xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 882f88ff77194ef2eea005232780468404438788)
1 /*-
2  * Copyright (c) 2016-9 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #ifdef KERN_TLS
52 #include <sys/ktls.h>
53 #endif
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #ifdef STATS
57 #include <sys/qmath.h>
58 #include <sys/tree.h>
59 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
60 #endif
61 #include <sys/refcount.h>
62 #include <sys/tree.h>
63 #include <sys/queue.h>
64 #include <sys/smp.h>
65 #include <sys/kthread.h>
66 #include <sys/kern_prefetch.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/route.h>
71 #include <net/vnet.h>
72 
73 #define TCPSTATES		/* for logging */
74 
75 #include <netinet/in.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
80 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
81 #include <netinet/ip_var.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/tcp.h>
86 #define	TCPOUTFLAGS
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_log_buf.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_hpts.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/cc/cc.h>
95 #include <netinet/tcp_fastopen.h>
96 #include <netinet/tcp_lro.h>
97 #ifdef TCPDEBUG
98 #include <netinet/tcp_debug.h>
99 #endif				/* TCPDEBUG */
100 #ifdef TCP_OFFLOAD
101 #include <netinet/tcp_offload.h>
102 #endif
103 #ifdef INET6
104 #include <netinet6/tcp6_var.h>
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif				/* IPSEC */
113 
114 #include <netinet/udp.h>
115 #include <netinet/udp_var.h>
116 #include <machine/in_cksum.h>
117 
118 #ifdef MAC
119 #include <security/mac/mac_framework.h>
120 #endif
121 #include "sack_filter.h"
122 #include "tcp_rack.h"
123 #include "rack_bbr_common.h"
124 
125 uma_zone_t rack_zone;
126 uma_zone_t rack_pcb_zone;
127 
128 #ifndef TICKS2SBT
129 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
130 #endif
131 
132 struct sysctl_ctx_list rack_sysctl_ctx;
133 struct sysctl_oid *rack_sysctl_root;
134 
135 #define CUM_ACKED 1
136 #define SACKED 2
137 
138 /*
139  * The RACK module incorporates a number of
140  * TCP ideas that have been put out into the IETF
141  * over the last few years:
142  * - Matt Mathis's Rate Halving which slowly drops
143  *    the congestion window so that the ack clock can
144  *    be maintained during a recovery.
145  * - Yuchung Cheng's RACK TCP (for which its named) that
146  *    will stop us using the number of dup acks and instead
147  *    use time as the gage of when we retransmit.
148  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
149  *    of Dukkipati et.al.
150  * RACK depends on SACK, so if an endpoint arrives that
151  * cannot do SACK the state machine below will shuttle the
152  * connection back to using the "default" TCP stack that is
153  * in FreeBSD.
154  *
155  * To implement RACK the original TCP stack was first decomposed
156  * into a functional state machine with individual states
157  * for each of the possible TCP connection states. The do_segement
158  * functions role in life is to mandate the connection supports SACK
159  * initially and then assure that the RACK state matches the conenction
160  * state before calling the states do_segment function. Each
161  * state is simplified due to the fact that the original do_segment
162  * has been decomposed and we *know* what state we are in (no
163  * switches on the state) and all tests for SACK are gone. This
164  * greatly simplifies what each state does.
165  *
166  * TCP output is also over-written with a new version since it
167  * must maintain the new rack scoreboard.
168  *
169  */
170 static int32_t rack_tlp_thresh = 1;
171 static int32_t rack_reorder_thresh = 2;
172 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
173 						 * - 60 seconds */
174 /* Attack threshold detections */
175 static uint32_t rack_highest_sack_thresh_seen = 0;
176 static uint32_t rack_highest_move_thresh_seen = 0;
177 
178 static int32_t rack_pkt_delay = 1;
179 static int32_t rack_min_pace_time = 0;
180 static int32_t rack_early_recovery = 1;
181 static int32_t rack_send_a_lot_in_prr = 1;
182 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
183 static int32_t rack_verbose_logging = 0;
184 static int32_t rack_ignore_data_after_close = 1;
185 static int32_t use_rack_cheat = 1;
186 static int32_t rack_persist_min = 250;	/* 250ms */
187 static int32_t rack_persist_max = 1000;	/* 1 Second */
188 static int32_t rack_sack_not_required = 0;	/* set to one to allow non-sack to use rack */
189 static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
190 
191 /*
192  * Currently regular tcp has a rto_min of 30ms
193  * the backoff goes 12 times so that ends up
194  * being a total of 122.850 seconds before a
195  * connection is killed.
196  */
197 static int32_t rack_tlp_min = 10;
198 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
199 static int32_t rack_rto_max = 4000;	/* 4 seconds */
200 static const int32_t rack_free_cache = 2;
201 static int32_t rack_hptsi_segments = 40;
202 static int32_t rack_rate_sample_method = USE_RTT_LOW;
203 static int32_t rack_pace_every_seg = 0;
204 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
205 static int32_t rack_slot_reduction = 4;
206 static int32_t rack_lower_cwnd_at_tlp = 0;
207 static int32_t rack_use_proportional_reduce = 0;
208 static int32_t rack_proportional_rate = 10;
209 static int32_t rack_tlp_max_resend = 2;
210 static int32_t rack_limited_retran = 0;
211 static int32_t rack_always_send_oldest = 0;
212 static int32_t rack_use_sack_filter = 1;
213 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
214 static int32_t rack_per_of_gp = 50;
215 
216 /* Rack specific counters */
217 counter_u64_t rack_badfr;
218 counter_u64_t rack_badfr_bytes;
219 counter_u64_t rack_rtm_prr_retran;
220 counter_u64_t rack_rtm_prr_newdata;
221 counter_u64_t rack_timestamp_mismatch;
222 counter_u64_t rack_reorder_seen;
223 counter_u64_t rack_paced_segments;
224 counter_u64_t rack_unpaced_segments;
225 counter_u64_t rack_calc_zero;
226 counter_u64_t rack_calc_nonzero;
227 counter_u64_t rack_saw_enobuf;
228 counter_u64_t rack_saw_enetunreach;
229 counter_u64_t rack_per_timer_hole;
230 
231 /* Tail loss probe counters */
232 counter_u64_t rack_tlp_tot;
233 counter_u64_t rack_tlp_newdata;
234 counter_u64_t rack_tlp_retran;
235 counter_u64_t rack_tlp_retran_bytes;
236 counter_u64_t rack_tlp_retran_fail;
237 counter_u64_t rack_to_tot;
238 counter_u64_t rack_to_arm_rack;
239 counter_u64_t rack_to_arm_tlp;
240 counter_u64_t rack_to_alloc;
241 counter_u64_t rack_to_alloc_hard;
242 counter_u64_t rack_to_alloc_emerg;
243 counter_u64_t rack_to_alloc_limited;
244 counter_u64_t rack_alloc_limited_conns;
245 counter_u64_t rack_split_limited;
246 
247 counter_u64_t rack_sack_proc_all;
248 counter_u64_t rack_sack_proc_short;
249 counter_u64_t rack_sack_proc_restart;
250 counter_u64_t rack_sack_attacks_detected;
251 counter_u64_t rack_sack_attacks_reversed;
252 counter_u64_t rack_sack_used_next_merge;
253 counter_u64_t rack_sack_splits;
254 counter_u64_t rack_sack_used_prev_merge;
255 counter_u64_t rack_sack_skipped_acked;
256 counter_u64_t rack_ack_total;
257 counter_u64_t rack_express_sack;
258 counter_u64_t rack_sack_total;
259 counter_u64_t rack_move_none;
260 counter_u64_t rack_move_some;
261 
262 counter_u64_t rack_used_tlpmethod;
263 counter_u64_t rack_used_tlpmethod2;
264 counter_u64_t rack_enter_tlp_calc;
265 counter_u64_t rack_input_idle_reduces;
266 counter_u64_t rack_collapsed_win;
267 counter_u64_t rack_tlp_does_nada;
268 
269 /* Counters for HW TLS */
270 counter_u64_t rack_tls_rwnd;
271 counter_u64_t rack_tls_cwnd;
272 counter_u64_t rack_tls_app;
273 counter_u64_t rack_tls_other;
274 counter_u64_t rack_tls_filled;
275 counter_u64_t rack_tls_rxt;
276 counter_u64_t rack_tls_tlp;
277 
278 /* Temp CPU counters */
279 counter_u64_t rack_find_high;
280 
281 counter_u64_t rack_progress_drops;
282 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
283 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
284 
285 static void
286 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
287 
288 static int
289 rack_process_ack(struct mbuf *m, struct tcphdr *th,
290     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
291     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
292 static int
293 rack_process_data(struct mbuf *m, struct tcphdr *th,
294     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
295     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
296 static void
297 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
298     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
299 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
300 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
301     uint8_t limit_type);
302 static struct rack_sendmap *
303 rack_check_recovery_mode(struct tcpcb *tp,
304     uint32_t tsused);
305 static void
306 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
307     uint32_t type);
308 static void rack_counter_destroy(void);
309 static int
310 rack_ctloutput(struct socket *so, struct sockopt *sopt,
311     struct inpcb *inp, struct tcpcb *tp);
312 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
313 static void
314 rack_do_segment(struct mbuf *m, struct tcphdr *th,
315     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
316     uint8_t iptos);
317 static void rack_dtor(void *mem, int32_t size, void *arg);
318 static void
319 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
320     uint32_t t, uint32_t cts);
321 static struct rack_sendmap *
322 rack_find_high_nonack(struct tcp_rack *rack,
323     struct rack_sendmap *rsm);
324 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
325 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
326 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
327 static int
328 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
329     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
330 static int32_t rack_handoff_ok(struct tcpcb *tp);
331 static int32_t rack_init(struct tcpcb *tp);
332 static void rack_init_sysctls(void);
333 static void
334 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
335     struct tcphdr *th);
336 static void
337 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
338     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
339     uint8_t pass, struct rack_sendmap *hintrsm);
340 static void
341 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
342     struct rack_sendmap *rsm);
343 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
344 static int32_t rack_output(struct tcpcb *tp);
345 
346 static uint32_t
347 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
348     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
349     uint32_t cts, int *moved_two);
350 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
351 static void rack_remxt_tmr(struct tcpcb *tp);
352 static int
353 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
354     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
355 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
356 static int32_t rack_stopall(struct tcpcb *tp);
357 static void
358 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
359     uint32_t delta);
360 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
361 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
362 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
363 static uint32_t
364 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
365     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
366 static void
367 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
368     struct rack_sendmap *rsm, uint32_t ts);
369 static int
370 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
371     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
372 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
373 static int
374 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
375     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
376     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
377 static int
378 rack_do_closing(struct mbuf *m, struct tcphdr *th,
379     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
380     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
381 static int
382 rack_do_established(struct mbuf *m, struct tcphdr *th,
383     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
384     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
385 static int
386 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
387     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
388     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
389 static int
390 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
391     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
392     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
393 static int
394 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
395     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
396     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
397 static int
398 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
399     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
400     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
401 static int
402 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
403     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
404     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
405 static int
406 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
407     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
408     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
409 struct rack_sendmap *
410 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
411     uint32_t tsused);
412 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
413 static void
414      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
415 
416 int32_t rack_clear_counter=0;
417 
418 
419 static int
420 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
421 {
422 	uint32_t stat;
423 	int32_t error;
424 
425 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
426 	if (error || req->newptr == NULL)
427 		return error;
428 
429 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
430 	if (error)
431 		return (error);
432 	if (stat == 1) {
433 #ifdef INVARIANTS
434 		printf("Clearing RACK counters\n");
435 #endif
436 		counter_u64_zero(rack_badfr);
437 		counter_u64_zero(rack_badfr_bytes);
438 		counter_u64_zero(rack_rtm_prr_retran);
439 		counter_u64_zero(rack_rtm_prr_newdata);
440 		counter_u64_zero(rack_timestamp_mismatch);
441 		counter_u64_zero(rack_reorder_seen);
442 		counter_u64_zero(rack_tlp_tot);
443 		counter_u64_zero(rack_tlp_newdata);
444 		counter_u64_zero(rack_tlp_retran);
445 		counter_u64_zero(rack_tlp_retran_bytes);
446 		counter_u64_zero(rack_tlp_retran_fail);
447 		counter_u64_zero(rack_to_tot);
448 		counter_u64_zero(rack_to_arm_rack);
449 		counter_u64_zero(rack_to_arm_tlp);
450 		counter_u64_zero(rack_paced_segments);
451 		counter_u64_zero(rack_calc_zero);
452 		counter_u64_zero(rack_calc_nonzero);
453 		counter_u64_zero(rack_unpaced_segments);
454 		counter_u64_zero(rack_saw_enobuf);
455 		counter_u64_zero(rack_saw_enetunreach);
456 		counter_u64_zero(rack_per_timer_hole);
457 		counter_u64_zero(rack_to_alloc_hard);
458 		counter_u64_zero(rack_to_alloc_emerg);
459 		counter_u64_zero(rack_sack_proc_all);
460 		counter_u64_zero(rack_sack_proc_short);
461 		counter_u64_zero(rack_sack_proc_restart);
462 		counter_u64_zero(rack_to_alloc);
463 		counter_u64_zero(rack_to_alloc_limited);
464 		counter_u64_zero(rack_alloc_limited_conns);
465 		counter_u64_zero(rack_split_limited);
466 		counter_u64_zero(rack_find_high);
467 		counter_u64_zero(rack_tls_rwnd);
468 		counter_u64_zero(rack_tls_cwnd);
469 		counter_u64_zero(rack_tls_app);
470 		counter_u64_zero(rack_tls_other);
471 		counter_u64_zero(rack_tls_filled);
472 		counter_u64_zero(rack_tls_rxt);
473 		counter_u64_zero(rack_tls_tlp);
474 		counter_u64_zero(rack_sack_attacks_detected);
475 		counter_u64_zero(rack_sack_attacks_reversed);
476 		counter_u64_zero(rack_sack_used_next_merge);
477 		counter_u64_zero(rack_sack_used_prev_merge);
478 		counter_u64_zero(rack_sack_splits);
479 		counter_u64_zero(rack_sack_skipped_acked);
480 		counter_u64_zero(rack_ack_total);
481 		counter_u64_zero(rack_express_sack);
482 		counter_u64_zero(rack_sack_total);
483 		counter_u64_zero(rack_move_none);
484 		counter_u64_zero(rack_move_some);
485 		counter_u64_zero(rack_used_tlpmethod);
486 		counter_u64_zero(rack_used_tlpmethod2);
487 		counter_u64_zero(rack_enter_tlp_calc);
488 		counter_u64_zero(rack_progress_drops);
489 		counter_u64_zero(rack_tlp_does_nada);
490 		counter_u64_zero(rack_collapsed_win);
491 
492 	}
493 	rack_clear_counter = 0;
494 	return (0);
495 }
496 
497 
498 
499 static void
500 rack_init_sysctls(void)
501 {
502 	struct sysctl_oid *rack_counters;
503 	struct sysctl_oid *rack_attack;
504 
505 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
506 	    SYSCTL_CHILDREN(rack_sysctl_root),
507 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
508 	    &rack_rate_sample_method , USE_RTT_LOW,
509 	    "What method should we use for rate sampling 0=high, 1=low ");
510 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
511 	    SYSCTL_CHILDREN(rack_sysctl_root),
512 	    OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
513 	    &rack_hw_tls_max_seg , 0,
514 	    "Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
515 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
516 	    SYSCTL_CHILDREN(rack_sysctl_root),
517 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
518 	    &rack_ignore_data_after_close, 0,
519 	    "Do we hold off sending a RST until all pending data is ack'd");
520 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
521 	    SYSCTL_CHILDREN(rack_sysctl_root),
522 	    OID_AUTO, "cheat_rxt", CTLFLAG_RW,
523 	    &use_rack_cheat, 1,
524 	    "Do we use the rxt cheat for rack?");
525 
526 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
527 	    SYSCTL_CHILDREN(rack_sysctl_root),
528 	    OID_AUTO, "persmin", CTLFLAG_RW,
529 	    &rack_persist_min, 250,
530 	    "What is the minimum time in milliseconds between persists");
531 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
532 	    SYSCTL_CHILDREN(rack_sysctl_root),
533 	    OID_AUTO, "persmax", CTLFLAG_RW,
534 	    &rack_persist_max, 1000,
535 	    "What is the largest delay in milliseconds between persists");
536 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
537 	    SYSCTL_CHILDREN(rack_sysctl_root),
538 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
539 	    &rack_sack_not_required, 0,
540 	    "Do we allow rack to run on connections not supporting SACK?");
541 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
542 	    SYSCTL_CHILDREN(rack_sysctl_root),
543 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
544 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
545 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
546 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
547 	    SYSCTL_CHILDREN(rack_sysctl_root),
548 	    OID_AUTO, "gp_percentage", CTLFLAG_RW,
549 	    &rack_per_of_gp, 50,
550 	    "Do we pace to percentage of goodput (0=old method)?");
551 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
552 	    SYSCTL_CHILDREN(rack_sysctl_root),
553 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
554 	    &rack_min_pace_time, 0,
555 	    "Should we enforce a minimum pace time of 1ms");
556 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
557 	    SYSCTL_CHILDREN(rack_sysctl_root),
558 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
559 	    &rack_verbose_logging, 0,
560 	    "Should RACK black box logging be verbose");
561 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
562 	    SYSCTL_CHILDREN(rack_sysctl_root),
563 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
564 	    &rack_use_sack_filter, 1,
565 	    "Do we use sack filtering?");
566 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
567 	    SYSCTL_CHILDREN(rack_sysctl_root),
568 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
569 	    &rack_delayed_ack_time, 200,
570 	    "Delayed ack time (200ms)");
571 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
572 	    SYSCTL_CHILDREN(rack_sysctl_root),
573 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
574 	    &rack_tlp_min, 10,
575 	    "TLP minimum timeout per the specification (10ms)");
576 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
577 	    SYSCTL_CHILDREN(rack_sysctl_root),
578 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
579 	    &rack_always_send_oldest, 1,
580 	    "Should we always send the oldest TLP and RACK-TLP");
581 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
582 	    SYSCTL_CHILDREN(rack_sysctl_root),
583 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
584 	    &rack_limited_retran, 0,
585 	    "How many times can a rack timeout drive out sends");
586 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
587 	    SYSCTL_CHILDREN(rack_sysctl_root),
588 	    OID_AUTO, "minrto", CTLFLAG_RW,
589 	    &rack_rto_min, 0,
590 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
591 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
592 	    SYSCTL_CHILDREN(rack_sysctl_root),
593 	    OID_AUTO, "maxrto", CTLFLAG_RW,
594 	    &rack_rto_max, 0,
595 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
596 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
597 	    SYSCTL_CHILDREN(rack_sysctl_root),
598 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
599 	    &rack_tlp_max_resend, 2,
600 	    "How many times does TLP retry a single segment or multiple with no ACK");
601 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
602 	    SYSCTL_CHILDREN(rack_sysctl_root),
603 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
604 	    &rack_use_proportional_reduce, 0,
605 	    "Should we proportionaly reduce cwnd based on the number of losses ");
606 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
607 	    SYSCTL_CHILDREN(rack_sysctl_root),
608 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
609 	    &rack_proportional_rate, 10,
610 	    "What percent reduction per loss");
611 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
612 	    SYSCTL_CHILDREN(rack_sysctl_root),
613 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
614 	    &rack_lower_cwnd_at_tlp, 0,
615 	    "When a TLP completes a retran should we enter recovery?");
616 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
617 	    SYSCTL_CHILDREN(rack_sysctl_root),
618 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
619 	    &rack_slot_reduction, 4,
620 	    "When setting a slot should we reduce by divisor");
621 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
622 	    SYSCTL_CHILDREN(rack_sysctl_root),
623 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
624 	    &rack_pace_every_seg, 0,
625 	    "Should we use the original pacing mechanism that did not pace much?");
626 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
627 	    SYSCTL_CHILDREN(rack_sysctl_root),
628 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
629 	    &rack_hptsi_segments, 40,
630 	    "Should we pace out only a limited size of segments");
631 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
632 	    SYSCTL_CHILDREN(rack_sysctl_root),
633 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
634 	    &rack_send_a_lot_in_prr, 1,
635 	    "Send a lot in prr");
636 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
637 	    SYSCTL_CHILDREN(rack_sysctl_root),
638 	    OID_AUTO, "minto", CTLFLAG_RW,
639 	    &rack_min_to, 1,
640 	    "Minimum rack timeout in milliseconds");
641 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
642 	    SYSCTL_CHILDREN(rack_sysctl_root),
643 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
644 	    &rack_early_recovery, 1,
645 	    "Do we do early recovery with rack");
646 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
647 	    SYSCTL_CHILDREN(rack_sysctl_root),
648 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
649 	    &rack_reorder_thresh, 2,
650 	    "What factor for rack will be added when seeing reordering (shift right)");
651 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
652 	    SYSCTL_CHILDREN(rack_sysctl_root),
653 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
654 	    &rack_tlp_thresh, 1,
655 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
656 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
657 	    SYSCTL_CHILDREN(rack_sysctl_root),
658 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
659 	    &rack_reorder_fade, 0,
660 	    "Does reorder detection fade, if so how many ms (0 means never)");
661 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
662 	    SYSCTL_CHILDREN(rack_sysctl_root),
663 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
664 	    &rack_pkt_delay, 1,
665 	    "Extra RACK time (in ms) besides reordering thresh");
666 
667 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
668 	    SYSCTL_CHILDREN(rack_sysctl_root),
669 	    OID_AUTO,
670 	    "stats",
671 	    CTLFLAG_RW, 0,
672 	    "Rack Counters");
673 	rack_badfr = counter_u64_alloc(M_WAITOK);
674 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
675 	    SYSCTL_CHILDREN(rack_counters),
676 	    OID_AUTO, "badfr", CTLFLAG_RD,
677 	    &rack_badfr, "Total number of bad FRs");
678 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
680 	    SYSCTL_CHILDREN(rack_counters),
681 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
682 	    &rack_badfr_bytes, "Total number of bad FRs");
683 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
685 	    SYSCTL_CHILDREN(rack_counters),
686 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
687 	    &rack_rtm_prr_retran,
688 	    "Total number of prr based retransmits");
689 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
691 	    SYSCTL_CHILDREN(rack_counters),
692 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
693 	    &rack_rtm_prr_newdata,
694 	    "Total number of prr based new transmits");
695 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
697 	    SYSCTL_CHILDREN(rack_counters),
698 	    OID_AUTO, "tsnf", CTLFLAG_RD,
699 	    &rack_timestamp_mismatch,
700 	    "Total number of timestamps that we could not find the reported ts");
701 	rack_find_high = counter_u64_alloc(M_WAITOK);
702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
703 	    SYSCTL_CHILDREN(rack_counters),
704 	    OID_AUTO, "findhigh", CTLFLAG_RD,
705 	    &rack_find_high,
706 	    "Total number of FIN causing find-high");
707 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
709 	    SYSCTL_CHILDREN(rack_counters),
710 	    OID_AUTO, "reordering", CTLFLAG_RD,
711 	    &rack_reorder_seen,
712 	    "Total number of times we added delay due to reordering");
713 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
715 	    SYSCTL_CHILDREN(rack_counters),
716 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
717 	    &rack_tlp_tot,
718 	    "Total number of tail loss probe expirations");
719 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
721 	    SYSCTL_CHILDREN(rack_counters),
722 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
723 	    &rack_tlp_newdata,
724 	    "Total number of tail loss probe sending new data");
725 
726 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
727 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
728 	    SYSCTL_CHILDREN(rack_counters),
729 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
730 	    &rack_tlp_retran,
731 	    "Total number of tail loss probe sending retransmitted data");
732 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
733 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
734 	    SYSCTL_CHILDREN(rack_counters),
735 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
736 	    &rack_tlp_retran_bytes,
737 	    "Total bytes of tail loss probe sending retransmitted data");
738 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
739 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
740 	    SYSCTL_CHILDREN(rack_counters),
741 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
742 	    &rack_tlp_retran_fail,
743 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
744 	rack_to_tot = counter_u64_alloc(M_WAITOK);
745 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
746 	    SYSCTL_CHILDREN(rack_counters),
747 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
748 	    &rack_to_tot,
749 	    "Total number of times the rack to expired?");
750 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
751 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
752 	    SYSCTL_CHILDREN(rack_counters),
753 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
754 	    &rack_to_arm_rack,
755 	    "Total number of times the rack timer armed?");
756 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
757 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
758 	    SYSCTL_CHILDREN(rack_counters),
759 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
760 	    &rack_to_arm_tlp,
761 	    "Total number of times the tlp timer armed?");
762 
763 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
764 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
765 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
766 	    SYSCTL_CHILDREN(rack_counters),
767 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
768 	    &rack_calc_zero,
769 	    "Total number of times pacing time worked out to zero?");
770 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
771 	    SYSCTL_CHILDREN(rack_counters),
772 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
773 	    &rack_calc_nonzero,
774 	    "Total number of times pacing time worked out to non-zero?");
775 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
776 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
777 	    SYSCTL_CHILDREN(rack_counters),
778 	    OID_AUTO, "paced", CTLFLAG_RD,
779 	    &rack_paced_segments,
780 	    "Total number of times a segment send caused hptsi");
781 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
782 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
783 	    SYSCTL_CHILDREN(rack_counters),
784 	    OID_AUTO, "unpaced", CTLFLAG_RD,
785 	    &rack_unpaced_segments,
786 	    "Total number of times a segment did not cause hptsi");
787 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
788 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
789 	    SYSCTL_CHILDREN(rack_counters),
790 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
791 	    &rack_saw_enobuf,
792 	    "Total number of times a segment did not cause hptsi");
793 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
794 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_counters),
796 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
797 	    &rack_saw_enetunreach,
798 	    "Total number of times a segment did not cause hptsi");
799 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
800 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
801 	    SYSCTL_CHILDREN(rack_counters),
802 	    OID_AUTO, "allocs", CTLFLAG_RD,
803 	    &rack_to_alloc,
804 	    "Total allocations of tracking structures");
805 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
806 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
807 	    SYSCTL_CHILDREN(rack_counters),
808 	    OID_AUTO, "allochard", CTLFLAG_RD,
809 	    &rack_to_alloc_hard,
810 	    "Total allocations done with sleeping the hard way");
811 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
812 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
813 	    SYSCTL_CHILDREN(rack_counters),
814 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
815 	    &rack_to_alloc_emerg,
816 	    "Total allocations done from emergency cache");
817 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
818 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
819 	    SYSCTL_CHILDREN(rack_counters),
820 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
821 	    &rack_to_alloc_limited,
822 	    "Total allocations dropped due to limit");
823 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
824 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
825 	    SYSCTL_CHILDREN(rack_counters),
826 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
827 	    &rack_alloc_limited_conns,
828 	    "Connections with allocations dropped due to limit");
829 	rack_split_limited = counter_u64_alloc(M_WAITOK);
830 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
831 	    SYSCTL_CHILDREN(rack_counters),
832 	    OID_AUTO, "split_limited", CTLFLAG_RD,
833 	    &rack_split_limited,
834 	    "Split allocations dropped due to limit");
835 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
836 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
837 	    SYSCTL_CHILDREN(rack_counters),
838 	    OID_AUTO, "sack_long", CTLFLAG_RD,
839 	    &rack_sack_proc_all,
840 	    "Total times we had to walk whole list for sack processing");
841 
842 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
844 	    SYSCTL_CHILDREN(rack_counters),
845 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
846 	    &rack_sack_proc_restart,
847 	    "Total times we had to walk whole list due to a restart");
848 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_counters),
851 	    OID_AUTO, "sack_short", CTLFLAG_RD,
852 	    &rack_sack_proc_short,
853 	    "Total times we took shortcut for sack processing");
854 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
856 	    SYSCTL_CHILDREN(rack_counters),
857 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
858 	    &rack_enter_tlp_calc,
859 	    "Total times we called calc-tlp");
860 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
862 	    SYSCTL_CHILDREN(rack_counters),
863 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
864 	    &rack_used_tlpmethod,
865 	    "Total number of runt sacks");
866 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
867 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
868 	    SYSCTL_CHILDREN(rack_counters),
869 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
870 	    &rack_used_tlpmethod2,
871 	    "Total number of times we hit TLP method 2");
872 	/* Sack Attacker detection stuff */
873 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
874 	    SYSCTL_CHILDREN(rack_sysctl_root),
875 	    OID_AUTO,
876 	    "sack_attack",
877 	    CTLFLAG_RW, 0,
878 	    "Rack Sack Attack Counters and Controls");
879 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
880 	    SYSCTL_CHILDREN(rack_attack),
881 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
882 	    &rack_highest_sack_thresh_seen, 0,
883 	    "Highest sack to ack ratio seen");
884 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
885 	    SYSCTL_CHILDREN(rack_attack),
886 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
887 	    &rack_highest_move_thresh_seen, 0,
888 	    "Highest move to non-move ratio seen");
889 	rack_ack_total = counter_u64_alloc(M_WAITOK);
890 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_attack),
892 	    OID_AUTO, "acktotal", CTLFLAG_RD,
893 	    &rack_ack_total,
894 	    "Total number of Ack's");
895 
896 	rack_express_sack = counter_u64_alloc(M_WAITOK);
897 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
898 	    SYSCTL_CHILDREN(rack_attack),
899 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
900 	    &rack_express_sack,
901 	    "Total expresss number of Sack's");
902 	rack_sack_total = counter_u64_alloc(M_WAITOK);
903 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
904 	    SYSCTL_CHILDREN(rack_attack),
905 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
906 	    &rack_sack_total,
907 	    "Total number of SACK's");
908 	rack_move_none = counter_u64_alloc(M_WAITOK);
909 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
910 	    SYSCTL_CHILDREN(rack_attack),
911 	    OID_AUTO, "move_none", CTLFLAG_RD,
912 	    &rack_move_none,
913 	    "Total number of SACK index reuse of postions under threshold");
914 	rack_move_some = counter_u64_alloc(M_WAITOK);
915 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
916 	    SYSCTL_CHILDREN(rack_attack),
917 	    OID_AUTO, "move_some", CTLFLAG_RD,
918 	    &rack_move_some,
919 	    "Total number of SACK index reuse of postions over threshold");
920 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
921 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
922 	    SYSCTL_CHILDREN(rack_attack),
923 	    OID_AUTO, "attacks", CTLFLAG_RD,
924 	    &rack_sack_attacks_detected,
925 	    "Total number of SACK attackers that had sack disabled");
926 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
927 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
928 	    SYSCTL_CHILDREN(rack_attack),
929 	    OID_AUTO, "reversed", CTLFLAG_RD,
930 	    &rack_sack_attacks_reversed,
931 	    "Total number of SACK attackers that were later determined false positive");
932 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
933 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
934 	    SYSCTL_CHILDREN(rack_attack),
935 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
936 	    &rack_sack_used_next_merge,
937 	    "Total number of times we used the next merge");
938 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
939 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
940 	    SYSCTL_CHILDREN(rack_attack),
941 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
942 	    &rack_sack_used_prev_merge,
943 	    "Total number of times we used the prev merge");
944 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
945 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
946 	    SYSCTL_CHILDREN(rack_attack),
947 	    OID_AUTO, "skipacked", CTLFLAG_RD,
948 	    &rack_sack_skipped_acked,
949 	    "Total number of times we skipped previously sacked");
950 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
951 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
952 	    SYSCTL_CHILDREN(rack_attack),
953 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
954 	    &rack_sack_splits,
955 	    "Total number of times we did the old fashion tree split");
956 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
957 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
958 	    SYSCTL_CHILDREN(rack_counters),
959 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
960 	    &rack_progress_drops,
961 	    "Total number of progress drops");
962 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
963 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
964 	    SYSCTL_CHILDREN(rack_counters),
965 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
966 	    &rack_input_idle_reduces,
967 	    "Total number of idle reductions on input");
968 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
969 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
970 	    SYSCTL_CHILDREN(rack_counters),
971 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
972 	    &rack_collapsed_win,
973 	    "Total number of collapsed windows");
974 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
975 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
976 	    SYSCTL_CHILDREN(rack_counters),
977 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
978 	    &rack_tlp_does_nada,
979 	    "Total number of nada tlp calls");
980 
981 	rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
982 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
983 	    SYSCTL_CHILDREN(rack_counters),
984 	    OID_AUTO, "tls_rwnd", CTLFLAG_RD,
985 	    &rack_tls_rwnd,
986 	    "Total hdwr tls rwnd limited");
987 
988 	rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
989 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
990 	    SYSCTL_CHILDREN(rack_counters),
991 	    OID_AUTO, "tls_cwnd", CTLFLAG_RD,
992 	    &rack_tls_cwnd,
993 	    "Total hdwr tls cwnd limited");
994 
995 	rack_tls_app = counter_u64_alloc(M_WAITOK);
996 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
997 	    SYSCTL_CHILDREN(rack_counters),
998 	    OID_AUTO, "tls_app", CTLFLAG_RD,
999 	    &rack_tls_app,
1000 	    "Total hdwr tls app limited");
1001 
1002 	rack_tls_other = counter_u64_alloc(M_WAITOK);
1003 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1004 	    SYSCTL_CHILDREN(rack_counters),
1005 	    OID_AUTO, "tls_other", CTLFLAG_RD,
1006 	    &rack_tls_other,
1007 	    "Total hdwr tls other limited");
1008 
1009 	rack_tls_filled = counter_u64_alloc(M_WAITOK);
1010 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1011 	    SYSCTL_CHILDREN(rack_counters),
1012 	    OID_AUTO, "tls_filled", CTLFLAG_RD,
1013 	    &rack_tls_filled,
1014 	    "Total hdwr tls filled");
1015 
1016 	rack_tls_rxt = counter_u64_alloc(M_WAITOK);
1017 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1018 	    SYSCTL_CHILDREN(rack_counters),
1019 	    OID_AUTO, "tls_rxt", CTLFLAG_RD,
1020 	    &rack_tls_rxt,
1021 	    "Total hdwr rxt");
1022 
1023 	rack_tls_tlp = counter_u64_alloc(M_WAITOK);
1024 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1025 	    SYSCTL_CHILDREN(rack_counters),
1026 	    OID_AUTO, "tls_tlp", CTLFLAG_RD,
1027 	    &rack_tls_tlp,
1028 	    "Total hdwr tls tlp");
1029 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1030 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1031 	    SYSCTL_CHILDREN(rack_counters),
1032 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1033 	    &rack_per_timer_hole,
1034 	    "Total persists start in timer hole");
1035 
1036 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1037 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1038 	    OID_AUTO, "outsize", CTLFLAG_RD,
1039 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1040 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1041 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1042 	    OID_AUTO, "opts", CTLFLAG_RD,
1043 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1044 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1045 	    SYSCTL_CHILDREN(rack_sysctl_root),
1046 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1047 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1048 }
1049 
1050 static __inline int
1051 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1052 {
1053 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1054 	    SEQ_LT(b->r_start, a->r_end)) {
1055 		/*
1056 		 * The entry b is within the
1057 		 * block a. i.e.:
1058 		 * a --   |-------------|
1059 		 * b --   |----|
1060 		 * <or>
1061 		 * b --       |------|
1062 		 * <or>
1063 		 * b --       |-----------|
1064 		 */
1065 		return (0);
1066 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1067 		/*
1068 		 * b falls as either the next
1069 		 * sequence block after a so a
1070 		 * is said to be smaller than b.
1071 		 * i.e:
1072 		 * a --   |------|
1073 		 * b --          |--------|
1074 		 * or
1075 		 * b --              |-----|
1076 		 */
1077 		return (1);
1078 	}
1079 	/*
1080 	 * Whats left is where a is
1081 	 * larger than b. i.e:
1082 	 * a --         |-------|
1083 	 * b --  |---|
1084 	 * or even possibly
1085 	 * b --   |--------------|
1086 	 */
1087 	return (-1);
1088 }
1089 
1090 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1091 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1092 
1093 static inline int32_t
1094 rack_progress_timeout_check(struct tcpcb *tp)
1095 {
1096 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1097 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1098 			/*
1099 			 * There is an assumption that the caller
1100 			 * will drop the connection so we will
1101 			 * increment the counters here.
1102 			 */
1103 			struct tcp_rack *rack;
1104 			rack = (struct tcp_rack *)tp->t_fb_ptr;
1105 			counter_u64_add(rack_progress_drops, 1);
1106 #ifdef NETFLIX_STATS
1107 			TCPSTAT_INC(tcps_progdrops);
1108 #endif
1109 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
1110 			return (1);
1111 		}
1112 	}
1113 	return (0);
1114 }
1115 
1116 
1117 
1118 static void
1119 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1120 {
1121 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1122 		union tcp_log_stackspecific log;
1123 		struct timeval tv;
1124 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1125 		log.u_bbr.flex1 = tsused;
1126 		log.u_bbr.flex2 = thresh;
1127 		log.u_bbr.flex3 = rsm->r_flags;
1128 		log.u_bbr.flex4 = rsm->r_dupack;
1129 		log.u_bbr.flex5 = rsm->r_start;
1130 		log.u_bbr.flex6 = rsm->r_end;
1131 		log.u_bbr.flex8 = mod;
1132 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1133 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1134 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1135 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1136 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1137 		    &rack->rc_inp->inp_socket->so_rcv,
1138 		    &rack->rc_inp->inp_socket->so_snd,
1139 		    BBR_LOG_SETTINGS_CHG, 0,
1140 		    0, &log, false, &tv);
1141 	}
1142 }
1143 
1144 
1145 
1146 static void
1147 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1148 {
1149 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1150 		union tcp_log_stackspecific log;
1151 		struct timeval tv;
1152 
1153 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1154 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1155 		log.u_bbr.flex2 = to;
1156 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1157 		log.u_bbr.flex4 = slot;
1158 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1159 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1160 		log.u_bbr.flex7 = rack->rc_in_persist;
1161 		log.u_bbr.flex8 = which;
1162 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1163 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1164 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1165 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1166 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1167 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1168 		    &rack->rc_inp->inp_socket->so_rcv,
1169 		    &rack->rc_inp->inp_socket->so_snd,
1170 		    BBR_LOG_TIMERSTAR, 0,
1171 		    0, &log, false, &tv);
1172 	}
1173 }
1174 
1175 static void
1176 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
1177 {
1178 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1179 		union tcp_log_stackspecific log;
1180 		struct timeval tv;
1181 
1182 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1183 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1184 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1185 		log.u_bbr.flex8 = to_num;
1186 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1187 		log.u_bbr.flex2 = rack->rc_rack_rtt;
1188 		log.u_bbr.flex3 = no;
1189 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1190 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1191 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1192 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1193 		    &rack->rc_inp->inp_socket->so_rcv,
1194 		    &rack->rc_inp->inp_socket->so_snd,
1195 		    BBR_LOG_RTO, 0,
1196 		    0, &log, false, &tv);
1197 	}
1198 }
1199 
1200 static void
1201 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
1202     uint32_t o_srtt, uint32_t o_var)
1203 {
1204 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1205 		union tcp_log_stackspecific log;
1206 		struct timeval tv;
1207 
1208 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1209 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1210 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1211 		log.u_bbr.flex1 = t;
1212 		log.u_bbr.flex2 = o_srtt;
1213 		log.u_bbr.flex3 = o_var;
1214 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
1215 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
1216 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1217 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
1218 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1219 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1220 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1221 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1222 		TCP_LOG_EVENTP(tp, NULL,
1223 		    &rack->rc_inp->inp_socket->so_rcv,
1224 		    &rack->rc_inp->inp_socket->so_snd,
1225 		    BBR_LOG_BBRRTT, 0,
1226 		    0, &log, false, &tv);
1227 	}
1228 }
1229 
1230 static void
1231 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1232 {
1233 	/*
1234 	 * Log the rtt sample we are
1235 	 * applying to the srtt algorithm in
1236 	 * useconds.
