len is already set. 20493 */ 20494 if ((sack_rxmit == 0) && 20495 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) { 20496 uint32_t avail; 20497 20498 avail = sbavail(sb); 20499 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) 20500 sb_offset = tp->snd_nxt - tp->snd_una; 20501 else 20502 sb_offset = 0; 20503 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { 20504 if (rack->r_ctl.rc_tlp_new_data) { 20505 /* TLP is forcing out new data */ 20506 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { 20507 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); 20508 } 20509 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) { 20510 if (tp->snd_wnd > sb_offset) 20511 len = tp->snd_wnd - sb_offset; 20512 else 20513 len = 0; 20514 } else { 20515 len = rack->r_ctl.rc_tlp_new_data; 20516 } 20517 rack->r_ctl.rc_tlp_new_data = 0; 20518 } else { 20519 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); 20520 } 20521 if ((rack->r_ctl.crte == NULL) && 20522 IN_FASTRECOVERY(tp->t_flags) && 20523 (rack->full_size_rxt == 0) && 20524 (rack->shape_rxt_to_pacing_min == 0) && 20525 (len > segsiz)) { 20526 /* 20527 * For prr=off, we need to send only 1 MSS 20528 * at a time. We do this because another sack could 20529 * be arriving that causes us to send retransmits and 20530 * we don't want to be on a long pace due to a larger send 20531 * that keeps us from sending out the retransmit. 20532 */ 20533 len = segsiz; 20534 } else if (rack->shape_rxt_to_pacing_min && 20535 rack->gp_ready) { 20536 /* We use pacing min as shaping len req */ 20537 uint32_t maxlen; 20538 20539 maxlen = rack_get_hpts_pacing_min_for_bw(rack, segsiz); 20540 if (len > maxlen) 20541 len = maxlen; 20542 }/* The else is full_size_rxt is on so send it all */ 20543 } else { 20544 uint32_t outstanding; 20545 /* 20546 * We are inside of a Fast recovery episode, this 20547 * is caused by a SACK or 3 dup acks. At this point 20548 * we have sent all the retransmissions and we rely 20549 * on PRR to dictate what we will send in the form of 20550 * new data. 20551 */ 20552 20553 outstanding = tp->snd_max - tp->snd_una; 20554 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { 20555 if (tp->snd_wnd > outstanding) { 20556 len = tp->snd_wnd - outstanding; 20557 /* Check to see if we have the data */ 20558 if ((sb_offset + len) > avail) { 20559 /* It does not all fit */ 20560 if (avail > sb_offset) 20561 len = avail - sb_offset; 20562 else 20563 len = 0; 20564 } 20565 } else { 20566 len = 0; 20567 } 20568 } else if (avail > sb_offset) { 20569 len = avail - sb_offset; 20570 } else { 20571 len = 0; 20572 } 20573 if (len > 0) { 20574 if (len > rack->r_ctl.rc_prr_sndcnt) { 20575 len = rack->r_ctl.rc_prr_sndcnt; 20576 } 20577 if (len > 0) { 20578 sub_from_prr = 1; 20579 } 20580 } 20581 if (len > segsiz) { 20582 /* 20583 * We should never send more than a MSS when 20584 * retransmitting or sending new data in prr 20585 * mode unless the override flag is on. Most 20586 * likely the PRR algorithm is not going to 20587 * let us send a lot as well :-) 20588 */ 20589 if (rack->r_ctl.rc_prr_sendalot == 0) { 20590 len = segsiz; 20591 } 20592 } else if (len < segsiz) { 20593 /* 20594 * Do we send any? The idea here is if the 20595 * send empty's the socket buffer we want to 20596 * do it. However if not then lets just wait 20597 * for our prr_sndcnt to get bigger. 20598 */ 20599 long leftinsb; 20600 20601 leftinsb = sbavail(sb) - sb_offset; 20602 if (leftinsb > len) { 20603 /* This send does not empty the sb */ 20604 len = 0; 20605 } 20606 } 20607 } 20608 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { 20609 /* 20610 * If you have not established 20611 * and are not doing FAST OPEN 20612 * no data please. 20613 */ 20614 if ((sack_rxmit == 0) && 20615 (!IS_FASTOPEN(tp->t_flags))){ 20616 len = 0; 20617 sb_offset = 0; 20618 } 20619 } 20620 if (prefetch_so_done == 0) { 20621 kern_prefetch(so, &prefetch_so_done); 20622 prefetch_so_done = 1; 20623 } 20624 /* 20625 * Lop off SYN bit if it has already been sent. However, if this is 20626 * SYN-SENT state and if segment contains data and if we don't know 20627 * that foreign host supports TAO, suppress sending segment. 20628 */ 20629 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && 20630 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { 20631 /* 20632 * When sending additional segments following a TFO SYN|ACK, 20633 * do not include the SYN bit. 20634 */ 20635 if (IS_FASTOPEN(tp->t_flags) && 20636 (tp->t_state == TCPS_SYN_RECEIVED)) 20637 flags &= ~TH_SYN; 20638 } 20639 /* 20640 * Be careful not to send data and/or FIN on SYN segments. This 20641 * measure is needed to prevent interoperability problems with not 20642 * fully conformant TCP implementations. 20643 */ 20644 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { 20645 len = 0; 20646 flags &= ~TH_FIN; 20647 } 20648 /* 20649 * On TFO sockets, ensure no data is sent in the following cases: 20650 * 20651 * - When retransmitting SYN|ACK on a passively-created socket 20652 * 20653 * - When retransmitting SYN on an actively created socket 20654 * 20655 * - When sending a zero-length cookie (cookie request) on an 20656 * actively created socket 20657 * 20658 * - When the socket is in the CLOSED state (RST is being sent) 20659 */ 20660 if (IS_FASTOPEN(tp->t_flags) && 20661 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || 20662 ((tp->t_state == TCPS_SYN_SENT) && 20663 (tp->t_tfo_client_cookie_len == 0)) || 20664 (flags & TH_RST))) { 20665 sack_rxmit = 0; 20666 len = 0; 20667 } 20668 /* Without fast-open there should never be data sent on a SYN */ 20669 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { 20670 tp->snd_nxt = tp->iss; 20671 len = 0; 20672 } 20673 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) { 20674 /* We only send 1 MSS if we have a DSACK block */ 20675 add_flag |= RACK_SENT_W_DSACK; 20676 len = segsiz; 20677 } 20678 orig_len = len; 20679 if (len <= 0) { 20680 /* 20681 * If FIN has been sent but not acked, but we haven't been 20682 * called to retransmit, len will be < 0. Otherwise, window 20683 * shrank after we sent into it. If window shrank to 0, 20684 * cancel pending retransmit, pull snd_nxt back to (closed) 20685 * window, and set the persist timer if it isn't already 20686 * going. If the window didn't close completely, just wait 20687 * for an ACK. 20688 * 20689 * We also do a general check here to ensure that we will 20690 * set the persist timer when we have data to send, but a 20691 * 0-byte window. This makes sure the persist timer is set 20692 * even if the packet hits one of the "goto send" lines 20693 * below. 20694 */ 20695 len = 0; 20696 if ((tp->snd_wnd == 0) && 20697 (TCPS_HAVEESTABLISHED(tp->t_state)) && 20698 (tp->snd_una == tp->snd_max) && 20699 (sb_offset < (int)sbavail(sb))) { 20700 rack_enter_persist(tp, rack, cts, tp->snd_una); 20701 } 20702 } else if ((rsm == NULL) && 20703 (doing_tlp == 0) && 20704 (len < pace_max_seg)) { 20705 /* 20706 * We are not sending a maximum sized segment for 20707 * some reason. Should we not send anything (think 20708 * sws or persists)? 20709 */ 20710 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 20711 (TCPS_HAVEESTABLISHED(tp->t_state)) && 20712 (len < minseg) && 20713 (len < (int)(sbavail(sb) - sb_offset))) { 20714 /* 20715 * Here the rwnd is less than 20716 * the minimum pacing size, this is not a retransmit, 20717 * we are established and 20718 * the send is not the last in the socket buffer 20719 * we send nothing, and we may enter persists 20720 * if nothing is outstanding. 20721 */ 20722 len = 0; 20723 if (tp->snd_max == tp->snd_una) { 20724 /* 20725 * Nothing out we can 20726 * go into persists. 20727 */ 20728 rack_enter_persist(tp, rack, cts, tp->snd_una); 20729 } 20730 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && 20731 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 20732 (len < (int)(sbavail(sb) - sb_offset)) && 20733 (len < minseg)) { 20734 /* 20735 * Here we are not retransmitting, and 20736 * the cwnd is not so small that we could 20737 * not send at least a min size (rxt timer 20738 * not having gone off), We have 2 segments or 20739 * more already in flight, its not the tail end 20740 * of the socket buffer and the cwnd is blocking 20741 * us from sending out a minimum pacing segment size. 20742 * Lets not send anything. 20743 */ 20744 len = 0; 20745 } else if (((tp->snd_wnd - ctf_outstanding(tp)) < 20746 min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 20747 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 20748 (len < (int)(sbavail(sb) - sb_offset)) && 20749 (TCPS_HAVEESTABLISHED(tp->t_state))) { 20750 /* 20751 * Here we have a send window but we have 20752 * filled it up and we can't send another pacing segment. 20753 * We also have in flight more than 2 segments 20754 * and we are not completing the sb i.e. we allow 20755 * the last bytes of the sb to go out even if 20756 * its not a full pacing segment. 20757 */ 20758 len = 0; 20759 } else if ((rack->r_ctl.crte != NULL) && 20760 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) && 20761 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) && 20762 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) && 20763 (len < (int)(sbavail(sb) - sb_offset))) { 20764 /* 20765 * Here we are doing hardware pacing, this is not a TLP, 20766 * we are not sending a pace max segment size, there is rwnd 20767 * room to send at least N pace_max_seg, the cwnd is greater 20768 * than or equal to a full pacing segments plus 4 mss and we have 2 or 20769 * more segments in flight and its not the tail of the socket buffer. 20770 * 20771 * We don't want to send instead we need to get more ack's in to 20772 * allow us to send a full pacing segment. Normally, if we are pacing 20773 * about the right speed, we should have finished our pacing 20774 * send as most of the acks have come back if we are at the 20775 * right rate. This is a bit fuzzy since return path delay 20776 * can delay the acks, which is why we want to make sure we 20777 * have cwnd space to have a bit more than a max pace segments in flight. 20778 * 20779 * If we have not gotten our acks back we are pacing at too high a 20780 * rate delaying will not hurt and will bring our GP estimate down by 20781 * injecting the delay. If we don't do this we will send 20782 * 2 MSS out in response to the acks being clocked in which 20783 * defeats the point of hw-pacing (i.e. to help us get 20784 * larger TSO's out). 20785 */ 20786 len = 0; 20787 } 20788 20789 } 20790 /* len will be >= 0 after this point. */ 20791 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 20792 rack_sndbuf_autoscale(rack); 20793 /* 20794 * Decide if we can use TCP Segmentation Offloading (if supported by 20795 * hardware). 20796 * 20797 * TSO may only be used if we are in a pure bulk sending state. The 20798 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP 20799 * options prevent using TSO. With TSO the TCP header is the same 20800 * (except for the sequence number) for all generated packets. This 20801 * makes it impossible to transmit any options which vary per 20802 * generated segment or packet. 20803 * 20804 * IPv4 handling has a clear separation of ip options and ip header 20805 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does 20806 * the right thing below to provide length of just ip options and thus 20807 * checking for ipoptlen is enough to decide if ip options are present. 20808 */ 20809 ipoptlen = 0; 20810 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 20811 /* 20812 * Pre-calculate here as we save another lookup into the darknesses 20813 * of IPsec that way and can actually decide if TSO is ok. 20814 */ 20815 #ifdef INET6 20816 if (isipv6 && IPSEC_ENABLED(ipv6)) 20817 ipsec_optlen = IPSEC_HDRSIZE(ipv6, inp); 20818 #ifdef INET 20819 else 20820 #endif 20821 #endif /* INET6 */ 20822 #ifdef INET 20823 if (IPSEC_ENABLED(ipv4)) 20824 ipsec_optlen = IPSEC_HDRSIZE(ipv4, inp); 20825 #endif /* INET */ 20826 #endif 20827 20828 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 20829 ipoptlen += ipsec_optlen; 20830 #endif 20831 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && 20832 (tp->t_port == 0) && 20833 ((tp->t_flags & TF_SIGNATURE) == 0) && 20834 tp->rcv_numsacks == 0 && sack_rxmit == 0 && 20835 ipoptlen == 0) 20836 tso = 1; 20837 { 20838 uint32_t outstanding __unused; 20839 20840 outstanding = tp->snd_max - tp->snd_una; 20841 if (tp->t_flags & TF_SENTFIN) { 20842 /* 20843 * If we sent a fin, snd_max is 1 higher than 20844 * snd_una 20845 */ 20846 outstanding--; 20847 } 20848 if (sack_rxmit) { 20849 if ((rsm->r_flags & RACK_HAS_FIN) == 0) 20850 flags &= ~TH_FIN; 20851 } else { 20852 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + 20853 sbused(sb))) 20854 flags &= ~TH_FIN; 20855 } 20856 } 20857 recwin = lmin(lmax(sbspace(&so->so_rcv), 0), 20858 (long)TCP_MAXWIN << tp->rcv_scale); 20859 20860 /* 20861 * Sender silly window avoidance. We transmit under the following 20862 * conditions when len is non-zero: 20863 * 20864 * - We have a full segment (or more with TSO) - This is the last 20865 * buffer in a write()/send() and we are either idle or running 20866 * NODELAY - we've timed out (e.g. persist timer) - we have more 20867 * then 1/2 the maximum send window's worth of data (receiver may be 20868 * limited the window size) - we need to retransmit 20869 */ 20870 if (len) { 20871 if (len >= segsiz) { 20872 goto send; 20873 } 20874 /* 20875 * NOTE! on localhost connections an 'ack' from the remote 20876 * end may occur synchronously with the output and cause us 20877 * to flush a buffer queued with moretocome. XXX 20878 * 20879 */ 20880 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ 20881 (idle || (tp->t_flags & TF_NODELAY)) && 20882 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 20883 (tp->t_flags & TF_NOPUSH) == 0) { 20884 pass = 2; 20885 goto send; 20886 } 20887 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ 20888 pass = 22; 20889 goto send; 20890 } 20891 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { 20892 pass = 4; 20893 goto send; 20894 } 20895 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ 20896 pass = 5; 20897 goto send; 20898 } 20899 if (sack_rxmit) { 20900 pass = 6; 20901 goto send; 20902 } 20903 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && 20904 (ctf_outstanding(tp) < (segsiz * 2))) { 20905 /* 20906 * We have less than two MSS outstanding (delayed ack) 20907 * and our rwnd will not let us send a full sized 20908 * MSS. Lets go ahead and let this small segment 20909 * out because we want to try to have at least two 20910 * packets inflight to not be caught by delayed ack. 20911 */ 20912 pass = 12; 20913 goto send; 20914 } 20915 } 20916 /* 20917 * Sending of standalone window updates. 20918 * 20919 * Window updates are important when we close our window due to a 20920 * full socket buffer and are opening it again after the application 20921 * reads data from it. Once the window has opened again and the 20922 * remote end starts to send again the ACK clock takes over and 20923 * provides the most current window information. 20924 * 20925 * We must avoid the silly window syndrome whereas every read from 20926 * the receive buffer, no matter how small, causes a window update 20927 * to be sent. We also should avoid sending a flurry of window 20928 * updates when the socket buffer had queued a lot of data and the 20929 * application is doing small reads. 20930 * 20931 * Prevent a flurry of pointless window updates by only sending an 20932 * update when we can increase the advertized window by more than 20933 * 1/4th of the socket buffer capacity. When the buffer is getting 20934 * full or is very small be more aggressive and send an update 20935 * whenever we can increase by two mss sized segments. In all other 20936 * situations the ACK's to new incoming data will carry further 20937 * window increases. 