xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 964219664dcec4198441910904fb9064569d174d)
1 /*-
2  * Copyright (c) 2016-2018
3  *	Netflix Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipsec.h"
34 #include "opt_tcpdebug.h"
35 
36 #include <sys/param.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #ifdef TCP_HHOOK
40 #include <sys/hhook.h>
41 #endif
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #ifdef NETFLIX_STATS
53 #include <sys/stats.h>
54 #endif
55 #include <sys/refcount.h>
56 #include <sys/queue.h>
57 #include <sys/smp.h>
58 #include <sys/kthread.h>
59 #include <sys/kern_prefetch.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #define TCPSTATES		/* for logging */
67 
68 #include <netinet/in.h>
69 #include <netinet/in_kdtrace.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip.h>
72 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
73 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
74 #include <netinet/ip_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet6/in6_pcb.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet/tcp.h>
79 #define	TCPOUTFLAGS
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_log_buf.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/tcp_hpts.h>
86 #include <netinet/tcpip.h>
87 #include <netinet/cc/cc.h>
88 #ifdef NETFLIX_CWV
89 #include <netinet/tcp_newcwv.h>
90 #endif
91 #include <netinet/tcp_fastopen.h>
92 #ifdef TCPDEBUG
93 #include <netinet/tcp_debug.h>
94 #endif				/* TCPDEBUG */
95 #ifdef TCP_OFFLOAD
96 #include <netinet/tcp_offload.h>
97 #endif
98 #ifdef INET6
99 #include <netinet6/tcp6_var.h>
100 #endif
101 
102 #include <netipsec/ipsec_support.h>
103 
104 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
105 #include <netipsec/ipsec.h>
106 #include <netipsec/ipsec6.h>
107 #endif				/* IPSEC */
108 
109 #include <netinet/udp.h>
110 #include <netinet/udp_var.h>
111 #include <machine/in_cksum.h>
112 
113 #ifdef MAC
114 #include <security/mac/mac_framework.h>
115 #endif
116 #include "sack_filter.h"
117 #include "tcp_rack.h"
118 #include "rack_bbr_common.h"
119 
120 uma_zone_t rack_zone;
121 uma_zone_t rack_pcb_zone;
122 
123 #ifndef TICKS2SBT
124 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
125 #endif
126 
127 struct sysctl_ctx_list rack_sysctl_ctx;
128 struct sysctl_oid *rack_sysctl_root;
129 
130 #define CUM_ACKED 1
131 #define SACKED 2
132 
133 /*
134  * The RACK module incorporates a number of
135  * TCP ideas that have been put out into the IETF
136  * over the last few years:
137  * - Matt Mathis's Rate Halving which slowly drops
138  *    the congestion window so that the ack clock can
139  *    be maintained during a recovery.
140  * - Yuchung Cheng's RACK TCP (for which its named) that
141  *    will stop us using the number of dup acks and instead
142  *    use time as the gage of when we retransmit.
143  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
144  *    of Dukkipati et.al.
145  * RACK depends on SACK, so if an endpoint arrives that
146  * cannot do SACK the state machine below will shuttle the
147  * connection back to using the "default" TCP stack that is
148  * in FreeBSD.
149  *
150  * To implement RACK the original TCP stack was first decomposed
151  * into a functional state machine with individual states
152  * for each of the possible TCP connection states. The do_segement
153  * functions role in life is to mandate the connection supports SACK
154  * initially and then assure that the RACK state matches the conenction
155  * state before calling the states do_segment function. Each
156  * state is simplified due to the fact that the original do_segment
157  * has been decomposed and we *know* what state we are in (no
158  * switches on the state) and all tests for SACK are gone. This
159  * greatly simplifies what each state does.
160  *
161  * TCP output is also over-written with a new version since it
162  * must maintain the new rack scoreboard.
163  *
164  */
165 static int32_t rack_precache = 1;
166 static int32_t rack_tlp_thresh = 1;
167 static int32_t rack_reorder_thresh = 2;
168 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
169 						 * - 60 seconds */
170 static int32_t rack_pkt_delay = 1;
171 static int32_t rack_inc_var = 0;/* For TLP */
172 static int32_t rack_reduce_largest_on_idle = 0;
173 static int32_t rack_min_pace_time = 0;
174 static int32_t rack_min_pace_time_seg_req=6;
175 static int32_t rack_early_recovery = 1;
176 static int32_t rack_early_recovery_max_seg = 6;
177 static int32_t rack_send_a_lot_in_prr = 1;
178 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
179 static int32_t rack_tlp_in_recovery = 1;	/* Can we do TLP in recovery? */
180 static int32_t rack_verbose_logging = 0;
181 static int32_t rack_ignore_data_after_close = 1;
182 /*
183  * Currently regular tcp has a rto_min of 30ms
184  * the backoff goes 12 times so that ends up
185  * being a total of 122.850 seconds before a
186  * connection is killed.
187  */
188 static int32_t rack_tlp_min = 10;
189 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
190 static int32_t rack_rto_max = 30000;	/* 30 seconds */
191 static const int32_t rack_free_cache = 2;
192 static int32_t rack_hptsi_segments = 40;
193 static int32_t rack_rate_sample_method = USE_RTT_LOW;
194 static int32_t rack_pace_every_seg = 1;
195 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
196 static int32_t rack_slot_reduction = 4;
197 static int32_t rack_lower_cwnd_at_tlp = 0;
198 static int32_t rack_use_proportional_reduce = 0;
199 static int32_t rack_proportional_rate = 10;
200 static int32_t rack_tlp_max_resend = 2;
201 static int32_t rack_limited_retran = 0;
202 static int32_t rack_always_send_oldest = 0;
203 static int32_t rack_sack_block_limit = 128;
204 static int32_t rack_use_sack_filter = 1;
205 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
206 
207 /* Rack specific counters */
208 counter_u64_t rack_badfr;
209 counter_u64_t rack_badfr_bytes;
210 counter_u64_t rack_rtm_prr_retran;
211 counter_u64_t rack_rtm_prr_newdata;
212 counter_u64_t rack_timestamp_mismatch;
213 counter_u64_t rack_reorder_seen;
214 counter_u64_t rack_paced_segments;
215 counter_u64_t rack_unpaced_segments;
216 counter_u64_t rack_saw_enobuf;
217 counter_u64_t rack_saw_enetunreach;
218 
219 /* Tail loss probe counters */
220 counter_u64_t rack_tlp_tot;
221 counter_u64_t rack_tlp_newdata;
222 counter_u64_t rack_tlp_retran;
223 counter_u64_t rack_tlp_retran_bytes;
224 counter_u64_t rack_tlp_retran_fail;
225 counter_u64_t rack_to_tot;
226 counter_u64_t rack_to_arm_rack;
227 counter_u64_t rack_to_arm_tlp;
228 counter_u64_t rack_to_alloc;
229 counter_u64_t rack_to_alloc_hard;
230 counter_u64_t rack_to_alloc_emerg;
231 
232 counter_u64_t rack_sack_proc_all;
233 counter_u64_t rack_sack_proc_short;
234 counter_u64_t rack_sack_proc_restart;
235 counter_u64_t rack_runt_sacks;
236 counter_u64_t rack_used_tlpmethod;
237 counter_u64_t rack_used_tlpmethod2;
238 counter_u64_t rack_enter_tlp_calc;
239 counter_u64_t rack_input_idle_reduces;
240 counter_u64_t rack_tlp_does_nada;
241 
242 /* Temp CPU counters */
243 counter_u64_t rack_find_high;
244 
245 counter_u64_t rack_progress_drops;
246 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
247 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
248 
249 static void
250 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
251 
252 static int
253 rack_process_ack(struct mbuf *m, struct tcphdr *th,
254     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t * ti_locked,
255     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
256 static int
257 rack_process_data(struct mbuf *m, struct tcphdr *th,
258     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
259     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
260 static void
261 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
262     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
263 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
264 static struct rack_sendmap *
265 rack_check_recovery_mode(struct tcpcb *tp,
266     uint32_t tsused);
267 static void
268 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
269     uint32_t type);
270 static void rack_counter_destroy(void);
271 static int
272 rack_ctloutput(struct socket *so, struct sockopt *sopt,
273     struct inpcb *inp, struct tcpcb *tp);
274 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
275 static void
276 rack_do_segment(struct mbuf *m, struct tcphdr *th,
277     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
278     uint8_t iptos, int32_t ti_locked);
279 static void rack_dtor(void *mem, int32_t size, void *arg);
280 static void
281 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
282     uint32_t t, uint32_t cts);
283 static struct rack_sendmap *
284 rack_find_high_nonack(struct tcp_rack *rack,
285     struct rack_sendmap *rsm);
286 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
287 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
288 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
289 static int
290 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
291     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
292 static int32_t rack_handoff_ok(struct tcpcb *tp);
293 static int32_t rack_init(struct tcpcb *tp);
294 static void rack_init_sysctls(void);
295 static void
296 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
297     struct tcphdr *th);
298 static void
299 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
300     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
301     uint8_t pass, struct rack_sendmap *hintrsm);
302 static void
303 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
304     struct rack_sendmap *rsm);
305 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num);
306 static int32_t rack_output(struct tcpcb *tp);
307 static void
308 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th,
309     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
310     uint8_t iptos, int32_t ti_locked, int32_t nxt_pkt, struct timeval *tv);
311 
312 static uint32_t
313 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
314     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
315     uint32_t cts);
316 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
317 static void rack_remxt_tmr(struct tcpcb *tp);
318 static int
319 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
320     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
321 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
322 static int32_t rack_stopall(struct tcpcb *tp);
323 static void
324 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
325     uint32_t delta);
326 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
327 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
328 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
329 static uint32_t
330 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
331     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
332 static void
333 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
334     struct rack_sendmap *rsm, uint32_t ts);
335 static int
336 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
337     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
338 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
339 static void
340 rack_challenge_ack(struct mbuf *m, struct tcphdr *th,
341     struct tcpcb *tp, int32_t * ti_locked, int32_t * ret_val);
342 static int
343 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
344     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
345     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
346 static int
347 rack_do_closing(struct mbuf *m, struct tcphdr *th,
348     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
349     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
350 static void rack_do_drop(struct mbuf *m, struct tcpcb *tp, int32_t * ti_locked);
351 static void
352 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp,
353     struct tcphdr *th, int32_t * ti_locked, int32_t thflags, int32_t tlen, int32_t * ret_val);
354 static void
355 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp,
356     struct tcphdr *th, int32_t * ti_locked, int32_t rstreason, int32_t tlen);
357 static int
358 rack_do_established(struct mbuf *m, struct tcphdr *th,
359     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
360     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
361 static int
362 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
363     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
364     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t nxt_pkt);
365 static int
366 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
367     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
368     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
369 static int
370 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
371     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
372     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
373 static int
374 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
375     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
376     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
377 static int
378 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
379     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
380     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
381 static int
382 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
383     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
384     int32_t tlen, int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
385 static int
386 rack_drop_checks(struct tcpopt *to, struct mbuf *m,
387     struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * ti_locked, int32_t * thf,
388     int32_t * drop_hdrlen, int32_t * ret_val);
389 static int
390 rack_process_rst(struct mbuf *m, struct tcphdr *th,
391     struct socket *so, struct tcpcb *tp, int32_t * ti_locked);
392 struct rack_sendmap *
393 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
394     uint32_t tsused);
395 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
396 static void
397      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
398 
399 static int
400 rack_ts_check(struct mbuf *m, struct tcphdr *th,
401     struct tcpcb *tp, int32_t * ti_locked, int32_t tlen, int32_t thflags, int32_t * ret_val);
402 
403 int32_t rack_clear_counter=0;
404 
405 
406 static int
407 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
408 {
409 	uint32_t stat;
410 	int32_t error;
411 
412 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
413 	if (error || req->newptr == NULL)
414 		return error;
415 
416 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
417 	if (error)
418 		return (error);
419 	if (stat == 1) {
420 #ifdef INVARIANTS
421 		printf("Clearing RACK counters\n");
422 #endif
423 		counter_u64_zero(rack_badfr);
424 		counter_u64_zero(rack_badfr_bytes);
425 		counter_u64_zero(rack_rtm_prr_retran);
426 		counter_u64_zero(rack_rtm_prr_newdata);
427 		counter_u64_zero(rack_timestamp_mismatch);
428 		counter_u64_zero(rack_reorder_seen);
429 		counter_u64_zero(rack_tlp_tot);
430 		counter_u64_zero(rack_tlp_newdata);
431 		counter_u64_zero(rack_tlp_retran);
432 		counter_u64_zero(rack_tlp_retran_bytes);
433 		counter_u64_zero(rack_tlp_retran_fail);
434 		counter_u64_zero(rack_to_tot);
435 		counter_u64_zero(rack_to_arm_rack);
436 		counter_u64_zero(rack_to_arm_tlp);
437 		counter_u64_zero(rack_paced_segments);
438 		counter_u64_zero(rack_unpaced_segments);
439 		counter_u64_zero(rack_saw_enobuf);
440 		counter_u64_zero(rack_saw_enetunreach);
441 		counter_u64_zero(rack_to_alloc_hard);
442 		counter_u64_zero(rack_to_alloc_emerg);
443 		counter_u64_zero(rack_sack_proc_all);
444 		counter_u64_zero(rack_sack_proc_short);
445 		counter_u64_zero(rack_sack_proc_restart);
446 		counter_u64_zero(rack_to_alloc);
447 		counter_u64_zero(rack_find_high);
448 		counter_u64_zero(rack_runt_sacks);
449 		counter_u64_zero(rack_used_tlpmethod);
450 		counter_u64_zero(rack_used_tlpmethod2);
451 		counter_u64_zero(rack_enter_tlp_calc);
452 		counter_u64_zero(rack_progress_drops);
453 		counter_u64_zero(rack_tlp_does_nada);
454 	}
455 	rack_clear_counter = 0;
456 	return (0);
457 }
458 
459 
460 
461 static void
462 rack_init_sysctls()
463 {
464 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
465 	    SYSCTL_CHILDREN(rack_sysctl_root),
466 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
467 	    &rack_rate_sample_method , USE_RTT_LOW,
468 	    "What method should we use for rate sampling 0=high, 1=low ");
469 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
470 	    SYSCTL_CHILDREN(rack_sysctl_root),
471 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
472 	    &rack_ignore_data_after_close, 0,
473 	    "Do we hold off sending a RST until all pending data is ack'd");
474 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
475 	    SYSCTL_CHILDREN(rack_sysctl_root),
476 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
477 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
478 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
479 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
480 	    SYSCTL_CHILDREN(rack_sysctl_root),
481 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
482 	    &rack_min_pace_time, 0,
483 	    "Should we enforce a minimum pace time of 1ms");
484 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
485 	    SYSCTL_CHILDREN(rack_sysctl_root),
486 	    OID_AUTO, "min_pace_segs", CTLFLAG_RW,
487 	    &rack_min_pace_time_seg_req, 6,
488 	    "How many segments have to be in the len to enforce min-pace-time");
489 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
490 	    SYSCTL_CHILDREN(rack_sysctl_root),
491 	    OID_AUTO, "idle_reduce_high", CTLFLAG_RW,
492 	    &rack_reduce_largest_on_idle, 0,
493 	    "Should we reduce the largest cwnd seen to IW on idle reduction");
494 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
495 	    SYSCTL_CHILDREN(rack_sysctl_root),
496 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
497 	    &rack_verbose_logging, 0,
498 	    "Should RACK black box logging be verbose");
499 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
500 	    SYSCTL_CHILDREN(rack_sysctl_root),
501 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
502 	    &rack_use_sack_filter, 1,
503 	    "Do we use sack filtering?");
504 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
505 	    SYSCTL_CHILDREN(rack_sysctl_root),
506 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
507 	    &rack_delayed_ack_time, 200,
508 	    "Delayed ack time (200ms)");
509 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
510 	    SYSCTL_CHILDREN(rack_sysctl_root),
511 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
512 	    &rack_tlp_min, 10,
513 	    "TLP minimum timeout per the specification (10ms)");
514 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
515 	    SYSCTL_CHILDREN(rack_sysctl_root),
516 	    OID_AUTO, "precache", CTLFLAG_RW,
517 	    &rack_precache, 0,
518 	    "Where should we precache the mcopy (0 is not at all)");
519 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
520 	    SYSCTL_CHILDREN(rack_sysctl_root),
521 	    OID_AUTO, "sblklimit", CTLFLAG_RW,
522 	    &rack_sack_block_limit, 128,
523 	    "When do we start paying attention to small sack blocks");
524 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
525 	    SYSCTL_CHILDREN(rack_sysctl_root),
526 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
527 	    &rack_always_send_oldest, 1,
528 	    "Should we always send the oldest TLP and RACK-TLP");
529 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
530 	    SYSCTL_CHILDREN(rack_sysctl_root),
531 	    OID_AUTO, "rack_tlp_in_recovery", CTLFLAG_RW,
532 	    &rack_tlp_in_recovery, 1,
533 	    "Can we do a TLP during recovery?");
534 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
535 	    SYSCTL_CHILDREN(rack_sysctl_root),
536 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
537 	    &rack_limited_retran, 0,
538 	    "How many times can a rack timeout drive out sends");
539 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
540 	    SYSCTL_CHILDREN(rack_sysctl_root),
541 	    OID_AUTO, "minrto", CTLFLAG_RW,
542 	    &rack_rto_min, 0,
543 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
544 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
545 	    SYSCTL_CHILDREN(rack_sysctl_root),
546 	    OID_AUTO, "maxrto", CTLFLAG_RW,
547 	    &rack_rto_max, 0,
548 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
549 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
550 	    SYSCTL_CHILDREN(rack_sysctl_root),
551 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
552 	    &rack_tlp_max_resend, 2,
553 	    "How many times does TLP retry a single segment or multiple with no ACK");
554 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
555 	    SYSCTL_CHILDREN(rack_sysctl_root),
556 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
557 	    &rack_use_proportional_reduce, 0,
558 	    "Should we proportionaly reduce cwnd based on the number of losses ");
559 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
560 	    SYSCTL_CHILDREN(rack_sysctl_root),
561 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
562 	    &rack_proportional_rate, 10,
563 	    "What percent reduction per loss");
564 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
565 	    SYSCTL_CHILDREN(rack_sysctl_root),
566 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
567 	    &rack_lower_cwnd_at_tlp, 0,
568 	    "When a TLP completes a retran should we enter recovery?");
569 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
570 	    SYSCTL_CHILDREN(rack_sysctl_root),
571 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
572 	    &rack_slot_reduction, 4,
573 	    "When setting a slot should we reduce by divisor");
574 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
575 	    SYSCTL_CHILDREN(rack_sysctl_root),
576 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
577 	    &rack_pace_every_seg, 1,
578 	    "Should we pace out every segment hptsi");
579 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
580 	    SYSCTL_CHILDREN(rack_sysctl_root),
581 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
582 	    &rack_hptsi_segments, 6,
583 	    "Should we pace out only a limited size of segments");
584 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
585 	    SYSCTL_CHILDREN(rack_sysctl_root),
586 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
587 	    &rack_send_a_lot_in_prr, 1,
588 	    "Send a lot in prr");
589 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
590 	    SYSCTL_CHILDREN(rack_sysctl_root),
591 	    OID_AUTO, "minto", CTLFLAG_RW,
592 	    &rack_min_to, 1,
593 	    "Minimum rack timeout in milliseconds");
594 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
595 	    SYSCTL_CHILDREN(rack_sysctl_root),
596 	    OID_AUTO, "earlyrecoveryseg", CTLFLAG_RW,
597 	    &rack_early_recovery_max_seg, 6,
598 	    "Max segments in early recovery");
599 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
600 	    SYSCTL_CHILDREN(rack_sysctl_root),
601 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
602 	    &rack_early_recovery, 1,
603 	    "Do we do early recovery with rack");
604 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
605 	    SYSCTL_CHILDREN(rack_sysctl_root),
606 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
607 	    &rack_reorder_thresh, 2,
608 	    "What factor for rack will be added when seeing reordering (shift right)");
609 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
610 	    SYSCTL_CHILDREN(rack_sysctl_root),
611 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
612 	    &rack_tlp_thresh, 1,
613 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
614 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
615 	    SYSCTL_CHILDREN(rack_sysctl_root),
616 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
617 	    &rack_reorder_fade, 0,
618 	    "Does reorder detection fade, if so how many ms (0 means never)");
619 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
620 	    SYSCTL_CHILDREN(rack_sysctl_root),
621 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
622 	    &rack_pkt_delay, 1,
623 	    "Extra RACK time (in ms) besides reordering thresh");
624 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
625 	    SYSCTL_CHILDREN(rack_sysctl_root),
626 	    OID_AUTO, "inc_var", CTLFLAG_RW,
627 	    &rack_inc_var, 0,
628 	    "Should rack add to the TLP timer the variance in rtt calculation");
629 	rack_badfr = counter_u64_alloc(M_WAITOK);
630 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
631 	    SYSCTL_CHILDREN(rack_sysctl_root),
632 	    OID_AUTO, "badfr", CTLFLAG_RD,
633 	    &rack_badfr, "Total number of bad FRs");
634 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
635 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
636 	    SYSCTL_CHILDREN(rack_sysctl_root),
637 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
638 	    &rack_badfr_bytes, "Total number of bad FRs");
639 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
640 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
641 	    SYSCTL_CHILDREN(rack_sysctl_root),
642 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
643 	    &rack_rtm_prr_retran,
644 	    "Total number of prr based retransmits");
645 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
646 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
647 	    SYSCTL_CHILDREN(rack_sysctl_root),
648 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
649 	    &rack_rtm_prr_newdata,
650 	    "Total number of prr based new transmits");
651 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
652 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
653 	    SYSCTL_CHILDREN(rack_sysctl_root),
654 	    OID_AUTO, "tsnf", CTLFLAG_RD,
655 	    &rack_timestamp_mismatch,
656 	    "Total number of timestamps that we could not find the reported ts");
657 	rack_find_high = counter_u64_alloc(M_WAITOK);
658 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
659 	    SYSCTL_CHILDREN(rack_sysctl_root),
660 	    OID_AUTO, "findhigh", CTLFLAG_RD,
661 	    &rack_find_high,
662 	    "Total number of FIN causing find-high");
663 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
664 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
665 	    SYSCTL_CHILDREN(rack_sysctl_root),
666 	    OID_AUTO, "reordering", CTLFLAG_RD,
667 	    &rack_reorder_seen,
668 	    "Total number of times we added delay due to reordering");
669 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
670 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
671 	    SYSCTL_CHILDREN(rack_sysctl_root),
672 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
673 	    &rack_tlp_tot,
674 	    "Total number of tail loss probe expirations");
675 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
676 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
677 	    SYSCTL_CHILDREN(rack_sysctl_root),
678 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
679 	    &rack_tlp_newdata,
680 	    "Total number of tail loss probe sending new data");
681 
682 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
683 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
684 	    SYSCTL_CHILDREN(rack_sysctl_root),
685 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
686 	    &rack_tlp_retran,
687 	    "Total number of tail loss probe sending retransmitted data");
688 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
689 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
690 	    SYSCTL_CHILDREN(rack_sysctl_root),
691 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
692 	    &rack_tlp_retran_bytes,
693 	    "Total bytes of tail loss probe sending retransmitted data");
694 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
695 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
696 	    SYSCTL_CHILDREN(rack_sysctl_root),
697 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
698 	    &rack_tlp_retran_fail,
699 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
700 	rack_to_tot = counter_u64_alloc(M_WAITOK);
701 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
702 	    SYSCTL_CHILDREN(rack_sysctl_root),
703 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
704 	    &rack_to_tot,
705 	    "Total number of times the rack to expired?");
706 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
707 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
708 	    SYSCTL_CHILDREN(rack_sysctl_root),
709 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
710 	    &rack_to_arm_rack,
711 	    "Total number of times the rack timer armed?");
712 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
713 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
714 	    SYSCTL_CHILDREN(rack_sysctl_root),
715 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
716 	    &rack_to_arm_tlp,
717 	    "Total number of times the tlp timer armed?");
718 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
719 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
720 	    SYSCTL_CHILDREN(rack_sysctl_root),
721 	    OID_AUTO, "paced", CTLFLAG_RD,
722 	    &rack_paced_segments,
723 	    "Total number of times a segment send caused hptsi");
724 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
725 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
726 	    SYSCTL_CHILDREN(rack_sysctl_root),
727 	    OID_AUTO, "unpaced", CTLFLAG_RD,
728 	    &rack_unpaced_segments,
729 	    "Total number of times a segment did not cause hptsi");
730 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
731 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
732 	    SYSCTL_CHILDREN(rack_sysctl_root),
733 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
734 	    &rack_saw_enobuf,
735 	    "Total number of times a segment did not cause hptsi");
736 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
737 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
738 	    SYSCTL_CHILDREN(rack_sysctl_root),
739 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
740 	    &rack_saw_enetunreach,
741 	    "Total number of times a segment did not cause hptsi");
742 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
743 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
744 	    SYSCTL_CHILDREN(rack_sysctl_root),
745 	    OID_AUTO, "allocs", CTLFLAG_RD,
746 	    &rack_to_alloc,
747 	    "Total allocations of tracking structures");
748 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
749 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
750 	    SYSCTL_CHILDREN(rack_sysctl_root),
751 	    OID_AUTO, "allochard", CTLFLAG_RD,
752 	    &rack_to_alloc_hard,
753 	    "Total allocations done with sleeping the hard way");
754 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
755 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
756 	    SYSCTL_CHILDREN(rack_sysctl_root),
757 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
758 	    &rack_to_alloc_emerg,
759 	    "Total alocations done from emergency cache");
760 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
761 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
762 	    SYSCTL_CHILDREN(rack_sysctl_root),
763 	    OID_AUTO, "sack_long", CTLFLAG_RD,
764 	    &rack_sack_proc_all,
765 	    "Total times we had to walk whole list for sack processing");
766 
767 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
768 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
769 	    SYSCTL_CHILDREN(rack_sysctl_root),
770 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
771 	    &rack_sack_proc_restart,
772 	    "Total times we had to walk whole list due to a restart");
773 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
774 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
775 	    SYSCTL_CHILDREN(rack_sysctl_root),
776 	    OID_AUTO, "sack_short", CTLFLAG_RD,
777 	    &rack_sack_proc_short,
778 	    "Total times we took shortcut for sack processing");
779 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
780 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
781 	    SYSCTL_CHILDREN(rack_sysctl_root),
782 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
783 	    &rack_enter_tlp_calc,
784 	    "Total times we called calc-tlp");
785 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
786 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
787 	    SYSCTL_CHILDREN(rack_sysctl_root),
788 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
789 	    &rack_used_tlpmethod,
790 	    "Total number of runt sacks");
791 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
792 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
793 	    SYSCTL_CHILDREN(rack_sysctl_root),
794 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
795 	    &rack_used_tlpmethod2,
796 	    "Total number of runt sacks 2");
797 	rack_runt_sacks = counter_u64_alloc(M_WAITOK);
798 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
799 	    SYSCTL_CHILDREN(rack_sysctl_root),
800 	    OID_AUTO, "runtsacks", CTLFLAG_RD,
801 	    &rack_runt_sacks,
802 	    "Total number of runt sacks");
803 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
804 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
805 	    SYSCTL_CHILDREN(rack_sysctl_root),
806 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
807 	    &rack_progress_drops,
808 	    "Total number of progress drops");
809 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
810 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
811 	    SYSCTL_CHILDREN(rack_sysctl_root),
812 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
813 	    &rack_input_idle_reduces,
814 	    "Total number of idle reductions on input");
815 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
816 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
817 	    SYSCTL_CHILDREN(rack_sysctl_root),
818 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
819 	    &rack_tlp_does_nada,
820 	    "Total number of nada tlp calls");
821 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
822 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
823 	    OID_AUTO, "outsize", CTLFLAG_RD,
824 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
825 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
826 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
827 	    OID_AUTO, "opts", CTLFLAG_RD,
828 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
829 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
830 	    SYSCTL_CHILDREN(rack_sysctl_root),
831 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
832 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
833 }
834 
835 static inline int32_t
836 rack_progress_timeout_check(struct tcpcb *tp)
837 {
838 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
839 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
840 			/*
841 			 * There is an assumption that the caller
842 			 * will drop the connection so we will
843 			 * increment the counters here.
844 			 */
845 			struct tcp_rack *rack;
846 			rack = (struct tcp_rack *)tp->t_fb_ptr;
847 			counter_u64_add(rack_progress_drops, 1);
848 #ifdef NETFLIX_STATS
849 			TCPSTAT_INC(tcps_progdrops);
850 #endif
851 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
852 			return (1);
853 		}
854 	}
855 	return (0);
856 }
857 
858 
859 static void
860 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
861 {
862 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
863 		union tcp_log_stackspecific log;
864 
865 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
866 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
867 		log.u_bbr.flex2 = to;
868 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
869 		log.u_bbr.flex4 = slot;
870 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
871 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
872 		log.u_bbr.flex8 = which;
873 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
874 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
875 		TCP_LOG_EVENT(rack->rc_tp, NULL,
876 		    &rack->rc_inp->inp_socket->so_rcv,
877 		    &rack->rc_inp->inp_socket->so_snd,
878 		    BBR_LOG_TIMERSTAR, 0,
879 		    0, &log, false);
880 	}
881 }
882 
883 static void
884 rack_log_to_event(struct tcp_rack *rack, int32_t to_num)
885 {
886 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
887 		union tcp_log_stackspecific log;
888 
889 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
890 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
891 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
892 		log.u_bbr.flex8 = to_num;
893 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
894 		log.u_bbr.flex2 = rack->rc_rack_rtt;
895 		TCP_LOG_EVENT(rack->rc_tp, NULL,
896 		    &rack->rc_inp->inp_socket->so_rcv,
897 		    &rack->rc_inp->inp_socket->so_snd,
898 		    BBR_LOG_RTO, 0,
899 		    0, &log, false);
900 	}
901 }
902 
903 static void
904 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
905     uint32_t o_srtt, uint32_t o_var)
906 {
907 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
908 		union tcp_log_stackspecific log;
909 
910 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
911 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
912 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
913 		log.u_bbr.flex1 = t;
914 		log.u_bbr.flex2 = o_srtt;
915 		log.u_bbr.flex3 = o_var;
916 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
917 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
918 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
919 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
920 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
921 		TCP_LOG_EVENT(tp, NULL,
922 		    &rack->rc_inp->inp_socket->so_rcv,
923 		    &rack->rc_inp->inp_socket->so_snd,
924 		    BBR_LOG_BBRRTT, 0,
925 		    0, &log, false);
926 	}
927 }
928 
929 static void
930 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
931 {
932 	/*
933 	 * Log the rtt sample we are
934 	 * applying to the srtt algorithm in
935 	 * useconds.
936 	 */
937 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
938 		union tcp_log_stackspecific log;
939 		struct timeval tv;
940 
941 		/* Convert our ms to a microsecond */
942 		log.u_bbr.flex1 = rtt * 1000;
943 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
944 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
945 		    &rack->rc_inp->inp_socket->so_rcv,
946 		    &rack->rc_inp->inp_socket->so_snd,
947 		    TCP_LOG_RTT, 0,
948 		    0, &log, false, &tv);
949 	}
950 }
951 
952 
953 static inline void
954 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
955 {
956 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
957 		union tcp_log_stackspecific log;
958 
959 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
960 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
961 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
962 		log.u_bbr.flex1 = line;
963 		log.u_bbr.flex2 = tick;
964 		log.u_bbr.flex3 = tp->t_maxunacktime;
965 		log.u_bbr.flex4 = tp->t_acktime;
966 		log.u_bbr.flex8 = event;
967 		TCP_LOG_EVENT(tp, NULL,
968 		    &rack->rc_inp->inp_socket->so_rcv,
969 		    &rack->rc_inp->inp_socket->so_snd,
970 		    BBR_LOG_PROGRESS, 0,
971 		    0, &log, false);
972 	}
973 }
974 
975 static void
976 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
977 {
978 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
979 		union tcp_log_stackspecific log;
980 
981 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
982 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
983 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
984 		log.u_bbr.flex1 = slot;
985 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
986 		log.u_bbr.flex8 = rack->rc_in_persist;
987 		TCP_LOG_EVENT(rack->rc_tp, NULL,
988 		    &rack->rc_inp->inp_socket->so_rcv,
989 		    &rack->rc_inp->inp_socket->so_snd,
990 		    BBR_LOG_BBRSND, 0,
991 		    0, &log, false);
992 	}
993 }
994 
995 static void
996 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
997 {
998 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
999 		union tcp_log_stackspecific log;
1000 		log.u_bbr.flex1 = did_out;
1001 		log.u_bbr.flex2 = nxt_pkt;
1002 		log.u_bbr.flex3 = way_out;
1003 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1004 		log.u_bbr.flex7 = rack->r_wanted_output;
1005 		log.u_bbr.flex8 = rack->rc_in_persist;
1006 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1007 		    &rack->rc_inp->inp_socket->so_rcv,
1008 		    &rack->rc_inp->inp_socket->so_snd,
1009 		    BBR_LOG_DOSEG_DONE, 0,
1010 		    0, &log, false);
1011 	}
1012 }
1013 
1014 
1015 static void
1016 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1017 {
1018 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1019 		union tcp_log_stackspecific log;
1020 
1021 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1022 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1023 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1024 		log.u_bbr.flex1 = slot;
1025 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1026 		log.u_bbr.flex7 = hpts_calling;
1027 		log.u_bbr.flex8 = rack->rc_in_persist;
1028 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1029 		    &rack->rc_inp->inp_socket->so_rcv,
1030 		    &rack->rc_inp->inp_socket->so_snd,
1031 		    BBR_LOG_JUSTRET, 0,
1032 		    tlen, &log, false);
1033 	}
1034 }
1035 
1036 static void
1037 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1038 {
1039 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1040 		union tcp_log_stackspecific log;
1041 
1042 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1043 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1044 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1045 		log.u_bbr.flex1 = line;
1046 		log.u_bbr.flex2 = 0;
1047 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1048 		log.u_bbr.flex4 = 0;
1049 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1050 		log.u_bbr.flex8 = hpts_removed;
1051 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1052 		    &rack->rc_inp->inp_socket->so_rcv,
1053 		    &rack->rc_inp->inp_socket->so_snd,
1054 		    BBR_LOG_TIMERCANC, 0,
1055 		    0, &log, false);
1056 	}
1057 }
1058 
1059 static void
1060 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1061 {
1062 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1063 		union tcp_log_stackspecific log;
1064 
1065 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1066 		log.u_bbr.flex1 = timers;
1067 		log.u_bbr.flex2 = ret;
1068 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1069 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1070 		log.u_bbr.flex5 = cts;
1071 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1072 		    &rack->rc_inp->inp_socket->so_rcv,
1073 		    &rack->rc_inp->inp_socket->so_snd,
1074 		    BBR_LOG_TO_PROCESS, 0,
1075 		    0, &log, false);
1076 	}
1077 }
1078 
1079 static void
1080 rack_counter_destroy()
1081 {
1082 	counter_u64_free(rack_badfr);
1083 	counter_u64_free(rack_badfr_bytes);
1084 	counter_u64_free(rack_rtm_prr_retran);
1085 	counter_u64_free(rack_rtm_prr_newdata);
1086 	counter_u64_free(rack_timestamp_mismatch);
1087 	counter_u64_free(rack_reorder_seen);
1088 	counter_u64_free(rack_tlp_tot);
1089 	counter_u64_free(rack_tlp_newdata);
1090 	counter_u64_free(rack_tlp_retran);
1091 	counter_u64_free(rack_tlp_retran_bytes);
1092 	counter_u64_free(rack_tlp_retran_fail);
1093 	counter_u64_free(rack_to_tot);
1094 	counter_u64_free(rack_to_arm_rack);
1095 	counter_u64_free(rack_to_arm_tlp);
1096 	counter_u64_free(rack_paced_segments);
1097 	counter_u64_free(rack_unpaced_segments);
1098 	counter_u64_free(rack_saw_enobuf);
1099 	counter_u64_free(rack_saw_enetunreach);
1100 	counter_u64_free(rack_to_alloc_hard);
1101 	counter_u64_free(rack_to_alloc_emerg);
1102 	counter_u64_free(rack_sack_proc_all);
1103 	counter_u64_free(rack_sack_proc_short);
1104 	counter_u64_free(rack_sack_proc_restart);
1105 	counter_u64_free(rack_to_alloc);
1106 	counter_u64_free(rack_find_high);
1107 	counter_u64_free(rack_runt_sacks);
1108 	counter_u64_free(rack_enter_tlp_calc);
1109 	counter_u64_free(rack_used_tlpmethod);
1110 	counter_u64_free(rack_used_tlpmethod2);
1111 	counter_u64_free(rack_progress_drops);
1112 	counter_u64_free(rack_input_idle_reduces);
1113 	counter_u64_free(rack_tlp_does_nada);
1114 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1115 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1116 }
1117 
1118 static struct rack_sendmap *
1119 rack_alloc(struct tcp_rack *rack)
1120 {
1121 	struct rack_sendmap *rsm;
1122 
1123 	counter_u64_add(rack_to_alloc, 1);
1124 	rack->r_ctl.rc_num_maps_alloced++;
1125 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1126 	if (rsm) {
1127 		return (rsm);
1128 	}
1129 	if (rack->rc_free_cnt) {
1130 		counter_u64_add(rack_to_alloc_emerg, 1);
1131 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1132 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
1133 		rack->rc_free_cnt--;
1134 		return (rsm);
1135 	}
1136 	return (NULL);
1137 }
1138 
1139 static void
1140 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1141 {
1142 	rack->r_ctl.rc_num_maps_alloced--;
1143 	if (rack->r_ctl.rc_tlpsend == rsm)
1144 		rack->r_ctl.rc_tlpsend = NULL;
1145 	if (rack->r_ctl.rc_next == rsm)
1146 		rack->r_ctl.rc_next = NULL;
1147 	if (rack->r_ctl.rc_sacklast == rsm)
1148 		rack->r_ctl.rc_sacklast = NULL;
1149 	if (rack->rc_free_cnt < rack_free_cache) {
1150 		memset(rsm, 0, sizeof(struct rack_sendmap));
1151 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
1152 		rack->rc_free_cnt++;
1153 		return;
1154 	}
1155 	uma_zfree(rack_zone, rsm);
1156 }
1157 
1158 /*
1159  * CC wrapper hook functions
1160  */
1161 static void
1162 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1163     uint16_t type, int32_t recovery)
1164 {
1165 #ifdef NETFLIX_STATS
1166 	int32_t gput;
1167 #endif
1168 #ifdef NETFLIX_CWV
1169 	u_long old_cwnd = tp->snd_cwnd;
1170 #endif
1171 
1172 	INP_WLOCK_ASSERT(tp->t_inpcb);
1173 	tp->ccv->nsegs = nsegs;
1174 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1175 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1176 		uint32_t max;
1177 
1178 		max = rack->r_ctl.rc_early_recovery_segs * tp->t_maxseg;
1179 		if (tp->ccv->bytes_this_ack > max) {
1180 			tp->ccv->bytes_this_ack = max;
1181 		}
1182 	}
1183 	if (tp->snd_cwnd <= tp->snd_wnd)
1184 		tp->ccv->flags |= CCF_CWND_LIMITED;
1185 	else
1186 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1187 
1188 	if (type == CC_ACK) {
1189 #ifdef NETFLIX_STATS
1190 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1191 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1192 		if ((tp->t_flags & TF_GPUTINPROG) &&
1193 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1194 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1195 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1196 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1197 			    gput);
1198 			/*
1199 			 * XXXLAS: This is a temporary hack, and should be
1200 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1201 			 * API to deal with chained VOIs.