1237 	 */
1238 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1239 		union tcp_log_stackspecific log;
1240 		struct timeval tv;
1241 
1242 		/* Convert our ms to a microsecond */
1243 		memset(&log, 0, sizeof(log));
1244 		log.u_bbr.flex1 = rtt * 1000;
1245 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1246 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
1247 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1248 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1249 		log.u_bbr.flex8 = rack->sack_attack_disable;
1250 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1251 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1252 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1253 		    &rack->rc_inp->inp_socket->so_rcv,
1254 		    &rack->rc_inp->inp_socket->so_snd,
1255 		    TCP_LOG_RTT, 0,
1256 		    0, &log, false, &tv);
1257 	}
1258 }
1259 
1260 
1261 static inline void
1262 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1263 {
1264 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1265 		union tcp_log_stackspecific log;
1266 		struct timeval tv;
1267 
1268 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1269 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1270 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1271 		log.u_bbr.flex1 = line;
1272 		log.u_bbr.flex2 = tick;
1273 		log.u_bbr.flex3 = tp->t_maxunacktime;
1274 		log.u_bbr.flex4 = tp->t_acktime;
1275 		log.u_bbr.flex8 = event;
1276 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1277 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1278 		TCP_LOG_EVENTP(tp, NULL,
1279 		    &rack->rc_inp->inp_socket->so_rcv,
1280 		    &rack->rc_inp->inp_socket->so_snd,
1281 		    BBR_LOG_PROGRESS, 0,
1282 		    0, &log, false, &tv);
1283 	}
1284 }
1285 
1286 static void
1287 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1288 {
1289 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1290 		union tcp_log_stackspecific log;
1291 		struct timeval tv;
1292 
1293 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1294 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1295 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1296 		log.u_bbr.flex1 = slot;
1297 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1298 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1299 		log.u_bbr.flex8 = rack->rc_in_persist;
1300 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1301 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1302 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1303 		    &rack->rc_inp->inp_socket->so_rcv,
1304 		    &rack->rc_inp->inp_socket->so_snd,
1305 		    BBR_LOG_BBRSND, 0,
1306 		    0, &log, false, &tv);
1307 	}
1308 }
1309 
1310 static void
1311 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1312 {
1313 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1314 		union tcp_log_stackspecific log;
1315 		struct timeval tv;
1316 
1317 		memset(&log, 0, sizeof(log));
1318 		log.u_bbr.flex1 = did_out;
1319 		log.u_bbr.flex2 = nxt_pkt;
1320 		log.u_bbr.flex3 = way_out;
1321 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1322 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1323 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1324 		log.u_bbr.flex7 = rack->r_wanted_output;
1325 		log.u_bbr.flex8 = rack->rc_in_persist;
1326 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1327 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1328 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1329 		    &rack->rc_inp->inp_socket->so_rcv,
1330 		    &rack->rc_inp->inp_socket->so_snd,
1331 		    BBR_LOG_DOSEG_DONE, 0,
1332 		    0, &log, false, &tv);
1333 	}
1334 }
1335 
1336 static void
1337 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1338 {
1339 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1340 		union tcp_log_stackspecific log;
1341 		struct timeval tv;
1342 		uint32_t cts;
1343 
1344 		memset(&log, 0, sizeof(log));
1345 		cts = tcp_get_usecs(&tv);
1346 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1347 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1348 		log.u_bbr.flex4 = len;
1349 		log.u_bbr.flex5 = orig_len;
1350 		log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1351 		log.u_bbr.flex7 = mod;
1352 		log.u_bbr.flex8 = frm;
1353 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1354 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1355 		TCP_LOG_EVENTP(tp, NULL,
1356 		    &tp->t_inpcb->inp_socket->so_rcv,
1357 		    &tp->t_inpcb->inp_socket->so_snd,
1358 		    TCP_HDWR_TLS, 0,
1359 		    0, &log, false, &tv);
1360 	}
1361 }
1362 
1363 static void
1364 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1365 {
1366 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1367 		union tcp_log_stackspecific log;
1368 		struct timeval tv;
1369 
1370 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1371 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1372 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1373 		log.u_bbr.flex1 = slot;
1374 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1375 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1376 		log.u_bbr.flex7 = hpts_calling;
1377 		log.u_bbr.flex8 = rack->rc_in_persist;
1378 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1379 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1380 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1381 		    &rack->rc_inp->inp_socket->so_rcv,
1382 		    &rack->rc_inp->inp_socket->so_snd,
1383 		    BBR_LOG_JUSTRET, 0,
1384 		    tlen, &log, false, &tv);
1385 	}
1386 }
1387 
1388 static void
1389 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1390 {
1391 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1392 		union tcp_log_stackspecific log;
1393 		struct timeval tv;
1394 
1395 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1396 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1397 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1398 		log.u_bbr.flex1 = line;
1399 		log.u_bbr.flex2 = 0;
1400 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1401 		log.u_bbr.flex4 = 0;
1402 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1403 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1404 		log.u_bbr.flex8 = hpts_removed;
1405 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1406 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1407 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1408 		    &rack->rc_inp->inp_socket->so_rcv,
1409 		    &rack->rc_inp->inp_socket->so_snd,
1410 		    BBR_LOG_TIMERCANC, 0,
1411 		    0, &log, false, &tv);
1412 	}
1413 }
1414 
1415 static void
1416 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1417 {
1418 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1419 		union tcp_log_stackspecific log;
1420 		struct timeval tv;
1421 
1422 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1423 		log.u_bbr.flex1 = timers;
1424 		log.u_bbr.flex2 = ret;
1425 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1426 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1427 		log.u_bbr.flex5 = cts;
1428 		log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
1429 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1430 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1431 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1432 		    &rack->rc_inp->inp_socket->so_rcv,
1433 		    &rack->rc_inp->inp_socket->so_snd,
1434 		    BBR_LOG_TO_PROCESS, 0,
1435 		    0, &log, false, &tv);
1436 	}
1437 }
1438 
1439 static void
1440 rack_log_to_prr(struct tcp_rack *rack, int frm)
1441 {
1442 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1443 		union tcp_log_stackspecific log;
1444 		struct timeval tv;
1445 
1446 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1447 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
1448 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
1449 		log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
1450 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
1451 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
1452 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
1453 		log.u_bbr.flex8 = frm;
1454 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1455 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1456 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1457 		    &rack->rc_inp->inp_socket->so_rcv,
1458 		    &rack->rc_inp->inp_socket->so_snd,
1459 		    BBR_LOG_BBRUPD, 0,
1460 		    0, &log, false, &tv);
1461 	}
1462 }
1463 
1464 #ifdef NETFLIX_EXP_DETECTION
1465 static void
1466 rack_log_sad(struct tcp_rack *rack, int event)
1467 {
1468 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1469 		union tcp_log_stackspecific log;
1470 		struct timeval tv;
1471 
1472 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1473 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
1474 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1475 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
1476 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1477 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
1478 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
1479 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
1480 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
1481 		log.u_bbr.lt_epoch |= rack->do_detection;
1482 		log.u_bbr.applimited = tcp_map_minimum;
1483 		log.u_bbr.flex7 = rack->sack_attack_disable;
1484 		log.u_bbr.flex8 = event;
1485 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1486 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1487 		log.u_bbr.delivered = tcp_sad_decay_val;
1488 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1489 		    &rack->rc_inp->inp_socket->so_rcv,
1490 		    &rack->rc_inp->inp_socket->so_snd,
1491 		    TCP_SAD_DETECTION, 0,
1492 		    0, &log, false, &tv);
1493 	}
1494 }
1495 #endif
1496 
1497 static void
1498 rack_counter_destroy(void)
1499 {
1500 	counter_u64_free(rack_badfr);
1501 	counter_u64_free(rack_badfr_bytes);
1502 	counter_u64_free(rack_rtm_prr_retran);
1503 	counter_u64_free(rack_rtm_prr_newdata);
1504 	counter_u64_free(rack_timestamp_mismatch);
1505 	counter_u64_free(rack_reorder_seen);
1506 	counter_u64_free(rack_tlp_tot);
1507 	counter_u64_free(rack_tlp_newdata);
1508 	counter_u64_free(rack_tlp_retran);
1509 	counter_u64_free(rack_tlp_retran_bytes);
1510 	counter_u64_free(rack_tlp_retran_fail);
1511 	counter_u64_free(rack_to_tot);
1512 	counter_u64_free(rack_to_arm_rack);
1513 	counter_u64_free(rack_to_arm_tlp);
1514 	counter_u64_free(rack_paced_segments);
1515 	counter_u64_free(rack_unpaced_segments);
1516 	counter_u64_free(rack_saw_enobuf);
1517 	counter_u64_free(rack_saw_enetunreach);
1518 	counter_u64_free(rack_to_alloc_hard);
1519 	counter_u64_free(rack_to_alloc_emerg);
1520 	counter_u64_free(rack_sack_proc_all);
1521 	counter_u64_free(rack_sack_proc_short);
1522 	counter_u64_free(rack_sack_proc_restart);
1523 	counter_u64_free(rack_to_alloc);
1524 	counter_u64_free(rack_to_alloc_limited);
1525 	counter_u64_free(rack_alloc_limited_conns);
1526 	counter_u64_free(rack_split_limited);
1527 	counter_u64_free(rack_find_high);
1528 	counter_u64_free(rack_enter_tlp_calc);
1529 	counter_u64_free(rack_used_tlpmethod);
1530 	counter_u64_free(rack_used_tlpmethod2);
1531 	counter_u64_free(rack_progress_drops);
1532 	counter_u64_free(rack_input_idle_reduces);
1533 	counter_u64_free(rack_collapsed_win);
1534 	counter_u64_free(rack_tlp_does_nada);
1535 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1536 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1537 }
1538 
1539 static struct rack_sendmap *
1540 rack_alloc(struct tcp_rack *rack)
1541 {
1542 	struct rack_sendmap *rsm;
1543 
1544 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1545 	if (rsm) {
1546 		rack->r_ctl.rc_num_maps_alloced++;
1547 		counter_u64_add(rack_to_alloc, 1);
1548 		return (rsm);
1549 	}
1550 	if (rack->rc_free_cnt) {
1551 		counter_u64_add(rack_to_alloc_emerg, 1);
1552 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1553 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
1554 		rack->rc_free_cnt--;
1555 		return (rsm);
1556 	}
1557 	return (NULL);
1558 }
1559 
1560 static struct rack_sendmap *
1561 rack_alloc_full_limit(struct tcp_rack *rack)
1562 {
1563 	if ((V_tcp_map_entries_limit > 0) &&
1564 	    (rack->do_detection == 0) &&
1565 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
1566 		counter_u64_add(rack_to_alloc_limited, 1);
1567 		if (!rack->alloc_limit_reported) {
1568 			rack->alloc_limit_reported = 1;
1569 			counter_u64_add(rack_alloc_limited_conns, 1);
1570 		}
1571 		return (NULL);
1572 	}
1573 	return (rack_alloc(rack));
1574 }
1575 
1576 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1577 static struct rack_sendmap *
1578 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1579 {
1580 	struct rack_sendmap *rsm;
1581 
1582 	if (limit_type) {
1583 		/* currently there is only one limit type */
1584 		if (V_tcp_map_split_limit > 0 &&
1585 		    (rack->do_detection == 0) &&
1586 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
1587 			counter_u64_add(rack_split_limited, 1);
1588 			if (!rack->alloc_limit_reported) {
1589 				rack->alloc_limit_reported = 1;
1590 				counter_u64_add(rack_alloc_limited_conns, 1);
1591 			}
1592 			return (NULL);
1593 		}
1594 	}
1595 
1596 	/* allocate and mark in the limit type, if set */
1597 	rsm = rack_alloc(rack);
1598 	if (rsm != NULL && limit_type) {
1599 		rsm->r_limit_type = limit_type;
1600 		rack->r_ctl.rc_num_split_allocs++;
1601 	}
1602 	return (rsm);
1603 }
1604 
1605 static void
1606 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1607 {
1608 	if (rsm->r_limit_type) {
1609 		/* currently there is only one limit type */
1610 		rack->r_ctl.rc_num_split_allocs--;
1611 	}
1612 	if (rack->r_ctl.rc_tlpsend == rsm)
1613 		rack->r_ctl.rc_tlpsend = NULL;
1614 	if (rack->r_ctl.rc_sacklast == rsm)
1615 		rack->r_ctl.rc_sacklast = NULL;
1616 	if (rack->rc_free_cnt < rack_free_cache) {
1617 		memset(rsm, 0, sizeof(struct rack_sendmap));
1618 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
1619 		rsm->r_limit_type = 0;
1620 		rack->rc_free_cnt++;
1621 		return;
1622 	}
1623 	rack->r_ctl.rc_num_maps_alloced--;
1624 	uma_zfree(rack_zone, rsm);
1625 }
1626 
1627 /*
1628  * CC wrapper hook functions
1629  */
1630 static void
1631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1632     uint16_t type, int32_t recovery)
1633 {
1634 #ifdef STATS
1635 	int32_t gput;
1636 #endif
1637 
1638 	INP_WLOCK_ASSERT(tp->t_inpcb);
1639 	tp->ccv->nsegs = nsegs;
1640 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1641 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1642 		uint32_t max;
1643 
1644 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
1645 		if (tp->ccv->bytes_this_ack > max) {
1646 			tp->ccv->bytes_this_ack = max;
1647 		}
1648 	}
1649 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
1650 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
1651 	     (tp->snd_cwnd < (ctf_flight_size(tp, rack->r_ctl.rc_sacked) * 2))))
1652 		tp->ccv->flags |= CCF_CWND_LIMITED;
1653 	else
1654 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1655 
1656 	if (type == CC_ACK) {
1657 #ifdef STATS
1658 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1659 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1660 		if ((tp->t_flags & TF_GPUTINPROG) &&
1661 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1662 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1663 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1664 			/* We store it in bytes per ms (or kbytes per sec) */
1665 			rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
1666 			rack->r_ctl.rc_gp_hist_idx++;
1667 			if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
1668 				rack->r_ctl.rc_gp_hist_filled = 1;
1669 			rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
1670 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1671 			    gput);
1672 			/*
1673 			 * XXXLAS: This is a temporary hack, and should be
1674 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1675 			 * API to deal with chained VOIs.
1676 			 */
1677 			if (tp->t_stats_gput_prev > 0)
1678 				stats_voi_update_abs_s32(tp->t_stats,
1679 				    VOI_TCP_GPUT_ND,
1680 				    ((gput - tp->t_stats_gput_prev) * 100) /
1681 				    tp->t_stats_gput_prev);
1682 			tp->t_flags &= ~TF_GPUTINPROG;
1683 			tp->t_stats_gput_prev = gput;
1684 
1685 			if (tp->t_maxpeakrate) {
1686 				/*
1687 				 * We update t_peakrate_thr. This gives us roughly
1688 				 * one update per round trip time.
1689 				 */
1690 				tcp_update_peakrate_thr(tp);
1691 			}
1692 		}
1693 #endif
1694 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1695 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1696 			    nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
1697 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1698 				tp->t_bytes_acked -= tp->snd_cwnd;
1699 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1700 			}
1701 		} else {
1702 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1703 			tp->t_bytes_acked = 0;
1704 		}
1705 	}
1706 	if (CC_ALGO(tp)->ack_received != NULL) {
1707 		/* XXXLAS: Find a way to live without this */
1708 		tp->ccv->curack = th->th_ack;
1709 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1710 	}
1711 #ifdef STATS
1712 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1713 #endif
1714 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1715 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1716 	}
1717 	/* we enforce max peak rate if it is set. */
1718 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1719 		tp->snd_cwnd = tp->t_peakrate_thr;
1720 	}
1721 }
1722 
1723 static void
1724 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1725 {
1726 	struct tcp_rack *rack;
1727 
1728 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1729 	INP_WLOCK_ASSERT(tp->t_inpcb);
1730 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1731 		rack->r_wanted_output++;
1732 }
1733 
1734 static void
1735 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1736 {
1737 	struct tcp_rack *rack;
1738 
1739 	INP_WLOCK_ASSERT(tp->t_inpcb);
1740 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1741 	if (CC_ALGO(tp)->post_recovery != NULL) {
1742 		tp->ccv->curack = th->th_ack;
1743 		CC_ALGO(tp)->post_recovery(tp->ccv);
1744 	}
1745 	/*
1746 	 * Here we can in theory adjust cwnd to be based on the number of
1747 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1748 	 * based on the rack_use_proportional flag.
1749 	 */
1750 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1751 		int32_t reduce;
1752 
1753 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1754 		if (reduce > 50) {
1755 			reduce = 50;
1756 		}
1757 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1758 	} else {
1759 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1760 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1761 			tp->snd_cwnd = tp->snd_ssthresh;
1762 		}
1763 	}
1764 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1765 		/* Suck the next prr cnt back into cwnd */
1766 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1767 		rack->r_ctl.rc_prr_sndcnt = 0;
1768 		rack_log_to_prr(rack, 1);
1769 	}
1770 	tp->snd_recover = tp->snd_una;
1771 	EXIT_RECOVERY(tp->t_flags);
1772 
1773 
1774 }
1775 
1776 static void
1777 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1778 {
1779 	struct tcp_rack *rack;
1780 
1781 	INP_WLOCK_ASSERT(tp->t_inpcb);
1782 
1783 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1784 	switch (type) {
1785 	case CC_NDUPACK:
1786 		tp->t_flags &= ~TF_WASFRECOVERY;
1787 		tp->t_flags &= ~TF_WASCRECOVERY;
1788 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1789 			rack->r_ctl.rc_tlp_rtx_out = 0;
1790 			rack->r_ctl.rc_prr_delivered = 0;
1791 			rack->r_ctl.rc_prr_out = 0;
1792 			rack->r_ctl.rc_loss_count = 0;
1793 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
1794 			rack_log_to_prr(rack, 2);
1795 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1796 			tp->snd_recover = tp->snd_max;
1797 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1798 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1799 		}
1800 		break;
1801 	case CC_ECN:
1802 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1803 			TCPSTAT_INC(tcps_ecn_rcwnd);
1804 			tp->snd_recover = tp->snd_max;
1805 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1806 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1807 		}
1808 		break;
1809 	case CC_RTO:
1810 		tp->t_dupacks = 0;
1811 		tp->t_bytes_acked = 0;
1812 		EXIT_RECOVERY(tp->t_flags);
1813 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1814 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
1815 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
1816 		if (tp->t_flags2 & TF2_ECN_PERMIT)
1817 			tp->t_flags2 |= TF2_ECN_SND_CWR;
1818 		break;
1819 	case CC_RTO_ERR:
1820 		TCPSTAT_INC(tcps_sndrexmitbad);
1821 		/* RTO was unnecessary, so reset everything. */
1822 		tp->snd_cwnd = tp->snd_cwnd_prev;
1823 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1824 		tp->snd_recover = tp->snd_recover_prev;
1825 		if (tp->t_flags & TF_WASFRECOVERY) {
1826 			ENTER_FASTRECOVERY(tp->t_flags);
1827 			tp->t_flags &= ~TF_WASFRECOVERY;
1828 		}
1829 		if (tp->t_flags & TF_WASCRECOVERY) {
1830 			ENTER_CONGRECOVERY(tp->t_flags);
1831 			tp->t_flags &= ~TF_WASCRECOVERY;
1832 		}
1833 		tp->snd_nxt = tp->snd_max;
1834 		tp->t_badrxtwin = 0;
1835 		break;
1836 	}
1837 
1838 	if (CC_ALGO(tp)->cong_signal != NULL) {
1839 		if (th != NULL)
1840 			tp->ccv->curack = th->th_ack;
1841 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1842 	}
1843 }
1844 
1845 
1846 
1847 static inline void
1848 rack_cc_after_idle(struct tcpcb *tp)
1849 {
1850 	uint32_t i_cwnd;
1851 
1852 	INP_WLOCK_ASSERT(tp->t_inpcb);
1853 
1854 #ifdef NETFLIX_STATS
1855 	TCPSTAT_INC(tcps_idle_restarts);
1856 	if (tp->t_state == TCPS_ESTABLISHED)
1857 		TCPSTAT_INC(tcps_idle_estrestarts);
1858 #endif
1859 	if (CC_ALGO(tp)->after_idle != NULL)
1860 		CC_ALGO(tp)->after_idle(tp->ccv);
1861 
1862 	if (tp->snd_cwnd == 1)
1863 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1864 	else
1865 		i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
1866 
1867 	/*
1868 	 * Being idle is no differnt than the initial window. If the cc
1869 	 * clamps it down below the initial window raise it to the initial
1870 	 * window.
1871 	 */
1872 	if (tp->snd_cwnd < i_cwnd) {
1873 		tp->snd_cwnd = i_cwnd;
1874 	}
1875 }
1876 
1877 
1878 /*
1879  * Indicate whether this ack should be delayed.  We can delay the ack if
1880  * following conditions are met:
1881  *	- There is no delayed ack timer in progress.
1882  *	- Our last ack wasn't a 0-sized window. We never want to delay
1883  *	  the ack that opens up a 0-sized window.
1884  *	- LRO wasn't used for this segment. We make sure by checking that the
1885  *	  segment size is not larger than the MSS.
1886  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1887  *	  connection.
1888  */
1889 #define DELAY_ACK(tp, tlen)			 \
1890 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1891 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1892 	(tlen <= tp->t_maxseg) &&		 \
1893 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1894 
1895 static struct rack_sendmap *
1896 rack_find_lowest_rsm(struct tcp_rack *rack)
1897 {
1898 	struct rack_sendmap *rsm;
1899 
1900 	/*
1901 	 * Walk the time-order transmitted list looking for an rsm that is
1902 	 * not acked. This will be the one that was sent the longest time
1903 	 * ago that is still outstanding.
1904 	 */
1905 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1906 		if (rsm->r_flags & RACK_ACKED) {
1907 			continue;
1908 		}
1909 		goto finish;
1910 	}
1911 finish:
1912 	return (rsm);
1913 }
1914 
1915 static struct rack_sendmap *
1916 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1917 {
1918 	struct rack_sendmap *prsm;
1919 
1920 	/*
1921 	 * Walk the sequence order list backward until we hit and arrive at
1922 	 * the highest seq not acked. In theory when this is called it
1923 	 * should be the last segment (which it was not).
1924 	 */
1925 	counter_u64_add(rack_find_high, 1);
1926 	prsm = rsm;
1927 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
1928 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1929 			continue;
1930 		}
1931 		return (prsm);
1932 	}
1933 	return (NULL);
1934 }
1935 
1936 
1937 static uint32_t
1938 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1939 {
1940 	int32_t lro;
1941 	uint32_t thresh;
1942 
1943 	/*
1944 	 * lro is the flag we use to determine if we have seen reordering.
1945 	 * If it gets set we have seen reordering. The reorder logic either
1946 	 * works in one of two ways:
1947 	 *
1948 	 * If reorder-fade is configured, then we track the last time we saw
1949 	 * re-ordering occur. If we reach the point where enough time as
1950 	 * passed we no longer consider reordering has occuring.
1951 	 *
1952 	 * Or if reorder-face is 0, then once we see reordering we consider
1953 	 * the connection to alway be subject to reordering and just set lro
1954 	 * to 1.
1955 	 *
1956 	 * In the end if lro is non-zero we add the extra time for
1957 	 * reordering in.
1958 	 */
1959 	if (srtt == 0)
1960 		srtt = 1;
1961 	if (rack->r_ctl.rc_reorder_ts) {
1962 		if (rack->r_ctl.rc_reorder_fade) {
1963 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1964 				lro = cts - rack->r_ctl.rc_reorder_ts;
1965 				if (lro == 0) {
1966 					/*
1967 					 * No time as passed since the last
1968 					 * reorder, mark it as reordering.
1969 					 */
1970 					lro = 1;
1971 				}
1972 			} else {
1973 				/* Negative time? */
1974 				lro = 0;
1975 			}
1976 			if (lro > rack->r_ctl.rc_reorder_fade) {
1977 				/* Turn off reordering seen too */
1978 				rack->r_ctl.rc_reorder_ts = 0;
1979 				lro = 0;
1980 			}
1981 		} else {
1982 			/* Reodering does not fade */
1983 			lro = 1;
1984 		}
1985 	} else {
1986 		lro = 0;
1987 	}
1988 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1989 	if (lro) {
1990 		/* It must be set, if not you get 1/4 rtt */
1991 		if (rack->r_ctl.rc_reorder_shift)
1992 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1993 		else
1994 			thresh += (srtt >> 2);
1995 	} else {
1996 		thresh += 1;
1997 	}
1998 	/* We don't let the rack timeout be above a RTO */
1999 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
2000 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
2001 	}
2002 	/* And we don't want it above the RTO max either */
2003 	if (thresh > rack_rto_max) {
2004 		thresh = rack_rto_max;
2005 	}
2006 	return (thresh);
2007 }
2008 
2009 static uint32_t
2010 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
2011 		     struct rack_sendmap *rsm, uint32_t srtt)
2012 {
2013 	struct rack_sendmap *prsm;
2014 	uint32_t thresh, len;
2015 	int maxseg;
2016 
2017 	if (srtt == 0)
2018 		srtt = 1;
2019 	if (rack->r_ctl.rc_tlp_threshold)
2020 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
2021 	else
2022 		thresh = (srtt * 2);
2023 
2024 	/* Get the previous sent packet, if any  */
2025 	maxseg = ctf_fixed_maxseg(tp);
2026 	counter_u64_add(rack_enter_tlp_calc, 1);
2027 	len = rsm->r_end - rsm->r_start;
2028 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
2029 		/* Exactly like the ID */
2030 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
2031 			uint32_t alt_thresh;
2032 			/*
2033 			 * Compensate for delayed-ack with the d-ack time.
2034 			 */
2035 			counter_u64_add(rack_used_tlpmethod, 1);
2036 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2037 			if (alt_thresh > thresh)
2038 				thresh = alt_thresh;
2039 		}
2040 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
2041 		/* 2.1 behavior */
2042 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
2043 		if (prsm && (len <= maxseg)) {
2044 			/*
2045 			 * Two packets outstanding, thresh should be (2*srtt) +
2046 			 * possible inter-packet delay (if any).
2047 			 */
2048 			uint32_t inter_gap = 0;
2049 			int idx, nidx;
2050 
2051 			counter_u64_add(rack_used_tlpmethod, 1);
2052 			idx = rsm->r_rtr_cnt - 1;
2053 			nidx = prsm->r_rtr_cnt - 1;
2054 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
2055 				/* Yes it was sent later (or at the same time) */
2056 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
2057 			}
2058 			thresh += inter_gap;
2059 		} else 	if (len <= maxseg) {
2060 			/*
2061 			 * Possibly compensate for delayed-ack.
2062 			 */
2063 			uint32_t alt_thresh;
2064 
2065 			counter_u64_add(rack_used_tlpmethod2, 1);
2066 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2067 			if (alt_thresh > thresh)
2068 				thresh = alt_thresh;
2069 		}
2070 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2071 		/* 2.2 behavior */
2072 		if (len <= maxseg) {
2073 			uint32_t alt_thresh;
2074 			/*
2075 			 * Compensate for delayed-ack with the d-ack time.
2076 			 */
2077 			counter_u64_add(rack_used_tlpmethod, 1);
2078 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2079 			if (alt_thresh > thresh)
2080 				thresh = alt_thresh;
2081 		}
2082 	}
2083  	/* Not above an RTO */
2084 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2085 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2086 	}
2087 	/* Not above a RTO max */
2088 	if (thresh > rack_rto_max) {
2089 		thresh = rack_rto_max;
2090 	}
2091 	/* Apply user supplied min TLP */
2092 	if (thresh < rack_tlp_min) {
2093 		thresh = rack_tlp_min;
2094 	}
2095 	return (thresh);
2096 }
2097 
2098 static uint32_t
2099 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
2100 {
2101 	/*
2102 	 * We want the rack_rtt which is the
2103 	 * last rtt we measured. However if that
2104 	 * does not exist we fallback to the srtt (which
2105 	 * we probably will never do) and then as a last
2106 	 * resort we use RACK_INITIAL_RTO if no srtt is
2107 	 * yet set.
2108 	 */
2109 	if (rack->rc_rack_rtt)
2110 		return(rack->rc_rack_rtt);
2111 	else if (tp->t_srtt == 0)
2112 		return(RACK_INITIAL_RTO);
2113 	return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
2114 }
2115 
2116 static struct rack_sendmap *
2117 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2118 {
2119 	/*
2120 	 * Check to see that we don't need to fall into recovery. We will
2121 	 * need to do so if our oldest transmit is past the time we should
2122 	 * have had an ack.
2123 	 */
2124 	struct tcp_rack *rack;
2125 	struct rack_sendmap *rsm;
2126 	int32_t idx;
2127 	uint32_t srtt, thresh;
2128 
2129 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2130 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
2131 		return (NULL);
2132 	}
2133 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2134 	if (rsm == NULL)
2135 		return (NULL);
2136 
2137 	if (rsm->r_flags & RACK_ACKED) {
2138 		rsm = rack_find_lowest_rsm(rack);
2139 		if (rsm == NULL)
2140 			return (NULL);
2141 	}
2142 	idx = rsm->r_rtr_cnt - 1;
2143 	srtt = rack_grab_rtt(tp, rack);
2144 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2145 	if (tsused < rsm->r_tim_lastsent[idx]) {
2146 		return (NULL);
2147 	}
2148 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2149 		return (NULL);
2150 	}
2151 	/* Ok if we reach here we are over-due */
2152 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2153 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2154 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2155 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2156 	return (rsm);
2157 }
2158 
2159 static uint32_t
2160 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2161 {
2162 	int32_t t;
2163 	int32_t tt;
2164 	uint32_t ret_val;
2165 
2166 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2167 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2168 	    rack_persist_min, rack_persist_max);
2169 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2170 		tp->t_rxtshift++;
2171 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2172 	ret_val = (uint32_t)tt;
2173 	return (ret_val);
2174 }
2175 
2176 static uint32_t
2177 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
2178 {
2179 	/*
2180 	 * Start the FR timer, we do this based on getting the first one in
2181 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2182 	 * events we need to stop the running timer (if its running) before
2183 	 * starting the new one.
2184 	 */
2185 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
2186 	uint32_t srtt_cur;
2187 	int32_t idx;
2188 	int32_t is_tlp_timer = 0;
2189 	struct rack_sendmap *rsm;
2190 
2191 	if (rack->t_timers_stopped) {
2192 		/* All timers have been stopped none are to run */
2193 		return (0);
2194 	}
2195 	if (rack->rc_in_persist) {
2196 		/* We can't start any timer in persists */
2197 		return (rack_get_persists_timer_val(tp, rack));
2198 	}
2199 	if ((tp->t_state < TCPS_ESTABLISHED) ||
2200 	    ((tp->t_flags & TF_SACK_PERMIT) == 0))
2201 		goto activate_rxt;
2202 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2203 	if ((rsm == NULL) || sup_rack) {
2204 		/* Nothing on the send map */
2205 activate_rxt:
2206 		time_since_sent = 0;
2207 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2208 		if (rsm) {
2209 			idx = rsm->r_rtr_cnt - 1;
2210 			if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2211 				tstmp_touse = rsm->r_tim_lastsent[idx];
2212 			else
2213 				tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2214 			if (TSTMP_GT(tstmp_touse, cts))
2215 			    time_since_sent = cts - tstmp_touse;
2216 		}
2217 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2218 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2219 			to = TICKS_2_MSEC(tp->t_rxtcur);
2220 			if (to > time_since_sent)
2221 				to -= time_since_sent;
2222 			else
2223 				to = rack->r_ctl.rc_min_to;
2224 			if (to == 0)
2225 				to = 1;
2226 			return (to);
2227 		}
2228 		return (0);
2229 	}
2230 	if (rsm->r_flags & RACK_ACKED) {
2231 		rsm = rack_find_lowest_rsm(rack);
2232 		if (rsm == NULL) {
2233 			/* No lowest? */
2234 			goto activate_rxt;
2235 		}
2236 	}
2237 	if (rack->sack_attack_disable) {
2238 		/*
2239 		 * We don't want to do
2240 		 * any TLP's if you are an attacker.
2241 		 * Though if you are doing what
2242 		 * is expected you may still have
2243 		 * SACK-PASSED marks.
2244 		 */
2245 		goto activate_rxt;
2246 	}
2247 	/* Convert from ms to usecs */
2248 	if (rsm->r_flags & RACK_SACK_PASSED) {
2249 		if ((tp->t_flags & TF_SENTFIN) &&
2250 		    ((tp->snd_max - tp->snd_una) == 1) &&
2251 		    (rsm->r_flags & RACK_HAS_FIN)) {
2252 			/*
2253 			 * We don't start a rack timer if all we have is a
2254 			 * FIN outstanding.
2255 			 */
2256 			goto activate_rxt;
2257 		}
2258 		if ((rack->use_rack_cheat == 0) &&
2259 		    (IN_RECOVERY(tp->t_flags)) &&
2260 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
2261 			/*
2262 			 * We are not cheating, in recovery  and
2263 			 * not enough ack's to yet get our next
2264 			 * retransmission out.
2265 			 *
2266 			 * Note that classified attackers do not
2267 			 * get to use the rack-cheat.
2268 			 */
2269 			goto activate_tlp;
2270 		}
2271 		srtt = rack_grab_rtt(tp, rack);
2272 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2273 		idx = rsm->r_rtr_cnt - 1;
2274 		exp = rsm->r_tim_lastsent[idx] + thresh;
2275 		if (SEQ_GEQ(exp, cts)) {
2276 			to = exp - cts;
2277 			if (to < rack->r_ctl.rc_min_to) {
2278 				to = rack->r_ctl.rc_min_to;
2279 			}
2280 		} else {
2281 			to = rack->r_ctl.rc_min_to;
2282 		}
2283 	} else {
2284 		/* Ok we need to do a TLP not RACK */
2285 activate_tlp:
2286 		if ((rack->rc_tlp_in_progress != 0) ||
2287 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2288 			/*
2289 			 * The previous send was a TLP or a tlp_rtx is in
2290 			 * process.
2291 			 */
2292 			goto activate_rxt;
2293 		}
2294 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2295 		if (rsm == NULL) {
2296 			/* We found no rsm to TLP with. */
2297 			goto activate_rxt;
2298 		}
2299 		if (rsm->r_flags & RACK_HAS_FIN) {
2300 			/* If its a FIN we dont do TLP */
2301 			rsm = NULL;
2302 			goto activate_rxt;
2303 		}
2304 		idx = rsm->r_rtr_cnt - 1;
2305 		time_since_sent = 0;
2306 		if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2307 			tstmp_touse = rsm->r_tim_lastsent[idx];
2308 		else
2309 			tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2310 		if (TSTMP_GT(tstmp_touse, cts))
2311 		    time_since_sent = cts - tstmp_touse;
2312 		is_tlp_timer = 1;
2313 		if (tp->t_srtt) {
2314 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2315 			srtt = TICKS_2_MSEC(srtt_cur);
2316 		} else
2317 			srtt = RACK_INITIAL_RTO;
2318 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2319 		if (thresh > time_since_sent)
2320 			to = thresh - time_since_sent;
2321 		else
2322 			to = rack->r_ctl.rc_min_to;
2323 		if (to > TCPTV_REXMTMAX) {
2324 			/*
2325 			 * If the TLP time works out to larger than the max
2326 			 * RTO lets not do TLP.. just RTO.
2327 			 */
2328 			goto activate_rxt;
2329 		}
2330 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2331 			/*
2332 			 * The tail is no longer the last one I did a probe
2333 			 * on
2334 			 */
2335 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2336 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2337 		}
2338 	}
2339 	if (is_tlp_timer == 0) {
2340 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2341 	} else {
2342 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2343 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2344 			/*
2345 			 * We have exceeded how many times we can retran the
2346 			 * current TLP timer, switch to the RTO timer.
2347 			 */
2348 			goto activate_rxt;
2349 		} else {
2350 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2351 		}
2352 	}
2353 	if (to == 0)
2354 		to = 1;
2355 	return (to);
2356 }
2357 
2358 static void
2359 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2360 {
2361 	if (rack->rc_in_persist == 0) {
2362 		rack->r_ctl.rc_went_idle_time = cts;
2363 		rack_timer_cancel(tp, rack, cts, __LINE__);
2364 		tp->t_rxtshift = 0;
2365 		rack->rc_in_persist = 1;
2366 	}
2367 }
2368 
2369 static void
2370 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2371 {
2372 	if (rack->rc_inp->inp_in_hpts)  {
2373 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2374 		rack->r_ctl.rc_hpts_flags  = 0;
2375 	}
2376 	rack->rc_in_persist = 0;
2377 	rack->r_ctl.rc_went_idle_time = 0;
2378 	tp->t_flags &= ~TF_FORCEDATA;
2379 	tp->t_rxtshift = 0;
2380 }
2381 
2382 static void
2383 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
2384       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
2385 {
2386 	struct inpcb *inp;
2387 	uint32_t delayed_ack = 0;
2388 	uint32_t hpts_timeout;
2389 	uint8_t stopped;
2390 	uint32_t left = 0;
2391 
2392 	inp = tp->t_inpcb;
2393 	if (inp->inp_in_hpts) {
2394 		/* A previous call is already set up */
2395 		return;
2396 	}
2397 	if ((tp->t_state == TCPS_CLOSED) ||
2398 	    (tp->t_state == TCPS_LISTEN)) {
2399 		return;
2400 	}
2401 	stopped = rack->rc_tmr_stopped;
2402 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2403 		left = rack->r_ctl.rc_timer_exp - cts;
2404 	}
2405 	rack->tlp_timer_up = 0;
2406 	rack->r_ctl.rc_timer_exp = 0;
2407 	if (rack->rc_inp->inp_in_hpts == 0) {
2408 		rack->r_ctl.rc_hpts_flags = 0;
2409 	}
2410 	if (slot) {
2411 		/* We are hptsi too */
2412 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2413 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2414 		/*
2415 		 * We are still left on the hpts when the to goes
2416 		 * it will be for output.
2417 		 */
2418 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2419 			slot = rack->r_ctl.rc_last_output_to - cts;
2420 		else
2421 			slot = 1;
2422 	}
2423 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
2424 #ifdef NETFLIX_EXP_DETECTION
2425 	if (rack->sack_attack_disable &&
2426 	    (slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
2427 		/*
2428 		 * We have a potential attacker on
2429 		 * the line. We have possibly some
2430 		 * (or now) pacing time set. We want to
2431 		 * slow down the processing of sacks by some
2432 		 * amount (if it is an attacker). Set the default
2433 		 * slot for attackers in place (unless the orginal
2434 		 * interval is longer). Its stored in
2435 		 * micro-seconds, so lets convert to msecs.
2436 		 */
2437 		slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
2438 	}
2439 #endif
2440 	if (tp->t_flags & TF_DELACK) {
2441 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2442 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2443 	}
2444 	if (delayed_ack && ((hpts_timeout == 0) ||
2445 			    (delayed_ack < hpts_timeout)))
2446 		hpts_timeout = delayed_ack;
2447 	else
2448 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2449 	/*
2450 	 * If no timers are going to run and we will fall off the hptsi
2451 	 * wheel, we resort to a keep-alive timer if its configured.
2452 	 */
2453 	if ((hpts_timeout == 0) &&
2454 	    (slot == 0)) {
2455 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2456 		    (tp->t_state <= TCPS_CLOSING)) {
2457 			/*
2458 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2459 			 * del-ack), we don't have segments being paced. So
2460 			 * all that is left is the keepalive timer.
2461 			 */
2462 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2463 				/* Get the established keep-alive time */
2464 				hpts_timeout = TP_KEEPIDLE(tp);
2465 			} else {
2466 				/* Get the initial setup keep-alive time */
2467 				hpts_timeout = TP_KEEPINIT(tp);
2468 			}
2469 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2470 		}
2471 	}
2472 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2473 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2474 		/*
2475 		 * RACK, TLP, persists and RXT timers all are restartable
2476 		 * based on actions input .. i.e we received a packet (ack
2477 		 * or sack) and that changes things (rw, or snd_una etc).
2478 		 * Thus we can restart them with a new value. For
2479 		 * keep-alive, delayed_ack we keep track of what was left
2480 		 * and restart the timer with a smaller value.
2481 		 */
2482 		if (left < hpts_timeout)
2483 			hpts_timeout = left;
2484 	}
2485 	if (hpts_timeout) {
2486 		/*
2487 		 * Hack alert for now we can't time-out over 2,147,483
2488 		 * seconds (a bit more than 596 hours), which is probably ok
2489 		 * :).
2490 		 */
2491 		if (hpts_timeout > 0x7ffffffe)
2492 			hpts_timeout = 0x7ffffffe;
2493 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2494 	}
2495 	if (slot) {
2496 		rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2497 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
2498 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2499 		else
2500 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2501 		rack->r_ctl.rc_last_output_to = cts + slot;
2502 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2503 			if (rack->rc_inp->inp_in_hpts == 0)
2504 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2505 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2506 		} else {
2507 			/*
2508 			 * Arrange for the hpts to kick back in after the
2509 			 * t-o if the t-o does not cause a send.
2510 			 */
2511 			if (rack->rc_inp->inp_in_hpts == 0)
2512 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2513 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2514 		}
2515 	} else if (hpts_timeout) {
2516 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
2517 			/* For a rack timer, don't wake us */
2518 			rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2519 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2520 		} else {
2521 			/* All other timers wake us up */
2522 			rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
2523 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2524 		}
2525 		if (rack->rc_inp->inp_in_hpts == 0)
2526 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2527 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2528 	} else {
2529 		/* No timer starting */
2530 #ifdef INVARIANTS
2531 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2532 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2533 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2534 		}
2535 #endif
2536 	}
2537 	rack->rc_tmr_stopped = 0;
2538 	if (slot)
2539 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2540 }
2541 
2542 /*
2543  * RACK Timer, here we simply do logging and house keeping.
2544  * the normal rack_output() function will call the
2545  * appropriate thing to check if we need to do a RACK retransmit.
2546  * We return 1, saying don't proceed with rack_output only
2547  * when all timers have been stopped (destroyed PCB?).
2548  */
2549 static int
2550 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2551 {
2552 	/*
2553 	 * This timer simply provides an internal trigger to send out data.
2554 	 * The check_recovery_mode call will see if there are needed
2555 	 * retransmissions, if so we will enter fast-recovery. The output
2556 	 * call may or may not do the same thing depending on sysctl
2557 	 * settings.
2558 	 */
2559 	struct rack_sendmap *rsm;
2560 	int32_t recovery, ll;
2561 
2562 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2563 		return (1);
2564 	}
2565 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2566 		/* Its not time yet */
2567 		return (0);
2568 	}
2569 	recovery = IN_RECOVERY(tp->t_flags);
2570 	counter_u64_add(rack_to_tot, 1);
2571 	if (rack->r_state && (rack->r_state != tp->t_state))
2572 		rack_set_state(tp, rack);
2573 	rsm = rack_check_recovery_mode(tp, cts);
2574 	if (rsm)
2575 		ll = rsm->r_end - rsm->r_start;
2576 	else
2577 		ll = 0;
2578 	rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
2579 	if (rsm) {
2580 		uint32_t rtt;
2581 
2582 		rtt = rack->rc_rack_rtt;
2583 		if (rtt == 0)
2584 			rtt = 1;
2585 		if ((recovery == 0) &&
2586 		    (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
2587 			/*
2588 			 * The rack-timeout that enter's us into recovery
2589 			 * will force out one MSS and set us up so that we
2590 			 * can do one more send in 2*rtt (transitioning the
2591 			 * rack timeout into a rack-tlp).
2592 			 */
2593 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2594 			rack_log_to_prr(rack, 3);
2595 		} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
2596 			   rack->use_rack_cheat) {
2597 			/*
2598 			 * When a rack timer goes, if the rack cheat is
2599 			 * on, arrange it so we can send a full segment.
2600 			 */
2601 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2602 			rack_log_to_prr(rack, 4);
2603 		}
2604 	} else {
2605 		/* This is a case that should happen rarely if ever */
2606 		counter_u64_add(rack_tlp_does_nada, 1);
2607 #ifdef TCP_BLACKBOX
2608 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2609 #endif
2610 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2611 	}
2612 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2613 	return (0);
2614 }
2615 
2616 static __inline void
2617 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
2618 	       struct rack_sendmap *rsm, uint32_t start)
2619 {
2620 	int idx;
2621 
2622 	nrsm->r_start = start;
2623 	nrsm->r_end = rsm->r_end;
2624 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2625 	nrsm->r_flags = rsm->r_flags;
2626 	nrsm->r_dupack = rsm->r_dupack;
2627 	nrsm->r_rtr_bytes = 0;
2628 	rsm->r_end = nrsm->r_start;
2629 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2630 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2631 	}
2632 }
2633 
2634 static struct rack_sendmap *
2635 rack_merge_rsm(struct tcp_rack *rack,
2636 	       struct rack_sendmap *l_rsm,
2637 	       struct rack_sendmap *r_rsm)
2638 {
2639 	/*
2640 	 * We are merging two ack'd RSM's,
2641 	 * the l_rsm is on the left (lower seq
2642 	 * values) and the r_rsm is on the right
2643 	 * (higher seq value). The simplest way
2644 	 * to merge these is to move the right
2645 	 * one into the left. I don't think there
2646 	 * is any reason we need to try to find
2647 	 * the oldest (or last oldest retransmitted).
2648 	 */
2649 	struct rack_sendmap *rm;
2650 
2651 	l_rsm->r_end = r_rsm->r_end;
2652 	if (l_rsm->r_dupack < r_rsm->r_dupack)
2653 		l_rsm->r_dupack = r_rsm->r_dupack;
2654 	if (r_rsm->r_rtr_bytes)
2655 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2656 	if (r_rsm->r_in_tmap) {
2657 		/* This really should not happen */
2658 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2659 		r_rsm->r_in_tmap = 0;
2660 	}
2661 	/* Now the flags */
2662 	if (r_rsm->r_flags & RACK_HAS_FIN)
2663 		l_rsm->r_flags |= RACK_HAS_FIN;
2664 	if (r_rsm->r_flags & RACK_TLP)
2665 		l_rsm->r_flags |= RACK_TLP;
2666 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
2667 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
2668 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
2669 #ifdef INVARIANTS
2670 	if (rm != r_rsm) {
2671 		panic("removing head in rack:%p rsm:%p rm:%p",
2672 		      rack, r_rsm, rm);
2673 	}
2674 #endif
2675 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2676 		/* Transfer the split limit to the map we free */
2677 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2678 		l_rsm->r_limit_type = 0;
2679 	}
2680 	rack_free(rack, r_rsm);
2681 	return(l_rsm);
2682 }
2683 
2684 /*
2685  * TLP Timer, here we simply setup what segment we want to
2686  * have the TLP expire on, the normal rack_output() will then
2687  * send it out.
2688  *
2689  * We return 1, saying don't proceed with rack_output only
2690  * when all timers have been stopped (destroyed PCB?).
2691  */
2692 static int
2693 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2694 {
2695 	/*
2696 	 * Tail Loss Probe.
2697 	 */
2698 	struct rack_sendmap *rsm = NULL;
2699 	struct rack_sendmap *insret;
2700 	struct socket *so;
2701 	uint32_t amm, old_prr_snd = 0;
2702 	uint32_t out, avail;
2703 	int collapsed_win = 0;
2704 
2705 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2706 		return (1);
2707 	}
2708 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2709 		/* Its not time yet */
2710 		return (0);
2711 	}
2712 	if (rack_progress_timeout_check(tp)) {
2713 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2714 		return (1);
2715 	}
2716 	/*
2717 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2718 	 * need to figure out how to force a full MSS segment out.
2719 	 */
2720 	rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
2721 	counter_u64_add(rack_tlp_tot, 1);
2722 	if (rack->r_state && (rack->r_state != tp->t_state))
2723 		rack_set_state(tp, rack);
2724 	so = tp->t_inpcb->inp_socket;
2725 #ifdef KERN_TLS
2726 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
2727 		/*
2728 		 * For hardware TLS we do *not* want to send
2729 		 * new data, lets instead just do a retransmission.