20938 * 20939 * Don't send an independent window update if a delayed ACK is 20940 * pending (it will get piggy-backed on it) or the remote side 20941 * already has done a half-close and won't send more data. Skip 20942 * this if the connection is in T/TCP half-open state. 20943 */ 20944 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && 20945 !(tp->t_flags & TF_DELACK) && 20946 !TCPS_HAVERCVDFIN(tp->t_state)) { 20947 /* 20948 * "adv" is the amount we could increase the window, taking 20949 * into account that we are limited by TCP_MAXWIN << 20950 * tp->rcv_scale. 20951 */ 20952 int32_t adv; 20953 int oldwin; 20954 20955 adv = recwin; 20956 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { 20957 oldwin = (tp->rcv_adv - tp->rcv_nxt); 20958 if (adv > oldwin) 20959 adv -= oldwin; 20960 else { 20961 /* We can't increase the window */ 20962 adv = 0; 20963 } 20964 } else 20965 oldwin = 0; 20966 20967 /* 20968 * If the new window size ends up being the same as or less 20969 * than the old size when it is scaled, then don't force 20970 * a window update. 20971 */ 20972 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) 20973 goto dontupdate; 20974 20975 if (adv >= (int32_t)(2 * segsiz) && 20976 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || 20977 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || 20978 so->so_rcv.sb_hiwat <= 8 * segsiz)) { 20979 pass = 7; 20980 goto send; 20981 } 20982 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { 20983 pass = 23; 20984 goto send; 20985 } 20986 } 20987 dontupdate: 20988 20989 /* 20990 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW 20991 * is also a catch-all for the retransmit timer timeout case. 20992 */ 20993 if (tp->t_flags & TF_ACKNOW) { 20994 pass = 8; 20995 goto send; 20996 } 20997 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { 20998 pass = 9; 20999 goto send; 21000 } 21001 /* 21002 * If our state indicates that FIN should be sent and we have not 21003 * yet done so, then we need to send. 21004 */ 21005 if ((flags & TH_FIN) && 21006 (tp->snd_nxt == tp->snd_una)) { 21007 pass = 11; 21008 goto send; 21009 } 21010 /* 21011 * No reason to send a segment, just return. 21012 */ 21013 just_return: 21014 SOCKBUF_UNLOCK(sb); 21015 just_return_nolock: 21016 { 21017 int app_limited = CTF_JR_SENT_DATA; 21018 21019 if (tot_len_this_send > 0) { 21020 /* Make sure snd_nxt is up to max */ 21021 rack->r_ctl.fsb.recwin = recwin; 21022 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); 21023 if ((error == 0) && 21024 rack_use_rfo && 21025 ((flags & (TH_SYN|TH_FIN)) == 0) && 21026 (ipoptlen == 0) && 21027 (tp->snd_nxt == tp->snd_max) && 21028 (tp->rcv_numsacks == 0) && 21029 rack->r_fsb_inited && 21030 TCPS_HAVEESTABLISHED(tp->t_state) && 21031 ((IN_RECOVERY(tp->t_flags)) == 0) && 21032 (rack->r_must_retran == 0) && 21033 ((tp->t_flags & TF_NEEDFIN) == 0) && 21034 (len > 0) && (orig_len > 0) && 21035 (orig_len > len) && 21036 ((orig_len - len) >= segsiz) && 21037 ((optlen == 0) || 21038 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 21039 /* We can send at least one more MSS using our fsb */ 21040 rack_setup_fast_output(tp, rack, sb, len, orig_len, 21041 segsiz, pace_max_seg, hw_tls, flags); 21042 } else 21043 rack->r_fast_output = 0; 21044 21045 21046 rack_log_fsb(rack, tp, so, flags, 21047 ipoptlen, orig_len, len, 0, 21048 1, optlen, __LINE__, 1); 21049 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 21050 tp->snd_nxt = tp->snd_max; 21051 } else { 21052 int end_window = 0; 21053 uint32_t seq = tp->gput_ack; 21054 21055 rsm = tqhash_max(rack->r_ctl.tqh); 21056 if (rsm) { 21057 /* 21058 * Mark the last sent that we just-returned (hinting 21059 * that delayed ack may play a role in any rtt measurement). 21060 */ 21061 rsm->r_just_ret = 1; 21062 } 21063 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); 21064 rack->r_ctl.rc_agg_delayed = 0; 21065 rack->r_early = 0; 21066 rack->r_late = 0; 21067 rack->r_ctl.rc_agg_early = 0; 21068 if ((ctf_outstanding(tp) + 21069 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), 21070 minseg)) >= tp->snd_wnd) { 21071 /* We are limited by the rwnd */ 21072 app_limited = CTF_JR_RWND_LIMITED; 21073 if (IN_FASTRECOVERY(tp->t_flags)) 21074 rack->r_ctl.rc_prr_sndcnt = 0; 21075 } else if (ctf_outstanding(tp) >= sbavail(sb)) { 21076 /* We are limited by whats available -- app limited */ 21077 app_limited = CTF_JR_APP_LIMITED; 21078 if (IN_FASTRECOVERY(tp->t_flags)) 21079 rack->r_ctl.rc_prr_sndcnt = 0; 21080 } else if ((idle == 0) && 21081 ((tp->t_flags & TF_NODELAY) == 0) && 21082 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 21083 (len < segsiz)) { 21084 /* 21085 * No delay is not on and the 21086 * user is sending less than 1MSS. This 21087 * brings out SWS avoidance so we 21088 * don't send. Another app-limited case. 21089 */ 21090 app_limited = CTF_JR_APP_LIMITED; 21091 } else if (tp->t_flags & TF_NOPUSH) { 21092 /* 21093 * The user has requested no push of 21094 * the last segment and we are 21095 * at the last segment. Another app 21096 * limited case. 21097 */ 21098 app_limited = CTF_JR_APP_LIMITED; 21099 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { 21100 /* Its the cwnd */ 21101 app_limited = CTF_JR_CWND_LIMITED; 21102 } else if (IN_FASTRECOVERY(tp->t_flags) && 21103 (rack->rack_no_prr == 0) && 21104 (rack->r_ctl.rc_prr_sndcnt < segsiz)) { 21105 app_limited = CTF_JR_PRR; 21106 } else { 21107 /* Now why here are we not sending? */ 21108 #ifdef NOW 21109 #ifdef INVARIANTS 21110 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); 21111 #endif 21112 #endif 21113 app_limited = CTF_JR_ASSESSING; 21114 } 21115 /* 21116 * App limited in some fashion, for our pacing GP 21117 * measurements we don't want any gap (even cwnd). 21118 * Close down the measurement window. 21119 */ 21120 if (rack_cwnd_block_ends_measure && 21121 ((app_limited == CTF_JR_CWND_LIMITED) || 21122 (app_limited == CTF_JR_PRR))) { 21123 /* 21124 * The reason we are not sending is 21125 * the cwnd (or prr). We have been configured 21126 * to end the measurement window in 21127 * this case. 21128 */ 21129 end_window = 1; 21130 } else if (rack_rwnd_block_ends_measure && 21131 (app_limited == CTF_JR_RWND_LIMITED)) { 21132 /* 21133 * We are rwnd limited and have been 21134 * configured to end the measurement 21135 * window in this case. 21136 */ 21137 end_window = 1; 21138 } else if (app_limited == CTF_JR_APP_LIMITED) { 21139 /* 21140 * A true application limited period, we have 21141 * ran out of data. 21142 */ 21143 end_window = 1; 21144 } else if (app_limited == CTF_JR_ASSESSING) { 21145 /* 21146 * In the assessing case we hit the end of 21147 * the if/else and had no known reason 21148 * This will panic us under invariants.. 21149 * 21150 * If we get this out in logs we need to 21151 * investagate which reason we missed. 21152 */ 21153 end_window = 1; 21154 } 21155 if (end_window) { 21156 uint8_t log = 0; 21157 21158 /* Adjust the Gput measurement */ 21159 if ((tp->t_flags & TF_GPUTINPROG) && 21160 SEQ_GT(tp->gput_ack, tp->snd_max)) { 21161 tp->gput_ack = tp->snd_max; 21162 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) { 21163 /* 21164 * There is not enough to measure. 21165 */ 21166 tp->t_flags &= ~TF_GPUTINPROG; 21167 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/, 21168 rack->r_ctl.rc_gp_srtt /*flex1*/, 21169 tp->gput_seq, 21170 0, 0, 18, __LINE__, NULL, 0); 21171 } else 21172 log = 1; 21173 } 21174 /* Mark the last packet has app limited */ 21175 rsm = tqhash_max(rack->r_ctl.tqh); 21176 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 21177 if (rack->r_ctl.rc_app_limited_cnt == 0) 21178 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 21179 else { 21180 /* 21181 * Go out to the end app limited and mark 21182 * this new one as next and move the end_appl up 21183 * to this guy. 21184 */ 21185 if (rack->r_ctl.rc_end_appl) 21186 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 21187 rack->r_ctl.rc_end_appl = rsm; 21188 } 21189 rsm->r_flags |= RACK_APP_LIMITED; 21190 rack->r_ctl.rc_app_limited_cnt++; 21191 } 21192 if (log) 21193 rack_log_pacing_delay_calc(rack, 21194 rack->r_ctl.rc_app_limited_cnt, seq, 21195 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0); 21196 } 21197 } 21198 /* Check if we need to go into persists or not */ 21199 if ((tp->snd_max == tp->snd_una) && 21200 TCPS_HAVEESTABLISHED(tp->t_state) && 21201 sbavail(sb) && 21202 (sbavail(sb) > tp->snd_wnd) && 21203 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { 21204 /* Yes lets make sure to move to persist before timer-start */ 21205 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime, tp->snd_una); 21206 } 21207 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); 21208 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); 21209 } 21210 #ifdef NETFLIX_SHARED_CWND 21211 if ((sbavail(sb) == 0) && 21212 rack->r_ctl.rc_scw) { 21213 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 21214 rack->rack_scwnd_is_idle = 1; 21215 } 21216 #endif 21217 #ifdef TCP_ACCOUNTING 21218 if (tot_len_this_send > 0) { 21219 crtsc = get_cyclecount(); 21220 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21221 tp->tcp_cnt_counters[SND_OUT_DATA]++; 21222 } 21223 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21224 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 21225 } 21226 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21227 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz); 21228 } 21229 } else { 21230 crtsc = get_cyclecount(); 21231 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21232 tp->tcp_cnt_counters[SND_LIMITED]++; 21233 } 21234 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21235 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val); 21236 } 21237 } 21238 sched_unpin(); 21239 #endif 21240 return (0); 21241 21242 send: 21243 if ((rack->r_ctl.crte != NULL) && 21244 (rsm == NULL) && 21245 ((rack->rc_hw_nobuf == 1) || 21246 (rack_hw_check_queue && (check_done == 0)))) { 21247 /* 21248 * We only want to do this once with the hw_check_queue, 21249 * for the enobuf case we would only do it once if 21250 * we come around to again, the flag will be clear. 21251 */ 21252 check_done = 1; 21253 slot = rack_check_queue_level(rack, tp, &tv, cts, len, segsiz); 21254 if (slot) { 21255 rack->r_ctl.rc_agg_delayed = 0; 21256 rack->r_ctl.rc_agg_early = 0; 21257 rack->r_early = 0; 21258 rack->r_late = 0; 21259 SOCKBUF_UNLOCK(&so->so_snd); 21260 goto skip_all_send; 21261 } 21262 } 21263 if (rsm || sack_rxmit) 21264 counter_u64_add(rack_nfto_resend, 1); 21265 else 21266 counter_u64_add(rack_non_fto_send, 1); 21267 if ((flags & TH_FIN) && 21268 sbavail(sb)) { 21269 /* 21270 * We do not transmit a FIN 21271 * with data outstanding. We 21272 * need to make it so all data 21273 * is acked first. 21274 */ 21275 flags &= ~TH_FIN; 21276 } 21277 /* Enforce stack imposed max seg size if we have one */ 21278 if (rack->r_ctl.rc_pace_max_segs && 21279 (len > rack->r_ctl.rc_pace_max_segs)) { 21280 mark = 1; 21281 len = rack->r_ctl.rc_pace_max_segs; 21282 } 21283 SOCKBUF_LOCK_ASSERT(sb); 21284 if (len > 0) { 21285 if (len >= segsiz) 21286 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; 21287 else 21288 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; 21289 } 21290 /* 21291 * Before ESTABLISHED, force sending of initial options unless TCP 21292 * set not to do any options. NOTE: we assume that the IP/TCP header 21293 * plus TCP options always fit in a single mbuf, leaving room for a 21294 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) 21295 * + optlen <= MCLBYTES 21296 */ 21297 optlen = 0; 21298 #ifdef INET6 21299 if (isipv6) 21300 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 21301 else 21302 #endif 21303 hdrlen = sizeof(struct tcpiphdr); 21304 21305 /* 21306 * Compute options for segment. We only have to care about SYN and 21307 * established connection segments. Options for SYN-ACK segments 21308 * are handled in TCP syncache. 21309 */ 21310 to.to_flags = 0; 21311 if ((tp->t_flags & TF_NOOPT) == 0) { 21312 /* Maximum segment size. */ 21313 if (flags & TH_SYN) { 21314 tp->snd_nxt = tp->iss; 21315 to.to_mss = tcp_mssopt(&inp->inp_inc); 21316 if (tp->t_port) 21317 to.to_mss -= V_tcp_udp_tunneling_overhead; 21318 to.to_flags |= TOF_MSS; 21319 21320 /* 21321 * On SYN or SYN|ACK transmits on TFO connections, 21322 * only include the TFO option if it is not a 21323 * retransmit, as the presence of the TFO option may 21324 * have caused the original SYN or SYN|ACK to have 21325 * been dropped by a middlebox. 21326 */ 21327 if (IS_FASTOPEN(tp->t_flags) && 21328 (tp->t_rxtshift == 0)) { 21329 if (tp->t_state == TCPS_SYN_RECEIVED) { 21330 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; 21331 to.to_tfo_cookie = 21332 (u_int8_t *)&tp->t_tfo_cookie.server; 21333 to.to_flags |= TOF_FASTOPEN; 21334 wanted_cookie = 1; 21335 } else if (tp->t_state == TCPS_SYN_SENT) { 21336 to.to_tfo_len = 21337 tp->t_tfo_client_cookie_len; 21338 to.to_tfo_cookie = 21339 tp->t_tfo_cookie.client; 21340 to.to_flags |= TOF_FASTOPEN; 21341 wanted_cookie = 1; 21342 /* 21343 * If we wind up having more data to 21344 * send with the SYN than can fit in 21345 * one segment, don't send any more 21346 * until the SYN|ACK comes back from 21347 * the other end. 21348 */ 21349 sendalot = 0; 21350 } 21351 } 21352 } 21353 /* Window scaling. */ 21354 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { 21355 to.to_wscale = tp->request_r_scale; 21356 to.to_flags |= TOF_SCALE; 21357 } 21358 /* Timestamps. */ 21359 if ((tp->t_flags & TF_RCVD_TSTMP) || 21360 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { 21361 to.to_tsval = ms_cts + tp->ts_offset; 21362 to.to_tsecr = tp->ts_recent; 21363 to.to_flags |= TOF_TS; 21364 } 21365 /* Set receive buffer autosizing timestamp. */ 21366 if (tp->rfbuf_ts == 0 && 21367 (so->so_rcv.sb_flags & SB_AUTOSIZE)) 21368 tp->rfbuf_ts = tcp_ts_getticks(); 21369 /* Selective ACK's. */ 21370 if (tp->t_flags & TF_SACK_PERMIT) { 21371 if (flags & TH_SYN) 21372 to.to_flags |= TOF_SACKPERM; 21373 else if (TCPS_HAVEESTABLISHED(tp->t_state) && 21374 tp->rcv_numsacks > 0) { 21375 to.to_flags |= TOF_SACK; 21376 to.to_nsacks = tp->rcv_numsacks; 21377 to.to_sacks = (u_char *)tp->sackblks; 21378 } 21379 } 21380 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 21381 /* TCP-MD5 (RFC2385). */ 21382 if (tp->t_flags & TF_SIGNATURE) 21383 to.to_flags |= TOF_SIGNATURE; 21384 #endif 21385 21386 /* Processing the options. */ 21387 hdrlen += optlen = tcp_addoptions(&to, opt); 21388 /* 21389 * If we wanted a TFO option to be added, but it was unable 21390 * to fit, ensure no data is sent. 21391 */ 21392 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && 21393 !(to.to_flags & TOF_FASTOPEN)) 21394 len = 0; 21395 } 21396 if (tp->t_port) { 21397 if (V_tcp_udp_tunneling_port == 0) { 21398 /* The port was removed?? */ 21399 SOCKBUF_UNLOCK(&so->so_snd); 21400 #ifdef TCP_ACCOUNTING 21401 crtsc = get_cyclecount(); 21402 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21403 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 21404 } 21405 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 21406 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 21407 } 21408 sched_unpin(); 21409 #endif 21410 return (EHOSTUNREACH); 21411 } 21412 hdrlen += sizeof(struct udphdr); 21413 } 21414 #ifdef INET6 21415 if (isipv6) 21416 ipoptlen = ip6_optlen(inp); 21417 else 21418 #endif 21419 if (inp->inp_options) 21420 ipoptlen = inp->inp_options->m_len - 21421 offsetof(struct ipoption, ipopt_list); 21422 else 21423 ipoptlen = 0; 21424 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 21425 ipoptlen += ipsec_optlen; 21426 #endif 21427 21428 /* 21429 * Adjust data length if insertion of options will bump the packet 21430 * length beyond the t_maxseg length. Clear the FIN bit because we 21431 * cut off the tail of the segment. 