1202 			 */
1203 			if (tp->t_stats_gput_prev > 0)
1204 				stats_voi_update_abs_s32(tp->t_stats,
1205 				    VOI_TCP_GPUT_ND,
1206 				    ((gput - tp->t_stats_gput_prev) * 100) /
1207 				    tp->t_stats_gput_prev);
1208 			tp->t_flags &= ~TF_GPUTINPROG;
1209 			tp->t_stats_gput_prev = gput;
1210 #ifdef NETFLIX_CWV
1211 			if (tp->t_maxpeakrate) {
1212 				/*
1213 				 * We update t_peakrate_thr. This gives us roughly
1214 				 * one update per round trip time.
1215 				 */
1216 				tcp_update_peakrate_thr(tp);
1217 			}
1218 #endif
1219 		}
1220 #endif
1221 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1222 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1223 			    nsegs * V_tcp_abc_l_var * tp->t_maxseg);
1224 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1225 				tp->t_bytes_acked -= tp->snd_cwnd;
1226 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1227 			}
1228 		} else {
1229 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1230 			tp->t_bytes_acked = 0;
1231 		}
1232 	}
1233 	if (CC_ALGO(tp)->ack_received != NULL) {
1234 		/* XXXLAS: Find a way to live without this */
1235 		tp->ccv->curack = th->th_ack;
1236 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1237 	}
1238 #ifdef NETFLIX_STATS
1239 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1240 #endif
1241 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1242 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1243 	}
1244 #ifdef NETFLIX_CWV
1245 	if (tp->cwv_enabled) {
1246 		/*
1247 		 * Per RFC 7661: The behaviour in the non-validated phase is
1248 		 * specified as: o  A sender determines whether to increase
1249 		 * the cwnd based upon whether it is cwnd-limited (see
1250 		 * Section 4.5.3): * A sender that is cwnd-limited MAY use
1251 		 * the standard TCP method to increase cwnd (i.e., the
1252 		 * standard method permits a TCP sender that fully utilises
1253 		 * the cwnd to increase the cwnd each time it receives an
1254 		 * ACK). * A sender that is not cwnd-limited MUST NOT
1255 		 * increase the cwnd when ACK packets are received in this
1256 		 * phase (i.e., needs to avoid growing the cwnd when it has
1257 		 * not recently sent using the current size of cwnd).
1258 		 */
1259 		if ((tp->snd_cwnd > old_cwnd) &&
1260 		    (tp->cwv_cwnd_valid == 0) &&
1261 		    (!(tp->ccv->flags & CCF_CWND_LIMITED))) {
1262 			tp->snd_cwnd = old_cwnd;
1263 		}
1264 		/* Try to update pipeAck and NCWV state */
1265 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
1266 		    !IN_RECOVERY(tp->t_flags)) {
1267 			uint32_t data = sbavail(&(tp->t_inpcb->inp_socket->so_snd));
1268 
1269 			tcp_newcwv_update_pipeack(tp, data);
1270 		}
1271 	}
1272 	/* we enforce max peak rate if it is set. */
1273 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1274 		tp->snd_cwnd = tp->t_peakrate_thr;
1275 	}
1276 #endif
1277 }
1278 
1279 static void
1280 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1281 {
1282 	struct tcp_rack *rack;
1283 
1284 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1285 	INP_WLOCK_ASSERT(tp->t_inpcb);
1286 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1287 		rack->r_wanted_output++;
1288 }
1289 
1290 static void
1291 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1292 {
1293 	struct tcp_rack *rack;
1294 
1295 	INP_WLOCK_ASSERT(tp->t_inpcb);
1296 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1297 	if (CC_ALGO(tp)->post_recovery != NULL) {
1298 		tp->ccv->curack = th->th_ack;
1299 		CC_ALGO(tp)->post_recovery(tp->ccv);
1300 	}
1301 	/*
1302 	 * Here we can in theory adjust cwnd to be based on the number of
1303 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1304 	 * based on the rack_use_proportional flag.
1305 	 */
1306 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1307 		int32_t reduce;
1308 
1309 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1310 		if (reduce > 50) {
1311 			reduce = 50;
1312 		}
1313 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1314 	} else {
1315 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1316 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1317 			tp->snd_cwnd = tp->snd_ssthresh;
1318 		}
1319 	}
1320 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1321 		/* Suck the next prr cnt back into cwnd */
1322 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1323 		rack->r_ctl.rc_prr_sndcnt = 0;
1324 	}
1325 	EXIT_RECOVERY(tp->t_flags);
1326 
1327 
1328 #ifdef NETFLIX_CWV
1329 	if (tp->cwv_enabled) {
1330 		if ((tp->cwv_cwnd_valid == 0) &&
1331 		    (tp->snd_cwv.in_recovery))
1332 			tcp_newcwv_end_recovery(tp);
1333 	}
1334 #endif
1335 }
1336 
1337 static void
1338 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1339 {
1340 	struct tcp_rack *rack;
1341 
1342 	INP_WLOCK_ASSERT(tp->t_inpcb);
1343 
1344 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1345 	switch (type) {
1346 	case CC_NDUPACK:
1347 /*		rack->r_ctl.rc_ssthresh_set = 1;*/
1348 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1349 			rack->r_ctl.rc_tlp_rtx_out = 0;
1350 			rack->r_ctl.rc_prr_delivered = 0;
1351 			rack->r_ctl.rc_prr_out = 0;
1352 			rack->r_ctl.rc_loss_count = 0;
1353 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
1354 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1355 			tp->snd_recover = tp->snd_max;
1356 			if (tp->t_flags & TF_ECN_PERMIT)
1357 				tp->t_flags |= TF_ECN_SND_CWR;
1358 		}
1359 		break;
1360 	case CC_ECN:
1361 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1362 			TCPSTAT_INC(tcps_ecn_rcwnd);
1363 			tp->snd_recover = tp->snd_max;
1364 			if (tp->t_flags & TF_ECN_PERMIT)
1365 				tp->t_flags |= TF_ECN_SND_CWR;
1366 		}
1367 		break;
1368 	case CC_RTO:
1369 		tp->t_dupacks = 0;
1370 		tp->t_bytes_acked = 0;
1371 		EXIT_RECOVERY(tp->t_flags);
1372 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1373 		    tp->t_maxseg) * tp->t_maxseg;
1374 		tp->snd_cwnd = tp->t_maxseg;
1375 		break;
1376 	case CC_RTO_ERR:
1377 		TCPSTAT_INC(tcps_sndrexmitbad);
1378 		/* RTO was unnecessary, so reset everything. */
1379 		tp->snd_cwnd = tp->snd_cwnd_prev;
1380 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1381 		tp->snd_recover = tp->snd_recover_prev;
1382 		if (tp->t_flags & TF_WASFRECOVERY)
1383 			ENTER_FASTRECOVERY(tp->t_flags);
1384 		if (tp->t_flags & TF_WASCRECOVERY)
1385 			ENTER_CONGRECOVERY(tp->t_flags);
1386 		tp->snd_nxt = tp->snd_max;
1387 		tp->t_badrxtwin = 0;
1388 		break;
1389 	}
1390 
1391 	if (CC_ALGO(tp)->cong_signal != NULL) {
1392 		if (th != NULL)
1393 			tp->ccv->curack = th->th_ack;
1394 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1395 	}
1396 #ifdef NETFLIX_CWV
1397 	if (tp->cwv_enabled) {
1398 		if (tp->snd_cwv.in_recovery == 0 && IN_RECOVERY(tp->t_flags)) {
1399 			tcp_newcwv_enter_recovery(tp);
1400 		}
1401 		if (type == CC_RTO) {
1402 			tcp_newcwv_reset(tp);
1403 		}
1404 	}
1405 #endif
1406 }
1407 
1408 
1409 
1410 static inline void
1411 rack_cc_after_idle(struct tcpcb *tp, int reduce_largest)
1412 {
1413 	uint32_t i_cwnd;
1414 
1415 	INP_WLOCK_ASSERT(tp->t_inpcb);
1416 
1417 #ifdef NETFLIX_STATS
1418 	TCPSTAT_INC(tcps_idle_restarts);
1419 	if (tp->t_state == TCPS_ESTABLISHED)
1420 		TCPSTAT_INC(tcps_idle_estrestarts);
1421 #endif
1422 	if (CC_ALGO(tp)->after_idle != NULL)
1423 		CC_ALGO(tp)->after_idle(tp->ccv);
1424 
1425 	if (tp->snd_cwnd == 1)
1426 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1427 	else if (V_tcp_initcwnd_segments)
1428 		i_cwnd = min((V_tcp_initcwnd_segments * tp->t_maxseg),
1429 		    max(2 * tp->t_maxseg, V_tcp_initcwnd_segments * 1460));
1430 	else if (V_tcp_do_rfc3390)
1431 		i_cwnd = min(4 * tp->t_maxseg,
1432 		    max(2 * tp->t_maxseg, 4380));
1433 	else {
1434 		/* Per RFC5681 Section 3.1 */
1435 		if (tp->t_maxseg > 2190)
1436 			i_cwnd = 2 * tp->t_maxseg;
1437 		else if (tp->t_maxseg > 1095)
1438 			i_cwnd = 3 * tp->t_maxseg;
1439 		else
1440 			i_cwnd = 4 * tp->t_maxseg;
1441 	}
1442 	if (reduce_largest) {
1443 		/*
1444 		 * Do we reduce the largest cwnd to make
1445 		 * rack play nice on restart hptsi wise?
1446 		 */
1447 		if (((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd  > i_cwnd)
1448 			((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd = i_cwnd;
1449 	}
1450 	/*
1451 	 * Being idle is no differnt than the initial window. If the cc
1452 	 * clamps it down below the initial window raise it to the initial
1453 	 * window.
1454 	 */
1455 	if (tp->snd_cwnd < i_cwnd) {
1456 		tp->snd_cwnd = i_cwnd;
1457 	}
1458 }
1459 
1460 
1461 /*
1462  * Indicate whether this ack should be delayed.  We can delay the ack if
1463  * following conditions are met:
1464  *	- There is no delayed ack timer in progress.
1465  *	- Our last ack wasn't a 0-sized window. We never want to delay
1466  *	  the ack that opens up a 0-sized window.
1467  *	- LRO wasn't used for this segment. We make sure by checking that the
1468  *	  segment size is not larger than the MSS.
1469  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1470  *	  connection.
1471  */
1472 #define DELAY_ACK(tp, tlen)			 \
1473 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1474 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1475 	(tlen <= tp->t_maxseg) &&		 \
1476 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1477 
1478 static inline void
1479 rack_calc_rwin(struct socket *so, struct tcpcb *tp)
1480 {
1481 	int32_t win;
1482 
1483 	/*
1484 	 * Calculate amount of space in receive window, and then do TCP
1485 	 * input processing. Receive window is amount of space in rcv queue,
1486 	 * but not less than advertised window.
1487 	 */
1488 	win = sbspace(&so->so_rcv);
1489 	if (win < 0)
1490 		win = 0;
1491 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1492 }
1493 
1494 static void
1495 rack_do_drop(struct mbuf *m, struct tcpcb *tp, int32_t * ti_locked)
1496 {
1497 	if (*ti_locked == TI_RLOCKED) {
1498 		INP_INFO_RUNLOCK(&V_tcbinfo);
1499 		*ti_locked = TI_UNLOCKED;
1500 	}
1501 	/*
1502 	 * Drop space held by incoming segment and return.
1503 	 */
1504 	if (tp != NULL)
1505 		INP_WUNLOCK(tp->t_inpcb);
1506 	if (m)
1507 		m_freem(m);
1508 }
1509 
1510 static void
1511 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t * ti_locked, int32_t rstreason, int32_t tlen)
1512 {
1513 	if (*ti_locked == TI_RLOCKED) {
1514 		INP_INFO_RUNLOCK(&V_tcbinfo);
1515 		*ti_locked = TI_UNLOCKED;
1516 	}
1517 	if (tp != NULL) {
1518 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1519 		INP_WUNLOCK(tp->t_inpcb);
1520 	} else
1521 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1522 }
1523 
1524 /*
1525  * The value in ret_val informs the caller
1526  * if we dropped the tcb (and lock) or not.
1527  * 1 = we dropped it, 0 = the TCB is still locked
1528  * and valid.
1529  */
1530 static void
1531 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t * ti_locked, int32_t thflags, int32_t tlen, int32_t * ret_val)
1532 {
1533 	/*
1534 	 * Generate an ACK dropping incoming segment if it occupies sequence
1535 	 * space, where the ACK reflects our state.
1536 	 *
1537 	 * We can now skip the test for the RST flag since all paths to this
1538 	 * code happen after packets containing RST have been dropped.
1539 	 *
1540 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
1541 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
1542 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
1543 	 * prevents an ACK storm between two listening ports that have been
1544 	 * sent forged SYN segments, each with the source address of the
1545 	 * other.
1546 	 */
1547 	struct tcp_rack *rack;
1548 
1549 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
1550 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
1551 	    SEQ_GT(th->th_ack, tp->snd_max))) {
1552 		*ret_val = 1;
1553 		rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
1554 		return;
1555 	} else
1556 		*ret_val = 0;
1557 	if (*ti_locked == TI_RLOCKED) {
1558 		INP_INFO_RUNLOCK(&V_tcbinfo);
1559 		*ti_locked = TI_UNLOCKED;
1560 	}
1561 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1562 	rack->r_wanted_output++;
1563 	tp->t_flags |= TF_ACKNOW;
1564 	if (m)
1565 		m_freem(m);
1566 }
1567 
1568 
1569 static int
1570 rack_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t * ti_locked)
1571 {
1572 	/*
1573 	 * RFC5961 Section 3.2
1574 	 *
1575 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
1576 	 * window, we send challenge ACK.
1577 	 *
1578 	 * Note: to take into account delayed ACKs, we should test against
1579 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
1580 	 * of closed window, not covered by the RFC.
1581 	 */
1582 	int dropped = 0;
1583 
1584 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
1585 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1586 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1587 
1588 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1589 		KASSERT(*ti_locked == TI_RLOCKED,
1590 		    ("%s: TH_RST ti_locked %d, th %p tp %p",
1591 		    __func__, *ti_locked, th, tp));
1592 		KASSERT(tp->t_state != TCPS_SYN_SENT,
1593 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
1594 		    __func__, th, tp));
1595 
1596 		if (V_tcp_insecure_rst ||
1597 		    (tp->last_ack_sent == th->th_seq) ||
1598 		    (tp->rcv_nxt == th->th_seq) ||
1599 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
1600 			TCPSTAT_INC(tcps_drops);
1601 			/* Drop the connection. */
1602 			switch (tp->t_state) {
1603 			case TCPS_SYN_RECEIVED:
1604 				so->so_error = ECONNREFUSED;
1605 				goto close;
1606 			case TCPS_ESTABLISHED:
1607 			case TCPS_FIN_WAIT_1:
1608 			case TCPS_FIN_WAIT_2:
1609 			case TCPS_CLOSE_WAIT:
1610 			case TCPS_CLOSING:
1611 			case TCPS_LAST_ACK:
1612 				so->so_error = ECONNRESET;
1613 		close:
1614 				tcp_state_change(tp, TCPS_CLOSED);
1615 				/* FALLTHROUGH */
1616 			default:
1617 				tp = tcp_close(tp);
1618 			}
1619 			dropped = 1;
1620 			rack_do_drop(m, tp, ti_locked);
1621 		} else {
1622 			TCPSTAT_INC(tcps_badrst);
1623 			/* Send challenge ACK. */
1624 			tcp_respond(tp, mtod(m, void *), th, m,
1625 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
1626 			tp->last_ack_sent = tp->rcv_nxt;
1627 		}
1628 	} else {
1629 		m_freem(m);
1630 	}
1631 	return (dropped);
1632 }
1633 
1634 /*
1635  * The value in ret_val informs the caller
1636  * if we dropped the tcb (and lock) or not.
1637  * 1 = we dropped it, 0 = the TCB is still locked
1638  * and valid.
1639  */
1640 static void
1641 rack_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ti_locked, int32_t * ret_val)
1642 {
1643 	KASSERT(*ti_locked == TI_RLOCKED,
1644 	    ("tcp_do_segment: TH_SYN ti_locked %d", *ti_locked));
1645 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1646 
1647 	TCPSTAT_INC(tcps_badsyn);
1648 	if (V_tcp_insecure_syn &&
1649 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1650 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1651 		tp = tcp_drop(tp, ECONNRESET);
1652 		*ret_val = 1;
1653 		rack_do_drop(m, tp, ti_locked);
1654 	} else {
1655 		/* Send challenge ACK. */
1656 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
1657 		    tp->snd_nxt, TH_ACK);
1658 		tp->last_ack_sent = tp->rcv_nxt;
1659 		m = NULL;
1660 		*ret_val = 0;
1661 		rack_do_drop(m, NULL, ti_locked);
1662 	}
1663 }
1664 
1665 /*
1666  * rack_ts_check returns 1 for you should not proceed. It places
1667  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1668  * that the TCB is unlocked and probably dropped. The 0 indicates the
1669  * TCB is still valid and locked.
1670  */
1671 static int
1672 rack_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ti_locked, int32_t tlen, int32_t thflags, int32_t * ret_val)
1673 {
1674 
1675 	/* Check to see if ts_recent is over 24 days old.  */
1676 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
1677 		/*
1678 		 * Invalidate ts_recent.  If this segment updates ts_recent,
1679 		 * the age will be reset later and ts_recent will get a
1680 		 * valid value.  If it does not, setting ts_recent to zero
1681 		 * will at least satisfy the requirement that zero be placed
1682 		 * in the timestamp echo reply when ts_recent isn't valid.
1683 		 * The age isn't reset until we get a valid ts_recent
1684 		 * because we don't want out-of-order segments to be dropped
1685 		 * when ts_recent is old.
1686 		 */
1687 		tp->ts_recent = 0;
1688 	} else {
1689 		TCPSTAT_INC(tcps_rcvduppack);
1690 		TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1691 		TCPSTAT_INC(tcps_pawsdrop);
1692 		*ret_val = 0;
1693 		if (tlen) {
1694 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, ret_val);
1695 		} else {
1696 			rack_do_drop(m, NULL, ti_locked);
1697 		}
1698 		return (1);
1699 	}
1700 	return (0);
1701 }
1702 
1703 /*
1704  * rack_drop_checks returns 1 for you should not proceed. It places
1705  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1706  * that the TCB is unlocked and probably dropped. The 0 indicates the
1707  * TCB is still valid and locked.
1708  */
1709 static int
1710 rack_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * ti_locked, int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
1711 {
1712 	int32_t todrop;
1713 	int32_t thflags;
1714 	int32_t tlen;
1715 
1716 	thflags = *thf;
1717 	tlen = *tlenp;
1718 	todrop = tp->rcv_nxt - th->th_seq;
1719 	if (todrop > 0) {
1720 		if (thflags & TH_SYN) {
1721 			thflags &= ~TH_SYN;
1722 			th->th_seq++;
1723 			if (th->th_urp > 1)
1724 				th->th_urp--;
1725 			else
1726 				thflags &= ~TH_URG;
1727 			todrop--;
1728 		}
1729 		/*
1730 		 * Following if statement from Stevens, vol. 2, p. 960.
1731 		 */
1732 		if (todrop > tlen
1733 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1734 			/*
1735 			 * Any valid FIN must be to the left of the window.
1736 			 * At this point the FIN must be a duplicate or out
1737 			 * of sequence; drop it.
1738 			 */
1739 			thflags &= ~TH_FIN;
1740 			/*
1741 			 * Send an ACK to resynchronize and drop any data.
1742 			 * But keep on processing for RST or ACK.
1743 			 */
1744 			tp->t_flags |= TF_ACKNOW;
1745 			todrop = tlen;
1746 			TCPSTAT_INC(tcps_rcvduppack);
1747 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1748 		} else {
1749 			TCPSTAT_INC(tcps_rcvpartduppack);
1750 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1751 		}
1752 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
1753 		th->th_seq += todrop;
1754 		tlen -= todrop;
1755 		if (th->th_urp > todrop)
1756 			th->th_urp -= todrop;
1757 		else {
1758 			thflags &= ~TH_URG;
1759 			th->th_urp = 0;
1760 		}
1761 	}
1762 	/*
1763 	 * If segment ends after window, drop trailing data (and PUSH and
1764 	 * FIN); if nothing left, just ACK.
1765 	 */
1766 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1767 	if (todrop > 0) {
1768 		TCPSTAT_INC(tcps_rcvpackafterwin);
1769 		if (todrop >= tlen) {
1770 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1771 			/*
1772 			 * If window is closed can only take segments at
1773 			 * window edge, and have to drop data and PUSH from
1774 			 * incoming segments.  Continue processing, but
1775 			 * remember to ack.  Otherwise, drop segment and
1776 			 * ack.
1777 			 */
1778 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1779 				tp->t_flags |= TF_ACKNOW;
1780 				TCPSTAT_INC(tcps_rcvwinprobe);
1781 			} else {
1782 				rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, ret_val);
1783 				return (1);
1784 			}
1785 		} else
1786 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1787 		m_adj(m, -todrop);
1788 		tlen -= todrop;
1789 		thflags &= ~(TH_PUSH | TH_FIN);
1790 	}
1791 	*thf = thflags;
1792 	*tlenp = tlen;
1793 	return (0);
1794 }
1795 
1796 static struct rack_sendmap *
1797 rack_find_lowest_rsm(struct tcp_rack *rack)
1798 {
1799 	struct rack_sendmap *rsm;
1800 
1801 	/*
1802 	 * Walk the time-order transmitted list looking for an rsm that is
1803 	 * not acked. This will be the one that was sent the longest time
1804 	 * ago that is still outstanding.
1805 	 */
1806 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1807 		if (rsm->r_flags & RACK_ACKED) {
1808 			continue;
1809 		}
1810 		goto finish;
1811 	}
1812 finish:
1813 	return (rsm);
1814 }
1815 
1816 static struct rack_sendmap *
1817 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1818 {
1819 	struct rack_sendmap *prsm;
1820 
1821 	/*
1822 	 * Walk the sequence order list backward until we hit and arrive at
1823 	 * the highest seq not acked. In theory when this is called it
1824 	 * should be the last segment (which it was not).
1825 	 */
1826 	counter_u64_add(rack_find_high, 1);
1827 	prsm = rsm;
1828 	TAILQ_FOREACH_REVERSE_FROM(prsm, &rack->r_ctl.rc_map, rack_head, r_next) {
1829 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1830 			continue;
1831 		}
1832 		return (prsm);
1833 	}
1834 	return (NULL);
1835 }
1836 
1837 
1838 static uint32_t
1839 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1840 {
1841 	int32_t lro;
1842 	uint32_t thresh;
1843 
1844 	/*
1845 	 * lro is the flag we use to determine if we have seen reordering.
1846 	 * If it gets set we have seen reordering. The reorder logic either
1847 	 * works in one of two ways:
1848 	 *
1849 	 * If reorder-fade is configured, then we track the last time we saw
1850 	 * re-ordering occur. If we reach the point where enough time as
1851 	 * passed we no longer consider reordering has occuring.
1852 	 *
1853 	 * Or if reorder-face is 0, then once we see reordering we consider
1854 	 * the connection to alway be subject to reordering and just set lro
1855 	 * to 1.
1856 	 *
1857 	 * In the end if lro is non-zero we add the extra time for
1858 	 * reordering in.
1859 	 */
1860 	if (srtt == 0)
1861 		srtt = 1;
1862 	if (rack->r_ctl.rc_reorder_ts) {
1863 		if (rack->r_ctl.rc_reorder_fade) {
1864 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1865 				lro = cts - rack->r_ctl.rc_reorder_ts;
1866 				if (lro == 0) {
1867 					/*
1868 					 * No time as passed since the last
1869 					 * reorder, mark it as reordering.
1870 					 */
1871 					lro = 1;
1872 				}
1873 			} else {
1874 				/* Negative time? */
1875 				lro = 0;
1876 			}
1877 			if (lro > rack->r_ctl.rc_reorder_fade) {
1878 				/* Turn off reordering seen too */
1879 				rack->r_ctl.rc_reorder_ts = 0;
1880 				lro = 0;
1881 			}
1882 		} else {
1883 			/* Reodering does not fade */
1884 			lro = 1;
1885 		}
1886 	} else {
1887 		lro = 0;
1888 	}
1889 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1890 	if (lro) {
1891 		/* It must be set, if not you get 1/4 rtt */
1892 		if (rack->r_ctl.rc_reorder_shift)
1893 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1894 		else
1895 			thresh += (srtt >> 2);
1896 	} else {
1897 		thresh += 1;
1898 	}
1899 	/* We don't let the rack timeout be above a RTO */
1900 
1901 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
1902 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
1903 	}
1904 	/* And we don't want it above the RTO max either */
1905 	if (thresh > rack_rto_max) {
1906 		thresh = rack_rto_max;
1907 	}
1908 	return (thresh);
1909 }
1910 
1911 static uint32_t
1912 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
1913 		     struct rack_sendmap *rsm, uint32_t srtt)
1914 {
1915 	struct rack_sendmap *prsm;
1916 	uint32_t thresh, len;
1917 	int maxseg;
1918 
1919 	if (srtt == 0)
1920 		srtt = 1;
1921 	if (rack->r_ctl.rc_tlp_threshold)
1922 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
1923 	else
1924 		thresh = (srtt * 2);
1925 
1926 	/* Get the previous sent packet, if any  */
1927 	maxseg = tcp_maxseg(tp);
1928 	counter_u64_add(rack_enter_tlp_calc, 1);
1929 	len = rsm->r_end - rsm->r_start;
1930 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
1931 		/* Exactly like the ID */
1932 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
1933 			uint32_t alt_thresh;
1934 			/*
1935 			 * Compensate for delayed-ack with the d-ack time.
1936 			 */
1937 			counter_u64_add(rack_used_tlpmethod, 1);
1938 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1939 			if (alt_thresh > thresh)
1940 				thresh = alt_thresh;
1941 		}
1942 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
1943 		/* 2.1 behavior */
1944 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
1945 		if (prsm && (len <= maxseg)) {
1946 			/*
1947 			 * Two packets outstanding, thresh should be (2*srtt) +
1948 			 * possible inter-packet delay (if any).
1949 			 */
1950 			uint32_t inter_gap = 0;
1951 			int idx, nidx;
1952 
1953 			counter_u64_add(rack_used_tlpmethod, 1);
1954 			idx = rsm->r_rtr_cnt - 1;
1955 			nidx = prsm->r_rtr_cnt - 1;
1956 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
1957 				/* Yes it was sent later (or at the same time) */
1958 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
1959 			}
1960 			thresh += inter_gap;
1961 		} else 	if (len <= maxseg) {
1962 			/*
1963 			 * Possibly compensate for delayed-ack.
1964 			 */
1965 			uint32_t alt_thresh;
1966 
1967 			counter_u64_add(rack_used_tlpmethod2, 1);
1968 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1969 			if (alt_thresh > thresh)
1970 				thresh = alt_thresh;
1971 		}
1972 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
1973 		/* 2.2 behavior */
1974 		if (len <= maxseg) {
1975 			uint32_t alt_thresh;
1976 			/*
1977 			 * Compensate for delayed-ack with the d-ack time.
1978 			 */
1979 			counter_u64_add(rack_used_tlpmethod, 1);
1980 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1981 			if (alt_thresh > thresh)
1982 				thresh = alt_thresh;
1983 		}
1984 	}
1985  	/* Not above an RTO */
1986 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
1987 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
1988 	}
1989 	/* Not above a RTO max */
1990 	if (thresh > rack_rto_max) {
1991 		thresh = rack_rto_max;
1992 	}
1993 	/* Apply user supplied min TLP */
1994 	if (thresh < rack_tlp_min) {
1995 		thresh = rack_tlp_min;
1996 	}
1997 	return (thresh);
1998 }
1999 
2000 static struct rack_sendmap *
2001 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2002 {
2003 	/*
2004 	 * Check to see that we don't need to fall into recovery. We will
2005 	 * need to do so if our oldest transmit is past the time we should
2006 	 * have had an ack.
2007 	 */
2008 	struct tcp_rack *rack;
2009 	struct rack_sendmap *rsm;
2010 	int32_t idx;
2011 	uint32_t srtt_cur, srtt, thresh;
2012 
2013 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2014 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
2015 		return (NULL);
2016 	}
2017 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
2018 	srtt = TICKS_2_MSEC(srtt_cur);
2019 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
2020 		srtt = rack->rc_rack_rtt;
2021 
2022 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2023 	if (rsm == NULL)
2024 		return (NULL);
2025 
2026 	if (rsm->r_flags & RACK_ACKED) {
2027 		rsm = rack_find_lowest_rsm(rack);
2028 		if (rsm == NULL)
2029 			return (NULL);
2030 	}
2031 	idx = rsm->r_rtr_cnt - 1;
2032 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2033 	if (tsused < rsm->r_tim_lastsent[idx]) {
2034 		return (NULL);
2035 	}
2036 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2037 		return (NULL);
2038 	}
2039 	/* Ok if we reach here we are over-due */
2040 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2041 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2042 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2043 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2044 	return (rsm);
2045 }
2046 
2047 static uint32_t
2048 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2049 {
2050 	int32_t t;
2051 	int32_t tt;
2052 	uint32_t ret_val;
2053 
2054 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2055 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2056 	    tcp_persmin, tcp_persmax);
2057 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2058 		tp->t_rxtshift++;
2059 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2060 	ret_val = (uint32_t)tt;
2061 	return (ret_val);
2062 }
2063 
2064 static uint32_t
2065 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2066 {
2067 	/*
2068 	 * Start the FR timer, we do this based on getting the first one in
2069 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2070 	 * events we need to stop the running timer (if its running) before
2071 	 * starting the new one.
2072 	 */
2073 	uint32_t thresh, exp, to, srtt, time_since_sent;
2074 	uint32_t srtt_cur;
2075 	int32_t idx;
2076 	int32_t is_tlp_timer = 0;
2077 	struct rack_sendmap *rsm;
2078 
2079 	if (rack->t_timers_stopped) {
2080 		/* All timers have been stopped none are to run */
2081 		return (0);
2082 	}
2083 	if (rack->rc_in_persist) {
2084 		/* We can't start any timer in persists */
2085 		return (rack_get_persists_timer_val(tp, rack));
2086 	}
2087 	if (tp->t_state < TCPS_ESTABLISHED)
2088 		goto activate_rxt;
2089 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2090 	if (rsm == NULL) {
2091 		/* Nothing on the send map */
2092 activate_rxt:
2093 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2094 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2095 			to = TICKS_2_MSEC(tp->t_rxtcur);
2096 			if (to == 0)
2097 				to = 1;
2098 			return (to);
2099 		}
2100 		return (0);
2101 	}
2102 	if (rsm->r_flags & RACK_ACKED) {
2103 		rsm = rack_find_lowest_rsm(rack);
2104 		if (rsm == NULL) {
2105 			/* No lowest? */
2106 			goto activate_rxt;
2107 		}
2108 	}
2109 	/* Convert from ms to usecs */
2110 	if (rsm->r_flags & RACK_SACK_PASSED) {
2111 		if ((tp->t_flags & TF_SENTFIN) &&
2112 		    ((tp->snd_max - tp->snd_una) == 1) &&
2113 		    (rsm->r_flags & RACK_HAS_FIN)) {
2114 			/*
2115 			 * We don't start a rack timer if all we have is a
2116 			 * FIN outstanding.
2117 			 */
2118 			goto activate_rxt;
2119 		}
2120 		if (tp->t_srtt) {
2121 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2122 			srtt = TICKS_2_MSEC(srtt_cur);
2123 		} else
2124 			srtt = RACK_INITIAL_RTO;
2125 
2126 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2127 		idx = rsm->r_rtr_cnt - 1;
2128 		exp = rsm->r_tim_lastsent[idx] + thresh;
2129 		if (SEQ_GEQ(exp, cts)) {
2130 			to = exp - cts;
2131 			if (to < rack->r_ctl.rc_min_to) {
2132 				to = rack->r_ctl.rc_min_to;
2133 			}
2134 		} else {
2135 			to = rack->r_ctl.rc_min_to;
2136 		}
2137 	} else {
2138 		/* Ok we need to do a TLP not RACK */
2139 		if ((rack->rc_tlp_in_progress != 0) ||
2140 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2141 			/*
2142 			 * The previous send was a TLP or a tlp_rtx is in
2143 			 * process.
2144 			 */
2145 			goto activate_rxt;
2146 		}
2147 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2148 		if (rsm == NULL) {
2149 			/* We found no rsm to TLP with. */
2150 			goto activate_rxt;
2151 		}
2152 		if (rsm->r_flags & RACK_HAS_FIN) {
2153 			/* If its a FIN we dont do TLP */
2154 			rsm = NULL;
2155 			goto activate_rxt;
2156 		}
2157 		idx = rsm->r_rtr_cnt - 1;
2158 		if (TSTMP_GT(cts,  rsm->r_tim_lastsent[idx]))
2159 			time_since_sent = cts - rsm->r_tim_lastsent[idx];
2160 		else
2161 			time_since_sent = 0;
2162 		is_tlp_timer = 1;
2163 		if (tp->t_srtt) {
2164 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2165 			srtt = TICKS_2_MSEC(srtt_cur);
2166 		} else
2167 			srtt = RACK_INITIAL_RTO;
2168 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2169 		if (thresh > time_since_sent)
2170 			to = thresh - time_since_sent;
2171 		else
2172 			to = rack->r_ctl.rc_min_to;
2173 		if (to > TCPTV_REXMTMAX) {
2174 			/*
2175 			 * If the TLP time works out to larger than the max
2176 			 * RTO lets not do TLP.. just RTO.
2177 			 */
2178 			goto activate_rxt;
2179 		}
2180 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2181 			/*
2182 			 * The tail is no longer the last one I did a probe
2183 			 * on
2184 			 */
2185 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2186 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2187 		}
2188 	}
2189 	if (is_tlp_timer == 0) {
2190 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2191 	} else {
2192 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2193 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2194 			/*
2195 			 * We have exceeded how many times we can retran the
2196 			 * current TLP timer, switch to the RTO timer.
2197 			 */
2198 			goto activate_rxt;
2199 		} else {
2200 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2201 		}
2202 	}
2203 	if (to == 0)
2204 		to = 1;
2205 	return (to);
2206 }
2207 
2208 static void
2209 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2210 {
2211 	if (rack->rc_in_persist == 0) {
2212 		if (((tp->t_flags & TF_SENTFIN) == 0) &&
2213 		    (tp->snd_max - tp->snd_una) >= sbavail(&rack->rc_inp->inp_socket->so_snd))
2214 			/* Must need to send more data to enter persist */
2215 			return;
2216 		rack->r_ctl.rc_went_idle_time = cts;
2217 		rack_timer_cancel(tp, rack, cts, __LINE__);
2218 		tp->t_rxtshift = 0;
2219 		rack->rc_in_persist = 1;
2220 	}
2221 }
2222 
2223 static void
2224 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2225 {
2226 	if (rack->rc_inp->inp_in_hpts)  {
2227 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2228 		rack->r_ctl.rc_hpts_flags  = 0;
2229 	}
2230 	rack->rc_in_persist = 0;
2231 	rack->r_ctl.rc_went_idle_time = 0;
2232 	tp->t_flags &= ~TF_FORCEDATA;
2233 	tp->t_rxtshift = 0;
2234 }
2235 
2236 static void
2237 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, int32_t line,
2238     int32_t slot, uint32_t tot_len_this_send, int32_t frm_out_sbavail)
2239 {
2240 	struct inpcb *inp;
2241 	uint32_t delayed_ack = 0;
2242 	uint32_t hpts_timeout;
2243 	uint8_t stopped;
2244 	uint32_t left = 0;
2245 
2246 	inp = tp->t_inpcb;
2247 	if (inp->inp_in_hpts) {
2248 		/* A previous call is already set up */
2249 		return;
2250 	}
2251 	if (tp->t_state == TCPS_CLOSED) {
2252 		return;
2253 	}
2254 	stopped = rack->rc_tmr_stopped;
2255 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2256 		left = rack->r_ctl.rc_timer_exp - cts;
2257 	}
2258 	rack->r_ctl.rc_timer_exp = 0;
2259 	if (rack->rc_inp->inp_in_hpts == 0) {
2260 		rack->r_ctl.rc_hpts_flags = 0;
2261 	}
2262 	if (slot) {
2263 		/* We are hptsi too */
2264 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2265 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2266 		/*
2267 		 * We are still left on the hpts when the to goes
2268 		 * it will be for output.
2269 		 */
2270 		if (TSTMP_GT(cts, rack->r_ctl.rc_last_output_to))
2271 			slot = cts - rack->r_ctl.rc_last_output_to;
2272 		else
2273 			slot = 1;
2274 	}
2275 	if ((tp->snd_wnd == 0) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2276 		/* No send window.. we must enter persist */
2277 		rack_enter_persist(tp, rack, cts);
2278 	} else if ((frm_out_sbavail &&
2279 		    (frm_out_sbavail > (tp->snd_max - tp->snd_una)) &&
2280 		    (tp->snd_wnd < tp->t_maxseg)) &&
2281 	    TCPS_HAVEESTABLISHED(tp->t_state)) {
2282 		/*
2283 		 * If we have no window or we can't send a segment (and have
2284 		 * data to send.. we cheat here and frm_out_sbavail is
2285 		 * passed in with the sbavail(sb) only from bbr_output) and
2286 		 * we are established, then we must enter persits (if not
2287 		 * already in persits).
2288 		 */
2289 		rack_enter_persist(tp, rack, cts);
2290 	}
2291 	hpts_timeout = rack_timer_start(tp, rack, cts);
2292 	if (tp->t_flags & TF_DELACK) {
2293 		delayed_ack = tcp_delacktime;
2294 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2295 	}
2296 	if (delayed_ack && ((hpts_timeout == 0) ||
2297 			    (delayed_ack < hpts_timeout)))
2298 		hpts_timeout = delayed_ack;
2299 	else
2300 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2301 	/*
2302 	 * If no timers are going to run and we will fall off the hptsi
2303 	 * wheel, we resort to a keep-alive timer if its configured.
2304 	 */
2305 	if ((hpts_timeout == 0) &&
2306 	    (slot == 0)) {
2307 		if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2308 		    (tp->t_state <= TCPS_CLOSING)) {
2309 			/*
2310 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2311 			 * del-ack), we don't have segments being paced. So
2312 			 * all that is left is the keepalive timer.
2313 			 */
2314 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2315 				/* Get the established keep-alive time */
2316 				hpts_timeout = TP_KEEPIDLE(tp);
2317 			} else {
2318 				/* Get the initial setup keep-alive time */
2319 				hpts_timeout = TP_KEEPINIT(tp);
2320 			}
2321 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2322 		}
2323 	}
2324 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2325 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2326 		/*
2327 		 * RACK, TLP, persists and RXT timers all are restartable
2328 		 * based on actions input .. i.e we received a packet (ack
2329 		 * or sack) and that changes things (rw, or snd_una etc).