2730 		 */
2731 		goto need_retran;
2732 	}
2733 #endif
2734 	avail = sbavail(&so->so_snd);
2735 	out = tp->snd_max - tp->snd_una;
2736 	rack->tlp_timer_up = 1;
2737 	if (out > tp->snd_wnd) {
2738 		/* special case, we need a retransmission */
2739 		collapsed_win = 1;
2740 		goto need_retran;
2741 	}
2742 	/*
2743 	 * If we are in recovery we can jazz out a segment if new data is
2744 	 * present simply by setting rc_prr_sndcnt to a segment.
2745 	 */
2746 	if ((avail > out) &&
2747 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2748 		/* New data is available */
2749 		amm = avail - out;
2750 		if (amm > ctf_fixed_maxseg(tp)) {
2751 			amm = ctf_fixed_maxseg(tp);
2752 		} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
2753 			/* not enough to fill a MTU and no-delay is off */
2754 			goto need_retran;
2755 		}
2756 		if (IN_RECOVERY(tp->t_flags)) {
2757 			/* Unlikely */
2758 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2759 			if (out + amm <= tp->snd_wnd) {
2760 				rack->r_ctl.rc_prr_sndcnt = amm;
2761 				rack_log_to_prr(rack, 4);
2762 			} else
2763 				goto need_retran;
2764 		} else {
2765 			/* Set the send-new override */
2766 			if (out + amm <= tp->snd_wnd)
2767 				rack->r_ctl.rc_tlp_new_data = amm;
2768 			else
2769 				goto need_retran;
2770 		}
2771 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2772 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2773 		rack->r_ctl.rc_tlpsend = NULL;
2774 		counter_u64_add(rack_tlp_newdata, 1);
2775 		goto send;
2776 	}
2777 need_retran:
2778 	/*
2779 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2780 	 * optionally the first un-acked segment.
2781 	 */
2782 	if (collapsed_win == 0) {
2783 		if (rack_always_send_oldest)
2784 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2785 		else {
2786 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2787 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2788 				rsm = rack_find_high_nonack(rack, rsm);
2789 			}
2790 		}
2791 		if (rsm == NULL) {
2792 			counter_u64_add(rack_tlp_does_nada, 1);
2793 #ifdef TCP_BLACKBOX
2794 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2795 #endif
2796 			goto out;
2797 		}
2798 	} else {
2799 		/*
2800 		 * We must find the last segment
2801 		 * that was acceptable by the client.
2802 		 */
2803 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
2804 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
2805 				/* Found one */
2806 				break;
2807 			}
2808 		}
2809 		if (rsm == NULL) {
2810 			/* None? if so send the first */
2811 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2812 			if (rsm == NULL) {
2813 				counter_u64_add(rack_tlp_does_nada, 1);
2814 #ifdef TCP_BLACKBOX
2815 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2816 #endif
2817 				goto out;
2818 			}
2819 		}
2820 	}
2821 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
2822 		/*
2823 		 * We need to split this the last segment in two.
2824 		 */
2825 		struct rack_sendmap *nrsm;
2826 
2827 
2828 		nrsm = rack_alloc_full_limit(rack);
2829 		if (nrsm == NULL) {
2830 			/*
2831 			 * No memory to split, we will just exit and punt
2832 			 * off to the RXT timer.
2833 			 */
2834 			counter_u64_add(rack_tlp_does_nada, 1);
2835 			goto out;
2836 		}
2837 		rack_clone_rsm(rack, nrsm, rsm,
2838 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
2839 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
2840 #ifdef INVARIANTS
2841 		if (insret != NULL) {
2842 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
2843 			      nrsm, insret, rack, rsm);
2844 		}
2845 #endif
2846 		if (rsm->r_in_tmap) {
2847 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2848 			nrsm->r_in_tmap = 1;
2849 		}
2850 		rsm->r_flags &= (~RACK_HAS_FIN);
2851 		rsm = nrsm;
2852 	}
2853 	rack->r_ctl.rc_tlpsend = rsm;
2854 	rack->r_ctl.rc_tlp_rtx_out = 1;
2855 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2856 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2857 		tp->t_rxtshift++;
2858 	} else {
2859 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2860 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2861 	}
2862 send:
2863 	rack->r_ctl.rc_tlp_send_cnt++;
2864 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2865 		/*
2866 		 * Can't [re]/transmit a segment we have not heard from the
2867 		 * peer in max times. We need the retransmit timer to take
2868 		 * over.
2869 		 */
2870 	restore:
2871 		rack->r_ctl.rc_tlpsend = NULL;
2872 		if (rsm)
2873 			rsm->r_flags &= ~RACK_TLP;
2874 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2875 		rack_log_to_prr(rack, 5);
2876 		counter_u64_add(rack_tlp_retran_fail, 1);
2877 		goto out;
2878 	} else if (rsm) {
2879 		rsm->r_flags |= RACK_TLP;
2880 	}
2881 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2882 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2883 		/*
2884 		 * We don't want to send a single segment more than the max
2885 		 * either.
2886 		 */
2887 		goto restore;
2888 	}
2889 	rack->r_timer_override = 1;
2890 	rack->r_tlp_running = 1;
2891 	rack->rc_tlp_in_progress = 1;
2892 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2893 	return (0);
2894 out:
2895 	rack->tlp_timer_up = 0;
2896 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2897 	return (0);
2898 }
2899 
2900 /*
2901  * Delayed ack Timer, here we simply need to setup the
2902  * ACK_NOW flag and remove the DELACK flag. From there
2903  * the output routine will send the ack out.
2904  *
2905  * We only return 1, saying don't proceed, if all timers
2906  * are stopped (destroyed PCB?).
2907  */
2908 static int
2909 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2910 {
2911 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2912 		return (1);
2913 	}
2914 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
2915 	tp->t_flags &= ~TF_DELACK;
2916 	tp->t_flags |= TF_ACKNOW;
2917 	TCPSTAT_INC(tcps_delack);
2918 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2919 	return (0);
2920 }
2921 
2922 /*
2923  * Persists timer, here we simply need to setup the
2924  * FORCE-DATA flag the output routine will send
2925  * the one byte send.
2926  *
2927  * We only return 1, saying don't proceed, if all timers
2928  * are stopped (destroyed PCB?).
2929  */
2930 static int
2931 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2932 {
2933 	struct tcptemp *t_template;
2934 	struct inpcb *inp;
2935 	int32_t retval = 1;
2936 
2937 	inp = tp->t_inpcb;
2938 
2939 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2940 		return (1);
2941 	}
2942 	if (rack->rc_in_persist == 0)
2943 		return (0);
2944 	if (rack_progress_timeout_check(tp)) {
2945 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2946 		return (1);
2947 	}
2948 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2949 	/*
2950 	 * Persistence timer into zero window. Force a byte to be output, if
2951 	 * possible.
2952 	 */
2953 	TCPSTAT_INC(tcps_persisttimeo);
2954 	/*
2955 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2956 	 * window is closed.  After a full backoff, drop the connection if
2957 	 * the idle time (no responses to probes) reaches the maximum
2958 	 * backoff that we would use if retransmitting.
2959 	 */
2960 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2961 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2962 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2963 		TCPSTAT_INC(tcps_persistdrop);
2964 		retval = 1;
2965 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2966 		goto out;
2967 	}
2968 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2969 	    tp->snd_una == tp->snd_max)
2970 		rack_exit_persist(tp, rack);
2971 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2972 	/*
2973 	 * If the user has closed the socket then drop a persisting
2974 	 * connection after a much reduced timeout.
2975 	 */
2976 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2977 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2978 		retval = 1;
2979 		TCPSTAT_INC(tcps_persistdrop);
2980 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2981 		goto out;
2982 	}
2983 	t_template = tcpip_maketemplate(rack->rc_inp);
2984 	if (t_template) {
2985 		tcp_respond(tp, t_template->tt_ipgen,
2986 			    &t_template->tt_t, (struct mbuf *)NULL,
2987 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2988 		/* This sends an ack */
2989 		if (tp->t_flags & TF_DELACK)
2990 			tp->t_flags &= ~TF_DELACK;
2991 		free(t_template, M_TEMP);
2992 	}
2993 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2994 		tp->t_rxtshift++;
2995 out:
2996 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
2997 	rack_start_hpts_timer(rack, tp, cts,
2998 			      0, 0, 0);
2999 	return (retval);
3000 }
3001 
3002 /*
3003  * If a keepalive goes off, we had no other timers
3004  * happening. We always return 1 here since this
3005  * routine either drops the connection or sends
3006  * out a segment with respond.
3007  */
3008 static int
3009 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3010 {
3011 	struct tcptemp *t_template;
3012 	struct inpcb *inp;
3013 
3014 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3015 		return (1);
3016 	}
3017 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
3018 	inp = tp->t_inpcb;
3019 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
3020 	/*
3021 	 * Keep-alive timer went off; send something or drop connection if
3022 	 * idle for too long.
3023 	 */
3024 	TCPSTAT_INC(tcps_keeptimeo);
3025 	if (tp->t_state < TCPS_ESTABLISHED)
3026 		goto dropit;
3027 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
3028 	    tp->t_state <= TCPS_CLOSING) {
3029 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
3030 			goto dropit;
3031 		/*
3032 		 * Send a packet designed to force a response if the peer is
3033 		 * up and reachable: either an ACK if the connection is
3034 		 * still alive, or an RST if the peer has closed the
3035 		 * connection due to timeout or reboot. Using sequence
3036 		 * number tp->snd_una-1 causes the transmitted zero-length
3037 		 * segment to lie outside the receive window; by the
3038 		 * protocol spec, this requires the correspondent TCP to
3039 		 * respond.
3040 		 */
3041 		TCPSTAT_INC(tcps_keepprobe);
3042 		t_template = tcpip_maketemplate(inp);
3043 		if (t_template) {
3044 			tcp_respond(tp, t_template->tt_ipgen,
3045 			    &t_template->tt_t, (struct mbuf *)NULL,
3046 			    tp->rcv_nxt, tp->snd_una - 1, 0);
3047 			free(t_template, M_TEMP);
3048 		}
3049 	}
3050 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
3051 	return (1);
3052 dropit:
3053 	TCPSTAT_INC(tcps_keepdrops);
3054 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
3055 	return (1);
3056 }
3057 
3058 /*
3059  * Retransmit helper function, clear up all the ack
3060  * flags and take care of important book keeping.
3061  */
3062 static void
3063 rack_remxt_tmr(struct tcpcb *tp)
3064 {
3065 	/*
3066 	 * The retransmit timer went off, all sack'd blocks must be
3067 	 * un-acked.
3068 	 */
3069 	struct rack_sendmap *rsm, *trsm = NULL;
3070 	struct tcp_rack *rack;
3071 	int32_t cnt = 0;
3072 
3073 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3074 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
3075 	rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
3076 	if (rack->r_state && (rack->r_state != tp->t_state))
3077 		rack_set_state(tp, rack);
3078 	/*
3079 	 * Ideally we would like to be able to
3080 	 * mark SACK-PASS on anything not acked here.
3081 	 * However, if we do that we would burst out
3082 	 * all that data 1ms apart. This would be unwise,
3083 	 * so for now we will just let the normal rxt timer
3084 	 * and tlp timer take care of it.
3085 	 */
3086 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3087 		if (rsm->r_flags & RACK_ACKED) {
3088 			cnt++;
3089 			rsm->r_dupack = 0;
3090 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3091 			if (rsm->r_in_tmap == 0) {
3092 				/* We must re-add it back to the tlist */
3093 				if (trsm == NULL) {
3094 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3095 				} else {
3096 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
3097 				}
3098 				rsm->r_in_tmap = 1;
3099 			}
3100 		}
3101 		trsm = rsm;
3102 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
3103 	}
3104 	/* Clear the count (we just un-acked them) */
3105 	rack->r_ctl.rc_sacked = 0;
3106 	/* Clear the tlp rtx mark */
3107 	rack->r_ctl.rc_tlp_rtx_out = 0;
3108 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
3109 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3110 	rack->r_ctl.rc_prr_sndcnt = 0;
3111 	rack_log_to_prr(rack, 6);
3112 	rack->r_timer_override = 1;
3113 }
3114 
3115 /*
3116  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
3117  * we will setup to retransmit the lowest seq number outstanding.
3118  */
3119 static int
3120 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3121 {
3122 	int32_t rexmt;
3123 	struct inpcb *inp;
3124 	int32_t retval = 0;
3125 
3126 	inp = tp->t_inpcb;
3127 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3128 		return (1);
3129 	}
3130 	if (rack_progress_timeout_check(tp)) {
3131 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
3132 		return (1);
3133 	}
3134 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
3135 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
3136 	    (tp->snd_una == tp->snd_max)) {
3137 		/* Nothing outstanding .. nothing to do */
3138 		return (0);
3139 	}
3140 	/*
3141 	 * Retransmission timer went off.  Message has not been acked within
3142 	 * retransmit interval.  Back off to a longer retransmit interval
3143 	 * and retransmit one segment.
3144 	 */
3145 	rack_remxt_tmr(tp);
3146 	if ((rack->r_ctl.rc_resend == NULL) ||
3147 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
3148 		/*
3149 		 * If the rwnd collapsed on
3150 		 * the one we are retransmitting
3151 		 * it does not count against the
3152 		 * rxt count.
3153 		 */
3154 		tp->t_rxtshift++;
3155 	}
3156 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
3157 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
3158 		TCPSTAT_INC(tcps_timeoutdrop);
3159 		retval = 1;
3160 		tcp_set_inp_to_drop(rack->rc_inp,
3161 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
3162 		goto out;
3163 	}
3164 	if (tp->t_state == TCPS_SYN_SENT) {
3165 		/*
3166 		 * If the SYN was retransmitted, indicate CWND to be limited
3167 		 * to 1 segment in cc_conn_init().
3168 		 */
3169 		tp->snd_cwnd = 1;
3170 	} else if (tp->t_rxtshift == 1) {
3171 		/*
3172 		 * first retransmit; record ssthresh and cwnd so they can be
3173 		 * recovered if this turns out to be a "bad" retransmit. A
3174 		 * retransmit is considered "bad" if an ACK for this segment
3175 		 * is received within RTT/2 interval; the assumption here is
3176 		 * that the ACK was already in flight.  See "On Estimating
3177 		 * End-to-End Network Path Properties" by Allman and Paxson
3178 		 * for more details.
3179 		 */
3180 		tp->snd_cwnd_prev = tp->snd_cwnd;
3181 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
3182 		tp->snd_recover_prev = tp->snd_recover;
3183 		if (IN_FASTRECOVERY(tp->t_flags))
3184 			tp->t_flags |= TF_WASFRECOVERY;
3185 		else
3186 			tp->t_flags &= ~TF_WASFRECOVERY;
3187 		if (IN_CONGRECOVERY(tp->t_flags))
3188 			tp->t_flags |= TF_WASCRECOVERY;
3189 		else
3190 			tp->t_flags &= ~TF_WASCRECOVERY;
3191 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
3192 		tp->t_flags |= TF_PREVVALID;
3193 	} else
3194 		tp->t_flags &= ~TF_PREVVALID;
3195 	TCPSTAT_INC(tcps_rexmttimeo);
3196 	if ((tp->t_state == TCPS_SYN_SENT) ||
3197 	    (tp->t_state == TCPS_SYN_RECEIVED))
3198 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
3199 	else
3200 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
3201 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
3202 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
3203 	   MSEC_2_TICKS(rack_rto_max));
3204 	/*
3205 	 * We enter the path for PLMTUD if connection is established or, if
3206 	 * connection is FIN_WAIT_1 status, reason for the last is that if
3207 	 * amount of data we send is very small, we could send it in couple
3208 	 * of packets and process straight to FIN. In that case we won't
3209 	 * catch ESTABLISHED state.
3210 	 */
3211 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
3212 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
3213 #ifdef INET6
3214 		int32_t isipv6;
3215 #endif
3216 
3217 		/*
3218 		 * Idea here is that at each stage of mtu probe (usually,
3219 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
3220 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3221 		 * should take care of that.
3222 		 */
3223 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3224 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3225 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3226 		    tp->t_rxtshift % 2 == 0)) {
3227 			/*
3228 			 * Enter Path MTU Black-hole Detection mechanism: -
3229 			 * Disable Path MTU Discovery (IP "DF" bit). -
3230 			 * Reduce MTU to lower value than what we negotiated
3231 			 * with peer.
3232 			 */
3233 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3234 				/* Record that we may have found a black hole. */
3235 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3236 				/* Keep track of previous MSS. */
3237 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3238 			}
3239 
3240 			/*
3241 			 * Reduce the MSS to blackhole value or to the
3242 			 * default in an attempt to retransmit.
3243 			 */
3244 #ifdef INET6
3245 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
3246 			if (isipv6 &&
3247 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3248 				/* Use the sysctl tuneable blackhole MSS. */
3249 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3250 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3251 			} else if (isipv6) {
3252 				/* Use the default MSS. */
3253 				tp->t_maxseg = V_tcp_v6mssdflt;
3254 				/*
3255 				 * Disable Path MTU Discovery when we switch
3256 				 * to minmss.
3257 				 */
3258 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3259 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3260 			}
3261 #endif
3262 #if defined(INET6) && defined(INET)
3263 			else
3264 #endif
3265 #ifdef INET
3266 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3267 				/* Use the sysctl tuneable blackhole MSS. */
3268 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3269 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3270 			} else {
3271 				/* Use the default MSS. */
3272 				tp->t_maxseg = V_tcp_mssdflt;
3273 				/*
3274 				 * Disable Path MTU Discovery when we switch
3275 				 * to minmss.
3276 				 */
3277 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3278 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3279 			}
3280 #endif
3281 		} else {
3282 			/*
3283 			 * If further retransmissions are still unsuccessful
3284 			 * with a lowered MTU, maybe this isn't a blackhole
3285 			 * and we restore the previous MSS and blackhole
3286 			 * detection flags. The limit '6' is determined by
3287 			 * giving each probe stage (1448, 1188, 524) 2
3288 			 * chances to recover.
3289 			 */
3290 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3291 			    (tp->t_rxtshift >= 6)) {
3292 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3293 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3294 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3295 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3296 			}
3297 		}
3298 	}
3299 	/*
3300 	 * If we backed off this far, our srtt estimate is probably bogus.
3301 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3302 	 * move the current srtt into rttvar to keep the current retransmit
3303 	 * times until then.
3304 	 */
3305 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3306 #ifdef INET6
3307 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3308 			in6_losing(tp->t_inpcb);
3309 		else
3310 #endif
3311 			in_losing(tp->t_inpcb);
3312 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3313 		tp->t_srtt = 0;
3314 	}
3315 	if (rack_use_sack_filter)
3316 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3317 	tp->snd_recover = tp->snd_max;
3318 	tp->t_flags |= TF_ACKNOW;
3319 	tp->t_rtttime = 0;
3320 	rack_cong_signal(tp, NULL, CC_RTO);
3321 out:
3322 	return (retval);
3323 }
3324 
3325 static int
3326 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3327 {
3328 	int32_t ret = 0;
3329 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3330 
3331 	if (timers == 0) {
3332 		return (0);
3333 	}
3334 	if (tp->t_state == TCPS_LISTEN) {
3335 		/* no timers on listen sockets */
3336 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3337 			return (0);
3338 		return (1);
3339 	}
3340 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3341 		uint32_t left;
3342 
3343 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3344 			ret = -1;
3345 			rack_log_to_processing(rack, cts, ret, 0);
3346 			return (0);
3347 		}
3348 		if (hpts_calling == 0) {
3349 			ret = -2;
3350 			rack_log_to_processing(rack, cts, ret, 0);
3351 			return (0);
3352 		}
3353 		/*
3354 		 * Ok our timer went off early and we are not paced false
3355 		 * alarm, go back to sleep.
3356 		 */
3357 		ret = -3;
3358 		left = rack->r_ctl.rc_timer_exp - cts;
3359 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3360 		rack_log_to_processing(rack, cts, ret, left);
3361 		rack->rc_last_pto_set = 0;
3362 		return (1);
3363 	}
3364 	rack->rc_tmr_stopped = 0;
3365 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3366 	if (timers & PACE_TMR_DELACK) {
3367 		ret = rack_timeout_delack(tp, rack, cts);
3368 	} else if (timers & PACE_TMR_RACK) {
3369 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3370 		ret = rack_timeout_rack(tp, rack, cts);
3371 	} else if (timers & PACE_TMR_TLP) {
3372 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3373 		ret = rack_timeout_tlp(tp, rack, cts);
3374 	} else if (timers & PACE_TMR_RXT) {
3375 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3376 		ret = rack_timeout_rxt(tp, rack, cts);
3377 	} else if (timers & PACE_TMR_PERSIT) {
3378 		ret = rack_timeout_persist(tp, rack, cts);
3379 	} else if (timers & PACE_TMR_KEEP) {
3380 		ret = rack_timeout_keepalive(tp, rack, cts);
3381 	}
3382 	rack_log_to_processing(rack, cts, ret, timers);
3383 	return (ret);
3384 }
3385 
3386 static void
3387 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3388 {
3389 	uint8_t hpts_removed = 0;
3390 
3391 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3392 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3393 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3394 		hpts_removed = 1;
3395 	}
3396 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3397 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3398 		if (rack->rc_inp->inp_in_hpts &&
3399 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3400 			/*
3401 			 * Canceling timer's when we have no output being
3402 			 * paced. We also must remove ourselves from the
3403 			 * hpts.
3404 			 */
3405 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3406 			hpts_removed = 1;
3407 		}
3408 		rack_log_to_cancel(rack, hpts_removed, line);
3409 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3410 	}
3411 }
3412 
3413 static void
3414 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3415 {
3416 	return;
3417 }
3418 
3419 static int
3420 rack_stopall(struct tcpcb *tp)
3421 {
3422 	struct tcp_rack *rack;
3423 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3424 	rack->t_timers_stopped = 1;
3425 	return (0);
3426 }
3427 
3428 static void
3429 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3430 {
3431 	return;
3432 }
3433 
3434 static int
3435 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3436 {
3437 	return (0);
3438 }
3439 
3440 static void
3441 rack_stop_all_timers(struct tcpcb *tp)
3442 {
3443 	struct tcp_rack *rack;
3444 
3445 	/*
3446 	 * Assure no timers are running.
3447 	 */
3448 	if (tcp_timer_active(tp, TT_PERSIST)) {
3449 		/* We enter in persists, set the flag appropriately */
3450 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3451 		rack->rc_in_persist = 1;
3452 	}
3453 	tcp_timer_suspend(tp, TT_PERSIST);
3454 	tcp_timer_suspend(tp, TT_REXMT);
3455 	tcp_timer_suspend(tp, TT_KEEP);
3456 	tcp_timer_suspend(tp, TT_DELACK);
3457 }
3458 
3459 static void
3460 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3461     struct rack_sendmap *rsm, uint32_t ts)
3462 {
3463 	int32_t idx;
3464 
3465 	rsm->r_rtr_cnt++;
3466 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3467 	rsm->r_dupack = 0;
3468 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3469 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3470 		rsm->r_flags |= RACK_OVERMAX;
3471 	}
3472 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3473 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3474 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3475 	}
3476 	idx = rsm->r_rtr_cnt - 1;
3477 	rsm->r_tim_lastsent[idx] = ts;
3478 	if (rsm->r_flags & RACK_ACKED) {
3479 		/* Problably MTU discovery messing with us */
3480 		rsm->r_flags &= ~RACK_ACKED;
3481 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3482 	}
3483 	if (rsm->r_in_tmap) {
3484 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3485 		rsm->r_in_tmap = 0;
3486 	}
3487 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3488 	rsm->r_in_tmap = 1;
3489 	if (rsm->r_flags & RACK_SACK_PASSED) {
3490 		/* We have retransmitted due to the SACK pass */
3491 		rsm->r_flags &= ~RACK_SACK_PASSED;
3492 		rsm->r_flags |= RACK_WAS_SACKPASS;
3493 	}
3494 }
3495 
3496 
3497 static uint32_t
3498 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3499     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
3500 {
3501 	/*
3502 	 * We (re-)transmitted starting at rsm->r_start for some length
3503 	 * (possibly less than r_end.
3504 	 */
3505 	struct rack_sendmap *nrsm, *insret;
3506 	uint32_t c_end;
3507 	int32_t len;
3508 
3509 	len = *lenp;
3510 	c_end = rsm->r_start + len;
3511 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3512 		/*
3513 		 * We retransmitted the whole piece or more than the whole
3514 		 * slopping into the next rsm.
3515 		 */
3516 		rack_update_rsm(tp, rack, rsm, ts);
3517 		if (c_end == rsm->r_end) {
3518 			*lenp = 0;
3519 			return (0);
3520 		} else {
3521 			int32_t act_len;
3522 
3523 			/* Hangs over the end return whats left */
3524 			act_len = rsm->r_end - rsm->r_start;
3525 			*lenp = (len - act_len);
3526 			return (rsm->r_end);
3527 		}
3528 		/* We don't get out of this block. */
3529 	}
3530 	/*
3531 	 * Here we retransmitted less than the whole thing which means we
3532 	 * have to split this into what was transmitted and what was not.
3533 	 */
3534 	nrsm = rack_alloc_full_limit(rack);
3535 	if (nrsm == NULL) {
3536 		/*
3537 		 * We can't get memory, so lets not proceed.
3538 		 */
3539 		*lenp = 0;
3540 		return (0);
3541 	}
3542 	/*
3543 	 * So here we are going to take the original rsm and make it what we
3544 	 * retransmitted. nrsm will be the tail portion we did not
3545 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3546 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3547 	 * 1, 6 and the new piece will be 6, 11.
3548 	 */
3549 	rack_clone_rsm(rack, nrsm, rsm, c_end);
3550 	nrsm->r_dupack = 0;
3551 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
3552 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3553 #ifdef INVARIANTS
3554 	if (insret != NULL) {
3555 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3556 		      nrsm, insret, rack, rsm);
3557 	}
3558 #endif
3559 	if (rsm->r_in_tmap) {
3560 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3561 		nrsm->r_in_tmap = 1;
3562 	}
3563 	rsm->r_flags &= (~RACK_HAS_FIN);
3564 	rack_update_rsm(tp, rack, rsm, ts);
3565 	*lenp = 0;
3566 	return (0);
3567 }
3568 
3569 
3570 static void
3571 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3572     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3573     uint8_t pass, struct rack_sendmap *hintrsm)
3574 {
3575 	struct tcp_rack *rack;
3576 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
3577 	register uint32_t snd_max, snd_una;
3578 
3579 	/*
3580 	 * Add to the RACK log of packets in flight or retransmitted. If
3581 	 * there is a TS option we will use the TS echoed, if not we will
3582 	 * grab a TS.
3583 	 *
3584 	 * Retransmissions will increment the count and move the ts to its
3585 	 * proper place. Note that if options do not include TS's then we
3586 	 * won't be able to effectively use the ACK for an RTT on a retran.
3587 	 *
3588 	 * Notes about r_start and r_end. Lets consider a send starting at
3589 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3590 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3591 	 * This means that r_end is actually the first sequence for the next
3592 	 * slot (11).
3593 	 *
3594 	 */
3595 	/*
3596 	 * If err is set what do we do XXXrrs? should we not add the thing?
3597 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3598 	 * i.e. proceed with add ** do this for now.
3599 	 */
3600 	INP_WLOCK_ASSERT(tp->t_inpcb);
3601 	if (err)
3602 		/*
3603 		 * We don't log errors -- we could but snd_max does not
3604 		 * advance in this case either.
3605 		 */
3606 		return;
3607 
3608 	if (th_flags & TH_RST) {
3609 		/*
3610 		 * We don't log resets and we return immediately from
3611 		 * sending
3612 		 */
3613 		return;
3614 	}
3615 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3616 	snd_una = tp->snd_una;
3617 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3618 		/* Are sending an old segment to induce an ack (keep-alive)? */
3619 		return;
3620 	}
3621 	if (SEQ_LT(seq_out, snd_una)) {
3622 		/* huh? should we panic? */
3623 		uint32_t end;
3624 
3625 		end = seq_out + len;
3626 		seq_out = snd_una;
3627 		if (SEQ_GEQ(end, seq_out))
3628 			len = end - seq_out;
3629 		else
3630 			len = 0;
3631 	}
3632 	snd_max = tp->snd_max;
3633 	if (th_flags & (TH_SYN | TH_FIN)) {
3634 		/*
3635 		 * The call to rack_log_output is made before bumping
3636 		 * snd_max. This means we can record one extra byte on a SYN
3637 		 * or FIN if seq_out is adding more on and a FIN is present
3638 		 * (and we are not resending).
3639 		 */
3640 		if (th_flags & TH_SYN)
3641 			len++;
3642 		if (th_flags & TH_FIN)
3643 			len++;
3644 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3645 			/*
3646 			 * The add/update as not been done for the FIN/SYN
3647 			 * yet.
3648 			 */
3649 			snd_max = tp->snd_nxt;
3650 		}
3651 	}
3652 	if (len == 0) {
3653 		/* We don't log zero window probes */
3654 		return;
3655 	}
3656 	rack->r_ctl.rc_time_last_sent = ts;
3657 	if (IN_RECOVERY(tp->t_flags)) {
3658 		rack->r_ctl.rc_prr_out += len;
3659 	}
3660 	/* First question is it a retransmission or new? */
3661 	if (seq_out == snd_max) {
3662 		/* Its new */
3663 again:
3664 		rsm = rack_alloc(rack);
3665 		if (rsm == NULL) {
3666 			/*
3667 			 * Hmm out of memory and the tcb got destroyed while
3668 			 * we tried to wait.
3669 			 */
3670 			return;
3671 		}
3672 		if (th_flags & TH_FIN) {
3673 			rsm->r_flags = RACK_HAS_FIN;
3674 		} else {
3675 			rsm->r_flags = 0;
3676 		}
3677 		rsm->r_tim_lastsent[0] = ts;
3678 		rsm->r_rtr_cnt = 1;
3679 		rsm->r_rtr_bytes = 0;
3680 		if (th_flags & TH_SYN) {
3681 			/* The data space is one beyond snd_una */
3682 			rsm->r_start = seq_out + 1;
3683 			rsm->r_end = rsm->r_start + (len - 1);
3684 		} else {
3685 			/* Normal case */
3686 			rsm->r_start = seq_out;
3687 			rsm->r_end = rsm->r_start + len;
3688 		}
3689 		rsm->r_dupack = 0;
3690 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3691 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
3692 #ifdef INVARIANTS
3693 		if (insret != NULL) {
3694 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3695 			      nrsm, insret, rack, rsm);
3696 		}
3697 #endif
3698 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3699 		rsm->r_in_tmap = 1;
3700 		return;
3701 	}
3702 	/*
3703 	 * If we reach here its a retransmission and we need to find it.
3704 	 */
3705 	memset(&fe, 0, sizeof(fe));
3706 more:
3707 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3708 		rsm = hintrsm;
3709 		hintrsm = NULL;
3710 	} else {
3711 		/* No hints sorry */
3712 		rsm = NULL;
3713 	}
3714 	if ((rsm) && (rsm->r_start == seq_out)) {
3715 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3716 		if (len == 0) {
3717 			return;
3718 		} else {
3719 			goto more;
3720 		}
3721 	}
3722 	/* Ok it was not the last pointer go through it the hard way. */
3723 refind:
3724 	fe.r_start = seq_out;
3725 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3726 	if (rsm) {
3727 		if (rsm->r_start == seq_out) {
3728 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3729 			if (len == 0) {
3730 				return;
3731 			} else {
3732 				goto refind;
3733 			}
3734 		}
3735 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3736 			/* Transmitted within this piece */
3737 			/*
3738 			 * Ok we must split off the front and then let the
3739 			 * update do the rest
3740 			 */
3741 			nrsm = rack_alloc_full_limit(rack);
3742 			if (nrsm == NULL) {
3743 				rack_update_rsm(tp, rack, rsm, ts);
3744 				return;
3745 			}
3746 			/*
3747 			 * copy rsm to nrsm and then trim the front of rsm
3748 			 * to not include this part.
3749 			 */
3750 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
3751 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3752 #ifdef INVARIANTS
3753 			if (insret != NULL) {
3754 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3755 				      nrsm, insret, rack, rsm);
3756 			}
3757 #endif
3758 			if (rsm->r_in_tmap) {
3759 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3760 				nrsm->r_in_tmap = 1;
3761 			}
3762 			rsm->r_flags &= (~RACK_HAS_FIN);
3763 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3764 			if (len == 0) {
3765 				return;
3766 			} else if (len > 0)
3767 				goto refind;
3768 		}
3769 	}
3770 	/*
3771 	 * Hmm not found in map did they retransmit both old and on into the
3772 	 * new?
3773 	 */
3774 	if (seq_out == tp->snd_max) {
3775 		goto again;
3776 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3777 #ifdef INVARIANTS
3778 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3779 		    seq_out, len, tp->snd_una, tp->snd_max);
3780 		printf("Starting Dump of all rack entries\n");
3781 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3782 			printf("rsm:%p start:%u end:%u\n",
3783 			    rsm, rsm->r_start, rsm->r_end);
3784 		}
3785 		printf("Dump complete\n");
3786 		panic("seq_out not found rack:%p tp:%p",
3787 		    rack, tp);
3788 #endif
3789 	} else {
3790 #ifdef INVARIANTS
3791 		/*
3792 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3793 		 * flag)
3794 		 */
3795 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3796 		    seq_out, len, tp->snd_max, tp);
3797 #endif
3798 	}
3799 }
3800 
3801 /*
3802  * Record one of the RTT updates from an ack into
3803  * our sample structure.
3804  */
3805 static void
3806 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3807 {
3808 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3809 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3810 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3811 	}
3812 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3813 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3814 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3815 	}
3816 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3817 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3818 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3819 }
3820 
3821 /*
3822  * Collect new round-trip time estimate
3823  * and update averages and current timeout.
3824  */
3825 static void
3826 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3827 {
3828 	int32_t delta;
3829 	uint32_t o_srtt, o_var;
3830 	int32_t rtt;
3831 
3832 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3833 		/* No valid sample */
3834 		return;
3835 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3836 		/* We are to use the lowest RTT seen in a single ack */
3837 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3838 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3839 		/* We are to use the highest RTT seen in a single ack */
3840 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3841 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3842 		/* We are to use the average RTT seen in a single ack */
3843 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3844 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3845 	} else {
3846 #ifdef INVARIANTS
3847 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3848 #endif
3849 		return;
3850 	}
3851 	if (rtt == 0)
3852 		rtt = 1;
3853 	rack_log_rtt_sample(rack, rtt);
3854 	o_srtt = tp->t_srtt;
3855 	o_var = tp->t_rttvar;
3856 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3857 	if (tp->t_srtt != 0) {
3858 		/*
3859 		 * srtt is stored as fixed point with 5 bits after the
3860 		 * binary point (i.e., scaled by 8).  The following magic is
3861 		 * equivalent to the smoothing algorithm in rfc793 with an
3862 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3863 		 * Adjust rtt to origin 0.
3864 		 */
3865 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3866 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3867 
3868 		tp->t_srtt += delta;
3869 		if (tp->t_srtt <= 0)
3870 			tp->t_srtt = 1;
3871 
3872 		/*
3873 		 * We accumulate a smoothed rtt variance (actually, a
3874 		 * smoothed mean difference), then set the retransmit timer
3875 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3876 		 * is stored as fixed point with 4 bits after the binary
3877 		 * point (scaled by 16).  The following is equivalent to
3878 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3879 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3880 		 * wired-in beta.
3881 		 */
3882 		if (delta < 0)
3883 			delta = -delta;
3884 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3885 		tp->t_rttvar += delta;
3886 		if (tp->t_rttvar <= 0)
3887 			tp->t_rttvar = 1;
3888 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3889 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3890 	} else {
3891 		/*
3892 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3893 		 * variance to half the rtt (so our first retransmit happens
3894 		 * at 3*rtt).
3895 		 */
3896 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3897 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3898 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3899 	}
3900 	TCPSTAT_INC(tcps_rttupdated);
3901 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3902 	tp->t_rttupdated++;
3903 #ifdef STATS
3904 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3905 #endif
3906 	tp->t_rxtshift = 0;
3907 
3908 	/*
3909 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3910 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3911 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3912 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3913 	 * uncertainty in the firing of the timer.  The bias will give us
3914 	 * exactly the 1.5 tick we need.  But, because the bias is
3915 	 * statistical, we have to test that we don't drop below the minimum
3916 	 * feasible timer (which is 2 ticks).
3917 	 */
3918 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3919 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3920 	tp->t_softerror = 0;
3921 }
3922 
3923 static void
3924 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3925     uint32_t t, uint32_t cts)
3926 {
3927 	/*
3928 	 * For this RSM, we acknowledged the data from a previous
3929 	 * transmission, not the last one we made. This means we did a false
3930 	 * retransmit.
3931 	 */
3932 	struct tcp_rack *rack;
3933 
3934 	if (rsm->r_flags & RACK_HAS_FIN) {
3935 		/*
3936 		 * The sending of the FIN often is multiple sent when we
3937 		 * have everything outstanding ack'd. We ignore this case
3938 		 * since its over now.
3939 		 */
3940 		return;
3941 	}
3942 	if (rsm->r_flags & RACK_TLP) {
3943 		/*
3944 		 * We expect TLP's to have this occur.
3945 		 */
3946 		return;
3947 	}
3948 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3949 	/* should we undo cc changes and exit recovery? */
3950 	if (IN_RECOVERY(tp->t_flags)) {
3951 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3952 			/*
3953 			 * Undo what we ratched down and exit recovery if
3954 			 * possible
3955 			 */
3956 			EXIT_RECOVERY(tp->t_flags);
3957 			tp->snd_recover = tp->snd_una;
3958 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3959 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3960 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3961 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3962 		}
3963 	}
3964 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3965 		/*
3966 		 * We retransmitted based on a sack and the earlier
3967 		 * retransmission ack'd it - re-ordering is occuring.
3968 		 */
3969 		counter_u64_add(rack_reorder_seen, 1);
3970 		rack->r_ctl.rc_reorder_ts = cts;
3971 	}
3972 	counter_u64_add(rack_badfr, 1);
3973 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3974 }
3975 
3976 
3977 static int
3978 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3979     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3980 {
3981 	int32_t i;
3982 	uint32_t t;
3983 
3984 	if (rsm->r_flags & RACK_ACKED)
3985 		/* Already done */
3986 		return (0);
3987 
3988 
3989 	if ((rsm->r_rtr_cnt == 1) ||
3990 	    ((ack_type == CUM_ACKED) &&
3991 	    (to->to_flags & TOF_TS) &&
3992 	    (to->to_tsecr) &&
3993 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3994 	    ) {
3995 		/*
3996 		 * We will only find a matching timestamp if its cum-acked.
3997 		 * But if its only one retransmission its for-sure matching
3998 		 * :-)
3999 		 */
4000 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4001 		if ((int)t <= 0)
4002 			t = 1;
4003 		if (!tp->t_rttlow || tp->t_rttlow > t)
4004 			tp->t_rttlow = t;
4005 		if (!rack->r_ctl.rc_rack_min_rtt ||
4006 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4007 			rack->r_ctl.rc_rack_min_rtt = t;
4008 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
4009 				rack->r_ctl.rc_rack_min_rtt = 1;
4010 			}
4011 		}
4012 		tcp_rack_xmit_timer(rack, t + 1);
4013 		if ((rsm->r_flags & RACK_TLP) &&
4014 		    (!IN_RECOVERY(tp->t_flags))) {
4015 			/* Segment was a TLP and our retrans matched */
4016 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
4017 				rack->r_ctl.rc_rsm_start = tp->snd_max;
4018 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4019 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4020 				rack_cong_signal(tp, NULL, CC_NDUPACK);
4021 				/*
4022 				 * When we enter recovery we need to assure
4023 				 * we send one packet.
4024 				 */
4025 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4026 				rack_log_to_prr(rack, 7);
4027 			}
4028 		}
4029 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4030 			/* New more recent rack_tmit_time */
4031 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4032 			rack->rc_rack_rtt = t;
4033 		}
4034 		return (1);
4035 	}
4036 	/*
4037 	 * We clear the soft/rxtshift since we got an ack.
4038 	 * There is no assurance we will call the commit() function
4039 	 * so we need to clear these to avoid incorrect handling.
4040 	 */
4041 	tp->t_rxtshift = 0;
4042 	tp->t_softerror = 0;
4043 	if ((to->to_flags & TOF_TS) &&
4044 	    (ack_type == CUM_ACKED) &&
4045 	    (to->to_tsecr) &&
4046 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
4047 		/*
4048 		 * Now which timestamp does it match? In this block the ACK
4049 		 * must be coming from a previous transmission.
4050 		 */
4051 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
4052 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
4053 				t = cts - rsm->r_tim_lastsent[i];
4054 				if ((int)t <= 0)
4055 					t = 1;
4056 				if ((i + 1) < rsm->r_rtr_cnt) {
4057 					/* Likely */
4058 					rack_earlier_retran(tp, rsm, t, cts);
4059 				}
4060 				if (!tp->t_rttlow || tp->t_rttlow > t)
4061 					tp->t_rttlow = t;
4062 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4063 					rack->r_ctl.rc_rack_min_rtt = t;
4064 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
4065 						rack->r_ctl.rc_rack_min_rtt = 1;
4066 					}
4067 				}
4068                                 /*
4069 				 * Note the following calls to
4070 				 * tcp_rack_xmit_timer() are being commented
4071 				 * out for now. They give us no more accuracy
4072 				 * and often lead to a wrong choice. We have
4073 				 * enough samples that have not been
4074 				 * retransmitted. I leave the commented out
4075 				 * code in here in case in the future we
4076 				 * decide to add it back (though I can't forsee
4077 				 * doing that). That way we will easily see
4078 				 * where they need to be placed.
4079 				 */
4080 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
4081 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4082 					/* New more recent rack_tmit_time */
4083 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4084 					rack->rc_rack_rtt = t;
4085 				}
4086 				return (1);
4087 			}
4088 		}
4089 		goto ts_not_found;
4090 	} else {
4091 		/*
4092 		 * Ok its a SACK block that we retransmitted. or a windows
4093 		 * machine without timestamps. We can tell nothing from the
4094 		 * time-stamp since its not there or the time the peer last
4095 		 * recieved a segment that moved forward its cum-ack point.
4096 		 */
4097 ts_not_found:
4098 		i = rsm->r_rtr_cnt - 1;
4099 		t = cts - rsm->r_tim_lastsent[i];
4100 		if ((int)t <= 0)
4101 			t = 1;
4102 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4103 			/*
4104 			 * We retransmitted and the ack came back in less
4105 			 * than the smallest rtt we have observed. We most
4106 			 * likey did an improper retransmit as outlined in
4107 			 * 4.2 Step 3 point 2 in the rack-draft.
4108 			 */
4109 			i = rsm->r_rtr_cnt - 2;
4110 			t = cts - rsm->r_tim_lastsent[i];
4111 			rack_earlier_retran(tp, rsm, t, cts);
4112 		} else if (rack->r_ctl.rc_rack_min_rtt) {
4113 			/*
4114 			 * We retransmitted it and the retransmit did the
4115 			 * job.