21432 */ 21433 if (len + optlen + ipoptlen > tp->t_maxseg) { 21434 if (tso) { 21435 uint32_t if_hw_tsomax; 21436 uint32_t moff; 21437 int32_t max_len; 21438 21439 /* extract TSO information */ 21440 if_hw_tsomax = tp->t_tsomax; 21441 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 21442 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 21443 KASSERT(ipoptlen == 0, 21444 ("%s: TSO can't do IP options", __func__)); 21445 21446 /* 21447 * Check if we should limit by maximum payload 21448 * length: 21449 */ 21450 if (if_hw_tsomax != 0) { 21451 /* compute maximum TSO length */ 21452 max_len = (if_hw_tsomax - hdrlen - 21453 max_linkhdr); 21454 if (max_len <= 0) { 21455 len = 0; 21456 } else if (len > max_len) { 21457 sendalot = 1; 21458 len = max_len; 21459 mark = 2; 21460 } 21461 } 21462 /* 21463 * Prevent the last segment from being fractional 21464 * unless the send sockbuf can be emptied: 21465 */ 21466 max_len = (tp->t_maxseg - optlen); 21467 if ((sb_offset + len) < sbavail(sb)) { 21468 moff = len % (u_int)max_len; 21469 if (moff != 0) { 21470 mark = 3; 21471 len -= moff; 21472 } 21473 } 21474 /* 21475 * In case there are too many small fragments don't 21476 * use TSO: 21477 */ 21478 if (len <= max_len) { 21479 mark = 4; 21480 tso = 0; 21481 } 21482 /* 21483 * Send the FIN in a separate segment after the bulk 21484 * sending is done. We don't trust the TSO 21485 * implementations to clear the FIN flag on all but 21486 * the last segment. 21487 */ 21488 if (tp->t_flags & TF_NEEDFIN) { 21489 sendalot = 4; 21490 } 21491 } else { 21492 mark = 5; 21493 if (optlen + ipoptlen >= tp->t_maxseg) { 21494 /* 21495 * Since we don't have enough space to put 21496 * the IP header chain and the TCP header in 21497 * one packet as required by RFC 7112, don't 21498 * send it. Also ensure that at least one 21499 * byte of the payload can be put into the 21500 * TCP segment. 21501 */ 21502 SOCKBUF_UNLOCK(&so->so_snd); 21503 error = EMSGSIZE; 21504 sack_rxmit = 0; 21505 goto out; 21506 } 21507 len = tp->t_maxseg - optlen - ipoptlen; 21508 sendalot = 5; 21509 } 21510 } else { 21511 tso = 0; 21512 mark = 6; 21513 } 21514 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, 21515 ("%s: len > IP_MAXPACKET", __func__)); 21516 #ifdef DIAGNOSTIC 21517 #ifdef INET6 21518 if (max_linkhdr + hdrlen > MCLBYTES) 21519 #else 21520 if (max_linkhdr + hdrlen > MHLEN) 21521 #endif 21522 panic("tcphdr too big"); 21523 #endif 21524 21525 /* 21526 * This KASSERT is here to catch edge cases at a well defined place. 21527 * Before, those had triggered (random) panic conditions further 21528 * down. 21529 */ 21530 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 21531 if ((len == 0) && 21532 (flags & TH_FIN) && 21533 (sbused(sb))) { 21534 /* 21535 * We have outstanding data, don't send a fin by itself!. 21536 */ 21537 goto just_return; 21538 } 21539 /* 21540 * Grab a header mbuf, attaching a copy of data to be transmitted, 21541 * and initialize the header from the template for sends on this 21542 * connection. 21543 */ 21544 hw_tls = tp->t_nic_ktls_xmit != 0; 21545 if (len) { 21546 uint32_t max_val; 21547 uint32_t moff; 21548 21549 if (rack->r_ctl.rc_pace_max_segs) 21550 max_val = rack->r_ctl.rc_pace_max_segs; 21551 else if (rack->rc_user_set_max_segs) 21552 max_val = rack->rc_user_set_max_segs * segsiz; 21553 else 21554 max_val = len; 21555 /* 21556 * We allow a limit on sending with hptsi. 21557 */ 21558 if (len > max_val) { 21559 mark = 7; 21560 len = max_val; 21561 } 21562 #ifdef INET6 21563 if (MHLEN < hdrlen + max_linkhdr) 21564 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 21565 else 21566 #endif 21567 m = m_gethdr(M_NOWAIT, MT_DATA); 21568 21569 if (m == NULL) { 21570 SOCKBUF_UNLOCK(sb); 21571 error = ENOBUFS; 21572 sack_rxmit = 0; 21573 goto out; 21574 } 21575 m->m_data += max_linkhdr; 21576 m->m_len = hdrlen; 21577 21578 /* 21579 * Start the m_copy functions from the closest mbuf to the 21580 * sb_offset in the socket buffer chain. 21581 */ 21582 mb = sbsndptr_noadv(sb, sb_offset, &moff); 21583 s_mb = mb; 21584 s_moff = moff; 21585 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { 21586 m_copydata(mb, moff, (int)len, 21587 mtod(m, caddr_t)+hdrlen); 21588 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 21589 sbsndptr_adv(sb, mb, len); 21590 m->m_len += len; 21591 } else { 21592 struct sockbuf *msb; 21593 21594 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 21595 msb = NULL; 21596 else 21597 msb = sb; 21598 m->m_next = tcp_m_copym( 21599 mb, moff, &len, 21600 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, 21601 ((rsm == NULL) ? hw_tls : 0) 21602 #ifdef NETFLIX_COPY_ARGS 21603 , &s_mb, &s_moff 21604 #endif 21605 ); 21606 if (len <= (tp->t_maxseg - optlen)) { 21607 /* 21608 * Must have ran out of mbufs for the copy 21609 * shorten it to no longer need tso. Lets 21610 * not put on sendalot since we are low on 21611 * mbufs. 21612 */ 21613 tso = 0; 21614 } 21615 if (m->m_next == NULL) { 21616 SOCKBUF_UNLOCK(sb); 21617 (void)m_free(m); 21618 error = ENOBUFS; 21619 sack_rxmit = 0; 21620 goto out; 21621 } 21622 } 21623 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { 21624 if (rsm && (rsm->r_flags & RACK_TLP)) { 21625 /* 21626 * TLP should not count in retran count, but 21627 * in its own bin 21628 */ 21629 counter_u64_add(rack_tlp_retran, 1); 21630 counter_u64_add(rack_tlp_retran_bytes, len); 21631 } else { 21632 tp->t_sndrexmitpack++; 21633 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 21634 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 21635 } 21636 #ifdef STATS 21637 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 21638 len); 21639 #endif 21640 } else { 21641 KMOD_TCPSTAT_INC(tcps_sndpack); 21642 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 21643 #ifdef STATS 21644 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 21645 len); 21646 #endif 21647 } 21648 /* 21649 * If we're sending everything we've got, set PUSH. (This 21650 * will keep happy those implementations which only give 21651 * data to the user when a buffer fills or a PUSH comes in.) 21652 */ 21653 if (sb_offset + len == sbused(sb) && 21654 sbused(sb) && 21655 !(flags & TH_SYN)) { 21656 flags |= TH_PUSH; 21657 add_flag |= RACK_HAD_PUSH; 21658 } 21659 21660 SOCKBUF_UNLOCK(sb); 21661 } else { 21662 SOCKBUF_UNLOCK(sb); 21663 if (tp->t_flags & TF_ACKNOW) 21664 KMOD_TCPSTAT_INC(tcps_sndacks); 21665 else if (flags & (TH_SYN | TH_FIN | TH_RST)) 21666 KMOD_TCPSTAT_INC(tcps_sndctrl); 21667 else 21668 KMOD_TCPSTAT_INC(tcps_sndwinup); 21669 21670 m = m_gethdr(M_NOWAIT, MT_DATA); 21671 if (m == NULL) { 21672 error = ENOBUFS; 21673 sack_rxmit = 0; 21674 goto out; 21675 } 21676 #ifdef INET6 21677 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && 21678 MHLEN >= hdrlen) { 21679 M_ALIGN(m, hdrlen); 21680 } else 21681 #endif 21682 m->m_data += max_linkhdr; 21683 m->m_len = hdrlen; 21684 } 21685 SOCKBUF_UNLOCK_ASSERT(sb); 21686 m->m_pkthdr.rcvif = (struct ifnet *)0; 21687 #ifdef MAC 21688 mac_inpcb_create_mbuf(inp, m); 21689 #endif 21690 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 21691 #ifdef INET6 21692 if (isipv6) 21693 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 21694 else 21695 #endif /* INET6 */ 21696 #ifdef INET 21697 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 21698 #endif 21699 th = rack->r_ctl.fsb.th; 21700 udp = rack->r_ctl.fsb.udp; 21701 if (udp) { 21702 #ifdef INET6 21703 if (isipv6) 21704 ulen = hdrlen + len - sizeof(struct ip6_hdr); 21705 else 21706 #endif /* INET6 */ 21707 ulen = hdrlen + len - sizeof(struct ip); 21708 udp->uh_ulen = htons(ulen); 21709 } 21710 } else { 21711 #ifdef INET6 21712 if (isipv6) { 21713 ip6 = mtod(m, struct ip6_hdr *); 21714 if (tp->t_port) { 21715 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 21716 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 21717 udp->uh_dport = tp->t_port; 21718 ulen = hdrlen + len - sizeof(struct ip6_hdr); 21719 udp->uh_ulen = htons(ulen); 21720 th = (struct tcphdr *)(udp + 1); 21721 } else 21722 th = (struct tcphdr *)(ip6 + 1); 21723 tcpip_fillheaders(inp, tp->t_port, ip6, th); 21724 } else 21725 #endif /* INET6 */ 21726 { 21727 #ifdef INET 21728 ip = mtod(m, struct ip *); 21729 if (tp->t_port) { 21730 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 21731 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 21732 udp->uh_dport = tp->t_port; 21733 ulen = hdrlen + len - sizeof(struct ip); 21734 udp->uh_ulen = htons(ulen); 21735 th = (struct tcphdr *)(udp + 1); 21736 } else 21737 th = (struct tcphdr *)(ip + 1); 21738 tcpip_fillheaders(inp, tp->t_port, ip, th); 21739 #endif 21740 } 21741 } 21742 /* 21743 * Fill in fields, remembering maximum advertised window for use in 21744 * delaying messages about window sizes. If resending a FIN, be sure 21745 * not to use a new sequence number. 21746 */ 21747 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && 21748 tp->snd_nxt == tp->snd_max) 21749 tp->snd_nxt--; 21750 /* 21751 * If we are starting a connection, send ECN setup SYN packet. If we 21752 * are on a retransmit, we may resend those bits a number of times 21753 * as per RFC 3168. 21754 */ 21755 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) { 21756 flags |= tcp_ecn_output_syn_sent(tp); 21757 } 21758 /* Also handle parallel SYN for ECN */ 21759 if (TCPS_HAVERCVDSYN(tp->t_state) && 21760 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) { 21761 int ect = tcp_ecn_output_established(tp, &flags, len, sack_rxmit); 21762 if ((tp->t_state == TCPS_SYN_RECEIVED) && 21763 (tp->t_flags2 & TF2_ECN_SND_ECE)) 21764 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 21765 #ifdef INET6 21766 if (isipv6) { 21767 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20); 21768 ip6->ip6_flow |= htonl(ect << 20); 21769 } 21770 else 21771 #endif 21772 { 21773 #ifdef INET 21774 ip->ip_tos &= ~IPTOS_ECN_MASK; 21775 ip->ip_tos |= ect; 21776 #endif 21777 } 21778 } 21779 /* 21780 * If we are doing retransmissions, then snd_nxt will not reflect 21781 * the first unsent octet. For ACK only packets, we do not want the 21782 * sequence number of the retransmitted packet, we want the sequence 21783 * number of the next unsent octet. So, if there is no data (and no 21784 * SYN or FIN), use snd_max instead of snd_nxt when filling in 21785 * ti_seq. But if we are in persist state, snd_max might reflect 21786 * one byte beyond the right edge of the window, so use snd_nxt in 21787 * that case, since we know we aren't doing a retransmission. 21788 * (retransmit and persist are mutually exclusive...) 21789 */ 21790 if (sack_rxmit == 0) { 21791 if (len || (flags & (TH_SYN | TH_FIN))) { 21792 th->th_seq = htonl(tp->snd_nxt); 21793 rack_seq = tp->snd_nxt; 21794 } else { 21795 th->th_seq = htonl(tp->snd_max); 21796 rack_seq = tp->snd_max; 21797 } 21798 } else { 21799 th->th_seq = htonl(rsm->r_start); 21800 rack_seq = rsm->r_start; 21801 } 21802 th->th_ack = htonl(tp->rcv_nxt); 21803 tcp_set_flags(th, flags); 21804 /* 21805 * Calculate receive window. Don't shrink window, but avoid silly 21806 * window syndrome. 21807 * If a RST segment is sent, advertise a window of zero. 21808 */ 21809 if (flags & TH_RST) { 21810 recwin = 0; 21811 } else { 21812 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && 21813 recwin < (long)segsiz) { 21814 recwin = 0; 21815 } 21816 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && 21817 recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) 21818 recwin = (long)(tp->rcv_adv - tp->rcv_nxt); 21819 } 21820 21821 /* 21822 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or 21823 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is 21824 * handled in syncache. 21825 */ 21826 if (flags & TH_SYN) 21827 th->th_win = htons((u_short) 21828 (min(sbspace(&so->so_rcv), TCP_MAXWIN))); 21829 else { 21830 /* Avoid shrinking window with window scaling. */ 21831 recwin = roundup2(recwin, 1 << tp->rcv_scale); 21832 th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); 21833 } 21834 /* 21835 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 21836 * window. This may cause the remote transmitter to stall. This 21837 * flag tells soreceive() to disable delayed acknowledgements when 21838 * draining the buffer. This can occur if the receiver is 21839 * attempting to read more data than can be buffered prior to 21840 * transmitting on the connection. 21841 */ 21842 if (th->th_win == 0) { 21843 tp->t_sndzerowin++; 21844 tp->t_flags |= TF_RXWIN0SENT; 21845 } else 21846 tp->t_flags &= ~TF_RXWIN0SENT; 21847 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 21848 /* Now are we using fsb?, if so copy the template data to the mbuf */ 21849 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 21850 uint8_t *cpto; 21851 21852 cpto = mtod(m, uint8_t *); 21853 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 21854 /* 21855 * We have just copied in: 21856 * IP/IP6 21857 * <optional udphdr> 21858 * tcphdr (no options) 21859 * 21860 * We need to grab the correct pointers into the mbuf 21861 * for both the tcp header, and possibly the udp header (if tunneling). 21862 * We do this by using the offset in the copy buffer and adding it 21863 * to the mbuf base pointer (cpto). 21864 */ 21865 #ifdef INET6 21866 if (isipv6) 21867 ip6 = mtod(m, struct ip6_hdr *); 21868 else 21869 #endif /* INET6 */ 21870 #ifdef INET 21871 ip = mtod(m, struct ip *); 21872 #endif 21873 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 21874 /* If we have a udp header lets set it into the mbuf as well */ 21875 if (udp) 21876 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr)); 21877 } 21878 if (optlen) { 21879 bcopy(opt, th + 1, optlen); 21880 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 21881 } 21882 /* 21883 * Put TCP length in extended header, and then checksum extended 21884 * header and data. 21885 */ 21886 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 21887 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 21888 if (to.to_flags & TOF_SIGNATURE) { 21889 /* 21890 * Calculate MD5 signature and put it into the place 21891 * determined before. 21892 * NOTE: since TCP options buffer doesn't point into 21893 * mbuf's data, calculate offset and use it. 21894 */ 21895 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 21896 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 21897 /* 21898 * Do not send segment if the calculation of MD5 21899 * digest has failed. 21900 */ 21901 goto out; 21902 } 21903 } 21904 #endif 21905 #ifdef INET6 21906 if (isipv6) { 21907 /* 21908 * ip6_plen is not need to be filled now, and will be filled 21909 * in ip6_output. 21910 */ 21911 if (tp->t_port) { 21912 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 21913 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 21914 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 21915 th->th_sum = htons(0); 21916 UDPSTAT_INC(udps_opackets); 21917 } else { 21918 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 21919 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 21920 th->th_sum = in6_cksum_pseudo(ip6, 21921 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 21922 0); 21923 } 21924 } 21925 #endif 21926 #if defined(INET6) && defined(INET) 21927 else 21928 #endif 21929 #ifdef INET 21930 { 21931 if (tp->t_port) { 21932 m->m_pkthdr.csum_flags = CSUM_UDP; 21933 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 21934 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 21935 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 21936 th->th_sum = htons(0); 21937 UDPSTAT_INC(udps_opackets); 21938 } else { 21939 m->m_pkthdr.csum_flags = CSUM_TCP; 21940 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 21941 th->th_sum = in_pseudo(ip->ip_src.s_addr, 21942 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 21943 IPPROTO_TCP + len + optlen)); 21944 } 21945 /* IP version must be set here for ipv4/ipv6 checking later */ 21946 KASSERT(ip->ip_v == IPVERSION, 21947 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 21948 } 21949 #endif 21950 /* 21951 * Enable TSO and specify the size of the segments. The TCP pseudo 21952 * header checksum is always provided. XXX: Fixme: This is currently 21953 * not the case for IPv6. 