2330 		 * Thus we can restart them with a new value. For
2331 		 * keep-alive, delayed_ack we keep track of what was left
2332 		 * and restart the timer with a smaller value.
2333 		 */
2334 		if (left < hpts_timeout)
2335 			hpts_timeout = left;
2336 	}
2337 	if (hpts_timeout) {
2338 		/*
2339 		 * Hack alert for now we can't time-out over 2,147,483
2340 		 * seconds (a bit more than 596 hours), which is probably ok
2341 		 * :).
2342 		 */
2343 		if (hpts_timeout > 0x7ffffffe)
2344 			hpts_timeout = 0x7ffffffe;
2345 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2346 	}
2347 	if (slot) {
2348 		rack->r_ctl.rc_last_output_to = cts + slot;
2349 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2350 			if (rack->rc_inp->inp_in_hpts == 0)
2351 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2352 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2353 		} else {
2354 			/*
2355 			 * Arrange for the hpts to kick back in after the
2356 			 * t-o if the t-o does not cause a send.
2357 			 */
2358 			if (rack->rc_inp->inp_in_hpts == 0)
2359 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2360 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2361 		}
2362 	} else if (hpts_timeout) {
2363 		if (rack->rc_inp->inp_in_hpts == 0)
2364 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2365 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2366 	} else {
2367 		/* No timer starting */
2368 #ifdef INVARIANTS
2369 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2370 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2371 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2372 		}
2373 #endif
2374 	}
2375 	rack->rc_tmr_stopped = 0;
2376 	if (slot)
2377 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2378 }
2379 
2380 /*
2381  * RACK Timer, here we simply do logging and house keeping.
2382  * the normal rack_output() function will call the
2383  * appropriate thing to check if we need to do a RACK retransmit.
2384  * We return 1, saying don't proceed with rack_output only
2385  * when all timers have been stopped (destroyed PCB?).
2386  */
2387 static int
2388 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2389 {
2390 	/*
2391 	 * This timer simply provides an internal trigger to send out data.
2392 	 * The check_recovery_mode call will see if there are needed
2393 	 * retransmissions, if so we will enter fast-recovery. The output
2394 	 * call may or may not do the same thing depending on sysctl
2395 	 * settings.
2396 	 */
2397 	struct rack_sendmap *rsm;
2398 	int32_t recovery;
2399 
2400 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2401 		return (1);
2402 	}
2403 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2404 		/* Its not time yet */
2405 		return (0);
2406 	}
2407 	rack_log_to_event(rack, RACK_TO_FRM_RACK);
2408 	recovery = IN_RECOVERY(tp->t_flags);
2409 	counter_u64_add(rack_to_tot, 1);
2410 	if (rack->r_state && (rack->r_state != tp->t_state))
2411 		rack_set_state(tp, rack);
2412 	rsm = rack_check_recovery_mode(tp, cts);
2413 	if (rsm) {
2414 		uint32_t rtt;
2415 
2416 		rtt = rack->rc_rack_rtt;
2417 		if (rtt == 0)
2418 			rtt = 1;
2419 		if ((recovery == 0) &&
2420 		    (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)) {
2421 			/*
2422 			 * The rack-timeout that enter's us into recovery
2423 			 * will force out one MSS and set us up so that we
2424 			 * can do one more send in 2*rtt (transitioning the
2425 			 * rack timeout into a rack-tlp).
2426 			 */
2427 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2428 		} else if ((rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg) &&
2429 		    ((rsm->r_end - rsm->r_start) > rack->r_ctl.rc_prr_sndcnt)) {
2430 			/*
2431 			 * When a rack timer goes, we have to send at
2432 			 * least one segment. They will be paced a min of 1ms
2433 			 * apart via the next rack timer (or further
2434 			 * if the rack timer dictates it).
2435 			 */
2436 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2437 		}
2438 	} else {
2439 		/* This is a case that should happen rarely if ever */
2440 		counter_u64_add(rack_tlp_does_nada, 1);
2441 #ifdef TCP_BLACKBOX
2442 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2443 #endif
2444 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2445 	}
2446 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2447 	return (0);
2448 }
2449 
2450 /*
2451  * TLP Timer, here we simply setup what segment we want to
2452  * have the TLP expire on, the normal rack_output() will then
2453  * send it out.
2454  *
2455  * We return 1, saying don't proceed with rack_output only
2456  * when all timers have been stopped (destroyed PCB?).
2457  */
2458 static int
2459 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2460 {
2461 	/*
2462 	 * Tail Loss Probe.
2463 	 */
2464 	struct rack_sendmap *rsm = NULL;
2465 	struct socket *so;
2466 	uint32_t amm, old_prr_snd = 0;
2467 	uint32_t out, avail;
2468 
2469 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2470 		return (1);
2471 	}
2472 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2473 		/* Its not time yet */
2474 		return (0);
2475 	}
2476 	if (rack_progress_timeout_check(tp)) {
2477 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2478 		return (1);
2479 	}
2480 	/*
2481 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2482 	 * need to figure out how to force a full MSS segment out.
2483 	 */
2484 	rack_log_to_event(rack, RACK_TO_FRM_TLP);
2485 	counter_u64_add(rack_tlp_tot, 1);
2486 	if (rack->r_state && (rack->r_state != tp->t_state))
2487 		rack_set_state(tp, rack);
2488 	so = tp->t_inpcb->inp_socket;
2489 	avail = sbavail(&so->so_snd);
2490 	out = tp->snd_max - tp->snd_una;
2491 	rack->rc_timer_up = 1;
2492 	/*
2493 	 * If we are in recovery we can jazz out a segment if new data is
2494 	 * present simply by setting rc_prr_sndcnt to a segment.
2495 	 */
2496 	if ((avail > out) &&
2497 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2498 		/* New data is available */
2499 		amm = avail - out;
2500 		if (amm > tp->t_maxseg) {
2501 			amm = tp->t_maxseg;
2502 		} else if ((amm < tp->t_maxseg) && ((tp->t_flags & TF_NODELAY) == 0)) {
2503 			/* not enough to fill a MTU and no-delay is off */
2504 			goto need_retran;
2505 		}
2506 		if (IN_RECOVERY(tp->t_flags)) {
2507 			/* Unlikely */
2508 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2509 			if (out + amm <= tp->snd_wnd)
2510 				rack->r_ctl.rc_prr_sndcnt = amm;
2511 			else
2512 				goto need_retran;
2513 		} else {
2514 			/* Set the send-new override */
2515 			if (out + amm <= tp->snd_wnd)
2516 				rack->r_ctl.rc_tlp_new_data = amm;
2517 			else
2518 				goto need_retran;
2519 		}
2520 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2521 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2522 		rack->r_ctl.rc_tlpsend = NULL;
2523 		counter_u64_add(rack_tlp_newdata, 1);
2524 		goto send;
2525 	}
2526 need_retran:
2527 	/*
2528 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2529 	 * optionally the first un-acked segment.
2530 	 */
2531 	if (rack_always_send_oldest)
2532 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2533 	else {
2534 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
2535 		if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2536 			rsm = rack_find_high_nonack(rack, rsm);
2537 		}
2538 	}
2539 	if (rsm == NULL) {
2540 		counter_u64_add(rack_tlp_does_nada, 1);
2541 #ifdef TCP_BLACKBOX
2542 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2543 #endif
2544 		goto out;
2545 	}
2546 	if ((rsm->r_end - rsm->r_start) > tp->t_maxseg) {
2547 		/*
2548 		 * We need to split this the last segment in two.
2549 		 */
2550 		int32_t idx;
2551 		struct rack_sendmap *nrsm;
2552 
2553 		nrsm = rack_alloc(rack);
2554 		if (nrsm == NULL) {
2555 			/*
2556 			 * No memory to split, we will just exit and punt
2557 			 * off to the RXT timer.
2558 			 */
2559 			counter_u64_add(rack_tlp_does_nada, 1);
2560 			goto out;
2561 		}
2562 		nrsm->r_start = (rsm->r_end - tp->t_maxseg);
2563 		nrsm->r_end = rsm->r_end;
2564 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2565 		nrsm->r_flags = rsm->r_flags;
2566 		nrsm->r_sndcnt = rsm->r_sndcnt;
2567 		nrsm->r_rtr_bytes = 0;
2568 		rsm->r_end = nrsm->r_start;
2569 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2570 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2571 		}
2572 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
2573 		if (rsm->r_in_tmap) {
2574 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2575 			nrsm->r_in_tmap = 1;
2576 		}
2577 		rsm->r_flags &= (~RACK_HAS_FIN);
2578 		rsm = nrsm;
2579 	}
2580 	rack->r_ctl.rc_tlpsend = rsm;
2581 	rack->r_ctl.rc_tlp_rtx_out = 1;
2582 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2583 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2584 		tp->t_rxtshift++;
2585 	} else {
2586 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2587 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2588 	}
2589 send:
2590 	rack->r_ctl.rc_tlp_send_cnt++;
2591 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2592 		/*
2593 		 * Can't [re]/transmit a segment we have not heard from the
2594 		 * peer in max times. We need the retransmit timer to take
2595 		 * over.
2596 		 */
2597 restore:
2598 		rack->r_ctl.rc_tlpsend = NULL;
2599 		if (rsm)
2600 			rsm->r_flags &= ~RACK_TLP;
2601 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2602 		counter_u64_add(rack_tlp_retran_fail, 1);
2603 		goto out;
2604 	} else if (rsm) {
2605 		rsm->r_flags |= RACK_TLP;
2606 	}
2607 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2608 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2609 		/*
2610 		 * We don't want to send a single segment more than the max
2611 		 * either.
2612 		 */
2613 		goto restore;
2614 	}
2615 	rack->r_timer_override = 1;
2616 	rack->r_tlp_running = 1;
2617 	rack->rc_tlp_in_progress = 1;
2618 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2619 	return (0);
2620 out:
2621 	rack->rc_timer_up = 0;
2622 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Delayed ack Timer, here we simply need to setup the
2628  * ACK_NOW flag and remove the DELACK flag. From there
2629  * the output routine will send the ack out.
2630  *
2631  * We only return 1, saying don't proceed, if all timers
2632  * are stopped (destroyed PCB?).
2633  */
2634 static int
2635 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2636 {
2637 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2638 		return (1);
2639 	}
2640 	rack_log_to_event(rack, RACK_TO_FRM_DELACK);
2641 	tp->t_flags &= ~TF_DELACK;
2642 	tp->t_flags |= TF_ACKNOW;
2643 	TCPSTAT_INC(tcps_delack);
2644 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2645 	return (0);
2646 }
2647 
2648 /*
2649  * Persists timer, here we simply need to setup the
2650  * FORCE-DATA flag the output routine will send
2651  * the one byte send.
2652  *
2653  * We only return 1, saying don't proceed, if all timers
2654  * are stopped (destroyed PCB?).
2655  */
2656 static int
2657 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2658 {
2659 	struct inpcb *inp;
2660 	int32_t retval = 0;
2661 
2662 	inp = tp->t_inpcb;
2663 
2664 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2665 		return (1);
2666 	}
2667 	if (rack->rc_in_persist == 0)
2668 		return (0);
2669 	if (rack_progress_timeout_check(tp)) {
2670 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2671 		return (1);
2672 	}
2673 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2674 	/*
2675 	 * Persistence timer into zero window. Force a byte to be output, if
2676 	 * possible.
2677 	 */
2678 	TCPSTAT_INC(tcps_persisttimeo);
2679 	/*
2680 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2681 	 * window is closed.  After a full backoff, drop the connection if
2682 	 * the idle time (no responses to probes) reaches the maximum
2683 	 * backoff that we would use if retransmitting.
2684 	 */
2685 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2686 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2687 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2688 		TCPSTAT_INC(tcps_persistdrop);
2689 		retval = 1;
2690 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2691 		goto out;
2692 	}
2693 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2694 	    tp->snd_una == tp->snd_max)
2695 		rack_exit_persist(tp, rack);
2696 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2697 	/*
2698 	 * If the user has closed the socket then drop a persisting
2699 	 * connection after a much reduced timeout.
2700 	 */
2701 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2702 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2703 		retval = 1;
2704 		TCPSTAT_INC(tcps_persistdrop);
2705 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2706 		goto out;
2707 	}
2708 	tp->t_flags |= TF_FORCEDATA;
2709 out:
2710 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST);
2711 	return (retval);
2712 }
2713 
2714 /*
2715  * If a keepalive goes off, we had no other timers
2716  * happening. We always return 1 here since this
2717  * routine either drops the connection or sends
2718  * out a segment with respond.
2719  */
2720 static int
2721 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2722 {
2723 	struct tcptemp *t_template;
2724 	struct inpcb *inp;
2725 
2726 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2727 		return (1);
2728 	}
2729 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
2730 	inp = tp->t_inpcb;
2731 	rack_log_to_event(rack, RACK_TO_FRM_KEEP);
2732 	/*
2733 	 * Keep-alive timer went off; send something or drop connection if
2734 	 * idle for too long.
2735 	 */
2736 	TCPSTAT_INC(tcps_keeptimeo);
2737 	if (tp->t_state < TCPS_ESTABLISHED)
2738 		goto dropit;
2739 	if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2740 	    tp->t_state <= TCPS_CLOSING) {
2741 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
2742 			goto dropit;
2743 		/*
2744 		 * Send a packet designed to force a response if the peer is
2745 		 * up and reachable: either an ACK if the connection is
2746 		 * still alive, or an RST if the peer has closed the
2747 		 * connection due to timeout or reboot. Using sequence
2748 		 * number tp->snd_una-1 causes the transmitted zero-length
2749 		 * segment to lie outside the receive window; by the
2750 		 * protocol spec, this requires the correspondent TCP to
2751 		 * respond.
2752 		 */
2753 		TCPSTAT_INC(tcps_keepprobe);
2754 		t_template = tcpip_maketemplate(inp);
2755 		if (t_template) {
2756 			tcp_respond(tp, t_template->tt_ipgen,
2757 			    &t_template->tt_t, (struct mbuf *)NULL,
2758 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2759 			free(t_template, M_TEMP);
2760 		}
2761 	}
2762 	rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
2763 	return (1);
2764 dropit:
2765 	TCPSTAT_INC(tcps_keepdrops);
2766 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2767 	return (1);
2768 }
2769 
2770 /*
2771  * Retransmit helper function, clear up all the ack
2772  * flags and take care of important book keeping.
2773  */
2774 static void
2775 rack_remxt_tmr(struct tcpcb *tp)
2776 {
2777 	/*
2778 	 * The retransmit timer went off, all sack'd blocks must be
2779 	 * un-acked.
2780 	 */
2781 	struct rack_sendmap *rsm, *trsm = NULL;
2782 	struct tcp_rack *rack;
2783 	int32_t cnt = 0;
2784 
2785 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2786 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
2787 	rack_log_to_event(rack, RACK_TO_FRM_TMR);
2788 	if (rack->r_state && (rack->r_state != tp->t_state))
2789 		rack_set_state(tp, rack);
2790 	/*
2791 	 * Ideally we would like to be able to
2792 	 * mark SACK-PASS on anything not acked here.
2793 	 * However, if we do that we would burst out
2794 	 * all that data 1ms apart. This would be unwise,
2795 	 * so for now we will just let the normal rxt timer
2796 	 * and tlp timer take care of it.
2797 	 */
2798 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
2799 		if (rsm->r_flags & RACK_ACKED) {
2800 			cnt++;
2801 			rsm->r_sndcnt = 0;
2802 			if (rsm->r_in_tmap == 0) {
2803 				/* We must re-add it back to the tlist */
2804 				if (trsm == NULL) {
2805 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
2806 				} else {
2807 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
2808 				}
2809 				rsm->r_in_tmap = 1;
2810 				trsm = rsm;
2811 			}
2812 		}
2813 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
2814 	}
2815 	/* Clear the count (we just un-acked them) */
2816 	rack->r_ctl.rc_sacked = 0;
2817 	/* Clear the tlp rtx mark */
2818 	rack->r_ctl.rc_tlp_rtx_out = 0;
2819 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2820 	rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_map);
2821 	/* Setup so we send one segment */
2822 	if (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)
2823 		rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2824 	rack->r_timer_override = 1;
2825 }
2826 
2827 /*
2828  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
2829  * we will setup to retransmit the lowest seq number outstanding.
2830  */
2831 static int
2832 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2833 {
2834 	int32_t rexmt;
2835 	struct inpcb *inp;
2836 	int32_t retval = 0;
2837 
2838 	inp = tp->t_inpcb;
2839 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2840 		return (1);
2841 	}
2842 	if (rack_progress_timeout_check(tp)) {
2843 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2844 		return (1);
2845 	}
2846 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
2847 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
2848 	    (tp->snd_una == tp->snd_max)) {
2849 		/* Nothing outstanding .. nothing to do */
2850 		return (0);
2851 	}
2852 	/*
2853 	 * Retransmission timer went off.  Message has not been acked within
2854 	 * retransmit interval.  Back off to a longer retransmit interval
2855 	 * and retransmit one segment.
2856 	 */
2857 	if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
2858 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
2859 		TCPSTAT_INC(tcps_timeoutdrop);
2860 		retval = 1;
2861 		tcp_set_inp_to_drop(rack->rc_inp,
2862 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
2863 		goto out;
2864 	}
2865 	rack_remxt_tmr(tp);
2866 	if (tp->t_state == TCPS_SYN_SENT) {
2867 		/*
2868 		 * If the SYN was retransmitted, indicate CWND to be limited
2869 		 * to 1 segment in cc_conn_init().
2870 		 */
2871 		tp->snd_cwnd = 1;
2872 	} else if (tp->t_rxtshift == 1) {
2873 		/*
2874 		 * first retransmit; record ssthresh and cwnd so they can be
2875 		 * recovered if this turns out to be a "bad" retransmit. A
2876 		 * retransmit is considered "bad" if an ACK for this segment
2877 		 * is received within RTT/2 interval; the assumption here is
2878 		 * that the ACK was already in flight.  See "On Estimating
2879 		 * End-to-End Network Path Properties" by Allman and Paxson
2880 		 * for more details.
2881 		 */
2882 		tp->snd_cwnd_prev = tp->snd_cwnd;
2883 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
2884 		tp->snd_recover_prev = tp->snd_recover;
2885 		if (IN_FASTRECOVERY(tp->t_flags))
2886 			tp->t_flags |= TF_WASFRECOVERY;
2887 		else
2888 			tp->t_flags &= ~TF_WASFRECOVERY;
2889 		if (IN_CONGRECOVERY(tp->t_flags))
2890 			tp->t_flags |= TF_WASCRECOVERY;
2891 		else
2892 			tp->t_flags &= ~TF_WASCRECOVERY;
2893 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
2894 		tp->t_flags |= TF_PREVVALID;
2895 	} else
2896 		tp->t_flags &= ~TF_PREVVALID;
2897 	TCPSTAT_INC(tcps_rexmttimeo);
2898 	if ((tp->t_state == TCPS_SYN_SENT) ||
2899 	    (tp->t_state == TCPS_SYN_RECEIVED))
2900 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_syn_backoff[tp->t_rxtshift]);
2901 	else
2902 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
2903 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
2904 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
2905 	   MSEC_2_TICKS(rack_rto_max));
2906 	/*
2907 	 * We enter the path for PLMTUD if connection is established or, if
2908 	 * connection is FIN_WAIT_1 status, reason for the last is that if
2909 	 * amount of data we send is very small, we could send it in couple
2910 	 * of packets and process straight to FIN. In that case we won't
2911 	 * catch ESTABLISHED state.
2912 	 */
2913 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
2914 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
2915 #ifdef INET6
2916 		int32_t isipv6;
2917 #endif
2918 
2919 		/*
2920 		 * Idea here is that at each stage of mtu probe (usually,
2921 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
2922 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
2923 		 * should take care of that.
2924 		 */
2925 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
2926 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
2927 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
2928 		    tp->t_rxtshift % 2 == 0)) {
2929 			/*
2930 			 * Enter Path MTU Black-hole Detection mechanism: -
2931 			 * Disable Path MTU Discovery (IP "DF" bit). -
2932 			 * Reduce MTU to lower value than what we negotiated
2933 			 * with peer.
2934 			 */
2935 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
2936 				/* Record that we may have found a black hole. */
2937 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
2938 				/* Keep track of previous MSS. */
2939 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
2940 			}
2941 
2942 			/*
2943 			 * Reduce the MSS to blackhole value or to the
2944 			 * default in an attempt to retransmit.
2945 			 */
2946 #ifdef INET6
2947 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
2948 			if (isipv6 &&
2949 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
2950 				/* Use the sysctl tuneable blackhole MSS. */
2951 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
2952 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
2953 			} else if (isipv6) {
2954 				/* Use the default MSS. */
2955 				tp->t_maxseg = V_tcp_v6mssdflt;
2956 				/*
2957 				 * Disable Path MTU Discovery when we switch
2958 				 * to minmss.
2959 				 */
2960 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
2961 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
2962 			}
2963 #endif
2964 #if defined(INET6) && defined(INET)
2965 			else
2966 #endif
2967 #ifdef INET
2968 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
2969 				/* Use the sysctl tuneable blackhole MSS. */
2970 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
2971 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
2972 			} else {
2973 				/* Use the default MSS. */
2974 				tp->t_maxseg = V_tcp_mssdflt;
2975 				/*
2976 				 * Disable Path MTU Discovery when we switch
2977 				 * to minmss.
2978 				 */
2979 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
2980 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
2981 			}
2982 #endif
2983 		} else {
2984 			/*
2985 			 * If further retransmissions are still unsuccessful
2986 			 * with a lowered MTU, maybe this isn't a blackhole
2987 			 * and we restore the previous MSS and blackhole
2988 			 * detection flags. The limit '6' is determined by
2989 			 * giving each probe stage (1448, 1188, 524) 2
2990 			 * chances to recover.
2991 			 */
2992 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
2993 			    (tp->t_rxtshift >= 6)) {
2994 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
2995 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
2996 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
2997 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
2998 			}
2999 		}
3000 	}
3001 	/*
3002 	 * Disable RFC1323 and SACK if we haven't got any response to our
3003 	 * third SYN to work-around some broken terminal servers (most of
3004 	 * which have hopefully been retired) that have bad VJ header
3005 	 * compression code which trashes TCP segments containing
3006 	 * unknown-to-them TCP options.
3007 	 */
3008 	if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
3009 	    (tp->t_rxtshift == 3))
3010 		tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_SACK_PERMIT);
3011 	/*
3012 	 * If we backed off this far, our srtt estimate is probably bogus.
3013 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3014 	 * move the current srtt into rttvar to keep the current retransmit
3015 	 * times until then.
3016 	 */
3017 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3018 #ifdef INET6
3019 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3020 			in6_losing(tp->t_inpcb);
3021 		else
3022 #endif
3023 			in_losing(tp->t_inpcb);
3024 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3025 		tp->t_srtt = 0;
3026 	}
3027 	if (rack_use_sack_filter)
3028 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3029 	tp->snd_recover = tp->snd_max;
3030 	tp->t_flags |= TF_ACKNOW;
3031 	tp->t_rtttime = 0;
3032 	rack_cong_signal(tp, NULL, CC_RTO);
3033 out:
3034 	return (retval);
3035 }
3036 
3037 static int
3038 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3039 {
3040 	int32_t ret = 0;
3041 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3042 
3043 	if (timers == 0) {
3044 		return (0);
3045 	}
3046 	if (tp->t_state == TCPS_LISTEN) {
3047 		/* no timers on listen sockets */
3048 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3049 			return (0);
3050 		return (1);
3051 	}
3052 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3053 		uint32_t left;
3054 
3055 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3056 			ret = -1;
3057 			rack_log_to_processing(rack, cts, ret, 0);
3058 			return (0);
3059 		}
3060 		if (hpts_calling == 0) {
3061 			ret = -2;
3062 			rack_log_to_processing(rack, cts, ret, 0);
3063 			return (0);
3064 		}
3065 		/*
3066 		 * Ok our timer went off early and we are not paced false
3067 		 * alarm, go back to sleep.
3068 		 */
3069 		ret = -3;
3070 		left = rack->r_ctl.rc_timer_exp - cts;
3071 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3072 		rack_log_to_processing(rack, cts, ret, left);
3073 		rack->rc_last_pto_set = 0;
3074 		return (1);
3075 	}
3076 	rack->rc_tmr_stopped = 0;
3077 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3078 	if (timers & PACE_TMR_DELACK) {
3079 		ret = rack_timeout_delack(tp, rack, cts);
3080 	} else if (timers & PACE_TMR_RACK) {
3081 		ret = rack_timeout_rack(tp, rack, cts);
3082 	} else if (timers & PACE_TMR_TLP) {
3083 		ret = rack_timeout_tlp(tp, rack, cts);
3084 	} else if (timers & PACE_TMR_RXT) {
3085 		ret = rack_timeout_rxt(tp, rack, cts);
3086 	} else if (timers & PACE_TMR_PERSIT) {
3087 		ret = rack_timeout_persist(tp, rack, cts);
3088 	} else if (timers & PACE_TMR_KEEP) {
3089 		ret = rack_timeout_keepalive(tp, rack, cts);
3090 	}
3091 	rack_log_to_processing(rack, cts, ret, timers);
3092 	return (ret);
3093 }
3094 
3095 static void
3096 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3097 {
3098 	uint8_t hpts_removed = 0;
3099 
3100 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3101 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3102 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3103 		hpts_removed = 1;
3104 	}
3105 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3106 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3107 		if (rack->rc_inp->inp_in_hpts &&
3108 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3109 			/*
3110 			 * Canceling timer's when we have no output being
3111 			 * paced. We also must remove ourselves from the
3112 			 * hpts.
3113 			 */
3114 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3115 			hpts_removed = 1;
3116 		}
3117 		rack_log_to_cancel(rack, hpts_removed, line);
3118 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3119 	}
3120 }
3121 
3122 static void
3123 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3124 {
3125 	return;
3126 }
3127 
3128 static int
3129 rack_stopall(struct tcpcb *tp)
3130 {
3131 	struct tcp_rack *rack;
3132 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3133 	rack->t_timers_stopped = 1;
3134 	return (0);
3135 }
3136 
3137 static void
3138 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3139 {
3140 	return;
3141 }
3142 
3143 static int
3144 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3145 {
3146 	return (0);
3147 }
3148 
3149 static void
3150 rack_stop_all_timers(struct tcpcb *tp)
3151 {
3152 	struct tcp_rack *rack;
3153 
3154 	/*
3155 	 * Assure no timers are running.
3156 	 */
3157 	if (tcp_timer_active(tp, TT_PERSIST)) {
3158 		/* We enter in persists, set the flag appropriately */
3159 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3160 		rack->rc_in_persist = 1;
3161 	}
3162 	tcp_timer_suspend(tp, TT_PERSIST);
3163 	tcp_timer_suspend(tp, TT_REXMT);
3164 	tcp_timer_suspend(tp, TT_KEEP);
3165 	tcp_timer_suspend(tp, TT_DELACK);
3166 }
3167 
3168 static void
3169 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3170     struct rack_sendmap *rsm, uint32_t ts)
3171 {
3172 	int32_t idx;
3173 
3174 	rsm->r_rtr_cnt++;
3175 	rsm->r_sndcnt++;
3176 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3177 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3178 		rsm->r_flags |= RACK_OVERMAX;
3179 	}
3180 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3181 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3182 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3183 	}
3184 	idx = rsm->r_rtr_cnt - 1;
3185 	rsm->r_tim_lastsent[idx] = ts;
3186 	if (rsm->r_flags & RACK_ACKED) {
3187 		/* Problably MTU discovery messing with us */
3188 		rsm->r_flags &= ~RACK_ACKED;
3189 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3190 	}
3191 	if (rsm->r_in_tmap) {
3192 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3193 	}
3194 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3195 	rsm->r_in_tmap = 1;
3196 	if (rsm->r_flags & RACK_SACK_PASSED) {
3197 		/* We have retransmitted due to the SACK pass */
3198 		rsm->r_flags &= ~RACK_SACK_PASSED;
3199 		rsm->r_flags |= RACK_WAS_SACKPASS;
3200 	}
3201 	/* Update memory for next rtr */
3202 	rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3203 }
3204 
3205 
3206 static uint32_t
3207 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3208     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp)
3209 {
3210 	/*
3211 	 * We (re-)transmitted starting at rsm->r_start for some length
3212 	 * (possibly less than r_end.
3213 	 */
3214 	struct rack_sendmap *nrsm;
3215 	uint32_t c_end;
3216 	int32_t len;
3217 	int32_t idx;
3218 
3219 	len = *lenp;
3220 	c_end = rsm->r_start + len;
3221 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3222 		/*
3223 		 * We retransmitted the whole piece or more than the whole
3224 		 * slopping into the next rsm.
3225 		 */
3226 		rack_update_rsm(tp, rack, rsm, ts);
3227 		if (c_end == rsm->r_end) {
3228 			*lenp = 0;
3229 			return (0);
3230 		} else {
3231 			int32_t act_len;
3232 
3233 			/* Hangs over the end return whats left */
3234 			act_len = rsm->r_end - rsm->r_start;
3235 			*lenp = (len - act_len);
3236 			return (rsm->r_end);
3237 		}
3238 		/* We don't get out of this block. */
3239 	}
3240 	/*
3241 	 * Here we retransmitted less than the whole thing which means we
3242 	 * have to split this into what was transmitted and what was not.
3243 	 */
3244 	nrsm = rack_alloc(rack);
3245 	if (nrsm == NULL) {
3246 		/*
3247 		 * We can't get memory, so lets not proceed.
3248 		 */
3249 		*lenp = 0;
3250 		return (0);
3251 	}
3252 	/*
3253 	 * So here we are going to take the original rsm and make it what we
3254 	 * retransmitted. nrsm will be the tail portion we did not
3255 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3256 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3257 	 * 1, 6 and the new piece will be 6, 11.
3258 	 */
3259 	nrsm->r_start = c_end;
3260 	nrsm->r_end = rsm->r_end;
3261 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3262 	nrsm->r_flags = rsm->r_flags;
3263 	nrsm->r_sndcnt = rsm->r_sndcnt;
3264 	nrsm->r_rtr_bytes = 0;
3265 	rsm->r_end = c_end;
3266 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3267 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3268 	}
3269 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3270 	if (rsm->r_in_tmap) {
3271 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3272 		nrsm->r_in_tmap = 1;
3273 	}
3274 	rsm->r_flags &= (~RACK_HAS_FIN);
3275 	rack_update_rsm(tp, rack, rsm, ts);
3276 	*lenp = 0;
3277 	return (0);
3278 }
3279 
3280 
3281 static void
3282 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3283     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3284     uint8_t pass, struct rack_sendmap *hintrsm)
3285 {
3286 	struct tcp_rack *rack;
3287 	struct rack_sendmap *rsm, *nrsm;
3288 	register uint32_t snd_max, snd_una;
3289 	int32_t idx;
3290 
3291 	/*
3292 	 * Add to the RACK log of packets in flight or retransmitted. If
3293 	 * there is a TS option we will use the TS echoed, if not we will
3294 	 * grab a TS.
3295 	 *
3296 	 * Retransmissions will increment the count and move the ts to its
3297 	 * proper place. Note that if options do not include TS's then we
3298 	 * won't be able to effectively use the ACK for an RTT on a retran.
3299 	 *
3300 	 * Notes about r_start and r_end. Lets consider a send starting at
3301 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3302 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3303 	 * This means that r_end is actually the first sequence for the next
3304 	 * slot (11).
3305 	 *
3306 	 */
3307 	/*
3308 	 * If err is set what do we do XXXrrs? should we not add the thing?
3309 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3310 	 * i.e. proceed with add ** do this for now.
3311 	 */
3312 	INP_WLOCK_ASSERT(tp->t_inpcb);
3313 	if (err)
3314 		/*
3315 		 * We don't log errors -- we could but snd_max does not
3316 		 * advance in this case either.
3317 		 */
3318 		return;
3319 
3320 	if (th_flags & TH_RST) {
3321 		/*
3322 		 * We don't log resets and we return immediately from
3323 		 * sending
3324 		 */
3325 		return;
3326 	}
3327 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3328 	snd_una = tp->snd_una;
3329 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3330 		/* Are sending an old segment to induce an ack (keep-alive)? */
3331 		return;
3332 	}
3333 	if (SEQ_LT(seq_out, snd_una)) {
3334 		/* huh? should we panic? */
3335 		uint32_t end;
3336 
3337 		end = seq_out + len;
3338 		seq_out = snd_una;
3339 		len = end - seq_out;
3340 	}
3341 	snd_max = tp->snd_max;
3342 	if (th_flags & (TH_SYN | TH_FIN)) {
3343 		/*
3344 		 * The call to rack_log_output is made before bumping
3345 		 * snd_max. This means we can record one extra byte on a SYN
3346 		 * or FIN if seq_out is adding more on and a FIN is present
3347 		 * (and we are not resending).
3348 		 */
3349 		if (th_flags & TH_SYN)
3350 			len++;
3351 		if (th_flags & TH_FIN)
3352 			len++;
3353 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3354 			/*
3355 			 * The add/update as not been done for the FIN/SYN
3356 			 * yet.
3357 			 */
3358 			snd_max = tp->snd_nxt;
3359 		}
3360 	}
3361 	if (len == 0) {
3362 		/* We don't log zero window probes */
3363 		return;
3364 	}
3365 	rack->r_ctl.rc_time_last_sent = ts;
3366 	if (IN_RECOVERY(tp->t_flags)) {
3367 		rack->r_ctl.rc_prr_out += len;
3368 	}
3369 	/* First question is it a retransmission? */
3370 	if (seq_out == snd_max) {
3371 again:
3372 		rsm = rack_alloc(rack);
3373 		if (rsm == NULL) {
3374 			/*
3375 			 * Hmm out of memory and the tcb got destroyed while
3376 			 * we tried to wait.
3377 			 */
3378 #ifdef INVARIANTS
3379 			panic("Out of memory when we should not be rack:%p", rack);
3380 #endif
3381 			return;
3382 		}
3383 		if (th_flags & TH_FIN) {
3384 			rsm->r_flags = RACK_HAS_FIN;
3385 		} else {
3386 			rsm->r_flags = 0;
3387 		}
3388 		rsm->r_tim_lastsent[0] = ts;
3389 		rsm->r_rtr_cnt = 1;
3390 		rsm->r_rtr_bytes = 0;
3391 		if (th_flags & TH_SYN) {
3392 			/* The data space is one beyond snd_una */
3393 			rsm->r_start = seq_out + 1;
3394 			rsm->r_end = rsm->r_start + (len - 1);
3395 		} else {
3396 			/* Normal case */
3397 			rsm->r_start = seq_out;
3398 			rsm->r_end = rsm->r_start + len;
3399 		}
3400 		rsm->r_sndcnt = 0;
3401 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
3402 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3403 		rsm->r_in_tmap = 1;
3404 		return;
3405 	}
3406 	/*
3407 	 * If we reach here its a retransmission and we need to find it.
3408 	 */
3409 more:
3410 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3411 		rsm = hintrsm;
3412 		hintrsm = NULL;
3413 	} else if (rack->r_ctl.rc_next) {
3414 		/* We have a hint from a previous run */
3415 		rsm = rack->r_ctl.rc_next;
3416 	} else {
3417 		/* No hints sorry */
3418 		rsm = NULL;
3419 	}
3420 	if ((rsm) && (rsm->r_start == seq_out)) {
3421 		/*
3422 		 * We used rc_next or hintrsm  to retransmit, hopefully the
3423 		 * likely case.
3424 		 */
3425 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3426 		if (len == 0) {
3427 			return;
3428 		} else {
3429 			goto more;
3430 		}
3431 	}
3432 	/* Ok it was not the last pointer go through it the hard way. */
3433 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3434 		if (rsm->r_start == seq_out) {
3435 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3436 			rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3437 			if (len == 0) {
3438 				return;
3439 			} else {
3440 				continue;
3441 			}
3442 		}
3443 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3444 			/* Transmitted within this piece */
3445 			/*
3446 			 * Ok we must split off the front and then let the
3447 			 * update do the rest
3448 			 */
3449 			nrsm = rack_alloc(rack);
3450 			if (nrsm == NULL) {
3451 #ifdef INVARIANTS
3452 				panic("Ran out of memory that was preallocated? rack:%p", rack);
3453 #endif
3454 				rack_update_rsm(tp, rack, rsm, ts);
3455 				return;
3456 			}
3457 			/*
3458 			 * copy rsm to nrsm and then trim the front of rsm
3459 			 * to not include this part.
3460 			 */
3461 			nrsm->r_start = seq_out;
3462 			nrsm->r_end = rsm->r_end;
3463 			nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3464 			nrsm->r_flags = rsm->r_flags;
3465 			nrsm->r_sndcnt = rsm->r_sndcnt;
3466 			nrsm->r_rtr_bytes = 0;
3467 			for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3468 				nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3469 			}
3470 			rsm->r_end = nrsm->r_start;
3471 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3472 			if (rsm->r_in_tmap) {
3473 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3474 				nrsm->r_in_tmap = 1;
3475 			}
3476 			rsm->r_flags &= (~RACK_HAS_FIN);
3477 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3478 			if (len == 0) {
3479 				return;
3480 			}
3481 		}
3482 	}
3483 	/*
3484 	 * Hmm not found in map did they retransmit both old and on into the
3485 	 * new?
3486 	 */
3487 	if (seq_out == tp->snd_max) {
3488 		goto again;
3489 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3490 #ifdef INVARIANTS
3491 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3492 		    seq_out, len, tp->snd_una, tp->snd_max);
3493 		printf("Starting Dump of all rack entries\n");
3494 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3495 			printf("rsm:%p start:%u end:%u\n",
3496 			    rsm, rsm->r_start, rsm->r_end);
3497 		}
3498 		printf("Dump complete\n");
3499 		panic("seq_out not found rack:%p tp:%p",
3500 		    rack, tp);
3501 #endif
3502 	} else {
3503 #ifdef INVARIANTS
3504 		/*
3505 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3506 		 * flag)
3507 		 */
3508 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3509 		    seq_out, len, tp->snd_max, tp);
3510 #endif
3511 	}
3512 }
3513 
3514 /*
3515  * Record one of the RTT updates from an ack into
3516  * our sample structure.
3517  */
3518 static void
3519 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3520 {
3521 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3522 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3523 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3524 	}
3525 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3526 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3527 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3528 	}
3529 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3530 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3531 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3532 }
3533 
3534 /*
3535  * Collect new round-trip time estimate
3536  * and update averages and current timeout.
3537  */
3538 static void
3539 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3540 {
3541 	int32_t delta;
3542 	uint32_t o_srtt, o_var;
3543 	int32_t rtt;
3544 
3545 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3546 		/* No valid sample */
3547 		return;
3548 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3549 		/* We are to use the lowest RTT seen in a single ack */
3550 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3551 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3552 		/* We are to use the highest RTT seen in a single ack */
3553 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3554 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3555 		/* We are to use the average RTT seen in a single ack */
3556 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3557 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3558 	} else {
3559 #ifdef INVARIANTS
3560 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3561 #endif
3562 		return;
3563 	}
3564 	if (rtt == 0)
3565 		rtt = 1;
3566 	rack_log_rtt_sample(rack, rtt);
3567 	o_srtt = tp->t_srtt;
3568 	o_var = tp->t_rttvar;
3569 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3570 	if (tp->t_srtt != 0) {
3571 		/*
3572 		 * srtt is stored as fixed point with 5 bits after the
3573 		 * binary point (i.e., scaled by 8).  The following magic is
3574 		 * equivalent to the smoothing algorithm in rfc793 with an
3575 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3576 		 * Adjust rtt to origin 0.