4116 			 */
4117 			if (!rack->r_ctl.rc_rack_min_rtt ||
4118 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4119 				rack->r_ctl.rc_rack_min_rtt = t;
4120 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
4121 					rack->r_ctl.rc_rack_min_rtt = 1;
4122 				}
4123 			}
4124 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
4125 				/* New more recent rack_tmit_time */
4126 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
4127 				rack->rc_rack_rtt = t;
4128 			}
4129 			return (1);
4130 		}
4131 	}
4132 	return (0);
4133 }
4134 
4135 /*
4136  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
4137  */
4138 static void
4139 rack_log_sack_passed(struct tcpcb *tp,
4140     struct tcp_rack *rack, struct rack_sendmap *rsm)
4141 {
4142 	struct rack_sendmap *nrsm;
4143 
4144 	nrsm = rsm;
4145 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
4146 	    rack_head, r_tnext) {
4147 		if (nrsm == rsm) {
4148 			/* Skip orginal segment he is acked */
4149 			continue;
4150 		}
4151 		if (nrsm->r_flags & RACK_ACKED) {
4152 			/*
4153 			 * Skip ack'd segments, though we
4154 			 * should not see these, since tmap
4155 			 * should not have ack'd segments.
4156 			 */
4157 			continue;
4158 		}
4159 		if (nrsm->r_flags & RACK_SACK_PASSED) {
4160 			/*
4161 			 * We found one that is already marked
4162 			 * passed, we have been here before and
4163 			 * so all others below this are marked.
4164 			 */
4165 			break;
4166 		}
4167 		nrsm->r_flags |= RACK_SACK_PASSED;
4168 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
4169 	}
4170 }
4171 
4172 static uint32_t
4173 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
4174 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
4175 {
4176 	uint32_t start, end, changed = 0;
4177 	struct rack_sendmap stack_map;
4178 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
4179 	int32_t used_ref = 1;
4180 	int moved = 0;
4181 
4182 	start = sack->start;
4183 	end = sack->end;
4184 	rsm = *prsm;
4185 	memset(&fe, 0, sizeof(fe));
4186 do_rest_ofb:
4187 	if ((rsm == NULL) ||
4188 	    (SEQ_LT(end, rsm->r_start)) ||
4189 	    (SEQ_GEQ(start, rsm->r_end)) ||
4190 	    (SEQ_LT(start, rsm->r_start))) {
4191 		/*
4192 		 * We are not in the right spot,
4193 		 * find the correct spot in the tree.
4194 		 */
4195 		used_ref = 0;
4196 		fe.r_start = start;
4197 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4198 		moved++;
4199 	}
4200 	if (rsm == NULL) {
4201 		/* TSNH */
4202 		goto out;
4203 	}
4204 	/* Ok we have an ACK for some piece of this rsm */
4205 	if (rsm->r_start != start) {
4206 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4207 			/**
4208 			 * Need to split this in two pieces the before and after,
4209 			 * the before remains in the map, the after must be
4210 			 * added. In other words we have:
4211 			 * rsm        |--------------|
4212 			 * sackblk        |------->
4213 			 * rsm will become
4214 			 *     rsm    |---|
4215 			 * and nrsm will be  the sacked piece
4216 			 *     nrsm       |----------|
4217 			 *
4218 			 * But before we start down that path lets
4219 			 * see if the sack spans over on top of
4220 			 * the next guy and it is already sacked.
4221 			 */
4222 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4223 			if (next && (next->r_flags & RACK_ACKED) &&
4224 			    SEQ_GEQ(end, next->r_start)) {
4225 				/**
4226 				 * So the next one is already acked, and
4227 				 * we can thus by hookery use our stack_map
4228 				 * to reflect the piece being sacked and
4229 				 * then adjust the two tree entries moving
4230 				 * the start and ends around. So we start like:
4231 				 *  rsm     |------------|             (not-acked)
4232 				 *  next                 |-----------| (acked)
4233 				 *  sackblk        |-------->
4234 				 *  We want to end like so:
4235 				 *  rsm     |------|                   (not-acked)
4236 				 *  next           |-----------------| (acked)
4237 				 *  nrsm           |-----|
4238 				 * Where nrsm is a temporary stack piece we
4239 				 * use to update all the gizmos.
4240 				 */
4241 				/* Copy up our fudge block */
4242 				nrsm = &stack_map;
4243 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4244 				/* Now adjust our tree blocks */
4245 				rsm->r_end = start;
4246 				next->r_start = start;
4247 				/* Clear out the dup ack count of the remainder */
4248 				rsm->r_dupack = 0;
4249 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4250 				/* Now lets make sure our fudge block is right */
4251 				nrsm->r_start = start;
4252 				/* Now lets update all the stats and such */
4253 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4254 				changed += (nrsm->r_end - nrsm->r_start);
4255 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4256 				if (nrsm->r_flags & RACK_SACK_PASSED) {
4257 					counter_u64_add(rack_reorder_seen, 1);
4258 					rack->r_ctl.rc_reorder_ts = cts;
4259 				}
4260 				/*
4261 				 * Now we want to go up from rsm (the
4262 				 * one left un-acked) to the next one
4263 				 * in the tmap. We do this so when
4264 				 * we walk backwards we include marking
4265 				 * sack-passed on rsm (The one passed in
4266 				 * is skipped since it is generally called
4267 				 * on something sacked before removing it
4268 				 * from the tmap).
4269 				 */
4270 				if (rsm->r_in_tmap) {
4271 					nrsm = TAILQ_NEXT(rsm, r_tnext);
4272 					/*
4273 					 * Now that we have the next
4274 					 * one walk backwards from there.
4275 					 */
4276 					if (nrsm && nrsm->r_in_tmap)
4277 						rack_log_sack_passed(tp, rack, nrsm);
4278 				}
4279 				/* Now are we done? */
4280 				if (SEQ_LT(end, next->r_end) ||
4281 				    (end == next->r_end)) {
4282 					/* Done with block */
4283 					goto out;
4284 				}
4285 				counter_u64_add(rack_sack_used_next_merge, 1);
4286 				/* Postion for the next block */
4287 				start = next->r_end;
4288 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
4289 				if (rsm == NULL)
4290 					goto out;
4291 			} else {
4292 				/**
4293 				 * We can't use any hookery here, so we
4294 				 * need to split the map. We enter like
4295 				 * so:
4296 				 *  rsm      |--------|
4297 				 *  sackblk       |----->
4298 				 * We will add the new block nrsm and
4299 				 * that will be the new portion, and then
4300 				 * fall through after reseting rsm. So we
4301 				 * split and look like this:
4302 				 *  rsm      |----|
4303 				 *  sackblk       |----->
4304 				 *  nrsm          |---|
4305 				 * We then fall through reseting
4306 				 * rsm to nrsm, so the next block
4307 				 * picks it up.
4308 				 */
4309 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4310 				if (nrsm == NULL) {
4311 					/*
4312 					 * failed XXXrrs what can we do but loose the sack
4313 					 * info?
4314 					 */
4315 					goto out;
4316 				}
4317 				counter_u64_add(rack_sack_splits, 1);
4318 				rack_clone_rsm(rack, nrsm, rsm, start);
4319 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4320 #ifdef INVARIANTS
4321 				if (insret != NULL) {
4322 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4323 					      nrsm, insret, rack, rsm);
4324 				}
4325 #endif
4326 				if (rsm->r_in_tmap) {
4327 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4328 					nrsm->r_in_tmap = 1;
4329 				}
4330 				rsm->r_flags &= (~RACK_HAS_FIN);
4331 				/* Position us to point to the new nrsm that starts the sack blk */
4332 				rsm = nrsm;
4333 			}
4334 		} else {
4335 			/* Already sacked this piece */
4336 			counter_u64_add(rack_sack_skipped_acked, 1);
4337 			moved++;
4338 			if (end == rsm->r_end) {
4339 				/* Done with block */
4340 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4341 				goto out;
4342 			} else if (SEQ_LT(end, rsm->r_end)) {
4343 				/* A partial sack to a already sacked block */
4344 				moved++;
4345 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4346 				goto out;
4347 			} else {
4348 				/*
4349 				 * The end goes beyond this guy
4350 				 * repostion the start to the
4351 				 * next block.
4352 				 */
4353 				start = rsm->r_end;
4354 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4355 				if (rsm == NULL)
4356 					goto out;
4357 			}
4358 		}
4359 	}
4360 	if (SEQ_GEQ(end, rsm->r_end)) {
4361 		/**
4362 		 * The end of this block is either beyond this guy or right
4363 		 * at this guy. I.e.:
4364 		 *  rsm ---                 |-----|
4365 		 *  end                     |-----|
4366 		 *  <or>
4367 		 *  end                     |---------|
4368 		 */
4369 		if (rsm->r_flags & RACK_TLP)
4370 			rack->r_ctl.rc_tlp_rtx_out = 0;
4371 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4372 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4373 			changed += (rsm->r_end - rsm->r_start);
4374 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4375 			if (rsm->r_in_tmap) /* should be true */
4376 				rack_log_sack_passed(tp, rack, rsm);
4377 			/* Is Reordering occuring? */
4378 			if (rsm->r_flags & RACK_SACK_PASSED) {
4379 				rsm->r_flags &= ~RACK_SACK_PASSED;
4380 				counter_u64_add(rack_reorder_seen, 1);
4381 				rack->r_ctl.rc_reorder_ts = cts;
4382 			}
4383 			rsm->r_flags |= RACK_ACKED;
4384 			rsm->r_flags &= ~RACK_TLP;
4385 			if (rsm->r_in_tmap) {
4386 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4387 				rsm->r_in_tmap = 0;
4388 			}
4389 		} else {
4390 			counter_u64_add(rack_sack_skipped_acked, 1);
4391 			moved++;
4392 		}
4393 		if (end == rsm->r_end) {
4394 			/* This block only - done, setup for next  */
4395 			goto out;
4396 		}
4397 		/*
4398 		 * There is more not coverend by this rsm move on
4399 		 * to the next block in the RB tree.
4400 		 */
4401 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4402 		start = rsm->r_end;
4403 		rsm = nrsm;
4404 		if (rsm == NULL)
4405 			goto out;
4406 		goto do_rest_ofb;
4407 	}
4408 	/**
4409 	 * The end of this sack block is smaller than
4410 	 * our rsm i.e.:
4411 	 *  rsm ---                 |-----|
4412 	 *  end                     |--|
4413 	 */
4414 	if ((rsm->r_flags & RACK_ACKED) == 0) {
4415 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4416 		if (prev && (prev->r_flags & RACK_ACKED)) {
4417 			/**
4418 			 * Goal, we want the right remainder of rsm to shrink
4419 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
4420 			 * We want to expand prev to go all the way
4421 			 * to prev->r_end <- end.
4422 			 * so in the tree we have before:
4423 			 *   prev     |--------|         (acked)
4424 			 *   rsm               |-------| (non-acked)
4425 			 *   sackblk           |-|
4426 			 * We churn it so we end up with
4427 			 *   prev     |----------|       (acked)
4428 			 *   rsm                 |-----| (non-acked)
4429 			 *   nrsm              |-| (temporary)
4430 			 */
4431 			nrsm = &stack_map;
4432 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4433 			prev->r_end = end;
4434 			rsm->r_start = end;
4435 			/* Now adjust nrsm (stack copy) to be
4436 			 * the one that is the small
4437 			 * piece that was "sacked".
4438 			 */
4439 			nrsm->r_end = end;
4440 			rsm->r_dupack = 0;
4441 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4442 			/*
4443 			 * Now nrsm is our new little piece
4444 			 * that is acked (which was merged
4445 			 * to prev). Update the rtt and changed
4446 			 * based on that. Also check for reordering.
4447 			 */
4448 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4449 			changed += (nrsm->r_end - nrsm->r_start);
4450 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4451 			if (nrsm->r_flags & RACK_SACK_PASSED) {
4452 				counter_u64_add(rack_reorder_seen, 1);
4453 				rack->r_ctl.rc_reorder_ts = cts;
4454 			}
4455 			rsm = prev;
4456 			counter_u64_add(rack_sack_used_prev_merge, 1);
4457 		} else {
4458 			/**
4459 			 * This is the case where our previous
4460 			 * block is not acked either, so we must
4461 			 * split the block in two.
4462 			 */
4463 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4464 			if (nrsm == NULL) {
4465 				/* failed rrs what can we do but loose the sack info? */
4466 				goto out;
4467 			}
4468 			/**
4469 			 * In this case nrsm becomes
4470 			 * nrsm->r_start = end;
4471 			 * nrsm->r_end = rsm->r_end;
4472 			 * which is un-acked.
4473 			 * <and>
4474 			 * rsm->r_end = nrsm->r_start;
4475 			 * i.e. the remaining un-acked
4476 			 * piece is left on the left
4477 			 * hand side.
4478 			 *
4479 			 * So we start like this
4480 			 * rsm      |----------| (not acked)
4481 			 * sackblk  |---|
4482 			 * build it so we have
4483 			 * rsm      |---|         (acked)
4484 			 * nrsm         |------|  (not acked)
4485 			 */
4486 			counter_u64_add(rack_sack_splits, 1);
4487 			rack_clone_rsm(rack, nrsm, rsm, end);
4488 			rsm->r_flags &= (~RACK_HAS_FIN);
4489 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4490 #ifdef INVARIANTS
4491 			if (insret != NULL) {
4492 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4493 				      nrsm, insret, rack, rsm);
4494 			}
4495 #endif
4496 			if (rsm->r_in_tmap) {
4497 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4498 				nrsm->r_in_tmap = 1;
4499 			}
4500 			nrsm->r_dupack = 0;
4501 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
4502 			if (rsm->r_flags & RACK_TLP)
4503 				rack->r_ctl.rc_tlp_rtx_out = 0;
4504 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4505 			changed += (rsm->r_end - rsm->r_start);
4506 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4507 			if (rsm->r_in_tmap) /* should be true */
4508 				rack_log_sack_passed(tp, rack, rsm);
4509 			/* Is Reordering occuring? */
4510 			if (rsm->r_flags & RACK_SACK_PASSED) {
4511 				rsm->r_flags &= ~RACK_SACK_PASSED;
4512 				counter_u64_add(rack_reorder_seen, 1);
4513 				rack->r_ctl.rc_reorder_ts = cts;
4514 			}
4515 			rsm->r_flags |= RACK_ACKED;
4516 			rsm->r_flags &= ~RACK_TLP;
4517 			if (rsm->r_in_tmap) {
4518 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4519 				rsm->r_in_tmap = 0;
4520 			}
4521 		}
4522 	} else if (start != end){
4523 		/*
4524 		 * The block was already acked.
4525 		 */
4526 		counter_u64_add(rack_sack_skipped_acked, 1);
4527 		moved++;
4528 	}
4529 out:
4530 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4531 		/*
4532 		 * Now can we merge where we worked
4533 		 * with either the previous or
4534 		 * next block?
4535 		 */
4536 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4537 		while (next) {
4538 		    if (next->r_flags & RACK_ACKED) {
4539 			/* yep this and next can be merged */
4540 			rsm = rack_merge_rsm(rack, rsm, next);
4541 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4542 		    } else
4543 			    break;
4544 		}
4545 		/* Now what about the previous? */
4546 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4547 		while (prev) {
4548 		    if (prev->r_flags & RACK_ACKED) {
4549 			/* yep the previous and this can be merged */
4550 			rsm = rack_merge_rsm(rack, prev, rsm);
4551 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4552 		    } else
4553 			    break;
4554 		}
4555 	}
4556 	if (used_ref == 0) {
4557 		counter_u64_add(rack_sack_proc_all, 1);
4558 	} else {
4559 		counter_u64_add(rack_sack_proc_short, 1);
4560 	}
4561 	/* Save off the next one for quick reference. */
4562 	if (rsm)
4563 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4564 	else
4565 		nrsm = NULL;
4566 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
4567 	/* Pass back the moved. */
4568 	*moved_two = moved;
4569 	return (changed);
4570 }
4571 
4572 static void inline
4573 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4574 {
4575 	struct rack_sendmap *tmap;
4576 
4577 	tmap = NULL;
4578 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4579 		/* Its no longer sacked, mark it so */
4580 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4581 #ifdef INVARIANTS
4582 		if (rsm->r_in_tmap) {
4583 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4584 			      rack, rsm, rsm->r_flags);
4585 		}
4586 #endif
4587 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4588 		/* Rebuild it into our tmap */
4589 		if (tmap == NULL) {
4590 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4591 			tmap = rsm;
4592 		} else {
4593 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4594 			tmap = rsm;
4595 		}
4596 		tmap->r_in_tmap = 1;
4597 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4598 	}
4599 	/*
4600 	 * Now lets possibly clear the sack filter so we start
4601 	 * recognizing sacks that cover this area.
4602 	 */
4603 	if (rack_use_sack_filter)
4604 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4605 
4606 }
4607 
4608 static void
4609 rack_do_decay(struct tcp_rack *rack)
4610 {
4611 #ifdef NETFLIX_EXP_DETECTION
4612 	struct timeval res;
4613 
4614 #define	timersub(tvp, uvp, vvp)						\
4615 	do {								\
4616 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
4617 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
4618 		if ((vvp)->tv_usec < 0) {				\
4619 			(vvp)->tv_sec--;				\
4620 			(vvp)->tv_usec += 1000000;			\
4621 		}							\
4622 	} while (0)
4623 
4624 	timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
4625 #undef timersub
4626 
4627 	rack->r_ctl.input_pkt++;
4628 	if ((rack->rc_in_persist) ||
4629 	    (res.tv_sec >= 1) ||
4630 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
4631 		/*
4632 		 * Check for decay of non-SAD,
4633 		 * we want all SAD detection metrics to
4634 		 * decay 1/4 per second (or more) passed.
4635 		 */
4636 		uint32_t pkt_delta;
4637 
4638 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
4639 		/* Update our saved tracking values */
4640 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
4641 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
4642 		/* Now do we escape without decay? */
4643 		if (rack->rc_in_persist ||
4644 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
4645 		    (pkt_delta < tcp_sad_low_pps)){
4646 			/*
4647 			 * We don't decay idle connections
4648 			 * or ones that have a low input pps.
4649 			 */
4650 			return;
4651 		}
4652 		/* Decay the counters */
4653 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
4654 							tcp_sad_decay_val);
4655 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
4656 							 tcp_sad_decay_val);
4657 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
4658 							       tcp_sad_decay_val);
4659 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
4660 								tcp_sad_decay_val);
4661 	}
4662 #endif
4663 }
4664 
4665 static void
4666 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4667 {
4668 	uint32_t changed, entered_recovery = 0;
4669 	struct tcp_rack *rack;
4670 	struct rack_sendmap *rsm, *rm;
4671 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4672 	register uint32_t th_ack;
4673 	int32_t i, j, k, num_sack_blks = 0;
4674 	uint32_t cts, acked, ack_point, sack_changed = 0;
4675 	int loop_start = 0, moved_two = 0;
4676 
4677 	INP_WLOCK_ASSERT(tp->t_inpcb);
4678 	if (th->th_flags & TH_RST) {
4679 		/* We don't log resets */
4680 		return;
4681 	}
4682 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4683 	cts = tcp_ts_getticks();
4684 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4685 	changed = 0;
4686 	th_ack = th->th_ack;
4687 	if (rack->sack_attack_disable == 0)
4688 		rack_do_decay(rack);
4689 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
4690 		/*
4691 		 * You only get credit for
4692 		 * MSS and greater (and you get extra
4693 		 * credit for larger cum-ack moves).
4694 		 */
4695 		int ac;
4696 
4697 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
4698 		rack->r_ctl.ack_count += ac;
4699 		counter_u64_add(rack_ack_total, ac);
4700 	}
4701 	if (rack->r_ctl.ack_count > 0xfff00000) {
4702 		/*
4703 		 * reduce the number to keep us under
4704 		 * a uint32_t.
4705 		 */
4706 		rack->r_ctl.ack_count /= 2;
4707 		rack->r_ctl.sack_count /= 2;
4708 	}
4709 	if (SEQ_GT(th_ack, tp->snd_una)) {
4710 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4711 		tp->t_acktime = ticks;
4712 	}
4713 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4714 		changed = th_ack - rsm->r_start;
4715 	if (changed) {
4716 		/*
4717 		 * The ACK point is advancing to th_ack, we must drop off
4718 		 * the packets in the rack log and calculate any eligble
4719 		 * RTT's.
4720 		 */
4721 		rack->r_wanted_output++;
4722 	more:
4723 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4724 		if (rsm == NULL) {
4725 			if ((th_ack - 1) == tp->iss) {
4726 				/*
4727 				 * For the SYN incoming case we will not
4728 				 * have called tcp_output for the sending of
4729 				 * the SYN, so there will be no map. All
4730 				 * other cases should probably be a panic.
4731 				 */
4732 				goto proc_sack;
4733 			}
4734 			if (tp->t_flags & TF_SENTFIN) {
4735 				/* if we send a FIN we will not hav a map */
4736 				goto proc_sack;
4737 			}
4738 #ifdef INVARIANTS
4739 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4740 			      tp,
4741 			      th, tp->t_state, rack,
4742 			      tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4743 #endif
4744 			goto proc_sack;
4745 		}
4746 		if (SEQ_LT(th_ack, rsm->r_start)) {
4747 			/* Huh map is missing this */
4748 #ifdef INVARIANTS
4749 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4750 			       rsm->r_start,
4751 			       th_ack, tp->t_state, rack->r_state);
4752 #endif
4753 			goto proc_sack;
4754 		}
4755 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4756 		/* Now do we consume the whole thing? */
4757 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4758 			/* Its all consumed. */
4759 			uint32_t left;
4760 
4761 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4762 			rsm->r_rtr_bytes = 0;
4763 			if (rsm->r_flags & RACK_TLP)
4764 				rack->r_ctl.rc_tlp_rtx_out = 0;
4765 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4766 #ifdef INVARIANTS
4767 			if (rm != rsm) {
4768 				panic("removing head in rack:%p rsm:%p rm:%p",
4769 				      rack, rsm, rm);
4770 			}
4771 #endif
4772 			if (rsm->r_in_tmap) {
4773 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4774 				rsm->r_in_tmap = 0;
4775 			}
4776 			if (rsm->r_flags & RACK_ACKED) {
4777 				/*
4778 				 * It was acked on the scoreboard -- remove
4779 				 * it from total
4780 				 */
4781 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4782 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4783 				/*
4784 				 * There are segments ACKED on the
4785 				 * scoreboard further up. We are seeing
4786 				 * reordering.
4787 				 */
4788 				rsm->r_flags &= ~RACK_SACK_PASSED;
4789 				counter_u64_add(rack_reorder_seen, 1);
4790 				rsm->r_flags |= RACK_ACKED;
4791 				rack->r_ctl.rc_reorder_ts = cts;
4792 			}
4793 			left = th_ack - rsm->r_end;
4794 			if (rsm->r_rtr_cnt > 1) {
4795 				/*
4796 				 * Technically we should make r_rtr_cnt be
4797 				 * monotonicly increasing and just mod it to
4798 				 * the timestamp it is replacing.. that way
4799 				 * we would have the last 3 retransmits. Now
4800 				 * rc_loss_count will be wrong if we
4801 				 * retransmit something more than 2 times in
4802 				 * recovery :(
4803 				 */
4804 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4805 			}
4806 			/* Free back to zone */
4807 			rack_free(rack, rsm);
4808 			if (left) {
4809 				goto more;
4810 			}
4811 			goto proc_sack;
4812 		}
4813 		if (rsm->r_flags & RACK_ACKED) {
4814 			/*
4815 			 * It was acked on the scoreboard -- remove it from
4816 			 * total for the part being cum-acked.
4817 			 */
4818 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4819 		}
4820 		/*
4821 		 * Clear the dup ack count for
4822 		 * the piece that remains.
4823 		 */
4824 		rsm->r_dupack = 0;
4825 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4826 		if (rsm->r_rtr_bytes) {
4827 			/*
4828 			 * It was retransmitted adjust the
4829 			 * sack holes for what was acked.
4830 			 */
4831 			int ack_am;
4832 
4833 			ack_am = (th_ack - rsm->r_start);
4834 			if (ack_am >= rsm->r_rtr_bytes) {
4835 				rack->r_ctl.rc_holes_rxt -= ack_am;
4836 				rsm->r_rtr_bytes -= ack_am;
4837 			}
4838 		}
4839 		/* Update where the piece starts */
4840 		rsm->r_start = th_ack;
4841 	}
4842 proc_sack:
4843 	/* Check for reneging */
4844 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4845 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4846 		/*
4847 		 * The peer has moved snd_una up to
4848 		 * the edge of this send, i.e. one
4849 		 * that it had previously acked. The only
4850 		 * way that can be true if the peer threw
4851 		 * away data (space issues) that it had
4852 		 * previously sacked (else it would have
4853 		 * given us snd_una up to (rsm->r_end).
4854 		 * We need to undo the acked markings here.
4855 		 *
4856 		 * Note we have to look to make sure th_ack is
4857 		 * our rsm->r_start in case we get an old ack
4858 		 * where th_ack is behind snd_una.
4859 		 */
4860 		rack_peer_reneges(rack, rsm, th->th_ack);
4861 	}
4862 	if ((to->to_flags & TOF_SACK) == 0) {
4863 		/* We are done nothing left */
4864 		goto out;
4865 	}
4866 	/* Sack block processing */
4867 	if (SEQ_GT(th_ack, tp->snd_una))
4868 		ack_point = th_ack;
4869 	else
4870 		ack_point = tp->snd_una;
4871 	for (i = 0; i < to->to_nsacks; i++) {
4872 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4873 		      &sack, sizeof(sack));
4874 		sack.start = ntohl(sack.start);
4875 		sack.end = ntohl(sack.end);
4876 		if (SEQ_GT(sack.end, sack.start) &&
4877 		    SEQ_GT(sack.start, ack_point) &&
4878 		    SEQ_LT(sack.start, tp->snd_max) &&
4879 		    SEQ_GT(sack.end, ack_point) &&
4880 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4881 			sack_blocks[num_sack_blks] = sack;
4882 			num_sack_blks++;
4883 #ifdef NETFLIX_STATS
4884 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4885 			   SEQ_LEQ(sack.end, th_ack)) {
4886 			/*
4887 			 * Its a D-SACK block.
4888 			 */
4889 			tcp_record_dsack(sack.start, sack.end);
4890 #endif
4891 		}
4892 
4893 	}
4894 	/*
4895 	 * Sort the SACK blocks so we can update the rack scoreboard with
4896 	 * just one pass.
4897 	 */
4898 	if (rack_use_sack_filter) {
4899 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4900 						 num_sack_blks, th->th_ack);
4901 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4902 	}
4903 	if (num_sack_blks == 0)  {
4904 		/* Nothing to sack (DSACKs?) */
4905 		goto out_with_totals;
4906 	}
4907 	if (num_sack_blks < 2) {
4908 		/* Only one, we don't need to sort */
4909 		goto do_sack_work;
4910 	}
4911 	/* Sort the sacks */
4912 	for (i = 0; i < num_sack_blks; i++) {
4913 		for (j = i + 1; j < num_sack_blks; j++) {
4914 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4915 				sack = sack_blocks[i];
4916 				sack_blocks[i] = sack_blocks[j];
4917 				sack_blocks[j] = sack;
4918 			}
4919 		}
4920 	}
4921 	/*
4922 	 * Now are any of the sack block ends the same (yes some
4923 	 * implementations send these)?
4924 	 */
4925 again:
4926 	if (num_sack_blks == 0)
4927 		goto out_with_totals;
4928 	if (num_sack_blks > 1) {
4929 		for (i = 0; i < num_sack_blks; i++) {
4930 			for (j = i + 1; j < num_sack_blks; j++) {
4931 				if (sack_blocks[i].end == sack_blocks[j].end) {
4932 					/*
4933 					 * Ok these two have the same end we
4934 					 * want the smallest end and then
4935 					 * throw away the larger and start
4936 					 * again.
4937 					 */
4938 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4939 						/*
4940 						 * The second block covers
4941 						 * more area use that
4942 						 */
4943 						sack_blocks[i].start = sack_blocks[j].start;
4944 					}
4945 					/*
4946 					 * Now collapse out the dup-sack and
4947 					 * lower the count
4948 					 */
4949 					for (k = (j + 1); k < num_sack_blks; k++) {
4950 						sack_blocks[j].start = sack_blocks[k].start;
4951 						sack_blocks[j].end = sack_blocks[k].end;
4952 						j++;
4953 					}
4954 					num_sack_blks--;
4955 					goto again;
4956 				}
4957 			}
4958 		}
4959 	}
4960 do_sack_work:
4961 	/*
4962 	 * First lets look to see if
4963 	 * we have retransmitted and
4964 	 * can use the transmit next?
4965 	 */
4966 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4967 	if (rsm &&
4968 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
4969 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
4970 		/*
4971 		 * We probably did the FR and the next
4972 		 * SACK in continues as we would expect.
4973 		 */
4974 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
4975 		if (acked) {
4976 			rack->r_wanted_output++;
4977 			changed += acked;
4978 			sack_changed += acked;
4979 		}
4980 		if (num_sack_blks == 1) {
4981 			/*
4982 			 * This is what we would expect from
4983 			 * a normal implementation to happen
4984 			 * after we have retransmitted the FR,
4985 			 * i.e the sack-filter pushes down
4986 			 * to 1 block and the next to be retransmitted
4987 			 * is the sequence in the sack block (has more
4988 			 * are acked). Count this as ACK'd data to boost
4989 			 * up the chances of recovering any false positives.
4990 			 */
4991 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
4992 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
4993 			counter_u64_add(rack_express_sack, 1);
4994 			if (rack->r_ctl.ack_count > 0xfff00000) {
4995 				/*
4996 				 * reduce the number to keep us under
4997 				 * a uint32_t.
4998 				 */
4999 				rack->r_ctl.ack_count /= 2;
5000 				rack->r_ctl.sack_count /= 2;
5001 			}
5002 			goto out_with_totals;
5003 		} else {
5004 			/*
5005 			 * Start the loop through the
5006 			 * rest of blocks, past the first block.
5007 			 */
5008 			moved_two = 0;
5009 			loop_start = 1;
5010 		}
5011 	}
5012 	/* Its a sack of some sort */
5013 	rack->r_ctl.sack_count++;
5014 	if (rack->r_ctl.sack_count > 0xfff00000) {
5015 		/*
5016 		 * reduce the number to keep us under
5017 		 * a uint32_t.
5018 		 */
5019 		rack->r_ctl.ack_count /= 2;
5020 		rack->r_ctl.sack_count /= 2;
5021 	}
5022 	counter_u64_add(rack_sack_total, 1);
5023 	if (rack->sack_attack_disable) {
5024 		/* An attacker disablement is in place */
5025 		if (num_sack_blks > 1) {
5026 			rack->r_ctl.sack_count += (num_sack_blks - 1);
5027 			rack->r_ctl.sack_moved_extra++;
5028 			counter_u64_add(rack_move_some, 1);
5029 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
5030 				rack->r_ctl.sack_moved_extra /= 2;
5031 				rack->r_ctl.sack_noextra_move /= 2;
5032 			}
5033 		}
5034 		goto out;
5035 	}
5036 	rsm = rack->r_ctl.rc_sacklast;
5037 	for (i = loop_start; i < num_sack_blks; i++) {
5038 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
5039 		if (acked) {
5040 			rack->r_wanted_output++;
5041 			changed += acked;
5042 			sack_changed += acked;
5043 		}
5044 		if (moved_two) {
5045 			/*
5046 			 * If we did not get a SACK for at least a MSS and
5047 			 * had to move at all, or if we moved more than our
5048 			 * threshold, it counts against the "extra" move.
5049 			 */
5050 			rack->r_ctl.sack_moved_extra += moved_two;
5051 			counter_u64_add(rack_move_some, 1);
5052 		} else {
5053 			/*
5054 			 * else we did not have to move
5055 			 * any more than we would expect.
5056 			 */
5057 			rack->r_ctl.sack_noextra_move++;
5058 			counter_u64_add(rack_move_none, 1);
5059 		}
5060 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
5061 			/*
5062 			 * If the SACK was not a full MSS then
5063 			 * we add to sack_count the number of
5064 			 * MSS's (or possibly more than
5065 			 * a MSS if its a TSO send) we had to skip by.
5066 			 */
5067 			rack->r_ctl.sack_count += moved_two;
5068 			counter_u64_add(rack_sack_total, moved_two);
5069 		}
5070 		/*
5071 		 * Now we need to setup for the next
5072 		 * round. First we make sure we won't
5073 		 * exceed the size of our uint32_t on
5074 		 * the various counts, and then clear out
5075 		 * moved_two.
5076 		 */
5077 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
5078 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
5079 			rack->r_ctl.sack_moved_extra /= 2;
5080 			rack->r_ctl.sack_noextra_move /= 2;
5081 		}
5082 		if (rack->r_ctl.sack_count > 0xfff00000) {
5083 			rack->r_ctl.ack_count /= 2;
5084 			rack->r_ctl.sack_count /= 2;
5085 		}
5086 		moved_two = 0;
5087 	}
5088 out_with_totals:
5089 	if (num_sack_blks > 1) {
5090 		/*
5091 		 * You get an extra stroke if
5092 		 * you have more than one sack-blk, this
5093 		 * could be where we are skipping forward
5094 		 * and the sack-filter is still working, or
5095 		 * it could be an attacker constantly
5096 		 * moving us.
5097 		 */
5098 		rack->r_ctl.sack_moved_extra++;
5099 		counter_u64_add(rack_move_some, 1);
5100 	}
5101 out:
5102 #ifdef NETFLIX_EXP_DETECTION
5103 	if ((rack->do_detection || tcp_force_detection) &&
5104 	    tcp_sack_to_ack_thresh &&
5105 	    tcp_sack_to_move_thresh &&
5106 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
5107 		/*
5108 		 * We have thresholds set to find
5109 		 * possible attackers and disable sack.
5110 		 * Check them.
5111 		 */
5112 		uint64_t ackratio, moveratio, movetotal;
5113 
5114 		/* Log detecting */
5115 		rack_log_sad(rack, 1);
5116 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
5117 		ackratio *= (uint64_t)(1000);
5118 		if (rack->r_ctl.ack_count)
5119 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
5120 		else {
5121 			/* We really should not hit here */
5122 			ackratio = 1000;
5123 		}
5124 		if ((rack->sack_attack_disable  == 0) &&
5125 		    (ackratio > rack_highest_sack_thresh_seen))
5126 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
5127 		movetotal = rack->r_ctl.sack_moved_extra;
5128 		movetotal += rack->r_ctl.sack_noextra_move;
5129 		moveratio = rack->r_ctl.sack_moved_extra;
5130 		moveratio *= (uint64_t)1000;
5131 		if (movetotal)
5132 			moveratio /= movetotal;
5133 		else {
5134 			/* No moves, thats pretty good */
5135 			moveratio = 0;
5136 		}
5137 		if ((rack->sack_attack_disable == 0) &&
5138 		    (moveratio > rack_highest_move_thresh_seen))
5139 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
5140 		if (rack->sack_attack_disable == 0) {
5141 			if ((ackratio > tcp_sack_to_ack_thresh) &&
5142 			    (moveratio > tcp_sack_to_move_thresh)) {
5143 				/* Disable sack processing */
5144 				rack->sack_attack_disable = 1;
5145 				if (rack->r_rep_attack == 0) {
5146 					rack->r_rep_attack = 1;
5147 					counter_u64_add(rack_sack_attacks_detected, 1);
5148 				}
5149 				if (tcp_attack_on_turns_on_logging) {
5150 					/*
5151 					 * Turn on logging, used for debugging
5152 					 * false positives.
5153 					 */
5154 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
5155 				}
5156 				/* Clamp the cwnd at flight size */
5157 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
5158 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
5159 				rack_log_sad(rack, 2);
5160 			}
5161 		} else {
5162 			/* We are sack-disabled check for false positives */
5163 			if ((ackratio <= tcp_restoral_thresh) ||
5164 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
5165 				rack->sack_attack_disable  = 0;
5166 				rack_log_sad(rack, 3);
5167 				/* Restart counting */
5168 				rack->r_ctl.sack_count = 0;
5169 				rack->r_ctl.sack_moved_extra = 0;
5170 				rack->r_ctl.sack_noextra_move = 1;
5171 				rack->r_ctl.ack_count = max(1,
5172 				      (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
5173 
5174 				if (rack->r_rep_reverse == 0) {
5175 					rack->r_rep_reverse = 1;
5176 					counter_u64_add(rack_sack_attacks_reversed, 1);
5177 				}
5178 				/* Restore the cwnd */
5179 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
5180 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
5181 			}
5182 		}
5183 	}
5184 #endif
5185 	if (changed) {
5186 		/* Something changed cancel the rack timer */
5187 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5188 	}
5189 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
5190 		/*
5191 		 * Ok we have a high probability that we need to go in to
5192 		 * recovery since we have data sack'd
5193 		 */
5194 		struct rack_sendmap *rsm;
5195 		uint32_t tsused;
5196 
5197 		tsused = tcp_ts_getticks();
5198 		rsm = tcp_rack_output(tp, rack, tsused);
5199 		if (rsm) {
5200 			/* Enter recovery */
5201 			rack->r_ctl.rc_rsm_start = rsm->r_start;
5202 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5203 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5204 			entered_recovery = 1;
5205 			rack_cong_signal(tp, NULL, CC_NDUPACK);
5206 			/*
5207 			 * When we enter recovery we need to assure we send
5208 			 * one packet.
5209 			 */
5210 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5211 			rack_log_to_prr(rack, 8);
5212 			rack->r_timer_override = 1;
5213 		}
5214 	}
5215 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
5216 		/* Deal with changed and PRR here (in recovery only) */
5217 		uint32_t pipe, snd_una;
5218 
5219 		rack->r_ctl.rc_prr_delivered += changed;
5220 		/* Compute prr_sndcnt */
5221 		if (SEQ_GT(tp->snd_una, th_ack)) {
5222 			snd_una = tp->snd_una;
5223 		} else {
5224 			snd_una = th_ack;
5225 		}
5226 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
5227 		if (pipe > tp->snd_ssthresh) {
5228 			long sndcnt;
5229 
5230 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
5231 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
5232 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
5233 			else {
5234 				rack->r_ctl.rc_prr_sndcnt = 0;
5235 				rack_log_to_prr(rack, 9);
5236 				sndcnt = 0;
5237 			}
5238 			sndcnt++;
5239 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
5240 				sndcnt -= rack->r_ctl.rc_prr_out;
5241 			else
5242 				sndcnt = 0;
5243 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
5244 			rack_log_to_prr(rack, 10);
5245 		} else {
5246 			uint32_t limit;
5247 
5248 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
5249 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
5250 			else
5251 				limit = 0;
5252 			if (changed > limit)
5253 				limit = changed;
5254 			limit += ctf_fixed_maxseg(tp);
5255 			if (tp->snd_ssthresh > pipe) {
5256 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
5257 				rack_log_to_prr(rack, 11);
5258 			} else {
5259 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
5260 				rack_log_to_prr(rack, 12);
5261 			}
5262 		}
5263 		if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
5264 			rack->r_timer_override = 1;
5265 		}
5266 	}
5267 }
5268 
5269 static void
5270 rack_strike_dupack(struct tcp_rack *rack)
5271 {
5272 	struct rack_sendmap *rsm;
5273 
5274 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5275 	if (rsm && (rsm->r_dupack < 0xff)) {
5276 		rsm->r_dupack++;
5277 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
5278 			rack->r_wanted_output = 1;
5279 			rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
5280 		} else {
5281 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
5282 		}
5283 	}
5284 }
5285 
5286 /*
5287  * Return value of 1, we do not need to call rack_process_data().
5288  * return value of 0, rack_process_data can be called.
5289  * For ret_val if its 0 the TCP is locked, if its non-zero
5290  * its unlocked and probably unsafe to touch the TCB.
5291  */
5292 static int
5293 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5294     struct tcpcb *tp, struct tcpopt *to,
5295     uint32_t tiwin, int32_t tlen,
5296     int32_t * ofia, int32_t thflags, int32_t * ret_val)
5297 {
5298 	int32_t ourfinisacked = 0;
5299 	int32_t nsegs, acked_amount;
5300 	int32_t acked;
5301 	struct mbuf *mfree;
5302 	struct tcp_rack *rack;
5303 	int32_t recovery = 0;
5304 
5305 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5306 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
5307 		ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
5308 		rack->r_wanted_output++;
5309 		return (1);
5310 	}
5311 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
5312 		if (rack->rc_in_persist)
5313 			tp->t_rxtshift = 0;
5314 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
5315 			rack_strike_dupack(rack);
5316 		rack_log_ack(tp, to, th);
5317 	}
5318 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5319 		/*
5320 		 * Old ack, behind (or duplicate to) the last one rcv'd
5321 		 * Note: Should mark reordering is occuring! We should also
5322 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
5323 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
5324 		 * retran and> ack 3
5325 		 */
5326 		return (0);
5327 	}
5328 	/*
5329 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
5330 	 * something we sent.
5331 	 */
5332 	if (tp->t_flags & TF_NEEDSYN) {
5333 		/*
5334 		 * T/TCP: Connection was half-synchronized, and our SYN has
5335 		 * been ACK'd (so connection is now fully synchronized).  Go
5336 		 * to non-starred state, increment snd_una for ACK of SYN,
5337 		 * and check if we can do window scaling.
5338 		 */
5339 		tp->t_flags &= ~TF_NEEDSYN;
5340 		tp->snd_una++;
5341 		/* Do window scaling? */
5342 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5343 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5344 			tp->rcv_scale = tp->request_r_scale;
5345 			/* Send window already scaled. */
5346 		}
5347 	}
5348 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5349 	INP_WLOCK_ASSERT(tp->t_inpcb);
5350 
5351 	acked = BYTES_THIS_ACK(tp, th);
5352 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5353 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5354 
5355 	/*
5356 	 * If we just performed our first retransmit, and the ACK arrives
5357 	 * within our recovery window, then it was a mistake to do the
5358 	 * retransmit in the first place.  Recover our original cwnd and
5359 	 * ssthresh, and proceed to transmit where we left off.
5360 	 */
5361 	if (tp->t_flags & TF_PREVVALID) {
5362 		tp->t_flags &= ~TF_PREVVALID;
5363 		if (tp->t_rxtshift == 1 &&
5364 		    (int)(ticks - tp->t_badrxtwin) < 0)
5365 			rack_cong_signal(tp, th, CC_RTO_ERR);
5366 	}
5367 	/*
5368 	 * If we have a timestamp reply, update smoothed round trip time. If
5369 	 * no timestamp is present but transmit timer is running and timed
5370 	 * sequence number was acked, update smoothed round trip time. Since
5371 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
5372 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
5373 	 * timer.
5374 	 *
5375 	 * Some boxes send broken timestamp replies during the SYN+ACK
5376 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5377 	 * and blow up the retransmit timer.
5378 	 */
5379 	/*
5380 	 * If all outstanding data is acked, stop retransmit timer and
5381 	 * remember to restart (more output or persist). If there is more
5382 	 * data to be acked, restart retransmit timer, using current
5383 	 * (possibly backed-off) value.
5384 	 */
5385 	if (th->th_ack == tp->snd_max) {
5386 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5387 		rack->r_wanted_output++;
5388 	}
5389 	if (acked == 0) {
5390 		if (ofia)
5391 			*ofia = ourfinisacked;
5392 		return (0);
5393 	}
5394 	if (rack->r_ctl.rc_early_recovery) {
5395 		if (IN_RECOVERY(tp->t_flags)) {
5396 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5397 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5398 				tcp_rack_partialack(tp, th);
5399 			} else {
5400 				rack_post_recovery(tp, th);
5401 				recovery = 1;
5402 			}
5403 		}
5404 	}
5405 	/*
5406 	 * Let the congestion control algorithm update congestion control
5407 	 * related information. This typically means increasing the
5408 	 * congestion window.