21954 */ 21955 if (tso) { 21956 /* 21957 * Here we must use t_maxseg and the optlen since 21958 * the optlen may include SACK's (or DSACK). 21959 */ 21960 KASSERT(len > tp->t_maxseg - optlen, 21961 ("%s: len <= tso_segsz", __func__)); 21962 m->m_pkthdr.csum_flags |= CSUM_TSO; 21963 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 21964 } 21965 KASSERT(len + hdrlen == m_length(m, NULL), 21966 ("%s: mbuf chain different than expected: %d + %u != %u", 21967 __func__, len, hdrlen, m_length(m, NULL))); 21968 21969 #ifdef TCP_HHOOK 21970 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ 21971 hhook_run_tcp_est_out(tp, th, &to, len, tso); 21972 #endif 21973 if ((rack->r_ctl.crte != NULL) && 21974 (rack->rc_hw_nobuf == 0) && 21975 tcp_bblogging_on(tp)) { 21976 rack_log_queue_level(tp, rack, len, &tv, cts); 21977 } 21978 /* We're getting ready to send; log now. */ 21979 if (tcp_bblogging_on(rack->rc_tp)) { 21980 union tcp_log_stackspecific log; 21981 21982 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 21983 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_tp); 21984 if (rack->rack_no_prr) 21985 log.u_bbr.flex1 = 0; 21986 else 21987 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 21988 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 21989 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 21990 log.u_bbr.flex4 = orig_len; 21991 /* Save off the early/late values */ 21992 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 21993 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 21994 log.u_bbr.bw_inuse = rack_get_bw(rack); 21995 log.u_bbr.cur_del_rate = rack->r_ctl.gp_bw; 21996 log.u_bbr.flex8 = 0; 21997 if (rsm) { 21998 if (rsm->r_flags & RACK_RWND_COLLAPSED) { 21999 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm); 22000 counter_u64_add(rack_collapsed_win_rxt, 1); 22001 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start)); 22002 } 22003 if (doing_tlp) 22004 log.u_bbr.flex8 = 2; 22005 else 22006 log.u_bbr.flex8 = 1; 22007 } else { 22008 if (doing_tlp) 22009 log.u_bbr.flex8 = 3; 22010 } 22011 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 22012 log.u_bbr.flex7 = mark; 22013 log.u_bbr.flex7 <<= 8; 22014 log.u_bbr.flex7 |= pass; 22015 log.u_bbr.pkts_out = tp->t_maxseg; 22016 log.u_bbr.timeStamp = cts; 22017 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 22018 if (rsm && (rsm->r_rtr_cnt > 0)) { 22019 /* 22020 * When we have a retransmit we want to log the 22021 * burst at send and flight at send from before. 22022 */ 22023 log.u_bbr.flex5 = rsm->r_fas; 22024 log.u_bbr.bbr_substate = rsm->r_bas; 22025 } else { 22026 /* 22027 * New transmits we log in flex5 the inflight again as 22028 * well as the number of segments in our send in the 22029 * substate field. 22030 */ 22031 log.u_bbr.flex5 = log.u_bbr.inflight; 22032 log.u_bbr.bbr_substate = (uint8_t)((len + segsiz - 1)/segsiz); 22033 } 22034 log.u_bbr.lt_epoch = cwnd_to_use; 22035 log.u_bbr.delivered = sendalot; 22036 log.u_bbr.rttProp = (uint64_t)rsm; 22037 log.u_bbr.pkt_epoch = __LINE__; 22038 if (rsm) { 22039 log.u_bbr.delRate = rsm->r_flags; 22040 log.u_bbr.delRate <<= 31; 22041 log.u_bbr.delRate |= rack->r_must_retran; 22042 log.u_bbr.delRate <<= 1; 22043 log.u_bbr.delRate |= (sack_rxmit & 0x00000001); 22044 } else { 22045 log.u_bbr.delRate = rack->r_must_retran; 22046 log.u_bbr.delRate <<= 1; 22047 log.u_bbr.delRate |= (sack_rxmit & 0x00000001); 22048 } 22049 lgb = tcp_log_event(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, 22050 len, &log, false, NULL, __func__, __LINE__, &tv); 22051 } else 22052 lgb = NULL; 22053 22054 /* 22055 * Fill in IP length and desired time to live and send to IP level. 22056 * There should be a better way to handle ttl and tos; we could keep 22057 * them in the template, but need a way to checksum without them. 22058 */ 22059 /* 22060 * m->m_pkthdr.len should have been set before cksum calcuration, 22061 * because in6_cksum() need it. 22062 */ 22063 #ifdef INET6 22064 if (isipv6) { 22065 /* 22066 * we separately set hoplimit for every segment, since the 22067 * user might want to change the value via setsockopt. Also, 22068 * desired default hop limit might be changed via Neighbor 22069 * Discovery. 22070 */ 22071 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL); 22072 22073 /* 22074 * Set the packet size here for the benefit of DTrace 22075 * probes. ip6_output() will set it properly; it's supposed 22076 * to include the option header lengths as well. 22077 */ 22078 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 22079 22080 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 22081 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 22082 else 22083 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 22084 22085 if (tp->t_state == TCPS_SYN_SENT) 22086 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); 22087 22088 TCP_PROBE5(send, NULL, tp, ip6, tp, th); 22089 /* TODO: IPv6 IP6TOS_ECT bit on */ 22090 error = ip6_output(m, 22091 inp->in6p_outputopts, 22092 &inp->inp_route6, 22093 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 22094 NULL, NULL, inp); 22095 22096 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) 22097 mtu = inp->inp_route6.ro_nh->nh_mtu; 22098 } 22099 #endif /* INET6 */ 22100 #if defined(INET) && defined(INET6) 22101 else 22102 #endif 22103 #ifdef INET 22104 { 22105 ip->ip_len = htons(m->m_pkthdr.len); 22106 #ifdef INET6 22107 if (inp->inp_vflag & INP_IPV6PROTO) 22108 ip->ip_ttl = in6_selecthlim(inp, NULL); 22109 #endif /* INET6 */ 22110 rack->r_ctl.fsb.hoplimit = ip->ip_ttl; 22111 /* 22112 * If we do path MTU discovery, then we set DF on every 22113 * packet. This might not be the best thing to do according 22114 * to RFC3390 Section 2. However the tcp hostcache migitates 22115 * the problem so it affects only the first tcp connection 22116 * with a host. 22117 * 22118 * NB: Don't set DF on small MTU/MSS to have a safe 22119 * fallback. 22120 */ 22121 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 22122 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 22123 if (tp->t_port == 0 || len < V_tcp_minmss) { 22124 ip->ip_off |= htons(IP_DF); 22125 } 22126 } else { 22127 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 22128 } 22129 22130 if (tp->t_state == TCPS_SYN_SENT) 22131 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); 22132 22133 TCP_PROBE5(send, NULL, tp, ip, tp, th); 22134 22135 error = ip_output(m, 22136 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 22137 inp->inp_options, 22138 #else 22139 NULL, 22140 #endif 22141 &inp->inp_route, 22142 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, 22143 inp); 22144 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) 22145 mtu = inp->inp_route.ro_nh->nh_mtu; 22146 } 22147 #endif /* INET */ 22148 22149 out: 22150 if (lgb) { 22151 lgb->tlb_errno = error; 22152 lgb = NULL; 22153 } 22154 /* 22155 * In transmit state, time the transmission and arrange for the 22156 * retransmit. In persist state, just set snd_max. 22157 */ 22158 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, 22159 rack_to_usec_ts(&tv), 22160 rsm, add_flag, s_mb, s_moff, hw_tls, segsiz); 22161 if (error == 0) { 22162 if (rsm == NULL) { 22163 if (rack->lt_bw_up == 0) { 22164 rack->r_ctl.lt_timemark = tcp_tv_to_lusectick(&tv); 22165 rack->r_ctl.lt_seq = tp->snd_una; 22166 rack->lt_bw_up = 1; 22167 } else if (((rack_seq + len) - rack->r_ctl.lt_seq) > 0x7fffffff) { 22168 /* 22169 * Need to record what we have since we are 22170 * approaching seq wrap. 22171 */ 22172 uint64_t tmark; 22173 22174 rack->r_ctl.lt_bw_bytes += (tp->snd_una - rack->r_ctl.lt_seq); 22175 rack->r_ctl.lt_seq = tp->snd_una; 22176 tmark = tcp_tv_to_lusectick(&tv); 22177 rack->r_ctl.lt_bw_time += (tmark - rack->r_ctl.lt_timemark); 22178 rack->r_ctl.lt_timemark = tmark; 22179 } 22180 } 22181 rack->forced_ack = 0; /* If we send something zap the FA flag */ 22182 counter_u64_add(rack_total_bytes, len); 22183 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls); 22184 if (rsm && doing_tlp) { 22185 rack->rc_last_sent_tlp_past_cumack = 0; 22186 rack->rc_last_sent_tlp_seq_valid = 1; 22187 rack->r_ctl.last_sent_tlp_seq = rsm->r_start; 22188 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start; 22189 } 22190 if (rack->rc_hw_nobuf) { 22191 rack->rc_hw_nobuf = 0; 22192 rack->r_ctl.rc_agg_delayed = 0; 22193 rack->r_early = 0; 22194 rack->r_late = 0; 22195 rack->r_ctl.rc_agg_early = 0; 22196 } 22197 if (rsm && (doing_tlp == 0)) { 22198 /* Set we retransmitted */ 22199 rack->rc_gp_saw_rec = 1; 22200 } else { 22201 if (cwnd_to_use > tp->snd_ssthresh) { 22202 /* Set we sent in CA */ 22203 rack->rc_gp_saw_ca = 1; 22204 } else { 22205 /* Set we sent in SS */ 22206 rack->rc_gp_saw_ss = 1; 22207 } 22208 } 22209 if (TCPS_HAVEESTABLISHED(tp->t_state) && 22210 (tp->t_flags & TF_SACK_PERMIT) && 22211 tp->rcv_numsacks > 0) 22212 tcp_clean_dsack_blocks(tp); 22213 tot_len_this_send += len; 22214 if (len == 0) { 22215 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); 22216 } else { 22217 int idx; 22218 22219 idx = (len / segsiz) + 3; 22220 if (idx >= TCP_MSS_ACCT_ATIMER) 22221 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 22222 else 22223 counter_u64_add(rack_out_size[idx], 1); 22224 } 22225 } 22226 if ((rack->rack_no_prr == 0) && 22227 sub_from_prr && 22228 (error == 0)) { 22229 if (rack->r_ctl.rc_prr_sndcnt >= len) 22230 rack->r_ctl.rc_prr_sndcnt -= len; 22231 else 22232 rack->r_ctl.rc_prr_sndcnt = 0; 22233 } 22234 sub_from_prr = 0; 22235 if (doing_tlp) { 22236 /* Make sure the TLP is added */ 22237 add_flag |= RACK_TLP; 22238 } else if (rsm) { 22239 /* If its a resend without TLP then it must not have the flag */ 22240 rsm->r_flags &= ~RACK_TLP; 22241 } 22242 22243 22244 if ((error == 0) && 22245 (len > 0) && 22246 (tp->snd_una == tp->snd_max)) 22247 rack->r_ctl.rc_tlp_rxt_last_time = cts; 22248 { 22249 tcp_seq startseq = tp->snd_nxt; 22250 22251 /* Track our lost count */ 22252 if (rsm && (doing_tlp == 0)) 22253 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; 22254 /* 22255 * Advance snd_nxt over sequence space of this segment. 22256 */ 22257 if (error) 22258 /* We don't log or do anything with errors */ 22259 goto nomore; 22260 if (doing_tlp == 0) { 22261 if (rsm == NULL) { 22262 /* 22263 * Not a retransmission of some 22264 * sort, new data is going out so 22265 * clear our TLP count and flag. 22266 */ 22267 rack->rc_tlp_in_progress = 0; 22268 rack->r_ctl.rc_tlp_cnt_out = 0; 22269 } 22270 } else { 22271 /* 22272 * We have just sent a TLP, mark that it is true 22273 * and make sure our in progress is set so we 22274 * continue to check the count. 22275 */ 22276 rack->rc_tlp_in_progress = 1; 22277 rack->r_ctl.rc_tlp_cnt_out++; 22278 } 22279 if (flags & (TH_SYN | TH_FIN)) { 22280 if (flags & TH_SYN) 22281 tp->snd_nxt++; 22282 if (flags & TH_FIN) { 22283 tp->snd_nxt++; 22284 tp->t_flags |= TF_SENTFIN; 22285 } 22286 } 22287 /* In the ENOBUFS case we do *not* update snd_max */ 22288 if (sack_rxmit) 22289 goto nomore; 22290 22291 tp->snd_nxt += len; 22292 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { 22293 if (tp->snd_una == tp->snd_max) { 22294 /* 22295 * Update the time we just added data since 22296 * none was outstanding. 22297 */ 22298 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 22299 tp->t_acktime = ticks; 22300 } 22301 tp->snd_max = tp->snd_nxt; 22302 if (rack->rc_new_rnd_needed) { 22303 /* 22304 * Update the rnd to start ticking not 22305 * that from a time perspective all of 22306 * the preceding idle time is "in the round" 22307 */ 22308 rack->rc_new_rnd_needed = 0; 22309 rack->r_ctl.roundends = tp->snd_max; 22310 } 22311 /* 22312 * Time this transmission if not a retransmission and 22313 * not currently timing anything. 22314 * This is only relevant in case of switching back to 22315 * the base stack. 22316 */ 22317 if (tp->t_rtttime == 0) { 22318 tp->t_rtttime = ticks; 22319 tp->t_rtseq = startseq; 22320 KMOD_TCPSTAT_INC(tcps_segstimed); 22321 } 22322 if (len && 22323 ((tp->t_flags & TF_GPUTINPROG) == 0)) 22324 rack_start_gp_measurement(tp, rack, startseq, sb_offset); 22325 } 22326 /* 22327 * If we are doing FO we need to update the mbuf position and subtract 22328 * this happens when the peer sends us duplicate information and 22329 * we thus want to send a DSACK. 22330 * 22331 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO 22332 * turned off? If not then we are going to echo multiple DSACK blocks 22333 * out (with the TSO), which we should not be doing. 22334 */ 22335 if (rack->r_fast_output && len) { 22336 if (rack->r_ctl.fsb.left_to_send > len) 22337 rack->r_ctl.fsb.left_to_send -= len; 22338 else 22339 rack->r_ctl.fsb.left_to_send = 0; 22340 if (rack->r_ctl.fsb.left_to_send < segsiz) 22341 rack->r_fast_output = 0; 22342 if (rack->r_fast_output) { 22343 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 22344 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 22345 rack->r_ctl.fsb.o_t_len = M_TRAILINGROOM(rack->r_ctl.fsb.m); 22346 } 22347 } 22348 } 22349 nomore: 22350 if (error) { 22351 rack->r_ctl.rc_agg_delayed = 0; 22352 rack->r_early = 0; 22353 rack->r_late = 0; 22354 rack->r_ctl.rc_agg_early = 0; 22355 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ 22356 /* 22357 * Failures do not advance the seq counter above. For the 22358 * case of ENOBUFS we will fall out and retry in 1ms with 22359 * the hpts. Everything else will just have to retransmit 22360 * with the timer. 22361 * 22362 * In any case, we do not want to loop around for another 22363 * send without a good reason. 22364 */ 22365 sendalot = 0; 22366 switch (error) { 22367 case EPERM: 22368 tp->t_softerror = error; 22369 #ifdef TCP_ACCOUNTING 22370 crtsc = get_cyclecount(); 22371 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22372 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 22373 } 22374 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22375 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 22376 } 22377 sched_unpin(); 22378 #endif 22379 return (error); 22380 case ENOBUFS: 22381 /* 22382 * Pace us right away to retry in a some 22383 * time 22384 */ 22385 if (rack->r_ctl.crte != NULL) { 22386 tcp_trace_point(rack->rc_tp, TCP_TP_HWENOBUF); 22387 if (tcp_bblogging_on(rack->rc_tp)) 22388 rack_log_queue_level(tp, rack, len, &tv, cts); 22389 } else 22390 tcp_trace_point(rack->rc_tp, TCP_TP_ENOBUF); 22391 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 22392 if (rack->rc_enobuf < 0x7f) 22393 rack->rc_enobuf++; 22394 if (slot < (10 * HPTS_USEC_IN_MSEC)) 22395 slot = 10 * HPTS_USEC_IN_MSEC; 22396 if (rack->r_ctl.crte != NULL) { 22397 counter_u64_add(rack_saw_enobuf_hw, 1); 22398 tcp_rl_log_enobuf(rack->r_ctl.crte); 22399 } 22400 counter_u64_add(rack_saw_enobuf, 1); 22401 goto enobufs; 22402 case EMSGSIZE: 22403 /* 22404 * For some reason the interface we used initially 22405 * to send segments changed to another or lowered 22406 * its MTU. If TSO was active we either got an 22407 * interface without TSO capabilits or TSO was 22408 * turned off. If we obtained mtu from ip_output() 22409 * then update it and try again. 