3577 		 */
3578 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3579 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3580 
3581 		tp->t_srtt += delta;
3582 		if (tp->t_srtt <= 0)
3583 			tp->t_srtt = 1;
3584 
3585 		/*
3586 		 * We accumulate a smoothed rtt variance (actually, a
3587 		 * smoothed mean difference), then set the retransmit timer
3588 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3589 		 * is stored as fixed point with 4 bits after the binary
3590 		 * point (scaled by 16).  The following is equivalent to
3591 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3592 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3593 		 * wired-in beta.
3594 		 */
3595 		if (delta < 0)
3596 			delta = -delta;
3597 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3598 		tp->t_rttvar += delta;
3599 		if (tp->t_rttvar <= 0)
3600 			tp->t_rttvar = 1;
3601 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3602 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3603 	} else {
3604 		/*
3605 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3606 		 * variance to half the rtt (so our first retransmit happens
3607 		 * at 3*rtt).
3608 		 */
3609 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3610 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3611 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3612 	}
3613 	TCPSTAT_INC(tcps_rttupdated);
3614 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3615 	tp->t_rttupdated++;
3616 #ifdef NETFLIX_STATS
3617 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3618 #endif
3619 	tp->t_rxtshift = 0;
3620 
3621 	/*
3622 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3623 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3624 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3625 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3626 	 * uncertainty in the firing of the timer.  The bias will give us
3627 	 * exactly the 1.5 tick we need.  But, because the bias is
3628 	 * statistical, we have to test that we don't drop below the minimum
3629 	 * feasible timer (which is 2 ticks).
3630 	 */
3631 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3632 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3633 	tp->t_softerror = 0;
3634 }
3635 
3636 static void
3637 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3638     uint32_t t, uint32_t cts)
3639 {
3640 	/*
3641 	 * For this RSM, we acknowledged the data from a previous
3642 	 * transmission, not the last one we made. This means we did a false
3643 	 * retransmit.
3644 	 */
3645 	struct tcp_rack *rack;
3646 
3647 	if (rsm->r_flags & RACK_HAS_FIN) {
3648 		/*
3649 		 * The sending of the FIN often is multiple sent when we
3650 		 * have everything outstanding ack'd. We ignore this case
3651 		 * since its over now.
3652 		 */
3653 		return;
3654 	}
3655 	if (rsm->r_flags & RACK_TLP) {
3656 		/*
3657 		 * We expect TLP's to have this occur.
3658 		 */
3659 		return;
3660 	}
3661 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3662 	/* should we undo cc changes and exit recovery? */
3663 	if (IN_RECOVERY(tp->t_flags)) {
3664 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3665 			/*
3666 			 * Undo what we ratched down and exit recovery if
3667 			 * possible
3668 			 */
3669 			EXIT_RECOVERY(tp->t_flags);
3670 			tp->snd_recover = tp->snd_una;
3671 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3672 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3673 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3674 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3675 		}
3676 	}
3677 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3678 		/*
3679 		 * We retransmitted based on a sack and the earlier
3680 		 * retransmission ack'd it - re-ordering is occuring.
3681 		 */
3682 		counter_u64_add(rack_reorder_seen, 1);
3683 		rack->r_ctl.rc_reorder_ts = cts;
3684 	}
3685 	counter_u64_add(rack_badfr, 1);
3686 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3687 }
3688 
3689 
3690 static int
3691 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3692     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3693 {
3694 	int32_t i;
3695 	uint32_t t;
3696 
3697 	if (rsm->r_flags & RACK_ACKED)
3698 		/* Already done */
3699 		return (0);
3700 
3701 
3702 	if ((rsm->r_rtr_cnt == 1) ||
3703 	    ((ack_type == CUM_ACKED) &&
3704 	    (to->to_flags & TOF_TS) &&
3705 	    (to->to_tsecr) &&
3706 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3707 	    ) {
3708 		/*
3709 		 * We will only find a matching timestamp if its cum-acked.
3710 		 * But if its only one retransmission its for-sure matching
3711 		 * :-)
3712 		 */
3713 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3714 		if ((int)t <= 0)
3715 			t = 1;
3716 		if (!tp->t_rttlow || tp->t_rttlow > t)
3717 			tp->t_rttlow = t;
3718 		if (!rack->r_ctl.rc_rack_min_rtt ||
3719 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3720 			rack->r_ctl.rc_rack_min_rtt = t;
3721 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
3722 				rack->r_ctl.rc_rack_min_rtt = 1;
3723 			}
3724 		}
3725 		tcp_rack_xmit_timer(rack, TCP_TS_TO_TICKS(t) + 1);
3726 		if ((rsm->r_flags & RACK_TLP) &&
3727 		    (!IN_RECOVERY(tp->t_flags))) {
3728 			/* Segment was a TLP and our retrans matched */
3729 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
3730 				rack->r_ctl.rc_rsm_start = tp->snd_max;
3731 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
3732 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
3733 				rack_cong_signal(tp, NULL, CC_NDUPACK);
3734 				/*
3735 				 * When we enter recovery we need to assure
3736 				 * we send one packet.
3737 				 */
3738 				rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
3739 			} else
3740 				rack->r_ctl.rc_tlp_rtx_out = 0;
3741 		}
3742 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3743 			/* New more recent rack_tmit_time */
3744 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3745 			rack->rc_rack_rtt = t;
3746 		}
3747 		return (1);
3748 	}
3749 	/*
3750 	 * We clear the soft/rxtshift since we got an ack.
3751 	 * There is no assurance we will call the commit() function
3752 	 * so we need to clear these to avoid incorrect handling.
3753 	 */
3754 	tp->t_rxtshift = 0;
3755 	tp->t_softerror = 0;
3756 	if ((to->to_flags & TOF_TS) &&
3757 	    (ack_type == CUM_ACKED) &&
3758 	    (to->to_tsecr) &&
3759 	    ((rsm->r_flags & (RACK_DEFERRED | RACK_OVERMAX)) == 0)) {
3760 		/*
3761 		 * Now which timestamp does it match? In this block the ACK
3762 		 * must be coming from a previous transmission.
3763 		 */
3764 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
3765 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
3766 				t = cts - rsm->r_tim_lastsent[i];
3767 				if ((int)t <= 0)
3768 					t = 1;
3769 				if ((i + 1) < rsm->r_rtr_cnt) {
3770 					/* Likely */
3771 					rack_earlier_retran(tp, rsm, t, cts);
3772 				}
3773 				if (!tp->t_rttlow || tp->t_rttlow > t)
3774 					tp->t_rttlow = t;
3775 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3776 					rack->r_ctl.rc_rack_min_rtt = t;
3777 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
3778 						rack->r_ctl.rc_rack_min_rtt = 1;
3779 					}
3780 				}
3781                                 /*
3782 				 * Note the following calls to
3783 				 * tcp_rack_xmit_timer() are being commented
3784 				 * out for now. They give us no more accuracy
3785 				 * and often lead to a wrong choice. We have
3786 				 * enough samples that have not been
3787 				 * retransmitted. I leave the commented out
3788 				 * code in here in case in the future we
3789 				 * decide to add it back (though I can't forsee
3790 				 * doing that). That way we will easily see
3791 				 * where they need to be placed.
3792 				 */
3793 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
3794 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3795 					/* New more recent rack_tmit_time */
3796 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3797 					rack->rc_rack_rtt = t;
3798 				}
3799 				return (1);
3800 			}
3801 		}
3802 		goto ts_not_found;
3803 	} else {
3804 		/*
3805 		 * Ok its a SACK block that we retransmitted. or a windows
3806 		 * machine without timestamps. We can tell nothing from the
3807 		 * time-stamp since its not there or the time the peer last
3808 		 * recieved a segment that moved forward its cum-ack point.
3809 		 */
3810 ts_not_found:
3811 		i = rsm->r_rtr_cnt - 1;
3812 		t = cts - rsm->r_tim_lastsent[i];
3813 		if ((int)t <= 0)
3814 			t = 1;
3815 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3816 			/*
3817 			 * We retransmitted and the ack came back in less
3818 			 * than the smallest rtt we have observed. We most
3819 			 * likey did an improper retransmit as outlined in
3820 			 * 4.2 Step 3 point 2 in the rack-draft.
3821 			 */
3822 			i = rsm->r_rtr_cnt - 2;
3823 			t = cts - rsm->r_tim_lastsent[i];
3824 			rack_earlier_retran(tp, rsm, t, cts);
3825 		} else if (rack->r_ctl.rc_rack_min_rtt) {
3826 			/*
3827 			 * We retransmitted it and the retransmit did the
3828 			 * job.
3829 			 */
3830 			if (!rack->r_ctl.rc_rack_min_rtt ||
3831 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3832 				rack->r_ctl.rc_rack_min_rtt = t;
3833 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
3834 					rack->r_ctl.rc_rack_min_rtt = 1;
3835 				}
3836 			}
3837 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
3838 				/* New more recent rack_tmit_time */
3839 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
3840 				rack->rc_rack_rtt = t;
3841 			}
3842 			return (1);
3843 		}
3844 	}
3845 	return (0);
3846 }
3847 
3848 /*
3849  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
3850  */
3851 static void
3852 rack_log_sack_passed(struct tcpcb *tp,
3853     struct tcp_rack *rack, struct rack_sendmap *rsm)
3854 {
3855 	struct rack_sendmap *nrsm;
3856 	uint32_t ts;
3857 	int32_t idx;
3858 
3859 	idx = rsm->r_rtr_cnt - 1;
3860 	ts = rsm->r_tim_lastsent[idx];
3861 	nrsm = rsm;
3862 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
3863 	    rack_head, r_tnext) {
3864 		if (nrsm == rsm) {
3865 			/* Skip orginal segment he is acked */
3866 			continue;
3867 		}
3868 		if (nrsm->r_flags & RACK_ACKED) {
3869 			/* Skip ack'd segments */
3870 			continue;
3871 		}
3872 		idx = nrsm->r_rtr_cnt - 1;
3873 		if (ts == nrsm->r_tim_lastsent[idx]) {
3874 			/*
3875 			 * For this case lets use seq no, if we sent in a
3876 			 * big block (TSO) we would have a bunch of segments
3877 			 * sent at the same time.
3878 			 *
3879 			 * We would only get a report if its SEQ is earlier.
3880 			 * If we have done multiple retransmits the times
3881 			 * would not be equal.
3882 			 */
3883 			if (SEQ_LT(nrsm->r_start, rsm->r_start)) {
3884 				nrsm->r_flags |= RACK_SACK_PASSED;
3885 				nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3886 			}
3887 		} else {
3888 			/*
3889 			 * Here they were sent at different times, not a big
3890 			 * block. Since we transmitted this one later and
3891 			 * see it sack'd then this must also be missing (or
3892 			 * we would have gotten a sack block for it)
3893 			 */
3894 			nrsm->r_flags |= RACK_SACK_PASSED;
3895 			nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3896 		}
3897 	}
3898 }
3899 
3900 static uint32_t
3901 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
3902     struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts)
3903 {
3904 	int32_t idx;
3905 	int32_t times = 0;
3906 	uint32_t start, end, changed = 0;
3907 	struct rack_sendmap *rsm, *nrsm;
3908 	int32_t used_ref = 1;
3909 
3910 	start = sack->start;
3911 	end = sack->end;
3912 	rsm = *prsm;
3913 	if (rsm && SEQ_LT(start, rsm->r_start)) {
3914 		TAILQ_FOREACH_REVERSE_FROM(rsm, &rack->r_ctl.rc_map, rack_head, r_next) {
3915 			if (SEQ_GEQ(start, rsm->r_start) &&
3916 			    SEQ_LT(start, rsm->r_end)) {
3917 				goto do_rest_ofb;
3918 			}
3919 		}
3920 	}
3921 	if (rsm == NULL) {
3922 start_at_beginning:
3923 		rsm = NULL;
3924 		used_ref = 0;
3925 	}
3926 	/* First lets locate the block where this guy is */
3927 	TAILQ_FOREACH_FROM(rsm, &rack->r_ctl.rc_map, r_next) {
3928 		if (SEQ_GEQ(start, rsm->r_start) &&
3929 		    SEQ_LT(start, rsm->r_end)) {
3930 			break;
3931 		}
3932 	}
3933 do_rest_ofb:
3934 	if (rsm == NULL) {
3935 		/*
3936 		 * This happens when we get duplicate sack blocks with the
3937 		 * same end. For example SACK 4: 100 SACK 3: 100 The sort
3938 		 * will not change there location so we would just start at
3939 		 * the end of the first one and get lost.
3940 		 */
3941 		if (tp->t_flags & TF_SENTFIN) {
3942 			/*
3943 			 * Check to see if we have not logged the FIN that
3944 			 * went out.
3945 			 */
3946 			nrsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
3947 			if (nrsm && (nrsm->r_end + 1) == tp->snd_max) {
3948 				/*
3949 				 * Ok we did not get the FIN logged.
3950 				 */
3951 				nrsm->r_end++;
3952 				rsm = nrsm;
3953 				goto do_rest_ofb;
3954 			}
3955 		}
3956 		if (times == 1) {
3957 #ifdef INVARIANTS
3958 			panic("tp:%p rack:%p sack:%p to:%p prsm:%p",
3959 			    tp, rack, sack, to, prsm);
3960 #else
3961 			goto out;
3962 #endif
3963 		}
3964 		times++;
3965 		counter_u64_add(rack_sack_proc_restart, 1);
3966 		goto start_at_beginning;
3967 	}
3968 	/* Ok we have an ACK for some piece of rsm */
3969 	if (rsm->r_start != start) {
3970 		/*
3971 		 * Need to split this in two pieces the before and after.
3972 		 */
3973 		nrsm = rack_alloc(rack);
3974 		if (nrsm == NULL) {
3975 			/*
3976 			 * failed XXXrrs what can we do but loose the sack
3977 			 * info?
3978 			 */
3979 			goto out;
3980 		}
3981 		nrsm->r_start = start;
3982 		nrsm->r_rtr_bytes = 0;
3983 		nrsm->r_end = rsm->r_end;
3984 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3985 		nrsm->r_flags = rsm->r_flags;
3986 		nrsm->r_sndcnt = rsm->r_sndcnt;
3987 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3988 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3989 		}
3990 		rsm->r_end = nrsm->r_start;
3991 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3992 		if (rsm->r_in_tmap) {
3993 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3994 			nrsm->r_in_tmap = 1;
3995 		}
3996 		rsm->r_flags &= (~RACK_HAS_FIN);
3997 		rsm = nrsm;
3998 	}
3999 	if (SEQ_GEQ(end, rsm->r_end)) {
4000 		/*
4001 		 * The end of this block is either beyond this guy or right
4002 		 * at this guy.
4003 		 */
4004 
4005 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4006 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4007 			changed += (rsm->r_end - rsm->r_start);
4008 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4009 			rack_log_sack_passed(tp, rack, rsm);
4010 			/* Is Reordering occuring? */
4011 			if (rsm->r_flags & RACK_SACK_PASSED) {
4012 				counter_u64_add(rack_reorder_seen, 1);
4013 				rack->r_ctl.rc_reorder_ts = cts;
4014 			}
4015 			rsm->r_flags |= RACK_ACKED;
4016 			rsm->r_flags &= ~RACK_TLP;
4017 			if (rsm->r_in_tmap) {
4018 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4019 				rsm->r_in_tmap = 0;
4020 			}
4021 		}
4022 		if (end == rsm->r_end) {
4023 			/* This block only - done */
4024 			goto out;
4025 		}
4026 		/* There is more not coverend by this rsm move on */
4027 		start = rsm->r_end;
4028 		nrsm = TAILQ_NEXT(rsm, r_next);
4029 		rsm = nrsm;
4030 		times = 0;
4031 		goto do_rest_ofb;
4032 	}
4033 	/* Ok we need to split off this one at the tail */
4034 	nrsm = rack_alloc(rack);
4035 	if (nrsm == NULL) {
4036 		/* failed rrs what can we do but loose the sack info? */
4037 		goto out;
4038 	}
4039 	/* Clone it */
4040 	nrsm->r_start = end;
4041 	nrsm->r_end = rsm->r_end;
4042 	nrsm->r_rtr_bytes = 0;
4043 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
4044 	nrsm->r_flags = rsm->r_flags;
4045 	nrsm->r_sndcnt = rsm->r_sndcnt;
4046 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
4047 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
4048 	}
4049 	/* The sack block does not cover this guy fully */
4050 	rsm->r_flags &= (~RACK_HAS_FIN);
4051 	rsm->r_end = end;
4052 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
4053 	if (rsm->r_in_tmap) {
4054 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4055 		nrsm->r_in_tmap = 1;
4056 	}
4057 	if (rsm->r_flags & RACK_ACKED) {
4058 		/* Been here done that */
4059 		goto out;
4060 	}
4061 	rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4062 	changed += (rsm->r_end - rsm->r_start);
4063 	rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4064 	rack_log_sack_passed(tp, rack, rsm);
4065 	/* Is Reordering occuring? */
4066 	if (rsm->r_flags & RACK_SACK_PASSED) {
4067 		counter_u64_add(rack_reorder_seen, 1);
4068 		rack->r_ctl.rc_reorder_ts = cts;
4069 	}
4070 	rsm->r_flags |= RACK_ACKED;
4071 	rsm->r_flags &= ~RACK_TLP;
4072 	if (rsm->r_in_tmap) {
4073 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4074 		rsm->r_in_tmap = 0;
4075 	}
4076 out:
4077 	if (used_ref == 0) {
4078 		counter_u64_add(rack_sack_proc_all, 1);
4079 	} else {
4080 		counter_u64_add(rack_sack_proc_short, 1);
4081 	}
4082 	/* Save off where we last were */
4083 	if (rsm)
4084 		rack->r_ctl.rc_sacklast = TAILQ_NEXT(rsm, r_next);
4085 	else
4086 		rack->r_ctl.rc_sacklast = NULL;
4087 	*prsm = rsm;
4088 	return (changed);
4089 }
4090 
4091 static void inline
4092 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4093 {
4094 	struct rack_sendmap *tmap;
4095 
4096 	tmap = NULL;
4097 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4098 		/* Its no longer sacked, mark it so */
4099 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4100 #ifdef INVARIANTS
4101 		if (rsm->r_in_tmap) {
4102 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4103 			      rack, rsm, rsm->r_flags);
4104 		}
4105 #endif
4106 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4107 		/* Rebuild it into our tmap */
4108 		if (tmap == NULL) {
4109 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4110 			tmap = rsm;
4111 		} else {
4112 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4113 			tmap = rsm;
4114 		}
4115 		tmap->r_in_tmap = 1;
4116 		rsm = TAILQ_NEXT(rsm, r_next);
4117 	}
4118 	/*
4119 	 * Now lets possibly clear the sack filter so we start
4120 	 * recognizing sacks that cover this area.
4121 	 */
4122 	if (rack_use_sack_filter)
4123 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4124 
4125 }
4126 
4127 static void
4128 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4129 {
4130 	uint32_t changed, last_seq, entered_recovery = 0;
4131 	struct tcp_rack *rack;
4132 	struct rack_sendmap *rsm;
4133 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4134 	register uint32_t th_ack;
4135 	int32_t i, j, k, num_sack_blks = 0;
4136 	uint32_t cts, acked, ack_point, sack_changed = 0;
4137 
4138 	INP_WLOCK_ASSERT(tp->t_inpcb);
4139 	if (th->th_flags & TH_RST) {
4140 		/* We don't log resets */
4141 		return;
4142 	}
4143 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4144 	cts = tcp_ts_getticks();
4145 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4146 	changed = 0;
4147 	th_ack = th->th_ack;
4148 
4149 	if (SEQ_GT(th_ack, tp->snd_una)) {
4150 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4151 		tp->t_acktime = ticks;
4152 	}
4153 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4154 		changed = th_ack - rsm->r_start;
4155 	if (changed) {
4156 		/*
4157 		 * The ACK point is advancing to th_ack, we must drop off
4158 		 * the packets in the rack log and calculate any eligble
4159 		 * RTT's.
4160 		 */
4161 		rack->r_wanted_output++;
4162 more:
4163 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4164 		if (rsm == NULL) {
4165 			if ((th_ack - 1) == tp->iss) {
4166 				/*
4167 				 * For the SYN incoming case we will not
4168 				 * have called tcp_output for the sending of
4169 				 * the SYN, so there will be no map. All
4170 				 * other cases should probably be a panic.
4171 				 */
4172 				goto proc_sack;
4173 			}
4174 			if (tp->t_flags & TF_SENTFIN) {
4175 				/* if we send a FIN we will not hav a map */
4176 				goto proc_sack;
4177 			}
4178 #ifdef INVARIANTS
4179 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4180 			    tp,
4181 			    th, tp->t_state, rack,
4182 			    tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4183 #endif
4184 			goto proc_sack;
4185 		}
4186 		if (SEQ_LT(th_ack, rsm->r_start)) {
4187 			/* Huh map is missing this */
4188 #ifdef INVARIANTS
4189 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4190 			    rsm->r_start,
4191 			    th_ack, tp->t_state, rack->r_state);
4192 #endif
4193 			goto proc_sack;
4194 		}
4195 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4196 		/* Now do we consume the whole thing? */
4197 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4198 			/* Its all consumed. */
4199 			uint32_t left;
4200 
4201 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4202 			rsm->r_rtr_bytes = 0;
4203 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
4204 			if (rsm->r_in_tmap) {
4205 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4206 				rsm->r_in_tmap = 0;
4207 			}
4208 			if (rack->r_ctl.rc_next == rsm) {
4209 				/* scoot along the marker */
4210 				rack->r_ctl.rc_next = TAILQ_FIRST(&rack->r_ctl.rc_map);
4211 			}
4212 			if (rsm->r_flags & RACK_ACKED) {
4213 				/*
4214 				 * It was acked on the scoreboard -- remove
4215 				 * it from total
4216 				 */
4217 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4218 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4219 				/*
4220 				 * There are acked segments ACKED on the
4221 				 * scoreboard further up. We are seeing
4222 				 * reordering.
4223 				 */
4224 				counter_u64_add(rack_reorder_seen, 1);
4225 				rsm->r_flags |= RACK_ACKED;
4226 				rack->r_ctl.rc_reorder_ts = cts;
4227 			}
4228 			left = th_ack - rsm->r_end;
4229 			if (rsm->r_rtr_cnt > 1) {
4230 				/*
4231 				 * Technically we should make r_rtr_cnt be
4232 				 * monotonicly increasing and just mod it to
4233 				 * the timestamp it is replacing.. that way
4234 				 * we would have the last 3 retransmits. Now
4235 				 * rc_loss_count will be wrong if we
4236 				 * retransmit something more than 2 times in
4237 				 * recovery :(
4238 				 */
4239 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4240 			}
4241 			/* Free back to zone */
4242 			rack_free(rack, rsm);
4243 			if (left) {
4244 				goto more;
4245 			}
4246 			goto proc_sack;
4247 		}
4248 		if (rsm->r_flags & RACK_ACKED) {
4249 			/*
4250 			 * It was acked on the scoreboard -- remove it from
4251 			 * total for the part being cum-acked.
4252 			 */
4253 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4254 		}
4255 		rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4256 		rsm->r_rtr_bytes = 0;
4257 		rsm->r_start = th_ack;
4258 	}
4259 proc_sack:
4260 	/* Check for reneging */
4261 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4262 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4263 		/*
4264 		 * The peer has moved snd_una up to
4265 		 * the edge of this send, i.e. one
4266 		 * that it had previously acked. The only
4267 		 * way that can be true if the peer threw
4268 		 * away data (space issues) that it had
4269 		 * previously sacked (else it would have
4270 		 * given us snd_una up to (rsm->r_end).
4271 		 * We need to undo the acked markings here.
4272 		 *
4273 		 * Note we have to look to make sure th_ack is
4274 		 * our rsm->r_start in case we get an old ack
4275 		 * where th_ack is behind snd_una.
4276 		 */
4277 		rack_peer_reneges(rack, rsm, th->th_ack);
4278 	}
4279 	if ((to->to_flags & TOF_SACK) == 0) {
4280 		/* We are done nothing left to log */
4281 		goto out;
4282 	}
4283 	rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
4284 	if (rsm) {
4285 		last_seq = rsm->r_end;
4286 	} else {
4287 		last_seq = tp->snd_max;
4288 	}
4289 	/* Sack block processing */
4290 	if (SEQ_GT(th_ack, tp->snd_una))
4291 		ack_point = th_ack;
4292 	else
4293 		ack_point = tp->snd_una;
4294 	for (i = 0; i < to->to_nsacks; i++) {
4295 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4296 		    &sack, sizeof(sack));
4297 		sack.start = ntohl(sack.start);
4298 		sack.end = ntohl(sack.end);
4299 		if (SEQ_GT(sack.end, sack.start) &&
4300 		    SEQ_GT(sack.start, ack_point) &&
4301 		    SEQ_LT(sack.start, tp->snd_max) &&
4302 		    SEQ_GT(sack.end, ack_point) &&
4303 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4304 			if ((rack->r_ctl.rc_num_maps_alloced > rack_sack_block_limit) &&
4305 			    (SEQ_LT(sack.end, last_seq)) &&
4306 			    ((sack.end - sack.start) < (tp->t_maxseg / 8))) {
4307 				/*
4308 				 * Not the last piece and its smaller than
4309 				 * 1/8th of a MSS. We ignore this.
4310 				 */
4311 				counter_u64_add(rack_runt_sacks, 1);
4312 				continue;
4313 			}
4314 			sack_blocks[num_sack_blks] = sack;
4315 			num_sack_blks++;
4316 #ifdef NETFLIX_STATS
4317 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4318 			   SEQ_LEQ(sack.end, th_ack)) {
4319 			/*
4320 			 * Its a D-SACK block.
4321 			 */
4322 			tcp_record_dsack(sack.start, sack.end);
4323 #endif
4324 		}
4325 
4326 	}
4327 	if (num_sack_blks == 0)
4328 		goto out;
4329 	/*
4330 	 * Sort the SACK blocks so we can update the rack scoreboard with
4331 	 * just one pass.
4332 	 */
4333 	if (rack_use_sack_filter) {
4334 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, num_sack_blks, th->th_ack);
4335 	}
4336 	if (num_sack_blks < 2) {
4337 		goto do_sack_work;
4338 	}
4339 	/* Sort the sacks */
4340 	for (i = 0; i < num_sack_blks; i++) {
4341 		for (j = i + 1; j < num_sack_blks; j++) {
4342 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4343 				sack = sack_blocks[i];
4344 				sack_blocks[i] = sack_blocks[j];
4345 				sack_blocks[j] = sack;
4346 			}
4347 		}
4348 	}
4349 	/*
4350 	 * Now are any of the sack block ends the same (yes some
4351 	 * implememtations send these)?
4352 	 */
4353 again:
4354 	if (num_sack_blks > 1) {
4355 		for (i = 0; i < num_sack_blks; i++) {
4356 			for (j = i + 1; j < num_sack_blks; j++) {
4357 				if (sack_blocks[i].end == sack_blocks[j].end) {
4358 					/*
4359 					 * Ok these two have the same end we
4360 					 * want the smallest end and then
4361 					 * throw away the larger and start
4362 					 * again.
4363 					 */
4364 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4365 						/*
4366 						 * The second block covers
4367 						 * more area use that
4368 						 */
4369 						sack_blocks[i].start = sack_blocks[j].start;
4370 					}
4371 					/*
4372 					 * Now collapse out the dup-sack and
4373 					 * lower the count
4374 					 */
4375 					for (k = (j + 1); k < num_sack_blks; k++) {
4376 						sack_blocks[j].start = sack_blocks[k].start;
4377 						sack_blocks[j].end = sack_blocks[k].end;
4378 						j++;
4379 					}
4380 					num_sack_blks--;
4381 					goto again;
4382 				}
4383 			}
4384 		}
4385 	}
4386 do_sack_work:
4387 	rsm = rack->r_ctl.rc_sacklast;
4388 	for (i = 0; i < num_sack_blks; i++) {
4389 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts);
4390 		if (acked) {
4391 			rack->r_wanted_output++;
4392 			changed += acked;
4393 			sack_changed += acked;
4394 		}
4395 	}
4396 out:
4397 	if (changed) {
4398 		/* Something changed cancel the rack timer */
4399 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4400 	}
4401 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
4402 		/*
4403 		 * Ok we have a high probability that we need to go in to
4404 		 * recovery since we have data sack'd
4405 		 */
4406 		struct rack_sendmap *rsm;
4407 		uint32_t tsused;
4408 
4409 		tsused = tcp_ts_getticks();
4410 		rsm = tcp_rack_output(tp, rack, tsused);
4411 		if (rsm) {
4412 			/* Enter recovery */
4413 			rack->r_ctl.rc_rsm_start = rsm->r_start;
4414 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4415 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4416 			entered_recovery = 1;
4417 			rack_cong_signal(tp, NULL, CC_NDUPACK);
4418 			/*
4419 			 * When we enter recovery we need to assure we send
4420 			 * one packet.
4421 			 */
4422 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
4423 			rack->r_timer_override = 1;
4424 		}
4425 	}
4426 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
4427 		/* Deal with changed an PRR here (in recovery only) */
4428 		uint32_t pipe, snd_una;
4429 
4430 		rack->r_ctl.rc_prr_delivered += changed;
4431 		/* Compute prr_sndcnt */
4432 		if (SEQ_GT(tp->snd_una, th_ack)) {
4433 			snd_una = tp->snd_una;
4434 		} else {
4435 			snd_una = th_ack;
4436 		}
4437 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
4438 		if (pipe > tp->snd_ssthresh) {
4439 			long sndcnt;
4440 
4441 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
4442 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
4443 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
4444 			else {
4445 				rack->r_ctl.rc_prr_sndcnt = 0;
4446 				sndcnt = 0;
4447 			}
4448 			sndcnt++;
4449 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
4450 				sndcnt -= rack->r_ctl.rc_prr_out;
4451 			else
4452 				sndcnt = 0;
4453 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
4454 		} else {
4455 			uint32_t limit;
4456 
4457 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
4458 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
4459 			else
4460 				limit = 0;
4461 			if (changed > limit)
4462 				limit = changed;
4463 			limit += tp->t_maxseg;
4464 			if (tp->snd_ssthresh > pipe) {
4465 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
4466 			} else {
4467 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
4468 			}
4469 		}
4470 		if (rack->r_ctl.rc_prr_sndcnt >= tp->t_maxseg) {
4471 			rack->r_timer_override = 1;
4472 		}
4473 	}
4474 }
4475 
4476 /*
4477  * Return value of 1, we do not need to call rack_process_data().
4478  * return value of 0, rack_process_data can be called.
4479  * For ret_val if its 0 the TCP is locked, if its non-zero
4480  * its unlocked and probably unsafe to touch the TCB.
4481  */
4482 static int
4483 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
4484     struct tcpcb *tp, struct tcpopt *to,
4485     int32_t * ti_locked, uint32_t tiwin, int32_t tlen,
4486     int32_t * ofia, int32_t thflags, int32_t * ret_val)
4487 {
4488 	int32_t ourfinisacked = 0;
4489 	int32_t nsegs, acked_amount;
4490 	int32_t acked;
4491 	struct mbuf *mfree;
4492 	struct tcp_rack *rack;
4493 	int32_t recovery = 0;
4494 
4495 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4496 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
4497 		rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, ret_val);
4498 		return (1);
4499 	}
4500 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
4501 		rack_log_ack(tp, to, th);
4502 	}
4503 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
4504 		/*
4505 		 * Old ack, behind (or duplicate to) the last one rcv'd
4506 		 * Note: Should mark reordering is occuring! We should also
4507 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
4508 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
4509 		 * retran and> ack 3
4510 		 */
4511 		return (0);
4512 	}
4513 	/*
4514 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
4515 	 * something we sent.
4516 	 */
4517 	if (tp->t_flags & TF_NEEDSYN) {
4518 		/*
4519 		 * T/TCP: Connection was half-synchronized, and our SYN has
4520 		 * been ACK'd (so connection is now fully synchronized).  Go
4521 		 * to non-starred state, increment snd_una for ACK of SYN,
4522 		 * and check if we can do window scaling.
4523 		 */
4524 		tp->t_flags &= ~TF_NEEDSYN;
4525 		tp->snd_una++;
4526 		/* Do window scaling? */
4527 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
4528 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
4529 			tp->rcv_scale = tp->request_r_scale;
4530 			/* Send window already scaled. */
4531 		}
4532 	}
4533 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4534 	INP_WLOCK_ASSERT(tp->t_inpcb);
4535 
4536 	acked = BYTES_THIS_ACK(tp, th);
4537 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
4538 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
4539 
4540 	/*
4541 	 * If we just performed our first retransmit, and the ACK arrives
4542 	 * within our recovery window, then it was a mistake to do the
4543 	 * retransmit in the first place.  Recover our original cwnd and
4544 	 * ssthresh, and proceed to transmit where we left off.
4545 	 */
4546 	if (tp->t_flags & TF_PREVVALID) {
4547 		tp->t_flags &= ~TF_PREVVALID;
4548 		if (tp->t_rxtshift == 1 &&
4549 		    (int)(ticks - tp->t_badrxtwin) < 0)
4550 			rack_cong_signal(tp, th, CC_RTO_ERR);
4551 	}
4552 	/*
4553 	 * If we have a timestamp reply, update smoothed round trip time. If
4554 	 * no timestamp is present but transmit timer is running and timed
4555 	 * sequence number was acked, update smoothed round trip time. Since
4556 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
4557 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
4558 	 * timer.
4559 	 *
4560 	 * Some boxes send broken timestamp replies during the SYN+ACK
4561 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
4562 	 * and blow up the retransmit timer.
4563 	 */
4564 	/*
4565 	 * If all outstanding data is acked, stop retransmit timer and
4566 	 * remember to restart (more output or persist). If there is more
4567 	 * data to be acked, restart retransmit timer, using current
4568 	 * (possibly backed-off) value.
4569 	 */
4570 	if (th->th_ack == tp->snd_max) {
4571 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4572 		rack->r_wanted_output++;
4573 	}
4574 	/*
4575 	 * If no data (only SYN) was ACK'd, skip rest of ACK processing.
4576 	 */
4577 	if (acked == 0) {
4578 		if (ofia)
4579 			*ofia = ourfinisacked;
4580 		return (0);
4581 	}
4582 	if (rack->r_ctl.rc_early_recovery) {
4583 		if (IN_FASTRECOVERY(tp->t_flags)) {
4584 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4585 				tcp_rack_partialack(tp, th);
4586 			} else {
4587 				rack_post_recovery(tp, th);
4588 				recovery = 1;
4589 			}
4590 		}
4591 	}
4592 	/*
4593 	 * Let the congestion control algorithm update congestion control
4594 	 * related information. This typically means increasing the
4595 	 * congestion window.
4596 	 */
4597 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
4598 	SOCKBUF_LOCK(&so->so_snd);
4599 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
4600 	tp->snd_wnd -= acked_amount;
4601 	mfree = sbcut_locked(&so->so_snd, acked_amount);
4602 	if ((sbused(&so->so_snd) == 0) &&
4603 	    (acked > acked_amount) &&
4604 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
4605 		ourfinisacked = 1;
4606 	}
4607 	/* NB: sowwakeup_locked() does an implicit unlock. */
4608 	sowwakeup_locked(so);
4609 	m_freem(mfree);
4610 	if (rack->r_ctl.rc_early_recovery == 0) {
4611 		if (IN_FASTRECOVERY(tp->t_flags)) {
4612 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4613 				tcp_rack_partialack(tp, th);
4614 			} else {
4615 				rack_post_recovery(tp, th);
4616 			}
4617 		}
4618 	}
4619 	tp->snd_una = th->th_ack;
4620 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
4621 		tp->snd_recover = tp->snd_una;
4622 
4623 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4624 		tp->snd_nxt = tp->snd_una;
4625 	}
4626 	if (tp->snd_una == tp->snd_max) {
4627 		/* Nothing left outstanding */
4628 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
4629 		tp->t_acktime = 0;
4630 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4631 		/* Set need output so persist might get set */
4632 		rack->r_wanted_output++;
4633 		if (rack_use_sack_filter)
4634 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
4635 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
4636 		    (sbavail(&so->so_snd) == 0) &&
4637 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
4638 			/*
4639 			 * The socket was gone and the
4640 			 * peer sent data, time to
4641 			 * reset him.
4642 			 */
4643 			*ret_val = 1;
4644 			tp = tcp_close(tp);
4645 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_UNLIMITED, tlen);
4646 			return (1);
4647 		}
4648 	}
4649 	if (ofia)
4650 		*ofia = ourfinisacked;
4651 	return (0);
4652 }
4653 
4654 
4655 /*
4656  * Return value of 1, the TCB is unlocked and most
4657  * likely gone, return value of 0, the TCP is still
4658  * locked.
4659  */
4660 static int
4661 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
4662     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
4663     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
4664 {
4665 	/*
4666 	 * Update window information. Don't look at window if no ACK: TAC's
4667 	 * send garbage on first SYN.
4668 	 */
4669 	int32_t nsegs;
4670 	int32_t tfo_syn;
4671 	struct tcp_rack *rack;
4672 
4673 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4674 	INP_WLOCK_ASSERT(tp->t_inpcb);
4675 
4676 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4677 	if ((thflags & TH_ACK) &&
4678 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
4679 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
4680 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
4681 		/* keep track of pure window updates */
4682 		if (tlen == 0 &&
4683 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
4684 			TCPSTAT_INC(tcps_rcvwinupd);
4685 		tp->snd_wnd = tiwin;
4686 		tp->snd_wl1 = th->th_seq;
4687 		tp->snd_wl2 = th->th_ack;
4688 		if (tp->snd_wnd > tp->max_sndwnd)
4689 			tp->max_sndwnd = tp->snd_wnd;
4690 		rack->r_wanted_output++;
4691 	} else if (thflags & TH_ACK) {
4692 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
4693 			tp->snd_wnd = tiwin;
4694 			tp->snd_wl1 = th->th_seq;
4695 			tp->snd_wl2 = th->th_ack;
4696 		}
4697 	}
4698 	/* Was persist timer active and now we have window space? */
4699 	if ((rack->rc_in_persist != 0) && tp->snd_wnd) {
4700 		rack_exit_persist(tp, rack);
4701 		tp->snd_nxt = tp->snd_max;
4702 		/* Make sure we output to start the timer */
4703 		rack->r_wanted_output++;
4704 	}
4705 	/*
4706 	 * Process segments with URG.
4707 	 */
4708 	if ((thflags & TH_URG) && th->th_urp &&
4709 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4710 		/*
4711 		 * This is a kludge, but if we receive and accept random
4712 		 * urgent pointers, we'll crash in soreceive.  It's hard to
4713 		 * imagine someone actually wanting to send this much urgent
4714 		 * data.