5409 	 */
5410 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
5411 	SOCKBUF_LOCK(&so->so_snd);
5412 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
5413 	tp->snd_wnd -= acked_amount;
5414 	mfree = sbcut_locked(&so->so_snd, acked_amount);
5415 	if ((sbused(&so->so_snd) == 0) &&
5416 	    (acked > acked_amount) &&
5417 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
5418 		ourfinisacked = 1;
5419 	}
5420 	/* NB: sowwakeup_locked() does an implicit unlock. */
5421 	sowwakeup_locked(so);
5422 	m_freem(mfree);
5423 	if (rack->r_ctl.rc_early_recovery == 0) {
5424 		if (IN_RECOVERY(tp->t_flags)) {
5425 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5426 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5427 				tcp_rack_partialack(tp, th);
5428 			} else {
5429 				rack_post_recovery(tp, th);
5430 			}
5431 		}
5432 	}
5433 	tp->snd_una = th->th_ack;
5434 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
5435 		tp->snd_recover = tp->snd_una;
5436 
5437 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
5438 		tp->snd_nxt = tp->snd_una;
5439 	}
5440 	if (tp->snd_una == tp->snd_max) {
5441 		/* Nothing left outstanding */
5442 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5443 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
5444 			tp->t_acktime = 0;
5445 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5446 		/* Set need output so persist might get set */
5447 		rack->r_wanted_output++;
5448 		if (rack_use_sack_filter)
5449 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5450 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
5451 		    (sbavail(&so->so_snd) == 0) &&
5452 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
5453 			/*
5454 			 * The socket was gone and the
5455 			 * peer sent data, time to
5456 			 * reset him.
5457 			 */
5458 			*ret_val = 1;
5459 			tp = tcp_close(tp);
5460 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
5461 			return (1);
5462 		}
5463 	}
5464 	if (ofia)
5465 		*ofia = ourfinisacked;
5466 	return (0);
5467 }
5468 
5469 static void
5470 rack_collapsed_window(struct tcp_rack *rack)
5471 {
5472 	/*
5473 	 * Now we must walk the
5474 	 * send map and divide the
5475 	 * ones left stranded. These
5476 	 * guys can't cause us to abort
5477 	 * the connection and are really
5478 	 * "unsent". However if a buggy
5479 	 * client actually did keep some
5480 	 * of the data i.e. collapsed the win
5481 	 * and refused to ack and then opened
5482 	 * the win and acked that data. We would
5483 	 * get into an ack war, the simplier
5484 	 * method then of just pretending we
5485 	 * did not send those segments something
5486 	 * won't work.
5487 	 */
5488 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
5489 	tcp_seq max_seq;
5490 	uint32_t maxseg;
5491 
5492 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
5493 	maxseg = ctf_fixed_maxseg(rack->rc_tp);
5494 	memset(&fe, 0, sizeof(fe));
5495 	fe.r_start = max_seq;
5496 	/* Find the first seq past or at maxseq */
5497 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
5498 	if (rsm == NULL) {
5499 		/* Nothing to do strange */
5500 		rack->rc_has_collapsed = 0;
5501 		return;
5502 	}
5503 	/*
5504 	 * Now do we need to split at
5505 	 * the collapse point?
5506 	 */
5507 	if (SEQ_GT(max_seq, rsm->r_start)) {
5508 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
5509 		if (nrsm == NULL) {
5510 			/* We can't get a rsm, mark all? */
5511 			nrsm = rsm;
5512 			goto no_split;
5513 		}
5514 		/* Clone it */
5515 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
5516 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5517 #ifdef INVARIANTS
5518 		if (insret != NULL) {
5519 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5520 			      nrsm, insret, rack, rsm);
5521 		}
5522 #endif
5523 		if (rsm->r_in_tmap) {
5524 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5525 			nrsm->r_in_tmap = 1;
5526 		}
5527 		/*
5528 		 * Set in the new RSM as the
5529 		 * collapsed starting point
5530 		 */
5531 		rsm = nrsm;
5532 	}
5533 no_split:
5534 	counter_u64_add(rack_collapsed_win, 1);
5535 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
5536 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
5537 		rack->rc_has_collapsed = 1;
5538 	}
5539 }
5540 
5541 static void
5542 rack_un_collapse_window(struct tcp_rack *rack)
5543 {
5544 	struct rack_sendmap *rsm;
5545 
5546 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5547 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
5548 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
5549 		else
5550 			break;
5551 	}
5552 	rack->rc_has_collapsed = 0;
5553 }
5554 
5555 /*
5556  * Return value of 1, the TCB is unlocked and most
5557  * likely gone, return value of 0, the TCP is still
5558  * locked.
5559  */
5560 static int
5561 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
5562     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
5563     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5564 {
5565 	/*
5566 	 * Update window information. Don't look at window if no ACK: TAC's
5567 	 * send garbage on first SYN.
5568 	 */
5569 	int32_t nsegs;
5570 	int32_t tfo_syn;
5571 	struct tcp_rack *rack;
5572 
5573 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5574 	INP_WLOCK_ASSERT(tp->t_inpcb);
5575 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5576 	if ((thflags & TH_ACK) &&
5577 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
5578 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
5579 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
5580 		/* keep track of pure window updates */
5581 		if (tlen == 0 &&
5582 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
5583 			TCPSTAT_INC(tcps_rcvwinupd);
5584 		tp->snd_wnd = tiwin;
5585 		tp->snd_wl1 = th->th_seq;
5586 		tp->snd_wl2 = th->th_ack;
5587 		if (tp->snd_wnd > tp->max_sndwnd)
5588 			tp->max_sndwnd = tp->snd_wnd;
5589 		rack->r_wanted_output++;
5590 	} else if (thflags & TH_ACK) {
5591 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
5592 			tp->snd_wnd = tiwin;
5593 			tp->snd_wl1 = th->th_seq;
5594 			tp->snd_wl2 = th->th_ack;
5595 		}
5596 	}
5597 	if (tp->snd_wnd < ctf_outstanding(tp))
5598 		/* The peer collapsed the window */
5599 		rack_collapsed_window(rack);
5600 	else if (rack->rc_has_collapsed)
5601 		rack_un_collapse_window(rack);
5602 	/* Was persist timer active and now we have window space? */
5603 	if ((rack->rc_in_persist != 0) &&
5604 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
5605 				rack->r_ctl.rc_pace_min_segs))) {
5606 		rack_exit_persist(tp, rack);
5607 		tp->snd_nxt = tp->snd_max;
5608 		/* Make sure we output to start the timer */
5609 		rack->r_wanted_output++;
5610 	}
5611 	/* Do we enter persists? */
5612 	if ((rack->rc_in_persist == 0) &&
5613 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
5614 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
5615 	    (tp->snd_max == tp->snd_una) &&
5616 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
5617 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
5618 		/*
5619 		 * Here the rwnd is less than
5620 		 * the pacing size, we are established,
5621 		 * nothing is outstanding, and there is
5622 		 * data to send. Enter persists.
5623 		 */
5624 		tp->snd_nxt = tp->snd_una;
5625 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
5626 	}
5627 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
5628 		m_freem(m);
5629 		return (0);
5630 	}
5631 	/*
5632 	 * Process segments with URG.
5633 	 */
5634 	if ((thflags & TH_URG) && th->th_urp &&
5635 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5636 		/*
5637 		 * This is a kludge, but if we receive and accept random
5638 		 * urgent pointers, we'll crash in soreceive.  It's hard to
5639 		 * imagine someone actually wanting to send this much urgent
5640 		 * data.
5641 		 */
5642 		SOCKBUF_LOCK(&so->so_rcv);
5643 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
5644 			th->th_urp = 0;	/* XXX */
5645 			thflags &= ~TH_URG;	/* XXX */
5646 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
5647 			goto dodata;	/* XXX */
5648 		}
5649 		/*
5650 		 * If this segment advances the known urgent pointer, then
5651 		 * mark the data stream.  This should not happen in
5652 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
5653 		 * FIN has been received from the remote side. In these
5654 		 * states we ignore the URG.
5655 		 *
5656 		 * According to RFC961 (Assigned Protocols), the urgent
5657 		 * pointer points to the last octet of urgent data.  We
5658 		 * continue, however, to consider it to indicate the first
5659 		 * octet of data past the urgent section as the original
5660 		 * spec states (in one of two places).
5661 		 */
5662 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
5663 			tp->rcv_up = th->th_seq + th->th_urp;
5664 			so->so_oobmark = sbavail(&so->so_rcv) +
5665 			    (tp->rcv_up - tp->rcv_nxt) - 1;
5666 			if (so->so_oobmark == 0)
5667 				so->so_rcv.sb_state |= SBS_RCVATMARK;
5668 			sohasoutofband(so);
5669 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
5670 		}
5671 		SOCKBUF_UNLOCK(&so->so_rcv);
5672 		/*
5673 		 * Remove out of band data so doesn't get presented to user.
5674 		 * This can happen independent of advancing the URG pointer,
5675 		 * but if two URG's are pending at once, some out-of-band
5676 		 * data may creep in... ick.
5677 		 */
5678 		if (th->th_urp <= (uint32_t) tlen &&
5679 		    !(so->so_options & SO_OOBINLINE)) {
5680 			/* hdr drop is delayed */
5681 			tcp_pulloutofband(so, th, m, drop_hdrlen);
5682 		}
5683 	} else {
5684 		/*
5685 		 * If no out of band data is expected, pull receive urgent
5686 		 * pointer along with the receive window.
5687 		 */
5688 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
5689 			tp->rcv_up = tp->rcv_nxt;
5690 	}
5691 dodata:				/* XXX */
5692 	INP_WLOCK_ASSERT(tp->t_inpcb);
5693 
5694 	/*
5695 	 * Process the segment text, merging it into the TCP sequencing
5696 	 * queue, and arranging for acknowledgment of receipt if necessary.
5697 	 * This process logically involves adjusting tp->rcv_wnd as data is
5698 	 * presented to the user (this happens in tcp_usrreq.c, case
5699 	 * PRU_RCVD).  If a FIN has already been received on this connection
5700 	 * then we just ignore the text.
5701 	 */
5702 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
5703 		   IS_FASTOPEN(tp->t_flags));
5704 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
5705 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5706 		tcp_seq save_start = th->th_seq;
5707 		tcp_seq save_rnxt  = tp->rcv_nxt;
5708 		int     save_tlen  = tlen;
5709 
5710 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5711 		/*
5712 		 * Insert segment which includes th into TCP reassembly
5713 		 * queue with control block tp.  Set thflags to whether
5714 		 * reassembly now includes a segment with FIN.  This handles
5715 		 * the common case inline (segment is the next to be
5716 		 * received on an established connection, and the queue is
5717 		 * empty), avoiding linkage into and removal from the queue
5718 		 * and repetition of various conversions. Set DELACK for
5719 		 * segments received in order, but ack immediately when
5720 		 * segments are out of order (so fast retransmit can work).
5721 		 */
5722 		if (th->th_seq == tp->rcv_nxt &&
5723 		    SEGQ_EMPTY(tp) &&
5724 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
5725 		    tfo_syn)) {
5726 #ifdef NETFLIX_SB_LIMITS
5727 			u_int mcnt, appended;
5728 
5729 			if (so->so_rcv.sb_shlim) {
5730 				mcnt = m_memcnt(m);
5731 				appended = 0;
5732 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5733 				    CFO_NOSLEEP, NULL) == false) {
5734 					counter_u64_add(tcp_sb_shlim_fails, 1);
5735 					m_freem(m);
5736 					return (0);
5737 				}
5738 			}
5739 #endif
5740 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
5741 				rack_timer_cancel(tp, rack,
5742 				    rack->r_ctl.rc_rcvtime, __LINE__);
5743 				tp->t_flags |= TF_DELACK;
5744 			} else {
5745 				rack->r_wanted_output++;
5746 				tp->t_flags |= TF_ACKNOW;
5747 			}
5748 			tp->rcv_nxt += tlen;
5749 			thflags = th->th_flags & TH_FIN;
5750 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
5751 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
5752 			SOCKBUF_LOCK(&so->so_rcv);
5753 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5754 				m_freem(m);
5755 			} else
5756 #ifdef NETFLIX_SB_LIMITS
5757 				appended =
5758 #endif
5759 					sbappendstream_locked(&so->so_rcv, m, 0);
5760 			/* NB: sorwakeup_locked() does an implicit unlock. */
5761 			sorwakeup_locked(so);
5762 #ifdef NETFLIX_SB_LIMITS
5763 			if (so->so_rcv.sb_shlim && appended != mcnt)
5764 				counter_fo_release(so->so_rcv.sb_shlim,
5765 				    mcnt - appended);
5766 #endif
5767 		} else {
5768 			/*
5769 			 * XXX: Due to the header drop above "th" is
5770 			 * theoretically invalid by now.  Fortunately
5771 			 * m_adj() doesn't actually frees any mbufs when
5772 			 * trimming from the head.
5773 			 */
5774 			tcp_seq temp = save_start;
5775 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
5776 			tp->t_flags |= TF_ACKNOW;
5777 		}
5778 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
5779 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
5780 				/*
5781 				 * DSACK actually handled in the fastpath
5782 				 * above.
5783 				 */
5784 				tcp_update_sack_list(tp, save_start,
5785 				    save_start + save_tlen);
5786 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
5787 				if ((tp->rcv_numsacks >= 1) &&
5788 				    (tp->sackblks[0].end == save_start)) {
5789 					/*
5790 					 * Partial overlap, recorded at todrop
5791 					 * above.
5792 					 */
5793 					tcp_update_sack_list(tp,
5794 					    tp->sackblks[0].start,
5795 					    tp->sackblks[0].end);
5796 				} else {
5797 					tcp_update_dsack_list(tp, save_start,
5798 					    save_start + save_tlen);
5799 				}
5800 			} else if (tlen >= save_tlen) {
5801 				/* Update of sackblks. */
5802 				tcp_update_dsack_list(tp, save_start,
5803 				    save_start + save_tlen);
5804 			} else if (tlen > 0) {
5805 				tcp_update_dsack_list(tp, save_start,
5806 				    save_start + tlen);
5807 			}
5808 		}
5809 	} else {
5810 		m_freem(m);
5811 		thflags &= ~TH_FIN;
5812 	}
5813 
5814 	/*
5815 	 * If FIN is received ACK the FIN and let the user know that the
5816 	 * connection is closing.
5817 	 */
5818 	if (thflags & TH_FIN) {
5819 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5820 			socantrcvmore(so);
5821 			/*
5822 			 * If connection is half-synchronized (ie NEEDSYN
5823 			 * flag on) then delay ACK, so it may be piggybacked
5824 			 * when SYN is sent. Otherwise, since we received a
5825 			 * FIN then no more input can be expected, send ACK
5826 			 * now.
5827 			 */
5828 			if (tp->t_flags & TF_NEEDSYN) {
5829 				rack_timer_cancel(tp, rack,
5830 				    rack->r_ctl.rc_rcvtime, __LINE__);
5831 				tp->t_flags |= TF_DELACK;
5832 			} else {
5833 				tp->t_flags |= TF_ACKNOW;
5834 			}
5835 			tp->rcv_nxt++;
5836 		}
5837 		switch (tp->t_state) {
5838 
5839 			/*
5840 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
5841 			 * CLOSE_WAIT state.
5842 			 */
5843 		case TCPS_SYN_RECEIVED:
5844 			tp->t_starttime = ticks;
5845 			/* FALLTHROUGH */
5846 		case TCPS_ESTABLISHED:
5847 			rack_timer_cancel(tp, rack,
5848 			    rack->r_ctl.rc_rcvtime, __LINE__);
5849 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
5850 			break;
5851 
5852 			/*
5853 			 * If still in FIN_WAIT_1 STATE FIN has not been
5854 			 * acked so enter the CLOSING state.
5855 			 */
5856 		case TCPS_FIN_WAIT_1:
5857 			rack_timer_cancel(tp, rack,
5858 			    rack->r_ctl.rc_rcvtime, __LINE__);
5859 			tcp_state_change(tp, TCPS_CLOSING);
5860 			break;
5861 
5862 			/*
5863 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5864 			 * starting the time-wait timer, turning off the
5865 			 * other standard timers.
5866 			 */
5867 		case TCPS_FIN_WAIT_2:
5868 			rack_timer_cancel(tp, rack,
5869 			    rack->r_ctl.rc_rcvtime, __LINE__);
5870 			tcp_twstart(tp);
5871 			return (1);
5872 		}
5873 	}
5874 	/*
5875 	 * Return any desired output.
5876 	 */
5877 	if ((tp->t_flags & TF_ACKNOW) ||
5878 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5879 		rack->r_wanted_output++;
5880 	}
5881 	INP_WLOCK_ASSERT(tp->t_inpcb);
5882 	return (0);
5883 }
5884 
5885 /*
5886  * Here nothing is really faster, its just that we
5887  * have broken out the fast-data path also just like
5888  * the fast-ack.
5889  */
5890 static int
5891 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5892     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5893     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
5894 {
5895 	int32_t nsegs;
5896 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5897 	struct tcp_rack *rack;
5898 #ifdef NETFLIX_SB_LIMITS
5899 	u_int mcnt, appended;
5900 #endif
5901 #ifdef TCPDEBUG
5902 	/*
5903 	 * The size of tcp_saveipgen must be the size of the max ip header,
5904 	 * now IPv6.
5905 	 */
5906 	u_char tcp_saveipgen[IP6_HDR_LEN];
5907 	struct tcphdr tcp_savetcp;
5908 	short ostate = 0;
5909 
5910 #endif
5911 	/*
5912 	 * If last ACK falls within this segment's sequence numbers, record
5913 	 * the timestamp. NOTE that the test is modified according to the
5914 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5915 	 */
5916 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5917 		return (0);
5918 	}
5919 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5920 		return (0);
5921 	}
5922 	if (tiwin && tiwin != tp->snd_wnd) {
5923 		return (0);
5924 	}
5925 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5926 		return (0);
5927 	}
5928 	if (__predict_false((to->to_flags & TOF_TS) &&
5929 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5930 		return (0);
5931 	}
5932 	if (__predict_false((th->th_ack != tp->snd_una))) {
5933 		return (0);
5934 	}
5935 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5936 		return (0);
5937 	}
5938 	if ((to->to_flags & TOF_TS) != 0 &&
5939 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5940 		tp->ts_recent_age = tcp_ts_getticks();
5941 		tp->ts_recent = to->to_tsval;
5942 	}
5943 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5944 	/*
5945 	 * This is a pure, in-sequence data packet with nothing on the
5946 	 * reassembly queue and we have enough buffer space to take it.
5947 	 */
5948 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5949 
5950 #ifdef NETFLIX_SB_LIMITS
5951 	if (so->so_rcv.sb_shlim) {
5952 		mcnt = m_memcnt(m);
5953 		appended = 0;
5954 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5955 		    CFO_NOSLEEP, NULL) == false) {
5956 			counter_u64_add(tcp_sb_shlim_fails, 1);
5957 			m_freem(m);
5958 			return (1);
5959 		}
5960 	}
5961 #endif
5962 	/* Clean receiver SACK report if present */
5963 	if (tp->rcv_numsacks)
5964 		tcp_clean_sackreport(tp);
5965 	TCPSTAT_INC(tcps_preddat);
5966 	tp->rcv_nxt += tlen;
5967 	/*
5968 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5969 	 */
5970 	tp->snd_wl1 = th->th_seq;
5971 	/*
5972 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5973 	 */
5974 	tp->rcv_up = tp->rcv_nxt;
5975 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
5976 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
5977 #ifdef TCPDEBUG
5978 	if (so->so_options & SO_DEBUG)
5979 		tcp_trace(TA_INPUT, ostate, tp,
5980 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5981 #endif
5982 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5983 
5984 	/* Add data to socket buffer. */
5985 	SOCKBUF_LOCK(&so->so_rcv);
5986 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5987 		m_freem(m);
5988 	} else {
5989 		/*
5990 		 * Set new socket buffer size. Give up when limit is
5991 		 * reached.
5992 		 */
5993 		if (newsize)
5994 			if (!sbreserve_locked(&so->so_rcv,
5995 			    newsize, so, NULL))
5996 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
5997 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5998 #ifdef NETFLIX_SB_LIMITS
5999 		appended =
6000 #endif
6001 			sbappendstream_locked(&so->so_rcv, m, 0);
6002 		ctf_calc_rwin(so, tp);
6003 	}
6004 	/* NB: sorwakeup_locked() does an implicit unlock. */
6005 	sorwakeup_locked(so);
6006 #ifdef NETFLIX_SB_LIMITS
6007 	if (so->so_rcv.sb_shlim && mcnt != appended)
6008 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
6009 #endif
6010 	if (DELAY_ACK(tp, tlen)) {
6011 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6012 		tp->t_flags |= TF_DELACK;
6013 	} else {
6014 		tp->t_flags |= TF_ACKNOW;
6015 		rack->r_wanted_output++;
6016 	}
6017 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
6018 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6019 	return (1);
6020 }
6021 
6022 /*
6023  * This subfunction is used to try to highly optimize the
6024  * fast path. We again allow window updates that are
6025  * in sequence to remain in the fast-path. We also add
6026  * in the __predict's to attempt to help the compiler.
6027  * Note that if we return a 0, then we can *not* process
6028  * it and the caller should push the packet into the
6029  * slow-path.
6030  */
6031 static int
6032 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6033     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6034     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts, uint8_t iptos)
6035 {
6036 	int32_t acked;
6037 	int32_t nsegs;
6038 
6039 #ifdef TCPDEBUG
6040 	/*
6041 	 * The size of tcp_saveipgen must be the size of the max ip header,
6042 	 * now IPv6.
6043 	 */
6044 	u_char tcp_saveipgen[IP6_HDR_LEN];
6045 	struct tcphdr tcp_savetcp;
6046 	short ostate = 0;
6047 
6048 #endif
6049 	struct tcp_rack *rack;
6050 
6051 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
6052 		/* Old ack, behind (or duplicate to) the last one rcv'd */
6053 		return (0);
6054 	}
6055 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
6056 		/* Above what we have sent? */
6057 		return (0);
6058 	}
6059 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
6060 		/* We are retransmitting */
6061 		return (0);
6062 	}
6063 	if (__predict_false(tiwin == 0)) {
6064 		/* zero window */
6065 		return (0);
6066 	}
6067 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
6068 		/* We need a SYN or a FIN, unlikely.. */
6069 		return (0);
6070 	}
6071 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
6072 		/* Timestamp is behind .. old ack with seq wrap? */
6073 		return (0);
6074 	}
6075 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
6076 		/* Still recovering */
6077 		return (0);
6078 	}
6079 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6080 	if (rack->r_ctl.rc_sacked) {
6081 		/* We have sack holes on our scoreboard */
6082 		return (0);
6083 	}
6084 	/* Ok if we reach here, we can process a fast-ack */
6085 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
6086 	rack_log_ack(tp, to, th);
6087 	/*
6088 	 * We made progress, clear the tlp
6089 	 * out flag so we could start a TLP
6090 	 * again.
6091 	 */
6092 	rack->r_ctl.rc_tlp_rtx_out = 0;
6093 	/* Did the window get updated? */
6094 	if (tiwin != tp->snd_wnd) {
6095 		tp->snd_wnd = tiwin;
6096 		tp->snd_wl1 = th->th_seq;
6097 		if (tp->snd_wnd > tp->max_sndwnd)
6098 			tp->max_sndwnd = tp->snd_wnd;
6099 	}
6100 	/* Do we exit persists? */
6101 	if ((rack->rc_in_persist != 0) &&
6102 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
6103 			       rack->r_ctl.rc_pace_min_segs))) {
6104 		rack_exit_persist(tp, rack);
6105 	}
6106 	/* Do we enter persists? */
6107 	if ((rack->rc_in_persist == 0) &&
6108 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
6109 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
6110 	    (tp->snd_max == tp->snd_una) &&
6111 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
6112 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
6113 		/*
6114 		 * Here the rwnd is less than
6115 		 * the pacing size, we are established,
6116 		 * nothing is outstanding, and there is
6117 		 * data to send. Enter persists.
6118 		 */
6119 		tp->snd_nxt = tp->snd_una;
6120 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
6121 	}
6122 	/*
6123 	 * If last ACK falls within this segment's sequence numbers, record
6124 	 * the timestamp. NOTE that the test is modified according to the
6125 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
6126 	 */
6127 	if ((to->to_flags & TOF_TS) != 0 &&
6128 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
6129 		tp->ts_recent_age = tcp_ts_getticks();
6130 		tp->ts_recent = to->to_tsval;
6131 	}
6132 	/*
6133 	 * This is a pure ack for outstanding data.
6134 	 */
6135 	TCPSTAT_INC(tcps_predack);
6136 
6137 	/*
6138 	 * "bad retransmit" recovery.
6139 	 */
6140 	if (tp->t_flags & TF_PREVVALID) {
6141 		tp->t_flags &= ~TF_PREVVALID;
6142 		if (tp->t_rxtshift == 1 &&
6143 		    (int)(ticks - tp->t_badrxtwin) < 0)
6144 			rack_cong_signal(tp, th, CC_RTO_ERR);
6145 	}
6146 	/*
6147 	 * Recalculate the transmit timer / rtt.
6148 	 *
6149 	 * Some boxes send broken timestamp replies during the SYN+ACK
6150 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
6151 	 * and blow up the retransmit timer.
6152 	 */
6153 	acked = BYTES_THIS_ACK(tp, th);
6154 
6155 #ifdef TCP_HHOOK
6156 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
6157 	hhook_run_tcp_est_in(tp, th, to);
6158 #endif
6159 
6160 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
6161 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
6162 	sbdrop(&so->so_snd, acked);
6163 	/*
6164 	 * Let the congestion control algorithm update congestion control
6165 	 * related information. This typically means increasing the
6166 	 * congestion window.
6167 	 */
6168 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
6169 
6170 	tp->snd_una = th->th_ack;
6171 	if (tp->snd_wnd < ctf_outstanding(tp)) {
6172 		/* The peer collapsed the window */
6173 		rack_collapsed_window(rack);
6174 	} else if (rack->rc_has_collapsed)
6175 		rack_un_collapse_window(rack);
6176 
6177 	/*
6178 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
6179 	 */
6180 	tp->snd_wl2 = th->th_ack;
6181 	tp->t_dupacks = 0;
6182 	m_freem(m);
6183 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
6184 
6185 	/*
6186 	 * If all outstanding data are acked, stop retransmit timer,
6187 	 * otherwise restart timer using current (possibly backed-off)
6188 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
6189 	 * If data are ready to send, let tcp_output decide between more
6190 	 * output or persist.
6191 	 */
6192 #ifdef TCPDEBUG
6193 	if (so->so_options & SO_DEBUG)
6194 		tcp_trace(TA_INPUT, ostate, tp,
6195 		    (void *)tcp_saveipgen,
6196 		    &tcp_savetcp, 0);
6197 #endif
6198 	if (tp->snd_una == tp->snd_max) {
6199 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
6200 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
6201 			tp->t_acktime = 0;
6202 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6203 	}
6204 	/* Wake up the socket if we have room to write more */
6205 	sowwakeup(so);
6206 	if (sbavail(&so->so_snd)) {
6207 		rack->r_wanted_output++;
6208 	}
6209 	return (1);
6210 }
6211 
6212 /*
6213  * Return value of 1, the TCB is unlocked and most
6214  * likely gone, return value of 0, the TCP is still
6215  * locked.
6216  */
6217 static int
6218 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
6219     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6220     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t tos)
6221 {
6222 	int32_t ret_val = 0;
6223 	int32_t todrop;
6224 	int32_t ourfinisacked = 0;
6225 	struct tcp_rack *rack;
6226 
6227 	ctf_calc_rwin(so, tp);
6228 	/*
6229 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
6230 	 * SYN, drop the input. if seg contains a RST, then drop the
6231 	 * connection. if seg does not contain SYN, then drop it. Otherwise
6232 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
6233 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
6234 	 * contains an ECE and ECN support is enabled, the stream is ECN
6235 	 * capable. if SYN has been acked change to ESTABLISHED else
6236 	 * SYN_RCVD state arrange for segment to be acked (eventually)
6237 	 * continue processing rest of data/controls, beginning with URG
6238 	 */
6239 	if ((thflags & TH_ACK) &&
6240 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
6241 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6242 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6243 		return (1);
6244 	}
6245 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
6246 		TCP_PROBE5(connect__refused, NULL, tp,
6247 		    mtod(m, const char *), tp, th);
6248 		tp = tcp_drop(tp, ECONNREFUSED);
6249 		ctf_do_drop(m, tp);
6250 		return (1);
6251 	}
6252 	if (thflags & TH_RST) {
6253 		ctf_do_drop(m, tp);
6254 		return (1);
6255 	}
6256 	if (!(thflags & TH_SYN)) {
6257 		ctf_do_drop(m, tp);
6258 		return (1);
6259 	}
6260 	tp->irs = th->th_seq;
6261 	tcp_rcvseqinit(tp);
6262 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6263 	if (thflags & TH_ACK) {
6264 		int tfo_partial = 0;
6265 
6266 		TCPSTAT_INC(tcps_connects);
6267 		soisconnected(so);
6268 #ifdef MAC
6269 		mac_socketpeer_set_from_mbuf(m, so);
6270 #endif
6271 		/* Do window scaling on this connection? */
6272 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6273 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6274 			tp->rcv_scale = tp->request_r_scale;
6275 		}
6276 		tp->rcv_adv += min(tp->rcv_wnd,
6277 		    TCP_MAXWIN << tp->rcv_scale);
6278 		/*
6279 		 * If not all the data that was sent in the TFO SYN
6280 		 * has been acked, resend the remainder right away.
6281 		 */
6282 		if (IS_FASTOPEN(tp->t_flags) &&
6283 		    (tp->snd_una != tp->snd_max)) {
6284 			tp->snd_nxt = th->th_ack;
6285 			tfo_partial = 1;
6286 		}
6287 		/*
6288 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
6289 		 * will be turned on later.
6290 		 */
6291 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
6292 			rack_timer_cancel(tp, rack,
6293 					  rack->r_ctl.rc_rcvtime, __LINE__);
6294 			tp->t_flags |= TF_DELACK;
6295 		} else {
6296 			rack->r_wanted_output++;
6297 			tp->t_flags |= TF_ACKNOW;
6298 		}
6299 
6300 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
6301 		    (V_tcp_do_ecn == 1)) {
6302 			tp->t_flags2 |= TF2_ECN_PERMIT;
6303 			TCPSTAT_INC(tcps_ecn_shs);
6304 		}
6305 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
6306 			/*
6307 			 * We advance snd_una for the
6308 			 * fast open case. If th_ack is
6309 			 * acknowledging data beyond
6310 			 * snd_una we can't just call
6311 			 * ack-processing since the
6312 			 * data stream in our send-map
6313 			 * will start at snd_una + 1 (one
6314 			 * beyond the SYN). If its just
6315 			 * equal we don't need to do that
6316 			 * and there is no send_map.
6317 			 */
6318 			tp->snd_una++;
6319 		}
6320 		/*
6321 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
6322 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
6323 		 */
6324 		tp->t_starttime = ticks;
6325 		if (tp->t_flags & TF_NEEDFIN) {
6326 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
6327 			tp->t_flags &= ~TF_NEEDFIN;
6328 			thflags &= ~TH_SYN;
6329 		} else {
6330 			tcp_state_change(tp, TCPS_ESTABLISHED);
6331 			TCP_PROBE5(connect__established, NULL, tp,
6332 			    mtod(m, const char *), tp, th);
6333 			cc_conn_init(tp);
6334 		}
6335 	} else {
6336 		/*
6337 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
6338 		 * open.  If segment contains CC option and there is a
6339 		 * cached CC, apply TAO test. If it succeeds, connection is *
6340 		 * half-synchronized. Otherwise, do 3-way handshake:
6341 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
6342 		 * there was no CC option, clear cached CC value.
6343 		 */
6344 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
6345 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
6346 	}
6347 	INP_WLOCK_ASSERT(tp->t_inpcb);
6348 	/*
6349 	 * Advance th->th_seq to correspond to first data byte. If data,
6350 	 * trim to stay within window, dropping FIN if necessary.
6351 	 */
6352 	th->th_seq++;
6353 	if (tlen > tp->rcv_wnd) {
6354 		todrop = tlen - tp->rcv_wnd;
6355 		m_adj(m, -todrop);
6356 		tlen = tp->rcv_wnd;
6357 		thflags &= ~TH_FIN;
6358 		TCPSTAT_INC(tcps_rcvpackafterwin);
6359 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
6360 	}
6361 	tp->snd_wl1 = th->th_seq - 1;
6362 	tp->rcv_up = th->th_seq;
6363 	/*
6364 	 * Client side of transaction: already sent SYN and data. If the
6365 	 * remote host used T/TCP to validate the SYN, our data will be
6366 	 * ACK'd; if so, enter normal data segment processing in the middle
6367 	 * of step 5, ack processing. Otherwise, goto step 6.
6368 	 */
6369 	if (thflags & TH_ACK) {
6370 		/* For syn-sent we need to possibly update the rtt */
6371 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6372 			uint32_t t;
6373 
6374 			t = tcp_ts_getticks() - to->to_tsecr;
6375 			if (!tp->t_rttlow || tp->t_rttlow > t)
6376 				tp->t_rttlow = t;
6377 			tcp_rack_xmit_timer(rack, t + 1);
6378 			tcp_rack_xmit_timer_commit(rack, tp);
6379 		}
6380 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
6381 			return (ret_val);
6382 		/* We may have changed to FIN_WAIT_1 above */
6383 		if (tp->t_state == TCPS_FIN_WAIT_1) {
6384 			/*
6385 			 * In FIN_WAIT_1 STATE in addition to the processing
6386 			 * for the ESTABLISHED state if our FIN is now
6387 			 * acknowledged then enter FIN_WAIT_2.
6388 			 */
6389 			if (ourfinisacked) {
6390 				/*
6391 				 * If we can't receive any more data, then
6392 				 * closing user can proceed. Starting the
6393 				 * timer is contrary to the specification,
6394 				 * but if we don't get a FIN we'll hang
6395 				 * forever.
6396 				 *
6397 				 * XXXjl: we should release the tp also, and
6398 				 * use a compressed state.
6399 				 */
6400 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6401 					soisdisconnected(so);
6402 					tcp_timer_activate(tp, TT_2MSL,
6403 					    (tcp_fast_finwait2_recycle ?
6404 					    tcp_finwait2_timeout :
6405 					    TP_MAXIDLE(tp)));
6406 				}
6407 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
6408 			}
6409 		}
6410 	}
6411 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6412 	   tiwin, thflags, nxt_pkt));
6413 }
6414 
6415 /*
6416  * Return value of 1, the TCB is unlocked and most
6417  * likely gone, return value of 0, the TCP is still
6418  * locked.
6419  */
6420 static int
6421 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
6422     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6423     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6424 {
6425 	struct tcp_rack *rack;
6426 	int32_t ret_val = 0;
6427 	int32_t ourfinisacked = 0;
6428 
6429 	ctf_calc_rwin(so, tp);
6430 	if ((thflags & TH_ACK) &&
6431 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
6432 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6433 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6434 		return (1);
6435 	}
6436 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6437 	if (IS_FASTOPEN(tp->t_flags)) {
6438 		/*
6439 		 * When a TFO connection is in SYN_RECEIVED, the
6440 		 * only valid packets are the initial SYN, a
6441 		 * retransmit/copy of the initial SYN (possibly with
6442 		 * a subset of the original data), a valid ACK, a
6443 		 * FIN, or a RST.
6444 		 */
6445 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
6446 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6447 			return (1);
6448 		} else if (thflags & TH_SYN) {
6449 			/* non-initial SYN is ignored */
6450 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
6451 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
6452 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
6453 				ctf_do_drop(m, NULL);
6454 				return (0);
6455 			}
6456 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
6457 			ctf_do_drop(m, NULL);
6458 			return (0);
6459 		}
6460 	}
6461 	if ((thflags & TH_RST) ||
6462 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6463 		return (ctf_process_rst(m, th, so, tp));
6464 	/*
6465 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6466 	 * it's less than ts_recent, drop it.
6467 	 */
6468 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6469 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6470 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6471 			return (ret_val);
6472 	}
6473 	/*
6474 	 * In the SYN-RECEIVED state, validate that the packet belongs to
6475 	 * this connection before trimming the data to fit the receive
6476 	 * window.  Check the sequence number versus IRS since we know the
6477 	 * sequence numbers haven't wrapped.  This is a partial fix for the
6478 	 * "LAND" DoS attack.
6479 	 */
6480 	if (SEQ_LT(th->th_seq, tp->irs)) {
6481 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6482 		return (1);
6483 	}
6484 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6485 		return (ret_val);
6486 	}
6487 	/*
6488 	 * If last ACK falls within this segment's sequence numbers, record
6489 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6490 	 * from the latest proposal of the tcplw@cray.com list (Braden
6491 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6492 	 * with our earlier PAWS tests, so this check should be solely
6493 	 * predicated on the sequence space of this segment. 3) That we
6494 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6495 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6496 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6497 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6498 	 * p.869. In such cases, we can still calculate the RTT correctly
6499 	 * when RCV.NXT == Last.ACK.Sent.
6500 	 */
6501 	if ((to->to_flags & TOF_TS) != 0 &&
6502 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6503 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6504 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6505 		tp->ts_recent_age = tcp_ts_getticks();
6506 		tp->ts_recent = to->to_tsval;
6507 	}
6508 	tp->snd_wnd = tiwin;
6509 	/*
6510 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6511 	 * is on (half-synchronized state), then queue data for later
6512 	 * processing; else drop segment and return.
6513 	 */
6514 	if ((thflags & TH_ACK) == 0) {
6515 		if (IS_FASTOPEN(tp->t_flags)) {
6516 			cc_conn_init(tp);
6517 		}
6518 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6519 		    tiwin, thflags, nxt_pkt));
6520 	}
6521 	TCPSTAT_INC(tcps_connects);
6522 	soisconnected(so);
6523 	/* Do window scaling? */
6524 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6525 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6526 		tp->rcv_scale = tp->request_r_scale;
6527 	}
6528 	/*
6529 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
6530 	 * FIN-WAIT-1
6531 	 */
6532 	tp->t_starttime = ticks;
6533 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
6534 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
6535 		tp->t_tfo_pending = NULL;
6536 
6537 		/*
6538 		 * Account for the ACK of our SYN prior to
6539 		 * regular ACK processing below.
6540 		 */
6541 		tp->snd_una++;
6542 	}
6543 	if (tp->t_flags & TF_NEEDFIN) {
6544 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
6545 		tp->t_flags &= ~TF_NEEDFIN;
6546 	} else {
6547 		tcp_state_change(tp, TCPS_ESTABLISHED);
6548 		TCP_PROBE5(accept__established, NULL, tp,
6549 		    mtod(m, const char *), tp, th);
6550 		/*
6551 		 * TFO connections call cc_conn_init() during SYN
6552 		 * processing.  Calling it again here for such connections
6553 		 * is not harmless as it would undo the snd_cwnd reduction
6554 		 * that occurs when a TFO SYN|ACK is retransmitted.
6555 		 */
6556 		if (!IS_FASTOPEN(tp->t_flags))
6557 			cc_conn_init(tp);
6558 	}
6559 	/*
6560 	 * If segment contains data or ACK, will call tcp_reass() later; if
6561 	 * not, do so now to pass queued data to user.
6562 	 */
6563 	if (tlen == 0 && (thflags & TH_FIN) == 0)
6564 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
6565 		    (struct mbuf *)0);
6566 	tp->snd_wl1 = th->th_seq - 1;
6567 	/* For syn-recv we need to possibly update the rtt */
6568 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6569 		uint32_t t;
6570 
6571 		t = tcp_ts_getticks() - to->to_tsecr;
6572 		if (!tp->t_rttlow || tp->t_rttlow > t)
6573 			tp->t_rttlow = t;
6574 		tcp_rack_xmit_timer(rack, t + 1);
6575 		tcp_rack_xmit_timer_commit(rack, tp);
6576 	}
6577 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6578 		return (ret_val);
6579 	}
6580 	if (tp->t_state == TCPS_FIN_WAIT_1) {
6581 		/* We could have went to FIN_WAIT_1 (or EST) above */
6582 		/*
6583 		 * In FIN_WAIT_1 STATE in addition to the processing for the
6584 		 * ESTABLISHED state if our FIN is now acknowledged then
6585 		 * enter FIN_WAIT_2.
6586 		 */
6587 		if (ourfinisacked) {
6588 			/*
6589 			 * If we can't receive any more data, then closing
6590 			 * user can proceed. Starting the timer is contrary
6591 			 * to the specification, but if we don't get a FIN
6592 			 * we'll hang forever.
6593 			 *
6594 			 * XXXjl: we should release the tp also, and use a
6595 			 * compressed state.
6596 			 */
6597 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6598 				soisdisconnected(so);
6599 				tcp_timer_activate(tp, TT_2MSL,
6600 				    (tcp_fast_finwait2_recycle ?
6601 				    tcp_finwait2_timeout :
6602 				    TP_MAXIDLE(tp)));
6603 			}
6604 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
6605 		}
6606 	}
6607 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6608 	    tiwin, thflags, nxt_pkt));
6609 }
6610 
6611 /*
6612  * Return value of 1, the TCB is unlocked and most
6613  * likely gone, return value of 0, the TCP is still
6614  * locked.
6615  */
6616 static int
6617 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
6618     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6619     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6620 {
6621 	int32_t ret_val = 0;
6622 
6623 	/*
6624 	 * Header prediction: check for the two common cases of a
6625 	 * uni-directional data xfer.  If the packet has no control flags,
6626 	 * is in-sequence, the window didn't change and we're not
6627 	 * retransmitting, it's a candidate.  If the length is zero and the
6628 	 * ack moved forward, we're the sender side of the xfer.  Just free
6629 	 * the data acked & wake any higher level process that was blocked
6630 	 * waiting for space.  If the length is non-zero and the ack didn't
6631 	 * move, we're the receiver side.  If we're getting packets in-order
6632 	 * (the reassembly queue is empty), add the data toc The socket
6633 	 * buffer and note that we need a delayed ack. Make sure that the
6634 	 * hidden state-flags are also off. Since we check for
6635 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
6636 	 */
6637 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
6638 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
6639 	    __predict_true(SEGQ_EMPTY(tp)) &&
6640 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
6641 		struct tcp_rack *rack;
6642 
6643 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6644 		if (tlen == 0) {
6645 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
6646 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime, iptos)) {
6647 				return (0);
6648 			}
6649 		} else {
6650 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
6651 			    tiwin, nxt_pkt, iptos)) {
6652 				return (0);
6653 			}
6654 		}
6655 	}
6656 	ctf_calc_rwin(so, tp);
6657 
6658 	if ((thflags & TH_RST) ||
6659 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6660 		return (ctf_process_rst(m, th, so, tp));
6661 
6662 	/*
6663 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6664 	 * synchronized state.
6665 	 */
6666 	if (thflags & TH_SYN) {
6667 		ctf_challenge_ack(m, th, tp, &ret_val);
6668 		return (ret_val);
6669 	}
6670 	/*
6671 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6672 	 * it's less than ts_recent, drop it.
6673 	 */
6674 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6675 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6676 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6677 			return (ret_val);
6678 	}
6679 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6680 		return (ret_val);
6681 	}
6682 	/*
6683 	 * If last ACK falls within this segment's sequence numbers, record
6684 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6685 	 * from the latest proposal of the tcplw@cray.com list (Braden
6686 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6687 	 * with our earlier PAWS tests, so this check should be solely
6688 	 * predicated on the sequence space of this segment. 3) That we
6689 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6690 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6691 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6692 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6693 	 * p.869. In such cases, we can still calculate the RTT correctly
6694 	 * when RCV.NXT == Last.ACK.Sent.
6695 	 */
6696 	if ((to->to_flags & TOF_TS) != 0 &&
6697 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6698 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6699 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6700 		tp->ts_recent_age = tcp_ts_getticks();
6701 		tp->ts_recent = to->to_tsval;
6702 	}
6703 	/*
6704 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6705 	 * is on (half-synchronized state), then queue data for later
6706 	 * processing; else drop segment and return.