22410 */ 22411 if (tso) 22412 tp->t_flags &= ~TF_TSO; 22413 if (mtu != 0) { 22414 int saved_mtu; 22415 22416 saved_mtu = tp->t_maxseg; 22417 tcp_mss_update(tp, -1, mtu, NULL, NULL); 22418 if (saved_mtu > tp->t_maxseg) { 22419 goto again; 22420 } 22421 } 22422 slot = 10 * HPTS_USEC_IN_MSEC; 22423 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 22424 #ifdef TCP_ACCOUNTING 22425 crtsc = get_cyclecount(); 22426 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22427 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 22428 } 22429 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22430 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 22431 } 22432 sched_unpin(); 22433 #endif 22434 return (error); 22435 case ENETUNREACH: 22436 counter_u64_add(rack_saw_enetunreach, 1); 22437 case EHOSTDOWN: 22438 case EHOSTUNREACH: 22439 case ENETDOWN: 22440 if (TCPS_HAVERCVDSYN(tp->t_state)) { 22441 tp->t_softerror = error; 22442 } 22443 /* FALLTHROUGH */ 22444 default: 22445 slot = 10 * HPTS_USEC_IN_MSEC; 22446 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 22447 #ifdef TCP_ACCOUNTING 22448 crtsc = get_cyclecount(); 22449 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22450 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 22451 } 22452 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22453 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 22454 } 22455 sched_unpin(); 22456 #endif 22457 return (error); 22458 } 22459 } else { 22460 rack->rc_enobuf = 0; 22461 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 22462 rack->r_ctl.retran_during_recovery += len; 22463 } 22464 KMOD_TCPSTAT_INC(tcps_sndtotal); 22465 22466 /* 22467 * Data sent (as far as we can tell). If this advertises a larger 22468 * window than any other segment, then remember the size of the 22469 * advertised window. Any pending ACK has now been sent. 22470 */ 22471 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) 22472 tp->rcv_adv = tp->rcv_nxt + recwin; 22473 22474 tp->last_ack_sent = tp->rcv_nxt; 22475 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 22476 enobufs: 22477 if (sendalot) { 22478 /* Do we need to turn off sendalot? */ 22479 if (rack->r_ctl.rc_pace_max_segs && 22480 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { 22481 /* We hit our max. */ 22482 sendalot = 0; 22483 } else if ((rack->rc_user_set_max_segs) && 22484 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { 22485 /* We hit the user defined max */ 22486 sendalot = 0; 22487 } 22488 } 22489 if ((error == 0) && (flags & TH_FIN)) 22490 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); 22491 if (flags & TH_RST) { 22492 /* 22493 * We don't send again after sending a RST. 22494 */ 22495 slot = 0; 22496 sendalot = 0; 22497 if (error == 0) 22498 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 22499 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { 22500 /* 22501 * Get our pacing rate, if an error 22502 * occurred in sending (ENOBUF) we would 22503 * hit the else if with slot preset. Other 22504 * errors return. 22505 */ 22506 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); 22507 } 22508 if (rsm && 22509 (rsm->r_flags & RACK_HAS_SYN) == 0 && 22510 rack->use_rack_rr) { 22511 /* Its a retransmit and we use the rack cheat? */ 22512 if ((slot == 0) || 22513 (rack->rc_always_pace == 0) || 22514 (rack->r_rr_config == 1)) { 22515 /* 22516 * We have no pacing set or we 22517 * are using old-style rack or 22518 * we are overridden to use the old 1ms pacing. 22519 */ 22520 slot = rack->r_ctl.rc_min_to; 22521 } 22522 } 22523 /* We have sent clear the flag */ 22524 rack->r_ent_rec_ns = 0; 22525 if (rack->r_must_retran) { 22526 if (rsm) { 22527 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 22528 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 22529 /* 22530 * We have retransmitted all. 22531 */ 22532 rack->r_must_retran = 0; 22533 rack->r_ctl.rc_out_at_rto = 0; 22534 } 22535 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 22536 /* 22537 * Sending new data will also kill 22538 * the loop. 22539 */ 22540 rack->r_must_retran = 0; 22541 rack->r_ctl.rc_out_at_rto = 0; 22542 } 22543 } 22544 rack->r_ctl.fsb.recwin = recwin; 22545 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) && 22546 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 22547 /* 22548 * We hit an RTO and now have past snd_max at the RTO 22549 * clear all the WAS flags. 22550 */ 22551 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY); 22552 } 22553 if (slot) { 22554 /* set the rack tcb into the slot N */ 22555 if ((error == 0) && 22556 rack_use_rfo && 22557 ((flags & (TH_SYN|TH_FIN)) == 0) && 22558 (rsm == NULL) && 22559 (tp->snd_nxt == tp->snd_max) && 22560 (ipoptlen == 0) && 22561 (tp->rcv_numsacks == 0) && 22562 rack->r_fsb_inited && 22563 TCPS_HAVEESTABLISHED(tp->t_state) && 22564 ((IN_RECOVERY(tp->t_flags)) == 0) && 22565 (rack->r_must_retran == 0) && 22566 ((tp->t_flags & TF_NEEDFIN) == 0) && 22567 (len > 0) && (orig_len > 0) && 22568 (orig_len > len) && 22569 ((orig_len - len) >= segsiz) && 22570 ((optlen == 0) || 22571 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 22572 /* We can send at least one more MSS using our fsb */ 22573 rack_setup_fast_output(tp, rack, sb, len, orig_len, 22574 segsiz, pace_max_seg, hw_tls, flags); 22575 } else 22576 rack->r_fast_output = 0; 22577 rack_log_fsb(rack, tp, so, flags, 22578 ipoptlen, orig_len, len, error, 22579 (rsm == NULL), optlen, __LINE__, 2); 22580 } else if (sendalot) { 22581 int ret; 22582 22583 sack_rxmit = 0; 22584 if ((error == 0) && 22585 rack_use_rfo && 22586 ((flags & (TH_SYN|TH_FIN)) == 0) && 22587 (rsm == NULL) && 22588 (ipoptlen == 0) && 22589 (tp->rcv_numsacks == 0) && 22590 (tp->snd_nxt == tp->snd_max) && 22591 (rack->r_must_retran == 0) && 22592 rack->r_fsb_inited && 22593 TCPS_HAVEESTABLISHED(tp->t_state) && 22594 ((IN_RECOVERY(tp->t_flags)) == 0) && 22595 ((tp->t_flags & TF_NEEDFIN) == 0) && 22596 (len > 0) && (orig_len > 0) && 22597 (orig_len > len) && 22598 ((orig_len - len) >= segsiz) && 22599 ((optlen == 0) || 22600 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 22601 /* we can use fast_output for more */ 22602 rack_setup_fast_output(tp, rack, sb, len, orig_len, 22603 segsiz, pace_max_seg, hw_tls, flags); 22604 if (rack->r_fast_output) { 22605 error = 0; 22606 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 22607 if (ret >= 0) 22608 return (ret); 22609 else if (error) 22610 goto nomore; 22611 22612 } 22613 } 22614 goto again; 22615 } 22616 /* Assure when we leave that snd_nxt will point to top */ 22617 skip_all_send: 22618 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 22619 tp->snd_nxt = tp->snd_max; 22620 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); 22621 #ifdef TCP_ACCOUNTING 22622 crtsc = get_cyclecount() - ts_val; 22623 if (tot_len_this_send) { 22624 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22625 tp->tcp_cnt_counters[SND_OUT_DATA]++; 22626 } 22627 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22628 tp->tcp_proc_time[SND_OUT_DATA] += crtsc; 22629 } 22630 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22631 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz); 22632 } 22633 } else { 22634 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22635 tp->tcp_cnt_counters[SND_OUT_ACK]++; 22636 } 22637 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 22638 tp->tcp_proc_time[SND_OUT_ACK] += crtsc; 22639 } 22640 } 22641 sched_unpin(); 22642 #endif 22643 if (error == ENOBUFS) 22644 error = 0; 22645 return (error); 22646 } 22647 22648 static void 22649 rack_update_seg(struct tcp_rack *rack) 22650 { 22651 uint32_t orig_val; 22652 22653 orig_val = rack->r_ctl.rc_pace_max_segs; 22654 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 22655 if (orig_val != rack->r_ctl.rc_pace_max_segs) 22656 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0); 22657 } 22658 22659 static void 22660 rack_mtu_change(struct tcpcb *tp) 22661 { 22662 /* 22663 * The MSS may have changed 22664 */ 22665 struct tcp_rack *rack; 22666 struct rack_sendmap *rsm; 22667 22668 rack = (struct tcp_rack *)tp->t_fb_ptr; 22669 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) { 22670 /* 22671 * The MTU has changed we need to resend everything 22672 * since all we have sent is lost. We first fix 22673 * up the mtu though. 22674 */ 22675 rack_set_pace_segments(tp, rack, __LINE__, NULL); 22676 /* We treat this like a full retransmit timeout without the cwnd adjustment */ 22677 rack_remxt_tmr(tp); 22678 rack->r_fast_output = 0; 22679 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp, 22680 rack->r_ctl.rc_sacked); 22681 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 22682 rack->r_must_retran = 1; 22683 /* Mark all inflight to needing to be rxt'd */ 22684 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 22685 rsm->r_flags |= (RACK_MUST_RXT|RACK_PMTU_CHG); 22686 } 22687 } 22688 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 22689 /* We don't use snd_nxt to retransmit */ 22690 tp->snd_nxt = tp->snd_max; 22691 } 22692 22693 static int 22694 rack_set_dgp(struct tcp_rack *rack) 22695 { 22696 /* pace_always=1 */ 22697 if (rack->rc_always_pace == 0) { 22698 if (tcp_can_enable_pacing() == 0) 22699 return (EBUSY); 22700 } 22701 rack->rc_fillcw_apply_discount = 0; 22702 rack->dgp_on = 1; 22703 rack->rc_always_pace = 1; 22704 rack->use_fixed_rate = 0; 22705 if (rack->gp_ready) 22706 rack_set_cc_pacing(rack); 22707 rack->rc_tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 22708 rack->rack_attempt_hdwr_pace = 0; 22709 /* rxt settings */ 22710 rack->full_size_rxt = 1; 22711 rack->shape_rxt_to_pacing_min = 0; 22712 /* cmpack=1 */ 22713 rack->r_use_cmp_ack = 1; 22714 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 22715 rack->r_use_cmp_ack) 22716 rack->rc_tp->t_flags2 |= TF2_MBUF_ACKCMP; 22717 /* scwnd=1 */ 22718 rack->rack_enable_scwnd = 1; 22719 /* dynamic=100 */ 22720 rack->rc_gp_dyn_mul = 1; 22721 /* gp_inc_ca */ 22722 rack->r_ctl.rack_per_of_gp_ca = 100; 22723 /* rrr_conf=3 */ 22724 rack->r_rr_config = 3; 22725 /* npush=2 */ 22726 rack->r_ctl.rc_no_push_at_mrtt = 2; 22727 /* fillcw=1 */ 22728 if (rack->r_cwnd_was_clamped == 0) { 22729 rack->rc_pace_to_cwnd = 1; 22730 } else { 22731 rack->rc_pace_to_cwnd = 0; 22732 /* Reset all multipliers to 100.0 so just the measured bw */ 22733 rack->r_ctl.rack_per_of_gp_ss = 100; 22734 rack->r_ctl.rack_per_of_gp_ca = 100; 22735 } 22736 rack->rc_pace_fill_if_rttin_range = 0; 22737 rack->rtt_limit_mul = 0; 22738 /* noprr=1 */ 22739 rack->rack_no_prr = 1; 22740 /* lscwnd=1 */ 22741 rack->r_limit_scw = 1; 22742 /* gp_inc_rec */ 22743 rack->r_ctl.rack_per_of_gp_rec = 90; 22744 rack_client_buffer_level_set(rack); 22745 return (0); 22746 } 22747 22748 22749 22750 static int 22751 rack_set_profile(struct tcp_rack *rack, int prof) 22752 { 22753 int err = EINVAL; 22754 if (prof == 1) { 22755 /* 22756 * Profile 1 is "standard" DGP. It ignores 22757 * client buffer level. 22758 */ 22759 rack->r_ctl.rc_dgp_bl_agg = DGP_LEVEL0; 22760 err = rack_set_dgp(rack); 22761 if (err) 22762 return (err); 22763 } else if (prof == 2) { 22764 /* 22765 * Profile 2 is DGP. Less aggressive with 22766 * respect to client buffer level. 22767 */ 22768 rack->r_ctl.rc_dgp_bl_agg = DGP_LEVEL1; 22769 err = rack_set_dgp(rack); 22770 if (err) 22771 return (err); 22772 } else if (prof == 3) { 22773 /* 22774 * Profile 3 is DGP. Even Less aggressive with 22775 * respect to client buffer level. 22776 */ 22777 rack->r_ctl.rc_dgp_bl_agg = DGP_LEVEL2; 22778 err = rack_set_dgp(rack); 22779 if (err) 22780 return (err); 22781 } else if (prof == 4) { 22782 /* 22783 * Profile 4 is DGP with the most responsiveness 22784 * to client buffer level. 22785 */ 22786 rack->r_ctl.rc_dgp_bl_agg = DGP_LEVEL3; 22787 err = rack_set_dgp(rack); 22788 if (err) 22789 return (err); 22790 } else if (prof == 5) { 22791 err = rack_set_dgp(rack); 22792 if (err) 22793 return (err); 22794 /* 22795 * By turning DGP off we change the rate 22796 * picked to be only the one the cwnd and rtt 22797 * get us. 22798 */ 22799 rack->dgp_on = 0; 22800 } else if (prof == 6) { 22801 err = rack_set_dgp(rack); 22802 if (err) 22803 return (err); 22804 /* 22805 * Profile 6 tweaks DGP so that it will apply to 22806 * fill-cw the same settings that profile5 does 22807 * to replace DGP. It gets then the max(dgp-rate, fillcw(discounted). 22808 */ 22809 rack->rc_fillcw_apply_discount = 1; 22810 } else if (prof == 0) { 22811 /* This changes things back to the default settings */ 22812 rack->dgp_on = 0; 22813 rack->rc_hybrid_mode = 0; 22814 err = 0; 22815 if (rack_fill_cw_state) 22816 rack->rc_pace_to_cwnd = 1; 22817 else 22818 rack->rc_pace_to_cwnd = 0; 22819 if (rack->rc_always_pace) { 22820 tcp_decrement_paced_conn(); 22821 rack_undo_cc_pacing(rack); 22822 rack->rc_always_pace = 0; 22823 } 22824 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 22825 rack->rc_always_pace = 1; 22826 if (rack->rack_hibeta) 22827 rack_set_cc_pacing(rack); 22828 } else 22829 rack->rc_always_pace = 0; 22830 if (rack_dsack_std_based & 0x1) { 22831 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */ 22832 rack->rc_rack_tmr_std_based = 1; 22833 } 22834 if (rack_dsack_std_based & 0x2) { 22835 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */ 22836 rack->rc_rack_use_dsack = 1; 22837 } 22838 if (rack_use_cmp_acks) 22839 rack->r_use_cmp_ack = 1; 22840 else 22841 rack->r_use_cmp_ack = 0; 22842 if (rack_disable_prr) 22843 rack->rack_no_prr = 1; 22844 else 22845 rack->rack_no_prr = 0; 22846 if (rack_gp_no_rec_chg) 22847 rack->rc_gp_no_rec_chg = 1; 22848 else 22849 rack->rc_gp_no_rec_chg = 0; 22850 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) { 22851 rack->r_mbuf_queue = 1; 22852 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 22853 rack->rc_tp->t_flags2 |= TF2_MBUF_ACKCMP; 22854 rack->rc_tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 22855 } else { 22856 rack->r_mbuf_queue = 0; 22857 rack->rc_tp->t_flags2 &= ~TF2_SUPPORTS_MBUFQ; 22858 } 22859 if (rack_enable_shared_cwnd) 22860 rack->rack_enable_scwnd = 1; 22861 else 22862 rack->rack_enable_scwnd = 0; 22863 if (rack_do_dyn_mul) { 22864 /* When dynamic adjustment is on CA needs to start at 100% */ 22865 rack->rc_gp_dyn_mul = 1; 22866 if (rack_do_dyn_mul >= 100) 22867 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 22868 } else { 22869 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 22870 rack->rc_gp_dyn_mul = 0; 22871 } 22872 rack->r_rr_config = 0; 22873 rack->r_ctl.rc_no_push_at_mrtt = 0; 22874 rack->rc_pace_to_cwnd = 0; 22875 rack->rc_pace_fill_if_rttin_range = 0; 22876 rack->rtt_limit_mul = 0; 22877 22878 if (rack_enable_hw_pacing) 22879 rack->rack_hdw_pace_ena = 1; 22880 else 22881 rack->rack_hdw_pace_ena = 0; 22882 if (rack_disable_prr) 22883 rack->rack_no_prr = 1; 22884 else 22885 rack->rack_no_prr = 0; 22886 if (rack_limits_scwnd) 22887 rack->r_limit_scw = 1; 22888 else 22889 rack->r_limit_scw = 0; 22890 rack_init_retransmit_value(rack, rack_rxt_controls); 22891 err = 0; 22892 } 22893 return (err); 22894 } 22895 22896 static int 22897 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval) 22898 { 22899 struct deferred_opt_list *dol; 22900 22901 dol = malloc(sizeof(struct deferred_opt_list), 22902 M_TCPFSB, M_NOWAIT|M_ZERO); 22903 if (dol == NULL) { 22904 /* 22905 * No space yikes -- fail out.. 22906 */ 22907 return (0); 22908 } 22909 dol->optname = sopt_name; 22910 dol->optval = loptval; 22911 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next); 22912 return (1); 22913 } 22914 22915 static int 22916 process_hybrid_pacing(struct tcp_rack *rack, struct tcp_hybrid_req *hybrid) 22917 { 22918 #ifdef TCP_REQUEST_TRK 22919 struct tcp_sendfile_track *sft; 22920 struct timeval tv; 22921 tcp_seq seq; 22922 int err; 22923 22924 microuptime(&tv); 22925 22926 /* 22927 * If BB logging is not on we need to look at the DTL flag. 22928 * If its on already then those reasons override the DTL input. 