4715 		 */
4716 		SOCKBUF_LOCK(&so->so_rcv);
4717 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
4718 			th->th_urp = 0;	/* XXX */
4719 			thflags &= ~TH_URG;	/* XXX */
4720 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
4721 			goto dodata;	/* XXX */
4722 		}
4723 		/*
4724 		 * If this segment advances the known urgent pointer, then
4725 		 * mark the data stream.  This should not happen in
4726 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
4727 		 * FIN has been received from the remote side. In these
4728 		 * states we ignore the URG.
4729 		 *
4730 		 * According to RFC961 (Assigned Protocols), the urgent
4731 		 * pointer points to the last octet of urgent data.  We
4732 		 * continue, however, to consider it to indicate the first
4733 		 * octet of data past the urgent section as the original
4734 		 * spec states (in one of two places).
4735 		 */
4736 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
4737 			tp->rcv_up = th->th_seq + th->th_urp;
4738 			so->so_oobmark = sbavail(&so->so_rcv) +
4739 			    (tp->rcv_up - tp->rcv_nxt) - 1;
4740 			if (so->so_oobmark == 0)
4741 				so->so_rcv.sb_state |= SBS_RCVATMARK;
4742 			sohasoutofband(so);
4743 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4744 		}
4745 		SOCKBUF_UNLOCK(&so->so_rcv);
4746 		/*
4747 		 * Remove out of band data so doesn't get presented to user.
4748 		 * This can happen independent of advancing the URG pointer,
4749 		 * but if two URG's are pending at once, some out-of-band
4750 		 * data may creep in... ick.
4751 		 */
4752 		if (th->th_urp <= (uint32_t) tlen &&
4753 		    !(so->so_options & SO_OOBINLINE)) {
4754 			/* hdr drop is delayed */
4755 			tcp_pulloutofband(so, th, m, drop_hdrlen);
4756 		}
4757 	} else {
4758 		/*
4759 		 * If no out of band data is expected, pull receive urgent
4760 		 * pointer along with the receive window.
4761 		 */
4762 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
4763 			tp->rcv_up = tp->rcv_nxt;
4764 	}
4765 dodata:				/* XXX */
4766 	INP_WLOCK_ASSERT(tp->t_inpcb);
4767 
4768 	/*
4769 	 * Process the segment text, merging it into the TCP sequencing
4770 	 * queue, and arranging for acknowledgment of receipt if necessary.
4771 	 * This process logically involves adjusting tp->rcv_wnd as data is
4772 	 * presented to the user (this happens in tcp_usrreq.c, case
4773 	 * PRU_RCVD).  If a FIN has already been received on this connection
4774 	 * then we just ignore the text.
4775 	 */
4776 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
4777 		   IS_FASTOPEN(tp->t_flags));
4778 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
4779 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4780 		tcp_seq save_start = th->th_seq;
4781 
4782 		m_adj(m, drop_hdrlen);	/* delayed header drop */
4783 		/*
4784 		 * Insert segment which includes th into TCP reassembly
4785 		 * queue with control block tp.  Set thflags to whether
4786 		 * reassembly now includes a segment with FIN.  This handles
4787 		 * the common case inline (segment is the next to be
4788 		 * received on an established connection, and the queue is
4789 		 * empty), avoiding linkage into and removal from the queue
4790 		 * and repetition of various conversions. Set DELACK for
4791 		 * segments received in order, but ack immediately when
4792 		 * segments are out of order (so fast retransmit can work).
4793 		 */
4794 		if (th->th_seq == tp->rcv_nxt &&
4795 		    LIST_EMPTY(&tp->t_segq) &&
4796 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
4797 		    tfo_syn)) {
4798 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
4799 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4800 				tp->t_flags |= TF_DELACK;
4801 			} else {
4802 				rack->r_wanted_output++;
4803 				tp->t_flags |= TF_ACKNOW;
4804 			}
4805 			tp->rcv_nxt += tlen;
4806 			thflags = th->th_flags & TH_FIN;
4807 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
4808 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
4809 			SOCKBUF_LOCK(&so->so_rcv);
4810 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4811 				m_freem(m);
4812 			else
4813 				sbappendstream_locked(&so->so_rcv, m, 0);
4814 			/* NB: sorwakeup_locked() does an implicit unlock. */
4815 			sorwakeup_locked(so);
4816 		} else {
4817 			/*
4818 			 * XXX: Due to the header drop above "th" is
4819 			 * theoretically invalid by now.  Fortunately
4820 			 * m_adj() doesn't actually frees any mbufs when
4821 			 * trimming from the head.
4822 			 */
4823 			thflags = tcp_reass(tp, th, &tlen, m);
4824 			tp->t_flags |= TF_ACKNOW;
4825 		}
4826 		if (tlen > 0)
4827 			tcp_update_sack_list(tp, save_start, save_start + tlen);
4828 	} else {
4829 		m_freem(m);
4830 		thflags &= ~TH_FIN;
4831 	}
4832 
4833 	/*
4834 	 * If FIN is received ACK the FIN and let the user know that the
4835 	 * connection is closing.
4836 	 */
4837 	if (thflags & TH_FIN) {
4838 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4839 			socantrcvmore(so);
4840 			/*
4841 			 * If connection is half-synchronized (ie NEEDSYN
4842 			 * flag on) then delay ACK, so it may be piggybacked
4843 			 * when SYN is sent. Otherwise, since we received a
4844 			 * FIN then no more input can be expected, send ACK
4845 			 * now.
4846 			 */
4847 			if (tp->t_flags & TF_NEEDSYN) {
4848 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4849 				tp->t_flags |= TF_DELACK;
4850 			} else {
4851 				tp->t_flags |= TF_ACKNOW;
4852 			}
4853 			tp->rcv_nxt++;
4854 		}
4855 		switch (tp->t_state) {
4856 
4857 			/*
4858 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
4859 			 * CLOSE_WAIT state.
4860 			 */
4861 		case TCPS_SYN_RECEIVED:
4862 			tp->t_starttime = ticks;
4863 			/* FALLTHROUGH */
4864 		case TCPS_ESTABLISHED:
4865 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4866 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
4867 			break;
4868 
4869 			/*
4870 			 * If still in FIN_WAIT_1 STATE FIN has not been
4871 			 * acked so enter the CLOSING state.
4872 			 */
4873 		case TCPS_FIN_WAIT_1:
4874 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4875 			tcp_state_change(tp, TCPS_CLOSING);
4876 			break;
4877 
4878 			/*
4879 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
4880 			 * starting the time-wait timer, turning off the
4881 			 * other standard timers.
4882 			 */
4883 		case TCPS_FIN_WAIT_2:
4884 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4885 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
4886 			KASSERT(*ti_locked == TI_RLOCKED, ("%s: dodata "
4887 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
4888 			    *ti_locked));
4889 			tcp_twstart(tp);
4890 			*ti_locked = TI_UNLOCKED;
4891 			INP_INFO_RUNLOCK(&V_tcbinfo);
4892 			return (1);
4893 		}
4894 	}
4895 	if (*ti_locked == TI_RLOCKED) {
4896 		INP_INFO_RUNLOCK(&V_tcbinfo);
4897 		*ti_locked = TI_UNLOCKED;
4898 	}
4899 	/*
4900 	 * Return any desired output.
4901 	 */
4902 	if ((tp->t_flags & TF_ACKNOW) || (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
4903 		rack->r_wanted_output++;
4904 	}
4905 	KASSERT(*ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
4906 	    __func__, *ti_locked));
4907 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
4908 	INP_WLOCK_ASSERT(tp->t_inpcb);
4909 	return (0);
4910 }
4911 
4912 /*
4913  * Here nothing is really faster, its just that we
4914  * have broken out the fast-data path also just like
4915  * the fast-ack.
4916  */
4917 static int
4918 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
4919     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
4920     int32_t * ti_locked, uint32_t tiwin, int32_t nxt_pkt)
4921 {
4922 	int32_t nsegs;
4923 	int32_t newsize = 0;	/* automatic sockbuf scaling */
4924 	struct tcp_rack *rack;
4925 #ifdef TCPDEBUG
4926 	/*
4927 	 * The size of tcp_saveipgen must be the size of the max ip header,
4928 	 * now IPv6.
4929 	 */
4930 	u_char tcp_saveipgen[IP6_HDR_LEN];
4931 	struct tcphdr tcp_savetcp;
4932 	short ostate = 0;
4933 
4934 #endif
4935 	/*
4936 	 * If last ACK falls within this segment's sequence numbers, record
4937 	 * the timestamp. NOTE that the test is modified according to the
4938 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
4939 	 */
4940 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
4941 		return (0);
4942 	}
4943 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
4944 		return (0);
4945 	}
4946 	if (tiwin && tiwin != tp->snd_wnd) {
4947 		return (0);
4948 	}
4949 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
4950 		return (0);
4951 	}
4952 	if (__predict_false((to->to_flags & TOF_TS) &&
4953 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
4954 		return (0);
4955 	}
4956 	if (__predict_false((th->th_ack != tp->snd_una))) {
4957 		return (0);
4958 	}
4959 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
4960 		return (0);
4961 	}
4962 	if ((to->to_flags & TOF_TS) != 0 &&
4963 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
4964 		tp->ts_recent_age = tcp_ts_getticks();
4965 		tp->ts_recent = to->to_tsval;
4966 	}
4967 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4968 	/*
4969 	 * This is a pure, in-sequence data packet with nothing on the
4970 	 * reassembly queue and we have enough buffer space to take it.
4971 	 */
4972 	if (*ti_locked == TI_RLOCKED) {
4973 		INP_INFO_RUNLOCK(&V_tcbinfo);
4974 		*ti_locked = TI_UNLOCKED;
4975 	}
4976 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4977 
4978 
4979 	/* Clean receiver SACK report if present */
4980 	if (tp->rcv_numsacks)
4981 		tcp_clean_sackreport(tp);
4982 	TCPSTAT_INC(tcps_preddat);
4983 	tp->rcv_nxt += tlen;
4984 	/*
4985 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
4986 	 */
4987 	tp->snd_wl1 = th->th_seq;
4988 	/*
4989 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
4990 	 */
4991 	tp->rcv_up = tp->rcv_nxt;
4992 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
4993 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
4994 #ifdef TCPDEBUG
4995 	if (so->so_options & SO_DEBUG)
4996 		tcp_trace(TA_INPUT, ostate, tp,
4997 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
4998 #endif
4999 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5000 
5001 	/* Add data to socket buffer. */
5002 	SOCKBUF_LOCK(&so->so_rcv);
5003 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5004 		m_freem(m);
5005 	} else {
5006 		/*
5007 		 * Set new socket buffer size. Give up when limit is
5008 		 * reached.
5009 		 */
5010 		if (newsize)
5011 			if (!sbreserve_locked(&so->so_rcv,
5012 			    newsize, so, NULL))
5013 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
5014 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5015 		sbappendstream_locked(&so->so_rcv, m, 0);
5016 		rack_calc_rwin(so, tp);
5017 	}
5018 	/* NB: sorwakeup_locked() does an implicit unlock. */
5019 	sorwakeup_locked(so);
5020 	if (DELAY_ACK(tp, tlen)) {
5021 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5022 		tp->t_flags |= TF_DELACK;
5023 	} else {
5024 		tp->t_flags |= TF_ACKNOW;
5025 		rack->r_wanted_output++;
5026 	}
5027 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
5028 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5029 	return (1);
5030 }
5031 
5032 /*
5033  * This subfunction is used to try to highly optimize the
5034  * fast path. We again allow window updates that are
5035  * in sequence to remain in the fast-path. We also add
5036  * in the __predict's to attempt to help the compiler.
5037  * Note that if we return a 0, then we can *not* process
5038  * it and the caller should push the packet into the
5039  * slow-path.
5040  */
5041 static int
5042 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5043     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5044     int32_t * ti_locked, uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
5045 {
5046 	int32_t acked;
5047 	int32_t nsegs;
5048 
5049 #ifdef TCPDEBUG
5050 	/*
5051 	 * The size of tcp_saveipgen must be the size of the max ip header,
5052 	 * now IPv6.
5053 	 */
5054 	u_char tcp_saveipgen[IP6_HDR_LEN];
5055 	struct tcphdr tcp_savetcp;
5056 	short ostate = 0;
5057 
5058 #endif
5059 	struct tcp_rack *rack;
5060 
5061 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5062 		/* Old ack, behind (or duplicate to) the last one rcv'd */
5063 		return (0);
5064 	}
5065 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
5066 		/* Above what we have sent? */
5067 		return (0);
5068 	}
5069 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5070 		/* We are retransmitting */
5071 		return (0);
5072 	}
5073 	if (__predict_false(tiwin == 0)) {
5074 		/* zero window */
5075 		return (0);
5076 	}
5077 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
5078 		/* We need a SYN or a FIN, unlikely.. */
5079 		return (0);
5080 	}
5081 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
5082 		/* Timestamp is behind .. old ack with seq wrap? */
5083 		return (0);
5084 	}
5085 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
5086 		/* Still recovering */
5087 		return (0);
5088 	}
5089 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5090 	if (rack->r_ctl.rc_sacked) {
5091 		/* We have sack holes on our scoreboard */
5092 		return (0);
5093 	}
5094 	/* Ok if we reach here, we can process a fast-ack */
5095 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5096 	rack_log_ack(tp, to, th);
5097 	/* Did the window get updated? */
5098 	if (tiwin != tp->snd_wnd) {
5099 		tp->snd_wnd = tiwin;
5100 		tp->snd_wl1 = th->th_seq;
5101 		if (tp->snd_wnd > tp->max_sndwnd)
5102 			tp->max_sndwnd = tp->snd_wnd;
5103 	}
5104 	if ((rack->rc_in_persist != 0) && (tp->snd_wnd >= tp->t_maxseg)) {
5105 		rack_exit_persist(tp, rack);
5106 	}
5107 	/*
5108 	 * If last ACK falls within this segment's sequence numbers, record
5109 	 * the timestamp. NOTE that the test is modified according to the
5110 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5111 	 */
5112 	if ((to->to_flags & TOF_TS) != 0 &&
5113 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5114 		tp->ts_recent_age = tcp_ts_getticks();
5115 		tp->ts_recent = to->to_tsval;
5116 	}
5117 	/*
5118 	 * This is a pure ack for outstanding data.
5119 	 */
5120 	if (*ti_locked == TI_RLOCKED) {
5121 		INP_INFO_RUNLOCK(&V_tcbinfo);
5122 		*ti_locked = TI_UNLOCKED;
5123 	}
5124 	TCPSTAT_INC(tcps_predack);
5125 
5126 	/*
5127 	 * "bad retransmit" recovery.
5128 	 */
5129 	if (tp->t_flags & TF_PREVVALID) {
5130 		tp->t_flags &= ~TF_PREVVALID;
5131 		if (tp->t_rxtshift == 1 &&
5132 		    (int)(ticks - tp->t_badrxtwin) < 0)
5133 			rack_cong_signal(tp, th, CC_RTO_ERR);
5134 	}
5135 	/*
5136 	 * Recalculate the transmit timer / rtt.
5137 	 *
5138 	 * Some boxes send broken timestamp replies during the SYN+ACK
5139 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5140 	 * and blow up the retransmit timer.
5141 	 */
5142 	acked = BYTES_THIS_ACK(tp, th);
5143 
5144 #ifdef TCP_HHOOK
5145 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
5146 	hhook_run_tcp_est_in(tp, th, to);
5147 #endif
5148 
5149 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5150 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5151 	sbdrop(&so->so_snd, acked);
5152 	/*
5153 	 * Let the congestion control algorithm update congestion control
5154 	 * related information. This typically means increasing the
5155 	 * congestion window.
5156 	 */
5157 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
5158 
5159 	tp->snd_una = th->th_ack;
5160 	/*
5161 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
5162 	 */
5163 	tp->snd_wl2 = th->th_ack;
5164 	tp->t_dupacks = 0;
5165 	m_freem(m);
5166 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
5167 
5168 	/*
5169 	 * If all outstanding data are acked, stop retransmit timer,
5170 	 * otherwise restart timer using current (possibly backed-off)
5171 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
5172 	 * If data are ready to send, let tcp_output decide between more
5173 	 * output or persist.
5174 	 */
5175 #ifdef TCPDEBUG
5176 	if (so->so_options & SO_DEBUG)
5177 		tcp_trace(TA_INPUT, ostate, tp,
5178 		    (void *)tcp_saveipgen,
5179 		    &tcp_savetcp, 0);
5180 #endif
5181 	if (tp->snd_una == tp->snd_max) {
5182 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5183 		tp->t_acktime = 0;
5184 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5185 	}
5186 	/* Wake up the socket if we have room to write more */
5187 	sowwakeup(so);
5188 	if (sbavail(&so->so_snd)) {
5189 		rack->r_wanted_output++;
5190 	}
5191 	return (1);
5192 }
5193 
5194 /*
5195  * Return value of 1, the TCB is unlocked and most
5196  * likely gone, return value of 0, the TCP is still
5197  * locked.
5198  */
5199 static int
5200 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
5201     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5202     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5203 {
5204 	int32_t ret_val = 0;
5205 	int32_t todrop;
5206 	int32_t ourfinisacked = 0;
5207 
5208 	rack_calc_rwin(so, tp);
5209 	/*
5210 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
5211 	 * SYN, drop the input. if seg contains a RST, then drop the
5212 	 * connection. if seg does not contain SYN, then drop it. Otherwise
5213 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
5214 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
5215 	 * contains an ECE and ECN support is enabled, the stream is ECN
5216 	 * capable. if SYN has been acked change to ESTABLISHED else
5217 	 * SYN_RCVD state arrange for segment to be acked (eventually)
5218 	 * continue processing rest of data/controls, beginning with URG
5219 	 */
5220 	if ((thflags & TH_ACK) &&
5221 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
5222 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5223 		rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5224 		return (1);
5225 	}
5226 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
5227 		TCP_PROBE5(connect__refused, NULL, tp,
5228 		    mtod(m, const char *), tp, th);
5229 		tp = tcp_drop(tp, ECONNREFUSED);
5230 		rack_do_drop(m, tp, ti_locked);
5231 		return (1);
5232 	}
5233 	if (thflags & TH_RST) {
5234 		rack_do_drop(m, tp, ti_locked);
5235 		return (1);
5236 	}
5237 	if (!(thflags & TH_SYN)) {
5238 		rack_do_drop(m, tp, ti_locked);
5239 		return (1);
5240 	}
5241 	tp->irs = th->th_seq;
5242 	tcp_rcvseqinit(tp);
5243 	if (thflags & TH_ACK) {
5244 		int tfo_partial = 0;
5245 
5246 		TCPSTAT_INC(tcps_connects);
5247 		soisconnected(so);
5248 #ifdef MAC
5249 		mac_socketpeer_set_from_mbuf(m, so);
5250 #endif
5251 		/* Do window scaling on this connection? */
5252 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5253 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5254 			tp->rcv_scale = tp->request_r_scale;
5255 		}
5256 		tp->rcv_adv += min(tp->rcv_wnd,
5257 		    TCP_MAXWIN << tp->rcv_scale);
5258 		/*
5259 		 * If not all the data that was sent in the TFO SYN
5260 		 * has been acked, resend the remainder right away.
5261 		 */
5262 		if (IS_FASTOPEN(tp->t_flags) &&
5263 		    (tp->snd_una != tp->snd_max)) {
5264 			tp->snd_nxt = th->th_ack;
5265 			tfo_partial = 1;
5266 		}
5267 		/*
5268 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
5269 		 * will be turned on later.
5270 		 */
5271 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
5272 			rack_timer_cancel(tp, (struct tcp_rack *)tp->t_fb_ptr,
5273 					  ((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rcvtime, __LINE__);
5274 			tp->t_flags |= TF_DELACK;
5275 		} else {
5276 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
5277 			tp->t_flags |= TF_ACKNOW;
5278 		}
5279 
5280 		if ((thflags & TH_ECE) && V_tcp_do_ecn) {
5281 			tp->t_flags |= TF_ECN_PERMIT;
5282 			TCPSTAT_INC(tcps_ecn_shs);
5283 		}
5284 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
5285 			/*
5286 			 * We advance snd_una for the
5287 			 * fast open case. If th_ack is
5288 			 * acknowledging data beyond
5289 			 * snd_una we can't just call
5290 			 * ack-processing since the
5291 			 * data stream in our send-map
5292 			 * will start at snd_una + 1 (one
5293 			 * beyond the SYN). If its just
5294 			 * equal we don't need to do that
5295 			 * and there is no send_map.
5296 			 */
5297 			tp->snd_una++;
5298 		}
5299 		/*
5300 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
5301 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
5302 		 */
5303 		tp->t_starttime = ticks;
5304 		if (tp->t_flags & TF_NEEDFIN) {
5305 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
5306 			tp->t_flags &= ~TF_NEEDFIN;
5307 			thflags &= ~TH_SYN;
5308 		} else {
5309 			tcp_state_change(tp, TCPS_ESTABLISHED);
5310 			TCP_PROBE5(connect__established, NULL, tp,
5311 			    mtod(m, const char *), tp, th);
5312 			cc_conn_init(tp);
5313 		}
5314 	} else {
5315 		/*
5316 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
5317 		 * open.  If segment contains CC option and there is a
5318 		 * cached CC, apply TAO test. If it succeeds, connection is *
5319 		 * half-synchronized. Otherwise, do 3-way handshake:
5320 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
5321 		 * there was no CC option, clear cached CC value.
5322 		 */
5323 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
5324 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
5325 	}
5326 	KASSERT(*ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
5327 	    "ti_locked %d", __func__, *ti_locked));
5328 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5329 	INP_WLOCK_ASSERT(tp->t_inpcb);
5330 	/*
5331 	 * Advance th->th_seq to correspond to first data byte. If data,
5332 	 * trim to stay within window, dropping FIN if necessary.
5333 	 */
5334 	th->th_seq++;
5335 	if (tlen > tp->rcv_wnd) {
5336 		todrop = tlen - tp->rcv_wnd;
5337 		m_adj(m, -todrop);
5338 		tlen = tp->rcv_wnd;
5339 		thflags &= ~TH_FIN;
5340 		TCPSTAT_INC(tcps_rcvpackafterwin);
5341 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
5342 	}
5343 	tp->snd_wl1 = th->th_seq - 1;
5344 	tp->rcv_up = th->th_seq;
5345 	/*
5346 	 * Client side of transaction: already sent SYN and data. If the
5347 	 * remote host used T/TCP to validate the SYN, our data will be
5348 	 * ACK'd; if so, enter normal data segment processing in the middle
5349 	 * of step 5, ack processing. Otherwise, goto step 6.
5350 	 */
5351 	if (thflags & TH_ACK) {
5352 		if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
5353 			return (ret_val);
5354 		/* We may have changed to FIN_WAIT_1 above */
5355 		if (tp->t_state == TCPS_FIN_WAIT_1) {
5356 			/*
5357 			 * In FIN_WAIT_1 STATE in addition to the processing
5358 			 * for the ESTABLISHED state if our FIN is now
5359 			 * acknowledged then enter FIN_WAIT_2.
5360 			 */
5361 			if (ourfinisacked) {
5362 				/*
5363 				 * If we can't receive any more data, then
5364 				 * closing user can proceed. Starting the
5365 				 * timer is contrary to the specification,
5366 				 * but if we don't get a FIN we'll hang
5367 				 * forever.
5368 				 *
5369 				 * XXXjl: we should release the tp also, and
5370 				 * use a compressed state.
5371 				 */
5372 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5373 					soisdisconnected(so);
5374 					tcp_timer_activate(tp, TT_2MSL,
5375 					    (tcp_fast_finwait2_recycle ?
5376 					    tcp_finwait2_timeout :
5377 					    TP_MAXIDLE(tp)));
5378 				}
5379 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
5380 			}
5381 		}
5382 	}
5383 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5384 	    ti_locked, tiwin, thflags, nxt_pkt));
5385 }
5386 
5387 /*
5388  * Return value of 1, the TCB is unlocked and most
5389  * likely gone, return value of 0, the TCP is still
5390  * locked.
5391  */
5392 static int
5393 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
5394     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5395     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5396 {
5397 	int32_t ret_val = 0;
5398 	int32_t ourfinisacked = 0;
5399 
5400 	rack_calc_rwin(so, tp);
5401 
5402 	if ((thflags & TH_ACK) &&
5403 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
5404 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5405 		rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5406 		return (1);
5407 	}
5408 	if (IS_FASTOPEN(tp->t_flags)) {
5409 		/*
5410 		 * When a TFO connection is in SYN_RECEIVED, the
5411 		 * only valid packets are the initial SYN, a
5412 		 * retransmit/copy of the initial SYN (possibly with
5413 		 * a subset of the original data), a valid ACK, a
5414 		 * FIN, or a RST.
5415 		 */
5416 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
5417 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5418 			return (1);
5419 		} else if (thflags & TH_SYN) {
5420 			/* non-initial SYN is ignored */
5421 			struct tcp_rack *rack;
5422 
5423 			rack = (struct tcp_rack *)tp->t_fb_ptr;
5424 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
5425 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
5426 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
5427 				rack_do_drop(m, NULL, ti_locked);
5428 				return (0);
5429 			}
5430 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
5431 			rack_do_drop(m, NULL, ti_locked);
5432 			return (0);
5433 		}
5434 	}
5435 	if (thflags & TH_RST)
5436 		return (rack_process_rst(m, th, so, tp, ti_locked));
5437 	/*
5438 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5439 	 * synchronized state.
5440 	 */
5441 	if (thflags & TH_SYN) {
5442 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
5443 		return (ret_val);
5444 	}
5445 	/*
5446 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5447 	 * it's less than ts_recent, drop it.
5448 	 */
5449 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5450 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5451 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
5452 			return (ret_val);
5453 	}
5454 	/*
5455 	 * In the SYN-RECEIVED state, validate that the packet belongs to
5456 	 * this connection before trimming the data to fit the receive
5457 	 * window.  Check the sequence number versus IRS since we know the
5458 	 * sequence numbers haven't wrapped.  This is a partial fix for the
5459 	 * "LAND" DoS attack.
5460 	 */
5461 	if (SEQ_LT(th->th_seq, tp->irs)) {
5462 		rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5463 		return (1);
5464 	}
5465 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
5466 		return (ret_val);
5467 	}
5468 	/*
5469 	 * If last ACK falls within this segment's sequence numbers, record
5470 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5471 	 * from the latest proposal of the tcplw@cray.com list (Braden
5472 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5473 	 * with our earlier PAWS tests, so this check should be solely
5474 	 * predicated on the sequence space of this segment. 3) That we
5475 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5476 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5477 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5478 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5479 	 * p.869. In such cases, we can still calculate the RTT correctly
5480 	 * when RCV.NXT == Last.ACK.Sent.
5481 	 */
5482 	if ((to->to_flags & TOF_TS) != 0 &&
5483 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5484 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5485 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5486 		tp->ts_recent_age = tcp_ts_getticks();
5487 		tp->ts_recent = to->to_tsval;
5488 	}
5489 	/*
5490 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5491 	 * is on (half-synchronized state), then queue data for later
5492 	 * processing; else drop segment and return.
5493 	 */
5494 	if ((thflags & TH_ACK) == 0) {
5495 		if (IS_FASTOPEN(tp->t_flags)) {
5496 			tp->snd_wnd = tiwin;
5497 			cc_conn_init(tp);
5498 		}
5499 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5500 		    ti_locked, tiwin, thflags, nxt_pkt));
5501 	}
5502 	TCPSTAT_INC(tcps_connects);
5503 	soisconnected(so);
5504 	/* Do window scaling? */
5505 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5506 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5507 		tp->rcv_scale = tp->request_r_scale;
5508 		tp->snd_wnd = tiwin;
5509 	}
5510 	/*
5511 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
5512 	 * FIN-WAIT-1
5513 	 */
5514 	tp->t_starttime = ticks;
5515 	if (tp->t_flags & TF_NEEDFIN) {
5516 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
5517 		tp->t_flags &= ~TF_NEEDFIN;
5518 	} else {
5519 		tcp_state_change(tp, TCPS_ESTABLISHED);
5520 		TCP_PROBE5(accept__established, NULL, tp,
5521 		    mtod(m, const char *), tp, th);
5522 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
5523 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
5524 			tp->t_tfo_pending = NULL;
5525 
5526 			/*
5527 			 * Account for the ACK of our SYN prior to regular
5528 			 * ACK processing below.
5529 			 */
5530 			tp->snd_una++;
5531 		}
5532 		/*
5533 		 * TFO connections call cc_conn_init() during SYN
5534 		 * processing.  Calling it again here for such connections
5535 		 * is not harmless as it would undo the snd_cwnd reduction
5536 		 * that occurs when a TFO SYN|ACK is retransmitted.
5537 		 */
5538 		if (!IS_FASTOPEN(tp->t_flags))
5539 			cc_conn_init(tp);
5540 	}
5541 	/*
5542 	 * If segment contains data or ACK, will call tcp_reass() later; if
5543 	 * not, do so now to pass queued data to user.
5544 	 */
5545 	if (tlen == 0 && (thflags & TH_FIN) == 0)
5546 		(void)tcp_reass(tp, (struct tcphdr *)0, 0,
5547 		    (struct mbuf *)0);
5548 	tp->snd_wl1 = th->th_seq - 1;
5549 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5550 		return (ret_val);
5551 	}
5552 	if (tp->t_state == TCPS_FIN_WAIT_1) {
5553 		/* We could have went to FIN_WAIT_1 (or EST) above */
5554 		/*
5555 		 * In FIN_WAIT_1 STATE in addition to the processing for the
5556 		 * ESTABLISHED state if our FIN is now acknowledged then
5557 		 * enter FIN_WAIT_2.
5558 		 */
5559 		if (ourfinisacked) {
5560 			/*
5561 			 * If we can't receive any more data, then closing
5562 			 * user can proceed. Starting the timer is contrary
5563 			 * to the specification, but if we don't get a FIN
5564 			 * we'll hang forever.
5565 			 *
5566 			 * XXXjl: we should release the tp also, and use a
5567 			 * compressed state.
5568 			 */
5569 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5570 				soisdisconnected(so);
5571 				tcp_timer_activate(tp, TT_2MSL,
5572 				    (tcp_fast_finwait2_recycle ?
5573 				    tcp_finwait2_timeout :
5574 				    TP_MAXIDLE(tp)));
5575 			}
5576 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
5577 		}
5578 	}
5579 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5580 	    ti_locked, tiwin, thflags, nxt_pkt));
5581 }
5582 
5583 /*
5584  * Return value of 1, the TCB is unlocked and most
5585  * likely gone, return value of 0, the TCP is still
5586  * locked.
5587  */
5588 static int
5589 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
5590     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5591     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5592 {
5593 	int32_t ret_val = 0;
5594 
5595 	/*
5596 	 * Header prediction: check for the two common cases of a
5597 	 * uni-directional data xfer.  If the packet has no control flags,
5598 	 * is in-sequence, the window didn't change and we're not
5599 	 * retransmitting, it's a candidate.  If the length is zero and the
5600 	 * ack moved forward, we're the sender side of the xfer.  Just free
5601 	 * the data acked & wake any higher level process that was blocked
5602 	 * waiting for space.  If the length is non-zero and the ack didn't
5603 	 * move, we're the receiver side.  If we're getting packets in-order
5604 	 * (the reassembly queue is empty), add the data toc The socket
5605 	 * buffer and note that we need a delayed ack. Make sure that the
5606 	 * hidden state-flags are also off. Since we check for
5607 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
5608 	 */
5609 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
5610 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
5611 	    __predict_true(LIST_EMPTY(&tp->t_segq)) &&
5612 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
5613 		struct tcp_rack *rack;
5614 
5615 		rack = (struct tcp_rack *)tp->t_fb_ptr;
5616 		if (tlen == 0) {
5617 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
5618 			    ti_locked, tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
5619 				return (0);
5620 			}
5621 		} else {
5622 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
5623 			    ti_locked, tiwin, nxt_pkt)) {
5624 				return (0);
5625 			}
5626 		}
5627 	}
5628 	rack_calc_rwin(so, tp);
5629 
5630 	if (thflags & TH_RST)
5631 		return (rack_process_rst(m, th, so, tp, ti_locked));
5632 
5633 	/*
5634 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5635 	 * synchronized state.
5636 	 */
5637 	if (thflags & TH_SYN) {
5638 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
5639 		return (ret_val);
5640 	}
5641 	/*
5642 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5643 	 * it's less than ts_recent, drop it.
5644 	 */
5645 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5646 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5647 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
5648 			return (ret_val);
5649 	}
5650 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
5651 		return (ret_val);
5652 	}
5653 	/*
5654 	 * If last ACK falls within this segment's sequence numbers, record
5655 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5656 	 * from the latest proposal of the tcplw@cray.com list (Braden
5657 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5658 	 * with our earlier PAWS tests, so this check should be solely
5659 	 * predicated on the sequence space of this segment. 3) That we
5660 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5661 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5662 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5663 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5664 	 * p.869. In such cases, we can still calculate the RTT correctly
5665 	 * when RCV.NXT == Last.ACK.Sent.
5666 	 */
5667 	if ((to->to_flags & TOF_TS) != 0 &&
5668 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5669 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5670 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5671 		tp->ts_recent_age = tcp_ts_getticks();
5672 		tp->ts_recent = to->to_tsval;
5673 	}
5674 	/*
5675 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5676 	 * is on (half-synchronized state), then queue data for later
5677 	 * processing; else drop segment and return.
5678 	 */
5679 	if ((thflags & TH_ACK) == 0) {
5680 		if (tp->t_flags & TF_NEEDSYN) {
5681 
5682 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5683 			    ti_locked, tiwin, thflags, nxt_pkt));
5684 
5685 		} else if (tp->t_flags & TF_ACKNOW) {
5686 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
5687 			return (ret_val);
5688 		} else {
5689 			rack_do_drop(m, NULL, ti_locked);
5690 			return (0);
5691 		}
5692 	}
5693 	/*
5694 	 * Ack processing.
5695 	 */
5696 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, NULL, thflags, &ret_val)) {
5697 		return (ret_val);
5698 	}
5699 	if (sbavail(&so->so_snd)) {
5700 		if (rack_progress_timeout_check(tp)) {
5701 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5702 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5703 			return (1);
5704 		}
5705 	}
5706 	/* State changes only happen in rack_process_data() */
5707 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5708 	    ti_locked, tiwin, thflags, nxt_pkt));
5709 }
5710 
5711 /*
5712  * Return value of 1, the TCB is unlocked and most
5713  * likely gone, return value of 0, the TCP is still
5714  * locked.
5715  */
5716 static int
5717 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
5718     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5719     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5720 {
5721 	int32_t ret_val = 0;
5722 
5723 	rack_calc_rwin(so, tp);
5724 	if (thflags & TH_RST)
5725 		return (rack_process_rst(m, th, so, tp, ti_locked));
5726 	/*
5727 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5728 	 * synchronized state.
5729 	 */
5730 	if (thflags & TH_SYN) {
5731 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
5732 		return (ret_val);
5733 	}
5734 	/*
5735 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5736 	 * it's less than ts_recent, drop it.
5737 	 */
5738 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5739 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5740 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
5741 			return (ret_val);
5742 	}
5743 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
5744 		return (ret_val);
5745 	}
5746 	/*
5747 	 * If last ACK falls within this segment's sequence numbers, record
5748 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5749 	 * from the latest proposal of the tcplw@cray.com list (Braden
5750 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5751 	 * with our earlier PAWS tests, so this check should be solely
5752 	 * predicated on the sequence space of this segment. 3) That we
5753 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5754 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5755 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5756 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5757 	 * p.869. In such cases, we can still calculate the RTT correctly
5758 	 * when RCV.NXT == Last.ACK.Sent.
5759 	 */
5760 	if ((to->to_flags & TOF_TS) != 0 &&
5761 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5762 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5763 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5764 		tp->ts_recent_age = tcp_ts_getticks();
5765 		tp->ts_recent = to->to_tsval;
5766 	}
5767 	/*
5768 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5769 	 * is on (half-synchronized state), then queue data for later
5770 	 * processing; else drop segment and return.
5771 	 */
5772 	if ((thflags & TH_ACK) == 0) {
5773 		if (tp->t_flags & TF_NEEDSYN) {
5774 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5775 			    ti_locked, tiwin, thflags, nxt_pkt));
5776 
5777 		} else if (tp->t_flags & TF_ACKNOW) {
5778 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
5779 			return (ret_val);
5780 		} else {
5781 			rack_do_drop(m, NULL, ti_locked);
5782 			return (0);
5783 		}
5784 	}
5785 	/*
5786 	 * Ack processing.
5787 	 */
5788 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, NULL, thflags, &ret_val)) {
5789 		return (ret_val);
5790 	}
5791 	if (sbavail(&so->so_snd)) {
5792 		if (rack_progress_timeout_check(tp)) {
5793 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5794 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5795 			return (1);
5796 		}
5797 	}
5798 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5799 	    ti_locked, tiwin, thflags, nxt_pkt));
5800 }
5801 
5802 static int
5803 rack_check_data_after_close(struct mbuf *m,
5804     struct tcpcb *tp, int32_t *ti_locked, int32_t *tlen, struct tcphdr *th, struct socket *so)
5805 {
5806 	struct tcp_rack *rack;
5807 
5808 	KASSERT(*ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
5809 					   "CLOSE_WAIT && tlen ti_locked %d", __func__, *ti_locked));
5810 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5811 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5812 	if (rack->rc_allow_data_af_clo == 0) {
5813 	close_now:
5814 		tp = tcp_close(tp);
5815 		TCPSTAT_INC(tcps_rcvafterclose);
5816 		rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_UNLIMITED, (*tlen));
5817 		return (1);
5818 	}
5819 	if (sbavail(&so->so_snd) == 0)
5820 		goto close_now;
5821 	/* Ok we allow data that is ignored and a followup reset */
5822 	tp->rcv_nxt = th->th_seq + *tlen;
5823 	tp->t_flags2 |= TF2_DROP_AF_DATA;
5824 	rack->r_wanted_output = 1;
5825 	*tlen = 0;
5826 	return (0);
5827 }
5828 
5829 /*
5830  * Return value of 1, the TCB is unlocked and most
5831  * likely gone, return value of 0, the TCP is still
5832  * locked.
5833  */
5834 static int
5835 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
5836     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5837     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5838 {
5839 	int32_t ret_val = 0;
5840 	int32_t ourfinisacked = 0;
5841 
5842 	rack_calc_rwin(so, tp);
5843 
5844 	if (thflags & TH_RST)
5845 		return (rack_process_rst(m, th, so, tp, ti_locked));
5846 	/*
5847 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5848 	 * synchronized state.
5849 	 */
5850 	if (thflags & TH_SYN) {
5851 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
5852 		return (ret_val);
5853 	}
5854 	/*
5855 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5856 	 * it's less than ts_recent, drop it.
5857 	 */
5858 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5859 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5860 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
5861 			return (ret_val);
5862 	}
5863 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
5864 		return (ret_val);
5865 	}
5866 	/*
5867 	 * If new data are received on a connection after the user processes
5868 	 * are gone, then RST the other end.
5869 	 */
5870 	if ((so->so_state & SS_NOFDREF) && tlen) {
5871 		if (rack_check_data_after_close(m, tp, ti_locked, &tlen, th, so))
5872 			return (1);
5873 	}
5874 	/*
5875 	 * If last ACK falls within this segment's sequence numbers, record
5876 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5877 	 * from the latest proposal of the tcplw@cray.com list (Braden
5878 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5879 	 * with our earlier PAWS tests, so this check should be solely
5880 	 * predicated on the sequence space of this segment. 3) That we
5881 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5882 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5883 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5884 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5885 	 * p.869. In such cases, we can still calculate the RTT correctly
5886 	 * when RCV.NXT == Last.ACK.Sent.