6707 	 */
6708 	if ((thflags & TH_ACK) == 0) {
6709 		if (tp->t_flags & TF_NEEDSYN) {
6710 
6711 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6712 			    tiwin, thflags, nxt_pkt));
6713 
6714 		} else if (tp->t_flags & TF_ACKNOW) {
6715 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6716 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6717 			return (ret_val);
6718 		} else {
6719 			ctf_do_drop(m, NULL);
6720 			return (0);
6721 		}
6722 	}
6723 	/*
6724 	 * Ack processing.
6725 	 */
6726 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6727 		return (ret_val);
6728 	}
6729 	if (sbavail(&so->so_snd)) {
6730 		if (rack_progress_timeout_check(tp)) {
6731 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6732 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6733 			return (1);
6734 		}
6735 	}
6736 	/* State changes only happen in rack_process_data() */
6737 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6738 	    tiwin, thflags, nxt_pkt));
6739 }
6740 
6741 /*
6742  * Return value of 1, the TCB is unlocked and most
6743  * likely gone, return value of 0, the TCP is still
6744  * locked.
6745  */
6746 static int
6747 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
6748     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6749     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6750 {
6751 	int32_t ret_val = 0;
6752 
6753 	ctf_calc_rwin(so, tp);
6754 	if ((thflags & TH_RST) ||
6755 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6756 		return (ctf_process_rst(m, th, so, tp));
6757 	/*
6758 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6759 	 * synchronized state.
6760 	 */
6761 	if (thflags & TH_SYN) {
6762 		ctf_challenge_ack(m, th, tp, &ret_val);
6763 		return (ret_val);
6764 	}
6765 	/*
6766 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6767 	 * it's less than ts_recent, drop it.
6768 	 */
6769 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6770 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6771 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6772 			return (ret_val);
6773 	}
6774 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6775 		return (ret_val);
6776 	}
6777 	/*
6778 	 * If last ACK falls within this segment's sequence numbers, record
6779 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6780 	 * from the latest proposal of the tcplw@cray.com list (Braden
6781 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6782 	 * with our earlier PAWS tests, so this check should be solely
6783 	 * predicated on the sequence space of this segment. 3) That we
6784 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6785 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6786 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6787 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6788 	 * p.869. In such cases, we can still calculate the RTT correctly
6789 	 * when RCV.NXT == Last.ACK.Sent.
6790 	 */
6791 	if ((to->to_flags & TOF_TS) != 0 &&
6792 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6793 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6794 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6795 		tp->ts_recent_age = tcp_ts_getticks();
6796 		tp->ts_recent = to->to_tsval;
6797 	}
6798 	/*
6799 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6800 	 * is on (half-synchronized state), then queue data for later
6801 	 * processing; else drop segment and return.
6802 	 */
6803 	if ((thflags & TH_ACK) == 0) {
6804 		if (tp->t_flags & TF_NEEDSYN) {
6805 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6806 			    tiwin, thflags, nxt_pkt));
6807 
6808 		} else if (tp->t_flags & TF_ACKNOW) {
6809 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6810 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6811 			return (ret_val);
6812 		} else {
6813 			ctf_do_drop(m, NULL);
6814 			return (0);
6815 		}
6816 	}
6817 	/*
6818 	 * Ack processing.
6819 	 */
6820 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6821 		return (ret_val);
6822 	}
6823 	if (sbavail(&so->so_snd)) {
6824 		if (rack_progress_timeout_check(tp)) {
6825 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6826 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6827 			return (1);
6828 		}
6829 	}
6830 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6831 	    tiwin, thflags, nxt_pkt));
6832 }
6833 
6834 static int
6835 rack_check_data_after_close(struct mbuf *m,
6836     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
6837 {
6838 	struct tcp_rack *rack;
6839 
6840 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6841 	if (rack->rc_allow_data_af_clo == 0) {
6842 	close_now:
6843 		tp = tcp_close(tp);
6844 		TCPSTAT_INC(tcps_rcvafterclose);
6845 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
6846 		return (1);
6847 	}
6848 	if (sbavail(&so->so_snd) == 0)
6849 		goto close_now;
6850 	/* Ok we allow data that is ignored and a followup reset */
6851 	tp->rcv_nxt = th->th_seq + *tlen;
6852 	tp->t_flags2 |= TF2_DROP_AF_DATA;
6853 	rack->r_wanted_output = 1;
6854 	*tlen = 0;
6855 	return (0);
6856 }
6857 
6858 /*
6859  * Return value of 1, the TCB is unlocked and most
6860  * likely gone, return value of 0, the TCP is still
6861  * locked.
6862  */
6863 static int
6864 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
6865     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6866     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6867 {
6868 	int32_t ret_val = 0;
6869 	int32_t ourfinisacked = 0;
6870 
6871 	ctf_calc_rwin(so, tp);
6872 
6873 	if ((thflags & TH_RST) ||
6874 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6875 		return (ctf_process_rst(m, th, so, tp));
6876 	/*
6877 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6878 	 * synchronized state.
6879 	 */
6880 	if (thflags & TH_SYN) {
6881 		ctf_challenge_ack(m, th, tp, &ret_val);
6882 		return (ret_val);
6883 	}
6884 	/*
6885 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6886 	 * it's less than ts_recent, drop it.
6887 	 */
6888 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6889 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6890 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6891 			return (ret_val);
6892 	}
6893 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6894 		return (ret_val);
6895 	}
6896 	/*
6897 	 * If new data are received on a connection after the user processes
6898 	 * are gone, then RST the other end.
6899 	 */
6900 	if ((so->so_state & SS_NOFDREF) && tlen) {
6901 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6902 			return (1);
6903 	}
6904 	/*
6905 	 * If last ACK falls within this segment's sequence numbers, record
6906 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6907 	 * from the latest proposal of the tcplw@cray.com list (Braden
6908 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6909 	 * with our earlier PAWS tests, so this check should be solely
6910 	 * predicated on the sequence space of this segment. 3) That we
6911 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6912 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6913 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6914 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6915 	 * p.869. In such cases, we can still calculate the RTT correctly
6916 	 * when RCV.NXT == Last.ACK.Sent.
6917 	 */
6918 	if ((to->to_flags & TOF_TS) != 0 &&
6919 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6920 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6921 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6922 		tp->ts_recent_age = tcp_ts_getticks();
6923 		tp->ts_recent = to->to_tsval;
6924 	}
6925 	/*
6926 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6927 	 * is on (half-synchronized state), then queue data for later
6928 	 * processing; else drop segment and return.
6929 	 */
6930 	if ((thflags & TH_ACK) == 0) {
6931 		if (tp->t_flags & TF_NEEDSYN) {
6932 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6933 			    tiwin, thflags, nxt_pkt));
6934 		} else if (tp->t_flags & TF_ACKNOW) {
6935 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6936 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6937 			return (ret_val);
6938 		} else {
6939 			ctf_do_drop(m, NULL);
6940 			return (0);
6941 		}
6942 	}
6943 	/*
6944 	 * Ack processing.
6945 	 */
6946 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6947 		return (ret_val);
6948 	}
6949 	if (ourfinisacked) {
6950 		/*
6951 		 * If we can't receive any more data, then closing user can
6952 		 * proceed. Starting the timer is contrary to the
6953 		 * specification, but if we don't get a FIN we'll hang
6954 		 * forever.
6955 		 *
6956 		 * XXXjl: we should release the tp also, and use a
6957 		 * compressed state.
6958 		 */
6959 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6960 			soisdisconnected(so);
6961 			tcp_timer_activate(tp, TT_2MSL,
6962 			    (tcp_fast_finwait2_recycle ?
6963 			    tcp_finwait2_timeout :
6964 			    TP_MAXIDLE(tp)));
6965 		}
6966 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6967 	}
6968 	if (sbavail(&so->so_snd)) {
6969 		if (rack_progress_timeout_check(tp)) {
6970 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6971 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6972 			return (1);
6973 		}
6974 	}
6975 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6976 	    tiwin, thflags, nxt_pkt));
6977 }
6978 
6979 /*
6980  * Return value of 1, the TCB is unlocked and most
6981  * likely gone, return value of 0, the TCP is still
6982  * locked.
6983  */
6984 static int
6985 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6986     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6987     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6988 {
6989 	int32_t ret_val = 0;
6990 	int32_t ourfinisacked = 0;
6991 
6992 	ctf_calc_rwin(so, tp);
6993 
6994 	if ((thflags & TH_RST) ||
6995 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6996 		return (ctf_process_rst(m, th, so, tp));
6997 	/*
6998 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6999 	 * synchronized state.
7000 	 */
7001 	if (thflags & TH_SYN) {
7002 		ctf_challenge_ack(m, th, tp, &ret_val);
7003 		return (ret_val);
7004 	}
7005 	/*
7006 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7007 	 * it's less than ts_recent, drop it.
7008 	 */
7009 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7010 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7011 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7012 			return (ret_val);
7013 	}
7014 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7015 		return (ret_val);
7016 	}
7017 	/*
7018 	 * If new data are received on a connection after the user processes
7019 	 * are gone, then RST the other end.
7020 	 */
7021 	if ((so->so_state & SS_NOFDREF) && tlen) {
7022 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7023 			return (1);
7024 	}
7025 	/*
7026 	 * If last ACK falls within this segment's sequence numbers, record
7027 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7028 	 * from the latest proposal of the tcplw@cray.com list (Braden
7029 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7030 	 * with our earlier PAWS tests, so this check should be solely
7031 	 * predicated on the sequence space of this segment. 3) That we
7032 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7033 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7034 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7035 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7036 	 * p.869. In such cases, we can still calculate the RTT correctly
7037 	 * when RCV.NXT == Last.ACK.Sent.
7038 	 */
7039 	if ((to->to_flags & TOF_TS) != 0 &&
7040 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7041 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7042 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7043 		tp->ts_recent_age = tcp_ts_getticks();
7044 		tp->ts_recent = to->to_tsval;
7045 	}
7046 	/*
7047 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7048 	 * is on (half-synchronized state), then queue data for later
7049 	 * processing; else drop segment and return.
7050 	 */
7051 	if ((thflags & TH_ACK) == 0) {
7052 		if (tp->t_flags & TF_NEEDSYN) {
7053 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7054 			    tiwin, thflags, nxt_pkt));
7055 		} else if (tp->t_flags & TF_ACKNOW) {
7056 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7057 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7058 			return (ret_val);
7059 		} else {
7060 			ctf_do_drop(m, NULL);
7061 			return (0);
7062 		}
7063 	}
7064 	/*
7065 	 * Ack processing.
7066 	 */
7067 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7068 		return (ret_val);
7069 	}
7070 	if (ourfinisacked) {
7071 		tcp_twstart(tp);
7072 		m_freem(m);
7073 		return (1);
7074 	}
7075 	if (sbavail(&so->so_snd)) {
7076 		if (rack_progress_timeout_check(tp)) {
7077 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7078 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7079 			return (1);
7080 		}
7081 	}
7082 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7083 	    tiwin, thflags, nxt_pkt));
7084 }
7085 
7086 /*
7087  * Return value of 1, the TCB is unlocked and most
7088  * likely gone, return value of 0, the TCP is still
7089  * locked.
7090  */
7091 static int
7092 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
7093     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7094     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7095 {
7096 	int32_t ret_val = 0;
7097 	int32_t ourfinisacked = 0;
7098 
7099 	ctf_calc_rwin(so, tp);
7100 
7101 	if ((thflags & TH_RST) ||
7102 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7103 		return (ctf_process_rst(m, th, so, tp));
7104 	/*
7105 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7106 	 * synchronized state.
7107 	 */
7108 	if (thflags & TH_SYN) {
7109 		ctf_challenge_ack(m, th, tp, &ret_val);
7110 		return (ret_val);
7111 	}
7112 	/*
7113 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7114 	 * it's less than ts_recent, drop it.
7115 	 */
7116 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7117 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7118 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7119 			return (ret_val);
7120 	}
7121 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7122 		return (ret_val);
7123 	}
7124 	/*
7125 	 * If new data are received on a connection after the user processes
7126 	 * are gone, then RST the other end.
7127 	 */
7128 	if ((so->so_state & SS_NOFDREF) && tlen) {
7129 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7130 			return (1);
7131 	}
7132 	/*
7133 	 * If last ACK falls within this segment's sequence numbers, record
7134 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7135 	 * from the latest proposal of the tcplw@cray.com list (Braden
7136 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7137 	 * with our earlier PAWS tests, so this check should be solely
7138 	 * predicated on the sequence space of this segment. 3) That we
7139 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7140 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7141 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7142 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7143 	 * p.869. In such cases, we can still calculate the RTT correctly
7144 	 * when RCV.NXT == Last.ACK.Sent.
7145 	 */
7146 	if ((to->to_flags & TOF_TS) != 0 &&
7147 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7148 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7149 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7150 		tp->ts_recent_age = tcp_ts_getticks();
7151 		tp->ts_recent = to->to_tsval;
7152 	}
7153 	/*
7154 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7155 	 * is on (half-synchronized state), then queue data for later
7156 	 * processing; else drop segment and return.
7157 	 */
7158 	if ((thflags & TH_ACK) == 0) {
7159 		if (tp->t_flags & TF_NEEDSYN) {
7160 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7161 			    tiwin, thflags, nxt_pkt));
7162 		} else if (tp->t_flags & TF_ACKNOW) {
7163 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7164 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7165 			return (ret_val);
7166 		} else {
7167 			ctf_do_drop(m, NULL);
7168 			return (0);
7169 		}
7170 	}
7171 	/*
7172 	 * case TCPS_LAST_ACK: Ack processing.
7173 	 */
7174 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7175 		return (ret_val);
7176 	}
7177 	if (ourfinisacked) {
7178 		tp = tcp_close(tp);
7179 		ctf_do_drop(m, tp);
7180 		return (1);
7181 	}
7182 	if (sbavail(&so->so_snd)) {
7183 		if (rack_progress_timeout_check(tp)) {
7184 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7185 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7186 			return (1);
7187 		}
7188 	}
7189 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7190 	    tiwin, thflags, nxt_pkt));
7191 }
7192 
7193 
7194 /*
7195  * Return value of 1, the TCB is unlocked and most
7196  * likely gone, return value of 0, the TCP is still
7197  * locked.
7198  */
7199 static int
7200 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
7201     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7202     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7203 {
7204 	int32_t ret_val = 0;
7205 	int32_t ourfinisacked = 0;
7206 
7207 	ctf_calc_rwin(so, tp);
7208 
7209 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
7210 	if ((thflags & TH_RST) ||
7211 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7212 		return (ctf_process_rst(m, th, so, tp));
7213 	/*
7214 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7215 	 * synchronized state.
7216 	 */
7217 	if (thflags & TH_SYN) {
7218 		ctf_challenge_ack(m, th, tp, &ret_val);
7219 		return (ret_val);
7220 	}
7221 	/*
7222 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7223 	 * it's less than ts_recent, drop it.
7224 	 */
7225 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7226 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7227 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7228 			return (ret_val);
7229 	}
7230 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7231 		return (ret_val);
7232 	}
7233 	/*
7234 	 * If new data are received on a connection after the user processes
7235 	 * are gone, then RST the other end.
7236 	 */
7237 	if ((so->so_state & SS_NOFDREF) &&
7238 	    tlen) {
7239 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7240 			return (1);
7241 	}
7242 	/*
7243 	 * If last ACK falls within this segment's sequence numbers, record
7244 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7245 	 * from the latest proposal of the tcplw@cray.com list (Braden
7246 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7247 	 * with our earlier PAWS tests, so this check should be solely
7248 	 * predicated on the sequence space of this segment. 3) That we
7249 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7250 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7251 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7252 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7253 	 * p.869. In such cases, we can still calculate the RTT correctly
7254 	 * when RCV.NXT == Last.ACK.Sent.
7255 	 */
7256 	if ((to->to_flags & TOF_TS) != 0 &&
7257 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7258 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7259 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7260 		tp->ts_recent_age = tcp_ts_getticks();
7261 		tp->ts_recent = to->to_tsval;
7262 	}
7263 	/*
7264 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7265 	 * is on (half-synchronized state), then queue data for later
7266 	 * processing; else drop segment and return.
7267 	 */
7268 	if ((thflags & TH_ACK) == 0) {
7269 		if (tp->t_flags & TF_NEEDSYN) {
7270 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7271 			    tiwin, thflags, nxt_pkt));
7272 		} else if (tp->t_flags & TF_ACKNOW) {
7273 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7274 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7275 			return (ret_val);
7276 		} else {
7277 			ctf_do_drop(m, NULL);
7278 			return (0);
7279 		}
7280 	}
7281 	/*
7282 	 * Ack processing.
7283 	 */
7284 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7285 		return (ret_val);
7286 	}
7287 	if (sbavail(&so->so_snd)) {
7288 		if (rack_progress_timeout_check(tp)) {
7289 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7290 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7291 			return (1);
7292 		}
7293 	}
7294 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7295 	    tiwin, thflags, nxt_pkt));
7296 }
7297 
7298 
7299 static void inline
7300 rack_clear_rate_sample(struct tcp_rack *rack)
7301 {
7302 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
7303 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
7304 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
7305 }
7306 
7307 static void
7308 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
7309 {
7310 	uint32_t tls_seg = 0;
7311 
7312 #ifdef KERN_TLS
7313 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
7314 		tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
7315 		rack->r_ctl.rc_pace_min_segs = tls_seg;
7316 	} else
7317 #endif
7318 		rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
7319 	rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
7320 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
7321 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
7322 #ifdef KERN_TLS
7323 	if (tls_seg != 0) {
7324 		if (rack_hw_tls_max_seg > 1) {
7325 			rack->r_ctl.rc_pace_max_segs /= tls_seg;
7326 			if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
7327 				rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
7328 		} else {
7329 			rack->r_ctl.rc_pace_max_segs = 1;
7330 		}
7331 		if (rack->r_ctl.rc_pace_max_segs == 0)
7332 			rack->r_ctl.rc_pace_max_segs = 1;
7333 		rack->r_ctl.rc_pace_max_segs *= tls_seg;
7334 	}
7335 #endif
7336 	rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
7337 }
7338 
7339 static int
7340 rack_init(struct tcpcb *tp)
7341 {
7342 	struct tcp_rack *rack = NULL;
7343 	struct rack_sendmap *insret;
7344 
7345 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
7346 	if (tp->t_fb_ptr == NULL) {
7347 		/*
7348 		 * We need to allocate memory but cant. The INP and INP_INFO
7349 		 * locks and they are recusive (happens during setup. So a
7350 		 * scheme to drop the locks fails :(
7351 		 *
7352 		 */
7353 		return (ENOMEM);
7354 	}
7355 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
7356 
7357 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7358 	RB_INIT(&rack->r_ctl.rc_mtree);
7359 	TAILQ_INIT(&rack->r_ctl.rc_free);
7360 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
7361 	rack->rc_tp = tp;
7362 	if (tp->t_inpcb) {
7363 		rack->rc_inp = tp->t_inpcb;
7364 	}
7365 	tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
7366 	/* Probably not needed but lets be sure */
7367 	rack_clear_rate_sample(rack);
7368 	rack->r_cpu = 0;
7369 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
7370 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
7371 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
7372 	rack->rc_pace_reduce = rack_slot_reduction;
7373 	if (use_rack_cheat)
7374 		rack->use_rack_cheat = 1;
7375 	if (V_tcp_delack_enabled)
7376 		tp->t_delayed_ack = 1;
7377 	else
7378 		tp->t_delayed_ack = 0;
7379 	rack->rc_pace_max_segs = rack_hptsi_segments;
7380 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
7381 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
7382 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
7383 	rack->r_enforce_min_pace = rack_min_pace_time;
7384 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
7385 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
7386 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
7387 	rack->rc_always_pace = rack_pace_every_seg;
7388 	rack_set_pace_segments(tp, rack);
7389 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
7390 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
7391 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
7392 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
7393 	rack->r_ctl.rc_min_to = rack_min_to;
7394 	rack->rack_per_of_gp = rack_per_of_gp;
7395 	microuptime(&rack->r_ctl.rc_last_ack);
7396 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
7397 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
7398 	/* Do we force on detection? */
7399 #ifdef NETFLIX_EXP_DETECTION
7400 	if (tcp_force_detection)
7401 		rack->do_detection = 1;
7402 	else
7403 #endif
7404 		rack->do_detection = 0;
7405 	if (tp->snd_una != tp->snd_max) {
7406 		/* Create a send map for the current outstanding data */
7407 		struct rack_sendmap *rsm;
7408 
7409 		rsm = rack_alloc(rack);
7410 		if (rsm == NULL) {
7411 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7412 			tp->t_fb_ptr = NULL;
7413 			return (ENOMEM);
7414 		}
7415 		rsm->r_flags = RACK_OVERMAX;
7416 		rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
7417 		rsm->r_rtr_cnt = 1;
7418 		rsm->r_rtr_bytes = 0;
7419 		rsm->r_start = tp->snd_una;
7420 		rsm->r_end = tp->snd_max;
7421 		rsm->r_dupack = 0;
7422 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7423 #ifdef INVARIANTS
7424 		if (insret != NULL) {
7425 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
7426 			      insret, rack, rsm);
7427 		}
7428 #endif
7429 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7430 		rsm->r_in_tmap = 1;
7431 	}
7432 	rack_stop_all_timers(tp);
7433 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7434 	return (0);
7435 }
7436 
7437 static int
7438 rack_handoff_ok(struct tcpcb *tp)
7439 {
7440 	if ((tp->t_state == TCPS_CLOSED) ||
7441 	    (tp->t_state == TCPS_LISTEN)) {
7442 		/* Sure no problem though it may not stick */
7443 		return (0);
7444 	}
7445 	if ((tp->t_state == TCPS_SYN_SENT) ||
7446 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
7447 		/*
7448 		 * We really don't know you have to get to ESTAB or beyond
7449 		 * to tell.
7450 		 */
7451 		return (EAGAIN);
7452 	}
7453 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
7454 		return (0);
7455 	}
7456 	/*
7457 	 * If we reach here we don't do SACK on this connection so we can
7458 	 * never do rack.
7459 	 */
7460 	return (EINVAL);
7461 }
7462 
7463 static void
7464 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
7465 {
7466 	if (tp->t_fb_ptr) {
7467 		struct tcp_rack *rack;
7468 		struct rack_sendmap *rsm, *nrsm, *rm;
7469 		if (tp->t_inpcb) {
7470 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
7471 			tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
7472 		}
7473 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7474 #ifdef TCP_BLACKBOX
7475 		tcp_log_flowend(tp);
7476 #endif
7477 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
7478 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7479 #ifdef INVARIANTS
7480 			if (rm != rsm) {
7481 				panic("At fini, rack:%p rsm:%p rm:%p",
7482 				      rack, rsm, rm);
7483 			}
7484 #endif
7485 			uma_zfree(rack_zone, rsm);
7486 		}
7487 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7488 		while (rsm) {
7489 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
7490 			uma_zfree(rack_zone, rsm);
7491 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7492 		}
7493 		rack->rc_free_cnt = 0;
7494 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7495 		tp->t_fb_ptr = NULL;
7496 	}
7497 	/* Make sure snd_nxt is correctly set */
7498 	tp->snd_nxt = tp->snd_max;
7499 }
7500 
7501 
7502 static void
7503 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
7504 {
7505 	switch (tp->t_state) {
7506 	case TCPS_SYN_SENT:
7507 		rack->r_state = TCPS_SYN_SENT;
7508 		rack->r_substate = rack_do_syn_sent;
7509 		break;
7510 	case TCPS_SYN_RECEIVED:
7511 		rack->r_state = TCPS_SYN_RECEIVED;
7512 		rack->r_substate = rack_do_syn_recv;
7513 		break;
7514 	case TCPS_ESTABLISHED:
7515 		rack_set_pace_segments(tp, rack);
7516 		rack->r_state = TCPS_ESTABLISHED;
7517 		rack->r_substate = rack_do_established;
7518 		break;
7519 	case TCPS_CLOSE_WAIT:
7520 		rack->r_state = TCPS_CLOSE_WAIT;
7521 		rack->r_substate = rack_do_close_wait;
7522 		break;
7523 	case TCPS_FIN_WAIT_1:
7524 		rack->r_state = TCPS_FIN_WAIT_1;
7525 		rack->r_substate = rack_do_fin_wait_1;
7526 		break;
7527 	case TCPS_CLOSING:
7528 		rack->r_state = TCPS_CLOSING;
7529 		rack->r_substate = rack_do_closing;
7530 		break;
7531 	case TCPS_LAST_ACK:
7532 		rack->r_state = TCPS_LAST_ACK;
7533 		rack->r_substate = rack_do_lastack;
7534 		break;
7535 	case TCPS_FIN_WAIT_2:
7536 		rack->r_state = TCPS_FIN_WAIT_2;
7537 		rack->r_substate = rack_do_fin_wait_2;
7538 		break;
7539 	case TCPS_LISTEN:
7540 	case TCPS_CLOSED:
7541 	case TCPS_TIME_WAIT:
7542 	default:
7543 		break;
7544 	};
7545 }
7546 
7547 
7548 static void
7549 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
7550 {
7551 	/*
7552 	 * We received an ack, and then did not
7553 	 * call send or were bounced out due to the
7554 	 * hpts was running. Now a timer is up as well, is
7555 	 * it the right timer?
7556 	 */
7557 	struct rack_sendmap *rsm;
7558 	int tmr_up;
7559 
7560 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7561 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
7562 		return;
7563 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7564 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
7565 	    (tmr_up == PACE_TMR_RXT)) {
7566 		/* Should be an RXT */
7567 		return;
7568 	}
7569 	if (rsm == NULL) {
7570 		/* Nothing outstanding? */
7571 		if (tp->t_flags & TF_DELACK) {
7572 			if (tmr_up == PACE_TMR_DELACK)
7573 				/* We are supposed to have delayed ack up and we do */
7574 				return;
7575 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
7576 			/*
7577 			 * if we hit enobufs then we would expect the possiblity
7578 			 * of nothing outstanding and the RXT up (and the hptsi timer).
7579 			 */
7580 			return;
7581 		} else if (((V_tcp_always_keepalive ||
7582 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7583 			    (tp->t_state <= TCPS_CLOSING)) &&
7584 			   (tmr_up == PACE_TMR_KEEP) &&
7585 			   (tp->snd_max == tp->snd_una)) {
7586 			/* We should have keep alive up and we do */
7587 			return;
7588 		}
7589 	}
7590 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
7591 		   ((tmr_up == PACE_TMR_TLP) ||
7592 		    (tmr_up == PACE_TMR_RACK) ||
7593 		    (tmr_up == PACE_TMR_RXT))) {
7594 		/*
7595 		 * Either a Rack, TLP or RXT is fine if  we
7596 		 * have outstanding data.
7597 		 */
7598 		return;
7599 	} else if (tmr_up == PACE_TMR_DELACK) {
7600 		/*
7601 		 * If the delayed ack was going to go off
7602 		 * before the rtx/tlp/rack timer were going to
7603 		 * expire, then that would be the timer in control.
7604 		 * Note we don't check the time here trusting the
7605 		 * code is correct.
7606 		 */
7607 		return;
7608 	}
7609 	/*
7610 	 * Ok the timer originally started is not what we want now.
7611 	 * We will force the hpts to be stopped if any, and restart
7612 	 * with the slot set to what was in the saved slot.
7613 	 */
7614 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7615 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7616 }
7617 
7618 static int
7619 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
7620     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
7621     int32_t nxt_pkt, struct timeval *tv)
7622 {
7623 	int32_t thflags, retval, did_out = 0;
7624 	int32_t way_out = 0;
7625 	uint32_t cts;
7626 	uint32_t tiwin;
7627 	struct tcpopt to;
7628 	struct tcp_rack *rack;
7629 	struct rack_sendmap *rsm;
7630 	int32_t prev_state = 0;
7631 
7632 	if (m->m_flags & M_TSTMP_LRO) {
7633 		tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7634 		tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7635 	}
7636 	cts = tcp_tv_to_mssectick(tv);
7637 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7638 
7639 	kern_prefetch(rack, &prev_state);
7640 	prev_state = 0;
7641 	thflags = th->th_flags;
7642 
7643 	NET_EPOCH_ASSERT();
7644 	INP_WLOCK_ASSERT(tp->t_inpcb);
7645 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
7646 	    __func__));
7647 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
7648 	    __func__));
7649 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
7650 		union tcp_log_stackspecific log;
7651 		struct timeval tv;
7652 
7653 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
7654 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
7655 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
7656 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
7657 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
7658 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
7659 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7660 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
7661 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
7662 		    tlen, &log, true, &tv);
7663 	}
7664 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
7665 		way_out = 4;
7666 		retval = 0;
7667 		goto done_with_input;
7668 	}
7669 	/*
7670 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
7671 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
7672 	 */
7673 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
7674 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
7675 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7676 		return(1);
7677 	}
7678 	/*
7679 	 * Segment received on connection. Reset idle time and keep-alive
7680 	 * timer. XXX: This should be done after segment validation to
7681 	 * ignore broken/spoofed segs.
7682 	 */
7683 	if  (tp->t_idle_reduce &&
7684 	     (tp->snd_max == tp->snd_una) &&
7685 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
7686 		counter_u64_add(rack_input_idle_reduces, 1);
7687 		rack_cc_after_idle(tp);
7688 	}
7689 	tp->t_rcvtime = ticks;
7690 
7691 	/*
7692 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
7693 	 * the scale is zero.
7694 	 */
7695 	tiwin = th->th_win << tp->snd_scale;
7696 #ifdef STATS
7697 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
7698 #endif
7699 	if (tiwin > rack->r_ctl.rc_high_rwnd)
7700 		rack->r_ctl.rc_high_rwnd = tiwin;
7701 	/*
7702 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
7703 	 * this to occur after we've validated the segment.
7704 	 */
7705 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
7706 		if (thflags & TH_CWR) {
7707 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
7708 			tp->t_flags |= TF_ACKNOW;
7709 		}
7710 		switch (iptos & IPTOS_ECN_MASK) {
7711 		case IPTOS_ECN_CE:
7712 			tp->t_flags2 |= TF2_ECN_SND_ECE;
7713 			TCPSTAT_INC(tcps_ecn_ce);
7714 			break;
7715 		case IPTOS_ECN_ECT0:
7716 			TCPSTAT_INC(tcps_ecn_ect0);
7717 			break;
7718 		case IPTOS_ECN_ECT1:
7719 			TCPSTAT_INC(tcps_ecn_ect1);
7720 			break;
7721 		}
7722 
7723 		/* Process a packet differently from RFC3168. */
7724 		cc_ecnpkt_handler(tp, th, iptos);
7725 
7726 		/* Congestion experienced. */
7727 		if (thflags & TH_ECE) {
7728 			rack_cong_signal(tp, th, CC_ECN);
7729 		}
7730 	}
7731 	/*
7732 	 * Parse options on any incoming segment.
7733 	 */
7734 	tcp_dooptions(&to, (u_char *)(th + 1),
7735 	    (th->th_off << 2) - sizeof(struct tcphdr),
7736 	    (thflags & TH_SYN) ? TO_SYN : 0);
7737 
7738 	/*
7739 	 * If echoed timestamp is later than the current time, fall back to
7740 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
7741 	 * were used when this connection was established.
7742 	 */
7743 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
7744 		to.to_tsecr -= tp->ts_offset;
7745 		if (TSTMP_GT(to.to_tsecr, cts))
7746 			to.to_tsecr = 0;
7747 	}
7748 	/*
7749 	 * If its the first time in we need to take care of options and
7750 	 * verify we can do SACK for rack!
7751 	 */
7752 	if (rack->r_state == 0) {
7753 		/* Should be init'd by rack_init() */
7754 		KASSERT(rack->rc_inp != NULL,
7755 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
7756 		if (rack->rc_inp == NULL) {
7757 			rack->rc_inp = tp->t_inpcb;
7758 		}
7759 
7760 		/*
7761 		 * Process options only when we get SYN/ACK back. The SYN
7762 		 * case for incoming connections is handled in tcp_syncache.
7763 		 * According to RFC1323 the window field in a SYN (i.e., a
7764 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
7765 		 * this is traditional behavior, may need to be cleaned up.
7766 		 */
7767 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
7768 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
7769 			if ((to.to_flags & TOF_SCALE) &&
7770 			    (tp->t_flags & TF_REQ_SCALE)) {
7771 				tp->t_flags |= TF_RCVD_SCALE;
7772 				tp->snd_scale = to.to_wscale;
7773 			}
7774 			/*
7775 			 * Initial send window.  It will be updated with the
7776 			 * next incoming segment to the scaled value.
7777 			 */
7778 			tp->snd_wnd = th->th_win;
7779 			if (to.to_flags & TOF_TS) {
7780 				tp->t_flags |= TF_RCVD_TSTMP;
7781 				tp->ts_recent = to.to_tsval;
7782 				tp->ts_recent_age = cts;
7783 			}
7784 			if (to.to_flags & TOF_MSS)
7785 				tcp_mss(tp, to.to_mss);
7786 			if ((tp->t_flags & TF_SACK_PERMIT) &&
7787 			    (to.to_flags & TOF_SACKPERM) == 0)
7788 				tp->t_flags &= ~TF_SACK_PERMIT;
7789 			if (IS_FASTOPEN(tp->t_flags)) {
7790 				if (to.to_flags & TOF_FASTOPEN) {
7791 					uint16_t mss;
7792 
7793 					if (to.to_flags & TOF_MSS)
7794 						mss = to.to_mss;
7795 					else
7796 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
7797 							mss = TCP6_MSS;
7798 						else
7799 							mss = TCP_MSS;
7800 					tcp_fastopen_update_cache(tp, mss,
7801 					    to.to_tfo_len, to.to_tfo_cookie);
7802 				} else
7803 					tcp_fastopen_disable_path(tp);
7804 			}
7805 		}
7806 		/*
7807 		 * At this point we are at the initial call. Here we decide
7808 		 * if we are doing RACK or not. We do this by seeing if
7809 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
7810 		 * we switch to the default code.
7811 		 */
7812 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
7813 			tcp_switch_back_to_default(tp);
7814 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
7815 			    tlen, iptos);
7816 			return (1);
7817 		}
7818 		/* Set the flag */
7819 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
7820 		tcp_set_hpts(tp->t_inpcb);
7821 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
7822 	}
7823 	/*
7824 	 * This is the one exception case where we set the rack state
7825 	 * always. All other times (timers etc) we must have a rack-state
7826 	 * set (so we assure we have done the checks above for SACK).
7827 	 */
7828 	memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
7829 	rack->r_ctl.rc_rcvtime = cts;
7830 	if (rack->r_state != tp->t_state)
7831 		rack_set_state(tp, rack);
7832 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
7833 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
7834 		kern_prefetch(rsm, &prev_state);
7835 	prev_state = rack->r_state;
7836 	rack->r_ctl.rc_tlp_send_cnt = 0;
7837 	rack_clear_rate_sample(rack);
7838 	retval = (*rack->r_substate) (m, th, so,
7839 	    tp, &to, drop_hdrlen,
7840 	    tlen, tiwin, thflags, nxt_pkt, iptos);
7841 #ifdef INVARIANTS
7842 	if ((retval == 0) &&
7843 	    (tp->t_inpcb == NULL)) {
7844 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
7845 		    retval, tp, prev_state);
7846 	}
7847 #endif
7848 	if (retval == 0) {
7849 		/*
7850 		 * If retval is 1 the tcb is unlocked and most likely the tp
7851 		 * is gone.
7852 		 */
7853 		INP_WLOCK_ASSERT(tp->t_inpcb);
7854 		if (rack->set_pacing_done_a_iw == 0) {
7855 			/* How much has been acked? */
7856 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
7857 				/* We have enough to set in the pacing segment size */
7858 				rack->set_pacing_done_a_iw = 1;
7859 				rack_set_pace_segments(tp, rack);
7860 			}
7861 		}
7862 		tcp_rack_xmit_timer_commit(rack, tp);
7863 		if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
7864 			if (rack->r_wanted_output != 0) {
7865 				did_out = 1;
7866 				(void)tp->t_fb->tfb_tcp_output(tp);
7867 			}
7868 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
7869 		}
7870 		if ((nxt_pkt == 0) &&
7871 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
7872 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
7873 		     (tp->t_flags & TF_DELACK) ||
7874 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7875 		      (tp->t_state <= TCPS_CLOSING)))) {
7876 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
7877 			if ((tp->snd_max == tp->snd_una) &&
7878 			    ((tp->t_flags & TF_DELACK) == 0) &&
7879 			    (rack->rc_inp->inp_in_hpts) &&
7880 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
7881 				/* keep alive not needed if we are hptsi output yet */
7882 				;
7883 			} else {
7884 				if (rack->rc_inp->inp_in_hpts) {
7885 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7886 					counter_u64_add(rack_per_timer_hole, 1);
7887 				}
7888 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7889 			}
7890 			way_out = 1;
7891 		} else if (nxt_pkt == 0) {
7892 			/* Do we have the correct timer running? */
7893 			rack_timer_audit(tp, rack, &so->so_snd);
7894 			way_out = 2;
7895 		}
7896 	done_with_input:
7897 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
7898 		if (did_out)
7899 			rack->r_wanted_output = 0;
7900 #ifdef INVARIANTS
7901 		if (tp->t_inpcb == NULL) {
7902 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
7903 			      did_out,
7904 			      retval, tp, prev_state);
7905 		}
7906 #endif
7907 	}
7908 	return (retval);
7909 }
7910 
7911 void
7912 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
7913     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
7914 {
7915 	struct timeval tv;
7916 
7917 	/* First lets see if we have old packets */
7918 	if (tp->t_in_pkt) {
7919 		if (ctf_do_queued_segments(so, tp, 1)) {
7920 			m_freem(m);
7921 			return;
7922 		}
7923 	}
7924 	if (m->m_flags & M_TSTMP_LRO) {
7925 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7926 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7927 	} else {
7928 		/* Should not be should we kassert instead? */
7929 		tcp_get_usecs(&tv);
7930 	}
7931 	if(rack_do_segment_nounlock(m, th, so, tp,
7932 				    drop_hdrlen, tlen, iptos, 0, &tv) == 0)
7933 		INP_WUNLOCK(tp->t_inpcb);
7934 }
7935 
7936 struct rack_sendmap *
7937 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
7938 {
7939 	struct rack_sendmap *rsm = NULL;
7940 	int32_t idx;
7941 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
7942 
7943 	/* Return the next guy to be re-transmitted */
7944 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
7945 		return (NULL);
7946 	}
7947 	if (tp->t_flags & TF_SENTFIN) {
7948 		/* retran the end FIN? */
7949 		return (NULL);
7950 	}
7951 	/* ok lets look at this one */
7952 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7953 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
7954 		goto check_it;
7955 	}
7956 	rsm = rack_find_lowest_rsm(rack);
7957 	if (rsm == NULL) {
7958 		return (NULL);
7959 	}
7960 check_it:
7961 	if (rsm->r_flags & RACK_ACKED) {
7962 		return (NULL);
7963 	}
7964 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
7965 		/* Its not yet ready */
7966 		return (NULL);
7967 	}
7968 	srtt = rack_grab_rtt(tp, rack);
7969 	idx = rsm->r_rtr_cnt - 1;
7970 	ts_low = rsm->r_tim_lastsent[idx];
7971 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
7972 	if ((tsused == ts_low) ||
7973 	    (TSTMP_LT(tsused, ts_low))) {
7974 		/* No time since sending */
7975 		return (NULL);
7976 	}
7977 	if ((tsused - ts_low) < thresh) {
7978 		/* It has not been long enough yet */
7979 		return (NULL);
7980 	}
7981 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
7982 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
7983 	     (rack->sack_attack_disable == 0))) {
7984 		/*
7985 		 * We have passed the dup-ack threshold <or>
7986 		 * a SACK has indicated this is missing.
7987 		 * Note that if you are a declared attacker
7988 		 * it is only the dup-ack threshold that
7989 		 * will cause retransmits.
7990 		 */
7991 		/* log retransmit reason */
7992 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
7993 		return (rsm);
7994 	}
7995 	return (NULL);
7996 }
7997 
7998 static int32_t
7999 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
8000 {
8001 	int32_t slot = 0;
8002 
8003 	if ((rack->rack_per_of_gp == 0) ||
8004 	    (rack->rc_always_pace == 0)) {
8005 		/*
8006 		 * We use the most optimistic possible cwnd/srtt for
8007 		 * sending calculations. This will make our
8008 		 * calculation anticipate getting more through
8009 		 * quicker then possible. But thats ok we don't want
8010 		 * the peer to have a gap in data sending.
8011 		 */
8012 		uint32_t srtt, cwnd, tr_perms = 0;
8013 
8014 old_method:
8015 		if (rack->r_ctl.rc_rack_min_rtt)
8016 			srtt = rack->r_ctl.rc_rack_min_rtt;
8017 		else
8018 			srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8019 		if (rack->r_ctl.rc_rack_largest_cwnd)
8020 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8021 		else
8022 			cwnd = tp->snd_cwnd;
8023 		tr_perms = cwnd / srtt;
8024 		if (tr_perms == 0) {
8025 			tr_perms = ctf_fixed_maxseg(tp);
8026 		}
8027 		/*
8028 		 * Calculate how long this will take to drain, if
8029 		 * the calculation comes out to zero, thats ok we
8030 		 * will use send_a_lot to possibly spin around for
8031 		 * more increasing tot_len_this_send to the point
8032 		 * that its going to require a pace, or we hit the
8033 		 * cwnd. Which in that case we are just waiting for
8034 		 * a ACK.
8035 		 */
8036 		slot = len / tr_perms;
8037 		/* Now do we reduce the time so we don't run dry? */
8038 		if (slot && rack->rc_pace_reduce) {
8039 			int32_t reduce;
8040 
8041 			reduce = (slot / rack->rc_pace_reduce);
8042 			if (reduce < slot) {
8043 				slot -= reduce;
8044 			} else
8045 				slot = 0;
8046 		}
8047 	} else {
8048 		int cnt;
8049 		uint64_t bw_est, bw_raise, res, lentim;
8050 
8051 		bw_est = 0;
8052 		for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
8053 			if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
8054 			    (rack->r_ctl.rc_gp_history[cnt] == 0))
8055 				break;
8056 			bw_est += rack->r_ctl.rc_gp_history[cnt];
8057 		}
8058 		if (bw_est == 0) {
8059 			/*
8060 			 * No way yet to make a b/w estimate
8061 			 * (no goodput est yet).
8062 			 */
8063 			goto old_method;
8064 		}
8065 		/* Covert to bytes per second */
8066 		bw_est *= MSEC_IN_SECOND;
8067 		/*
8068 		 * Now ratchet it up by our percentage. Note
8069 		 * that the minimum you can do is 1 which would
8070 		 * get you 101% of the average last N goodput estimates.
8071 		 * The max you can do is 256 which would yeild you
8072 		 * 356% of the last N goodput estimates.