22929 * We do this with any request, you can turn DTL on, but it does 22930 * not turn off at least from hybrid pacing requests. 22931 */ 22932 if (tcp_bblogging_on(rack->rc_tp) == 0) { 22933 if (hybrid->hybrid_flags & TCP_HYBRID_PACING_DTL) { 22934 /* Turn on BB point logging */ 22935 tcp_set_bblog_state(rack->rc_tp, TCP_LOG_VIA_BBPOINTS, 22936 TCP_BBPOINT_REQ_LEVEL_LOGGING); 22937 } 22938 } 22939 /* Make sure no fixed rate is on */ 22940 rack->use_fixed_rate = 0; 22941 rack->r_ctl.rc_fixed_pacing_rate_rec = 0; 22942 rack->r_ctl.rc_fixed_pacing_rate_ca = 0; 22943 rack->r_ctl.rc_fixed_pacing_rate_ss = 0; 22944 /* Now allocate or find our entry that will have these settings */ 22945 sft = tcp_req_alloc_req_full(rack->rc_tp, &hybrid->req, tcp_tv_to_lusectick(&tv), 0); 22946 if (sft == NULL) { 22947 rack->rc_tp->tcp_hybrid_error++; 22948 /* no space, where would it have gone? */ 22949 seq = rack->rc_tp->snd_una + rack->rc_tp->t_inpcb.inp_socket->so_snd.sb_ccc; 22950 rack_log_hybrid(rack, seq, NULL, HYBRID_LOG_NO_ROOM, __LINE__, 0); 22951 return (ENOSPC); 22952 } 22953 /* The seq will be snd_una + everything in the buffer */ 22954 seq = sft->start_seq; 22955 if ((hybrid->hybrid_flags & TCP_HYBRID_PACING_ENABLE) == 0) { 22956 /* Disabling hybrid pacing */ 22957 if (rack->rc_hybrid_mode) { 22958 rack_set_profile(rack, 0); 22959 rack->rc_tp->tcp_hybrid_stop++; 22960 } 22961 rack_log_hybrid(rack, seq, sft, HYBRID_LOG_TURNED_OFF, __LINE__, 0); 22962 return (0); 22963 } 22964 if (rack->dgp_on == 0) { 22965 /* 22966 * If we have not yet turned DGP on, do so 22967 * now setting pure DGP mode, no buffer level 22968 * response. 22969 */ 22970 if ((err = rack_set_profile(rack, 1)) != 0){ 22971 /* Failed to turn pacing on */ 22972 rack->rc_tp->tcp_hybrid_error++; 22973 rack_log_hybrid(rack, seq, sft, HYBRID_LOG_NO_PACING, __LINE__, 0); 22974 return (err); 22975 } 22976 } 22977 /* Now set in our flags */ 22978 sft->hybrid_flags = hybrid->hybrid_flags | TCP_HYBRID_PACING_WASSET; 22979 if (hybrid->hybrid_flags & TCP_HYBRID_PACING_CSPR) 22980 sft->cspr = hybrid->cspr; 22981 else 22982 sft->cspr = 0; 22983 if (hybrid->hybrid_flags & TCP_HYBRID_PACING_H_MS) 22984 sft->hint_maxseg = hybrid->hint_maxseg; 22985 else 22986 sft->hint_maxseg = 0; 22987 rack->rc_hybrid_mode = 1; 22988 rack->rc_tp->tcp_hybrid_start++; 22989 rack_log_hybrid(rack, seq, sft, HYBRID_LOG_RULES_SET, __LINE__,0); 22990 return (0); 22991 #else 22992 return (ENOTSUP); 22993 #endif 22994 } 22995 22996 static int 22997 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, 22998 uint32_t optval, uint64_t loptval, struct tcp_hybrid_req *hybrid) 22999 23000 { 23001 struct epoch_tracker et; 23002 struct sockopt sopt; 23003 struct cc_newreno_opts opt; 23004 uint64_t val; 23005 int error = 0; 23006 uint16_t ca, ss; 23007 23008 switch (sopt_name) { 23009 case TCP_RACK_SET_RXT_OPTIONS: 23010 if ((optval >= 0) && (optval <= 2)) { 23011 rack_init_retransmit_value(rack, optval); 23012 } else { 23013 /* 23014 * You must send in 0, 1 or 2 all else is 23015 * invalid. 23016 */ 23017 error = EINVAL; 23018 } 23019 break; 23020 case TCP_RACK_DSACK_OPT: 23021 RACK_OPTS_INC(tcp_rack_dsack_opt); 23022 if (optval & 0x1) { 23023 rack->rc_rack_tmr_std_based = 1; 23024 } else { 23025 rack->rc_rack_tmr_std_based = 0; 23026 } 23027 if (optval & 0x2) { 23028 rack->rc_rack_use_dsack = 1; 23029 } else { 23030 rack->rc_rack_use_dsack = 0; 23031 } 23032 rack_log_dsack_event(rack, 5, __LINE__, 0, 0); 23033 break; 23034 case TCP_RACK_PACING_DIVISOR: 23035 RACK_OPTS_INC(tcp_rack_pacing_divisor); 23036 if (optval == 0) { 23037 rack->r_ctl.pace_len_divisor = rack_default_pacing_divisor; 23038 } else { 23039 if (optval < RL_MIN_DIVISOR) 23040 rack->r_ctl.pace_len_divisor = RL_MIN_DIVISOR; 23041 else 23042 rack->r_ctl.pace_len_divisor = optval; 23043 } 23044 break; 23045 case TCP_RACK_HI_BETA: 23046 RACK_OPTS_INC(tcp_rack_hi_beta); 23047 if (optval > 0) { 23048 rack->rack_hibeta = 1; 23049 if ((optval >= 50) && 23050 (optval <= 100)) { 23051 /* 23052 * User wants to set a custom beta. 23053 */ 23054 rack->r_ctl.saved_hibeta = optval; 23055 if (rack->rc_pacing_cc_set) 23056 rack_undo_cc_pacing(rack); 23057 rack->r_ctl.rc_saved_beta.beta = optval; 23058 } 23059 if (rack->rc_pacing_cc_set == 0) 23060 rack_set_cc_pacing(rack); 23061 } else { 23062 rack->rack_hibeta = 0; 23063 if (rack->rc_pacing_cc_set) 23064 rack_undo_cc_pacing(rack); 23065 } 23066 break; 23067 case TCP_RACK_PACING_BETA: 23068 RACK_OPTS_INC(tcp_rack_beta); 23069 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) { 23070 /* This only works for newreno. */ 23071 error = EINVAL; 23072 break; 23073 } 23074 if (rack->rc_pacing_cc_set) { 23075 /* 23076 * Set them into the real CC module 23077 * whats in the rack pcb is the old values 23078 * to be used on restoral/ 23079 */ 23080 sopt.sopt_dir = SOPT_SET; 23081 opt.name = CC_NEWRENO_BETA; 23082 opt.val = optval; 23083 if (CC_ALGO(tp)->ctl_output != NULL) 23084 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 23085 else { 23086 error = ENOENT; 23087 break; 23088 } 23089 } else { 23090 /* 23091 * Not pacing yet so set it into our local 23092 * rack pcb storage. 23093 */ 23094 rack->r_ctl.rc_saved_beta.beta = optval; 23095 } 23096 break; 23097 case TCP_RACK_TIMER_SLOP: 23098 RACK_OPTS_INC(tcp_rack_timer_slop); 23099 rack->r_ctl.timer_slop = optval; 23100 if (rack->rc_tp->t_srtt) { 23101 /* 23102 * If we have an SRTT lets update t_rxtcur 23103 * to have the new slop. 23104 */ 23105 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 23106 rack_rto_min, rack_rto_max, 23107 rack->r_ctl.timer_slop); 23108 } 23109 break; 23110 case TCP_RACK_PACING_BETA_ECN: 23111 RACK_OPTS_INC(tcp_rack_beta_ecn); 23112 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) { 23113 /* This only works for newreno. */ 23114 error = EINVAL; 23115 break; 23116 } 23117 if (rack->rc_pacing_cc_set) { 23118 /* 23119 * Set them into the real CC module 23120 * whats in the rack pcb is the old values 23121 * to be used on restoral/ 23122 */ 23123 sopt.sopt_dir = SOPT_SET; 23124 opt.name = CC_NEWRENO_BETA_ECN; 23125 opt.val = optval; 23126 if (CC_ALGO(tp)->ctl_output != NULL) 23127 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt); 23128 else 23129 error = ENOENT; 23130 } else { 23131 /* 23132 * Not pacing yet so set it into our local 23133 * rack pcb storage. 23134 */ 23135 rack->r_ctl.rc_saved_beta.beta_ecn = optval; 23136 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED; 23137 } 23138 break; 23139 case TCP_DEFER_OPTIONS: 23140 RACK_OPTS_INC(tcp_defer_opt); 23141 if (optval) { 23142 if (rack->gp_ready) { 23143 /* Too late */ 23144 error = EINVAL; 23145 break; 23146 } 23147 rack->defer_options = 1; 23148 } else 23149 rack->defer_options = 0; 23150 break; 23151 case TCP_RACK_MEASURE_CNT: 23152 RACK_OPTS_INC(tcp_rack_measure_cnt); 23153 if (optval && (optval <= 0xff)) { 23154 rack->r_ctl.req_measurements = optval; 23155 } else 23156 error = EINVAL; 23157 break; 23158 case TCP_REC_ABC_VAL: 23159 RACK_OPTS_INC(tcp_rec_abc_val); 23160 if (optval > 0) 23161 rack->r_use_labc_for_rec = 1; 23162 else 23163 rack->r_use_labc_for_rec = 0; 23164 break; 23165 case TCP_RACK_ABC_VAL: 23166 RACK_OPTS_INC(tcp_rack_abc_val); 23167 if ((optval > 0) && (optval < 255)) 23168 rack->rc_labc = optval; 23169 else 23170 error = EINVAL; 23171 break; 23172 case TCP_HDWR_UP_ONLY: 23173 RACK_OPTS_INC(tcp_pacing_up_only); 23174 if (optval) 23175 rack->r_up_only = 1; 23176 else 23177 rack->r_up_only = 0; 23178 break; 23179 case TCP_PACING_RATE_CAP: 23180 RACK_OPTS_INC(tcp_pacing_rate_cap); 23181 rack->r_ctl.bw_rate_cap = loptval; 23182 break; 23183 case TCP_HYBRID_PACING: 23184 if (hybrid == NULL) { 23185 error = EINVAL; 23186 break; 23187 } 23188 error = process_hybrid_pacing(rack, hybrid); 23189 break; 23190 case TCP_RACK_PROFILE: 23191 RACK_OPTS_INC(tcp_profile); 23192 error = rack_set_profile(rack, optval); 23193 break; 23194 case TCP_USE_CMP_ACKS: 23195 RACK_OPTS_INC(tcp_use_cmp_acks); 23196 if ((optval == 0) && (tp->t_flags2 & TF2_MBUF_ACKCMP)) { 23197 /* You can't turn it off once its on! */ 23198 error = EINVAL; 23199 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) { 23200 rack->r_use_cmp_ack = 1; 23201 rack->r_mbuf_queue = 1; 23202 tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 23203 } 23204 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 23205 tp->t_flags2 |= TF2_MBUF_ACKCMP; 23206 break; 23207 case TCP_SHARED_CWND_TIME_LIMIT: 23208 RACK_OPTS_INC(tcp_lscwnd); 23209 if (optval) 23210 rack->r_limit_scw = 1; 23211 else 23212 rack->r_limit_scw = 0; 23213 break; 23214 case TCP_RACK_DGP_IN_REC: 23215 RACK_OPTS_INC(tcp_dgp_in_rec); 23216 if (optval) 23217 rack->r_ctl.full_dgp_in_rec = 1; 23218 else 23219 rack->r_ctl.full_dgp_in_rec = 0; 23220 break; 23221 case TCP_RXT_CLAMP: 23222 RACK_OPTS_INC(tcp_rxt_clamp); 23223 rack_translate_clamp_value(rack, optval); 23224 break; 23225 case TCP_RACK_PACE_TO_FILL: 23226 RACK_OPTS_INC(tcp_fillcw); 23227 if (optval == 0) 23228 rack->rc_pace_to_cwnd = 0; 23229 else { 23230 rack->rc_pace_to_cwnd = 1; 23231 if (optval > 1) 23232 rack->r_fill_less_agg = 1; 23233 } 23234 if ((optval >= rack_gp_rtt_maxmul) && 23235 rack_gp_rtt_maxmul && 23236 (optval < 0xf)) { 23237 rack->rc_pace_fill_if_rttin_range = 1; 23238 rack->rtt_limit_mul = optval; 23239 } else { 23240 rack->rc_pace_fill_if_rttin_range = 0; 23241 rack->rtt_limit_mul = 0; 23242 } 23243 break; 23244 case TCP_RACK_NO_PUSH_AT_MAX: 23245 RACK_OPTS_INC(tcp_npush); 23246 if (optval == 0) 23247 rack->r_ctl.rc_no_push_at_mrtt = 0; 23248 else if (optval < 0xff) 23249 rack->r_ctl.rc_no_push_at_mrtt = optval; 23250 else 23251 error = EINVAL; 23252 break; 23253 case TCP_SHARED_CWND_ENABLE: 23254 RACK_OPTS_INC(tcp_rack_scwnd); 23255 if (optval == 0) 23256 rack->rack_enable_scwnd = 0; 23257 else 23258 rack->rack_enable_scwnd = 1; 23259 break; 23260 case TCP_RACK_MBUF_QUEUE: 23261 /* Now do we use the LRO mbuf-queue feature */ 23262 RACK_OPTS_INC(tcp_rack_mbufq); 23263 if (optval || rack->r_use_cmp_ack) 23264 rack->r_mbuf_queue = 1; 23265 else 23266 rack->r_mbuf_queue = 0; 23267 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 23268 tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 23269 else 23270 tp->t_flags2 &= ~TF2_SUPPORTS_MBUFQ; 23271 break; 23272 case TCP_RACK_NONRXT_CFG_RATE: 23273 RACK_OPTS_INC(tcp_rack_cfg_rate); 23274 if (optval == 0) 23275 rack->rack_rec_nonrxt_use_cr = 0; 23276 else 23277 rack->rack_rec_nonrxt_use_cr = 1; 23278 break; 23279 case TCP_NO_PRR: 23280 RACK_OPTS_INC(tcp_rack_noprr); 23281 if (optval == 0) 23282 rack->rack_no_prr = 0; 23283 else if (optval == 1) 23284 rack->rack_no_prr = 1; 23285 else if (optval == 2) 23286 rack->no_prr_addback = 1; 23287 else 23288 error = EINVAL; 23289 break; 23290 case TCP_TIMELY_DYN_ADJ: 23291 RACK_OPTS_INC(tcp_timely_dyn); 23292 if (optval == 0) 23293 rack->rc_gp_dyn_mul = 0; 23294 else { 23295 rack->rc_gp_dyn_mul = 1; 23296 if (optval >= 100) { 23297 /* 23298 * If the user sets something 100 or more 23299 * its the gp_ca value. 23300 */ 23301 rack->r_ctl.rack_per_of_gp_ca = optval; 23302 } 23303 } 23304 break; 23305 case TCP_RACK_DO_DETECTION: 23306 RACK_OPTS_INC(tcp_rack_do_detection); 23307 if (optval == 0) 23308 rack->do_detection = 0; 23309 else 23310 rack->do_detection = 1; 23311 break; 23312 case TCP_RACK_TLP_USE: 23313 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { 23314 error = EINVAL; 23315 break; 23316 } 23317 RACK_OPTS_INC(tcp_tlp_use); 23318 rack->rack_tlp_threshold_use = optval; 23319 break; 23320 case TCP_RACK_TLP_REDUCE: 23321 /* RACK TLP cwnd reduction (bool) */ 23322 RACK_OPTS_INC(tcp_rack_tlp_reduce); 23323 rack->r_ctl.rc_tlp_cwnd_reduce = optval; 23324 break; 23325 /* Pacing related ones */ 23326 case TCP_RACK_PACE_ALWAYS: 23327 /* 23328 * zero is old rack method, 1 is new 23329 * method using a pacing rate. 23330 */ 23331 RACK_OPTS_INC(tcp_rack_pace_always); 23332 if (optval > 0) { 23333 if (rack->rc_always_pace) { 23334 error = EALREADY; 23335 break; 23336 } else if (tcp_can_enable_pacing()) { 23337 rack->rc_always_pace = 1; 23338 if (rack->rack_hibeta) 23339 rack_set_cc_pacing(rack); 23340 } 23341 else { 23342 error = ENOSPC; 23343 break; 23344 } 23345 } else { 23346 if (rack->rc_always_pace) { 23347 tcp_decrement_paced_conn(); 23348 rack->rc_always_pace = 0; 23349 rack_undo_cc_pacing(rack); 23350 } 23351 } 23352 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 23353 tp->t_flags2 |= TF2_SUPPORTS_MBUFQ; 23354 else 23355 tp->t_flags2 &= ~TF2_SUPPORTS_MBUFQ; 23356 /* A rate may be set irate or other, if so set seg size */ 23357 rack_update_seg(rack); 23358 break; 23359 case TCP_BBR_RACK_INIT_RATE: 23360 RACK_OPTS_INC(tcp_initial_rate); 23361 val = optval; 23362 /* Change from kbits per second to bytes per second */ 23363 val *= 1000; 23364 val /= 8; 23365 rack->r_ctl.init_rate = val; 23366 if (rack->rc_init_win != rack_default_init_window) { 23367 uint32_t win, snt; 23368 23369 /* 23370 * Options don't always get applied 23371 * in the order you think. So in order 23372 * to assure we update a cwnd we need 23373 * to check and see if we are still 23374 * where we should raise the cwnd. 23375 */ 23376 win = rc_init_window(rack); 23377 if (SEQ_GT(tp->snd_max, tp->iss)) 23378 snt = tp->snd_max - tp->iss; 23379 else 23380 snt = 0; 23381 if ((snt < win) && 23382 (tp->snd_cwnd < win)) 23383 tp->snd_cwnd = win; 23384 } 23385 if (rack->rc_always_pace) 23386 rack_update_seg(rack); 23387 break; 23388 case TCP_BBR_IWINTSO: 23389 RACK_OPTS_INC(tcp_initial_win); 23390 if (optval && (optval <= 0xff)) { 23391 uint32_t win, snt; 23392 23393 rack->rc_init_win = optval; 23394 win = rc_init_window(rack); 23395 if (SEQ_GT(tp->snd_max, tp->iss)) 23396 snt = tp->snd_max - tp->iss; 23397 else 23398 snt = 0; 23399 if ((snt < win) && 23400 (tp->t_srtt | 23401 rack->r_ctl.init_rate)) { 23402 /* 23403 * We are not past the initial window 23404 * and we have some bases for pacing, 23405 * so we need to possibly adjust up 23406 * the cwnd. Note even if we don't set 23407 * the cwnd, its still ok to raise the rc_init_win 23408 * which can be used coming out of idle when we 23409 * would have a rate. 23410 */ 23411 if (tp->snd_cwnd < win) 23412 tp->snd_cwnd = win; 23413 } 23414 if (rack->rc_always_pace) 23415 rack_update_seg(rack); 23416 } else 23417 error = EINVAL; 23418 break; 23419 case TCP_RACK_FORCE_MSEG: 23420 RACK_OPTS_INC(tcp_rack_force_max_seg); 23421 if (optval) 23422 rack->rc_force_max_seg = 1; 23423 else 23424 rack->rc_force_max_seg = 0; 23425 break; 23426 case TCP_RACK_PACE_MIN_SEG: 23427 RACK_OPTS_INC(tcp_rack_min_seg); 23428 rack->r_ctl.rc_user_set_min_segs = (0x0000ffff & optval); 23429 rack_set_pace_segments(tp, rack, __LINE__, NULL); 23430 break; 23431 case TCP_RACK_PACE_MAX_SEG: 23432 /* Max segments size in a pace in bytes */ 23433 RACK_OPTS_INC(tcp_rack_max_seg); 23434 if (optval <= MAX_USER_SET_SEG) 23435 rack->rc_user_set_max_segs = optval; 23436 else 23437 rack->rc_user_set_max_segs = MAX_USER_SET_SEG; 23438 rack_set_pace_segments(tp, rack, __LINE__, NULL); 23439 break; 23440 case TCP_RACK_PACE_RATE_REC: 23441 /* Set the fixed pacing rate in Bytes per second ca */ 23442 RACK_OPTS_INC(tcp_rack_pace_rate_rec); 23443 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 23444 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 23445 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 23446 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 23447 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 