5887 	 */
5888 	if ((to->to_flags & TOF_TS) != 0 &&
5889 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5890 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5891 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5892 		tp->ts_recent_age = tcp_ts_getticks();
5893 		tp->ts_recent = to->to_tsval;
5894 	}
5895 	/*
5896 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5897 	 * is on (half-synchronized state), then queue data for later
5898 	 * processing; else drop segment and return.
5899 	 */
5900 	if ((thflags & TH_ACK) == 0) {
5901 		if (tp->t_flags & TF_NEEDSYN) {
5902 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5903 			    ti_locked, tiwin, thflags, nxt_pkt));
5904 		} else if (tp->t_flags & TF_ACKNOW) {
5905 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
5906 			return (ret_val);
5907 		} else {
5908 			rack_do_drop(m, NULL, ti_locked);
5909 			return (0);
5910 		}
5911 	}
5912 	/*
5913 	 * Ack processing.
5914 	 */
5915 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5916 		return (ret_val);
5917 	}
5918 	if (ourfinisacked) {
5919 		/*
5920 		 * If we can't receive any more data, then closing user can
5921 		 * proceed. Starting the timer is contrary to the
5922 		 * specification, but if we don't get a FIN we'll hang
5923 		 * forever.
5924 		 *
5925 		 * XXXjl: we should release the tp also, and use a
5926 		 * compressed state.
5927 		 */
5928 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5929 			soisdisconnected(so);
5930 			tcp_timer_activate(tp, TT_2MSL,
5931 			    (tcp_fast_finwait2_recycle ?
5932 			    tcp_finwait2_timeout :
5933 			    TP_MAXIDLE(tp)));
5934 		}
5935 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
5936 	}
5937 	if (sbavail(&so->so_snd)) {
5938 		if (rack_progress_timeout_check(tp)) {
5939 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5940 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
5941 			return (1);
5942 		}
5943 	}
5944 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5945 	    ti_locked, tiwin, thflags, nxt_pkt));
5946 }
5947 
5948 /*
5949  * Return value of 1, the TCB is unlocked and most
5950  * likely gone, return value of 0, the TCP is still
5951  * locked.
5952  */
5953 static int
5954 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
5955     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5956     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5957 {
5958 	int32_t ret_val = 0;
5959 	int32_t ourfinisacked = 0;
5960 
5961 	rack_calc_rwin(so, tp);
5962 
5963 	if (thflags & TH_RST)
5964 		return (rack_process_rst(m, th, so, tp, ti_locked));
5965 	/*
5966 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5967 	 * synchronized state.
5968 	 */
5969 	if (thflags & TH_SYN) {
5970 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
5971 		return (ret_val);
5972 	}
5973 	/*
5974 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5975 	 * it's less than ts_recent, drop it.
5976 	 */
5977 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5978 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5979 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
5980 			return (ret_val);
5981 	}
5982 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
5983 		return (ret_val);
5984 	}
5985 	/*
5986 	 * If new data are received on a connection after the user processes
5987 	 * are gone, then RST the other end.
5988 	 */
5989 	if ((so->so_state & SS_NOFDREF) && tlen) {
5990 		if (rack_check_data_after_close(m, tp, ti_locked, &tlen, th, so))
5991 			return (1);
5992 	}
5993 	/*
5994 	 * If last ACK falls within this segment's sequence numbers, record
5995 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5996 	 * from the latest proposal of the tcplw@cray.com list (Braden
5997 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5998 	 * with our earlier PAWS tests, so this check should be solely
5999 	 * predicated on the sequence space of this segment. 3) That we
6000 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6001 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6002 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6003 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6004 	 * p.869. In such cases, we can still calculate the RTT correctly
6005 	 * when RCV.NXT == Last.ACK.Sent.
6006 	 */
6007 	if ((to->to_flags & TOF_TS) != 0 &&
6008 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6009 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6010 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6011 		tp->ts_recent_age = tcp_ts_getticks();
6012 		tp->ts_recent = to->to_tsval;
6013 	}
6014 	/*
6015 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6016 	 * is on (half-synchronized state), then queue data for later
6017 	 * processing; else drop segment and return.
6018 	 */
6019 	if ((thflags & TH_ACK) == 0) {
6020 		if (tp->t_flags & TF_NEEDSYN) {
6021 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6022 			    ti_locked, tiwin, thflags, nxt_pkt));
6023 		} else if (tp->t_flags & TF_ACKNOW) {
6024 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
6025 			return (ret_val);
6026 		} else {
6027 			rack_do_drop(m, NULL, ti_locked);
6028 			return (0);
6029 		}
6030 	}
6031 	/*
6032 	 * Ack processing.
6033 	 */
6034 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6035 		return (ret_val);
6036 	}
6037 	if (ourfinisacked) {
6038 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6039 		tcp_twstart(tp);
6040 		INP_INFO_RUNLOCK(&V_tcbinfo);
6041 		*ti_locked = TI_UNLOCKED;
6042 		m_freem(m);
6043 		return (1);
6044 	}
6045 	if (sbavail(&so->so_snd)) {
6046 		if (rack_progress_timeout_check(tp)) {
6047 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6048 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
6049 			return (1);
6050 		}
6051 	}
6052 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6053 	    ti_locked, tiwin, thflags, nxt_pkt));
6054 }
6055 
6056 /*
6057  * Return value of 1, the TCB is unlocked and most
6058  * likely gone, return value of 0, the TCP is still
6059  * locked.
6060  */
6061 static int
6062 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6063     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6064     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6065 {
6066 	int32_t ret_val = 0;
6067 	int32_t ourfinisacked = 0;
6068 
6069 	rack_calc_rwin(so, tp);
6070 
6071 	if (thflags & TH_RST)
6072 		return (rack_process_rst(m, th, so, tp, ti_locked));
6073 	/*
6074 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6075 	 * synchronized state.
6076 	 */
6077 	if (thflags & TH_SYN) {
6078 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
6079 		return (ret_val);
6080 	}
6081 	/*
6082 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6083 	 * it's less than ts_recent, drop it.
6084 	 */
6085 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6086 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6087 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
6088 			return (ret_val);
6089 	}
6090 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
6091 		return (ret_val);
6092 	}
6093 	/*
6094 	 * If new data are received on a connection after the user processes
6095 	 * are gone, then RST the other end.
6096 	 */
6097 	if ((so->so_state & SS_NOFDREF) && tlen) {
6098 		if (rack_check_data_after_close(m, tp, ti_locked, &tlen, th, so))
6099 			return (1);
6100 	}
6101 	/*
6102 	 * If last ACK falls within this segment's sequence numbers, record
6103 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6104 	 * from the latest proposal of the tcplw@cray.com list (Braden
6105 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6106 	 * with our earlier PAWS tests, so this check should be solely
6107 	 * predicated on the sequence space of this segment. 3) That we
6108 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6109 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6110 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6111 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6112 	 * p.869. In such cases, we can still calculate the RTT correctly
6113 	 * when RCV.NXT == Last.ACK.Sent.
6114 	 */
6115 	if ((to->to_flags & TOF_TS) != 0 &&
6116 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6117 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6118 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6119 		tp->ts_recent_age = tcp_ts_getticks();
6120 		tp->ts_recent = to->to_tsval;
6121 	}
6122 	/*
6123 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6124 	 * is on (half-synchronized state), then queue data for later
6125 	 * processing; else drop segment and return.
6126 	 */
6127 	if ((thflags & TH_ACK) == 0) {
6128 		if (tp->t_flags & TF_NEEDSYN) {
6129 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6130 			    ti_locked, tiwin, thflags, nxt_pkt));
6131 		} else if (tp->t_flags & TF_ACKNOW) {
6132 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
6133 			return (ret_val);
6134 		} else {
6135 			rack_do_drop(m, NULL, ti_locked);
6136 			return (0);
6137 		}
6138 	}
6139 	/*
6140 	 * case TCPS_LAST_ACK: Ack processing.
6141 	 */
6142 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6143 		return (ret_val);
6144 	}
6145 	if (ourfinisacked) {
6146 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6147 		tp = tcp_close(tp);
6148 		rack_do_drop(m, tp, ti_locked);
6149 		return (1);
6150 	}
6151 	if (sbavail(&so->so_snd)) {
6152 		if (rack_progress_timeout_check(tp)) {
6153 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6154 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
6155 			return (1);
6156 		}
6157 	}
6158 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6159 	    ti_locked, tiwin, thflags, nxt_pkt));
6160 }
6161 
6162 
6163 /*
6164  * Return value of 1, the TCB is unlocked and most
6165  * likely gone, return value of 0, the TCP is still
6166  * locked.
6167  */
6168 static int
6169 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
6170     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6171     int32_t * ti_locked, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6172 {
6173 	int32_t ret_val = 0;
6174 	int32_t ourfinisacked = 0;
6175 
6176 	rack_calc_rwin(so, tp);
6177 
6178 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
6179 	if (thflags & TH_RST)
6180 		return (rack_process_rst(m, th, so, tp, ti_locked));
6181 	/*
6182 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6183 	 * synchronized state.
6184 	 */
6185 	if (thflags & TH_SYN) {
6186 		rack_challenge_ack(m, th, tp, ti_locked, &ret_val);
6187 		return (ret_val);
6188 	}
6189 	/*
6190 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6191 	 * it's less than ts_recent, drop it.
6192 	 */
6193 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6194 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6195 		if (rack_ts_check(m, th, tp, ti_locked, tlen, thflags, &ret_val))
6196 			return (ret_val);
6197 	}
6198 	if (rack_drop_checks(to, m, th, tp, &tlen, ti_locked, &thflags, &drop_hdrlen, &ret_val)) {
6199 		return (ret_val);
6200 	}
6201 	/*
6202 	 * If new data are received on a connection after the user processes
6203 	 * are gone, then RST the other end.
6204 	 */
6205 	if ((so->so_state & SS_NOFDREF) &&
6206 	    tlen) {
6207 		if (rack_check_data_after_close(m, tp, ti_locked, &tlen, th, so))
6208 			return (1);
6209 	}
6210 	/*
6211 	 * If last ACK falls within this segment's sequence numbers, record
6212 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6213 	 * from the latest proposal of the tcplw@cray.com list (Braden
6214 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6215 	 * with our earlier PAWS tests, so this check should be solely
6216 	 * predicated on the sequence space of this segment. 3) That we
6217 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6218 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6219 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6220 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6221 	 * p.869. In such cases, we can still calculate the RTT correctly
6222 	 * when RCV.NXT == Last.ACK.Sent.
6223 	 */
6224 	if ((to->to_flags & TOF_TS) != 0 &&
6225 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6226 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6227 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6228 		tp->ts_recent_age = tcp_ts_getticks();
6229 		tp->ts_recent = to->to_tsval;
6230 	}
6231 	/*
6232 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6233 	 * is on (half-synchronized state), then queue data for later
6234 	 * processing; else drop segment and return.
6235 	 */
6236 	if ((thflags & TH_ACK) == 0) {
6237 		if (tp->t_flags & TF_NEEDSYN) {
6238 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6239 			    ti_locked, tiwin, thflags, nxt_pkt));
6240 		} else if (tp->t_flags & TF_ACKNOW) {
6241 			rack_do_dropafterack(m, tp, th, ti_locked, thflags, tlen, &ret_val);
6242 			return (ret_val);
6243 		} else {
6244 			rack_do_drop(m, NULL, ti_locked);
6245 			return (0);
6246 		}
6247 	}
6248 	/*
6249 	 * Ack processing.
6250 	 */
6251 	if (rack_process_ack(m, th, so, tp, to, ti_locked, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6252 		return (ret_val);
6253 	}
6254 	if (sbavail(&so->so_snd)) {
6255 		if (rack_progress_timeout_check(tp)) {
6256 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6257 			rack_do_dropwithreset(m, tp, th, ti_locked, BANDLIM_RST_OPENPORT, tlen);
6258 			return (1);
6259 		}
6260 	}
6261 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6262 	    ti_locked, tiwin, thflags, nxt_pkt));
6263 }
6264 
6265 
6266 static void inline
6267 rack_clear_rate_sample(struct tcp_rack *rack)
6268 {
6269 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
6270 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
6271 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
6272 }
6273 
6274 static int
6275 rack_init(struct tcpcb *tp)
6276 {
6277 	struct tcp_rack *rack = NULL;
6278 
6279 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
6280 	if (tp->t_fb_ptr == NULL) {
6281 		/*
6282 		 * We need to allocate memory but cant. The INP and INP_INFO
6283 		 * locks and they are recusive (happens during setup. So a
6284 		 * scheme to drop the locks fails :(
6285 		 *
6286 		 */
6287 		return (ENOMEM);
6288 	}
6289 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
6290 
6291 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6292 	TAILQ_INIT(&rack->r_ctl.rc_map);
6293 	TAILQ_INIT(&rack->r_ctl.rc_free);
6294 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
6295 	rack->rc_tp = tp;
6296 	if (tp->t_inpcb) {
6297 		rack->rc_inp = tp->t_inpcb;
6298 	}
6299 	/* Probably not needed but lets be sure */
6300 	rack_clear_rate_sample(rack);
6301 	rack->r_cpu = 0;
6302 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
6303 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
6304 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
6305 	rack->rc_pace_reduce = rack_slot_reduction;
6306 	if (V_tcp_delack_enabled)
6307 		tp->t_delayed_ack = 1;
6308 	else
6309 		tp->t_delayed_ack = 0;
6310 	rack->rc_pace_max_segs = rack_hptsi_segments;
6311 	rack->r_ctl.rc_early_recovery_segs = rack_early_recovery_max_seg;
6312 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
6313 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
6314 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
6315 	rack->r_idle_reduce_largest  = rack_reduce_largest_on_idle;
6316 	rack->r_enforce_min_pace = rack_min_pace_time;
6317 	rack->r_min_pace_seg_thresh = rack_min_pace_time_seg_req;
6318 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
6319 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
6320 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
6321 	rack->rc_always_pace = rack_pace_every_seg;
6322 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
6323 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
6324 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
6325 	rack->r_ctl.rc_min_to = rack_min_to;
6326 	rack->r_ctl.rc_prr_inc_var = rack_inc_var;
6327 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6328 	if (tp->snd_una != tp->snd_max) {
6329 		/* Create a send map for the current outstanding data */
6330 		struct rack_sendmap *rsm;
6331 
6332 		rsm = rack_alloc(rack);
6333 		if (rsm == NULL) {
6334 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6335 			tp->t_fb_ptr = NULL;
6336 			return (ENOMEM);
6337 		}
6338 		rsm->r_flags = RACK_OVERMAX;
6339 		rsm->r_tim_lastsent[0] = tcp_ts_getticks();
6340 		rsm->r_rtr_cnt = 1;
6341 		rsm->r_rtr_bytes = 0;
6342 		rsm->r_start = tp->snd_una;
6343 		rsm->r_end = tp->snd_max;
6344 		rsm->r_sndcnt = 0;
6345 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
6346 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6347 		rsm->r_in_tmap = 1;
6348 	}
6349 	return (0);
6350 }
6351 
6352 static int
6353 rack_handoff_ok(struct tcpcb *tp)
6354 {
6355 	if ((tp->t_state == TCPS_CLOSED) ||
6356 	    (tp->t_state == TCPS_LISTEN)) {
6357 		/* Sure no problem though it may not stick */
6358 		return (0);
6359 	}
6360 	if ((tp->t_state == TCPS_SYN_SENT) ||
6361 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
6362 		/*
6363 		 * We really don't know you have to get to ESTAB or beyond
6364 		 * to tell.
6365 		 */
6366 		return (EAGAIN);
6367 	}
6368 	if (tp->t_flags & TF_SACK_PERMIT) {
6369 		return (0);
6370 	}
6371 	/*
6372 	 * If we reach here we don't do SACK on this connection so we can
6373 	 * never do rack.
6374 	 */
6375 	return (EINVAL);
6376 }
6377 
6378 static void
6379 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
6380 {
6381 	if (tp->t_fb_ptr) {
6382 		struct tcp_rack *rack;
6383 		struct rack_sendmap *rsm;
6384 
6385 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6386 #ifdef TCP_BLACKBOX
6387 		tcp_log_flowend(tp);
6388 #endif
6389 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6390 		while (rsm) {
6391 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
6392 			uma_zfree(rack_zone, rsm);
6393 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6394 		}
6395 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6396 		while (rsm) {
6397 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
6398 			uma_zfree(rack_zone, rsm);
6399 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6400 		}
6401 		rack->rc_free_cnt = 0;
6402 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6403 		tp->t_fb_ptr = NULL;
6404 	}
6405 }
6406 
6407 static void
6408 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
6409 {
6410 	switch (tp->t_state) {
6411 	case TCPS_SYN_SENT:
6412 		rack->r_state = TCPS_SYN_SENT;
6413 		rack->r_substate = rack_do_syn_sent;
6414 		break;
6415 	case TCPS_SYN_RECEIVED:
6416 		rack->r_state = TCPS_SYN_RECEIVED;
6417 		rack->r_substate = rack_do_syn_recv;
6418 		break;
6419 	case TCPS_ESTABLISHED:
6420 		rack->r_state = TCPS_ESTABLISHED;
6421 		rack->r_substate = rack_do_established;
6422 		break;
6423 	case TCPS_CLOSE_WAIT:
6424 		rack->r_state = TCPS_CLOSE_WAIT;
6425 		rack->r_substate = rack_do_close_wait;
6426 		break;
6427 	case TCPS_FIN_WAIT_1:
6428 		rack->r_state = TCPS_FIN_WAIT_1;
6429 		rack->r_substate = rack_do_fin_wait_1;
6430 		break;
6431 	case TCPS_CLOSING:
6432 		rack->r_state = TCPS_CLOSING;
6433 		rack->r_substate = rack_do_closing;
6434 		break;
6435 	case TCPS_LAST_ACK:
6436 		rack->r_state = TCPS_LAST_ACK;
6437 		rack->r_substate = rack_do_lastack;
6438 		break;
6439 	case TCPS_FIN_WAIT_2:
6440 		rack->r_state = TCPS_FIN_WAIT_2;
6441 		rack->r_substate = rack_do_fin_wait_2;
6442 		break;
6443 	case TCPS_LISTEN:
6444 	case TCPS_CLOSED:
6445 	case TCPS_TIME_WAIT:
6446 	default:
6447 #ifdef INVARIANTS
6448 		panic("tcp tp:%p state:%d sees impossible state?", tp, tp->t_state);
6449 #endif
6450 		break;
6451 	};
6452 }
6453 
6454 
6455 static void
6456 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
6457 {
6458 	/*
6459 	 * We received an ack, and then did not
6460 	 * call send or were bounced out due to the
6461 	 * hpts was running. Now a timer is up as well, is
6462 	 * it the right timer?
6463 	 */
6464 	struct rack_sendmap *rsm;
6465 	int tmr_up;
6466 
6467 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
6468 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
6469 		return;
6470 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6471 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
6472 	    (tmr_up == PACE_TMR_RXT)) {
6473 		/* Should be an RXT */
6474 		return;
6475 	}
6476 	if (rsm == NULL) {
6477 		/* Nothing outstanding? */
6478 		if (tp->t_flags & TF_DELACK) {
6479 			if (tmr_up == PACE_TMR_DELACK)
6480 				/* We are supposed to have delayed ack up and we do */
6481 				return;
6482 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
6483 			/*
6484 			 * if we hit enobufs then we would expect the possiblity
6485 			 * of nothing outstanding and the RXT up (and the hptsi timer).
6486 			 */
6487 			return;
6488 		} else if (((tcp_always_keepalive ||
6489 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6490 			    (tp->t_state <= TCPS_CLOSING)) &&
6491 			   (tmr_up == PACE_TMR_KEEP) &&
6492 			   (tp->snd_max == tp->snd_una)) {
6493 			/* We should have keep alive up and we do */
6494 			return;
6495 		}
6496 	}
6497 	if (rsm && (rsm->r_flags & RACK_SACK_PASSED)) {
6498 		if ((tp->t_flags & TF_SENTFIN) &&
6499 		    ((tp->snd_max - tp->snd_una) == 1) &&
6500 		    (rsm->r_flags & RACK_HAS_FIN)) {
6501 			/* needs to be a RXT */
6502 			if (tmr_up == PACE_TMR_RXT)
6503 				return;
6504 		} else if (tmr_up == PACE_TMR_RACK)
6505 			return;
6506 	} else if (SEQ_GT(tp->snd_max,tp->snd_una) &&
6507 		   ((tmr_up == PACE_TMR_TLP) ||
6508 		    (tmr_up == PACE_TMR_RXT))) {
6509 		/*
6510 		 * Either a TLP or RXT is fine if no sack-passed
6511 		 * is in place and data is outstanding.
6512 		 */
6513 		return;
6514 	} else if (tmr_up == PACE_TMR_DELACK) {
6515 		/*
6516 		 * If the delayed ack was going to go off
6517 		 * before the rtx/tlp/rack timer were going to
6518 		 * expire, then that would be the timer in control.
6519 		 * Note we don't check the time here trusting the
6520 		 * code is correct.
6521 		 */
6522 		return;
6523 	}
6524 	/*
6525 	 * Ok the timer originally started is not what we want now.
6526 	 * We will force the hpts to be stopped if any, and restart
6527 	 * with the slot set to what was in the saved slot.
6528 	 */
6529 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6530 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6531 }
6532 
6533 static void
6534 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6535     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
6536     int32_t ti_locked, int32_t nxt_pkt, struct timeval *tv)
6537 {
6538 	int32_t thflags, retval, did_out = 0;
6539 	int32_t way_out = 0;
6540 	uint32_t cts;
6541 	uint32_t tiwin;
6542 	struct tcpopt to;
6543 	struct tcp_rack *rack;
6544 	struct rack_sendmap *rsm;
6545 	int32_t prev_state = 0;
6546 
6547 	cts = tcp_tv_to_mssectick(tv);
6548 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6549 
6550 	kern_prefetch(rack, &prev_state);
6551 	prev_state = 0;
6552 	thflags = th->th_flags;
6553 	/*
6554 	 * If this is either a state-changing packet or current state isn't
6555 	 * established, we require a read lock on tcbinfo.  Otherwise, we
6556 	 * allow the tcbinfo to be in either locked or unlocked, as the
6557 	 * caller may have unnecessarily acquired a lock due to a race.
6558 	 */
6559 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
6560 	    tp->t_state != TCPS_ESTABLISHED) {
6561 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
6562 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
6563 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6564 	} else {
6565 #ifdef INVARIANTS
6566 		if (ti_locked == TI_RLOCKED) {
6567 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6568 		} else {
6569 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
6570 			    "ti_locked: %d", __func__, ti_locked));
6571 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
6572 		}
6573 #endif
6574 	}
6575 	INP_WLOCK_ASSERT(tp->t_inpcb);
6576 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
6577 	    __func__));
6578 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
6579 	    __func__));
6580 	{
6581 		union tcp_log_stackspecific log;
6582 
6583 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
6584 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
6585 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
6586 		TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
6587 		    tlen, &log, true);
6588 	}
6589 	/*
6590 	 * Segment received on connection. Reset idle time and keep-alive
6591 	 * timer. XXX: This should be done after segment validation to
6592 	 * ignore broken/spoofed segs.
6593 	 */
6594 	if  (tp->t_idle_reduce && (tp->snd_max == tp->snd_una)) {
6595 #ifdef NETFLIX_CWV
6596 		if ((tp->cwv_enabled) &&
6597 		    ((tp->cwv_cwnd_valid == 0) &&
6598 		     TCPS_HAVEESTABLISHED(tp->t_state) &&
6599 		     (tp->snd_cwnd > tp->snd_cwv.init_cwnd))) {
6600 			tcp_newcwv_nvp_closedown(tp);
6601 		} else
6602 #endif
6603 		       if ((ticks - tp->t_rcvtime) >= tp->t_rxtcur) {
6604 			counter_u64_add(rack_input_idle_reduces, 1);
6605 			rack_cc_after_idle(tp,
6606 			    (rack->r_idle_reduce_largest ? 1 :0));
6607 		}
6608 	}
6609 	rack->r_ctl.rc_rcvtime = cts;
6610 	tp->t_rcvtime = ticks;
6611 
6612 #ifdef NETFLIX_CWV
6613 	if (tp->cwv_enabled) {
6614 		if ((tp->cwv_cwnd_valid == 0) &&
6615 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
6616 		    (tp->snd_cwnd > tp->snd_cwv.init_cwnd))
6617 			tcp_newcwv_nvp_closedown(tp);
6618 	}
6619 #endif
6620 	/*
6621 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
6622 	 * the scale is zero.
6623 	 */
6624 	tiwin = th->th_win << tp->snd_scale;
6625 #ifdef NETFLIX_STATS
6626 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
6627 #endif
6628 	/*
6629 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
6630 	 * this to occur after we've validated the segment.
6631 	 */
6632 	if (tp->t_flags & TF_ECN_PERMIT) {
6633 		if (thflags & TH_CWR)
6634 			tp->t_flags &= ~TF_ECN_SND_ECE;
6635 		switch (iptos & IPTOS_ECN_MASK) {
6636 		case IPTOS_ECN_CE:
6637 			tp->t_flags |= TF_ECN_SND_ECE;
6638 			TCPSTAT_INC(tcps_ecn_ce);
6639 			break;
6640 		case IPTOS_ECN_ECT0:
6641 			TCPSTAT_INC(tcps_ecn_ect0);
6642 			break;
6643 		case IPTOS_ECN_ECT1:
6644 			TCPSTAT_INC(tcps_ecn_ect1);
6645 			break;
6646 		}
6647 		/* Congestion experienced. */
6648 		if (thflags & TH_ECE) {
6649 			rack_cong_signal(tp, th, CC_ECN);
6650 		}
6651 	}
6652 	/*
6653 	 * Parse options on any incoming segment.
6654 	 */
6655 	tcp_dooptions(&to, (u_char *)(th + 1),
6656 	    (th->th_off << 2) - sizeof(struct tcphdr),
6657 	    (thflags & TH_SYN) ? TO_SYN : 0);
6658 
6659 	/*
6660 	 * If echoed timestamp is later than the current time, fall back to
6661 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
6662 	 * were used when this connection was established.
6663 	 */
6664 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
6665 		to.to_tsecr -= tp->ts_offset;
6666 		if (TSTMP_GT(to.to_tsecr, cts))
6667 			to.to_tsecr = 0;
6668 	}
6669 	/*
6670 	 * If its the first time in we need to take care of options and
6671 	 * verify we can do SACK for rack!
6672 	 */
6673 	if (rack->r_state == 0) {
6674 		/* Should be init'd by rack_init() */
6675 		KASSERT(rack->rc_inp != NULL,
6676 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
6677 		if (rack->rc_inp == NULL) {
6678 			rack->rc_inp = tp->t_inpcb;
6679 		}
6680 
6681 		/*
6682 		 * Process options only when we get SYN/ACK back. The SYN
6683 		 * case for incoming connections is handled in tcp_syncache.
6684 		 * According to RFC1323 the window field in a SYN (i.e., a
6685 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
6686 		 * this is traditional behavior, may need to be cleaned up.
6687 		 */
6688 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
6689 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
6690 			if ((to.to_flags & TOF_SCALE) &&
6691 			    (tp->t_flags & TF_REQ_SCALE)) {
6692 				tp->t_flags |= TF_RCVD_SCALE;
6693 				tp->snd_scale = to.to_wscale;
6694 			}
6695 			/*
6696 			 * Initial send window.  It will be updated with the
6697 			 * next incoming segment to the scaled value.
6698 			 */
6699 			tp->snd_wnd = th->th_win;
6700 			if (to.to_flags & TOF_TS) {
6701 				tp->t_flags |= TF_RCVD_TSTMP;
6702 				tp->ts_recent = to.to_tsval;
6703 				tp->ts_recent_age = cts;
6704 			}
6705 			if (to.to_flags & TOF_MSS)
6706 				tcp_mss(tp, to.to_mss);
6707 			if ((tp->t_flags & TF_SACK_PERMIT) &&
6708 			    (to.to_flags & TOF_SACKPERM) == 0)
6709 				tp->t_flags &= ~TF_SACK_PERMIT;
6710 		}
6711 		/*
6712 		 * At this point we are at the initial call. Here we decide
6713 		 * if we are doing RACK or not. We do this by seeing if
6714 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
6715 		 * we switch to the default code.
6716 		 */
6717 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
6718 			tcp_switch_back_to_default(tp);
6719 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
6720 			    tlen, iptos, ti_locked);
6721 			return;
6722 		}
6723 		/* Set the flag */
6724 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
6725 		tcp_set_hpts(tp->t_inpcb);
6726 		rack_stop_all_timers(tp);
6727 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
6728 	}
6729 	/*
6730 	 * This is the one exception case where we set the rack state
6731 	 * always. All other times (timers etc) we must have a rack-state
6732 	 * set (so we assure we have done the checks above for SACK).
6733 	 */
6734 	if (rack->r_state != tp->t_state)
6735 		rack_set_state(tp, rack);
6736 	if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = TAILQ_FIRST(&rack->r_ctl.rc_map)) != NULL)
6737 		kern_prefetch(rsm, &prev_state);
6738 	prev_state = rack->r_state;
6739 	rack->r_ctl.rc_tlp_send_cnt = 0;
6740 	rack_clear_rate_sample(rack);
6741 	retval = (*rack->r_substate) (m, th, so,
6742 	    tp, &to, drop_hdrlen,
6743 	    tlen, &ti_locked, tiwin, thflags, nxt_pkt);
6744 #ifdef INVARIANTS
6745 	if ((retval == 0) &&
6746 	    (tp->t_inpcb == NULL)) {
6747 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
6748 		    retval, tp, prev_state);
6749 	}
6750 #endif
6751 	if (ti_locked != TI_UNLOCKED) {
6752 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6753 		INP_INFO_RUNLOCK(&V_tcbinfo);
6754 		ti_locked = TI_UNLOCKED;
6755 	}
6756 	if (retval == 0) {
6757 		/*
6758 		 * If retval is 1 the tcb is unlocked and most likely the tp
6759 		 * is gone.
6760 		 */
6761 		INP_WLOCK_ASSERT(tp->t_inpcb);
6762 		tcp_rack_xmit_timer_commit(rack, tp);
6763 		if (((tp->snd_max - tp->snd_una) > tp->snd_wnd) &&
6764 		    (rack->rc_in_persist == 0)){
6765 			/*
6766 			 * The peer shrunk its window on us to the point
6767 			 * where we have sent too much. The only thing
6768 			 * we can do here is stop any timers and
6769 			 * enter persist. We most likely lost the last
6770 			 * bytes we sent but oh well, we will have to
6771 			 * retransmit them after the peer is caught up.
6772 			 */
6773 			if (rack->rc_inp->inp_in_hpts)
6774 				tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
6775 			rack_timer_cancel(tp, rack, cts, __LINE__);
6776 			rack_enter_persist(tp, rack, cts);
6777 			rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6778 			way_out = 3;
6779 			goto done_with_input;
6780 		}
6781 		if (nxt_pkt == 0) {
6782 			if (rack->r_wanted_output != 0) {
6783 				did_out = 1;
6784 				(void)tp->t_fb->tfb_tcp_output(tp);
6785 			}
6786 			rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
6787 		}
6788 		if (((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
6789 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
6790 		     (tp->t_flags & TF_DELACK) ||
6791 		     ((tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6792 		      (tp->t_state <= TCPS_CLOSING)))) {
6793 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
6794 			if ((tp->snd_max == tp->snd_una) &&
6795 			    ((tp->t_flags & TF_DELACK) == 0) &&
6796 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
6797 				/* keep alive not needed if we are hptsi output yet */
6798 				;
6799 			} else {
6800 				if (rack->rc_inp->inp_in_hpts)
6801 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
6802 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6803 			}
6804 			way_out = 1;
6805 		} else {
6806 			/* Do we have the correct timer running? */
6807 			rack_timer_audit(tp, rack, &so->so_snd);
6808 			way_out = 2;
6809 		}
6810 	done_with_input:
6811 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
6812 		if (did_out)
6813 			rack->r_wanted_output = 0;
6814 #ifdef INVARIANTS
6815 		if (tp->t_inpcb == NULL) {
6816 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
6817 			      did_out,
6818 			      retval, tp, prev_state);
6819 		}
6820 #endif
6821 		INP_WUNLOCK(tp->t_inpcb);
6822 	}
6823 }
6824 
6825 void
6826 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6827     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
6828     int32_t ti_locked)
6829 {
6830 	struct timeval tv;
6831 #ifdef RSS
6832 	struct tcp_function_block *tfb;
6833 	struct tcp_rack *rack;
6834 	struct inpcb *inp;
6835 
6836 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6837 	if (rack->r_state == 0) {
6838 		/*
6839 		 * Initial input (ACK to SYN-ACK etc)lets go ahead and get
6840 		 * it processed
6841 		 */
6842 		INP_INFO_RLOCK();
6843 		ti_locked = TI_RLOCKED;
6844 		tcp_get_usecs(&tv);
6845 		rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6846 		    tlen, iptos, ti_locked, 0, &tv);
6847 		return;
6848 	}
6849 	if (ti_locked == TI_RLOCKED)
6850 		INP_INFO_RUNLOCK(&V_tcbinfo);
6851 	tcp_queue_to_input(tp, m, th, tlen, drop_hdrlen, iptos, (uint8_t) ti_locked);
6852 	INP_WUNLOCK(tp->t_inpcb);
6853 #else
6854 	tcp_get_usecs(&tv);
6855 	rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6856 	    tlen, iptos, ti_locked, 0, &tv);
6857 #endif
6858 }
6859 
6860 struct rack_sendmap *
6861 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
6862 {
6863 	struct rack_sendmap *rsm = NULL;
6864 	int32_t idx;
6865 	uint32_t srtt_cur, srtt = 0, thresh = 0, ts_low = 0;
6866 
6867 	/* Return the next guy to be re-transmitted */
6868 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
6869 		return (NULL);
6870 	}
6871 	if (tp->t_flags & TF_SENTFIN) {
6872 		/* retran the end FIN? */
6873 		return (NULL);
6874 	}
6875 	/* ok lets look at this one */
6876 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6877 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
6878 		goto check_it;
6879 	}
6880 	rsm = rack_find_lowest_rsm(rack);
6881 	if (rsm == NULL) {
6882 		return (NULL);
6883 	}
6884 check_it:
6885 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
6886 	srtt = TICKS_2_MSEC(srtt_cur);
6887 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
6888 		srtt = rack->rc_rack_rtt;
6889 	if (rsm->r_flags & RACK_ACKED) {
6890 		return (NULL);
6891 	}
6892 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
6893 		/* Its not yet ready */
6894 		return (NULL);
6895 	}
6896 	idx = rsm->r_rtr_cnt - 1;
6897 	ts_low = rsm->r_tim_lastsent[idx];
6898 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
6899 	if (tsused <= ts_low) {
6900 		return (NULL);
6901 	}
6902 	if ((tsused - ts_low) >= thresh) {
6903 		return (rsm);
6904 	}
6905 	return (NULL);
6906 }
6907 
6908 static int
6909 rack_output(struct tcpcb *tp)
6910 {
6911 	struct socket *so;
6912 	uint32_t recwin, sendwin;
6913 	uint32_t sb_offset;
6914 	int32_t len, flags, error = 0;
6915 	struct mbuf *m;
6916 	struct mbuf *mb;
6917 	uint32_t if_hw_tsomaxsegcount = 0;
6918 	uint32_t if_hw_tsomaxsegsize;
6919 	long tot_len_this_send = 0;
6920 	struct ip *ip = NULL;
6921 #ifdef TCPDEBUG
6922 	struct ipovly *ipov = NULL;
6923 #endif
6924 	struct udphdr *udp = NULL;
6925 	struct tcp_rack *rack;
6926 	struct tcphdr *th;
6927 	uint8_t pass = 0;
6928 	uint8_t wanted_cookie = 0;
6929 	u_char opt[TCP_MAXOLEN];
6930 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
6931 	uint32_t rack_seq;
6932 
6933 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
6934 	unsigned ipsec_optlen = 0;
6935 
6936 #endif
6937 	int32_t idle, sendalot;
6938 	int32_t sub_from_prr = 0;
6939 	volatile int32_t sack_rxmit;
6940 	struct rack_sendmap *rsm = NULL;
6941 	int32_t tso, mtu, would_have_fin = 0;
6942 	struct tcpopt to;
6943 	int32_t slot = 0;
6944 	uint32_t cts;
6945 	uint8_t hpts_calling, doing_tlp = 0;
6946 	int32_t do_a_prefetch;
6947 	int32_t prefetch_rsm = 0;
6948 	int32_t prefetch_so_done = 0;
6949 	struct tcp_log_buffer *lgb = NULL;
6950 	struct inpcb *inp;
6951 	struct sockbuf *sb;
6952 #ifdef INET6
6953 	struct ip6_hdr *ip6 = NULL;
6954 	int32_t isipv6;
6955 #endif
6956 	/* setup and take the cache hits here */
6957 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6958 	inp = rack->rc_inp;
6959 	so = inp->inp_socket;
6960 	sb = &so->so_snd;
6961 	kern_prefetch(sb, &do_a_prefetch);
6962 	do_a_prefetch = 1;
6963 
6964 	INP_WLOCK_ASSERT(inp);
6965 #ifdef TCP_OFFLOAD
6966 	if (tp->t_flags & TF_TOE)
6967 		return (tcp_offload_output(tp));
6968 #endif
6969 
6970 	/*
6971 	 * For TFO connections in SYN_RECEIVED, only allow the initial
6972 	 * SYN|ACK and those sent by the retransmit timer.
6973 	 */
6974 	if (IS_FASTOPEN(tp->t_flags) &&
6975 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
6976 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
6977 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
6978 		return (0);
6979 #ifdef INET6
6980 	if (rack->r_state) {
6981 		/* Use the cache line loaded if possible */
6982 		isipv6 = rack->r_is_v6;
6983 	} else {
6984 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
6985 	}
6986 #endif
6987 	cts = tcp_ts_getticks();
6988 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
6989 	    inp->inp_in_hpts) {
6990 		/*
6991 		 * We are on the hpts for some timer but not hptsi output.
6992 		 * Remove from the hpts unconditionally.
6993 		 */
6994 		rack_timer_cancel(tp, rack, cts, __LINE__);
6995 	}
6996 	/* Mark that we have called rack_output(). */
6997 	if ((rack->r_timer_override) ||
6998 	    (tp->t_flags & TF_FORCEDATA) ||
6999 	    (tp->t_state < TCPS_ESTABLISHED)) {
7000 		if (tp->t_inpcb->inp_in_hpts)
7001 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
7002 	} else if (tp->t_inpcb->inp_in_hpts) {
7003 		/*
7004 		 * On the hpts you can't pass even if ACKNOW is on, we will
7005 		 * when the hpts fires.
7006 		 */
7007 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
7008 		return (0);
7009 	}
7010 	hpts_calling = inp->inp_hpts_calls;
7011 	inp->inp_hpts_calls = 0;
7012 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
7013 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
7014 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
7015 			return (0);
7016 		}
7017 	}
7018 	rack->r_wanted_output = 0;
7019 	rack->r_timer_override = 0;
7020 	/*
7021 	 * Determine length of data that should be transmitted, and flags
7022 	 * that will be used. If there is some data or critical controls
7023 	 * (SYN, RST) to send, then transmit; otherwise, investigate
7024 	 * further.