8073 		 */
8074 		bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
8075 		bw_est += bw_raise;
8076 		/* average by the number we added */
8077 		bw_est /= cnt;
8078 		/* Now calculate a rate based on this b/w */
8079 		lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
8080 		res = lentim / bw_est;
8081 		slot = (uint32_t)res;
8082 	}
8083 	if (rack->r_enforce_min_pace &&
8084 	    (slot == 0)) {
8085 		/* We are enforcing a minimum pace time of 1ms */
8086 		slot = rack->r_enforce_min_pace;
8087 	}
8088 	if (slot)
8089 		counter_u64_add(rack_calc_nonzero, 1);
8090 	else
8091 		counter_u64_add(rack_calc_zero, 1);
8092 	return (slot);
8093 }
8094 
8095 static int
8096 rack_output(struct tcpcb *tp)
8097 {
8098 	struct socket *so;
8099 	uint32_t recwin, sendwin;
8100 	uint32_t sb_offset;
8101 	int32_t len, flags, error = 0;
8102 	struct mbuf *m;
8103 	struct mbuf *mb;
8104 	uint32_t if_hw_tsomaxsegcount = 0;
8105 	uint32_t if_hw_tsomaxsegsize = 0;
8106 	int32_t maxseg;
8107 	long tot_len_this_send = 0;
8108 	struct ip *ip = NULL;
8109 #ifdef TCPDEBUG
8110 	struct ipovly *ipov = NULL;
8111 #endif
8112 	struct udphdr *udp = NULL;
8113 	struct tcp_rack *rack;
8114 	struct tcphdr *th;
8115 	uint8_t pass = 0;
8116 	uint8_t wanted_cookie = 0;
8117 	u_char opt[TCP_MAXOLEN];
8118 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
8119 	uint32_t rack_seq;
8120 
8121 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8122 	unsigned ipsec_optlen = 0;
8123 
8124 #endif
8125 	int32_t idle, sendalot;
8126 	int32_t sub_from_prr = 0;
8127 	volatile int32_t sack_rxmit;
8128 	struct rack_sendmap *rsm = NULL;
8129 	int32_t tso, mtu;
8130 	struct tcpopt to;
8131 	int32_t slot = 0;
8132 	int32_t sup_rack = 0;
8133 	uint32_t cts;
8134 	uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
8135 	int32_t do_a_prefetch;
8136 	int32_t prefetch_rsm = 0;
8137 	int force_tso = 0;
8138 	int32_t orig_len;
8139 	int32_t prefetch_so_done = 0;
8140 	struct tcp_log_buffer *lgb = NULL;
8141 	struct inpcb *inp;
8142 	struct sockbuf *sb;
8143 #ifdef INET6
8144 	struct ip6_hdr *ip6 = NULL;
8145 	int32_t isipv6;
8146 #endif
8147 	uint8_t filled_all = 0;
8148 	bool hw_tls = false;
8149 
8150 	/* setup and take the cache hits here */
8151 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8152 	inp = rack->rc_inp;
8153 	so = inp->inp_socket;
8154 	sb = &so->so_snd;
8155 	kern_prefetch(sb, &do_a_prefetch);
8156 	do_a_prefetch = 1;
8157 
8158 #ifdef KERN_TLS
8159 	hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
8160 #endif
8161 
8162 	NET_EPOCH_ASSERT();
8163 	INP_WLOCK_ASSERT(inp);
8164 
8165 #ifdef TCP_OFFLOAD
8166 	if (tp->t_flags & TF_TOE)
8167 		return (tcp_offload_output(tp));
8168 #endif
8169 	maxseg = ctf_fixed_maxseg(tp);
8170 	/*
8171 	 * For TFO connections in SYN_RECEIVED, only allow the initial
8172 	 * SYN|ACK and those sent by the retransmit timer.
8173 	 */
8174 	if (IS_FASTOPEN(tp->t_flags) &&
8175 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
8176 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
8177 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
8178 		return (0);
8179 #ifdef INET6
8180 	if (rack->r_state) {
8181 		/* Use the cache line loaded if possible */
8182 		isipv6 = rack->r_is_v6;
8183 	} else {
8184 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
8185 	}
8186 #endif
8187 	cts = tcp_ts_getticks();
8188 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
8189 	    inp->inp_in_hpts) {
8190 		/*
8191 		 * We are on the hpts for some timer but not hptsi output.
8192 		 * Remove from the hpts unconditionally.
8193 		 */
8194 		rack_timer_cancel(tp, rack, cts, __LINE__);
8195 	}
8196 	/* Mark that we have called rack_output(). */
8197 	if ((rack->r_timer_override) ||
8198 	    (tp->t_flags & TF_FORCEDATA) ||
8199 	    (tp->t_state < TCPS_ESTABLISHED)) {
8200 		if (tp->t_inpcb->inp_in_hpts)
8201 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
8202 	} else if (tp->t_inpcb->inp_in_hpts) {
8203 		/*
8204 		 * On the hpts you can't pass even if ACKNOW is on, we will
8205 		 * when the hpts fires.
8206 		 */
8207 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
8208 		return (0);
8209 	}
8210 	hpts_calling = inp->inp_hpts_calls;
8211 	inp->inp_hpts_calls = 0;
8212 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
8213 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
8214 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
8215 			return (0);
8216 		}
8217 	}
8218 	rack->r_wanted_output = 0;
8219 	rack->r_timer_override = 0;
8220 	/*
8221 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
8222 	 * only allow the initial SYN or SYN|ACK and those sent
8223 	 * by the retransmit timer.
8224 	 */
8225 	if (IS_FASTOPEN(tp->t_flags) &&
8226 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
8227 	     (tp->t_state == TCPS_SYN_SENT)) &&
8228 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
8229 	    (tp->t_rxtshift == 0))              /* not a retransmit */
8230 		return (0);
8231 	/*
8232 	 * Determine length of data that should be transmitted, and flags
8233 	 * that will be used. If there is some data or critical controls
8234 	 * (SYN, RST) to send, then transmit; otherwise, investigate
8235 	 * further.
8236 	 */
8237 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
8238 	if (tp->t_idle_reduce) {
8239 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
8240 			rack_cc_after_idle(tp);
8241 	}
8242 	tp->t_flags &= ~TF_LASTIDLE;
8243 	if (idle) {
8244 		if (tp->t_flags & TF_MORETOCOME) {
8245 			tp->t_flags |= TF_LASTIDLE;
8246 			idle = 0;
8247 		}
8248 	}
8249 again:
8250 	/*
8251 	 * If we've recently taken a timeout, snd_max will be greater than
8252 	 * snd_nxt.  There may be SACK information that allows us to avoid
8253 	 * resending already delivered data.  Adjust snd_nxt accordingly.
8254 	 */
8255 	sendalot = 0;
8256 	cts = tcp_ts_getticks();
8257 	tso = 0;
8258 	mtu = 0;
8259 	sb_offset = tp->snd_max - tp->snd_una;
8260 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
8261 
8262 	flags = tcp_outflags[tp->t_state];
8263 	while (rack->rc_free_cnt < rack_free_cache) {
8264 		rsm = rack_alloc(rack);
8265 		if (rsm == NULL) {
8266 			if (inp->inp_hpts_calls)
8267 				/* Retry in a ms */
8268 				slot = 1;
8269 			goto just_return_nolock;
8270 		}
8271 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
8272 		rack->rc_free_cnt++;
8273 		rsm = NULL;
8274 	}
8275 	if (inp->inp_hpts_calls)
8276 		inp->inp_hpts_calls = 0;
8277 	sack_rxmit = 0;
8278 	len = 0;
8279 	rsm = NULL;
8280 	if (flags & TH_RST) {
8281 		SOCKBUF_LOCK(sb);
8282 		goto send;
8283 	}
8284 	if (rack->r_ctl.rc_tlpsend) {
8285 		/* Tail loss probe */
8286 		long cwin;
8287 		long tlen;
8288 
8289 		doing_tlp = 1;
8290 		/*
8291 		 * Check if we can do a TLP with a RACK'd packet
8292 		 * this can happen if we are not doing the rack
8293 		 * cheat and we skipped to a TLP and it
8294 		 * went off.
8295 		 */
8296 		rsm = tcp_rack_output(tp, rack, cts);
8297 		if (rsm == NULL)
8298 			rsm = rack->r_ctl.rc_tlpsend;
8299 		rack->r_ctl.rc_tlpsend = NULL;
8300 		sack_rxmit = 1;
8301 		tlen = rsm->r_end - rsm->r_start;
8302 		if (tlen > ctf_fixed_maxseg(tp))
8303 			tlen = ctf_fixed_maxseg(tp);
8304 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8305 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8306 		    __func__, __LINE__,
8307 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8308 		sb_offset = rsm->r_start - tp->snd_una;
8309 		cwin = min(tp->snd_wnd, tlen);
8310 		len = cwin;
8311 	} else if (rack->r_ctl.rc_resend) {
8312 		/* Retransmit timer */
8313 		rsm = rack->r_ctl.rc_resend;
8314 		rack->r_ctl.rc_resend = NULL;
8315 		len = rsm->r_end - rsm->r_start;
8316 		sack_rxmit = 1;
8317 		sendalot = 0;
8318 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8319 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8320 		    __func__, __LINE__,
8321 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8322 		sb_offset = rsm->r_start - tp->snd_una;
8323 		if (len >= ctf_fixed_maxseg(tp)) {
8324 			len = ctf_fixed_maxseg(tp);
8325 		}
8326 	} else if ((rack->rc_in_persist == 0) &&
8327 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
8328 		int maxseg;
8329 
8330 		maxseg = ctf_fixed_maxseg(tp);
8331 		if ((!IN_RECOVERY(tp->t_flags)) &&
8332 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
8333 			/* Enter recovery if not induced by a time-out */
8334 			rack->r_ctl.rc_rsm_start = rsm->r_start;
8335 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
8336 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
8337 			rack_cong_signal(tp, NULL, CC_NDUPACK);
8338 			/*
8339 			 * When we enter recovery we need to assure we send
8340 			 * one packet.
8341 			 */
8342 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
8343 			rack_log_to_prr(rack, 13);
8344 		}
8345 #ifdef INVARIANTS
8346 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
8347 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
8348 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
8349 		}
8350 #endif
8351 		len = rsm->r_end - rsm->r_start;
8352 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8353 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8354 		    __func__, __LINE__,
8355 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8356 		sb_offset = rsm->r_start - tp->snd_una;
8357 		/* Can we send it within the PRR boundary? */
8358 		if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
8359 			/* It does not fit */
8360 			if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
8361 			    (rack->r_ctl.rc_prr_sndcnt < maxseg)) {
8362 				/*
8363 				 * prr is less than a segment, we
8364 				 * have more acks due in besides
8365 				 * what we need to resend. Lets not send
8366 				 * to avoid sending small pieces of
8367 				 * what we need to retransmit.
8368 				 */
8369 				len = 0;
8370 				goto just_return_nolock;
8371 			}
8372 			len = rack->r_ctl.rc_prr_sndcnt;
8373 		}
8374 		sendalot = 0;
8375 		if (len >= maxseg) {
8376 			len = maxseg;
8377 		}
8378 		if (len > 0) {
8379 			sub_from_prr = 1;
8380 			sack_rxmit = 1;
8381 			TCPSTAT_INC(tcps_sack_rexmits);
8382 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
8383 			    min(len, ctf_fixed_maxseg(tp)));
8384 			counter_u64_add(rack_rtm_prr_retran, 1);
8385 		}
8386 	}
8387 	/*
8388 	 * Enforce a connection sendmap count limit if set
8389 	 * as long as we are not retransmiting.
8390 	 */
8391 	if ((rsm == NULL) &&
8392 	    (rack->do_detection == 0) &&
8393 	    (V_tcp_map_entries_limit > 0) &&
8394 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
8395 		counter_u64_add(rack_to_alloc_limited, 1);
8396 		if (!rack->alloc_limit_reported) {
8397 			rack->alloc_limit_reported = 1;
8398 			counter_u64_add(rack_alloc_limited_conns, 1);
8399 		}
8400 		goto just_return_nolock;
8401 	}
8402 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
8403 		/* we are retransmitting the fin */
8404 		len--;
8405 		if (len) {
8406 			/*
8407 			 * When retransmitting data do *not* include the
8408 			 * FIN. This could happen from a TLP probe.
8409 			 */
8410 			flags &= ~TH_FIN;
8411 		}
8412 	}
8413 #ifdef INVARIANTS
8414 	/* For debugging */
8415 	rack->r_ctl.rc_rsm_at_retran = rsm;
8416 #endif
8417 	/*
8418 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
8419 	 * state flags.
8420 	 */
8421 	if (tp->t_flags & TF_NEEDFIN)
8422 		flags |= TH_FIN;
8423 	if (tp->t_flags & TF_NEEDSYN)
8424 		flags |= TH_SYN;
8425 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
8426 		void *end_rsm;
8427 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
8428 		if (end_rsm)
8429 			kern_prefetch(end_rsm, &prefetch_rsm);
8430 		prefetch_rsm = 1;
8431 	}
8432 	SOCKBUF_LOCK(sb);
8433 	/*
8434 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
8435 	 * if window is small but nonzero and time TF_SENTFIN expired, we
8436 	 * will send what we can and go to transmit state.
8437 	 */
8438 	if (tp->t_flags & TF_FORCEDATA) {
8439 		if (sendwin == 0) {
8440 			/*
8441 			 * If we still have some data to send, then clear
8442 			 * the FIN bit.  Usually this would happen below
8443 			 * when it realizes that we aren't sending all the
8444 			 * data.  However, if we have exactly 1 byte of
8445 			 * unsent data, then it won't clear the FIN bit
8446 			 * below, and if we are in persist state, we wind up
8447 			 * sending the packet without recording that we sent
8448 			 * the FIN bit.
8449 			 *
8450 			 * We can't just blindly clear the FIN bit, because
8451 			 * if we don't have any more data to send then the
8452 			 * probe will be the FIN itself.
8453 			 */
8454 			if (sb_offset < sbused(sb))
8455 				flags &= ~TH_FIN;
8456 			sendwin = 1;
8457 		} else {
8458 			if ((rack->rc_in_persist != 0) &&
8459  			    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8460 					       rack->r_ctl.rc_pace_min_segs)))
8461 				rack_exit_persist(tp, rack);
8462 			/*
8463 			 * If we are dropping persist mode then we need to
8464 			 * correct snd_nxt/snd_max and off.
8465 			 */
8466 			tp->snd_nxt = tp->snd_max;
8467 			sb_offset = tp->snd_nxt - tp->snd_una;
8468 		}
8469 	}
8470 	/*
8471 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
8472 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
8473 	 * negative length.  This can also occur when TCP opens up its
8474 	 * congestion window while receiving additional duplicate acks after
8475 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
8476 	 * the fast-retransmit.
8477 	 *
8478 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
8479 	 * set to snd_una, the sb_offset will be 0, and the length may wind
8480 	 * up 0.
8481 	 *
8482 	 * If sack_rxmit is true we are retransmitting from the scoreboard
8483 	 * in which case len is already set.
8484 	 */
8485 	if (sack_rxmit == 0) {
8486 		uint32_t avail;
8487 
8488 		avail = sbavail(sb);
8489 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
8490 			sb_offset = tp->snd_nxt - tp->snd_una;
8491 		else
8492 			sb_offset = 0;
8493 		if (IN_RECOVERY(tp->t_flags) == 0) {
8494 			if (rack->r_ctl.rc_tlp_new_data) {
8495 				/* TLP is forcing out new data */
8496 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
8497 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
8498 				}
8499 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
8500 					len = tp->snd_wnd;
8501 				else
8502 					len = rack->r_ctl.rc_tlp_new_data;
8503 				rack->r_ctl.rc_tlp_new_data = 0;
8504 				new_data_tlp = doing_tlp = 1;
8505 			} else {
8506 				if (sendwin > avail) {
8507 					/* use the available */
8508 					if (avail > sb_offset) {
8509 						len = (int32_t)(avail - sb_offset);
8510 					} else {
8511 						len = 0;
8512 					}
8513 				} else {
8514 					if (sendwin > sb_offset) {
8515 						len = (int32_t)(sendwin - sb_offset);
8516 					} else {
8517 						len = 0;
8518 					}
8519 				}
8520 			}
8521 		} else {
8522 			uint32_t outstanding;
8523 
8524 			/*
8525 			 * We are inside of a SACK recovery episode and are
8526 			 * sending new data, having retransmitted all the
8527 			 * data possible so far in the scoreboard.
8528 			 */
8529 			outstanding = tp->snd_max - tp->snd_una;
8530 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
8531 				if (tp->snd_wnd > outstanding) {
8532 					len = tp->snd_wnd - outstanding;
8533 					/* Check to see if we have the data */
8534 					if (((sb_offset + len) > avail) &&
8535 					    (avail > sb_offset))
8536 						len = avail - sb_offset;
8537 					else
8538 						len = 0;
8539 				} else
8540 					len = 0;
8541 			} else if (avail > sb_offset)
8542 				len = avail - sb_offset;
8543 			else
8544 				len = 0;
8545 			if (len > 0) {
8546 				if (len > rack->r_ctl.rc_prr_sndcnt)
8547 					len = rack->r_ctl.rc_prr_sndcnt;
8548 				if (len > 0) {
8549 					sub_from_prr = 1;
8550 					counter_u64_add(rack_rtm_prr_newdata, 1);
8551 				}
8552 			}
8553 			if (len > ctf_fixed_maxseg(tp)) {
8554 				/*
8555 				 * We should never send more than a MSS when
8556 				 * retransmitting or sending new data in prr
8557 				 * mode unless the override flag is on. Most
8558 				 * likely the PRR algorithm is not going to
8559 				 * let us send a lot as well :-)
8560 				 */
8561 				if (rack->r_ctl.rc_prr_sendalot == 0)
8562 					len = ctf_fixed_maxseg(tp);
8563 			} else if (len < ctf_fixed_maxseg(tp)) {
8564 				/*
8565 				 * Do we send any? The idea here is if the
8566 				 * send empty's the socket buffer we want to
8567 				 * do it. However if not then lets just wait
8568 				 * for our prr_sndcnt to get bigger.
8569 				 */
8570 				long leftinsb;
8571 
8572 				leftinsb = sbavail(sb) - sb_offset;
8573 				if (leftinsb > len) {
8574 					/* This send does not empty the sb */
8575 					len = 0;
8576 				}
8577 			}
8578 		}
8579 	}
8580 	if (prefetch_so_done == 0) {
8581 		kern_prefetch(so, &prefetch_so_done);
8582 		prefetch_so_done = 1;
8583 	}
8584 	/*
8585 	 * Lop off SYN bit if it has already been sent.  However, if this is
8586 	 * SYN-SENT state and if segment contains data and if we don't know
8587 	 * that foreign host supports TAO, suppress sending segment.
8588 	 */
8589 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
8590 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
8591 		if (tp->t_state != TCPS_SYN_RECEIVED)
8592 			flags &= ~TH_SYN;
8593 		/*
8594 		 * When sending additional segments following a TFO SYN|ACK,
8595 		 * do not include the SYN bit.
8596 		 */
8597 		if (IS_FASTOPEN(tp->t_flags) &&
8598 		    (tp->t_state == TCPS_SYN_RECEIVED))
8599 			flags &= ~TH_SYN;
8600 		sb_offset--, len++;
8601 	}
8602 	/*
8603 	 * Be careful not to send data and/or FIN on SYN segments. This
8604 	 * measure is needed to prevent interoperability problems with not
8605 	 * fully conformant TCP implementations.
8606 	 */
8607 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
8608 		len = 0;
8609 		flags &= ~TH_FIN;
8610 	}
8611 	/*
8612 	 * On TFO sockets, ensure no data is sent in the following cases:
8613 	 *
8614 	 *  - When retransmitting SYN|ACK on a passively-created socket
8615 	 *
8616 	 *  - When retransmitting SYN on an actively created socket
8617 	 *
8618 	 *  - When sending a zero-length cookie (cookie request) on an
8619 	 *    actively created socket
8620 	 *
8621 	 *  - When the socket is in the CLOSED state (RST is being sent)
8622 	 */
8623 	if (IS_FASTOPEN(tp->t_flags) &&
8624 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
8625 	     ((tp->t_state == TCPS_SYN_SENT) &&
8626 	      (tp->t_tfo_client_cookie_len == 0)) ||
8627 	     (flags & TH_RST))) {
8628 		sack_rxmit = 0;
8629 		len = 0;
8630 	}
8631 	/* Without fast-open there should never be data sent on a SYN */
8632 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
8633 		len = 0;
8634 	orig_len = len;
8635 	if (len <= 0) {
8636 		/*
8637 		 * If FIN has been sent but not acked, but we haven't been
8638 		 * called to retransmit, len will be < 0.  Otherwise, window
8639 		 * shrank after we sent into it.  If window shrank to 0,
8640 		 * cancel pending retransmit, pull snd_nxt back to (closed)
8641 		 * window, and set the persist timer if it isn't already
8642 		 * going.  If the window didn't close completely, just wait
8643 		 * for an ACK.
8644 		 *
8645 		 * We also do a general check here to ensure that we will
8646 		 * set the persist timer when we have data to send, but a
8647 		 * 0-byte window. This makes sure the persist timer is set
8648 		 * even if the packet hits one of the "goto send" lines
8649 		 * below.
8650 		 */
8651 		len = 0;
8652 		if ((tp->snd_wnd == 0) &&
8653 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8654 		    (tp->snd_una == tp->snd_max) &&
8655 		    (sb_offset < (int)sbavail(sb))) {
8656 			tp->snd_nxt = tp->snd_una;
8657 			rack_enter_persist(tp, rack, cts);
8658 		}
8659 	} else if ((rsm == NULL) &&
8660 		   ((doing_tlp == 0) || (new_data_tlp == 1)) &&
8661 		   (len < rack->r_ctl.rc_pace_max_segs)) {
8662 		/*
8663 		 * We are not sending a full segment for
8664 		 * some reason. Should we not send anything (think
8665 		 * sws or persists)?
8666 		 */
8667 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8668 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8669 		    (len < (int)(sbavail(sb) - sb_offset))) {
8670 			/*
8671 			 * Here the rwnd is less than
8672 			 * the pacing size, this is not a retransmit,
8673 			 * we are established and
8674 			 * the send is not the last in the socket buffer
8675 			 * we send nothing, and may enter persists.
8676 			 */
8677 			len = 0;
8678 			if (tp->snd_max == tp->snd_una) {
8679 				/*
8680 				 * Nothing out we can
8681 				 * go into persists.
8682 				 */
8683 				rack_enter_persist(tp, rack, cts);
8684 				tp->snd_nxt = tp->snd_una;
8685 			}
8686 		} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
8687 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8688 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8689 			   (len < rack->r_ctl.rc_pace_min_segs)) {
8690 			/*
8691 			 * Here we are not retransmitting, and
8692 			 * the cwnd is not so small that we could
8693 			 * not send at least a min size (rxt timer
8694 			 * not having gone off), We have 2 segments or
8695 			 * more already in flight, its not the tail end
8696 			 * of the socket buffer  and the cwnd is blocking
8697 			 * us from sending out a minimum pacing segment size.
8698 			 * Lets not send anything.
8699 			 */
8700 			len = 0;
8701 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
8702 			    min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8703 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8704 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8705 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
8706 			/*
8707 			 * Here we have a send window but we have
8708 			 * filled it up and we can't send another pacing segment.
8709 			 * We also have in flight more than 2 segments
8710 			 * and we are not completing the sb i.e. we allow
8711 			 * the last bytes of the sb to go out even if
8712 			 * its not a full pacing segment.
8713 			 */
8714 			len = 0;
8715 		}
8716 	}
8717 	/* len will be >= 0 after this point. */
8718 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
8719 	tcp_sndbuf_autoscale(tp, so, sendwin);
8720 	/*
8721 	 * Decide if we can use TCP Segmentation Offloading (if supported by
8722 	 * hardware).
8723 	 *
8724 	 * TSO may only be used if we are in a pure bulk sending state.  The
8725 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
8726 	 * options prevent using TSO.  With TSO the TCP header is the same
8727 	 * (except for the sequence number) for all generated packets.  This
8728 	 * makes it impossible to transmit any options which vary per
8729 	 * generated segment or packet.
8730 	 *
8731 	 * IPv4 handling has a clear separation of ip options and ip header
8732 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
8733 	 * the right thing below to provide length of just ip options and thus
8734 	 * checking for ipoptlen is enough to decide if ip options are present.
8735 	 */
8736 
8737 #ifdef INET6
8738 	if (isipv6)
8739 		ipoptlen = ip6_optlen(tp->t_inpcb);
8740 	else
8741 #endif
8742 		if (tp->t_inpcb->inp_options)
8743 			ipoptlen = tp->t_inpcb->inp_options->m_len -
8744 			    offsetof(struct ipoption, ipopt_list);
8745 		else
8746 			ipoptlen = 0;
8747 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8748 	/*
8749 	 * Pre-calculate here as we save another lookup into the darknesses
8750 	 * of IPsec that way and can actually decide if TSO is ok.
8751 	 */
8752 #ifdef INET6
8753 	if (isipv6 && IPSEC_ENABLED(ipv6))
8754 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
8755 #ifdef INET
8756 	else
8757 #endif
8758 #endif				/* INET6 */
8759 #ifdef INET
8760 	if (IPSEC_ENABLED(ipv4))
8761 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
8762 #endif				/* INET */
8763 #endif
8764 
8765 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8766 	ipoptlen += ipsec_optlen;
8767 #endif
8768 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
8769 	    (tp->t_port == 0) &&
8770 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
8771 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
8772 	    ipoptlen == 0)
8773 		tso = 1;
8774 	{
8775 		uint32_t outstanding;
8776 
8777 		outstanding = tp->snd_max - tp->snd_una;
8778 		if (tp->t_flags & TF_SENTFIN) {
8779 			/*
8780 			 * If we sent a fin, snd_max is 1 higher than
8781 			 * snd_una
8782 			 */
8783 			outstanding--;
8784 		}
8785 		if (sack_rxmit) {
8786 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
8787 				flags &= ~TH_FIN;
8788 		} else {
8789 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
8790 			    sbused(sb)))
8791 				flags &= ~TH_FIN;
8792 		}
8793 	}
8794 	recwin = sbspace(&so->so_rcv);
8795 
8796 	/*
8797 	 * Sender silly window avoidance.   We transmit under the following
8798 	 * conditions when len is non-zero:
8799 	 *
8800 	 * - We have a full segment (or more with TSO) - This is the last
8801 	 * buffer in a write()/send() and we are either idle or running
8802 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
8803 	 * then 1/2 the maximum send window's worth of data (receiver may be
8804 	 * limited the window size) - we need to retransmit
8805 	 */
8806 	if (len) {
8807 		if (len >= ctf_fixed_maxseg(tp)) {
8808 			pass = 1;
8809 			goto send;
8810 		}
8811 		/*
8812 		 * NOTE! on localhost connections an 'ack' from the remote
8813 		 * end may occur synchronously with the output and cause us
8814 		 * to flush a buffer queued with moretocome.  XXX
8815 		 *
8816 		 */
8817 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
8818 		    (idle || (tp->t_flags & TF_NODELAY)) &&
8819 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
8820 		    (tp->t_flags & TF_NOPUSH) == 0) {
8821 			pass = 2;
8822 			goto send;
8823 		}
8824 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
8825 			pass = 3;
8826 			goto send;
8827 		}
8828 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
8829 			goto send;
8830 		}
8831 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
8832 			pass = 4;
8833 			goto send;
8834 		}
8835 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
8836 			pass = 5;
8837 			goto send;
8838 		}
8839 		if (sack_rxmit) {
8840 			pass = 6;
8841 			goto send;
8842 		}
8843 	}
8844 	/*
8845 	 * Sending of standalone window updates.
8846 	 *
8847 	 * Window updates are important when we close our window due to a
8848 	 * full socket buffer and are opening it again after the application
8849 	 * reads data from it.  Once the window has opened again and the
8850 	 * remote end starts to send again the ACK clock takes over and
8851 	 * provides the most current window information.
8852 	 *
8853 	 * We must avoid the silly window syndrome whereas every read from
8854 	 * the receive buffer, no matter how small, causes a window update
8855 	 * to be sent.  We also should avoid sending a flurry of window
8856 	 * updates when the socket buffer had queued a lot of data and the
8857 	 * application is doing small reads.
8858 	 *
8859 	 * Prevent a flurry of pointless window updates by only sending an
8860 	 * update when we can increase the advertized window by more than
8861 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
8862 	 * full or is very small be more aggressive and send an update
8863 	 * whenever we can increase by two mss sized segments. In all other
8864 	 * situations the ACK's to new incoming data will carry further
8865 	 * window increases.
8866 	 *
8867 	 * Don't send an independent window update if a delayed ACK is
8868 	 * pending (it will get piggy-backed on it) or the remote side
8869 	 * already has done a half-close and won't send more data.  Skip
8870 	 * this if the connection is in T/TCP half-open state.
8871 	 */
8872 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
8873 	    !(tp->t_flags & TF_DELACK) &&
8874 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
8875 		/*
8876 		 * "adv" is the amount we could increase the window, taking
8877 		 * into account that we are limited by TCP_MAXWIN <<
8878 		 * tp->rcv_scale.
8879 		 */
8880 		int32_t adv;
8881 		int oldwin;
8882 
8883 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
8884 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
8885 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
8886 			adv -= oldwin;
8887 		} else
8888 			oldwin = 0;
8889 
8890 		/*
8891 		 * If the new window size ends up being the same as the old
8892 		 * size when it is scaled, then don't force a window update.
8893 		 */
8894 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
8895 			goto dontupdate;
8896 
8897 		if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
8898 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
8899 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
8900 		     so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
8901 			pass = 7;
8902 			goto send;
8903 		}
8904 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
8905 			goto send;
8906 	}
8907 dontupdate:
8908 
8909 	/*
8910 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
8911 	 * is also a catch-all for the retransmit timer timeout case.
8912 	 */
8913 	if (tp->t_flags & TF_ACKNOW) {
8914 		pass = 8;
8915 		goto send;
8916 	}
8917 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
8918 		pass = 9;
8919 		goto send;
8920 	}
8921 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
8922 		pass = 10;
8923 		goto send;
8924 	}
8925 	/*
8926 	 * If our state indicates that FIN should be sent and we have not
8927 	 * yet done so, then we need to send.
8928 	 */
8929 	if ((flags & TH_FIN) &&
8930 	    (tp->snd_nxt == tp->snd_una)) {
8931 		pass = 11;
8932 		goto send;
8933 	}
8934 	/*
8935 	 * No reason to send a segment, just return.
8936 	 */
8937 just_return:
8938 	SOCKBUF_UNLOCK(sb);
8939 just_return_nolock:
8940 	if (tot_len_this_send == 0)
8941 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
8942 	if (slot) {
8943 		/* set the rack tcb into the slot N */
8944 		counter_u64_add(rack_paced_segments, 1);
8945 	} else if (tot_len_this_send) {
8946 		counter_u64_add(rack_unpaced_segments, 1);
8947 	}
8948 	/* Check if we need to go into persists or not */
8949 	if ((rack->rc_in_persist == 0) &&
8950 	    (tp->snd_max == tp->snd_una) &&
8951 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
8952 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8953 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
8954 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
8955 		/* Yes lets make sure to move to persist before timer-start */
8956 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8957 	}
8958 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
8959 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
8960 	tp->t_flags &= ~TF_FORCEDATA;
8961 	return (0);
8962 
8963 send:
8964 	if ((flags & TH_FIN) &&
8965 	    sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8966 		/*
8967 		 * We do not transmit a FIN
8968 		 * with data outstanding. We
8969 		 * need to make it so all data
8970 		 * is acked first.
8971 		 */
8972 		flags &= ~TH_FIN;
8973 	}
8974 	if (doing_tlp == 0) {
8975 		/*
8976 		 * Data not a TLP, and its not the rxt firing. If it is the
8977 		 * rxt firing, we want to leave the tlp_in_progress flag on
8978 		 * so we don't send another TLP. It has to be a rack timer
8979 		 * or normal send (response to acked data) to clear the tlp
8980 		 * in progress flag.
8981 		 */
8982 		rack->rc_tlp_in_progress = 0;
8983 	}
8984 	SOCKBUF_LOCK_ASSERT(sb);
8985 	if (len > 0) {
8986 		if (len >= ctf_fixed_maxseg(tp))
8987 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
8988 		else
8989 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
8990 	}
8991 	/*
8992 	 * Before ESTABLISHED, force sending of initial options unless TCP
8993 	 * set not to do any options. NOTE: we assume that the IP/TCP header
8994 	 * plus TCP options always fit in a single mbuf, leaving room for a
8995 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
8996 	 * + optlen <= MCLBYTES
8997 	 */
8998 	optlen = 0;
8999 #ifdef INET6
9000 	if (isipv6)
9001 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
9002 	else
9003 #endif
9004 		hdrlen = sizeof(struct tcpiphdr);
9005 
9006 	/*
9007 	 * Compute options for segment. We only have to care about SYN and
9008 	 * established connection segments.  Options for SYN-ACK segments
9009 	 * are handled in TCP syncache.
9010 	 */
9011 	to.to_flags = 0;
9012 	if ((tp->t_flags & TF_NOOPT) == 0) {
9013 		/* Maximum segment size. */
9014 		if (flags & TH_SYN) {
9015 			tp->snd_nxt = tp->iss;
9016 			to.to_mss = tcp_mssopt(&inp->inp_inc);
9017 #ifdef NETFLIX_TCPOUDP
9018 			if (tp->t_port)
9019 				to.to_mss -= V_tcp_udp_tunneling_overhead;
9020 #endif
9021 			to.to_flags |= TOF_MSS;
9022 
9023 			/*
9024 			 * On SYN or SYN|ACK transmits on TFO connections,
9025 			 * only include the TFO option if it is not a
9026 			 * retransmit, as the presence of the TFO option may
9027 			 * have caused the original SYN or SYN|ACK to have
9028 			 * been dropped by a middlebox.
9029 			 */
9030 			if (IS_FASTOPEN(tp->t_flags) &&
9031 			    (tp->t_rxtshift == 0)) {
9032 				if (tp->t_state == TCPS_SYN_RECEIVED) {
9033 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
9034 					to.to_tfo_cookie =
9035 					    (u_int8_t *)&tp->t_tfo_cookie.server;
9036 					to.to_flags |= TOF_FASTOPEN;
9037 					wanted_cookie = 1;
9038 				} else if (tp->t_state == TCPS_SYN_SENT) {
9039 					to.to_tfo_len =
9040 					    tp->t_tfo_client_cookie_len;
9041 					to.to_tfo_cookie =
9042 					    tp->t_tfo_cookie.client;
9043 					to.to_flags |= TOF_FASTOPEN;
9044 					wanted_cookie = 1;
9045 					/*
9046 					 * If we wind up having more data to
9047 					 * send with the SYN than can fit in
9048 					 * one segment, don't send any more
9049 					 * until the SYN|ACK comes back from
9050 					 * the other end.
9051 					 */
9052 					sendalot = 0;
9053 				}
9054 			}
9055 		}
9056 		/* Window scaling. */
9057 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
9058 			to.to_wscale = tp->request_r_scale;
9059 			to.to_flags |= TOF_SCALE;
9060 		}
9061 		/* Timestamps. */
9062 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
9063 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
9064 			to.to_tsval = cts + tp->ts_offset;
9065 			to.to_tsecr = tp->ts_recent;
9066 			to.to_flags |= TOF_TS;
9067 		}
9068 		/* Set receive buffer autosizing timestamp. */
9069 		if (tp->rfbuf_ts == 0 &&
9070 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
9071 			tp->rfbuf_ts = tcp_ts_getticks();
9072 		/* Selective ACK's. */
9073 		if (flags & TH_SYN)
9074 			to.to_flags |= TOF_SACKPERM;
9075 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9076 		    tp->rcv_numsacks > 0) {
9077 			to.to_flags |= TOF_SACK;
9078 			to.to_nsacks = tp->rcv_numsacks;
9079 			to.to_sacks = (u_char *)tp->sackblks;
9080 		}
9081 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9082 		/* TCP-MD5 (RFC2385). */
9083 		if (tp->t_flags & TF_SIGNATURE)
9084 			to.to_flags |= TOF_SIGNATURE;
9085 #endif				/* TCP_SIGNATURE */
9086 
9087 		/* Processing the options. */
9088 		hdrlen += optlen = tcp_addoptions(&to, opt);
9089 		/*
9090 		 * If we wanted a TFO option to be added, but it was unable
9091 		 * to fit, ensure no data is sent.
9092 		 */
9093 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
9094 		    !(to.to_flags & TOF_FASTOPEN))
9095 			len = 0;
9096 	}
9097 #ifdef NETFLIX_TCPOUDP
9098 	if (tp->t_port) {
9099 		if (V_tcp_udp_tunneling_port == 0) {
9100 			/* The port was removed?? */
9101 			SOCKBUF_UNLOCK(&so->so_snd);
9102 			return (EHOSTUNREACH);
9103 		}
9104 		hdrlen += sizeof(struct udphdr);
9105 	}
9106 #endif
9107 #ifdef INET6
9108 	if (isipv6)
9109 		ipoptlen = ip6_optlen(tp->t_inpcb);
9110 	else
9111 #endif
9112 	if (tp->t_inpcb->inp_options)
9113 		ipoptlen = tp->t_inpcb->inp_options->m_len -
9114 		    offsetof(struct ipoption, ipopt_list);
9115 	else
9116 		ipoptlen = 0;
9117 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
9118 	ipoptlen += ipsec_optlen;
9119 #endif
9120 
9121 #ifdef KERN_TLS
9122  	/* force TSO for so TLS offload can get mss */
9123  	if (sb->sb_flags & SB_TLS_IFNET) {
9124  		force_tso = 1;
9125  	}
9126 #endif
9127 	/*
9128 	 * Adjust data length if insertion of options will bump the packet
9129 	 * length beyond the t_maxseg length. Clear the FIN bit because we
9130 	 * cut off the tail of the segment.
9131 	 */
9132 	if (len + optlen + ipoptlen > tp->t_maxseg) {
9133 		if (tso) {
9134 			uint32_t if_hw_tsomax;
9135 			uint32_t moff;
9136 			int32_t max_len;
9137 
9138 			/* extract TSO information */
9139 			if_hw_tsomax = tp->t_tsomax;
9140 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
9141 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
9142 			KASSERT(ipoptlen == 0,
9143 			    ("%s: TSO can't do IP options", __func__));
9144 
9145 			/*
9146 			 * Check if we should limit by maximum payload
9147 			 * length:
9148 			 */
9149 			if (if_hw_tsomax != 0) {
9150 				/* compute maximum TSO length */
9151 				max_len = (if_hw_tsomax - hdrlen -
9152 				    max_linkhdr);
9153 				if (max_len <= 0) {
9154 					len = 0;
9155 				} else if (len > max_len) {
9156 					sendalot = 1;
9157 					len = max_len;
9158 				}
9159 			}
9160 			/*
9161 			 * Prevent the last segment from being fractional
9162 			 * unless the send sockbuf can be emptied:
9163 			 */
9164 			max_len = (tp->t_maxseg - optlen);
9165 			if (((sb_offset + len) < sbavail(sb)) &&
9166 			    (hw_tls == 0)) {
9167 				moff = len % (u_int)max_len;
9168 				if (moff != 0) {
9169 					len -= moff;
9170 					sendalot = 1;
9171 				}
9172 			}
9173                         /*
9174 			 * In case there are too many small fragments don't
9175 			 * use TSO:
9176 			 */
9177 			if (len <= maxseg) {
9178 				len = max_len;
9179 				sendalot = 1;
9180 				tso = 0;
9181 			}
9182 			/*
9183 			 * Send the FIN in a separate segment after the bulk
9184 			 * sending is done. We don't trust the TSO
9185 			 * implementations to clear the FIN flag on all but
9186 			 * the last segment.
9187 			 */
9188 			if (tp->t_flags & TF_NEEDFIN)
9189 				sendalot = 1;
9190 
9191 		} else {
9192 			if (optlen + ipoptlen >= tp->t_maxseg) {
9193 				/*
9194 				 * Since we don't have enough space to put
9195 				 * the IP header chain and the TCP header in
9196 				 * one packet as required by RFC 7112, don't
9197 				 * send it. Also ensure that at least one
9198 				 * byte of the payload can be put into the
9199 				 * TCP segment.
9200 				 */
9201 				SOCKBUF_UNLOCK(&so->so_snd);
9202 				error = EMSGSIZE;
9203 				sack_rxmit = 0;
9204 				goto out;
9205 			}
9206 			len = tp->t_maxseg - optlen - ipoptlen;
9207 			sendalot = 1;
9208 		}
9209 	} else
9210 		tso = 0;
9211 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
9212 	    ("%s: len > IP_MAXPACKET", __func__));
9213 #ifdef DIAGNOSTIC
9214 #ifdef INET6
9215 	if (max_linkhdr + hdrlen > MCLBYTES)
9216 #else
9217 	if (max_linkhdr + hdrlen > MHLEN)
9218 #endif
9219 		panic("tcphdr too big");
9220 #endif
9221 
9222 	/*
9223 	 * This KASSERT is here to catch edge cases at a well defined place.
9224 	 * Before, those had triggered (random) panic conditions further
9225 	 * down.
9226 	 */
9227 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
9228 	if ((len == 0) &&
9229 	    (flags & TH_FIN) &&
9230 	    (sbused(sb))) {
9231 		/*
9232 		 * We have outstanding data, don't send a fin by itself!.
9233 		 */
9234 		goto just_return;
9235 	}
9236 	/*
9237 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
9238 	 * and initialize the header from the template for sends on this
9239 	 * connection.
9240 	 */
9241 	if (len) {
9242 		uint32_t max_val;
9243 		uint32_t moff;
9244 
9245 		if (rack->rc_pace_max_segs)
9246 			max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
9247 		else
9248 			max_val = len;
9249 		if (rack->r_ctl.rc_pace_max_segs < max_val)
9250 			max_val = rack->r_ctl.rc_pace_max_segs;
9251 		/*
9252 		 * We allow a limit on sending with hptsi.
9253 		 */
9254 		if (len > max_val) {
9255 			len = max_val;
9256 		}
9257 #ifdef INET6
9258 		if (MHLEN < hdrlen + max_linkhdr)
9259 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
9260 		else
9261 #endif
9262 			m = m_gethdr(M_NOWAIT, MT_DATA);
9263 
9264 		if (m == NULL) {
9265 			SOCKBUF_UNLOCK(sb);
9266 			error = ENOBUFS;
9267 			sack_rxmit = 0;
9268 			goto out;
9269 		}
9270 		m->m_data += max_linkhdr;
9271 		m->m_len = hdrlen;
9272 
9273 		/*
9274 		 * Start the m_copy functions from the closest mbuf to the
9275 		 * sb_offset in the socket buffer chain.
9276 		 */
9277 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
9278 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
9279 			m_copydata(mb, moff, (int)len,
9280 			    mtod(m, caddr_t)+hdrlen);
9281 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9282 				sbsndptr_adv(sb, mb, len);
9283 			m->m_len += len;
9284 		} else {
9285 			struct sockbuf *msb;
9286 
9287 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9288 				msb = NULL;
9289 			else
9290 				msb = sb;
9291 			m->m_next = tcp_m_copym(
9292 #ifdef NETFLIX_COPY_ARGS
9293 				tp,
9294 #endif
9295 				mb, moff, &len,
9296 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
9297 			    ((rsm == NULL) ? hw_tls : 0)
9298 #ifdef NETFLIX_COPY_ARGS
9299 				, &filled_all
9300 #endif
9301 				);
9302 			if (len <= (tp->t_maxseg - optlen)) {
9303 				/*
9304 				 * Must have ran out of mbufs for the copy
9305 				 * shorten it to no longer need tso. Lets
9306 				 * not put on sendalot since we are low on
9307 				 * mbufs.
9308 				 */
9309 				tso = 0;
9310 			}
9311 			if (m->m_next == NULL) {
9312 				SOCKBUF_UNLOCK(sb);
9313 				(void)m_free(m);
9314 				error = ENOBUFS;
9315 				sack_rxmit = 0;
9316 				goto out;
9317 			}
9318 		}
9319 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
9320 			TCPSTAT_INC(tcps_sndprobe);
9321 #ifdef STATS
9322 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9323 				stats_voi_update_abs_u32(tp->t_stats,
9324 				    VOI_TCP_RETXPB, len);
9325 			else
9326 				stats_voi_update_abs_u64(tp->t_stats,
9327 				    VOI_TCP_TXPB, len);
9328 #endif
9329 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
9330 			if (rsm && (rsm->r_flags & RACK_TLP)) {
9331 				/*
9332 				 * TLP should not count in retran count, but
9333 				 * in its own bin
9334 				 */
9335 				counter_u64_add(rack_tlp_retran, 1);
9336 				counter_u64_add(rack_tlp_retran_bytes, len);
9337 			} else {
9338 				tp->t_sndrexmitpack++;
9339 				TCPSTAT_INC(tcps_sndrexmitpack);
9340 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
9341 			}
9342 #ifdef STATS
9343 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
9344 			    len);
9345 #endif
9346 		} else {
9347 			TCPSTAT_INC(tcps_sndpack);
9348 			TCPSTAT_ADD(tcps_sndbyte, len);
9349 #ifdef STATS
9350 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
9351 			    len);
9352 #endif
9353 		}
9354 		/*
9355 		 * If we're sending everything we've got, set PUSH. (This
9356 		 * will keep happy those implementations which only give
9357 		 * data to the user when a buffer fills or a PUSH comes in.)