23448 rack->use_fixed_rate = 1; 23449 if (rack->rack_hibeta) 23450 rack_set_cc_pacing(rack); 23451 rack_log_pacing_delay_calc(rack, 23452 rack->r_ctl.rc_fixed_pacing_rate_ss, 23453 rack->r_ctl.rc_fixed_pacing_rate_ca, 23454 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 23455 __LINE__, NULL,0); 23456 break; 23457 23458 case TCP_RACK_PACE_RATE_SS: 23459 /* Set the fixed pacing rate in Bytes per second ca */ 23460 RACK_OPTS_INC(tcp_rack_pace_rate_ss); 23461 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 23462 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 23463 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 23464 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 23465 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 23466 rack->use_fixed_rate = 1; 23467 if (rack->rack_hibeta) 23468 rack_set_cc_pacing(rack); 23469 rack_log_pacing_delay_calc(rack, 23470 rack->r_ctl.rc_fixed_pacing_rate_ss, 23471 rack->r_ctl.rc_fixed_pacing_rate_ca, 23472 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 23473 __LINE__, NULL, 0); 23474 break; 23475 23476 case TCP_RACK_PACE_RATE_CA: 23477 /* Set the fixed pacing rate in Bytes per second ca */ 23478 RACK_OPTS_INC(tcp_rack_pace_rate_ca); 23479 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 23480 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 23481 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 23482 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 23483 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 23484 rack->use_fixed_rate = 1; 23485 if (rack->rack_hibeta) 23486 rack_set_cc_pacing(rack); 23487 rack_log_pacing_delay_calc(rack, 23488 rack->r_ctl.rc_fixed_pacing_rate_ss, 23489 rack->r_ctl.rc_fixed_pacing_rate_ca, 23490 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 23491 __LINE__, NULL, 0); 23492 break; 23493 case TCP_RACK_GP_INCREASE_REC: 23494 RACK_OPTS_INC(tcp_gp_inc_rec); 23495 rack->r_ctl.rack_per_of_gp_rec = optval; 23496 rack_log_pacing_delay_calc(rack, 23497 rack->r_ctl.rack_per_of_gp_ss, 23498 rack->r_ctl.rack_per_of_gp_ca, 23499 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 23500 __LINE__, NULL, 0); 23501 break; 23502 case TCP_RACK_GP_INCREASE_CA: 23503 RACK_OPTS_INC(tcp_gp_inc_ca); 23504 ca = optval; 23505 if (ca < 100) { 23506 /* 23507 * We don't allow any reduction 23508 * over the GP b/w. 23509 */ 23510 error = EINVAL; 23511 break; 23512 } 23513 rack->r_ctl.rack_per_of_gp_ca = ca; 23514 rack_log_pacing_delay_calc(rack, 23515 rack->r_ctl.rack_per_of_gp_ss, 23516 rack->r_ctl.rack_per_of_gp_ca, 23517 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 23518 __LINE__, NULL, 0); 23519 break; 23520 case TCP_RACK_GP_INCREASE_SS: 23521 RACK_OPTS_INC(tcp_gp_inc_ss); 23522 ss = optval; 23523 if (ss < 100) { 23524 /* 23525 * We don't allow any reduction 23526 * over the GP b/w. 23527 */ 23528 error = EINVAL; 23529 break; 23530 } 23531 rack->r_ctl.rack_per_of_gp_ss = ss; 23532 rack_log_pacing_delay_calc(rack, 23533 rack->r_ctl.rack_per_of_gp_ss, 23534 rack->r_ctl.rack_per_of_gp_ca, 23535 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 23536 __LINE__, NULL, 0); 23537 break; 23538 case TCP_RACK_RR_CONF: 23539 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); 23540 if (optval && optval <= 3) 23541 rack->r_rr_config = optval; 23542 else 23543 rack->r_rr_config = 0; 23544 break; 23545 case TCP_PACING_DND: /* URL:dnd */ 23546 if (optval > 0) 23547 rack->rc_pace_dnd = 1; 23548 else 23549 rack->rc_pace_dnd = 0; 23550 break; 23551 case TCP_HDWR_RATE_CAP: 23552 RACK_OPTS_INC(tcp_hdwr_rate_cap); 23553 if (optval) { 23554 if (rack->r_rack_hw_rate_caps == 0) 23555 rack->r_rack_hw_rate_caps = 1; 23556 else 23557 error = EALREADY; 23558 } else { 23559 rack->r_rack_hw_rate_caps = 0; 23560 } 23561 break; 23562 case TCP_RACK_SPLIT_LIMIT: 23563 RACK_OPTS_INC(tcp_split_limit); 23564 rack->r_ctl.rc_split_limit = optval; 23565 break; 23566 case TCP_BBR_HDWR_PACE: 23567 RACK_OPTS_INC(tcp_hdwr_pacing); 23568 if (optval){ 23569 if (rack->rack_hdrw_pacing == 0) { 23570 rack->rack_hdw_pace_ena = 1; 23571 rack->rack_attempt_hdwr_pace = 0; 23572 } else 23573 error = EALREADY; 23574 } else { 23575 rack->rack_hdw_pace_ena = 0; 23576 #ifdef RATELIMIT 23577 if (rack->r_ctl.crte != NULL) { 23578 rack->rack_hdrw_pacing = 0; 23579 rack->rack_attempt_hdwr_pace = 0; 23580 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 23581 rack->r_ctl.crte = NULL; 23582 } 23583 #endif 23584 } 23585 break; 23586 /* End Pacing related ones */ 23587 case TCP_RACK_PRR_SENDALOT: 23588 /* Allow PRR to send more than one seg */ 23589 RACK_OPTS_INC(tcp_rack_prr_sendalot); 23590 rack->r_ctl.rc_prr_sendalot = optval; 23591 break; 23592 case TCP_RACK_MIN_TO: 23593 /* Minimum time between rack t-o's in ms */ 23594 RACK_OPTS_INC(tcp_rack_min_to); 23595 rack->r_ctl.rc_min_to = optval; 23596 break; 23597 case TCP_RACK_EARLY_SEG: 23598 /* If early recovery max segments */ 23599 RACK_OPTS_INC(tcp_rack_early_seg); 23600 rack->r_ctl.rc_early_recovery_segs = optval; 23601 break; 23602 case TCP_RACK_ENABLE_HYSTART: 23603 { 23604 if (optval) { 23605 tp->t_ccv.flags |= CCF_HYSTART_ALLOWED; 23606 if (rack_do_hystart > RACK_HYSTART_ON) 23607 tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND; 23608 if (rack_do_hystart > RACK_HYSTART_ON_W_SC) 23609 tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH; 23610 } else { 23611 tp->t_ccv.flags &= ~(CCF_HYSTART_ALLOWED|CCF_HYSTART_CAN_SH_CWND|CCF_HYSTART_CONS_SSTH); 23612 } 23613 } 23614 break; 23615 case TCP_RACK_REORD_THRESH: 23616 /* RACK reorder threshold (shift amount) */ 23617 RACK_OPTS_INC(tcp_rack_reord_thresh); 23618 if ((optval > 0) && (optval < 31)) 23619 rack->r_ctl.rc_reorder_shift = optval; 23620 else 23621 error = EINVAL; 23622 break; 23623 case TCP_RACK_REORD_FADE: 23624 /* Does reordering fade after ms time */ 23625 RACK_OPTS_INC(tcp_rack_reord_fade); 23626 rack->r_ctl.rc_reorder_fade = optval; 23627 break; 23628 case TCP_RACK_TLP_THRESH: 23629 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 23630 RACK_OPTS_INC(tcp_rack_tlp_thresh); 23631 if (optval) 23632 rack->r_ctl.rc_tlp_threshold = optval; 23633 else 23634 error = EINVAL; 23635 break; 23636 case TCP_BBR_USE_RACK_RR: 23637 RACK_OPTS_INC(tcp_rack_rr); 23638 if (optval) 23639 rack->use_rack_rr = 1; 23640 else 23641 rack->use_rack_rr = 0; 23642 break; 23643 case TCP_RACK_PKT_DELAY: 23644 /* RACK added ms i.e. rack-rtt + reord + N */ 23645 RACK_OPTS_INC(tcp_rack_pkt_delay); 23646 rack->r_ctl.rc_pkt_delay = optval; 23647 break; 23648 case TCP_DELACK: 23649 RACK_OPTS_INC(tcp_rack_delayed_ack); 23650 if (optval == 0) 23651 tp->t_delayed_ack = 0; 23652 else 23653 tp->t_delayed_ack = 1; 23654 if (tp->t_flags & TF_DELACK) { 23655 tp->t_flags &= ~TF_DELACK; 23656 tp->t_flags |= TF_ACKNOW; 23657 NET_EPOCH_ENTER(et); 23658 rack_output(tp); 23659 NET_EPOCH_EXIT(et); 23660 } 23661 break; 23662 23663 case TCP_BBR_RACK_RTT_USE: 23664 RACK_OPTS_INC(tcp_rack_rtt_use); 23665 if ((optval != USE_RTT_HIGH) && 23666 (optval != USE_RTT_LOW) && 23667 (optval != USE_RTT_AVG)) 23668 error = EINVAL; 23669 else 23670 rack->r_ctl.rc_rate_sample_method = optval; 23671 break; 23672 case TCP_DATA_AFTER_CLOSE: 23673 RACK_OPTS_INC(tcp_data_after_close); 23674 if (optval) 23675 rack->rc_allow_data_af_clo = 1; 23676 else 23677 rack->rc_allow_data_af_clo = 0; 23678 break; 23679 default: 23680 break; 23681 } 23682 tcp_log_socket_option(tp, sopt_name, optval, error); 23683 return (error); 23684 } 23685 23686 23687 static void 23688 rack_apply_deferred_options(struct tcp_rack *rack) 23689 { 23690 struct deferred_opt_list *dol, *sdol; 23691 uint32_t s_optval; 23692 23693 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) { 23694 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 23695 /* Disadvantage of deferal is you loose the error return */ 23696 s_optval = (uint32_t)dol->optval; 23697 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval, NULL); 23698 free(dol, M_TCPDO); 23699 } 23700 } 23701 23702 static void 23703 rack_hw_tls_change(struct tcpcb *tp, int chg) 23704 { 23705 /* Update HW tls state */ 23706 struct tcp_rack *rack; 23707 23708 rack = (struct tcp_rack *)tp->t_fb_ptr; 23709 if (chg) 23710 rack->r_ctl.fsb.hw_tls = 1; 23711 else 23712 rack->r_ctl.fsb.hw_tls = 0; 23713 } 23714 23715 static int 23716 rack_pru_options(struct tcpcb *tp, int flags) 23717 { 23718 if (flags & PRUS_OOB) 23719 return (EOPNOTSUPP); 23720 return (0); 23721 } 23722 23723 static bool 23724 rack_wake_check(struct tcpcb *tp) 23725 { 23726 struct tcp_rack *rack; 23727 struct timeval tv; 23728 uint32_t cts; 23729 23730 rack = (struct tcp_rack *)tp->t_fb_ptr; 23731 if (rack->r_ctl.rc_hpts_flags) { 23732 cts = tcp_get_usecs(&tv); 23733 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == PACE_PKT_OUTPUT){ 23734 /* 23735 * Pacing timer is up, check if we are ready. 23736 */ 23737 if (TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) 23738 return (true); 23739 } else if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) != 0) { 23740 /* 23741 * A timer is up, check if we are ready. 23742 */ 23743 if (TSTMP_GEQ(cts, rack->r_ctl.rc_timer_exp)) 23744 return (true); 23745 } 23746 } 23747 return (false); 23748 } 23749 23750 static struct tcp_function_block __tcp_rack = { 23751 .tfb_tcp_block_name = __XSTRING(STACKNAME), 23752 .tfb_tcp_output = rack_output, 23753 .tfb_do_queued_segments = ctf_do_queued_segments, 23754 .tfb_do_segment_nounlock = rack_do_segment_nounlock, 23755 .tfb_tcp_do_segment = rack_do_segment, 23756 .tfb_tcp_ctloutput = rack_ctloutput, 23757 .tfb_tcp_fb_init = rack_init, 23758 .tfb_tcp_fb_fini = rack_fini, 23759 .tfb_tcp_timer_stop_all = rack_stopall, 23760 .tfb_tcp_rexmit_tmr = rack_remxt_tmr, 23761 .tfb_tcp_handoff_ok = rack_handoff_ok, 23762 .tfb_tcp_mtu_chg = rack_mtu_change, 23763 .tfb_pru_options = rack_pru_options, 23764 .tfb_hwtls_change = rack_hw_tls_change, 23765 .tfb_chg_query = rack_chg_query, 23766 .tfb_switch_failed = rack_switch_failed, 23767 .tfb_early_wake_check = rack_wake_check, 23768 .tfb_compute_pipe = rack_compute_pipe, 23769 .tfb_flags = TCP_FUNC_OUTPUT_CANDROP, 23770 }; 23771 23772 /* 23773 * rack_ctloutput() must drop the inpcb lock before performing copyin on 23774 * socket option arguments. When it re-acquires the lock after the copy, it 23775 * has to revalidate that the connection is still valid for the socket 23776 * option. 23777 */ 23778 static int 23779 rack_set_sockopt(struct tcpcb *tp, struct sockopt *sopt) 23780 { 23781 struct inpcb *inp = tptoinpcb(tp); 23782 #ifdef INET 23783 struct ip *ip; 23784 #endif 23785 struct tcp_rack *rack; 23786 struct tcp_hybrid_req hybrid; 23787 uint64_t loptval; 23788 int32_t error = 0, optval; 23789 23790 rack = (struct tcp_rack *)tp->t_fb_ptr; 23791 if (rack == NULL) { 23792 INP_WUNLOCK(inp); 23793 return (EINVAL); 23794 } 23795 #ifdef INET 23796 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 23797 #endif 23798 23799 switch (sopt->sopt_level) { 23800 #ifdef INET6 23801 case IPPROTO_IPV6: 23802 MPASS(inp->inp_vflag & INP_IPV6PROTO); 23803 switch (sopt->sopt_name) { 23804 case IPV6_USE_MIN_MTU: 23805 tcp6_use_min_mtu(tp); 23806 break; 23807 } 23808 INP_WUNLOCK(inp); 23809 return (0); 23810 #endif 23811 #ifdef INET 23812 case IPPROTO_IP: 23813 switch (sopt->sopt_name) { 23814 case IP_TOS: 23815 /* 23816 * The DSCP codepoint has changed, update the fsb. 23817 */ 23818 ip->ip_tos = rack->rc_inp->inp_ip_tos; 23819 break; 23820 case IP_TTL: 23821 /* 23822 * The TTL has changed, update the fsb. 23823 */ 23824 ip->ip_ttl = rack->rc_inp->inp_ip_ttl; 23825 break; 23826 } 23827 INP_WUNLOCK(inp); 23828 return (0); 23829 #endif 23830 #ifdef SO_PEERPRIO 23831 case SOL_SOCKET: 23832 switch (sopt->sopt_name) { 23833 case SO_PEERPRIO: /* SC-URL:bs */ 23834 /* Already read in and sanity checked in sosetopt(). */ 23835 if (inp->inp_socket) { 23836 rack->client_bufferlvl = inp->inp_socket->so_peerprio; 23837 rack_client_buffer_level_set(rack); 23838 } 23839 break; 23840 } 23841 INP_WUNLOCK(inp); 23842 return (0); 23843 #endif 23844 case IPPROTO_TCP: 23845 switch (sopt->sopt_name) { 23846 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ 23847 /* Pacing related ones */ 23848 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ 23849 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ 23850 case TCP_BBR_IWINTSO: /* URL:tso_iwin */ 23851 case TCP_RACK_PACE_MIN_SEG: /* URL:pace_min_seg */ 23852 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ 23853 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ 23854 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ 23855 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ 23856 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ 23857 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ 23858 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ 23859 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ 23860 case TCP_RACK_RR_CONF: /* URL:rrr_conf */ 23861 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ 23862 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */ 23863 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */ 23864 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */ 23865 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */ 23866 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */ 23867 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ 23868 case TCP_RACK_DGP_IN_REC: /* URL:dgpinrec */ 23869 /* End pacing related */ 23870 case TCP_RXT_CLAMP: /* URL:rxtclamp */ 23871 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */ 23872 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ 23873 case TCP_RACK_MIN_TO: /* URL:min_to */ 23874 case TCP_RACK_EARLY_SEG: /* URL:early_seg */ 23875 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ 23876 case TCP_RACK_REORD_FADE: /* URL:reord_fade */ 23877 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ 23878 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ 23879 case TCP_RACK_TLP_USE: /* URL:tlp_use */ 23880 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ 23881 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ 23882 case TCP_RACK_DO_DETECTION: /* URL:detect */ 23883 case TCP_NO_PRR: /* URL:noprr */ 23884 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ 23885 case TCP_DATA_AFTER_CLOSE: /* no URL */ 23886 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ 23887 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ 23888 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ 23889 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ 23890 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ 23891 case TCP_RACK_PROFILE: /* URL:profile */ 23892 case TCP_HYBRID_PACING: /* URL:hybrid */ 23893 case TCP_USE_CMP_ACKS: /* URL:cmpack */ 23894 case TCP_RACK_ABC_VAL: /* URL:labc */ 23895 case TCP_REC_ABC_VAL: /* URL:reclabc */ 23896 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */ 23897 case TCP_DEFER_OPTIONS: /* URL:defer */ 23898 case TCP_RACK_DSACK_OPT: /* URL:dsack */ 23899 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */ 23900 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */ 23901 case TCP_RACK_SET_RXT_OPTIONS: /* URL:rxtsz */ 23902 case TCP_RACK_HI_BETA: /* URL:hibeta */ 23903 case TCP_RACK_SPLIT_LIMIT: /* URL:split */ 23904 case TCP_RACK_PACING_DIVISOR: /* URL:divisor */ 23905 case TCP_PACING_DND: /* URL:dnd */ 23906 goto process_opt; 23907 break; 23908 default: 23909 /* Filter off all unknown options to the base stack */ 23910 return (tcp_default_ctloutput(tp, sopt)); 23911 break; 23912 } 23913 23914 default: 23915 INP_WUNLOCK(inp); 23916 return (0); 23917 } 23918 process_opt: 23919 INP_WUNLOCK(inp); 23920 if (sopt->sopt_name == TCP_PACING_RATE_CAP) { 23921 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval)); 23922 /* 23923 * We truncate it down to 32 bits for the socket-option trace this 23924 * means rates > 34Gbps won't show right, but thats probably ok. 23925 */ 23926 optval = (uint32_t)loptval; 23927 } else if (sopt->sopt_name == TCP_HYBRID_PACING) { 23928 error = sooptcopyin(sopt, &hybrid, sizeof(hybrid), sizeof(hybrid)); 23929 } else { 23930 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); 23931 /* Save it in 64 bit form too */ 23932 loptval = optval; 23933 } 23934 if (error) 23935 return (error); 23936 INP_WLOCK(inp); 23937 if (tp->t_fb != &__tcp_rack) { 23938 INP_WUNLOCK(inp); 23939 return (ENOPROTOOPT); 23940 } 23941 if (rack->defer_options && (rack->gp_ready == 0) && 23942 (sopt->sopt_name != TCP_DEFER_OPTIONS) && 23943 (sopt->sopt_name != TCP_HYBRID_PACING) && 23944 (sopt->sopt_name != TCP_RACK_PACING_BETA) && 23945 (sopt->sopt_name != TCP_RACK_SET_RXT_OPTIONS) && 23946 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) && 23947 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) { 23948 /* Options are beind deferred */ 23949 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) { 23950 INP_WUNLOCK(inp); 23951 return (0); 23952 } else { 23953 /* No memory to defer, fail */ 23954 INP_WUNLOCK(inp); 23955 return (ENOMEM); 23956 } 23957 } 23958 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval, &hybrid); 23959 INP_WUNLOCK(inp); 23960 return (error); 23961 } 23962 23963 static void 23964 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti) 23965 { 23966 23967 INP_WLOCK_ASSERT(tptoinpcb(tp)); 23968 bzero(ti, sizeof(*ti)); 23969 23970 ti->tcpi_state = tp->t_state; 23971 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) 23972 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; 23973 if (tp->t_flags & TF_SACK_PERMIT) 23974 ti->tcpi_options |= TCPI_OPT_SACK; 23975 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { 23976 ti->tcpi_options |= TCPI_OPT_WSCALE; 23977 ti->tcpi_snd_wscale = tp->snd_scale; 23978 ti->tcpi_rcv_wscale = tp->rcv_scale; 23979 } 23980 if (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) 23981 ti->tcpi_options |= TCPI_OPT_ECN; 23982 if (tp->t_flags & TF_FASTOPEN) 23983 ti->tcpi_options |= TCPI_OPT_TFO; 23984 /* still kept in ticks is t_rcvtime */ 23985 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; 23986 /* Since we hold everything in precise useconds this is easy */ 23987 ti->tcpi_rtt = tp->t_srtt; 23988 ti->tcpi_rttvar = tp->t_rttvar; 23989 ti->tcpi_rto = tp->t_rxtcur; 23990 ti->tcpi_snd_ssthresh = tp->snd_ssthresh; 23991 ti->tcpi_snd_cwnd = tp->snd_cwnd; 23992 /* 23993 * FreeBSD-specific extension fields for tcp_info. 23994 */ 23995 ti->tcpi_rcv_space = tp->rcv_wnd; 23996 ti->tcpi_rcv_nxt = tp->rcv_nxt; 23997 ti->tcpi_snd_wnd = tp->snd_wnd; 23998 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ 23999 ti->tcpi_snd_nxt = tp->snd_nxt; 24000 ti->tcpi_snd_mss = tp->t_maxseg; 24001 ti->tcpi_rcv_mss = tp->t_maxseg; 24002 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; 24003 ti->tcpi_rcv_ooopack = tp->t_rcvoopack; 24004 ti->tcpi_snd_zerowin = tp->t_sndzerowin; 24005 ti->tcpi_total_tlp = tp->t_sndtlppack; 24006 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte; 24007 #ifdef NETFLIX_STATS 24008 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo)); 24009 #endif 24010 #ifdef TCP_OFFLOAD 24011 if (tp->t_flags & TF_TOE) { 24012 ti->tcpi_options |= TCPI_OPT_TOE; 24013 tcp_offload_tcp_info(tp, ti); 24014 } 24015 #endif 24016 } 24017 24018 static int 24019 rack_get_sockopt(struct tcpcb *tp, struct sockopt *sopt) 24020 { 24021 struct inpcb *inp = tptoinpcb(tp); 24022 struct tcp_rack *rack; 24023 int32_t error, optval; 24024 uint64_t val, loptval; 24025 struct tcp_info ti; 24026 /* 24027 * Because all our options are either boolean or an int, we can just 24028 * pull everything into optval and then unlock and copy. If we ever 24029 * add a option that is not a int, then this will have quite an 24030 * impact to this routine. 24031 */ 24032 error = 0; 24033 rack = (struct tcp_rack *)tp->t_fb_ptr; 24034 if (rack == NULL) { 24035 INP_WUNLOCK(inp); 24036 return (EINVAL); 24037 } 24038 switch (sopt->sopt_name) { 24039 case TCP_INFO: 24040 /* First get the info filled */ 24041 rack_fill_info(tp, &ti); 24042 /* Fix up the rtt related fields if needed */ 24043 INP_WUNLOCK(inp); 24044 error = sooptcopyout(sopt, &ti, sizeof ti); 24045 return (error); 24046 /* 24047 * Beta is the congestion control value for NewReno that influences how 24048 * much of a backoff happens when loss is detected. It is normally set 24049 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value 24050 * when you exit recovery. 24051 */ 24052 case TCP_RACK_PACING_BETA: 24053 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) 24054 error = EINVAL; 24055 else if (rack->rc_pacing_cc_set == 0) 24056 optval = rack->r_ctl.rc_saved_beta.beta; 24057 else { 24058 /* 24059 * Reach out into the CC data and report back what 24060 * I have previously set. Yeah it looks hackish but 24061 * we don't want to report the saved values. 24062 */ 24063 if (tp->t_ccv.cc_data) 24064 optval = ((struct newreno *)tp->t_ccv.cc_data)->beta; 24065 else 24066 error = EINVAL; 24067 } 24068 break; 24069 /* 24070 * Beta_ecn is the congestion control value for NewReno that influences how 24071 * much of a backoff happens when a ECN mark is detected. It is normally set 24072 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when 24073 * you exit recovery. Note that classic ECN has a beta of 50, it is only 24074 * ABE Ecn that uses this "less" value, but we do too with pacing :) 24075 */ 24076 24077 case TCP_RACK_PACING_BETA_ECN: 24078 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) 24079 error = EINVAL; 24080 else if (rack->rc_pacing_cc_set == 0) 24081 optval = rack->r_ctl.rc_saved_beta.beta_ecn; 24082 else { 24083 /* 24084 * Reach out into the CC data and report back what 24085 * I have previously set. Yeah it looks hackish but 24086 * we don't want to report the saved values. 24087 */ 24088 if (tp->t_ccv.cc_data) 24089 optval = ((struct newreno *)tp->t_ccv.cc_data)->beta_ecn; 24090 else 24091 error = EINVAL; 24092 } 24093 break; 24094 case TCP_RACK_DSACK_OPT: 24095 optval = 0; 24096 if (rack->rc_rack_tmr_std_based) { 24097 optval |= 1; 24098 } 24099 if (rack->rc_rack_use_dsack) { 24100 optval |= 2; 24101 } 24102 break; 24103 case TCP_RACK_ENABLE_HYSTART: 24104 { 24105 if (tp->t_ccv.flags & CCF_HYSTART_ALLOWED) { 24106 optval = RACK_HYSTART_ON; 24107 if (tp->t_ccv.flags & CCF_HYSTART_CAN_SH_CWND) 24108 optval = RACK_HYSTART_ON_W_SC; 24109 if (tp->t_ccv.flags & CCF_HYSTART_CONS_SSTH) 24110 optval = RACK_HYSTART_ON_W_SC_C; 24111 } else { 24112 optval = RACK_HYSTART_OFF; 24113 } 24114 } 24115 break; 24116 case TCP_RACK_DGP_IN_REC: 24117 optval = rack->r_ctl.full_dgp_in_rec; 24118 break; 24119 case TCP_RACK_HI_BETA: 24120 optval = rack->rack_hibeta; 24121 break; 24122 case TCP_RXT_CLAMP: 24123 optval = rack->r_ctl.saved_rxt_clamp_val; 24124 break; 24125 case TCP_DEFER_OPTIONS: 24126 optval = rack->defer_options; 24127 break; 24128 case TCP_RACK_MEASURE_CNT: 24129 optval = rack->r_ctl.req_measurements; 24130 break; 24131 case TCP_REC_ABC_VAL: 24132 optval = rack->r_use_labc_for_rec; 24133 break; 24134 case TCP_RACK_ABC_VAL: 24135 optval = rack->rc_labc; 24136 break; 24137 case TCP_HDWR_UP_ONLY: 24138 optval= rack->r_up_only; 24139 break; 24140 case TCP_PACING_RATE_CAP: 24141 loptval = rack->r_ctl.bw_rate_cap; 24142 break; 24143 case TCP_RACK_PROFILE: 24144 /* You cannot retrieve a profile, its write only */ 24145 error = EINVAL; 24146 break; 24147 case TCP_HYBRID_PACING: 24148 /* You cannot retrieve hybrid pacing information, its write only */ 24149 error = EINVAL; 24150 break; 24151 case TCP_USE_CMP_ACKS: 24152 optval = rack->r_use_cmp_ack; 24153 break; 24154 case TCP_RACK_PACE_TO_FILL: 24155 optval = rack->rc_pace_to_cwnd; 24156 if (optval && rack->r_fill_less_agg) 24157 optval++; 24158 break; 24159 case TCP_RACK_NO_PUSH_AT_MAX: 24160 optval = rack->r_ctl.rc_no_push_at_mrtt; 24161 break; 24162 case TCP_SHARED_CWND_ENABLE: 24163 optval = rack->rack_enable_scwnd; 24164 break; 24165 case TCP_RACK_NONRXT_CFG_RATE: 24166 optval = rack->rack_rec_nonrxt_use_cr; 24167 break; 24168 case TCP_NO_PRR: 24169 if (rack->rack_no_prr == 1) 24170 optval = 1; 24171 else if (rack->no_prr_addback == 1) 24172 optval = 2; 24173 else 24174 optval = 0; 24175 break; 24176 case TCP_RACK_DO_DETECTION: 24177 optval = rack->do_detection; 24178 break; 24179 case TCP_RACK_MBUF_QUEUE: 24180 /* Now do we use the LRO mbuf-queue feature */ 24181 optval = rack->r_mbuf_queue; 24182 break; 24183 case TCP_TIMELY_DYN_ADJ: 24184 optval = rack->rc_gp_dyn_mul; 24185 break; 24186 case TCP_BBR_IWINTSO: 24187 optval = rack->rc_init_win; 24188 break; 24189 case TCP_RACK_TLP_REDUCE: 24190 /* RACK TLP cwnd reduction (bool) */ 24191 optval = rack->r_ctl.rc_tlp_cwnd_reduce; 24192 break; 24193 case TCP_BBR_RACK_INIT_RATE: 24194 val = rack->r_ctl.init_rate; 24195 /* convert to kbits per sec */ 24196 val *= 8; 24197 val /= 1000; 24198 optval = (uint32_t)val; 24199 break; 24200 case TCP_RACK_FORCE_MSEG: 24201 optval = rack->rc_force_max_seg; 24202 break; 24203 case TCP_RACK_PACE_MIN_SEG: 24204 optval = rack->r_ctl.rc_user_set_min_segs; 24205 break; 24206 case TCP_RACK_PACE_MAX_SEG: 24207 /* Max segments in a pace */ 24208 optval = rack->rc_user_set_max_segs; 24209 break; 24210 case TCP_RACK_PACE_ALWAYS: 24211 /* Use the always pace method */ 24212 optval = rack->rc_always_pace; 24213 break; 24214 case TCP_RACK_PRR_SENDALOT: 24215 /* Allow PRR to send more than one seg */ 24216 optval = rack->r_ctl.rc_prr_sendalot; 24217 break; 24218 case TCP_RACK_MIN_TO: 24219 /* Minimum time between rack t-o's in ms */ 24220 optval = rack->r_ctl.rc_min_to; 24221 break; 24222 case TCP_RACK_SPLIT_LIMIT: 24223 optval = rack->r_ctl.rc_split_limit; 24224 break; 24225 case TCP_RACK_EARLY_SEG: 24226 /* If early recovery max segments */ 24227 optval = rack->r_ctl.rc_early_recovery_segs; 24228 break; 24229 case TCP_RACK_REORD_THRESH: 24230 /* RACK reorder threshold (shift amount) */ 24231 optval = rack->r_ctl.rc_reorder_shift; 24232 break; 24233 case TCP_RACK_REORD_FADE: 24234 /* Does reordering fade after ms time */ 24235 optval = rack->r_ctl.rc_reorder_fade; 24236 break; 24237 case TCP_BBR_USE_RACK_RR: 24238 /* Do we use the rack cheat for rxt */ 24239 optval = rack->use_rack_rr; 24240 break; 24241 case TCP_RACK_RR_CONF: 24242 optval = rack->r_rr_config; 24243 break; 24244 case TCP_HDWR_RATE_CAP: 24245 optval = rack->r_rack_hw_rate_caps; 24246 break; 24247 case TCP_BBR_HDWR_PACE: 24248 optval = rack->rack_hdw_pace_ena; 24249 break; 24250 case TCP_RACK_TLP_THRESH: 24251 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 24252 optval = rack->r_ctl.rc_tlp_threshold; 24253 break; 24254 case TCP_RACK_PKT_DELAY: 24255 /* RACK added ms i.e. rack-rtt + reord + N */ 24256 optval = rack->r_ctl.rc_pkt_delay; 24257 break; 24258 case TCP_RACK_TLP_USE: 24259 optval = rack->rack_tlp_threshold_use; 24260 break; 24261 case TCP_PACING_DND: 24262 optval = rack->rc_pace_dnd; 24263 break; 24264 case TCP_RACK_PACE_RATE_CA: 24265 optval = rack->r_ctl.rc_fixed_pacing_rate_ca; 24266 break; 24267 case TCP_RACK_PACE_RATE_SS: 24268 optval = rack->r_ctl.rc_fixed_pacing_rate_ss; 24269 break; 24270 case TCP_RACK_PACE_RATE_REC: 24271 optval = rack->r_ctl.rc_fixed_pacing_rate_rec; 24272 break; 24273 case TCP_RACK_GP_INCREASE_SS: 24274 optval = rack->r_ctl.rack_per_of_gp_ca; 24275 break; 24276 case TCP_RACK_GP_INCREASE_CA: 24277 optval = rack->r_ctl.rack_per_of_gp_ss; 24278 break; 24279 case TCP_RACK_PACING_DIVISOR: 24280 optval = rack->r_ctl.pace_len_divisor; 24281 break; 24282 case TCP_BBR_RACK_RTT_USE: 24283 optval = rack->r_ctl.rc_rate_sample_method; 24284 break; 24285 case TCP_DELACK: 24286 optval = tp->t_delayed_ack; 24287 break; 24288 case TCP_DATA_AFTER_CLOSE: 24289 optval = rack->rc_allow_data_af_clo; 24290 break; 24291 case TCP_SHARED_CWND_TIME_LIMIT: 24292 optval = rack->r_limit_scw; 24293 break; 24294 case TCP_RACK_TIMER_SLOP: 24295 optval = rack->r_ctl.timer_slop; 24296 break; 24297 default: 24298 return (tcp_default_ctloutput(tp, sopt)); 24299 break; 24300 } 24301 INP_WUNLOCK(inp); 24302 if (error == 0) { 24303 if (TCP_PACING_RATE_CAP) 24304 error = sooptcopyout(sopt, &loptval, sizeof loptval); 24305 else 24306 error = sooptcopyout(sopt, &optval, sizeof optval); 24307 } 24308 return (error); 24309 } 24310 24311 static int 24312 rack_ctloutput(struct tcpcb *tp, struct sockopt *sopt) 24313 { 24314 if (sopt->sopt_dir == SOPT_SET) { 24315 return (rack_set_sockopt(tp, sopt)); 24316 } else if (sopt->sopt_dir == SOPT_GET) { 24317 return (rack_get_sockopt(tp, sopt)); 24318 } else { 24319 panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir); 24320 } 24321 } 24322 24323 static const char *rack_stack_names[] = { 24324 __XSTRING(STACKNAME), 24325 #ifdef STACKALIAS 24326 __XSTRING(STACKALIAS), 24327 #endif 24328 }; 24329 24330 static int 24331 rack_ctor(void *mem, int32_t size, void *arg, int32_t how) 24332 { 24333 memset(mem, 0, size); 24334 return (0); 24335 } 24336 24337 static void 24338 rack_dtor(void *mem, int32_t size, void *arg) 24339 { 24340 24341 } 24342 24343 static bool rack_mod_inited = false; 24344 24345 static int 24346 tcp_addrack(module_t mod, int32_t type, void *data) 24347 { 24348 int32_t err = 0; 24349 int num_stacks; 24350 24351 switch (type) { 24352 case MOD_LOAD: 24353 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", 24354 sizeof(struct rack_sendmap), 24355 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 24356 24357 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", 24358 sizeof(struct tcp_rack), 24359 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 24360 24361 sysctl_ctx_init(&rack_sysctl_ctx); 24362 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 24363 SYSCTL_STATIC_CHILDREN(_net_inet_tcp), 24364 OID_AUTO, 24365 #ifdef STACKALIAS 24366 __XSTRING(STACKALIAS), 24367 #else 24368 __XSTRING(STACKNAME), 24369 #endif 24370 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 24371 ""); 24372 if (rack_sysctl_root == NULL) { 24373 printf("Failed to add sysctl node\n"); 24374 err = EFAULT; 24375 goto free_uma; 24376 } 24377 rack_init_sysctls(); 24378 num_stacks = nitems(rack_stack_names); 24379 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, 24380 rack_stack_names, &num_stacks); 24381 if (err) { 24382 printf("Failed to register %s stack name for " 24383 "%s module\n", rack_stack_names[num_stacks], 24384 __XSTRING(MODNAME)); 24385 sysctl_ctx_free(&rack_sysctl_ctx); 24386 free_uma: 24387 uma_zdestroy(rack_zone); 24388 uma_zdestroy(rack_pcb_zone); 24389 rack_counter_destroy(); 24390 printf("Failed to register rack module -- err:%d\n", err); 24391 return (err); 24392 } 24393 tcp_lro_reg_mbufq(); 24394 rack_mod_inited = true; 24395 break; 24396 case MOD_QUIESCE: 24397 err = deregister_tcp_functions(&__tcp_rack, true, false); 24398 break; 24399 case MOD_UNLOAD: 24400 err = deregister_tcp_functions(&__tcp_rack, false, true); 24401 if (err == EBUSY) 24402 break; 24403 if (rack_mod_inited) { 24404 uma_zdestroy(rack_zone); 24405 uma_zdestroy(rack_pcb_zone); 24406 sysctl_ctx_free(&rack_sysctl_ctx); 24407 rack_counter_destroy(); 24408 rack_mod_inited = false; 24409 } 24410 tcp_lro_dereg_mbufq(); 24411 err = 0; 24412 break; 24413 default: 24414 return (EOPNOTSUPP); 24415 } 24416 return (err); 24417 } 24418 24419 static moduledata_t tcp_rack = { 24420 .name = __XSTRING(MODNAME), 24421 .evhand = tcp_addrack, 24422 .priv = 0 24423 }; 24424 24425 MODULE_VERSION(MODNAME, 1); 24426 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); 24427 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1); 24428 24429 #endif /* #if !defined(INET) && !defined(INET6) */ 24430