7025 	 */
7026 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
7027 #ifdef NETFLIX_CWV
7028 	if (tp->cwv_enabled) {
7029 		if ((tp->cwv_cwnd_valid == 0) &&
7030 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
7031 		    (tp->snd_cwnd > tp->snd_cwv.init_cwnd))
7032 			tcp_newcwv_nvp_closedown(tp);
7033 	} else
7034 #endif
7035 	if (tp->t_idle_reduce) {
7036 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
7037 			rack_cc_after_idle(tp,
7038 		            (rack->r_idle_reduce_largest ? 1 :0));
7039 	}
7040 	tp->t_flags &= ~TF_LASTIDLE;
7041 	if (idle) {
7042 		if (tp->t_flags & TF_MORETOCOME) {
7043 			tp->t_flags |= TF_LASTIDLE;
7044 			idle = 0;
7045 		}
7046 	}
7047 again:
7048 	/*
7049 	 * If we've recently taken a timeout, snd_max will be greater than
7050 	 * snd_nxt.  There may be SACK information that allows us to avoid
7051 	 * resending already delivered data.  Adjust snd_nxt accordingly.
7052 	 */
7053 	sendalot = 0;
7054 	cts = tcp_ts_getticks();
7055 	tso = 0;
7056 	mtu = 0;
7057 	sb_offset = tp->snd_max - tp->snd_una;
7058 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
7059 
7060 	flags = tcp_outflags[tp->t_state];
7061 	/*
7062 	 * Send any SACK-generated retransmissions.  If we're explicitly
7063 	 * trying to send out new data (when sendalot is 1), bypass this
7064 	 * function. If we retransmit in fast recovery mode, decrement
7065 	 * snd_cwnd, since we're replacing a (future) new transmission with
7066 	 * a retransmission now, and we previously incremented snd_cwnd in
7067 	 * tcp_input().
7068 	 */
7069 	/*
7070 	 * Still in sack recovery , reset rxmit flag to zero.
7071 	 */
7072 	while (rack->rc_free_cnt < rack_free_cache) {
7073 		rsm = rack_alloc(rack);
7074 		if (rsm == NULL) {
7075 			if (inp->inp_hpts_calls)
7076 				/* Retry in a ms */
7077 				slot = 1;
7078 			goto just_return_nolock;
7079 		}
7080 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
7081 		rack->rc_free_cnt++;
7082 		rsm = NULL;
7083 	}
7084 	if (inp->inp_hpts_calls)
7085 		inp->inp_hpts_calls = 0;
7086 	sack_rxmit = 0;
7087 	len = 0;
7088 	rsm = NULL;
7089 	if (flags & TH_RST) {
7090 		SOCKBUF_LOCK(sb);
7091 		goto send;
7092 	}
7093 	if (rack->r_ctl.rc_tlpsend) {
7094 		/* Tail loss probe */
7095 		long cwin;
7096 		long tlen;
7097 
7098 		doing_tlp = 1;
7099 		rsm = rack->r_ctl.rc_tlpsend;
7100 		rack->r_ctl.rc_tlpsend = NULL;
7101 		sack_rxmit = 1;
7102 		tlen = rsm->r_end - rsm->r_start;
7103 		if (tlen > tp->t_maxseg)
7104 			tlen = tp->t_maxseg;
7105 #ifdef INVARIANTS
7106 		if (SEQ_GT(tp->snd_una, rsm->r_start)) {
7107 			panic("tp:%p rack:%p snd_una:%u rsm:%p r_start:%u",
7108 			    tp, rack, tp->snd_una, rsm, rsm->r_start);
7109 		}
7110 #endif
7111 		sb_offset = rsm->r_start - tp->snd_una;
7112 		cwin = min(tp->snd_wnd, tlen);
7113 		len = cwin;
7114 	} else if (rack->r_ctl.rc_resend) {
7115 		/* Retransmit timer */
7116 		rsm = rack->r_ctl.rc_resend;
7117 		rack->r_ctl.rc_resend = NULL;
7118 		len = rsm->r_end - rsm->r_start;
7119 		sack_rxmit = 1;
7120 		sendalot = 0;
7121 		sb_offset = rsm->r_start - tp->snd_una;
7122 		if (len >= tp->t_maxseg) {
7123 			len = tp->t_maxseg;
7124 		}
7125 		KASSERT(sb_offset >= 0, ("%s: sack block to the left of una : %d",
7126 		    __func__, sb_offset));
7127 	} else if ((rack->rc_in_persist == 0) &&
7128 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
7129 		long tlen;
7130 
7131 		if ((!IN_RECOVERY(tp->t_flags)) &&
7132 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
7133 			/* Enter recovery if not induced by a time-out */
7134 			rack->r_ctl.rc_rsm_start = rsm->r_start;
7135 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7136 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7137 			rack_cong_signal(tp, NULL, CC_NDUPACK);
7138 			/*
7139 			 * When we enter recovery we need to assure we send
7140 			 * one packet.
7141 			 */
7142 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
7143 		}
7144 #ifdef INVARIANTS
7145 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
7146 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
7147 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
7148 		}
7149 #endif
7150 		tlen = rsm->r_end - rsm->r_start;
7151 		sb_offset = rsm->r_start - tp->snd_una;
7152 		if (tlen > rack->r_ctl.rc_prr_sndcnt) {
7153 			len = rack->r_ctl.rc_prr_sndcnt;
7154 		} else {
7155 			len = tlen;
7156 		}
7157 		if (len >= tp->t_maxseg) {
7158 			sendalot = 1;
7159 			len = tp->t_maxseg;
7160 		} else {
7161 			sendalot = 0;
7162 			if ((rack->rc_timer_up == 0) &&
7163 			    (len < tlen)) {
7164 				/*
7165 				 * If its not a timer don't send a partial
7166 				 * segment.
7167 				 */
7168 				len = 0;
7169 				goto just_return_nolock;
7170 			}
7171 		}
7172 		KASSERT(sb_offset >= 0, ("%s: sack block to the left of una : %d",
7173 		    __func__, sb_offset));
7174 		if (len > 0) {
7175 			sub_from_prr = 1;
7176 			sack_rxmit = 1;
7177 			TCPSTAT_INC(tcps_sack_rexmits);
7178 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
7179 			    min(len, tp->t_maxseg));
7180 			counter_u64_add(rack_rtm_prr_retran, 1);
7181 		}
7182 	}
7183 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
7184 		/* we are retransmitting the fin */
7185 		len--;
7186 		if (len) {
7187 			/*
7188 			 * When retransmitting data do *not* include the
7189 			 * FIN. This could happen from a TLP probe.
7190 			 */
7191 			flags &= ~TH_FIN;
7192 		}
7193 	}
7194 #ifdef INVARIANTS
7195 	/* For debugging */
7196 	rack->r_ctl.rc_rsm_at_retran = rsm;
7197 #endif
7198 	/*
7199 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
7200 	 * state flags.
7201 	 */
7202 	if (tp->t_flags & TF_NEEDFIN)
7203 		flags |= TH_FIN;
7204 	if (tp->t_flags & TF_NEEDSYN)
7205 		flags |= TH_SYN;
7206 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
7207 		void *end_rsm;
7208 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
7209 		if (end_rsm)
7210 			kern_prefetch(end_rsm, &prefetch_rsm);
7211 		prefetch_rsm = 1;
7212 	}
7213 	SOCKBUF_LOCK(sb);
7214 	/*
7215 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
7216 	 * if window is small but nonzero and time TF_SENTFIN expired, we
7217 	 * will send what we can and go to transmit state.
7218 	 */
7219 	if (tp->t_flags & TF_FORCEDATA) {
7220 		if (sendwin == 0) {
7221 			/*
7222 			 * If we still have some data to send, then clear
7223 			 * the FIN bit.  Usually this would happen below
7224 			 * when it realizes that we aren't sending all the
7225 			 * data.  However, if we have exactly 1 byte of
7226 			 * unsent data, then it won't clear the FIN bit
7227 			 * below, and if we are in persist state, we wind up
7228 			 * sending the packet without recording that we sent
7229 			 * the FIN bit.
7230 			 *
7231 			 * We can't just blindly clear the FIN bit, because
7232 			 * if we don't have any more data to send then the
7233 			 * probe will be the FIN itself.
7234 			 */
7235 			if (sb_offset < sbused(sb))
7236 				flags &= ~TH_FIN;
7237 			sendwin = 1;
7238 		} else {
7239 			if (rack->rc_in_persist)
7240 				rack_exit_persist(tp, rack);
7241 			/*
7242 			 * If we are dropping persist mode then we need to
7243 			 * correct snd_nxt/snd_max and off.
7244 			 */
7245 			tp->snd_nxt = tp->snd_max;
7246 			sb_offset = tp->snd_nxt - tp->snd_una;
7247 		}
7248 	}
7249 	/*
7250 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
7251 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
7252 	 * negative length.  This can also occur when TCP opens up its
7253 	 * congestion window while receiving additional duplicate acks after
7254 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
7255 	 * the fast-retransmit.
7256 	 *
7257 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
7258 	 * set to snd_una, the sb_offset will be 0, and the length may wind
7259 	 * up 0.
7260 	 *
7261 	 * If sack_rxmit is true we are retransmitting from the scoreboard
7262 	 * in which case len is already set.
7263 	 */
7264 	if (sack_rxmit == 0) {
7265 		uint32_t avail;
7266 
7267 		avail = sbavail(sb);
7268 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
7269 			sb_offset = tp->snd_nxt - tp->snd_una;
7270 		else
7271 			sb_offset = 0;
7272 		if (IN_RECOVERY(tp->t_flags) == 0) {
7273 			if (rack->r_ctl.rc_tlp_new_data) {
7274 				/* TLP is forcing out new data */
7275 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
7276 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
7277 				}
7278 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
7279 					len = tp->snd_wnd;
7280 				else
7281 					len = rack->r_ctl.rc_tlp_new_data;
7282 				rack->r_ctl.rc_tlp_new_data = 0;
7283 				doing_tlp = 1;
7284 			} else {
7285 				if (sendwin > avail) {
7286 					/* use the available */
7287 					if (avail > sb_offset) {
7288 						len = (int32_t)(avail - sb_offset);
7289 					} else {
7290 						len = 0;
7291 					}
7292 				} else {
7293 					if (sendwin > sb_offset) {
7294 						len = (int32_t)(sendwin - sb_offset);
7295 					} else {
7296 						len = 0;
7297 					}
7298 				}
7299 			}
7300 		} else {
7301 			uint32_t outstanding;
7302 
7303 			/*
7304 			 * We are inside of a SACK recovery episode and are
7305 			 * sending new data, having retransmitted all the
7306 			 * data possible so far in the scoreboard.
7307 			 */
7308 			outstanding = tp->snd_max - tp->snd_una;
7309 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd)
7310 				len = 0;
7311 			else if (avail > sb_offset)
7312 				len = avail - sb_offset;
7313 			else
7314 				len = 0;
7315 			if (len > 0) {
7316 				if (len > rack->r_ctl.rc_prr_sndcnt)
7317 					len = rack->r_ctl.rc_prr_sndcnt;
7318 
7319 				if (len > 0) {
7320 					sub_from_prr = 1;
7321 					counter_u64_add(rack_rtm_prr_newdata, 1);
7322 				}
7323 			}
7324 			if (len > tp->t_maxseg) {
7325 				/*
7326 				 * We should never send more than a MSS when
7327 				 * retransmitting or sending new data in prr
7328 				 * mode unless the override flag is on. Most
7329 				 * likely the PRR algorithm is not going to
7330 				 * let us send a lot as well :-)
7331 				 */
7332 				if (rack->r_ctl.rc_prr_sendalot == 0)
7333 					len = tp->t_maxseg;
7334 			} else if (len < tp->t_maxseg) {
7335 				/*
7336 				 * Do we send any? The idea here is if the
7337 				 * send empty's the socket buffer we want to
7338 				 * do it. However if not then lets just wait
7339 				 * for our prr_sndcnt to get bigger.
7340 				 */
7341 				long leftinsb;
7342 
7343 				leftinsb = sbavail(sb) - sb_offset;
7344 				if (leftinsb > len) {
7345 					/* This send does not empty the sb */
7346 					len = 0;
7347 				}
7348 			}
7349 		}
7350 	}
7351 	if (prefetch_so_done == 0) {
7352 		kern_prefetch(so, &prefetch_so_done);
7353 		prefetch_so_done = 1;
7354 	}
7355 	/*
7356 	 * Lop off SYN bit if it has already been sent.  However, if this is
7357 	 * SYN-SENT state and if segment contains data and if we don't know
7358 	 * that foreign host supports TAO, suppress sending segment.
7359 	 */
7360 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
7361 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
7362 		if (tp->t_state != TCPS_SYN_RECEIVED)
7363 			flags &= ~TH_SYN;
7364 		/*
7365 		 * When sending additional segments following a TFO SYN|ACK,
7366 		 * do not include the SYN bit.
7367 		 */
7368 		if (IS_FASTOPEN(tp->t_flags) &&
7369 		    (tp->t_state == TCPS_SYN_RECEIVED))
7370 			flags &= ~TH_SYN;
7371 		sb_offset--, len++;
7372 	}
7373 	/*
7374 	 * Be careful not to send data and/or FIN on SYN segments. This
7375 	 * measure is needed to prevent interoperability problems with not
7376 	 * fully conformant TCP implementations.
7377 	 */
7378 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
7379 		len = 0;
7380 		flags &= ~TH_FIN;
7381 	}
7382 	/*
7383 	 * On TFO sockets, ensure no data is sent in the following cases:
7384 	 *
7385 	 *  - When retransmitting SYN|ACK on a passively-created socket
7386 	 *
7387 	 *  - When retransmitting SYN on an actively created socket
7388 	 *
7389 	 *  - When sending a zero-length cookie (cookie request) on an
7390 	 *    actively created socket
7391 	 *
7392 	 *  - When the socket is in the CLOSED state (RST is being sent)
7393 	 */
7394 	if (IS_FASTOPEN(tp->t_flags) &&
7395 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
7396 	     ((tp->t_state == TCPS_SYN_SENT) &&
7397 	      (tp->t_tfo_client_cookie_len == 0)) ||
7398 	     (flags & TH_RST)))
7399 		len = 0;
7400 	/* Without fast-open there should never be data sent on a SYN */
7401 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
7402 		len = 0;
7403 	if (len <= 0) {
7404 		/*
7405 		 * If FIN has been sent but not acked, but we haven't been
7406 		 * called to retransmit, len will be < 0.  Otherwise, window
7407 		 * shrank after we sent into it.  If window shrank to 0,
7408 		 * cancel pending retransmit, pull snd_nxt back to (closed)
7409 		 * window, and set the persist timer if it isn't already
7410 		 * going.  If the window didn't close completely, just wait
7411 		 * for an ACK.
7412 		 *
7413 		 * We also do a general check here to ensure that we will
7414 		 * set the persist timer when we have data to send, but a
7415 		 * 0-byte window. This makes sure the persist timer is set
7416 		 * even if the packet hits one of the "goto send" lines
7417 		 * below.
7418 		 */
7419 		len = 0;
7420 		if ((tp->snd_wnd == 0) &&
7421 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
7422 		    (sb_offset < (int)sbavail(sb))) {
7423 			tp->snd_nxt = tp->snd_una;
7424 			rack_enter_persist(tp, rack, cts);
7425 		}
7426 	}
7427 	/* len will be >= 0 after this point. */
7428 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7429 	tcp_sndbuf_autoscale(tp, so, sendwin);
7430 	/*
7431 	 * Decide if we can use TCP Segmentation Offloading (if supported by
7432 	 * hardware).
7433 	 *
7434 	 * TSO may only be used if we are in a pure bulk sending state.  The
7435 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
7436 	 * options prevent using TSO.  With TSO the TCP header is the same
7437 	 * (except for the sequence number) for all generated packets.  This
7438 	 * makes it impossible to transmit any options which vary per
7439 	 * generated segment or packet.
7440 	 *
7441 	 * IPv4 handling has a clear separation of ip options and ip header
7442 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
7443 	 * the right thing below to provide length of just ip options and thus
7444 	 * checking for ipoptlen is enough to decide if ip options are present.
7445 	 */
7446 
7447 #ifdef INET6
7448 	if (isipv6)
7449 		ipoptlen = ip6_optlen(tp->t_inpcb);
7450 	else
7451 #endif
7452 		if (tp->t_inpcb->inp_options)
7453 			ipoptlen = tp->t_inpcb->inp_options->m_len -
7454 			    offsetof(struct ipoption, ipopt_list);
7455 		else
7456 			ipoptlen = 0;
7457 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7458 	/*
7459 	 * Pre-calculate here as we save another lookup into the darknesses
7460 	 * of IPsec that way and can actually decide if TSO is ok.
7461 	 */
7462 #ifdef INET6
7463 	if (isipv6 && IPSEC_ENABLED(ipv6))
7464 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
7465 #ifdef INET
7466 	else
7467 #endif
7468 #endif				/* INET6 */
7469 #ifdef INET
7470 	if (IPSEC_ENABLED(ipv4))
7471 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
7472 #endif				/* INET */
7473 #endif
7474 
7475 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7476 	ipoptlen += ipsec_optlen;
7477 #endif
7478 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > tp->t_maxseg &&
7479 	    (tp->t_port == 0) &&
7480 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
7481 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
7482 	    ipoptlen == 0)
7483 		tso = 1;
7484 	{
7485 		uint32_t outstanding;
7486 
7487 		outstanding = tp->snd_max - tp->snd_una;
7488 		if (tp->t_flags & TF_SENTFIN) {
7489 			/*
7490 			 * If we sent a fin, snd_max is 1 higher than
7491 			 * snd_una
7492 			 */
7493 			outstanding--;
7494 		}
7495 		if (outstanding > 0) {
7496 			/*
7497 			 * This is sub-optimal. We only send a stand alone
7498 			 * FIN on its own segment.
7499 			 */
7500 			if (flags & TH_FIN) {
7501 				flags &= ~TH_FIN;
7502 				would_have_fin = 1;
7503 			}
7504 		} else if (sack_rxmit) {
7505 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
7506 				flags &= ~TH_FIN;
7507 		} else {
7508 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
7509 			    sbused(sb)))
7510 				flags &= ~TH_FIN;
7511 		}
7512 	}
7513 	recwin = sbspace(&so->so_rcv);
7514 
7515 	/*
7516 	 * Sender silly window avoidance.   We transmit under the following
7517 	 * conditions when len is non-zero:
7518 	 *
7519 	 * - We have a full segment (or more with TSO) - This is the last
7520 	 * buffer in a write()/send() and we are either idle or running
7521 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
7522 	 * then 1/2 the maximum send window's worth of data (receiver may be
7523 	 * limited the window size) - we need to retransmit
7524 	 */
7525 	if (len) {
7526 		if (len >= tp->t_maxseg) {
7527 			pass = 1;
7528 			goto send;
7529 		}
7530 		/*
7531 		 * NOTE! on localhost connections an 'ack' from the remote
7532 		 * end may occur synchronously with the output and cause us
7533 		 * to flush a buffer queued with moretocome.  XXX
7534 		 *
7535 		 */
7536 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
7537 		    (idle || (tp->t_flags & TF_NODELAY)) &&
7538 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
7539 		    (tp->t_flags & TF_NOPUSH) == 0) {
7540 			pass = 2;
7541 			goto send;
7542 		}
7543 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
7544 			pass = 3;
7545 			goto send;
7546 		}
7547 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
7548 			goto send;
7549 		}
7550 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
7551 			pass = 4;
7552 			goto send;
7553 		}
7554 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
7555 			pass = 5;
7556 			goto send;
7557 		}
7558 		if (sack_rxmit) {
7559 			pass = 6;
7560 			goto send;
7561 		}
7562 	}
7563 	/*
7564 	 * Sending of standalone window updates.
7565 	 *
7566 	 * Window updates are important when we close our window due to a
7567 	 * full socket buffer and are opening it again after the application
7568 	 * reads data from it.  Once the window has opened again and the
7569 	 * remote end starts to send again the ACK clock takes over and
7570 	 * provides the most current window information.
7571 	 *
7572 	 * We must avoid the silly window syndrome whereas every read from
7573 	 * the receive buffer, no matter how small, causes a window update
7574 	 * to be sent.  We also should avoid sending a flurry of window
7575 	 * updates when the socket buffer had queued a lot of data and the
7576 	 * application is doing small reads.
7577 	 *
7578 	 * Prevent a flurry of pointless window updates by only sending an
7579 	 * update when we can increase the advertized window by more than
7580 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
7581 	 * full or is very small be more aggressive and send an update
7582 	 * whenever we can increase by two mss sized segments. In all other
7583 	 * situations the ACK's to new incoming data will carry further
7584 	 * window increases.
7585 	 *
7586 	 * Don't send an independent window update if a delayed ACK is
7587 	 * pending (it will get piggy-backed on it) or the remote side
7588 	 * already has done a half-close and won't send more data.  Skip
7589 	 * this if the connection is in T/TCP half-open state.
7590 	 */
7591 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
7592 	    !(tp->t_flags & TF_DELACK) &&
7593 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
7594 		/*
7595 		 * "adv" is the amount we could increase the window, taking
7596 		 * into account that we are limited by TCP_MAXWIN <<
7597 		 * tp->rcv_scale.
7598 		 */
7599 		int32_t adv;
7600 		int oldwin;
7601 
7602 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
7603 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
7604 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
7605 			adv -= oldwin;
7606 		} else
7607 			oldwin = 0;
7608 
7609 		/*
7610 		 * If the new window size ends up being the same as the old
7611 		 * size when it is scaled, then don't force a window update.
7612 		 */
7613 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
7614 			goto dontupdate;
7615 
7616 		if (adv >= (int32_t)(2 * tp->t_maxseg) &&
7617 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
7618 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
7619 		    so->so_rcv.sb_hiwat <= 8 * tp->t_maxseg)) {
7620 			pass = 7;
7621 			goto send;
7622 		}
7623 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
7624 			goto send;
7625 	}
7626 dontupdate:
7627 
7628 	/*
7629 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
7630 	 * is also a catch-all for the retransmit timer timeout case.
7631 	 */
7632 	if (tp->t_flags & TF_ACKNOW) {
7633 		pass = 8;
7634 		goto send;
7635 	}
7636 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
7637 		pass = 9;
7638 		goto send;
7639 	}
7640 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
7641 		pass = 10;
7642 		goto send;
7643 	}
7644 	/*
7645 	 * If our state indicates that FIN should be sent and we have not
7646 	 * yet done so, then we need to send.
7647 	 */
7648 	if (flags & TH_FIN) {
7649 		if ((tp->t_flags & TF_SENTFIN) ||
7650 		    (((tp->t_flags & TF_SENTFIN) == 0) &&
7651 		     (tp->snd_nxt == tp->snd_una))) {
7652 			pass = 11;
7653 			goto send;
7654 		}
7655 	}
7656 	/*
7657 	 * No reason to send a segment, just return.
7658 	 */
7659 just_return:
7660 	SOCKBUF_UNLOCK(sb);
7661 just_return_nolock:
7662 	if (tot_len_this_send == 0)
7663 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
7664 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
7665 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
7666 	tp->t_flags &= ~TF_FORCEDATA;
7667 	return (0);
7668 
7669 send:
7670 	if (doing_tlp == 0) {
7671 		/*
7672 		 * Data not a TLP, and its not the rxt firing. If it is the
7673 		 * rxt firing, we want to leave the tlp_in_progress flag on
7674 		 * so we don't send another TLP. It has to be a rack timer
7675 		 * or normal send (response to acked data) to clear the tlp
7676 		 * in progress flag.
7677 		 */
7678 		rack->rc_tlp_in_progress = 0;
7679 	}
7680 	SOCKBUF_LOCK_ASSERT(sb);
7681 	if (len > 0) {
7682 		if (len >= tp->t_maxseg)
7683 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
7684 		else
7685 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
7686 	}
7687 	/*
7688 	 * Before ESTABLISHED, force sending of initial options unless TCP
7689 	 * set not to do any options. NOTE: we assume that the IP/TCP header
7690 	 * plus TCP options always fit in a single mbuf, leaving room for a
7691 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
7692 	 * + optlen <= MCLBYTES
7693 	 */
7694 	optlen = 0;
7695 #ifdef INET6
7696 	if (isipv6)
7697 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
7698 	else
7699 #endif
7700 		hdrlen = sizeof(struct tcpiphdr);
7701 
7702 	/*
7703 	 * Compute options for segment. We only have to care about SYN and
7704 	 * established connection segments.  Options for SYN-ACK segments
7705 	 * are handled in TCP syncache.
7706 	 */
7707 	to.to_flags = 0;
7708 	if ((tp->t_flags & TF_NOOPT) == 0) {
7709 		/* Maximum segment size. */
7710 		if (flags & TH_SYN) {
7711 			tp->snd_nxt = tp->iss;
7712 			to.to_mss = tcp_mssopt(&inp->inp_inc);
7713 #ifdef NETFLIX_TCPOUDP
7714 			if (tp->t_port)
7715 				to.to_mss -= V_tcp_udp_tunneling_overhead;
7716 #endif
7717 			to.to_flags |= TOF_MSS;
7718 
7719 			/*
7720 			 * On SYN or SYN|ACK transmits on TFO connections,
7721 			 * only include the TFO option if it is not a
7722 			 * retransmit, as the presence of the TFO option may
7723 			 * have caused the original SYN or SYN|ACK to have
7724 			 * been dropped by a middlebox.
7725 			 */
7726 			if (IS_FASTOPEN(tp->t_flags) &&
7727 			    (tp->t_rxtshift == 0)) {
7728 				if (tp->t_state == TCPS_SYN_RECEIVED) {
7729 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
7730 					to.to_tfo_cookie =
7731 					    (u_int8_t *)&tp->t_tfo_cookie.server;
7732 					to.to_flags |= TOF_FASTOPEN;
7733 					wanted_cookie = 1;
7734 				} else if (tp->t_state == TCPS_SYN_SENT) {
7735 					to.to_tfo_len =
7736 					    tp->t_tfo_client_cookie_len;
7737 					to.to_tfo_cookie =
7738 					    tp->t_tfo_cookie.client;
7739 					to.to_flags |= TOF_FASTOPEN;
7740 					wanted_cookie = 1;
7741 					/*
7742 					 * If we wind up having more data to
7743 					 * send with the SYN than can fit in
7744 					 * one segment, don't send any more
7745 					 * until the SYN|ACK comes back from
7746 					 * the other end.
7747 					 */
7748 					sendalot = 0;
7749 				}
7750 			}
7751 		}
7752 		/* Window scaling. */
7753 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
7754 			to.to_wscale = tp->request_r_scale;
7755 			to.to_flags |= TOF_SCALE;
7756 		}
7757 		/* Timestamps. */
7758 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
7759 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
7760 			to.to_tsval = cts + tp->ts_offset;
7761 			to.to_tsecr = tp->ts_recent;
7762 			to.to_flags |= TOF_TS;
7763 		}
7764 		/* Set receive buffer autosizing timestamp. */
7765 		if (tp->rfbuf_ts == 0 &&
7766 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
7767 			tp->rfbuf_ts = tcp_ts_getticks();
7768 		/* Selective ACK's. */
7769 		if (flags & TH_SYN)
7770 			to.to_flags |= TOF_SACKPERM;
7771 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
7772 		    tp->rcv_numsacks > 0) {
7773 			to.to_flags |= TOF_SACK;
7774 			to.to_nsacks = tp->rcv_numsacks;
7775 			to.to_sacks = (u_char *)tp->sackblks;
7776 		}
7777 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
7778 		/* TCP-MD5 (RFC2385). */
7779 		if (tp->t_flags & TF_SIGNATURE)
7780 			to.to_flags |= TOF_SIGNATURE;
7781 #endif				/* TCP_SIGNATURE */
7782 
7783 		/* Processing the options. */
7784 		hdrlen += optlen = tcp_addoptions(&to, opt);
7785 		/*
7786 		 * If we wanted a TFO option to be added, but it was unable
7787 		 * to fit, ensure no data is sent.
7788 		 */
7789 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
7790 		    !(to.to_flags & TOF_FASTOPEN))
7791 			len = 0;
7792 	}
7793 #ifdef NETFLIX_TCPOUDP
7794 	if (tp->t_port) {
7795 		if (V_tcp_udp_tunneling_port == 0) {
7796 			/* The port was removed?? */
7797 			SOCKBUF_UNLOCK(&so->so_snd);
7798 			return (EHOSTUNREACH);
7799 		}
7800 		hdrlen += sizeof(struct udphdr);
7801 	}
7802 #endif
7803 	ipoptlen = 0;
7804 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7805 	ipoptlen += ipsec_optlen;
7806 #endif
7807 
7808 	/*
7809 	 * Adjust data length if insertion of options will bump the packet
7810 	 * length beyond the t_maxseg length. Clear the FIN bit because we
7811 	 * cut off the tail of the segment.
7812 	 */
7813 	if (len + optlen + ipoptlen > tp->t_maxseg) {
7814 		if (flags & TH_FIN) {
7815 			would_have_fin = 1;
7816 			flags &= ~TH_FIN;
7817 		}
7818 		if (tso) {
7819 			uint32_t if_hw_tsomax;
7820 			uint32_t moff;
7821 			int32_t max_len;
7822 
7823 			/* extract TSO information */
7824 			if_hw_tsomax = tp->t_tsomax;
7825 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
7826 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
7827 			KASSERT(ipoptlen == 0,
7828 			    ("%s: TSO can't do IP options", __func__));
7829 
7830 			/*
7831 			 * Check if we should limit by maximum payload
7832 			 * length:
7833 			 */
7834 			if (if_hw_tsomax != 0) {
7835 				/* compute maximum TSO length */
7836 				max_len = (if_hw_tsomax - hdrlen -
7837 				    max_linkhdr);
7838 				if (max_len <= 0) {
7839 					len = 0;
7840 				} else if (len > max_len) {
7841 					sendalot = 1;
7842 					len = max_len;
7843 				}
7844 			}
7845 			/*
7846 			 * Prevent the last segment from being fractional
7847 			 * unless the send sockbuf can be emptied:
7848 			 */
7849 			max_len = (tp->t_maxseg - optlen);
7850 			if ((sb_offset + len) < sbavail(sb)) {
7851 				moff = len % (u_int)max_len;
7852 				if (moff != 0) {
7853 					len -= moff;
7854 					sendalot = 1;
7855 				}
7856 			}
7857 			/*
7858 			 * In case there are too many small fragments don't
7859 			 * use TSO:
7860 			 */
7861 			if (len <= max_len) {
7862 				len = max_len;
7863 				sendalot = 1;
7864 				tso = 0;
7865 			}
7866 			/*
7867 			 * Send the FIN in a separate segment after the bulk
7868 			 * sending is done. We don't trust the TSO
7869 			 * implementations to clear the FIN flag on all but
7870 			 * the last segment.
7871 			 */
7872 			if (tp->t_flags & TF_NEEDFIN)
7873 				sendalot = 1;
7874 
7875 		} else {
7876 			len = tp->t_maxseg - optlen - ipoptlen;
7877 			sendalot = 1;
7878 		}
7879 	} else
7880 		tso = 0;
7881 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
7882 	    ("%s: len > IP_MAXPACKET", __func__));
7883 #ifdef DIAGNOSTIC
7884 #ifdef INET6
7885 	if (max_linkhdr + hdrlen > MCLBYTES)
7886 #else
7887 	if (max_linkhdr + hdrlen > MHLEN)
7888 #endif
7889 		panic("tcphdr too big");
7890 #endif
7891 
7892 	/*
7893 	 * This KASSERT is here to catch edge cases at a well defined place.
7894 	 * Before, those had triggered (random) panic conditions further
7895 	 * down.
7896 	 */
7897 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7898 	if ((len == 0) &&
7899 	    (flags & TH_FIN) &&
7900 	    (sbused(sb))) {
7901 		/*
7902 		 * We have outstanding data, don't send a fin by itself!.
7903 		 */
7904 		goto just_return;
7905 	}
7906 	/*
7907 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
7908 	 * and initialize the header from the template for sends on this
7909 	 * connection.
7910 	 */
7911 	if (len) {
7912 		uint32_t max_val;
7913 		uint32_t moff;
7914 
7915 		if (rack->rc_pace_max_segs)
7916 			max_val = rack->rc_pace_max_segs * tp->t_maxseg;
7917 		else
7918 			max_val = len;
7919 		/*
7920 		 * We allow a limit on sending with hptsi.
7921 		 */
7922 		if (len > max_val) {
7923 			len = max_val;
7924 		}
7925 #ifdef INET6
7926 		if (MHLEN < hdrlen + max_linkhdr)
7927 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
7928 		else
7929 #endif
7930 			m = m_gethdr(M_NOWAIT, MT_DATA);
7931 
7932 		if (m == NULL) {
7933 			SOCKBUF_UNLOCK(sb);
7934 			error = ENOBUFS;
7935 			sack_rxmit = 0;
7936 			goto out;
7937 		}
7938 		m->m_data += max_linkhdr;
7939 		m->m_len = hdrlen;
7940 
7941 		/*
7942 		 * Start the m_copy functions from the closest mbuf to the
7943 		 * sb_offset in the socket buffer chain.
7944 		 */
7945 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
7946 		if (len <= MHLEN - hdrlen - max_linkhdr) {
7947 			m_copydata(mb, moff, (int)len,
7948 			    mtod(m, caddr_t)+hdrlen);
7949 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7950 				sbsndptr_adv(sb, mb, len);
7951 			m->m_len += len;
7952 		} else {
7953 			struct sockbuf *msb;
7954 
7955 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7956 				msb = NULL;
7957 			else
7958 				msb = sb;
7959 			m->m_next = tcp_m_copym(mb, moff, &len,
7960 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb);
7961 			if (len <= (tp->t_maxseg - optlen)) {
7962 				/*
7963 				 * Must have ran out of mbufs for the copy
7964 				 * shorten it to no longer need tso. Lets
7965 				 * not put on sendalot since we are low on
7966 				 * mbufs.
7967 				 */
7968 				tso = 0;
7969 			}
7970 			if (m->m_next == NULL) {
7971 				SOCKBUF_UNLOCK(sb);
7972 				(void)m_free(m);
7973 				error = ENOBUFS;
7974 				sack_rxmit = 0;
7975 				goto out;
7976 			}
7977 		}
7978 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
7979 			TCPSTAT_INC(tcps_sndprobe);
7980 #ifdef NETFLIX_STATS
7981 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7982 				stats_voi_update_abs_u32(tp->t_stats,
7983 				    VOI_TCP_RETXPB, len);
7984 			else
7985 				stats_voi_update_abs_u64(tp->t_stats,
7986 				    VOI_TCP_TXPB, len);
7987 #endif
7988 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
7989 			if (rsm && (rsm->r_flags & RACK_TLP)) {
7990 				/*
7991 				 * TLP should not count in retran count, but
7992 				 * in its own bin
7993 				 */
7994 				counter_u64_add(rack_tlp_retran, 1);
7995 				counter_u64_add(rack_tlp_retran_bytes, len);
7996 			} else {
7997 				tp->t_sndrexmitpack++;
7998 				TCPSTAT_INC(tcps_sndrexmitpack);
7999 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
8000 			}
8001 #ifdef NETFLIX_STATS
8002 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
8003 			    len);
8004 #endif
8005 		} else {
8006 			TCPSTAT_INC(tcps_sndpack);
8007 			TCPSTAT_ADD(tcps_sndbyte, len);
8008 #ifdef NETFLIX_STATS
8009 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
8010 			    len);
8011 #endif
8012 		}
8013 		/*
8014 		 * If we're sending everything we've got, set PUSH. (This
8015 		 * will keep happy those implementations which only give
8016 		 * data to the user when a buffer fills or a PUSH comes in.)
8017 		 */
8018 		if (sb_offset + len == sbused(sb) &&
8019 		    sbused(sb) &&
8020 		    !(flags & TH_SYN))
8021 			flags |= TH_PUSH;
8022 
8023 		/*
8024 		 * Are we doing hptsi, if so we must calculate the slot. We
8025 		 * only do hptsi in ESTABLISHED and with no RESET being
8026 		 * sent where we have data to send.
8027 		 */
8028 		if (((tp->t_state == TCPS_ESTABLISHED) ||
8029 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
8030 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
8031 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
8032 		    ((flags & TH_FIN) == 0))) &&
8033 		    ((flags & TH_RST) == 0) &&
8034 		    (rack->rc_always_pace)) {
8035 			/*
8036 			 * We use the most optimistic possible cwnd/srtt for
8037 			 * sending calculations. This will make our
8038 			 * calculation anticipate getting more through
8039 			 * quicker then possible. But thats ok we don't want
8040 			 * the peer to have a gap in data sending.
8041 			 */
8042 			uint32_t srtt, cwnd, tr_perms = 0;
8043 
8044 			if (rack->r_ctl.rc_rack_min_rtt)
8045 				srtt = rack->r_ctl.rc_rack_min_rtt;
8046 			else
8047 				srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8048 			if (rack->r_ctl.rc_rack_largest_cwnd)
8049 				cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8050 			else
8051 				cwnd = tp->snd_cwnd;
8052 			tr_perms = cwnd / srtt;
8053 			if (tr_perms == 0) {
8054 				tr_perms = tp->t_maxseg;
8055 			}
8056 			tot_len_this_send += len;
8057 			/*
8058 			 * Calculate how long this will take to drain, if
8059 			 * the calculation comes out to zero, thats ok we
8060 			 * will use send_a_lot to possibly spin around for
8061 			 * more increasing tot_len_this_send to the point
8062 			 * that its going to require a pace, or we hit the
8063 			 * cwnd. Which in that case we are just waiting for
8064 			 * a ACK.