9358 		 */
9359 		if (sb_offset + len == sbused(sb) &&
9360 		    sbused(sb) &&
9361 		    !(flags & TH_SYN))
9362 			flags |= TH_PUSH;
9363 
9364 		/*
9365 		 * Are we doing pacing, if so we must calculate the slot. We
9366 		 * only do hptsi in ESTABLISHED and with no RESET being
9367 		 * sent where we have data to send.
9368 		 */
9369 		if (((tp->t_state == TCPS_ESTABLISHED) ||
9370 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
9371 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
9372 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
9373 		    ((flags & TH_FIN) == 0))) &&
9374 		    ((flags & TH_RST) == 0)) {
9375 			/* Get our pacing rate */
9376 			tot_len_this_send += len;
9377 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
9378 		}
9379 		SOCKBUF_UNLOCK(sb);
9380 	} else {
9381 		SOCKBUF_UNLOCK(sb);
9382 		if (tp->t_flags & TF_ACKNOW)
9383 			TCPSTAT_INC(tcps_sndacks);
9384 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
9385 			TCPSTAT_INC(tcps_sndctrl);
9386 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
9387 			TCPSTAT_INC(tcps_sndurg);
9388 		else
9389 			TCPSTAT_INC(tcps_sndwinup);
9390 
9391 		m = m_gethdr(M_NOWAIT, MT_DATA);
9392 		if (m == NULL) {
9393 			error = ENOBUFS;
9394 			sack_rxmit = 0;
9395 			goto out;
9396 		}
9397 #ifdef INET6
9398 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
9399 		    MHLEN >= hdrlen) {
9400 			M_ALIGN(m, hdrlen);
9401 		} else
9402 #endif
9403 			m->m_data += max_linkhdr;
9404 		m->m_len = hdrlen;
9405 	}
9406 	SOCKBUF_UNLOCK_ASSERT(sb);
9407 	m->m_pkthdr.rcvif = (struct ifnet *)0;
9408 #ifdef MAC
9409 	mac_inpcb_create_mbuf(inp, m);
9410 #endif
9411 #ifdef INET6
9412 	if (isipv6) {
9413 		ip6 = mtod(m, struct ip6_hdr *);
9414 #ifdef NETFLIX_TCPOUDP
9415 		if (tp->t_port) {
9416 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
9417 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9418 			udp->uh_dport = tp->t_port;
9419 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
9420 			udp->uh_ulen = htons(ulen);
9421 			th = (struct tcphdr *)(udp + 1);
9422 		} else
9423 #endif
9424 			th = (struct tcphdr *)(ip6 + 1);
9425 		tcpip_fillheaders(inp,
9426 #ifdef NETFLIX_TCPOUDP
9427 				  tp->t_port,
9428 #endif
9429 				  ip6, th);
9430 	} else
9431 #endif				/* INET6 */
9432 	{
9433 		ip = mtod(m, struct ip *);
9434 #ifdef TCPDEBUG
9435 		ipov = (struct ipovly *)ip;
9436 #endif
9437 #ifdef NETFLIX_TCPOUDP
9438 		if (tp->t_port) {
9439 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
9440 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9441 			udp->uh_dport = tp->t_port;
9442 			ulen = hdrlen + len - sizeof(struct ip);
9443 			udp->uh_ulen = htons(ulen);
9444 			th = (struct tcphdr *)(udp + 1);
9445 		} else
9446 #endif
9447 			th = (struct tcphdr *)(ip + 1);
9448 		tcpip_fillheaders(inp,
9449 #ifdef NETFLIX_TCPOUDP
9450 				  tp->t_port,
9451 #endif
9452 				  ip, th);
9453 	}
9454 	/*
9455 	 * Fill in fields, remembering maximum advertised window for use in
9456 	 * delaying messages about window sizes. If resending a FIN, be sure
9457 	 * not to use a new sequence number.
9458 	 */
9459 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
9460 	    tp->snd_nxt == tp->snd_max)
9461 		tp->snd_nxt--;
9462 	/*
9463 	 * If we are starting a connection, send ECN setup SYN packet. If we
9464 	 * are on a retransmit, we may resend those bits a number of times
9465 	 * as per RFC 3168.
9466 	 */
9467 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
9468 		if (tp->t_rxtshift >= 1) {
9469 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
9470 				flags |= TH_ECE | TH_CWR;
9471 		} else
9472 			flags |= TH_ECE | TH_CWR;
9473 	}
9474 	if (tp->t_state == TCPS_ESTABLISHED &&
9475 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
9476 		/*
9477 		 * If the peer has ECN, mark data packets with ECN capable
9478 		 * transmission (ECT). Ignore pure ack packets,
9479 		 * retransmissions and window probes.
9480 		 */
9481 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
9482 		    (sack_rxmit == 0) &&
9483 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
9484 #ifdef INET6
9485 			if (isipv6)
9486 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
9487 			else
9488 #endif
9489 				ip->ip_tos |= IPTOS_ECN_ECT0;
9490 			TCPSTAT_INC(tcps_ecn_ect0);
9491 		}
9492 		/*
9493 		 * Reply with proper ECN notifications.
9494 		 */
9495 		if (tp->t_flags2 & TF2_ECN_SND_CWR) {
9496 			flags |= TH_CWR;
9497 			tp->t_flags2 &= ~TF2_ECN_SND_CWR;
9498 		}
9499 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
9500 			flags |= TH_ECE;
9501 	}
9502 	/*
9503 	 * If we are doing retransmissions, then snd_nxt will not reflect
9504 	 * the first unsent octet.  For ACK only packets, we do not want the
9505 	 * sequence number of the retransmitted packet, we want the sequence
9506 	 * number of the next unsent octet.  So, if there is no data (and no
9507 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
9508 	 * ti_seq.  But if we are in persist state, snd_max might reflect
9509 	 * one byte beyond the right edge of the window, so use snd_nxt in
9510 	 * that case, since we know we aren't doing a retransmission.
9511 	 * (retransmit and persist are mutually exclusive...)
9512 	 */
9513 	if (sack_rxmit == 0) {
9514 		if (len || (flags & (TH_SYN | TH_FIN)) ||
9515 		    rack->rc_in_persist) {
9516 			th->th_seq = htonl(tp->snd_nxt);
9517 			rack_seq = tp->snd_nxt;
9518 		} else if (flags & TH_RST) {
9519 			/*
9520 			 * For a Reset send the last cum ack in sequence
9521 			 * (this like any other choice may still generate a
9522 			 * challenge ack, if a ack-update packet is in
9523 			 * flight).
9524 			 */
9525 			th->th_seq = htonl(tp->snd_una);
9526 			rack_seq = tp->snd_una;
9527 		} else {
9528 			th->th_seq = htonl(tp->snd_max);
9529 			rack_seq = tp->snd_max;
9530 		}
9531 	} else {
9532 		th->th_seq = htonl(rsm->r_start);
9533 		rack_seq = rsm->r_start;
9534 	}
9535 	th->th_ack = htonl(tp->rcv_nxt);
9536 	if (optlen) {
9537 		bcopy(opt, th + 1, optlen);
9538 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
9539 	}
9540 	th->th_flags = flags;
9541 	/*
9542 	 * Calculate receive window.  Don't shrink window, but avoid silly
9543 	 * window syndrome.
9544 	 * If a RST segment is sent, advertise a window of zero.
9545 	 */
9546 	if (flags & TH_RST) {
9547 		recwin = 0;
9548 	} else {
9549 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
9550 		    recwin < (long)ctf_fixed_maxseg(tp))
9551 			recwin = 0;
9552 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
9553 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
9554 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
9555 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
9556 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
9557 	}
9558 
9559 	/*
9560 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
9561 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
9562 	 * handled in syncache.
9563 	 */
9564 	if (flags & TH_SYN)
9565 		th->th_win = htons((u_short)
9566 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
9567 	else
9568 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
9569 	/*
9570 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
9571 	 * window.  This may cause the remote transmitter to stall.  This
9572 	 * flag tells soreceive() to disable delayed acknowledgements when
9573 	 * draining the buffer.  This can occur if the receiver is
9574 	 * attempting to read more data than can be buffered prior to
9575 	 * transmitting on the connection.
9576 	 */
9577 	if (th->th_win == 0) {
9578 		tp->t_sndzerowin++;
9579 		tp->t_flags |= TF_RXWIN0SENT;
9580 	} else
9581 		tp->t_flags &= ~TF_RXWIN0SENT;
9582 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
9583 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
9584 		th->th_flags |= TH_URG;
9585 	} else
9586 		/*
9587 		 * If no urgent pointer to send, then we pull the urgent
9588 		 * pointer to the left edge of the send window so that it
9589 		 * doesn't drift into the send window on sequence number
9590 		 * wraparound.
9591 		 */
9592 		tp->snd_up = tp->snd_una;	/* drag it along */
9593 
9594 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9595 	if (to.to_flags & TOF_SIGNATURE) {
9596 		/*
9597 		 * Calculate MD5 signature and put it into the place
9598 		 * determined before.
9599 		 * NOTE: since TCP options buffer doesn't point into
9600 		 * mbuf's data, calculate offset and use it.
9601 		 */
9602 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
9603 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
9604 			/*
9605 			 * Do not send segment if the calculation of MD5
9606 			 * digest has failed.
9607 			 */
9608 			goto out;
9609 		}
9610 	}
9611 #endif
9612 
9613 	/*
9614 	 * Put TCP length in extended header, and then checksum extended
9615 	 * header and data.
9616 	 */
9617 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
9618 #ifdef INET6
9619 	if (isipv6) {
9620 		/*
9621 		 * ip6_plen is not need to be filled now, and will be filled
9622 		 * in ip6_output.
9623 		 */
9624 		if (tp->t_port) {
9625 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
9626 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9627 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
9628 			th->th_sum = htons(0);
9629 			UDPSTAT_INC(udps_opackets);
9630 		} else {
9631 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
9632 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9633 			th->th_sum = in6_cksum_pseudo(ip6,
9634 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
9635 			    0);
9636 		}
9637 	}
9638 #endif
9639 #if defined(INET6) && defined(INET)
9640 	else
9641 #endif
9642 #ifdef INET
9643 	{
9644 		if (tp->t_port) {
9645 			m->m_pkthdr.csum_flags = CSUM_UDP;
9646 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9647 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
9648 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
9649 			th->th_sum = htons(0);
9650 			UDPSTAT_INC(udps_opackets);
9651 		} else {
9652 			m->m_pkthdr.csum_flags = CSUM_TCP;
9653 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9654 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
9655 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
9656 			    IPPROTO_TCP + len + optlen));
9657 		}
9658 		/* IP version must be set here for ipv4/ipv6 checking later */
9659 		KASSERT(ip->ip_v == IPVERSION,
9660 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
9661 	}
9662 #endif
9663 	/*
9664 	 * Enable TSO and specify the size of the segments. The TCP pseudo
9665 	 * header checksum is always provided. XXX: Fixme: This is currently
9666 	 * not the case for IPv6.
9667 	 */
9668 	if (tso || force_tso) {
9669 		KASSERT(force_tso || len > tp->t_maxseg - optlen,
9670 		    ("%s: len <= tso_segsz", __func__));
9671 		m->m_pkthdr.csum_flags |= CSUM_TSO;
9672 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
9673 	}
9674 	KASSERT(len + hdrlen == m_length(m, NULL),
9675 	    ("%s: mbuf chain different than expected: %d + %u != %u",
9676 	    __func__, len, hdrlen, m_length(m, NULL)));
9677 
9678 #ifdef TCP_HHOOK
9679 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
9680 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
9681 #endif
9682 #ifdef TCPDEBUG
9683 	/*
9684 	 * Trace.
9685 	 */
9686 	if (so->so_options & SO_DEBUG) {
9687 		u_short save = 0;
9688 
9689 #ifdef INET6
9690 		if (!isipv6)
9691 #endif
9692 		{
9693 			save = ipov->ih_len;
9694 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
9695 			      * (th->th_off << 2) */ );
9696 		}
9697 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
9698 #ifdef INET6
9699 		if (!isipv6)
9700 #endif
9701 			ipov->ih_len = save;
9702 	}
9703 #endif				/* TCPDEBUG */
9704 
9705 	/* We're getting ready to send; log now. */
9706 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
9707 		union tcp_log_stackspecific log;
9708 		struct timeval tv;
9709 
9710 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
9711 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
9712 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
9713 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
9714 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
9715 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
9716 		log.u_bbr.flex4 = orig_len;
9717 		if (filled_all)
9718 			log.u_bbr.flex5 = 0x80000000;
9719 		else
9720 			log.u_bbr.flex5 = 0;
9721 		if (rsm || sack_rxmit) {
9722 			log.u_bbr.flex8 = 1;
9723 		} else {
9724 			log.u_bbr.flex8 = 0;
9725 		}
9726 		log.u_bbr.pkts_out = tp->t_maxseg;
9727 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
9728 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9729 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
9730 		    len, &log, false, NULL, NULL, 0, &tv);
9731 	} else
9732 		lgb = NULL;
9733 
9734 	/*
9735 	 * Fill in IP length and desired time to live and send to IP level.
9736 	 * There should be a better way to handle ttl and tos; we could keep
9737 	 * them in the template, but need a way to checksum without them.
9738 	 */
9739 	/*
9740 	 * m->m_pkthdr.len should have been set before cksum calcuration,
9741 	 * because in6_cksum() need it.
9742 	 */
9743 #ifdef INET6
9744 	if (isipv6) {
9745 		/*
9746 		 * we separately set hoplimit for every segment, since the
9747 		 * user might want to change the value via setsockopt. Also,
9748 		 * desired default hop limit might be changed via Neighbor
9749 		 * Discovery.
9750 		 */
9751 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
9752 
9753 		/*
9754 		 * Set the packet size here for the benefit of DTrace
9755 		 * probes. ip6_output() will set it properly; it's supposed
9756 		 * to include the option header lengths as well.
9757 		 */
9758 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
9759 
9760 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
9761 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9762 		else
9763 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9764 
9765 		if (tp->t_state == TCPS_SYN_SENT)
9766 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
9767 
9768 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
9769 		/* TODO: IPv6 IP6TOS_ECT bit on */
9770 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
9771 		    &inp->inp_route6,
9772 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
9773 		    NULL, NULL, inp);
9774 
9775 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
9776 			mtu = inp->inp_route6.ro_rt->rt_mtu;
9777 	}
9778 #endif				/* INET6 */
9779 #if defined(INET) && defined(INET6)
9780 	else
9781 #endif
9782 #ifdef INET
9783 	{
9784 		ip->ip_len = htons(m->m_pkthdr.len);
9785 #ifdef INET6
9786 		if (inp->inp_vflag & INP_IPV6PROTO)
9787 			ip->ip_ttl = in6_selecthlim(inp, NULL);
9788 #endif				/* INET6 */
9789 		/*
9790 		 * If we do path MTU discovery, then we set DF on every
9791 		 * packet. This might not be the best thing to do according
9792 		 * to RFC3390 Section 2. However the tcp hostcache migitates
9793 		 * the problem so it affects only the first tcp connection
9794 		 * with a host.
9795 		 *
9796 		 * NB: Don't set DF on small MTU/MSS to have a safe
9797 		 * fallback.
9798 		 */
9799 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
9800 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9801 			if (tp->t_port == 0 || len < V_tcp_minmss) {
9802 				ip->ip_off |= htons(IP_DF);
9803 			}
9804 		} else {
9805 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9806 		}
9807 
9808 		if (tp->t_state == TCPS_SYN_SENT)
9809 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
9810 
9811 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
9812 
9813 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
9814 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
9815 		    inp);
9816 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
9817 			mtu = inp->inp_route.ro_rt->rt_mtu;
9818 	}
9819 #endif				/* INET */
9820 
9821 out:
9822 	if (lgb) {
9823 		lgb->tlb_errno = error;
9824 		lgb = NULL;
9825 	}
9826 	/*
9827 	 * In transmit state, time the transmission and arrange for the
9828 	 * retransmit.  In persist state, just set snd_max.
9829 	 */
9830 	if (error == 0) {
9831 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9832 		    (tp->t_flags & TF_SACK_PERMIT) &&
9833 		    tp->rcv_numsacks > 0)
9834 			tcp_clean_dsack_blocks(tp);
9835 		if (len == 0)
9836 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
9837 		else if (len == 1) {
9838 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
9839 		} else if (len > 1) {
9840 			int idx;
9841 
9842 			idx = (len / ctf_fixed_maxseg(tp)) + 3;
9843 			if (idx >= TCP_MSS_ACCT_ATIMER)
9844 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
9845 			else
9846 				counter_u64_add(rack_out_size[idx], 1);
9847 		}
9848 		if (hw_tls && len > 0) {
9849 			if (filled_all) {
9850 				counter_u64_add(rack_tls_filled, 1);
9851 				rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
9852 			} else {
9853 				if (rsm) {
9854 					counter_u64_add(rack_tls_rxt, 1);
9855 					rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
9856 				} else if (doing_tlp) {
9857 					counter_u64_add(rack_tls_tlp, 1);
9858 					rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
9859 				} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
9860 					counter_u64_add(rack_tls_app, 1);
9861 					rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
9862 				} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
9863 					counter_u64_add(rack_tls_cwnd, 1);
9864 					rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
9865 				} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
9866 					counter_u64_add(rack_tls_rwnd, 1);
9867 					rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
9868 				} else {
9869 					rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
9870 					counter_u64_add(rack_tls_other, 1);
9871 				}
9872 			}
9873 		}
9874 	}
9875 	if (sub_from_prr && (error == 0)) {
9876 		if (rack->r_ctl.rc_prr_sndcnt >= len)
9877 			rack->r_ctl.rc_prr_sndcnt -= len;
9878 		else
9879 			rack->r_ctl.rc_prr_sndcnt = 0;
9880 	}
9881 	sub_from_prr = 0;
9882 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
9883 	    pass, rsm);
9884 	if ((error == 0) &&
9885 	    (len > 0) &&
9886 	    (tp->snd_una == tp->snd_max))
9887 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
9888 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
9889 	    (rack->rc_in_persist == 0)) {
9890 		tcp_seq startseq = tp->snd_nxt;
9891 
9892 		/*
9893 		 * Advance snd_nxt over sequence space of this segment.
9894 		 */
9895 		if (error)
9896 			/* We don't log or do anything with errors */
9897 			goto nomore;
9898 
9899 		if (flags & (TH_SYN | TH_FIN)) {
9900 			if (flags & TH_SYN)
9901 				tp->snd_nxt++;
9902 			if (flags & TH_FIN) {
9903 				tp->snd_nxt++;
9904 				tp->t_flags |= TF_SENTFIN;
9905 			}
9906 		}
9907 		/* In the ENOBUFS case we do *not* update snd_max */
9908 		if (sack_rxmit)
9909 			goto nomore;
9910 
9911 		tp->snd_nxt += len;
9912 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
9913 			if (tp->snd_una == tp->snd_max) {
9914 				/*
9915 				 * Update the time we just added data since
9916 				 * none was outstanding.
9917 				 */
9918 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9919 				tp->t_acktime = ticks;
9920 			}
9921 			tp->snd_max = tp->snd_nxt;
9922 			/*
9923 			 * Time this transmission if not a retransmission and
9924 			 * not currently timing anything.
9925 			 * This is only relevant in case of switching back to
9926 			 * the base stack.
9927 			 */
9928 			if (tp->t_rtttime == 0) {
9929 				tp->t_rtttime = ticks;
9930 				tp->t_rtseq = startseq;
9931 				TCPSTAT_INC(tcps_segstimed);
9932 			}
9933 #ifdef STATS
9934 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
9935 				tp->t_flags |= TF_GPUTINPROG;
9936 				tp->gput_seq = startseq;
9937 				tp->gput_ack = startseq +
9938 				    ulmin(sbavail(sb) - sb_offset, sendwin);
9939 				tp->gput_ts = tcp_ts_getticks();
9940 			}
9941 #endif
9942 		}
9943 	} else {
9944 		/*
9945 		 * Persist case, update snd_max but since we are in persist
9946 		 * mode (no window) we do not update snd_nxt.
9947 		 */
9948 		int32_t xlen = len;
9949 
9950 		if (error)
9951 			goto nomore;
9952 
9953 		if (flags & TH_SYN)
9954 			++xlen;
9955 		if (flags & TH_FIN) {
9956 			++xlen;
9957 			tp->t_flags |= TF_SENTFIN;
9958 		}
9959 		/* In the ENOBUFS case we do *not* update snd_max */
9960 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
9961 			if (tp->snd_una == tp->snd_max) {
9962 				/*
9963 				 * Update the time we just added data since
9964 				 * none was outstanding.
9965 				 */
9966 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9967 				tp->t_acktime = ticks;
9968 			}
9969 			tp->snd_max = tp->snd_nxt + len;
9970 		}
9971 	}
9972 nomore:
9973 	if (error) {
9974 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
9975 		/*
9976 		 * Failures do not advance the seq counter above. For the
9977 		 * case of ENOBUFS we will fall out and retry in 1ms with
9978 		 * the hpts. Everything else will just have to retransmit
9979 		 * with the timer.
9980 		 *
9981 		 * In any case, we do not want to loop around for another
9982 		 * send without a good reason.
9983 		 */
9984 		sendalot = 0;
9985 		switch (error) {
9986 		case EPERM:
9987 			tp->t_flags &= ~TF_FORCEDATA;
9988 			tp->t_softerror = error;
9989 			return (error);
9990 		case ENOBUFS:
9991 			if (slot == 0) {
9992 				/*
9993 				 * Pace us right away to retry in a some
9994 				 * time
9995 				 */
9996 				slot = 1 + rack->rc_enobuf;
9997 				if (rack->rc_enobuf < 255)
9998 					rack->rc_enobuf++;
9999 				if (slot > (rack->rc_rack_rtt / 2)) {
10000 					slot = rack->rc_rack_rtt / 2;
10001 				}
10002 				if (slot < 10)
10003 					slot = 10;
10004 			}
10005 			counter_u64_add(rack_saw_enobuf, 1);
10006 			error = 0;
10007 			goto enobufs;
10008 		case EMSGSIZE:
10009 			/*
10010 			 * For some reason the interface we used initially
10011 			 * to send segments changed to another or lowered
10012 			 * its MTU. If TSO was active we either got an
10013 			 * interface without TSO capabilits or TSO was
10014 			 * turned off. If we obtained mtu from ip_output()
10015 			 * then update it and try again.
10016 			 */
10017 			if (tso)
10018 				tp->t_flags &= ~TF_TSO;
10019 			if (mtu != 0) {
10020 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
10021 				goto again;
10022 			}
10023 			slot = 10;
10024 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10025 			tp->t_flags &= ~TF_FORCEDATA;
10026 			return (error);
10027 		case ENETUNREACH:
10028 			counter_u64_add(rack_saw_enetunreach, 1);
10029 		case EHOSTDOWN:
10030 		case EHOSTUNREACH:
10031 		case ENETDOWN:
10032 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
10033 				tp->t_softerror = error;
10034 			}
10035 			/* FALLTHROUGH */
10036 		default:
10037 			slot = 10;
10038 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10039 			tp->t_flags &= ~TF_FORCEDATA;
10040 			return (error);
10041 		}
10042 	} else {
10043 		rack->rc_enobuf = 0;
10044 	}
10045 	TCPSTAT_INC(tcps_sndtotal);
10046 
10047 	/*
10048 	 * Data sent (as far as we can tell). If this advertises a larger
10049 	 * window than any other segment, then remember the size of the
10050 	 * advertised window. Any pending ACK has now been sent.
10051 	 */
10052 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
10053 		tp->rcv_adv = tp->rcv_nxt + recwin;
10054 	tp->last_ack_sent = tp->rcv_nxt;
10055 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
10056 enobufs:
10057 	rack->r_tlp_running = 0;
10058 	if (flags & TH_RST) {
10059 		/*
10060 		 * We don't send again after sending a RST.
10061 		 */
10062 		slot = 0;
10063 		sendalot = 0;
10064 	}
10065 	if (rsm && (slot == 0)) {
10066 		/*
10067 		 * Dup ack retransmission possibly, so
10068 		 * lets assure we have at least min rack
10069 		 * time, if its a rack resend then the rack
10070 		 * to will also be set to this.
10071 		 */
10072 		slot = rack->r_ctl.rc_min_to;
10073 	}
10074 	if (slot) {
10075 		/* set the rack tcb into the slot N */
10076 		counter_u64_add(rack_paced_segments, 1);
10077 	} else if (sendalot) {
10078 		if (len)
10079 			counter_u64_add(rack_unpaced_segments, 1);
10080 		sack_rxmit = 0;
10081 		tp->t_flags &= ~TF_FORCEDATA;
10082 		goto again;
10083 	} else if (len) {
10084 		counter_u64_add(rack_unpaced_segments, 1);
10085 	}
10086 	tp->t_flags &= ~TF_FORCEDATA;
10087 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
10088 	return (error);
10089 }
10090 
10091 /*
10092  * rack_ctloutput() must drop the inpcb lock before performing copyin on
10093  * socket option arguments.  When it re-acquires the lock after the copy, it
10094  * has to revalidate that the connection is still valid for the socket
10095  * option.
10096  */
10097 static int
10098 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
10099     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10100 {
10101 	struct epoch_tracker et;
10102 	int32_t error = 0, optval;
10103 
10104 	switch (sopt->sopt_name) {
10105 	case TCP_RACK_PROP_RATE:
10106 	case TCP_RACK_PROP:
10107 	case TCP_RACK_TLP_REDUCE:
10108 	case TCP_RACK_EARLY_RECOV:
10109 	case TCP_RACK_PACE_ALWAYS:
10110 	case TCP_DELACK:
10111 	case TCP_RACK_PACE_REDUCE:
10112 	case TCP_RACK_PACE_MAX_SEG:
10113 	case TCP_RACK_PRR_SENDALOT:
10114 	case TCP_RACK_MIN_TO:
10115 	case TCP_RACK_EARLY_SEG:
10116 	case TCP_RACK_REORD_THRESH:
10117 	case TCP_RACK_REORD_FADE:
10118 	case TCP_RACK_TLP_THRESH:
10119 	case TCP_RACK_PKT_DELAY:
10120 	case TCP_RACK_TLP_USE:
10121 	case TCP_RACK_TLP_INC_VAR:
10122 	case TCP_RACK_IDLE_REDUCE_HIGH:
10123 	case TCP_RACK_MIN_PACE:
10124 	case TCP_RACK_GP_INCREASE:
10125 	case TCP_BBR_RACK_RTT_USE:
10126 	case TCP_BBR_USE_RACK_CHEAT:
10127 	case TCP_RACK_DO_DETECTION:
10128 	case TCP_DATA_AFTER_CLOSE:
10129 		break;
10130 	default:
10131 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10132 		break;
10133 	}
10134 	INP_WUNLOCK(inp);
10135 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
10136 	if (error)
10137 		return (error);
10138 	INP_WLOCK(inp);
10139 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
10140 		INP_WUNLOCK(inp);
10141 		return (ECONNRESET);
10142 	}
10143 	tp = intotcpcb(inp);
10144 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10145 	switch (sopt->sopt_name) {
10146 	case TCP_RACK_DO_DETECTION:
10147 		RACK_OPTS_INC(tcp_rack_do_detection);
10148 		if (optval == 0)
10149 			rack->do_detection = 0;
10150 		else
10151 			rack->do_detection = 1;
10152 		break;
10153 	case TCP_RACK_PROP_RATE:
10154 		if ((optval <= 0) || (optval >= 100)) {
10155 			error = EINVAL;
10156 			break;
10157 		}
10158 		RACK_OPTS_INC(tcp_rack_prop_rate);
10159 		rack->r_ctl.rc_prop_rate = optval;
10160 		break;
10161 	case TCP_RACK_TLP_USE:
10162 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
10163 			error = EINVAL;
10164 			break;
10165 		}
10166 		RACK_OPTS_INC(tcp_tlp_use);
10167 		rack->rack_tlp_threshold_use = optval;
10168 		break;
10169 	case TCP_RACK_PROP:
10170 		/* RACK proportional rate reduction (bool) */
10171 		RACK_OPTS_INC(tcp_rack_prop);
10172 		rack->r_ctl.rc_prop_reduce = optval;
10173 		break;
10174 	case TCP_RACK_TLP_REDUCE:
10175 		/* RACK TLP cwnd reduction (bool) */
10176 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
10177 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
10178 		break;
10179 	case TCP_RACK_EARLY_RECOV:
10180 		/* Should recovery happen early (bool) */
10181 		RACK_OPTS_INC(tcp_rack_early_recov);
10182 		rack->r_ctl.rc_early_recovery = optval;
10183 		break;
10184 	case TCP_RACK_PACE_ALWAYS:
10185 		/* Use the always pace method (bool)  */
10186 		RACK_OPTS_INC(tcp_rack_pace_always);
10187 		if (optval > 0)
10188 			rack->rc_always_pace = 1;
10189 		else
10190 			rack->rc_always_pace = 0;
10191 		break;
10192 	case TCP_RACK_PACE_REDUCE:
10193 		/* RACK Hptsi reduction factor (divisor) */
10194 		RACK_OPTS_INC(tcp_rack_pace_reduce);
10195 		if (optval)
10196 			/* Must be non-zero */
10197 			rack->rc_pace_reduce = optval;
10198 		else
10199 			error = EINVAL;
10200 		break;
10201 	case TCP_RACK_PACE_MAX_SEG:
10202 		/* Max segments in a pace */
10203 		RACK_OPTS_INC(tcp_rack_max_seg);
10204 		rack->rc_pace_max_segs = optval;
10205 		rack_set_pace_segments(tp, rack);
10206 		break;
10207 	case TCP_RACK_PRR_SENDALOT:
10208 		/* Allow PRR to send more than one seg */
10209 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
10210 		rack->r_ctl.rc_prr_sendalot = optval;
10211 		break;
10212 	case TCP_RACK_MIN_TO:
10213 		/* Minimum time between rack t-o's in ms */
10214 		RACK_OPTS_INC(tcp_rack_min_to);
10215 		rack->r_ctl.rc_min_to = optval;
10216 		break;
10217 	case TCP_RACK_EARLY_SEG:
10218 		/* If early recovery max segments */
10219 		RACK_OPTS_INC(tcp_rack_early_seg);
10220 		rack->r_ctl.rc_early_recovery_segs = optval;
10221 		break;
10222 	case TCP_RACK_REORD_THRESH:
10223 		/* RACK reorder threshold (shift amount) */
10224 		RACK_OPTS_INC(tcp_rack_reord_thresh);
10225 		if ((optval > 0) && (optval < 31))
10226 			rack->r_ctl.rc_reorder_shift = optval;
10227 		else
10228 			error = EINVAL;
10229 		break;
10230 	case TCP_RACK_REORD_FADE:
10231 		/* Does reordering fade after ms time */
10232 		RACK_OPTS_INC(tcp_rack_reord_fade);
10233 		rack->r_ctl.rc_reorder_fade = optval;
10234 		break;
10235 	case TCP_RACK_TLP_THRESH:
10236 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10237 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
10238 		if (optval)
10239 			rack->r_ctl.rc_tlp_threshold = optval;
10240 		else
10241 			error = EINVAL;
10242 		break;
10243 	case TCP_BBR_USE_RACK_CHEAT:
10244 		RACK_OPTS_INC(tcp_rack_cheat);
10245 		if (optval)
10246 			rack->use_rack_cheat = 1;
10247 		else
10248 			rack->use_rack_cheat = 0;
10249 		break;
10250 	case TCP_RACK_PKT_DELAY:
10251 		/* RACK added ms i.e. rack-rtt + reord + N */
10252 		RACK_OPTS_INC(tcp_rack_pkt_delay);
10253 		rack->r_ctl.rc_pkt_delay = optval;
10254 		break;
10255 	case TCP_RACK_TLP_INC_VAR:
10256 		/* Does TLP include rtt variance in t-o */
10257 		error = EINVAL;
10258 		break;
10259 	case TCP_RACK_IDLE_REDUCE_HIGH:
10260 		error = EINVAL;
10261 		break;
10262 	case TCP_DELACK:
10263 		if (optval == 0)
10264 			tp->t_delayed_ack = 0;
10265 		else
10266 			tp->t_delayed_ack = 1;
10267 		if (tp->t_flags & TF_DELACK) {
10268 			tp->t_flags &= ~TF_DELACK;
10269 			tp->t_flags |= TF_ACKNOW;
10270 			NET_EPOCH_ENTER(et);
10271 			rack_output(tp);
10272 			NET_EPOCH_EXIT(et);
10273 		}
10274 		break;
10275 	case TCP_RACK_MIN_PACE:
10276 		RACK_OPTS_INC(tcp_rack_min_pace);
10277 		if (optval > 3)
10278 			rack->r_enforce_min_pace = 3;
10279 		else
10280 			rack->r_enforce_min_pace = optval;
10281 		break;
10282 	case TCP_RACK_GP_INCREASE:
10283 		if ((optval >= 0) &&
10284 		    (optval <= 256))
10285 			rack->rack_per_of_gp = optval;
10286 		else
10287 			error = EINVAL;
10288 
10289 		break;
10290 	case TCP_BBR_RACK_RTT_USE:
10291 		if ((optval != USE_RTT_HIGH) &&
10292 		    (optval != USE_RTT_LOW) &&
10293 		    (optval != USE_RTT_AVG))
10294 			error = EINVAL;
10295 		else
10296 			rack->r_ctl.rc_rate_sample_method = optval;
10297 		break;
10298 	case TCP_DATA_AFTER_CLOSE:
10299 		if (optval)
10300 			rack->rc_allow_data_af_clo = 1;
10301 		else
10302 			rack->rc_allow_data_af_clo = 0;
10303 		break;
10304 	default:
10305 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10306 		break;
10307 	}
10308 #ifdef NETFLIX_STATS
10309 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
10310 #endif
10311 	INP_WUNLOCK(inp);
10312 	return (error);
10313 }
10314 
10315 static int
10316 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
10317     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10318 {
10319 	int32_t error, optval;
10320 
10321 	/*
10322 	 * Because all our options are either boolean or an int, we can just
10323 	 * pull everything into optval and then unlock and copy. If we ever
10324 	 * add a option that is not a int, then this will have quite an
10325 	 * impact to this routine.
10326 	 */
10327 	error = 0;
10328 	switch (sopt->sopt_name) {
10329 	case TCP_RACK_DO_DETECTION:
10330 		optval = rack->do_detection;
10331 		break;
10332 
10333 	case TCP_RACK_PROP_RATE:
10334 		optval = rack->r_ctl.rc_prop_rate;
10335 		break;
10336 	case TCP_RACK_PROP:
10337 		/* RACK proportional rate reduction (bool) */
10338 		optval = rack->r_ctl.rc_prop_reduce;
10339 		break;
10340 	case TCP_RACK_TLP_REDUCE:
10341 		/* RACK TLP cwnd reduction (bool) */
10342 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
10343 		break;
10344 	case TCP_RACK_EARLY_RECOV:
10345 		/* Should recovery happen early (bool) */
10346 		optval = rack->r_ctl.rc_early_recovery;
10347 		break;
10348 	case TCP_RACK_PACE_REDUCE:
10349 		/* RACK Hptsi reduction factor (divisor) */
10350 		optval = rack->rc_pace_reduce;
10351 		break;
10352 	case TCP_RACK_PACE_MAX_SEG:
10353 		/* Max segments in a pace */
10354 		optval = rack->rc_pace_max_segs;
10355 		break;
10356 	case TCP_RACK_PACE_ALWAYS:
10357 		/* Use the always pace method */
10358 		optval = rack->rc_always_pace;
10359 		break;
10360 	case TCP_RACK_PRR_SENDALOT:
10361 		/* Allow PRR to send more than one seg */
10362 		optval = rack->r_ctl.rc_prr_sendalot;
10363 		break;
10364 	case TCP_RACK_MIN_TO:
10365 		/* Minimum time between rack t-o's in ms */
10366 		optval = rack->r_ctl.rc_min_to;
10367 		break;
10368 	case TCP_RACK_EARLY_SEG:
10369 		/* If early recovery max segments */
10370 		optval = rack->r_ctl.rc_early_recovery_segs;
10371 		break;
10372 	case TCP_RACK_REORD_THRESH:
10373 		/* RACK reorder threshold (shift amount) */
10374 		optval = rack->r_ctl.rc_reorder_shift;
10375 		break;
10376 	case TCP_RACK_REORD_FADE:
10377 		/* Does reordering fade after ms time */
10378 		optval = rack->r_ctl.rc_reorder_fade;
10379 		break;
10380 	case TCP_BBR_USE_RACK_CHEAT:
10381 		/* Do we use the rack cheat for rxt */
10382 		optval = rack->use_rack_cheat;
10383 		break;
10384 	case TCP_RACK_TLP_THRESH:
10385 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10386 		optval = rack->r_ctl.rc_tlp_threshold;
10387 		break;
10388 	case TCP_RACK_PKT_DELAY:
10389 		/* RACK added ms i.e. rack-rtt + reord + N */
10390 		optval = rack->r_ctl.rc_pkt_delay;
10391 		break;
10392 	case TCP_RACK_TLP_USE:
10393 		optval = rack->rack_tlp_threshold_use;
10394 		break;
10395 	case TCP_RACK_TLP_INC_VAR:
10396 		/* Does TLP include rtt variance in t-o */
10397 		error = EINVAL;
10398 		break;
10399 	case TCP_RACK_IDLE_REDUCE_HIGH:
10400 		error = EINVAL;
10401 		break;
10402 	case TCP_RACK_MIN_PACE:
10403 		optval = rack->r_enforce_min_pace;
10404 		break;
10405 	case TCP_RACK_GP_INCREASE:
10406 		optval = rack->rack_per_of_gp;
10407 		break;
10408 	case TCP_BBR_RACK_RTT_USE:
10409 		optval = rack->r_ctl.rc_rate_sample_method;
10410 		break;
10411 	case TCP_DELACK:
10412 		optval = tp->t_delayed_ack;
10413 		break;
10414 	case TCP_DATA_AFTER_CLOSE:
10415 		optval = rack->rc_allow_data_af_clo;
10416 		break;
10417 	default:
10418 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10419 		break;
10420 	}
10421 	INP_WUNLOCK(inp);
10422 	if (error == 0) {
10423 		error = sooptcopyout(sopt, &optval, sizeof optval);
10424 	}
10425 	return (error);
10426 }
10427 
10428 static int
10429 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
10430 {
10431 	int32_t error = EINVAL;
10432 	struct tcp_rack *rack;
10433 
10434 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10435 	if (rack == NULL) {
10436 		/* Huh? */
10437 		goto out;
10438 	}
10439 	if (sopt->sopt_dir == SOPT_SET) {
10440 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
10441 	} else if (sopt->sopt_dir == SOPT_GET) {
10442 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
10443 	}
10444 out:
10445 	INP_WUNLOCK(inp);
10446 	return (error);
10447 }
10448 
10449 
10450 static struct tcp_function_block __tcp_rack = {
10451 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
10452 	.tfb_tcp_output = rack_output,
10453 	.tfb_do_queued_segments = ctf_do_queued_segments,
10454 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
10455 	.tfb_tcp_do_segment = rack_do_segment,
10456 	.tfb_tcp_ctloutput = rack_ctloutput,
10457 	.tfb_tcp_fb_init = rack_init,
10458 	.tfb_tcp_fb_fini = rack_fini,
10459 	.tfb_tcp_timer_stop_all = rack_stopall,
10460 	.tfb_tcp_timer_activate = rack_timer_activate,
10461 	.tfb_tcp_timer_active = rack_timer_active,
10462 	.tfb_tcp_timer_stop = rack_timer_stop,
10463 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
10464 	.tfb_tcp_handoff_ok = rack_handoff_ok
10465 };
10466 
10467 static const char *rack_stack_names[] = {
10468 	__XSTRING(STACKNAME),
10469 #ifdef STACKALIAS
10470 	__XSTRING(STACKALIAS),
10471 #endif
10472 };
10473 
10474 static int
10475 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
10476 {
10477 	memset(mem, 0, size);
10478 	return (0);
10479 }
10480 
10481 static void
10482 rack_dtor(void *mem, int32_t size, void *arg)
10483 {
10484 
10485 }
10486 
10487 static bool rack_mod_inited = false;
10488 
10489 static int
10490 tcp_addrack(module_t mod, int32_t type, void *data)
10491 {
10492 	int32_t err = 0;
10493 	int num_stacks;
10494 
10495 	switch (type) {
10496 	case MOD_LOAD:
10497 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
10498 		    sizeof(struct rack_sendmap),
10499 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
10500 
10501 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
10502 		    sizeof(struct tcp_rack),
10503 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
10504 
10505 		sysctl_ctx_init(&rack_sysctl_ctx);
10506 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
10507 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
10508 		    OID_AUTO,
10509 #ifdef STACKALIAS
10510 		    __XSTRING(STACKALIAS),
10511 #else
10512 		    __XSTRING(STACKNAME),
10513 #endif
10514 		    CTLFLAG_RW, 0,
10515 		    "");
10516 		if (rack_sysctl_root == NULL) {
10517 			printf("Failed to add sysctl node\n");
10518 			err = EFAULT;
10519 			goto free_uma;
10520 		}
10521 		rack_init_sysctls();
10522 		num_stacks = nitems(rack_stack_names);
10523 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
10524 		    rack_stack_names, &num_stacks);
10525 		if (err) {
10526 			printf("Failed to register %s stack name for "
10527 			    "%s module\n", rack_stack_names[num_stacks],
10528 			    __XSTRING(MODNAME));
10529 			sysctl_ctx_free(&rack_sysctl_ctx);
10530 free_uma:
10531 			uma_zdestroy(rack_zone);
10532 			uma_zdestroy(rack_pcb_zone);
10533 			rack_counter_destroy();
10534 			printf("Failed to register rack module -- err:%d\n", err);
10535 			return (err);
10536 		}
10537 		tcp_lro_reg_mbufq();
10538 		rack_mod_inited = true;
10539 		break;
10540 	case MOD_QUIESCE:
10541 		err = deregister_tcp_functions(&__tcp_rack, true, false);
10542 		break;
10543 	case MOD_UNLOAD:
10544 		err = deregister_tcp_functions(&__tcp_rack, false, true);
10545 		if (err == EBUSY)
10546 			break;
10547 		if (rack_mod_inited) {
10548 			uma_zdestroy(rack_zone);
10549 			uma_zdestroy(rack_pcb_zone);
10550 			sysctl_ctx_free(&rack_sysctl_ctx);
10551 			rack_counter_destroy();
10552 			rack_mod_inited = false;
10553 		}
10554 		tcp_lro_dereg_mbufq();
10555 		err = 0;
10556 		break;
10557 	default:
10558 		return (EOPNOTSUPP);
10559 	}
10560 	return (err);
10561 }
10562 
10563 static moduledata_t tcp_rack = {
10564 	.name = __XSTRING(MODNAME),
10565 	.evhand = tcp_addrack,
10566 	.priv = 0
10567 };
10568 
10569 MODULE_VERSION(MODNAME, 1);
10570 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
10571 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
10572