8065 			 */
8066 			slot = tot_len_this_send / tr_perms;
8067 			/* Now do we reduce the time so we don't run dry? */
8068 			if (slot && rack->rc_pace_reduce) {
8069 				int32_t reduce;
8070 
8071 				reduce = (slot / rack->rc_pace_reduce);
8072 				if (reduce < slot) {
8073 					slot -= reduce;
8074 				} else
8075 					slot = 0;
8076 			}
8077 			if (rack->r_enforce_min_pace &&
8078 			    (slot == 0) &&
8079 			    (tot_len_this_send >= (rack->r_min_pace_seg_thresh * tp->t_maxseg))) {
8080 				/* We are enforcing a minimum pace time of 1ms */
8081 				slot = rack->r_enforce_min_pace;
8082 			}
8083 		}
8084 		SOCKBUF_UNLOCK(sb);
8085 	} else {
8086 		SOCKBUF_UNLOCK(sb);
8087 		if (tp->t_flags & TF_ACKNOW)
8088 			TCPSTAT_INC(tcps_sndacks);
8089 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
8090 			TCPSTAT_INC(tcps_sndctrl);
8091 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
8092 			TCPSTAT_INC(tcps_sndurg);
8093 		else
8094 			TCPSTAT_INC(tcps_sndwinup);
8095 
8096 		m = m_gethdr(M_NOWAIT, MT_DATA);
8097 		if (m == NULL) {
8098 			error = ENOBUFS;
8099 			sack_rxmit = 0;
8100 			goto out;
8101 		}
8102 #ifdef INET6
8103 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
8104 		    MHLEN >= hdrlen) {
8105 			M_ALIGN(m, hdrlen);
8106 		} else
8107 #endif
8108 			m->m_data += max_linkhdr;
8109 		m->m_len = hdrlen;
8110 	}
8111 	SOCKBUF_UNLOCK_ASSERT(sb);
8112 	m->m_pkthdr.rcvif = (struct ifnet *)0;
8113 #ifdef MAC
8114 	mac_inpcb_create_mbuf(inp, m);
8115 #endif
8116 #ifdef INET6
8117 	if (isipv6) {
8118 		ip6 = mtod(m, struct ip6_hdr *);
8119 #ifdef NETFLIX_TCPOUDP
8120 		if (tp->t_port) {
8121 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
8122 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8123 			udp->uh_dport = tp->t_port;
8124 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
8125 			udp->uh_ulen = htons(ulen);
8126 			th = (struct tcphdr *)(udp + 1);
8127 		} else
8128 #endif
8129 			th = (struct tcphdr *)(ip6 + 1);
8130 		tcpip_fillheaders(inp, ip6, th);
8131 	} else
8132 #endif				/* INET6 */
8133 	{
8134 		ip = mtod(m, struct ip *);
8135 #ifdef TCPDEBUG
8136 		ipov = (struct ipovly *)ip;
8137 #endif
8138 #ifdef NETFLIX_TCPOUDP
8139 		if (tp->t_port) {
8140 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
8141 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8142 			udp->uh_dport = tp->t_port;
8143 			ulen = hdrlen + len - sizeof(struct ip);
8144 			udp->uh_ulen = htons(ulen);
8145 			th = (struct tcphdr *)(udp + 1);
8146 		} else
8147 #endif
8148 			th = (struct tcphdr *)(ip + 1);
8149 		tcpip_fillheaders(inp, ip, th);
8150 	}
8151 	/*
8152 	 * Fill in fields, remembering maximum advertised window for use in
8153 	 * delaying messages about window sizes. If resending a FIN, be sure
8154 	 * not to use a new sequence number.
8155 	 */
8156 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
8157 	    tp->snd_nxt == tp->snd_max)
8158 		tp->snd_nxt--;
8159 	/*
8160 	 * If we are starting a connection, send ECN setup SYN packet. If we
8161 	 * are on a retransmit, we may resend those bits a number of times
8162 	 * as per RFC 3168.
8163 	 */
8164 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
8165 		if (tp->t_rxtshift >= 1) {
8166 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
8167 				flags |= TH_ECE | TH_CWR;
8168 		} else
8169 			flags |= TH_ECE | TH_CWR;
8170 	}
8171 	if (tp->t_state == TCPS_ESTABLISHED &&
8172 	    (tp->t_flags & TF_ECN_PERMIT)) {
8173 		/*
8174 		 * If the peer has ECN, mark data packets with ECN capable
8175 		 * transmission (ECT). Ignore pure ack packets,
8176 		 * retransmissions and window probes.
8177 		 */
8178 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
8179 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
8180 #ifdef INET6
8181 			if (isipv6)
8182 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
8183 			else
8184 #endif
8185 				ip->ip_tos |= IPTOS_ECN_ECT0;
8186 			TCPSTAT_INC(tcps_ecn_ect0);
8187 		}
8188 		/*
8189 		 * Reply with proper ECN notifications.
8190 		 */
8191 		if (tp->t_flags & TF_ECN_SND_CWR) {
8192 			flags |= TH_CWR;
8193 			tp->t_flags &= ~TF_ECN_SND_CWR;
8194 		}
8195 		if (tp->t_flags & TF_ECN_SND_ECE)
8196 			flags |= TH_ECE;
8197 	}
8198 	/*
8199 	 * If we are doing retransmissions, then snd_nxt will not reflect
8200 	 * the first unsent octet.  For ACK only packets, we do not want the
8201 	 * sequence number of the retransmitted packet, we want the sequence
8202 	 * number of the next unsent octet.  So, if there is no data (and no
8203 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
8204 	 * ti_seq.  But if we are in persist state, snd_max might reflect
8205 	 * one byte beyond the right edge of the window, so use snd_nxt in
8206 	 * that case, since we know we aren't doing a retransmission.
8207 	 * (retransmit and persist are mutually exclusive...)
8208 	 */
8209 	if (sack_rxmit == 0) {
8210 		if (len || (flags & (TH_SYN | TH_FIN)) ||
8211 		    rack->rc_in_persist) {
8212 			th->th_seq = htonl(tp->snd_nxt);
8213 			rack_seq = tp->snd_nxt;
8214 		} else if (flags & TH_RST) {
8215 			/*
8216 			 * For a Reset send the last cum ack in sequence
8217 			 * (this like any other choice may still generate a
8218 			 * challenge ack, if a ack-update packet is in
8219 			 * flight).
8220 			 */
8221 			th->th_seq = htonl(tp->snd_una);
8222 			rack_seq = tp->snd_una;
8223 		} else {
8224 			th->th_seq = htonl(tp->snd_max);
8225 			rack_seq = tp->snd_max;
8226 		}
8227 	} else {
8228 		th->th_seq = htonl(rsm->r_start);
8229 		rack_seq = rsm->r_start;
8230 	}
8231 	th->th_ack = htonl(tp->rcv_nxt);
8232 	if (optlen) {
8233 		bcopy(opt, th + 1, optlen);
8234 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
8235 	}
8236 	th->th_flags = flags;
8237 	/*
8238 	 * Calculate receive window.  Don't shrink window, but avoid silly
8239 	 * window syndrome.
8240 	 */
8241 	if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
8242 	    recwin < (long)tp->t_maxseg)
8243 		recwin = 0;
8244 	if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
8245 	    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
8246 		recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
8247 	if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
8248 		recwin = (long)TCP_MAXWIN << tp->rcv_scale;
8249 
8250 	/*
8251 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
8252 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
8253 	 * handled in syncache.
8254 	 */
8255 	if (flags & TH_SYN)
8256 		th->th_win = htons((u_short)
8257 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
8258 	else
8259 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
8260 	/*
8261 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
8262 	 * window.  This may cause the remote transmitter to stall.  This
8263 	 * flag tells soreceive() to disable delayed acknowledgements when
8264 	 * draining the buffer.  This can occur if the receiver is
8265 	 * attempting to read more data than can be buffered prior to
8266 	 * transmitting on the connection.
8267 	 */
8268 	if (th->th_win == 0) {
8269 		tp->t_sndzerowin++;
8270 		tp->t_flags |= TF_RXWIN0SENT;
8271 	} else
8272 		tp->t_flags &= ~TF_RXWIN0SENT;
8273 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
8274 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
8275 		th->th_flags |= TH_URG;
8276 	} else
8277 		/*
8278 		 * If no urgent pointer to send, then we pull the urgent
8279 		 * pointer to the left edge of the send window so that it
8280 		 * doesn't drift into the send window on sequence number
8281 		 * wraparound.
8282 		 */
8283 		tp->snd_up = tp->snd_una;	/* drag it along */
8284 
8285 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
8286 	if (to.to_flags & TOF_SIGNATURE) {
8287 		/*
8288 		 * Calculate MD5 signature and put it into the place
8289 		 * determined before.
8290 		 * NOTE: since TCP options buffer doesn't point into
8291 		 * mbuf's data, calculate offset and use it.
8292 		 */
8293 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
8294 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
8295 			/*
8296 			 * Do not send segment if the calculation of MD5
8297 			 * digest has failed.
8298 			 */
8299 			goto out;
8300 		}
8301 	}
8302 #endif
8303 
8304 	/*
8305 	 * Put TCP length in extended header, and then checksum extended
8306 	 * header and data.
8307 	 */
8308 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
8309 #ifdef INET6
8310 	if (isipv6) {
8311 		/*
8312 		 * ip6_plen is not need to be filled now, and will be filled
8313 		 * in ip6_output.
8314 		 */
8315 		if (tp->t_port) {
8316 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
8317 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8318 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
8319 			th->th_sum = htons(0);
8320 		} else {
8321 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
8322 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8323 			th->th_sum = in6_cksum_pseudo(ip6,
8324 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
8325 			    0);
8326 		}
8327 	}
8328 #endif
8329 #if defined(INET6) && defined(INET)
8330 	else
8331 #endif
8332 #ifdef INET
8333 	{
8334 		if (tp->t_port) {
8335 			m->m_pkthdr.csum_flags = CSUM_UDP;
8336 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8337 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
8338 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
8339 			th->th_sum = htons(0);
8340 		} else {
8341 			m->m_pkthdr.csum_flags = CSUM_TCP;
8342 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8343 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
8344 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
8345 			    IPPROTO_TCP + len + optlen));
8346 		}
8347 		/* IP version must be set here for ipv4/ipv6 checking later */
8348 		KASSERT(ip->ip_v == IPVERSION,
8349 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
8350 	}
8351 #endif
8352 
8353 	/*
8354 	 * Enable TSO and specify the size of the segments. The TCP pseudo
8355 	 * header checksum is always provided. XXX: Fixme: This is currently
8356 	 * not the case for IPv6.
8357 	 */
8358 	if (tso) {
8359 		KASSERT(len > tp->t_maxseg - optlen,
8360 		    ("%s: len <= tso_segsz", __func__));
8361 		m->m_pkthdr.csum_flags |= CSUM_TSO;
8362 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
8363 	}
8364 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8365 	KASSERT(len + hdrlen + ipoptlen - ipsec_optlen == m_length(m, NULL),
8366 	    ("%s: mbuf chain shorter than expected: %d + %u + %u - %u != %u",
8367 	    __func__, len, hdrlen, ipoptlen, ipsec_optlen, m_length(m, NULL)));
8368 #else
8369 	KASSERT(len + hdrlen + ipoptlen == m_length(m, NULL),
8370 	    ("%s: mbuf chain shorter than expected: %d + %u + %u != %u",
8371 	    __func__, len, hdrlen, ipoptlen, m_length(m, NULL)));
8372 #endif
8373 
8374 #ifdef TCP_HHOOK
8375 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
8376 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
8377 #endif
8378 
8379 #ifdef TCPDEBUG
8380 	/*
8381 	 * Trace.
8382 	 */
8383 	if (so->so_options & SO_DEBUG) {
8384 		u_short save = 0;
8385 
8386 #ifdef INET6
8387 		if (!isipv6)
8388 #endif
8389 		{
8390 			save = ipov->ih_len;
8391 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
8392 			      * (th->th_off << 2) */ );
8393 		}
8394 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
8395 #ifdef INET6
8396 		if (!isipv6)
8397 #endif
8398 			ipov->ih_len = save;
8399 	}
8400 #endif				/* TCPDEBUG */
8401 
8402 	/* We're getting ready to send; log now. */
8403 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
8404 		union tcp_log_stackspecific log;
8405 
8406 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
8407 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
8408 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
8409 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
8410 		if (rsm || sack_rxmit) {
8411 			log.u_bbr.flex8 = 1;
8412 		} else {
8413 			log.u_bbr.flex8 = 0;
8414 		}
8415 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
8416 		    len, &log, false, NULL, NULL, 0, NULL);
8417 	} else
8418 		lgb = NULL;
8419 
8420 	/*
8421 	 * Fill in IP length and desired time to live and send to IP level.
8422 	 * There should be a better way to handle ttl and tos; we could keep
8423 	 * them in the template, but need a way to checksum without them.
8424 	 */
8425 	/*
8426 	 * m->m_pkthdr.len should have been set before cksum calcuration,
8427 	 * because in6_cksum() need it.
8428 	 */
8429 #ifdef INET6
8430 	if (isipv6) {
8431 		/*
8432 		 * we separately set hoplimit for every segment, since the
8433 		 * user might want to change the value via setsockopt. Also,
8434 		 * desired default hop limit might be changed via Neighbor
8435 		 * Discovery.
8436 		 */
8437 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
8438 
8439 		/*
8440 		 * Set the packet size here for the benefit of DTrace
8441 		 * probes. ip6_output() will set it properly; it's supposed
8442 		 * to include the option header lengths as well.
8443 		 */
8444 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
8445 
8446 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
8447 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8448 		else
8449 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8450 
8451 		if (tp->t_state == TCPS_SYN_SENT)
8452 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
8453 
8454 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
8455 		/* TODO: IPv6 IP6TOS_ECT bit on */
8456 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
8457 		    &inp->inp_route6,
8458 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
8459 		    NULL, NULL, inp);
8460 
8461 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
8462 			mtu = inp->inp_route6.ro_rt->rt_mtu;
8463 	}
8464 #endif				/* INET6 */
8465 #if defined(INET) && defined(INET6)
8466 	else
8467 #endif
8468 #ifdef INET
8469 	{
8470 		ip->ip_len = htons(m->m_pkthdr.len);
8471 #ifdef INET6
8472 		if (inp->inp_vflag & INP_IPV6PROTO)
8473 			ip->ip_ttl = in6_selecthlim(inp, NULL);
8474 #endif				/* INET6 */
8475 		/*
8476 		 * If we do path MTU discovery, then we set DF on every
8477 		 * packet. This might not be the best thing to do according
8478 		 * to RFC3390 Section 2. However the tcp hostcache migitates
8479 		 * the problem so it affects only the first tcp connection
8480 		 * with a host.
8481 		 *
8482 		 * NB: Don't set DF on small MTU/MSS to have a safe
8483 		 * fallback.
8484 		 */
8485 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
8486 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8487 			if (tp->t_port == 0 || len < V_tcp_minmss) {
8488 				ip->ip_off |= htons(IP_DF);
8489 			}
8490 		} else {
8491 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8492 		}
8493 
8494 		if (tp->t_state == TCPS_SYN_SENT)
8495 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
8496 
8497 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
8498 
8499 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
8500 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
8501 		    inp);
8502 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
8503 			mtu = inp->inp_route.ro_rt->rt_mtu;
8504 	}
8505 #endif				/* INET */
8506 
8507 out:
8508 	if (lgb) {
8509 		lgb->tlb_errno = error;
8510 		lgb = NULL;
8511 	}
8512 	/*
8513 	 * In transmit state, time the transmission and arrange for the
8514 	 * retransmit.  In persist state, just set snd_max.
8515 	 */
8516 	if (error == 0) {
8517 		if (len == 0)
8518 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
8519 		else if (len == 1) {
8520 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
8521 		} else if (len > 1) {
8522 			int idx;
8523 
8524 			idx = (len / tp->t_maxseg) + 3;
8525 			if (idx >= TCP_MSS_ACCT_ATIMER)
8526 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
8527 			else
8528 				counter_u64_add(rack_out_size[idx], 1);
8529 		}
8530 	}
8531 	if (sub_from_prr && (error == 0)) {
8532 		rack->r_ctl.rc_prr_sndcnt -= len;
8533 	}
8534 	sub_from_prr = 0;
8535 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
8536 	    pass, rsm);
8537 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
8538 	    (rack->rc_in_persist == 0)) {
8539 #ifdef NETFLIX_STATS
8540 		tcp_seq startseq = tp->snd_nxt;
8541 #endif
8542 
8543 		/*
8544 		 * Advance snd_nxt over sequence space of this segment.
8545 		 */
8546 		if (error)
8547 			/* We don't log or do anything with errors */
8548 			goto timer;
8549 
8550 		if (flags & (TH_SYN | TH_FIN)) {
8551 			if (flags & TH_SYN)
8552 				tp->snd_nxt++;
8553 			if (flags & TH_FIN) {
8554 				tp->snd_nxt++;
8555 				tp->t_flags |= TF_SENTFIN;
8556 			}
8557 		}
8558 		/* In the ENOBUFS case we do *not* update snd_max */
8559 		if (sack_rxmit)
8560 			goto timer;
8561 
8562 		tp->snd_nxt += len;
8563 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
8564 			if (tp->snd_una == tp->snd_max) {
8565 				/*
8566 				 * Update the time we just added data since
8567 				 * none was outstanding.
8568 				 */
8569 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8570 				tp->t_acktime = ticks;
8571 			}
8572 			tp->snd_max = tp->snd_nxt;
8573 #ifdef NETFLIX_STATS
8574 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
8575 				tp->t_flags |= TF_GPUTINPROG;
8576 				tp->gput_seq = startseq;
8577 				tp->gput_ack = startseq +
8578 				    ulmin(sbavail(sb) - sb_offset, sendwin);
8579 				tp->gput_ts = tcp_ts_getticks();
8580 			}
8581 #endif
8582 		}
8583 		/*
8584 		 * Set retransmit timer if not currently set, and not doing
8585 		 * a pure ack or a keep-alive probe. Initial value for
8586 		 * retransmit timer is smoothed round-trip time + 2 *
8587 		 * round-trip time variance. Initialize shift counter which
8588 		 * is used for backoff of retransmit time.
8589 		 */
8590 timer:
8591 		if ((tp->snd_wnd == 0) &&
8592 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
8593 			/*
8594 			 * If the persists timer was set above (right before
8595 			 * the goto send), and still needs to be on. Lets
8596 			 * make sure all is canceled. If the persist timer
8597 			 * is not running, we want to get it up.
8598 			 */
8599 			if (rack->rc_in_persist == 0) {
8600 				rack_enter_persist(tp, rack, cts);
8601 			}
8602 		}
8603 	} else {
8604 		/*
8605 		 * Persist case, update snd_max but since we are in persist
8606 		 * mode (no window) we do not update snd_nxt.
8607 		 */
8608 		int32_t xlen = len;
8609 
8610 		if (error)
8611 			goto nomore;
8612 
8613 		if (flags & TH_SYN)
8614 			++xlen;
8615 		if (flags & TH_FIN) {
8616 			++xlen;
8617 			tp->t_flags |= TF_SENTFIN;
8618 		}
8619 		/* In the ENOBUFS case we do *not* update snd_max */
8620 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
8621 			if (tp->snd_una == tp->snd_max) {
8622 				/*
8623 				 * Update the time we just added data since
8624 				 * none was outstanding.
8625 				 */
8626 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8627 				tp->t_acktime = ticks;
8628 			}
8629 			tp->snd_max = tp->snd_nxt + len;
8630 		}
8631 	}
8632 nomore:
8633 	if (error) {
8634 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
8635 		/*
8636 		 * Failures do not advance the seq counter above. For the
8637 		 * case of ENOBUFS we will fall out and retry in 1ms with
8638 		 * the hpts. Everything else will just have to retransmit
8639 		 * with the timer.
8640 		 *
8641 		 * In any case, we do not want to loop around for another
8642 		 * send without a good reason.
8643 		 */
8644 		sendalot = 0;
8645 		switch (error) {
8646 		case EPERM:
8647 			tp->t_flags &= ~TF_FORCEDATA;
8648 			tp->t_softerror = error;
8649 			return (error);
8650 		case ENOBUFS:
8651 			if (slot == 0) {
8652 				/*
8653 				 * Pace us right away to retry in a some
8654 				 * time
8655 				 */
8656 				slot = 1 + rack->rc_enobuf;
8657 				if (rack->rc_enobuf < 255)
8658 					rack->rc_enobuf++;
8659 				if (slot > (rack->rc_rack_rtt / 2)) {
8660 					slot = rack->rc_rack_rtt / 2;
8661 				}
8662 				if (slot < 10)
8663 					slot = 10;
8664 			}
8665 			counter_u64_add(rack_saw_enobuf, 1);
8666 			error = 0;
8667 			goto enobufs;
8668 		case EMSGSIZE:
8669 			/*
8670 			 * For some reason the interface we used initially
8671 			 * to send segments changed to another or lowered
8672 			 * its MTU. If TSO was active we either got an
8673 			 * interface without TSO capabilits or TSO was
8674 			 * turned off. If we obtained mtu from ip_output()
8675 			 * then update it and try again.
8676 			 */
8677 			if (tso)
8678 				tp->t_flags &= ~TF_TSO;
8679 			if (mtu != 0) {
8680 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
8681 				goto again;
8682 			}
8683 			slot = 10;
8684 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8685 			tp->t_flags &= ~TF_FORCEDATA;
8686 			return (error);
8687 		case ENETUNREACH:
8688 			counter_u64_add(rack_saw_enetunreach, 1);
8689 		case EHOSTDOWN:
8690 		case EHOSTUNREACH:
8691 		case ENETDOWN:
8692 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
8693 				tp->t_softerror = error;
8694 			}
8695 			/* FALLTHROUGH */
8696 		default:
8697 			slot = 10;
8698 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8699 			tp->t_flags &= ~TF_FORCEDATA;
8700 			return (error);
8701 		}
8702 	} else {
8703 		rack->rc_enobuf = 0;
8704 	}
8705 	TCPSTAT_INC(tcps_sndtotal);
8706 
8707 	/*
8708 	 * Data sent (as far as we can tell). If this advertises a larger
8709 	 * window than any other segment, then remember the size of the
8710 	 * advertised window. Any pending ACK has now been sent.
8711 	 */
8712 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
8713 		tp->rcv_adv = tp->rcv_nxt + recwin;
8714 	tp->last_ack_sent = tp->rcv_nxt;
8715 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
8716 enobufs:
8717 	rack->r_tlp_running = 0;
8718 	if ((flags & TH_RST) || (would_have_fin == 1)) {
8719 		/*
8720 		 * We don't send again after a RST. We also do *not* send
8721 		 * again if we would have had a find, but now have
8722 		 * outstanding data.
8723 		 */
8724 		slot = 0;
8725 		sendalot = 0;
8726 	}
8727 	if (slot) {
8728 		/* set the rack tcb into the slot N */
8729 		counter_u64_add(rack_paced_segments, 1);
8730 	} else if (sendalot) {
8731 		if (len)
8732 			counter_u64_add(rack_unpaced_segments, 1);
8733 		sack_rxmit = 0;
8734 		tp->t_flags &= ~TF_FORCEDATA;
8735 		goto again;
8736 	} else if (len) {
8737 		counter_u64_add(rack_unpaced_segments, 1);
8738 	}
8739 	tp->t_flags &= ~TF_FORCEDATA;
8740 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
8741 	return (error);
8742 }
8743 
8744 /*
8745  * rack_ctloutput() must drop the inpcb lock before performing copyin on
8746  * socket option arguments.  When it re-acquires the lock after the copy, it
8747  * has to revalidate that the connection is still valid for the socket
8748  * option.
8749  */
8750 static int
8751 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
8752     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8753 {
8754 	int32_t error = 0, optval;
8755 
8756 	switch (sopt->sopt_name) {
8757 	case TCP_RACK_PROP_RATE:
8758 	case TCP_RACK_PROP:
8759 	case TCP_RACK_TLP_REDUCE:
8760 	case TCP_RACK_EARLY_RECOV:
8761 	case TCP_RACK_PACE_ALWAYS:
8762 	case TCP_DELACK:
8763 	case TCP_RACK_PACE_REDUCE:
8764 	case TCP_RACK_PACE_MAX_SEG:
8765 	case TCP_RACK_PRR_SENDALOT:
8766 	case TCP_RACK_MIN_TO:
8767 	case TCP_RACK_EARLY_SEG:
8768 	case TCP_RACK_REORD_THRESH:
8769 	case TCP_RACK_REORD_FADE:
8770 	case TCP_RACK_TLP_THRESH:
8771 	case TCP_RACK_PKT_DELAY:
8772 	case TCP_RACK_TLP_USE:
8773 	case TCP_RACK_TLP_INC_VAR:
8774 	case TCP_RACK_IDLE_REDUCE_HIGH:
8775 	case TCP_RACK_MIN_PACE:
8776 	case TCP_RACK_MIN_PACE_SEG:
8777 	case TCP_BBR_RACK_RTT_USE:
8778 	case TCP_DATA_AFTER_CLOSE:
8779 		break;
8780 	default:
8781 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8782 		break;
8783 	}
8784 	INP_WUNLOCK(inp);
8785 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
8786 	if (error)
8787 		return (error);
8788 	INP_WLOCK(inp);
8789 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
8790 		INP_WUNLOCK(inp);
8791 		return (ECONNRESET);
8792 	}
8793 	tp = intotcpcb(inp);
8794 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8795 	switch (sopt->sopt_name) {
8796 	case TCP_RACK_PROP_RATE:
8797 		if ((optval <= 0) || (optval >= 100)) {
8798 			error = EINVAL;
8799 			break;
8800 		}
8801 		RACK_OPTS_INC(tcp_rack_prop_rate);
8802 		rack->r_ctl.rc_prop_rate = optval;
8803 		break;
8804 	case TCP_RACK_TLP_USE:
8805 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
8806 			error = EINVAL;
8807 			break;
8808 		}
8809 		RACK_OPTS_INC(tcp_tlp_use);
8810 		rack->rack_tlp_threshold_use = optval;
8811 		break;
8812 	case TCP_RACK_PROP:
8813 		/* RACK proportional rate reduction (bool) */
8814 		RACK_OPTS_INC(tcp_rack_prop);
8815 		rack->r_ctl.rc_prop_reduce = optval;
8816 		break;
8817 	case TCP_RACK_TLP_REDUCE:
8818 		/* RACK TLP cwnd reduction (bool) */
8819 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
8820 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
8821 		break;
8822 	case TCP_RACK_EARLY_RECOV:
8823 		/* Should recovery happen early (bool) */
8824 		RACK_OPTS_INC(tcp_rack_early_recov);
8825 		rack->r_ctl.rc_early_recovery = optval;
8826 		break;
8827 	case TCP_RACK_PACE_ALWAYS:
8828 		/* Use the always pace method (bool)  */
8829 		RACK_OPTS_INC(tcp_rack_pace_always);
8830 		if (optval > 0)
8831 			rack->rc_always_pace = 1;
8832 		else
8833 			rack->rc_always_pace = 0;
8834 		break;
8835 	case TCP_RACK_PACE_REDUCE:
8836 		/* RACK Hptsi reduction factor (divisor) */
8837 		RACK_OPTS_INC(tcp_rack_pace_reduce);
8838 		if (optval)
8839 			/* Must be non-zero */
8840 			rack->rc_pace_reduce = optval;
8841 		else
8842 			error = EINVAL;
8843 		break;
8844 	case TCP_RACK_PACE_MAX_SEG:
8845 		/* Max segments in a pace */
8846 		RACK_OPTS_INC(tcp_rack_max_seg);
8847 		rack->rc_pace_max_segs = optval;
8848 		break;
8849 	case TCP_RACK_PRR_SENDALOT:
8850 		/* Allow PRR to send more than one seg */
8851 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
8852 		rack->r_ctl.rc_prr_sendalot = optval;
8853 		break;
8854 	case TCP_RACK_MIN_TO:
8855 		/* Minimum time between rack t-o's in ms */
8856 		RACK_OPTS_INC(tcp_rack_min_to);
8857 		rack->r_ctl.rc_min_to = optval;
8858 		break;
8859 	case TCP_RACK_EARLY_SEG:
8860 		/* If early recovery max segments */
8861 		RACK_OPTS_INC(tcp_rack_early_seg);
8862 		rack->r_ctl.rc_early_recovery_segs = optval;
8863 		break;
8864 	case TCP_RACK_REORD_THRESH:
8865 		/* RACK reorder threshold (shift amount) */
8866 		RACK_OPTS_INC(tcp_rack_reord_thresh);
8867 		if ((optval > 0) && (optval < 31))
8868 			rack->r_ctl.rc_reorder_shift = optval;
8869 		else
8870 			error = EINVAL;
8871 		break;
8872 	case TCP_RACK_REORD_FADE:
8873 		/* Does reordering fade after ms time */
8874 		RACK_OPTS_INC(tcp_rack_reord_fade);
8875 		rack->r_ctl.rc_reorder_fade = optval;
8876 		break;
8877 	case TCP_RACK_TLP_THRESH:
8878 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
8879 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
8880 		if (optval)
8881 			rack->r_ctl.rc_tlp_threshold = optval;
8882 		else
8883 			error = EINVAL;
8884 		break;
8885 	case TCP_RACK_PKT_DELAY:
8886 		/* RACK added ms i.e. rack-rtt + reord + N */
8887 		RACK_OPTS_INC(tcp_rack_pkt_delay);
8888 		rack->r_ctl.rc_pkt_delay = optval;
8889 		break;
8890 	case TCP_RACK_TLP_INC_VAR:
8891 		/* Does TLP include rtt variance in t-o */
8892 		RACK_OPTS_INC(tcp_rack_tlp_inc_var);
8893 		rack->r_ctl.rc_prr_inc_var = optval;
8894 		break;
8895 	case TCP_RACK_IDLE_REDUCE_HIGH:
8896 		RACK_OPTS_INC(tcp_rack_idle_reduce_high);
8897 		if (optval)
8898 			rack->r_idle_reduce_largest = 1;
8899 		else
8900 			rack->r_idle_reduce_largest = 0;
8901 		break;
8902 	case TCP_DELACK:
8903 		if (optval == 0)
8904 			tp->t_delayed_ack = 0;
8905 		else
8906 			tp->t_delayed_ack = 1;
8907 		if (tp->t_flags & TF_DELACK) {
8908 			tp->t_flags &= ~TF_DELACK;
8909 			tp->t_flags |= TF_ACKNOW;
8910 			rack_output(tp);
8911 		}
8912 		break;
8913 	case TCP_RACK_MIN_PACE:
8914 		RACK_OPTS_INC(tcp_rack_min_pace);
8915 		if (optval > 3)
8916 			rack->r_enforce_min_pace = 3;
8917 		else
8918 			rack->r_enforce_min_pace = optval;
8919 		break;
8920 	case TCP_RACK_MIN_PACE_SEG:
8921 		RACK_OPTS_INC(tcp_rack_min_pace_seg);
8922 		if (optval >= 16)
8923 			rack->r_min_pace_seg_thresh = 15;
8924 		else
8925 			rack->r_min_pace_seg_thresh = optval;
8926 		break;
8927 	case TCP_BBR_RACK_RTT_USE:
8928 		if ((optval != USE_RTT_HIGH) &&
8929 		    (optval != USE_RTT_LOW) &&
8930 		    (optval != USE_RTT_AVG))
8931 			error = EINVAL;
8932 		else
8933 			rack->r_ctl.rc_rate_sample_method = optval;
8934 		break;
8935 	case TCP_DATA_AFTER_CLOSE:
8936 		if (optval)
8937 			rack->rc_allow_data_af_clo = 1;
8938 		else
8939 			rack->rc_allow_data_af_clo = 0;
8940 		break;
8941 	default:
8942 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8943 		break;
8944 	}
8945 #ifdef NETFLIX_STATS
8946 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
8947 #endif
8948 	INP_WUNLOCK(inp);
8949 	return (error);
8950 }
8951 
8952 static int
8953 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
8954     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8955 {
8956 	int32_t error, optval;
8957 
8958 	/*
8959 	 * Because all our options are either boolean or an int, we can just
8960 	 * pull everything into optval and then unlock and copy. If we ever
8961 	 * add a option that is not a int, then this will have quite an
8962 	 * impact to this routine.
8963 	 */
8964 	switch (sopt->sopt_name) {
8965 	case TCP_RACK_PROP_RATE:
8966 		optval = rack->r_ctl.rc_prop_rate;
8967 		break;
8968 	case TCP_RACK_PROP:
8969 		/* RACK proportional rate reduction (bool) */
8970 		optval = rack->r_ctl.rc_prop_reduce;
8971 		break;
8972 	case TCP_RACK_TLP_REDUCE:
8973 		/* RACK TLP cwnd reduction (bool) */
8974 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
8975 		break;
8976 	case TCP_RACK_EARLY_RECOV:
8977 		/* Should recovery happen early (bool) */
8978 		optval = rack->r_ctl.rc_early_recovery;
8979 		break;
8980 	case TCP_RACK_PACE_REDUCE:
8981 		/* RACK Hptsi reduction factor (divisor) */
8982 		optval = rack->rc_pace_reduce;
8983 		break;
8984 	case TCP_RACK_PACE_MAX_SEG:
8985 		/* Max segments in a pace */
8986 		optval = rack->rc_pace_max_segs;
8987 		break;
8988 	case TCP_RACK_PACE_ALWAYS:
8989 		/* Use the always pace method */
8990 		optval = rack->rc_always_pace;
8991 		break;
8992 	case TCP_RACK_PRR_SENDALOT:
8993 		/* Allow PRR to send more than one seg */
8994 		optval = rack->r_ctl.rc_prr_sendalot;
8995 		break;
8996 	case TCP_RACK_MIN_TO:
8997 		/* Minimum time between rack t-o's in ms */
8998 		optval = rack->r_ctl.rc_min_to;
8999 		break;
9000 	case TCP_RACK_EARLY_SEG:
9001 		/* If early recovery max segments */
9002 		optval = rack->r_ctl.rc_early_recovery_segs;
9003 		break;
9004 	case TCP_RACK_REORD_THRESH:
9005 		/* RACK reorder threshold (shift amount) */
9006 		optval = rack->r_ctl.rc_reorder_shift;
9007 		break;
9008 	case TCP_RACK_REORD_FADE:
9009 		/* Does reordering fade after ms time */
9010 		optval = rack->r_ctl.rc_reorder_fade;
9011 		break;
9012 	case TCP_RACK_TLP_THRESH:
9013 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
9014 		optval = rack->r_ctl.rc_tlp_threshold;
9015 		break;
9016 	case TCP_RACK_PKT_DELAY:
9017 		/* RACK added ms i.e. rack-rtt + reord + N */
9018 		optval = rack->r_ctl.rc_pkt_delay;
9019 		break;
9020 	case TCP_RACK_TLP_USE:
9021 		optval = rack->rack_tlp_threshold_use;
9022 		break;
9023 	case TCP_RACK_TLP_INC_VAR:
9024 		/* Does TLP include rtt variance in t-o */
9025 		optval = rack->r_ctl.rc_prr_inc_var;
9026 		break;
9027 	case TCP_RACK_IDLE_REDUCE_HIGH:
9028 		optval = rack->r_idle_reduce_largest;
9029 		break;
9030 	case TCP_RACK_MIN_PACE:
9031 		optval = rack->r_enforce_min_pace;
9032 		break;
9033 	case TCP_RACK_MIN_PACE_SEG:
9034 		optval = rack->r_min_pace_seg_thresh;
9035 		break;
9036 	case TCP_BBR_RACK_RTT_USE:
9037 		optval = rack->r_ctl.rc_rate_sample_method;
9038 		break;
9039 	case TCP_DELACK:
9040 		optval = tp->t_delayed_ack;
9041 		break;
9042 	case TCP_DATA_AFTER_CLOSE:
9043 		optval = rack->rc_allow_data_af_clo;
9044 		break;
9045 	default:
9046 		return (tcp_default_ctloutput(so, sopt, inp, tp));
9047 		break;
9048 	}
9049 	INP_WUNLOCK(inp);
9050 	error = sooptcopyout(sopt, &optval, sizeof optval);
9051 	return (error);
9052 }
9053 
9054 static int
9055 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
9056 {
9057 	int32_t error = EINVAL;
9058 	struct tcp_rack *rack;
9059 
9060 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9061 	if (rack == NULL) {
9062 		/* Huh? */
9063 		goto out;
9064 	}
9065 	if (sopt->sopt_dir == SOPT_SET) {
9066 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
9067 	} else if (sopt->sopt_dir == SOPT_GET) {
9068 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
9069 	}
9070 out:
9071 	INP_WUNLOCK(inp);
9072 	return (error);
9073 }
9074 
9075 
9076 struct tcp_function_block __tcp_rack = {
9077 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
9078 	.tfb_tcp_output = rack_output,
9079 	.tfb_tcp_do_segment = rack_do_segment,
9080 	.tfb_tcp_hpts_do_segment = rack_hpts_do_segment,
9081 	.tfb_tcp_ctloutput = rack_ctloutput,
9082 	.tfb_tcp_fb_init = rack_init,
9083 	.tfb_tcp_fb_fini = rack_fini,
9084 	.tfb_tcp_timer_stop_all = rack_stopall,
9085 	.tfb_tcp_timer_activate = rack_timer_activate,
9086 	.tfb_tcp_timer_active = rack_timer_active,
9087 	.tfb_tcp_timer_stop = rack_timer_stop,
9088 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
9089 	.tfb_tcp_handoff_ok = rack_handoff_ok
9090 };
9091 
9092 static const char *rack_stack_names[] = {
9093 	__XSTRING(STACKNAME),
9094 #ifdef STACKALIAS
9095 	__XSTRING(STACKALIAS),
9096 #endif
9097 };
9098 
9099 static int
9100 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
9101 {
9102 	memset(mem, 0, size);
9103 	return (0);
9104 }
9105 
9106 static void
9107 rack_dtor(void *mem, int32_t size, void *arg)
9108 {
9109 
9110 }
9111 
9112 static bool rack_mod_inited = false;
9113 
9114 static int
9115 tcp_addrack(module_t mod, int32_t type, void *data)
9116 {
9117 	int32_t err = 0;
9118 	int num_stacks;
9119 
9120 	switch (type) {
9121 	case MOD_LOAD:
9122 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
9123 		    sizeof(struct rack_sendmap),
9124 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
9125 
9126 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
9127 		    sizeof(struct tcp_rack),
9128 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
9129 
9130 		sysctl_ctx_init(&rack_sysctl_ctx);
9131 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
9132 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
9133 		    OID_AUTO,
9134 		    __XSTRING(STACKNAME),
9135 		    CTLFLAG_RW, 0,
9136 		    "");
9137 		if (rack_sysctl_root == NULL) {
9138 			printf("Failed to add sysctl node\n");
9139 			err = EFAULT;
9140 			goto free_uma;
9141 		}
9142 		rack_init_sysctls();
9143 		num_stacks = nitems(rack_stack_names);
9144 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
9145 		    rack_stack_names, &num_stacks);
9146 		if (err) {
9147 			printf("Failed to register %s stack name for "
9148 			    "%s module\n", rack_stack_names[num_stacks],
9149 			    __XSTRING(MODNAME));
9150 			sysctl_ctx_free(&rack_sysctl_ctx);
9151 free_uma:
9152 			uma_zdestroy(rack_zone);
9153 			uma_zdestroy(rack_pcb_zone);
9154 			rack_counter_destroy();
9155 			printf("Failed to register rack module -- err:%d\n", err);
9156 			return (err);
9157 		}
9158 		rack_mod_inited = true;
9159 		break;
9160 	case MOD_QUIESCE:
9161 		err = deregister_tcp_functions(&__tcp_rack, true, false);
9162 		break;
9163 	case MOD_UNLOAD:
9164 		err = deregister_tcp_functions(&__tcp_rack, false, true);
9165 		if (err == EBUSY)
9166 			break;
9167 		if (rack_mod_inited) {
9168 			uma_zdestroy(rack_zone);
9169 			uma_zdestroy(rack_pcb_zone);
9170 			sysctl_ctx_free(&rack_sysctl_ctx);
9171 			rack_counter_destroy();
9172 			rack_mod_inited = false;
9173 		}
9174 		err = 0;
9175 		break;
9176 	default:
9177 		return (EOPNOTSUPP);
9178 	}
9179 	return (err);
9180 }
9181 
9182 static moduledata_t tcp_rack = {
9183 	.name = __XSTRING(MODNAME),
9184 	.evhand = tcp_addrack,
9185 	.priv = 0
9186 };
9187 
9188 MODULE_VERSION(MODNAME, 1);
9189 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
9190 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
9191